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1 Introduction and statement of results

This paper continues the study of Capparelli’s partition identities [7] from the per-
spective of hypergeometric q-series, automorphic forms, and the combinatorial the-
ory of integer partitions. Capparelli’s identities are notable because they were the
first new examples that were discovered using Lepowsky and Wilson’s vertex oper-
ator algebras, which were famously introduced in [13] as a method for explicitly
constructing affine Lie algebras. This framework was further developed in [14] to
include Z -algebras. Our current investigation combines ideas from [1, 3, 5] in order
to prove new generalized identities that relate Capparelli’s work to false theta func-
tions, Jacobi forms, and multi-colored partitions.

Capparelli’s identities first arose conjecturally in [7] (see also his Ph.D. thesis
[6]), where he used Lepowsky andWilson’s Z -algebra program [14] to construct the
level 3 standard modules for A(2)

2 . The identities were proven shortly thereafter in a
number of independent works; Andrews [3] and Andrews, Alladi, and Gordon [1]
gave proofs using the theory of hypergeometric q-series, while the proofs of Tamba
and Xie [20] and Capparelli himself [8] used Z -algebras. Subsequently, there has
been a great deal of additional progress on the combinatorial implications of vertex-
operator-theoretic techniques; for example, see [12, 15, 17] for a small sampling.

Indeed, as our present focus is on multi-parameter generalizations and/or dilated
identities, we do not state Capparelli’s identities as originally presented in [7], but
rather a generalization due to Meurman and Primc [15], which also follows from
Alladi, Andrews, and Gordon’s results in [1]. For an integer partition λ, define indi-
cator functions ψ j such that ψ j (λ) = 1 if j is a part of λ, and ψ j (λ) = 0 otherwise.
We frequently suppress the argument unless it is important to distinguish a particular
partition. Suppose that d ≥ 3 and 1 ≤ � < d/2. Loosely following the terminology
and notation from [5, 7, 15], we say that a partition λ satisfies the (d, �)-dilated gap
condition if for all j ∈ N,

ψ( j+1)d−� + ψ jd + ψ jd−� ≤ 1, (1.1)

ψ jd+� + ψ jd + ψ( j−1)d−� ≤ 1,

ψ jd−� + ψ( j−1)d+� ≤ 1,

and ψn = 0 if n �≡ 0,±� (mod d). This system of inequalities is the special case
k = 1, s0 = �, and s1 = d − � of (11.2.6) in [15], which describes the partition ideals
that arise from root lattices. Note that (11.2.6) of [15] is actually a system of four
inequalities, but in the special case k = 1 it is overdetermined and reduces to the
above. Capparelli’s original identities correspond to (d, �) = (3, 1), and in that case
the conditions in (1.1) are equivalently characterized by requiring that the successive
parts in a partition differ by at least 2, and two parts differ by 2 or 3 only if their sum
is a multiple of 3.

In order to state the identities of Capparelli and Meurman–Primc, we also require
enumeration functions for the partitions described above. For α, β ∈ {0, 1}, let
cd,�
α,β(n) denote the number of partitions of n that satisfy the (d, �)-gap condition
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with the further restriction that ψ� ≤ α and ψd−� ≤ β. We write the corresponding
generating functions as

C d,�
α,β (q) :=

∑

n≥0

cd,�
α,β(n)qn =

∑

λ satisfies (d,�)-gap condition
λ�≤α, λd−�≤β

q |λ|.

Here |λ| denotes the size of a partition λ, which is the sum of its parts. Meurman and
Primc’s generalized identity is now stated as follows.

Theorem (Lemma 2 in [1]; equations (11.1.5)–(11.1.6) in [15]). For d ≥ 3, we
have

C d,�
0,1 (q) =

∏
n≥0

(
1 + q(2n+1)d−�

) (
1 + q(2n+1)d+�

)
∏

n≥0

(
1 − q(2n+1)d

) , (1.2)

C d,�
1,0 (q) =

∏
n≥0

(
1 + q2(n+1)d−�

) (
1 + q2nd+�

)

∏
n≥0

(
1 − q(2n+1)d

) . (1.3)

Remarks. 1. In fact, there is a version of Meurman and Primc’s result that also holds
for d = 1 or 2, although the partition combinatorics from (1.1) are no longer the
correct formulation, and instead require multiple colors. This becomes clearer from
the statement of our main results below.

2. The results in [1] are more general than the theorem statement, as they include
additional parameters that distinguish between parts based on residue classes mod-
ulo d. Equation (1.2) follows from (5.2) in [1] by setting q �→ qd , a �→ q−d+�, and
b �→ q−d−�, and (1.3) from q �→ qd , a �→ q−�, and b �→ q−2d+�. These parameters
are discussed further in the sequel.

3. The above theorem is not the original combinatorial formulation of Capparelli’s
identities, but it is straightforward to show that the product expression forC 3,1

0,1 (q) also
enumerates the number of partitions of n into parts congruent to ±2,±3 (mod 12),
as in Theorem 21 A of [7]. Note that this product is also equivalently stated in the
unnumbered equation following (5.2) in [1].

Our investigation in [5] was motivated by the observation that (1.2) and (1.3) are
modular identities, in the sense that the right-hand sides are (essentially) weakly
holomorphic modular forms. Furthermore, the refinements of Capparelli’s results
in [1] and [3] are of additional number-theoretic interest due to the presence of an
additional parameter. In order to describe the refined identities, let νd, j (λ) be the
number of parts of λ that are congruent to j modulo d, and define the generating
functions

C d,�
α,β (t; q) :=

∑

λ satisfies (d,�)-gap condition
λ�≤α, λd−�≤β

tνd,�(λ)−νd,d−�(λ)q |λ|. (1.4)
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Throughout the remainder of the paper, we adopt the standard q-factorial nota-
tion for a ∈ C and n ∈ N0 ∪ {∞}, namely (a; q)n := ∏n−1

j=0(1 − aq j ). We also use
the additional shorthand (a1, . . . , ar ; q)n := (a1; q)n · · · (ar ; q)n . The Jacobi theta
function is defined by

θ(z; q) := (−z,−z−1q, q; q)
∞ =

∑

k∈Z
zkq

k(k−1)
2 , (1.5)

where the final equality follows from Jacobi’s Triple Product identity ((2.2.10) in
[4]). This function is essentially a holomorphic Jacobi form, as described in the
seminal work of Eichler and Zagier [9]. Finally, define the shifted Dirichlet character
χ3(m) := (m+1

3 ), and let

T1(t; q) :=
∑

n≥0

χ3(n)t−nq
n(n+2)

3 ,

T2(t; q) :=
∑

n≥0

χ3(n)tnq
n(n−1)

3 .

There has been a great deal of recent work illuminating the connections between
“false” theta functions such as the Tj and classical automorphic forms, particularly
through the theory of quantum modular forms, as in [11] and [21].

The main result in [5] demonstrates the role of these functions in identities related
to Capparelli’s results.

Theorem 1.1 ([5], Theorem 3.1). If α, β ∈ {0, 1}, then

C 3,1
α,β (t; q) =(α + β − 1)

(
− q3; q3

)

∞
θ

(−t2q2; q6)

+ θ
(
tq4; q6

)
(
q3; q3

)
∞

(
β + (1 − α − β)T1

(
tq; q3

))

+ θ
(
tq; q6

)
(
q3; q3

)
∞

(
α + (1 − α − β)T2

(
tq; q3

))
. (1.6)

Remark.This theorem includes Capparelli’s original identities [7], which correspond
to the two cases where α + β = 1. In particular, in these cases (1.6) simplifies to the
products (1.2) and (1.3) with d = 3 and � = 1.

Remark. We note that in [19] Sills proved a one-parameter generalization of an
“analytic counterpart” to Capparelli’s identities, using Bailey chains to obtain inter-
esting hypergeometric q-series representations for infinite products related to the
case (d, �) = (3, 1) in (1.2) and (1.3).

The main automorphic result of this paper extends (1.6) to an arbitrary modulus,
providing a general family of identities that imply (1.2) and (1.3).
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Theorem 1.2. For α, β ∈ {0, 1},

C d,�
α,β (t; q) =(α + β − 1)θ

(−t2q2�; q2d
) (−qd; qd

)
∞

+ θ
(
tqd+�; q2d

)

(qd; qd)∞

(
β + (1 − α − β)T1

(
tq�; qd

))

+ θ
(
tq�; q2d

)

(qd; qd)∞

(
α + (1 − α − β)T2

(
tq�; qd

))
.

In fact, this theorem statement is a specialization of a more general result that we
prove for three-colored partitions with gap restrictions; see Theorem 4.1. The general
result is inspiredbySection5of [1],where the authors studied three-coloredpartitions
using the “method of weighted words” to obtain multi-parameter generalizations of
(1.2) and (1.3). Our generalizations are of a different shape, as we instead use the
analytic theory of q-difference equations and hypergeometric q-series. Identities for
three-colored partitions also arise in [16], where the basic A(1)

2 -module is constructed
using vertex operator methods.

The remainder of the paper is structured as follows. Section 2 consists of a brief
review of classical results from the theory of hypergeometric q-series. This is fol-
lowed by proofs of combinatorial results and finite generating series for three-colored
partitions in Section 3. We conclude in Section 4 by evaluating the infinite limiting
cases, thereby proving Theorem 1.2.

2 Hypergeometric q-series identities

In this section, we record a number of identities that are useful in the evaluation
of the generating functions that are the main topic of this paper. If 0 ≤ m ≤ n, the
q-binomial coefficient is denoted by

[
n

m

]

q

:= (q; q)n

(q; q)m(q; q)n−m
.

We also need the limiting case

lim
n→∞

[
n

m

]

q

= 1

(q; q)m
. (2.1)

Next, we recall two identities due to Euler, which state (see (2.2.5) and (2.2.6) in [4])
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1

(x; q)∞
=

∑

n≥0

xn

(q; q)n
, (2.2)

(x; q)∞ =
∑

n≥0

(−1)nxnq
n(n−1)

2

(q; q)n
. (2.3)

A related summation formula is

∑

n≥0
n even

q
n(n−1)

2

(q; q)n
= 1(

q; q2
)
∞

= (−q; q)∞ ; (2.4)

the first equality follows from Cauchy’s identity, which is (2.2.8) in [4].
We also need a result from Ramanujan’s famous “Lost Notebook”, which appears

as (4.1) in [2]:

∑

n≥0

qn

(−aq; q)n(−bq; q)n
=

(
1 + a−1

) ∑

n≥0

(−1)nq
n(n+1)

2
(
b
a

)n

(−bq; q)n

− a−1 ∑
n≥0(−1)nq

n(n+1)
2

(
b
a

)n

(−aq,−bq; q)∞
. (2.5)

Finally, in order to derive expressions involving false theta functions, we recall a
related identity of Rogers [18] (equation (3) on page 335), which states that

∑

n≥0

(−1)n y2nq
n(n+1)

2

(yq; q)n
=

∑

n≥0

(−1)n y3nq
n(3n+1)

2

(
1 − y2q2n+1

)
.

In fact, we need a one-parameter generalization of Rogers’ identity, which follows
from Fine’s systematic study of hypergeometric functions in [10].

Lemma 2.1. We have

∑

n≥0

(−1)n(bx)nq
n(n+1)

2

(bq; q)n
=

∑

n≥0

(xq; q)n

(bq; q)n

(
− xb2

)n
q

n(3n+1)
2

(
1 − bxq2n+1

)
.

Proof. We use Fine’s notation for the basic hypergeometric series, namely

F(a, b; t) :=
∑

n≥0

(aq; q)ntn

(bq; q)n
.

The left-hand side of the lemma statement may be expressed as a limit of Fine’s
function, since



Three-Colored Partitions and Dilated Companions of Capparelli’s Identities 145

∑

n≥0

(−1)n(bx)nq
n(n+1)

2

(bq; q)n
= lim

a→∞ F
(
ab, b; x

a

)
.

By (6.3) of [10], this expression transforms to

lim
a→∞ F

(
ab, b; x

a

)
= lim

a→∞
1 − b

1 − x
a

F
(
x,

x

a
; b

)
= (1 − b)F (x, 0; b) . (2.6)

By the Rogers-Fine identity (see (14.1) of [10]), (2.6) becomes

(1 − b) lim
w→0

F(x,w; b) =
∑

n≥0

(xq; q)n

(bq; q)n

(
1 − xbq2n+1

)
bnqn2 lim

w→0

(
xbq

w
; q

)

n

wn.

Evaluating the limit completes the proof.

3 Three-colored partitions and finite recurrences

In this section, we combine ideas from [1, 3, 5] and introduce certain three-colored
partitions with gap restrictions that are related to generalizations of Capparelli’s
identities. The combinatorics of the partition colorings are inspired by Sections 5
and 6 of [1], where the method of weighted words was used in order to evaluate the
corresponding generating functions. However, we instead use techniques from [3],
which were further adapted in [5] in order to find hypergeometric q-series solutions
to the appropriate q-difference equations.

3.1 Colored partitions

For an integer partition, we write the parts of a partition in nonincreasing order, λ1 ≥
λ2 ≥ · · · ≥ λm . For the remainder of the paper we consider three-colored partitions
into distinct parts with gap restrictions. In particular, if j is a part of a partition λ,
then it is given one of three colors, a, b, or c; a part of size j and color k is denoted
by jk . When writing the parts of a partition they are ordered by both size and color,
according to the sequence

1a ≺ 1b ≺ 1c ≺ 2a ≺ 2b ≺ 2c ≺ . . . . (3.1)

Note that this is slightly different than the ordering in Section 5 of [1]; to compare
the two, we have effectively shifted all of the parts with color b by 1.

We say that a three-colored partition satisfies the Capparelli gap conditions if it
is in the subset
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R :=
{
λ � n | distinct parts λ j , with color kλ j ∈ {a, b, c},
and for consecutive integer parts ( j + 1), j ∈ λ, k j+1k j �= aa, bb, ac, or bc

}
.

In other words, a 3-colored partition into distinct parts λ is inR if

λr − λr+1 ≥ A
(
kλr+1 , kλr

)
, (3.2)

where A is the following matrix (indexed in order by rows and columns; note that
λr+1 is smaller than λr ).

kλr

A a b c
a 2 1 1

kλr+1 b 1 2 1
c 2 2 1

For example, the second row implies that if jb ∈ λ, then the next largest part cannot
be jc or ( j + 1)b, but any of ( j + 1)a, ( j + 1)c, ( j + 2)a, ( j + 2)b, or larger, are
allowed.

3.2 Finite generating functions

Extending the notation from Section 1 to include colored parts, we define indicator
functions

ψmk (λ) :=
{
1 if mk ∈ λ,

0 otherwise.

Furthermore, let νk(λ) count the number of parts of λ with color k; we see below
that the νd,� from Section 1 (see (1.4)) corresponds to certain specializations.

For α, β ∈ {0, 1}, M ≥ 1, and k ∈ {a, b, c}, define the bounded generating func-
tions

F(Mk) = Fα,β (Mk; A, B; q) (3.3)

:=
∑

λ∈R
λ j≤Mk for all j

(
1 − (1 − α)ψ1a (λ)

) (
1 − (1 − β)ψ1b(λ)

)
Aνa(λ)Bνb(λ)q |λ|.

Note that the indicator functions have the effect of limiting the number of occurrences
of 1a to at most α, and the occurrences of 1b to at most β. It also important to note
that there is no variable associated with the color c; to our knowledge, none of the
known results related to Capparelli’s identities generalize to this degree.
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Following Sections 4 of [3] and [1], by conditioning on the largest part, we easily
find the recurrences

F (nb) = F (na) + BqnF ((n − 1)a) , (3.4)

F (nc) = F (nb) + qnF ((n − 1)c) , (3.5)

F ((n + 1)a) = F (nc) + Aqn+1
(
F ((n − 1)c) + BqnF ((n − 1)a)

)
. (3.6)

For example, on the right-side of (3.4), the first term corresponds to the case that nb
does not occur, so the largest part is at most na , and the second term the case that nb
does occur, so that the next part is at most (n − 1)a .

Moreover, by writing down the first several partitions inR, we directly calculate
the initial values

F (1a) = 1 + αAq, (3.7)

F (1b) = 1 + αAq + βBq,

F (1c) = 1 + αAq + βBq + q,

F (2a) = 1 + αAq + βBq + q + Aq2(1 + βBq).

Furthermore, it is convenient to have a value for F(0a), which can be obtained in a
consistent manner by plugging n = 1 in to (3.4) and working in reverse. In particular,
combined with (3.7), this implies that F(0a) = β.

We now manipulate the system (3.4)–(3.6) in order to obtain a recurrence involv-
ing only one color. Isolating F(nb) in (3.4) and (3.5) yields

F (nc) − qnF ((n − 1)c) = F (na) + BqnF ((n − 1)a) , (3.8)

and rearranging the terms of (3.6) gives

F (nc) + Aqn+1F ((n − 1)c) = F ((n + 1)a) − ABq2n+1F ((n − 1)a) . (3.9)

Taking Aq times (3.8) and adding it to (3.9) then results in

(Aq + 1)F (nc) (3.10)

= AqF (na) + ABqn+1F ((n − 1)a) + F ((n + 1)a) − ABq2n+1F ((n − 1)a) .

Similarly, subtracting (3.8) from (3.9) gives

qn(Aq + 1)F ((n − 1)c)

= F ((n + 1)a) − ABq2n+1F ((n − 1)a) − F (na) − BqnF ((n − 1)a) . (3.11)
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We now shift n �→ n − 1 in (3.10) and plug this in to (3.11), which yields an
equality involving only the color a, namely

qn
(
AqF ((n − 1)a)+F (na) + ABqn

(
1 − qn−1

)
F ((n − 2)a)

)

= F ((n + 1)a) − F (na) − Bqn
(
1 + Aqn+1

)
F ((n − 1)a) .

Regrouping terms, we finally have the single recurrence

F ((n + 1)a) = (
1 + qn

)
F (na) +

(
Aqn+1 + Bqn + ABq2n+1

)
F ((n − 1)a)

(3.12)

+ ABq2n
(
1 − qn−1

)
F ((n − 2)a) .

By introducing an auxiliary variable and constructing a generating function for the
F(na), the problem can now be translated to a q-difference equation, which is then
amenable to techniques from the theory of hypergeometric q-series. The details are
carried out in the sequel.

3.3 Hypergeometric q-series solution

We close this section by solving the recurrence (3.12), thereby finding a hyperge-
ometric q-series expression for the three-colored partitions satisfying Capparelli’s
gap condition. We begin by setting

γn := F (na)

(q; q)n
, (3.13)

and then shift n �→ n − 1 in (3.12), which implies that, for n ≥ 3,

γn = 1 + qn−1

1 − qn
γn−1 + Aqn + Bqn−1 + ABq2n−1

(
1 − qn−1

)(
1 − qn

) γn−2 + ABq2n−2

(
1 − qn−1

)(
1 − qn

)γn−3.

(3.14)
Note that the initial conditions are given by

γ0 = β, γ1 = 1 + αAq

1 − q
, γ2 = 1 + αAq + βBq + q + Aq2

(
1 + βBq

)
(
1 − q

)(
1 − q2

) .

(3.15)



Three-Colored Partitions and Dilated Companions of Capparelli’s Identities 149

We then further rewrite (3.14) as

(
1 − qn−1

)(
1 − qn

)
γn

=
(
1 − q2n−2

)
γn−1 +

(
Aqn + Bqn−1 + ABq2n−1

)
γn−2 + ABq2n−2γn−3,

(3.16)

from which we next derive a q-difference equation.
In order to convert the above recurrence to a series relation, form ∈ N0 we define

the (shifted) generating functions

G(m)(z) :=
∑

n≥m

γnz
n, (3.17)

and we also set G := G(0). Multiplying (3.16) by zn and summing over n ≥ 3, we
obtain

G(3)(z) − G(3)(zq) − q−1G(3)(zq) + q−1G(3)
(
zq2

)

= z
(
G(2)(z) − G(2)

(
zq2

) )
+ z2

((
Aq2 + Bq

)
G(1)(zq) + ABq3G(1)

(
zq2

))

+ z3ABq4G
(
zq2

)
. (3.18)

A short calculation shows that after adding back in the boundary terms and plugging
in (3.15), (3.18) simplifies to

(1 − z)G(z) =
(
1 + q−1 + z2

(
Aq2 + Bq

))
G(zq)

− q−1(1 + zq)
(
1 − z2q4AB

)
G

(
zq2

)
+ z2q2A(1 − α − β).

The order of this q-difference equation is reduced by re-normalizing the generating
function, so we set

H(z) := G(z)

(−z; q)∞
. (3.19)

Then we have

(
1 − z2

)
H(z) =

(
1 + q−1 + Aq2z2 + Bqz2

)
H(zq) − q−1

(
1 − z2q4AB

)
H

(
zq2

)

+ A (1 − α − β)
∑

n≥0

(−1)nzn+2qn+2

(q; q)n
,

where the final term follows from (2.2).
We nowfind a hypergeometric solution to this q-difference equation by expanding

the series as
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H(z) =:
∑

k≥0

δk z
k . (3.20)

Then for k ≥ 2 we have

δk − δk−2 =qk
(
1 + q−1

)
δk + qk−1(Aq + B)δk−2 − q2k−1δk + q2k−1ABδk−2

+ A(1 − α − β)(−1)kqk

(q; q)k−2
,

which can be rewritten as the (nonhomogeneous) recurrence

δk =
(
1 + Aqk

)(
1 + Bqk−1

)

(
1 − qk−1

)(
1 − qk

) δk−2 + A(1 − α − β)(−1)kqk

(q; q)k
. (3.21)

The initial conditions are found by recalling (3.15), (3.17), and (3.20), which imply
that

δ0 = γ0 = β, δ1 = γ1 − γ0

1 − q
= 1 − β + αAq

1 − q
.

A short proof by induction using (3.21) then gives the solutions

δ2k =
(

− Aq2; q2
)

k

(
− Bq; q2

)

k

(q; q)2k

(
A(1 − α − β)

k∑

�=1

q2�( − Aq2; q2)
�

( − Bq; q2)
�

+ β

)

(3.22)
for the even indices, and similarly, for the odd indices,

δ2k+1 =
(

− Aq3; q2
)

k

( − Bq2; q2)k
(q; q)2k+1

(3.23)

×
⎛

⎝−A(1 − α − β)q
k∑

�=1

q2�( − Aq3; q2)
�

( − Bq2; q2)
�

+ 1 − β + αAq

⎞

⎠ .

It is now possible to combine (3.13), (3.17), (3.19), (3.20), (3.22), and (3.23)
in order to write down closed-form expressions for F(na) (cf. Lemma 3.2 in [5]).
However, our primary interest is on the limiting case n → ∞, as this then implies
Theorem 1.2. We evaluate this limit in the next section.
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4 Infinite series evaluation and the proof of Theorem 1.2

In this section,we take the infinite limits of the bounded expressions from the previous
section in order to find the full generating functions for three-colored partitions
satisfying Capparelli’s gap condition. We denote the limiting functions by

Fα,β (A, B; q) := lim
n→∞ Fα,β (na; A, B; q) , (4.1)

Fα,β (t; q) := Fα,β

(
tq−1, t−1; q)

.

The dilated identities in Theorem 1.2 are then immediate consequences of the fol-
lowing result for colored partitions.

Theorem 4.1. For α, β ∈ {0, 1}, we have

Fα,β (t; q) = θ
(
tq; q2)

(q; q)∞
(
β + (1 − α − β)T1(t; q)

)

+ θ
(
t; q2)

(q; q)∞
(
α + (1 − α − β)T2(t; q)

) − (1 − α − β)θ
(

− t2; q2
)
(−q; q)∞.

Proof of Theorem 1.2. The theorem statement follows from letting q �→ qd and
t �→ tq� in Theorem 4.1. Recalling (1.4), (3.3), and (4.1), it is a short combinatorial
exercise to show that under this specialization the colored gap condition (3.2) is
equivalent to (1.1).

Remark. This specialization is slightly different from the one in [1], which we pre-
viously described in Remark 2 following (1.3). This is again due to the fact that the
coloring we specify in (3.1) differs from that of Andrews, Alladi, and Gordon.

4.1 Limits separated by parity

The calculations are most convenient if the odd and even indices for the δn are
separated. For j ∈ {0, 1} we therefore set

Hj (z) :=
∑

n≡ j (mod 2)

δk z
k,

G j (z) := (−z)∞Hj (z).

Then, by (2.3) and (3.22),
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G0(z) =
∑

m≥0

zmq
m(m−1)

2

(q)m

∑

k≥0

δ2k z
2k

=
∑

n≥0

zn

(q)n

∑

m+2k=n

[
n

m

]

q

q
m(m−1)

2

(
− Aq2; q2

)

k

(
− Bq; q2

)

k

×
(

β + (1 − α − β)A
k∑

�=1

q2�

( − Aq2; q2
)
�

( − Bq; q2
)
�

)
,

and similarly by (3.23),

G1(z) =
∑

n≥0

zn

(q)n

∑

m+2k+1=n

[
n

m

]

q

q
m(m−1)

2

(
− Aq3; q2

)

k

(
− Bq2; q2

)

k

×
(
1 − β + αAq − q(1 − α − β)A

k∑

�=1

q2�

( − Aq3; q2
)
�

( − Bq2; q2
)
�

)
.

Written in the above form we can finally isolate the generating functions from
Section 3,

G j (z) =:
∑

n≥0

zn

(q)n
C j,n.

Then F(na) = C0,n + C1,n , and thus

Fα,β = lim
n→∞

(
C0,n + C1,n

)
. (4.2)

We begin with the even case, using (2.1) to calculate

C0 := lim
n→∞
n even

C0,n = lim
n→∞
n even

n∑

m=0
m even

q
m(m−1)

2

[
n

m

]

q

(
− Aq2; q2

)
n−m
2

(
− Bq; q2

)
n−m
2

×
⎛

⎝β + (1 − α − β)A

n−m
2∑

�=1

q2�

( − Aq2; q2
)
�

( − Bq; q2
)
�

⎞

⎠

=
∑

m≥0
m even

q
m(m−1)

2

(q; q)m

(
− Aq2; q2

)

∞

(
− Bq; q2

)

∞
(4.3)

×
(

β + (1 − α − β)A
∑

�≥1

q2�

( − Aq2; q2
)
�

( − Bq; q2
)
�

)
.

The sum on m evaluates to (−q; q)∞ by (2.4), so it remains to compute the sum on
�. For this, we first shift the summation index to obtain
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q2

(
1 + Aq2

)
(1 + Bq)

∑

�≥0

q2�

( − Aq4; q2
)
�

( − Bq3; q2
)
�

.

Then we apply (2.5) with q �→ q2, a = Aq2, and b = Bq, yielding the equivalent
expression

q2

(
1 + Aq2

)
(1 + Bq)

⎛

⎜⎝
(
1 + A−1q−2

) ∑

�≥0

(−1)�q�(�+1)
(

B
Aq

)�

( − Bq3; q2
)
�

−A−1q−2

∑
�≥0(−1)�q�(�+1)

(
B
Aq

)�

( − Aq4,−Bq3; q2
)
∞

⎞

⎟⎠

= A−1
∑

�≥0

(−1)�q�2
(
B
A

)�

( − Bq; q2
)
�+1

− A−1 ∑
�≥0(−1)�q�2

(
B
A

)�

( − Aq2,−Bq; q2
)
∞

.

(4.4)

Shifting the summation index of the first sum in (4.4), we have

∑

�≥0

(−1)�q�2
(
B
A

)�

( − Bq; q2
)
�+1

= −
∑

�≥1

(−1)�q�2−2�+1
(
B
A

)�−1

( − Bq; q2
)
�

.

Applying Lemma 2.1 with q �→ q2, b = −Bq−1, and x = −A−1q−2, the above
expression equals

Aq

B
− Aq

B

∑

�≥0

(
− A−1; q2

)

�( − Bq; q2
)
�

(
B2

A

)�

q3�(�−1)

(
1 − B

A
q4�−1

)
. (4.5)

Combining (4.4)–(4.5) and plugging in to (4.3), we, therefore, have

C0 = (−q; q)∞
(

− Aq2; q2
)

∞

(
− Bq; q2

)

∞ (4.6)

×
⎡

⎢⎣β + (1 − α − β)

⎛

⎜⎝
Aq

B
− Aq

B

∑

�≥0

(
− A−1; q2

)

�( − Bq; q2)
�

(
B2

A

)�

q3�(�−1)
(
1 − B

A
q4�−1

)
⎞

⎟⎠

⎤

⎥⎦

− (1 − α − β)(−q; q)∞
∑

�≥0

(−1)�
(
B

A

)�

q�2 .

Wenow calculate the contribution from F1, which proceeds similarly to the above.
Again using (2.1) and (2.4), we have
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C1 := lim
n→∞
n odd

C1,n = lim
n→∞
n odd

n−1∑

m=0
m even

q
m(m−1)

2

[
n

m

]

q

(
− Aq3; q2

)
n−m−1

2

(
− Bq2; q2

)
n−m−1

2

×
⎛

⎜⎝1 − β + αAq − q(1 − α − β)A

n−m−1
2∑

�=1

q2�

(
− Aq3; q2

)

�

( − Bq2; q2
)
�

⎞

⎟⎠

= (−q; q)∞
(

− Aq3; q2
)

∞

(
− Bq2; q2

)

∞
(4.7)

×
(
1 − β + αAq − q(1 − α − β)A

∑

�≥1

q2�

( − Aq3; q2
)
�

( − Bq2; q2
)
�

)
.

By Ramanujan’s identity (2.5) with q �→ q2, b = Aq, and a = B, the sum on �

becomes

−1 + (
1 + B−1

) ∑

�≥0

(−1)�q�(�+1)
(

Aq
B

)�

( − Aq3; q2
)
�

− B−1

∑
�≥0(−1)�q�(�+1)

(
Aq
B

)�

( − Aq3,−Bq2; q2
)
∞

. (4.8)

Lemma 2.1 with q �→ q2, b = −Aq, and x = −B−1 then implies that the first sum
from (4.8) equals

∑

�≥0

(−1)�q�2+2�
(
A
B

)�

( − Aq3; q2
)
�

=
∑

�≥0

(
− B−1q2; q2

)

�( − Aq3; q2
)
�

(
A2

B

)�

q3�(�+1)

(
1 − A

B
q4�+3

)
.

(4.9)
Plugging in (4.8) and (4.9) to (4.7), we obtain

C1 = (−q; q)∞
(

− Aq3; q2
)

∞

(
− Bq2; q2

)

∞

[
1 − β + αAq − q A(1 − α − β)

(
−1 +

(
1 + B−1

) ∑

�≥0

( − B−1q2; q2
)
�( − Aq3; q2

)
�

(
A2

B

)�

q3�(�+1)

(
1 − A

B
q4�+3

))) ]

+ (1 − α − β)(−q; q)∞AB−1
∑

�≥0

(−1)�q�(�+2)+1

(
A

B

)�

. (4.10)

For a final simplification, note that the last term in (4.10) can be rewritten, since

−AB−1
∑

�≥0

(−1)�q�(�+2)+1

(
A

B

)�

=
∑

�≤−1

(−1)�q�2
(
B

A

)�

.

This combines with the last term from (4.6) to give the single summation
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− (1 − α − β)(−q; q)∞
∑

�∈Z
(−1)�

(
B

A

)�

q�2 . (4.11)

Our calculation is now complete, as (4.2), (4.6), and (4.10) give a hypergeometric
formula for Fα,β .

4.2 The modular case and the proof of Theorem 4.1

Many of the expressions from above simplify quite drastically under the specializa-
tion A = tq−1 and B = t−1, and in this case we can further identify components in
terms of theta functions. Adding (4.6) and (4.10) (and recalling (4.11)), and writing
ω := 1 − α − β to save space, we have

C0 + C1

(−q; q)∞
=

(
− tq,−t−1q; q2

)

∞

[
β + ω t2

(
1 −

∑

�≥0

t−3�q3�2−2�
(
1 − t−2q4�

)
)

+
(

− t,−t−1q2; q2
)

∞

(
1 − β − tω

∑

�≥0

t3�q3�2+�
(
1 − t2q4�+2

) )]

−ω
∑

�∈Z
(−1)�q�2+�t−2�. (4.12)

To obtain the theorem statement, we first apply the following cases of (1.5):

(
− tq,−t−1q; q2

)

∞
= θ

(
tq; q2

)
(
q2; q2

)
∞

,

(
− t,−t−1q2; q2

)

∞
= θ

(
t; q2

)

(1 + t)
(
q2; q2

)
∞

,

∑

�∈Z
(−1)�q�2+�t−2� = θ

(
− t2; q2

)
.

We further simplify the first sum in (4.12) as

t2
(
1 −

∑

�≥0

t−3�q3�2−2�
(
1 − t−2q4�

)
)

=
∑

�≥0

(
t−3�q3�2+2� − t−3�−1q(�+1)(3�+1)

)
= T1(t; q).

Moreover, the fact that 1 − β = α + ω implies that all of the terms in the inner
parentheses from the secondand third lines of (4.12) combine and simplify as follows:
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α + ω − ω t
∑

�≥0

t3�q3�2+�
(
1 − t2q4�+2) = α + (1 − α − β)T2(t; q).

Plugging back in to (4.12) completes the proof of Theorem 4.1.

References

1. K. Alladi, G. Andrews, B. Gordon, Refinements and generalizations of Capparelli’s conjecture
on partitions. J. Algebra 174, 636–658 (1995)

2. G. Andrews, An introduction to Ramanujan’s “lost” notebook. Am.Math. Monthly 86, 89–108
(1979)

3. G. Andrews, Schur’s theorem, Capparelli’s conjecture and q-trinomial coefficients, The
Rademacher legacy to mathematics, Contemp. Math. 166 (American Mathematical Society,
Providence, RI, 1994), pp. 141–154

4. G. Andrews, The Theory of Partitions (Cambridge University Press, Cambridge, 1998)
5. K. Bringmann, K. Mahlburg, False theta functions and companions to Capparelli’s identities.

Adv. Math. 278, 121–136 (2015)
6. S. Capparelli, Vertex operator relations for affine algebras and combinatorial identities, Ph.D.

Thesis, Rutgers University, 1988
7. S. Capparelli, On some representations of twisted affine Lie algebras and combinatorial iden-

tities. J. Algebra 154, 335–355 (1993)
8. S. Capparelli, A construction of the level 3 modules for the affine Lie algebra A(2)

2 and a new
combinatorial identity of the Rogers-Ramanujan type. Trans. Am. Math. Soc. 348, 481–501
(1996)

9. M. Eichler, D. Zagier, The theory of Jacobi forms, Progress in Math. 55 (Birkhäuser Boston,
MA, 1985)

10. N. Fine, Basic hypergeometric series and applications, Math. Surveys and Monographs 27
(American Mathematical Society, Providence, RI, 1988)

11. A. Folsom, K. Ono, Rob Rhoades, Mock theta functions and quantum modular forms. Forum
Math. Pi 1, e2 (2013)

12. I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure and
Applied Mathematics 134 (Academic Press, Boston, MA, 1988)

13. J. Lepowsky, R. Wilson, Construction of the affine Lie algebra A(1)
1 . Commun. Math. Phys. 62,

43–53 (1978)
14. J. Lepowsky, R.Wilson, A new family of algebras underlying the Rogers-Ramanujan identities

and generalizations. Proc. Nat. Acad. Sci. 78, 7254–7258 (1981)
15. A.Meurman,M. Primc,Annihilating fields of standardmodules of sl(2,C)∼ and combinatorial

identities. Mem. Amer. Math. Soc. 137(652), viii+89 (1999)
16. A. Meurman, M. Primc, A basis of the basic sl(3,C)∼-module. Commun. Contemp. Math. 3,

593–614 (2001)
17. M. Primc, Vertex algebras and combinatorial identities. Acta Appl. Math. 73, 221–238 (2002)
18. L. Rogers, On two theorems of combinatory analysis and some allied identities. Proc. Lond.

Math. Soc. 16, 315–336 (1917)
19. A. Sills, On series expansions of Capparelli’s infinite product. Adv. Appl. Math. 33, 397–408

(2004)
20. M. Tamba, C. Xie, Level three standard modules for A(2)

2 and combinatorial identities. J. Pure
Appl. Algebra 105, 53–92 (1995)

21. D. Zagier, Quantum modular forms, Clay Mathematics Proceedings 11 (AMS and Clay Math-
ematics Institute, 2010), pp. 659–675


	Three-Colored Partitions and Dilated Companions of Capparelli's Identities
	1 Introduction and statement of results
	2 Hypergeometric q-series identities
	3 Three-colored partitions and finite recurrences
	3.1 Colored partitions
	3.2 Finite generating functions
	3.3 Hypergeometric q-series solution

	4 Infinite series evaluation and the proof of Theorem 1.2
	4.1 Limits separated by parity
	4.2 The modular case and the proof of Theorem 4.1

	References


