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Abstract Let F(X,Y ) =
s∑

i=0
ai Xri Y r−ri ∈ Z[X,Y ] be a form of degree r ≥ 3, irre-

ducible overQ, and having at most s + 1 nonzero coefficients. Mueller and Schmidt
showed that the number of solutions of the Thue inequality

|F(X,Y )| ≤ h

is � s2h2/r (1 + log h1/r ). They conjectured that s2 may be replaced by s. In this
note we show some instances when s2 may be improved.
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1 Introduction

Let F(X,Y ) be a form of degree r ≥ 3 with integer coefficients, irreducible overQ,
and having at most s + 1 nonzero coefficients. Write

F(X,Y ) =
s∑

i=0

ai X
ri Y r−ri (1.1)

with 0 = r0 < r1 < . . . < rs = r . Let D, H , and M denote the discriminant, naive
height, and Mahler height of F(X, 1), respectively. For h ≥ 1, consider the Thue
inequality

|F(X,Y )| ≤ h. (1.2)

Let NF (h) denote the number of integer solutions (x, y) of (1.2). Bombieri modified
a conjecture of Siegel and asked if NF (h) could be bounded by a function depending
only on s and h. (See Mueller and Schmidt [8, p. 208]). Toward this, Schmidt [10]
proved that

NF (h) � √
rs h2/r (1 + log h1/r ). (1.3)

Throughout this note, the constants implied by� are absolute. Themodified Siegel’s
conjecture was shown to be true in the case s = 1 by Hyyrö [3], Evertse [1], and
Mueller [6]. The case s ≥ 2 was considered by Mueller and Schmidt in [7] and [8].
They proved that

NF (h) � s2C(r, h) (1.4)

where C(r, h) = h2/r (1 + log h1/r ). From a result of Mahler [5], it is known that the
factor h2/r in C(r, h) is unavoidable while the logarithmic factor was improved by
Thunder when h is large, see [11] and [12].

When s is as large as r , (1.4) is weaker than (1.3). It was conjectured in [8] that
it may possible to replace the factor s2 above by s. In [9], some results were given
where the factor s2 was improved. For instance, the following results were proven.

(i) We always have |ri − rw| ≥ |i − w| ≥ 1 for i �= w. Suppose |ri − rw| ≥ c1|i −
w| with c1 ≥ 1, an absolute constant. Then,

NF (h) � s1+
1
c1 C(r, h).

Thus, the exponent of s is < 2 whenever c1 > 1.
(ii) Suppose |ri − rw| ≥ 1

3 |i − w| log |i − w|. Then,

NF (h) � s log3 s C(r, h).
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In another direction, it was shown that if the coefficients of F(X,Y ) satisfy
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1/rs

for i = 1, . . . , s − 1 (1.5)

and r ≥ max(4s, s log3 s), then

NF (h) � s(log s) C(r, h). (1.6)

If r < max(4s, s log3 s), then by (1.3), we have

NF (h) � s(log s)3/2 C(r, h).

Thus, under the condition (1.5), we have

NF (h) � s(log s)3/2 C(r, h).

In particular, the above estimate holds whenever |a0| = |as | = H where H is the
maximum of the absolute values of the coefficients of F . Hence, the estimate holds
for forms F with coefficients ±1.

Let q1 be the smallest integer, 0 ≤ q1 ≤ s, with |aq1 | = H and let q2 be the largest
integer, 0 ≤ q2 ≤ s, with |aq2 | = H . The condition (1.5) implies that

(q1, q2) ∈ {(0, 0), (0, s), (s, s)}.

In this note, we shall consider a few more cases of (q1, q2). Throughout, we use the
following assumptions A.

A: (a) r ≥ max(4s, s log3 s).
(b) |ai |rq1 ≤ |aq1 |ri |a0|rq1−ri for 0 ≤ i ≤ q1.
(c) |ai |r−rq2 ≤ |aq2 |r−ri |as |ri−rq2 for q2 ≤ i ≤ s.

Note that A(b) holds trivially if q1 = 0 and A(c) holds trivially if q2 = s. We prove
the following result.

Theorem 1.1. Suppose that the assumption A holds. Then, (1.6) is valid in the fol-
lowing three cases:

(i) q1 = 0, 0 < q2 < s and H ≤ |as |
r

max(s,rq2 ) ;

(ii) q2 = s, 0 < q1 < q2 and H ≤ |a0|
r

max(s,r−rq1 ) ;

(iii) q1 �= 0, q2 �= s and H ≤ min
(
|a0| r−s

r |as |
rq1
r , |a0|

r−rq2
r |as | r−s

r

)
.
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Remark.

(a) When r < max(4s, s log3 s), we use (1.3) to obtain

NF (h) � s(log s)3/2 C(r, h).

Therefore, under the conditions of the theorem, we have

NF (h) � s(log s)3/2 C(r, h).

(b) We may assume that s is large, as otherwise inequality (1.4) is sufficient.

2 Preliminaries

Let F(X,Y ) be given by (1.1). Let X1, X2 > 0. Divide the solutions (x, y) of (1.2)
into three sets as

max(|x |, |y|) > X1;max(|x |, |y|) ≤ X1 andmin(|x |, |y|) ≥ X2;
min(|x |, |y|) < X2.

Denote the number of primitive solutions in these sets by Plar (X1), Pmed(X1, X2),
and Psma(X2), respectively. If X2 > X1, put Pmed(X1, X2) = 0. Let P(h) be the
number of primitive solutions of (1.2). Thus,

P(h) = Plar (X1) + Pmed(X1, X2) + Psma(X2).

We can bound NF (h) by finding an upper estimate for P(h). Choose numbers a, b
with 0 < a < b < 1. Define

t =
√
2/(r + a2), λ = 2/((1 − b)t),

A = 1

a2

(
logM + r

2

)
.

Further, we put

B = 2r rr/2Mrh√|D| , R = e800 log
3 r ,

YE = (2B
√|D|)1/(r−λ)(4eA)λ/(r−λ),YW = R1/(r−λ)YE

YS = (4r (rs)2s Rsh)
1

r−2s .
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We take
X1 = YW and X2 = YS.

Mueller and Schmidt [8] had shown that

Plar (YW ) � s. (2.1)

To estimate the number of small solutions, we use the following lemma from [8].

Lemma 2.1. [8, Lemma 18]
Let F(X,Y ) be given by (1.1) and let r ≥ 4s. Then for any Y ≥ 1, we have

Psma(Y ) � (rs2)2s/r h2/r + s Y.

The next lemma is a consequence of the above lemma.

Lemma 2.2. Let F(X,Y ) be given by (1.1). Then,

Psma(YS) � s h2/rwhenever r ≥ s log3 s.

For dealing with the medium solutions, we use the Archimedean Newton polygon
of the polynomial F(X, 1).This is the lower boundary of the convex hull of the points
Pi = (ri ,− log |ai |), 0 ≤ i ≤ s. Let Li, j denote the line joining Pi to Pj with slope
σ(i, j), say. Further, let

F̂(X, 1) = as + as−1X
rs−rs−1 + · · · + a1X

rs−r1 + a0X
rs

be the reciprocal polynomial of F(X, 1). Let Qi = (rs − ri ,− log |ai |) and let L ′
i, j

denote the line joining Qi to Q j with slope σ ′(i, j).

Lemma 2.3. Suppose that the coefficients of F(X,Y ) satisfy the assumptions A(b)
and A(c). Then, the edges of the Archimedean Newton polygon of F(X, 1) are
L0,q1 , Lq1,q2 , and Lq2,s . Further, σ(q1, q2) = 0 and every root α of F(x, 1) satis-
fies

1

2
eσ(0,q1) < |α| < 2eσ(q2,s). (2.2)

Every root β of F̂(X, 1) satisfies

1

2
e−σ(q2,s) < |β| < 2e−σ(0,q1).

Proof. Put
σ1 = σ(0, q1) and σ2 = σ(q2, s).
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By A(b), we have
σ(0, i) ≥ σ1 for 0 ≤ i ≤ q1.

By A(c), we have
σ(q2, i) ≥ σ2 for q2 ≤ i ≤ s.

Hence, the Archimedean Newton polygon consists of L0,q1 and Lq2,s as the left most
edge and right most edge, respectively. Since the height of the polynomial is attained
at aq1 and at aq2 , we see that σ(q1, q2) = 0 and σ(q1, i) ≥ 0 for q1 ≤ i ≤ q2. Thus,
Lq1,q2 is the third edge. Nowwe prove (2.2). By the convexity of the Newton polygon,
we have

σ2 ≥ σ(i, s) for 0 ≤ i ≤ s. (2.3)

Let z = eσ2w with |w| ≥ 2. Then,

|F(z, 1)| ≥ |as |eσ2rs

(

|w|rs − |as−1|
|as | eσ2(rs−1−rs )|w|rs−1 − · · · − |a0|

|as | e
−σ2rs

)

.

By (2.3), we have
|ai |
|as |e

σ2(ri−rs ) ≤ 1.

Hence,
|F(z, 1)| ≥ |w|rs − |w|rs−1 − · · · − 1 > 0

since |w| ≥ 2. Thus, every root α of F(X, 1) has |α| < 2eσ2 .

To get the lower bound, we use the reciprocal polynomial F̂(X, 1). The
Archimedean Newton polygon of this polynomial has edges L ′

s,q2 , L
′
q2,q1 , and L ′

q1,0.

Arguing as above, we find that every root β which is the inverse of some root α of
F(X, 1) satisfies |β| ≤ 2eσ ′(q1,0), where σ ′(q1, 0) is the slope of L ′

q1,0. Hence,

|α| ≥ 1

2
e−σ ′(q1,0).

Now the result follows on noticing that σ ′(q1, 0) = −σ1. �

The Archimedean Newton polygons when conditions (i), (ii), or (iii) of Theorem
1.1 hold, are shown in Figure 1.

Another tool needed to estimate the medium solutions is the Diophantine approx-
imation property. Let S be the set of roots α1, · · · , αr of f (z) = F(z, 1) and S∗ the
set of roots of F(1, z). Then, S∗ = {α−1

1 , · · · , α−1
r }. Let (x, y) be a solution of (1.2)

with y �= 0. Define

d

(

S,
x

y

)

= min
1≤i≤r

∣
∣
∣
∣αi − x

y

∣
∣
∣
∣ .
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Fig. 1 Archimedean Newton polygon.

It was shown in [8, Lemma 7], that there exists S1 ⊆ S with |S1| � s such that

d

(

S1,
x

y

)

≤ R d

(

S,
x

y

)

. (2.4)

Suppose that d(S, x/y) = |α − x/y| for some α ∈ S. If f (u)(α) �= 0 for some u with
1 ≤ u ≤ r , then by [8, Lemma 10], we have

∣
∣
∣
∣α − x

y

∣
∣
∣
∣ ≤ r

2

(
2r h

| f (u)(α)||y|r
)1/u

. (2.5)

Let e, h be two nonnegative integers. Let (e)h be the Pochhammer symbol defined
as

(e)h =

⎧
⎪⎨

⎪⎩

0 if e = 0

1 if h = 0

e(e − 1) · · · (e − h + 1) otherwise.

Using the explanations given in [8, p. 223–231], we can obtain

s∑

u=1

E (s)
u αu f (u)(α) = asα

rs
∏

0≤i< j≤s

(ri − r j ) (2.6)

where

E (s)
u = (−1)s+u det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · 1
(r0)1 · · · (rs−1)1

...
...

...

(r0)u−1 · · · (rs−1)u−1

(r0)u+1 · · · (rs−1)u+1
...

...
...

(r0)s · · · (rs−1)s

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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From [8, Eqns (6.12) & (6.13)], we get that

|E (s)
u | ≤ 2s(s2r)s−1

∏

0≤i< j≤s

(r j − ri ).

We also refer to [9] for more details. Using the above estimate for |E (s)
u | in (2.6), we

find that there exists u with 1 ≤ u ≤ s such that

| f (u)(α)| ≥ |as ||α|r−u2−s(s2r)−(s−1)s−1.

The following lemma is now immediate from (2.4) and (2.5).

Lemma 2.4. There exists a set S1 ⊆ S with |S1| � s, such that for some α ∈ S1,
we have ∣

∣
∣
∣α − x

y

∣
∣
∣
∣ ≤ r R

2

(
s(rs2)s−12r+sh

|y|r |as ||α|r−u

)1/u

.

A similar inequality holds with (x, y) replaced by (y, x) for some set S2 ⊆ S∗ of
roots with |S2| ≤ s.

The following is a lemma on counting the number of elements in a set satisfying
some gap conditions. (See [9, Lemma 2.1(i)]).

Lemma 2.5. Let n ≥ 2 and let U = {u1, · · · , un} be a set together with a map
T : U → R

∗ such that

A1 ≤ T (u1) ≤ T (u2) ≤ · · · ≤ T (un)

and
T (ui ) ≥ βT (ui−1)

γ f or 2 ≤ i ≤ n with β > 0, γ ≥ 2.

Let

κ =
{
2 i f β > 1

1 i f β ≤ 1.

Suppose that T (un) ≤ B1 and A1β
1/(κ(γ−1)) > 1. Then,

n ≤ 1 + 1

log γ
log

(
log B1

log A1 + (logβ)/(κ(γ − 1))

)

.

Proof. By induction, we get

T (un) ≥ β1+γ+···+γ n−2
T (u1)

γ n−1

≥ (β1/(κ(γ−1))T (u1))
γ n−1

. (2.7)

http://dx.doi.org/10.1007/978-3-319-68376-8_6
http://dx.doi.org/10.1007/978-3-319-68376-8_6
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Since T (un) ≤ B1, from (2.7), we get

(β1/(κ(γ−1))T (u1))
γ n−1 ≤ B1.

Taking logarithms twice, we get the assertion of the lemma. �

3 Proof of Theorem 1.1

By (2.1) and Lemma 2.1, it is enough to estimate Pmed(YW ,YS). We shall consider
S1 from Lemma 2.4. The argument for S2 is similar. We claim that

|asαr−u | ≥ Hu/r2−(r−u).

We prove this when condition (ii) of the theorem holds. The other cases are similar.
By Lemma 2.3,

|asαr−u | > |as |e(r−u)σ12−(r−u)

= |as |e(r−u)
(− log H+log |a0 |)

rq1 2−(r−u).

Thus, our claim is true if

|as ||a0|
r−u
rq1 ≥ H

r−u
rq1

+ u
r .

Since q2 = s, we have |as | = H . Therefore, the above inequality holds if

|a0| ≥ H
r−rq1

r ,

which is true by our assumption. Hence, the claim follows. Thus, by Lemma 2.4, for
y ≥ YS , ∣

∣
∣
∣α − x

y

∣
∣
∣
∣ <

r R

2H 1/r

(
s22r (rs2)s−1h

yr

)1/s

. (3.1)

LetU = {(x1, y1), · · · , (xν, yν)} be the set of all solutions of (3.1)with gcd(xi , yi ) =
1 and

YS ≤ y1 ≤ · · · ≤ yν ≤ YW .

Suppose ν ≥ 2. Then,

1

yi yi+1
≤

∣
∣
∣
∣
xi
yi

− xi+1

yi+1

∣
∣
∣
∣ ≤

∣
∣
∣
∣α − xi

yi

∣
∣
∣
∣ +

∣
∣
∣
∣α − xi+1

yi+1

∣
∣
∣
∣
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≤ K

2yr/si

+ K

2yr/si+1

≤ K

yr/si

,

where

K = R(rs)24r/sh1/s H−1/r .

Thus, we have

yi+1 ≥ K−1yr/s−1
i .

We apply Lemma 2.5 with T ((xi , yi )) = yi , β = 1/K , γ = r−s
s , A1 = YS and B1 =

YW . Note that γ = r/s − 1 ≥ max(3, log3 s − 1). Also, R ≥ 4(rs)4. Further,
log YW � √

r + log H + log h1/r . Hence, by Lemma 2.5, we get

ν � 1 + 1

log γ
log

(
log YW

log YS + logβ

κ(γ−1)

)

� 1

log γ
log

(
2(r − 2s)(

√
r + log H + log h1/r )

log H

)

� log r + log(1 + log h1/r )

log γ
.

Suppose r � s3. Then,

ν � log s + log(1 + log h1/r )

log log s
� log s + log(1 + log h1/r )

log log s
.

If r � s3, then

ν � 1 + log(1 + log h1/r )

log r
� log s + log(1 + log h1/r )

log s
.

Thus,

Pmed(YW ,YS) � s

(
log s + log(1 + log h1/r )

log log s

)

.

We combine the above inequality with (2.1) and Lemma 2.2 to get

P(h) � s(log s)h2/r .
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Using a partial summation argument, it was shown in [8, p. 212] that

NF (h) � P(h) + h1/rr−1
h−1∑

n=1

P(n)n−1−(1/r).

Substituting our estimate for P(h), we obtain the result of the theorem.
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