Springer Proceedings in Mathematics & Statistics

George E. Andrews
Frank Garvan Editors

I Analytic Number

Theory, Modular
Forms and
g-Hypergeometric

Series

In Honor of Krishna Alladi’s 60th
Birthday, University of Florida,
Gainesville, March 2016

@ Springer



Springer Proceedings in Mathematics & Statistics

Volume 221



Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including operation research and optimization. In addition to an overall
evaluation of the interest, scientific quality, and timeliness of each proposal at the
hands of the publisher, individual contributions are all refereed to the high quality
standards of leading journals in the field. Thus, this series provides the research
community with well-edited, authoritative reports on developments in the most
exciting areas of mathematical and statistical research today.

More information about this series at http://www.springer.com/series/10533


http://www.springer.com/series/10533

George E. Andrews - Frank Garvan
Editors

Analytic Number Theory,
Modular Forms
and g-Hypergeometric Series

In Honor of Krishna Alladi’s 60th Birthday,
University of Florida, Gainesville, March
2016

@ Springer



Editors

George E. Andrews Frank Garvan

Department of Mathematics Department of Mathematics
Pennsylvania State University University of Florida

State College, PA Gainesville, FL

USA USA

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics

ISBN 978-3-319-68375-1 ISBN 978-3-319-68376-8 (eBook)

https://doi.org/10.1007/978-3-319-68376-8
Library of Congress Control Number: 2017958728
Mathematics Subject Classification (2010): 05A17, 11B65, 11F30, 11K65, 11NOS, 11P84, 33D15

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

We are extremely pleased to offer these proceedings of the Gainesville Number
Theory Conference of 2016, more affectionately known as ALLADI60, honoring
Krishna Alladi on his 60th birthday. Krishna has been a major contributor to
number theory and mathematics in several ways. First, he is a first-class mathe-
matician. We who have collaborated with him are most vividly aware of his insight
and talent. Second, he is Editor-in-chief of the Ramanujan Journal and a Series
Editor of Developments in Mathematics. Third, he instituted the internationally
admired SASTRA Ramanujan Prize. Fourth, he has been the major actor in the
creation of numerous important conferences.

In the past two decades, the University of Florida has been the main international
venue for conferences in the areas of partitions, g-series, modular forms, and
Ramanujan’s work. The special feature of this conference was that in addition to
these areas, analytic number theory, irrationality, and transcendence were also
covered—areas that Alladi had worked on until 1990.

The conference attracted nearly 200 participants and was spread over 5 days to
accommodate the nearly 100 speakers who had come from Australia, Austria,
Canada, China, England, France, Germany, Hong Kong, Hungary, India, Israel,
Korea, The Netherlands, New Zealand, Norway, Serbia, Switzerland, Tunisia,
Turkey, and the USA. The conference was supported by grants from the National
Science Foundation, the National Security Agency, the Number Theory
Foundation, and by funds from The Pennsylvania State University. Local support
was provided by the University of Florida, Mathematics Department and the
College of Liberal Arts and Sciences, and the Alachua County Tourism Board.
We are most grateful for all this support which helped make the conference a
success.
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Special Lectures

There were four special lectures at the conference:

Opening Lecture

Manjul Bhargava (Princeton University)

Squarefree values of polynomial discriminants

In 2003, Manjul Bhargava won the First SASTRA Ramanujan Prize, a prize that
Krishna Alladi was instrumental in launching.

The Erdés Colloquium

Hugh L. Montgomery (University of Michigan)

Littlewood polynomials

This Special Colloquium, initiated by Krishna Alladi, has been given yearly at the
University of Florida since 1999. Following the Colloquium, the participants were
treated to a dinner party at the home of Krishna and Mathura Alladi, and our thanks
to Mathura for graciously hosting this.

The Ramanujan Colloquium

James Maynard (University of Oxford)

Linear equations in primes

This Special Colloquium, initiated by Krishna Alladi, has been given yearly at the
University of Florida since 2007, and is sponsored by The Pennsylvania State
University and George Andrews. James Maynard also gave two other lectures.

Conference Closing Lecture and Math Colloquium

Wadim Zudilin (University of Newcastle)

Short random walks and Mahler measures

Wadim Zudilin also gave a lecture on certain irrational values of the logarithm,
which was related to Krishna Alladi’s work from 1979.

Other Conference Highlights

Piano Recital

Following Maynard’s Colloquium, there was a Reception at the Keene Faculty
Center where the participants were treated to a lovely piano concert by Christian
Krattenthaler of the University of Vienna.

Awards

Ron Graham, former President of the AMS, presented cheques to James Maynard
and Kevin Ford in recognition of their work for the resolution of a famous $10,000
problem of Erd8s on large gaps between primes. Maynard received $5,000 for his
solo paper, and Kevin Ford received a cheque for $5,000 made out to Kevin Ford,
Ben Green, S. Konyagin, and Terence Tao for their joint work.
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Soundararajan’s Lecture

Another SASTRA Ramanujan prize winner, Kannan Soundararajan (Stanford),
presented for the first time his recent work with his colleague Robert Lemke Olivera
on a startling new result on a bias in the distribution of consecutive prime numbers.

The Man Who Knew Infinity

The movie The Man Who Knew Infinity on the remarkable life of Ramanujan was
shown at the conference as a Preview before its official opening in theaters thanks to
the efforts of Manjul Bhargava, one of the Associate Producers of the movie. Our
thanks to Edward Pressman films for this kind gesture. See Bruce Berndt’s paper in
this volume for some background on an interesting scene from the movie.

Talks on Alladi’s Work

Several talks at the conference dealt with Alladi’s work—not just his recent work
on partitions and g-series, but his early work as well. Dorian Goldfeld (Columbia
University) spoke about extensions of results in Alladi’s first paper (written when
he was an undergraduate) with Paul Erdds on an additive arithmetic function—now
called the Alladi-Erdés function. Doron Zeilberger (Rutgers University) and Wadim
Zudilin (University of Newcastle, Australia) discussed extensions of results of
Alladi-Robinson (1980) on irrationality measures.

Conference Banquet
A Conference Banquet was held at the Paramount Hotel. Many speeches honoring
Krishna were given. The text of Elizabeth Loew’s speech is given after this preface.

Mathematical Interests of Krishna Alladi

Over his career, Krishna Alladi has maintained an interest in Number Theory,
Combinatorics, Discrete Mathematics, Analytic Number Theory, Sieve Methods,
Probabilistic Number Theory, Diophantine Approximations, Partitions, and
g-Series Identities, His research in mathematics began as an 18-year-old under-
graduate in 1973. The first part of his mathematical career was in Analytic Number
Theory. In particular, he wrote five joint papers with Paul Erdés. In 1987, the
Ramanujan Centenary year, Krishna became interested in partitions and in the early
1990s, he began a fruitful collaboration with George Andrews, Alex Berkovich, and
Basil Gordon, when they made impressive breakthroughs in discovering partition
identities beyond those of Rogers-Ramanujan, Schur and Goéllnitz. In 1993, he
spent a sabbatical at Penn State with George Andrews. There he learned the
importance of basic hypergeometric series, and modular forms for the theory of
partitions.
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Volume Contents

Below, we give a brief description of the papers in this volume and group them
according to these topics: Analytic Number Theory, Probabilistic Number Theory,
Partitions, Basic Hypergeometric Functions, and Modular Forms.

Analytic Number Theory
Benli, Elma, and Yidirim extend Conrey and Ghosh’s results on zeros of derivatives
of the Riemann zeta-function near the critical line, to Dirichlet L-functions.

Deshouillers and Grekos study the problem of the number of integral points on a
convex curve in terms of length and curvature, and make improvements on previous
results.

In 1977, Alladi and Erdés showed that a certain important additive function is
uniformly distributed modulo 2. Goldfeld generalizes this result to an arbitrary
modulus.

Montgomery’s survey paper on Littlewood Polynomials is an expanded version
of his talk given at the conference.

Nicolas obtains an effective version of Ramanujan’s result for the difference
between the logarithmic integral of Chebychev’s function and 7(x).

Ono, Schneider, and Wagner prove a partition theoretic analog of Alladi’s
Mobius function identity.

Saradha and Sharma prove some conjectures of Mueller and Schmidt for the
number of integer solutions of a Thue inequality for certain binary quadratic forms.

Tenenbaum extends a result of Mertens for the sum of the reciprocals of primes
to the sum of the reciprocals of the product of k primes.

Inspired by Hugh Montgomery’s talk on Littlewood polynomial, Zeilberger
(with his computer collaborator Ekhad) gives an algorithmic approach to Saffari’s
conjecture on the asymptotic growth of moments of the Rudin—Shapiro
polynomials.

Probabilistic Number Theory

Elliott’s paper is survey of abstract multiplicative functions and their application to
the study of the Fourier coefficients of automorphic forms, together with a dis-
cussion in the context of the theory of Probabilistic Number Theory.

Partitions

George Andrews recently gave a refinement of Krishna Alladi’s variant of Schur’s
1926 partition theorem. In his paper, Andrews develops a surprising factorization
of the related polynomial generating functions.

Chen, Ji, and Zang previously proved a rank-crank inequality conjecture of
Andrews, Dyson, and Rhoades. By using combinatorial methods, they show that
there is a reordering of partitions that explains the very nearly equal distributions
of the rank and the crank.

Motivated by recent research of Krishna Alladi, Berkovich, and Uncu give new
weighted partition identities for partitions, overpartitions, and partitions with dis-
tinct even parts, using the theory of basic hypergeometric functions.
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Dousse extends Krishna Alladi’s method of weighted words to obtain general-
izations and refinements for previous extensions of Schur’s partition theorem to
overpartitions due to Andrews, Corteel, and Lovejoy.

Kolitsch gives new partition interpretations of truncated forms of Euler’s
Pentagonal Number Theorem and Jacobi’s Triple Product identity in terms of
overpartitions.

Krattenthaler finds congruences mod 16 for the number of unique path partitions
of n, which occur in the study of character values of finite symmetric groups, and
which generalize results of Olsson, Bessendrodt, and Sellers.

Kanade, Kursungoz, and Russel give combinatorial interpretations of overpar-
tition variants of Andrews’s H and J functions which occurred in the study of the
Andrews-Gordon partition identities and their generalizations.

Lovejoy gives two overpartition extensions of Alladi and Gordons generaliza-
tion of Schurs theorem.

Bringmann and Mahlburg present new companions to the Capparelli partition
identities and two new general identities for three-color partitions that may be
specialized to theta functions and false theta functions.

Seo and Yee give a combinatorial proof of a result of Andrews which is an
overpartition analog of Rogers-Ramanujan type theorem related to restricted suc-
cessive ranks.

g-Series and Basic Hypergeometric Functions

Gaurav Bhatnagar gives a marvelous bibasic version of Heine’s basic hypergeo-
metric transformation and uses it to prove and organize a raft of identities of
Ramanujan, some of which are easy and some which are not.

Cooper, Wan, and Zudilin prove a number of Z.-W. Sun’s conjectures for series
for 1/m by relating them to known series using techniques of basic hypergeometric
series and Zeilberger’s algorithm for holonomic sequences.

Banerjee and Dixit obtain new identities for Ramanujan’s function o(g) which is
the generating function for the excess number of partitions of n into distinct parts
with even rank over those of odd rank.

Hirschhorn gives elementary proofs of some well-known arithmetic properties of
Ramanujan’s tau function using nothing more than Jacobi’s triple product identity.

Liu describes a method for finding certain series expansions of functions that
satisfy a g-partial differential equation and, as an application, finds a generalization
of Andrews’s transformation formula for the g-Lauricella function.

Mc Laughlin gives a new approach using bilateral hypergeometric series to
obtain identities for mock theta functions and finds radial limit formulas as an
application.

Schlosser and Yoo employ a one-variable extension of g-rook theory to give
combinatorial proofs of some basic hypergeometric summations formulas.

Sills gives an elementary approach for finding the sum side of Rogers-
Ramanujan type identities from the product forms related to the standard modules

of the Kac—-Moody algebra Af).
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Modular Forms

Nicolas Andersen follows up on his previous work, “Vector-Valued Modular
Forms and The Mock Theta Conjectures,” where he gave a new proof of
Ramanujan’s fifth-order mock theta conjectures using the theory of vector-valued
modular forms and harmonic Maass forms. In his new paper, he extends these ideas
to give a new proof of Hickerson’s seventh-order identities.

Jha and Kumar compute the adjoint (with respect to the Petersson inner product)
of the linear map related to the Cohen—Rankin bracket, thus extending work of
Kohnen and Herrero to half-integral weight modular forms.

Kimport obtains asymptotic expansions for weight 1/2 and 3/2 partial theta
functions at roots of unity which generalizes results of Berndt and Kim and are
important in the study of certain quantum modular forms.

Mclntosh proves that Zweger’s p-function, which is important in the study of
mock theta functions from a modular form view, is essentially no more general than
the universal mock theta function g,.

Paule and Radu derive a new type of modular function identity that implies
Ramanujan’s partition congruence mod 11.

Ramakrishnan, Sahu, and Singh use the theory of modular forms to find for-
mulas for the number of representations of a positive integer by certain class of
quadratic forms in eight variables.

Jon Borwein

Jon Borwein was unable to come to ALLADI60 due to his commitment to give a
series of lectures as a Distinguished Scholar in Residence at Western University,
London Ontario. Later, in May 2016, Jon and his wife Judi were able to visit us in
Florida. He gave two talks—one at the University of Florida Brain Institute on
CARMA: A Model for Multi-Discipline and Multi-Institution Collaboration. The
other talk on Seeing Things by Walking on Numbers was given in the Math
Department. Later, in July, I (Frank) was with Jon at the Lambert Conference in
London, Ontario. It was a great shock to us that he died just a few days after the
Lambert Conference, and we still feel the loss. Jon was the first person to submit a
paper to our proceedings. The referee only required some minor revisions. Jon
wanted to wait until he got back to Australia to complete these revisions but sadly
this did not happen. I made the revisions myself and got David Bailey to check
them over. Jon’s paper is an expanded companion to a talk he gave at a workshop
celebrating Tony Guttmann’s 70th birthday. It describes his encounters over nearly
30 years with Sloane’s (Online) Encyclopedia of Integer Sequences. We agree with
the referee that it is a masterpiece, with beautiful math and beautiful exposition.
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Alladi Ramakrishnan

Krishna’s father, the late Prof. Alladi Ramakrishnan, the Founder-Director of
MATSCIENCE, The Institute of Mathematical Sciences in Madras, India, was an
inspiration to Krishna and supported all of Krishna’s efforts. In an emotionally
charged speech at the banquet, Krishna said that if his father were alive, he would
have been the happiest person to see such an impressive gathering of mathemati-
cians from around the world for the 60th birthday conference. Several speakers in
their speeches at the banquet made references to Krishna’s father. Kryuchkov,
Lanfear, and Suslov have dedicated their paper to the memory of Krishna’s father,
the famous physicist Prof. Alladi Ramakrishnan, on the topic of a complex form of
classical and quantum electrodynamics.

Thanks

We thank Marc Strauss and Elizabeth Loew for the Springer book exhibit and
Rochelle Kronzek for the World Scientific book exhibit. In addition, we thank Marc
Strauss for publishing these proceedings in the Springer Proceedings Series. We
express special thanks to Margaret Somers, Cyndi Garvan, Ali Uncu, and Chris
Jennings-Shaffer, the staff of the Math Department and the number theory graduate
students for all aspects of preparing for and running a smooth conference. We thank
Jis Joseph for his photography and help with other aspects of the conference.

We conclude by expressing again our thanks to Krishna for his monumental
contributions. Our community has been greatly enriched by him, and we are deeply
in his debt.

Gainesville, FL, USA George E. Andrews
August 2017 Frank Garvan



Introductory Speech

Speech Given by Elizabeth Loew at the ALLADI60 Banquet

I am especially honored to have been asked by George Andrews to give a short
speech tonight. Thank you George. I also want to thank Frank Garvan for inviting
me to share in this important celebration in honor of Krishna’s 60th birthday.

ek
While I don’t quite remember the first time that I met Krishna, it must have been
sometime in 2008, here at UFL, after I had become a senior editor with Springer.
Our meeting was certainly during Krishna’s tenure as Chair of the department.
Among my responsibilities for journals and books were The Ramanujan Journal
and the series Developments in Mathematics, both of which were founded by
Krishna. Both became demanding, because they were intellectually rich and I
wanted to ensure that I was doing my part to reinvigorate and help expand from
publishing capabilities. This was enjoyable for me personally.

ek
It was politely suggested to me that we weren’t coming here tonight to roast
Kirishna. (I assume that everyone knows what I mean by ROAST). That is, I am not
going to say anything particularly funny or amusing. The Krishna that I have come
to know is a serious kind of guy. But I have to say, that in the midst of situations
and discussions, he has often made me laugh. He has certain unique expressions
and ways of politely conveying dissatisfaction. From my perspective, however,
Krishna has always been above all forms of pettiness. Over the years, I have greatly
appreciated his warmth and genuine friendship to me. This extends to his lovely
wife, Mathura, and all of the Alladi children. I have been privileged to enjoy many
evenings in their home and I wish the Alladi family many years of continued
happiness and good health.

ek
Krishna and I have worked closely and well together for these last 8 years and I
would like to comment and recollect on a few important things about the publi-
cations we continue to work on together. Krishna is both the founder and

Xiii
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Editor-in-chief of The Ramanujan Journal. Frank Garvan is the journal’s extremely
capable managing editor. And many of you here today are active members of the
board. The journal was established in 1997 with Kluwer and upon the Kluwer and
Springer merger, RAMA became a Springer publication. There is no need to
convey to everyone here the importance of Ramanujan himself and the enormous
impact his genius had and still has on the mathematics community. So RAMA is
devoted to those aspects of mathematics influenced by Ramanujan. Indeed during
my years at Springer, these influences have grown substantially. The journal had
always been strong in covering g-series and special functions, for example, and in
the last few years modular forms has become a critical area of coverage for the
journal as well. Various topics have expanded greatly, some have even ‘exploded’
(to use Krishna’s wording). I just want to emphasize that the journal continues to
reinforce connections and to establish links with new fields. And I would like to put
it this way: the editorial board is choc full of valued mathematicians all of whom
are experts in their areas of research. The journal publishes 9 issues per year.
Special issues are published from time to time with respect to the Sastra Ramanujan
lectures, covering the 125th anniversary of Ramanujan, memorial issues for such
great figures as Erdds, Rankin, Gordon, and a forthcoming one for Marvin
Knopp. Special issues have also been published for milestone birthdays such as for
Richard Askey and George Andrews, to name just two. So, on behalf of Springer I
would like to thank Krishna, Frank, and the entire board for their continued
devotion to enhancing the quality and excellence of RAMA.
sk
The book series Developments in Mathematics was founded by Krishna as pre-
viously mentioned. When I entered the picture Bob Guralnick was co-series editor
and eventually stepped down. In 2009 Hershel Farkas joined as co-series editor.
The 3 of us have been working effectively and diligently toward expanding the
series. This too has been an enriching collaboration for me. In earlier years, most
of the publications in DEVM included edited works, most often in the area of
number theory, but in other areas as well. Nowadays, DEVM predominantly
intends to publish quality monographs. The aim being to cover new topics in the
forefront of mathematical research; topics that are perhaps a bit more specialized.
While new topics in number theory have published in DEVM, new books in the
series include those in fields such as differential equations, algebra, enumerative
combinatorics, analysis, to name several. Quality edited volumes are still occa-
sionally considered for publication. A selection of edited volumes that may be of
interest to you are displayed here at the conference “Partitions, ¢-Series, and
Modular Forms” (Alladi-Garvan), “Quadratic and Higher Degree Forms”
(Alladi, Barghava, Savitt, Tiep), “Surveys in Number Theory” (Alladi), and
“Combinatory Analysis” (Alladi, Paule, Sellers, Yee).
ek

A word about Krishna’s father. I remember Krishna’s father very well. My parents,
Bert and Ann Kostant, also had the pleasure of meeting Alladi Ramakrishnan. With
his kind face and beautiful smile, he was a very interesting person. Discussions with
him took place in Krishna’s home where I recall (and as Bert also told me) hearing a
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variety of thoughts and recollections that came to his father’s mind. When Dr.
Ramakrishnan passed away, I remember remarking to Krishna what a devoted son
he had been to his father. The magnificent book that Krishna put together entitled
The Legacy of Alladi Ramakrishnan in the Mathematical Sciences is on display
here and is a beautiful intellectual and sentimental tribute to a highly respected
mathematical physicist. I felt happy to be involved in publishing that Work.

sk
The book Ramanujan’s Place in the World of Mathematics was published in
2013 with my colleagues in Springer India. This book represents a compendium of
Krishna’s articles over time and has received great reviews from various sources. In
it, the reader learns of Ramanujan and his mathematical work in an historical
context and with comparisons to other great mathematicians throughout history.
I hope that there are several copies of this book here at the conference.

ek
Krishna is a creator of original mathematical research; a composer of books; a
builder of two noteworthy publishing venues, journal and book series. And again
and again, over and over, I have been enriched and delighted to be part of much of
Krishna’s publishing activities. I consider myself rather fortunate to have cultivated
several strong and enriching relationships within the mathematics community.
There is strong and enriching, and there is strong and enriching PLUS. I believe that
my relationship with Krishna includes the PLUS. From Springer, from Joachim
Heinze, from Marc Strauss, from myself, my son Max, and Ann and Bert Kostant,
we wish Krishna healthy years ahead filled with as much joy as he can take in.
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1 Introduction

Given a finite abelian group G (written additively), a sequence over G is called a
zero-sum sequence if the sum of its elements is zero (the identity element). For a
finite abelian group G, the Davenport constant D(G) is the smallest natural number
k such that any sequence of k elements in G has a non-empty zero-sum subsequence.
Though attributed to Davenport, it was first studied by K. Rogers [28] in 1962; this
reference was missed-out by most of the early authors working in this area. Initial
motivations of Rogers and Davenport for defining this constant were keeping in mind
the application in nonunique factorization in algebraic number theory. There have
been other applications since then; most notable among them being those by Alford,
Granville, and Pomerance [9], in their proof of the infinitude of Carmichael numbers.

Given a finite abelian group G = Z,, ® Z,, ® - - - ® Zy,,, with ny|nsz| - - - |n,, we
denote n, = exp(G), the exponent of G, and r(G) = r the rank of G. Writing
D*(G) = 1+ Y '_,(n; — 1), it is trivial to see that D*(G) < D(G) < |G|.

One may look into the articles [1, 15, 18] or the book [19], for known results on
upper bounds of D(G) and related open questions.

Another combinatorial invariant E(G) for a finite abelian group G of n elements
is defined to be the smallest positive integer ¢ such that for any sequence of ¢ elements
of G, there exists a zero-sum subsequence of length n.

The constants D(G) and E(G) were being studied independently until Gao [14]
(see also [19], Proposition 5.7.9) established the following result connecting these
two invariants.

Theorem 1.1. If G is a finite abelian group of order n, then
E(G) =D(G) +n —1.

We define one more zero-sum constant here.

If G is a finite abelian group with n = exp(G), the exponent of G, then the Erdds-
Ginzburg-Ziv constant S(G) is defined to be the least positive integer k such that any
sequence S with length k of elements in G has a zero-sum subsequence of length .

The above definition is motivated by the theorem of Erd6s, Ginzburg, and Ziv
[13] (known as the EGZ theorem), a prototype of zero-sum theorems, which says
that s(Z,) < 2n — 1. The inequality S(Z,) > 2n — 1 in the other direction, is easy
to observe. Regarding the corresponding question in dimension two, the Kemnitz
Conjecture S(Z2) = 4n — 3 has now been settled by Reiher [27]. Once again, we
refer to the article [15] of Gao and Geroldinger and the book [19] of Geroldinger and
Halter-Koch, for further information about known results and open questions on the
Erd6s-Ginzburg-Ziv constant.

The following weighted version of the above zero-sum constants was initiated by
Adhikari, Chen, Friedlander, Konyagin and Pappalardi [4], Adhikari and Rath [8],
Thangadurai [29], Adhikari and Chen [3] and Adhikari, Balasubramanian, Pappalardi
and Rath [2].
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For a finite abelian group G and a non-empty subset A of [1, exp(G) — 1], the
Davenport constant of G with weight A, denoted by D4 (G), is defined to be the least
natural number k such that for any sequence (x, - - - , x;) with x; € G, there exists
a non-empty subsequence (x;,,---,x;) and ay, ..., a; € A such that

i
E ajxj = 0.
i=1

Similarly, for any such weight set A, for a finite abelian group G of order n,
the constant E4(G) is defined to be the least t+ € N such that for any sequence

(x1, -+, x;) of t elements with x; € G, there exists an A-weighted zero-sum subse-
quence of length n, that is, there existindices ji, ..., j, e N, 1 < j; < --- < j, <,
and H,..., 0, € A with Z?:l ﬁile =0.

The case A = {1} corresponds to D(G) and E(G).

The generalizations D4 (G) and E,(G) were considered in [4] and [8] for the
particular group Z/nZ; later in [29] and [3], they were introduced for an arbitrary
finite abelian group G.

For a finite abelian group G and a non-empty subset A of [1, exp(G) — 1], one
defines s4 (G) (as introduced in [2]; the notation used here being the standard one at
present) to be the least integer k such that any sequence S with length k of elements
in G has an A-weighted zero-sum subsequence of length exp(G). Once again, taking
A = {1}, one recovers the classical Erd6s-Ginzburg-Ziv constant S(G).

One observes that for the cyclic group Z,, Sa(Z,) = EA(Z,).

In the present article, we are mainly concerned with the constants D4 (G), E4(G)
and S, (G) with the weight set A = {£1}. In Section4, we shall have a brief discus-
sion on the plus-minus weighted Harborth constant. For various results with general
weight sets, apart from the research papers mentioned in the text, we would like to
mention the recent book by Grynkiewicz [20]; Chapter “From Ramanujan to Groups
of Rationals: A Personal History of Abstract Multiplicative Functions” of this book
is devoted to weighted zero-sum problems.

2 Plus-minus weighted zero-sum constants:
Di+13(G), E(+1;(G)

The very first paper [4] introducing E 4 (G), for the particular group G = 7Z,,, consid-
ers the case A = {+£1} and evaluates E(4,(Z,). More precisely, the following result
was proved in [4].

Theorem 2.1. We have
Eun(Zy,) =n+ [log, n].
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On the way to prove the above result, it was observed in [4] that D(y,(Z,) =
[log, n] + 1; while by the pigeonhole principle it follows that D4 (n) < [log, n] + 1,
considering the sequence (1,2, - - - , 2"), where r is defined by 2+l < < 272 one
has D4 (n) > [log, n] + 1.

From the above, the statement in Theorem 2.1 follows rather easily, when n is
even. When 7 is odd, one had to argue differently depending on whether a given
sequence is ‘complete’ or not. Here completeness with respect to some positive
integer m requires that the number of elements not divisible by d is at leastd — 1 for
every positive divisor d of m.

The following particular weighted generalization of a result of Bollobds and
Leader [11] (see Yu [30] for a simpler proof of the result in [11]) was done in

[5].
Theorem 2.2. Let G be a finite abelian group of order n and let it be of the form G =

Ln, ®ZLn, ® -+ DB Ly, wherel <ny|---|n,. Let A={1,—1}andk be a natural
number satisfying k > 2" 1 — 1 + 5, where r" = |{i € {1,2,---,r}:n; is even}|.
Then, given a sequence S = (x1, X2, + - , Xptk), With x; € G, if S has no A-weighted

zero-sum subsequence oflengthn, then there are at least 21 — § distinct A-weighted
n-sums, where § = 1 if 2 | n and § = 0 otherwise.

A result of Yuan and Zeng [31] on the existence of zero-smooth subsequences and
a theorem of DeVos, Goddyn, and Mohar [12] which generalizes Kneser’s addition
theorem [23], were used in the proof of Theorem 2.2.

For a finite abelian group G with G =Z, ®Z,, ® - D Z,, | <ny|---|
n,, satisfying |G| > 2@ '=1%%) where r' = |{i € {1,2, - ,r}:2 | n;}|,and A =
{1, —1}, one has

Gl + ) _llog,ni] < EA(G) < |G| + [log, |G|]. (1)

i=I

While the upper bound follows from Theorem 2.2, the lower bound in the above
follows from some counterexamples like those given in [4] (see also [6]).

The result (1) gives the exact value of E 4 (G) when G is cyclic (thus giving another
proof of the main result in [4]) and unconditional bounds in many cases.

However, we mention that when A = {1, —1}, finding the corresponding bounds
for D4 (G) for a finite abelian group G and the exact value of D4(G) when G is
cyclic, is not so difficult (see [4, 6]). Therefore, from the relation

EA(G) =Du(G) +n—1,

for an abelian group G with |G| = n and a non-empty subset A of {1, ..., n — 1},
the main result in [4], mentioned in Theorem 2.1, follows.

The above relation, which is a weighted generalization of the result of Gao, stated
in Theorem 1, had been expected by Adhikari and Rath [8] and conjectured by
Thangadurai [29]; it was established for the group Z, by Adhikari and Rath [8]
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(a conditional general result of Adhikari and Chen [3] also implies the result for the
group Z,), for general cyclic groups by Yuan and Zeng [32] and for general finite
abelian groups by Grynkiewicz, Marchan, and Ordaz [21].

For a general finite abelian group, the following bounds were observed in [6].

Theorem 2.3. Let G be a finite abelian group with G =Z,, ® Z,, ® - - - ® Zy,,
where 1 < ny|...|n,. Then

> “log,n;] +1 < Di2y(G) < Llog, |G|] + 1.

i=1

Marchan, Ordaz, and Schmid [26] observed that for the plus-minus weighted
Davenport constant, different types of decompositions into direct sums of cyclic
groups can be optimal in yielding lower bounds. Defining

t
D11, (G) = max X:Llog2 n;| +1:G = &!_,Z,for positive integers 7, n,-} ,
i=1

as a corollary of Theorem 2.3, it was first observed in [26] that
Di,,(G) < Duiy(G) < Dfyy(G) +r(G) — 1.

By careful analysis, the authors in [26], were able to obtain exact values of
D(+1;(G) for certain groups G; examples of groups were also given where the actual
value of Di11)(G) is strictly bigger than Di,,,(G).

3 Plus-minus weighted zero-sum constant $¢+1;(G)

Here, when G is cyclic, Theorem 2.1 takes care of the problem and we have
S(+1)(Zy) = Ewy(Zy) = n + |log, n].

In [2] it was proved that
Sien)(Zy) =2n — 1,

when 7 is odd.

Whereas from the above result, for G = Z2, we have S(+1)(Z2) = 2 exp(G) — 1
if n is odd, for the group H = 72, the Kemnitz-Reiher Theorem [27] says that (it
can also be checked directly) S{il}(Zg) =5=2exp(H)+ 1.

However, in contrast to these results, in [6], the following asymptotic behavior of
S+13(G) when exp(G) is even, was established. It was shown in [6] that, for finite
abelian groups of even exponent and fixed rank,
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S(+1}(G) = exp(G) + log, |G| + O(log, log, |G|) as exp(G) — oo.

We remark that for the classical question corresponding to the weight A = {1},
the general upper bound of Alon and Dubiner [10] says that there is an absolute
constant ¢ > 0 so that

s(Z3) < (cdlog, d)'n, for all n,

which shows that the growth of S(ZZ ) is linear in n. However, this result of Alon and
Dubiner is far from the expected one; it has been conjectured [10] that there is an
absolute constant ¢ such that

s(Z%) < ¢'n, forall n and d.

For the plus-minus weight, the question of determining Si+1y(Z},), for odd n
remains open for r > 3.

However, in [7], it has been proved that a sequence of length (9p2—73) over ele-
ments of the group Z;, must have a plus-minus weighted zero-sum subsequence of
length 3 p; here one expects a sequence of much smaller length to guarantee such a

subsequence.

4 Plus-minus weighted Harborth constant

If G is a finite abelian group with n = exp(G), the exponent of G, then the Harborth
constant g(G) is defined to be the least integer k such that any subset of G of
cardinality k has a subset of cardinality n whose terms sum to zero.

For the cyclic group, 9(Z,), itis n or n + 1, according to n is odd or even; in the
second case when n is even, that the constant is # + 1 means that there is no set with
the desired property at all. More generally, it is known that g(G) = |G| + 1, if and
only if G is an elementary 2-group or a cyclic group of even order.

Gao and Thangadurai [17] have shown that g(Zi) =2p — 1 for p > 67 (later
in [16], it was shown to hold for p > 47) and g(Zﬁ) = 9 and have conjectured that

g(Z?2) equals 2n — 1 or 2n + 1, according as n is odd or even.
Recently, Marchan et al. [24] have shown that for a positive integer n, one has

2n + 3, forn odd

9(Zy & Zoy) = { 2n + 2, forn even.

Coming to the corresponding weighted generalization, taking up the case where
the weight set A = {£1}, Marchan et al. [24] have obtained the following results.
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Theorem 4.1. For a positive integer n,

_|n+1, forn=2 (mod 4)
Qi) (Zn) = {n, otherwise.
Theorem 4.2. For a positive integer n > 3,

Qix1)(Zy & Zoy) =2n + 2.

Moreover,
Oix1}(Zy ® Zs) = Qp1y(Zo ® Zy) = 5.

5 Applications

Halter-Koch [22] has shown that the plus-minus weighted Davenport constant is
related to questions on the norms of principal ideals in quadratic number fields.
More precisely, he has proved the following.

Theorem 5.1. Let K be a quadratic algebraic number field and we denote by O
its ring of integers and by € its ideal class group. Then Dy1y(6x) is the smallest
positive integer | with the following property:

If q1,q2, ...q are pairwise coprime positive integers such that their product
q = q1 - q is the norm of an ideal of Ok, then some divisor d > 1 of q is the norm
of a principal ideal of O.

The above result related to the plus-minus weighted Davenport constant follows
from a more general result, for which we refer to the original paper [22]. The paper
of Halter-Koch [22] also has an interpretation of the plus-minus weighted Davenport
constant in terms of binary quadratic forms.

For interactions of some weighted zero-sum constants and coding theory, one may
look into the recent article of Marchan et al. [25].
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Vector-valued Modular Forms and the
Seventh Order Mock Theta Functions

Nickolas Andersen

This paper is dedicated to Krishna Alladi on the occasion of his
60th birthday

Abstract In 1988, Hickerson proved the mock theta conjectures (identities involving
Ramanujan’s fifth order mock theta functions) using g-series methods. In a follow-
up paper he proved three analogous identities which involve Ramanujan’s seventh
order mock theta functions. Recently, the author gave a unified proof of the mock
theta conjectures using the theory of vector-valued modular forms which transform
according to the Weil representation. Here we apply the method to Hickerson’s
seventh order identities.

Keywords Mock theta functions - Vector-valued modular forms - Weil
representation
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1 Introduction

In his last letter to Hardy, Ramanujan introduced a new class of functions which he
called mock theta functions, and he listed 17 examples [3, p. 220]. Each of these
he labeled third order, fifth order, or seventh order. The seventh order mock theta
functions are
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Here we have used the standard g-Pochhammer notation (a; g), := ]_[:'n;l0 (1 —aqg™).
In Ramanujan’s lost notebook there are many identities which relate linear combi-
nations of mock theta functions to modular forms. Andrews and Garvan [2] named
ten of these identities, those which involved the fifth order mock theta functions, the
mock theta conjectures. Hickerson proved two of these identities in [11]; his proof,
together with the work of Andrews and Garvan [2], established the truth of the mock
theta conjectures. In a companion paper [10] immediately following [11], Hickerson
proved analogous identities for the seventh order mock theta functions, namely

1 . 3’ 7N\2

Folq) = 24 M (—,q7)+2—M, (1.1)
7 4, 9o
2 i(q.9")*

Fi(q) =2qM (—,cﬁ) +ql 01 (1.2)
3 (g, q")?

Fr(q) = 2qM (—, q7) TEAUEL A (1.3)
7 4 Qo

Here (following the notation of [9])

o0 nn—1)

q
M(r,q) .=
r.q) Z @ Dn @5 P

n=1

and
7@ d") =" 4@ 4@y 47 )oo-

We will refer to (1.1)—(1.3) as the seventh order mock theta conjectures.

Zwegers [14] showed that the mock theta functions can be completed to real
analytic modular forms of weight 1/2 by multiplying by a suitable rational power of
g and adding nonholomorphic integrals of certain unary theta series of weight 3/2.
This allows the mock theta functions to be studied using the theory of modular forms.
Recently the author [1], building on Zwegers’ work and work of Bringmann—Ono
[5], proved the mock theta conjectures using the theory of vector-valued modular
forms. The purpose of this paper is to apply this method to prove the seventh order
mock theta conjectures.
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We begin by defining two nonholomorphic vectors F and G corresponding to
the left-hand and right-hand sides of (1.1)—(1.3), respectively, and we establish their
transformation properties using the results of [5, 8, 14]. Next, we construct a holo-
morphic vector-valued modular form 5# from the components of F — G which
transforms according to the Weil representation (see Lemma 4 below). There is a
natural isomorphism between the space of such forms and the space J; 4, of Jacobi
forms of weight 1 and index 42. The seventh order mock theta conjectures follow
from the result of Skoruppa that J; ,, = {0} for all m > 1.

2 Definitions and Transformations

In this section, we describe the transformation behavior for the functions M (5, q)
and j(g”, q") and the mock theta functions under the generators

11 0 —1
T'_<01) and S'_(1 o)

of SL,(Z). We employ the usual } , hotation, defined for k € R and y = (¢b) e
SL,(Z) by

L —k az+>b
)@ =z +d)y™* <—CZ : d) .

We always take arg z € (—m, «r]. It is not always the case that f‘kAB = f]kA|kB,

but for k € %Z we have
fl,AB = £ f| Al B. (2.1)

(see [12, §2.6]). Much of the arithmetic here and throughout the paper takes place in
the splitting field of the polynomial x® — 7x* 4 14x2 — 7, which has roots £«, £A,
+u, where

. T .27 . 3w
K :=2sin —, A =2sin —, MU= 2s8in —. 2.2)
7 7 7

The modular transformations satisfied by the mock theta functions %, .%, and
F, are given in Section4.3 of [14]. The nonholomorphic completions are written in
terms of the nonholomorphic Eichler integral (see [14, Proposition 4.2])

" ga-b(1)

R, =1 —dr7,
Al Y o

where g, (see [14, §1.5]) is the unary theta function
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g b(Z) - Ueﬂiu2z+2m'vb
a, = E .
vea+7Z

Let g := exp(2mwiz) and ¢, := exp(2wi/m). Following §4.3 of [14] we define

Fo@) =g wFo(@) + tu (' Ry + iRy ) @D, 23
Fi@) =g B i) + & (63" Ry y + Ry ) @La), @4)
F2(0) = q T Fa(q) + &y (62 Ryt + 2R3 1) @12), (2.5)

Note that we have used Proposition 1.5 of [14] to slightly modify the components of
G7(7) on p. 75 of [14]. The following is Proposition 4.5 of [14] (we have rearranged
the order of the components of the vector F7 in that proposition).

Proposition 1. The vector

F(2) = (F0(2), 71(2), F2(2))" (2.6)

satisfies the transformations

1
-1
F|,T=MrF and F|,S=¢ WMSF,

where
Ligg 00 K A ou
Mr=| 0 ¢ O and Ms=|r —pn «
0 0 ¢¥% w ok =X

Following [5, 9], we define, for 1 < a < 6, the functions

nn—1)

aN__ 4 _
. <7’Z) ' ; @7 D@ 7
aN_.. v q" ‘ '
N (7’Z) =1+ &5q: OnC7 a5 @n &9

n=1

Clearly, we have M(1 — %,2) = M(5,z) and N(1 — %, 2) = N(5, z). Bringmann
and Ono [5] also define auxiliary functions M (a, b, 7, z) and N(a, b, 7, z) for 0 <
a <6and1 < b < 6. Together, the completed versions of these functions form a set
that is closed (up to multiplication by roots of unity) under the action of SL,(Z) (see
[5, Theorem 3.4]). Garvan [8] corrected the definitions of these functions and wrote
their transformation formulas more explicitly, so in what follows we reference his

paper.
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The nonholomorphic completions for M (%, z) and N (%, z) are given in terms

of integrals of weight 3/2 theta functions ®(%, z) and ©,(0, —a, 7, z) (defined in
Section 2 of [8]). A straightforward computation shows that

010, .7, 2) = 21V3 515 (6 124 30 + S gus 1 (32)).
Following (2.5), (2.6), (3.5), and (3.6) of [8], we define

i (E,Z) = 2g (=94 y (E,Z)
7 7

_ 2¢~ % ifa=1
a 1 B
iy (6 Resz 1 + CoRez 1) Bo) + { S e, e

N (5.2) =ose (g>qN<%z)+%/w%dT (2.10)

The completed functions 1\71(61, b,z) : =%(a,b,7;z7) and ﬁ(a, b,z) =%(a,b,
7; z) are defined in (3.7) and (3.8) of that paper. By Theorem 3.1 of [8] we have

Ceg ifa=1,

A?(%l,z)|lT7=A7l(%l,z) x V¢ ifa =2, 2.11)
2
¢l ifa =3,
~ /a i ~/a
N(7,Z)\%T=§241N(7,z>, (2.12)
and
~ /a 1~ (a
M<7,z>|%S:§8 N(7,z). (2.13)

The functions j(g”, q”) are essentially theta functions of weight 1/2. It will be
more convenient to work with (following [4])

(72,

£o@) = frp@ = j@?. ). (2.14)

The transformation properties of theta functions are well-known; for f,(z) we have
(seee.g. [9, pp. 217-218])

(i fo 1)), S = 65— L (Fofor ). @15)
15 J25 J3 19 = = - - 1, J2s J3) - .
’ ’ Vi K AW

The mock theta conjectures (1.1)—(1.3) are implied by the corresponding com-
pleted versions:
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Fo(z) =M (177Z> . f32(Z)’
7 n()
F\(2) = i (% 71) N ];‘2((;))
Fa) = i (; 7Z> N ];22((;))

Motivated by (2.6) and (2.16)—(2.18), we define the vector

o7 (1 _ f32(Z)

M(7’7Z) nz(z)

. ~ Ji @)

G(2) = 2 J1%7
() M (3,72) + 20
(3 fz (2)

M (3,7z) + ey

To prove that F = G we first show that they transform in the same way.

N. Andersen

(2.16)

2.17)

(2.18)

(2.19)

Proposition 2. The vector G(z) defined in (2.19) satisfies the transformations

1
— M; G,

G|,T=MrG and G|%S=§8‘1ﬁ

where Mt and Mg are as in Proposition 1.

(2.20)

In order to prove Proposition 2 we require the following three identities (equivalent

identities can be found on p. 220 of [9] without proof).

Lemma 1. Let «, A, and pu be as in (2.2). Then

~ /(1 ~ (1 ~ (2 ~ (3
N\ =, — M\ =,49 AM | =,49 M| =,49
(7 Z) (" (7 Z>+ (7 Z)” (7 Z))

1 1
~ (72 [ﬁ(" f1(72) + A f2(7z) + Mf3(7z))2

— i f2(T2) + X fE(T2) + 1 f§(7z)} :

2.21)

We defer the proof of Lemma 1 to Section5; here we deduce two immediate
consequences. Note that the right-hand side of (2.21) is holomorphic; this implies
that the nonholomorphic completion terms on the left-hand side sum to zero. By
(2.7), the coefficients of N (7, z) liein Q(¢7 + {{1) = Q(«?), and the automorphisms
k2 > 2% and k% > p?> map N (3, 2) to N(3,z) and N (2, z), respectively. By (2.10)
it follows that the coefficients of both sides of (2.21) lie in Q(«). Let t; and 1, be

the automorphisms
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T=KH A A —u, 4> K),

Hh=0KrH WU A=K, L= —\).

Since ﬁ:xku, we have 1| (ﬁ) = 7:2(\/7) =—/7. Applying 7; and 1, to
Lemma 1 gives the following identities.

Lemma 2. Let «, A, and i be as in (2.2). Then

- (2 ~ /1 _ (2 ~ (3
N(Z.z)=(rd(=,492) — it (=, 49 M=, 49
(5:2) = (431 (5200) = (5 000) 1 (5.2)

R R 2
~ n(72) [ ﬁ(A f1(72) — i fo(72) + « f3(72))

— A f7(72) = f7(T2) + & f22(7z)} .2

Lemma 3. Let «, A, and i be as in (2.2). Then

F(3 M149+M’249 it (240
7,Z M 7,Z K 7,Z 7,Z

1 1
" (72 [_%(M H1(T2) +« fo(T12) — 4 f3(7z))2

— 1 f3(72) + K f1(T2) — A f22(7z)} -
(2.23)
Proof of Proposition 2. The transformation with respect to 7 follows immediately

from (2.11). Let G;(z) denote the j-th component of G(z). By (2.13), (2.15), and
the fact that 77| S = ;‘8_1 n, we have
2

I [ﬁ(l z)_L(Kf1(z)+kfz(z)+uf3(z))2}

G|, S=¢'— =, =

Applying Lemma 1 with z replaced by 2, we find that
a1 ~ (1 ~ (2 ~ (3
Gl(Z)|%S=§8 % KM 5,72 +)\.M ?,72 +/,LM ?,7Z

_Kf32 (2) — Afi(z) — Mfzz(z)]
n(z)

1
— g lﬁ(Kcl(@ +2.G2(2) + 1G(2)).

The transformations for G, and G3 are similarly obtained using Lemmas 2 and 3,
respectively.
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3 Vector-valued Modular Forms and the Weil
Representation

In this section, we define vector-valued modular forms which transform according
to the Weil representation, and we construct such a form from the components of
F — G. A good reference for this material is [6, Section 1.1].

Let L = Z be the lattice with associated bilinear form (x, y) = —84xy and
quadratic form ¢ (x) = —42x>. The dual lattice is L' = 81—42. Let {e}, : 8% € S—ZZ/Z}
denote the standard basis for C[L’/L]. Let Mp, (R) denote the metaplectic twofold
cover of SL,(R); the elements of this group are pairs (M, ¢), where M = (‘C‘ 3) IS
SLy(R) and ¢*(z) = cz +d. Let Mp, (Z) denote the inverse image of SL,(Z) under
the covering map; this group is generated by

T:=(T,1) and S:=(S,V2).
The Weil representation can be defined by its action on these generators, namely

pL(T, ey =il ey, 3.1)

oL(S, V2)ey i= o (3.2)

1
—_— e
1 h%;) {34 &n

A holomorphic function .% : H — C[L’/L] is a vector-valued modular form of
weight 1/2 and representation py, if

Fy2) =9 @pL(y,9)F(z)  forall (v, ¢) € Mp,(Z) (3.3)

and if .% is holomorphic at co (i.e. if the components of .% are holomorphic at co
in the usual sense). The following lemma shows how to construct such forms from
vectors that transform as in Propositions 1 and 2.

Lemma 4. Suppose that H = (H;, H,, H3) satisfies

1
H|\.T=MrH and H| S=¢'— MsH,

V7

where Mt and Mg are as in Proposition 1, and define

H2) =y a(hyH @) (e —ep)

h=1,13,29,41

- Y H@@—c) - Y, H@e e,

h=5,19,23,37 h=11,17,25,31
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where
L ifh=1,41,

=1 ifh=13,29.

ap
Then ¢ (z) satisfies (3.3).
Proof. The proof is a straightforward but tedious verification involving (3.1) and

(3.2) that is best carried out with the aid of a computer algebra system; the author
used MATHEMATICA.

4 Proof of the Mock Theta Conjectures

Let F and G be as in Section2. To prove (2.16)—(2.18) we will prove that H :=
F — G = 0. It is easy to see that the nonholomorphic parts of F and G agree, as do
the terms in the Fourier expansion involving negative powers of ¢g. It follows that the
function 7 defined in Lemma 4 is a vector-valued modular form of weight 1/2 with
representation p,. By Theorem 5.1 of [7], the space of such forms is canonically
isomorphic to the space J; 45 of Jacobi forms of weight 1 and index 42. By a theorem
of Skoruppa [13, Satz 6.1] (see also [7, Theorem 5.7]), we have J; , = {0} for all m;
therefore 77 = 0. The seventh order mock theta conjectures (1.1)—(1.3) follow. [J

5 Proof of Lemma 1

We begin with a lemma which describes the modular transformation properties of
fo(2). Let v, denote the multiplier system for the eta function (see [4, (2.5)]). For

y = (‘jZ),deﬁne
a nb
Vo == (c/n d )

Lemma . Let p € {1,2,3}. If

yerM={(13) eSLa@: (¢5) = (31) (mod N},

then

fo(r2) =v,(yVez +d f,(2). (5.1)

Proof. Suppose that p € {1, 2, 3} and that y € I"(7). Lemma 2.1 of [4] gives

fp()/Z) — (_1)pb+[ﬂa/7j é.lp:ab Vg()h) /—CZ+dfp(Z)-
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Writing a = 1 + 7r and b = 7b’, we find that

(_1)ph+Lpa/7J é-ll’:“b — (_1)p(b+r+pbr+ph’). (5.2)

Using the fact that br 4+ r = 0 (mod 2) we find that, in each case, the right-hand
side of (5.2) equals 1. This completes the proof.

We are now ready to prove Lemma 1. Let L(z) and R(z) denote the left-hand and
right-hand sides of (2.21), respectively. Let I denote the congruence subgroup

ab

I = [49) N (7)) = {(C .

):CEOm0d49anda,dzlmod7}.

We claim that
(@ L(z), n(z2)R(z) € M\ (I'), (5.3)

where M (G) (resp. M ,’{(G)) denotes the space of holomorphic (resp. weakly holo-
morphic) modular forms of weight k on G € SL;(Z). We have

1
E[SLg(Z) ' =14,

soonce (5.3) is established it suffices to check that the first 15 coefficients of n(z) L(z)
and n(z) R(z) agree. A computation shows that the Fourier expansion of each function
begins

2| ——« ) +2kqg —2uqg”> =2\ ——pn——\)q" —2kq° +2xg° +2| — -2+ — | g
K " A K "

2 1
+4Kq8+2<k—;+2u—;)q9—2uq1°+2(p,+x—2x)q14+....

To prove (5.3), we first note that Theorem 5.1 of [8] shows that n(49z)L(z) €
M;(I'); since n(z)/1(49z) € M)(I(49)) it follows that n(z)L(z) € M{(I"). Using
Lemma 5 we find that n(z)R(z) € M i (I'") provided that

Vn()/)V,G,(V49) 1 (5.4)
Vn(7/7) . )

This follows from a computation involving the definition of v, [4, (2.5)].
It remains to show that n(z)L(z) and 1(z) R(z) are holomorphic at the cusps.
Using MAGMA we compute a set of /'-inequivalent cusp representatives:
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1 3 5 3 4 3 8 5

2 5 18 13 8 19 11 3 4 13 9 5 11 6
14749735 21°49°28° 7 7 21147 14 7]
(5.5)

Given a cusp a € P'(Q) and a meromorphic modular form f of weight k with
Fourier expansion f(z) = an@ a(n)q”, the invariant order of f at a is defined as

ord(f, 0o) := min{n : a(n) # 0},
ord(f, a) := ord(f|,8a. 00).

where §, € SL,(Z) sends coto a. For N € N, we have the relation (see e.g. [4, (1.7)])

2
ord(f(Nz), %) = % ord(f, &), (5.6)

We extend this definition to functions f in the set
S:={M%.2).N(%.2):a=1,23U{M(a.b,2),N@.b,2) :0<a<61=<b <6}

by defining the orders of these functions at co to be the orders of their holomorphic
parts at co (see Sects. 6.2, (2.1)—~(2.4), and (3.5)—(3.8) of [8]); that is,

. -5 ifa =0,
~ _ ~ - 1 N
ord (M <7,z) , oo) =ord (M(a, b, z), 00) = ;m 1 ifa = 16
T (1 - ‘7’) — 5; otherwise,
5.7
~ /a 1
ord (N (7, z) : oo) == (5.8)
~ b [1 3b2 1
dN 1b9 ) == - kb,7 _ — — 0,
ord (N(a, b, 2), 0) 7<2+ ( )) 08 24
(5.9)
where
0 ifb=1,
1 ifb=2,3,
k(b,7) = !
2 ifb=4,5,
3 ifb=6.

Lastly, for f € S we define

ord (f, a) := ord(f|%8u, 00). (5.10)
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This is well-defined since S is closed (up to multiplication by roots of unity) under
the action of SL,(Z). By this same fact, we have

1
min ord (f, a) > mm ord(g, 0o) = (5.11)
cusps a es 24

for all f € S, from which it follows that
ord (nf,a) >0

forall cusps a and forall f € §.
To determine the order of n(z) M (%, 49z) at the cusps of I", we write

n(z)

n(2)M(%,49z) = 2(d9)

m(49z),  wherem(z) = n(z)M (%, 2).

The cusps of I(49) are oo and 5, 0 < r < 6. By (5.6) the function 1(z)/7(492) is
holomorphic at every cusp except for those which are I7(49)-equivalent to oo (the
latter are oo, lg, and '9 in (5.5)); there we have ord(n(z)/n(49z), o0) = —2. By
(5.11), to show that n(z)M (%, 49z) is holomorphic at every cusp, it suffices to verify
that ord(m (49z), g5) > 2 for r = 18, 19. By (5.6), [8, Theorems 3.1 and 3.2], the

fact that (}"7') = T"ST, and (2.1), we have

ord (m(49z), g) = 49 ord (m(z), 18)

1 ~
=49 <ﬁ + ord (M(4a mod 7,4a mod 7, 7), oo))

46 ifa=1,
=132 ifa=2,
50 ifa=23.

A similar computation shows that ord (m(49z), 49) > 2. Since L(z) is holomorphic
on H, we have, for each cusp a, the inequality

ord(n(z)L(z), @)
> min {ord (1(2) £ (@), @) : @) = N}, 2) or f2) = #(§,492), 1 = a =3} 2 0.

We turn to n(z) R(z). Using Lemma 3.2 of [4], we find that
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2 if7|sandpr=+2 (mod 7),
ord(f,, £) = 59—6 if7|sand pr = £3 (mod 7), (5.12)
1 .
5¢ Otherwise.
By (5.6) and (5.12) we have
(7,5)?

Ll
ord (n(IR(). {) =z 57 =

+ 2p1:11]{r2{30rd (f,(72). %) = 0.

Therefore 1n(z)R(z) € M,(I"), which proves (5.3) and completes the proof of
Lemma 1.
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Abstract K. Alladi first observed the following variant of I. Schur’s 1926 partition
theorem. Namely, the number of partitions of n in which all parts are odd and none
appears more than twice equals the number of partitions of n in which all parts differ
by at least 3 and more than 3 if one of the parts is a multiple of 3. Subsequently, the
theorem was refined to count also the number of parts in the relevant partitions. In
this paper, a surprising factorization of the related polynomial generating functions
is developed.
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Theorem. Let A(n) denote the number of partitions of n into parts congruent to £1
(mod 6). Let B(n) denote the number of partitions of n into distinct nonmultiples
of 3. Let D(n) denote the number of partitions of n of the form by + b, + - - - + by
where b; — b; 1 > 3 with strict inequality if 3|b;. Then

A(n) = B(n) = D(n).

K. Alladi [1] has pointed out (cf. [2, p. 46, eq. (1.3)]) that if we define C (n) to be the
number of partitions of n into odd parts with none appearing more than twice, then
also

C(n) = D(n).

Recently [3] it was shown that a refinement (in the spirit of Gleissberg’s refinement
[4] of Schur’s original theorem [6]) is valid:

Theorem. Let C(m, n) denote the number of partitions of n into m parts, all odd
and none appearing more than twice. Let D(m, n) denote the number of partitions
of n into parts of the type enumerated by D (n) with the added condition that the total
number of parts plus the number of even parts is m (i.e., m is the weighted count of
parts where each even is counted twice). Then

C(m,n) = D(m, n).

The proof relied on a study of the generating function of Dy (m, n) the number of
partitions of the type enumerated by D(m, n) with the added restriction that each
part be < N. Thus,

dy(x)= ) Dy(m,mx"q".

n,m=>0

In fact, the above theorem was directly deduced from the functional equations

doni2(x) = (1 + xq + x*q*)den—1(xq?), (1.1)
don—1(x) = (1 + xq + x*¢* ) den-2(xq*) + x¢* ' (1 — gx)den—7(xg™}, (1.2)

where d_;(x) is defined to be 1.
It turns out that much more than this is true.

Theorem 1.1. Forn > 3, withd_;(x) = 1,

don(x) = (1 + xq + x2¢*)doy_3(xg%), (1.3)
don—1(x) = (1 + xq + x*¢* ) day-2(xq*) + x¢™ ' (1 — qx)doy_7(xg?)}. (1.4)

From Theorem 1.1, it is possible to provide a factorization of the d,,(x). We define
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pa(x) = [ +xq% " + 7Y 7). (1.5)
j=1

Theorem 1.2. Ifn # 3 (mod 6), then pL%J(x) divides d,(x). If n =3 (mod 6),
then pL%J(x) divides d,(x).

Finally, it is possible to give a full account of the quotient arising in the division
given in Theorem 1.2.

Theorem 1.3.

den—1(X) = pa(x) Y _c(n, j)x’, (1.6)
j=0
where
J )igthi i3I (g2 g2y
C(n,j)=Z Z (=g q7597) (1.7)

S (@R aDn-(q% D) - (@ 4P r—3i(g% 4%
From Theorem 1.3, one can deduce explicit formulas for the other dg,—; (x), and we
will discuss this in the conclusion.

The paper concludes with a discussion of other possible factorization theorems
in the theory of partitions.

It should be emphasized that, in some real sense, the intrinsic theorem is the
Alladi—Schur theorem. Not only do we see that

oo (X) = poo(X),

but also the partial products of p,,(x) as revealed in Theorems 1.2 and 1.3 are
naturally arising as n increases. None of the other variants of Schur’s theorem reveals
the successive appearance of the relevant partial products.

2 Proof of Theorem 1.1

Theorem 1.1 is actually an extension of Lemma 3 in [3] to its full generality, and the
proof builds upon what was proved there.
Proof of Theorem 1.1 Let

1 if3n
= 2.1
x(m) 0 otherwise, @D
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then the recurrences (2.2)—(2.4) of [3] can be rewritten as

doy (x) = doy_1 (x) + X2q>" doy_3—y oy (), (2.2)
don—1(x) = day—2(x) +x¢*" ' dry_a—y2n-1y(X). (2.3)

Next we define
F(n) = dyyya(x) — (1 + xq + x°qHdan_1 (xq%), (2.4)

and

G (n) = doy1(¥) = (1 + xq + x°¢*) (don-a(xq>) + xg*" "' (1 = xq)day_7(x4%)).
(2.5)
To prove (1.3) and (1.4), we only need to show that for n > 3,

Fm)=%mn) =0.

Now
F (3) =ds(x) — (1 + xq + xq*)ds(xq%)
=(1+x¢° +xq)(1 + xq + x*¢*)(1 + x¢° + x?¢°)
— (1 4+xq +x2q2){(l +)cq3 + x2q6)(1 + )cq5 + xq7)}
=0,
and

G (3) =ds(x) — (1 +xq +xq"){d2(xq*) + x¢°(1 = xq)d_ (xq°)}
=1 +xq +x%¢* + x¢* + x*¢* + x¢° + x°¢°
+x2¢% + 33" — (1 + xqg + x¢> (A + x*¢° +x%¢°)
+xg°(1 = xq)(1 + xq + xq°)
=0.

In the following, we write for simplicity
Ax) =1+ xq +x%¢%
Now Lemma 3 of [3] asserts that forn > 1,

F(3n) =%03n) =0.
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Hence by (2.4) and (2.5)

F@n—1)=FB@n—1)—903n) — x*¢*"F(3n - 3)

=(den(x) — 2(x)don—3(xq?))
— (don—1(x) — AMx)dgn-1(xq*) — 2(x)xq® (1 — xq)don—7(xq?))

— x2q% (dop—1(x) — 1(x)dgn—7(xq%))
=(den(x) — don—1(x) — x*q*"dgp_a(x))
— AX)(don—3(xq?) — don—a(xq?) — xq*" ' deu_7(xq%))
:0’
by (2.2) and (2.3). So .% (3n — 1) is identically O for n > 2.
Next

G(Bn+2) =4Bn+2) — FGn) — x¢®" 39 3n)
=(den+3(x) — 2(0)den (xq%) — x¢®" 3 (1 — xg)A(x)den—3(xg%))

— (don-+2(x) — A(x)den—1(xq?))
— 2" (dep—1 (x) — A(N)den—4(xq%) — 1(x)xq" (1 = xq)den—7(xq%))
=(dn+3(x) — don2(x) — x¢%" 3 dgy_1 (x))
— 1) (den (xq?) — den—1 (xq?) — x*q%" T dey_4(xq%))
— 2% (1 — xg)A(x) (don—3(xq?) — den—a(xq?)
— xq%"dgp_7(xg%))
=0,
by (2.2) and (2.3). So 4 (3n + 2) is identically 0, for n > 1.
Next,
FBn—2)=—(903n) —FBn—2)—xq" L ZBn - 3))
= — (don—1(x) — A(X)den-4(xq>) — xg*" " (1 = xq)A(x)den—7(xq"))
+ (don—2(x) — A(x)den—5(xq*))
+ xq%" " (don—4(x) — A(x)den—7(xq"))
= — (den—1(x) — den—2(x) — xq”" ' dgn_4(x))
+ A(x) (don-4(xq) — den—s(xq*) — x*q” den_7(xq"))
=0,
by (2.2) and (2.3). Thus .% (3n — 2) is identically 0, for n > 2.
Finally,
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G@n+1)=—(F@n) —%Gn + 1) — x2¢" 2% (3n))
= — (don+2(x) — 1(x)den—1(xg))
+ (don41(x) — A(X)den—2(xq*) — xg%" (1 — xq)A(xX)den—s5(xq%))

+ x2¢ 2 (dgy—1 (x) — M) don—4(xq?) — x¢%" (1 = x@)A(x)den—7(xq?))

= — (don42(x) — don+1(x) — x*¢"" 2 dgy_1 (x))

+ () (don—1(xq%) — den—2(xq*) — xq"" M dgy_a(xq?))

+xg™ 0 (1 = xq) don—4(xq?) — don—3(xq?) — x2q" dgn—7(xq?))

:O,

by (2.2) and (2.3). Thus ¥ (3n + 1) is identically O for n > 1, and Theorem 1.1 is

proved.

3 Proof of Theorem 1.2

O

This result is essentially a corollary of Theorem 1.1, but is of major significance in

Theorem 1.3 and is the factorization referred to in the title.

Proof of Theorem 1.2 The succinct assertion of Theorem 1.3 may be stated more

comprehensibly as follows. We are to prove that there exist polynomials
A(i,n) = A, n,x,q),
such that

dent1(x) = pa(x)A(—=1,n)
den(x) = pu(x)A(0, n)
don—1(x) = pa(x)A(1, n)
den—2(x) = pa(x)A(2, n)
den—3(x) = pa_1(x)A(3, n)
den—4(x) = pu(x)A(4, n)

Now by (1.3), note

d7(x) = pr ) +x(@° +¢° + ") +x*(q° +¢'))
de(x) = p1(x)(1 + x(q° + xq”) + x°¢°)

ds(x) = p1(x)(1 + x¢° + xq°)

dy(x) = p1(x)(1 + xq°)

d3(x) = pox)(1 + x(q + ¢°) + x°¢*)

dr(x) = p1(x)

3.1)
(3.2)
(3.3)
(3.4)
(3.5)
(3.6)

3.7)
(3.8)
(3.9)

(3.10)

(3.11)

(3.12)
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so the case n = 1 is established.
Now assume (3.1)—(3.6) are proved up to but not including a given n. Then by
(2.2) and (2.3),

dons1(x) = dey (x) + xq"" dy_r(x)

= pa(X)(A0, n) +xg* ' A2, n)),

den (%) = dey_1 (x) + x2q" dg,_4(x)
= p.(X)(A(, n) +x%¢%" A4, n))

don—1(x) = don—2(x) + xq%" ' dgy_a(x)
= pa(X)(AQ2,n) +x¢" ' A4, n))

don—2(x) = (1 + xq + x*¢*)dey—s5(xq”)
= pu()A(=1,n— 1,xq%, q),

den—3(x) = den—2(x) + xq* den_7(x)
= P ()AQ2, 1) +x¢"" P p(n — DA, n —1)
= puo1 (1 +xg7" " + ¢ AR, n) + xq™ AL — 1)),

and finally by (1.3),

den—a(x) = (1 + xq + xq*)de—5(xq%)
= pa()A(=1,n — 1,xg% q),

and our theorem is proved. (]

4 Proof of Theorem 1.3

This result seems to require a rather elaborate proof. In order to make Theorem 1.3
comprehensible, we shall prove a number of preliminary lemmas.
We begin by defining

)i ghni—2nr+j+3iG=1) 2; 2 )
(=1'q g7 97) @0

J
=y Y

r=0 0<3i<r

(q% q9n—j(q% g2 - (q% q*)r-3;(q% q%)i

Clearly, Theorem 1.3 reduces to proving that, in fact, c(n, j) = ¢(n, j).
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We note that, of the partitions enumerated by dy,— (x), the one that provides the
largest x-exponents is
447+ 10+ +6n—2,

yielding x*". Furthermore, by (3.3), and noting that p(n) is of degree 27 in x, we
must have A(1, n) of degree n. So c(n, j) =0if j <Oorj > n.

Lemma 4.1.

. 1 ifn=j=0
e =t Ir=7= o 4.2)
0 ifn<0,j<0;n<0,j<0,j>nandforn>0
e, ) =g et =1, )+ @V +¢"H e —1,j -1 (43)
+ (q4j+4n76 _ q6n+2j74)c(n _ 1,] _ 2)
Proof. By (1.3) with n replaced by 3n — 2

den—a(x) = p,(x)A4, n, x, q) (4.4)
= p,(x)A(1,n — l,xqz, q)-

Therefore, by (1.4) with n replaced by 3n

don—1(x) = 1) don—a(xg*)xq"" " (1 — gx)dgn—7(xq*)}. (4.5)
So
Y el pxd =) et =1, g (A +xg™ ' + 22"
j=0 j=0
+ qu”_l(l —xq) Zc(n -1, j)quzj.
j=0
Hence
c(n, j) =c(n — 1, Ng* + (@ + ¢ e —1,j — 1) (4.6)
4 (g6 _ g2y ey — 1, j —2)
as desired. O

Lemma 4.2. Forn > 0,

cn, A —g*) =c(n, j — D@ =11 — g*~27+2) 4.7)
+C(l’l,j _ 2)q4n+2j72(1 _ q2n72j+4)
—c(n—1,j—2g" 41— ¢%).
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Proof. By (2.7) of [3] rewritten twice, first with n replaced by n 4 1, we see that

P (0) Y cn, Dxg™ =1 +xg" +x2¢" ) p,(x) Y e(n, j)x

j=0 j=0
n—1
+x7¢% (1= g™ pa(x) Y _cn — 1, (xg’) .
j=0

Now noting that p,,1(x)/p,(x) = 1 + xg?' ! 4 x2g*"+?

equation by p, (x), we obtain

, and dividing this last

(A +xg™" +x2¢") Y e, j)(xq)
Jj=0

n
=(1 +x¢"*" +x%¢") Y " c(n, j)x!
j=0
n—1
+27g" (1 =g Y e(n =1, j)(xq*).
Jj=0

Finally, comparing coefficients of x/ on both sides, we deduce

q2jc(n’ J) +q2n+2jflc(n’j _ 1) +q4n+2j72c(n’j _ 2)
=c(n, j) +q"en, j — 1) +q"Pcn, j—2)
+ %1 = ¢ e(n — 1, j —2),

which is equivalent to (4.7). O

From Lemma 4.2, we shall deduce a recurrence for c(n, j) where only j varies.

Lemma 4.3.
0=@% —g*)e(n -1, j) (4.8)
4 (q2n+6j—3 _ q6n+2j—3 +q2n+6j—5 +q2n+4j—3)c(n _ 1"] _ 1)

4n+6j—6 6n+4j—6 6n+4j—4
+ @ = -

q q
4 OIS g tOi—10 _ pdntdi=6y iy — D)

+q8n+2j716(q2n+4 _ q2j)(q2n+6 _ qZJ)C(n _ 1,] _4)

Proof. By (4.3), we see that c(n, j) is equal to a combinationof c(n — 1, j —i),i =
0, 1, 2. Thus substitute the expressions for c¢(n, j), c(n, j — 1) and c(n, j — 2) aris-
ing from (4.5) into the recurrence (4.7). Collect terms and simplify to obtain (4.8).

O
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We now require a more succinct recurrence for c(n, j).

Lemma 4.4.

0=(q* —q*cn, j)—q" (1 —q™)ecn -1, j) (4.9)

_ q4n+2j—3(q2n _ qzj)(l _an)C(n _ l,j - 1.

Proof. Let us substitute for ¢(n, j) in the right-hand side of (4.9), the expression for
c(n, j) given in (4.3). Hence our assertion is equivalent to proving that

0=(q% —g*)etn — 1, ) + (@ —¢" " Hem—1,j—1)  (4.10)
+ g (@ — P (@ = g e(n — 1, j —2).

Letus denote the right-hand side of (4.10) by T (n, j). Now direct substitution reveals
that (4.8) may be rewritten as

0=T®mn,j)—q¢" "' Thn,j—1)—q¢"Tn,j-2). 4.11)
Furthermore, we see from (4.10) that
T(n,0) =0.
Now from (4.7)

q2n+1(1 _ q4n)

c(n, 1) = &

Hence

q2n+1 (1 _ q4n74)

T(n, 1) — (qﬁ _ q4) +q2n+3 _ q6l‘171
1 — g2
— _q2n+3(1 _ q4n—4) + q2n+3 _ q6n—l
=0.
Therefore, by (4.11),
T(n,j)=0
for all n and j. Thus (4.10) is proved, and (4.10) is equivalent to (4.9). O
Finally, we need a “diagonal” recurrence for the c(n, n).
Lemma 4.5. Forn > —1,
0=ctn+2,n+2)— (""" + ¢ e+ 1,n+1) (4.12)

_ (q10n+10 _ q16n+16)c(n’ l’l)
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Proof. Setting j = n in (4.3), we find

cn,n) — (@ 3+ ¢ Hetmn—1,n-1)

cn—1,n-2)= 51— 47 4.13)
Nextset j =n — 1 in (4.9)
0=(¢"""*=qg")cn,n—1) —g" (1 —¢g"ectn—1,n-1) (4.14)

o q6nf3(q2n . q21172)(1 o qZH)C(n —1,n—2).

Now use (4.13) twice (first with n replaced by n + 1), toreduce (4.14) to an expression
that only involves instances of ¢(n — i, n — i). Thus, after simplification, we find

0=cn+2,n+2)— (@M + ¢ Hem+1,n+1) (4.15)

_ (q10n+10 _ q16n+16)c(}’l, }’l),

as desired. O

Lemma 4.6. Forn > -2,

O=—c(n+3,n+3) (4.16)
gt (] = g2 g S eS| ankl0) L 0y
gm0 (] g2y (] 22 g et By ] )
— MRl 22y () g2ty (1 — g0 e(n, n).

Proof. Let us denote the right-hand side of (4.12) by U (n). Then it is easily verified
by algebraic simplification that the expression on the right side of (4.16) is

—Umn+1 +q4n+11(1 _q2n+2)(1 _ q2n+4)U(l’l),

we see by Lemma 8, that (4.16) is established for n > —1, and inspection reveals
the truth forn = —2. O

We now move to recurrences for c(n, j) as defined by (4.1).

Lemma 4.7.

0=(¢* —q¢*")en, j) —q* (1 —q¢*™)cn — 1, j) (4.17)
— gt @ — g — g™ — 1, j —1).

Proof. Here we require the assistance of gMultiSum [5]:
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In[20]= gFindRecurrence]|
gPochhammer [q°2,q"2,n] *(-1) “i*q" (2*n* (2*J-1)+3+3%1* (i-1))/
(gqPochhammer [g"2,q@"2,n-j] *gPochhammer[q"2,q"2,j-r]*
gPochhammer[g~2,g"2,r-3*i] *gPochhammer[q~6,g"6,1]),
{n,3},{di,r},{1,1},{0,0},{0,0}]1//aSR[#,2] &//Timing
Out[20] ={0.093601, {q3+2j+4"(_qj +g"
(@' +q") (=14 ¢ +¢"*)SUM[n, j1+
q2+4_/(_1 +q1+l’l)(1 +q]+")SUM[n, 1 +]] _ (_q] +qn)
(¢’ +¢"SUMI[L +n, 1+ j1=0, ...

This is precisely the recurrence (4.17) with n replaced by n + 1. O
Lemma 4.8.
0=—c(n+3,n+3) (4.18)

g I — g2t g2y A6y At At lONE G 4 ) 4 D)
+q10n+20(1 _ q2n+4)(1 _ q2n+2 + q4l‘l+4 +q4ﬂ+6 +q4n+8)5(n + 1’ n+ 1)
— gL 22y (] g2ty (1 — gOOE(n, n).

Proof. Again we employ qMultiSum:

In[40]= gFindRecurrence[gPochhammer|[g”2,g"2,n]* (-1) "i*
g™ (2*n* (2*n-r)+n+3*1i* (1i-1)) / (gPochhammer [g”2,gq"2,n-r]*
gPochhammer [g"2,q"2,r-3*i] *qPochhammer [q"6,g"6,11]1),
{n},{r,i},{2},{1,1}1//aSR[#,1] &// Timing

Out[40] ={1.060807,
{q21+l4n(_1 +q1+n)2(1 +q1+n)2(_1 +q2+n)
(1 +q2+n)(1 _6]]+n +q2+2n)(1 +q1+n +q2+2n)SUM[n]_
q20+10n(_] +q2+n)

(] +q2+n)(1 _q2+2n +q4+4n +q6+4n +q8+4n)SUM[1 +I’l]+
qll+4n(1 _q2+2n _ q4+2n +q6+4n

+ g8t 4 g1 SUMI2 + n] — SUM[3 4+ 1] =0, ...
This is precisely the recurrence (4.18). (]

Finally, we are ready to deduce Theorem 1.3.

Proof of Theorem 3. First, it is easy to check by hand (tedious) or by computer
algebra system (rapid) that Theorem 1.3 is valid for each n < 3. The fact that (4.18)
and (4.16) are identical fourth order linear recurrences then allows us to establish by
mathematical induction that for all n,
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c(n,n) =c(n,n). (4.19)

Finally, the identity of the recurrences (4.9) and (4.17) allows us to establish by
mathematical induction on n that

c(n, j) =cn, j). (4.20)

We should note that (4.19) is necessarily established independently because (4.9)
and (4.17) reduce to 0 = 0 when j = n. O

5 Conclusion

It should be noted that while Theorem 1.3 only provides an exact formula for A(1, n),
formulas for the other A(i, n) can easily be obtained from the recurrences for the
d,(x). Indeed, (2.3) implies immediately with n replaced by 3n — 2

A4, n, x,q) = A, n,xq°, q), (5.1)

and the remaining A’s are produced from the original recurrences for the d,, (x) given
in (2.2) and (2.3).

It is not obvious from Theorem 1.3 that c(n, j) has nonnegative coefficients, but
there is adequate numerical evidence to suggest the following:

Conjecture. For all n and j, c¢(n, j) has nonnegative coefficients.

If the conjecture is true, it is natural to ask for a partition-theoretic interpretation
of them. Also if that could be accomplished, it would be truly interesting to have a
bijective proof of Theorem 1.3. Yee’s bijective, related work [7] suggests this may
well be possible.

Finally, we note that the Alladi—Schur version of Schur’s theorem seems most
fundamental in that the generating polynomials factor into increasing partial products
of the product side of the limiting identity. It is natural to ask whether this phenomenon
holds for other either classical or new partition identities.
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[e%e} n(n+1)
q

o(q) = :
=0 (_Q)n

It is the generating function for the excess number of partitions of n into distinct
parts with an even rank over those of odd rank [6]. Note that the rank of a partition
is the largest part minus the number of parts.

On page 14 of the Lost Notebook [35], Ramanujan gave two surprising identities
involving o (q):

]

1
Z (8(q) — (=q)n) = S(g)D(g) + 50(61), (L.1)
n=0
and
nd 1
= S(q)D(g?) + = , 1.2
Z( @~ qz)n ) (@D + 50(@) (1.2)
where

S$(q) = (—4; Qos

o]

—

D(q) = —5 +

Here, and throughout the sequel, we assume |g| < | and use the standard g-series
notation

(A)o :=(A;q)o =1,
(A = (A; ) =0 —A)(A —Ag)--- (1 — Ag"") for any positive integer n,
(Aoo 1= (A1 @)oo = lim (A1 q)n, gl <1,

(A), = (A)/(Aq") o for any integer n.

Since the base of almost all of the g-shifted factorials occurring in our paper is ¢,
for simplicity, we also use the following notation:

(Ah AZ’ ) Am)n = (Ah AZ’ ) Am; Q)n = (Al)n(AZ)n T (Am)n’
(A1, Az, Adoo = (A1, Aoy L A Qoo = (Ao (A2) oo+ (A o

We provide the associated base wherever there is a possibility of confusion.

The aforementioned identities involving o (¢) were first proved by Andrews in [6].
The function o (¢) enjoys many nice properties relevant to various fields of number
theory, namely, the theory of partitions, algebraic number theory, Maass waveforms,
quantum modular forms etc. We review these properties below.
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In [6], and later more explicitly in [7], Andrews conjectured that infinitely many
coefficients in the power series expansion of o (g) are zero but that the coefficients
are unbounded. These two conjectures were later proved by Andrews, Dyson, and
Hickerson in a beautiful paper [9], where they found that the coefficients of o (g)
have multiplicative properties determined by a certain Hecke character associated
to the real quadratic field Q(+/6). Results similar to these were later found by [14],
Corson, Favero, Liesinger, and Zubairy [16], Lovejoy [27], [28], Lovejoy and Osburn
[29], Patkowski [31], and more recently by Xiong [37].

Cohen [20] showed that if we set

—1/24 5%

o(@) :=q"*0(q) +q q)

= Y Tmg""™,

nez
n=1 (mod 24)

where
. ( 1)n n?
= Z( o

then T (n) are the coefficients of a Maass waveform of eigenvalue 1/4. For another
example of such a Maass waveform associated with the pair (W;(q), Wz(q)) studied
in [16], we refer the reader to Section 2 of a recent paper of Li, Ngo, and Rhoades
[25]. At the end of [25], the authors posed an open problem of relating 10 other pairs
of g-series to Maass waveforms or indefinite quadratic forms, which was recently
solved by Krauel, Rolen, and Woodbury [24]. The function o (¢) also occurs in one of
the first examples of quantum modular forms given by Zagier [40], that s, ¢'/**o (¢),
where ¢ = ¢?™*, x € Q, is a quantum modular form.

The identities of the type (1.1) and (1.2) are known as ‘sum of tails’ identities.
After Ramanujan, Zagier [39, Theorem 2] was the next mathematician to discover a
‘sum of tails’ identity. This is associated with the Dedekind eta-function and occurs in
his work on Vassiliev invariants. Using a new Abel-type lemma, Andrews, Jiménez-
Urroz, and Ono [10] obtained two general theorems involving g-series obtained
by summing the iterated differences between an infinite product and its truncated
products, and used them not only to prove (1.1) and (1.2) and similar other identities
but also to determine the values at negative integers of certain L-functions. Chan
[17, p. 78] gave a multiparameter ‘sum of tails’ identity which consists, as special
cases, the two general theorems in [10]. More ‘sum of tails’ identities were obtained
by Andrews and Freitas [13], Bringmann and Kane [15], and Patkowski [32], [33],
[34].

Andrews [6] asked for a ‘near bijection’ between the weighted counts of par-
titions given by the left-hand sides of (1.1) and (1.2), and the coefficients of the
corresponding first expressions obtained by the convolutions of the associated parti-
tion functions. Such a proof was supplied by Chen and Ji [18]. In [11, Theorem 3.3],
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the function o (¢) was found to be related to the generating function of the number
of partitions of n such that all even parts are less than or equal to twice the smallest
part.

As mentioned before, identities (1.1) and (1.2) were proved by Andrews in [6]. His
proof was based on an application of a beautiful g-series identity of Ramanujan [35,
p. 401, [5, Equation (3.8)], now known as Ramanujan’s reciprocity theorem, which
was, in turn, proved earlier by Andrews himself in [5]. In [13], it was remarked that
the proofs of (1.1) and (1.2) in [6] are nearly as odd as the identities themselves. In [8,
p. 149] as well, it was remarked that ‘the proofs provide no significant insight into the
reasons for their existence’. While this may be true, the goal of this paper is to show
that the underlying idea in these proofs can be adapted to obtain new representations
for o (g), which are of a type completely different than those previously known, for
example, [9, Equations (6.3), (6.4)] or (1.1) and (1.2). These two new representations
involve natural generalizations of o (g) in one and two variables respectively.

These representations result from applying Andrews’ idea in [6] to the three-
variable reciprocity theorem of Kang [23, Theorem 4.1] which is equivalent to
Ramanujan’s 1, summation formula, and to the four-variable reciprocity theorem
[23, Theorem 1.2] which is equivalent to a formula of Andrews [5, Theorem 6].

For |c| < |a] < 1 and |c| < |b| < 1, Kang [23, Theorem 4.1] obtained the fol-
lowing three-variable reciprocity theorem:

p3(a,b,c) — ps3(b,a,c) = (1 1) (c.aq/b.bq/a, q)s 13

E B Z (_C/a, —C/b, —aqg, _bQ)oo '

where

1 ) i (C)n(_ l)nqn(n+l)/2anb—n

vboo) =1+~
p3(a ) < +b (—aq)n(—c/b)pi1

n=0

Ramanujan’s reciprocity theorem is a special case ¢ = 0 of the above theorem.
Using (1.3), we obtain the following new representation for o (¢). The surprising
thing about this representation is that it is valid for any complex ¢ such that |c| < 1.

Theorem 1.1. For any complex ¢ such that |c| < 1, we have

00 qn(n+1)/2 00 (=m (_l)nqn(n+l)/2cm+n+1
o(g) = (—o¢) S
[ n2=(:) (=q)n(1 —cq™) m;() (Dm(@n (1 — gntm+ly

(1.4)

For |c|, |d| < |al, |b| < 1, the four-variable reciprocity theorem is given by [23,
Theorem 1.2]

1 1) (d,c,cd/(ab),aq/b,bg/a, q)s
b a (—d/a, —d/b, —c/a, —c/b, —aq, —bq) e’
(1.5)

pa(a,b,c,d) — pa(b,a,c,d) = (
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where

(d, ¢, cd/(ab)n(l +qu2n/b)( g n(n+1)/2 np—n
b,c,d):=(1+
o4(a, b, c,d) ( b);_(:) (—aq)n(—c/b, —d/b), 41

Using (1.5), we obtain the following new representation for o (¢) which consists of
two free complex parameters ¢ and d:

Theorem 1.2. Let |c| < 1 and |d| < 1. Then

d) ( Cd), 1 —cd 2n) n(n+1)/2
o(q) = = Z ! T | Ae.d,q),  (1.6)
( Cd)oo (=q@)n(1 —cq™)(A —dq")
where
Aed.q) =1 - 2644 ~d9)0 i (c.d, —cd)y wnt) o,

(=ed, =q@)oc 1= (—cq, —dq, @)n

[e°]

(g, O9x o (C@p(=Dpe? N (—gP ik
(—cd,—q)oopg(:) (@p 2 (gP* i

ad (—cd,d) (n+1)
XZWQ 2 PO 4 cdg (14 gP) (14 ¢7H)
n=0 v

o0

@9 o C)p(=Dpd” SN (= (—gPret o (—¢P T d!
<-cd,—q>m§ @) 2 @k 2 (g™,

k=0 j=0

x Z ‘( (C>d BV 4 cdg? (14 gP (1 4 gP )
q)n
n=0

o]

(—cd)? K (—q);d7 A (—q)rck
—2(d, ¢)eo
@0 ; W 2w &

ad —cd)y™ ket k4 j+1
Z (—cd) (1+ J (14 gPT*H) (1 4 gP T+ >

‘ (qp+l)n1(_qp+k+_/’)m+] 1+ qp+k+j+m+1)(1 + qp+k+j+m+2)

(1.7)

As in the case of Ramanujan’s reciprocity theorem [23, p. 18], the conditions for the
validity of (1.3) and (1.5) can be relaxed to allow the parameters a and b to be equal
to 1.

It will be shown later that letting d = 0 in Theorem 1.2 results in Theorem 1.1.
Still, pedagogically it is sound to first give a proof of Theorem 1.1 and then proceed
to that of Theorem 1.2, especially since the complexity involved in the former is
much lesser than that in the latter.

In order to obtain (1.6), we derive a new nine-parameter transformation contained
in the following theorem which generalizes previous transformations due to Agarwal
[1] (see Equation (2.5) below), and due to Andrews, Dixit, Schultz, and Yee [12] (see
Equation (2.6) below).
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Theorem 1.3. For 8,68, f,h,t #q~7, j > 0, the following identity is true:

o0

Z (Ol),, (V)n(e)n(g)n o
= BIn(®)n(fln(h)n

B 4 %9 fq hq
=(g,e,y,a,q,at,w,ﬁ,ﬁ,ﬁ o
(hf‘giﬂﬁﬂﬁﬂﬂ 4

, [i8, 5. B,
3q fq hq
(1oa (8.e.v.t. F F Foo 5 ot & q,
ﬂ(hfa%,%q(;gq)zts 1 q, 201

h SqP
+<1 - g) @ eyt B Mo i D)p()pr? i (%»(%"%3 2(%,
B f8.% % 5 i 0p@p =5 @

g

=

e

=
—
|8
SN

=|§

=3
N S S
wTufr IR

E‘b:“‘\*‘-
R |
~—
|
—_
N

;ﬂ;ﬂ)oo

w[T=IR
=|T=R
-
<
>
3
=
~——

. (1 q) (g e, 1 oo

B) G, f.5, %, &)

= (Dp(§pe? & Oyt & L)y e s .
e e ’ gt p+k+])
X ; 0@, l; (@i (tgP) Z (qp+l)j 201 ( é q.1q

+<1 q>(g,e,y>wi(%»gﬂi(g)jefi(%wi (M), (g P4, (gq>m
ﬂ (h’f’a)oc p=1 (q)p j=0 (ll)j k=0 (({)k m=0 (q])+1)l;1(mq,;k+l)m+1 .

(1.8)

A version of the above formula, and also of (2.6), in terms of g-Lauricella functions,
was obtained by Gupta [22, p. 53] in his PhD thesis. However, his versions are not as
explicit as the ones in (1.8) and (2.6). We remark that Gupta has obtained a general
transformation of these results, with r g-shifted factorials in the numerator and r in the
denominator, in terms of g-Lauricella functions. However, one can easily anticipate
such general transformation by observing the pattern occurring in Agarwal’s identity
(2.5), (2.6) and (1.8). To avoid digression, we do not pursue it here.

This paper is organized as follows. In Section 2, we collect formulas from the
literature that are used in the sequel. Section 3 is devoted to proving Theorem 1.1
while Section 4 to proving Theorem 1.2, and for deriving Theorem 1.1 from Theorem

1.2. We conclude this paper with Section 5 consisting of some remarks and directions
for further research.

2 Preliminaries

The g-binomial theorem [4, p. 17, Equation (2.2.1)] states that for |z| < 1,

o0

3 (@ @)nz" _ (a2 @)oo
—~ (@G (@D

2.1)
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For |z] < 1 and |b| < 1, Heine’s transformation [4, p. 38] is given by
a,b (b, at) c/b, t
T gt T ouq,b), 2.2
2¢>1< o ) © Dee — ( ar b4 (2.2)
whereas its second iterate [4, p. 38, last line] is
a, b _ (¢/b,bt) b, abt/c
2¢1 < c 7q’t> — WZQSI bt 7q’c/b . (23)
Here , 11 ¢, is the basic hypergeometric series defined by
o0
ai, az, ..., 041 (ar; @naz; @)n -+ (ar; @n n
r+1Pr < > ’Z) = <.
HO\brbab, % (@: b1z @) -+ (byi @
We need the following identity [21, p. 17, Equation (15.51)]:
o0
" 1—b —H" n(n+1)/2
Z _( ) o (—D)"q ' 2.4)
n— (bQ)n (l)oo n=0 (Q)n(l - bCI”)

Agarwal [1, Equation (3.1)] obtained the following ‘mild’ extension/generalization

of an important identity of Andrews [5, Theorem 1] in the sense that we get Andrews
identity from the following result when t = g:

i ©Onn

— (B)n(®)n

it (" o)
+ P (1 - %) gm@w)m (m( e q/a) - )
B (DL L e e

The following generalization of the above identity of Agarwal was recently obtained
in [12, Theorem 3.1] for B, 8, f, t # q’f, j=0:

i @n(¥In(n
— (Bn () ()
v tgan L, %{ffg)oo 259
= 5 wid ya eq 302 é Fq 345t
(f,ls,g v wt’ B0 ?,f)oo B B
I ALe I o 1 g.1 4
() ered e () (L 2) )
( (/8. % 5 oo 7 “
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" (1 - 1) Crt e i (g)p(%’)py” i (¥)k(%)k 2¢1(%’ %fq i q tqk“’)
B) (8. % o i 0p@p = @k g

+( 7@) (e. V)ooz( Dype? S Ot & (L8, 1q7 ) (ﬁ)'".
B/ (f, oo @p = Dr (ql+p)m(mq,3p+k)m+l

p=1

(2.6)

We will also make use of the e-operator acting on a differentiable function f by [6]

e(f(@) = f'D.

3 The three-variable case

We prove Theorem 1.1 here. Lettinga = —z and b = 1 in (1.3) gives

(¢, —2q, =77, @)oo
(cz7!, =, 29, —q@)oo

p3(1’_z, C) :)03(_Z, 11 C)— (3.1)

Divide both sides by (I —z~') and let z — 1. It is easy to see that the left side
n(n+1)/2
becomes Z (q)(l—) which we denote by o (c, ¢). Denote the right-hand
q)n(l —cq"

side of the above equation by f(z). Note that

‘ o @©ag" M (g
mre= 2; s e

since replacing ¢ by —cgq, substituting a = ¢, b = —q/t,t = 7, and then letting
7 — 01in (2.3) gives

n(n+1)/2

Z 7(6)"4 = lim ¢ <C’ :q/r 0q,T > = lim 7( Doo 201 ( —a/t lq q, C‘L’)

0 (@n(—=cq)n =0 cq I—>O( cq, T)oo

— i (€T, =@)oo  (—9)o
= lim = .
=0 (=¢¢, T)oo  (—¢q)oo

This result can also be found in [23, Corollary 7.5].
Hence using L’Hopital’s rule, we see that

S (z)

= f'() =e(f(2),

=11 —
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so that from (3.1),

= nn+1)/2 (C’ —q, _Zila )OO
P et — =s(p3(—z, B ) (32)
= (=)l —cq™) (cz7!, —¢, 29, =)o

(C) Zn n(n+1)/2

The idea now is to rightly transform p3(—z, 1,¢) =2 Z (=0 into an
24 )n(—C)n+1

expression which is amenable to the e-operator. To that end we invoke (2.5), the
reasons for which will be clear soon. Let « = —¢q/t,y =¢, 8 = 29,8 = —cq and
t = 1zin (2.5). Then,

Z( q/f)zz(c)n _
5 @@ (= cq)n

(—z7' e =24, =712, Qoo o= (TDm (" (©)oo 1\ & @ (H" & (i)

R E R D m(%) - <1">Z ) Z( o

j

C(L—eqt —T 200 A (@ 2(=cq)oo )= (@Dn

(oo 1\ = (=) pc? = (12gP)m (/)"
—=(1-- .
(=¢q)oo ( Z) ;, @p ,;) @ Dm (1+47)

Now use (2.1) to evaluate sums over m in the first two expressions, then let 7 — 0 on
both sides, separate the term corresponding to p = 0 in the double sum followed by
another application of (2.1), and finally multiply throughout by 2/(1 + ¢) to obtain

5 i (c)nznqn(n+l)/2
= @Dn(=O)nt

(=27 ¢, —2¢, @)oo (©)oo ( 1) gIUtD/2=i
= + —_ =
(=q.—c,2q9,¢/2)0 (=€, /200 Z (=)

(oo (©)oo 1\ o (—@)pc? o (/D)™
1—— —
( )+ - c>oo< z) ETnY: Z APTOn

(=¢. ¢/ z

i

q1(1+l)/2z—1

(—z7' e, —29, 9o (oo ( 1) -
= —+ —_
(=q.—¢, 29, ¢/ (—C,¢/Do z Z (=q);

~.

(—c/2)"q"" D2

©x ! © 1\ 5o C9)p-1¢”
I I S o/ [ B ,
( )+ ( Z)Z @i 2 @nl =)

(=¢, /7)o Z (=c¢,¢/2)o0 =1
(3.3)

where in the last step we applied (2.4) with t = ¢/z and b = ¢?*.
Now substitute (3.3) in (3.2) and then apply the e-operator to deduce that

ot n(n+1)/2

Z q
=0 (_q)n(l —cq")
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-1 1 2 x _1cP X \n,nn+1)/2

=(U(‘]) )+ 4 Z(‘Z)l 1C¢ Z(C)q —,

(= (Ox  (Ox = @p1 L @a(l—g")
which is nothing but (1.4). This completes the proof.

(c,—2¢,~ 7 "\
(cz !, —¢,2¢,~ @)oo
uct identity [4, p. 28, Theorem 2.8], then, from (3.2), we obtain upon simplification

O'(C, q) =2¢ (Z (C)nZ q ) + S(c,q) +2$(C, q) (Z 1 ichn - Z 1 zqn) ’
n n=1

-0 @ (—n+1 s

Remark 1. If we explicitly evaluate & ( ) using the Jacobi triple prod-

n(n+1)/2

where S(c, ¢) = (—¢)oo/(—C)c- This is a one-variable generalization of [6, Equa-
tion (3.5)], as can be easily seen with the help of (1.1).

4 The four-variable case

We begin with a lemma that is used several times in the sequel.

Lemma 4.1. For|c| < 1,|d| < 1, we have

Z (C d Cd)n (1+qu2n)qn(n+l)/2 ( Cd Cl)oo )
= (=cq, —dq. q)n (=cq, —dq)

Proof. By Proposition 8 in [19], which is, in fact, equal to (1.5), we see that

S (‘I q ‘I)

YY1 =gy ) e

bx’ cx’ dx/n
n=0

(_bcdxyZ/q)nqn(n+1)/2

(by’ dy)n-H (qu)n

49 49 49
by’ ¢y’ dy

bed n, n(n+1)/2
(bx, cx, dx)n+1( cax y/q)

—x(1—cy) Z(l —q”""'x/y)

(Q5 x y V) bcxy5 Cdx)’a bd‘xy)OO
= —x)

(bx7by9 nycycbdx,dy)oo

Now letd = q/(ux),b = q/(vx),c = 1/y and y = —uvx/q in the above identity
to obtain upon simplification

o0

3 L g = M0
( uq, —vq, q)n (—uq, —vq)x

n=|

This completes the proof. (]



New Representations for o (¢) via Reciprocity Theorems 49

We now first prove Theorem 1.3 and then use it to prove Theorem 1.2. Since the
underlying idea in the proof of Theorem 1.3 is similar to that involved in the proof
of (2.5) (see [1]) and in the proof of (2.6) (see [12]), we will be very brief here.

Let S denote the sum on the left side of (1.8). Writing (g),,/(h), = ((8)co/ (M) o0) -

((hg™)/(89™) ), then representing ((7g")o0/(89") ) as a sum using (2.1), inter-
changing the order of summation, and then employing (2.6), we find that

S=X+Y, 4.1
where
(g.e. B .q, 3q ﬁ) o0 (ﬁ) (atg™ qlf’") m g yq eq
AP g o oogz(ﬁz(ﬂ,aﬁ’ﬁ'qtqm)
qa Yq eq —m m+1 bq  fq 49 5
(h fS B B ? =0 (q)m(ﬂ{i, ’qu)oo B B
i m+. m
_@en=l-p & (ﬁ)mg””i (L)je! i@ =) ykiw‘ Ty
m+j 1+m | k- m
S 8o 1y @ j=0 (@)1 = mqﬁ ’) i (. Mq/++ o= (B,

To evaluate X, we write the 3¢, in the form of series, interchange the order of summa-
tion, make use of the identity (Bq ™" /(at))oo = (—B/(at))"q "+ D/2(B /(1)) oo
(atg/B)m, and then use (2.1) again to deduce

(e bigoan 0 LM ("—" ve eq g
o B’ B .
a e 493 oq  fq é g5t 4.2)
(hfaaay 159%’%%%)00 B’ B’ B
Since
Z (), (g)f Ok (g)mﬂﬂ( (i (1), (g)Perin Fp <é)">
1 k m—j " fa ’
o (f’qi)r o (7[)m+j+k B o (%{)p o s p \4q
4.3)
we observe that
Y = Yl =+ Yz, (44)

where Y is associated with the infinite sum on the right of (4.3) and Y is associated
with the finite sum. Even though the calculations for evaluating Y| and Y, are quite
tedious, they are fairly straightforward. Using (2.2), it can be seen that

3¢ fq hq g yq eq  gq q
q\ & ev.i, BB B Joo B v B B q, v 4
Yy ——(1**> 4¢3 £ hg 4.1 ) |26 by 5= )—1).
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Now write the finite sum on p in Y; as
m+j+k k k+j mtj+k
PIEDIE DD
p=0 p=0

p=k+1  p=k+j+1

and let Y»;, Y2, and Y,3 denote the expressions associated with the first, second, and
third finite sums in the above equation respectively so that

Y = Yo + Yoo + Vo3 (4.6)

Now using (2.2) repeatedly, it can be see that

(g eyt B Mg 20 (), (%) & L (B g
Vo = (1 v <h’
2 ( ﬂ)(h £.8. 9 G > Op@p 2 @+ "

p=0
v (1-2 (gsea)’,t’%)oo
2N 0 s g e
5 (D)p(4)pe? 5 et 5 L8y (Tq
X
Op@p @xtgP = (qP+h); e

p=I1 k=0

ngz(l ) g.e.¥)oo Z( L) pg? Z(%)mi = (urt f} (M), (1g P4, <g;1)'”
) B [0 £ @p T @5 (S @ L qrhn (L, \ B
4.7)

=TI’
= TR

iq. tq”“‘>,
=0

s
<

1q, tqurICJrj)7

| T

Finally, from (4.1), (4.2), (4.4), (4.5), (4.6), and (4.7), we arrive at (1.8).

Proof. (Theorem 1.2) Leta = —z and b = 1 in (1.5) to obtain

d,c,—cd/z,—2q9, 77, @)oo
(d/Zv _dv C/Zv —C, 29, —t])oo ’

104(17 —Z,C, d) = IO4(_Z’ 1’ ¢, d) -

Divide both sides by (1 — z~!) and let z — 1. Observe that using Lemma 4.1, the
resulting right side is of the form 0/0; hence employing L’Hopital’s rule, we see that

i (—ed)n(1 = cdg®)g" "+
(=)n(1 = cg") (1 = dg")

n=0
— Zi d,c, —Cd/Z)n (1+qu2n)2,nqn(n+l)/2f ,c, —Cd/Z,_ZQv—Z_l’q)oo
= @@=, =) @d/z,—d,c/z, =¢, 24, =q)oo
(4.8)

The big task now is to transform the first series on the right side before applying the
e-operator. Note that
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00

Z d,c,—cd/2)n

(1 +qu2n)zn n(n+1)/2
= @@n(=¢, =i

2 > (=%.d.c,—cd/2)n )
1 d n n
B ET )] 1%027(‘[ 7, —cq.—dg) (14 cdg™)(zz)
2 e (=%.d,c,—cd/2), N (=%.d, ¢, —cd /) 2
- ST e n 1 N % s R/ n
T U+od+a { 5 (T, 29, —cq, dq)n( Tt B Z (t,2q, —cq, —dq), (e24%)

2
= m(u +cd L). 4.9)
To evaluate L;, let « = —q/t,8=29,y =c¢,06 = —cq,e=d, f =—dq,g =
—cd/z,h = t and t = Ttz in Theorem 1.3. This results in
A doc,g —L ~% g, 1) &

= = q
(*dq, —cq,z2q, -1, —q, ;,%7%’ % Z(:) (—%4, -4 g,

z Z

d d
(%, T S n(n+1)
z 5

(—f dyc, -4, —dl)m (1 ])i (5, %, oy ,, i g/ UrD2=
(= dq,—cq,—l,;,f,—*)oo L —%,—* q),, i=1 (—=q);
d
+ CFd P (1 - 1) i CDpDpe? i (—qf’“)k(c/z)k
(= dq.—cq.—l, 4 D =S V= S
oo ( cd d)
% Z 2 vz )lqu(r)2+])+(p+k)n
n=0 (_T’q)n
d
4 %40 (1 1 ) i (—0)p(=1)pd” i (—@)i(—g" )it
(~dg.—cq.~1.-%)e \ 2/ @p I @k

; d
« i (*(117-%—1)]1(!1/2)1 i (*%)n qll(!;#])+(p+k+j)n
FESEN
=0 (q )1 i (@n

( cd d ¢)oo 1 00 ul),; =) ( q) d’ 00 (7(1)ka o] (7Cd/Z2)m
41— -
B (R DI B D B e S .

o = = @k @ (g

(4.10)

Now let « = —¢q/t, =29,y =c¢,6 =—cq,e=d, f = —dq,g = —cd/z,h =
7 and t = 77¢” in Theorem 1.3. This gives

cd cq dq 3 1 d d
I (*7 d,c, ‘1~*Tx*7v*zq » T g )0 i (%, ;q—%)n IS T
2= q 2
d d
(—dg, —cq,2q. — %5, —¢> £, 4, = D)e (5 (-4, -4 g,

z

(_7 d,c, _Lq _*)oo 1\ & (%, %,*7 n(u+1) q/(f 3/2,-]
_ iz T +2n
(l - Z)Z dq Z

(=dq,—cq,—q ,;,%,*7)90 =0 (—Tg—qu)n (= 1/q)1

(-4, d.c.—%)y 1\ & (=) p(—g2) peP & <—q"+')k<c/z>k
: b
(—dq,—cq,—q ,%,—%‘m ( z) 2 @5 g (@

p=0
> ( .z ) tf)n n(nt+1)

Z z q 5=+ (ptk+2)n

n=0 _T Dn

(—%.d, 0)oo ( 1) o (@) p(=gP)pd? o (=i (—g" )ik
: !
[RErR—3 ~Deo )X @ kZ::O @k

p=1
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i & ( Z )Vl n(n+

o (—q"th),d/2)! H(ptht+j+2n
X/,ZO @), 2 @n
L e 4 d, ) 1\ & D (=) jd! S (et & (—ed /)"
SR S cal [ < - . .
( dq —¢q)co ( z),,; @p ;O (@F g (@ n;(q”“)m(—q”“‘ﬂ“)mﬂ
“4.11)
Substituting (4.10) and (4.11) in (4.9), we find that
S (d, ¢, —cd/2)n 2y n n(mt1))2
2y P (1 4ed
2 e —dpyry A
B 2 {(—Q d,c.q, —ﬂ —dq —zq, _%)oo i (%%a*%)n (1+cdq2”> n)
T 0+0U+d) | (-dg. —cq. zq. —1 —q, ‘,d ﬂ)oo g G4 —dl D 2 )1
(—#,d,c,—fq,—dfq)oc ( 1) ad (£ = )n nnt1)
< < < 1— = N e
(—dq,—cq,—1, £, ¢4, =)o z ,;,(—7,—”’7"4)/
X giiHD/2,~ oy N I U=I2
424 qedgy ——
) [JZ1 oy PO L T,
(—4.d,c, —"—">oc (1 B 1)§: (=@)p(=1)pc” i (=g"* e/
( dq, —cq,—1, % 7—) L/ ) @)p = (gP* )
< (-4, d)” 10D 4 (pok) 2 +1
Xziq PO (1 4 edg™ (1 + ¢P)(1 + gPth)
—0 (_* @n
(-4.d,0)e0 ( 1) o (=) p(=1)pd? o (=i (=g )rck
+ : 1-—
(—dq, —cq, =1, = D)oo z 1; (@)p g (@
=) 1y . j 00
5 Z (,qp+pij](({/z)1 Z (= z)n n(n2+l)+(p+k+j)n (1 +edg?(1+ "1 +qp+k+1))
o Wi @n
(—4.d, o) 1\ & (4P 2 (—g)jdl S (—g)ec
+ 22 (- - z
(=dq, —cq)oo ( Z)[; (@p ; (O k;) (D
. i (7Cd/z2)m be (1+qp+k+j)(1+qp+k+j+l)
= (qp+l)m(_qp+k+j)m+l (1 +qp+k+j+m+l)(1 +qp+k+j+m+2)
Since
ad (%5 %7 _62_521)” quzn n(n+1) (_2_?7 _q)OO
Z 'cq dq' 1+ 3 q r = —d ,
DIE A (2.-2),
by Lemma 4.1, and
JG+D/2,=) JG=3/2,=]
g~/ 2(1 4 q)cdg™ Z T
() ~ " (~1/a);
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qu2n> ° qj(j+1)/2z—j qu2n
=(1+ + 1+ 22),
< Z2 Z (_q)j Z2 ( )

j=1

we see that

o0

(d,c,—cd/2)n 2 (n+1)/2
2 (‘1 +qu ”)z" nn
"2_(:) (z2@)n(—c, =d)n+1

( T.d,c.q, *Zq,**)oo (=4 . d, )oo ( 77)2(1](/“
(d —,2¢,-q, £, Do (d, ,g,%»,o (=)

od vq dq c d _cd
+cd(l+21) (1 1) —5.de, =7 Do i (5 =% B

2 —c. — s d _cd cq _dq
z (=d,—c,—q, 070 Zz)oo =0 (—7,—7,11%,

(4 d e - <1 _ 1) 3 Dy i (—=g" e/t

(—d,—c,—q, ¢, - D)o e @ o @t

-4 4y,

n(n+1)
: g T (14 cdg? (14 ¢P)(1+ gPFD))
~>9)n

oo

(—4.d, )0 1\ o (=) p (=D pd? s ()i (—gP )
e 1 —_
* . =4, =5 )0 ( )Z Z (@D

= @p k=0

0 1 j oo (_cd
(=g, (d/z)’ =2 2D 4 (p+k+)) 2 +k +k+1
<D DS gD (1 cdg (14 P (1 + 7))
= @t = @

RS
L=

+2<—%,d,c)m< ) X (~Lyr & (g);di i(—q)kck
(7dvfc>oo p=1 (Q)p =0 (!1)1 k=0 (Q)k

o0 . 2ym k+j prk+j+1
x ) (Ced/z) <1+ a—AFa A 4" ) ) (4.12)

-0 (qp+1)m(_qp+k+j)m+l 1+ qp+k+j+m+1)(l + q””‘*”’"”)

Finally, we substitute (4.12) in (4.8) and then apply the e-operator to obtain (1.6)
after simplification. This completes the proof. (I

Remark 2. Let S(c,d, q) := (—cd, —q)oo/(—d, —C)» and denote the left-hand
side of (4.8) by o (c, d, q). If we explicitly evaluate & (ﬁi’fi/ i‘i’g’qq;jlzz’/;fi_/lz’)q Joo ) using

the Jacobi triple product identity, then (4.8) leads us to

0 2n n
(d,c,—cd/z)n(1 4+ cdq ) n(n+1)
.d,q)=¢|2 2 S(c,d, 142
ol da g( ,ZI:O NS )+ © q)< " ,Z 1+cdq )

(o) dq” o0 L‘q” oo qn
e (L0 D -3 ),
n=0 n=I

n=0

This gives a two-variable generalization of [6, Equation (3.5)], as can be seen with
the help of (1.1).
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4.1 Theorem 1.1 as a special case of Theorem 1.2

In this subsection, we deduce Theorem 1.1 from Theorem 1.2.
Letd = 0in (1.6). Then

o n(n+1)/2

q
6(@) = (O Y\ s
; (—)n(1 = cq™)

+ A(c, 0, g).
Thus we need only show that

(_Q)m (—1)"q”(’l+1)/2cm+n+1
Dm(@n (1 — gntm+ly

1MaQq)=—2§:(

m,n=0
To that end, note that the two quadruple sums in (1.7) just collapse to O so that

X (—gPt ek & q@+(p+k)n

@ o Ca)p(~D)ye”
A(c,0,9)=1-—
COD=I-Th ) g, N e = @

n

Now use Euler’s formula [4, p. 19, Corollary 2.2]
n  ne=1)

(o]
wq 2
UL (Cuys ful < os,
= (@n

to evaluate the sum over 7 in the above triple sum so that

oo

A 0.q) =1 — (_c)oo i(—q»(—l)pcpZ(—qp+1)kck(_q,,+k+l)oo

(@)oo 1= @)y = @
=,k (=D, s
=1- 00 - - 00 P
O 2~ O 2 " 2,

& (_q)p (_l)nqn(n+1)/2cp+n+1

=-2
Z (@) p(@)n (1 — grtnth)

p.n=0

’

where we used (2.1) to evaluate the first sum in the penultimate expression, and (2.4
to evaluate the sum over k in the double sum over p and k. This completes the proof.
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5 Concluding Remarks

The two series, namely

i qn(n+1)/2 and i (—cd), (1 — quZn)qn(nJrl)/Z
= (=)l —cq")’ = (@)1 —cqgm)(1 —dg")

occurring in Theorems 1.1 and 1.2, are respectively one- and two-variable general-
izations of o (q) as can be seen from remarks 1 and 2 after the proofs of Theorems
1.1 and 1.2 respectively. It may be fruitful to see which properties of o (g) hold
for these generalizations as well. Also, it may be important to see if there are any
partition-theoretic interpretations of these generalizations of o (g).

As demonstrated in this paper, there are a number of advantages of using Agar-
wal’s identity (2.5) and its generalization (1.8) for transforming p3(—z, 1, ¢) and
pa(—z, 1, ¢, d) respectively. First of all, the infinite product expressions occur-
ring in the specializations of the three- and the four-variable reciprocity theo-
rems used in our proofs get canceled completely. Secondly, these identities contain

201 <q, Z //;/ (o) 1q.q/ a), which is what leads to o (¢) after appropriately special-

izing the parameters. Thirdly, all of the other expressions in these identities contain
the factor 1 — g/B, or after letting 8 = zq, the factor 1 — 1/z, which is extremely
useful since all other factors involving z in an expression which contains 1 — 1/z get
annihilated when we differentiate them with respect to z and then let z — 1.

There are further generalizations of Ramanujan’s reciprocity theorem, namely,
the five-variable generalization due to Chu and Zhang [19] and Ma [30, Theorem
1.3], the six-variable generalization given in [30], the seven-variable generalization
due to Wei, Wang and Yan [38, Theorem 3, Corollary 4] and a different one by Liu
[26, Theorem 1.9], and finally the multiparameter generalization in [38, Theorem 7].
While there is no reason a priori why the ideas used in this paper may not be applicable
to obtain further identities of the type we have established, the complexity of the
computations involved in the proof of Theorem 1.2 suggests that the computations
involved while applying the reciprocity theorems in more than four variables may
be quite unwieldy.

That being said, we believe that one can further simplify A(c, d, g) to the effect
of at least having the 1 on the right-hand side of (1.7) canceled. First of all, note that
the second expression in (1.7) admits further simplification, namely,

3cd(7cq,qu)ooi (c.d, —cd)y  nith) 5,
(=ed, =q)oc = (=cq, —dq, @)n

_ 3(—cq, —dq)o i (c,d, —cd),

n(n;l)_i (c,d, —cd)y )1(712+l)
(=cd, =)o ( (=cq, —dq. q)n

(1 +cdg™)q q
= (-eq, —dq. On

( ¢q, —dq)oo Z (c.d, —cd)y  nttl
( cd, =q)oo ‘= (—cq,—=dq, qn '

=3-
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by another application of Lemma 4.1. However, we are unable to represent the last
series or the other multi-sums occurring in (1.7) in a convenient form. Note that the
following special case of the g-analog of Kummer’s theorem [3, Equation (1.7)],
known as Lebesgue’s identity, is well-known [4, Corollary 2.7]:

[e¢]

Z %qn(iﬂrl)/z = (—q)oo(aCI» ‘12)00
= (@Dn

This prompts us to ask if there are higher level analogs of Lebesgue’s identity which
(C, d, —Cd)n rx(n;rl)

oo
could possibly be used to represent the sum Z -
n=0 (—CL], —dq, q)n

ization of Lebesgue’s identity in a different direction is given by Alladi [2, Equation
(2.10), Section 4]. More importantly, does there exist a simpler representation for
A(c, d, q) as a whole?

The finite forms of Ramanujan’s reciprocity theorem and its three- and four-
variable generalizations are obtained in [36]. It may be of interest to see if something
along the lines of (1.1), (1.2), and Theorems 1.1 and 1.2 could be obtained starting
with these finite analogs.

. A general-

Acknowledgements This work was done when the first author was visiting Indian Institute of
Technology Gandhinagar as a summer intern under the Summer Research Internship Program-
2016 (SRIP-2016) program. He would like to thank the institute for its hospitality and support.

References

1. R.P. Agarwal, On the paper a ‘Lost’ notebook of Ramanujan. Adv. Math. 53, 291-300 (1984)

2. K. Alladi, Partitions with non-repeating odd parts and g-hypergeometric identities, in The
Legacy of Alladi Ramakrishnan in the Mathematical Sciences, ed. by K. Alladi, J. Klauder,
C.R. Rao (Springer, New York, 2010), pp. 169-182

3. G.E. Andrews, On the g-analog of Kummer’s theorem and applications. Duke Math. J. 40,
525-528 (1973)

4. G.E. Andrews, The Theory of Partitions (Addison-Wesley Publishing Company, New York,
1998), p. 300. Reissued, Cambridge University Press, New York, 1976

5. G.E. Andrews, Ramanujan’s “Lost” notebook: I. partial theta functions. Adv. Math. 41, 137-
172 (1981)

6. G.E. Andrews, Ramanujan’s “Lost” Notebook V: Euler’s partition identity. Adv. Math. 61,
156-164 (1986)

7. G.E. Andrews, Questions and conjectures in partition theory. Am. Math. Mon. 93, 708-711
(1986)

8. G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook. Part Il (Springer Science and Busi-
ness Media, Berlin, 2009)

9. G.E. Andrews, EJ. Dyson, D. Hickerson, Partitions and indefinite quadratic forms. Invent.
Math. 91, 391-407 (1988)

10. G.E. Andrews, J. Jiménez-Urroz, K. Ono, g-Series identities and values of certain L-functions.

Duke Math. J. 108(3), 395-419 (2001)



New Representations for o (¢) via Reciprocity Theorems 57

11.

12.

13.

14.

16.

17.

19.

20.
21.

22.
23.
24.
25.
26.
217.
28.
29.
30.

31.
32.

33.
34.
35.
36.
37.
38.
39.

40.

G.E. Andrews, A. Dixit, A.J. Yee, Partitions associated with the Ramanujan/Watson mock theta
functions w(q), v(g) and ¢ (g). Res. Number Theory 1(1), 1-25 (2015)

G.E. Andrews, A. Dixit, D. Schultz, A.J. Yee, Overpartitions related to the mock theta function
w(q)

G.E. Andrews, P. Freitas, Extension of Abel’s Lemma with g-series implications. Ramanujan
J. 10, 137-152 (2005)

K. Bringmann, B. Kane, Multiplicative q-hypergeometric series arising from real quadratic
fields. Trans. Am. Math. Soc. 363(4), 2191-2209 (2011)

. K. Bringmann, B. Kane, New identities involving sums of the tails related to real quadratic

fields. Ramanujan J. 23, 243-251 (2010). (Special issue in honor of George E. Andrews’ 70th
birthday)

D. Corson, D. Favero, K. Liesinger, S. Zubairy, Characters and g-series in Q(ﬁ). J. Number
Theory 107, 392-405 (2004)

S.H. Chan, On Sears’s general transformation formula for basic hypergeometric series.
Ramanujan J. 20, 69-79 (2009)

. W.Y.C. Chen, K.Q. Ji, Weighted forms of Euler’s theorem. J. Comb. Theory Ser. A 114(2),

360-372 (2007)

W. Chu, W. Zhang, Bilateral g-series identities and reciprocal formulae. Funct. Approx. Com-
ment Math. 42(2), 153-162 (2010)

H. Cohen, g-Identities for Maass waveforms. Invent. Math. 91, 409-422 (1988)

N.J. Fine, Basic Hypergeometric Series and Applications (American Mathematical Society,
Providence, 1988)

M. Gupta, A Study of Certain Basic Hypergeometric Identities and their Applications, Doctoral
thesis, University of Rajasthan, Jaipur, 1989

S.-Y. Kang, Generalizations of Ramanujan’s reciprocity theorem and their applications. J. Lond.
Math. Soc. 75(2), 18-34 (2007)

M. Krauel, L. Rolen, M. Woodbury, On a relation between certain g-hypergeometric series and
Maass waveforms. Proc. Amer. Math. Soc. 145(2), 543-557 (2017)

Y. Li, H.T. Ngo, R.C. Rhoades, Renormalization and quantum modular forms, Part I: Maass
wave forms, Nov 13, 2013, arXiv: 1311.3043v1

Z.-G. Liu, Extensions of Ramanujan’s reciprocity theorem and the Andrews-Askey integral. J.
Math. Anal. Appl. 443, 1110-1129 (2016)

J. Lovejoy, Lacunary partition functions. Math. Res. Lett. 9, 191-198 (2002)

J. Lovejoy, Overpartitions and real quadratic fields. J. Number Theory 106, 178—186 (2004)
J. Lovejoy, R. Osburn, Real quadratic double sums. Indag. Math. 26, 697-712 (2015)

X.R. Ma, Six-variable generalization of Ramanujan’s reciprocity theorem. J. Math. Anal. Appl.
353, 320-328 (2009)

A. Patkowski, A family of lacunary partition functions. N. Z. J. Math. 38, 87-91 (2008)

A. Patkowski, On curious generating functions for values of L-functions. Int. J. Number Theory
6(7), 1531-1540 (2010)

A. Patkowski, An observation on the extension of Abel’s lemma. Integers 10, 793-800 (2010)
A. Patkowski, On the g-Pell sequences and sums of tails. Czechoslovak. Math. J. 67(1), 279-288
S. Ramanujan, The Lost Notebook and Other Unpublished Papers (Narosa, New Delhi, 1988)
D.D. Somashekara, K. Narasimha Murthy, Finite forms of reciprocity theorem of Ramanujan
and its generalizations. Int. J. Math. Comb. 4, 1-14 (2013)

X. Xiong, Small values of coefficients of a half Lerch sum. Int. J. Number. Theory. 13(9),
2461-2470 (2017)

C. Wei, X. Wang, Q. Yan, Generalizations of Ramanujan’s reciprocity formula and the Askey-
Wilson integral. Ramanujan J. 37(1), 203-217 (2015)

D. Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function.
Topology 40, 945-960 (2001)

D. Zagier, Quantum modular forms, Quantas of Maths, Clay Mathematics Proceedings (Amer-
ican Mathematical Society, Providence, 2010), pp. 659-675


http://arxiv.org/abs/1311.3043v1

Mean Values of the Functional Equation
Factors at the Zeros of Derivatives

of the Riemann Zeta Function and Dirichlet
L-Functions

Kiibra Benli, Ertan Elma and Cem Yal¢in Yildirim

This paper is dedicated to Krishna Alladi on the occasion of his
60th birthday

Abstract In this work, average values of the functional equation factors of the
Riemann zeta-function and Dirichlet L-functions at the zeros of derivatives of these
functions are given with the intention of shedding a little light on the interaction
between two such functions.

Keywords The Riemann zeta-function - Dirichlet L-functions
Derivatives * Zeros

2010 Mathematics Subject Classification 11M26 - 11MO06

K. Benli (X))
Department of Mathematics, University of Georgia, Athens, GA, USA
e-mail: kubra.benli25 @uga.edu

E. Elma
Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada
e-mail: eelma@uwaterloo.ca

C. Y. Yildirim
Department of Mathematics, Bogazici University, Istanbul, Turkey
e-mail: yalciny @boun.edu.tr

© Springer International Publishing AG 2017 59
G. E. Andrews and F. Garvan (eds.), Analytic Number Theory,

Modular Forms and q-Hypergeometric Series, Springer Proceedings

in Mathematics & Statistics 221, https://doi.org/10.1007/978-3-319-68376-8_5



60 K. Benli et al.

1 Introduction

The Riemann zeta-function is defined as

oo

1
()= — (0>,

n=1

where s = o + it and o and ¢ are real numbers, and then it can be continued ana-
Iytically to the whole complex plane (with a simple pole at s = 1 with residue 1),
satisfying the functional equation

¢(s) = xe ()¢ =),

where
(5
Xe(s) i =m"2 =
r(3)
Apart from the trivial zeros at s = —2, —4, ..., £(s) has non-real (nontrivial) zeros

in the critical strip 0 < o < 1. The number of nontrivial zeros with 0 < ¢ < T is
% log 277;_2 4+ O(ogT), as T — oo. For such basic knowledge about the Riemann
zeta-function and Dirichlet L-functions, we refer the reader to [4] or [9].

Let p; ; denote a non-real zero of the k™ derivative ¢ ®(s) of ¢(s) and Vek 1=
Sp¢ k- Berndt [2] showed that the number of p, x with y; x € (0, T) is % log 4% +
O(logT),as T — oo.

Similarly, a Dirichlet L-function is defined as

n

Ly =30 o,
n=1

where 1 is a Dirichlet character modulo ¢. We will take ¢ fixed (i.e., not depending
on T') and for the results below we will consider only odd prime values of g. In case
Y is a primitive character, L(s, ¥) satisfies the functional equation

L(s, %) = xy ()L — 5, %),

where

)x_f LCD iy (-1 = 1,
(

ST r0-3) ey
) R D =1,
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and
a 2mim
() =Y _Yime

is the Gaussian sum associated with 1. Apart from the trivial zeros on the nonpositive
real axis, L(s, 1) has nontrivial zeros in the critical strip. The number of nontrivial
zerosof L(s,¥)in0 <o <1, |t| <Tis —log + O(ogqgT),as T — oo.

Let py x denote a nontrivial zero of L(k) (s, w) and Yok = Spyk. Yildirim [10]
showed that the number of zeros of L® (s, y) with |y x| < T ina wide enough strip
outside of which there are no nontrivial zeros is % log zfmm + O, (log T), where m
is the smallest prime not dividing ¢ (so, for an odd prime g, m = 2).

It is known after the works of Conrey and Ghosh [3] (assuming RH, the Riemann
Hypothesis) and Karabulut and Yildirim [7] (unconditionally) that, for k € Z*,

T T
Y xepew) = Fio—+ O ([ —= ). (T — o0), ()
2 log T
O<yx<T
where
o0 k k u
-—->erx() = (")
u=0 v=1 v i1+ Aig=u b etk
11 ..... l](>0
k .
k"™ -1 1!
XH(—I)Ww!( ) vt D
il w/) (1 + 2+ ... +kip +v)!
k
=Y e —k—1, k>1), 2

with the z, (r = 1, ..., k) being the zeros of P;(z) := Z -
—o /

One of the aims of the paper of Conrey and Ghosh Was to prove that for any ¢ > 0
there are 3>, T zeros of {®)(s) in the region ; <o < J + % 0<t<T,
and they used (1) for this purpose. That Karabulut and Yildirim made (1) uncon-
ditional did not change the fact that this result of Conrey and Ghosh is dependent
on RH because along the way one needs to know that £ (s) has at most a finite
number of non-real zeros in o < 5 and that depends on RH essentially as the work

of Levinson and Montgomery [8] showed
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2 Statement of the Results

In this paper, assuming the Generalized Riemann Hypothesis (GRH) for the Riemann
zeta-function and Dirichlet L-functions, we give results of the calculation of some
generalizations of the sum in (1).

Let k > 0 be a fixed integer, <% := —1, ¢, ¢» be fixed odd prime numbers. Let
Y1 (mod ¢q;) and v, (mod g;) be non-principal Dirichlet characters.

If g1 = q», then we have

T T
Y xwlpni) = M%E + Ok, <@) s (T — 00).

O<ypas<T w(q1)

3)

On the other hand, if g; # ¢», then

Z X (Pyr k) Lkograao T' e log T loglog T, (T — 00). 4)
O<yy, k=T

Furthermore, for a fixed odd prime ¢, let ¥ be a non-principal Dirichlet character
(mod ¢q). We have

> Xe(pys) Kug T log Tloglog T, (T —0).  (5)
0<}/¢,11{§T

and

_ _f@) l T
0<§5T Kolpen) = ¢(q) MZn + Ok <10gT> , (T — 00). (6)

3 Remarks about the Proofs

For the purpose of gaining some insight into the interaction between two Dirichlet
L-functions, we were interested in the value of the sums (3)—(6) above. We assumed
the GRH to keep the calculations shorter, but as in [7], the results may be obtained
without this assumption. The restriction of the Dirichlet characters to fixed prime
moduli (in which case all non-principal characters are primitive) was made in order
to avoid some minor complications in the calculations.

The proofs begin by expressing the sum under consideration as a contour integral
of the form
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1 g(k+1)( s)
Z fp) = %/f(S)T()dS,
A<y<B R 8 §

where p is a zero of g®)(s) with imaginary part y, and R is an appropriate rectangular
contour with verticesatoy +iA,o0r +iB,—6 +iBand —§ + i A, withoy and§ > 0
suitably chosen so as to avoid having any poles of the integrand on the contour. The
existence of such suitable contours is given by well-known results on the zeros
of derivatives of ¢(s) and L(s, ). For such a contour R, the integrals along the
horizontal parts and the right side of the contour R can be bounded easily. The
results are obtained by careful consideration of the integral along the left vertical
segment of the rectangle R, from —& 4 i B to —§ + i A. As an example, here we give
a sketch of the proof of (3) for ¢ := q; = ¢». Upon bounding the integrals over the
three sides of R (for which we take A = %, B = T), except for the left vertical side,
we have

—5+iL
(k+1)

1 1
D xmlonn = f X () == (5, Y1) ds + Ok (T2 log? T).

%<Vx//],k§T —8+iT

(N
The integral here can be re-expressed as
1+8+iT
1 (k+1) .
o / Xy, (1 — S)W(l — s, Y1) ds. ®)
I4+8+i L
Now, using
1" VY qlr|
S =(~ero(n)) =0l men iz,
Xy 2] 2

for s lying in a fixed vertical strip, k-fold differentiation of the functional equation
of L(s, ) gives

LOG, ) = xu, ) [ 1+ 0 1 > —£+—d>kL(1— V1)
S, V1) = Xy, (S m ds S, ¥1).
From this we have

L k+D)

_ G, — 1
W(l—& ¢1)=—(Z+G—’;(S,€, 1ﬂl)) <1+0(m>>, €))



64 K. Benli et al.
foro’ < o < ¢” (with ¢/, o” fixed real numbers), where
o d\ _ ok ko )
Gi(s,z,¥)i=|z+ Is L(s, Y1) = 2" L(s, Y1) +kz" L'(s, Y1) + ... + L™ (s, ¥p)
(10)
and the differentiation in G} is with respect to s. We will substitute (8) and (9) in

(7), and use the following generalization of Lemma 5 of [6] and Lemma 2.2 of [7]:
For m € Z with |m| = o(logT) as T — oo, we have

oo .
Tin

T
! . gt \" b t(¥) = 2in
gfX,p(l—(a+n))<1og§> Znaﬂ.[ dt = p > ba(logn)™e 4

T/2 n=1 9T gyl

+ 04 (KU T2 (log TY™).
1D

Here a > 1 is fixed, v is a primitive Dirichlet character modulo g > 3, (b,),>1 is a
sequence of complex numbers such that b, <« n® for any ¢ > 0, and K| is any fixed
number > 1.

But in order to apply this result to our calculation, we have to approximate

%(s, z, E), which is not a Dirichlet series for kK > 1, by a Dirichlet series (for
k = 0, we just take the Dirichlet series and the calculation is simpler). From (10) we

have
Ko/k\ 1 LO+D
Z( ) - (s, V1)
v)z

G - v=0

—k =
D o
1+Z<W)—W (5, 9

12)

Since %(s,%) &, 1foro > 1+ 8, we see
k

k 1L<W>( 7 < !
S,
szl L V™ log T

so that we can expand the denominator of the right-hand side of (12) in a geometric
series and write
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kN1 L™ -
(1 +2 (W)Z s, wo) (13)
w=I1

=2 v (é() M(s w1>)u+0<%>.

<
u log Iog T

Thus we obtain

= o= 2 2er(l) £ (S )NC)

T<vpasT U= gy V= By v
_ 2min
T (Y b,(i1, ...,k vy Yr)e ¢ 1
X (_) Z n( ’ s bk allf) +0k,q(T2+8+£)a (14)
9 2= (logn)
= <n<

n=7r

where K :=i; +2i, + ... + kiy +v, and

né

o] bn . . . : ;— L(v+1) e k L(W) e iy
S0 ol e Vi) — . WV[[I(T@, wo) . a9

n=1
The sum over n in (14) can be re-expressed as

i bu(ity oeey ig; vi Y)W ()
iR D AP (ogmF :

a(mod q) ¥ (mod q) T n<i
(@a.q)= .

Here the sum over v is split into two parts. The term ¥ = v, (which will lead to
the main term), and the terms ¢ # ¥, the contribution of which will be denoted by
Ey 4y, (which turns out to be an error term). So now we have

Y xnlopn) = (16)
I<1’V111<<T
T (¥2) TWD u N
ey () = (m)m()
SioglogT i1yenif >0

Z bn(ila "'7ik; V;%)I/fl(n)

T+ Eysy + O (T2,
(dogn)¥ v T Okq( )

qT qT
i <N=ar
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The proof is then completed upon using (2) and the following result:

Assume GRH. Let g be a fixed odd prime number and v be a primitive Dirichlet
charactermodulog; k, iy, io, ..., iy € N, v € {0, 1, ..., k}.If ¥ isa Dirichlet character
modulo ¢g such that iy # i, then we have

3 bulir oo i v Y)Y () = O(x' " (log x) (A(K) log log g (x + 4)<*).

n<x

A7)

Ifalsoi; + ... +ix < %,then we have

Zb,,(il, ey Ik Vs %)wl (n) = Sy, ..., ig; v)x(logx)K + Ep(iy, ..., ix;v), (18)

where
-1 K+1 1) k ! Iy
SGr iy = DO F DT G0 (19)
K!
and

Eb(ils i V) = Oq ((A(k)K) ((logx)K+2 + X(logX)K—l X (]ng)(§+8)(l(+3))> .

(K —=1)! eal(k)(logx)%“
(20)

The other results, (4)—(6), are proved along similar lines. The detailed proofs of
the above results can be found in [1] and in [5].

Acknowledgements We thank Dr. Yunus Karabulut for a helpful conversation.

References

1. K. Benli, The mean values of the functional equation yy; at the zeros of ¢ ®) (s) and L® (s, ¥2),
M.S. thesis, Bogazici University, 2015

2. B.C. Berndt, The number of zeros for £ ® (s). J. Lond. Math. Soc. 2(2), 577-580 (1970)

3. J.B. Conrey, A. Ghosh, Zeros of derivatives of the Riemann zeta-function near the critical line,
Analytic Number Theory (Allerton Park, IL 1989), Progress in Mathematics, vol. 85 (Birkhduser
Boston, Boston, 1990), pp. 95-110

4. H. Davenport, Multiplicative Number Theory, 3rd edn. revised by H.L. Montgomery (Springer-
Verlag, New York, 2000)

5. E.Elma, Average values of the functional equation factors at the zeros of derivatives of Dirichlet
L-functions, M.S. thesis, Bogazici University, 2015

6. S.M. Gonek, Mean values of the Riemann zeta-function and its derivatives. Invent. Math. 75(1),
123-141 (1984)



Mean Values of the Functional Equation Factors at the Zeros of Derivatives ... 67

7. Y. Karabulut, C.Y. Yildirim, On some averages at the zeros of derivatives of the Riemann
zeta-function. J. Number Theory 131(10), 1939-1961 (2011)

8. N. Levinson, H.L. Montgomery, Zeros of the derivatives of Riemann’s zeta-function. Acta
Math. 133, 49-65 (1974)

9. H.L.Montgomery, R. Vaughan, Multiplicative Number Theory I. Classical Theory (Cambridge
University Press, Cambridge, 2006)

10. C.Y. Yildirim, Zeros of derivatives of Dirichlet L-functions. Turk. J. Math. 20(4), 521-534

(1996)



New Weighted Partition Theorems
with the Emphasis on the Smallest
Part of Partitions

Alexander Berkovich and Ali Kemal Uncu

This paper is dedicated to Krishna Alladi on the occasion of his
60th birthday

Abstract We use the g-binomial theorem, the g-Gauss sum, and the ,¢; — 2¢»
transformation of Jackson to discover and prove many new weighted partition iden-
tities. These identities involve unrestricted partitions, overpartitions, and partitions
with distinct even parts. The smallest part of a partition plays an important role in
our analysis. This work was motivated in part by the research of Krishna Alladi.

Keywords ¢-hypergeometric identities * Partition identities -+ Smallest part of
partitions - Overpartitions - Ramanujan’s lost notebooks * Jackson’s
Transformation

2010 Mathematics Subject Classification 05A15 - 05A17 - 05A19 - 11B34
11B75 - 11P81 - 11P84 - 33D15

1 Introduction

A partition,t = (A, A, ... ), 1s a finite sequence of nonincreasing positive integers.
The empty sequence is conventionally considered to be the unique partition of zero.

A. Berkovich (<) - A. K. Uncu

Department of Mathematics, University of Florida,
358 Little Hall, Gainesville, FL 32611, USA
e-mail: alexb@ufl.edu

A. K. Uncu
e-mail: akuncu@ufl.edu

© Springer International Publishing AG 2017 69
G. E. Andrews and F. Garvan (eds.), Analytic Number Theory,

Modular Forms and q-Hypergeometric Series, Springer Proceedings

in Mathematics & Statistics 221, https://doi.org/10.1007/978-3-319-68376-8_6



70 A. Berkovich and A. K. Uncu

The elements A; that appear in the list & are called parts of the partition 7. The sum
of all parts of a partition is called the norm of a partition 7. We call a partition 7 a
partition of n if its norm is n.

We list some useful statistics/notations that will be used in the paper. Given a
partition

|| :=norm of the partition r,
s(m) :=smallest part of the partition 7,
V() :=number of even parts in 7,
Vo () :=number of odd parts in 7,
V() :=v.(m) 4 v, () = number of parts inm,
vy(mr) :=number of different parts in .

For example, # = (10,9, 5, 5, 4, 1, 1) is a partition of 35 with s(w) = 1, v(w) =7,
and vy (T) = 5.

Alladi studied the weighted partition identities methodically. In 1997, among
many interesting results, he noted the general identity:

Theorem 1.1 (Alladi [1], 1997). Let a, b and q be variables.

a(l-> ; n v() g va(m) |
( ((aq':; q) =1+ Za (@) pva( )q\ I (1.1)

TEU,
where U, is the set of non-empty ordinary partitions into parts < n.

In (1.1) and in the rest of the paper we use the standard g-Pochhammer symbol
notations defined in [4], [12]. Let L be a nonnegative integer, then

L—1

(a;q)L = 11(1 —aq') and (@; @)oo = Llingo(a; QL.

We now discuss a special case of the Theorem 1.1 that plays an important role
in the study of overpartitions. We define an overpartition to be a partition where the
last appearance of a part may come with a mark (usually put as an overhead bar on
the part, hence the name). Any partition is an oof the same number. One nontrivial
example is 7 = (10, 9,5,5,4,1, I). All the statistics defined above translate in the
obvious manner to overpartitions. The definition, the interpretation of overpartitions
and the generating function for the number of overpartitions are given by Corteel
and Lovejoy in their influential paper [11].

We would like to define the following sets:

% = the set of all non-empty ordinary partitions,

O := the set of all non-empty overpartitions.
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The connection of the identity (1.1) and overpartitions can be seen by setting
a=1land b =2,

G Dn 3 2ugll, (1.2)
(43 q)n TEUn

The left side of the identity (1.2) is interpreted as the generating function for the
number of overpartitions into parts < n. The right-hand side of (1.2) is the weighted
connection of overpartitions with ordinary partitions. We can write the weighted
connection between ordinary partitions and overpartitions abstractly

Z q\m — Z 2vd(n)q\n|7 (1.3)

Tel, TEUy

where 0, is the set of non-empty overpartitions into parts < n.

The equation (1.3) is an example of a weighted partition identity between sets
of partitions. In this paper, we prove new weighted partition identities involving
statistics other than 2"(™),

Section 2 has necessary definitions and identities to follow the results in the
paper. The weighted partition identities for ordinary partitions and overpartitions
with emphasis on the smallest part, s(;r), are given in Section 3. A weighted count
of overpartitions’ relation with the number of representations of a number as a sum
of two squares will be given in Section 4. Section 5 has weighted partition identities
related to partitions with distinct even parts. In Section 6 we provide a more involved
weighted identity involving overpartitions into parts not divisible by 3.

2 Definition and Background Information

Partitions can be represented in the frequency notation w = (11,22, .. .) by writ-
ing parts of 7 in a finite sequence format with exponents, where the exponents
fi(m) of the natural numbers denote the number of appearances of that part
in w. We abuse the notation and write f;, frequency of i, when the partition
is understood from the context. Similarly, we drop the zero frequencies in our
notation to keep the notations neat. A zero frequency may still be used to indi-
cate and stress an integer not being a part of a partition. For example, the par-
tition 7w = (10,9,5,5,4,1,1) can be represented in the frequency notation as
(12,20,3% 4152 6°,70,8°, 9! '10', 11°,...) = (12,4, 5%,7°,9, 10). Here 7 is a
partition of 35 where the frequency of 1, fi(m) = f1i =2, fu =1, fs=2... and
the integer 7 is not a part of 7.

One can also extend the frequency notation to overpartitions by allowing sequence
elements with a positive frequency to have an overhead bar meaning that the first
appearance of that part is marked. The norm of overpartitions and ordinary parti-
tions are defined the same way. In the frequency notation, we can represent 7T as
(12,4,5%,9, 10).
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Other representations of partitions include the Ferrers diagrams and 2-modular
Ferrers diagrams [4, §1.3]. The Ferrers diagram and the 2-modular Ferrers diagram
are formed by drawing rows of boxes where the row sum (count of boxes or the
sum of the contents, respectively) adds up to the corresponding part of the partition.
It should be reminded to the reader that in the 2-modular diagrams, only the boxes
at the end of a row may be filled by 1 or 2; all the other boxes are filled with 2’s.
An example of the Ferrers diagram and a 2-modular Ferrers diagram is given in
Figure. 1.

[l B [N ASR NS
(3]
—_

NI

|'—'|'—Nl\)l\)l\)l\)

Fig. 1 The Ferrers Diagram and the 2-modular Ferrers Diagram of the partition
7 =(10,9,5,5,4,1,1)

Note that the conjugate of a Ferrers diagram (drawing a Ferrers diagram column-
wise and reading it row-wise) is also a partition. The conjugate of w is (7, 5, 5, 5, 4, 2,
2,2,2,1). Conjugation does not extend to 2-modular graphs directly. A partition’s
2-modular diagram yields another 2-modular diagram under conjugation only when
the original partition has distinct odd parts. The conjugate of the 2-modular graph of
the example in Figure 1 does not yield a permissible 2-modular diagram.

Ferrers diagrams can be extended to overpartitions. One can easily mark the rows
of the Ferrers diagrams by coloring the box at the end of the row to indicate that the
related part of the partition is overlined. Conjugation of the ordinary Ferrers diagrams
carry over for overpartitions without a hitch. It is easy to check that the conjugate of
7 =(10,9,5,5,4,1,1)is (7,5,5,5,4,2,2,2,2, 1).

We define the basic g-hypergeometric series as they appear in [12]. Let  and s be

nonnegative integers and ay, ay, ..., a,, by, b, ..., by, q, and z be variables. Then
alaa21"'7ar
r¢s 3 q, Z) =
<bl5b2’ '-'abS

o0

(ai; @)n(az; @ln - .. (ar; @ A l—rts
—1)"g® n
,,2:; (q; Dn(b1; @ - - . (bss @ [( g ] <

Leta, b, c, g, and 7 be variables. The g-binomial theorem [12, I1.4, p. 236] is
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a (az; q)

1¢0< ;q,z> = WD (2.1)
- (z; @)oo

and the g-Gauss sum [12, I1.8, p. 236] is

a, b _(c/a; q)o(c/D; @)oo
2¢l< ¢ ’q’c/ab) (¢ @)solc/ab; @)oo 22)

The Jackson ,¢; to »¢, transformation [12, IIL.4, p. 241] is

b 5 q)oo »c/b
N S R

T @@\ caz
We would also like to recall the definition of the classical theta functions ¢ and
0 oo
2
P@) = > ¢ andy(q) =Y " "V,
n=-00 n=0

The Gauss identities [4, Cor 2.10, p. 23] for these functions will be of use:

= 2 (q; @)oo
— = E —Dg™ = —_— 24
#-9) n=—oo( ’'a (=45 @) @4
(45 4%)oo
== 2.5
V) (q: qz)oo (5)

3 Weighted Identities with respect to the Smallest
Part of a Partition

Let %/ * be the subset of % such that for every m € *, fi(w) =1 mod 2. Next,
we introduce a new partition statistic # (71 ) to be the number defined by the properties
i. =1 mod?2,forl <i <t(m),
ii. and fir)+1 =0 mod 2.
Note that for any # € %/ with an even frequency of 1 (which could be 0) we have

t () = 0. Then we have the weighted partition identity between the set of ordinary
partitions and its subset % * as follows.

Theorem 3.1.
Do (G = N i (m)g . 3.1)

newU TEU*

The left side identity is the weighted count of partitions of a given norm n where
every partition with an odd smallest part gets counted with 41 and the partitions of
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n with an even smallest part gets counted with —1. There are 42 partitions of 10 in
total. From this number, 9 partitions, (29), (23, 4), (22, 3%), (22,6), (2,3, 5), (2,42,
(2, 8), (4, 6), (10), have an even smallest part. Therefore, from the count of the left-
hand side of (3.1), the coefficient of the ¢'* is 24 = 42 — 2 - 9. The right-hand side
count and the weights can be found in Table 1.

Table 1 Example of Theorem 3.1 with || =

TeuU* t(m) TeU*r t(m)
1,2,3,4) 4 1,4,5) 1
(1,23,3) 3 (1,22,5) 1
(1°,2,3) 3 (13, 5) 1
(1,2,7) 2 13,3, 4) 1
(13,2,5) 2 (1,3% 1
(1,9) 1 (13,22,3) 1
13,7 1 a’,3) 1
1,3,6) 1

The sum of the weights is 24, which is the same as the count of partitions with the altering sign
with respect to their smallest part’s parity.

The proof of Theorem 3.1 will be given as the combinatorial interpretation of the
following analytic identity.

Theorem 3.2.

nn+1)/2

q" 1 q
= : 32
L+¢" (q: @)n-1 ,;(q $ (@ @)oo G-

n>1
Proof. Recall that (0; ¢), = 1 for any integer n > 0. Also, note that

l+g  (=q:q)n
14+q"  (—¢* @’

(3.3)

for positive n. We start by writing the left-hand side of (3.2) as a g-hypergeometric
function. Multiplying and dividing by 1 4+ ¢ and using (3.3), shifting the sum with
n +— n + 1, and finally factoring out ¢ /(1 + ¢q) yields

q" 1 q (0, —q )
= 201 3 4.9 - 3.4
1+q" (@@ 1+g —q°

n>1

We now apply Jackson’s transformation (2.3) to (3.4). This gives us

0,
2¢1< T, q) - 2¢2( ) ;q,—cf). (3.3)
—q 1+4(q: q)oo -4, 0
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Distributing the front factor to each summand on the right-hand side of (3.5), doing
the necessary simplifications, and finally shifting the summation index n +— n — 1
finishes the proof. O

Theorem 3.2 is the analytical version of Theorem 3.1. We will now move on to
the generating function interpretations of both sides of (3.2). This study will in-turn
prove Theorem 3.1.

We start with the left-hand side sum

q" 1

—_—, (3.6)
= 1+q" (@ P
of (3.2). For a positive integer n, the summand
qn k+1 _nk n 2n 3n
= -1) =q" — + . 3.7
7 > " =q"—q"+q (3.7)

k>1

is the generating function for the number of partitions of the form (k") where the
partition gets counted with the weight +1 if the part & is odd and it gets counted with
the weight —1 if the part & is even. The factor

1

- 3.8
(G5 @In—1 5.8

is the generating function for the number of partitions into parts less than n. With con-
jugation in mind, another equivalent interpretation of (3.8) is that it is the generating
function for the number of partitions into less than n parts.

‘We put the partitions counted by the factors in the summand into a single partition
bijectively by part-by-part addition. For the same positive integer n, let m; be a
partition counted by (3.7) and a partition r, counted by (3.8). We know that r; = (k™)
for some positive integer k. Starting from the largest part of 7, we add a part of 7,
to a part of ; and put the outcome as a part of a new partition . Recall that a part
of a partition is a positive integer that is an element of that partition. The partition
1, has less than n parts. Therefore, there is at least one part of 7r; that does not get
anything added to it. We add these leftover parts of 7| to & after the additions. This
way we know that the new partition & has exactly n parts, where the smallest part is
exactly k. This can be easily demonstrated using Ferrers diagrams in Figure 2.

Moreover, the partition 7 gets counted with the weight +1 if the smallest part is
odd and it gets counted with the weight —1 if the smallest part is even. The sum of
all these terms gives us the generating function for the weighted count of ordinary
partitions from % . Hence,

q" 1 sGO+1 x|
— = (=1 q™, (3.9)
1+4" (4 9 n;;

n>1
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T %)
g _
14+q¢" (@:9)n—1
v(m)
'2 -
S(ﬂ']) T
—
v(m)
v(m)

1
s(m) = s(m)

Fig. 2 Demonstration of putting together partitions in the summand of (3.6)

where s (i) is the smallest part of the partition 7.
The right-hand side summation

n(n+1)/2

q
3.10
Z @% 492 (@" Do ©10)

n>1

of (3.2) can also be interpreted as a weighted count of partitions. For some positive
integer n, the term ¢"”"*1/2 can be thought of as the generating function of the
partition 7 = (1,2, 3,4, ..., n) where every part less than or equal to n appears
exactly one time. The factor

1

S 3.11
(g% q*)n G-I

is the generating function for partitions into parts < n where every part appears with
an even frequency. Let 7 be a partition counted by (3.11). By adding the frequencies
of 7r{ and 75 we get another partition

=@M 2", . nd,

where all f; =1 mod 2. The quotient
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1

S 3.12
@ @)oo -12)

is the generating function for the number of partitions into parts > n. Therefore, for
a partition 7’ that is counted by (3.12) one can put together 7* and 7’ without the
need of adding any frequencies. Call the outcome partition of merging 7* and 7/, 7.

With this interpretation, the partitions counted by (3.10) have the frequency restric-
tion that fi(7) =1 mod 2. Also, let i be the first positive integer where f; (i) is
even (maybe zero). It is obvious that the partition 7 might be the final outcome of
the merging procedure explained above for any summand in (3.10) as long as the
index of the summand is < i. Therefore, the partition 7 is weighted by the number
of the parts in its initial chain of odd frequencies of parts. This proves

n(n+1)/2

q T
2 @%@ Do 2 1ma™, G3.13)

n>1 TEU *

where ¢ (i) is as defined in Theorem 3.1. The identities (3.9) and (3.13) together
prove Theorem 3.1.

Now we move on to another analytical identity similar to (3.2). This identity will
later prove a weighted partition identity for overpartitions.

Theorem 3.3.

2" —q: e n(n+1)/2 2 n+1 _ n+2;
Z 9" (=@ Pn-1 4 q (4" P (3.14)

L+q" (@@t 3 @ @e 1= (g™ @)

n>1

Proof. Multiply and divide the left-hand side of (3.14) by (1 + ¢), use (3.3), and
write it as a g-hypergeometric series:

29" (—q: q)n-1 2q —q,—q
Zl " (g = 201 , 34:9 - (3.15)
1+ 4q" (@@ l1+g —q

Now we apply the transformation (2.3) to (3.15). This yields,
24 (—q, —., q) _ (_qz;Q)m2¢2< —aq _q2>
l+¢q -q* 7 1+q @D —q%, —q*" "’

(3.16)

Distributing the front factor to each summand, doing the necessary simplifications,
and regrouping terms show that the right-hand sides of identities (3.14) and (3.16)
are equal. O

Identities (3.2) and (3.14) are z = 1 and 2 special cases of the more general result,
respectively.
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Theorem 3.4.
¢" (1=2g: @1 _ (1 =241 ) 3 q"h/2
Sl+q" (@D @ 9o o (=l = (1 = 2)g")

This identity can be proven using the same Jackson transformation (2.3) with
(Cl, b7 ¢, q, Z) = ((1 _Z)q1 -, _qu q, q)

The combinatorial interpretation of (3.14) is similar to the one of (3.2). Consider
the left-hand side sum

Z 2q"  (—q; @)n—1
L+4q" (q;q)n-1

n>1

of (3.14). For a given n the summand factor

n

2q
14 q"

is the generating function of the number of overpartitions into exactly n parts of the
same size, where the partitions are counted with weight +1 if the part is odd and with
—1 if the part is even. In other words, it is the generating function for the number
of partitions (k") and (k") for any integer k > 1, where these partitions are counted
with the weight (—1)¥*1. The other factor

(=45 @

) 3.17
G @1 G-17)

(by (1.2)) is the generating function for the number of overpartitions with strictly
less than n parts. As we did in the proof of Theorem 3.1, we put the parts of these
partitions together. This part-by-part addition gives an overpartition in exactly n parts
with the smallest part k. And coming from the first factor we count these partitions
with weight 41 if the smallest part k is odd and with weight —1 if k is even. Hence,

Z Q,q" (—q;Q)n—l _ Z(_l)s(”)Jrlq'”‘_ (3.18)
L+q" (@ =

n>1

The right-hand side of (3.14) can be interpreted in a way similar to that of (3.10).
For some nonnegative integer n, the factor

qn(n—H)/Z
—_— (3.19)
(@: @)n
is the generating function for a number of partitions of the type (1/1,2/2, ..., n/r),

where f; > 1 forall 1 <i <nmn,asn(n+1)/2=1+2+---+ n. The rest of the
factors
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2q (_qn+2; q)oo

1— q2(n+l) (qn+2; Cl)oo

n+1

(3.20)

can be interpreted as the generating function for the number of overpartitions where
the smallest part (which definitely appears in the partition) is n 4 1 and that part has
an odd frequency.

There is no overlapping in the size of the parts in the partitions counted by (3.19)
and (3.20) for a fixed n. One can merge these partitions into a single partition without
any need of nontrivial addition of frequencies. On the other hand, an outcome over-
partition may be coming from different merged couples of partitions/overpartitions.
Given an outcome overpartition, there is no clean cut point that would indicate where
the overpartition counted by (3.20) started. The only indication is the odd frequency
of the smallest part of overpartitions. Also, we know that every part below the small-
est part of overpartition in the combined partition is coming from a partition counted
by the generating function (3.19). In particular, 1 appears as a part in any outcome
of this merging process. Therefore, we need to keep account of all these possible
connection points when we are finding the count of a partition coming from the
right-hand side of (3.14). By going through only the odd frequencies in a given par-
tition and counting the number of larger parts with the overpartition weights, we can
find the total count of combinations that would yield the same merged overpartition
images.

Given a partition 7, let m(7r) be the smallest positive integer that is not a part of
7. Let vy (i, n) be the number of different parts > n in partition . Let

1, if the statement is true,

0, otherwise, 3:21)

X (statement) = {

be the truth function.
Then, the right-hand side of (3.14) can be written as a weighted count of partitions

as
n(n+1)/2 9 antl __n+2.
‘1( @)y 1 _qz(n+1) (( Z-&-Z.’ 6;)00 = Z t(m)q", (3.22)
nz0 4 4n 4 q »4)oo TEU
where
m(m) .
T(n) = ) x(f; = 1(mod 2))2"¢". (3.23)

i=1

This study proves the combinatorial version of Theorem 3.3. We put (3.18) and
(3.22) together, and get the following theorem.

Theorem 3.5.
D (=1 = Y " (g™, (3.24)

Ted TEU

where T (1) is defined as in (3.23).
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There are 100 overpartitions of 8. There are 18 overpartitions of 8 with an even
smallest part. Hence, in the weighted count of the left-hand side of (3.24) the coeffi-
cient of g% term is 100 — 2 - 18 = 64. We exemplify the right-hand side weights of
Theorem 3.5 for the same norm in Table 2.

Table 2 Example of Theorem 3.5 with || = 8.

TEU T(m) TEU T(m)
13,2,3) 8+4+2=14 (12,2,4) 4
(1,2,5) 8+4=12 13,5) 4
(1,2%,3) 84+2=10 (1,7) 4
(1,3,4) 8 1°,2) 2
(1, 3) 4 (12,23 2

The sum of the weights is 64, which is the same as the count of overpartitions with the alternating
sign with respect to their smallest part’s parity.

4 A Weighted Identity with respect to the Smallest Part
and the Number of Parts of a Partition in relation
with Sums of Squares

We start with a short proof of an analytic identity.

Lemma 4.1.
(_ l)nqn(n+l)/2

—_— = —1)"q". 4.1
LT, - o @b

Proof. 1t is easy to see that
—1)g"ntD/2 ' -1, :
12y e i 2¢1< p";q,l/p)=m,
= (I +qg")(g @) roo —q (=4 Do

where we used g-Gauss sum (2.2). Rewiriting the sum in (2.4) as

1423 (=1"g" 4.2)

n>1
proves the claim. O

The identity (4.1) is a special case of a more general identity of Ramanujan [6,
E. 1.6.2, p. 25] which even has a combinatorial proof [9]. But, more relevant to this
paper, Alladi [2, Thm 2, p. 330] is the first one to give a combinatorial interpretation to
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the left-hand side of Lemma 4.1 in the spirit of the Euler pentagonal number theorem.
In his study, he interpreted the left-hand side sum as the number of partitions into
distinct parts with the smallest part being odd weighted with +1 or —1 depending on
the number of parts of the partition being even or odd, respectively. In our notations:

Theorem 4.1 (Alladi [2], 2009). Let N be a positive integer. Then,

YD = =DV (N =0),

TeD,,
|7|=N

where 9, is the set of non-empty partitions into distinct parts where the smallest part
is odd, y is as defined in (3.21), and Ul represents the statement “a perfect integer
square.”

It is easy to check that
7| = v,(r) mod 2,
for any partition 7. Hence,
v(r) — |r| = v.(r) mod 2. 4.3)
This enables us to rewrite Theorem 4.1 as in [10].

Theorem 4.2 (Bessenrodt, Pak [10], 2004). Let N be a positive integer. Then,

D (D =x(v =0).

T€D,,
|T|=N

There, they also discussed a refinement of Theorem 4.2.

Theorem 4.3 (Bessenrodt, Pak [10], 2004).

D DT =4 (N =k,
e,

I7|=N,
Vo (1)=k

Theorems 4.1 —4.3 connect the weighted count of the partitions into distinct parts,
where the smallest part is necessarily odd and the number of representations of an
integer as a perfect square. Our next theorem will be connecting the weighted count
of partitions and the number of representations of a number as a sum of two squares.
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Theorem 4.4.

Z (=1"29" (—=q; @)n

=¢(—q)* — o(— 4.4
Ttq" @D e(=q)" — o(—q) 4.4

n>1

Proof. Similar to the proof of Theorem 3.2, we would like to write the left-hand side
of (4.4) as a hypergeometric function first. On the left-hand side of (4.4) we multiply
and divide the summand by (1 + ¢g), use (3.3), factor out the terms —2g /(1 + q),
and finally shift the summation variable n — n + 1 to write the expression as a ¢,
hypergeometric series. Applying the Jackson’s transformation (2.3) to this expression
yields

2 <—q, ., _q) _ 29 @% 9 b < 44, q2>
l+¢ -q* 1+q (—¢; oo -q%,q*"

Writing the ¢, explicitly, distributing the factor ¢ /(1 + ¢), performing the sim-
ple cancelations, shifting the summation variable n — n — 1 and multiplying and
dividing with 1 — g we get

—2q (422 q)oo " ( —-q,49 . q 2) _5 (75 9) o (_1)nqn(n+l)/2 @)
2’ 9 .

1+q(—q;q)oo2 : —q%.q B (—q:q)ooz(l+q")(q;q)n'

n>1

Applying Lemma 4.1 to the right-hand side of (4.5) and rewriting the identity we
see that

(—=D"2q" (—=q; q)n-1 (45 @)oo 2
=2 -1+ -D"'g" ). 4.6
; L+q" (g5 @ (=4 @)oo ( g( ra ) “0

Using observations (4.2) and (2.4) on the right-hand side of (4.6) we complete the
proof. O

The combinatorial interpretation of Theorem 4.4 combines a weighted partition
count with a representation of numbers by the sum of two squares. Moreover, we
can provide an explicit formula for the weighted count of partitions with respect to
the norm.

Let n be a positive integer. The summand

(—=1)"2g"
1+qg"

of (4.4) is the generating function for the number of partitions of the form (k")
(keeping (3.7) in mind) gets counted with the weight (—1)¥*"*12, Here it should be
noted that k is the smallest part and » is the number of parts of this partition. After
the needed addition of partitions (similar to the ones we did for Theorems (3.1 and
(3.5)) these two variables are going to stay the same for the outcome partition. To
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have a uniform notation, recall that v(;r) denotes the number of parts, and v, () is
the number of different parts of a partition 7. The second summand

(=45 @)n1

3.17
(f]§ q)n—l

that appears in (4.4) is the generating function for the number of overpartitions into
strictly less than n parts as mentioned before. We know that this is the same as
counting the number of ordinary partitions 7 in less than n parts counted with the
weight 2" by (1.3).

Putting together the partition 7; = (k") and a partition m, counted by (3.17)
(similar to the way we did in Figure 2) gives us an outcome overpartition 7z, which
we will treat as a partition and count with the related weight at first. The partition
has the properties s () = k,v(w) = n,and v () = vy(m1) + vi(m2) = va(m2) + 1.
This partition is counted with the weight

(1) 1= (—1)" T, 4.7

(the multiplication of weights of 7’s generators) by the right-hand side of (4.4). This

proves
Z (=1"2¢" (=¢: -1 _ Z w(m)g™. (4.8)
I+q" (@D =

n>1

On the other side of the equation (4.4) we have the difference of two theta series.
The summation of (2.4) is enough to see that

P(=q) —p(—q) = Y (=)= = 3" (—1yg" (4.9)
X,yEZ n=—o0

Let r,(N) be the number of representations of N as a sum of two squares. Any
positive integer N has the unique prime factorization

v=2[1n o

i>1 j>1

where e, v;, and w; are nonnegative integers, and p; and g; are primes 1 and 3 mod
4, respectively. It is known [13, Thm 14.13, p. 572] that

1 —1)"i
= aTJa+w [T
i>1 =1

Writing the first series organized with respect to r,, rewriting the second series, and
finally canceling the constant terms of both series we get
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DT = Y (=g =) (DN =2 (= 1)"g".

X, y€EZ n=—o00 N>1 n>1
(4.10)
On the right-hand side of (4.10) one can collect the terms with respect to the exponents
of g. Writing the two series together with the use of a truth function and comparing
(4.9) and (4.10) yields the identity

0(—=q) —p(=q) = Y _(=DV(n(N) = 2x(N =0))g", (411

N>1

where y is defined as in (3.21) and J represents “a perfect integer square.”

Now we put the right-hand sides of (4.7), (4.8) and (4.11) together and get an
explicit expression for the sum of weights w () of partitions for a fixed positive
norm N:

D (=1t = ()N (ry(N) — 2x (N = D)), (4.12)

TEU ,
|w|=N

We can employ the observation (4.3) to simplify (4.12).

Theorem 4.5.
Y o) =n() = 2x(N = D)
TEU ,
|w|=N
where

0 (7r) = (=1)7 O Fve(m+lgua(m)

Two examples of Theorem 4.5 are given in Table 3.
Another equivalent statement of Theorem 4.5 can be given over the set of over-
partitions by evaluating (4.7) and (1.3).

Table 3 Examples of Theorem 4.5 with || =4 and 5.

TEY, |t|=4 |w*(1) TEU, 7| =5 |w*(m)
) 2 5) 2
2% -2 2,3) 2?2
(1,3) 22 (1,4 —22
(12,2) —22 (12,3) 22
) 2 (1,2%) 2?2
13,2) —22
(15) 2
Total: 2 8

and the explicit formula of (4.12) suggests:

(@) —2-1)=4-2=2,

(r2(5) —2-0) = 8.



New Weighted Partition Theorems with the Emphasis ... 85
Theorem 4.6.

S (=) O — () = 20 (N = D).

nel,
|w|=N

5 Some Weighted Identities for Partitions with Distinct
Even Parts

Let & denote the set of non-empty partitions with distinct even parts. A partition
7 € & may still have repeated odd parts. This set has been studied before in [3, §
51, [5] and [7].

We start with the analytic identity:

Theorem 5.1.

D"¢” (=¢85 oy ]
> e S A et (5.1)

n>1

Proof. We multiply both sides of (5.1) with 1 + ¢ and add 1. The resulting iden-
tity becomes a special case of the g-binomial theorem (2.1) with (a, ¢, 2) =
(—1/q, g%, —q?) provided that we use (2.5) with g — —q. i

The combinatorial interpretation of the left-hand side summand,

D" (=q; 41,4
1—g> (g% qPn-1

) (5.2)

for some positive n is really similar to the previous constructions. The main dif-
ference is the use of 2-modular Ferrers diagrams, which has been introduced in
Section 2, instead. We will be following similar steps that we followed in finding the
combinatorial interpretation of Theorem 3.2.

Let n be a fixed positive integer. The factor

(_l)ann . .,
T = 2
4 k>1

is the generating function of partitions of the type m; = ((2k)" ) for some positive
integer k, where these partitions get counted with a weight +1 if the number of parts
of the partition 7 is even and with —1 if n is odd. The second factor

(—=¢; ¢%)n-1
(@2, qH)n-1
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is the generating function for the number of partitions with distinct odd parts <
2n — 2. We can express these partitions in 2-modular Ferrers diagrams and take their
conjugates. The outcome would show that the same factor is the generating function
for the number of partitions 7, with distinct odd parts where the number of parts is
< n. Finally, the term ¢! can be thought as the generating function of the partitions
w3 = (1"7h).

We would like to add the partitions 7, 77, and 73 to make up a new partition. This
will be done similar to the example of Figure 2. We start by putting partitions 7y, 7,
and 13 and add them up row-wise. When doing so, the possible boxes filled with 1’s
coming from m, are combined with the 1°s of 73 and turned into a row ending of a
box with a 2 in it. There being n — 1 parts in 73 and the row-wise addition of these
partitions also makes sure that the outcome partition is a partition & with distinct
even parts where the smallest part is necessarily even. An illustration is given in
Figure 3.

L 3
V(i%)
v(m) v(m)—1
2 ]
J S—
S(TL']) T
I v(m) -
v(m)
1 2

s(z) = s(m)

Fig. 3 Demonstration of putting together partitions in the summand of (5.2)

Let 2, be the subset of & where the smallest part is necessarily a positive even
integer. The above construction proves that the left-hand side of (5.1) is the generating
function for the weighted count of partitions from &, counted by the weight +1 or
—1 depending on the number of parts in the partition being even or odd, respectively:
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_ 1\ 20 (4 42
Z (_l)v(n)qbﬂ — Z( 1) q ( 9.9 )”_lqnfl‘ (53)

— 2 2 42
ne, = 1=9" @4

The right-hand side of (5.1), by looking at the geometric series, can easily be inter-
preted combinatorially. This study proves

D (=D = (=DM (N # ). (54)
TeP,,
|w|=N
where N is a positive integer and A represents “a triangular number.” The simple
observation (4.3) can be used on (5.4) to simplify the equation.

Theorem 5.2. Let N be a positive integer. Then,

D DI = (N #£ A,

TeP,,
|m|=N

where A represents “a triangular number.”

Moreover, it is easy to see that the generating function for the weighted count
of partitions from &2 counted by the weight +1 or —1 depending on the number of
parts is clearly

S gt = (5.5)
= (=43 q%)o0

Hence, (5.1), (5.3), and (5.5) together yields

S g =
144

te?,

where &, is the subset of &7 where the smallest part is necessarily a positive odd
integer.

We note that the above study can be easily generalized by inserting an extra
parameter z. The identities (5.1) and (5.3) turn into

3 (—D"g* (—q/z: ¢*)n— Lzgy! = (@* 4P 1
= 1-¢" (@) I N !
and -
: 1
Z (—1)‘)(”)2%(”)6]‘”' — (6] ,C] )oo _ , (56)

a2
e, (97,400 1429
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respectively. We also get the generalization of (5.5)

Z( 1)V(7f) VU(T[) 7l — (q q )oo — 1. (5.7)
e ( 14 )00

Combining (5.6) and (5.7) and replacing z by —z we get the result

1
Z (_l)w,(ﬂ)zvo(ﬂ)q\ﬂl S — (5.8)

1—
neP, q

which can also be found in [10, Cor 4, p.1146]. The equation (5.8) implies

Theorem 5.3.
D (D T =X (N = k).

TeP,,
| |=N,
Vo (m)=k

We can step up our study on the set &2 by putting more restrictive conditions on
the smallest part. Let &7, 4 be the subset of &, where the smallest part of a partition
is necessarily 2 mod 4. Knowing the argument behind the generating function inter-
pretation for &, the generating function of &, 4 with the £1 weight with respect to
the number of parts can easily be written as

n,2n
T (1) ZZ( D"q*" (=43 4*)n- L (59

_ 44 2
s = 1—q" (q%, qH)n-1

We write the related analytic equality.

Theorem 5.4.
(l)nzn(qq)nl 1
q" = (—=D"gq n_ (5.10)
; 1_q4n (q ’qZ)n ;

Proof. By multiplying both sides of (5.10) with 2(1 4+ ¢) and adding 1 to both
sides, we see that one can apply the ¢g-Gauss sum (2.2) where (a, b, c, q, 2) =
(=1, =1/q, —q?, g%, —¢?) to the left-hand side. Showing the equality of the right-
hand side to the outcome product of the g-Gauss sum is a simple task of combining
like terms and using the Gauss identity (2.4). O

The right-hand side of (5.10) can be studied further to get exact formulas.
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1 n n2 n l‘l2
EZ(—D q" =Y ¢ (-1'q

n>0 k>0 n>0
=1+q4+q5+q6+q7+q8+q16+q17+q18+q19...
=14 Y x(@)* <N < Q2j+1)*)g", (5.11)

Nzl j=1

where y is as defined in (3.21). Also from the geometric series

1

Therefore, combining (5.11) and (5.12), we get
1 n_n? 1 2 5 7 10 12 14 17
EZ(—I)q Sl SR AR Al et B A

n>0

=Y ) (x(Nisodd)x((2j)* < N < (2j + 1)*) (5.13)

N>1 j>1
— x(Niseven)x((2j — D?> < N < (2j)®)g".

Combining (5.9), (5.10), and (5.13) we get the interesting explicit formula for the
weighted count of partitions from the set &7, 4.

Theorem 5.5.

Y (DO (XN s 0dd) X ((2)F < N < 2 + 1))
ey = — X (N is evem)x (2 =17 < N < (2))"))

1, if N is odd and in between an even square
and the following odd square,
= { —1, if N is even and in between an odd square
and the following even square,
0, otherwise.

Let 5 4, similar to P, 4, be the subset of &7, where the smallest part of a partition
is necessarily 3 mod 4. Adding a single 1 to the smallest part of a partition from
P, 4 1s a bijective map from the set & 4 to &3 4. Therefore, writing the analogous
generating function of weighted count of partitions from 75 4 is rather easy and only
requires multiplying (5.9) with and extra q. This proves the following theorem.
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Theorem 5.6.

D =DYI=Y (XN s evem)x (2))° < N < (2 + 1))
TN = — XN isodd)x(2j = 1)* < N < (2/)*))

1, if N is even and in between an even square
and the following odd square,
= { —1, if N is odd and in between an odd square
and the following even square,
0, otherwise.

The combination of the weighted generating functions accounts for every number
that is not a perfect square. This interesting relation can be represented as follows.

Theorem 5.7.
D= = 3 (=)' = (=D x(N £ D). (5.14)
neP34, Te€P4,
|w|=N |T|=N

This result, in a sense, is complementary to Alladi’s identity, Theorem 4.1. Also,
the right-hand side formula also appears in the recent study of Andrews and Yee [8,
Thm 3.2, p.10] as the same weighted count with respect to the number of parts of
bottom-heavy partitions (a specific subset of overpartitions). The interested reader
is invited to examine the relation between the set of bottom-heavy partitions, &, 4,
and e923’4.

Once again one can simplify the argument of (5.14) with the observation (4.3).

Theorem 5.8.

D D= T (D = (V£ D).

UG.W}A. 7'[63”2,4,
lm|=N =N

6 Overpartitions with no parts divisible by 3

In this section, we treat the weighted interpretation of an identity of Ramanujan [6, E.
4.2.8, p. 85]. We write this identity in an equivalent form for the ease of interpretation
purposes.

Theorem 6.1 (Ramanujan [6]).

nz—n

(6.1)

(=43 @)o(=0% 4o | _ )3 (=491 29" g
(4; 43 0(q% ¢*) (@ Dn-1 1=q" (g9

n>1
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Identity (6.1) also appears in the Slater’s list [14, 6, p. 152] with a misplaced
exponent type typo.

It is clear that the left-hand side of (6.1) is the generating function for the number
of overpartitions where no part is 0 mod 3. Let €’ be the set of all non-empty partitions
with no parts divisible by 3. We focus our interest in the combinatorial interpretation
of the right-hand side of (6.1). Let n be a fixed positive integer. The factors

(=q; Pn-1 29"
G Pn-1 1—¢q"

of the right-hand side of (6.1) is the generating function for the number of overpar-
titions, 71, into parts < n where the part n appears at least once. When counting the
total number of overpartitions of this type of partitions, we can instead count the
partitions 7r; into parts < n where the part n appears at least once with the weight
2v4(™) a5 in (1.3). The remaining factor

2
n-—n

.
(q:4*n

can be split into two in the interpretation. The term q"z‘" is the generating function
of the partitions of type m, = (2,4, 6, ..., 2(n — 1)) in frequency notation as n*> — n
is double a triangle number. The term (g; qz); !'is the generating function for the
number of partitions, 73, into odd parts < 2n — 1.

It is clear that among the parts of 7y, 75, and 73 the largest possible part-size is
2n — 1. Evenif 2n — 1 is not a part of 73, the second largest possible part 2n — 2 is a
part of 7. Therefore, given m, 7,, and 713 we can directly find the respective n. We
merge (add the parts’ frequencies of) these three partitions into a new partition and
look at the number of possible sources for different part sizes. The partition 7 has
one appearance of all the even parts < 2n — 2 coming from 7,, any extra appearance
of an even number (which is necessarily < n) must be coming from the partition 7}
and should be counted with the overpartition weights. The odd parts < n can either
be coming from the partition 7 or 3. These parts need to be counted with both the
overpartition weights and normally to account for both possibilities. All the other
parts’ source partitions can uniquely be identified so they would be counted with
trivial weight 1.

Let Z be the set of partitions, where

i. all parts < 2n — 1 for some integer n > 0,

ii. all even integers < 2n — 2 appears as parts,
iii. n appears with the frequency f, > 1 4+ x(n is even),
iv. no even part > n repeats.

Clearly,
largest even part of &

2

n:=n(mr) =
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Define the statistics

n—1

§(r)y =Y x(fo; > 1),

j=1
y(m) = (x(niseven) +2- f, - x(nis odd)) l_[ Cfrjr+ 1),

2j+1<n

and
p(m) =2y (),

for 7 € Z. We have the following identity.

Theorem 6.2.
Z 2Ud(ﬂ)qlﬂ\ — Z ,u(rr)q‘”'.

TEE TEX

One example of Theorem 6.2 will be given in Table 4.
In Ramanujan’s entry [6, E. 4.2.9, p. 86],

(6.2)

(=4:4%)oo(=4% 4700 _ )3 9" (=q; Dn

@340 D00 5 (@ Dn(g: ¢Pnr1
we see the same product of (6.1). The sum on the right-hand side of (6.2) can also
be interpreted as a weighted partition count for a special subset of partitions. This is
rather analogous to Z. Let the set 2 be the set of partitions 7z, where

i. the largest part is = 2n — 1 for some integer n > 0,
ii. all odd integers < 2n — 1 appear as a part,
iii. and no even parts > n appear.

Clearly here
largest part of & + 1
n = .

2

A similar weight to © can be defined on 2 as follows

n(w) ==

2" (x (nis even) - (1 + x(f, = 0)) +2f, - x(n is 0dd) ) 1_[(2f2j+1 - D,
2j+1<n

where vy . (77) is the number of different even parts of 7. Hence, we have the identity

Theorem 6.3.

D 2uMgh =3 " g™ = Y n(r)g".

TEC TEX ne2
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The example of this result is included in Table 4. From that table, it appears that

there exists a weight, norm, and n-value preserving bijection from % to 2. We would
like to leave the discovery of this bijection for a motivated reader.

Table 4 Example of Theorem 6.3 with |7| = 7.

s Te¢ |2%m TeEX |n w(m) Te2 |n n(w)
(1,2,4) |23 17 1 14 (17 1 14
2,5) 22 13,23 |2 14 a*3 |2 14
(12,50 |22 1,2 |2 6 (12,2,3) |2 6
(14 |22 %3 |2 2 1,3 |2 2
1%,2) |22
(13,22) |22
1,23 |22
@) 2
a7y 2

Total: 36 36 36
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Abstract Those attending the meeting at the University of Florida celebrating
Krishna Alladi’s 60th birthday had the privilege of enjoying an advanced showing of
“The Man Who Knew Infinity,” a screen adaptation of Robert Kanigel’s biography of
Srinivasa Ramanujan with the same title. We explain the background of a brief scene
in which H. F. Baker and E. W. Hobson verbally cast their votes for Ramanujan’s
election as a Fellow of the Royal Society.
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G. H. Hardy was not the first English mathematician to receive a letter from
Ramanujan before he departed for England in March 1914. We know that Ramanujan
wrote to Sir Francis Spring’s mathematics teacher, M. J. M. Hill, at the University of
London in late 1912 [1, pp. 13—15]. Ramanujan also wrote to two Cambridge math-
ematicians before writing to Hardy, but their identities were kept secret for many
years to save them embarrassment. However, Kanigel [2, pp. 106—-107] offers their
names, H. F. Baker and E. W. Hobson. In preparing to write his book, Kanigel visited
the present author for a couple days in the mid-1980s. Neither he nor I can recall if
had informed him of these names, or if he had discovered them himself. But at any
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rate, to the best of my knowledge, there is only one available source for these names,
which I now relate.

Sometimes, we learn in unusual ways. One evening in the early 1980s, my wife
Helen and I were invited to dinner at the home of close friends, who had also invited
a friend from their graduate student days at Indiana University. Since my mind had
been totally immersed in the mathematics of Ramanujan since February 1974, our
early conversation focused on Ramanujan. Our host’s friend told me that he recently
read a psychological study of Ramanujan in the journal, Psychoanalytic Review [3].
On the following day, I located the article in the University of Illinois Library and
discovered that the author, Ashis Nandy, had incorporated his article in a lengthier
study of Ramanujan in a book [4], published 1 year later. In preparing to write his
article, Nandy had fortuitously interviewed J. E. Littlewood shortly before he died in
1977.In afootnote [4, pp. 146—-147], Nandy writes, “Littlewood says with some relish
that these two mathematicians [who had received letters from Ramanujan], whom
he identifies only as Baker and Popson, felt rather foolish afterwards.” It is clear that
Littlewood was speaking of Baker and Hobson and that Nandy had misunderstood
Littlewood’s pronunciation of Hobson.

Since Hobson and Baker were famous Cambridge mathematicians, it was natu-
ral for Ramanujan to write them about his mathematical discoveries. Hobson was
Sadleirian Professor at Cambridge and in 1913 had published a very popular book,
Squaring the Circle, which possibly had reached Madras before Ramanujan wrote
his letter to him. Baker was Cayley Lecturer at Cambridge and in 1907 had pub-
lished a book, Abel’s Theorem and the Allied Theory of Theta Functions. Ramanujan
made many contributions to the theory of theta functions, but his work is not in the
same spirit as that of Baker. We do not know if Ramanujan was acquainted with
Baker’s treatise, but if he had been, it seems doubtful that it would have influenced
Ramanujan to write Baker.

Ramanujan became the second Indian to be elected Fellow of the Royal Society,
and in the film, “The Man Who Knew Infinity,” in a very short scene, Baker and
Hobson are shown voicing their approval for Ramanujan’s election. The film score
does not divulge why these two Royal Society Fellows were chosen for their votes,
but their choice should now be clear.

Nandy is not a mathematician, and so many of his statements about Ramanujan’s
mathematics in his book [4] are without merit. As an example, he writes [4, p. 149],
“One wonders that if it ever struck Ramanujan that out of the roughly eight areas
in which he worked (hypergeometric series, partitions, definite integrals, elliptical
integrals, highly composite numbers, fractional differentiation, and number theory) it
was his work on fractional differentiation which perhaps came closest to being a major
breakthrough in mathematics.” (Indeed, Nandy recorded seven, NOT eight, areas of
Ramanujan’s interests.) We would not choose these compartments for Ramanujan’s
mathematics, and moreover, Ramanujan did not make any earthshaking discoveries in
fractional differentiation. But nonetheless, we can thank Nandy for his conversation
with Littlewood, and we can thank Littlewood for “letting his guard down.”
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A Bibasic Heine Transformation Formula
and Ramanujan’s »¢; Transformations

Gaurav Bhatnagar

Dedicated to Krishnaswami Alladi on his 60th birthday

Abstract We study Andrews and Berndt’s organization of Ramanujan’s transfor-
mation formulas in Chapter 1 of their book Ramanujan’s Lost Notebook, Part II. In
the process, we rediscover a bibasic Heine’s transformation, which follows from a
Fundamental Lemma given by Andrews in 1966, and obtain identities proximal to
Ramanujan’s entries. We also provide a multibasic generalization of Andrews’ 1972
theorem concerning a g-analog of the Lauricella function. Our results only require
the g-binomial theorem, and are an application of what Andrews and Berndt call
‘Heine’s Method’.
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1 Introduction

In Chapter 1, Part II of their edited version of Ramanujan’s [15] Lost Notebook,
Andrews and Berndt [5] have organized Ramanujan’s transformation formulas
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related to Heine’s ,¢; transformations. While studying their work, we discovered
a large number of formulas that are proximal to Ramanujan’s own entries.
For example, one of Ramanujan’s formulas is [5, Entry 1.6.6]: for |¢| < 1,

- (=1)ig/*+i
+ . |
-4 ;(1_q21+1) [(1—612)(1—q4)(1—q6)...(1_q2,)]

Z A(A+l)

~

=14+q¢'"+¢+¢°+¢" +q" +-

The right-hand side is the well-known theta function which Ramanujan denoted as
¥ (g). It has the product representation (see Berndt [7, p. 11])

2k+2)

k(k+1 1—
V(q) : _Zq(z)_n( g2+’

We recover Ramanujan’s Entry 1.6.6 and, in the same breath, obtain the formula
e’} ; J+1
—1)ig(s)
et LT -
g ‘Z+g ) [A-U-gH1-gH)--(1-q))]

> (=gt

k=—00

1—2q +2¢*—2¢° +---

Now the right-hand side is (in Ramanujan’s notation) ¢ (—¢), with product repre-
sentation given by [5, Eq. (1.4.10)]

(o]

N Nk KR (1 Q)
p(—q) =Y (-Digq g(lﬂk)

k=—o00

For our next example, we require some notation. The g-rising factorial is defined
as (A; g)y := 1, and when £ is a positive integer,

(A; @) = (1= A)(1 — Ag)--- (1 — Ag"™).

Notice that it is a product of k terms. The parameter ¢ is called the ‘base’. The infinite
q-rising factorial is defined, for |¢| < 1, as



A Bibasic Heine Transformation Formula and Ramanujan’s 2¢| Transformations 101
[o¢]
(A; @)oo = [ (1 = AgD).

Observe that, for |g| < 1[10, Eq. (I.9)],

(A; @)oo
(Ag*:q),

This is used to define g-rising factorials when k is a complex number.
With this notation, consider Ramanujan’s formula [5, Entry 1.4.17]

(Asq) = (1.1)

< pig(i)

(—ag; Doo ),

= @) (—aq: q),;

ad akq(k;])
(haza) g (@ Di(=bq: )

and compare with the identity

> qut(/?
h h
—aq"; q")
( ) ;(q’,q’) (—aq":q"),
= ()
=(—bq'; q' k| ,
( ) ; (4" 4") (=ba's 4" )

obtained in our study. Here |¢| < 1 and |g'| < 1 in the first formula, and |¢"| < 1,
lg'| < 1and |¢g"| < 1 in the second. The reader may enjoy recovering Entry 1.4.17
from this formula.

The objective of this paper is to report on our study of [5, Ch. 1]. We are able to
obtain 14 of Ramanujan’s entries as immediate special cases of a particular transfor-
mation formula, and a large number of identities that are proximal to Ramanujan’s
own entries. In addition, we give a multibasic generalization of Andrews’ 1972 for-
mula for a g-Lauricella function and obtain a few interesting special cases, which
again extend formulas of Ramanujan.

During the course of our study, we stumbled upon the transformation formula

oo

Z (a; q (b1 o (bra") (aziq"),, i (¢/b:a); ("), b,

= (C e (€d)e (4h), T @'ha); (azigh)

(1.2)

where |z| < 1,]b| < 1,and & and ¢ are complex numbers such that |¢"| < 1, |¢'| < 1
and |¢"| < 1. Andrews and Berndt [5] use the t = 1 case of this result (a formula
due to Andrews [2, Lemma 1]) often combined with the 7 =1 and t = 1 case (a
famous transformation of Heine, see Gasper and Rahman [10, Eq. 1.4.1]). But these
authors seem to have missed writing down (1.2) explicitly, even though it can be
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proved in the same manner as Heine’s result, and indeed follows from a very general
approach to Heine’s ideas, which Andrews [1] calls his ‘Fundamental Lemma’. This
useful and simple identity may be a special case of a 50-year-old identity, but it has
not shown up in the standard textbook by Gasper and Rahman [10], and perhaps
deserves to be highlighted. And so, in §2, we attempt a brief introduction.

The plan for the rest of the paper is as follows. In §3 and §4, we report on our study
of Ramanujan’s transformation formulas. This part of our work can be considered to
be an addendum to Chapter 1 of Andrews and Berndt [5]. In §5, we closely follow
ideas from Andrews [3] to extend our work to multiple series that extend g-analogs
of the Lauricella functions. We give a multibasic generalization of Andrews’ formula
[3, Eq. (4.1)], and give several generalizations of two of Ramanujan’s identities.

Before proceeding to Ramanujan’s ,¢; transformations, we consider (1.2) again
from the perspective of Heine’s original ideas, an approach that Andrews and Berndt
[5] have dubbed ‘Heine’s method’.

2 Heine’s method: Transformations of Heine, Ramanujan,
and Andrews

This section is an introduction to Identity (1.2). We begin with a famous transfor-
mation formula of Heine that he found in 1847. Heine’s transformation formula [13,
Eq. 78] is

Lyl (2.0)

(X3 oo\ (@1 @) (b5 @)y &= (5D Z (c/b:9);z:9),
(bx; @)oo 1= @ Oexi gy @Dw (q:9);(az; q);

This is almost as Heine himself wrote it, except that he wrote g%, ¢# and ¢” in place
of a, b and c. Usually, this formula is stated with x = 1, see Gasper and Rahman
[10, eq. (1.4.1)].

Heine’s formula was rediscovered by Ramanujan. It appears as Entry 6 in Chapter
16 of his second notebook, see Berndt [6, p. 15]. In addition, there is another transfor-
mation formula of Ramanujan resembling (2.1). It appeared on Page 3 of the famous
Lost Notebook [15] (see [5, Entry 1.4.1]), and is dated circa 1919, going by Andrews
and Berndt’s [4, p. 4] remarks on the likely timing of work presented in the Lost
Notebook.

@q: Doo(cq: ¢%), N (=bg/aiq); (da*:q%);
(—ba: Duo(da a?), = @D, (caid?),,,

(a )J'

M

i cq/d; 61 (aq; @)y

dg*". 2.2
—~ (4% 4% ( bq: q)ats

This is Ramanujan’s Entry 1.4.1 and it resembles Heine’s transformation (coinciden-
tally, eq. (1.4.1) of [10]). Both the series have two products each in the numerator and
denominator, and there are four infinite products outside the sums. However, some
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of the factors in the sums have base ¢ rather than ¢, and the number of terms in
some of the factors of the summands are different. For example, notice the product
(aq; q)ax, a product of 2k factors in the summand on the right-hand side of (2.2).

Andrews and Berndt [5] study many of Ramanujan’s transformation formulas (in
particular (2.2)) in Chapter 1, Part II of their series of books on Ramanujan’s Lost
Notebook. A key component of their study is Andrews’ 1966 transformation formula
[2, Lemma 1]:

o0

Z (a; q <b Dus i _ b 7)o (az; q Z(c/b 9); (@4d")
= LD @O (

L pi, 23
(q:9); (az "), @)

OO Jj=0
where h = 1,2, 3,.... Andrews’ formula contains both (2.1) and (2.2). This can be
seen by taking & = 1 and h = 2, respectively. Andrews’ transformation can also be
found in [5, Th. 1.2.1, p. 6] and [10, Ex. 3.35, p. 111].

Now, inspired by Heine’s formulation (2.1), we write Andrews’ transformation
more symmetrically as follows.

bW @)oo o (a:4") k W Dk (az; q % (& Q)J h)j j
(W5 @)oo Z ), Gwi @) Z (q:9), (az q"); .

— oo j=0
This form suggests a further generalization of (2.3), where now we have terms
involving two bases ¢ and ¢’ (and hence the adjective bibasic).

Theorem 2.1 (A bibasic Heine transformation) Let g, a, b, h, and t be complex num-
bers such that |q"| < 1, |¢"| < 1, and |q™| < 1, and suppose that the denominators
in (2.4) are not zero. Then for |w| < 1 and |z| < 1,

(bw: ') = (@:d"), (wiq'),, k= (az; q oo Z q') (Z qh)tj Wi
Wi gD =2 (q": "), (W; g (q 61) (az:q"),;
(2.4)

OO j=0

Remark Replace w by b and b by ¢/b in (2.4) to obtain the form (1.2) of the identity.

Before heading into the proof of Theorem 2.1, we make a few comments on the
convergence of the series and products appearing in this identity.

Observe that we require the conditions |¢’| < 1 and |¢"| < 1 for the convergence
of the infinite products (w: ¢')__ and (z:¢")_. In view of (1.1), we require these
conditions for the definition of products such as (w; q' ) i L0O.

Next, note that the function f(w) := (w; q), 1s a continuous function of w in a
neighborhood of w = 0, and f(0) = 1. This follows from the fact that for fixed ¢,
with 0 < |g| < 1, the sequence of partial products

k—1

fimy =TT -wq")

r=0
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converges absolutely to f (w), and the convergence is uniform in a closed disk around
w = 0 contained in the unit disk {w € C : |w| < 1}.

Now we consider a factor such as (w; qt)hk, and show that if |qh’| < 1, then for
large enough k, |(w; q' ) 4| 18 approximately equal to |(w; q' )OO l.

By definition, we have

, (wiq')
(Wi q")y = W-

Now since |qh’| < 1, we must have |q’”k| — 0 as k — oo, and thus, by the continu-
ity of f(w), (wq’hk; q’)oo — (O; q’)oo = 1. Thus for large enough k, |(w; q’)hk| is
approximately |(w: g)_|.

Using the above remarks, we can consider the absolute convergence of the series
appearing on either side of (2.4). Consider first the left-hand side of (2.4). We replace
all the g-rising factorials in the summand by ratios of infinite products, using (1.1).
Then we find that for large enough k, the absolute value of the summand is bounded
by a constant times the factor |z|¥. Since the geometric series

converges absolutely for |z| < 1, the sum on the left-hand side of (2.4) converges
absolutely for |z| < 1. Similarly, the sum on the right-hand side converges absolutely
for |w| < 1.

To summarize, we have the conditions |qh| < 1,lq" <1, |q’”| < 1,]z] < 1and
|[w| < 1 for the convergence of the products and series.

We now proceed with the proof of the theorem. Theorem 2.1 can be obtained as
a very special case of Andrews’ [1] Fundamental Lemma (see our remark below).
But we prove it on the lines of the proof of Heine’s own proof of his transformation
formula, which Andrews and Berndt [5] call Heine’s method. We only require the
identity (1.1) and the g-binomial theorem [10, eq. (1.3.2)]: For |z] < 1, |g| < 1

oo

(@23 @)oo @ D &
= . 2.5
(2 @)oo ,;; @ D 22

Proof (Proof of Theorem 2.1) We begin with the left-hand side of (2.4).

(bw qt)oo = (a;qh)k (W; ql)hk k
W40 =5 (q"5 q"), (Wi q")
- (a;qh)k k(bwqhtk;qt)oo

- z (using (1.1))
= (a"a"), (wa':q'), ¢
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kg(; Cl q k kZ(q, J( g"*y/ (using (2.5))

i

o0
jZ (a: 4") k( "y

htj.

(g% q)]

Wj (an »q )oo

(q q ), (zq"i: q")

_ az; q )00 Z (b; qt)j (Z;qh)tj
(Z;Clh)

w T aha); (azig"),

Mg

(using (2.5) again)

w.

Observe that [w| < 1 and |¢"| < 1 implies |wg""*| < 1. Similarly, we must have
|zq"7| < 1. These conditions are required for the absolute convergence of the
g-binomial series used here, and to justify the interchange of summation. O

Remark Andrews [2, Lemma 1] (see also [10, Ex. 3.35]) mentions that the formula
(2.3)is valid when 1 = 1, 2, 3, . ... However, as we have seen, with sufficient con-
ditions, we can take % to be a complex number in (2.3).

Observe that the b = ¢ case of Heine’s transformation is (2.5), the g-binomial
theorem. When b = ¢, the summand contains the factor (1; ¢) j thatis 1 when j =0,
and 0 when j > 0. Thus the sum on the right-hand side of (2.1) reduces to 1, and we
obtain (2.5).

A key property of Heine’s transformation is that it can be iterated, and the process
of iteration leads to symmetries of the sum which are useful in many contexts. See
Gasper and Rahman [10, egs. (1.4.2) and (1.4.5)]. Unfortunately, equation (2.4)
cannot be iterated, making it less useful than Heine’s transformation. However, there
is a bibasic version of a special case of Heine’s second iterate due to Guo and Zeng
[11, Th. 2.2].

There are also bibasic transformation formulas due to Gasper [9, eq. (1.12)] (repro-
duced in [10, Ex. 3.20]). These consist of four sums that are equal to each other.
By equating the second and fourth sum, we get a formula equivalent to Andrews’
transformation formula. Replace p by ¢” in Gasper’s transformation to obtain an
equivalent form of (2.3).

Remark Andrews stated and used (2.3) in [2], and derived it using Theorem A of
[1], which in turn is derived from his ‘Fundamental Lemma’. This lemma is really
a most general approach to Heine’s method, and should be better known. Andrews’
[1] Fundamental Lemma can be stated as:
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o]

r—1
a; rsb; uk+v 1b’ —st _—s/r
Z( Drirs O3 P)urs Zk=—( P)oozwr 1,8/
k=0 (qv Q)rk+x (C; p)uk+v r (C; p)oo =0

« i (c/b: p); (@27 P 3 4) g sy
= pip); (wfz7piilnig),

(2.6)
where w, = >/ or some other primitive rth root of unity, and we assume the
parameters satisfy suitable conditions to guarantee convergence of the two series.

Equation (1.2) can be obtained as a special case of (2.6). Take r = 1, u = h,
s =0=v,q +— ¢" and p — ¢' to obtain the second last step (suitably re-labeled)
in our proof of Theorem 2.1. Professor Krattenthaler has remarked that, in fact,
(2.6) follows from (1.2) by ‘sectioning’ the series on the left (a process described in
our remark in §4). In other words, Andrews Fundamental Lemma is equivalent to
(1.2). This involves recognizing that we can write the factors in the sums with two
independent bases ¢ and p, since & and ¢ are complex numbers. Indeed, with these
considerations, we can rewrite (1.2) as the r = 1 case of (2.6).

The reader may enjoy proving (2.6) directly using Heine’s method and sectioning.

This completes our introduction to (1.2). We now consider special cases related
to Ramanujan’s transformations. In the rest of the paper, when stating special cases
of (2.4), we do not always explicitly state all the applicable convergence conditions
mentioned in Theorem 2.1.

3 Special cases inspired by Ramanujan’s >¢
transformations

While studying Andrews and Berndt [5, ch. 1], we realized that many of Ramanujan’s
transformations in [5, §1.4] are immediate special cases of Ramanujan’s transforma-
tion (2.2), where one takes limits or special cases suchasa — 0,b =0, ¢ =0, and
d — 0 and combinations of these. So we first rewrite the bibasic Heine transforma-
tion in the form of Ramanujan’s Entry 1.4.1, with a view to study its special cases. We
will find that several of Ramanujan’s entries in Chapter 1 of [5] are immediate special
cases. In addition, we note new identities that resemble Ramanujan’s formulas.

Entry 1.4.1

First, we write (1.2) in the form of Ramanujan’s formula, by taking a +— cq/d,
b aq',c— —bg'*!,andz — dq". Now divide both sides by 1 + bg and multiply
and divide the RHS by 1 — cq and interchange the sides to obtain
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=3

") —bq/a;q"); (dg":q"),

2] tNJ
(aq")’
(q" q’), (cq;q ),j+l

(aq':q") (cq: q")
(=bq; g (dq"; q")

0 J=O
0 d t.

Again, h and t are complex numbers, and we have the conditions |¢"| < 1, |¢'| < 1

and |¢"'| < 1. Further, for the series to converge, we require |ag’| < 1 and |dg"| < 1.
Note that when 4 = 2 and ¢ = 1, this reduces to (2.2), Ramanujan’s Entry 1.4.1.

The rest of Ramanujan’s entries presented below are also special cases of (3.1).

Entry 1.4.2

In equation (3.1) take @ = d = 1, replace ¢ by a, and bring the product (—bg: ¢')
to the other side. In this manner, we obtain a generalization of Entry 1.4.2:

tj

(q’;q’)oo(aq;q”)ooz( ba:q'); (¢":4"),

(@"d") = @iaD; (agiq )r/+1
00 h
(aq:9"); (459w
(b . 3.2
(b4 4’ OOZO q"), (=bg; Q)hk+1q G

To take special cases, we use the following elementary identities from Gasper and
Rahman [10, eq. (I1.27)]:
(@ @)y = (a,aq,aqz, ...,aq ;q’)k, (3.3)
and [10, eq. (1.30)]

r—1

(a’;q’)k = (a,aa)r,awf,...,aa)r ;q)k, (3.4)

where @, = ¢**/"

hand notation

or some other primitive rth root of unity; here, we use the short-

(a1, az, ..., an; q) = (a1; @) (az; @) - -~ (an; @)y

When ¢t = 1, and % is a natural number bigger than 1, then (3.2) reduces to

( bq 51)
2 h—1. _h J
q’q ""’q ;q qq (q(,(),qa),...,q(,() v('I)q
( ) ( OOJX:(GQC[)] . h h h J

—  (a9:4")
= (bq: 9 Y ————(q. 9% ... 4" " " g™
=0 (=09 @it

(3.5)
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where w;, = ¢?*'/" or some other primitive Ath root of unity. We have used (3.3) and
(3.4) to write this expression.

When i = 2, the primitive /th root of unity reduces to — 1, and we obtain Ramanu-
jan’s transformation [5, Entry 1.4.2]:

2 (=bg;q)j(—q:q);
(454) s (@43 %) . ¢’
jZ::; (aq:4%),,,

= (aq: %), (@: 4P o,
=(-bq; @) Yy ————q°". (3.6)
> g (bg: Do

Observe that the denominator of the sum on the left does not contain the (usually)
mandatory term (g; ¢) ;. This term is required to terminate the series naturally from
below, because

1

(q:9);

= 0 whenever j < 0.

The same is true for the right-hand side. This seems to be the motive for considering
this special case. See also (3.14), (3.16), and Entry 1.6.5 (and related identities)
below.

Entry 1.4.5
If weseta = 01in (3.2), replace b by a, and bring all the infinite products to the right,

we obtain a generalization of Entry 1.4.5:

(—aq:4");(q": 4")

i o tj
= q"4");
(61 q)oo — (" ( aq; q)hk+1

When ¢ = 1, and & > 1 is a positive integer, this reduces to

o0
. 2 h—1, ' 2 h-1. :
Y (—aq; 9)j(qop, g, -, qo,” @) jq’ = (qop, qoy, ..., qo, i q)oo(—aq: §) oo
j=0
oo

1 _
<Y —————(q.4% ... q" g (3.8)
i—o (799 Dkt
where w;, = €>™/" or some other primitive ith root of unity. Further take 4 = 2 to

obtain Ramanujan’s formula [5, Entry 1.4.5]:
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o0 ‘ > (6d?
> (—aq:9);(~4: 94’ = (=4 Do (—aq: ) Y Mq%

(3.9)
s = (—aq; oy

Instead, when t = 2 and &7 = 1 in (3.7), we obtain the formula

- o (49
Y (-aq:d?); (4:4%), 4% = (4:4°) o (—aq: q wza—kq"-
=0 = (-aq:4%),,
(3.10)
Entry 1.4.3 and Entry 1.4.4

There is a common generalization of Entry 1.4.3 and Entry 1.4.4. Take b = 0,d — 0
in (3.1), replace ¢ by b/q" and cancel 1 — b/g"~" on the LHS. Bring the products
to the RHS to obtain, for |ag’| < 1,

j=0
(3.11)
When h =2 and ¢ = 1, (3.11) reduces to [5, Entry 1.4.3]:
nd alq’ — (ag; Q)zk
Z Z ( »rgc . (3.12)

= @:9);(bq: 9%, T @4 P bq 7% =

When & = 1and r = 2, (3.11) reduces to [5, Entry 1.4.4]:

J=

(bq q)zj (ag% 4?)  (bg; Do = (@ q)k
(3.13)

The case a — 0 and ¢ = 0 case of (3.1) is equivalent to (3.11), up to re-labeling
of parameters.

Entry 1.4.10 and Entry 1.4.11

Both these entries immediately follow from 2 = 1 = ¢ case of (3.11). In this case,
whena =1 = b in (3.11), we obtain [5, Entry 1.4.10]

Z

(—1)kg(2), (3.14)
“(q:9); T (@ q)oo kX{:

Next, take ¢ = ¢ and b = ¢! in (3.11) to obtain

o0 2tj

o0
q hk+1 k h(!
Z te ot Z )q(z).

= @a9,(a"q"), T (" q)oo B M

(3.15)
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Now take h = 1 = ¢ and simplify as follows.
o0

q* gl (1 = gt
1
~ @9 (@ q)io ;;( ra )

=@ q) [Z( 1)’Cq<“>+Z( Di*lg “ﬂ

k=0 k=0

1 k+1
+2) (=Dfg(3)
T @ D [ Z }

Ramanujan’s Entry 1.4.11 is the first sum equated with the last in this chain of
equalities [5, Entry 1.4.11]:

P N PR SRR CY | (3.16)
= @9; (@D py

Entry 1.4.12, Entry 1.4.17, Entry 1.4.9, and a part of Entry 1.5.1

Consider the case a — 0,d — 0 of (3.1). In the resulting identity, bring the infinite
product (—bg: ¢') _ to the other side, and cancel (I — cg) on the LHS and (1 4 bq)
on the RHS. Then replace ¢ by —a/q and b by b/q to obtain the appealing identity

ad qu’(jgl)
h. h
—aq’;q

( ) JX_; (4" q";(~aq"; q"),,;
h(k+])

=(-bq"; q' (3.17)
(~ba'sq “k;: ( bq'; 4

Many special cases of this symmetric identity have been found useful, some noted
below, and one considered in §4.
When i = 1, (3.17) reduces to [5, Entry 1.4.12]

ad qu[(j;rl)
(—aq: q)
= ]Z:; (q"; 9" ;(—aq; q),;
g ()

=(=ba'5q") Y
k

— (43 9 (=bq"s gy

(3.18)

Take i = ¢ in (3.17), and then replace g by ¢!/’ to obtain [5, Entry 1.4.17]
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(—aq; @)oo ; (q: q);(—aq: q),;

) akq(szr])
=(—bg; ) @) (—bg:q), o
(—=bg; q) g(q;q)k(—bq;Q)tk o

one of Ramanujan’s formulas highlighted in the introduction. Takea = —landb = 1
in Ramanujan’s Entry 1.4.17 (eq. (3.19)) to obtain

i q(:) _ D (—1)*q(3) (3.20)
= @D} @D (G Do = (@ D3 Dk
This further reduces to [5, Entry 1.4.9] when ¢t = 1:
>~ 403 —g: _1 k (k“)

PRV .
= @9 @D =
where we use [10, eq. (I.28)]
(@:q)(—a: q); = (a*: q%),
in the denominator of the RHS.

In Entry 1.4.17 (eq. (3.19)) replace ¢ by ¢ and take ¢ = 1 to obtain an assertion
equivalent to an observation of M. Soros (see [5, eq. (1.5.1)]):

i quj *+j
—aq*; q
” jz: —aq*q%),

o0
:(bqqoo222

— (4% 4*),(=bg* ¢*),

kk+k

(3.22)

When we take @ — a/q and b — b/q in (3.22), we obtain [5, eq. (1.5.1)]. Instead,
if we take the special case b — a/q in (3.22), we obtain the second equality of [5,
Entry 1.5.1]:

2. 2 = ajqu
(_aq’q)”,z(q 1q%) (—agq% ¢7),

w62
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Entry 1.4.18

Entry 1.4.18 is due to Andrews, Berndt, and Ramanujan [5], and follows from the
a — 0 case of Ramanujan’s transformation (2.2).

Take a — 01in (3.1), cancel the factor (1 — cg) from the LHS, and (1 + bg) from
both sides. In the resulting identity take b — b/q, ¢ — a/q, and d — —c/q", and
bring the infinite products to the other side, we obtain: for |c| < 1,

i (_C; qh)rj b]ql(/;rl)
@' q",(aq" q"),

_ (=ha'sa") ooi aq/cq)

(ag"; q") — ) (—=ba"s 4"

(—c)k. (3.24)

When ¢ =a/b, h =2 and ¢ = 1, this reduces to [5, Entry 1.4.18]:

o) _ .42
( a/b:q )f qu(’?)

2

=@ q9);(aq* q%);

_ g a) a/b 7’ mi ”‘1 ) ( ‘_’)k, (3.25)
k=0

(ag?; q?) ) (=bqiq)y N b

Perhaps the c = a/b, h = 1 and t = 2 case of (3.24) is equally pretty.

o0
Z ( a/b q)2] qujz+j
— (4% 4?) 1(aq; q)o;

Jj=

(3.26)

(0% q7) (= /b @) o & (=bg; q), (_C_I)k
(aq: 9)o = (¢ Di(=bg* q*), \ b
To get other transformations of a similar nature, consider the » = 0 case of (3.1).
Take b = 0 in (3.1), cancel the factor (1 — cg) from the LHS. In the resulting
identity take @ +> —b, ¢ > a/q,and d — —c/q", and bring the infinite products to
the other side. We obtain: for |bg’| < 1, |c| < 1,

3o tad,

(—bq")!

3(a'sqD;(aq"; q"),

(—ciq") 2 (—aq"/c; qh) (—bq': q )hk k
= e (=o)". (3.27)
(ag": q"). (—bq'; q") s ,; (a": q"),

Take the c = a/b, h = 2,t = 1 case of (3.27) to obtain
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* (a/bid?),

2

— = _(—b )j
=@ q);(aq* q?), I

_ ) 0 (1. 2.2 —ba:
(~a/b:q?)., Z( ba’; 4*),( bq"f)%( i IR

- (aq2;6]2)00(—b6];CI)oo k=0 (qZ;qZ)k _Z

An equivalent form of Entry 1.6.5

Consider the case a — 0 of (3.1). Replace c by dg”~!, and then take b > b/q and
d +— —a to obtain, for |ag"| < 1,

ST = (1) ag')’
bq'; — 3.29
; (@ q"); (1 +aq"tTD) = (054 ; (—bq'; 4" 529

In the case that h = 1, = 2, and b = a this reduces to an equivalent form of Entry
1.6.5, the second last equation in the proof of [5, Entry 1.6.5]:

afq/ +j

S 2 (—ag)
,Z (T agi ) = (—aq’:q MZ—). (3.30)

— (-aq* q*

This identity has a combinatorial proof, given by Berndt, Kim and Yee [8, Th. 5.7]. A
very similar identity is obtained when h = 2,f = 1,a — a/q, and b = a in (3.29):

j (/+1) 00 _ k
i (—aq: @)oo Y _(Faq) (3.31)

o0
JX; (q:q); (1 +ag¥+1) — (—aq; gy

Similar identities are obtained when » = 0 in (3.1). Set d = ¢/¢"~! and in the
resulting identity, relabel parameters by replacing ¢ by —ag"~! and a by —b, to
obtain, for |ag"| < 1, |bg'| < 1,

i bq) — = ! i (=bq":q"),, (— aq). (3.32)

= (q":9"); (1 +ag" D) = (=bg"i q") e

Now take b = a, h = 1 and r = 2 to find that

o0

(aq) B .
JX: l+aq2l+1)_ —aq?; q Z —aq*; f] ,(—ag)” . (3.33)

The b = 0 = c case of (3.1)

Takeb = 0 = cin (3.1), replace d by b and take (aq’; qt)oo on the other side to obtain
an extremely symmetric transformation formula; for |ag’| < 1 and |bg"| < 1,
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1 = (bqh;qh), i = ; hk
Y(ag") = bg"*. (3.34
(ba";q") ., Z(; ("3 4"); W= G q)m; " ( oG

There is no corresponding formula in Ramanujan’s list appearing in Chapter 1 of
[5], but it is related to [5, Cor. 1.2.2], a result originally due to Andrews [2]. When
h =2andt = 1, then (3.34) reduces to

%} . 2 oo

— I (ag) = Q)z"b” 3.35
bqq[(j)’j(q) (aqq)kz (bg™*.  (3.35)

Compare the sum on the left-hand side with that of [5, Cor. 1.2.2]. To obtain Cor. 1.2.2,
Andrews and Berndt apply Heine’s transformation once again on the right-hand side
of (3.35).

Summary of special cases

So far, we have listed 13 entries that are immediate special or limiting cases of (3.1).
One more will appear in §4. The main special case is Entry 1.4.1 (eq. (2.2)) which
isthe h = 2 and r = 1 case of (3.1). The others are:

1. The case a = 1 = d. This leads to Entry 1.4.2 and Entry 1.4.5.

2. The case b = 0 and d — 0 of (3.1). This leads to Entry 1.4.3 and Entry 1.4.4.
Note that the case @ — 0 and ¢ = 0 leads to the same identities. Other special
cases include Entry 1.4.10 and Entry 1.4.11.

3. Taking a — 0 (without changing c) leads to Entry 1.4.18, and an equivalent form
of Entry 1.6.5. See also Entry 1.6.6 in §4 below. We have also taken b = 0 for
the sake of completeness. (The d — 0 and ¢ = 0 cases are equivalent due to the
symmetry of (3.1).)

4. Thecasea — Oandd — 0. This leads to Entry 1.4.12, Entry 1.4.17, Entry 1.4.9,
and a part of Entry 1.5.1.

5. The case b = 0 = c. This leads to a new transformation formula. A special case
is closely related to a useful transformation formula of Andrews in [5, Cor. 1.2.2].

By examining the above summary carefully, one can ask about the cases when b = 0
followed by a = 0, or ¢ = 0 followed by d = 0 in (3.1). However, in both these
cases, the resulting identity reduces to the ¢g-binomial theorem.

It is apparent that most of Ramanujan’s identities considered here are simple
limiting cases of (3.1) where one or more parameters go to 0. However, there are a
few that are motivated by getting a g-series (such as Entry 1.4.10 and Entry 1.4.11),
or in getting an ‘unnatural’ identity, where the factor that naturally terminates the
series from below is missing. See Entry 1.4.2 (eq. (3.6)), Entry 1.4.5 (eq. (3.9)) and
(3.30).


http://dx.doi.org/10.1007/978-3-319-68376-8_1

A Bibasic Heine Transformation Formula and Ramanujan’s 2¢| Transformations 115

4 Entry 1.6.6 and related summations

Entry 1.6.6 is also a special case of (3.29), our generalization of Entry 1.6.5 above,
and so of (3.1). What is different here is that one can employ a special case of the
g-binomial theorem to sum one of the series. The special case we need is [10, eq.

(IL.1)]: for |z| < 1,
Z (4.1)

(z; q)oo = (a9

Observe that when b = —1 and 2 = 1 in (3.29), then using (4.1), we obtain

=g S (=D ag)
jz(q 1q"); ( +aq’f“)_(q’q)°°k§ (@' 9"
_ (954
(—aq; 4o

Replace a by ag®~' to rewrite this identity in the form

i i) (dhq), 4.2)
= (q'1q"); (1 +aqi™)  (—aq’;q")e '
In the case where a = —1, s = 1 and ¢t = 2, this reduces to Ramanujan’s [5, Entry
1.6.6], an identity we highlighted in the introduction:
ad ] Jgitti 2. 42

= —) (697

where the ratio of infinite products on the right-hand side is equal to Ramanujan’s
theta function ¥ (q), defined as

V@)=Y g 7.

k=0

However, if wetakea = 1, = 1 and s = 1 in (4.2), we obtain

>0 () :
Z( (— l)fq _ @ Do 4.4)

@) (1+¢) (g

where now the products on the right-hand side are (in Ramanujan’s notation) ¢ (—¢q),
defined by



116 G. Bhatnagar
o0
$(—q) ==Y (D"
k=—00

So in (4.2) we have a common generalization of (4.3) and (4.4).

More generally, when b = —1,a +— —a", then (3.29) reduces to
3 (~1)ig'() (@)Y O
(g5 9", (1 — algei D) ~ L (q' g

When £ is a positive integer, the sum on the right consists of every Ath term of the
summand in (4.1). There is a simple trick to compute such a sum. It uses the fact that

h—1 .
1 1 if hlk
TOBCAE N
h g 0 otherwise
for w, = e*>™"/" or some other primitive Ath root of unity. Using this trick, we find

that
h—1

oo hk o0 k
(aq) (aq)” 1 k
Z te ot = Z AP YA @

=@ a3 @ h =

So we obtain

i ( 1ig'(3) _ I (454, (4.5)
L a1 =) ~ b & (gl a')
In particular when 4 = 2, then w;, = —1, and

[e¢]

( 1)ig'Cs) 1 (dd"), (4" q")..
Z ( 1 —a q2(l]+1)) = ( . + Y . (46)

j= q 3 (aq7 qt)oo (_aq’ q )oo

When a = 1 and ¢ = 2, this reduces to
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i ( 1)qu o _1 ((qz; N qz)oo>

= 2(2j+1)) 2 (q; qz)oo

1
=5;W@+¥(=q). (4.7)

The right-hand side is the even part of ¥ (g).
Remark Letw, = ¢27i/"
that, formally,

Z ’”Zf(n)w“” Zf(rk+S)—Zw”k Zf(rk+s)

n=0 k=0

or some other primitive rth root of unity. Then we can show

rk+s , if we

This ‘sectioning’ process allows us to compute the sum Y - f(rk + 5)z
know the sum Y 7, f (k)z~.
This trick is used in the proof of Andrews’ Fundamental Lemma, given in equation

2.6).

We have seen an example where we can sum a series after applying Heine’s method.
Next, we obtain a result for multiple series by iterating Heine’s method.

5 Multibasic Andrews ¢g-Lauricella transformation

We now apply Heine’s method to obtain a multibasic generalization of Andrews’ [3,
(eq. (4.1)] transformation formula for the g-Lauricella function. As special cases,
we obtain some generalizations of Entry 1.4.10 and of equation (3.17). These results
transform a multiple series to a multiple of a single series.

For h and k vectors, we use the following notations. The notation |k| is used
to denote the sum of the components of the vector k; 4+ kp + - - - + k,,,. We use the
symbol for the dot product

h-k=hk +hky+ -+ hpky.

We also use the vector § to denote the vector (1,2, ..., m). Thus,
m
§-k=Y rk.
r=1
Theorem 5.1 Suppose m = 1,2, ... is a nonnegative integer. Let ay, as, ..., da;

and b be complex numbers, and suppose that the denominators in (5.1) are not
zero. Further, let q, t, hy, ha,...h, be complex numbers, satisfying |q'| < 1,
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lg" | < 1and |q"| <1, forr =1,2,...,m. Then, for |w| < 1, and |z,| < 1 (for
r=12,...,m),

m

m b o
Z 1—[ (ar:q )k, (W1 4') 2 (5.1

>0  r=1 (6] gt ) k bw; gk il

t m
Zr» j

_ md)y py g OOZ ), W,

Wi+ 1 (2rig” (q q"; + % (arzei g™ )U

OO r=

Remark Whenm = 1, then (5.1)reducesto (2.4). Whena, +— b,,b — c/a,w +> a,
and hy = h, = ---h,, = 1 = t, then (5.1) reduces to a transformation of Andrews
for g-Lauricella functions [3, (eq. (4.1)].

Proof The proof of (5.1) is a direct extension of the proof of (2.4). For m = 1, it
reduces to Theorem (2.1). When m > 1, we apply Heine’s method m times. Expand
the relevant products using the g-binomial theorem and interchange the sums one at
a time. The first few steps of the proof are as follows.

Z ﬁ (ar;th)k, (W qt)hk “ Zkr
(g q"), Gwigni, 3"

_ (w;q’)oo Z ﬁ (g,;th)kr (bwa(h1k1+---+hmkm);qt)oo ﬁ .

Z r
hyky+-hmky) - r
(th( 1ki—4-+ )’ qt)oo i

ar’ m 00 . qt)j
’ - J o ti (kg +ethpky)
(bwq)c>o ,Z;) n ,WEZ 12(‘:(61 q)w
r=1,2,.
(W,q) m—1 ar’ m—1 }
o
s & Mgt 1
r= 12 ..... m—1
o), W
X —Wfql](h ki 4 Fhu_1kp—1) —k”‘ z ql/hm m
;(q,q’) ,;O(qmq )m(m )
(W; qt)oo m—1 (ar; qh,)kr m—1 )
= —— _—_— er
(bw: ¢ ,E:O ,l] (q":q™), H
r=1,2,....m—1

i (b’ q—t)j J o ti(hiki+thy_1ky—1) (amzmqtjhm; qhm)oo
(qutjhm; C]h’”)oo
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 wd) g (anzmsg™) = (ard™), o
0w qDs (zmig™), ,g) H b H
r=1,2,.

ot i
X Z (b’ a); (nida™), W ik n-1).

=0 (Clti qt)j (amzm; Clhm),j
So far, the steps are identical to the proof of Theorem 2.1, with the sum indexed by
k,, replacing the sum indexed by k in the earlier proof. Repeating these steps m — 1
times, we obtain the required single sum indexed by j on the right-hand side of (5.1).

The convergence considerations in §2 extend to both the series in this theorem,
and to the interchange of summations required in the proof. ]

Next, we indicate generalizations of a few special cases of results from §3, to hint
at the many possibilities available.

Firsttake a, — c,q/d,,b — —bg/a,w — aq' and z, — d,q" in (5.1) to obtain
a generalization of (3.1):

(ag":q")s 14 (C’th+ hr>ooi bq/“q lm—[ <drq 4 )rj

(ag")’
(=bg"*hiq")og ;5 (dra"ra) (crghtlighn),;

m CrQ/dra "
U ( )k, : (Z:[Hq Sk Hdkr (5.2)

Jj= r=1

=0
h

k>0
1,2,....m

r=

Next, we obtain four generalizations of Ramanujan’s Entry 1.4.10, equation
(3.14).

Firsttake b = 0and d, — O, forr = 1,2, ..., m in (5.2). Further, replace ¢, by
1/q for each r, and take a = 1. In the resulting identity, take # = 1, and h, = r for
r=1,2,...,mto obtain

Z

e Mot

c@ ) 1@ an); CE q)oo,:l 9" 9o
(k,+l)
x —(q; @)s.0(— 1)"“q~ (5.3)
,;) l_! (q" q)
r=1,2,....m

Next, again take b =0 and d, — 0, for r = 1,2, ..., m in (5.2). But now take
m = n, and replace h, by n for all r. Further, set ¢, = cq"2 forr =1,2,...,n,and
invoke (3.3) to simplify some of the products. Finally, take a = ¢ = 1 to obtain the
following generalization of Entry 1.4.10:
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o0

tj 1
Z ‘. 1 n. =

=0@5a),@" Dy (054904 Do

Z(r 1)k+n (k'“)

» —(q":4"),,, (=D"Mg . (54
k>0 }_[1 (" q ) “
r=1,2,...n

The third generalization of Entry 1.4.10 is obtained as follows. In equation (5.2),
takea - Oandc, =0forr =1,2,...,m. Nowtake b —~ —1/q,d, = 1, forr =
1,2, ..., m. In the resulting transformation, once again take r = 1, and s, = r, for
r=1,2,...,m, and obtain

PRI, §

M<Mmﬂqqn
r=1,2,....m
l m
- 1)/g(>) 55
(MMH@Q&Q(M qu 5-5)

The fourth generalization of Entry 1.4.10 is as follows. Again, take a — 0 and
¢, =0forr=1,2,...,m. But now take m = n, and replace h, by n for all r.
Further, replace b by —b/q, and set d, = dg"~! for r = 1,2,...,n. Again, we
invoke (3.3) to simplify some of the products, and take b = d = 1 to obtain the
following generalization of Entry 1.4.10.

1 " 1 nlk|+ 3 (= Dk,
Z te 4t 1_[ ne 4n q =

=0 @ gD @9y
r=1,2,....n

1 @": D i
1)7¢' (2D, 5.6
(qMMq&;@,)(m 6o

Next, we give a generalization of the generalization of Entry 1.4.12 given in
equation (3.17). To this end take the limitasa — Oandd, — 0,forr =1,2,...,m
in (5.2). Now replace ¢, by —a,/q and b by b/q to obtain

m o0 m
[1(ad":a") 3 _1 I1 hl_ . pigCsh)

r=1 j=0 (qt’ q’)j r=1 (_arq g r)tj
m ky 1 Z h, (kr+l)
= (—bq': q' ar B G5
( q9:9 )oo ];) E (qh,; qh,.)ky (—bg'; ql)h-kq

r=1,2,....m
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Finally, we present a special case of (5.7) with m = n and where h, = n, for all r.

Take a, = aq"~! for all r and simplify some of the products using (3.3) to obtain the
following generalization of Entry 1.4.12:

o0
—aq":q) Y
i=0

alkl il(rfl)k,+n zl (5
E q= = .
0 el (4" q )k (=bq": g

z('izl) = (—bqt; qt)oo

(q"; q’)( aq™; q)m,

(5.8)

35\

kr >
r=1,2,.

Perhaps this is a suitable place to close our study, at equation number 60 of this
paper.

6 Closing remarks

We have seen that a minor modification of Andrews’ earlier identity led to so many
identities similar to Ramanujan’s entries. Clearly, it is a good idea to study Ramanu-
jan’s Notebooks, edited by Berndt, and the Lost Notebook, edited by Andrews and
Berndt. We conclude with a few remarks regarding Ramanujan’s transformations
and possible directions of further study.

Entry 1.4.1 is a key identity of Ramanujan, and deserves more importance than
given in [5]. Recall that Entry 1.4.1 is the » =2 and r = 1 case of (3.1). Many
of Ramanujan’s transformations considered here are immediate corollaries of Entry
1.4.1. These include Entries 1.4.2, 1.4.3, 1.4.4, 1.4.5, and 1.4.18. The special cases
considered are the obvious ones, by letting one or more parameters equal to 0, or if
necessary, taking limits to 0. Even the equivalent case of Entry 1.6.5 can be derived
from Entry 1.4.1, by taking d — 0.

Entries 1.4.9, 1.4.10, 1.4.11, and 1.5.1 follow from the 7 = 1 = ¢ case of (1.2)
or in other words, from Heine’s transformation (2.1). Since Heine’s transformation
formula appears in earlier notebooks of Ramanujan, why do these formulas show up
here, in his later work? An explanation is that Ramanujan was searching for identities
for series that look like or involve theta functions. So these entries, and Entry 1.6.6
fit in well here.

Next note that Entry 1.4.12 is obtained from the 2 = 1 case of (1.2), while Entry
1.4.17 requires the the & = ¢ case of (1.2). Of the entries studied here, these two are
the only ones that require something more than (2.1) and (2.2) (the two identities
noted by Ramanujan in his notebooks).

Many of Ramanujan’s identities have been studied from a partition theoretic
perspective by Berndt, Kim and Yee [§], including (3.18), (3.19), (3.21), (3.23)
and (3.30). We expect that many of the identities considered here have a similar
interpretation.
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Finally, we note that Heine’s method generalizes to multiple series related to root
systems. We can combine the multidimensional g-binomial theorems (given by, for
example, Milne [14] and Gustafson and Krattenthaler [12]) to obtain extensions of
(1.2) and (5.1). We hope to present these elsewhere.

Acknowledgements We thank Professor George Andrews and Professor Christian Krattenthaler
for many suggestions, pointers to useful references, and helpful discussions.
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Adventures with the OEIS

Jonathan M. Borwein

Abstract This paper is a somewhat expanded companion to a talk (Available at
http://www.carma.newcastle.edu.au/jon/OEIStalk.pdf) with the same title presented
in December 2015 at a 2015 workshop celebrating Tony Guttmann’s seventieth birth-
day. My main intention is to further advertise the wonderful resource that the Online
Encyclopedia of Integer Sequences (OEIS) has become.

Keywords Experimental mathematics - Integer sequences * Sloane’s encyclopedia

2010 Mathematics Subject Classification 97130 - 33C90

1 Introduction

What began in 1964 with a small set of personal file cards has grown over half
a century into the current wonderful online resource: the Online Encyclopedia of
Integer Sequences (OEIS).

1.1 Introduction to Sloane’s online and off-line encyclopedia

I shall describe five encounters over nearly 30 years with Neil Sloane’s (Online)
Encyclopedia of Integer Sequences. Its brief chronology is as follows:

e In 1973 a published book (Sloane) with 2, 372 entries appeared. This was based
on file cards kept since 1964.

Editorial Note: Jon Borwein passed away August 2, 2016.
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THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. . A, Sloane

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often|
saying "we would not have discovered this result without the OEIS".

nsan:sas ] (search ) i

:{ rectings from The On-Line Encvclopedia of Inteper Sequences!)

Search: seq:1,1,5,61,1385

Displaying 1-2 of 2 results found. page |
Sort: relevance | rferences | pumber | modificd | created  Format: long | short | data
ADDO364 Euler (or secant or "Zig") numbers: e.g.f. (even powers only) sechi{x)=1/cosh(x). “:

(Formerly M4019 N1667)
1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, 2404879675441,
370371188237525, 69348874393137901, 15514534163557086905, 4087072509293123892361,
1252259641403629865468285, 441543893249023104553682821, 177519391579539289436664789665 (lis;
Emph: mis: listen: history: text: internal format)
OFFSET 0,3
COMMENTS Inverse Gudermannian gd*(-1)(x) = log(sec(x) + tan(x)) = log{tan{Pi/f4 +
x/2)) = atanh(sin(x)) = 2 * atanh(tan(x/2)) = 2 * atanh{csc(x) - cot(x)).
= Michael Somos, Mar 19 2011
a(n) = number of downup permutations of (2n]. Example: a(2)=5 counts 4231,
4132, 3241, 3142, 2143. - David Callan, Wov 21 2011
a(n) = number of increasing full binary trees on vertices {0,1,2, +2n} for
which the leftmost leaf is labeled 2n. - David Callan, Wov 21 10[1
a(n) = number of unordered increasing trees of size 2Zn+l with only even
degrees allowed and degree-weight generating function given by cosh(t). -
Markus Kuba, Sep 13 2014
ain) = number of standard Young tableaux of skew shape (n+l,n,n-
3,2)/(n-1,n-2,...2,1). - Ran Pan, Apr 10 2015

Fig.1 The OIES in action.

e In 1995 a revised and expanded book (by Sloane & Simon Plouffe) with 5, 488
entries appeared.

—See the book review in SIAM Review by Rob Corless and me of the 1995 book
at https://carma.newcastle.edu.au/jon/sloane/sloane.htm.

e Soon after the World Wide Web went public, between 1994—1996, the OEIS went
online with approximately 16, 000 entries.
o As of Nov 15 21:28 EST 2015 OEIS had 263,957 entries

—all sequences used in this paper/talk were accessed between Nov 15-22, 2015.

1.2 The OEIS in action

Asillustrated in Figure 1 taken from https://oeis.org/, the OEIS is easy to use, entering
an integer sequence which it recognizes, one is rewarded with meanings, generating
functions, computer code, links and references, and other delights.

1.3 OEIS has some little known features

The OEIS also now usefully recognizes numbers: entering 1.4331274267223117
583... yields the following answer.


https://carma.newcastle.edu.au/jon/sloane/sloane.htm
https://oeis.org/
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Answer 1.1 (A060997). Decimal representation of continued fraction
1,2,3,45,6,7, ...
(as a ratio of Bessel functions 1y(2)/1;(2)).

The OEIS currently has excellent search facilities, by topic or author, and so
on. For instance, entering “Bell numbers” returned over 850 results while entering
“Alladi” yielded 23 sequences. The third sequence listed on the page is:

Answer 1.2 (A000700). Expansion of product (1 4+ x**1), k = 0..00; number of
partitions of n into distinct odd parts; number of self-conjugate partitions; number
of symmetric Ferrers graphs with n nodes.

The sequence begins

1,1,0,1,1,1,1,1,2,2,2,2,3,3,3,4,5,5,5,6,7,8,8,9, 11, 12, 12, 14, 16, 17, 18, 20

In the page we are told Krishna Alladi showed this is also the number of partitions
of n into parts # 2 and differing by > 6 with strict inequality if a part is even.

Alladi’s paper “A variation on a theme of Sylvester—a smoother road to Gollnitz’s
(Big) theorem”, Discrete Math., 196 (1999), 1-11, through a link to http://www.
sciencedirect.com/science/article/pii/S0012365X98001939 is also provided.

The OEIS also has an email-based “super-seeker” facility.

1.4 Stefan Banach (1892-1945) ... the OEIS notices
analogies

The MacTutor website, see www-history.mcs.st-andrews.ac.uk/Quotations/
Banach.html, quotes Banach (Fig. 2) as saying:

A mathematician is a person who can find analogies between theorems; a better mathemati-
cian is one who can see analogies between proofs and the best mathematician can notice
analogies between theories.

In a profound way the OEIS helps us—greater or lesser mathematicians—find
analogies between theories.

2 1988: James Gregory (1638-1675) (Fig.3) & Leonard
Euler (1707-1783)

Sequence 2.1 (A000364 (1/2)).

2,-2,10,-122,2770...


http://www.sciencedirect.com/science/article/pii/S0012365X98001939
http://www.sciencedirect.com/science/article/pii/S0012365X98001939
www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html
www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html
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Roman Kaluza

ﬂrrmr_';h. a r.‘-pf:rh'r's cyes
The Life of
Stefan Banach

J. M. Borwein

Fig. 2 A fine biography of Banach. Roman Kaluza, Through a Reporter’s Eyes: The Life of Stefan

Banach, Birkhduser 1995.

Fig. 3 James Gregory (1638-1675).

Answer 2.2 (A011248). Twice A000364" Euler (or secant or “Zig”) numbers:
e.g.f- (even powers only) sech(x) = 1/ cosh(x).

ITwo sequences are found which we flag via (1/2). It is interesting to see how many terms are
needed to uniquely define well-known sequences. We indicate the same information in the next two

examples.
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Story 2.3. In 1988 Roy North observed that Gregory