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Preface: Krishna Alladi

One of the greatest disciples of Srinivasa Ramanujan, who did so much to make him
a household name in the mathematical community, and far beyond, is Krishnaswami
“Krishna” Alladi. Among many other things, he founded and is still editor-in-chief,
of the very successful Ramanujan Journal (very ably managed by managing editor
FrankGarvan), and initiated theSASTRARamanujan prize given to promising young
mathematicians.

But Krishna is not just a mathematical leader, he is also a great number-theorist
with very broad interests, including analytic number theory and, inspired byRamanu-
jan, q-series and partitions. That’s why it is not surprising that the conference to
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celebrate his 60th birthday, that took place last March, attracted attendees and speak-
ers with very diverse interests, and enabled the participants to learn new things far
afield from their own narrow specialty. That’s how we found out, and got hooked on,
Rudin–Shapiro polynomials.

Hugh Montgomery’s Erdős’s colloquium

Oneof the highlights of the conferencewas a fascinating talk by the eminentMichigan
number theorist (and Krishna’s former postdoc mentor) Hugh Montgomery, who
talked about Littlewood polynomials of interest both in pure number theory and,
surprisingly, in signal processing. These are polynomials whose coefficients are in
{−1, 1}. Among these stand out the famous Rudin–Shapiro polynomials, introduced
([8, 9]) by Harold “Silent” Shapiro1 and rediscovered by Walter Rudin ([7]).

The Rudin–Shapiro polynomials

TheRudin–Shapiro polynomials, Pk(z), are best defined by the functional recurrence
(see [10])

Pk(z) = Pk−1(z
2) + z Pk−1(−z2), (Def iningRecurrence)

with the initial condition P0(z) = 1.
As Hugh Montgomery described so well in his talk, these have amazing proper-

ties. Both number-theorists and signal-processors are very interested in the so-called
sequence of (even) moments, whose definition usually involves the integral sign, but
is better phrased entirely in terms of high-school algebra as follows.

Mn(k) := CT [Pk(z)
n Pk(z

−1)n],

where CT denotes the “constant term functional”, that for any Laurent polynomial
f (z) of z, extracts the coefficient of z0. For example CT [4/z2 + 11/z + 101 + 5z +
11z15] = 101.

Can we find closed-form expressions for Mn(k), in k, for any given, specific,
positive integer n? Failing this, can we find explicit expressions for the generating
functions

1Harold S. Shapiro (S. originally stood for Seymour) was one of a brilliant cohort of students at City
College, in the late 1940s, that included Leon Ehrenpreis, Donald Newman, Israel Aumann, and
another Harold Shapiro, Harold N. Shapiro (N. originally stood for Nathaniel). But their friends, in
order to distinguish between the twoHarold Shapiros, called them“Silent” and “Noisy” respectively.
It is ironic that Harold Silent Shapiro’s son is the eminent, but very loud, MIT cosmologist, Max
Tegmark.
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Rn(t) :=
∞∑

k=0

Mn(k)t k?

The sequence M1(k) has a very nice closed-form, M1(k) = 2k . This is not very
hard, even for humans. Indeed, using Eq. (Def iningRecurrence), we get

Pk(z)Pk(z
−1) = (

Pk−1(z
2) + z Pk−1(−z2)

) · (
Pk−1(z

−2) + z−1Pk−1(−z−2)
)

= Pk−1(z
2)Pk−1(z

−2) + Pk−1(−z2)Pk−1(−z−2) + {
z Pk−1(−z2)Pk−1(z

−2)

+z−1Pk−1(z
2)Pk−1(−z−2)

}
.

The quantity in the braces only has odd powers, so its constant term vanishes. Hence

M1(k) = CT [ Pk(z)Pk(z
−1) ] = CT [ Pk−1(z

2)Pk−1(z
−2) ] + CT [ Pk−1(−z2)Pk−1(−z−2) ].

Replacing z2 by z in the first term on the right, and −z2 by z in the second term, does
not change the constant term, hence, we have the linear recurrence equation with
constant coefficients

M1(k) = 2M1(k − 1),

with the obvious initial condition M1(0) = 1, that implies the explicit expression
M1(k) = 2k . Equivalently, the generating function R1(t) is given by

R1(t) = 1

1 − 2t
.

Let’smove on to find an explicit formula for M2(k) and/or R2(t). That was already
done by smart human John Littlewood ([5]) but let’s do it again.

Once again, let’s use the defining recurrence for the Rudin–Shapiro polynomials,
but let’s abbreviate

a(k)(z) = Pk(z) , b(k)(z) = Pk(−z) , A(k)(z) = Pk(z−1) , B(k)(z) = Pk(−z−1).

We have

Pk(z)
2Pk(z

−1)2 = (
Pk−1(z

2) + z Pk−1(−z2)
)2 · (

Pk−1(z
−2) + z−1Pk−1(−z−2)

)2
.

Expanding, discarding odd terms, replacing z2 by z, and using trivial symmetries
due to the fact that the functional CT is preserved under the dihedral group {z →
z, z → −z, z → z−1, z → −z−1}, we get that
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CT [ a(k)2 A(k)2] = 2CT [a(k − 1)2 A(k − 1)2 ] − 2CT [ za(k − 1)2B(k − 1)2]
+ 4CT [a(k − 1)A(k − 1)b(k − 1)B(k − 1) ].

The first term is an old friend, our quantity of interest with k replaced by k − 1,
but the other two are newcomers. So we do the same treatment to them. They in
turn, may (and often do) introduce new quantities, but if all goes well, there would
only be finitely many sequences, and we would get a finite system of first-order
linear recurrences. This indeed happens, and one gets, for the generating functions
of the encountered sequences, a system of six equations with six unknowns, and in
particular, we get (in a split second, of course, we let Maple do it) that our desired
object, the generating function of the sequenceCT [a(k)2 A(k)2], alias, R2(t), is given
by:

R2(t) = 4 t + 1

(1 + 2 t) (1 − 4 t)
= 4

3

1

1 − 4t
− 1

3

1

1 + 2 t
.

By extracting the coefficient of t k , we even get a nice explicit expression for M2(k),
already known to Littlewood

M2(k) = 4

3
4k − 1

3
(−2)k .

This can be done for any monomial

zα0a(k)α1 A(k)α2b(k)α3 B(k)α4 .

Define the sequence

E[α0, α1, α2, α3, α4](k) := CT [ zα0a(k)α1 A(k)α2b(k)α3 B(k)α4 ].

Replacing a(k), A(k), b(k), B(k) by their expressions in terms of z, a(k − 1),
A(k − 1), b(k − 1), B(k − 1), expanding, discarding odd terms, replacing z2 by z,
and replacing eachmonomial by its canonical form, implied by the above-mentioned
action of the dihedral group that preserves CT, we can express, each such E[.], in
terms of other E[.]’s evaluated at k − 1. It is (presumably, they may some issues
about powers of z) possible to show (and it has been done by Doche and Habsieger
[DH], using a different approach) that this process terminates and eventually we will
not get any new sequences, leaving us with a finite system of linear equations for the
corresponding generating functions, that can be automatically solved, and lead to an
expression in terms of a rational function, since we get a first-order system

F(t) = v + tAF(t),

(whereF(t) is the vector of generating functionswhose first component is our desired
one), for some matrix A, of integers that the computer finds automatically, and our
object of desire is the first component of F(t) = (I − tA)−1v.
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While it is painful for a human to do this, a computer does not mind, and the
Maple package
HaroldSilentShapiro.txt

accompanying this article does it for any desired monomial in z, Pk(z), Pk(−z),
Pk(z−1), Pk(−z−1). See the output files accompanying this article, thatmaybeviewed
from the front of this article
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarim
html/hss.html.

Unlike the beautiful approach of Doche and Habsieger, that uses clever human
pre-processing to establish an algorithm, that was then hard-programmed by hand,
our approach is naive “dynamical programming”, where we don’t make any a priori
human analysis, and let the computer introduce new quantities as needed. To guar-
antee that it halts, we input a parameter, that we call K, and if the size of the system
exceeds K it returns FAIL, leaving us the option to forget about it, or try again with
a larger K.

Higher moments and Saffari’s Conjecture

Now that we have reduced, for any specific positive integer n, the computation of
the generating function of the sequence of moments Mn(k), that we call Rn(t), to a
routine calculation, we can ask our beloved computer to crank-out as many of them
as it can output in a reasonable amount of time. According to the output file
http://www.math.rutgers.edu/~zeilberg/tokhniot/oHarold
SilentShapiro1.txt,

we get

R1(t) = 1

1 − 2t
,

R2(t) = 1 + 4 t

(1 + 2 t) (1 − 4 t)
,

[both of which were already given above],

R3(t) = 1 + 16 t

(1 + 4 t) (1 − 8 t)
,

R4(t) =

- (90194313216*t**11 - 15300820992*t**10 - 1979711488*t**9 - 292552704*t**8
- 22216704*t**7 + 10649600*t**6 - 1024*t**5 - 144384*t**4 + 7008*t**3 +
664*t**2 - 54*t - 1)/ ((8*t + 1)* (16*t - 1)*(1409286144*t**10 - 264241152*t**9
- 25690112*t**8 - 4128768*t**7 - 311296*t**6 + 170496*t**5 - 2624*t**4 -
2208*t**3 + 148*t**2 + 8*t - 1)),
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R5(t) =

- (369435906932736*t**11 - 32160715112448*t**10 - 2001454759936*t**9 -
145223581696*t**8 - 4454350848*t**7 + 1392508928*t**6 - 5865472*t**5 -
4599808*t**4 + 123648*t**3 + 4768*t**2 - 220*t - 1)/ ((1 + 16*t)*(32*t - 1)*
(1443109011456*t**10 - 135291469824*t**9 - 6576668672*t**8 - 528482304* t
**7 -19922944*t**6+5455872*t**5-41984*t**4-17664*t**3+592*t**2+16*t-1)).

To see Rk(t) for 6 ≤ k ≤ 10, look at the above-mentioned output file. Of course,
one can easily go further. Note that these have already been computed in [3] (but
their output is not easily accessible to the casual reader).

By looking at the smallest root of the denominator of Rk(t) and computing the
residue, one confirms for small (and not so small!) values of k (and one can easily
go much further), the following conjecture of Bahman Saffari, as already done in [3]
(for small k).

Saffari’s Conjecture For every positive integer n, as k → ∞, the following asymp-
totic formula holds.

Mn(k) ∼ 2n

n + 1
· (2n)k .

Saffari never published his conjecture, and it is mentioned as “private communi-
cation” in [3].

Sketch of a proof of Saffari’s Conjecture

While for each numeric n, one can get an explicit expression, in symbolic t , for Rn(t),
these get more andmore complicated as n gets larger, and there is (probably) no hope
to get an explicit expression, in symbolic n, for Rn(t), from which one can deduce
that the smallest root (in absolute value) of the denominator is 2−n and the residue
is 2n

n+1 .
But one can prove rigorously Saffari’s conjectured asymptotic formula as follows.
Let n be a general (symbolic) positive integer. Recall that we are interested in the

sequence
Mn(k) := CT [Pk(z)

n Pk(z
−1)n],

that we abbreviate
CT [ an An ],

under the convention

a = Pk(z), b = Pk(−z), A = Pk(z
−1), B = Pk(−z−1).

To get a scheme we use the rewriting rules, implied by the defining recurrence
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a → a + zb, b → a − zb, A → A + z−1B, B → A − z−1B,

where the discrete argument on the left is k and on the right k − 1, and the continuous
argument on the left is z and on the right is z2.

Using the binomial theorem, we have

an An → (a + zb)n(A + z−1B)n =
(

n∑

i=0

(
n

i

)
ai (zb)n−i

) ⎛

⎝
n∑

j=0

(
n

j

)
A j (z−1B)n− j

⎞

⎠

=
n∑

i=0

n∑

j=0

(
n

i

)(
n

j

)
ai bn−i A j Bn− j z j−i

=
n∑

i=0

(
n

i

)2

(a A)i (bB)n−i + SmallChange,

where SmallChange is a linear combination of unimportant monomials and we
define an important monomial (in a, A, b, B, z) to be any member of the set of
monomials

{(a A)m(bB)n−m | 0 ≤ m ≤ n}.

Let’s try to find the “going down” evolution-step for the other important mono-
mials.

We have

(a A)m(bB)n−m → (a + zb)m(A + z−1B)m(a − zb)n−m(A − z−1B)n−m

=
(

m∑

i1=0

(
m

i1

)
ai1(zb)m−i1

) (
m∑

i2=0

(
m

i2

)
Ai2(z−1B)m−i2

)
·

(
n−m∑

i3=0

(
n − m

i3

)
ai3(−zb)n−m−i3

) (
n−m∑

i4=0

(
n − m

i4

)
Ai4(−z−1B)n−m−i4

)

=
m∑

i1=0

m∑

i2=0

n−m∑

i3=0

n−m∑

i4=0

(
m

i1

)(
m

i2

)(
n − m

i3

)(
n − m

i4

)

(−1)i3+i4ai1+i3 Ai2+i4bn−i1−i3 Bn−i2−i4 zi2−i1+i4−i3 .

The coefficient of a typical important monomial, (a A)r (bB)n−r (0 ≤ r ≤ n) in
the above quadruple sum is
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∑

i1+i3=r , i2+i4=r

(−1)i3+i4

(
m

i1

)(
m

i2

)(
n − m

i3

)(
n − m

i4

)

=
r∑

i1=0

r∑

i2=0

(−1)i1+i2

(
m

i1

)(
m

i2

)(
n − m

r − i1

)(
n − m

r − i2

)

=
(

r∑

i1=0

(−1)i1

(
m

i1

)(
n − m

r − i1

))(
r∑

i2=0

(−1)i2

(
m

i2

)(
n − m

r − i2

))

=
(

r∑

i=0

(−1)i

(
m

i

)(
n − m

r − i

))2

.

This is an important quantity, so let’s give it a name

Kn(m, r) :=
(

r∑

i=0

(−1)i

(
m

i

)(
n − m

r − i

))2

.

All the remaining monomials belong to SmallChange, and we have the general
“evolution equation”

(a A)m(bB)n−m →
n∑

r=0

Kn(m, r)(a A)r (bB)n−r + SmallChange.

Assuming for now, that SmallChange is, asymptotically less than the “impor-
tant monomials” (i.e. the rate of growth of a small change sequence divided by an
“important monomial” sequence is o(1)), let αn be the largest eigenvalue of the n + 1
by n + 1 matrix Kn (whose (m, r) entry is Kn(m, r)), then for 0 ≤ m ≤ n

CT [(Pk(z)Pk(z
−1))m(Pk(−z)Pk(−z−1))n−m] ∼ cm(αn)

k,

where (c0, . . . , cn) is an eigenvector corresponding to the largest eigenvalue, αn .
We nowneed two elementary propositions that should be provable using theWilf–

Zeilberger algorithmic proof theory, (a suitable extension of [4, 12] for the first,
[1, 11] for the second). They may be even provable by purely human means, but
since we know for sure that they are both true, we do not bother.

Proposition 1. The characteristic polynomial, det(zI − Kn), of the (n + 1) ×
(n + 1) matrix Kn whose (m, r) entry is

Kn(m, r) :=
(

r∑

i=0

(−1)i

(
m

i

)(
n − m

r − i

))2

,
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equals

det(zI − Kn) = z�(n+1)/2�
�n/4�∏

j=0

(
z − 2n−4 j

(
4 j

2 j

)) �(n−2)/4�∏

j=0

(
z + 2n−4 j−2

(
4 j + 2

2 j + 1

) )
.

[To confirm this shaloshable determinant identity for n ≤ N , type, in the Maple
package
HaroldSilentShapiro.txt, CheckCP(N); . For example, CheckCP
(20); returns true in one second, and CheckCP(40); returns true in 20
seconds.]

So the non-zero eigenvalues of the matrix Kn are

{ 2n−4 j
(
4 j

2 j

)
; 0 ≤ j ≤ �n/4� }

⋃
{ −2n−4 j−2

(
4 j + 2

2 j + 1

)
; 0 ≤ j ≤ �(n − 2)/4� }.

In particular, the largest eigenvalue (in absolute value) is indeed 2n . We also need
the following shaloshable binomial coefficients identity.

Proposition 2. The vector (c0, . . . , cn) defined by cr = (n
r

)−1
(0 ≤ r ≤ n) is an

eigenvector of the matrix Kn corresponding to its largest eigenvalue 2n (with multi-
plicity 1). In other words, for 0 ≤ m ≤ n

n∑

r=0

Kn(m, r)cr = 2ncm .

[To confirm this shaloshable binomial coefficient identity for n ≤ N , type, in the
Maple package HaroldSilentShapiro.txt, CheckEV(N); . For example,
CheckEV(50); returns true in two seconds, and CheckCP(100); returns
true in 30 seconds.]

But an eigenvector is only determined up to a constant multiple. Let’s find it
(modulo the Small Change hypothesis). We know that

CT [ (Pk(z)Pk(z
−1))m(Pk(−z)Pk(−z−1))n−m ] ∼ C(n

m

) · (2n)k,

for some constant C . To find it, we use the well-known, and easily proved identity
(see [10])

Pk(z)Pk(z
−1) + Pk(−z)Pk(−z−1) = 2k+1.

Raising it to the n-th power, using the binomial theorem, and taking the constant
term, we have
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n∑

m=0

(
n

m

)
CT [(Pk(z)Pk(z

−1))m(Pk(−z)Pk(−z−1))n−m] = 2(k+1)n.

Hence
n∑

m=0

(
n

m

)
C(n
m

) · (2n)k = 2(k+1)n,

that implies that

C = 2n

n + 1
.

We just established

Proposition 3. Modulo the Small Change Hypothesis, for 0 ≤ m ≤ n < ∞

CT [(Pk(z)Pk(z
−1))m(Pk(−z)Pk(−z−1))n−m ] ∼ 2n

(n + 1)
(n

m

) · (2n)k .

In particular, taking m = n, we get Saffari’s conjecture (for even moments)

Mn(k) = CT [Pk(z)
n Pk(z

−1)n] ∼ 2n

n + 1
· (2n)k .

Towards a Proof of the Small Change Hypothesis

It would have been great if the “children” of each unimportant monomial, in the
evolution equation described above (implemented in procedure GD in our Maple
package), would all be unimportant. Then we could have easily proved, by induction
that, asymptotically, they are insignificant compared to the important monomials. It
turns out that for most unimportant monomials, this is indeed the case, but there are
a few, that we call false pretenders that do have important children.

It should not be hard to fully characterize these. In fact it turns out (empirically,
for now) that for n even there are (n/2)2 − 1 of them, and for n odd there are
(n2 − 1)/4. Then for those false pretenders one should be able to describe all their
important children, and then prove that the leading terms of their contributions cancel
out (using the inductive hypothesis, and Prop. 3).

This has been verified empirically up to n ≤ 16. See procedures Medio and
MedioP in the Maple package HaroldSilentShapiro.txt.
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Hugh Montgomery’s Stronger Conjecture

In [6], Hugh Montgomery considered the more general sequences

Mm,n(k) := CT [ Pk(z)
m Pk(z

−1)n ].

He conjectured that, for m �= n,

Mm,n(k) = o( 2(m+n)k/2 ).

Once again, the generating function, for each specific m and n, is always a rational
function, and our Maple package (procedure RS(m,n,t,K)) computes them, and
procedure MamarH(N,K,t) prints out an article confirming Hugh Montgomery’s
conjecture, as well as giving the generating functions for 1 ≤ m < n ≤ N . (K is a
parameter that should be made large enough, say 1000).

To see the output for 1 ≤ m < n ≤ 7, go to:
http://www.math.rutgers.edu/~zeilberg/tokhniot/oHaroldS
ilentShapiro2.txt, that contains the explicit expressions for all these cases,
and confirmsMontgomery’s conjecturewith a vengeance. Unlike them = n case, the
smallest root (alias the reciprocal of the largest eigenvalue) is not “nice”, and there
are usually several roots with smallest absolute value, hence the sequences often
oscillate. Nevertheless, Montgomery’s conjecture is true for all 1 ≤ m < n ≤ 7, and
one could go much further.

Let’s Generalize!

The same approach works for any sequence of Laurent polynomials defined by a
recurrence of the form

Pk(z) = C1(z)Pk−1(z
r ) + C2(z)Pk−1(−zr ) + C3(z)Pk−1(z

−r ) + C4(z)Pk−1(−z−r ),

with the initial condition P0(z) = 1, where C1(z), C2(z), C3(z), C4(z) are Laurent
polynomials of degree less than r and low-degree larger than −r , for any positive
integer r larger than 1.

One always gets a finite scheme (disclaimer: we don’t have a rigorous proof, but
we believe that such a proof exists, at any rate, it is true in all the cases that we tried
out) and hence a rational generating function for the sequence

S[α0, α1, α2, α3, α4](k) := CT
[

zα0 Pk(z)
α1 Pk(z

−1)α2 Pk(−z)α3 Pk(−z−1)α4
]
,

for any non-negative α0, α1, α2, α3, α4. This is implemented in the Maple package
ShapiroGeneral.txt also available from thewebpage of this article, or directly
from
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http://www.math.rutgers.edu/~zeilberg/tokhniot/Shapiro
General.txt.

Let’s (not!) Generalize Even More!

The set {1,−1} is a multiplicative subgroup of the field of complex numbers. For any
finite multiplicative subgroup G of the field of complex numbers, and any positive
integer r larger than 1, the same approach should be able to handle sequences of
polynomials given by a recurrence

Pk(z) =
∑

g∈G

αg(z)Pk−1(gzr ) +
∑

g∈G

βg(z)Pk−1(gz−r ), P0(z) = 1,

where αg(z), βg(z) are 2|G| given Laurent polynomials in z of degree < r and low-
degree > −r .

This includes the case treated in [2], where G is a cyclotomic group.
We could go even further, with higher order recurrences (as opposed to only first

order), several continuous variables (as opposed to only z), and, presumably, even
several discrete variables (as opposed to only k), but enough is enough!

Added May 27, 2016: Brad Rodgers, independently, and simultaneously, found
a (complete) proof of Saffari’s conjecture, that he is writing up now and will soon
post in the arxiv. Meanwhile, you can read his proof in a letter posted out in
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarim
html/BradleyRodgersLetter.pdf.

Added June 7, 2016: Brad Rodgers’ beautiful paper, that also proves the more
general Montgomery conjecture, mentioned above, is now available here:
http://arxiv.org/abs/1606.01637.
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