On an Additive Prime Divisor Function of Alladi and Erdős

Dorian Goldfeld

This paper is dedicated to Krishna Alladi on the occasion of his 60th birthday

Abstract This paper discusses the additive prime divisor function $A(n) := \sum_{p^{\alpha}||n} \alpha p$ which was introduced by Alladi and Erdős in 1977. It is shown that A(n) is uniformly distributed (mod q) for any fixed integer q > 1 with an explicit bound for the error.

1 Introduction

Let $n = \prod_{i=1}^{r} p_i^{a_i}$ be the unique prime decomposition of a positive integer *n*. In 1977, Alladi and Erdős [1] introduced the additive function

$$A(n) := \sum_{i=1}^r a_i \cdot p_i.$$

Among several other things they proved that A(n) is uniformly distributed modulo 2. This was obtained from the identity

D. Goldfeld (🖂)

in Mathematics & Statistics 221, https://doi.org/10.1007/978-3-319-68376-8_17

This research was partially supported by NSA grant H98230-15-1-0035.

Department of Mathematics, Columbia University, New York, NY 10027, USA e-mail: goldfeld@columbia.edu

[©] Springer International Publishing AG 2017

G. E. Andrews and F. Garvan (eds.), Analytic Number Theory,

Modular Forms and q-Hypergeometric Series, Springer Proceedings

D. Goldfeld

$$\sum_{n=1}^{\infty} \frac{(-1)^{A(n)}}{n^s} = \frac{2^s + 1}{2^s - 1} \cdot \frac{\zeta(2s)}{\zeta(s)}$$
(1)

together with the known zero-free region for the Riemann zeta function. As a consequence they proved that there exists a constant c > 0 such that

$$\sum_{n \le x} (-1)^{A(n)} = \mathscr{O}\left(x \, e^{-c\sqrt{\log x \log \log x}}\right),$$

for $x \to \infty$.

In 1969 Delange [3] gave a necessary and sufficient condition for uniform distribution in progressions for integral valued additive functions which easily implies that A(n) is uniformly distributed (mod q) for all $q \ge 2$ (although without a bound for the error in the asymptotic formula). The main goal of this paper is to show that A(n) is uniformly distributed modulo q for any integer $q \ge 2$ with an explicit bound for the error.

Unfortunately, it is not possible to obtain such a simple identity as in (1) for the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{e^{2\pi i \frac{hA(n)}{q}}}{n^s}$$

when q > 2 and h, q are coprime. Instead we require a representation involving a product of rational powers of Dirichlet L-functions which will have branch points at the zeros of the L-functions.

The uniform distribution of A(n) is a consequence of the following theorem (1.1) which is proved in §3. To state the theorem we require some standard notation. Let μ denote the Mobius function and let ϕ denote Euler's function. For any Dirichlet character $\chi \pmod{q}$ (with q > 1) let $\tau(\chi) = \sum_{\substack{\ell \pmod{q}}} \chi(\ell) e^{\frac{2\pi i \ell}{q}}$ denote the associated Gauss sum and let $L(s, \chi)$ denote the Dirichlet L-function associated to χ .

and Gauss sum and let $E(s, \chi)$ denote the Difference E function associated to χ .

Theorem 1.1. Let h, q be fixed coprime integers with q > 2. Then for $x \to \infty$ we have the asymptotic formula

$$\sum_{n \le x} e^{2\pi i \frac{hA(n)}{q}} = \begin{cases} C_{h,q} \cdot x \left(\log x\right)^{-1 + \frac{\mu(q)}{\phi(q)}} \left(1 + \mathcal{O}\left((\log x)^{-1}\right)\right) & \text{if } \mu(q) \neq 0, \\\\ \mathcal{O}\left(x e^{-c_0 \sqrt{\log x}}\right) & \text{if } \mu(q) = 0, \end{cases}$$

where $c_0 > 0$ is a constant depending at most on h, q,

$$C_{h,q} = \frac{V_{h,q} \cdot \sin\left(\frac{\mu(q)\pi}{\phi(q)}\right)}{\pi} \Gamma\left(1 - \frac{\mu(q)}{\phi(q)}\right) \prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(1, \chi)^{\frac{\tau(\overline{\chi})\chi(h)}{\phi(q)}}$$

298

and

$$V_{h,q} := \exp\left[-\frac{\mu(q)}{\phi(q)} \sum_{p|q} \sum_{k=1}^{\infty} \frac{1}{kp^k} + \sum_{p|q} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^k}{q}}}{k p^k} + \sum_{p} \sum_{k=2}^{\infty} \frac{e^{\frac{2\pi i p h k}{q}} - e^{\frac{2\pi i p^k h}{q}}}{k p^k}\right].$$

Theorem 1.1 has the following easily proved corollary.

Corollary 1.2. Let q > 1 and let h be an arbitrary integer. Then

$$\sum_{n \le x} e^{2\pi i \frac{hA(n)}{q}} = \mathscr{O}\left(\frac{x}{\sqrt{\log x}}\right).$$

The above corollary can then be used to obtain the desired uniform distribution theorem.

Theorem 1.3. Let h, q be fixed integers with q > 2. Then for $x \to \infty$, we have

$$\sum_{\substack{n \le x \\ A(n) \equiv h \pmod{q}}} 1 = \frac{x}{q} + \mathscr{O}\left(\frac{x}{\sqrt{\log x}}\right).$$

We remark that the error term in theorem 1.3 can be replaced by a second order asymptotic term which is not uniformly distributed (mod q).

The proof of theorem (1.1) relies on explicitly constructing an L-function with coefficients of the form $e^{2\pi i \frac{\hbar A(n)}{q}}$. It will turn out that this L-function will be a product of Dirichlet L-functions raised to complex powers. The techniques for obtaining asymptotic formulae and dealing with branch singularities arising from complex powers of ordinary L-series were first introduced by Selberg [7], and see also Tenenbaum [8] for a very nice exposition with different applications. In [4–6], one finds a larger class of additive functions where these methods can also be applied yielding similar results but with different constants.

2 On the function $L(s, \psi_{h/q})$

Let h, q be coprime integers with q > 1. In this paper we shall investigate the completely multiplicative function

$$\psi_{h/q}(n) := e^{\frac{2\pi i h A(n)}{q}}.$$

Then the L-function associated to $\psi_{h/q}$ is defined by the absolutely convergent series

$$L(s, \psi_{h/q}) := \sum_{n=1}^{\infty} \psi_{h/q}(n) n^{-s},$$
(2)

in the region $\Re(s) > 1$, and has an Euler product representation (product over rational primes) of the form

$$L(s, \psi_{h/q}) := \prod_{p} \left(1 - \frac{e^{\frac{2\pi i h p}{q}}}{p^s} \right)^{-1}.$$
 (3)

The Euler product (3) converges absolutely to a non-vanishing function for $\Re(s) > 1$. We would like to show it has analytic continuation to a larger region.

Lemma 2.1. Let $\Re(s) > 1$. Then

$$\log\left(L(s,\psi_{h/q})\right) = \sum_{p} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^k}{q}}}{k \ p^{sk}} + T_{h,q}(s)$$

where, for any $\varepsilon > 0$, the function

$$T_{h,q}(s) := \sum_{p} \sum_{k=2}^{\infty} \frac{e^{\frac{2\pi i p h k}{q}} - e^{\frac{2\pi i p h}{q}}}{k \ p^{sk}}$$

is holomorphic for $\Re(s) > \frac{1}{2} + \varepsilon$ and satisfies $|T_{h,q}(s)| = \mathcal{O}_{\varepsilon}(1)$ where the $\mathcal{O}_{\varepsilon}$ constant is independent of q and depends at most on ε .

Proof. Taking log's, we obtain

$$\log (L(s, \psi_{h/q})) = \sum_{p} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i p h k}{q}}}{k p^{sk}}$$
$$= \sum_{p} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^{k}}{q}}}{k p^{sk}} + \sum_{p} \sum_{k=2}^{\infty} \frac{e^{\frac{2\pi i p h k}{q}} - e^{\frac{2\pi i p^{k} h}{q}}}{k p^{sk}}.$$

Hence, we may take

$$T_{h,q}(s) = \sum_{p} \sum_{k=2}^{\infty} \frac{e^{\frac{2\pi i p h k}{q}} - e^{\frac{2\pi i p k}{q}}}{k p^{s k}},$$

which is easily seen to converge absolutely for $\Re(s) > \frac{1}{2}$.

For q > 2, let χ denote a Dirichlet character (mod q) with associated Gauss sum $\tau(\chi)$. We also let χ_0 be the trivial character (mod q).

We require the following lemma.

Lemma 2.2. Let $h, q \in \mathbb{Z}$ with q > 2 and (h, q) = 1. Then

$$e^{\frac{2\pi i \hbar}{q}} = \left(\frac{1}{\phi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \tau(\chi) \cdot \overline{\chi(h)}\right) + \frac{\mu(q)}{\phi(q)}.$$

Proof. Since (h, q) = 1, it follows that for $\chi \pmod{q}$ with $\chi \neq \chi_0$,

$$\tau(\chi)\,\overline{\chi(h)} = \sum_{\ell=1}^q \chi(\ell) e^{\frac{2\pi i \ell h}{q}}.$$

This implies that

$$\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \tau(\chi) \overline{\chi(h)} = (\phi(q) - 1) e^{\frac{2\pi i h}{q}} + \sum_{\substack{\ell=2 \\ (\ell,q)=1}}^q \left(\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \chi(\ell) \right) e^{\frac{2\pi i \ell h}{q}}$$
$$= (\phi(q) - 1) e^{\frac{2\pi i h}{q}} - \sum_{\substack{\ell=1 \\ (\ell,q)=1}}^q e^{\frac{2\pi i \ell h}{q}} + e^{\frac{2\pi i h}{q}}.$$

The proof is completed upon noting that the Ramanujan sum on the right side above can be evaluated as

$$\sum_{\substack{\ell=1\\(\ell,q)=1}}^{q} e^{\frac{2\pi i \ell h}{q}} = \sum_{d \mid (q,h)} \mu\left(\frac{q}{d}\right) d = \mu(q).$$

Theorem 2.3. Let $s \in \mathbb{C}$ with $\Re(s) > 1$. Then we have the representation

$$L(s, \psi_{h/q}) = \left(\prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(s, \overline{\chi})^{\frac{\tau(\chi)\overline{\chi(h)}}{\phi(q)}}\right) \cdot \zeta(s)^{\frac{\mu(q)}{\phi(q)}} \cdot e^{U_{h,q}(s)},$$

where

$$U_{h,q}(s) := -\frac{\mu(q)}{\phi(q)} \sum_{p|q} \sum_{k=1}^{\infty} \frac{1}{kp^{sk}} + \sum_{p|q} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i p h}{q}}}{k p^{sk}} + \sum_{p} \sum_{k=2}^{\infty} \frac{e^{\frac{2\pi i p h}{q}} - e^{\frac{2\pi i p h}{q}}}{k p^{sk}}.$$

Proof. If we combine lemmas (2.1) and (2.2) it follows that for $\Re(s) > 1$,

$$\log (L(s, \psi_{h/q})) = \sum_{p} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^{k}}{q}}}{k p^{sk}} + T_{h,q}(s)$$

$$= \sum_{p \nmid q} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^{k}}{q}}}{k p^{sk}} + \sum_{p \mid q} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^{k}}{q}}}{k p^{sk}} + T_{h,q}(s)$$

$$= \sum_{p \nmid q} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{\phi(q)} \sum_{\substack{\chi \ (\text{mod } q)}} \tau(\chi) \cdot \overline{\chi(h p^{k})} + \frac{\mu(q)}{\phi(q)}\right)}{k p^{sk}} + \sum_{p \mid q} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^{k}}{q}}}{k p^{sk}} + T_{h,q}(s).$$

Hence

$$\log \left(L(s, \psi_{h/q}) \right) = \frac{1}{\phi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \tau(\chi) \overline{\chi(h)} \log(L(s, \overline{\chi}) + \frac{\mu(q)}{\phi(q)} \log\left(\zeta(s)\right)$$
$$- \frac{\mu(q)}{\phi(q)} \sum_{p|q} \sum_{k=1}^{\infty} \frac{1}{kp^{sk}} + \sum_{p|q} \sum_{k=1}^{\infty} \frac{e^{\frac{2\pi i h p^k}{q}}}{k p^{sk}} + T_{h,q}(s).$$

The theorem immediately follows after taking exponentials.

The representation of $L(s, \psi_{h/q})$ given in theorem 2.3 allows one to analytically continue the function $L(s, \psi_{h/q})$ to a larger region which lies to the left of the line $\Re(s) = 1 + \varepsilon$ ($\varepsilon > 0$). This is a region which does not include the branch points of $L(s, \psi_{h/q})$ at the zeros and poles of $L(s, \chi), \zeta(s)$.

Assume that q > 1 and $\chi \pmod{q}$. It is well known (see [2]) that the Dirichlet L-functions $L(\sigma + it, \chi)$) do not vanish in the region

$$\sigma \ge \begin{cases} 1 - \frac{c_1}{\log q |t|} & \text{if } |t| \ge 1, \\ 1 - \frac{c_2}{\log q} & \text{if } |t| \le 1, \end{cases}$$
 (for absolute constants $c_1, c_2 > 0$), (4)

unless χ is the exceptional real character which has a simple real zero (Siegel zero) near s = 1.

Similarly, $\zeta(\sigma + it)$ does not vanish for

$$\sigma \ge 1 - \frac{c_3}{\log(|t|+2)}, \qquad \text{(for an absolute constant } c_3 > 0\text{)}. \tag{5}$$

Assume q > 1 and that there is no exceptional real character (mod q). It follows from (4) and (5) that $L(s, \psi_{h/q})$ is holomorphic in the region to the right of the contour \mathcal{C}_q displayed in Figure 1.

Fig. 1 The contour \mathscr{C}_q

To construct the contour \mathscr{C}_q first take a slit along the real axis from $1 - \frac{c_2}{\log q}$ to 1 and construct a line just above and just below the slit. Then take two asymptotes to the line $\Re(s) = 1$ with the property that if $\sigma + it$ is on the asymptote and $|t| \ge 1$, then σ satisfies (4). If q = 1, we do a similar construction using (5).

3 Proof of theorem 1.1

The proof of theorem 1.1 is based on the following theorem.

Theorem 3.1. Let h, q be fixed coprime integers with q > 2 and $\mu(q) \neq 0$. Then for $x \rightarrow \infty$ there exist absolute constants c, c' > 0 such that

$$\begin{split} &\sum_{n \le x} e^{2\pi i \frac{hA(\theta)}{q}} \\ &= \frac{\sin\left(\frac{\mu(q)\pi}{\phi(q)}\right)}{\pi} \int_{1-\frac{c}{\sqrt{\log x}}}^{1} \left(\prod_{\substack{\chi \pmod{q} \\ \chi \ne \chi_0}} L(\sigma, \overline{\chi})^{\frac{\tau(\chi)\overline{\chi}(h)}{\phi(q)}}\right) \cdot |\zeta(\sigma)|^{\frac{\mu(q)}{\phi(q)}} \cdot e^{H_{h,q}(\sigma)} \frac{x^{\sigma}}{\sigma} d\sigma \\ &+ \mathscr{O}\left(xe^{-c'\sqrt{\log x}}\right). \end{split}$$

On the other hand if $\mu(q) = 0$, then $\sum_{n \le x} e^{2\pi i \frac{hA(n)}{q}} = \mathcal{O}\left(x e^{-c'\sqrt{\log x}}\right)$.

Proof. The proof of theorem 3.1 relies on the following lemma taken from [2].

Lemma 3.2. Let

$$\delta(x) := \begin{cases} 0, & \text{if } 0 < x < 1 \\ \frac{1}{2}, & \text{if } x = 1, \\ 1, & \text{if } x > 1, \end{cases}$$

then for x, T > 0, we have

$$\left|\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{x^s}{s} \, ds - \delta(x)\right| < \begin{cases} x^c \cdot \min\left(1, \frac{1}{T|\log x|}\right), & \text{if } x \neq 1, \\ cT^{-1}, & \text{if } x = 1. \end{cases}$$

It follows from lemma 3.2, for $x, T \gg 1$ and $c = 1 + \frac{1}{\log x}$, that

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} L\left(s, \psi_{h/q}\right) \frac{x^s}{s} \, ds = \sum_{n \le x} \psi_{h/q}(n) + \mathcal{O}\left(\frac{x \log x}{T}\right). \tag{6}$$

Fix large constants c_1 , $c_2 > 0$. Next, shift the integral in (6) to the left and deform the line of integration to a contour

$$L^+ + \mathscr{C}_{T,x} + L^-$$

as in figure 2 below which contains two short horizontal lines:

$$L^{\pm} = \left\{ \sigma \pm iT \mid 1 - \frac{c_1}{\log qT} \le \sigma \le 1 + \frac{1}{\log x} \right\},\,$$

together with the contour $C_{T,x}$ which is similar to C_q except that the two curves asymptotic to the line $\Re(s) = 1$ go from $1 - \frac{c_1}{\sqrt{\log qT}} + iT$ to $1 - \frac{c_2}{\sqrt{\log x}} + i\varepsilon$ and $1 - \frac{c_2}{\sqrt{\log x}} - i\varepsilon$ to $1 - \frac{c_1}{\sqrt{\log qT}} - iT$, respectively, for $0 < \varepsilon \to 0$.

Fig. 2 The contour $\mathscr{C}_{T,x}$

Now, by the zero-free regions (4), (5), the region to the right of the contour $L^+ + \mathscr{C}_{T,x} + L^-$ does not contain any branch points or poles of the L-functions $L(s, \chi)$ for any $\chi \pmod{q}$. It follows that

$$\frac{1}{2\pi i} \int_{c-iT}^{c+iT} L(s, \psi_{h/q}) \frac{x^s}{s} \, ds = \frac{1}{2\pi i} \left(\int_{L^+} + \int_{\mathscr{C}_{\varepsilon}} + \int_{L^-} \right) L(s, \psi_{h/q}) \frac{x^s}{s} \, ds.$$
(7)

The main contribution for the integral along $L^+ + \mathscr{C}_{T,x} + L^-$ in (7) comes from the integrals along the straight lines above and below the slit on the real axis $\left[1 - \frac{c_2}{\sqrt{\log x}}, 1\right]$. These integrals cancel if the function $L(s, \psi_{h/q})$ has no branch points or poles on the slit. It follows from theorem 2.3 that this will be the case if $\mu(q) = 0$. The remaining integrals in (7) can then be estimated as in the proof of the prime number theorem for arithmetic progressions (see [2]), yielding an error term of the form $\mathscr{O}\left(xe^{-c'\sqrt{\log x}}\right)$. This proves the second part of theorem 3.1.

Next, assume $\mu(q) \neq 0$. In this case $L(s, \psi_{h/q})$ has a branch point at s = 1 coming from the Riemann zeta function, it is necessary to keep track of the change in argument. Let 0^+i denote the upper part of the slit and let 0^-i denote

the lower part of the slit. Then we have $\log[\zeta(\sigma + 0^+ i)] = \log |\zeta(\sigma)| - i\pi$ and $\log[\zeta(\sigma + 0^- i)] = \log |\zeta(\sigma)| + i\pi$.

By the standard proof of the prime number theorem for arithmetic progressions it follows that (with an error $\mathcal{O}(e^{-c'\sqrt{\log x}})$) the right hand side of (7) is asymptotic to

$$\mathscr{I}_{\text{slit}} := \frac{-1}{2\pi i} \int_{1-\frac{c}{\sqrt{\log x}}}^{1} \left[\exp\left(\log\left(L\left(\sigma + 0^{+}i, \ \psi_{h/q}\right)\right) \right) - \exp\left(\log\left(L\left(\sigma - 0^{-}i, \ \psi_{h/q}\right)\right) \right) \right] \frac{x^{\sigma}}{\sigma} \, d\sigma.$$
(8)

We may evaluate $\mathscr{I}_{\text{slit}}$ using theorem 2.3. This gives

$$\begin{split} \mathscr{I}_{\text{slit}} &= \frac{-1}{2\pi i} \int_{1-\frac{c}{\sqrt{\log x}}}^{1} \left(\prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(\sigma, \,\overline{\chi})^{\frac{\tau(\chi)\overline{\chi(h)}}{\phi(q)}} \right) \cdot e^{U_{h,q}(\sigma)} \\ & \cdot \left[\exp\left(\frac{\mu(q)}{\phi(q)} \left(\log |\zeta(\sigma)| - i\pi \right) \right) - \exp\left(\frac{\mu(q)}{\phi(q)} \left(\log |\zeta(\sigma)| + i\pi \right) \right) \right] \frac{x^{\sigma}}{\sigma} \, d\sigma \\ &= \frac{\sin\left(\frac{\mu(q)\pi}{\phi(q)}\right)}{\pi} \int_{1-\frac{c}{\sqrt{\log x}}}^{1} \left(\prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(\sigma, \,\overline{\chi})^{\frac{\tau(\chi)\overline{\chi(h)}}{\phi(q)}} \right) \cdot |\zeta(\sigma)|^{\frac{\mu(q)}{\phi(q)}} \cdot e^{U_{h,q}(\sigma)} \, \frac{x^{\sigma}}{\sigma} \, d\sigma. \end{split}$$

As in the previous case when $\mu(q) = 0$, the remaining integrals in (7) can then be estimated as in the proof of the prime number theorem for arithmetic progressions, yielding an error term of the form $\mathscr{O}\left(xe^{-c'\sqrt{\log x}}\right)$. This completes the proof of theorem 3.1.

The proof of theorem 1.1 follows from theorem 3.1 if we can obtain an asymptotic formula for the integral

$$\mathscr{I}_{\text{slit}} = \frac{\sin\left(\frac{\mu(q)\pi}{\phi(q)}\right)}{\pi} \int_{1-\frac{c}{\sqrt{\log x}}}^{1} \left(\prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(\sigma, \overline{\chi})^{\frac{\tau(\chi)\overline{\chi(h)}}{\phi(q)}}\right) \cdot |\zeta(\sigma)|^{\frac{\mu(q)}{\phi(q)}} \cdot e^{U_{h,q}(\sigma)} \frac{x^{\sigma}}{\sigma} \, d\sigma. \tag{9}$$

Since we have assumed q is fixed, it immediately follows that for arbitrarily large $c \gg 1$ and $x \to \infty$, we have

On an Additive Prime Divisor Function of Alladi and Erdős

$$I_{\text{slit}} = \frac{\sin\left(\frac{\mu(q)\pi}{\phi(q)}\right)}{\pi} \int_{1-\frac{c\log\log x}{\log x}}^{1} \left(\prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(\sigma, \overline{\chi})^{\frac{\tau(\chi)\overline{\chi(h)}}{\phi(q)}}\right) \cdot |\zeta(\sigma)|^{\frac{\mu(q)}{\phi(q)}} \cdot e^{U_{h,q}(\sigma)} \frac{x^{\sigma}}{\sigma} d\sigma + \mathcal{O}\left(\frac{x}{(\log x)^c}\right).$$

Now, in the region $1 - \frac{c \log \log x}{\log x} \le \sigma \le 1$,

$$\prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(\sigma, \overline{\chi})^{\frac{\tau(\chi)\overline{\chi(h)}}{\phi(q)}} \cdot \frac{e^{H_{h,q}(\sigma)}}{\sigma} = \prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(1, \chi)^{\frac{\tau(\overline{\chi})\chi(h)}{\phi(q)}} \cdot e^{U_{h,q}(1)} + \mathscr{O}\left(\frac{\log\log x}{\log x}\right).$$

Consequently,

$$I_{\text{slit}} = \frac{\sin\left(\frac{\mu(q)\pi}{\phi(q)}\right)}{\pi} \prod_{\substack{\chi \neq \chi_0 \\ \chi \neq \chi_0}} L(1, \chi)^{\frac{\tau(\overline{\chi})\chi(h)}{\phi(q)}} \cdot e^{U_{h,q}(1)} \int_{1-\frac{c\log\log x}{\log x}}^{1} \zeta(\sigma)^{\frac{\mu(q)}{\phi(q)}} x^{\sigma} d\sigma + \mathscr{O}\left(\frac{\log\log x}{\log x} \middle| \int_{1-\frac{c\log\log x}{\log x}}^{1} \zeta(\sigma)^{\frac{\mu(q)}{\phi(q)}} x^{\sigma} d\sigma \middle| \right).$$
(10)

It remains to compute the integral of $|\zeta(\sigma)|^{\frac{\mu(q)}{\phi(q)}}$ occurring in (10). For σ very close to 1, we have

$$|\zeta(\sigma)|^{\frac{\mu(q)}{\phi(q)}} = \left(\frac{1}{|\sigma-1|} + \mathcal{O}(1)\right)^{\frac{\mu(q)}{\phi(q)}} = \left(\frac{1}{|\sigma-1|}\right)^{\frac{\mu(q)}{\phi(q)}} + \mathcal{O}\left(\left(\frac{1}{|\sigma-1|}\right)^{\frac{\mu(q)}{\phi(q)}-1}\right).$$

It follows that

$$\int_{1-\frac{c\log\log x}{\log x}}^{1} |\zeta(\sigma)|^{\frac{\mu(q)}{\phi(q)}} x^{\sigma} d\sigma = \Gamma\left(1-\frac{\mu(q)}{\phi(q)}\right) \frac{x}{(\log x)^{1-\frac{\mu(q)}{\phi(q)}}} + \mathcal{O}\left(\frac{x}{(\log x)^{2-\frac{\mu(q)}{\phi(q)}}}\right).$$
(11)

Combining equations (10) and (11) we obtain

$$I_{\text{slit}} = \frac{\sin\left(\frac{\mu(q)\pi}{\phi(q)}\right)}{\pi} \Gamma\left(1 - \frac{\mu(q)}{\phi(q)}\right) \prod_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} L(1, \chi)^{\frac{\tau(\overline{\chi})\chi(h)}{\phi(q)}} e^{U_{h,q}(1)} \frac{x}{(\log x)^{1 - \frac{\mu(q)}{\phi(q)}}} + \mathscr{O}\left(\frac{x}{(\log x)^{2 - \frac{\mu(q)}{\phi(q)}}}\right).$$

Remark: As pointed out to me by Gérald Tenenbaum, it is also possible to deduce Corollary 1.2 directly from theorem 2.3 by using theorem II.5.2 of [8]. In this manner one can obtain an explicit asymptotic expansion which, furthermore, is valid for values of q tending to infinity with x.

4 Examples of equidistribution (mod 3) and (mod 9)

Equidistribution (mod 3): Theorem (1.1) says that for h = 1, q = 3:

$$\sum_{n \le x} e^{\frac{2\pi i A(n)}{3}} = \frac{-V_{1,3}}{\pi} \Gamma\left(\frac{3}{2}\right)_{\chi} \prod_{\substack{(\text{mod } 3)\\ \chi \ne \chi_0}} L(1, \chi)^{\frac{G(\overline{\chi})}{2}} \frac{x}{(\log x)^{\frac{3}{2}}} \left(1 + \mathcal{O}\left(\frac{1}{\log x}\right)\right)$$
$$\approx (-0.503073 + 0.24042 i) \frac{x}{(\log x)^{\frac{3}{2}}}.$$

We computed the above sum for $x = 10^7$ and obtained

$$\sum_{n \le 10^7} e^{\frac{2\pi i A(n)}{3}} \approx -98,423.00 + 55,650.79 \, i.$$

Our theorem predicts that

$$\sum_{n \le 10^7} e^{\frac{2\pi i A(n)}{3}} \approx -88,870.8+42,471.7 i.$$

Since log $(10^7) \approx 16.1$ is small, this explains the discrepancy between the actual and predicted results.

As $x \to \infty$, we have

$$\sum_{\substack{n \le x \\ A(n) \equiv a \pmod{3}}} = \frac{1}{3} \sum_{h=0}^{2} \sum_{n \le x} e^{\frac{2\pi i A(n)h}{3}} e^{-\frac{2\pi i h a}{3}} = \frac{x}{3} + c_a \frac{x}{(\log x)^{\frac{3}{2}}} + \mathscr{O}\left(\frac{x}{(\log x)^{\frac{5}{2}}}\right)$$

where

$$c_0 = -0.335382, \quad c_1 \approx 0.306498, \quad c_2 \approx 0.0288842.$$

308

Equidistribution (mod 9):

Our theorem says that for $h \neq 3$, 6 ($1 \le h < 9$) and q = 9:

$$\sum_{n \le x} e^{\frac{2\pi i h A(n)}{9}} = \mathscr{O}\left(x e^{-c_0 \sqrt{\log x}}\right).$$

Surprisingly!! there is a huge amount of cancellation when $x = 10^7$:

$$\sum_{n \le 10^7} e^{\frac{2\pi i h A(n)}{9}} \approx \begin{cases} -315.2 - 140.4 \, i & \text{if } h = 1, \\ 282.2 - 543.4 \, i & \text{if } h = 2, \\ 94.5 + 321.9 \, i & \text{if } h = 4, \\ 94.5 - 321.9 \, i & \text{if } h = 5, \\ 282.2 + 543.4 \, i & \text{if } h = 5, \\ -315.2 + 140.4 \, i & \text{if } h = 8. \end{cases}$$

Acknowledgements The author would like to thank Ada Goldfeld for creating the figures in this paper and would also like to thank Wladyslaw Narkiewiz for pointing out the reference [3].

References

- 1. K. Alladi, P. Erdős, On an additive arithmetic function. Pac. J. Math. 71(2), 275–294 (1977)
- 2. H. Davenport, *Multiplicative Number Theory*, vol. 74, 2nd edn., Graduate Texts in Mathematics (Springer, Berlin, 1967). (revised by Hugh Montgomery)
- 3. H. Delange, On integral valued additive functions. J. Number Theory 1, 419–430 (1969)
- A. Ivić, On Certain Large Additive Functions, (English summary) Paul Erdős and His Mathematics I, vol. 11, Bolyai Society Mathematical Studies (János Bolyai Mathematical Society, Budapest, 1999,2002), pp. 319–331
- 5. A. Ivić, P. Erdős, Estimates for sums involving the largest prime factor of an integer and certain related additive functions. Studia Sci. Math. Hungar. **15**(1–3), 183–199 (1980)
- A, Ivić, P. Erdős, The distribution of quotients of small and large additive functions, II, in *Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989)*, (University of Salerno, Salerno, 1992), pp. 83–93
- 7. A. Selberg, Note on a paper by L.G. Sathe. J. Indian Math. Soc. (N.S.) 18, 83-87 (1954)
- G. Tenenbaum, *Introduction to Analytic and Probabilistic Number Theory*, vol. 163, 3rd edn., Graduate Studies in Mathematics (American Mathematical Society, Providence, 2015). Translated from the 2008 French edition by Patrick D.F. Ion