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1 Introduction

The theory of Ramanujan’s series for 1/π received a boost with the announcement of
a large number of conjectures byZ.-W.Sun [19]. Thatwork,whichwasfirst published
on arXiv.org on Feb. 28, 2011, has been expanded through 47 versions at the
time of writing. The conjectures have stimulated the development of new ideas, e.g.,
see [6, 11, 17, 21, 22, 24]. Despite the strong interest, a large number of conjectures
remain open.

One of the goals of this work is to use a variety of methods to prove many of
Sun’s conjectures. In particular, we use translation techniques to convert several of
the conjectures into known series that have already been classified.We also offer short
and alternative proofs for some of the conjectures that have already been resolved,
e.g., the “$520 challenge” [19, Eq. (3.24)] that was first proved by M. Rogers and
A. Straub [17].

All of the underlying generating functions that we shall encounter are holonomic.
That is, they are solutions of linear differential equations with polynomial coeffi-
cients. We provide fairly full detail for the examples in the next two sections. In
subsequent sections, we are more brief and just communicate the main results, as it
is a matter of routine to verify the computational details. In particular, we make fre-
quent use, normally without explanation, of the standard algorithms for holonomic
functions and their computer implementations, e.g., Maple’s gfun package and the
Wilf–Zeilberger algorithm.

Another goal is to classify the conjectures. Although our work provides an iden-
tification of several of the conjectured series with known series, a full classification
remains elusive. Table 2 provides a summary of the underlying series. As a degree
of mystery is still present, the topic is somewhat “alchemical” in nature.

2 Conjectures (5.1)–(5.8): Level 10

Conjectures (5.1)–(5.8) in [19] involve series of the form

∞∑

n=0

∞∑

k=0

(an + b) h(n, k) xn+k (2.1)

for particular values of a, b, and x , where

h(n, k) =
(
2n

n

)(
2k

k

)(
n + 2k

n

)(
n

k

)
.

Observe that h(n, k) = 0 if k > n. We will prove three lemmas and use them to
convert the series (2.1) to an equivalent series that can be parameterized by level 10
modular forms.
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Lemma 2.1. The following identity holds:

n∑

k=0

(
n

k

)4

=
n∑

k=0

(
2k

k

)(
2n − 2k

n − k

)(
n + k

n − k

)(
n − k

k

)
.

Proof. It is routine to use a computer algebra system and apply (for instance) Zeil-
berger’s algorithm [13] to show that each sequence satisfies the same three-term
recurrence relation and initial conditions. Alternatively, make the specialization

b = c = −n, d = −n

2
, e = 1

2
− n

2

in Whipple’s identity [1, Theorem 3.4.5]

7F6

(
a, 1 + a

2 , b, c, d, e, −n
a
2 , 1 + a − b, 1 + a − c, 1 + a − d, 1 + a − e, 1 + a + n

; 1
)

= (1 + a − d − e)n(1 + a)n

(1 + a − d)n(1 + a − e)n
4F3

(
1 + a − b − c, d, e, −n

1 + a − b, 1 + a − c, d + e − a − n
; 1

)

and then take the limit as a → −n. ��
The next result will be used to compute derivatives.We call it a satellite identity—

the term we coin from [24]; for details of why such identities exist and how to find
them in a general situation see Remark 3.3 below.

Lemma 2.2. The following identity holds in a neighborhood of x = 0:

∞∑

n=0

∞∑

k=0

h(n, k)xn+k {4x − 2n(1 − x) + 3k(1 + 4x)} = 0.

Proof. Each of the power series

∑

n

∑

k

h(n, k)xn+k,
∑

n

∑

k

nh(n, k)xn+k and
∑

n

∑

k

kh(n, k)xn+k

satisfies a fourth-order linear differential equation with coefficients from Z[x]. Such
a differential equation can be produced by the multiple Wilf–Zeilberger algorithm.
It is routine to use a computer algebra system to verify that the desired number of
leading coefficients in the x-expansion of the left-hand side of the required equality
are zero, thus giving the result. ��
Lemma 2.3. Let

f (x) =
∞∑

n=0

{
n∑

k=0

(
n

k

)4
}

xn,
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and let D be the differential operator D = x
d

dx
. Then,

∞∑

n=0

∞∑

k=0

h(n, k)xn+k = f (x),

and

∞∑

n=0

∞∑

k=0

n h(n, k)xn+k = 1

5(1 + 2x)
(4x f (x) + 3(1 + 4x) D f (x)) .

Proof. On putting n + k = m and applying Lemma 2.1, we have

∞∑

n=0

∞∑

k=0

h(n, k)xn+k =
∞∑

m=0

{
m∑

k=0

h(m − k, k)

}
xm

=
∞∑

m=0

{
m∑

k=0

(
2k

k

)(
2m − 2k

m − k

)(
m + k

m − k

)(
m − k

k

)}
xm

=
∞∑

m=0

{
m∑

k=0

(
m

k

)4
}

xm

= f (x).

To prove the second result of this lemma, start with the satellite identity in Lemma 2.2
in the form

2(1 − x)

∞∑

n=0

∞∑

k=0

n h(n, k)xn+k

= 4x
∞∑

n=0

∞∑

k=0

h(n, k)xn+k + 3(1 + 4x)

∞∑

n=0

∞∑

k=0

k h(n, k)xn+k .

Add 3(1 + 4x)

∞∑

n=0

∞∑

k=0

n h(n, k)xn+k to both sides, and then apply the first result of

this lemma to get

5(1 + 2x)

∞∑

n=0

∞∑

k=0

n h(n, k)xn+k

= 4x
∞∑

n=0

∞∑

k=0

h(n, k)xn+k + 3(1 + 4x)

∞∑

n=0

∞∑

k=0

(n + k) h(n, k)xn+k
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= 4x
∞∑

n=0

∞∑

k=0

h(n, k)xn+k + 3(1 + 4x) D
∞∑

n=0

∞∑

k=0

h(n, k)xn+k

= 4x f (x) + 3(1 + 4x)D f (x).

Divide both sides by 5(1 + 2x) to complete the proof. ��
Theorem 2.4. The identities (5.1)–(5.8) in Sun’s Conjecture 5 in [19] are equivalent
to the eight series for 1/π in Theorem 5.3 of [8].

Proof. From Lemma 2.3, we deduce that

∞∑

n=0

∞∑

k=0

(an + b) h(n, k)xn+k =
∞∑

n=0

{
n∑

k=0

(
n

k

)4
}

(An + B)xn,

where

A = 3a(1 + 4x)

5(1 + 2x)
and B = 4ax

5(1 + 2x)
+ b.

For example, taking (a, b, x) = (95, 13, 1/36) gives

∞∑

n=0

∞∑

k=0

(95n + 13) h(n, k)
1

36n+k
= 60

∞∑

n=0

{
n∑

k=0

(
n

k

)4
}(

n + 1

4

)
1

36n
. (2.2)

The series on the left occurs in [19, Conjecture (5.3)], whereas the series on the right
is due to Y. Yang and its value is known to be (e.g., see [5, Eq. (2.2)])

60 × 3
√
15

10π
= 18

√
15

π
.

This proves Conjecture (5.3) in [19].
The series on the right-hand side of (2.2) corresponds to the data associated with

yA = 1/36 in [8, Table 1]. In fact, the arguments of sk(x) in each ofConjectures (5.1)–
(5.8) are in one to one correspondence with the eight values1 of 1/yA in [8, Table 1].
In the case of Conjecture (5.1), the series corresponding to yA = −1/9 in [8, Table 1]
diverges. This can be handled by using the value of yC in that table and the associated
convergent series given by [8, Eq. (63)]. This accounts for all of the Conjectures
(5.1)–(5.8) in [19]. ��
Remark 2.5. Conjectures (5.2)–(5.8) in [19] were first proved in the second named
author’s PhD dissertation [20, Sections 12.3.4, 12.4.1, and 12.4.2], using the tech-
niques outlined here.

1The entry 4/196 in [8, Table 1] is a misprint and should be 1/196.
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3 Conjectures (3.1)–(3.10): Level 24

The Conjectures (3.1)–(3.10) in [19] are based on series of the form

∞∑

m=0

m∑

k=0

(
m + k

2k

)(
2k

k

)2(2m − 2k

m − k

)
xm+k =

∞∑

n=0

t (n)xn, (3.1)

where

t (n) =
�n/2�∑

k=0

(
n

2k

)(
2k

k

)2(2n − 4k

n − 2k

)
. (3.2)

Zeilberger’s algorithm can be used to show that the sequence {t (n)} satisfies the
four-term recurrence relation

(n + 1)3t (n + 1) = 2(2n + 1)(2n2 + 2n + 1)t (n) + 4n(4n2 + 1)t (n − 1)

− 64n(n − 1)(2n − 1)t (n − 2). (3.3)

The single initial condition t (0) = 1 is enough to start the sequence.
There is a modular parameterization of the series {t (n)}. To state it, we will need

Dedekind’s eta function η(τ) and the weight two Eisenstein series P(q); they are
defined by

η(τ) = q1/24
∞∏

j=1

(1 − q j ), where q = exp(2π iτ) and Im τ > 0,

and

P(q) = 24 q
d

dq
log η(τ) = 1 − 24

∞∑

j=1

jq j

1 − q j
.

Theorem 3.1. Let

z = 1

4

(
6P(q12) − 3P(q6) + 2P(q4) − P(q2)

) + 2η(2τ)η(4τ)η(6τ)η(12τ)

and

x = η(2τ)η(4τ)η(6τ)η(12τ)

z
.

Let {t (n)} be the sequence defined by equation (3.2). Then in a neighborhood of
x = 0,

z =
∞∑

n=0

t (n)xn. (3.4)
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Proof. Consider the level 6 functions Z and X defined by

Z = 1

4

(
6P(q6) − 3P(q3) + 2P(q2) − P(q)

)

and

X =
(

η(τ)η(2τ)η(3τ)η(6τ)

Z

)2

.

It is known, e.g., [5, Theorem 3.1], that in a neighborhood of X = 0,

Z =
∞∑

n=0

(
2n

n

)
u(n)Xn,

where the coefficients u(n) are given by the formula

u(n) =
n∑

j=0

(
n

j

)2(2 j

j

)
,

or equivalently by the three-term recurrence relation

(n + 1)2u(n + 1) = (10n2 + 10n + 3)u(n) − 9n2u(n − 1)

and initial condition u(0) = 1. It follows from the recurrence relation that Z satisfies
a third-order linear differential equation

X2(1 − 4X)(1 − 36X)
d3Z

dX3
+ 3X (1 − 60X + 288X2)

d2Z

dX2

+ (1 − 132X + 972X2)
dZ

dX
= 6(1 − 18X)Z .

(3.5)

By using the definitions of z, x , Z , and X given above, it is routine to check that

x =
√

X

1 + 2
√

X

∣∣∣∣
q→q2

and z = (
1 + 2

√
X

)
Z
∣∣∣
q→q2

. (3.6)

On making this change of variables in the differential equation (3.5), we find that

x2(1 + 4x)(1 − 4x)(1 − 8x)
d3z

dx3
+ 3x(1 − 12x − 32x2 + 320x3)

d2z

dx2

+ (1 − 28x − 116x2 + 1536x3)
dz

dx
= 2(1 + 10x − 192x2)z.

(3.7)
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Substitution of the series expansion (3.4) into this differential equation produces the
recurrence relation (3.3). ��

We also have the following differentiation formula.

Theorem 3.2. Let x and z be as for Theorem 3.1. Then,

q
dx

dq
= z x

√
(1 + 4x)(1 − 4x)(1 − 8x). (3.8)

Proof. With X and Z as in the proof of Theorem3.1, it is known, e.g., [5, Section 5.2],
that

q
dX

dq
= Z X

√
(1 − 4X)(1 − 36X).

The required formula follows by the change of variables given by (3.6). ��
The differential equation (3.7) and the differentiation formula (3.8) were obtained

independently using a different method by D. Ye [23].
Theorems 3.1 and 3.2 can be used in a theorem of H. H. Chan, S. H. Chan, and

Z.-G. Liu [3, Theorem 2.1] to produce a family of series for 1/π of the form

1

2π
×

√
24

N
= √

(1 + 4xN )(1 − 4xN )(1 − 8xN )

∞∑

n=0

(n + λN ) t (n) xn
N , (3.9)

where N is a positive integer and

xN = x
(
±e−2π

√
N/24

)
.

The formula for λN is given in [3] but it is more complicated so we do not reproduce
it here. In practice, since λN is an algebraic number, its value can be recovered
symbolically by computing a sufficiently precise approximation. A list of values for
which xN is rational, together with the corresponding values of N and λN , is given
in Table 1. The obvious symmetry in the table between x(q) and x(−q) is explained
by the identity

1

x(q)
+ 1

x(−q)
= 4,

which is a trivial consequence of the definition of x(q) and properties of even and
odd functions.

The values in Table 1 appear to be the only positive integers N that give rise to
rational values of x . Other algebraic values can be determined, e.g., N = 11 and
q = exp(−2π

√
11/24) gives x11 = 1/(38 + 6

√
33) and λ11 = 58/(165 + 19

√
33).

The values in the table corresponding to N = 1 give rise to divergent series and are
not part of the conjectures.



Holonomic Alchemy and Series for 1/π 187

Table 1 Data to accompany the series (3.9)

N q = exp(−2π
√

N/24) q = − exp(−2π
√

N/24)

xN λN xN λN

1 1/8 does not converge −1/4 does not converge

3 1/12 1/4 −1/8 1/2

5 1/20 1/4 −1/16 2/5

7 1/32 5/21 −1/28 1/3

13 1/104 1/5 −1/100 3/13

17 1/200 143/238 −1/196 67/340

Conjectures (3.1)–(3.10) in [19] can be explained by the values corresponding to
N = 3, 5, 7, 13, and 17 in Table 1 and the series (3.9). To complete the proof of these
conjectures, we require the satellite identity

∞∑

m=0

m∑

k=0

(
m + k

2k

)(
2k

k

)2(2m − 2k

m − k

)
xm+k

[
x + k(1 + x) + m

(
x − 1

2

)]
= 0

(3.10)
that holds in a neighborhood of x = 0, to produce an analog of Lemma 2.3. We omit
the details, as they are similar.

Remark 3.3. Wenote that satellite identities such (3.10)may, in fact, be first guessed,
then proved using multiple Wilf–Zeilberger. The idea is to assume that the function
inside the square brackets takes the form

(a0 + a1x + a2x2 + · · · ) + k(b0 + b1x + b2x2 + · · · ) + m(c0 + c1x + c2x2 + · · · ),

where ai , bi , ci are undetermined rational coefficients (for i less than some chosen
M). The coefficients ai , bi , ci can be found by expanding in powers of x and equating
coefficients to obtain a linear system. Alternatively, by replacing x with a sufficiently
small irrational number, evaluating the sum to high precision and equating it to 0,
ai , bi , ci may then be determined using an integer relations algorithm, such as PSLQ.
See [20, Section 12.4.2].

4 Conjectures (2.4)–(2.9): Level 4

Conjectures (2.4)–(2.9) in [19] are based on series of the form

∞∑

n=0

(
2n

n

)
zn

∞∑

k=0

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)
xk .
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The numerical data given in [19] suggest that z = x/(1 + 4x)2 for Conjectures (2.4),
(2.7), and (2.8), and z = −x/(1 − 8x) forConjectures (2.5), (2.6), and (2.9). Expand-
ing in powers of x leads to:

Theorem 4.1. The following identities hold in a neighborhood of x = 0:

3F2

( 1
2 ,

1
2 ,

1
2

1, 1
; 64x2

)
=

∞∑

n=0

(
2n

n

)3

x2n

=
∞∑

n=0

(
2n

n

)
xn

(1 + 4x)2n+1

n∑

k=0

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)
xk

=
∞∑

n=0

(
2n

n

)
(−1)n xn

(1 − 8x)n+1/2

n∑

k=0

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)
xk .

The first equality in Theorem 4.1 is trivial. The substance of the theorem is in the
other equalities, which first appeared in [20, Theorem 12.3], and proved using the
multiple Wilf–Zeilberger algorithm.

The corresponding satellite identities can be determined, and these give rise to:

Theorem 4.2. The following identities hold in a neighborhood of x = 0:

∞∑

n=0

(
2n

n

)
(an + b)

xn

(1 + 4x)2n

n∑

k=0

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)
xk

=
∞∑

n=0

(
2n

n

)3

(An + B)x2n (4.1)

and

∞∑

n=0

(
2n

n

)
(cn + d)

(−x)n

(1 − 8x)n

n∑

k=0

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)
xk

=
∞∑

n=0

(
2n

n

)3

(Cn + D)x2n, (4.2)

where A, B, C, and D are given by

A = 3a

2

(1 + 4x)2

1 − 4x
, B = (1 + 4x)

(
b + 4ax

1 − 4x

)
,

C = 3c

2

(1 − 8x)3/2

(1 − 16x2)
and D = √

1 − 8x

(
d − 4cx(1 − 2x)

1 − 16x2

)
.

Conjectures (2.4), (2.7), and (2.8) in [19] are obtained by taking
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(a, b, x) =
(
12, 1,

1

16

)
,

(
476, 103,

−1

64

)
,

(
140, 19,

1

64

)

respectively, in (4.1). The first set of parameter values produces a constant multiple
of the series ∞∑

n=0

(
2n

n

)3 (
n + 1

6

)
1

256n
= 2

3π
, (4.3)

which is originally due to Ramanujan [14, Eq. (28)]. The other two sets of parameter
values give constant multiples of the series

∞∑

n=0

(
2n

n

)3 (
n + 5

42

)
1

4096n
= 8

21π
(4.4)

which is also due to Ramanujan [14, Eq. (29)]. The series (4.3) and (4.4) correspond
to the values N = 3 and N = 7 in [4, Table 6].

In a similar way, Conjectures (2.5), (2.6), and (2.9) in [19] are obtained by taking

(c, d, x) =
(
10, 1,

−1

16

)
,

(
170, 37,

1

64

)
,

(
1190, 163,− 1

64

)

respectively, in (4.2). The first set of parameter values gives a constant multiple of
Ramanujan’s series (4.3), while the other two sets of values both lead to multiples
of (4.4).

The parameter values

(a, b, x) =
(
20, 7,

−1

16

)
and (c, d, x) =

(
30, 11,

1

16

)

also lead to multiples of Ramanujan’s series (4.3). However, the respective series on
the left-hand sides of (4.1) and (4.2) are divergent, hence they are not listed among
the conjectures in [19].

5 Conjectures (2.1)–(2.3): Level 6

Conjectures (2.1)–(2.3) of [19] are based on series of the form

∞∑

n=0

(
2n

n

)
zn

n∑

k=0

(
n

k

)2(n + k

k

)
xk .

Numerical data suggest that z = x/(1 − 4x) and this leads to:
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Theorem 5.1. The following identity holds in a neighborhood of x = 0:

∞∑

n=0

(
2n

n

)
xn

(1 − 4x)n+1/2

n∑

k=0

(
n

k

)2(n + k

k

)
xk =

∞∑

n=0

u(n)xn (5.1)

where

(n + 1)3u(n + 1) = (2n + 1)(10n2 + 10n + 4)u(n) − 64n3u(n − 1), u(0) = 1,

or equivalently,

u(n) =
n∑

j=0

(
n

j

)2(2 j

j

)(
2n − 2 j

n − j

)
.

The numbers u(n) are called Domb numbers. They are the sequence A002895 in
Sloane’s database [18]. The series for 1/π that arise from the Domb numbers were
first studied in [3]; see also the classification in [4, Table 9].

Conjectures (2.1), (2.2), and (2.3) in [19] involve the values x = −1/8, x =
−1/32, and x = 1/64, respectively. However, the series on the right-hand side
of (5.1) converges for |x | < 1/16, so Conjecture (2.1) cannot be handled by this
formula. To obtain a formula that is convergent for all three conjectures, we recall
the identity [16, Theorem 3.1] that holds in a neighborhood of x = 0:

∞∑

n=0

u(n)xn =
∞∑

n=0

(
3n

n

)(
2n

n

)2 x2n

(1 − 4x)3n+1
. (5.2)

The identities (5.1) and (5.2) can be combined and used to produce the following:

Theorem 5.2. The following identity holds in a neighborhood of x = 0:

∞∑

n=0

(
2n

n

)
(an + b)

xn

(1 − 4x)n

n∑

k=0

(
n

k

)2(n + k

k

)
xk

=
∞∑

n=0

(
3n

n

)(
2n

n

)2

(An + B)
x2n

(1 − 4x)3n
,

(5.3)

where A and B are given by

A = 4a(1 + 2x)(1 − x)

3(1 − 4x + 8x2)
√
1 − 4x

and B = 1√
1 − 4x

(
2ax(1 − 2x)

1 − 4x + 8x2
+ b

)
.

The series on the right-hand side of (5.3) converges for −1/2 < x < 1/16. Con-
jectures (2.1), (2.2), and (2.3) correspond to the parameter values
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(a, b, x) =
(
13, 4,

−1

8

)
,

(
290, 61,

−1

32

)
and

(
962, 137,

1

64

)
,

respectively. These values produce multiples of the series

∞∑

n=0

(
3n

n

)(
2n

n

)2 (
n + 1

6

)
1

63n
=

√
3

2π
, (5.4)

∞∑

n=0

(
3n

n

)(
2n

n

)2 (
n + 2

15

)
1

2n × 36n
= 9

20π
(5.5)

and ∞∑

n=0

(
3n

n

)(
2n

n

)2 (
n + 4

33

)
1

153n
= 5

√
3

22π
. (5.6)

The last two of these series are originally due to Ramanujan [14, Eqs. (31) and (32)]
and the other series is due to J. M. Borwein and P. M. Borwein [2, p. 190]. These
series correspond to the values N = 2, 4, and 5 in [4, Table 5]. This completes our
discussion of Conjectures (2.1)–(2.3) in [19].

6 Conjectures (2.12)–(2.14), (2.18) and (2.20)–(2.22)

Conjectures (2.10)–(2.28) in [19] involve series of the form

∞∑

n=0

(
2n

n

)
zn

n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)
xk .

We present two cases where the data allow z to be identified as a function of x .

6.1 Conjectures (2.13), (2.18), and (2.22): Level 6

The data for these conjectures satisfy the relation z = −x/(1 − 16x). This leads us
to discover:

Theorem 6.1. The following identity holds in a neighborhood of x = 0:

∞∑

n=0

(
2n

n

)
(−x)n

(1 − 16x)n+1/2

n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)
xk =

∞∑

n=0

u(n)xn, (6.1)

where {u(n)} are the Domb numbers introduced in Theorem 5.1.
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Just as for Theorem 5.1, the radius of convergence of the series on the right-hand
side of (6.1) is not large enough to handle all of the Conjectures (2.13), (2.18),
and (2.22) in [19]. Therefore, we use (6.1) in conjunction with (5.2) to produce the
identity

∞∑

n=0

(
2n

n

)
(an + b)

(−x)n

(1 − 16x)n

n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)
xk

=
∞∑

n=0

(
3n

n

)(
2n

n

)2

(An + B)
x2n

(1 − 4x)3n
,

(6.2)

where A and B are given by

A = 4a(1 − 16x)3/2(1 + 2x)

3(1 − 4x)(1 − 8x)
and B =

√
1 − 16x

1 − 4x

(
b − 4ax

1 − 8x

)
.

The series on the right-hand side of (6.2) converges for −1/2 < x < 1/16. Conjec-
tures (2.13), (2.18), and (2.22) in [19] correspond to the parameter values

(a, b, x) =
(
1, 0,

−1

8

)
,

(
10, 1,

−1

32

)
and

(
14, 3,

1

64

)
,

respectively. These values produce multiples of the series (5.4), (5.5), and (5.6),
respectively. This completes our discussion of Conjectures (2.13), (2.18), and (2.22)
in [19].

6.2 Conjectures (2.12), (2.14), (2.20), and (2.21): Level 6

The data for these conjectures satisfy the relation z = x/(1 + 4x)2. Expanding in
powers of x leads to:

Theorem 6.2. The following identity holds in a neighborhood of x = 0:

∞∑

n=0

(
2n

n

)
xn

(1 + 4x)2n+1

n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)
xk =

∞∑

n=0

t (n)xn, (6.3)

where the sequence {t (n)} is defined by the four-term recurrence relation

(n + 1)3t (n + 1) = −2n(n + 1)(2n + 1)t (n) + 16n(5n2 + 1)t (n − 1)

− 96n(n − 1)(2n − 1)t (n − 2) (6.4)
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and initial condition t (0) = 1. The series on the left-hand side of (6.3) converges for
−1/12 < x < 1/4, while the series on the right-hand side converges for |x | < 1/12.

In order to gain access to properties of the sequence {t (n)}, we recall the following
result of Chan et al. [3, Eq. (4.13)].

Lemma 6.3. Let z and y be the level 6 modular forms defined by

z =
∞∏

j=1

(1 − q j )4(1 − q3 j )4

(1 − q2 j )2(1 − q6 j )2
and y = q

∞∏

j=1

(1 − q2 j )6(1 − q6 j )6

(1 − q j )6(1 − q3 j )6
. (6.5)

Let {u(n)} be the Domb numbers, which were defined in Theorem 5.1. Then in a
neighborhood of y = 0,

z =
∞∑

n=0

(−1)nu(n)yn . (6.6)

The next result gives a modular parameterization for the sequence {t (n)}. It also
provides a connection with the Domb numbers.

Theorem 6.4. Let z and y be the level 6 modular forms defined by (6.5) and let
{u(n)} be the Domb numbers, which were defined in Theorem 5.1. Let Z and x be
defined by

Z = (1 + 4y)z and x = y

1 + 4y
. (6.7)

Then in a neighborhood of q = 0,

Z = 1

2

(
3P(q6) − P(q2)

)
(6.8)

=
∞∑

n=0

t (n)xn (6.9)

=
∞∑

n=0

(−1)nu(n)
xn

(1 − 4x)n+1
(6.10)

=
∞∑

n=0

(
3n

n

)(
2n

n

)2

x2n(1 − 4x)n . (6.11)

Proof. By (6.5) and [10, Eqs. (32.66) and (33.2)], we have

Z = (1 + 4y)z

=
∞∏

j=1

(1 − q j )4(1 − q3 j )4

(1 − q2 j )2(1 − q6 j )2
+ 4q

∞∏

j=1

(1 − q2 j )4(1 − q6 j )4

(1 − q j )2(1 − q3 j )2
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= 1

6

(
12P(q6) − 3P(q3) − 4P(q2) + P(q)

)

+ 1

6

(−3P(q6) + 3P(q3) + P(q2) − P(q)
)

= 1

2

(
3P(q6) − P(q2)

)
.

This proves (6.8).
Next, Chan et al. [3, Eq. (4.10)] showed that z satisfies a third-order differential

equation with respect to y:

y2(1 + 4y)(1 + 16y)
d3z

dy3
+ 3y(1+30y + 128y2)

d2z

dy2

+ (1 + 168y + 448y2)
dz

dy
+ 4(1 + 16y)z = 0.

On making the change of variables given by (6.7), we deduce that

x2(1 − 4x)2(1 + 12x)
d3Z

dx3
+ 3x(1 − 4x)(1 + 10x − 120x2)

d2Z

dx2

+ (1 + 12x − 576x2 + 2304x3)
dZ

dx
+ 96x(6x − 1)Z = 0.

On expanding Z in powers of x and substituting into the differential equation, we
obtain the recurrence relation (6.4). The proof of (6.9) may be completed by noting
that Z = 1 and x = 0 when q = 0, therefore t (0) = 1.

To prove (6.10), use (6.6) and (6.7) to get

Z = (1 + 4y)z = (1 + 4y)

∞∑

n=0

(−1)nu(n)yn =
∞∑

n=0

(−1)nu(n)
xn

(1 − 4x)n+1
.

Finally, (6.11) can be obtained by applying (5.2) to (6.10). ��
Combining (6.3) with (6.9) and (6.11) gives the identity

∞∑

n=0

(
2n

n

)
xn

(1 + 4x)2n+1

n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)
xk

=
∞∑

n=0

(
3n

n

)(
2n

n

)2

x2n(1 − 4x)n . (6.12)

Equation (6.12) can be used to produce:
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Theorem 6.5. The following identity holds in a neighborhood of x = 0:

∞∑

n=0

(an + b)

(
2n

n

)
xn

(1 + 4x)2n

n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)
xk

=
∞∑

n=0

(An + B)

(
3n

n

)(
2n

n

)2

x2n(1 − 4x)n,

(6.13)

where

A = 4a(1 + 4x)2(1 − 6x)

3(1 − 4x)2
and B = (1 + 4x)

(
4ax

1 − 4x
+ b

)
.

The series on the right-hand side of (6.13) converges for −1/12 < x < 1/6.

Conjectures (2.14), (2.20), and (2.21) in [19] correspond to the data

(a, b, x) =
(
6,−1,

1

12

)
,

(
12, 1,

1

36

)
and

(
24, 5,

−1

60

)
,

respectively. These values lead tomultiples of the series (5.4), (5.5), and (5.6), respec-
tively.

Conjecture (2.12) in [19] corresponds to the values x = 1/6, in which case the
series on the right-hand side of (6.13) is divergent. Therefore, we proceed by a
different method. By [12, Theorem 1], we have

lim
w→1−

√
1 − w

∞∑

n=0

(
3n

n

)(
2n

n

)2

n
( w

108

)n =
√
3

2π
.

Make the change of variables w = 108x2(1 − 4x) and observe that w → 1− as x →
(1/6)−. It follows that

√
3

2π
= lim

x→(1/6)−

√
(1 − 6x)2(1 + 12x)

∞∑

n=0

(
3n

n

)(
2n

n

)2

n (x2(1 − 4x))n .

Nowapply (6.13)witha = 1 and b = −2, and note that 4x/(1 − 4x) − 2 vanishes
at x = 1/6. This produces

√
3

2π
= lim

x→(1/6)−

√
1 + 12x · 3(1 − 4x)2

4(1 + 4x)2

∞∑

n=0

(
3n

n

)(
2n

n

)2

×
(
4(1 + 4x)2(1 − 6x)

3(1 − 4x)2
n + (1 + 4x)

(
4x

1 − 4x
− 2

))
(x2(1 − 4x))n
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= lim
x→(1/6)−

√
1 + 12x · 3(1 − 4x)2

4(1 + 4x)2

×
∞∑

n=0

(n − 2)

(
2n

n

)
xn

(1 + 4x)2n

n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)
xk

= 3
√
3

100

∞∑

n=0

(n − 2)

(
2n

n

)(
3

50

)n n∑

k=0

(
2k

k

)2(2n − 2k

n − k

)(
1

6

)k

.

This gives us a proof of Conjecture (2.12) in [19].
Equation (6.12) was deduced via a different path in [20, Theorem 12.4]: a Heun-

type differential equation was obtained for the left-hand side, which was then explic-
itly solved and the solution transformed into the right-hand side. Conjecture (2.12)
was also proved in [20], by first applying Clausen’s theorem to convert the right-hand
side of (6.12) into the square of a 2F1, followed by evaluating the 2F1’s with Gauss’
second summation theorem and one of its contiguous versions.

There is also a companion result to Theorem 6.4:

Theorem 6.6. Let z and y be the level 6 modular forms defined by (6.5). Let Z∗ and
x∗ be defined by

Z∗ = (1 + 16y)z and x∗ = y

1 + 16y
.

Then in a neighborhood of q = 0,

Z∗ = 1

2

(
3P(q3) − P(q)

)

=
∞∑

n=0

v(n)(x∗)n

=
∞∑

n=0

(−1)nu(n)
(x∗)n

(1 − 16x∗)n+1

=
∞∑

n=0

(
3n

n

)(
2n

n

)2

(x∗)n(1 − 16x∗)2n,

where the sequence {v(n)} satisfies the recurrence relation

(n + 1)3v(n + 1) = (2n + 1)(22n2 + 22n + 12)v(n) − 128n(5n2 + 1)v(n − 1)

+ 1536n(n − 1)(2n − 1)v(n − 2),

and {u(n)} are the Domb numbers.

It would be interesting to have an analog of Theorem6.2 that involves the sequence
{v(n)}.
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7 Conjectures (6.3)–(6.13)

Conjectures (6.3)–(6.13) in [19] are based on the generating function

∑

n=0

(
2n

n

)
zn

n∑

k=0

(
2k

k

)2( k

n − k

)
xk . (7.1)

The numerical data for Conjectures (6.3)–(6.7) fit the relation

z = x

(1 − x)2
,

while for Conjectures (6.8)–(6.13), we have

z = − 1

2(1 + 4x)
.

We consider each case separately.

7.1 Conjectures (6.3)–(6.7): Level 14

Expanding in powers of x gives

∞∑

n=0

(
2n

n

)
xn

(1 − x)2n+1

n∑

k=0

(
2k

k

)2( k

n − k

)
xk =

∞∑

n=0

a(n)xn (7.2)

where

(n + 1)3a(n + 1) = (2n + 1)(3n2 + 3n + 1)a(n)

+ n(47n2 + 4)a(n − 1) + 14n(n − 1)(2n − 1)a(n − 2)

and a(0) = 1. The series expansion of a function in [24, Eq. (5)] involves the same
coefficients, that is,

∞∑

n=0

(
2n

n

)
xn

(1 + x)2n+1

n∑

k=0

(
n

k

)(
n + k

n

)(
2k

k

)
xk =

∞∑

n=0

a(n)xn . (7.3)

The identities (7.2) and (7.3) can be used to establish the interesting result
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∞∑

n=0

(
(1 − x)2n + (λ − 1)

) (
2n

n

)
xn

(1 + x)2n+1

n∑

k=0

(
n

k

)(
n + k

n

)(
2k

k

)
xk

=
∞∑

n=0

(
(1 + x)2n + (λ + 1)

) (
2n

n

)
xn

(1 − x)2n+1

n∑

k=0

(
2k

k

)2( k

n − k

)
xk (7.4)

which holds for any constant λ. This, in turn, can be used with the results in [24]
to show that Conjectures (6.3)–(6.7) are equivalent to Conjectures (VII5), (VII1),
(VII3), (VII4), and (VII6) in [19], respectively. To see the correspondence, compare
the values of x in [24, Table 1] with the arguments of Pk in [19, Eqs. (6.3)–(6.7)].
Since Conjectures (VII1) and (VII3)–(VII6) have been proved in [24], the truth of
Conjectures (6.3)–(6.7) follows from (7.4).

Before continuing to the next set of conjectures, we offer the following additional
comments about the sequence {a(n)}. Equating coefficients of xn in (7.2) and (7.3)
leads to the following formulas for a(n) as sums of binomial coefficients, respec-
tively:

a(n) =
∑

j,k

(
n + j

2 j + 2k

)(
2 j + 2k

j + k

)(
2k

k

)2(k

j

)

=
∑

j,k

(−1)n− j

(
n + j

2 j + 2k

)(
2 j + 2k

j + k

)(
2k

k

)(
j + 2k

k

)(
j + k

k

)
. (7.5)

It can be shown that

∞∑

n=0

a(n)

(
x

1 + 5x + 8x2

)n+1

=
∞∑

n=0

A(n)

(
x

1 + 9x + 8x2

)n+1

, (7.6)

where

(n + 1)3A(n + 1) = (2n + 1)(11n2 + 11n + 5)A(n)

− n(121n2 + 20)A(n − 1) + 98n(n − 1)(2n − 1)A(n − 2)

and A(0) = 1. The sequence {A(n)} was first studied in [12, Example 6]. It was
shown in [9] that the sequence {A(n)} can be parameterized by level 14 modular
forms. The modular parameterization for {a(n)} is inherited from this by (7.6). Both
{a(n)} and {A(n)} possess many remarkable arithmetic properties that are beyond
the scope of this work; we plan to discuss them in a forthcoming project in detail.
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7.2 Conjectures (6.8)–(6.13): Level 2

The data for Conjectures (6.8)–(6.13) in [19] suggest that z and x in the generating
function (7.1) are related by z = −1/(2(1 + 4x)). We replace x with 4x throughout,
and consider the function

g(x) =
∞∑

n=0

(
2n

n

)
(−1)n

2n(1 + 16x)n+1/2

n∑

k=0

(
2k

k

)2( k

n − k

)
(4x)k .

The series g can be seen to converge in a neighborhood of x = 0 by noting that the
nonzero terms in the inner sum occur only when 
n/2� ≤ k ≤ n, and so the series
may be written in the form

g(x) =
∞∑

n=0

(
2n

n

)
(−1)n(4x)
n/2�

2n(1 + 16x)n+1/2

n∑

k=
n/2�

(
2k

k

)2( k

n − k

)
(4x)k−
n/2�.

Expanding in powers of x gives

g(x) =
∞∑

n=0

(
4n

2n

)(
2n

n

)2

x2n .

This can be used to produce the identity

∞∑

n=0

(
2n

n

)
(an + b)

(−1)n

2n(1 + 16x)n

n∑

k=0

(
2k

k

)2( k

n − k

)
(4x)k

=
∞∑

n=0

(
4n

2n

)(
2n

n

)2

(An + B)x2n,

(7.7)

where

A = 4a(1 + 16x)3/2

1 − 48x
and B = (1 + 16x)1/2

(
b + 32ax

1 − 48x

)
.

Conjectures (6.8)–(6.13) in [19] correspond to the data2

2Multiply the argument of Pk in each of the Conjectures (6.8)–(6.13) in [19] by 4, and then take
the reciprocal to get the values of x in the data.
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(a, b, x) =
(
130, 41,

−1

784

)
,

(
46, 13,

1

784

)
,

(
510, 143,

−1

1584

)
,

(
42, 11,

1

1584

)

and
(
1848054, 309217,

−1

3962

)
,

(
171465, 28643,

1

3962

)
,

respectively. If either of the two data sets corresponding to ±1/784 are inserted
in (7.7), the results are multiples of the series

∞∑

n=0

(
4n

2n

)(
2n

n

)2 (
n + 3

40

)
1

284n
= 49

√
3

360π
.

Similarly, the data corresponding to ±1/1584 produce multiples of the series

∞∑

n=0

(
4n

2n

)(
2n

n

)2 (
n + 19

280

)
1

15842n
= 9

√
11

140π
,

while the data corresponding to ±1/3962 lead to

∞∑

n=0

(
4n

2n

)(
2n

n

)2 (
n + 1103

26390

)
1

3964n
= 9801

√
2

105560π
.

These are Ramanujan’s series [14, Eqs. (42)–(44)]. They correspond to the values
N = 9, 11, 29, and q > 0 in [4, Table 4].

8 Further examples: the $520 series

We mention one further set of examples for which the techniques of this paper can
be used. The following identity holds in a neighborhood of x = 0:

∞∑

n=0

(
2n

n

)
(an + b)

xn

(1 + 2x)2n

n∑

k=0

(
n

k

)2(2n − 2k

n − k

)
xk

=
∞∑

n=0

(An + B)

{ ∞∑

k=0

(
n

k

)4
}

xn, (8.1)
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Table 2 Specialization of the two-variable special series

Underlying series Specialization Reference Level

∑

n

(
2n

n

)
zn

∑

k

(
n

k

)(
2k

k

)(
2n − 2k

n − k

)
xk z = x

(1 + 4x)2
Eq. (4.1) 4

z = −x

1 − 8x
Eq. (4.2) 4

∑

n

(
2n

n

)
zn

∑

k

(
n

k

)2(n + k

k

)
xk z = x

1 − 4x
Eq. (5.1) 6

x = 1

t + 1
, z = t2 [24] 3

∑

n

(
2n

n

)
zn

∑

k

(
2k

k

)2(2n − 2k

n − k

)
xk z = x

(1 + 4x)2
Eq. (6.3) 6

z = −x

1 − 16x
Eq. (6.1) 6

∑

n

(
2n

n

)
zn

∑

k

(
2k

k

)2( k

n − k

)
xk z = x

(1 − x)2
Eq. (7.2) 14

z = −1

2(1 + 4x)
Eq. (7.7) 2

∑

n

(
2n

n

)
zn

∑

k

(
n

k

)2(2n − 2k

n − k

)
xk z = x

(1 + 2x)2
Eq. (8.1) 10
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(
2n

n

)
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∑

k

(
n

k

)2(2n − 2k

n

)
xk x = t2, z = t

(1 + 3t)2
Eq. (8.3) 14

z = x

1 + 4x
Eq. (9.1) 10

∑

n

(
2n

n

)
zn

∑

k

(
n

k

)(
n + k

n

)(
2k

k

)
xk z = x

(1 + x)2
[24, Eq. (5)] 7

where

A = 4a(1 − x)(1 + 2x)2

5(1 − 4x)
and B = (1 + 2x)

(
b + 6ax(2 − x)

5(1 − 4x)

)
.

Taking a = 5440, b = 1201, and x = −1/64 gives

∞∑

n=0

(
2n

n

)
(5440n + 1201)

(−4

31

)2n n∑

k=0

(
n

k

)2(2n − 2k

n − k

)(−1

64

)k

= 62465

16

∞∑

n=0

(
n + 1

4

) {
n∑

k=0

(
n

k

)4
}(−1

16

)n

. (8.2)
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The series on the left-hand side is [19, Eq. (3.24′)], which is equivalent to another
identity [19, Eq. (3.24)] forwhich a $520 prizewas offered to the first correct solution.
That solution was given by Rogers and Straub [17]. The value of the series on the
right is given by [8, Theorem 5.3, N = 9]. Hence, we obtain another proof of the
“$520 challenge” series.

The identity (8.1) also provides alternative proofs of (3.28), (3.11′), (3.13′), (3.15′),
(3.17′), and (3.25′) in [19], that were proved by Rogers and Straub [17]. We note
here that proofs for (3.11′), (3.13′), and (3.15′), as well as (3.16′), (3.18′), and (3.19′),
were given in [20].

The identities (3.12′), (3.14′), and (3.18′) are equivalent to (3.12), (3.14), and
(3.18). They can be handled using

∞∑

n=0

(
2n

n

)
xn

(1 + 3x)2n+1

∞∑

k=0

(
n

k

)2(2n − 2k

n

)
x2k =

∞∑

n=0

a(n)xn (8.3)

where a(n) is the level 14 sequence that appears in (7.2) and (7.3). Equating coeffi-
cients of xn gives yet another formula for a(n) as a sum of binomial coefficients, to
go along with (7.5), namely

a(n) =
∑

j,k

(
n + j − k

2 j + 2k

)(
2 j + 2k

j + k

)(
j + k

k

)2( 2 j

j + k

)
(−3)n− j−3k .

9 Summary and afterthoughts

Table 2 summarizes the specializations of the two-variable special series used in this
work: the resulting single-variable series are solutions of third-order linear differen-
tial equations, for which formulas for 1/π are already established in the literature.
Most of the entries in Table 2 were originally guessed on the basis of Sun’s conjec-
tural identities in [19], but we also performed an independent computer investigation
to search for other linear and quadratic specializations of the underlying series. The
only additional series produced by the search is

∞∑

n=0

(
2n

n

)
xn

(1 + 4x)n+1/2

∞∑

k=0

(
n

k

)2(2n − 2k

n

)
xk =

∞∑

n=0

{
n∑

k=0

(
n

k

)4
}

xn . (9.1)

One of the big surprises of our project is a solid presence, in modular parameter-
izations of third-order linear differential equations, of level 14 modular forms and
functions (cf. Sections 7 and 8); at the same time, the similarly exotic level 15 [9]
does not show up at all.

We note that the nonspecialized generating functions from [19] are expected to
be representable as products of two power series, each satisfying a second-order
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equation; e.g., see the final Question in [24]. This expectation is shown to be true in
many cases and it is the driving force behind the universal methods of establishing
Sun’s conjectures and similar identities in [6, 11, 17, 21, 22]. Two further examples
of such factorizations follow from the two-variable identities

∑

n

(
z

y

)n ∑

k

(
n − k

k

)(
2k

k

)(
2n − 2k

n − k

)2( y(y2 − 1)

4z

)k

=
∞∑

m=0

(
2m

m

)2

Pm

(
y2 + 1

2y

)
zm, (9.2)
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(
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)(
y2 − 1

4y2

)n ∑

k

(
n

k

)2(2k

k

)(
4z

y2 − 1

)k

= y
∞∑

m=0

(
2m

m

)2

P2m(y)zm (9.3)

and the corresponding factorizations [6, 22] of generating functions of Legendre
polynomials

Pn(x) =
n∑

k=0

(
n

k

)(
n + k

k

)(
x − 1

2

)k

.

The former transformation (9.2) allows one to deal with [19, Conjecture (3.29)]
(namely, by making it equivalent to [19, Eq. (I3)] established in [6]), while the latter
one (9.3) paves the ground for proving the family of conjectures (3.N′) on Sun’s
list [19] in exactly the same way as in [17].

A drawback of using such two-variable factorizations in the proofs of the formulas
for 1/π is the relatively cumbersome analysis: compare our proof of Sun’s Conjec-
ture (3.24′) from Section 8 with the proof of his (equivalent) Conjecture (3.24) given
in [17]. An advantage is that transformations are also available for the two-variable
series. One such example,

n∑

k=0

(2k
k

)2(2n−2k
n−k

)2
(n

k

) yk =
(

− 16y

1 + y

)n n∑

k=0

(
k

n − k

)(
2k

k

)2(
− (1 + y)2

16y

)k

,

follows from the classical Whipple’s quadratic transformation and reduces the veri-
fication of Sun’s [19, Conjecture (6.14)] to one related to the generating function

∞∑

n=0

(
2n

n

)
zn

n∑

k=0

(
2k

k

)2( k

n − k

)
xk
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considered in Section 7. Unfortunately, the corresponding values x = −9/20 and
z = −1/216 or z = −5/216 (depending on whether y = 1/5 or y = 5) do not match
the patterns we have discovered.
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