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This paper is dedicated to Krishna Alladi on the occasion of his
60th birthday

Abstract This paper discusses the additive prime divisor function A(n) := ∑

pα ||n
α p

whichwas introduced byAlladi and Erdős in 1977. It is shown that A(n) is uniformly
distributed (mod q) for any fixed integer q > 1 with an explicit bound for the error.

1 Introduction

Let n =
r∏

i=1
paii be the unique prime decomposition of a positive integer n. In 1977,

Alladi and Erdős [1] introduced the additive function

A(n) :=
r∑

i=1

ai · pi .

Among several other things they proved that A(n) is uniformly distributed modulo
2. This was obtained from the identity
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∞∑

n=1

(−1)A(n)

ns
= 2s + 1

2s − 1
· ζ(2s)

ζ(s)
(1)

together with the known zero-free region for the Riemann zeta function. As a con-
sequence they proved that there exists a constant c > 0 such that

∑

n≤x

(−1)A(n) = O
(
x e−c

√
log x log log x

)
,

for x → ∞.

In 1969 Delange [3] gave a necessary and sufficient condition for uniform dis-
tribution in progressions for integral valued additive functions which easily implies
that A(n) is uniformly distributed (mod q) for all q ≥ 2 (although without a bound
for the error in the asymptotic formula). The main goal of this paper is to show that
A(n) is uniformly distributed modulo q for any integer q ≥ 2 with an explicit bound
for the error.

Unfortunately, it is not possible to obtain such a simple identity as in (1) for the
Dirichlet series

∞∑

n=1

e2π i
hA(n)

q

ns

when q > 2 and h, q are coprime. Instead we require a representation involving a
product of rational powers of Dirichlet L-functions which will have branch points at
the zeros of the L-functions.

The uniform distribution of A(n) is a consequence of the following theorem (1.1)
which is proved in §3. To state the theorem we require some standard notation. Let
μ denote the Mobius function and let φ denote Euler’s function. For any Dirichlet

character χ (mod q) (with q > 1) let τ(χ) = ∑

� (mod q)

χ(�)e
2π i�
q denote the associ-

ated Gauss sum and let L(s, χ) denote the Dirichlet L-function associated to χ.

Theorem 1.1. Let h, q be fixed coprime integers with q > 2. Then for x → ∞ we
have the asymptotic formula

∑

n≤x

e2π i
hA(n)

q =

⎧
⎪⎪⎨

⎪⎪⎩

Ch,q · x (log x)−1+ μ(q)

φ(q)

(
1 + O

(
(log x)−1

) )
if μ(q) �= 0,

O
(
x e−c0

√
log x

)
if μ(q) = 0,

where c0 > 0 is a constant depending at most on h, q,

Ch,q =
Vh,q · sin

(
μ(q) π

φ(q)

)

π
Γ

(

1 − μ(q)

φ(q)

) ∏

χ (mod q)

χ �=χ0

L(1, χ)
τ(χ)χ(h)

φ(q) ,
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and

Vh,q := exp

⎡

⎢
⎣−μ(q)

φ(q)

∑

p|q

∞∑

k=1

1

kpk
+

∑

p | q

∞∑

k=1

e
2π ihpk

q

k pk
+

∑

p

∞∑

k=2

e
2π i phk

q − e
2π i pk h

q

k pk

⎤

⎥
⎦ .

Theorem 1.1 has the following easily proved corollary.

Corollary 1.2. Let q > 1 and let h be an arbitrary integer. Then

∑

n≤x

e2π i
hA(n)

q = O

(
x√
log x

)

.

The above corollary can then be used to obtain the desired uniform distribution
theorem.

Theorem 1.3. Let h, q be fixed integers with q > 2. Then for x → ∞, we have

∑

n ≤ x

1

A(n) ≡ h (mod q)

= x

q
+ O

(
x√
log x

)

.

We remark that the error term in theorem 1.3 can be replaced by a second order
asymptotic term which is not uniformly distributed (mod q).

The proof of theorem (1.1) relies on explicitly constructing an L-function with

coefficients of the form e2π i
hA(n)

q . It will turn out that this L-function will be a prod-
uct of Dirichlet L-functions raised to complex powers. The techniques for obtain-
ing asymptotic formulae and dealing with branch singularities arising from com-
plex powers of ordinary L-series were first introduced by Selberg [7], and see also
Tenenbaum [8] for a very nice exposition with different applications. In [4–6], one
finds a larger class of additive functions where these methods can also be applied
yielding similar results but with different constants.

2 On the function L(s, ψh/q)

Let h, q be coprime integers with q > 1. In this paper we shall investigate the com-
pletely multiplicative function

ψh/q(n) := e
2π ih A(n)

q .

Then the L-function associated to ψh/q is defined by the absolutely convergent
series
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L(s, ψh/q) :=
∞∑

n=1

ψh/q(n)n−s, (2)

in the region	(s) > 1, and has anEuler product representation (product over rational
primes) of the form

L(s, ψh/q) :=
∏

p

(

1 − e
2π ihp

q

ps

)−1

. (3)

TheEuler product (3) converges absolutely to a non-vanishing function for	(s) >

1. We would like to show it has analytic continuation to a larger region.

Lemma 2.1. Let 	(s) > 1. Then

log
(
L(s, ψh/q)

) =
∑

p

∞∑

k=1

e
2π ihpk

q

k psk
+ Th,q(s)

where, for any ε > 0, the function

Th,q(s) :=
∑

p

∞∑

k=2

e
2π i phk

q − e
2π i pk h

q

k psk

is holomorphic for 	(s) > 1
2 + ε and satisfies |Th,q(s)| = Oε (1) where the Oε-

constant is independent of q and depends at most on ε.

Proof. Taking log’s, we obtain

log
(
L(s, ψh/q)

) =
∑

p

∞∑

k=1

e
2π i phk

q

k psk

=
∑

p

∞∑

k=1

e
2π ihpk

q

k psk
+

∑

p

∞∑

k=2

e
2π i phk

q − e
2π i pk h

q

k psk
.

Hence, we may take

Th,q(s) =
∑

p

∞∑

k=2

e
2π i phk

q − e
2π i pk h

q

k psk
,

which is easily seen to converge absolutely for 	(s) > 1
2 . �

For q > 2, let χ denote a Dirichlet character (mod q) with associated Gauss
sum τ(χ). We also let χ0 be the trivial character (mod q).

We require the following lemma.
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Lemma 2.2. Let h, q ∈ Z with q > 2 and (h, q) = 1. Then

e
2π ih
q =

⎛

⎜
⎜
⎝

1

φ(q)

∑

χ (mod q)

χ �=χ0

τ(χ) · χ(h)

⎞

⎟
⎟
⎠ + μ(q)

φ(q)
.

Proof. Since (h, q) = 1, it follows that for χ (mod q) with χ �= χ0,

τ (χ) χ(h) =
q∑

�=1

χ(�)e
2π i�h

q .

This implies that

∑

χ (mod q)

χ �=χ0

τ(χ) χ(h) = (φ(q) − 1) e
2π ih
q +

q∑

�=2
(�,q)=1

⎛

⎜
⎜
⎝

∑

χ (mod q)

χ �=χ0

χ(�)

⎞

⎟
⎟
⎠ e

2π i�h
q

= (φ(q) − 1) e
2π ih
q −

q∑

�=1
(�,q)=1

e
2π i�h

q + e
2π ih
q .

The proof is completed upon noting that the Ramanujan sum on the right side
above can be evaluated as

q∑

�=1
(�,q)=1

e
2π i�h

q =
∑

d|(q,h)

μ
(q

d

)
d = μ(q). �

Theorem 2.3. Let s ∈ C with 	(s) > 1. Then we have the representation

L(s, ψh/q) =

⎛

⎜
⎜
⎝

∏

χ (mod q)

χ �=χ0

L(s, χ)
τ(χ)χ(h)

φ(q)

⎞

⎟
⎟
⎠ · ζ(s)

μ(q)

φ(q) · eUh,q (s),

where

Uh,q(s) := −μ(q)

φ(q)

∑

p|q

∞∑

k=1

1

kpsk
+

∑

p | q

∞∑

k=1

e
2π ihpk

q

k psk
+

∑

p

∞∑

k=2

e
2π i phk

q − e
2π i pk h

q

k psk
.

Proof. If we combine lemmas (2.1) and (2.2) it follows that for 	(s) > 1,
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log
(
L(s, ψh/q)

) =
∑

p

∞∑

k=1

e
2π ihpk

q

k psk
+ Th,q(s)

=
∑

p � q

∞∑

k=1

e
2π ihpk

q

k psk
+

∑

p | q

∞∑

k=1

e
2π ihpk

q

k psk
+ Th,q(s)

=
∑

p � q

∞∑

k=1

⎛

⎜
⎝ 1

φ(q)

∑

χ (mod q)

χ �=χ0

τ(χ) · χ(h pk) + μ(q)

φ(q)

⎞

⎟
⎠

k psk
+

∑

p | q

∞∑

k=1

e
2π ihpk

q

k psk
+ Th,q(s).

Hence

log
(
L(s, ψh/q)

) = 1

φ(q)

∑

χ (mod q)

χ �=χ0

τ(χ)χ(h) log(L(s, χ) + μ(q)

φ(q)
log

(
ζ(s)

)

− μ(q)

φ(q)

∑

p|q

∞∑

k=1

1

kpsk
+

∑

p | q

∞∑

k=1

e
2π ihpk

q

k psk
+ Th,q(s).

The theorem immediately follows after taking exponentials. �

The representation of L(s, ψh/q) given in theorem 2.3 allows one to analytically
continue the function L(s, ψh/q) to a larger region which lies to the left of the line
	(s) = 1 + ε (ε > 0). This is a region which does not include the branch points of
L(s, ψh/q) at the zeros and poles of L(s, χ), ζ(s).

Assume that q > 1 and χ (mod q). It is well known (see [2]) that the Dirichlet
L-functions L(σ + it, χ)) do not vanish in the region

σ ≥
{
1 − c1

log q|t | if |t | ≥ 1,

1 − c2
log q if |t | ≤ 1,

(for absolute constants c1, c2 > 0), (4)

unless χ is the exceptional real character which has a simple real zero (Siegel zero)
near s = 1.

Similarly, ζ(σ + it) does not vanish for

σ ≥ 1 − c3
log(|t | + 2)

, (for an absolute constant c3 > 0). (5)

Assume q > 1 and that there is no exceptional real character (mod q). It follows
from (4) and (5) that L(s, ψh/q) is holomorphic in the region to the right of the
contour Cq displayed in Figure 1.
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Fig. 1 The contour Cq

To construct the contour Cq first take a slit along the real axis from 1 − c2
log q to

1 and construct a line just above and just below the slit. Then take two asymptotes
to the line 	(s) = 1 with the property that if σ + it is on the asymptote and |t | ≥ 1,
then σ satisfies (4). If q = 1, we do a similar construction using (5).

3 Proof of theorem 1.1

The proof of theorem 1.1 is based on the following theorem.

Theorem 3.1. Let h, q be fixed coprime integers with q > 2 and μ(q) �= 0. Then
for x → ∞ there exist absolute constants c, c′ > 0 such that
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∑

n≤x

e2π i
hA(n)

q

=
sin

(
μ(q) π

φ(q)

)

π

1∫

1− c√
log x

⎛

⎜
⎜
⎝

∏

χ (mod q)

χ �=χ0

L(σ, χ)
τ(χ)χ(h)

φ(q)

⎞

⎟
⎟
⎠ · |ζ(σ )| μ(q)

φ(q) · eHh,q (σ ) xσ

σ
dσ

+ O
(
xe−c′ √log x

)
.

On the other hand if μ(q) = 0, then
∑

n≤x
e2π i

hA(n)

q = O
(
xe−c′ √log x

)
.

Proof. The proof of theorem 3.1 relies on the following lemma taken from [2].

Lemma 3.2. Let

δ(x) :=

⎧
⎪⎨

⎪⎩

0, if 0 < x < 1,
1
2 , if x = 1,

1, if x > 1,

then for x, T > 0, we have

∣
∣
∣
∣
∣
∣

1

2π i

c+iT∫

c−iT

xs

s
ds − δ(x)

∣
∣
∣
∣
∣
∣

<

{
xc · min

(
1, 1

T | log x |
)

, if x �= 1,

cT−1, if x = 1.

It follows from lemma 3.2, for x, T � 1 and c = 1 + 1
log x , that

1

2π i

c+iT∫

c−iT

L
(
s, ψh/q

) xs

s
ds =

∑

n≤x

ψh/q(n) + O

(
x log x

T

)

. (6)

Fix large constants c1, c2 > 0. Next, shift the integral in (6) to the left and deform
the line of integration to a contour

L+ + CT,x + L−

as in figure 2 below which contains two short horizontal lines:

L± =
{

σ ± iT

∣
∣
∣
∣ 1 − c1

log qT
≤ σ ≤ 1 + 1

log x

}

,

together with the contour CT,x which is similar to Cq except that the two curves
asymptotic to the line 	(s) = 1 go from 1 − c1√

log qT
+ iT to 1 − c2√

log x
+ iε and

1 − c2√
log x

− iε to 1 − c1√
log qT

− iT , respectively, for 0 < ε → 0.
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Fig. 2 The contour CT,x

Now, by the zero-free regions (4), (5), the region to the right of the contour
L+ + CT,x + L− does not contain any branch points or poles of the L-functions
L(s, χ) for any χ (mod q). It follows that

1

2π i

c+iT∫

c−iT

L
(
s, ψh/q

) xs

s
ds = 1

2π i

(∫

L+
+

∫

C ε

+
∫

L−

)

L
(
s, ψh/q

) xs

s
ds. (7)

The main contribution for the integral along L+ + CT,x + L− in (7) comes from
the integrals along the straight lines above and below the slit on the real axis[
1 − c2√

log x
, 1

]
. These integrals cancel if the function L

(
s, ψh/q

)
has no branch

points or poles on the slit. It follows from theorem 2.3 that this will be the case if
μ(q) = 0. The remaining integrals in (7) can then be estimated as in the proof of the
prime number theorem for arithmetic progressions (see [2]), yielding an error term

of the form O
(
xe−c′ √log x

)
. This proves the second part of theorem 3.1.

Next, assume μ(q) �= 0. In this case L(s, ψh/q) has a branch point at s = 1
coming from the Riemann zeta function, it is necessary to keep track of the
change in argument. Let 0+i denote the upper part of the slit and let 0−i denote
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the lower part of the slit. Then we have log[ζ(σ + 0+i) = log |ζ(σ )| − iπ and
log[ζ(σ + 0−i) = log |ζ(σ )| + iπ .

By the standard proof of the prime number theorem for arithmetic progressions it
follows that (with an error O

(
e−c′√log x

)
) the right hand side of (7) is asymptotic to

Islit := −1

2π i

1∫

1− c√
log x

[
exp

(
log

(
L

(
σ + 0+i, ψh/q

)) )

− exp
(
log

(
L

(
σ − 0−i, ψh/q

)) )] xσ

σ
dσ. (8)

We may evaluate Islit using theorem 2.3. This gives

Islit = −1

2π i

1∫

1− c√
log x

⎛

⎜
⎜
⎜
⎝

∏

χ (mod q)

χ �=χ0

L(σ, χ)
τ(χ)χ(h)

φ(q)

⎞

⎟
⎟
⎟
⎠

· eUh,q (σ )

·
[

exp

(
μ(q)

φ(q)

(
log |ζ(σ )| − iπ

))

− exp

(
μ(q)

φ(q)

(
log |ζ(σ )| + iπ

))]
xσ

σ
dσ

=
sin

(
μ(q) π
φ(q)

)

π

1∫

1− c√
log x

⎛

⎜
⎜
⎜
⎝

∏

χ (mod q)

χ �=χ0

L(σ, χ)
τ(χ)χ(h)

φ(q)

⎞

⎟
⎟
⎟
⎠

· |ζ(σ )| μ(q)
φ(q) · eUh,q (σ ) xσ

σ
dσ.

As in the previous case whenμ(q) = 0, the remaining integrals in (7) can then be
estimated as in the proof of the prime number theorem for arithmetic progressions,

yielding an error term of the form O
(
xe−c′ √log x

)
. This completes the proof of

theorem 3.1. �
The proof of theorem 1.1 follows from theorem 3.1 if we can obtain an asymptotic

formula for the integral

Islit =
sin

(
μ(q) π
φ(q)

)

π

1∫

1− c√
log x

⎛

⎜
⎜
⎜
⎝

∏

χ (mod q)

χ �=χ0

L(σ, χ)
τ(χ)χ(h)

φ(q)

⎞

⎟
⎟
⎟
⎠

· |ζ(σ )| μ(q)
φ(q) · eUh,q (σ ) xσ

σ
dσ. (9)

Since we have assumed q is fixed, it immediately follows that for arbitrarily large
c � 1 and x → ∞, we have
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Islit =
sin

(
μ(q) π
φ(q)

)

π

1∫

1− c log log x
log x

⎛

⎜
⎜
⎜
⎝

∏

χ (mod q)

χ �=χ0

L(σ, χ)
τ(χ)χ(h)

φ(q)

⎞

⎟
⎟
⎟
⎠

· |ζ(σ )| μ(q)
φ(q) · eUh,q (σ ) xσ

σ
dσ

+ O

(
x

(log x)c

)

.

Now, in the region 1 − c log log x
log x ≤ σ ≤ 1,

∏

χ (mod q)

χ �=χ0

L(σ, χ)
τ(χ)χ(h)

φ(q) · e
Hh,q (σ )

σ
=

∏

χ (mod q)

χ �=χ0

L(1, χ)
τ(χ)χ(h)

φ(q) · eUh,q (1) + O

(
log log x

log x

)

.

Consequently,

Islit =
sin

(
μ(q) π

φ(q)

)

π

∏

χ (mod q)

χ �=χ0

L(1, χ)
τ(χ)χ(h)

φ(q) · eUh,q (1)

1∫

1− c log log x
log x

ζ(σ )
μ(q)

φ(q) xσ dσ

+ O

⎛

⎜
⎜
⎝
log log x

log x

∣
∣
∣
∣
∣
∣
∣
∣

1∫

1− c log log x
log x

ζ(σ )
μ(q)

φ(q) xσ dσ

∣
∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎟
⎠ . (10)

It remains to compute the integral of |ζ(σ )| μ(q)

φ(q) occurring in (10). For σ very close
to 1, we have

|ζ(σ )| μ(q)

φ(q) =
(

1

|σ − 1| + O(1)

) μ(q)

φ(q)

=
(

1

|σ − 1|
) μ(q)

φ(q)

+ O

((
1

|σ − 1|
) μ(q)

φ(q)
−1

)

.

It follows that

1∫

1− c log log x
log x

|ζ(σ )| μ(q)
φ(q) xσ dσ = Γ

(

1 − μ(q)

φ(q)

)
x

(log x)1−
μ(q)
φ(q)

+ O

(
x

(log x)2−
μ(q)
φ(q)

)

. (11)

Combining equations (10) and (11) we obtain



308 D. Goldfeld

Islit =
sin

(
μ(q) π

φ(q)

)

π
Γ

(

1 − μ(q)

φ(q)

) ∏

χ (mod q)

χ �=χ0

L(1, χ)
τ(χ)χ(h)

φ(q) eUh,q (1)
x

(log x)1−
μ(q)

φ(q)

+O

(
x

(log x)2−
μ(q)

φ(q)

)

.

Remark: As pointed out to me by Gérald Tenenbaum, it is also possible to deduce
Corollary 1.2 directly from theorem 2.3 by using theorem II.5.2 of [8]. In this manner
one can obtain an explicit asymptotic expansion which, furthermore, is valid for
values of q tending to infinity with x .

4 Examples of equidistribution (mod 3) and (mod 9)

Equidistribution (mod 3): Theorem (1.1) says that for h = 1, q = 3 :
∑

n ≤ x

e
2π i A(n)

3 = −V1,3

π
Γ

(
3

2

) ∏

χ (mod 3)
χ �=χ0

L(1, χ)
G(χ)

2
x

(log x)
3
2

(
1 + O

(
1

log x

) )

≈ (−0.503073 + 0.24042 i)
x

(log x)
3
2

.

We computed the above sum for x = 107 and obtained

∑

n ≤ 107

e
2π i A(n)

3 ≈ −98, 423.00 + 55, 650.79 i.

Our theorem predicts that

∑

n ≤ 107

e
2π i A(n)

3 ≈ −88, 870.8 + 42, 471.7 i.

Since log
(
107

) ≈ 16.1 is small, this explains the discrepancy between the actual and
predicted results.

As x → ∞, we have

∑

n ≤ x
A(n) ≡ a (mod 3)

= 1

3

2∑

h=0

∑

n ≤ x

e
2π i A(n)h

3 e− 2π ih a
3 = x

3
+ ca

x

(log x)
3
2

+ O

(
x

(log x)
5
2

)

where
c0 = −0.335382, c1 ≈ 0.306498, c2 ≈ 0.0288842.
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Equidistribution (mod 9):

Our theorem says that for h �= 3, 6 (1 ≤ h < 9) and q = 9:

∑

n ≤ x

e
2π ih A(n)

9 = O
(
x e−c0

√
log x

)
.

Surprisingly!! there is a huge amount of cancellation when x = 107 :

∑

n ≤ 107

e
2π ih A(n)

9 ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−315.2 − 140.4 i if h = 1,

282.2 − 543.4 i if h = 2,

94.5 + 321.9 i if h = 4,

94.5 − 321.9 i if h = 5,

282.2 + 543.4 i if h = 7,

−315.2 + 140.4 i if h = 8.
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