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Abstract In this chapter, we discuss the algebra framework that guides our work
and how this framework was enacted in the design of a curricular approach for
systematically developing elementary-aged students’ algebraic thinking. We pro-
vide evidence that, using this approach, students in elementary grades can engage in
sophisticated practices of algebraic thinking based on generalizing, representing,
justifying, and reasoning with mathematical structure and relationships. Moreover,
they can engage in these practices across a broad set of content areas involving
generalized arithmetic; concepts associated with equivalence, expressions, equa-
tions, and inequalities; and functional thinking.
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2.1 Introduction

When tasked with the open question of measuring the impact of early algebra1 on
children’s algebra-readiness for middle grades, our first challenge was to identify
the “early algebra curriculum” from which impact could be measured. Essentially,
such a curriculum as we envisioned it—that is, an instructional sequence that
integrated core algebra concepts and practices across the elementary school
mathematics curriculum through a research-based, multi-year approach—did not
exist in curricular resources in the United States [US]. At best, we found that
mainstream arithmetic curricula offered only a random treatment of “popular”
algebraic concepts (e.g., a relational understanding of the equal sign, finding the
value of a variable in a linear equation, finding a pattern in sequences of numbers),
often buried in arithmetic content in ways that allowed one to potentially ignore or
marginalize their treatment in instruction. This curricular challenge presented us
with an obvious corollary: What is the algebra that we want young children to learn
and that will suitably prepare them for a more formal study of algebra in the middle
grades?

These challenges led us on a lengthy journey to apply a widely-acknowledged
framework for algebra (Kaput 2008) as a conceptual basis for designing an early
algebra curriculum for Grades 3–5. Such a curriculum would allow us to measure
elementary grades students’ potential for algebraic thinking as well as their readi-
ness for algebra in later grades. In a separate line of work, we also began
exploratory research that would allow us to back this approach down into the lower
elementary grades (i.e., Grades K–2). We share part of this journey here on three
fronts: (1) we characterize the algebra framework that has informed our approach;
(2) we describe the curricular approach and its components, designed using this
framework for Grades 3–5; and (3) we share evidence of the impact of this
approach on children’s algebraic thinking.
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1By early algebra we mean algebraic thinking in the elementary grades (i.e., Grades
Kindergarten–5).
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2.2 The Emergence of Early Algebra in the US

Research shows that, historically, algebra education in the US—an
“arithmetic-then-algebra” approach in which an arithmetic curriculum in the ele-
mentary grades was followed by a formal treatment of algebra in secondary grades
—was unsuccessful in terms of students’ mathematical achievement (e.g., Stigler
et al. 1999) and led to a widespread marginalization of students in school and
society (Kaput 1999; Schoenfeld 1995). Algebra’s resulting status as a gateway to
academic and economic success (Moses and Cobb 2001) led to calls for identifying
new approaches to algebra education. As part of this effort, scholars worked to
develop new recommendations for school algebra instruction that would provide
students with the kind of sustained experiences necessary for building informal
notions about algebraic concepts and practices into more formal ways of mathe-
matical thinking. Importantly, algebra education was re-framed as a longitudinal
effort that would span Grades K–12 rather than one that began abruptly in high
school (e.g., National Council of Teachers of Mathematics [NCTM] 2000; RAND
Mathematics Study Panel 2003).

Recent US reform initiatives such as the Common Core State Standards for
Mathematics (National Governors Association Center for Best Practices [NGA] &
Council of Chief State School Officers [CCSSO] 2010) have reiterated the signif-
icant and increasing role algebra is now expected to play across school mathematics
by outlining content standards and mathematical practices for algebraic thinking
beginning at the start of formal schooling (i.e., kindergarten). While these efforts
have strengthened the national discourse on the role of early algebra in school
algebra reform, the development of a research-based approach to early algebra that
would guide the systematic, long-term development and assessment of young
children’s algebraic thinking has been lacking. In this sense, we hope that the
approach we share here might provide one route for clarifying and deepening the
role of algebra in the elementary grades.

2.3 A Conceptual Framework for Early Algebra

The early algebra perspective that guides our work is based on Kaput’s (2008)
content analysis of algebra as a set of core aspects across several mathematical
content strands. We discuss each of these here and how they are enacted in our
work.
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2.3.1 Core Aspects and the Algebraic Thinking Practices
Derived from Them

Kaput (2008) proposes that algebraic thinking involves two core aspects: (a) mak-
ing and expressing generalizations in increasingly formal and conventional symbol
systems; and (b) acting on symbols within an organized symbolic system through
an established syntax, where conventional symbol systems available for use in
elementary grades are interpreted broadly to include “[variable] notation, graphs
and number lines, tables, and natural language forms” (p. 12). While Kaput
acknowledges differing views on whether and how acting on symbolizations such
as variable notation should occur in elementary grades, he and others (e.g., Blanton
et al. 2017a; Brizuela and Earnest 2008; Carraher et al. 2008) maintain that inter-
actions with all of these symbol systems early on can actually deepen students’
algebraic thinking. In our work, we also adopted this broad interpretation of symbol
systems, along with the view that incorporating such diverse systems throughout
children’s algebraic work would be a potentially productive route to developing
their algebraic thinking.

We derive four essential practices from Kaput’s (2008) core aspects that define
our early algebra conceptual framework: generalizing, representing, justifying, and
reasoning with mathematical structure and relationships (see also Blanton et al.
2011). We see the activities of generalizing and representing generalizations as the
essence of Core Aspect (a). Furthermore, from Core Aspect (b), we take justifying
generalizations and reasoning with established generalizations in novel situations as
two principal ways of acting on conventional symbol systems, broadly interpreted.
A critical component of these four practices is that they are centered around
engagement with mathematical structure and relationships. For example, we take
the view that the activity of justifying is not, in and of itself, algebraic, but it serves
an algebraic purpose when the context is justifying generalized claims. In what
follows, we elaborate on each of these four algebraic thinking practices as we
interpret them in our work.

2.3.1.1 Generalizing

Generalizing is central to algebraic thinking (Cooper and Warren 2011; Kaput
2008) and the very heart of mathematical activity (Mason 1996). It has been
characterized as a mental process by which one compresses multiple instances into
a single, unitary form (Kaput et al. 2008). For example, in simple computational
work, a child might notice after several instances in which she adds an even number
and an odd number that the result is an odd number. In this, the child is starting to
“compress” all of the instances of adding a specific even number and a specific odd
number and getting an odd number as a result into the generalization that the sum of
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any even number and any odd number is odd. Engaging elementary-aged children
in the activity of generalizing is vital because it strengthens their ability to filter
mathematical information from common characteristics and to draw conclusions in
the form of generalized claims.

2.3.1.2 Representing Generalizations

The activity of representing mathematical structure and relationships is as important
as generalizing (Kaput et al. 2008). As a socially mediated process whereby one’s
thinking about symbol and referent is iteratively transformed (ibid.), the act of
representing not only gives expression to the generalizations children notice in
problem situations, but also shapes the very nature of their understanding of these
concepts. As Morris (2009) notes, the practice of representing generalizations
builds an understanding that an action applies to a broad class of objects, not just a
particular instance, thereby reinforcing children’s view of the generalized nature of
a claim. In the example of evens and odds given earlier, children might represent
what they notice in their own words as “the sum of an even number and an odd
number is odd.” They might represent generalizations in other ways, such as with
variable notation. For example, a child might represent the Commutative Property
of Addition as a + b = b + a, where, for the young child, a and b represent the
counting numbers. Later, as students become more sophisticated, this number
domain expands to include all real numbers.

2.3.1.3 Justifying Generalizations

In justifying generalizations, students develop mathematical arguments to defend or
refute the validity of a proposed generalization. In elementary grades, the forms of
arguments students make are often naïve empirical justifications. Research shows,
however, that they can develop more sophisticated, general forms that are not based
on reasoning with particular cases (Carpenter et al. 2003; Schifter 2009). For
example, students might build “representation-based arguments” (Schifter 2009)
where they use drawings or manipulatives to justify the arithmetic relationships
they notice. In building an argument as to why the Commutative Property of
Addition is reasonable,2 a child might construct a snap-cube “train” of 3 red cubes
followed by 4 blue cubes and visually demonstrate that the sum of the cubes (i.e.,
the length of the train) does not change when one flips the train around to become a
4-blue-cube, 3-red-cube “train.” In a representation like this, the actual number of
cubes is treated algebraically as a place-holder for any number of cubes. That is, the
“3” and “4” become irrelevant in the more general justification the child is making.

2Technically, such properties are axioms and assumed to be true without proof. However, it is
productive for children to think about why such properties are reasonable.
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There are long-term dividends for engaging children in the practice of justifying
the mathematical generalizations they make. For instance, Morris (2009) notes that
the development of children’s capacity to justify relationships about generalized
quantities can help prepare children for a more formal study of proof in later grades.
As such, justifying generalizations is an important act of algebraic reasoning.

2.3.1.4 Reasoning with Generalizations

Finally, algebraic thinking involves reasoning with generalizations as mathematical
objects themselves. In this practice, children act on the generalizations they have
noticed, represented, and justified to be true as objects of reasoning in new problem
scenarios. For example, elsewhere we have observed young children building
functional relationships that they represent with variable notation and with which
they can reason as objects in solving new problem situations (Blanton et al. 2015a).
Returning again to the example of evens and odds, a child might use previously
noticed generalizations such as “the sum of an even number and an odd number is
odd” to reason about the sum of three odd numbers. Cognitively, we see this type of
reasoning as signifying an advanced point of concept formation in which the
generalization has been reified in the child’s thinking (Sfard 1991). Thus, culti-
vating this practice represents an important objective in learning to think
algebraically.

2.3.2 Content Strands and Their Relation to Our
Framework

Kaput (2008) further argued that Core Aspects (a) and (b) occur across three
content strands:

1. Algebra as the study of structures and systems abstracted from computations and
relations, including those arising in arithmetic (algebra as generalized arith-
metic) and quantitative reasoning.

2. Algebra as the study of functions, relations, and joint variation.
3. Algebra as the application of a cluster of modeling languages both inside and

outside of mathematics (p. 11).

Early algebra research has matured around several core areas relative to these
content strands. Elsewhere (e.g., Blanton et al. 2015b), we have parsed these core
areas, with three predominant areas being (1) generalized arithmetic; (2) equiva-
lence, expressions, equations, and inequalities; and (3) functional thinking. We take
generalized arithmetic to involve generalizing, representing, justifying, and rea-
soning with arithmetic relationships, including fundamental properties of operations
(e.g., the Commutative Property of Multiplication) as well as other types of
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relationships on classes of numbers (e.g., relationships in operations on evens and
odds). We take equivalence, expressions, equations, and inequalities to include
developing a relational understanding of the equal sign and generalizing, repre-
senting, and reasoning with expressions, equations, and inequalities, including in
their symbolic forms. Finally, we take functional thinking to include generalizing
relationships between co-varying quantities and representing, justifying, and rea-
soning with these generalizations through natural language, variable notation,
drawings, tables, and graphs.

Areas 1 and 2 align with Kaput’s Strand 1, while Area 3 aligns with Strands 2
and 3. Although Kaput’s content analysis—and our interpretation of it in our
research—is not the only way to organize the content strands (or, our core areas) in
which algebraic thinking practices occur, we do see this framework as reasonable
and consistent with other perspectives (e.g., Carraher and Schliemann 2007; Cooper
and Warren 2011).

2.4 Designing an Early Algebra Curricular Approach
Using Our Algebra Framework

We expanded our algebra framework to establish an approach to teaching and
learning early algebra that included an articulation of a curricular progression with
associated learning goals, an instructional sequence to accomplish these goals,
assessments to measure learning within the instructional sequence, and a charac-
terization of students’ ways of thinking as a result of their learning within the
instructional sequence. This initial work, characterized in this chapter as
Project LEAP,3 focused on Grades 3–5. In particular, our approach built on the
body of work concerning learning progressions and learning trajectories in edu-
cational research (Barrett and Battista 2014; Clements and Sarama 2004; Daro et al.
2011; Duncan and Hmelo-Silver 2009; Shin et al. 2009; Simon 1995), which uses
an integrated approach to both supporting students’ learning and characterizing
learning in the context in which it is supported. In what follows, we briefly elab-
orate the theoretical foundations, methods, and design principles that guided our
curricular approach to early algebra across Grades 3–5. Broadly, we followed a
learning progressions approach to developing coherent curricular products (Battista
2011; Shin et al. 2009), instruction that targets students’ development of under-
standings over a large span of time (Shwartz et al. 2008), and assessments to
measure sophistication in student thinking over time (Battista 2011). In what fol-
lows, we describe the components of our learning progression.

3We use the term “LEAP” (Learning through an Early Algebra Progression) here in reference to
our Grades 3–5 suite of projects that focused on understanding the impact of a systematic,
multi-year approach to teaching and learning algebra in the elementary grades.
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2.4.1 Curricular Progression

Our curricular progression elaborates finer grain sizes of the algebraic concepts and
practices to be learned within each core area and at each grade level.4 To construct
this, we conducted a research synthesis and textbook analysis to specify (1) ap-
propriate algebraic concepts and practices (e.g., a relational understanding of the
equal sign; generalizing a functional relationship between two quantities) within our
core areas, and (2) learning goals that characterized the depth of understanding that
might reasonably be expected at each grade level and which could guide the design
of learning activities for our instructional sequence. Finally, we sought external
review of our proposed curricular progression to validate its consistency with
empirical research and teaching and learning standards.

A guiding design principle for our curricular progression is to build sophisti-
cation in learning goals over time, starting from students’ experiences and prior
knowledge. Following Battista (2004) and as elaborated in Fonger et al. (in press),
we balanced a dual lens on empirical research on students’ understandings with an
eye toward the canonical development of algebra over time in accordance with
mathematical sophistication. This lens supported our specification of how we
sequenced and ordered content across the grades. Our curricular progression served
as a blueprint for designing an instructional sequence.

2.4.2 Instructional Sequence

Our instructional sequence is an ordered set of lessons across Grades 3–55 designed
to build in complexity over time and to weave together the core areas (e.g., gen-
eralized arithmetic, functional thinking) and algebraic thinking practices (e.g.,
generalizing and representing generalizations) to support teaching and learning
early algebra in an integrated way. Each grade level sequence consists of approx-
imately 18 one-hour lessons that are intended to be taught along with the regular
mathematics curriculum. While we follow a proposed sequence during imple-
mentation for our research purposes, there is flexibility with how teachers might
incorporate lessons into their existing curriculum to accommodate their needs.

Using the curricular progression as a framework, we designed tasks or modified
existing tasks from research that showed potential to facilitate students’ construc-
tion of algebraic ideas (Clements and Sarama 2014), then built a core sequence of
lessons using these tasks. We refined our instructional sequence through cycles of
testing and revision. Moreover, we sequenced the introduction of core areas to

4We elaborate on this curricular approach in Fonger et al. (in press).
5Ultimately, our aim is to develop a Grades K–5 sequence. Our decision to focus initially on
Grades 3–5 was guided largely by the more extensive early algebra research base available in
upper elementary grades.
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generally start from equivalence and a relational understanding of the equal sign,
transition to generalized arithmetic and a study of fundamental properties of number
and operation as well as other arithmetic generalizations, then progress to a study of
generalized (indeterminate) quantities as a gateway for representing and reasoning
with relationships between quantities through equations, inequalities, and functional
relationships. Table 2.1 illustrates the lesson sequence and learning goals for Grade
3. Instructional sequences for Grades 4 and 5 were similar.

2.4.3 Assessments

We developed grade level assessments across Grades 3–7 to measure progress in
the development of students’ algebraic thinking in response to their participation in
the Grades 3–5 instructional sequence and to monitor retention of that knowledge
after the intervention (i.e., in Grades 6–7). Key algebraic concepts and practices
identified in our curricular progression were used to design tasks that formed the
basis for these grade-level, one-hour assessments. We designed assessment items to
have multiple points of entry (e.g., students might use different strategies to solve a
particular problem) and to include common items across several grades as a means
to track growth over time. To strengthen the validity of our assessments, experts on
teaching and learning algebra evaluated the extent to which the proposed assess-
ment items aligned with algebraic concepts and practices in each of the core areas,
and assessments were administered to elementary grades students and tested for
psychometric soundness. The assessments have provided a critical means to mea-
sure effectiveness of our instructional sequence (see Sects. 2.5.1–2.5.3).

2.4.4 Student Thinking

We characterize students’ thinking according to levels of sophistication, or quali-
tatively distinct ways of thinking, as evidenced in the strategies students use in
written assessments and individual interviews. To strengthen the validity of our
classification of student thinking, we accrued evidence of and distilled patterns in
students’ thinking over the span of several years (Stephens et al. in press). In our
approach, the levels of sophistication observed in students’ thinking is inseparable
from the curricular and instructional context in which the learning was supported
(see also Clements and Sarama 2004, 2014). In other words, the learning goals
established in our curricular progression (and, subsequently, our instructional
sequence) guide and support learning, while assessments measure that learning and
levels of sophistication are the means by which we qualitatively characterize the
nature of learning in that context over time.
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Table 2.1 Overview of the instructional sequence for Grade 3

Lesson sequence and focus Learning goals

Relational understanding of the equal sign
(Lessons 1–2)

• Identify meaning of ‘=’ as expressing a
relationship between quantities

• Interpret equations written in various formats
(e.g., other than a + b = c) to correctly
assess an equivalence relationship (true/false
number sentences)

• Solve missing value problems by reasoning
from the structural relationship in the
equation (open number sentences)

Fundamental properties: additive identity,
additive inverse, commutative property of
addition, and multiplicative identity;
Arithmetic relationships involving classes of
numbers (e.g., evens and odds)
(Lessons 3–6, 11)

• Analyze information to develop a
generalization about the arithmetic
relationship

• Represent the generalization in words
• Develop a justification to support the
generalization’s truth; examine
representation-based arguments (Schifter
2009) vis-à-vis empirical arguments

• Identify values for which the generalization
is true

• Represent the generalization using variables
• Examine the meaning of repeated variables
or different variables in an equation
representing a generalization

• Examine values for which the generalization
is true

• Identify a generalization in use (e.g., in
computational work)

Modeling problem situations with (linear)
algebraic expressions
(Lesson 7)

• Identify a variable to represent an unknown
quantity

• Informally examine the role of variable as a
varying quantity

• Represent a quantity as an algebraic
expression using variables

• Interpret an algebraic expression in context
• Identify different ways to write an expression

Modeling and solving problem situations
involving one-step, single variable linear
equation (additive or multiplicative)
(Lessons 8–10)

• Model a problem situation to produce a
linear equation (x + a = b or ax = b)

• Identify different ways to write the
representative equation

• Analyze the structure of the equation to
determine the value of the variable

• Check the solution to an equation or
determine if the solution is reasonable given
the context of the problem

• Informally examine the role of variable as an
unknown, fixed quantity

(continued)
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2.5 Evidence of Growth in Students’ Algebraic Thinking

It is reasonable to ask whether young children can successfully engage with a
curricular approach such as that described here, that is, one that captures such a
broad expanse of algebraic concepts and thinking practices across the elementary
mathematics curriculum. This seems to be a tall order in an already crowded general
mathematics curriculum, at least in the US. Our perspective, however, is that early
algebra is not an “add-on” to existing school mathematics, but a means to help
children think more deeply about that very content (Kaput and Blanton 2005). Early
algebra has the potential to embed arithmetic concepts in rich algebraic tasks in
ways that can deepen children’s understanding of arithmetic concepts. In this sense,
early algebra does not introduce a dichotomy in school mathematics (i.e., arithmetic
or algebra), but is a means by which children—some of whom may already be
struggling with arithmetic—can build deep mathematical knowledge with under-
standing. Our tasks are often designed to highlight this nexus between algebraic and
arithmetic thinking by using arithmetic work as a springboard for noticing, repre-
senting, and reasoning with structure and relationships in number and operations.
Moreover, we aim to facilitate the development of algebraic thinking—and math-
ematical understanding more broadly—through learning environments that rely on
both small-group investigations of open-ended tasks where students represent their

Table 2.1 (continued)

Lesson sequence and focus Learning goals

Modeling problem situations involving linear
functions of the form y = x + b, y = mx, or
y = mx + b with diverse representations (e.g.,
variables, words, graphs) and exploring
function behavior
(Lessons 12–18)

• Generate data and organize in a function
table

• Identify variables and their roles as varying
quantities

• Identify a recursive pattern, describe in
words, and use to predict near data

• Identify a covariational relationship and
describe in words

• Identify a function rule and describe in
words and variables

• Use a function rule to predict far function
values

• Examine the meaning of different variables
in a function rule

• Justify why a function rule accurately
represents the problem data

• Recognize that corresponding values in a
function table must satisfy the function rule

• Construct a coordinate graph to represent
problem data

• Given a value of the dependent variable and
the function rule for a one-operation
function, determine the value of the
independent variable
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ideas in different ways (e.g., through drawings, written language, variable notation,
and graphs) and rich classroom discourse that supports developing fluency with
algebraic concepts and practices.

In this context, we examine next some of the evidence from several studies
conducted by our project team that supports the viability of our approach. We look
at evidence from two lines of research: quantitative studies conducted in Grades
3–5 (Project LEAP) as well as exploratory studies in Grades K–2 aimed at char-
acterizing the cognitive foundations of children’s algebraic thinking at the start of
formal schooling. As described earlier, Project LEAP goals included the design of
an instructional sequence for Grades 3–5, and we report here on studies addressing
its effectiveness. We view the exploratory Grades K–2 work as prerequisite to the
kind of systematic design and development that occurred in Project LEAP. Both
serve our broader goal of developing a Grades K–5 instructional approach to early
algebra education that has been rigorously tested for its ability to develop children’s
algebraic thinking and their readiness for a formal study of algebra in middle
grades.

2.5.1 Project LEAP: Grade 3 Intervention

In Blanton et al. (2015b) we reported on our first quasi-experimental study designed
to measure the effectiveness of the Grades 3–5 instructional sequence developed as
part of Project LEAP.6 We compared the algebra learning of third-grade students
who were taught the Grade 3 sequence to students in a demographically and aca-
demically comparable control group. Approximately 100 students participated in
the study. The Grade 3 sequence used in the intervention consisted of 19 one-hour
lessons taught over the course of the school year by a member of our research team.
Each lesson involved a preliminary small group activity that either reviewed pre-
viously taught concepts or previewed concepts addressed in the upcoming lesson.
The remainder of the lesson focused on small group explorations in which students
discussed a problem activity, collected and organized their data, looked for rela-
tionships, and represented the relationships through words, drawings, or variable
notation. This was followed by whole-class discussions that revolved around tea-
cher questioning designed to engage students in discussing their thinking about the
generalizations they noticed, the nature of their representations, and why they
viewed their observations as valid. Lessons focused on eliciting students’ higher
order thinking through both written and oral communication.

Control students were taught only their regular mathematics curriculum. All
students were given our written, one-hour LEAP algebra assessment as a pre/post
measure of shifts in their understanding of core algebraic concepts and practices.

6The LEAP Grades 3–5 instructional sequence and associated assessments are available upon
request to Maria_Blanton@terc.edu.
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From our analysis of student responses to the pre/post-assessment reported in
Blanton et al. (2015b), we found that there were no significant differences between
the two groups in terms of overall performance (percent correct) at pretest
(M = 18.22, SD = 12.36 for the experimental group; M = 14.99, SD = 10.58 for
the control group; F = 2.01, p = 0.16, d = 0.28). However, the experimental group
showed significantly greater pre-to-post gains than the control group (M = 65.51,
SD = 21.01 for the experimental group; M = 21.97, SD = 15.37 for the control
group at post-assessment; F = 143.6, p < 0.001, d = 2.37). At the item level, the
experimental group showed statistically significant pre-to-post gains for all but two
of the pre/post-assessment’s 19 questions. The control group did not show statis-
tically significant pre-to-post gains on any of the assessment items. These results
suggest that, overall, students as early as Grade 3 (approximately 9 years old) can
successfully engage with core algebraic thinking concepts and practices over a
broad expanse of algebraic ideas—as reflected in the algebra framework used in our
approach—far beyond the occasional algebraic concept that they might otherwise
see in their regular curriculum. At the same time, the business-as-usual curriculum
control students received seemed to do little by way of developing students’
algebraic understanding.

Moreover, as we reported in more detail in Blanton et al. (2015b), we also coded
students’ strategy use in their assessment responses so that we could more closely
detail shifts in students’ thinking. We found that experimental students exhibited
more algebraic approaches to problem solving than did their control peers. This
included that experimental students were more likely to interpret the equal sign
relationally rather than operationally (Carpenter et al. 2003), correctly solve linear
equations using strategies that invoked inverse operations, recognize varying
quantities and represent operations on such quantities as algebraic expressions,
recognize structural characteristics of equations (e.g., the Commutative Property of
Addition) and develop arguments that invoked this structure, and recognize and
represent with both words and variable notation relationships between two
co-varying quantities.

2.5.2 Project LEAP: Grades 3–5 Intervention

Given the results of our Grade 3 study, we conducted a second quasi-experimental
study with the goal to more extensively test the effectiveness of our Grades 3–5
instructional sequence.7 In this sequel study, we compared the algebraic thinking of
students who participated in a 3-year, longitudinal implementation of our Grades 3–
5 instructional sequence to students in more traditional (arithmetic-focused) class-
rooms. Additionally, we followed these students into Grade 6 in a follow-up study

7See Blanton et al. (2017b) for a more detailed account of this study.
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to assess retention of or shifts in their algebra knowledge (no intervention was
provided in Grade 6).

Participants (n = 165) in the study were from two schools, one designated
control and one designated experimental. One member of our project team taught
the 3-year intervention in the designated experimental school, beginning with a
Grade 3 cohort and continuing with this cohort for 3 years. Approximately 18
lessons were taught at each of Grades 3–5 as part of students’ regular mathematics
instruction. Students in both experimental and control schools were assessed at the
beginning of Grade 3 (baseline data) and at the end of Grades 3, 4, and 5 using the
one-hour, grade-level written algebra assessments developed in our curricular
progression (see Sect. 2.4.3).

Students’ performance (correctness) on common assessment items8 was
compared over time (Grades 3–5) and by group (experimental and control). Results
of a two-factor, mixed-design ANOVA showed significant main effects for both
experimental condition, F(1, 144) = 137.03, p < 0.01, h2 = 0.49, and grade level,
F(3, 432) = 736.66, p < 0.01, h2 = 0.78, as well as a significant interaction between
the two, F(3, 432) = 70.29, p < 0.01, h2 = 0.15. Simple main effects tests revealed
that there were no significant differences between experimental and control students
at baseline (beginning of Grade 3), F(1, 144) = 1.46, p = 0.23. However, experi-
mental students significantly outperformed control students at each subsequent time
point: Grade 3 post-test, F(1, 144) = 205.88, p < 0.01; Grade 4, F(1, 144) = 99.74,
p < 0.01; and Grade 5, F(1, 144) = 103.28, p < 0.01 (see Fig. 2.1).

We note that the intervention had the most impact at Grade 3, as indicated by the
decreasing rate of performance of experimental students after Grade 3 (although
experimental students’ performance still improved year to year). We also note that
by Grade 4, control students were being introduced to some of the algebraic con-
cepts that were addressed in the intervention as part of their regular classroom
instruction. As such, we think it is reasonable that there is a jump in their perfor-
mance beginning in Grade 4. However, shifts in experimental students’ overall
performance (correctness) on the Grade 3 pre-assessment to the Grade 5
post-assessment from 22 to 84% offers perhaps even stronger evidence that
elementary-aged students can successfully engage in a broad expanse of algebraic
practices and concepts, as reflected in our algebra framework. Moreover, we sug-
gest that the absence of a sustained, multi-year approach to fostering algebraic
thinking leaves students significantly less prepared for algebra in middle grades, as
indicated by control students’ shifts on overall correctness from 20% (Grade 3
pre-assessment) to 61% (Grade 5 post-assessment). It is a positive result that there
were shifts in control students’ algebraic thinking by Grade 5 and, in our view, this
reflects long-term efforts to integrate algebraic thinking into elementary grades.
However, the difference in gains for the two groups shows that significant oppor-
tunities stand to be missed in current educational practice.

8Nine items were common across all Grades 3–5 assessments.
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To unpack these results further, we look here at students’ performance (cor-
rectness) across 4 time-points—Grade 3 pre/post and Grades 4–5 post—on an item
that captures how students were able to represent generalized quantities, an
important transition point in the development of algebraic thinking. Although
generalizing has rightfully received much attention as the heart of algebraic
thinking (Cooper and Warren 2011; Mason 1996), Kaput (2008) argues for the
equal importance of representing, or symbolizing, a generalization. On the
following item, students were asked to represent and reason with generalized
(varying) quantities9:

Piggy Bank Problem. Tim and Angela each have a piggy bank. They know that
their piggy banks each contain the same number of pennies, but they don’t know
how many. Angela also has 8 pennies in her hand.

a. How would you represent the number of pennies Tim has?
b. How would you represent the total number of pennies Angela has?
c. Angela and Tim combine all of their pennies. How would you represent the

number of pennies they have all together?

Results (see Fig. 2.2) show that experimental students made greater gains in
representing Tim’s and Angela’s numbers of pennies (parts a and b), as well as their
combined number of pennies (part c), than did their control peers. We considered a
correct response10 to these items to be a letter to represent Tim’s number of pennies
(e.g., n), a related algebraic expression for Angela’s number of pennies (e.g.,
n + 8), and a related expression such as n + n + 8 for the combined number of
pennies. Experimental students correctly represented Tim’s number of pennies with
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Fig. 2.1 Comparison of overall percent correct on Grades 3–5 common assessment items

9Adapted from Carraher et al. (2008).
10We recognize that a child might give a response such as n, m, and n + m, for parts a, b, and c,
respectively. In a further analysis of strategy, we considered such responses. However, for overall
correctness, we considered only the most stringent case in which students accounted for the fact
that Angela and Tim had the same number of pennies in their banks in their representations.
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variable notation (part a) at a rate of 1, 87, 83, and 92% across the 4 assessments,
respectively. By contrast, only 0, 0, 19, and 44% of control students could do so.
Students who could not correctly represent Tim’s number of pennies with variable
notation typically assigned this quantity a numerical value.

Similarly, experimental students made greater gains than control students in
representing Angela’s number of pennies as an algebraic expression (part b) across
the 4 assessments (0, 62, 57, and 78% respectively). Meanwhile, only 0, 0, 6, and
7% of control students could correctly represent Angela’s number of pennies across
the 4 assessments. Finally, experimental students made greater gains in representing
the combined number of pennies with an algebraic expression (part c) across the 4
assessments (0, 53, 46, and 73%, respectively) than did control students, whose
overall percent correct was 0, 0, 2 and 8% across the 4 assessments, respectively.

We find these results to be compelling for various reasons. First, this is a
particularly complex problem for young children because in an arithmetic-saturated
experience, they have not learned to “see” and mathematize variable quantities in
problem situations (see, e.g., Blanton et al. (2015a) for a treatment of progressions
in young children’s understanding of variable and variable notation). As such, even
a simple task such as representing Tim’s number of pennies is often beyond their
perceptual field, as indicated by their action of assigning a numerical value to a
varying quantity. In our view, a first step in understanding algebraic concepts such
as those addressed in the Piggy Bank Problem is learning to perceive and represent
a variable quantity (i.e., part a), after which students might notice and represent
relationships between quantities (as in parts b and c).

Secondly, these results show that, unlike control students, experimental students
were very successful at representing generalized quantities with variable notation.
Moreover, experimental students were able to use variable notation in meaningful
ways (e.g., they understood that the same letter was to be used to represent the
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number of pennies in each of Tim’s and Angela’s bank, since the number of coins
was the same but unspecified). This calls into question the conventional wisdom
that younger students are not “ready” for variable notation and should use those
representational systems that are already available to them—particularly, natural
language and drawings—to represent variable quantities, rather than variable
notation (e.g., Nathan et al. 2002; Resnick 1982).

Finally, to test the claim that we set at the beginning of the study regarding
whether participating in our instructional sequence would impact students’ alge-
braic thinking in middle grades, we followed Grades 3–5 students into middle
school and administered our Grade 6 algebra assessment (see Sect. 2.4.3) at the end
of Grade 6. No intervention was given. We found that the experimental students
(n = 46) significantly outperformed the control students (n = 34), with an overall
correctness of 52% (experimental) versus 44% (control) on this assessment11 one
year after the early algebra intervention ended. In Isler et al. (2017), for example,
we found that experimental students remained more successful in generalizing
functional relationships and representing them in words and variables than did
control students. Experimental students were able to correctly generalize and rep-
resent a functional relationship in words and variable notation at a rate of 48 and
65%, respectively, while control students were able to do so only at a rate of 26 and
41%, respectively. Such results suggest that when students experience a broad,
sustained approach to early algebra instruction, they are better positioned for suc-
cess in algebra in middle grades.

2.5.3 Project LEAP: Examining a Teacher-Led
Grades 3–5 Intervention

Findings from our previous Project LEAP studies, summarized above, have led to a
longitudinal, randomized study in 46 participating schools where we are currently
following a Grade 3 cohort across Grades 3–5 as experimental students receive the
intervention and control students receive their regular instruction. A key difference
in this study was its experimental design (randomized) and the fact that teachers led
the intervention as part of their regular classroom instruction. The utilization of
classroom teachers to lead instruction is a core component of testing the efficacy of
our intervention. It holds unique challenges that lie in the fidelity with which
teachers might implement the sequence across different instructional settings, given
their own varied professional experiences. To increase their fidelity of implemen-
tation, we provided all participating teachers with long-term professional devel-
opment to strengthen their knowledge of algebraic concepts and practices, as well

11It should be noted that the analysis for Grade 6 data was for all items on the assessment (not just
items common with the Grades 3–5 assessments) and that it included new, more difficult items.
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as their understanding of students’ thinking about these concepts and practices and
how to craft classroom discourse that engaged students in dialogue around them.12

Results thus far show that, although there was no significant difference between
experimental and control groups on the Grade 3 algebra assessment given at
pre-test, experimental students significantly outperformed control students
(p < 0.001) in overall performance on this assessment administered at post-test (see
Fig. 2.3). In particular, participation in the intervention was associated with a 13%
increase in post-test score compared to the control group, suggesting that the Grades
3–5 instructional sequence we designed using Kaput’s (2008) conceptual frame-
work shows potential to positively change the way children think algebraically in
elementary grades and their potential for success in middle grades. We note,
however, that improvements in overall performance for Grade 3 experimental
students in this teacher-led study are not as robust as those for our previous
interventions led by our research team (e.g., see Fig. 2.1). One possible explanation
for this difference could be the diverse fidelity with which teachers implemented the
intervention as opposed to the fidelity of implementation for a researcher with
extensive knowledge of and instructional experience with the intervention.

2.5.4 Extending Our Work into Earlier Grades

Ultimately, early algebra is intended to be a focus of mathematics curriculum and
instruction in the US across all of elementary grades, beginning in kindergarten
(NGA & CCSSO 2010). A natural progression of research for us, then, is to
consider how the conceptual framework we applied in our Grades 3–5 work might
translate into earlier grades. We have initiated exploratory, qualitative studies on
this, with the goal of understanding the genesis of algebraic thinking practices in
children’s thinking in Grades K–2. We provide a brief overview of some of our
findings here.

In Blanton et al. (2015a), we provided evidence that Grade 1 (age 6) students
participating in an 8-week classroom teaching experiment that focused on func-
tional thinking could generalize, represent, and reason with (linear) functional
relationships. As reported in that study, we developed a learning trajectory to
describe first-grade participants’ thinking about generalizing functional relation-
ships, analyzing data from children’s pre-, mid-, and post-instruction interviews. In
particular, we identified eight different levels of thinking, ranging from pre-struc-
tural to function-as-object, exhibited by participants as they advanced through the
teaching experiment.

At the pre-structural level, children could not describe or even implicitly use any
kind of mathematical relationship in talking about function data. At the
function-as-object level, some children had progressed to an ability to generalize

12For our analysis of teachers’ fidelity of implementation, see Cassidy et al. (to appear).
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and represent a functional relationship with words and variable notation and reason
with their symbolic rule as an object for exploring novel scenarios. For example, by
the end of the teaching experiment some children were able to generalize a rela-
tionship between the number of cars in a train and the number of stops the train
made, where it was assumed the train picked up two cars at each stop and the
engine (the only “car” on the train before the first stop) was not counted.

One child represented this relationship as R + R = V and described R as rep-
resenting the number of stops and V as representing the number of cars. When
asked how the relationship would change if the engine was counted, she noted that
she would “just add 1” and represented this as +1 + R + R = V. In other words, she
was able to reason with her first function rule as an object in order to solve the new
problem and did not have to reconstruct a new function table and find a new
relationship independently of her original one. In essence, at this advanced level
students who were able to reason in this way no longer viewed the original rule as a
process (Sfard and Linchevski 1994) of operating on numbers but instead were able
to transform a function rule as an object (Cottrill et al. 1996; Gilmore and Inglis
2008). Moreover, children who exhibited thinking at this level understood
boundaries concerning the generality of the relationship and conditions under which
the generalization would not hold.

Elsewhere (Blanton et al. 2017a), we reported on how Grade 1 students par-
ticipating in this study understood variable quantities and variable notation in the
context of functional relationships. Again, as students progressed through the
teaching experiment we found that their thinking advanced from what we charac-
terized as a pre-variable/pre-symbolic level to a letter as representing variable as
mathematical object level. We argue that at the most primitive level, students did
not recognize a variable quantity in a mathematical situation and could not use or
did not accept the use of any symbolic notation to represent such a quantity. As
students progressed through the sequence, some were ultimately able to use variable
notation to represent functional relationships and to reason with these symbolic
rules.

In a related study, Brizuela et al. (2015) illustrate the variety of understandings
about variable and variable notation held by Grade 1 children, including that
(1) variable notation can signify a label or object; (2) variable notation can represent
an indeterminate quantity; (3) quantitative relationships can be expressed through
the ordinal relationships between letters in the alphabet; and (4) the inclusion of
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both letters and numbers in a single equation should be avoided. We also observed
that these children were able to act on a mathematical expression that includes
variable notation as a mathematical object. Our findings illustrate that given the
opportunity, even very young children can use variable notation with understanding
to express relationships between varying quantities. We argue that the early
introduction of variable notation in children’s mathematical experiences can offer
them opportunities to develop familiarity and fluency with this convention. This
raises an interesting question relative to prior research that has documented sec-
ondary school students’ difficulties with variables and variable notation (e.g., Knuth
et al. 2005; Küchemann 1981) and whether such difficulties might be ameliorated
by a sustained introduction to variable and variable notation from the start of formal
schooling.

2.6 Conclusion

Our goal here has been to describe the conceptual framework of our approach to
early algebra, how we are enacting that framework through the design of a cur-
ricular approach to algebra instruction in the elementary grades, and a brief over-
view of some of our findings, reported in detail elsewhere, regarding the impact of
this approach on children’s algebraic thinking. Ultimately, our program of research
aims to outline a curricular approach to teaching and learning algebra across Grades
K–5 that can positively impact students’ readiness for and success in algebra in
middle and high school grades. Collectively, our studies contribute evidence to the
perspective that elementary-aged children can engage in sophisticated practices of
algebraic thinking—generalizing, representing, justifying, and reasoning with
mathematical structure and relationships—across a broad set of core content areas
involving generalized arithmetic; concepts associated with equivalence, expres-
sions, equations, and inequalities; and functional thinking.

We have found that a research-based, comprehensive early algebra intervention
across upper elementary grades (i.e., Grades 3–5) can statistically improve chil-
dren’s algebraic understanding and potentially improve their algebra-readiness for
middle grades. Further, we have found that in lower elementary grades students
exhibit a capacity for algebraic thinking beyond what we had originally hypothe-
sized as possible. Our observations of children’s algebraic thinking have been
perhaps most striking in the early elementary grades (particularly, Grades K–1).
Indeed, prior to our studies, we assumed that children in these early grades might
have even more difficulty with the algebraic concepts with which adolescents so
often struggle—for example, the object–quantity confusion associated with vari-
ables (McNeil et al. 2010) or the difficulty in shifting students’ perspectives away
from recursive thinking towards functional thinking (Cooper and Warren 2011). We
have found instead that, in these early grades, children are far more able to think
algebraically than we anticipated. In our view, providing sustained experiences,
from the start of formal schooling, with the conceptual approach to early algebra
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described here holds promise for ameliorating the deeply held difficulties and lack
of success that students have historically had with high school algebra in the US.
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