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σ(q) :=
∞∑

n=0

q
n(n+1)

2

(−q)n
.

It is the generating function for the excess number of partitions of n into distinct
parts with an even rank over those of odd rank [6]. Note that the rank of a partition
is the largest part minus the number of parts.

On page 14 of the Lost Notebook [35], Ramanujan gave two surprising identities
involving σ(q):

∞∑

n=0

(S(q) − (−q)n) = S(q)D(q) + 1

2
σ(q), (1.1)

and ∞∑

n=0

(
S(q) − 1

(q; q2)n+1

)
= S(q)D(q2) + 1

2
σ(q), (1.2)

where

S(q) := (−q; q)∞,

D(q) = −1

2
+

∞∑

n=1

qn

1 − qn
.

Here, and throughout the sequel, we assume |q| < 1 and use the standard q-series
notation

(A)0 := (A; q)0 = 1,

(A)n := (A; q)n = (1 − A)(1 − Aq) · · · (1 − Aqn−1) for any positive integer n,

(A)∞ := (A; q)∞ = lim
n→∞(A; q)n, |q| < 1,

(A)n := (A)∞/(Aqn)∞ for any integer n.

Since the base of almost all of the q-shifted factorials occurring in our paper is q,
for simplicity, we also use the following notation:

(A1, A2, · · · , Am)n := (A1, A2, · · · , Am; q)n = (A1)n(A2)n · · · (Am)n,

(A1, A2, · · · , Am)∞ := (A1, A2, · · · , Am; q)∞ = (A1)∞(A2)∞ · · · (Am)∞.

We provide the associated base wherever there is a possibility of confusion.
The aforementioned identities involving σ(q)were first proved byAndrews in [6].

The function σ(q) enjoys many nice properties relevant to various fields of number
theory, namely, the theory of partitions, algebraic number theory, Maass waveforms,
quantum modular forms etc. We review these properties below.
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In [6], and later more explicitly in [7], Andrews conjectured that infinitely many
coefficients in the power series expansion of σ(q) are zero but that the coefficients
are unbounded. These two conjectures were later proved by Andrews, Dyson, and
Hickerson in a beautiful paper [9], where they found that the coefficients of σ(q)

have multiplicative properties determined by a certain Hecke character associated
to the real quadratic field Q(

√
6). Results similar to these were later found by [14],

Corson, Favero, Liesinger, and Zubairy [16], Lovejoy [27], [28], Lovejoy andOsburn
[29], Patkowski [31], and more recently by Xiong [37].

Cohen [20] showed that if we set

ϕ(q) := q1/24σ(q) + q−1/24σ ∗(q)

=
∑

n∈Z
n≡1 (mod 24)

T (n)q |n|/24,

where

σ ∗(q) := 2
∞∑

n=1

(−1)nqn2

(q; q2)n
,

then T (n) are the coefficients of a Maass waveform of eigenvalue 1/4. For another
example of such a Maass waveform associated with the pair (W1(q), W2(q)) studied
in [16], we refer the reader to Section 2 of a recent paper of Li, Ngo, and Rhoades
[25]. At the end of [25], the authors posed an open problem of relating 10 other pairs
of q-series to Maass waveforms or indefinite quadratic forms, which was recently
solved byKrauel, Rolen, andWoodbury [24]. The function σ(q) also occurs in one of
the first examples of quantummodular forms given by Zagier [40], that is, q1/24σ(q),
where q = e2π i x , x ∈ Q, is a quantum modular form.

The identities of the type (1.1) and (1.2) are known as ‘sum of tails’ identities.
After Ramanujan, Zagier [39, Theorem 2] was the next mathematician to discover a
‘sumof tails’ identity. This is associatedwith theDedekind eta-function and occurs in
his work on Vassiliev invariants. Using a new Abel-type lemma, Andrews, Jiménez-
Urroz, and Ono [10] obtained two general theorems involving q-series obtained
by summing the iterated differences between an infinite product and its truncated
products, and used them not only to prove (1.1) and (1.2) and similar other identities
but also to determine the values at negative integers of certain L-functions. Chan
[17, p. 78] gave a multiparameter ‘sum of tails’ identity which consists, as special
cases, the two general theorems in [10]. More ‘sum of tails’ identities were obtained
by Andrews and Freitas [13], Bringmann and Kane [15], and Patkowski [32], [33],
[34].

Andrews [6] asked for a ‘near bijection’ between the weighted counts of par-
titions given by the left-hand sides of (1.1) and (1.2), and the coefficients of the
corresponding first expressions obtained by the convolutions of the associated parti-
tion functions. Such a proof was supplied by Chen and Ji [18]. In [11, Theorem 3.3],
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the function σ(q) was found to be related to the generating function of the number
of partitions of n such that all even parts are less than or equal to twice the smallest
part.

Asmentioned before, identities (1.1) and (1.2)were proved byAndrews in [6]. His
proof was based on an application of a beautiful q-series identity of Ramanujan [35,
p. 40], [5, Equation (3.8)], now known as Ramanujan’s reciprocity theorem, which
was, in turn, proved earlier by Andrews himself in [5]. In [13], it was remarked that
the proofs of (1.1) and (1.2) in [6] are nearly as odd as the identities themselves. In [8,
p. 149] as well, it was remarked that ‘the proofs provide no significant insight into the
reasons for their existence’. While this may be true, the goal of this paper is to show
that the underlying idea in these proofs can be adapted to obtain new representations
for σ(q), which are of a type completely different than those previously known, for
example, [9, Equations (6.3), (6.4)] or (1.1) and (1.2). These two new representations
involve natural generalizations of σ(q) in one and two variables respectively.

These representations result from applying Andrews’ idea in [6] to the three-
variable reciprocity theorem of Kang [23, Theorem 4.1] which is equivalent to
Ramanujan’s 1ψ1 summation formula, and to the four-variable reciprocity theorem
[23, Theorem 1.2] which is equivalent to a formula of Andrews [5, Theorem 6].

For |c| < |a| < 1 and |c| < |b| < 1, Kang [23, Theorem 4.1] obtained the fol-
lowing three-variable reciprocity theorem:

ρ3(a, b, c) − ρ3(b, a, c) =
(
1

b
− 1

a

)
(c, aq/b, bq/a, q)∞

(−c/a,−c/b,−aq,−bq)∞
, (1.3)

where

ρ3(a, b, c) :=
(
1 + 1

b

) ∞∑

n=0

(c)n(−1)nqn(n+1)/2anb−n

(−aq)n(−c/b)n+1
.

Ramanujan’s reciprocity theorem is a special case c = 0 of the above theorem.
Using (1.3), we obtain the following new representation for σ(q). The surprising

thing about this representation is that it is valid for any complex c such that |c| < 1.

Theorem 1.1. For any complex c such that |c| < 1, we have

σ(q) = (−c)∞
∞∑

n=0

qn(n+1)/2

(−q)n(1 − cqn)
− 2

∞∑

m,n=0

(−q)m

(q)m(q)n

(−1)nqn(n+1)/2cm+n+1

(1 − qn+m+1)
.

(1.4)

For |c|, |d| < |a|, |b| < 1, the four-variable reciprocity theorem is given by [23,
Theorem 1.2]

ρ4(a, b, c, d) − ρ4(b, a, c, d) =
(
1

b
− 1

a

)
(d, c, cd/(ab), aq/b, bq/a, q)∞

(−d/a, −d/b, −c/a, −c/b, −aq, −bq)∞
,

(1.5)
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where

ρ4(a, b, c, d) :=
(
1 + 1

b

) ∞∑

n=0

(d, c, cd/(ab))n(1 + cdq2n/b)(−1)nqn(n+1)/2anb−n

(−aq)n(−c/b, −d/b)n+1
.

Using (1.5), we obtain the following new representation for σ(q) which consists of
two free complex parameters c and d:

Theorem 1.2. Let |c| < 1 and |d| < 1. Then

σ(q) = (−c,−d)∞
(−cd)∞

∞∑

n=0

(−cd)n(1 − cdq2n)qn(n+1)/2

(−q)n(1 − cqn)(1 − dqn)
+ Λ(c, d, q), (1.6)

where

Λ(c, d, q) = 1 − 3cd(−cq,−dq)∞
(−cd,−q)∞

∞∑

n=0

(c, d,−cd)n

(−cq,−dq, q)n
q

n(n+1)
2 +2n

− (−dq, c)∞
(−cd,−q)∞

∞∑

p=0

(−q)p(−1)pcp

(q)p

∞∑

k=0

(−q p+1)kck

(q p+1)k

×
∞∑

n=0

(−cd, d)n

(−dq, q)n
q

n(n+1)
2 +(p+k)n(1 + cdq2n(1 + q p)(1 + q p+1))

− (d, c)∞
(−cd,−q)∞

∞∑

p=1

(−q)p(−1)pd p

(q)p

∞∑

k=0

(−q)k(−q p)kck

(q)k

∞∑

j=0

(−q p+1) j d j

(q p+1) j

×
∞∑

n=0

(−cd)n

(q)n
q

n(n+1)
2 +(p+k+ j)n(1 + cdq2n(1 + q p+k)(1 + q p+k+1))

− 2(d, c)∞
∞∑

p=1

(−cd)p

(q)p

∞∑

j=0

(−q) j d j

(q) j

∞∑

k=0

(−q)kck

(q)k

×
∞∑

m=0

(−cd)m

(q p+1)m(−q p+k+ j )m+1

(
1 + cd

(1 + q p+k+ j )(1 + q p+k+ j+1)

(1 + q p+k+ j+m+1)(1 + q p+k+ j+m+2)

)
.

(1.7)

As in the case of Ramanujan’s reciprocity theorem [23, p. 18], the conditions for the
validity of (1.3) and (1.5) can be relaxed to allow the parameters a and b to be equal
to 1.

It will be shown later that letting d = 0 in Theorem 1.2 results in Theorem 1.1.
Still, pedagogically it is sound to first give a proof of Theorem 1.1 and then proceed
to that of Theorem 1.2, especially since the complexity involved in the former is
much lesser than that in the latter.

In order to obtain (1.6), we derive a new nine-parameter transformation contained
in the following theoremwhich generalizes previous transformations due to Agarwal
[1] (see Equation (2.5) below), and due to Andrews, Dixit, Schultz, and Yee [12] (see
Equation (2.6) below).



44 K. Banerjee and A. Dixit

Theorem 1.3. For β, δ, f, h, t �= q− j , j ≥ 0, the following identity is true:

∞∑

n=0

(α)n(γ )n(e)n(g)n

(β)n(δ)n( f )n(h)n
tn

= (g, e, γ,
β
α
, q, αt, q

αt ,
δq
β

,
f q
β

,
hq
β

)∞
(h, f, δ, q

α
, β,

β
αt ,

αtq
β

,
γ q
β

,
eq
β

,
gq
β

)∞
4φ3

(
αq
β

,
γ q
β

,
eq
β

,
gq
β

δq
β

,
f q
β

,
hq
β

; q, t

)

+
(
1 − q

β

)
(g, e, γ, t, δq

β
,

f q
β

,
hq
β

)∞
(h, f, δ, αt

β
,

γ q
β

,
eq
β

,
gq
β

)∞
4φ3

(
αq
β

,
γ q
β

,
eq
β

,
gq
β

δq
β

,
f q
β

,
hq
β

; q, t

) (
2φ1

(
q,

q
t
βq
αt

; q

α

)
− 1

)

+
(
1 − q

β

)
(g, e, γ, t, f q

β
,

hq
β

)∞
(h, f, δ, αt

β
,

eq
β

,
gq
β

)∞

∞∑

p=0

( δ
γ
)p( αt

β
)pγ p

(t)p(q)p

∞∑

k=0

(
δq p

γ
)k(

γ q
β

)k

(q p+1)k
3φ2

( αq
b ,

eq
β

,
gq
β

f q
β

,
hq
β

; q, tq p+k
)

+
(
1 − q

β

)
(g, e, γ, t, hq

β
)∞

(h, f, δ, αt
β

,
gq
β

)∞

×
∞∑

p=1

(
f
e )p( αt

β
)pep

(t)p(q)p

∞∑

k=0

( δ
γ
)k(

αtq p

β
)kγ

k

(q)k(tq p)k

∞∑

j=0

(
f q p

e ) j (
eq
β

) j

(q p+1) j
2φ1

( αq
β

,
gq
β
hq
β

; q, tq p+k+ j
)

+
(
1 − q

β

)
(g, e, γ )∞
(h, f, δ)∞

∞∑

p=1

( h
g )p g p

(q)p

∞∑

j=0

(
f
e ) j e j

(q) j

∞∑

k=0

( δ
γ
)kγ

k

(q)k

∞∑

m=0

(
hq p

g )m(tq p+k+ j )m

(q p+1)m(
αtq p+k+ j

β
)m+1

(
gq

β

)m

.

(1.8)

A version of the above formula, and also of (2.6), in terms of q-Lauricella functions,
was obtained by Gupta [22, p. 53] in his PhD thesis. However, his versions are not as
explicit as the ones in (1.8) and (2.6). We remark that Gupta has obtained a general
transformation of these results,with r q-shifted factorials in the numerator and r in the
denominator, in terms of q-Lauricella functions. However, one can easily anticipate
such general transformation by observing the pattern occurring in Agarwal’s identity
(2.5), (2.6) and (1.8). To avoid digression, we do not pursue it here.

This paper is organized as follows. In Section 2, we collect formulas from the
literature that are used in the sequel. Section 3 is devoted to proving Theorem 1.1
while Section 4 to proving Theorem 1.2, and for deriving Theorem 1.1 fromTheorem
1.2.We conclude this paper with Section 5 consisting of some remarks and directions
for further research.

2 Preliminaries

The q-binomial theorem [4, p. 17, Equation (2.2.1)] states that for |z| < 1,

∞∑

n=0

(a; q)nzn

(q; q)n
= (az; q)∞

(z; q)∞
. (2.1)
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For |z| < 1 and |b| < 1, Heine’s transformation [4, p. 38] is given by

2φ1

(
a, b

c
; q, t

)
= (b, at)∞

(c, t)∞
2φ1

(
c/b, t

at
; q, b

)
, (2.2)

whereas its second iterate [4, p. 38, last line] is

2φ1

(
a, b

c
; q, t

)
= (c/b, bt)∞

(c, t)∞
2φ1

(
b, abt/c

bt
; q, c/b

)
. (2.3)

Here r+1φr is the basic hypergeometric series defined by

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

)
:=

∞∑

n=0

(a1; q)n(a2; q)n · · · (ar ; q)n

(q; q)n(b1; q)n · · · (bs; q)n
zn.

We need the following identity [21, p. 17, Equation (15.51)]:

∞∑

n=0

tn

(bq)n
= (1 − b)

(t)∞

∞∑

n=0

(−t)nqn(n+1)/2

(q)n(1 − bqn)
. (2.4)

Agarwal [1, Equation (3.1)] obtained the following ‘mild’ extension/generalization
of an important identity of Andrews [5, Theorem 1] in the sense that we get Andrews’
identity from the following result when t = q:

∞∑

n=0

(α)n(γ )n

(β)n(δ)n
tn

= (q/(αt), γ, αt, β/α, q)∞
(β/(αt), δ, t, q/α, β)∞

2φ1

(
δ/γ, t

qαt/β
; q, γ q/β

)

+ (γ )∞
(δ)∞

(
1 − q

β

) ∞∑

m=0

(δ/γ )m(t)m

(q)m(αt/β)m+1
(qγ /β)m

(
2φ1

(
q, q/t

qβ/(αt)
; q, q/α

)
− 1

)

+ (γ )∞
(δ)∞

(
1 − q

β

) ∞∑

p=0

γ p(δ/γ )p

(q)p

∞∑

m=0

(δq p/γ )m(tq p)m

(q1+p)m(αtq p/β)m+1
(qγ /β)m . (2.5)

The following generalization of the above identity of Agarwal was recently obtained
in [12, Theorem 3.1] for β, δ, f, t �= q− j , j ≥ 0:

∞∑

n=0

(α)n(γ )n(e)n

(β)n(δ)n( f )n
tn

= (e, γ,
β
α
, q, αt, q

αt ,
δq
β

,
f q
β

)∞
( f, δ, q

α
, β,

β
αt ,

αtq
β

,
γ q
β

,
eq
β

)∞
3φ2

(
αq
β

,
γ q
β

,
eq
β

δq
β

,
f q
β

; q, t

)

+
(
1 − q

β

)
(e, γ, t, δq

β
,

f q
β

)∞
( f, δ, αt

β
,

γ q
β

,
eq
β

)∞
3φ2

( αq
β

,
γ q
β

,
eq
β

δq
β

,
f q
β

; q, t

)(
2φ1

(
q,

q
t
βq
αt

; q

α

)
− 1

)
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+
(
1 − q

β

)
(e, γ, t, f q

β
)∞

( f, δ, αt
β

,
eq
β

)∞

∞∑

p=0

( δ
γ
)p(

αt
β

)pγ
p

(t)p(q)p

∞∑

k=0

(
δq p

γ
)k(

qγ
β

)k

(q1+p)k
2φ1

( αq
β

,
eq
β
f q
β

; q, tqk+p
)

+
(
1 − q

β

)
(e, γ )∞
( f, δ)∞

∞∑

p=1

(
f
e )pep

(q)p

∞∑

k=0

( δ
γ
)kγ

k

(q)k

∞∑

m=0

(
f q p

e )m(tq p+k)m

(q1+p)m(
αtq p+k

β
)m+1

(
eq

β

)m

.

(2.6)

We will also make use of the ε-operator acting on a differentiable function f by [6]

ε( f (z)) = f ′(1).

3 The three-variable case

We prove Theorem 1.1 here. Letting a = −z and b = 1 in (1.3) gives

ρ3(1,−z, c) = ρ3(−z, 1, c) − (c,−zq,−z−1, q)∞
(cz−1,−c, zq,−q)∞

. (3.1)

Divide both sides by (1 − z−1) and let z → 1. It is easy to see that the left side

becomes
∞∑

n=0

qn(n+1)/2

(−q)n(1 − cqn)
, which we denote by σ(c, q). Denote the right-hand

side of the above equation by f (z). Note that

lim
z→1

f (z) = 2
∞∑

n=0

(c)nqn(n+1)/2

(q)n(−c)n+1
− 2

(−q)∞
(−c)∞

= 0,

since replacing c by −cq, substituting a = c, b = −q/τ, t = τ , and then letting
τ → 0 in (2.3) gives

∞∑

n=0

(c)nqn(n+1)/2

(q)n(−cq)n
= lim

τ→0
2φ1

(
c, −q/τ

−cq
; q, τ

)
= lim

τ→0

(cτ,−q)∞
(−cq, τ )∞

2φ1

( −q/τ, 1
−q

; q, cτ

)

= lim
τ→0

(cτ,−q)∞
(−cq, τ )∞

= (−q)∞
(−cq)∞

.

This result can also be found in [23, Corollary 7.5].
Hence using L’Hopital’s rule, we see that

lim
z→1

f (z)

1 − z−1
= f ′(1) = ε( f (z)),
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so that from (3.1),

∞∑

n=0

qn(n+1)/2

(−q)n(1 − cqn)
= ε

(
ρ3(−z, 1, c) − (c,−zq,−z−1, q)∞

(cz−1,−c, zq,−q)∞

)
. (3.2)

The idea now is to rightly transform ρ3(−z, 1, c) = 2
∞∑

n=0

(c)nznqn(n+1)/2

(zq)n(−c)n+1
into an

expression which is amenable to the ε-operator. To that end, we invoke (2.5), the
reasons for which will be clear soon. Let α = −q/τ, γ = c, β = zq, δ = −cq and
t = τ z in (2.5). Then,

∞∑

n=0

(−q/τ)n(c)n

(zq)n(−cq)n
(τ z)n

= (−z−1, c, −zq, −τ z, q)∞
(−1, −cq, τ z, −τ, zq)∞

∞∑

m=0

(τ z)m

(q)m

(
c

z

)m

+ (c)∞
2(−cq)∞

(
1 − 1

z

) ∞∑

m=0

(τ z)m( c
z )m

(q)m

∞∑

j=1

(
q
τ z

)

j

(−q) j
(−τ) j

+ (c)∞
(−cq)∞

(
1 − 1

z

) ∞∑

p=0

(−q)pcp

(q)p

∞∑

m=0

(τ zq p)m

(q p+1)m

(c/z)m

(1 + q p)
.

Now use (2.1) to evaluate sums over m in the first two expressions, then let τ → 0 on
both sides, separate the term corresponding to p = 0 in the double sum followed by
another application of (2.1), and finally multiply throughout by 2/(1 + c) to obtain

2
∞∑

n=0

(c)n znqn(n+1)/2

(zq)n(−c)n+1

= (−z−1, c,−zq, q)∞
(−q,−c, zq, c/z)∞

+ (c)∞
(−c, c/z)∞

(
1 − 1

z

) ∞∑

j=1

q j ( j+1)/2z− j

(−q) j

+ (c)∞
(−c, c/z)∞

(
1 − 1

z

)
+ 2

(c)∞
(−c)∞

(
1 − 1

z

) ∞∑

p=1

(−q)pcp

(q)p(1 + q p)

∞∑

m=0

(c/z)m

(q p+1)m

= (−z−1, c,−zq, q)∞
(−q,−c, zq, c/z)∞

+ (c)∞
(−c, c/z)∞

(
1 − 1

z

) ∞∑

j=1

q j ( j+1)/2z− j

(−q) j

+ (c)∞
(−c, c/z)∞

(
1 − 1

z

)
+ 2

(c)∞
(−c, c/z)∞

(
1 − 1

z

) ∞∑

p=1

(−q)p−1cp

(q)p−1

∞∑

n=0

(−c/z)nqn(n+1)/2

(q)n(1 − qn+p)
,

(3.3)

where in the last step we applied (2.4) with t = c/z and b = q p.
Now substitute (3.3) in (3.2) and then apply the ε-operator to deduce that

∞∑

n=0

qn(n+1)/2

(−q)n(1 − cqn)
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= (σ (q) − 1)

(−c)∞
+ 1

(−c)∞
+ 2

(−c)∞

∞∑

p=1

(−q)p−1cp

(q)p−1

∞∑

n=0

(−c)nqn(n+1)/2

(q)n(1 − qn+p)
,

which is nothing but (1.4). This completes the proof.

Remark 1. If we explicitly evaluate ε
(

(c,−zq,−z−1,q)∞
(cz−1,−c,zq,−q)∞

)
using the Jacobi triple prod-

uct identity [4, p. 28, Theorem 2.8], then, from (3.2), we obtain upon simplification

σ(c, q) = 2ε

( ∞∑

n=0

(c)n znqn(n+1)/2

(zq)n(−c)n+1

)
+ S(c, q) + 2S(c, q)

( ∞∑

n=0

cqn

1 − cqn
−

∞∑

n=1

qn

1 − qn

)
,

where S(c, q) = (−q)∞/(−c)∞. This is a one-variable generalization of [6, Equa-
tion (3.5)], as can be easily seen with the help of (1.1).

4 The four-variable case

We begin with a lemma that is used several times in the sequel.

Lemma 4.1. For |c| < 1, |d| < 1, we have

∞∑

n=0

(c, d,−cd)n

(−cq,−dq, q)n
(1 + cdq2n)qn(n+1)/2 = (−cd,−q)∞

(−cq,−dq)∞
.

Proof. By Proposition 8 in [19], which is, in fact, equal to (1.5), we see that

y
∞∑

n=0

(1 − q2n+1y/x)

( q
bx ,

q
cx ,

q
dx

)
n

(by, dy)n+1(cyq)n
(−bcdxy2/q)nqn(n+1)/2

− x(1 − cy)

∞∑

n=0

(1 − q2n+1x/y)

(
q
by ,

q
cy ,

q
dy

)

n

(bx, cx, dx)n+1
(−bcdx2y/q)nqn(n+1)/2

= (y − x)
(q,

qy
x ,

qx
y , bcxy, cdxy, bdxy)∞

(bx, by, cx, cyq, dx, dy)∞
.

Now let d = q/(ux), b = q/(vx), c = 1/y and y = −uvx/q in the above identity
to obtain upon simplification

∞∑

n=0

(u, v,−uv)n

(−uq,−vq, q)n
(1 + uvq2n)qn(n+1)/2 = (−uv,−q)∞

(−uq,−vq)∞
.

This completes the proof. �
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We now first prove Theorem 1.3 and then use it to prove Theorem 1.2. Since the
underlying idea in the proof of Theorem 1.3 is similar to that involved in the proof
of (2.5) (see [1]) and in the proof of (2.6) (see [12]), we will be very brief here.

Let S denote the sum on the left side of (1.8).Writing (g)n/(h)n = ((g)∞/(h)∞) ·
((hqn)∞/(gqn)∞), then representing ((hqn)∞/(gqn)∞) as a sum using (2.1), inter-
changing the order of summation, and then employing (2.6), we find that

S = X + Y, (4.1)

where

X := (g, e, β
α
, q,

δq
β

,
f q
β

)∞
(h, f, δ, q

α
, β,

γ q
β

,
eq
β

)∞

∞∑

m=0

( h
g )m(αtqm ,

q1−m

αt )∞gm

(q)m(
βq−m

αt ,
αtqm+1

β
)∞

3φ2

( αq
β

,
γ q
β

,
eq
β

δq
β

,
f q
β

; q, tqm
)

,

Y := (g, e, γ )∞(1 − q
β
)

(h, f, δ)∞

∞∑

m=0

( h
g )m gm

(q)m

∞∑

j=0

(
f
e ) j e j

(q) j (1 − αtqm+ j

β
)

∞∑

k=0

( δ
γ
,

αtqm+ j

β
)kγ

k

(q,
αtq j+1+m

β
)k

∞∑

r=0

(
q1−k− j−m

t )r (
q
α
)r

(
βq1−k− j−m

αt )r

.

To evaluate X , wewrite the 3φ2 in the form of series, interchange the order of summa-
tion, make use of the identity (βq−m/(αt))∞ = (−β/(αt))mq−m(m+1)/2(β/(αt))∞
(αtq/β)m , and then use (2.1) again to deduce

X = (g, e, γ,
β

α
, q, αt, q

αt ,
δq
β

,
f q
β

,
hq
β

)∞
(h, f, δ, q

α
, β,

β

αt ,
αtq
β

,
γ q
β

,
eq
β

,
gq
β

)∞
4φ3

(
αq
β

,
γ q
β

,
eq
β

,
gq
β

δq
β

,
f q
β

,
hq
β

; q, t

)
. (4.2)

Since

∞∑

r=0

(
q1−k−m− j

t )r

(
βq1−k−m− j

αt )r

( q

α

)r = (t)m+ j+k(
αt
β

)

m+ j+k

(
q

β

)m+ j+k ( ∞∑

p=1

( q
t

)
p(

βq
αt

)

p

( q

α

)p +
m+ j+k∑

p=0

( αt
β

)p

(t)p

(
β

q

)p )
,

(4.3)

we observe that

Y = Y1 + Y2, (4.4)

where Y1 is associated with the infinite sum on the right of (4.3) and Y2 is associated
with the finite sum. Even though the calculations for evaluating Y1 and Y2 are quite
tedious, they are fairly straightforward. Using (2.2), it can be seen that

Y1 =
(
1 − q

β

)
(g, e, γ, t, δq

β
,

f q
β

,
hq
β

)∞
(h, f, δ, αt

β
,

γ q
β

,
eq
β

,
gq
β

)∞
4φ3

(
αq
β

,
γ q
β

,
eq
β

,
gq
β

δq
β

,
f q
β

,
hq
β

; q, t

) (
2φ1

(
q,

q
t
βq
αt

; q

α

)
− 1

)
.

(4.5)
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Now write the finite sum on p in Y2 as

m+ j+k∑

p=0

=
k∑

p=0

+
k+ j∑

p=k+1

+
m+ j+k∑

p=k+ j+1

,

and let Y21, Y22 and Y23 denote the expressions associated with the first, second, and
third finite sums in the above equation respectively so that

Y2 = Y21 + Y22 + Y23. (4.6)

Now using (2.2) repeatedly, it can be see that

Y21 =
(
1 − q

β

)
(g, e, γ, t, f q

β
,

hq
β

)∞
(h, f, δ, αt

β
,

eq
β

,
gq
β

)∞

∞∑

p=0

( δ
γ
)p( αt

β
)pγ p

(t)p(q)p

∞∑

k=0

(
δq p

γ
)k(

γ q
β

)k

(q p+1)k
3φ2

( αq
b ,

eq
β

,
gq
β

f q
β

,
hq
β

; q, tq p+k
)

,

Y22 =
(
1 − q

β

)
(g, e, γ, t, hq

β
)∞

(h, f, δ, αt
β

,
gq
β

)∞

×
∞∑

p=1

(
f
e )p( αt

β
)pep

(t)p(q)p

∞∑

k=0

( δ
γ
)k(

αtq p

β
)kγ

k

(q)k(tq p)k

∞∑

j=0

(
f q p

e ) j (
eq
β

) j

(q p+1) j
2φ1

( αq
b ,

gq
β
hq
β

; q, tq p+k+ j
)

,

Y23 =
(
1 − q

β

)
(g, e, γ )∞
(h, f, δ)∞

∞∑

p=1

( h
g )p g p

(q)p

∞∑

j=0

(
f
e ) j e j

(q) j

∞∑

k=0

( δ
γ
)kγ

k

(q)k

∞∑

m=0

(
hq p

g )m(tq p+k+ j )m

(q p+1)m(
αtq p+k+ j

β
)m+1

(
gq

β

)m

.

(4.7)

Finally, from (4.1), (4.2), (4.4), (4.5), (4.6), and (4.7), we arrive at (1.8).

Proof. (Theorem 1.2) Let a = −z and b = 1 in (1.5) to obtain

ρ4(1,−z, c, d) = ρ4(−z, 1, c, d) − (d, c,−cd/z,−zq,−z−1, q)∞
(d/z,−d, c/z,−c, zq,−q)∞

.

Divide both sides by (1 − z−1) and let z → 1. Observe that using Lemma 4.1, the
resulting right side is of the form 0/0; hence employing L’Hopital’s rule, we see that

∞∑

n=0

(−cd)n(1 − cdq2n)qn(n+1)/2

(−q)n(1 − cqn)(1 − dqn)

= ε

(
2

∞∑

n=0

(d, c, −cd/z)n

(zq)n(−c, −d)n+1
(1 + cdq2n)znqn(n+1)/2 − (d, c, −cd/z, −zq, −z−1, q)∞

(d/z, −d, c/z, −c, zq, −q)∞

)

(4.8)

The big task now is to transform the first series on the right side before applying the
ε-operator. Note that
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2
∞∑

n=0

(d, c, −cd/z)n

(zq)n(−c, −d)n+1
(1 + cdq2n)znqn(n+1)/2

= 2

(1 + c)(1 + d)
lim
τ→0

∞∑

n=0

(− q
τ
, d, c,−cd/z)n

(τ, zq,−cq,−dq)n
(1 + cdq2n)(τ z)n

= 2

(1 + c)(1 + d)

{
lim
τ→0

∞∑

n=0

(− q
τ
, d, c,−cd/z)n

(τ, zq,−cq,−dq)n
(τ z)n + cd lim

τ→0

∞∑

n=0

(− q
τ
, d, c,−cd/z)n

(τ, zq,−cq,−dq)n
(τ zq2)n

}

=: 2

(1 + c)(1 + d)
(L1 + cd L2). (4.9)

To evaluate L1, let α = −q/τ, β = zq, γ = c, δ = −cq, e = d, f = −dq, g =
−cd/z, h = τ and t = τ z in Theorem 1.3. This results in

L1 = (− cd
z , d, c, q, − cq

z ,− dq
z ,−zq,− 1

z )∞
(−dq, −cq, zq,−1,−q, c

z , d
z ,− cd

z2
)∞

∞∑

n=0

( c
z , d

z ,− cd
z2

)n

(− cq
z ,− dq

z , q)n
q

n(n+1)
2

+ (− cd
z , d, c,− cq

z ,− dq
z )∞

(−dq, −cq, −1, c
z , d

z ,− cd
z2

)∞

(
1 − 1

z

) ∞∑

n=0

( c
z , d

z ,− cd
z2

)n

(− cq
z ,− dq

z , q)n
q

n(n+1)
2

∞∑

j=1

q j ( j+1)/2z− j

(−q) j

+ (− cd
z , d, c,− dq

z )∞
(−dq, −cq, −1, d

z ,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=0

(−q)p(−1)pcp

(q)p

∞∑

k=0

(−q p+1)k(c/z)k

(q p+1)k

×
∞∑

n=0

(− cd
z2

, d
z )n

(− dq
z , q)n

q
n(n+1)

2 +(p+k)n

+ (− cd
z , d, c)∞

(−dq, −cq, −1,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=1

(−q)p(−1)pd p

(q)p

∞∑

k=0

(−q)k(−q p)k ck

(q)k

×
∞∑

j=0

(−q p+1) j (d/z) j

(q p+1) j

∞∑

n=0

(− cd
z2

)n

(q)n
q

n(n+1)
2 +(p+k+ j)n

+ (− cd
z , d, c)∞

(−dq, −cq)∞

(
1 − 1

z

) ∞∑

p=1

(− cd
z )p

(q)p

∞∑

j=0

(−q) j d j

(q) j

∞∑

k=0

(−q)k ck

(q)k

∞∑

m=0

(−cd/z2)m

(q p+1)m(−q p+k+ j )m+1
.

(4.10)

Now let α = −q/τ, β = zq, γ = c, δ = −cq, e = d, f = −dq, g = −cd/z, h =
τ and t = τ zq2 in Theorem 1.3. This gives

L2 =
(− cd

z , d, c, q, − cq
z ,− dq

z ,−zq3,− 1
zq2 )∞

(−dq, −cq, zq, − 1
q2 ,−q3, c

z , d
z ,− cd

z2
)∞

∞∑

n=0

( c
z , d

z ,− cd
z2

)n

(− cq
z ,− dq

z , q)n
q

n(n+1)
2 +2n

+ (− cd
z , d, c,− cq

z ,− dq
z )∞

(−dq, −cq, −q2, c
z , d

z ,− cd
z2

)∞

(
1 − 1

z

) ∞∑

n=0

( c
z , d

z ,− cd
z2

)n

(− cq
z ,− dq

z , q)n
q

n(n+1)
2 +2n

∞∑

j=1

q j ( j−3)/2z− j

(−1/q) j

+ (− cd
z , d, c,− dq

z )∞
(−dq, −cq, −q2, d

z ,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=0

(−q)p(−q2)pcp

(q)p

∞∑

k=0

(−q p+1)k(c/z)k

(q p+1)k

×
∞∑

n=0

(− cd
z2

, d
z )n

(− dq
z , q)n

q
n(n+1)

2 +(p+k+2)n

+ (− cd
z , d, c)∞

(−dq, −cq, −q2,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=1

(−q)p(−q2)pd p

(q)p

∞∑

k=0

(−q)k(−q p+2)k ck

(q)k
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×
∞∑

j=0

(−q p+1) j (d/z) j

(q p+1) j

∞∑

n=0

(− cd
z2

)n

(q)n
q

n(n+1)
2 +(p+k+ j+2)n

+ (− cd
z , d, c)∞

(−dq, −cq)∞

(
1 − 1

z

) ∞∑

p=1

(− cd
z )p

(q)p

∞∑

j=0

(−q) j d j

(q) j

∞∑

k=0

(−q)k ck

(q)k

∞∑

m=0

(−cd/z2)m

(q p+1)m(−q p+k+ j+2)m+1
.

(4.11)

Substituting (4.10) and (4.11) in (4.9), we find that

2
∞∑

n=0

(d, c,−cd/z)n

(zq)n(−c,−d)n+1
(1 + cdq2n)znqn(n+1)/2

= 2

(1 + c)(1 + d)

{
(− cd

z , d, c, q,− cq
z ,− dq

z ,−zq,− 1
z )∞

(−dq,−cq, zq,−1,−q, c
z , d

z ,− cd
z2

)∞

∞∑

n=0

( c
z , d

z ,− cd
z2

)n

(− cq
z ,− dq

z , q)n

(
1 + cdq2n

z2

)
q

n(n+1)
2

+ (− cd
z , d, c,− cq

z ,− dq
z )∞

(−dq,−cq,−1, c
z , d

z ,− cd
z2

)∞

(
1 − 1

z

) ∞∑

n=0

( c
z , d

z ,− cd
z2

)n

(− cq
z ,− dq

z , q)n
q

n(n+1)
2

×
⎧
⎨

⎩

∞∑

j=1

q j ( j+1)/2z− j

(−q) j
+ 2(1 + q)cdq2n

∞∑

j=1

q j ( j−3)/2z− j

(−1/q) j

⎫
⎬

⎭

+ (− cd
z , d, c,− dq

z )∞
(−dq,−cq,−1, d

z ,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=0

(−q)p(−1)pcp

(q)p

∞∑

k=0

(−q p+1)k(c/z)k

(q p+1)k

×
∞∑

n=0

(− cd
z2

, d
z )n

(− dq
z , q)n

q
n(n+1)

2 +(p+k)n (
1 + cdq2n(1 + q p)(1 + q p+1)

)

+ (− cd
z , d, c)∞

(−dq,−cq,−1,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=1

(−q)p(−1)pd p

(q)p

∞∑

k=0

(−q)k(−q p)k ck

(q)k

×
∞∑

j=0

(−q p+1) j (d/z) j

(q p+1) j

∞∑

n=0

(− cd
z2

)n

(q)n
q

n(n+1)
2 +(p+k+ j)n

(
1 + cdq2n(1 + q p+k)(1 + q p+k+1)

)

+ (− cd
z , d, c)∞

(−dq,−cq)∞

(
1 − 1

z

) ∞∑

p=1

(− cd
z )p

(q)p

∞∑

j=0

(−q) j d j

(q) j

∞∑

k=0

(−q)k ck

(q)k

×
∞∑

m=0

(−cd/z2)m

(q p+1)m(−q p+k+ j )m+1

(
1 + cd

(1 + q p+k+ j )(1 + q p+k+ j+1)

(1 + q p+k+ j+m+1)(1 + q p+k+ j+m+2)

)}
.

Since

∞∑

n=0

( c
z ,

d
z ,− cd

z2 )n

(− cq
z ,− dq

z , q)n

(
1 + cdq2n

z2

)
q

n(n+1)
2 =

(− cd
z2 ,−q

)
∞(

− cq
z ,− dq

z

)

∞

,

by Lemma 4.1, and

∞∑

j=1

q j ( j+1)/2z− j

(−q) j
+ 2(1 + q)cdq2n

∞∑

j=1

q j ( j−3)/2z− j

(−1/q) j
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=
(
1 + cdq2n

z2

) ∞∑

j=1

q j ( j+1)/2z− j

(−q) j
+ cdq2n

z2
(1 + 2z),

we see that

2
∞∑

n=0

(d, c,−cd/z)n

(zq)n(−c,−d)n+1
(1 + cdq2n)znqn(n+1)/2

= (− cd
z , d, c, q,−zq,− 1

z )∞
(−d,−c, zq,−q, c

z , d
z )∞

+ (− cd
z , d, c)∞

(−d,−c, c
z , d

z )∞

(
1 − 1

z

) ∞∑

j=1

q j ( j+1)/2z− j

(−q) j

+ cd(1 + 2z)

z2

(
1 − 1

z

)
(− cd

z , d, c,− cq
z ,− dq

z )∞
(−d,−c,−q, c

z , d
z ,− cd

z2
)∞

∞∑

n=0

( c
z , d

z ,− cd
z2

)n

(− cq
z ,− dq

z , q)n
q

n(n+1)
2 +2n

+ (− cd
z , d, c,− dq

z )∞
(−d,−c,−q, d

z ,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=0

(−q)p(−1)pcp

(q)p

∞∑

k=0

(−q p+1)k(c/z)k

(q p+1)k

×
∞∑

n=0

(− cd
z2

, d
z )n

(− dq
z , q)n

q
n(n+1)

2 +(p+k)n (
1 + cdq2n(1 + q p)(1 + q p+1)

)

+ (− cd
z , d, c)∞

(−d,−c,−q,− cd
z2

)∞

(
1 − 1

z

) ∞∑

p=1

(−q)p(−1)pd p

(q)p

∞∑

k=0

(−q)k(−q p)k ck

(q)k

×
∞∑

j=0

(−q p+1) j (d/z) j

(q p+1) j

∞∑

n=0

(− cd
z2

)n

(q)n
q

n(n+1)
2 +(p+k+ j)n

(
1 + cdq2n(1 + q p+k)(1 + q p+k+1)

)

+ 2
(− cd

z , d, c)∞
(−d,−c)∞

(
1 − 1

z

) ∞∑

p=1

(− cd
z )p

(q)p

∞∑

j=0

(−q) j d j

(q) j

∞∑

k=0

(−q)k ck

(q)k

×
∞∑

m=0

(−cd/z2)m

(q p+1)m(−q p+k+ j )m+1

(
1 + cd

(1 + q p+k+ j )(1 + q p+k+ j+1)

(1 + q p+k+ j+m+1)(1 + q p+k+ j+m+2)

)
. (4.12)

Finally, we substitute (4.12) in (4.8) and then apply the ε-operator to obtain (1.6)
after simplification. This completes the proof. �

Remark 2. Let S(c, d, q) := (−cd,−q)∞/(−d,−c)∞ and denote the left-hand

side of (4.8) by σ(c, d, q). If we explicitly evaluate ε
(

(−cd/z,d,c,q,−zq,−z−1,q)∞
(−d,−c,zq,−q,c/z,d/z)∞

)
using

the Jacobi triple product identity, then (4.8) leads us to

σ(c, d, q) = ε

(
2

∞∑

n=0

(d, c,−cd/z)n(1 + cdq2n)

(zq)n(−c,−d)n+1
znq

n(n+1)
2

)
+ S(c, d, q)

(
1 + 2

∞∑

n=0

cdqn

1 + cdqn

)

+ 2S(c, d, q)

( ∞∑

n=0

dqn

1 − dqn
+

∞∑

n=0

cqn

1 − cqn
−

∞∑

n=1

qn

1 − qn

)
.

This gives a two-variable generalization of [6, Equation (3.5)], as can be seen with
the help of (1.1).
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4.1 Theorem 1.1 as a special case of Theorem 1.2

In this subsection, we deduce Theorem 1.1 from Theorem 1.2.
Let d = 0 in (1.6). Then

σ(q) = (−c)∞
∞∑

n=0

qn(n+1)/2

(−q)n(1 − cqn)
+ Λ(c, 0, q).

Thus we need only show that

Λ(c, 0, q) = −2
∞∑

m,n=0

(−q)m

(q)m(q)n

(−1)nqn(n+1)/2cm+n+1

(1 − qn+m+1)
.

To that end, note that the two quadruple sums in (1.7) just collapse to 0 so that

Λ(c, 0, q) = 1 − (c)∞
(−q)∞

∞∑

p=0

(−q)p(−1)pcp

(q)p

∞∑

k=0

(−q p+1)kck

(q p+1)k

∞∑

n=0

q
n(n+1)

2 +(p+k)n

(q)n
.

Now use Euler’s formula [4, p. 19, Corollary 2.2]

∞∑

n=0

wnq
n(n−1)

2

(q)n
= (−w)∞, |w| < ∞,

to evaluate the sum over n in the above triple sum so that

Λ(c, 0, q) = 1 − (c)∞
(−q)∞

∞∑

p=0

(−q)p(−1)pcp

(q)p

∞∑

k=0

(−q p+1)k

(q p+1)k
ck(−q p+k+1)∞

= 1 − (c)∞
∞∑

k=0

ck

(q)k
− (c)∞

∞∑

p=1

(−1)p

(q)p
cp

∞∑

k=0

ck

(q p+1)k

= −2
∞∑

p,n=0

(−q)p

(q)p(q)n

(−1)nqn(n+1)/2cp+n+1

(1 − q p+n+1)
,

where we used (2.1) to evaluate the first sum in the penultimate expression, and (2.4
to evaluate the sum over k in the double sum over p and k. This completes the proof.
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5 Concluding Remarks

The two series, namely

∞∑

n=0

qn(n+1)/2

(−q)n(1 − cqn)
, and

∞∑

n=0

(−cd)n(1 − cdq2n)qn(n+1)/2

(−q)n(1 − cqn)(1 − dqn)
,

occurring in Theorems 1.1 and 1.2, are respectively one- and two-variable general-
izations of σ(q) as can be seen from remarks 1 and 2 after the proofs of Theorems
1.1 and 1.2 respectively. It may be fruitful to see which properties of σ(q) hold
for these generalizations as well. Also, it may be important to see if there are any
partition-theoretic interpretations of these generalizations of σ(q).

As demonstrated in this paper, there are a number of advantages of using Agar-
wal’s identity (2.5) and its generalization (1.8) for transforming ρ3(−z, 1, c) and
ρ4(−z, 1, c, d) respectively. First of all, the infinite product expressions occur-
ring in the specializations of the three- and the four-variable reciprocity theo-
rems used in our proofs get canceled completely. Secondly, these identities contain

2φ1

(
q, q/t

qβ/(αt)
; q, q/α

)
, which is what leads to σ(q) after appropriately special-

izing the parameters. Thirdly, all of the other expressions in these identities contain
the factor 1 − q/β, or after letting β = zq, the factor 1 − 1/z, which is extremely
useful since all other factors involving z in an expression which contains 1 − 1/z get
annihilated when we differentiate them with respect to z and then let z → 1.

There are further generalizations of Ramanujan’s reciprocity theorem, namely,
the five-variable generalization due to Chu and Zhang [19] and Ma [30, Theorem
1.3], the six-variable generalization given in [30], the seven-variable generalization
due to Wei, Wang and Yan [38, Theorem 3, Corollary 4] and a different one by Liu
[26, Theorem 1.9], and finally the multiparameter generalization in [38, Theorem 7].
While there is no reason a prioriwhy the ideas used in this papermay not be applicable
to obtain further identities of the type we have established, the complexity of the
computations involved in the proof of Theorem 1.2 suggests that the computations
involved while applying the reciprocity theorems in more than four variables may
be quite unwieldy.

That being said, we believe that one can further simplify Λ(c, d, q) to the effect
of at least having the 1 on the right-hand side of (1.7) canceled. First of all, note that
the second expression in (1.7) admits further simplification, namely,

3cd(−cq, −dq)∞
(−cd, −q)∞

∞∑

n=0

(c, d, −cd)n

(−cq,−dq, q)n
q

n(n+1)
2 +2n

= 3(−cq,−dq)∞
(−cd, −q)∞

{ ∞∑

n=0

(c, d, −cd)n

(−cq, −dq, q)n
(1 + cdq2n)q

n(n+1)
2 −

∞∑

n=0

(c, d, −cd)n

(−cq,−dq, q)n
q

n(n+1)
2

}

= 3 − 3
(−cq,−dq)∞
(−cd, −q)∞

∞∑

n=0

(c, d, −cd)n

(−cq,−dq, q)n
q

n(n+1)
2 ,
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by another application of Lemma 4.1. However, we are unable to represent the last
series or the other multi-sums occurring in (1.7) in a convenient form. Note that the
following special case of the q-analog of Kummer’s theorem [3, Equation (1.7)],
known as Lebesgue’s identity, is well-known [4, Corollary 2.7]:

∞∑

n=0

(a)n

(q)n
qn(n+1)/2 = (−q)∞(aq; q2)∞.

This prompts us to ask if there are higher level analogs of Lebesgue’s identity which

could possibly be used to represent the sum
∞∑

n=0

(c, d,−cd)n

(−cq,−dq, q)n
q

n(n+1)
2 . A general-

ization of Lebesgue’s identity in a different direction is given by Alladi [2, Equation
(2.10), Section 4]. More importantly, does there exist a simpler representation for
Λ(c, d, q) as a whole?

The finite forms of Ramanujan’s reciprocity theorem and its three- and four-
variable generalizations are obtained in [36]. It may be of interest to see if something
along the lines of (1.1), (1.2), and Theorems 1.1 and 1.2 could be obtained starting
with these finite analogs.
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