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Making Implicit Algebraic Thinking
Explicit: Exploiting National
Characteristics of German Approaches
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Abstract German mathematics teaching-units in primary school lack explicit
algebra learning environments. Then again, many national characteristics of
teachers’ attitudes and beliefs, everyday school life in mathematics classes, and
deep-seated approaches that expect children to communicate and argue about
mathematical findings, provide favorable prerequisites for algebra. Moreover, the
contents taught have the potential to address algebraic thinking if approached from
a new perspective. Yet, teachers and children are mostly unaware of the algebraic
potential of certain tasks. This chapter includes three studies with a special explicit
focus on possible key ideas, children’s abilities, and challenges offered by tasks.
These evaluated ideas illustrate in interweaving perspectives feasible approaches
that enable teachers to integrate algebraic thinking into their classroom culture.
Moreover, the implicitly given opportunities revealed by the special focus of each
study are hoped to lead to a sensible acceptance of algebraic thinking in primary
math classes and its curriculum.
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12.1 Introduction

Algebraic thinking is an important branch of mathematics from the start (Brownell
et al. 2014). Working on numbers and operations is twofold (Müller and Wittmann
1984). On the one hand, numbers are regarded as digits or strings in a place value
system. This allows carrying out algorithms and calculating discrete solutions. On
the other hand, numbers and operations form an algebraic structure with special
properties. This allows thinking about patterns, terms, and equations as special
objects (e.g., Kieran 1981; Sfard 1991; Tall et al. 2001). Both of these perspectives
on numbers and operations are crucial for a substantial mathematical education
from the very start. Yet, the latter is almost neglected in daily school life in
Germany. The authors of this chapter wonder why the various implicit possibilities
for implementing and supporting algebra in primary mathematics are largely
unknown to teachers and not taken up in textbooks and syllabi.

In the next section three different aspects are identified and described which may
pave the way for a sensible and deliberate teaching and learning of algebra in
German primary schools. This analysis of the special situation in Germany there-
fore frames the offered approaches. In particular, the issues and opportunities raised
by the national characteristics are focused on. Afterwards in Sects. 12.3–12.5, the
interwoven perspectives underpinning three research studies, and their respective
theoretical frames, methods, and results, are outlined in detail. The topics of these
studies are at the core of recent research that Kieran et al. (2016) identify as “a focus
on mathematical relations, patterns, and arithmetical structures” (p. 10). The per-
spectives evince optional ways of implementing algebra and algebraic thinking in
daily school life.

12.2 Issues and Opportunities for Supporting Early
Algebra in German Primary Mathematics

The situation of German primary mathematics concerning early algebra is
ambivalent. On the one hand, algebraic topics have no tradition and still no explicit
place in German primary school curricula and teaching-units, unlike in some other
countries (e.g., NCTM 2000). German primary curricula and standards mention
algebra in a very limited way, if at all. Also there are only a few national research
studies on algebraic thinking in the lower grades (e.g., Akinwunmi 2012; Gerhard
2013; Lenz 2016; Nührenbörger and Schwarzkopf 2016) and the ‘Early Algebra’
movement has not (yet) spread in Germany. At the same time, we also face the
same didactical problems concerning this topic that are mentioned internationally
(Malle 1993), for example, weak conceptions of variables (Franke and Wynands
1991; Specht 2009). On the other hand, when we take a closer look at the German
primary mathematics classroom, we can identify many characteristics that offer
opportunities to support algebraic thinking.
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Astonishingly, primary classroom interaction and teachers’ attitudes towards
teaching and learning mathematics are very coherent throughout the country in spite
of the fact that there are different curricula in the federal states, but all based on a
common national standard (KMK 2004). Primary maths in German classrooms is
very up-to-date concerning many fruitful teaching and learning principles
(Krauthausen and Scherer 2007; Radatz et al. 1996; Schütte 2008; Steinweg
2014a). At least regarding the following three themes, a common ground can be
identified.

• Teacher attitudes and practices: Teaching is no longer understood as passing on
knowledge but as supporting individual and constructive life-long-processes.
For instance, it is common to support children’s individual solving strategies in
terms of framing learning as discovery (Winter 1991). This goes hand-in-hand
with seeing each child as an individual being with individual needs, abilities,
and experiences (Bauersfeld 1983). With this in mind teachers also take into
account prior knowledge, and misconceptions or mistakes are treated in class-
room interaction as learning opportunities. Individuals’ reactions and solutions
to tasks are valued and integrated into the classroom discussion and interaction
(e.g., Gallin 2012; Kühnel 1916/1966; Selter 1998).

• Tasks and problem posing: The teaching units offered are mainly substantial
learning environments (Wittmann 1998), closely linked to mathematics as the
science of patterns. Tasks are embedded in learning environments and are
therefore related to each other. So-called operative variations (Wittmann 1985)
of arithmetical tasks build up patterns and offer opportunities to discover
mathematical relations among them. Most German textbooks and worksheets
offer tasks with mathematically sound patterns to be spotted and to be described.

• Expectations on learners: The expected reactions in classroom interaction differ
from just giving numerical answers. The German national standards (KMK
2004) expect children of all ages to communicate and to argue mathematically.
This includes commenting on solutions, describing one’s own solving pro-
cesses, detecting patterns, defending different approaches, explaining certain
patterns, and so forth. Primary teachers are very much aware of the importance
of these so-called process competencies and try to support them in the classroom
(Walther et al. 2008).

In summary, German norms around daily classroom interaction and common
beliefs about teaching and learning reveal bright opportunities for early algebra.
Yet, the algebraic potential of patterns and structures is fairly unknown to both
teachers and children. Algebraic thinking is mostly understood as a content of
secondary school, being very abstract and possessing no links to primary maths.
This might originate from a lack of knowledge about the nature of algebraic
thinking as well as a traditional view of algebra. Kaput et al. (2008b, p. xviii) call
this belief the “algebra-as-we-were-taught-it, [which] follows
arithmetic-as-we-were-taught-it.” In an already overfilled curriculum it is under-
standable that primary school teachers might have some reservations about this
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alleged new additional content. As a consequence, teachers do not promote alge-
braic thinking explicitly in primary maths class.

Because of this situation, we believe that it is of high importance to promote
researchers’ and teachers’ awareness concerning algebraic thinking and to make the
implicit algebraic thinking that is already present in German classrooms explicit.
The objective is to encourage teachers to integrate algebraic thinking into their
classroom. Moreover, the aim is to enable teachers to become aware of their already
addressing algebraic thinking in their maths class. This might finally lead to an
acceptance of algebraic thinking in the primary math class and its curriculum.

In this chapter we present three different research studies, which build on three
perspectives regarding the integration of algebraic thinking in primary maths
classrooms. Each study, which is grounded in the national characteristics of
German primary mathematics teaching, has a separate focus:

1. A focus on topics and contents of primary school mathematics that contain
opportunities for promoting algebraic thinking. Section 12.3 clarifies the nature
of algebraic thinking by describing four essential key ideas.

2. A focus on the algebraic competencies of primary school children. Section 12.4
provides insight into the potential of children’s generalization processes with
respect to the development of algebraic thinking.

3. A focus on the design of tasks and problem posing. Section 12.5 describes the
challenges of task design and how tasks might promote algebraic thinking even
in very young children.

12.3 Study I: All Eyes on Key Ideas

One perspective concerning the integration of algebraic thinking in the primary
maths classroom takes as its starting point the mathematical topics and contents
taught in primary school. In spite of the fact that algebra is not mentioned explicitly
in curricula and syllabi, many topics are related to algebraic ideas and content
fields. From this perspective, algebra is not a new content to add but a content field
to be identified within already taught topics.

12.3.1 Theoretical Framework

The theoretical framework of this study includes two different aspects: an analytical
and a constructive part. The analysis given in the first subsection tries to differ-
entiate between the terms pattern and structure from a mathematical point of view.
The constructive part, which is presented in the second subsection, suggests an
option for categorizing topics into key ideas.
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12.3.1.1 Patterns and Structures

Often mathematics itself is described as the science of patterns (Devlin 1997). In
this view, all mathematical theories arise from patterns spotted. Even axioms
characterize patterns to build on. Not surprisingly, teaching and learning about
patterns and structures is no special topic but fundamental for all mathematics
lessons. “Mathematics ‘makes sense’ because its patterns allow us to generalize our
understanding from one situation to another” (Brownell et al. 2014, p. 84).

Becoming aware of patterns allows us to see sense in mathematics and to
appreciate its beauty. This awareness is at least twofold. On the one hand, seeking
patterns can be classified as meta-cognitive; on the other hand, there is a cognitive
component of awareness that is characterized by “knowledge of structure”
(Mulligan and Mitchelmore 2009, p. 38).

Patterns can be described as “any predictable regularity, usually involving
numerical, spatial or logical relationships” (Mulligan and Mitchelmore 2009,
p. 34). Constructing a pattern of numbers or shapes by making up a rule or a certain
operative variation (Wittmann 1985) of a given number or task is a very creative
process. If, for instance, the pattern of a number sequence is creatively made up, the
regularity then is fixed and can be used, continued, and described (Steinweg 2001).

In this research study structure is understood as mathematical structure and not
as a category system to describe the individual pattern awareness of children (on
different uses of the term structure c.f. Rivera 2013; also Kieran in this volume).
Mason et al. (2009) recommend “to think of structure in terms of an agreed list of
properties which are taken as axioms and from which other properties can be
deduced” (p. 10). They point out the difference between the spotting of (singular)
relations and the use of the given example as such for the general structure with
certain properties:

Recognising a relationship amongst two or more objects is not in itself structural or rela-
tional thinking, which, for us, involves making use of relationships as instantiations of
properties. Awareness of the use of properties lies at the core of structural thinking. We
define structural thinking as a disposition to use, explicate and connect these properties in
one’s mathematical thinking. (Mason et al. 2009, pp. 10–11)

Hence, detecting structures, in contrast to patterns, requires mathematical
knowledge about objects and operations. The relation between mathematical
objects is essentially determined by mathematical structures (Wittmann and Müller
2007). Awareness of structures often suffers from the fact that structures are
mentioned only briefly and only formulated in ‘rules’ in mathematics lessons.
Unfortunately, these condensed statements are not an appropriate tool to become
aware of the logical structures and properties of mathematical objects and relations,
which are fundamental for mathematics.

Sufficient knowledge of mathematical structures is crucial for both teachers and
children. Only well trained teachers are able to understand the mathematical
structures and to make them accessible for children (Chick and Harris 2007; Devlin

12 Making Implicit Algebraic Thinking Explicit … 287



1997). One approach for obtaining access to mathematical structures lies in explicit
learning environments that enable children to explore, use, describe, and even prove
patterns originating from underlying structures (Steinweg 2014b).

12.3.1.2 Algebraic Key Ideas

The main issue, worked on in this study, is to become aware of and to appreciate
algebraic topics in primary class interaction. Hence, the most important question is
which mathematical ideas are key, when it comes to algebraic thinking. The
international research discourses provides several possibilities concerning the
framing of algebra in primary school mathematics, for example, NCTM (2000).
Besides standards and curricula various research projects outline different approa-
ches or major ideas of algebraic thinking. Kaput (2008, p. 11), for example,
identifies three strands of algebra, which are generalized arithmetic, functional
thinking, and the application of modeling languages.

In the German context outlined above further detailing of algebraic content has
not yet occurred. The initial step has to build on the existing terms used in syllabi
and standards in order to receive broad acceptance and to make an impact on daily
school lessons and mathematics textbooks. This possible link is the content area
‘patterns and structures’, which is given in the national standards (KMK 2004).
Mathematics in primary school offers various opportunities to become aware of
algebra as a mathematical background, that is, mathematical structures. In order to
encourage sensitivity to important learning opportunities, the common topics are
re-structured according to key ideas of algebraic thinking (Steinweg 2017).

(1) Patterns (& Structures)
(2) Property Structures
(3) Equivalence Structures
(4) Functional Structures

The first idea is briefly described above (also see Sect. 12.4). The second lies in
the properties of numbers (e.g., parity, divisibility) and operations (e.g., commu-
tativity, associativity, and distributivity). Examples of this key idea are presented
below. The third key idea holds learning opportunities in evaluating, preserving, or
construing equivalence in given correct or incorrect equations by assessing terms,
and so on. The main issue here is to overcome the urge to solve equations but to
focus on the relation of given numbers, sums, differences, products, or quotients
(Steinweg 2006).

Inviting children to find ‘quick ways’ to do arithmetic calculations such as adding the same
to both numbers to reach an easier calculation (47–38 = 49–40) and the many variants, can
be an entry into appreciating structure. (Mason et al. 2009, p. 14)

The last key idea involves learning environments on functional structures, (i.e.,
mainly proportional) relations, and co-variation aspects, for example, ‘number and
partner number’ (Steinweg 2003)—also used in the study described in Sect. 12.4.

288 A.S. Steinweg et al.



12.3.2 Methodology

The research design follows a constructive approach against the background of
mathematics education as a design science (Wittmann 1995). In the research project
(Steinweg 2013) learning environments that are suitable for the key ideas outlined
above are designed and evaluated. Learning environments provide—besides some
implementation ideas—in particular, tangible examples of common tasks in order to
uncover their algebraic potential. Each learning environment includes various tasks
in a booklet to be handed out to the children along with further mathematical
background and educational information for teachers in a teacher’s guide. The
teachers participated in an introductory meeting in which the tasks and possible
teaching arrangements—given in the guidelines—were discussed. They committed
themselves to implement all of the ‘extra’ tasks in the booklet among the usual
textbook tasks in daily classroom work over a period of 10 months. The frequency,
intensity, and depth of the use of the learning environments were to be decided
freely by the teachers. There was no specific focus on the child-teacher-interaction
while working on the tasks—with the exception of some mathematics lessons
randomly visited by the researcher. The research therefore focused on the question:

Does the implementation of ‘new’ tasks structured by key ideas via learning environments
show any effects on children’s algebraic competencies?

Six German primary school classes with 144 children from 2nd to 4th grade (on
average 7- to 9-year-olds) participated in the project. Additionally, two children per
class took part in video-recorded interviews throughout the project period.

In the results presented here, we focus on distributivity as one element of the key
idea ‘property structures’. The main challenge is to see equations and expressions in
a meta-perspective way. For instance, in the expression 2 � 8 + 5 � 8 children
have to spot the specific ‘internal semantic’ (Kieran 2006, p. 32). Only if the
common factor is identified as an important component in the products can the
‘variable’ factors be summed up. For a start the two products have to be regarded as
objects in a sum and then the two different factors can be added to create a new
product (7 � 8), which is equal to the sum of two products. Of course, it is always
possible to take a procedural perspective and to calculate expressions to determine
the specific result (product, sum, etc.). This arithmetical perspective is very much
supported in primary mathematics. The change in perception of expressions and
equations is therefore crucial and challenging.

12.3.3 Research Results on the Example of Distributivity

Tasks can be designed in such a way as to take advantage of the natural urge to
calculate (Fig. 12.1); for example, summing up multiplication table results yields a
new sequence that can be identified in the 3rd line of the table as consisting of the
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sum of the addends (cf. table with addends and sums in Fig. 12.1). This may, at
first, be a surprising result for the children. If other examples are tested and in a next
step the addends are rediscovered as products, as given in the lower part of
Fig. 12.1, the underlying general idea can become more and more clear.

Besides tasks in symbolic representations, rectangle areas as a representation of
multiplication (length by width) are used as well in the tasks of the given booklet.
Such rectangles are provided by the teachers as representations on worksheets or
‘actively’ made up by the children by cutting out sections of grid paper. If rect-
angles are accepted as multiplication representations, manipulating these rectangles
by cutting and re-interpreting the two part-rectangles as multiplications can be the
next step to explore and understand distributivity (Fig. 12.2).

As the main research question aims to evaluate the effects of the implementation
of the learning environments, results of a pre- and post-test are of interest. The
results of the test item 10 � 5 − 4 � 5 = ___ � ___ (corresponding to distribu-
tivity) are herein documented by way of example (see Table 12.1).

Most likely, the children participating in the project had already experienced
derive-and-combine-strategies for solving multiplication tasks in class. This
approach to the multiplication tables, which is used in German mathematics in
primary school, is somewhat peculiar. There is no longer ‘doing tables,’ but
working on core tasks (e.g., doubles, times 5, times 10) and the use of
derive-and-combine-strategies to solve other multiplications. Only core tasks

Fig. 12.1 Exploring
distributive structures in
symbolic representations

Fig. 12.2 Exploring distributive structures by interpreting rectangles as multiplications
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should be known by heart as facts (sometimes known as ‘helping facts’ in the
Anglo-Saxon literature). For example, in order to solve 7 � 8 the children are
encouraged to combine the known facts 2 � 8 and 5 � 8. This combination is
possible because of distributivity. Even so, the task item was found to be quite hard
to handle for the participating children in the pre-test (Table 12.1).

Prior to the project two-thirds of the children had no idea what to fill in the
blanks. Only in very few cases were children able to combine the two given
multiplications referred to in Table 12.1 into 6 � 5 and thereby make use of the
structure (what we are naming the ‘proceptual’ or algebraic perspective). After
participating in the project, one-third of the children were able to give this answer.
Another third of them responded with a result such as 3 � 10, which is fitting
because of the equivalent result 30 (the “procedural” or arithmetical perspective).
Despite the fact that these results are still far from being satisfactory, the increase in
the numbers of children using an algebraic perspective is considerable.

12.3.4 Discussion

The project gives an initial indication that it is possible to foster algebraic thinking
by providing sound learning environments. The challenges offered to the children
support effects on understanding and increased performance on algebraic tasks. Yet,
the impact of learning environments alone is not enough to support all children.
Teachers’ instructions and interaction in classroom discussions as well as the
specific role of representations have to be focused on in further studies.

As mentioned above, the project provided no binding specifications to teachers
regarding how to focus on distributivity, but offered different opportunities to
explore this mathematical structure via the ‘new’ tasks in learning environments. As
a “good balance between skill and insight, between acting and thinking, is […]
crucial” (Drijvers et al. 2011, p. 22), further effort should focus on exploring the
differences between procedural and structural/conceptual work on tasks.

The developed key ideas may function as bridges and guiding principles
between arithmetical and algebraic topics. If common arithmetical strategies—like
derive-and-combine—are seen from a different angle, they actually are algebraic.
This has to be made more explicit to both teachers and children. From a
meta-perspective view the procedures performed are determined by mathematical
structure and the properties of operations, that is, by algebra. Last but not least, this

Table 12.1 Results for solving 10 � 5 − 4 � 5 = ___ � ___

Category Pre-test (n = 135) (%) Post-test (n = 133) (%)

‘Proceptual’ 1.5 32

Procedural 32.5 35

No answer given 66 33
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‘new’ perspective and awareness implies “better understanding of rules and pro-
cedures” (Banerjee and Subramaniam 2012, p. 364).

12.4 Study II: All Eyes on Children’s Algebraic Thinking

In this section, we explore how to exploit the potential of German primary math-
ematics classroom culture by making explicit the algebraic character of children’s
daily mathematical communication and reasoning. We believe that algebraic
thinking is already taking place in the present maths lessons implicitly due to the
national characteristics described earlier. It is then necessary to clarify the nature of
algebraic thinking and to support its recognition in students’ actions and commu-
nications. We illustrate this by focusing on the generalization of patterns—one of
the most important parts of algebraic thinking (Kieran et al. 2016).

12.4.1 Theoretical Framework

“Patterns and Structures” are fundamental content in German maths classes—
starting from the primary school level or even earlier. To discover, to describe, and
to reason about patterns are essential activities according to the national primary
mathematics standards (KMK 2004). Working on patterns and structures holds
great opportunities for algebraic thinking as it can evoke children’s generalization
processes, which are considered essential for algebraic thinking (Kaput 2008;
Mason et al. 2005). Unfortunately, teachers are mostly unaware that such oppor-
tunities exist.

Generalizing mathematical patterns is one of the main approaches to algebra and
also to the introduction of variables. Mason and Pimm (1984) describe generalizing
as “seeing the general in the particular.” The concepts of variables as general
numbers (or indeterminates, see Freudenthal 1973) and as varying numbers (vari-
ables in functional relations, see Freudenthal 1983) are powerful tools for gener-
alization. Thus, the use of variables enables students to communicate, to reason, to
explore, and to solve problems on a general level (Malle 1993). Variables can
therefore be introduced as meaningful and necessary signs in the context of
generalization.

Generalizing is an important part of any mathematics classroom in which the
focus is laid on patterns and structures—thus also in German primary maths class.
Patterns and structures have to be constructed actively by the learners by inter-
preting the given mathematical signs (Steinbring 2005). In order to achieve this, the
students’ challenge is to see something general in the particular (Steinbring 2005).
Whenever learners communicate about mathematics, including when they talk
about regularities, structures, and relations, they find inevitable the need to gen-
eralize. But before they are introduced to algebraic symbols and conventional signs
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for their generalizations, they face the problem of trying to say something general
without having the necessary tools, such as variables. They are thus compelled to
find their own fitting signs that can represent their explored mathematical patterns
and structures. In the last decade, research has focused on the competencies of
young children in the field of the emergence of algebraic thinking. Studies have
revealed promising findings. Young learners are able to generalize and reason about
patterns, number relations, and arithmetic laws (e.g., Bastable and Schifter 2008;
Cooper and Warren 2011; Schliemann et al. 2007). Radford (2003) claims the
importance of natural language as well as non-symbolic forms of generalization
(e.g., by means of gestures).

In order to exploit the algebraic character of primary school students’ commu-
nication of patterns and structures, a study was conducted to explore their indi-
vidual generalization processes. The study focused on the following research
questions:

How and with which linguistic resources do primary school students generalize mathe-
matical patterns? How do students develop variable concepts by generalizing mathematical
patterns?

12.4.2 Methodology

The presented interview study (Akinwunmi 2012) investigated the generalizing
processes of primary school children. Thirty participating fourth graders (approx-
imately 9–10 years) were engaged in three different task formats that included tasks
that are known to focus on the exploration of patterns:

(1) “Think of a number” (e.g., Mason et al. 1985; Sawyer 1964): Children explore
and explain the structure that lies in the following task. “Think of a number. Add
4. Add 8. Subtract the number you thought of. Subtract 2. The result is 10.”

(2) “partner numbers” (Steinweg 2003): Children explore and describe the rela-
tionship of pairs of numbers (Fig. 12.3) and fill in some missing values.

(3) “growing patterns” (e.g., Orton 1999, see example on the next page).

Fig. 12.3 Example for
“partner numbers”
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The interviews focused on individuals’ oral and written descriptions and
explanations of patterns. The students were chosen from three different schools and
included a heterogeneous range of achievements in mathematics according to their
teachers. All interviews, each of an approximate duration of 45 min, were con-
ducted by one of the authors; they were videotaped and transcribed.

The data were analyzed by a group of researchers by means of the epistemo-
logical triangle (Fig. 12.4) based on Steinbring’s (2005) theory of the construction
of new mathematical knowledge in classroom interaction.

The epistemological triangle can be used to reconstruct the referential mediation
between mathematical signs/symbols and the reference contexts that serve for the
interpretation of the signs. Steinbring (2005) describes the interdependence among
the three entities by explaining that, “the referential mediation is steered by con-
ceptual mathematical knowledge and at the same time, conceptual mathematical
knowledge emerges in the referential mediation” (p. 179).

The study presented here reconstructs the development of variable concepts by
observing the construction of knowledge by means of new referential mediations
between mathematical signs and reference contexts.

12.4.3 Research Results

The presentation of the results is divided into two subsections. The first subsection
(12.4.3.1) gives an insight into the analysis of an exemplary generalization process
from an epistemological oriented perspective by revealing students’ development of
the variable concept. The second subsection (12.4.3.2) gives an overview of the
children’s forms of generalization and presents their linguistic tools from a semiotic
perspective.

Sign/
symbol

Object/
reference context

Concept

Fig. 12.4 The
epistemological triangle
(Steinbring 2005, p. 22)
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12.4.3.1 Epistemologically-Oriented Analysis of the Generalization
Process

The epistemologically-oriented analysis of children’s individual generalization
processes is illustrated below with reference to an interview sequence with Lars, a
student who worked on the growing pattern of “The L-Numbers” (Fig. 12.5).

First, Lars was asked to continue the pattern and to calculate the required number
of squares for L1 to L10, L20, L100, and for other figures. His calculations showed
that he split the figures into two sections: the vertical squares (including the linking
square), which total one more than the term number of the sequence, and the
horizontal squares which equal the term number. Using variables, his strategy could
be described by the explicit formula (n + 1) + n. When requested to explain his
strategy for calculating the required number of squares for any term of the
sequence, his first statement involved citing an example: “I calculate, for example,
5 + 4. That’s how I get the result.” When asked to write down a description of his
strategy, he drew a figure (Fig. 12.6) and explained it as illustrated below.

Lars’ description of ‘The L-Numbers’:

Lars: So this is five (points to the five vertical squares) and this is five
(points to the five horizontal squares including the linking square in
the left corner). So and ehm (adds the two arrows and the plus sign
to his figure).

Interviewer: Great. Now can you explain to me in detail, what exactly you mean
(points to the arrows)?

Lars: This downwards (moves his pen alongside the vertical squares) plus
this (moves his pen alongside the horizontal squares), I calculate.

Interviewer: Ah, ok. Good.

Fig. 12.5 Growing pattern of
“The L-numbers”

Fig. 12.6 Lars’ description
of the pattern
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Lars: And ehm, this here (points to the linking square in the corner of the
‘L’) belongs to the downwards. That’s why I put a thicker line there
(retraces the line between the vertical and the horizontal squares).

In this interview scene Lars used a drawing of the fourth figure of the sequence
to describe the structure that he saw in the growing pattern. To this concrete figure
he added a vertical and a horizontal arrow and a plus sign. With his explanation of
the arrows “this downwards plus this, I calculate,” he pointed out that these
expressions represent the summands of the addition of the two parts of the ‘L’-
figure. The words “downwards” and “this” can therefore be construed as word
variables as they referred to the varying number of squares in the two parts of Lars
pattern. They enable Lars to describe the general structure of the ‘L-numbers’
beyond his first example, 5 + 4. He took these signs from a geometrical context as
they initially indicated a direction within the given figure. In this new context they
now referred to the varying amount of needed squares for one part of the figure.
Thus Lars constructed a new referential mediation between the used words and
arrows and the general structure of “The L-Numbers” (Fig. 12.7).

It is this mediation that is characteristic of the concept of variable as a general or
varying number in the way that it includes the semiotic nature of the relation
between one unifying symbolic object and its referring to multiple instances.
Creating that symbolic object lies at the very heart of generalization (Kaput et al.
2008a, p. 20). It is important to note that this object is not necessarily a symbolic
variable in the form of a letter. A ‘variable’ here appears in the form of words,
signs, or symbols. We agree with Radford (2011, p. 311) that algebra can be
considered as a “particular way of thinking that, instead of being characterized by
alphanumeric signs, is rather characterized by the specific manner in which it
attends to the objects of discourse.” Therefore, we can say that the process of
generalizing mathematical patterns is fostering students’ concept of variable by
naturally establishing this kind of mediation.

Fig. 12.7 Interpreting Lars’ drawing and his explanation with the epistemological triangle
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12.4.3.2 Children’s Linguistic Forms of Generalization

Across the study’s different task formats and the various individual reactions, dif-
ferent linguistic forms of generalization could be identified that served the students
as tools for generalization (Table 12.2).

We found that children mixed and combined the above forms even within one
description. Although the first four forms of generalizing are limited in terms of
creating generally valid statements because the description does not apply to all
objects in the pattern, they nevertheless illustrate the general character of the pat-
tern. As such they also present possibilities for learners to express statements that
can be understood as “general” in the classroom discussion.

12.4.4 Discussion

The analysis of the interviews of which we could just present a brief insight above
shows that when asked to explore and especially requested to describe mathe-
matical patterns and structures, children felt the necessity to generalize in order to
be able to communicate about their discoveries in the way that Lars did. The
individual use of signs or symbols with variable character originated from the
motivation to refer to a mathematical structure in general and to describe it beyond
the visible objects of the pattern. Learners spontaneously used signs or symbols
drawn from other contexts. In the new context of generalization, they served as
variables (as Lars’ adverb of direction “downwards”, the deictic expression “this,”
as well as the arrows in the described interview scene). In the individual process of
generalizing, children constructed new referential mediations between the used
signs and symbols and the general structure. Thus, this mediation shaped the
concept of variable. The linguistic forms of generalization occurred in the

Table 12.2 Children’s linguistic forms of generalization

Forms of
generalization

Description of the category Illustration by means of the term
x2

Stating one
example

Students use one example and
explicitly indicate this as an example

“For example it’s three times
three.”

Listing several
examples

Students list several examples and
sometimes refer to a continuation

“It’s one times one, two times
two, three times three and so on.”

Quasi-variables Students use concrete numbers
combined with a generalizing
expression

“I always calculate three times
three.”

Conditional
sentences

Students phrase conditional
sentences

“If it is three, then I calculate
three times three.”

Variables Students use words or signs with
variable character

“You have to calculate the
number times the same number.”
“?�?”
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interaction while working on mathematical patterns and structures and took on the
role of variables in the context of generalizations. They enabled the learners to
describe mathematical patterns and structures in general and therefore served for the
propaedeutic development of variables as general or as varying numbers.

We believe that it is important for teachers to be able to identify and support
students’ attempts to generalize as they themselves are a key to children’s algebraic
thinking and to the development of the variable concept. Teachers have to under-
stand that these generalization processes take place in primary math class when
students communicate about mathematical patterns and structures. The linguistic
differentiation among forms of generalization presented above can help to open
teachers’ eyes and ears to generalization processes that occur in classroom com-
munication and therefore aid in nurturing the awareness of algebraic thinking.

12.5 Study III: All Eyes on Tasks

This section proposes to expand the scope of common tasks used in maths lessons.
Dealing with variables and establishing relationships as important aspects of
algebraic thinking were addressed by a task design appropriate for children from
5 years on. In addition to addressing different aspects of variables, the tasks also
promoted relational thinking. An interview study tried to find out which relations
children describe between known and unknown quantities, represented as marbles
and boxes.

12.5.1 Theoretical Framework

Algebra focuses not only on procedures, which are directly operable, but also and very
importantly on the concepts that are represented in equations as relations between
numbers, objects, or variables (e.g., Steinweg 2013). Relational thinking especially
describes this way of thinking and therefore is an important part of algebraic thinking.
Relational thinking refers to the recognition and use of relationships among numbers,
sets, and relations. It enriches the learning of arithmetic and can be a foundation for
smoothing the transition to algebra (e.g., Carpenter et al. 2005).

Another important part of algebra and the emergence of algebraic thinking is that
of variables. While “variables” can be hard to define, several authors mention
different aspects of variables with the aim of clarifying the field. At least, three
different kinds of variables can be defined: Unknowns describe a specific, but
undetermined number, whose value can be evaluated. For instance, in the equation
25þ x ¼ 30, x can be determined (e.g., Freudenthal 1973; Usiskin 1988). Variables
describe a range of unspecified values and a relationship between two sets of values
(Küchemann 1981). In this way, variables appear in statements about functional
relationships. General numbers describe indeterminate numbers which appear in
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generalizations, such as descriptions of properties of a set as in aþ b ¼ bþ a (e.g.,
Freudenthal 1973). Some research on children’s understanding of variables also
emphasizes quasi-variables, which by the use of examples expresses a basic
structure in general terms (e.g., Fujii and Stephens 2001). Related to this work on
variables is the substantial empirical research on relational thinking about numbers
and operations in symbolic equations (e.g., Carpenter et al. 2005; Steinweg 2013;
Stephens and Wang 2008). We note however that, in some of the tasks used in these
latter studies, namely 28 + 32 = 27 + __, students still have the opportunity to
calculate and, thus, there may be no need to use relational thinking.

In contrast, Stephens and Wang (2008) used the following task to investigate 6th
and 7th-graders’ relational thinking:

18þ h
Box A

¼ 20þ h
Box B

Students had to put numbers in the boxes named A and B to make the sentence
correct. Tasks with more than one unknown quantity seemed to have the potential
to push students to use and show relational thinking, instead of using computational
methods to find a solution. Examples of tasks with more than one unknown and
which are represented with concrete objects can also be found in Affolter et al.
(2003) and Schliemann et al. (2007). In these studies, boxes containing rods and
marbles were used in order to provide access to variables in equation situations. To
encourage student’s relational thinking, concrete materials would seem to have an
advantage, especially for younger students, even as young as kindergarteners.
However, studies on relational thinking with concrete material and unknown
quantities are few. Therefore the following study addressed the question:

How do young children describe relations between known and unknown quantities that are
represented with concrete materials?

12.5.2 Methodology

To find out what competences children already have for dealing with unknown
quantities, clinical interviews (e.g., Selter and Spiegel 1997) with 82 children aged
5–10 years (kindergarten and elementary school) were conducted and videotaped.
The underlying concept was to “translate” different kinds of equations with vari-
ables into a representation that young children could handle. Therefore known and
unknown quantities were represented with concrete materials in the form of marbles
and boxes. The boxes represented unknown quantities because their content was
unknown. To make the task accessible, the following story was told: “Here you see
two children. They are playing with marbles. Some marbles are packed up in
different colored boxes and some marbles are separate. Boxes with the same color
always contain the same amount of marbles.”

12 Making Implicit Algebraic Thinking Explicit … 299



The main study included 12 tasks on four levels of difficulty (Lenz 2016). In this
section of the chapter two tasks are chosen as examples because the transition
between tasks of type B and C (shown in Fig. 12.8) was found to be especially
interesting. In tasks of type B children can answer with a concrete number. For
instance, there is one marble in every green box (see Fig. 12.8). The green box
represents an aspect of variables that can be identified as an unknown. The content
of the red boxes is unknown and their determination is not necessary for the
solution of the task. In contrast, the boxes in task C (see Fig. 12.8) take on another
role. They can be seen as variables that represent a functional dependency. Since
the amount of marbles in both boxes is unknown, no concrete number can be given.
It can only be said that the lime-green box contains one marble more than the other
box. This describes the relationship between the two unknown quantities.

12.5.3 Research Results

To gain insight into students’ work, the following transcript shows how the
4th-grader Rick (11 years old) dealt with the consecutive tasks of type B and C.

Interviewer: How many marbles have to be in the green box, so that both children
have the same amount of marbles? (task B, Fig. 12.8)

Rick: One.
Interviewer: And how did you get that?
Rick: Because…one plus one (points one after another to the girl’s green

boxes) plus this one marble (points to the girl’s marble) are three.
And here (points to the boy’s green box) is also one marble in, plus

Task of type B Following task of type C

How many marbles have to be in the green 

box, so that both children have the same 

amount of marbles?

How many marbles have to be in the lime-

green box, so that both children have the 

same amount of marbles?

Fig. 12.8 Tasks and interview questions (Lenz 2016, p. 176) (The labels designating the colors
were subsequently added to accommodate black-and-white publishing constraints.)
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the two loose marbles. And that’s then the same (points one after
another to the girl’s red box and the boy’s red box).

Rick gave the correct answer immediately and justified the number of marbles in
the green boxes. He also pointed to the two red boxes and named them as “the
same” without having to know the number of marbles contained.

Interviewer: How many marbles have to be in the lime-green box, so that both
children have the same amount of marbles? (task C, Fig. 12.8)

Rick: Two marbles.
Interviewer: And how did you get that?
Rick: Because I think there is one marble in (points to the girl’s box), plus

the loose marble are two marbles. Then there (points to the boy’s box)
just can be two marbles, because you have to get the same result.

… [The interviewer gives different examples of amounts of marbles for
the different boxes. Rick gives the corresponding number of marbles
of the other box.]

Interviewer: Can you say in general, how to indicate the number of marbles in the
boy’s box?

Rick: You have to, uh, here is any number of marbles inside (points to the
girl’s box) plus the one marble (points to the girl’s single marble),
then there must not be as many as in this box (points to the boy’s
box), but one more in there.

Rick was confronted with a task in which both unknowns depended on each
other. In order to give an answer to the interviewer, he mentioned discrete values
for both boxes. In response to the interviewer’s further questions, he was able to
state a general relationship: he described the amount of marbles in the girl’s box as
“any number,” which can be interpreted as a general number.

The responses of the other children covered a broad spectrum. We evaluated
their various responses in two ways—according to the nature of the relationship that
they expressed between the two quantities and according to the way in which they
were handling the unknowns. The categories that were used in the evaluations were
partly based on the distinctions described in the theoretical framework above and
partly on other distinctions that emerged from the children’s responses.

12.5.3.1 A First Evaluation: Relationship Between the Quantities

Regarding the answers to the task of type C, some children directly described a
relationship between the two quantities in the boxes, as was the case with the
4th-grader Luca: “In the green box is always one marble more than in the orange
box.” Other children referred to the dependency between the amounts of marbles in
the boxes, as did the 4th-grader Kathy: “It depends on how many marbles are in the
orange box.” Here, Kathy did not specify the relationship between the amounts of
marbles in the boxes, but did have a sense of the dependency. Other children neither
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described a relation nor referred to the dependency between the amounts of marbles
in the boxes. The 2nd-grader Lena (8 years old) mentioned specific numbers for the
amounts of marbles in both boxes: “In the green box are three marbles and in the
orange box are two marbles.” Other children wanted to shake the boxes to hear how
many marbles were inside.

12.5.3.2 A Second Evaluation: Handling the Unknowns

The children’s answers were also classified according to how they treated the
unknowns. In some cases, the amounts of marbles in the boxes were seen as general
numbers, that is, the amount of marbles in one box was considered a generalized
indeterminate number in relation to the amount of marbles in the other box. As
noted above, Luca said: “In the green box is always one marble more, than in the
orange box.” Here the amount of marbles is undetermined; it is always one marble
more—no matter how many are actually in it.

In other cases, the amounts of marbles in the boxes were seen as quasi-variables:
the children recognized the relationship between the amounts of marbles in the two
boxes, but rather than stating a general description they mentioned specific num-
bers. The six-year old kindergartener Adam said: “…if there are eight or nine
marbles in the orange box, then I take one marble more, that’s nine or ten marbles
for the green box.”

For others, the amounts of marbles in the boxes were seen as variables where the
amounts of marbles in the boxes depended on each other. As mentioned above, the
4th-grader Kathy explained: “It depends on how many marbles are in the orange
box.” Further requests showed that she could handle the variation of numbers as a
functional relationship, even if she did not specify it in terms of a static relationship.

The amount of marbles in the boxes was seen by others as an absolute number in
that they referred to a specific number of marbles in the box, partially without
taking the two related boxes into consideration. Clara from kindergarten (6 years
old) answered: “Four…because the box is so small, there just fit four marbles in.”

Lastly, the amount of marbles in the boxes was seen as an undeterminable:
Children said that the amount of marbles could not be defined. Axel (a 2nd grader)
said: “I’mnot a clairvoyant”; Rob (another 2nd grader) said: “I have to open the box.”

12.5.4 Discussion

The task design shows how algebraic thinking can be built on a concrete level. The
boxes as representations for unknowns offer a possibility to get in touch with
variables at an early stage. Relational thinking can be stimulated at this early stage
by leaving the numerical values ambiguous. The tasks look simple at first glance
and are visually very similar. However, they allow the construction from simple to
mathematically complex contexts. They are therefore suitable for working from
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kindergarten to the secondary level and for addressing different aspects of variables
while promoting relational thinking at the same time. In particular, the difference
between the task types B and C marks a special breaking-point in the use of
variables. Their roles change from an unknown that can be determined to a variable
whose value cannot be known but can be described as a relation. Hence, tasks of
type C strengthen the use of relational thinking since relationships between the sets
have to be established. Different approaches to the solution of the tasks can also be
made clear by operating on the tangible material (boxes and marbles). For example,
in task B, both red boxes can be removed in order to clarify their irrelevance for the
solution of the task. In later grades, it is possible to transfer the underlying struc-
tures to the formal level. Placeholders, symbols, or letters can replace the real
boxes. Thus, with regard to the variables as well as with regard to the establishment
of relationships, different changes in the levels of representation can take place.

12.6 Conclusions

This chapter aimed to explore how existing characteristics of German mathematics
teaching could serve as opportunities to promote early algebraic thinking. Though a
national perspective, it may serve as a framework for many other countries facing
comparable issues and obstacles on the way to supporting algebraic thinking. The
common aim of our research community is to provide fruitful learning environ-
ments and therefore learning opportunities for children regarding algebraic themes.

The above outlined ideas aim to overcome apparent stumbling blocks that cannot
be attributed to children but to the given framing of mathematics lessons. Children are
very capable of generating sound and viable reactions to algebraic challenges. Hence,
we tried to emphasize three evaluated and promising approaches for supporting
children’s algebraic competencies. The common denominator of the three viewpoints
that were presented lies in the existing implicit opportunities that have to be made
explicit. This includes creating sensitivity to the algebraic potential of the mathe-
matical content already taught, encountering children’s abilities, and paying attention
to the nature of the challenges created when designing tasks. If teachers, researchers,
and curricula developers are aware of the potential of already daily used tasks
(Sect. 12.3), the rich scope of children’s abilities (Sect. 12.4), and the great effect of
minor changes in problem posing (Sect. 12.5), then children will benefit sufficiently.

References

Affolter, W., Baerli, G., Hurschler, H., Jaggi, B., Jundt, W. Krummacher, R., …, Wieland, G.
(2003). Mathbu.ch 7 [mathematics book 7]. Zug, Bern: Klett & Balmer.

Akinwunmi, K. (2012). Zur Entwicklung von Variablenkonzepten beim Verallgemeinern
mathematischer Muster [Development of variable concepts by generalization of patterns].
Wiesbaden: Vieweg + Teubner.

12 Making Implicit Algebraic Thinking Explicit … 303



Banerjee, R., & Subramaniam, K. (2012). Evolution of a teaching approach for beginning algebra.
Educational Studies in Mathematics, 80(3), 351–367.

Bastable, V., & Schifter, D. (2008). Classroom stories: Examples of elementary students engaged
in early algebra. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early
grades (pp. 165–184). New York: Lawrence Erlbaum Associates.

Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des
Mathematiklernens und –lehrens [Subjective fields of experience as foundation of an
interaction theory of teaching and learning mathematics]. In H. Bauersfeld et al. (Eds.), Lernen
und Lehren von Mathematik (pp. 1–56). Köln: Aulis.

Brownell, J., Chen, J.-Q., & Ginet, L. (2014). Big ideas of early mathematics. Boston: Pearson.
Carpenter, T.P., Levi, L., Franke, M.L., & Koehler Zeringue, J. (2005). Algebra in elementary

school: Developing relational thinking. ZDM, 37(1), 53–59.
Chick, H., & Harris, K. (2007). Grade 5/6 teachers’ perceptions of algebra in the primary school

curriculum. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st

Conference of the International Group for the Psychology of Mathematics Education (Vol. 2,
pp. 121–128). Seoul: PME.

Cooper, T. J., & Warren, E. (2011). Years 2 to 6 students’ ability to generalise: Models,
representations and theory for teaching and learning. In J. Cai & E. Knuth (Eds.), Early
algebraization: A global dialogue from multiple perspectives (pp. 187–214). Berlin: Springer.

Devlin, K. (1997). Mathematics: The science of patterns – The search for order in life, mind, and
the universe (2nd Edition). New York: Scientific American Library.

Drijvers, P., Goddijn, A., & Kindt, M. (2011). Algebra education: Exploring topics and themes.
In P. Drijvers (Ed.), Secondary algebra education: Revisiting topics and themes and exploring
the unknown (pp. 5–26). Rotterdam: Sense Publishers.

Franke, M., & Wynands, A. (1991). Zum Verständnis von Variablen – Testergebnisse in 9.
Klassen Deutschlands [Understanding variables: Test results of grade 9 students in Germany].
Mathematik in der Schule, 29(10), 674–691.

Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.
Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Reidel.
Fujii, T., & Stephens, M. (2001). Fostering an understanding of algebraic generalization through

numerical expressions: The role of quasi-variables. In H. Chick, K. Stacey, J. Vincent, &
J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference: The future of the teaching
and learning of algebra (pp. 258–364). Melbourne: University of Melbourne.

Gallin, P. (2012). Die Praxis des Dialogischen Mathematikunterichts in der Grundschule [Practice
of dialogical mathematics education in primary school]. Retrieved from http://www.sinus-an-
grundschulen.de/fileadmin/uploads/Material_aus_SGS/Handreichung_Gallin_final.pdf.

Gerhard, S. (2013). How arithmetic education influences the learning of symbolic algebra. In B.
Ubuz et al. (Eds.), CERME8: Proceedings of the 8th Congress of the European Society of
Research in Mathematics Education (pp. 430–439). Ankara: CERME.

Kaput, J.J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, &
M. L. Blanton (Eds.), Algebra in the early grades (pp. 5–17). New York: Lawrence Erlbaum
Associates.

Kaput, J.J., Blanton, M.L., & Moreno, L. (2008a). Algebra from a symbolization point of view.
In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 19–
55). New York: Routledge.

Kaput, J.J., Carraher, D.W., & Blanton, M.L. (2008b). A skeptic’s guide to algebra in the early
grades. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades
(pp. xvii–xxi). New York: Routledge.

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in
Mathematics, 12(3), 317–326.

Kieran, C. (2006). Research on the learning and teaching of algebra. In A. Gutiérrez & P. Boero
(Eds.), Handbook of research on the psychology of mathematics education (pp. 11–49).
Rotterdam: Sense Publishers.

304 A.S. Steinweg et al.

http://www.sinus-an-grundschulen.de/fileadmin/uploads/Material_aus_SGS/Handreichung_Gallin_final.pdf
http://www.sinus-an-grundschulen.de/fileadmin/uploads/Material_aus_SGS/Handreichung_Gallin_final.pdf


Kieran, C., Pang, J., Schifter, D., & Ng, S.F. (2016). Early algebra: Research into its nature, its
learning, its teaching. New York: Springer.

KMK [Kultusministerkonferenz] (2004). Bildungsstandards im Fach Mathematik für den
Primarbereich [Standards in primary school mathematics]. Retrieved from http://www.kmk.
org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_10_15-Bildungsstandards-
Mathe-Primar.pdf.

Krauthausen, G., & Scherer, P. (2007). Einführung in die Mathematikdidaktik [Introduction to
mathematics education]. Heidelberg: Springer.

Küchemann, D. (1981). Algebra. In K. M. Hart (Ed.), Children’s understanding of mathematics:
11–16 (pp. 102–119). London: John Murray.

Kühnel, J. (1916/1966). Neubau des Rechenunterrichts [Building a new mathematics education]
(Original 1916, 11th Edition). Bad Heilbrunn: Klinkhardt.

Lenz, D. (2016). Relational thinking and operating on unknown quantities. In T. Fritzlar et al.
(Eds.), Problem solving in mathematics education. Proceedings of the 2015 joint conference of
ProMath and the GDM working group on problem solving (pp. 173–181). Münster: WTM.

Malle, G. (1993). Didaktische Probleme der elementaren Algebra [Didactical problems of
elementary algebra]. Braunschweig: Vieweg.

Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular.
Educational Studies in Mathematics, 15(3), 277–289.

Mason, J., Graham, A., Pimm, D., & Gowar, N. (1985). Routes to/Roots of Algebra. Milton
Keynes: The Open University Press.

Mason, J., Graham, A., & Johnston-Wilder, S. (2005). Developing thinking in algebra. London:
Sage.

Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structures for all.
Mathematics Education Research Journal, 21(2), 10–32.

Müller, G., & Wittmann, E. (1984). Der Mathematikunterricht in der Primarstufe. [Mathematics
education in primary school]. Braunschweig, Wiesbaden: Vieweg.

Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical
development. Mathematics Education Research Journal, 21(2), 33–49.

NCTM - National Council of Teachers of Mathematics (2000). Principles and standards for
school mathematics: Algebra. Reston, VA: The Council. Retrieved from http://www.nctm.org/
Standards-and-Positions/Principles-and-Standards/Algebra/.

Nührenbörger, M., & Schwarzkopf, R. (2016). Processes of mathematical reasoning of equations
in primary mathematics lessons. In N. Vondrová (Ed.), Proceedings of the 9th Congress of the
European Society for Research in Mathematics Education (CERME 9) (pp. 316–323). Prague:
CERME.

Orton, A. (1999). Pattern in the teaching and learning of mathematics. London: Cassell.
Radatz, H., Schipper, W., Ebeling, A., & Dröge, R. (1996). Handbuch für den

Mathematikunterricht [Handbook for mathematics education]. Hannover: Schroedel.
Radford, L. (2003). Gestures, speech, and the sprouting of signs. A semiotic-cultural approach to

students’ types of generalization. Mathematical Thinking and Learning, 5(1), 37–70.
Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai & E. Knuth

(Eds.), Early algebraization. A global dialogue from multiple perspectives (pp. 303–322).
Berlin: Springer.

Rivera, F. (2013). Teaching and learning patterns in school mathematics: Psychological and
pedagogical considerations. New York: Springer.

Sawyer, W. W. (1964). Vision in elementary mathematics. Harmondsworth: Penguin Books.
Schliemann, A. D., Carraher, D. W., & Brizuela, B. M. (2007). Bringing out the algebraic

character of arithmetic: From children’s ideas to classroom practice.Mahwah, N.J.: Lawrence
Erlbaum Associates.

Schütte, S. (2008). Qualität im Mathematikunterricht der Grundschule [Quality of mathematics
lessons in primary school]. München: Oldenbourg.

12 Making Implicit Algebraic Thinking Explicit … 305

http://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_10_15-Bildungsstandards-Mathe-Primar.pdf
http://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_10_15-Bildungsstandards-Mathe-Primar.pdf
http://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_10_15-Bildungsstandards-Mathe-Primar.pdf
http://www.nctm.org/Standards-and-Positions/Principles-and-Standards/Algebra/
http://www.nctm.org/Standards-and-Positions/Principles-and-Standards/Algebra/


Selter, C. (1998). Building on children´s mathematics: A teaching experiment in grade 3.
Educational Studies in Mathematics, 36(1), 1–27.

Selter, C., & Spiegel, H. (1997). Wie Kinder rechnen [How children calculate]. Leipzig: Klett.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and

objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.
Specht, B.J. (2009). Variablenverständnis und Variablen verstehen [Understanding variables].

Hildesheim: Franzbecker.
Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction:

An epistemological perspective. New York: Springer.
Steinweg, A.S. (2001). Children’s understanding of number patterns. In M. van den

Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for
the Psychology of Mathematics Education (Vol. 1, pp. 203–206). Utrecht: PME.

Steinweg, A. S. (2003). ‘…the partner of 4 is plus 10 of this partner’ - Young children make sense
of tasks on functional relations. In M. A. Mariotti (Ed.), CERME3: Proceedings of 3rd

Conference of the European Society for Research in Mathematics Education. Bellaria, Italy:
CERME. Retrieved from http://www.dm.unipi.it/*didattica/CERME3/proceedings/Groups/
TG6/TG6_steinweg_cerme3.pdf.

Steinweg, A. S. (2006). Mathematikunterricht einmal ‚ohne‘ Rechnen [Mathematics lessons
without calculating]. Die Grundschulzeitschrift, 20(191), 22–27.

Steinweg, A. S. (2013). Algebra in der Grundschule [Algebra in primary school]. Heidelberg:
Springer-Spektrum.

Steinweg, A. S. (2014a). Mathematikdidaktische Forschung im Grundschulbereich [Research in
primary school mathematics education]. Zeitschrift für Grundschulforschung, 7(1), 7–19.

Steinweg, A. S. (2014b). Muster und Strukturen zwischen überall und nirgends [Pattern and
structures every- and nowhere]. In A. S. Steinweg (Ed.), Mathematikdidaktik Grundschule
(Vol. 4, pp. 51–66). Bamberg: University of Bamberg Press.

Steinweg, A. S. (2017). Key ideas as guiding principles to support algebraic thinking in German
primary schools. In T. Dooley & G. Gueudet (Eds.), CERME10: Proceedings of the 10th

Congress of the European Society of Research in Mathematics Education, Dublin, Ireland:
CERME.

Stephens, M., & Wang, X. (2008). Investigating some junctures in relational thinking: A study of
year 6 and year 7 students from Australia and China. Journal of Mathematics Education, 1(1),
28–39.

Tall, D., Gray, E., Bin Ali, M., Crowley, L., DeMarois, P., McGowen, M., …, Yusof, Y. (2001).
Symbols and the bifurcation between procedural and conceptual thinking. Canadian Journal of
Science, Mathematics & Technology Education, 1(1), 81–104.

Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford & A.
P. Shulte (Eds.), The ideas of algebra, K-12 (pp. 8–19). Reston, VA: National Council of
Teachers of Mathematics.

Walther, G., Neubrand, J., & Selter, Ch. (2008). Die Bildungsstandards Mathematik [The national
standards in mathematics]. In G. Walther, M. van den Heuvel-Panhuizen, D. Granzer, & O.
Köller (Eds.), Bildungsstandards für die Grundschule. Mathematik konkret (pp. 16–41).
Berlin: Cornelsen Scriptor.

Winter, H. (1991). Entdeckendes Lernen im Mathematikunterricht – Einblicke in die
Ideengeschichte und ihre Bedeutung für die Pädagogik. 2. Aufl. [Learning by discovery in
mathematics lessons]. Braunschweig, Wiesbaden: Vieweg.

Wittmann, E. Ch. (1985). Objekte-Operationen-Wirkungen [Objects-operations-effects].
Mathematik lehren, (11), 7–11.

Wittmann, E. Ch. (1995). Mathematics education as a ‘design science’. Educational Studies in
Mathematics, 29(4), 355–374.

306 A.S. Steinweg et al.

http://www.dm.unipi.it/%7edidattica/CERME3/proceedings/Groups/TG6/TG6_steinweg_cerme3.pdf
http://www.dm.unipi.it/%7edidattica/CERME3/proceedings/Groups/TG6/TG6_steinweg_cerme3.pdf


Wittmann, E. Ch. (1998). Design und Erforschung von Lernumgebungen als Kern der
Mathematikdidaktik [Design of and research on learning environments as a core of
mathematics education]. Beiträge zur Lehrerbildung, 16(3), 329–342.

Wittmann, E. Ch., & Müller, G. N. (2007). Muster und Strukturen als fachliches Grundkonzept
[Patterns and structures as fundamental subject-concept]. In G. Walther, M. van den
Heuvel-Panhuizen, D. Granzer, & O. Köller (Eds.), Bildungsstandards für die Grundschule:
Mathematik konkret (pp. 42–65). Berlin: Cornelsen.

12 Making Implicit Algebraic Thinking Explicit … 307


	12 Making Implicit Algebraic Thinking Explicit: Exploiting National Characteristics of German Approaches
	Abstract
	12.1 Introduction
	12.2 Issues and Opportunities for Supporting Early Algebra in German Primary Mathematics
	12.3 Study I: All Eyes on Key Ideas
	12.3.1 Theoretical Framework
	12.3.1.1 Patterns and Structures
	12.3.1.2 Algebraic Key Ideas

	12.3.2 Methodology
	12.3.3 Research Results on the Example of Distributivity
	12.3.4 Discussion

	12.4 Study II: All Eyes on Children’s Algebraic Thinking
	12.4.1 Theoretical Framework
	12.4.2 Methodology
	12.4.3 Research Results
	12.4.3.1 Epistemologically-Oriented Analysis of the Generalization Process
	12.4.3.2 Children’s Linguistic Forms of Generalization

	12.4.4 Discussion

	12.5 Study III: All Eyes on Tasks
	12.5.1 Theoretical Framework
	12.5.2 Methodology
	12.5.3 Research Results
	12.5.3.1 A First Evaluation: Relationship Between the Quantities
	12.5.3.2 A Second Evaluation: Handling the Unknowns

	12.5.4 Discussion

	12.6 Conclusions
	References


