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Introduction

This volume results from the activity of Topic Study Group 10 (TSG 10) on the
Teaching and Learning of Early Algebra, which unfolded at the ICME-13 con-
ference held in Hamburg, Germany, in July 2016. In preparation for that activity, a
pre-conference monograph presenting a topical survey of Early Algebra research
(Kieran et al. 2016) was published by Springer. As described in that monograph,

The core of recent research in early algebra has been a focus on mathematical relations,
patterns, and arithmetical structures, with detailed attention to the reasoning processes
used by young students, aged from about 6 to 12 years, as they come to construct these
relations, patterns, and structures—processes such as noticing, conjecturing, generalizing,
representing, and justifying. Intertwined with the study of the ways in which these pro-
cesses are engaged in are the two main mathematical content areas of generalized
arithmetic (i.e., number/quantity, operations, properties) and functions. (p. 10)

The monograph highlighted how the field of early algebra has gradually come to be
more clearly delineated since the early 2000s, bringing with it more comprehensive
views and theoretical framings of algebraic thinking. Thus, the contents of the
monograph, which aimed to provide an accurate reflection of the evolution of the
field, set the stage for TSG 10 contributors to link their newest work with the
foundational and more recent advances in this area, as well as to signal its further
evolution.

The Hamburg conference was the first of the quadrennial ICME conferences to
include within its roster of topic study groups one that was dedicated to the theme
of early algebra. The impressive attendance at TSG 10, in addition to the interna-
tional spread of the authors of papers and posters that were presented and discussed,
attested to the worldwide emergence of early algebra as a significant field of
research and practice. The diverse range of topics that were covered—several
of them little explored, even unexplored, up to now—indicated the ways in which
early algebra is being conceptualized in various parts of the world and, very
importantly, signaled the demand for this volume.

The authors of promising papers presented at the TSG 10 sessions were invited
to extend their papers for inclusion in this volume. Other highly respected scholars

Carolyn Kieran
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in the field of early algebra were also encouraged to write chapters. The result is a
set of 17 chapters that represents the work of both experienced and younger
researchers (including a chapter with a teacher as coauthor) from 13 countries:
Australia, Canada, Germany, Ireland, Italy, Korea, New Zealand, Singapore, South
Africa, Spain, Turkey, UK, and USA—this internationalism of the field giving rise
to the subtitle of the volume, The global evolution of an emerging field of research
and practice.

The scope of the volume encompasses multiple aspects related to the develop-
ment of algebraic thinking at the primary and lower middle grades, stemming from
both longitudinal programs of research as well as from single shorter-term studies.
Some of the aspects that are highlighted include the following: (i) theoretical
perspectives such as the structural, the linguistic, the analytic, and the expression of
generality; (ii) the emergence of symbolic algebraic thinking; (iii) children’s
algebraic thinking within current curricular content and the potential of those
curricula to address algebraic thinking; (iv) functional approaches focusing on the
use of story problems, patterning, and function-machine tasks; (v) generalized
arithmetic approaches involving work with fractions, operations as objects, and
equality concepts; and (vi) the development of practicing and preservice teachers’
actions to promote algebraic thinking. The reader will perhaps notice special
attention to the aspect of structure, an aspect that the TSG 10 participants argued
could benefit from more emphasis on research and practice related to early algebraic
thinking.

The volume is organized into three parts: the first on theoretical perspectives, the
second on learning, and the third on teaching. While most of the chapters included
herein encompass all three of these themes, the one that was foregrounded deter-
mined the part of the volume into which the chapter was included.

The first part (Chaps. 1–5), which is titled Theoretical perspectives for devel-
oping early algebraic thinking, focuses primarily on the theoretical frameworks that
have been developed to underpin several existing longitudinal programs of research
on the teaching and learning of early algebraic thinking, but includes also examples
of the empirical studies conducted within these same programs. The contributors to
the five chapters found in Part I comprise the following:

• Luis Radford, whose longitudinal investigations rest on a characterization of
algebraic thinking based on its analytical nature and attention to the semiotic
systems through which students express the mathematical variables involved. He
presents the results of his program of research on the emergence of symbolic
algebraic thinking in young Canadian students in the context of pattern
generalization.

• Maria Blanton, and her team of eight coauthor/coresearchers, Bárbara Brizuela,
Ana Stephens, Eric Knuth, Isil Isler, Angela Murphy Gardiner, Rena Stroud,
Nicole Fonger, and Despina Stylianou, who describe the framework that guides
their work—one encompassing the core aspects of making and expressing gen-
eralizations in increasingly formal and conventional symbol systems. They
describe elementary-school-aged USA students’ algebraic thinking within the
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content strands of generalized arithmetic, functional relations, and equivalence
and equality.

• Nicolina Malara and Giancarlo Navarra, whose ArAl research program
involving practicing teachers in Italy is based on the view that early algebraic
thinking involves the progressive construction of the algebraic language and
consequently building in students an attitude of looking for regularities, rela-
tionships, and properties, and expressing them first in natural, and then in
algebraic, language.

• Carolyn Kieran, who argues that the dominant focus on generalizing in the
development of algebraic thinking has to a large extent obscured the process of
seeing structure. She explores the notion of structure and structural activity from
various perspectives, and then presents a research-based example of Mexican
students’ seeking structure within an activity involving factors, multiples, and
divisors.

• David Carraher and Analúcia Schliemann, who identify algebraic thinking with
the formulation of and the operation upon relations, particularly functional
relations. They illustrate by means of examples drawn from their several
research studies conducted in the USA how functions offer opportunities for
bringing out the algebraic nature of arithmetic and for supporting the
introduction of variables.

The second part of the volume (Chaps. 6–11), which is titled Learning to think
algebraically in primary and lower middle school, explores the development of
algebraic thinking among 5- to 12-year-olds in various countries around the world,
with some studies including recourse to the literal symbols of algebra and others not
so. The latter studies focus on conceptualizing equality, generalizing fractional
operations, and shape patterning; the former on functional story situations for
young learners, function-machine tasks, and assessing the algebraic thinking of
students taught within the framework of an existing national curriculum. It is noted
that the chapters that are found in Parts I and III of this volume also deal with
learning to think algebraically and serve to broaden the range of examples that are
presented in this second part. The contributors to the six chapters found in Part II
comprise the following:

• JeongSuk Pang and JeongWon Kim, who present two studies that examined the
algebraic thinking of young Korean students (Grades 2–6) taught from the
current mathematics curriculum that includes some content related to early
algebra. The Korean students’ overall performance was found to compare well
with that of students taught within specialized intervention programs of research
in other countries.

• Swee Fong Ng, who introduced function-machine tasks to young Singaporean
students from each of the primary Grades 1–6. She found that those students
who could best make sense of the covariation between the inputs and outputs,
and state the relationship between them in the form of a rule, were those who
also had a sound knowledge of their number facts.
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• Ralph Schwarzkopf, Marcus Nührenbörger, and Carolin Mayer, who offer a
perspective on algebraic reasoning and the understanding of arithmetic equali-
ties, without the latter needing to be formally established in the form of equa-
tions. Pairs of 10-year-olds (in Germany), who were confronted with tasks that
involved computing chains with boxes and arrows, came to reflect on the given
structures with arithmetical operations becoming the central algebraic objects in
their discussions of the equalities.

• Aisling Twohill, who investigated the strategies that 9- to 10-year-old students
attending Irish schools adopted when asked to construct general terms for shape
patterns. Catalysts for assisting the students in coming to view the pattern
relationships explicitly rather than recursively included teacher prompts, student
interactions, and concrete materials.

• Catherine Pearn and Max Stephens, who focus on how students find an
unknown whole, when given a known fractional part of the whole and its
equivalent quantity. They show how 11- and 12-year-old Australian students,
who have yet to meet formal algebraic notation, create algebraic meaning and
syntax through their solutions of these fraction problems.

• Marta Molina, Rebecca Ambrose, and Aurora del Rio, who present findings
from a teaching experiment on the initial understandings that primary Spanish
students (6- and 8-year-olds) demonstrated when first introduced to the use of
letters to stand for indeterminate varying quantities in functional story situations.
Based on their results, they recommend the introduction of alphanumeric
symbols from the first grade.

The third part of the volume (Chaps. 12–17), which is titled Teaching for the
development of early algebraic thinking, focuses on the critical role of teachers and
the actions they carry out to spur the growth of their students’ early algebraic
thinking, from prompting structuring and generalizing activity to developing sen-
sitivity to the algebraic potential of the regular mathematical content. Professional
development and preservice education with the aim of cultivating teaching practice
in early algebra are also featured. The contributors to the six chapters found in
Part III comprise the following:

• Anna Steinweg, Kathrin Akinwunmi, and Denise Lenz, who argue that German
teachers’ cultural–instructional characteristics put them in good stead to address
early algebraic thinking if the current curriculum were to be approached from a
new perspective—a perspective that focuses on key ideas related to patterns and
structures, on children’s existing abilities, and on the potential of specific tasks.

• Deborah Schifter, who presents USA classroom episodes that illustrate teachers
and students working together on tasks involving generalizations in the contexts
of arithmetic and functions. She points to the teachers’ actions that draw stu-
dents’ attention to operations as distinct objects and to the structures associated
with these operations.
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• John Mason, who argues that the critical feature for promoting algebraic
thinking is the opportunities noticed by teachers for calling upon learners’
powers to express and manipulate generalities. He outlines specific pedagogic
actions that focus on the expression of generality as the core of algebraic
thinking, including examples of task contexts that invoke reasoning both with
and without using numbers.

• Susanne Strachota, Eric Knuth, and Maria Blanton, who analyze the nature
of the “algebrafied” instruction in a USA classroom that promotes the gener-
alizing of structural relationships. They found that the manner in which the
teacher responded to a student’s generalization by asking for clarification and by
prompting the other students to build upon the previously stated generalization
initiated a cycle of generalizing actions that was extremely productive.

• Jodie Hunter, Glenda Anthony, and David Burghes, who draw on the findings
from a classroom-based case study in New Zealand to show how professional
development can lead to shifts in teacher practice. Careful task design and
enactment, teacher questioning, and noticing and responding to student rea-
soning were all central to facilitating students to make conjectures, justify, and
generalize.

• Sharon Mc Auliffe and Cornelis Vermeulen, who focus on preservice teachers’
(PSTs) learning to teach functional thinking within early algebra in South
Africa. They point to the challenges the PSTs faced during their practicum in
bringing students to generalize relationships, especially generalizing on the basis
of argumentation.

The Concluding section of the volume highlights cross-cutting issues and
compelling ideas presented in the various chapters, as well as offering a few
remarks with a view to looking ahead.
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Chapter 1
The Emergence of Symbolic Algebraic
Thinking in Primary School

Luis Radford

Abstract This chapter presents the results of a longitudinal investigation on the
emergence of symbolic algebraic thinking in young students in the context of
sequence generalization. The investigation rests on a characterization of algebraic
thinking based on its analytic nature and a careful attention to the semiotic systems
through which students express the mathematical variables involved. Attention to
the semiotic systems and their interplay led us to identify non-symbolic and
symbolic (alphanumeric) early algebraic generalizations and the students’ evolving
intelligibility of the variables and their relationships, and mathematical sequence
structure. The results shed some light on the transition from non-symbolic to
symbolic algebraic thinking in primary school.

Keywords Early algebra � Semiotic systems � Pattern generalization � Algebraic
generalizations

1.1 Introduction

Over the years, the teaching and learning of algebra has consistently figured as one
of the prominent research areas in mathematics education. Recently, research on
early algebra has gained an increasing interest (see, e.g., Ainley 1999; Cai and
Knuth 2011; Kaput 1998; Kaput et al. 2008b; Rivera 2010; Vergel 2015). Some of
the main initial ideas behind the early algebra movement are to determine:
(a) whether or not young students can really start learning algebra (Carraher and
Schliemann 2007) and (b) if an early exposure to elementary algebraic concepts can
alleviate the very well-known difficulties that adolescents encounter in algebra in
secondary education (Blanton et al. 2017). Such ideas run against the traditional
curricular conception that algebra can only be learned after the students have a

L. Radford (&)
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sufficient knowledge of arithmetic, which excluded, until recently, algebra from
primary school in many curricula around the world.

To merely envision the idea of exposing young students 5–12 years old to
algebra instruction requires us, however, to revisit from new theoretical perspec-
tives several key issues frequently discussed in the 1980s, such as the nature of
algebraic thinking (Bednarz et al. 1996; Filloy and Rojano 1989; Kieran 1989a;
Wagner and Kieran 1989). The efforts that have been made to come to terms with
these and other concomitant issues have often led researchers to a sense of
awareness that there are still many important things to investigate and learn. For
instance, Carraher and Schliemann (2007, p. 676) remark that “the analysis of
algebraic thinking is still in its infancy.” And so is the analysis of the genetic
relationship between algebra and arithmetic, and the role of signs in arithmetic and
algebraic thinking.

Let us pause a moment and consider the role of signs. In his historical inves-
tigations, Damerow (1996) notes that ancient Egyptian and Babylonian arithmetic
thinking arose as a result of operating with signs in order to systematically solve
elementary problems involving counting and measuring. The earliest simplest
numeric configurations were created by iterating a sign for the unit. These “nu-
merals” had the purpose of facilitating the systematic calculation of additions and
subtractions. As a result, from the outset, the concepts of addition and subtraction
were consubstantial with the representations of the involved numbers. Embedded in
practical activities oriented to the solution of administrative and other societal
problems, the constructive-additive representation of numbers went hand in hand
with the emergence of an elementary cognitive arithmetic additive structure. Later
on we find the introduction of new signs to replace strings of sign-unit iterations
and the ensuing rules of symbol-substitution, leading eventually to a positional
numerical system. Within the possibilities of the historically developed cognitive
additive-symbolic structures, new signs (e.g., signs for fractions) and operations
(e.g., duplicating unit fractions, as in Egypt) became available. Contemporary
elementary (school) arithmetic thinking depends no less on mathematical signs than
the cultures of the past: it rests on a symbolic positional numerical system and
sign-based algorithmic procedures for the basic arithmetic operations.
A developmental approach to school arithmetic thinking would be impossible
without attending to the role of signs. And so is the case of algebraic thinking in
general, and early algebraic thinking in particular.

However, the exact role of signs in algebraic thinking remains a matter of
contention among mathematics educators. In early algebra research it is not unusual
(even if only implicitly) to see the use of alphanumeric symbolism as the trademark
of algebraic thinking. Such a theoretical position is nonetheless untenable from a
cultural-historical developmental viewpoint. The invention of alphanumeric sym-
bolism is, indeed, a relatively historical recent event. It goes back to the work of
16th and 17th century mathematicians such as Rafael Bombelli, René Descartes,
and François Viète. Equating the use of alphanumeric symbolism with algebraic
thinking would amount to maintaining that algebra did not exist before the Western
early modern period. Yet, 9th century Arabian mathematicians (like Al-Khwarizmi)

4 L. Radford



and hundreds of Renaissance masters of abacus recognized and referred to their
work as algebraic. So is the case of the 1544 “Libro e trattato della praticha
d’alcibra” [Book and treatise of the practice of algebra] of the Sienese mathe-
matician Gori (1984). You can go through the book page after page, line after line,
word after word, and you will see no alphanumeric formulas or equations. You will
see algebraic problem solving procedures expressed in words.

To better understand what can be termed as “algebraic” a more nuanced position
is hence required. Mason et al. (1985), on the one hand, and Kaput et al. (2008a) on
the other, offer a conception of algebra that is linked to the idea of generalization.
For Mason et al.:

Generality is the lifeblood of mathematics and algebra is the language in which generality is
expressed. In order to learn the language of algebra, it is necessary to have something you
want to say. You must perceive some pattern or regularity, and then try to express it
succinctly so that you can communicate your perception to someone else, and use it to
answer specific questions. (1985, p. 8)

Here, perceptual activity acquires a primordial role. They say: “Seeing, saying
and recording form an important sequence in all maths lessons which applies
particularly to all of the Roots of Algebra” (1985, p. 28). In this view, full sym-
bolization—i.e., symbolization based on alphanumeric signs—is not required to
start thinking algebraically: “Full symbolization should only come much later”
(1985, p. 24).

Kaput et al. also link algebra to the expression of generalization: “We regard a
symbolization activity as algebraic if it involves symbolization in the service of
expressing generalizations or in the systematic reasoning with symbolized gener-
alizations using conventional algebraic symbol systems” (2008a, p. 49).

Although both perspectives on algebra revolve around the idea of generalization,
they do not ascribe the same role to signs. While for Mason and collaborators the
alphanumeric symbolism is not a condition for thinking algebraically, for Kaput
and collaborators, in order for a symbolic activity to be called algebraic, full (i.e.,
alphanumeric) symbolization is required. Those activities in which generalization is
expressed through other symbol systems are not considered genuinely algebraic:
they are termed “quasi-algebraic” (Kaput et al. 2008a, p. 49). Along this line of
thought, Blanton et al. argue that “algebraic reasoning ultimately involves rea-
soning with perhaps the most ubiquitous cultural artifact of algebra—the conven-
tional symbol system based on variable notation” (2017, p. 182), which provides
the rationale to attend to alphanumeric symbolism as early as Grade 1.

Perhaps we can better appreciate the differences between the aforementioned
perspectives on algebra if we see them in terms of their conception about the role
that signs play in cognition. Mason and collaborators’ perspective draws on an
empiricist philosophy of language and symbols, one proponent of which was the
17th century British philosopher John Locke. For him, the relationship between
cognition and signs is based on an epistemological schema that can be represented
as follows:

1 The Emergence of Symbolic Algebraic Thinking in Primary School 5



Sensation ! Ideas ! Words

Within this schema, for Locke the purpose of language is to communicate ideas
between individuals: “communication … is the chief end of language” (Locke
1825, p. 315). Within this context, “Words do not play a significant role in gen-
erating concepts since language enters the process post facto, after our ideas have
been formed. Ideas come first: words follow” (Hardcastle 2009, p. 186). Or as
Mason et al. say, “You must perceive some pattern or regularity, and then try to
express it succinctly so that you can communicate your perception to someone else”
(Mason et al. 1985, p. 8).

Kaput and collaborators also draw on an empiricist philosophy of language, but
of a different kind—one that goes back to the 18th century French Enlightened
tradition that had Étienne Bonnot de Condillac as one of its proponents. In
Condillac’s account signs are more than tools of communication: language and
signs acquired a cognitive role in mastering human psychological functions.
Referring to memory and imagination, Condillac argued that

by the assistance of signs he [the individual] can recall at will, he revives, or at least is often
able to revive, the ideas that are attached to them. In due course he will gain greater
command of his imagination as he invents more signs, because he will increase the means
of exercising it. (Condillac 2001, p. 40)

We see that Condillac appears as a precursor of Vygotsky’s concept of signs as
mediators of psychological functions. It is precisely this concept of mediation that
allows Kaput and collaborators to see a continuous connection between sign and
ideas:

Ideas, especially generalizations, grow out of our attempts to express them to ourselves and
others, and our attempts to express them give rise to symbolizations that in turn help build
and fill out the ideas, folding back into those ideas so that conceptualization and sym-
bolization become inseparable. (Kaput et al. 2008a, p. 21)

One of the difficulties with the second perspective on algebra discussed above is
the restrictive view that emanates from its requirement that thinking be expressed
through the alphanumeric symbolism (or notations). I already mentioned that, from
a cultural-historical developmental viewpoint, such a requirement may prove to be
very limiting, in particular to approaches to early algebra. Such a requirement may
lead to the failure to recognize non-symbolic forms of thinking as genuinely
algebraic. Such a requirement may also lead to the attribution of an algebraic nature
to forms of thinking that are in fact arithmetic. What is often overlooked is the fact
that contemporary school arithmetic thinking resorts to alphanumeric symbolism
too. The generalization a + b = b + a, which results from noticing that, for
example, 2 + 3 = 3 + 2, 1 + 6 = 6 + 1, etc., may be considered as a genuine
arithmetic generalization.

One of the difficulties with the first perspective on algebra was identified by
Kaput et al.: “People have sometimes criticized inclusive views of algebraic rea-
soning on the grounds that it becomes difficult to distinguish thinking algebraically
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from thinking mathematically or (just plain) thinking” (2008b, p. xxi). Indeed, some
researchers in the 1980s, like Kieran, expressed concerns about the difficulties of
such an “inclusive” perspective: “For some authors (e.g., Open University 1985),
the main idea of algebra is that it is a means of representing and manipulating
generality and, thus, they see algebraic thinking everywhere—even in the recording
of geometric transformations” (Kieran 1989a, p. 170). Certainly, by equating
generalizing and algebraic thinking, it becomes difficult, if not impossible, to dis-
tinguish between an algebraic form of generalizations and other forms of mathe-
matical generalizations (in particular arithmetic generalizations). As Kieran noted,
“Generalization is neither equivalent to algebraic thinking, nor does it even require
algebra” (1989a, p. 165). From research on animal cognition we know that chim-
panzees, as well as birds, can start distinguishing between “edible” and “inedible”
concrete items. They generalize their concrete experience and come to form what
we humans would term the concept of “edible” (for details, see Radford 2011). Yet,
we could hardly say that the chimps’ generalization is an algebraic one.

To sum up, I have pointed out one difficulty arising from each one of the two
perspectives on algebraic thinking that I have been discussing. An additional
common difficulty is the fact that they reduce arithmetic thinking to mere com-
putation. In other words, arithmetic thinking turns out to be reduced to procedural
and mechanic calculation. I want to argue that this is a too restrictive view on
arithmetic thinking. There are generalizations in arithmetic too. There may be very
sophisticated arithmetic generalizations in the early grades that we are not even
aware of, given the limiting view of arithmetic thinking that has been often adopted
in early algebra research.

To move forward, we need to overcome the enduring conflation of algebraic
thinking and notation use on the one hand, and the conflation of algebraic thinking
and generalization on the other hand. Two points may be convenient to consider in
this endeavor. First, notations are neither a necessary nor a sufficient condition for
algebraic thinking (Radford 2014). Second, generalization is a common attribute of
human thinking and cannot consequently capture the specificity of algebraic
thinking. Our question is: What is it then that characterizes algebraic thinking?

The suggestion that I want to make draws from Kieran’s (1989a) work on the
one hand, and the work of Bednarz and Janvier (1996) and Filloy et al. (2007) on
the other. I start from Kieran’s 1989a paper and the idea that “For algebraic thinking
to be different from generalization, I propose that a necessary component in the use
of algebraic symbolism is to reason about and to express that generalization”
(Kieran 1989a, p. 165). I want to make two points.

The first point: I want to take a very broad view on what counts as algebraic
symbolism. In this view, I suggest that genuine algebraic symbolism includes the
alphanumeric symbolism but also non-conventional semiotic systems—like natural
language, which is mentioned in Kieran’s paper, as well as gestures, rhythm, and
other semiotic resources through which, as recent research shows, students signify
generality (Radford et al. 2017).

The second point: There is something that remains unspecified in Kieran’s
proposal, namely what is meant by “to reason about and to express that
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generalization” (Kieran 1989a, p. 165). The reasoning that underpins the students’
algebraic activity has to be specified. It cannot be any form of reasoning. It has to be
algebraic. But what is it? It is at this point that I bring in the work of Bednarz and
Janvier (1996) and Filloy et al. (2007). The Montreal team and the Mexican team
have shown that one of the characteristics of algebraic thinking is its analytic nature
(see, e.g., Bednarz et al. 1992; Filloy and Rojano 1989).

My suggestion is that algebraic thinking

• resorts to:

(a) indeterminate quantities and
(b) idiosyncratic or specific culturally and historically evolved modes of

representing/symbolizing these indeterminate quantities and their
operations,

• and deals with:

(c) indeterminate quantities in an analytical manner.

(a) Indeterminate quantities refer to the fact that the situation the students tackle in
an algebraic manner involves more than given numbers or other mathematical
entities. Indeterminate quantities can be unknowns, variables, parameters,
generalized numbers, etc.

(b) As mentioned previously, although indeterminate quantities can be expressed
through alphanumeric symbolism, they can also be expressed through other
semiotic systems, without detriment to the algebraic nature of thinking.
Naturally, alphanumeric symbolism constitutes a powerful semiotic system.
With a very precise syntax and an extremely condensed system of meanings,
alphanumeric symbolism offers a tremendous array of possibilities to carry out
calculations in an efficient manner—calculations that may be difficult, if not
impossible, to carry out with other semiotic systems (gestures, for instance, or
even natural language). Yet, from an early algebra perspective, in the students’
first contact with the historically evolved form of algebraic thinking conveyed
in contemporary curricula, alphanumeric symbolism may not be required. The
students can also resort to idiosyncratic or non-traditional modes of
representing/symbolizing the indeterminate quantities and their operations.

(c) The indeterminate quantities and their operations are handled in an analytic
manner. That is to say, although these quantities are not known, they are added,
subtracted, multiplied, divided, etc. as if they were known—as Descartes says
“without making a distinction between known and unknown [numbers]”
(Descartes 1954, p. 8).

The adjective analytic comes from the noun analysis, which the ancient math-
ematician Pappus explained as the movement from what is given to what is sought
(Rideout 2008). It is in this sense that algebra is considered by Viète as an analytic
art where you make deductions; that is, you work from what is admitted “through
the consequences [of that assumption]” (Viète 1983, p. 11). It is true that Viète
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introduced letters in a systematic way to solve problems algebraically. Certainly, he
was aware of what he was accomplishing. Yet, he did not call his work “algebra
with letters.” What was distinctively algebraic for him was something else: the
analytic manner in which we think when we think algebraically. Hence, the title of
his work is The Analytic Art (Viète 1983).

Let me consider the equation 2x + 2 = 10 + x. In the perspective on algebraic
thinking that I am outlining here, a solution by trial and error would not be con-
sidered as algebraic, even if the task includes indeterminate numbers and the stu-
dents are working with notations. In a solution based on trial and error, the students
are resorting to arithmetic concepts only. By contrast, if the students deduce from
2x + 2 = 10 + x that 2x = 8 + x (by subtracting 2 from both sides of the equation),
etc., we can say that the students are thinking algebraically. They are working
through the consequences of assuming that 2x + 2 is equal to 10 + x. Likewise, in
pattern generalization, an algebraic generalization entails deducing a formula from
some terms of a given sequence. That the formula be expressed or not in
alphanumeric symbolism is irrelevant. Notice that the fact that the general term of
the sequence be expressed in alphanumeric symbolism does not imply at all that the
generalization is the result of thinking algebraically about the sequence. In Radford
(2006), I discuss the way in which some groups of students tackle the generalization
of a figural sequence made up of two rows (see Fig. 1.1).

The students resorted to a trial and error method: “times 2 plus 1”, “times 2 plus
2” or “times 2 plus 3” and checked their validity on a few cases. This form of
thinking does not qualify as algebraic. Another group of students suggested: “n � 2
(+3)”. When I asked how they arrived at their formula, their answer was: “We
found it by accident.” Although the students’ way of thinking about the sequence
involves indeterminate quantities and alphanumeric symbolism, the formula was
not deduced, but guessed. This is an example of arithmetic generalization—a
simple one. It is not an example of algebraic generalization.

The theoretical perspective on algebraic thinking that I present here might be of
particular interest to early algebra research. Indeed, the criterion about analyticity—
i.e., the specific analytic calculation with/on unknown quantities—offers an oper-
ational principle to distinguish arithmetic and algebraic thinking. The theoretical
perspective recognizes the importance of the alphanumeric semiotic system, but
does not confine algebraic thinking to it. It opens the door to the investigation of
non-symbolic (i.e., non-alphanumeric) forms of early algebraic thinking. And it
allows us to envision, under a new light, the educational problem of the transition
from a non-symbolic form of algebraic thinking to a symbolic one. Some of my

Fig. 1.1 The sequence of figures given to the students in a Grade 8 class (13–14 years old)
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previous research has been devoted to the investigation of the emergence of early
forms of non-symbolic algebraic thinking (Radford 2011, 2012). Focusing on
pattern generalization, in this chapter I deal with the problem of the transition from
non-symbolic to symbolic forms of algebraic thinking.

1.2 A Longitudinal Investigation of Early Algebraic
Thinking

1.2.1 Research Methodology

The investigation that I report here was part of a six-year longitudinal research
program in which Grade 2 students were followed as they moved from Grade 2 (7-
to 8-year-old students) to Grade 6 (11- to 12-year-old students). In our research the
primary interest is in understanding the development of students’ algebraic thinking
in situ. This starting premise is congruent with the fundamental principle of
sociocultural research that stresses the link between cognition and context (Cole
1996). Drawing on the dialectic materialist theory of objectification (Radford
2008a), cognition can only be studied in movement; that is, through the activity in
which it unfolds. In our case it is classroom activity (Radford 2015). As a result, our
focus is the mathematics lessons.

We designed a flexible teaching-researching agenda committed to meeting two
main goals. First, we sought to create the conditions that would allow the students
to encounter the algebraic concepts stipulated by the curriculum. This was a
practical concern framed by the political educational context of Ontario (Radford
2010a). Second, we wanted to deepen our understanding of the emergence and
development of students’ algebraic thinking, the difficulties that the students
encounter as they engage in the practice of algebra, and the possible ways to
overcome them. The longitudinal research was characterized by a continuous loop,
which is represented in Fig. 1.2.

The arrows in Fig. 1.2 (and the whole Fig. 1.2) should not be understood in the
empiricist sense of a clear-cut set of steps that assume that educational phenomena

Fig. 1.2 Methodology of the longitudinal research (from Radford 2010a, p. 38)
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obeys specific laws that are describable and whose variables can be controlled. In
opposition to the Galilean paradigm of “teaching experiments,” we consider
methodology as an inquisitional and reflective practice, a philosophical practice in
fact, and adopt a social science paradigm that

conceives of the educational phenomena as messy and context sensitive. [It is a paradigm
whose] claims are not backed up by some immutable laws whose existence is asserted by a
confrontation of the laws and empirical facts. Rather, general assertions are sustained by
actual references that may guide further action through a reflective stance. (Radford and
Sabena 2015, p. 158)

1.2.2 Data Collection and Participants

Our participants were 21 7- to 8-year-old students of a Grade 2 class in a public
school in Sudbury, Ontario. In Grade 5 the class had 29 students and 31 in Grade 6.
Data were collected through two one-week videotaped sessions per year, although
we kept contact with the teacher during the year in order to exchange ideas and
discuss the teacher’s and the students’ achievements and challenges about the
teaching and learning of algebra. Each year, each one of the 10 videotaped lessons
lasted 100 min. We had four cameras in the classroom to videotape a small group of
students with each. In addition to the videotapes, we kept a copy of activity sheets,
homework and individual written assessments (see below) of the videotaped groups
as well as of the remaining groups of the class in order to broaden, complement, and
enrich our videotaped data.

1.2.3 Task Design

Before each one-week videotaped session, the teacher and the research team (the
author of this chapter and graduate and undergraduate students) participated in joint
task design research meetings. The joint task design included a careful conception
and production of

(a) pattern generalization problems for the students to solve in class,
(b) homework sheets, and
(c) individual written assessments.

During the joint task design sessions, videotaped classroom activities, tran-
scripts, and copies of students’ sheets were discussed with the teacher (who
changed from year to year) to highlight previous years’ students’ accomplishments
and challenges.
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1.2.4 Data Analysis

Our data analysis revolved around a multimodal approach that included
fine-grained video-analysis (often short episodes subjected to frame to frame
scrutiny) with special attention to gesture, language, perception, and symbol-use to
account for non-conventional forms of signifying mathematical generality.

Problems of increased difficulty appeared as the students moved from grade to
grade (for example, generalizations of figural sequences showing non-consecutive
terms (e.g., Terms 1, 3 and 5); generalization of figural sequences where variables
are organized in tables, and numeric (i.e., non-figural) sequences without
geometric-spatial clues). Using the modern algebraic symbolism, almost all
sequences corresponded to the formula y = ax + b (with a 2 Z, and b 2 N). From
Grade 3 on, a “core problem” remained invariable each year to better appreciate the
students’ progress. Because of space limitations and the fact that activities sur-
rounding alphanumeric algebra appeared in Grade 4 for the first time, this chapter
revolves mainly around this core problem and what happened in Grades 4, 5, and 6.

1.3 The Core Problem: “The Tireless Ant”

The core problem featured an ant that found a container with one crumb in it. The
ant collected two crumbs each day, so that at the end of Day 1 the ant had 3 crumbs
in the container; at the end of Day 2, it had 5 crumbs; at the end of Day 3, it had 7
crumbs, etc. A drawing (see Fig. 1.3a) was included in the activity sheet. Working
in small groups of three or four, the students were invited to draw the container for
Days 4 and 5, and then to find out the number of crumbs on Day 33. Then there was
a question dealing with the writing of a message for another student. I shall return to
the message question below.

The question of drawing the container for Days 4 and 5 was intended to
investigate the students’ evolving awareness of the mathematical structure of the
sequence, and the semiotic means to which they resort to make the structure

Fig. 1.3 The first terms of the sequence and examples from students’ extension of the sequence
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apparent. The question about Day 33 should reveal the students’ actual generalizing
process. The manner in which the students draw and talk about the content of the
container on Days 4 and 5 provides us, indeed, with clues about their developing
awareness of sequence structure.

1.4 Grade Four

Figure 1.3b, c show two typical answers of Grade 4 students. They come from one
of the four small groups we videotaped. By looking at the drawings alone, there
seems to be no difference. However, the video analysis shows that the underlying
generalizing logic is not the same. Jay’s drawing (Fig. 1.3b) is based on the
recurrent relation mentioned in the statement of the problem: two crumbs are added
each day. Jay says: “For Day 4 we draw the number again [i.e., Day 3]. After that
we will add … [two crumbs].” He draws the crumbs by rows. Alex, by contrast,
perceives the term globally. Visually, he recognizes figural parts of the term as key
parts to make the drawings. Thus, after hearing Jay’s utterance, he moves close to
Jay’s sheet and, pointing at the left column of Term 3, says: “There, there is 3 there
at Day 3 (at the same time he counts successively the circles), plus (pointing at the
initial crumb) the one on the top. So, we must always draw the number of days like
this (pointing at the left column) plus one on top.”

The “recurrent” and the “global” approaches (illustrated by Jay and Alex,
respectively) are predominant in Grade 4. The first one is based on the recurrent
relation between consecutive terms. The second approach goes beyond what is
explicitly stated in the problem. It deals with the expression of a mathematical
relationship between two variables: the number of the day and visual key parts of
the term (the number of crumbs on the columns of the term). This approach requires
a specific perceptual activity and a finer interpretation. Yet, we see Alex’s diffi-
culties to express verbally the key parts. They are referred to through pointing
gestures. The awareness of the term structure seems to remain to a large extent
visual: the perceived thing seems to remain inexpressible in the realm of language;
it is hence expressed otherwise—by resorting to another semiotic system: the
dynamic and frugal semiotic system of gestures. All in all, the grasping of the
structure unfolds in a process of perceptual semiosis through language, gestures, the
pictorial sign of terms, and visual activity.

But there is an additional point that needs to be discussed: the role of the
temporal adverb “always” in the second part of Alex’s utterance. “So, we must
always draw the number of days like this (pointing at the left column) plus one on
top.” The temporal adverb “always” is what bestows the phenomenon under dis-
cussion with its full generality. What Alex has just perceived does not apply to Day
3 only. This is corroborated by the absence of specific numbers in the second part of
Alex’s utterance. Alex is not talking about Term 3 only. He is talking about all
terms of the sequence. This is why, when the group moves to the question of
drawing the container for Day 5, the question was quickly answered. Catherine
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said: “There are 5 on the side.” For the first time, the visual key part of the term is
explicitly named. It is named the “side.” While naming the visual key part of the
term, Catherine makes two straight sliding gestures, meaning the two columns of
Term 5. It is as if the name alone is not enough to convey unambiguously its
reference. Catherine resorts, hence, to gestures to complement the emerging
meaning. At this point the teacher comes by to check on the students’ work. Jay has
just finished drawing Day 5, still row by row. Talking to the teacher, Catherine
addresses the question of Day 33, and quickly says: “So you put 33 and 33” while
again making two sliding gestures. Taking into account the first crumb in the
calculations, Catherine and Alex say “67.” Jay says “yes,” and switching to the
global perception of the terms, adds: “It is the same number of all things.” Alex
replies: “underneath each side there is the number of things, so 33 … plus 33 plus
the one on top.”

1.5 Factual Generalizations

In the previous section we see the students noticing a structure in the first given
terms (Days 1, 2, and 3), and generalizing it to all terms of the sequence. More
precisely, the students started by grasping a commonality noticed on the first three
given terms (Days 1, 2, and 3), which have been perceived as having “sides.” Then,
the students generalized this commonality to all subsequent terms and were able to
use the commonality to provide a direct expression of any term of the sequence.
The generalized commonality is what Peirce (1958, 2.270) called an abduction—
i.e., something only plausible. In the last part of the generalization process this
abduction became the warrant to deduce expressions of remote elements of the
sequence. Direct expression of the terms of the sequence requires the elaboration of
a formula (that is, a rule or method) based on the variables involved. The analytic
trait that, as I suggested above, is required for the generalization to be algebraic is to
be found in the passage where Alex contends that “we must always draw the
number of days like this (pointing at the left column) plus one on top.” The analytic
trait is manifested in the deduction that Alex expresses in his utterance (as opposed
to an induction). All things kept the same (i.e., the tireless ant always adding two
crumbs each day), Alex can deduce that “underneath each side there is the number
of things, so 33 … plus 33 plus the one on top.” Although the students have not
used alphanumeric symbolism, the students’ generalization is genuinely algebraic
in nature.

I have taken some time to analyze the students’ generalization, as it shows an
example of algebraic generalization that is not based on the alphanumeric sym-
bolism. In previous work I have called this type of generalization factual gener-
alization (Radford 2011). The adjective factual means that the variables of the
formula appear in a tacit form. The formula is expressed through particular
instances of the variable (the variable is instantiated in specific numbers or “facts”)
in the form of a concrete rule (“33 plus 33, plus the one on top”). This concrete rule
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empowers the students to deal with any specific term of the sequence (e.g., Terms
100, 500). To make sure, I came to see the group and asked about Day 60.
Catherine answered: “we would do 60 on one side, 60 on the other …” Alex
interrupted and added: “and the one on top.”

1.6 Writing a Message: Contextual Generalizations

Our path towards symbolism was based on the following question: The students
were asked to write a message for another student to tell her how to quickly
calculate the number of crumbs in the container for a certain day. The number of the
day was drawn from a box containing cards, each one with a big number on it. First,
the teacher drew a card and showed it to the students. The card had the number 100
on it. Here is an excerpt of the discussion in Alex’s group.

1. Alex: We put the number on both sides … and, and one on top and add all that
(he writes)

2. Teacher: I am going to read (reading) “We put the number on both sides.”
Which numbers?

3. Alex: The number of the day … (talking to his group-mates) we write the
number on both sides of the day, write the number of the day.

4. Jay: And you have to add both days.
5. Catherine: (Interrupting) Together.
6. Jay: Ah yeah! OK it’s like … one must add … the two days together and add

another … another day!
7. Alex: I don’t get it. I do not understand what you are saying … no offence man,

but …

In Turn 2, the teacher asks the students to specify which numbers they are
talking about. In Turn 6, Jay mixes the number of crumbs and the number of days.

This dialogue highlights some of the difficulties that the students found in
articulating in a clear manner the variables and their relationship at the level of
language. These difficulties appeared also in the students’ written messages. The
messages were essentially of the same form: a drawing with some calculations and
a short text. Figure 1.4a, b show a paradigmatic drawing and a text. In the drawing,
the student identifies the container as “Jour 100” (Day 100). He explains that the
black circle is the initial crumb (“miette”). Towards the right of Fig. 1.4a, he writes:
“One adds 100 on each side.” The text brings forward the spatial context in an
explicit manner (see Fig. 1.4b). It reads: “One remarks 100 on each side. One adds
it to arrive to the answer and one adds the crumb that he found. At the end one
makes a calculation. Here is how to solve this problem.”

We see that in both the student’s written text and the oral discussion (see
previous excerpt), the relationship between the variables remains unclear. It is as if
the formula has not yet completely entered the realm of verbal thinking.

1 The Emergence of Symbolic Algebraic Thinking in Primary School 15



Yet, despite the challenge of putting the formula in words, the dialogue above
shows that the students have moved to a new layer of generality. Although the
object of discourse in the previous dialogue is Term 100 of the sequence, we see the
students engaged in a discussion where numbers start receding to the background
(see the students’ dialogue above). The students’ attention moves to the variables
and their relationship, which, bit by bit, become the central object of discourse.

1.7 The Emergence of Symbolic Algebraic Thinking
in Grade Four

After a general discussion, the teacher again drew a card from the box but hid the
number on it from the students. She said: “I draw a card, I do not tell you the
number. I put the card in an envelope and I will send it to a student. What do you
write in the message to this student now?” Marika replied: “As Catherine and Alex
said, it is twice in the line [i.e., the “side”], it is the same thing day and crumbs, and
you have to put twice, and then you have to add the crumb on top that it [the ant]
has already found.”

Marika’s utterance offers an example of a contextual generalization. That is, a
generalization whose formula is based on spatial and other deictic terms (here,
“sides” and “top”). The deictics endow the variables with a meaning deeply related
to the spatial or other contextual clues of the terms of the sequence (Radford 2011).

After a general discussion about Marika’s formula, the teacher moved towards
the didactic agenda: the search for a symbolic formula. The teacher said: “Now I do
not want you to put a phrase. I want you to write down a calculation.”
Dylaina suggested to use a letter, but formulates the message as if the number was
known: “You put r for the number of days and you put on each side and it is equal
to 200, then you add 1 and it is equal to 201.” The teacher reminded the students
that the number in the envelope is not known. A student went to the blackboard and
suggested to use the sign “#” for the number of the day; other students suggested
the signs “?” and “__.” The students’ formula on the blackboard was:
2 � __ = __ + 1 = __ (see Fig. 1.5a). The teacher asked if they could use letters
instead. The students suggested a, b, and c, so the formula was transformed into

Fig. 1.4 A paradigmatic example of the student’s written text
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2xa = b + 1 = c (see Fig. 1.5b). The 100-minute math lesson ended up with the
teacher asking the students to reflect on the meaning of each letter.

The next day the class came back to the formula 2 � a = b + 1 = c. Since the
last number is the answer (“réponse” in French), the students suggested replacing
“c” with “r” (see Fig. 1.5c). The teacher started a new thread in the conversation.

1. Teacher: I will write something on the blackboard and I want you to tell me if I
can do this (she writes on the blackboard; see Fig. 1.5d).

2. Students: Yes!
3. Teacher: I need someone to explain … Lola, would you like to explain?
4. Lola: Because 2 times the number plus 1 equals the answer.
5. Teacher: Ok. And n, what does it represent?
6. Lola: It represents 100, 101, etc.
7. Teacher: Ok. And plus 1, what does it represent?
8. Lola: It represents the first crumb.

The teacher then asked if other formulas were possible. Alex suggested: “n plus
n equals plus 1 equals r.”

Generally speaking, the class made substantial progress towards the production
of alphanumeric formulas. However, although the produced formulas start moving
away from the recourse to the spatial deictics that are the hallmark of contextual
generalizations, the formulas exhibit something that manifests itself as one of the
greatest obstacles in becoming fluent with the alphanumeric symbolism and the
meaning of the symbolic formula, namely the strong tendency to calculate sub-
totals. The alphanumeric formula expresses the algebraic calculations in a global
manner. It focuses on the structure. The students’ tendency to calculate sub-totals
reminds us of Davis’s (1975) “process-product dilemma” (Kieran 1989b, p. 41).
The “process-product” dilemma refers to the difficulty in considering an expression
such as “x + 3” as an answer. In our interpretation, what this dilemma means is that
the emphasis in the alphanumeric formula is not on the numbers themselves but on
the operations. We move here to an altogether new realm of generality—symbolic
generality. In this level of generality, the novelty is not only the introduction of
alphanumeric symbolism, but a whole reconceptualization of numerical operations.

1.8 Grade Five

In Grade 5 the students again tackled the Ant Problem. This time the mathematical
structure was easily perceived:

Fig. 1.5 The first symbolic expressions in Grade 4
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1. Catherine: So, we can do the first crumb first … the crumb he found first …
2. Alex: (Interrupting) And then there are 4, 4 on each side (he makes two gestures

in the air meaning the two sides), [and] 1.
3. Catherine: Ah yeah, because the number of the … day equals the ones on the

two sides … So 4 crumbs on each side …
4. Alex: And then, for 5, it’s 5 on each side.

Alex mentions right away the spatial deictic “side,” which is also the reference
of his gestures. Although not yet perfect, the linguistic relationship between the
variables is much better articulated than in Grade 4 and the mathematical structure
of the terms is much better ascertained. And as the variables’ relationship enters the
realm of language, the gestural activity recedes into the background. This is why,
when the students tackled in Grade 5 the question of Day 33, gestures were no
longer required. The answer came without difficulty. Alex said: “So 33 plus 33
equal 66, plus 1.”

This passage provides us with a neat example of semiotic contraction; that is, the
mechanism that consists of making a choice between what counts as relevant and
irrelevant. In semiotic contraction there is a reorganization of the semiotic recourses
that help the students to direct their attention to those aspects that appear to be most
significant. In general, semiotic contraction is an indicator of a deeper level of
consciousness and intelligibility (Radford 2008b).

The students’ deeper level of consciousness and intelligibility of the mathe-
matical structure of the sequence was also manifested in the flexibility and cre-
ativity that the students showed in dealing with the ant context. Alex challenged his
teammates Catherine and Andrew (who joined Alex and Catherine’s group in Grade
5, while Jay went to work with another group), with the question of finding the
crumbs in day 103: “OK. And if it is the 103rd day, how many pieces [crumbs] is
he going to have?” Andrew replied immediately: “207.” Andrew went even further
and said: “Um, anything [“n’importe quoi”] plus anything equals um” He explains:
“I do it the other way: I give you the answer, but I do not give you the numbers.”

During a general discussion, the teacher visually and discursively emphasized
the relationship between variable “Day” and “number of crumbs” in the container.
The teacher said: “If I want to draw Day 6, I have to put one crumb (she draws 1
crumb) and how many circles should I put here on my left column? (She makes a
vertical sliding gesture where the crumbs/circles will be drawn).

After that, the group came back to Andrew’s challenge.

1. Catherine: OK, so, it is day 201, no … there are 201 crumbs. Which day is it?”
2. Alex: 100! Woo!
3. Catherine: Now, challenge me!

During a series of consecutive challenges that the students enjoyed very much,
they came to realize that the challenging number had to be an odd number. Also
important from a developmental viewpoint is the fact that in the course of these
challenges, for the first time, the students linguistically identified the variables in an
explicit and proper manner. The consequence was that the contextual
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generalizations that they were producing were much more refined than those pro-
duced in Grade 4.

When it came to write the message as a sequence of operations, the students
resorted to similar symbolic formulas as those they proposed in Grade 4; that is,
formulas that include sub-totals. During the general discussion, another student,
Janelle, wrote on the blackboard the equation that the class came up with last year:
___ � 2 = ___ + 1 = ____. Figure 1.6a, b show two more examples.

These figures suggest that students have become more and more conscious that
different signs are required to represent different numbers. Thus, in Fig. 1.6a, Gavin
explains: “We did a multiplication. We did the mysterious number times 2, equals a
mysterious number, and there (pointing at the “?” sign on the second row; see
Fig. 1.6a) plus 1 equals a mysterious number. Now, this (encircling the second and
the third “?” signs) are the same thing, the same number.” Figure 1.6b is even more
explicit about the fact that each sign stands for a different number. In Fig. 1.6c, the
teacher invites the class to use letters. Alex suggests using “a,” “l,” and “e” (the first
three letters of his name), while Christiane suggests “n” for number, “r” for
“réponse” (i.e., answer), and “vr” for “vraie réponse” (i.e., the real answer). To
close the 100-minute lesson, the teacher asked the students if they had learned
something new. Théo answered: “We can put any letter as long as the numbers are
different … ‘Cause that [same letters] means that the number is the same. You can
use the same letter if it is the same number.”

The students had homework to return the next day. The homework featured the
Tireless Ant context with 2 crumbs found in the container and drawings of the
container for Days 1, 4, and 5 (Day 1 = 5 crumbs; Day 4 = 14, and Day 5 = 17).
Of the 26 students, 1 student did not return the homework, 21 students resorted to
formulas based on sub-total calculations (e.g., a � 3 = b + 2 = c), 3 formulas
conforming to the alphanumeric syntax (e.g., J � 3 + 2 = R), and 1 unclassified
answer. The teacher started the lesson with a discussion of the students’ homework
answers. Three students volunteered to write their formulas on the blackboard. One
formula was: number of the day � 3 = ___ + 2 = ___. The second formula was:
a � 3 = b + 2 = c; the third one was J � 3 + 2 = R. The teacher took the
opportunity to make a distinction between the formulas. The first two, she insisted,
“separated” the calculations into two. The third formula did not. She insisted that it
was not necessary to separate the calculations. Then the lesson continued with

Fig. 1.6 Symbolic formulas in Grade 5 are still based on the calculation of sub-totals
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another activity where the students were put in a position of formula interpretation.
The activity included the formulas “5 � n + 2 = r,” “3 � n + 7 = r,” and a third
question where the students had to produce their own formula. In each case they
had to explain the meaning of the letters and coefficients within the context of days
and crumbs. In general, the students were able to correctly identify the various
terms of the formula. For instance, Miguel produced the formula 10 � n + 5 = r,
and noted that 10 is the “added crumbs,” n is “the number of the day,” 5 is “first
crumb,” and r the “answer.” An individual test took place two weeks later. By then,
half of the 26 students were producing formulas conforming to the alphanumeric
syntax, 7 students were producing formulas showing partial calculations and 5
students were producing other answers.

1.9 Grade Six

In Grade 6 the Tireless Ant activity did not include the drawings of the container
and the crumbs/circles. Yet, the students were able to answer the questions quickly.
Laura, for instance, said: “First, you have to take the number of the day and to
multiply it by 2, because each day it [the ant] adds two crumbs. And you have to
add 1, which is the crumb that the ant found in the container.” The symbolic
formula was easily reached too. It read: (n � 2) + 1 = m. The appearance of
brackets in the students’ formulas was the result of a class discussion conducted by
the teacher about the priority of operations.

During the activity concerning the interpretation of formulas, the teacher came to
see Laura’s group and challenged the students’ interpretation. The formula under
discussion was 5 � n + 2 = r. The students argued that the ant found two crumbs
in the container and added 5 each day:

1. Teacher: Why not the ant started with 5 and added 2 each day?
2. Laura: Because times (pointing to the multiplication sign) means that [the ant]

adds 5 each day, like 5 times the day… (she emphasizes the word “times”).

The following day, the students explored the sequence shown in Fig. 1.7a. The
students were at ease producing a symbolic formula for the general term of the
sequence. Alex, for example, suggested n � 2 + 2 = r.

The activity included the following formulas: “N + N + 1 + 1 = ___” and
“2 � N + 1 + 1 = __” (which were actually produced by students of another Grade
6 class). The teacher asked her students whether or not they thought that these
formulas were correct and to explain. Referring to the first formula, Christiane
answered: “Yes. N = number of the figure; ___ = number of rectangles in total;
1 = the rectangles added on the top, at the ends.” Referring to the second formula
she noted: “Yes. N = number of the figure; ___ = total of rectangles; 1 = the
rectangles added on top, at the ends; 2 = two rows of rectangles.” Another question
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asked the students to produce as many formulas for the sequence as they could.
Figure 1.7b summarizes Christiane’s results.

As Fig. 1.7c suggests, the students have reached a very good coordination of
perceptual and symbolic activity. Indeed, the students were able to interpret per-
ceptually the given formulas “N + N + 1 + 1 = ___” and “2 � N + 1 + 1 = __”.
Figure 1.7c shows some traces of the students’ perceptual activity: the two added
rectangles were imagined at the right end of the rows; but also at the beginning of
the rows, and also one at the beginning of the bottom row and the end of the top
row. It is not the symbolic function that has evolved, but mathematical imagination
and perceptual activity as well. The eye appears now as a theoretician (Radford
2010b).

Let us pause for a moment and discuss with more detail Fig. 1.7b. To produce
the formulas in Fig. 1.7b, the students did not need to see the terms of the sequence,
nor did they have to translate the meaning of the formulas and their components in
natural language according to the context (i.e., the students did not need to refer to
n as, e.g., “the number of rectangles on the bottom row”). Letters, constants,
coefficients, and operations were uttered in a transliterated form only (e.g., “two
n plus two equal r”) or were not uttered at all. What this means is that, remarkably,
for the first time in the students’ mathematical experience, as we witnessed in the
course of our longitudinal investigation, natural language was no longer leading
thinking. At this precise point in the development of the students’ algebraic
thinking, abstract signs (what Peirce (1958) called symbols, i.e., abstract signs vis-à-
vis the context) starting leading and words started following. In other terms,
symbolic thinking has superseded verbal thinking!

To end this chapter, it might be important to say something about the results of
an individual test in Grade 6. The test took place two days later. It included the
sequence shown in Fig. 1.7d. The formulas with sub-totals disappeared completely.
In the course of the years, with the help of the school Principal, we managed to keep
most of the students in the same class. But in Grade 6 there were a few newcomers
and two students moved to other schools. We lost Catherine and another student. Of

Fig. 1.7 Figural sequences and symbolic generalizations in Grade 6. a (left, top row) shows a
figural sequence investigated in Grade 6. b (right, top row) shows Christiane’s formulas. c (left,
bottom row) shows traces of the students’ perceptual and symbolic activity. d shows a sequence in
the individual test
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the 31 students in our Grade 6 class, 21 students produced the expected alphanu-
meric formula—usually n � 5 + 1 = r or (n − 1) � 5 + 6 = r. Ten students pro-
duced an incorrect formula for the problem. Of the 21 students who produced the
expected alphanumeric formula, 19 were part of the cohort followed in this study
and two students joined the cohort in Grade 5.

1.10 Concluding Remarks

In this chapter I presented the results of a longitudinal investigation on the emer-
gence of algebraic symbolism in the context of sequence generalization. The
investigation rests on a characterization of algebraic thinking based on its analytic
nature. In sequence generalization, this idea means that the sought-after formula is
not guessed but deduced from certain given data. In the course of the chapter I
insisted that the formula does not necessarily have to be expressed through the
alphanumeric symbolism. The formula can also be expressed through other kinds of
semiotic systems.

The importance of distinguishing the semiotic systems through which the stu-
dents produce their formulas is related to a dialectic materialist epistemological
premise about cognition and signs, implicit in the Introduction, and that I can now
state in full as follows. The manner, depth, and intensity in which an object appears
as an object of consciousness are consubstantial with the semiotic material that
makes possible for such an object to become an object of consciousness and
thought. There are always limits to what can be thought and said within a semiotic
system. For each semiotic system has its own expressiveness. In terms of Locke’s
and Condillac’s philosophy of language and signs mentioned in the Introduction,
what the dialectic materialist epistemological premise means is that language and
semiotic systems in general are not merely the expressions of thought or mediators
of it. As Vološinov notes, “It is not experience that organizes expression, but the
other way around—expression organizes experience. Expression is what first gives
experience its form and specificity of direction” (1973, p. 85; emphasis in the
original). The alphanumeric symbolism and the Cartesian Graph symbolism, for
instance, do not have the same expressiveness. There are inherent limits as to what
can be said and thought within each one of them. Each one provides the students’
experience of algebra with different form and direction.

Of course, this question about expressiveness is—reformulated at a more general
level—the formidable problem that Vygotsky (1986) dealt with in the last chapter
of Thought and Language. What our dialectic materialist epistemological premise
means in the context of this chapter is that the conceptual deepness of the manner in
which the variables and their relationships are noticed and the algebraic structure is
revealed to the students is not the same in the various types of generalizations that
we have discussed. In factual generalizations the formula is not expressed explic-
itly. It appears “in action,” through concrete numbers and their operations. The
variables and the relationship between the variables remain implicit. In contextual
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generalizations, by contrast, the formula is expressed at a more general level; the
variables and their relationship become explicit and are referred to through con-
textual elements—spatial linguistic deictics (for example, “top” and “bottom”).
While factual generalizations seem to go without difficulties in Grade 4, contextual
generalizations were difficult to express. These difficulties reveal the students’
agony in coming to terms with a deeper level of algebraic structure consciousness.
In Grade 5 things changed. The linguistic formulation of variables and their rela-
tionship became possible, the result being a deeper level of intelligibility. The
algebraic formula entered the realm of verbal thinking. But it did not yet enter the
realm of symbolic thinking. For this to happen, the teacher and the students had to
continue working to achieve something that has far-reaching epistemological
consequences. That is, as paradoxical as it may seem, the teacher and the students
had to move to a conceptual realm where natural language ceases to be the main
substance and organizer of thinking. Indeed, while natural language with its arsenal
of conceptual possibilities offers the semiotic material to produce contextual gen-
eralizations, natural language has to recede into the background to yield space to a
new cognitive form—symbolic thinking. The “deicticity” of contextual general-
izations does not disappear: it becomes sublated into the new abstract signs of
symbolic generalizations (see Fig. 1.6c).

Symbolic generalizations are, indeed, based on symbols—i.e., abstract signs vis-
à-vis the context (see, e.g., Fig. 1.6b). The deictic nature of contextual general-
izations may be formulated as an indexical and iconic form of signifying. The index
and the icon signs (in Peirce’s sense) now have to recede for the symbol to appear.
And Grade 6 was the moment in which this happened: it was the remarkable
moment in which algebraic symbolic thinking emerged. The students had to
overcome their tendency to think of the formula in terms of sub-total calculations (a
symptom of the entrenched leading role that numbers qua concrete numbers had in
the students’ thinking). Finally, this tendency disappeared and the focus shifted to
variables, operations, and numbers reconceptualized at a higher level (as rates, for
instance, as in the case of the multiplicative coefficient of linear formulas).

But we should not miss the point about the importance of the standard algebraic
symbolism. The importance of the standard algebraic symbolism does not reside in
its tremendous efficiency to carry out calculations only. It also resides in the pos-
sibilities it offers to reach new aesthetic modes of imagination and perception.
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Chapter 2
Implementing a Framework
for Early Algebra
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Abstract In this chapter, we discuss the algebra framework that guides our work
and how this framework was enacted in the design of a curricular approach for
systematically developing elementary-aged students’ algebraic thinking. We pro-
vide evidence that, using this approach, students in elementary grades can engage in
sophisticated practices of algebraic thinking based on generalizing, representing,
justifying, and reasoning with mathematical structure and relationships. Moreover,
they can engage in these practices across a broad set of content areas involving
generalized arithmetic; concepts associated with equivalence, expressions, equa-
tions, and inequalities; and functional thinking.
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2.1 Introduction

When tasked with the open question of measuring the impact of early algebra1 on
children’s algebra-readiness for middle grades, our first challenge was to identify
the “early algebra curriculum” from which impact could be measured. Essentially,
such a curriculum as we envisioned it—that is, an instructional sequence that
integrated core algebra concepts and practices across the elementary school
mathematics curriculum through a research-based, multi-year approach—did not
exist in curricular resources in the United States [US]. At best, we found that
mainstream arithmetic curricula offered only a random treatment of “popular”
algebraic concepts (e.g., a relational understanding of the equal sign, finding the
value of a variable in a linear equation, finding a pattern in sequences of numbers),
often buried in arithmetic content in ways that allowed one to potentially ignore or
marginalize their treatment in instruction. This curricular challenge presented us
with an obvious corollary: What is the algebra that we want young children to learn
and that will suitably prepare them for a more formal study of algebra in the middle
grades?

These challenges led us on a lengthy journey to apply a widely-acknowledged
framework for algebra (Kaput 2008) as a conceptual basis for designing an early
algebra curriculum for Grades 3–5. Such a curriculum would allow us to measure
elementary grades students’ potential for algebraic thinking as well as their readi-
ness for algebra in later grades. In a separate line of work, we also began
exploratory research that would allow us to back this approach down into the lower
elementary grades (i.e., Grades K–2). We share part of this journey here on three
fronts: (1) we characterize the algebra framework that has informed our approach;
(2) we describe the curricular approach and its components, designed using this
framework for Grades 3–5; and (3) we share evidence of the impact of this
approach on children’s algebraic thinking.

I. Isler
Middle East Technical University, Orta Dogu Teknik Universitesi, Egitim Fakultesi,
Matematik ve Fen Bilimleri Egitimi Bolumu, 06800 Cankaya, Ankara, Turkey
e-mail: iisler@metu.edu.tr

N.L. Fonger
Syracuse University, 103D Carnegie Building, Syracuse, NY 13244, USA
e-mail: nfonger@syr.edu

D. Stylianou
The City College of New York, 160 Convent Ave., NAC 6/207, New York,
NY 10031, USA
e-mail: dstylianou@ccny.cuny.edu

1By early algebra we mean algebraic thinking in the elementary grades (i.e., Grades
Kindergarten–5).
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2.2 The Emergence of Early Algebra in the US

Research shows that, historically, algebra education in the US—an
“arithmetic-then-algebra” approach in which an arithmetic curriculum in the ele-
mentary grades was followed by a formal treatment of algebra in secondary grades
—was unsuccessful in terms of students’ mathematical achievement (e.g., Stigler
et al. 1999) and led to a widespread marginalization of students in school and
society (Kaput 1999; Schoenfeld 1995). Algebra’s resulting status as a gateway to
academic and economic success (Moses and Cobb 2001) led to calls for identifying
new approaches to algebra education. As part of this effort, scholars worked to
develop new recommendations for school algebra instruction that would provide
students with the kind of sustained experiences necessary for building informal
notions about algebraic concepts and practices into more formal ways of mathe-
matical thinking. Importantly, algebra education was re-framed as a longitudinal
effort that would span Grades K–12 rather than one that began abruptly in high
school (e.g., National Council of Teachers of Mathematics [NCTM] 2000; RAND
Mathematics Study Panel 2003).

Recent US reform initiatives such as the Common Core State Standards for
Mathematics (National Governors Association Center for Best Practices [NGA] &
Council of Chief State School Officers [CCSSO] 2010) have reiterated the signif-
icant and increasing role algebra is now expected to play across school mathematics
by outlining content standards and mathematical practices for algebraic thinking
beginning at the start of formal schooling (i.e., kindergarten). While these efforts
have strengthened the national discourse on the role of early algebra in school
algebra reform, the development of a research-based approach to early algebra that
would guide the systematic, long-term development and assessment of young
children’s algebraic thinking has been lacking. In this sense, we hope that the
approach we share here might provide one route for clarifying and deepening the
role of algebra in the elementary grades.

2.3 A Conceptual Framework for Early Algebra

The early algebra perspective that guides our work is based on Kaput’s (2008)
content analysis of algebra as a set of core aspects across several mathematical
content strands. We discuss each of these here and how they are enacted in our
work.
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2.3.1 Core Aspects and the Algebraic Thinking Practices
Derived from Them

Kaput (2008) proposes that algebraic thinking involves two core aspects: (a) mak-
ing and expressing generalizations in increasingly formal and conventional symbol
systems; and (b) acting on symbols within an organized symbolic system through
an established syntax, where conventional symbol systems available for use in
elementary grades are interpreted broadly to include “[variable] notation, graphs
and number lines, tables, and natural language forms” (p. 12). While Kaput
acknowledges differing views on whether and how acting on symbolizations such
as variable notation should occur in elementary grades, he and others (e.g., Blanton
et al. 2017a; Brizuela and Earnest 2008; Carraher et al. 2008) maintain that inter-
actions with all of these symbol systems early on can actually deepen students’
algebraic thinking. In our work, we also adopted this broad interpretation of symbol
systems, along with the view that incorporating such diverse systems throughout
children’s algebraic work would be a potentially productive route to developing
their algebraic thinking.

We derive four essential practices from Kaput’s (2008) core aspects that define
our early algebra conceptual framework: generalizing, representing, justifying, and
reasoning with mathematical structure and relationships (see also Blanton et al.
2011). We see the activities of generalizing and representing generalizations as the
essence of Core Aspect (a). Furthermore, from Core Aspect (b), we take justifying
generalizations and reasoning with established generalizations in novel situations as
two principal ways of acting on conventional symbol systems, broadly interpreted.
A critical component of these four practices is that they are centered around
engagement with mathematical structure and relationships. For example, we take
the view that the activity of justifying is not, in and of itself, algebraic, but it serves
an algebraic purpose when the context is justifying generalized claims. In what
follows, we elaborate on each of these four algebraic thinking practices as we
interpret them in our work.

2.3.1.1 Generalizing

Generalizing is central to algebraic thinking (Cooper and Warren 2011; Kaput
2008) and the very heart of mathematical activity (Mason 1996). It has been
characterized as a mental process by which one compresses multiple instances into
a single, unitary form (Kaput et al. 2008). For example, in simple computational
work, a child might notice after several instances in which she adds an even number
and an odd number that the result is an odd number. In this, the child is starting to
“compress” all of the instances of adding a specific even number and a specific odd
number and getting an odd number as a result into the generalization that the sum of
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any even number and any odd number is odd. Engaging elementary-aged children
in the activity of generalizing is vital because it strengthens their ability to filter
mathematical information from common characteristics and to draw conclusions in
the form of generalized claims.

2.3.1.2 Representing Generalizations

The activity of representing mathematical structure and relationships is as important
as generalizing (Kaput et al. 2008). As a socially mediated process whereby one’s
thinking about symbol and referent is iteratively transformed (ibid.), the act of
representing not only gives expression to the generalizations children notice in
problem situations, but also shapes the very nature of their understanding of these
concepts. As Morris (2009) notes, the practice of representing generalizations
builds an understanding that an action applies to a broad class of objects, not just a
particular instance, thereby reinforcing children’s view of the generalized nature of
a claim. In the example of evens and odds given earlier, children might represent
what they notice in their own words as “the sum of an even number and an odd
number is odd.” They might represent generalizations in other ways, such as with
variable notation. For example, a child might represent the Commutative Property
of Addition as a + b = b + a, where, for the young child, a and b represent the
counting numbers. Later, as students become more sophisticated, this number
domain expands to include all real numbers.

2.3.1.3 Justifying Generalizations

In justifying generalizations, students develop mathematical arguments to defend or
refute the validity of a proposed generalization. In elementary grades, the forms of
arguments students make are often naïve empirical justifications. Research shows,
however, that they can develop more sophisticated, general forms that are not based
on reasoning with particular cases (Carpenter et al. 2003; Schifter 2009). For
example, students might build “representation-based arguments” (Schifter 2009)
where they use drawings or manipulatives to justify the arithmetic relationships
they notice. In building an argument as to why the Commutative Property of
Addition is reasonable,2 a child might construct a snap-cube “train” of 3 red cubes
followed by 4 blue cubes and visually demonstrate that the sum of the cubes (i.e.,
the length of the train) does not change when one flips the train around to become a
4-blue-cube, 3-red-cube “train.” In a representation like this, the actual number of
cubes is treated algebraically as a place-holder for any number of cubes. That is, the
“3” and “4” become irrelevant in the more general justification the child is making.

2Technically, such properties are axioms and assumed to be true without proof. However, it is
productive for children to think about why such properties are reasonable.
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There are long-term dividends for engaging children in the practice of justifying
the mathematical generalizations they make. For instance, Morris (2009) notes that
the development of children’s capacity to justify relationships about generalized
quantities can help prepare children for a more formal study of proof in later grades.
As such, justifying generalizations is an important act of algebraic reasoning.

2.3.1.4 Reasoning with Generalizations

Finally, algebraic thinking involves reasoning with generalizations as mathematical
objects themselves. In this practice, children act on the generalizations they have
noticed, represented, and justified to be true as objects of reasoning in new problem
scenarios. For example, elsewhere we have observed young children building
functional relationships that they represent with variable notation and with which
they can reason as objects in solving new problem situations (Blanton et al. 2015a).
Returning again to the example of evens and odds, a child might use previously
noticed generalizations such as “the sum of an even number and an odd number is
odd” to reason about the sum of three odd numbers. Cognitively, we see this type of
reasoning as signifying an advanced point of concept formation in which the
generalization has been reified in the child’s thinking (Sfard 1991). Thus, culti-
vating this practice represents an important objective in learning to think
algebraically.

2.3.2 Content Strands and Their Relation to Our
Framework

Kaput (2008) further argued that Core Aspects (a) and (b) occur across three
content strands:

1. Algebra as the study of structures and systems abstracted from computations and
relations, including those arising in arithmetic (algebra as generalized arith-
metic) and quantitative reasoning.

2. Algebra as the study of functions, relations, and joint variation.
3. Algebra as the application of a cluster of modeling languages both inside and

outside of mathematics (p. 11).

Early algebra research has matured around several core areas relative to these
content strands. Elsewhere (e.g., Blanton et al. 2015b), we have parsed these core
areas, with three predominant areas being (1) generalized arithmetic; (2) equiva-
lence, expressions, equations, and inequalities; and (3) functional thinking. We take
generalized arithmetic to involve generalizing, representing, justifying, and rea-
soning with arithmetic relationships, including fundamental properties of operations
(e.g., the Commutative Property of Multiplication) as well as other types of
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relationships on classes of numbers (e.g., relationships in operations on evens and
odds). We take equivalence, expressions, equations, and inequalities to include
developing a relational understanding of the equal sign and generalizing, repre-
senting, and reasoning with expressions, equations, and inequalities, including in
their symbolic forms. Finally, we take functional thinking to include generalizing
relationships between co-varying quantities and representing, justifying, and rea-
soning with these generalizations through natural language, variable notation,
drawings, tables, and graphs.

Areas 1 and 2 align with Kaput’s Strand 1, while Area 3 aligns with Strands 2
and 3. Although Kaput’s content analysis—and our interpretation of it in our
research—is not the only way to organize the content strands (or, our core areas) in
which algebraic thinking practices occur, we do see this framework as reasonable
and consistent with other perspectives (e.g., Carraher and Schliemann 2007; Cooper
and Warren 2011).

2.4 Designing an Early Algebra Curricular Approach
Using Our Algebra Framework

We expanded our algebra framework to establish an approach to teaching and
learning early algebra that included an articulation of a curricular progression with
associated learning goals, an instructional sequence to accomplish these goals,
assessments to measure learning within the instructional sequence, and a charac-
terization of students’ ways of thinking as a result of their learning within the
instructional sequence. This initial work, characterized in this chapter as
Project LEAP,3 focused on Grades 3–5. In particular, our approach built on the
body of work concerning learning progressions and learning trajectories in edu-
cational research (Barrett and Battista 2014; Clements and Sarama 2004; Daro et al.
2011; Duncan and Hmelo-Silver 2009; Shin et al. 2009; Simon 1995), which uses
an integrated approach to both supporting students’ learning and characterizing
learning in the context in which it is supported. In what follows, we briefly elab-
orate the theoretical foundations, methods, and design principles that guided our
curricular approach to early algebra across Grades 3–5. Broadly, we followed a
learning progressions approach to developing coherent curricular products (Battista
2011; Shin et al. 2009), instruction that targets students’ development of under-
standings over a large span of time (Shwartz et al. 2008), and assessments to
measure sophistication in student thinking over time (Battista 2011). In what fol-
lows, we describe the components of our learning progression.

3We use the term “LEAP” (Learning through an Early Algebra Progression) here in reference to
our Grades 3–5 suite of projects that focused on understanding the impact of a systematic,
multi-year approach to teaching and learning algebra in the elementary grades.
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2.4.1 Curricular Progression

Our curricular progression elaborates finer grain sizes of the algebraic concepts and
practices to be learned within each core area and at each grade level.4 To construct
this, we conducted a research synthesis and textbook analysis to specify (1) ap-
propriate algebraic concepts and practices (e.g., a relational understanding of the
equal sign; generalizing a functional relationship between two quantities) within our
core areas, and (2) learning goals that characterized the depth of understanding that
might reasonably be expected at each grade level and which could guide the design
of learning activities for our instructional sequence. Finally, we sought external
review of our proposed curricular progression to validate its consistency with
empirical research and teaching and learning standards.

A guiding design principle for our curricular progression is to build sophisti-
cation in learning goals over time, starting from students’ experiences and prior
knowledge. Following Battista (2004) and as elaborated in Fonger et al. (in press),
we balanced a dual lens on empirical research on students’ understandings with an
eye toward the canonical development of algebra over time in accordance with
mathematical sophistication. This lens supported our specification of how we
sequenced and ordered content across the grades. Our curricular progression served
as a blueprint for designing an instructional sequence.

2.4.2 Instructional Sequence

Our instructional sequence is an ordered set of lessons across Grades 3–55 designed
to build in complexity over time and to weave together the core areas (e.g., gen-
eralized arithmetic, functional thinking) and algebraic thinking practices (e.g.,
generalizing and representing generalizations) to support teaching and learning
early algebra in an integrated way. Each grade level sequence consists of approx-
imately 18 one-hour lessons that are intended to be taught along with the regular
mathematics curriculum. While we follow a proposed sequence during imple-
mentation for our research purposes, there is flexibility with how teachers might
incorporate lessons into their existing curriculum to accommodate their needs.

Using the curricular progression as a framework, we designed tasks or modified
existing tasks from research that showed potential to facilitate students’ construc-
tion of algebraic ideas (Clements and Sarama 2014), then built a core sequence of
lessons using these tasks. We refined our instructional sequence through cycles of
testing and revision. Moreover, we sequenced the introduction of core areas to

4We elaborate on this curricular approach in Fonger et al. (in press).
5Ultimately, our aim is to develop a Grades K–5 sequence. Our decision to focus initially on
Grades 3–5 was guided largely by the more extensive early algebra research base available in
upper elementary grades.
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generally start from equivalence and a relational understanding of the equal sign,
transition to generalized arithmetic and a study of fundamental properties of number
and operation as well as other arithmetic generalizations, then progress to a study of
generalized (indeterminate) quantities as a gateway for representing and reasoning
with relationships between quantities through equations, inequalities, and functional
relationships. Table 2.1 illustrates the lesson sequence and learning goals for Grade
3. Instructional sequences for Grades 4 and 5 were similar.

2.4.3 Assessments

We developed grade level assessments across Grades 3–7 to measure progress in
the development of students’ algebraic thinking in response to their participation in
the Grades 3–5 instructional sequence and to monitor retention of that knowledge
after the intervention (i.e., in Grades 6–7). Key algebraic concepts and practices
identified in our curricular progression were used to design tasks that formed the
basis for these grade-level, one-hour assessments. We designed assessment items to
have multiple points of entry (e.g., students might use different strategies to solve a
particular problem) and to include common items across several grades as a means
to track growth over time. To strengthen the validity of our assessments, experts on
teaching and learning algebra evaluated the extent to which the proposed assess-
ment items aligned with algebraic concepts and practices in each of the core areas,
and assessments were administered to elementary grades students and tested for
psychometric soundness. The assessments have provided a critical means to mea-
sure effectiveness of our instructional sequence (see Sects. 2.5.1–2.5.3).

2.4.4 Student Thinking

We characterize students’ thinking according to levels of sophistication, or quali-
tatively distinct ways of thinking, as evidenced in the strategies students use in
written assessments and individual interviews. To strengthen the validity of our
classification of student thinking, we accrued evidence of and distilled patterns in
students’ thinking over the span of several years (Stephens et al. in press). In our
approach, the levels of sophistication observed in students’ thinking is inseparable
from the curricular and instructional context in which the learning was supported
(see also Clements and Sarama 2004, 2014). In other words, the learning goals
established in our curricular progression (and, subsequently, our instructional
sequence) guide and support learning, while assessments measure that learning and
levels of sophistication are the means by which we qualitatively characterize the
nature of learning in that context over time.
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Table 2.1 Overview of the instructional sequence for Grade 3

Lesson sequence and focus Learning goals

Relational understanding of the equal sign
(Lessons 1–2)

• Identify meaning of ‘=’ as expressing a
relationship between quantities

• Interpret equations written in various formats
(e.g., other than a + b = c) to correctly
assess an equivalence relationship (true/false
number sentences)

• Solve missing value problems by reasoning
from the structural relationship in the
equation (open number sentences)

Fundamental properties: additive identity,
additive inverse, commutative property of
addition, and multiplicative identity;
Arithmetic relationships involving classes of
numbers (e.g., evens and odds)
(Lessons 3–6, 11)

• Analyze information to develop a
generalization about the arithmetic
relationship

• Represent the generalization in words
• Develop a justification to support the
generalization’s truth; examine
representation-based arguments (Schifter
2009) vis-à-vis empirical arguments

• Identify values for which the generalization
is true

• Represent the generalization using variables
• Examine the meaning of repeated variables
or different variables in an equation
representing a generalization

• Examine values for which the generalization
is true

• Identify a generalization in use (e.g., in
computational work)

Modeling problem situations with (linear)
algebraic expressions
(Lesson 7)

• Identify a variable to represent an unknown
quantity

• Informally examine the role of variable as a
varying quantity

• Represent a quantity as an algebraic
expression using variables

• Interpret an algebraic expression in context
• Identify different ways to write an expression

Modeling and solving problem situations
involving one-step, single variable linear
equation (additive or multiplicative)
(Lessons 8–10)

• Model a problem situation to produce a
linear equation (x + a = b or ax = b)

• Identify different ways to write the
representative equation

• Analyze the structure of the equation to
determine the value of the variable

• Check the solution to an equation or
determine if the solution is reasonable given
the context of the problem

• Informally examine the role of variable as an
unknown, fixed quantity

(continued)
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2.5 Evidence of Growth in Students’ Algebraic Thinking

It is reasonable to ask whether young children can successfully engage with a
curricular approach such as that described here, that is, one that captures such a
broad expanse of algebraic concepts and thinking practices across the elementary
mathematics curriculum. This seems to be a tall order in an already crowded general
mathematics curriculum, at least in the US. Our perspective, however, is that early
algebra is not an “add-on” to existing school mathematics, but a means to help
children think more deeply about that very content (Kaput and Blanton 2005). Early
algebra has the potential to embed arithmetic concepts in rich algebraic tasks in
ways that can deepen children’s understanding of arithmetic concepts. In this sense,
early algebra does not introduce a dichotomy in school mathematics (i.e., arithmetic
or algebra), but is a means by which children—some of whom may already be
struggling with arithmetic—can build deep mathematical knowledge with under-
standing. Our tasks are often designed to highlight this nexus between algebraic and
arithmetic thinking by using arithmetic work as a springboard for noticing, repre-
senting, and reasoning with structure and relationships in number and operations.
Moreover, we aim to facilitate the development of algebraic thinking—and math-
ematical understanding more broadly—through learning environments that rely on
both small-group investigations of open-ended tasks where students represent their

Table 2.1 (continued)

Lesson sequence and focus Learning goals

Modeling problem situations involving linear
functions of the form y = x + b, y = mx, or
y = mx + b with diverse representations (e.g.,
variables, words, graphs) and exploring
function behavior
(Lessons 12–18)

• Generate data and organize in a function
table

• Identify variables and their roles as varying
quantities

• Identify a recursive pattern, describe in
words, and use to predict near data

• Identify a covariational relationship and
describe in words

• Identify a function rule and describe in
words and variables

• Use a function rule to predict far function
values

• Examine the meaning of different variables
in a function rule

• Justify why a function rule accurately
represents the problem data

• Recognize that corresponding values in a
function table must satisfy the function rule

• Construct a coordinate graph to represent
problem data

• Given a value of the dependent variable and
the function rule for a one-operation
function, determine the value of the
independent variable
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ideas in different ways (e.g., through drawings, written language, variable notation,
and graphs) and rich classroom discourse that supports developing fluency with
algebraic concepts and practices.

In this context, we examine next some of the evidence from several studies
conducted by our project team that supports the viability of our approach. We look
at evidence from two lines of research: quantitative studies conducted in Grades
3–5 (Project LEAP) as well as exploratory studies in Grades K–2 aimed at char-
acterizing the cognitive foundations of children’s algebraic thinking at the start of
formal schooling. As described earlier, Project LEAP goals included the design of
an instructional sequence for Grades 3–5, and we report here on studies addressing
its effectiveness. We view the exploratory Grades K–2 work as prerequisite to the
kind of systematic design and development that occurred in Project LEAP. Both
serve our broader goal of developing a Grades K–5 instructional approach to early
algebra education that has been rigorously tested for its ability to develop children’s
algebraic thinking and their readiness for a formal study of algebra in middle
grades.

2.5.1 Project LEAP: Grade 3 Intervention

In Blanton et al. (2015b) we reported on our first quasi-experimental study designed
to measure the effectiveness of the Grades 3–5 instructional sequence developed as
part of Project LEAP.6 We compared the algebra learning of third-grade students
who were taught the Grade 3 sequence to students in a demographically and aca-
demically comparable control group. Approximately 100 students participated in
the study. The Grade 3 sequence used in the intervention consisted of 19 one-hour
lessons taught over the course of the school year by a member of our research team.
Each lesson involved a preliminary small group activity that either reviewed pre-
viously taught concepts or previewed concepts addressed in the upcoming lesson.
The remainder of the lesson focused on small group explorations in which students
discussed a problem activity, collected and organized their data, looked for rela-
tionships, and represented the relationships through words, drawings, or variable
notation. This was followed by whole-class discussions that revolved around tea-
cher questioning designed to engage students in discussing their thinking about the
generalizations they noticed, the nature of their representations, and why they
viewed their observations as valid. Lessons focused on eliciting students’ higher
order thinking through both written and oral communication.

Control students were taught only their regular mathematics curriculum. All
students were given our written, one-hour LEAP algebra assessment as a pre/post
measure of shifts in their understanding of core algebraic concepts and practices.

6The LEAP Grades 3–5 instructional sequence and associated assessments are available upon
request to Maria_Blanton@terc.edu.
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From our analysis of student responses to the pre/post-assessment reported in
Blanton et al. (2015b), we found that there were no significant differences between
the two groups in terms of overall performance (percent correct) at pretest
(M = 18.22, SD = 12.36 for the experimental group; M = 14.99, SD = 10.58 for
the control group; F = 2.01, p = 0.16, d = 0.28). However, the experimental group
showed significantly greater pre-to-post gains than the control group (M = 65.51,
SD = 21.01 for the experimental group; M = 21.97, SD = 15.37 for the control
group at post-assessment; F = 143.6, p < 0.001, d = 2.37). At the item level, the
experimental group showed statistically significant pre-to-post gains for all but two
of the pre/post-assessment’s 19 questions. The control group did not show statis-
tically significant pre-to-post gains on any of the assessment items. These results
suggest that, overall, students as early as Grade 3 (approximately 9 years old) can
successfully engage with core algebraic thinking concepts and practices over a
broad expanse of algebraic ideas—as reflected in the algebra framework used in our
approach—far beyond the occasional algebraic concept that they might otherwise
see in their regular curriculum. At the same time, the business-as-usual curriculum
control students received seemed to do little by way of developing students’
algebraic understanding.

Moreover, as we reported in more detail in Blanton et al. (2015b), we also coded
students’ strategy use in their assessment responses so that we could more closely
detail shifts in students’ thinking. We found that experimental students exhibited
more algebraic approaches to problem solving than did their control peers. This
included that experimental students were more likely to interpret the equal sign
relationally rather than operationally (Carpenter et al. 2003), correctly solve linear
equations using strategies that invoked inverse operations, recognize varying
quantities and represent operations on such quantities as algebraic expressions,
recognize structural characteristics of equations (e.g., the Commutative Property of
Addition) and develop arguments that invoked this structure, and recognize and
represent with both words and variable notation relationships between two
co-varying quantities.

2.5.2 Project LEAP: Grades 3–5 Intervention

Given the results of our Grade 3 study, we conducted a second quasi-experimental
study with the goal to more extensively test the effectiveness of our Grades 3–5
instructional sequence.7 In this sequel study, we compared the algebraic thinking of
students who participated in a 3-year, longitudinal implementation of our Grades 3–
5 instructional sequence to students in more traditional (arithmetic-focused) class-
rooms. Additionally, we followed these students into Grade 6 in a follow-up study

7See Blanton et al. (2017b) for a more detailed account of this study.
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to assess retention of or shifts in their algebra knowledge (no intervention was
provided in Grade 6).

Participants (n = 165) in the study were from two schools, one designated
control and one designated experimental. One member of our project team taught
the 3-year intervention in the designated experimental school, beginning with a
Grade 3 cohort and continuing with this cohort for 3 years. Approximately 18
lessons were taught at each of Grades 3–5 as part of students’ regular mathematics
instruction. Students in both experimental and control schools were assessed at the
beginning of Grade 3 (baseline data) and at the end of Grades 3, 4, and 5 using the
one-hour, grade-level written algebra assessments developed in our curricular
progression (see Sect. 2.4.3).

Students’ performance (correctness) on common assessment items8 was
compared over time (Grades 3–5) and by group (experimental and control). Results
of a two-factor, mixed-design ANOVA showed significant main effects for both
experimental condition, F(1, 144) = 137.03, p < 0.01, h2 = 0.49, and grade level,
F(3, 432) = 736.66, p < 0.01, h2 = 0.78, as well as a significant interaction between
the two, F(3, 432) = 70.29, p < 0.01, h2 = 0.15. Simple main effects tests revealed
that there were no significant differences between experimental and control students
at baseline (beginning of Grade 3), F(1, 144) = 1.46, p = 0.23. However, experi-
mental students significantly outperformed control students at each subsequent time
point: Grade 3 post-test, F(1, 144) = 205.88, p < 0.01; Grade 4, F(1, 144) = 99.74,
p < 0.01; and Grade 5, F(1, 144) = 103.28, p < 0.01 (see Fig. 2.1).

We note that the intervention had the most impact at Grade 3, as indicated by the
decreasing rate of performance of experimental students after Grade 3 (although
experimental students’ performance still improved year to year). We also note that
by Grade 4, control students were being introduced to some of the algebraic con-
cepts that were addressed in the intervention as part of their regular classroom
instruction. As such, we think it is reasonable that there is a jump in their perfor-
mance beginning in Grade 4. However, shifts in experimental students’ overall
performance (correctness) on the Grade 3 pre-assessment to the Grade 5
post-assessment from 22 to 84% offers perhaps even stronger evidence that
elementary-aged students can successfully engage in a broad expanse of algebraic
practices and concepts, as reflected in our algebra framework. Moreover, we sug-
gest that the absence of a sustained, multi-year approach to fostering algebraic
thinking leaves students significantly less prepared for algebra in middle grades, as
indicated by control students’ shifts on overall correctness from 20% (Grade 3
pre-assessment) to 61% (Grade 5 post-assessment). It is a positive result that there
were shifts in control students’ algebraic thinking by Grade 5 and, in our view, this
reflects long-term efforts to integrate algebraic thinking into elementary grades.
However, the difference in gains for the two groups shows that significant oppor-
tunities stand to be missed in current educational practice.

8Nine items were common across all Grades 3–5 assessments.
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To unpack these results further, we look here at students’ performance (cor-
rectness) across 4 time-points—Grade 3 pre/post and Grades 4–5 post—on an item
that captures how students were able to represent generalized quantities, an
important transition point in the development of algebraic thinking. Although
generalizing has rightfully received much attention as the heart of algebraic
thinking (Cooper and Warren 2011; Mason 1996), Kaput (2008) argues for the
equal importance of representing, or symbolizing, a generalization. On the
following item, students were asked to represent and reason with generalized
(varying) quantities9:

Piggy Bank Problem. Tim and Angela each have a piggy bank. They know that
their piggy banks each contain the same number of pennies, but they don’t know
how many. Angela also has 8 pennies in her hand.

a. How would you represent the number of pennies Tim has?
b. How would you represent the total number of pennies Angela has?
c. Angela and Tim combine all of their pennies. How would you represent the

number of pennies they have all together?

Results (see Fig. 2.2) show that experimental students made greater gains in
representing Tim’s and Angela’s numbers of pennies (parts a and b), as well as their
combined number of pennies (part c), than did their control peers. We considered a
correct response10 to these items to be a letter to represent Tim’s number of pennies
(e.g., n), a related algebraic expression for Angela’s number of pennies (e.g.,
n + 8), and a related expression such as n + n + 8 for the combined number of
pennies. Experimental students correctly represented Tim’s number of pennies with
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Fig. 2.1 Comparison of overall percent correct on Grades 3–5 common assessment items

9Adapted from Carraher et al. (2008).
10We recognize that a child might give a response such as n, m, and n + m, for parts a, b, and c,
respectively. In a further analysis of strategy, we considered such responses. However, for overall
correctness, we considered only the most stringent case in which students accounted for the fact
that Angela and Tim had the same number of pennies in their banks in their representations.
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variable notation (part a) at a rate of 1, 87, 83, and 92% across the 4 assessments,
respectively. By contrast, only 0, 0, 19, and 44% of control students could do so.
Students who could not correctly represent Tim’s number of pennies with variable
notation typically assigned this quantity a numerical value.

Similarly, experimental students made greater gains than control students in
representing Angela’s number of pennies as an algebraic expression (part b) across
the 4 assessments (0, 62, 57, and 78% respectively). Meanwhile, only 0, 0, 6, and
7% of control students could correctly represent Angela’s number of pennies across
the 4 assessments. Finally, experimental students made greater gains in representing
the combined number of pennies with an algebraic expression (part c) across the 4
assessments (0, 53, 46, and 73%, respectively) than did control students, whose
overall percent correct was 0, 0, 2 and 8% across the 4 assessments, respectively.

We find these results to be compelling for various reasons. First, this is a
particularly complex problem for young children because in an arithmetic-saturated
experience, they have not learned to “see” and mathematize variable quantities in
problem situations (see, e.g., Blanton et al. (2015a) for a treatment of progressions
in young children’s understanding of variable and variable notation). As such, even
a simple task such as representing Tim’s number of pennies is often beyond their
perceptual field, as indicated by their action of assigning a numerical value to a
varying quantity. In our view, a first step in understanding algebraic concepts such
as those addressed in the Piggy Bank Problem is learning to perceive and represent
a variable quantity (i.e., part a), after which students might notice and represent
relationships between quantities (as in parts b and c).

Secondly, these results show that, unlike control students, experimental students
were very successful at representing generalized quantities with variable notation.
Moreover, experimental students were able to use variable notation in meaningful
ways (e.g., they understood that the same letter was to be used to represent the
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number of pennies in each of Tim’s and Angela’s bank, since the number of coins
was the same but unspecified). This calls into question the conventional wisdom
that younger students are not “ready” for variable notation and should use those
representational systems that are already available to them—particularly, natural
language and drawings—to represent variable quantities, rather than variable
notation (e.g., Nathan et al. 2002; Resnick 1982).

Finally, to test the claim that we set at the beginning of the study regarding
whether participating in our instructional sequence would impact students’ alge-
braic thinking in middle grades, we followed Grades 3–5 students into middle
school and administered our Grade 6 algebra assessment (see Sect. 2.4.3) at the end
of Grade 6. No intervention was given. We found that the experimental students
(n = 46) significantly outperformed the control students (n = 34), with an overall
correctness of 52% (experimental) versus 44% (control) on this assessment11 one
year after the early algebra intervention ended. In Isler et al. (2017), for example,
we found that experimental students remained more successful in generalizing
functional relationships and representing them in words and variables than did
control students. Experimental students were able to correctly generalize and rep-
resent a functional relationship in words and variable notation at a rate of 48 and
65%, respectively, while control students were able to do so only at a rate of 26 and
41%, respectively. Such results suggest that when students experience a broad,
sustained approach to early algebra instruction, they are better positioned for suc-
cess in algebra in middle grades.

2.5.3 Project LEAP: Examining a Teacher-Led
Grades 3–5 Intervention

Findings from our previous Project LEAP studies, summarized above, have led to a
longitudinal, randomized study in 46 participating schools where we are currently
following a Grade 3 cohort across Grades 3–5 as experimental students receive the
intervention and control students receive their regular instruction. A key difference
in this study was its experimental design (randomized) and the fact that teachers led
the intervention as part of their regular classroom instruction. The utilization of
classroom teachers to lead instruction is a core component of testing the efficacy of
our intervention. It holds unique challenges that lie in the fidelity with which
teachers might implement the sequence across different instructional settings, given
their own varied professional experiences. To increase their fidelity of implemen-
tation, we provided all participating teachers with long-term professional devel-
opment to strengthen their knowledge of algebraic concepts and practices, as well

11It should be noted that the analysis for Grade 6 data was for all items on the assessment (not just
items common with the Grades 3–5 assessments) and that it included new, more difficult items.
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as their understanding of students’ thinking about these concepts and practices and
how to craft classroom discourse that engaged students in dialogue around them.12

Results thus far show that, although there was no significant difference between
experimental and control groups on the Grade 3 algebra assessment given at
pre-test, experimental students significantly outperformed control students
(p < 0.001) in overall performance on this assessment administered at post-test (see
Fig. 2.3). In particular, participation in the intervention was associated with a 13%
increase in post-test score compared to the control group, suggesting that the Grades
3–5 instructional sequence we designed using Kaput’s (2008) conceptual frame-
work shows potential to positively change the way children think algebraically in
elementary grades and their potential for success in middle grades. We note,
however, that improvements in overall performance for Grade 3 experimental
students in this teacher-led study are not as robust as those for our previous
interventions led by our research team (e.g., see Fig. 2.1). One possible explanation
for this difference could be the diverse fidelity with which teachers implemented the
intervention as opposed to the fidelity of implementation for a researcher with
extensive knowledge of and instructional experience with the intervention.

2.5.4 Extending Our Work into Earlier Grades

Ultimately, early algebra is intended to be a focus of mathematics curriculum and
instruction in the US across all of elementary grades, beginning in kindergarten
(NGA & CCSSO 2010). A natural progression of research for us, then, is to
consider how the conceptual framework we applied in our Grades 3–5 work might
translate into earlier grades. We have initiated exploratory, qualitative studies on
this, with the goal of understanding the genesis of algebraic thinking practices in
children’s thinking in Grades K–2. We provide a brief overview of some of our
findings here.

In Blanton et al. (2015a), we provided evidence that Grade 1 (age 6) students
participating in an 8-week classroom teaching experiment that focused on func-
tional thinking could generalize, represent, and reason with (linear) functional
relationships. As reported in that study, we developed a learning trajectory to
describe first-grade participants’ thinking about generalizing functional relation-
ships, analyzing data from children’s pre-, mid-, and post-instruction interviews. In
particular, we identified eight different levels of thinking, ranging from pre-struc-
tural to function-as-object, exhibited by participants as they advanced through the
teaching experiment.

At the pre-structural level, children could not describe or even implicitly use any
kind of mathematical relationship in talking about function data. At the
function-as-object level, some children had progressed to an ability to generalize

12For our analysis of teachers’ fidelity of implementation, see Cassidy et al. (to appear).
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and represent a functional relationship with words and variable notation and reason
with their symbolic rule as an object for exploring novel scenarios. For example, by
the end of the teaching experiment some children were able to generalize a rela-
tionship between the number of cars in a train and the number of stops the train
made, where it was assumed the train picked up two cars at each stop and the
engine (the only “car” on the train before the first stop) was not counted.

One child represented this relationship as R + R = V and described R as rep-
resenting the number of stops and V as representing the number of cars. When
asked how the relationship would change if the engine was counted, she noted that
she would “just add 1” and represented this as +1 + R + R = V. In other words, she
was able to reason with her first function rule as an object in order to solve the new
problem and did not have to reconstruct a new function table and find a new
relationship independently of her original one. In essence, at this advanced level
students who were able to reason in this way no longer viewed the original rule as a
process (Sfard and Linchevski 1994) of operating on numbers but instead were able
to transform a function rule as an object (Cottrill et al. 1996; Gilmore and Inglis
2008). Moreover, children who exhibited thinking at this level understood
boundaries concerning the generality of the relationship and conditions under which
the generalization would not hold.

Elsewhere (Blanton et al. 2017a), we reported on how Grade 1 students par-
ticipating in this study understood variable quantities and variable notation in the
context of functional relationships. Again, as students progressed through the
teaching experiment we found that their thinking advanced from what we charac-
terized as a pre-variable/pre-symbolic level to a letter as representing variable as
mathematical object level. We argue that at the most primitive level, students did
not recognize a variable quantity in a mathematical situation and could not use or
did not accept the use of any symbolic notation to represent such a quantity. As
students progressed through the sequence, some were ultimately able to use variable
notation to represent functional relationships and to reason with these symbolic
rules.

In a related study, Brizuela et al. (2015) illustrate the variety of understandings
about variable and variable notation held by Grade 1 children, including that
(1) variable notation can signify a label or object; (2) variable notation can represent
an indeterminate quantity; (3) quantitative relationships can be expressed through
the ordinal relationships between letters in the alphabet; and (4) the inclusion of
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both letters and numbers in a single equation should be avoided. We also observed
that these children were able to act on a mathematical expression that includes
variable notation as a mathematical object. Our findings illustrate that given the
opportunity, even very young children can use variable notation with understanding
to express relationships between varying quantities. We argue that the early
introduction of variable notation in children’s mathematical experiences can offer
them opportunities to develop familiarity and fluency with this convention. This
raises an interesting question relative to prior research that has documented sec-
ondary school students’ difficulties with variables and variable notation (e.g., Knuth
et al. 2005; Küchemann 1981) and whether such difficulties might be ameliorated
by a sustained introduction to variable and variable notation from the start of formal
schooling.

2.6 Conclusion

Our goal here has been to describe the conceptual framework of our approach to
early algebra, how we are enacting that framework through the design of a cur-
ricular approach to algebra instruction in the elementary grades, and a brief over-
view of some of our findings, reported in detail elsewhere, regarding the impact of
this approach on children’s algebraic thinking. Ultimately, our program of research
aims to outline a curricular approach to teaching and learning algebra across Grades
K–5 that can positively impact students’ readiness for and success in algebra in
middle and high school grades. Collectively, our studies contribute evidence to the
perspective that elementary-aged children can engage in sophisticated practices of
algebraic thinking—generalizing, representing, justifying, and reasoning with
mathematical structure and relationships—across a broad set of core content areas
involving generalized arithmetic; concepts associated with equivalence, expres-
sions, equations, and inequalities; and functional thinking.

We have found that a research-based, comprehensive early algebra intervention
across upper elementary grades (i.e., Grades 3–5) can statistically improve chil-
dren’s algebraic understanding and potentially improve their algebra-readiness for
middle grades. Further, we have found that in lower elementary grades students
exhibit a capacity for algebraic thinking beyond what we had originally hypothe-
sized as possible. Our observations of children’s algebraic thinking have been
perhaps most striking in the early elementary grades (particularly, Grades K–1).
Indeed, prior to our studies, we assumed that children in these early grades might
have even more difficulty with the algebraic concepts with which adolescents so
often struggle—for example, the object–quantity confusion associated with vari-
ables (McNeil et al. 2010) or the difficulty in shifting students’ perspectives away
from recursive thinking towards functional thinking (Cooper and Warren 2011). We
have found instead that, in these early grades, children are far more able to think
algebraically than we anticipated. In our view, providing sustained experiences,
from the start of formal schooling, with the conceptual approach to early algebra
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described here holds promise for ameliorating the deeply held difficulties and lack
of success that students have historically had with high school algebra in the US.
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Chapter 3
New Words and Concepts for Early
Algebra Teaching: Sharing with Teachers
Epistemological Issues in Early Algebra
to Develop Students’ Early Algebraic
Thinking

Nicolina A. Malara and Giancarlo Navarra

Abstract We present the ArAl project, conceived as an integrated system of tea-
cher education and classroom innovation, aiming at renewing the teaching of
arithmetic in an early algebra perspective, guiding pupils towards the discovery of
letters to express generalities. We focus on some theoretical key points (KP) and on
the main language constructs (LC). Through excerpts of class-discussions, we show
the incidence of KP and LC on the progressive construction and refinement of
pupils’ early algebraic thinking. Finally we discuss the difficulties met by teachers
at the K–8 levels when they reflect upon their knowledge, beliefs, attitudes, and
ways of relating with the pupils.

Keywords Early algebra � Algebraic thinking � Algebraic babbling
Metacognitive teaching � Noticing � Professional development of teachers
Linguistic approach to early algebra

3.1 Epistemological Roots of Early Algebra

Early algebra can be considered the result of a long process of teaching innovation,
started in the 1960s after the modern mathematics movement, which rejected the
conception of mathematics as an abstract, static, and isolated discipline in favor of a
dynamic and evolutionary vision of it, rooted in the concrete world and open to
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interactions with different disciplines and contexts. Moreover, a methodological
revolution shifted the attention from the passive learning of mathematical facts
towards problem solving and mathematical discovery.

According to these new visions, there is a widespread awareness of the
importance of investing in studies dedicated to the problems of teaching and
learning, and of improving the culture of teachers to cope with the novelties. As far
as the teaching of algebra is concerned, the first studies were diagnostic, looking for
the most widespread, erroneous performance in students, for example,
Küchemann’s study under the heading of Algebra in Hart (1981). Particularly
meaningful have been Kieran’s surveys (1989, 1992), which clearly show how the
difficulties with algebra are mainly due to the traditional teaching of arithmetic,
teaching that completely disregards relational aspects and the control of meanings
implied by calculation processes. Other studies have concentrated on projects of
curricular innovation. The pioneering work in this area includes the English projects
on the teaching of mathematics in Grades 6–10 (e.g., Bell et al. 1985; Harper 1987),
which promoted an approach to algebra centered, from the very beginning, on
problem solving, generalization, and modeling. In this context it is important to
recall the new perspectives on algebra in the early grades that were proposed at
ICME-5 (in Adelaide in 1984) inside the Working Group (WG) on algebra teaching
and learning (Davis 1985).

In those years, scholars had different opinions regarding the relationship between
arithmetic and algebra in education. Some scholars underlined the epistemological
rupture between the two areas (e.g., Filloy and Rojano 1989; Herscovics and
Linchevski 1994); others looked at them with a perspective of continuity, stressing
their mutual synergies (e.g., Chevallard 1989, 1990). Nevertheless, there was
general agreement on the need to set the foundations of the teaching of arithmetic
within a relational perspective with respect to algebra. The main objectives were:
(a) to overcome stereotypes such as the directional equal sign, or the lack of closure
in arithmetic expressions; (b) to induce a structural vision of arithmetical expres-
sions, detecting equivalences or similarities; and (c) to open the way to general-
ization and modeling for the genesis of the objects of algebra.

The acknowledgement of the importance of these issues was highlighted at the
WG on algebra at ICME-7 (in Quebec City in 1992), where a specific area of
teaching called pre-algebra was identified as a bridge between arithmetic and
algebra. In that context, it was stressed that “Within primary-school arithmetic there
is ample opportunity for the development of algebraic thought” and that “letters
could be used within children’s arithmetic experience in order to facilitate their
understanding of the meaning and significance of letters in later, formal algebra”
(Linchevski 1995, p. 114). At that time, moreover, the activities of syntactic
transformation were no longer seen as isolated, but rather in their relationship with
activities of representation and interpretation: Bell (1996) has spoken of the
essential algebraic cycle, unifying in a whole the triad representing, transforming,
interpreting, and their reciprocal interrelationships. Other scholars (e.g., Arcavi
1994; Arzarello et al. 1993; Boero 2001; Mason 1996) have taken into consider-
ation also the metacognitive dimension, shifting the attention towards the control of
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the properties that legitimate the processes of syntactic transformation and the
activation of anticipatory thinking. This control is seen as the ability to foresee
(without carrying out syntactic transformations) new possible forms of an expres-
sion, by checking its meanings with reference to a given aim, or to hypothesize
formal writings to be reached in order to achieve specific results. Arcavi (1994)
summarizes all these aspects in the symbol sense construct. With reference to
generalization, Mason (1996) maintains that pupils should be led to conquer the
double awareness of seeing the general in the particular and seeing the particular
in the general (p. 21) and, most of all, to become aware of the plurality of cases
contained in a general statement.

In the second half of the 1990s there was a flourishing of studies on these
aspects, mainly targeted at pupils aged 11–13. Some of the studies stood out for
theorizing, within the framework of a linguistic vision of algebra, models of con-
ceptual development of a socio-constructive type (e.g., Da Rocha Falcão 1995;
Meira 1996; Radford 2000). In the USA there was widespread agreement on the
idea that primary school syllabuses should be re-arranged in this perspective for the
social needs of the 21st century (Kaput 1998).

In the international arena scholars have assumed different positions about the
early usage of letters. Carraher and Schliemann (2007) have distinguished two
different lines of thinking, one that focuses on “pre-algebra” as a transition between
arithmetic and algebra and which postpones the use of letters until arithmetical
learning has reached the upper grades, and the other, usually referred to as “early
algebra,” which can include the early introduction of letters to promote relational
thinking and the coordination of different registers of representations. Thus, the
label Early Algebra has been introduced to refer to the initiation towards (a) gen-
eralizations of relationships or properties through the observation of similarities in
various numerical cases, (b) the verbal formulation in general terms of observed
relationships, and (c) the symbolic translation of verbal sentences and the approach
to algebraic reasoning through syntactically guided actions on the formulae
obtained. With the evolution that has taken place with the various studies related to
early algebra, that corpus has been legitimized as a specific subject area by the
international scientific community, as documented by: (a) the many interventions
devoted to this theme at international conferences since the 12th ICMI study “The
future of the teaching and learning of algebra” (Chick et al. 2001); (b) the pro-
duction of specific monographs (Cai et al. 2005; Cai and Knuth 2011; Kaput et al.
2008); and (c) the collective studies on Early Algebra, such as the research forum at
PME 25 (Ainley et al. 2001), the Early Algebra Conference organized by David
Carraher (in Evron, France, in 1998), and more recently the Early Algebra Topic
Study Group at ICME-13 (in Hamburg in 2016). Several of these studies have also
dealt with the problem of suitable teacher education with focused intervention on
professional development (see, e.g., Blanton and Kaput 2003; Carpenter et al. 2003;
Russell et al. 2011).

Our research places itself within this frame and has developed a project for
Grades K-8 (5–14 years of age) called the ArAl Project: paths in arithmetic to favor
pre-algebraic thinking (Malara and Navarra 2003). We used the expression
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‘pre-algebraic thinking’ according to the original meaning of the term ‘pre-algebra’
(as discussed at the ICME-7 WG on algebra). In our view, pre-algebraic thinking
concerns not only the development of relational arithmetic, but also the progressive
construction of the algebraic language and the development of the habits of mind
that will allow pupils to use algebraic language as a tool for thinking. Pre-algebraic
thinking occurs in all the activities aimed at building in pupils an attitude to look for
regularities, relationships, and properties, and to express them first in natural, and
then in algebraic, language. In this way, pupils acquire the experiential ground–
layer to activate the essential algebraic cycle. This view fits with the characteri-
zation of ‘early algebraic thinking’ given by Kieran et al. (2016, p. 10). Then,
(later) algebraic thinking is characterized by students’ achievement of a robust
algebraic understanding (Schoenfeld 2013) that allows them to deal with
non-trivial tasks. Therefore, we can say that early algebra develops pre-algebraic
thinking or that it promotes algebraic thinking. However, to avoid misunder-
standings associated with the term pre-algebra, we will now speak of our approach
as one focused on ‘early algebraic thinking’.

3.2 Early Algebra Within the ArAl Project: The Main Key
Points

The ArAl project proposes a socio-constructive approach to early algebra and is
structured as an integrated system of teacher education that merges early algebra
teaching experiments with teachers’ educational processes based on teachers’
practice. The schools involved are spread throughout all regions of Italy. The
activities are realized within the frame of institutional programs of teacher pro-
fessional development. The practices of sharing and reflecting with teachers on the
classroom transcripts are realized via web (e-mail, Skype, forum, etc.) and in
apposite meetings in the schools or at the university.

The main idea on which the project is based is that the algebraic language can be
learned in analogy with the learning modalities of natural language. In our view, the
algebraic language should be built right from the earliest years of primary school,
having pupils face pre-algebraic activities and the use of letters to codify relationships.
The discussions of comparison of the short sentences they produce—and the constant,
collective reflections on the meanings of each expression—progressively bring them to
master the syntactical rules of the algebraic language. By analogy with a young child’s
babbling when she starts to learn the natural language, we call algebraic babbling this
process of construction/interpretation/refinement of ‘raw’ algebraic sentences. To
better understand the meaning of this construct, it must be considered together with the
other theoretical points of the project that we now present.

In the ArAl project, the image of early algebra is expressed through a set of key
words and concepts that refer both to arithmetic and algebra, but the two disciplines
are seen as evolving towards a different and original identity. We can consider the
combined two disciplines as a meta-discipline, concerning not so much objects,
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processes, and properties of arithmetic and algebra, but rather the genesis of a
unifying language, that is, a meta-language. In order to control the
meta-disciplinary knowledge of early algebra, we bring the teachers to command
the meaning of words and linguistic constructs that represent new conceptions of
intertwining between arithmetic and algebra. Later we discuss some of these terms,
that turn out to be fundamental in order to generate—both in teachers and in pupils
—ways of seeing that are suitable to the development of algebraic thinking. In this
sense we speak of ‘epistemological issues in early algebra.’

In order to facilitate teachers’ acculturation, we have conceived and shared with
them a set of glossaries that concern: theoretical frame, mathematical topics,
methodological-didactic and social issues, and linguistic issues related to the
managing of discussions with the class. The theoretical constructs, made explicit by
suitable keywords, become a cultural patrimony for teachers, who are about to carry
out an authentic Copernican revolution in their being and acting in the class: they
become aware that social interaction, argumentation, and verbalization are key
elements in the construction of knowledge and that a stable acquisition of meanings
happens through activities that emphasize metacognitive and metalinguistic
aspects. We stress that the aim of the project is to prepare metacognitive students. In
order to achieve it, we need to educate metacognitive teachers.

We present now the main key points (KP) underpinning our project:

• KP.1. The socio-constructive aspects of knowledge, which are typical of ‘doing
mathematics,’ nurtured by collective activity in the class. The social construc-
tion of knowledge, that is, the shared construction of new meanings, is nego-
tiated on the basis of the cultural tools and skills available to pupils and
teachers; the contents of arithmetic and algebra are central, they emerge and
condense through the teacher’s orchestration of the individual contributions.

• KP.2. The aspects of generalization and interplay between arithmetic and
algebra, with the shift of attention—in the teaching of arithmetic—from the
procedural point of view to the relational one, the construction of arithmetical
sentences—the recognition of those that are equivalent and their transformation
through the basic arithmetical properties—as well as the approach to letters as a
means to express in general terms observed numerical regularities.

• KP.3. Identifying and making explicit the algebraic thinking often ‘hidden’ in
concepts and representations of arithmetic. The genesis of the generalizing
language can be located in this ‘unveiling’—when a pupil starts to describe a
sentence like 4 � 2 + 1 = 9 no longer (not only) as the result of a procedural
reading, ‘I multiply 4 times 2, add 1 and get 9’, but rather as the outcome of a
relational reading, such as ‘The sum of the double of 4 and 1 is equal to 9’.
Pupils talk about mathematical language using natural language and do not
focus on numbers, but rather on relations and the structure of the sentence.

• KP.4. The central role of natural language as the main didactical mediator within
the slow construction of syntactic and semantic aspects of algebraic language.
Verbalization, argumentation, discussion, and exchange promote understanding and
critical review of ideas. We foster the relational point of view that brings pupils to
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elaborate complete and coherent argumentations, to compare them in their mean-
ings, and to deal with the translation of verbal sentences expressing observed
relationships into formal terms. To motivate pupils to face this task, we have con-
ceived of a character—Brioshi—a Japanese virtual pen friend who loves to
exchange mathematical questions by e-mail and to communicate through mathe-
matical sentences (Malara and Navarra 2001). The mathematical language becomes
a tool for communication. In this process letters are introduced to represent
unknowns or variables, and their meanings are shared by pupils through collective
discussions in class. In the production of representations in algebraic language,
natural language also plays a meta-language role because it allows discussion at a
meta-level of the meanings of the choices made by individual pupils and of the naive
sentences they produce. The progressive mastering of the use of letters throughout
the translation between verbal and formal sentences, which is sharply linked with
interpretative aspects, characterizes the core process of algebraic babbling.

• KP.5. The devolution1 to pupils of the generation/interpretation of formulas and
the progressive construction/refining of algebraic language. This aspect rep-
resents an important moment of condensation in the evolution of algebraic
babbling. The pupils, during a collective exploration of a thought-provoking
task, are guided towards the detection of a rule and the individual phrasing of a
verbal sentence that represents it. This is an important step that facilitates the
pupil’s assumption of the task to translate the sentence into algebraic language
and, vice versa, to interpret a formula in verbal terms. In this way pupils become
producers of genuine mathematical thought, overcoming the role of passive
performers (examples are shown later).

• KP.6. The metacognitive aspects. We promote the shifting from concrete gen-
erative situations to the construction of concepts through reflective activities in
class; for instance, this is done for the purpose of reifying the properties of the
arithmetical operations, but also for becoming aware of their role in counting
strategies. We promote the detection of similarities in figural patterns or
arithmetical/algebraic sentences and the recognition of structural analogies, the
identification and verbalization of the reasons underlying syntactic transfor-
mations of formulas, and the generation and interpretations of new formulas
from the perspective of the development of formal reasoning. We also favor the
interpretation of a given formula in different contexts, so that it can be conceived
as an object representing all its possible interpretations in different words. We
extend the attention to other languages (iconic, graphic, …), bringing pupils to
face questions about the coordination of different types of representation.

1‘Devolution’ is a term introduced by Brousseau (1997) in his Theory of Didactical Situations in
Mathematics (Didactique des Mathématiques 1970–1990). It indicates a process between the
teacher and her students where she, in presenting a problematic situation, brings them to assume
the responsibility to deal with it. The devolution is fulfilled when the students actually accept the
uncertainty implied in this assumption and they take on the commitment.
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• KP.7. Problematizing the activities. In the ArAl project each activity is posed as
an exploratory situation. We illustrate this issue through two episodes.

First episode: The writing 42 + 15 = 11 + 42 emerges in a class; the teacher prob-
lematizes the situation asking the pupils to assess its correctness without calculating,
reasoning on both sides of the equal sign and looking at relationships between the
terms. These are some of the pupils’ justifications drawn from the classroom tran-
scripts: (A) “It is not true that they are equal and I explain it in two ways:
42 + 15 6¼ 11 + 42 and 42 + 15 > 11 + 42”; (B) “42 is in both sides, 15 is
bigger than 11, then 42 + 15 is bigger than 11 + 42”; (C) “I have written the
sentence putting a question mark on the equal sign,2 so Brioshi understands:
42 + (11 + 4) =?= 11 + 42 ! 42 + 11 + 4 − 11 =?= 11 + 42 − 11 ! 42 + 4 =?
= 42 ! 46 6¼ 42”.

Second episode: The core of the well-known ‘pyramid of numbers’ activity is
the ‘mini-pyramid’, that is, two side-by-side bricks upon which there is another
brick. On the visible side of each brick a number is written; the rule is that the
sum of the numbers on the two bricks below is shown on the top brick. A 1st
grade teacher proposes a mini-pyramid where there are: on the top brick 18, on
the left brick 7 and on the right one a spot of ice cream that hides the number.
She assigns the task: “Represent in algebraic language this situation so that
Brioshi can find the number below the spot”. In this formulation the unknown
number is no longer the result to be found, but one of the terms used to express,
in several ways, the relationships between them; that is, 7 + = 18;
18 = 7 + ; + 7 = 18; 18 = + 7; 18 − 7 = ; = 18 − 7;
18 − = 7; 7 = 18 − . Then the coded sentences are interpreted in natural
language and reflections on the relational view of the equal sign are made. In
this way what we call equations for fun, solvable without particular formal
transformations, are generated (we propose them at 1st and 2nd grade).

• KP.8. The algebraic verbal problems, the construction of equations, and their
naïve solutions. The problematization of situations, like the ones described
above, allows an early approach to verbal problems with one unknown and not
immediately solvable. Algebraic verbal problems constitute the topic of the
ArAl Unit 63: From scales to equations, for pupils of 4th–6th grade. It presents a
connected set of teaching episodes, each based on a problem on the use of a pair

2For typing questions, here we have written “=?=”. In our teaching experiments, the teachers put
the question mark on top of the equal sign to stress that they are in front of a hypothetical equality;
the pupils then have to express the reasons that support or refute it.
3The ArAl Units (at the moment there are 12 of them)—supported by the theoretical frame and the
glossary—can be seen as models of teaching pathways for arithmetic in an algebraic perspective.
They are structured in such a way as to make the teaching process transparent in relation to the
problem situation being examined (methodological choices, activated class dynamics, key ele-
ments of the process, extensions, potential behavior of pupils, and difficulties they may encounter).

3 New Words and Concepts for Early Algebra Teaching … 57



of scales, to favor the shift from manipulation of known and unknown weights
to a reflection on the actions made. The representation of the relationships
expressed by the text of the problem leads to the construction of the equation,
and the reflection on the actions made leads to reifying the principles of
equivalence of an equation and to formalizing the steps to solve it. More
recently in 3rd grade we have carried out some teaching experiments involving
additive verbal problems with an unknown datum that can be modeled by an
equation such as 7 + 9 + a = 11 + 12. For solving these problems, we adopt a
strategy we call ‘dynamic scenes,’ based on the use of a short video-clip. In the
first scene, a visualization of the quantities at play and their relationships is
carried out through different strips of paper. In the successive scenes, the
manipulation of strips of paper, strategic cuts, and shifts of the strips are
showed. Interpreting the meaning of the scenes, one arrives at the formalization
of the problem and then discovers the additive cancellation rule and its role in
determining the value of the unknown.

3.3 The Main ArAl Language Constructs

In early algebra, content knowledge is shown by identifying and progressively
refining keywords or phrases and the relationships among them, with the aim to
condense with increasing precision their crucial aspects, refining their clarity and
consistency. In this perspective, some language constructs (LCs) of our theoretical
framework have proven to be fundamental in order to generate among both teachers
and pupils new ways to see arithmetic, suitable to generalization and algebraic
representation. Now we summarize the main constructs and classify them according
to their reciprocal links. Through some excerpts of classroom discussions we show
how, from the beginning of primary school, the introduction of these LCs brings
pupils to progressively reach habits of mind that promote algebraic thinking. We
present three sets of LCs conceived respectively: (a) to foster the shift of attention
from the result to the process; (b) to relate several representations of a natural
number to a relational view of the equal sign; (c) to favor socio-constructive
classroom practices that enhance the role of natural language.

3.3.1 Promoting the Shift of Attention from the Result
to the Process

We analyze three dualities, sharply intertwined, that allow pupils to shift from the
action plane to that of reflection: (LC.1) Representing versus solving, (LC.2)
Process versus product, (LC.3) Transparent versus opaque.
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• LC.1. Representing versus solving. A widespread belief among pupils, favored
by the traditional teaching of arithmetic, is that the solution of a problem
coincides with the identification of the result. This means that their attention is
focused on operations. This prevents the exploration of mental paths that could
generate algebraic thinking. In our case instead, pupils are slowly driven to shift
from the cognitive level to the metacognitive one, where the solver interprets the
structure of the problem and represents it through mathematical language. In this
way the operational point of view is minimized in favor of the relational one.

• LC.2. Process versus product: The previous duality is strictly linked with one of
the most important aspects of the epistemological gap between arithmetic and
algebra: whilst arithmetic requires an immediate search of a solution, algebra
postpones it and begins with a formal trans-positioning from natural language to
a specific system of representation. When a pupil is guided to overcome his/her
worry about the result (the product), he/she reaches a higher level of thinking,
substituting the calculations with the observation of him/herself reasoning,
controlling the structure of the problem (the process).

• LC.3. Transparent versus opaque representation. A representation in mathe-
matical language consists of symbols that communicate meanings whose
understanding depends both on the representation itself and on the ability of
those who interpret them. Let us consider the so-called canonical form of a
number, that is, the symbol related to its name (see later LC.4): we can say that it
is poorer in meaning in comparison to other (non-canonical) representations of
the number. For an extreme example: the non-canonical form 21 � 33 � 52

provides more information on the divisors of 1350 than the canonical form.
Regarding its divisibility, we can speak of the greater opacity of the writing
1350 versus the greater transparency of 21 � 33 � 52. In general, transparency
fosters the understanding of processes, that is, the ways in which a certain
product is obtained; it highlights the strategies adopted, the possible mistakes,
and the misconceptions underlying the solution to that particular problem.

Example 1 (4th grade): It is part of an activity aimed at approaching the dis-
tributive property. The teacher presents the following situation (see Fig. 3.1):
Marina collects red and green marbles and places them inside the boxes as
shown below. Represent the situation in mathematical language so as to find the
number of marbles.

Fig. 3.1 Marina’s boxes of marbles

3 New Words and Concepts for Early Algebra Teaching … 59



The following pupils’ translations are transcribed on the Interactive Whiteboard
(IWB):

ðaÞ 16� 40 ¼ n; ðbÞ 2� 4þ 5� 4; ðcÞ n ¼ 5� 8 n ¼ 2� 8;

ðdÞ 2� 8 ¼ n 5� 8 ¼ n n ¼ 2� 8þ 5� 8; ðeÞ 2� 8þ 5� 8 ¼ n;

ðfÞ ð2� 8Þþ ð5� 8Þ ¼ n; ðgÞ n ¼ ð2� 8Þþ ð5� 8Þ

Melania: The translation (a) is opaque for me.
Teacher: What do you mean?
Bruno: (a) is opaque because they have already found the number of marbles.
Clara: We didn‘t have to find this number, but to write a translation for

Brioshi. They have already solved the problem.
Bruno: It’s true, they didn’t represent the situation. They found the product

and not the process.
Melania: [author of (b)] I forgot something. I wrote 2 � 4 + 5 � 4 because I

saw the separate lines of boxes. Now I realize that my representation
is not complete, I must add � 2. (She writes: 2 � 4 � 2 + 5 �
4 � 2 = n).

Franco: Melania wrote (e), like me, (c) and (f) are equal because 4 � 2 is 8.
Teacher: Now can you choose a translation for Brioshi?

Among the sentences written on the IWB, the pupils choose n = 2 � 8 + 5 � 8.
Later the teacher proposes a new organization of the marbles putting in each box
2 reds and 5 greens, and asks the class to represent the new situation. Among the
sentences, n = (2 + 5) � 8 and n = 7 � 8 show up.

Miriam: What I have written, (2 + 5) � 8, is more transparent; Alessandro’s
writing (n = 7 � 8) is opaque. Opaque means it is not very clear;
transparent means it is clear, you understand the process.

Later in the class, the equality 2 � 8 + 5 � 8 = (2 + 5) � 8 is made explicit,
favoring the recognition of the structural equality of the two sentences. In our
project, activities like this are spread out; they allow the pupils to construct the
experiential undertone for the reification of the distributive property.4 (For more,
see Malara and Navarra 2009).
This transcript shows how the class is familiar with mathematical discussion: the
pupils express good argumentations and draw on important theoretical con-
structs (the dualities opaque/transparent and process/product). They are brought
to compare representations and, reflecting on the employed symbols, they
interpret the sentences and explain their differences.

4The ArAl Unit 11 is devoted to the construction of this property.
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Example 2 (4th grade): The task is: Translate the sentence 3 � b � h into
natural language. The class is comparing Lorenzo’s proposal (I multiply 3 by an
unknown number, then I multiply it also by another unknown number) with
Rita’s (The triple of the product of two unknown numbers).

Lorenzo: Rita has explainedwhat 3 � b � h is, whereas I have saidwhat you do.

Lorenzo evaluates the two translations focusing on the distinction between the
operational and relational aspects related to the duality representing/solving. He
recognizes in his sentence the operational point of view and in Rita’s, the
meaning of the sentence arising from a relational reading of it. The metacog-
nitive control achieved by the pupil is high and it can be seen as a fruit of the
type of teaching received.

3.3.2 Relating the Representations of a Number
to a Relational View of the Equal Sign

• LC.4. Canonical and non-canonical representation of a number. Faced with the
question, “Is 3 � (11 + 7) � 9 a number?”, students or teachers usually
answer: “They are operations”; “It is an expression”; “They are calculations.” In
order to promote reflection on this aspect, we resort to the strategy of tran-
scribing some information about a pupil—son of, friend of, desk mate of, etc.
The class understands that those are different ways to describe the pupil: one is
his/her name, whereas all the other representations expand the knowledge about
him by adding information that the first name does not provide. The teacher then
explains that, similarly, each number can be represented in different ways,
through any expression equivalent to it. For example: 12 is his name, the
so-called canonical form, all the other forms (3 � 4, (2 + 2) � 3, 36 � 3,
10 + 2, 3 � 2 � 2, …) are non-canonical, each of which has a meaning in
relation to the context and the underlying processes that generate them. This
experience leads to the conclusion that 3 � (11 + 7) � 9 is one of the many
non-canonical forms of the number 6. The concept of canonical/non-canonical
form also has crucial implications (for both pupils and teachers) in order to
reflect on the meanings attributed to the equal sign. It becomes a kind of ‘se-
mantic ferry’ towards generalization.

Example 3 (1st grade): The task is: Given the number 8 + 4, the pupils have to
choose equivalent forms from among the following representations: A. 7 + 2; B.
6 + 5 + 2; C. 8 + 3 + 1; D. 9 + 0 + 4; minimizing the calculations.
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Michele: I know it! 8 plus 3 plus 1. You see that 3 plus 1 is the non-canonical
form of 4. (Others confirm.)

Teacher: Have you understood what Michele and others observed? Nicola,
what kind of comparison can you do here?

Nicola: They said that 8 plus 4 is the same as 8 plus 3 plus 1, because 8
remains equal and then, after 3, I put 1 and it still is 4 (he shows the
numbers with his fingers).

Teacher: But what a good pupil! Look now. (She writes on the IWB: 39 + 4,
39 + 3 + 1, 39 + 3 + 2).

The pupils are amazed by such ‘large’ numbers; however,many are able to read them.

Teacher: What number is equal to 39 plus 4? (Many hands go up.) Is it
necessary to make calculations?

Many: No!
Teacher: You have to wise up!
Alexandra: The number is 39 plus 3 plus 1, because 39 is in all three

expressions, 3 plus 1 is equal to the non-canonical form of 4, and 3
plus 2 is the non-canonical form of 5.

This episode shows that since the beginning the pupils are educated to compare
number sentences reflecting on the relationships between their addends. They
learn to compare sentences without calculating their results. The number sen-
tences 39 + 4, 39 + 3 + 1, 39 + 3 + 2 are proposed to favor the transfer
between the two situations and to plant the seeds of relational thinking. These
comparisons provide a foundation for the gradual, smooth transition to algebra
(e.g., a + 4, a + 3 + 1, a + 3 + 2).

• LC.5. Equal sign. To reflect upon the meanings of the equal sign has crucial
implications both for pupils and teacher. In (6 + 11) − 2 = 15, for example,
both often ‘see’ operations on the left side and a result on the right side of the
equal sign. The main idea is: ‘I sum up 6 and 11, then take away 2 and get 15’.
The usual teaching of arithmetic imprints in the pupils a meaning of the equal
sign as a directional operator: it has a space-time characterization. In moving to
algebra the pupils must learn to move around in a conceptual universe where
they have to overcome the familiar space-time characterization: an equality like
2a − 6 = 2(a − 3) has a relational meaning; it states the equivalence between
two representations of the same quantity. A consequence of the received
imprinting is that the request ‘Write down 14 plus 23’ very often in primary
school gets the answer ‘14 + 23 =’ or ‘37’. The equal sign is viewed as an
indicator of a conclusion and expresses the implicit belief that the conclusion
will sooner or later be required by the teacher; ‘14 + 23’ is viewed as an event
waiting for its realization. The pupil is a victim of a lack (or rather a poverty) of
control over meanings. In our approach this misconception is bypassed.
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Example 4 (2nd grade):

Piero: It is correct to say that 5 plus 6 ‘makes’ 11, but you cannot say that 11
‘makes’ 5 plus 6. So it is better to say that 5 plus 6 ‘equals’ 11, because
then the contrary is also true.

Piero’s phrase expresses in a naïve, but convincing, way his relational view of
the sign ‘=’. Piero argues correctly, highlighting the differences in the meanings
of the two sentences: the verbal term ‘equals’ has a symmetric connotation; the
verbal term ‘makes’ does not, it has a directional connotation. Piero’s reflection
shows the metacognitive character of the teaching he receives.

3.3.3 Fostering Socio-constructive Classroom Practices
Enhancing the Role of Natural Language

• LC.6. Algebraic babbling. In the learning of the native language, a child
acquires little by little its meanings and the rules supporting it, gradually
developing to its formal study in school, when he learns to read and reflect on
the structural aspects of language. As we have already sketched, we believe that
the mental models of algebraic thinking should be similarly organized from the
early years of primary school, constructing algebraic language in a dense
interlace with arithmetic, starting from its meanings. For this reason, we create
an environment that stimulates the pupil’s autonomous processing of encodings
of verbal sentences into formulas alongside with their collective comparison
within the class. The appropriation of the new language therefore occurs
experimentally, and its rules mature gradually within a didactic contract that
tolerates initial moments of syntactical inaccuracy. A key aspect in this frame is
to help pupils understand the importance of respecting the rules of algebraic
language. While students soon start interiorizing the importance of respecting
the rules of natural language in order to facilitate communication, it is difficult to
make them develop a similar awareness in relation to algebraic language.
Therefore, it is necessary to help them understand that algebraic language, too,
is a finite set of arbitrary symbols that can be combined according to specific
functional rules to be respected (see points LC.8 and LC.9).

Fig. 3.2 Two examples of
car parking
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Example 5 (5th grade): The teacher poses a story problem concerning the
council approval of several car parks that have to be built along the tree-lined
roads of the town according to the rule ‘two cars between two trees’ (see
Fig. 3.2): Having the car parks to be made with the same pattern but different
number of car spaces, the mayor asks that the approval be summarized in a
formula which expresses, for all the car parks, the number of car spaces
according to the number of trees.
The pupils explore various numerical cases through drawings, collect their data,
analyze them, and arrive at the following rule: ‘The number of car spaces can be
found by multiplying by 2 the number of trees and subtracting 2’. The teacher
begins a discussion to lead the pupils to reformulate the rule in a relational way.

Teacher: Instead of saying ‘multiplying …’ how might we write the rule?
Many: It is equal to.
Teacher: Well, let us rewrite it. ‘The number of car spaces is equal to …’ to

what? We cannot write ‘is equal multiplying’.
Simone: … is equal to ‘the number of trees multiplied by 2’.
Laura: … and then ‘taking away 2’.
Teacher: (writing the sentence) May we say the same thing using instead of

‘multiplied by 2’ a little word …?
Giuseppe: ‘The number of car spaces is equal to the double of the number of

trees minus 2’.
Teacher: (writes the last sentence) Now translate it to send it to the mayor.

Each pupil translates the phrase. Translations are listed on the IWB (t = number
of trees, cs = number of car spaces)

ðaÞ ð2� tÞ � 2 ¼ cs ðbÞ t � 2� 2 ðcÞ ðcs� 2Þ � 2 ðdÞ ð2� tÞð2� 2Þ

The teacher opens the discussion.

Mauro: (c) is wrong, we must multiply the number of trees, not that of parking
spaces.

Renato: I would remove (d), (2 − 2) is not involved.

Two sentences remain: (a) (2 � t) − 2 = cs (b) t � 2 − 2.

Teacher: Do you think it’s really necessary to write ‘cs’, indicating what?
Andrea: I wanted to indicate the car spaces … the number of parking spaces.
Teacher: Do we have to use two letters ‘cs’? You used t to indicate the number

of trees.
Valentina: We can use c alone!
Teacher:
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Do you agree that we use only c to indicate the number of car
spaces? Ok. Now: for you, which is the most correct, (a) or (b)? The
sentence to be translated was: ‘The number of car spaces is equal to
the double of the number of trees minus 2’.

Irene: The sentence (a) is opposite.
Andrea: In (b) the number of car spaces is missing.
Teacher: Let us complete the sentence. (She marks the sentence in parts with

brackets and asks the pupils to translate each part into the
corresponding symbol.)

This leads to the comparison between the verbal and formal sentence:
The number of parking spaces is equal to the double of the number of trees
minus 2

       p               =        2×           t     -    2 
p=2× t -2

The most meaningful pupils’ interventions that characterize the algebraic bab-
bling are: (i) the answer given by many pupils, “it is equal to,” which reflects a
shift towards a relational wording of the rule that had started with the opera-
tional wording, “it can be found multiplying by 2”; (ii) Giuseppe’s adding “the
double of the number of trees,” which is a conceptual and linguistic refinement
in a relational sense of the expression “multiplying by 2”; (iii) the interpretation
of the formulas (c) and (d) by Mauro and Renato and their accurate expression
of the reasons why they are wrong; (iv) the teacher’s question about the usage of
‘cs’ that favors the pupils’ understanding of the opportunity to reduce it to one
letter; (v) Irene’s intervention—where she compares the verbal sentence and its
algebraic translation, observing the different positions of the subject—highlights
her sensitivity towards the structural aspects of a sentence and the coordination
of different representations; and (vi) Andrea’s intervention underlines the sen-
tence incompleteness because the subject does not appear.
For the refinement of the algebraic babbling, a key moment is the collective
comparison of verbal and algebraic formulations of the rule where corre-
sponding parts are underlined. This metacognitive activity allows the pupils to
harmonize syntactic and semantic aspects.

• LC.7. Argumentation. A fundamental aspect in our approach to early algebra is
the recognition of the potential role played by the relationship between argu-
mentation and generalization in the social construction of knowledge. Only
when argumentation becomes a shared cultural tool in the class can this rela-
tionship be made explicit and can students understand the role played by ver-
balization in the development of their capability to reflect on what they are
saying. We could say that the power of argumentation is related to the fact that
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often those who start developing it are not completely aware of their ideas
before they try to express them. As argumentation becomes a habit, the student
understands its value and becomes aware of its role in comparing facts and in
making their similarities gradually emerge.
Example 6 (6th grade): The class is working to find a rule that gives the number
of black triangles according to the numerical position of a Fig. 3.3.

Ylenia: On the line where the pyramids lie… for example, in the fourth pyramid
the black triangles are four and the white are three… my pyramid of six
floors has six black triangles and five white triangles on its base… The
white (triangles) are always one less than the black ones. Maybe a
pyramid with any number of floors has a number of black triangles on
its base which is equal to the number of floors and as many white
triangles as the black ones minus one.

The teacher writes the following comment in her transcript: “Before her inter-
vention, Ylenia wasn’t aware of her conclusions but, as she was verbalizing, she
started deducing and expressing the general rule”.
This episode shows how pupils’ implicit algebraic reasoning and generalizing
emerge when argumentation and justification are central to teaching.

• LC.8. Syntax and Semantics. Control of the syntactical aspects of a new lan-
guage occurs through its semantic control. In the traditional learning of math-
ematics, formulas are generally ‘given’ to pupils, thus losing their social value;
it is necessary to lead them to understand that they are appropriating a new
language that develops according to precise syntactical rules. As we sketched
above, to highlight the value of mathematical language for communication, we
invite teachers to propose an exchange of messages in formal language with
either real or virtual correspondents (pupils, classes, teachers, Brioshi) engaged
in the solution of the same problem. The collective comparison of formal sen-
tences produced by the pupils and their interpretative analysis allow pupils to
learn that algebraic language also has a syntax (which enables them to detect
whether a sentence is correctly expressed or not) and a semantics (which enables
them to detect whether it is true or false). So pupils acquire competencies in
interpreting formulas and begin to conceive of the translation between these
languages as the core of algebraic activity. Notwithstanding that natural lan-
guage is systematically used in doing mathematics, it is necessary that pupils

Fig. 3.3 The first four
pyramids
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understand that algebraic language possesses a specific character, which creates
an element of rupture with natural language. In our project the pupils are led to
discuss these differences while becoming aware of the possible referents of
mathematical terms and symbols. We offer two examples.
Example 7 (7th grade): Thomas represents the relationship between two vari-
ables as follows: a = b + 1 � 4 and explains his writing.

Thomas: The number of oranges, a, is quadruple the number of apples, b, plus
1.

Katia: It’s not correct, because this would mean that the number of oranges
is the number of apples plus 4. You have to put the brackets:
a = (b + 1) � 4.

Thomas and Katia exchange their views on their translations between natural
and algebraic language, and on the semantic and syntactic aspects of mathe-
matical writing. Katia intervenes at a metacognitive level and her argumentation
is very articulated: she detects Thomas’s syntactical mistake and correctly
translates the verbal sentence. This episode shows how a metacognitive and
socio-constructive teaching allows the pupils to assume an appropriate attitude
for both early algebraic thinking and arguing.

Example 8 (5th grade): The class is given the task to represent in mathematical
language the statement, The double of the sum of 5 and its successive number.
As soon as the pupils’ proposals are written on the IWB, Diana steps into justify
her writing.

Diana: Filippo has written 2 � (5 + 6), and it is correct. But I have written
2 � (5 + 5 + 1) because this way it is more evident that the number
following 5 is bigger by a unit.

Diana is explaining how her translation is clearer and more transparent because
it considers the functional relationship between a number and its successor.
Diana recognizes the syntactic correctness of Filippo’s sentence, but considers it
opaque: it does not make explicit the relationship between the addends. This
episode shows that Diana has acquired either early algebra linguistic constructs
or the attitude to make explicit all the relationships in play.
All these examples show that the teaching we promote generates not only an
early algebraic thinking but also a wide range of linguistic, logical, and
metacognitive abilities related to generalization, argumentation, and justification.
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3.4 Teachers and Early Algebra: The Multicommented
Transcripts Methodology

The early algebra approach requires a deep change of perspective in teachers. Their
main difficulties concern the revision of their mathematical knowledge and beliefs
that condition their teaching actions. They should learn to manage
socio-constructive processes in the classroom, drawing on appropriate theoretical
frameworks, comparing them to their own epistemology,5 thus fruitfully and sig-
nificantly enriching both culture and work in the classroom. The coordination of a
mathematical discussion requires methodological skills that go beyond mere dis-
ciplinary competence. Teachers should foresee the development of classroom
actions and form hypotheses about pupils’ conceptual constructs and possible
strategies to help them modify such constructs. From a social point of view, they
should be able to create a good interactional environment, stimulating participation
and mutual listening, avoiding judgment and leading the class to validate the
arguments, and asking questions at a metacognitive level so that pupils can inter-
nalize the processes carried out.

In order to develop these skills—in tune with other scholars (e.g., Jaworski
2004; Mason 2002, 2008; Potari 2013; Schoenfeld 2013; Sowder 2007; Thames
and Van Zoest 2013)—we enact educational processes with/for teachers that
combine theoretical study, self-observation, and shared critical reflections on their
practice. The glossaries allow the teachers to gradually attain a global vision of
early algebra. As to teachers’ ability to interpret signals when they are in the
classroom, improvement can be obtained through the increasing awareness with
which they learn to transform the recurring occasional observations and reflections
into a personal methodology. The latter should result from the interlacing of
observational skills, motivation to action, and knowledge of how it would be
appropriate to intervene. Our aim is that teachers approaching early algebra become
trainers of their own development, gradually sharing their experiences to generate a
new forma mentis, that becomes a firm base for their autonomous development. Our
hypothesis is that a fruitful exchange between theory and praxis can make teachers’
competence evolve in two directions: first, in recognizing signals that their role is at
stake either on the spot or in the organization of their theoretical tools; secondly, in
processing the received signals so as to convert them into their own cultural
patrimony.

Regarding the teaching methodology, we believe that observation and
critical-reflective study of socio-constructive classroom processes are necessary
conditions to foster teachers’ development of awareness about the roles they must
play in the class, the dynamics that characterize the mathematical collective con-
struction, and the variables involved (Cusi and Malara 2015). In the perspective of
constituting a community of inquiry, the teachers are organized into groups

5This term unifies a set of teacher’s characteristics, such as knowledge, beliefs, orientations, goals,
and ways of being inside the classroom.
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according to the topics they are working on, and each group is coordinated by a
researcher-mentor, who often goes into the classrooms to support the teachers’
actions and frequently has face-to-face and web exchanges with them (Skype,
e-mail). Periodically, work-sessions are held by the project leader and also joint
meetings with all the teachers and mentors involved in the studies. A crucial aim of
the teachers’ educational process lies in leading them to perceive on which aspects
they should concentrate and helping them understand how to intervene. Therefore
we encourage the teachers involved in ArAl teaching experiments to observe their
pupils’ activity according to some key principles, as suggested by other scholars
(e.g., Llinares et al. 2016): attending to childrens’ utterances and strategies, inter-
preting them and appropriately deciding when to intervene to support them, but also
observing the effectiveness of their actions (ways of listening, speaking, acting,
reacting,…). One important method through which we try to promote these attitudes
is the construction of what we call Multicommented Transcripts (MTs), which
develops in various steps: the teachers transcribe meaningful classroom episodes,
send them by e-mail with their own comments to the mentor who makes his/her own
comments, and then the mentor sends them back to the authors and other members of
the team who can add further comments. So the MTs become important objects for
the education of the teachers (Malara 2008), leading them to critically analyze their
didactic interventions through the ‘theoretical glasses’ acquired in the project.

The comments in MTs highlight not only the positive aspects, but also often
erroneous beliefs and behaviors. Frequently, they underline that teachers need to
have better control of linguistic operative terms (calculate, solve, find the result, it
gives…), as well as that of algebraic terms (connect, translate, represent, interpret),
the absence of which inhibit the development of a relational view in arithmetic.
Furthermore, the comments give suggestions on how to guide the translation from
natural to symbolic language, and vice versa. Particular care is devoted to helping
teachers reflect on their actions in the face of ‘false discussions,’ that is, dialogues
between teacher and only a few pupils where she rhetorically suggests the answers.
Another weakness to be signaled would be closing the discussion through questions
such as: “Is everything clear?” “Do you understand?” “Do you agree?”, and not
allowing pupils to re-examine the situation or not checking whether the conclusion
has been effectively reached. Usually in the comments the project leader or mentors
recommend that pupils be educated to argue thoroughly and coherently, with an
appropriate use of language, underlining that the comprehension of mathematics
occurs also through its collective and correct use. Moreover, they suggest that
teachers promote a peer-dialogue interaction and limit their role as much as pos-
sible, stimulating questions in the classroom and drawing back during the answer
phase: if the teacher is the constant pivot of the discussion, the social aspects of
knowledge construction are weakened (for more on these aspects, see Cusi et al.
2011; Cusi and Malara 2015; Malara and Navarra 2011, 2016).

The fruits of this methodology, and in particular of the joint reflection on the
MTs, strongly influence the development of the theoretical, methodological, and
instrumental aspects of our project. In fact, meaningful excerpts of MTs become
part of ArAl Units and are discussed in reports or transformed into learning objects
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(Malara and Navarra in press). In this way they become educational tools for early
algebra, offering teachers the possibility to develop the capability and sensitivity to
act differently in the classroom (see Fig. 3.4).

In this cycle, the teachers learn to manage the socio-cognitive processes, com-
paring their epistemology about teaching arithmetic and algebra with the reference
frames that they are offered and gradually internalizing the outcomes of the process,
so as to consolidate them as a steady cultural patrimony about early algebra.
Particularly effective are the occasions (meetings at school, university, the sharing
via web of MTs among teachers) where collective debates develop on the classroom
actions of teachers dealing with the same activity. Through these cross compar-
isons, the actions of one teacher can become a model of good practice for his/her
colleagues. The following example offers a good model of a teacher’s interactions
while leading a discussion.

Example 9 (4th grade): Question: What is the color of the 27th pearl in this
sequence (see Fig. 3.5)?

Students propose the following expressions:

ðaÞ 9� 3 ¼ 27; ðbÞ 6� 4� 1 ¼ 27; ðcÞ 27� 6 ¼ 4 rest 3 ðdÞ 6� 4þ 3 ¼ 27

The teacher starts the discussion.

Samuele: In my opinion Brioshi doesn’t understand (a) because he does not
know what are 9 and 3, and (b) because 6 � 4 − 1 is not equal to 27
but to 23.

Francesco: It’s true, I got confused. I counted 3 white pearls and 3 black ones
until I got to 27.

Giovanni: The module is formed by 6 pearls, 3 white and 3 black. You were
wrong. The 27th pearl is the 3rd white of the 5th module because 27,
which is the number we have to find, divided by 6, is equal to 4 with
remainder 3. We need to look at the remainder to establish the 27th
pearl.

Classroom activity

Development of theoretical framework,
methodologies, materials

Joint reflection among teachers, mentors and 
mathematics educators

leads to

leads to

influences

Fig. 3.4 The cycle of the mathematics education of the teachers

Fig. 3.5 The sequence of
pearls
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Mattia: In my opinion they’re both right, because the remainder 3 means that
the 5th module started on. (d) is more correct than Giovanni’s (c).

Teacher: Do you understand what Mattia said?
Giuliana: Emanuele (d) used the same numbers as Giovanni (c), but wrote a

multiplication and an addition: 6 � 4 + 3 = 27.
Teacher: Who wants to explain better?
Giovanni: 6 is the number of pearls of the module, 4 is the number of times that

the module is repeated, and 3 is the number that I must add to 24,
which is the product of 6 by 4 to get to 27.

Marta: I understand: 6 is the divisor, 4 is the quotient, 3 is the remainder and
27 is the dividend. Emanuele used the same numbers in the division as
Giovanni.

The pupils shift from the operative plane to the relational one and learn to
appreciate the role of the Euclidean representation of the division. The episode
shows how the effectiveness of the teacher’s actions—paradoxically—consists in
her marginality in the discussion: she limits herself to follow and carefully observe
the development of the pupils’ argumentations; she avoids giving indications or
answers, but poses on the spot reflective questions. She induces virtuous behaviors
in the pupils: they are encouraged to deepen or rephrase their argumentations and to
intervene so as to clarify some claims of their classmates. Very often the MTs show
instead how teachers have difficulty in promoting collective discussions with the
result that the classroom interactions shrink into short fragmented dialogues
between the teacher and the pupils.

In the long run, the MTs allow for ascertaining whether the classroom-leading
strategies have changed, and how, during the training. Indications of the effec-
tiveness of the training and of the teacher’s professional growth are provided by the
answers to the following questions: Does he/she modify his/her initial points of
view or does he/she seem unaware of meaningful changes in his/her initial attitude?
Is the teacher able to assume the appropriate roles in order to promote reflection on
mathematical processes or objects? Does he/she foster linguistic interactions by
encouraging verbalization, argumentation, and collective discussion? Does he/she
negotiate and share with the pupils the ArAl theoretical framework? (on these
aspects, see Malara and Navarra 2016).

Regarding the last point, we stress that a real and potentially effective sharing of
the ArAl theoretical frame with the pupils occurs only if the teacher constantly
communicates with the class by using the LCs. However, it is not sufficient to use
such terms: the analysis of the MTs shows that teachers often forget to make sure
that pupils also use them with a conscious control of the conceptual meanings that
they condense. The consequence is ambiguity: the teacher uses them; the pupils
seem to understand them, but actually don’t use them during the discussions. The
teacher doesn’t notice it and goes along without checking whether the pupils
acquire and use the terms with an authentically shared meaning.

The teacher should therefore not only get acquainted with the meaning of the LCs
with the aim of stabilizing, conceptualizing, and mastering the meta-disciplinary
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knowledge of early algebra, but also improve and refine their use in a constant
negotiation with the pupils. The acquisition of the key words of the discipline should
be achieved through patient teacher-pupils cooperation, during which not only are
the terms themselves important, but also the relationships that connect them.

In order to allow the terminology to settle in and improve, it is however nec-
essary that the mathematical discussions be effective, that they promote commu-
nication and the sharing of meanings, and that they favor a thorough comparison
among the sentences, expressed both in natural and in symbolic language. In other
words: a stimulating discussion promotes the use of an advanced terminology,
whereas an exchange of short sentences and word phrases generates poor termi-
nology and syntactically mediocre or incomplete sentences, because the pupils
delegate to the teacher the task of organizing the whole discourse. This completely
blocks the functioning of the devolution, while the teacher gives up his role of
guiding the pupils towards assuming their responsibility for the construction of their
own knowledge. Let us consider an example. It concerns the interpretation of three
formal sentences related to the same problematic situation. The pupils have to
choose the correct one and justify the reasons for their choice.

Example 10 (5th grade):
In a pet store showcase there are 11 puppies. Some are visible, others not,

because they are inside the house (see Fig. 3.6). Which of the following phrases
represents this situation correctly?

hA: d ¼ 11þ 7 hB: 7þ d ¼ 11 hC: 11 ¼ d � 7

The pupils write their explanations, which are then copied on the IWB and
discussed.

Besmala: B tells you that the 7 puppies together with the ones inside are 11
overall.

Martina: I chose B because it is more transparent.
Daniele: B, because it summed all the dogs and gives a result of 11. A is wrong

because the task wants us to find the suitable non-canonical form to find
11. C is not the answer, because if you do d minus 7 you cannot obtain
11, because we have to sum up all the dogs.

Fig. 3.6 The problem of the
pet store
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Clark: B is correct, because 7 plus d, which is the small house, corresponds to
11.

Sofia: Representation B is the right one, because the puppies are 11
altogether, that is the sum of the visible ones and of the ones that are
in the small house.

The teacher considers the pupils’ explanations, reported above, to be correct
since they favor phrase B (the correct answer); so she doesn’t analyze them in
detail. This excerpt shows how a teacher can miss precious opportunities to test and
consolidate important skills from an early algebra perspective. We stress the
importance of taking care not only of formalization, but also of interpretation, based
on a constant activity of relational reading of the formulas. The pupils resort to
terms such as ‘representation,’ ‘transparent,’ and ‘canonical form’; however, the
teacher doesn’t express the necessary sensitivity towards what their arguments
express or their level of awareness in using such terms.

Besmala could be invited to reformulate her sentence in a relational sense, for
example: “The sum between the number of the outside puppies and of the inside
puppies is equal to their overall number.” It would have then become evident that it
is the translation of 7 + d = 11.

It would be important to understand which meaning Martina gives to the concept
of transparent: it seems closer to ‘comprehensible,’ that is, that the sentence can
also be seen from a traditional point of view, based on operations (left of the equal
sign) and result (on the right). Reflecting on the meaning of a term would allow for
scrutinizing important conceptual aspects, as well as the meaning of the equal sign
—thus favoring the shift from an operational to a relational perspective.

Not only does the teacher accept Daniele’s and Sofia’s statements about sum-
ming ‘animals’ and not ‘numbers of animals,’ but she doesn’t even notice that
Daniele’s three justifications are cues to his operational viewpoint: “[B] ‘gives a
result’ of 11,” “the task wants us to find the suitable non-canonical form ‘to find’
11,” and “if you do C minus 7 you cannot ‘obtain’ 11”. When Daniele speaks of
‘canonical form,’ he actually thinks of the operation that allows him to ‘find 11’.
Therefore, instead of fostering the pupils’ relational view among the entities at play,
the teacher allows (without noticing it) a hidden operational attitude.

Clark could be invited to reconsider his sentence; a frequent error of inexperi-
enced pupils facing letters in algebra consists in associating them with the initial of
the name of the object, not to the number of objects that it represents.

This analysis provides evidence that, even if a teacher actively takes part in a
co-learning environment, it is not always easy for him/her to react appropriately to
support/refine children’s mathematical thinking. As documented in many of our
research studies, the conquest of these capabilities requires a long time, an inten-
tional self-monitoring on the part of the teachers, and a constant sharing of their
own practices in the realm of teacher education programs focused on the critical
analysis of such practice (see, for instance, Cusi et al. 2011; Cusi and Malara 2015;
Malara and Navarra 2011, 2016).
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3.5 Concluding Remarks

Leading 5- to 14-year-old pupils to approach early algebra essentially means
leading them—through purposely-created problematic situations addressed in a
socio-constructive way—towards a new language, with its semantics and syntax.
Therefore, respecting its rules becomes essential for treating activities such as
translating, arguing, interpreting, predicting, and communicating as mathematical
activities. Carrying out calculations is still present, but is subordinated to ‘higher’
purposes: it is the groundwork for reasoning, argumentations, refutations, and
corrections. As soon as the algebra that pupils deal with grows in complexity, they
will be led to understand that the manipulation of symbolic forms is not
self-referential, such understanding helping them mathematize, explore, reason,
deduce, and achieve new knowledge.

What we have described shows educational aspects that we believe should be
constantly developed in pupils, since these aspects support the growth of their
algebraic thinking, promoting metalinguistic and metacognitive competencies, and
consequently reflection on: (1) language, which promotes abilities to construct
argumentations, to translate natural language into algebraic language, and to pro-
duce original thought; (2) the relationship between individual intuitions or pro-
ductions and the social construction of shared knowledge; (3) passing from
concrete generative situations to the conceptual condensation of the underlying
mathematical facts and to the construction of the related concepts; and (4) some
basic mathematical aspects, such as the evolution of counting strategies and the
progressive recognition of the structural equivalence between sentences or, in the
case of unknown and variable data, the generation of equations and functions.

Our report in this chapter should make clear that pupils can develop algebraic
thinking as long as they are taught as metacognitive students. But in order to
achieve this goal, it is necessary that teachers, in turn, learn to be metacognitive
teachers. To promote metacognition in teachers we have conceived tools and
enacted strategies involving them in a strict intertwining of reflections upon the
knowledge in question (theory) and action in the classroom (practice). Our expe-
rience and our research studies have made us aware that changing teaching towards
the perspective of early algebra requires a conversion of the teachers’ profession-
alism: this is a slow process that must be supported through appropriate develop-
mental programs.

Working in an early algebraic perspective means, for teachers, to become aware
of the fact that arithmetic and algebra must be considered as interlaced disciplines
right from the very beginning of primary school. In order to keep this perspective
alive in classroom activity, teachers must improve their sensitivity to recognize the
continuous micro-situations in which it is possible to contrast/compare the pupils’
(and one’s own) operational point of view to the relational one. We believe that on
this basis pupils can experience, from the first school years, a conscious approach to
algebraic language and thinking and, in general, a positive attitude towards math-
ematics. Our research shows that, in order to help pupils reach this goal and
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gradually and consciously build mathematical skills, it is necessary for pupils and
teachers to share the specific terms of the theoretical frame for early algebra, using
them constantly when they discuss, reflecting on their meaning, and letting their
connections emerge.
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Chapter 4
Seeking, Using, and Expressing Structure
in Numbers and Numerical Operations:
A Fundamental Path to Developing Early
Algebraic Thinking

Carolyn Kieran

Abstract The dominant focus on generalizing in the development of algebraic
thinking has to a large extent obscured the process of seeing structure. While
generalization-oriented activity remains highly important in algebra and early
algebra, and in fact includes a structural component, equal attention needs to be
paid to the complementary process of looking through mathematical objects and to
decomposing and recomposing them in various structural ways. With the aim of
instigating greater attention to structure and elaborating more widely on its meaning
with respect to developing early algebraic thinking, this chapter explores the notion
of structure and structural activity from various perspectives, and then presents a
research-based example of 12-year-olds seeking structure within an activity
involving factors, multiples, and divisors.

Keywords Structure � Early algebraic thinking � Properties � Structural
equivalence � Number and numerical operations � Multiplication and division

4.1 Introduction

High school algebra involves working with generalized forms. The ability to see
structure in these forms is crucial to being successful in algebraic transformational
activity and to making sense of those transformations. While generalization has
long been considered the heart of school algebra (e.g., Kaput 2008; Mason 1996),
this focus on the process of generalizing has to a large extent obscured the process
of seeing structure, even if generalizing does includes a structural component.
While imbuing algebraic and early algebraic activity with generalization-oriented
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tasks remains a highly important aspect in developing students’ algebraic thinking,
equal attention needs to be paid to the complementary process of looking through
mathematical objects, such as the expression x6 − 1 or the number 989, and to
decomposing and recomposing them in various structural ways (e.g., seeing that
x6 − 1 can be decomposed into (x3)2 − 1 or into (x2)3 − 1 and factored accord-
ingly, or seeing that 989 can be decomposed into, for example, the structural
expressions 9 � 109 + 8 or 9 � 110 − 1, or even 9 � 102 + 8 � 101 +
9 � 100). As the latter example suggests with its decomposition of 989 in terms of
the division algorithm theorem, or according to place-value, as well as any number
of other structural decompositions, attention to looking through mathematical
objects at the primary and lower middle school levels means developing awareness
of the possible and various ways of structuring number and the numerical opera-
tions of arithmetic. However, “students’ experiences in learning arithmetic only
rarely foster an appreciation of structure” (Arcavi et al. 2017, p. 53). Similarly,
Mason (2016) has argued that looking at something structurally is an
often-overlooked aspect of algebraic thinking. This chapter explores the notion of
structure and structural activity from various mathematical, theoretical, and
empirical perspectives, and then presents a research-based example of 12-year-old
students seeking, using, and expressing structure within a selected domain of
arithmetic activity, namely that involving multiplication, division, factors, multi-
ples, and divisors.

4.2 Viewing Structure from Various Perspectives

Structure is without doubt one of the big ideas of mathematics (e.g., Kuntze et al.
2011; Mason et al. 2009) and is to be found everywhere in mathematics. A relevant
example is drawn from Blanton and Kaput’s (2004, p. 142) definition of algebraic
thinking where they emphasize the foundational notion of structure: “[algebraic
thinking is] a habit of mind that permeates all of mathematics and that involves
students’ capacity to build, justify, and express conjectures about mathematical
structure and relationships.” However, structure is often treated within the math-
ematics education community as if it were tantamount to an undefined term; it is
further assumed that there is universal agreement on its meaning (Mason et al.
2010). That this may be problematic, in particular for mathematical teaching
practice and research in early algebra with 5- to 12-year-olds, became obvious at the
Early Algebra Topic Study Group at ICME-13 in Hamburg in July 2016 when one
of the participants asked the others what they meant when they used the term
structure. As participants attempted to express the notion of structure relative to the
various content areas of early algebra, their responses suggested some uncertainty
and a tendency to focus rather narrowly on the basic properties of arithmetic. With
the aim of instigating greater attention to structure and elaborating more widely on
its meaning with respect to the development of early algebraic thinking, this first
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section of this chapter examines and pulls together various perspectives on struc-
ture. It addresses structure and generalization, structure in numbers and numerical
operations, and structure in figural patterns and functions.

4.2.1 Structure and Generalization

For Blanton et al. (2011), and in line with Kaput (2008), the essence of early
algebra lies in generalizing mathematical ideas, representing and justifying gener-
alizations in multiple ways, and reasoning with generalizations. They define gen-
eralizing as follows:

Generalizing is the process by which we identify structure and relationships in mathe-
matical situations. … It can refer to identifying relationships between quantities that vary in
relation to each other. It can also mean lifting out and expressing arithmetic structure in
operations on the basis of repeated, regular observations of how these operations behave.
(p. 9)

This characterization of generalizing links it closely with the processes of
“identifying, lifting out, and expressing arithmetic structure.” In other words,
generalizing in arithmetic involves identifying the structural.

And, conversely, the structural involves identifying the general, according to
Mason et al. (2009):

We take mathematical structure to mean the identification of general properties which are
instantiated in particular situations as relationships between elements; these elements can be
mathematical objects like numbers and triangles, sets with functions between them, rela-
tions on sets, even relations between relations in an ongoing hierarchy. Usually it is helpful
to think of structure in terms of an agreed list of properties which are taken as axioms and
from which other properties can be deduced. … When a relationship is seen as instantiation
of a property, the relation becomes (part of) a structure. (p. 10)

For Mason et al. (2009), attending to properties lies at the core of structural
thinking, the latter of which they define as a disposition to use, explicate, and
connect these properties in one’s mathematical thinking. If a relationship between
two or more objects is not seen as exemplifying some general property, then that
relationship is not in itself related to structural thinking. Further, they assert that:

Structural appreciation lies in the sense of generality, which in turn is based on basic
properties of arithmetic such as commutativity, associativity, distributivity and the prop-
erties of the additive and multiplicative identities 0 and 1, together with the understanding
that addition and subtraction are inverses of each other, as are multiplication and division.
(p. 15)

In this intertwining of the structural and the general, one is led to ask whether
discussion of the structural aspects of the various activities that are engaged in
within early algebra and which aim at developing algebraic thinking in 5- to
12-year-olds could benefit from being expanded beyond the basic properties of
arithmetic. What are some of the other structural properties that could be said to be
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included in activity involving numbers and numerical operations? Does the dis-
cussion need to be broadened even more when referring to structuring activity
involving figural patterns—one of the most widespread approaches to developing
algebraic thinking in early algebra? Is the notion of structure the same across the
various content domains of early algebra (for these content domains, see Kieran
et al. 2016, p. 10)? With these questions in mind, we move next to exploring the
notion of structure in numbers and numerical operations, and follow this with
exploring the notion of structure in figural-patterning and function-oriented activity.

4.2.2 Structure in Numbers and Numerical Operations

For basic notions on structure in mathematics and the activity of structuring in
arithmetic, we turn first to Freudenthal (1991). He points out that the system of
whole numbers constitutes an order structure where addition can be derived from
the order in the structure, such that for each pair of numbers a third, its sum, can be
assigned. The relations of this system are of the form a + b = c, which one calls an
addition structure. In his book, Didactical Phenomenology of Mathematical
Structures, Freudenthal (1983, pp. 112–113) describes the multiplicative structure
of the natural numbers in terms that comprise more than the act of multiplying. It is
the whole complex of relations a � b = c, possibly also expressed as c/b = a, and
complemented by a � b � c = d, a � b = d/c, and all other relations one would
like to consider in this context. It encompasses such properties as commutativity,
associativity, distributivity, equivalence of a � b = c and c/b = a, and many more
properties of this kind. But, according to Freudenthal, the structure of the natural
numbers also allows for prescribing c in the relation a � b = c and asking for its
splittings into two factors. Freudenthal asserts further that c can be split into its
prime factors, with divisors and multiples being other means of structuring. As well,
tying the order structure to the multiplicative structure yields the property that,
given the product, increasing one factor means decreasing the other.

It is of interest that in Freudenthal’s discussion of structure there is not just one
all-encompassing structure. He refers, for example, to order structure, additive
structure, multiplicative structure, structure according to divisors, structure
according to multiples, and so on. And these different but related structures have
properties—in fact, many properties based on these structures, not simply the basic
properties of arithmetic that are often referred to as the field properties. We notice
too that Freudenthal also uses the phrasing, means of structuring, which puts for-
ward the notion of alternative structurings that can be deduced from the basic
structures. Freudenthal’s perspective serves to broaden considerably the dimensions
of any discussion related to characterizing structures and structuring activity within
the mathematics of arithmetic and where the development of algebraic thinking is a
goal.

Structures and structuring activity have naturally enough been a preoccupation
of past research in school algebra and algebra learning (e.g., Kieran 1989, 2006a;
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Warren et al. 2016). Certain aspects of this research are applicable to the present
aim of enlarging the discussion of structures and structural activity in number and
the numerical operations of arithmetic. In their research on structure, Hoch and
Dreyfus (2004) define algebraic structure as follows:

Any algebraic expression or sentence represents an algebraic structure. The external
appearance or shape reveals, or if necessary can be transformed to reveal, an internal order.
The internal order is determined by the relationships between the quantities and operations
that are the component parts of the structure. (p. 50)

One of the examples they provide is the expression 30x2 − 28x + 6 that students
come to see as having a quadratic structure, which in turn allows it to be trans-
formed into an equivalent factorized expression involving two linear terms. Their
definition alerts us to the aspect of internal order, as well as to its possible structural
decompositions. Warren (2003), in a paper on the role of arithmetic structure in the
transition from arithmetic to algebra, and in line with earlier research of Morris
(1999), similarly contends that knowledge of mathematical structure is knowledge
about mathematical objects and the relationship between the objects and the
properties of those objects. She states that:

Mathematical structure is concerned with the (i) relationships between quantities (for
example, are the quantities equivalent, is one less than or greater than the other); (ii) group
properties of operations (for example, is the operation associative and/or commutative, do
inverses and identities exist); (iii) relationships between the operations (for example, does
one operation distribute over the other); and (iv) relationships across the quantities (for
example, transitivity of equality and inequality). (Warren 2003, p. 123)

In addition to the field properties, we note that Warren includes mention of
equivalence and equality properties as well as order properties.

From the research that has documented difficulties experienced by beginning
algebra students with recognizing structure in algebraic expressions and equations,
we obtain further insights for an enlarged perspective on structure (for overviews of
this research, see Kieran 1992, 2007; for an alternative point of view on structure,
see Kirshner 2001). Linchevski and Livneh (1999), who coined the phrase
“structure sense,” maintain that students’ difficulties with algebraic structure are in
part due to their lack of understanding of structural notions in arithmetic. These
researchers thereupon insist that instruction be designed to foster the development
of structure sense by providing experience with equivalent structures of expressions
(“equivalent structures of expressions” being sometimes referred to—in, e.g.,
Mason et al. 1985—as “equivalent expressions” or equivalent “forms”) and with
their decomposition and recomposition. Hoch and Dreyfus (2005, 2006) have also
reported that very few of the secondary-level students they observed had a sense of
algebraic structure, that is, very few could: “(i) recognize a familiar structure in its
simplest form, (ii) deal with a compound term as a single entity and through an
appropriate substitution recognize a familiar structure in a more complex form, and
(iii) choose appropriate manipulations to make best use of structure” (2006, p. 306).
Demby (1997) too found that algebra students were poor at identifying structure, in
particular, the properties they use when they transform algebraic expressions—
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despite having been taught how to use these properties. Thus, these algebra
researchers suggest that improving attention to structure with younger students
needs to go beyond focusing on the basic properties and should include experience
with equivalence of compound and simple forms, that is, with equivalence
expressed through decomposition, recomposition, and substitution, as well as with
recognizing equivalence to familiar structures.

Some of these recommendations have been further unpacked in various pro-
posals related to the development of algebraic thinking within arithmetic. For
example, Ellemor-Collins and Wright (2009, p. 53) claim that structuring numbers
means “organising numbers more formally: establishing regularities in numbers,
relating numbers to other numbers, and constructing symmetries and patterns in
numbers.” For Subramaniam and Banerjee (2011, p. 91), “numerical expressions
must be viewed not merely as encoding instructions to carry out a sequence of
binary operations, but as revealing a particular operational composition of a number
… how quantities or numbers combine.” Slavit (1999) emphasizes the importance
of being able to break an operation into its base components, of knowledge of
operation facts, and of understanding the relationships between the operations.
Asghari and Khosroshahi (2016, p. 1) argue that “mathematical thinking involving
equality among young learners can comprise both an operational and a structural
conception and that the operational conception has a side that is productively linked
to the structural conception.” Schwarzkopf (2015, p. 14, citing Winter 1982)
advances the notion that “understanding an equality between two mathematical
terms means understanding that the terms are different representations of the same
mathematical object” (e.g., 5 + 4 = 2 + 7)—a perspective on structure that is
similar to the relational thinking approach to equalities promoted by Carpenter et al.
(2003) and that includes attention to the role played by substitution in conceptions
of equality (Jones et al. 2012).

In their research with elementary school children, Malara and Navarra (2016)
point to the importance of expressing structural aspects of number in transparent,
non-canonical ways, as illustrated by their example of 10-year-old students repre-
senting the sum of 5 and its successor: One student offered the expression “5 + 6”,
but a classmate argued that her own representation of “5 + 5 + 1” was clearer and
more transparent because it expressed the functional relationship between a number
and its successor. Similar transparency is stressed by Carraher et al. (2006), who
have used the N-number line representation to help students focus on the structure
of numbers and the relation between a number and its numerical neighbours.

The kind of “structural transparency” advocated by Malara and Navarra and by
Carraher et al. is also emphasized by Arcavi et al. (2017), who argue that students’
compulsion to calculate numerical answers can make it difficult for them to see
patterns and mathematical structure. They describe an activity based on the
well-known arithmetical sequence of triangular numbers arranged in dot formation.
Arcavi et al. state that it is much easier to see the structure of the numerical
sequence, and to generalize it, by observing the pattern in the uncalculated
expressions 1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, …, than by looking only at the
total numbers of dots 1, 3, 6, 10, … for each member of the sequence. Expressing

84 C. Kieran



the total numbers of dots by means of their “unclosed” sums allows for seeing that
the sequence is the sum of the natural numbers. Collis (1975), many years ago,
brought attention to the importance of “acceptance of lack of closure” in the
development of algebraic thinking (i.e., being able to accept, say, 8 + 4 as a number
with the same legitimacy as its calculated value of 12). As pointed out by Mason
et al. (2009), “by working on tasks which focus on the nature of the relation rather
than on calculation, students’ attention is drawn to structural aspects as properties
which apply in many instances” (p. 15).

Other research-based suggestions related to developing elementary school stu-
dents’ structuring experiences with numbers and operations in arithmetic have
included, to name just a few: activity with quasi-variables that brings out the
additive inverse and additive identity properties (Fujii and Stephens 2001); the role
of students’ drawings to illustrate, for example, the doubling-halving property of
multiplicative factors (Russell et al. 2011); multiplication-table tasks where students
are encouraged to seek reasons why certain cells are the same (Neagoy 2015) and to
articulate the structures underpinning the tables (Hewitt 1998; Mason et al. 2005);
numerical tasks involving equivalence and compensation within addition and
subtraction (as well as within multiplication and division), such as for example
transforming 298 + 57 to 300 + 55 so as to make calculations easier (Baek 2008;
Blanton et al. 2011; Britt and Irwin 2011); and the “three dice guessing” activity
where students decompose by partition all the combinatorial possibilities from 3 to
18 (Wittmann 2016).

In the spirit of Freudenthal (1983, 1991), and as reflected in the research liter-
ature exemplified above, structure as it pertains to number and numerical operations
at the elementary and early middle school levels encompasses many means of
structuring—structuring according to factors, multiples, powers of 10, evens and
odds, sums of 10, prime decomposition, and many more—such structurings often
expressed in decomposed, uncalculated form. These structurings have properties,
such as the basic properties of arithmetic, but also a multitude of other properties
such as the successor property, the sum of consecutive odd numbers property, the
sum of even and odd numbers property, equivalence and equality properties, and so
on. To conclude this section, we would argue that the inclusion of such additional
means of structuring and their properties within our discussions of structure related
to number and numerical operations allows for a broader conceptualization of a
fundamental aspect of early algebraic thinking and its development.

4.2.3 Structure in Figural Patterns and Functions

Number and numerical operations are not the only content included in early algebra
research and teaching practice. Patterning and functions are also integral to this area
of study. So what do we mean by structure in figural patterns and functions? As
will be argued later in this section, the structure of number and numerical operations
remains a central component even within these additional focus areas. One point
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that needs, however, to be brought out beforehand is that the term structure, in
general, as it relates to figural patterns needs to be distinguished from the term
structure, in general, as it relates to number and numerical operations. In activity
that involves seeking structures in numbers and numerical operations, the structures
are inherent to the numbers and numerical operations—a consequence of the
axioms. Such is not the case with patterns. As pointed out by Carraher et al. (2008),
pattern is not an acknowledged, much less well-defined, concept in mathematics.
Patterns can be extended mathematically in any way that one wishes. There is no
inherent structure to be uncovered and then generalized (Mason et al. 2010).
Patterning involves the search for some regularity and the imposing of a certain
structure. This imposing of structure affords some predictability to the pattern and
so allows for generalizing beyond the provided set of examples of the pattern.
Mason et al. (2009) remind us that many “mathematical-looking” tasks involve
asking students to extend “patterns” and to predict the nth term; they emphasize that
there must be some prior agreement or articulation of the actual underlying structure
that generates the given sequence in order for a pattern to be considered a math-
ematical task—an articulation that researchers of figural patterning activity are
generally careful to provide by means of the story context that accompanies the
pattern (see, e.g., Moss et al. 2008, p. 157).

Once the actual framing of the underlying structure has been set out, the process
of generalizing within patterning is considered to involve searching for some
invariant property in a set of objects. In fact, distinguishing between what is
invariant and what it is that is varying constitutes a crucial first stage in the activity
of patterning (Kieran 2006b; Mason et al. 2005). According to Rivera (2013), and
in line with Mason et al. (2009), the development of structural thinking within
patterning activity involves the recognition of relationships of similarity and dif-
ference within a structure, followed by the perceiving of properties that characterize
the objects being analyzed, and then by reasoning on the basis of the identified
properties.

While many different types of patterns have been used in early algebraic activity,
one of the most widely used types is that of the growing figural, or geometric,
pattern. Based upon his extensive research on the development of algebraic
thinking with 7- to 9-year-olds, Radford (2011) has argued that:

Generally speaking, to extend a figural sequence, the students need to grasp a regularity that
involves the linkage of two different structures: one spatial and the other numerical; from
the spatial structure emerges a sense of the figures’ spatial position, whereas their
numerosity emerges from a numerical structure. (p. 19)

In one of his studies, 7- and 8-year-olds were presented with the pattern shown in
Fig. 4.1. Radford describes how one of the children, Carlos, when asked to draw the
5th term, very carefully produced the drawing shown in Fig. 4.2—one that did not
conform to the two-row configuration of the given pattern. Carlos’s geometric shape
for Term 5 did not help him figure out its numerosity. On the other hand, other
children who did attend to shape were still not attuned to numerosity, and vice versa.
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Radford has emphasized that the linkage of spatial and numerical structures in figural
patterns constitutes an important aspect of the development of algebraic thinking.

The day after the observations involving Carlos, the teacher discussed the
row-wise geometric structure of the pattern with the children and thereby helped
them to make links between the numerical and geometric structures. When she then
asked the children about the number of squares in Term 25, one child, Mary,
volunteered: “25 on the bottom, and 25 on the top plus 1.” Radford (2012) explains
the children’s progress as follows:

They became aware of the fact that the counting process can be based on a relational idea:
to link the number of the figure to relevant parts of it (e.g., the squares on the bottom row).
… The terms appear now not as a mere bunch of ordered rectangles but as something
susceptible to being decomposed, the decomposed parts bearing potential clues for alge-
braic relationships to occur. … This cultural transformation of the eye is not specific to
Grade 2 students. It reappears in other parts of the students’ developmental trajectory. It
reappears, later on, when students deal with factorization, where discerning structural
syntactic forms becomes a pivotal element in recognizing common factors or prototypical
expressions. (pp. 216–217)

The point here is that the eye must learn to look for structural features in a
variety of mathematical objects, structural features that involve decomposing and
recomposing (see also Radford 2010). Malara and Navarra (2016) hinted at the
structural transformation of the eye within purely numerical activity in their
description of the young student who came to recognize that the number 6 could be
decomposed into 5 + 1, thereby allowing one to see and to express the successor
property of number. We shall return to this notion of the “structural eye” later on,
near the end of the chapter.

Patterning is widely used in early algebra research studies that explore how
children in the elementary grades come to think about and represent functional

Fig. 4.1 The first four terms of a sequence given to the students in a Grade 2 class (Radford 2011)

Fig. 4.2 Carlos’s drawing of
the 5th term (Radford 2011)
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relationships, in particular, functions with a linear structure, but also exponential
and quadratic structures (e.g., Cooper and Warren 2011; Rivera and Becker 2011).
Rivera (2013), for example, describes in detail the structuring processes engaged in
by various aged children across a variety of functional patterning tasks. There exists
as well a substantial amount of research related to children’s development of
algebraic thinking in the context of functions that does not involve patterning tasks,
but rather functional problem situations (e.g., Blanton et al. 2015; Carraher et al.
2006). Within this extensive body of research literature devoted to the theme of
algebraic reasoning within patterning and functional activity is an understated
aspect that pertains directly to our preceding discussion of structure in number and
numerical operations. It concerns the explicit expression of sequences of operations.

An example of this aspect is drawn from the research of Moss and London
McNab (2011), who aimed at developing 7- and 8-year-old students’ awareness of
linear functional relationships by means of both numeric and geometric (figural)
patterns. The research method they employed involved first using geometric pat-
terns (tile arrays) and then numeric (function machine) patterns and then moving
back and forth between the two. They found that a bridging occurred between the
two types of patterns that was enabled by the idea of a function rule: “It was the
specific movement back and forth between the two representations, geometric and
numeric, that ultimately supported the students to gain not only flexibility with, but
also a structural sense of, two-part linear functions [i.e., y = mx + b]” (p. 296). In
particular, they claim that it was the explicit expressing of the sequences of oper-
ations that corresponded to the functional structure of the numeric patterns that
eventually came to be seen as a common thread in both the geometric and numeric
patterns. As well, students became aware that expressions such as 15 � 2 + 3 were
equivalent to 15 + 15 + 3 by means of the parallel geometric and numeric struc-
tures and without necessarily calculating the totals for each. The emphasis on the
role played by the explicit expressing of the sequences of operations in the Moss
and London McNab study reminds us of the point made earlier by Arcavi et al.
(2017) regarding the structure-developing role that can be played by observing the
uncalculated expressions of the successive terms of a pattern sequence. Other types
of activity involving explicit sequences of uncalculated expressions playing a
similar role have been noted in research on “think of a number games” (e.g., Cedillo
and Kieran 2003) and “tracking arithmetic” tasks (Mason 2017; Mason et al. 2005)
—where students are encouraged to represent explicitly and in uncomputed form
the operations that are applied to the thought-of numbers (sometimes represented as
clouds) so as to more easily detect the properties being applied throughout and
thereby explain the final results.

To recapitulate, the structures involved in figural patterns clearly include a
numerical component (in addition to a spatial component) and, vice versa, the
numerical aspects of the patterns are structural in nature. Recall Mary’s response to
the question posed to her in Radford’s (2011) research regarding the number of
squares in the 25th term of the pattern: “25 plus 25 plus 1”—a structural response
that was expressed by a numerical decomposition, one that corresponded to her
spatial decomposition of the figure. And decomposed numerical expressions
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constituted students’ functional activity in the Moss and London McNab (2011)
study. The point being made here is that structuring experiences involving
decomposed numerical expressions are central not only to the content area of
number and numerical operations, but also to the content areas of patterning and
functions. We view such structuring experiences as fundamental to the development
of early algebraic thinking.

4.3 Seeking, Using, and Expressing Structure in Numbers
and Numerical Operations by 12-Year-Olds

This next section of the chapter presents a researched example of 12-year-old
students engaged in structuring activity with numbers and numerical operations.
The study (Kieran and Guzmán 2005) involved three classes of students from a
Mexican private school in a task-based calculator environment and focused on the
ways in which they sought, used, and expressed structures related to multiplication,
division, factors, multiples, and divisors.

4.3.1 The “Five Steps to Zero” Problem: The Tasks
and Learning Environment

Seeking and using structure involving multiplication and division has received less
attention in the research literature than has addition and subtraction. Even less
appears on the ways in which computing tools might be harnessed in the devel-
opment of structural thinking in this area. In our study, we integrated a combined
task-technique-theory perspective that was based on the so-called instrumental
approach to tool use (Artigue 2002). Within this approach, mathematical concepts
are considered to co-develop while the learner is perfecting his/her techniques with
the tool. According to Lagrange (2000, p. 17, our translation and our emphasis):
“The new instruments of mathematical work are of interest … because they permit
students to develop new techniques that constitute a bridge between tasks and
theories.” If techniques can constitute a bridge between tasks and the emergence of
theoretical knowledge, then it is by looking at the techniques that students develop
with the aid of their technological instruments, in response to certain tasks, that we
obtain a window into the evolution of their structural awareness.

The tasks that we developed were based on the “Five Steps to Zero” problem
(Williams and Stephens 1992; see Fig. 4.3—note that all whole numbers from 1 to
1000, with the exception of 851 and 853, which require six steps, can be brought
down to zero in five or fewer steps). Successfully tackling this task situation, with
the constraint of using only the whole numbers from 1 to 9 and only one operation
per line, involves developing techniques for decomposing numbers (prime or
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composite) into other numbers in the same neighbourhood (not more than 9 away
from the given number) that have divisors not larger than 9 so as to reach zero in
five or fewer steps.

In the example illustrated in Fig. 4.3, the given number 151—a prime—was first
converted into a non-prime number, followed by a test to see if the result was
divisible by 9 (divisible being understood to mean divisible without remainder). As
an alternative to the approach displayed in Fig. 4.3, a student might first subtract 1
from 151, and then divide 150 by divisors such as 2, 3, and 5, eventually arriving at
5, which can then be brought to zero by subtracting 5. Since students were
encouraged to use as few steps as possible, this task provided fertile ground for
learning, for example, the structural property that if a number has both a and b as
divisors, then it is also divisible by a � b, as long as a � b does not exceed 9.

Theoretical awareness of this property has been reported to be difficult for many
students to develop. Past research has shown that, for example, just because stu-
dents were able to find that a � b = ab, they did not then state that ab is a multiple
of b before first dividing ab by b (Vergnaud 1988). In another study involving older
students, Zazkis and Campbell (1996, p. 542) asked: “Consider the number M = 33

� 52 � 7. Is M divisible by 7? Explain. Is M divisible by 5, 2, 9, 63, 11, 15?
Explain.” Students’ understanding of divisibility and prime decomposition was
found to be so poor that the researchers argued that developing a conceptual
understanding of divisibility and factorization, which is essential in the develop-
ment of conceptual understanding of the multiplicative structure of numbers, should
be happening in the middle grades. We were thus interested in investigating how
the tasks and tools that we designed to be used with the middle-grade students of
our study would increase their structural awareness of factors, multiples, and
divisibility.

We developed a set of ten activity sheets (see Fig. 4.4) involving tasks based on
the “Five Steps to Zero” problem on which students worked over a period of one
week (five classes of fifty minutes each). When students finished one activity sheet
and handed it in, they were given the next one.

Several considerations were included in designing the tasks for the 10 activity
sheets. Task #1 involved an even number (144) with several divisors below

Fig. 4.3 The basic problem, “Five Steps to Zero” (adapted from Williams and Stephens 1992),
accompanied by an example (151), displayed on the multiline screen of the calculator
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10—thus a fairly accessible number to start with. Note also that, by asking students
to record on paper the solutions they were trying with their calculator, we would be
able to trace how their strategies were evolving. Task #2 involved a prime number,
which could be handled by means of the addition or subtraction of some number in
order to have a composite that could be divided by numbers less than 10. Would
students aim for an even number, a number ending in 5 or 0, or something else?
Task #3 began with 732, which could be brought to zero in five steps if one began
with a division by 3, 4, or 6; but a four-step solution required adjusting the given
number so as to have a multiple of 9. After the first three open-ended tasks, the very
important Task #4 asked students to describe in writing their techniques for min-
imizing the number of steps to be taken to reach zero. Task #5 presented a six-step
approach for bringing 432 to zero. All of the divisors used in the given task were 2s
and 3s. Would the students spontaneously think of combining some of the given
divisors—for example, the first three 2s to yield a divisor of 8, and the last two 3s
for a divisor of 9—so as to reduce the number of steps from six to three? Task #6,
which was designed to provide some experience with multiples of 9, illustrated a
five-step method for bringing 731 to zero that led off with the conversion of 731 to
738. Would students come to see that if 738 is divisible by 9, so too is 738 − 9, and
that this would save a step because the resulting quotient is immediately divisible
by 9? Task #10, the final task, formed the basis for a follow-up competition in class.

1. Take the number 144. Write as many ways as you can for bringing 144 to zero, using as 
few steps as possible.

2. Take the number 151. Write as many ways as you can for bringing 151 to zero, using as 
few steps as possible. 

3. Take the number 732. Write as many ways as you can for bringing 732 to zero, using as 
few steps as possible.

4. Describe your strategies for minimizing the number of steps. 
5. Here is a solution proposed by a pupil for bringing 432 to zero: 432/2 = 216; 216/2 = 

108; 108/2 = 54; 54/3 = 18; 18/3 = 6; 6 – 6 = 0. Show a way of bringing 432 to zero in 
fewer steps. Explain your strategy. Do you think it will always work? Why? 

6. Here is a strategy proposed by a pupil for bringing 731 to zero: 731 + 7 = 738; 738/9 = 
82; 82 – 1 = 81; 81/9 = 9; 9 – 9 = 0. Show a way of bringing 731 to zero with fewer steps. 
Explain your strategy. 

7. The number 266 has as its divisors 2, 7, and 19. In other words, 266 = 2 × 7 × 19. What is 
the best strategy for bringing 266 to zero? Why? Explain why your strategy is the best. 

8. Here is the strategy proposed by a pupil for bringing 499 to zero: 499 + 1 = 500; 500/5 = 
100; 100/5 = 20; 20/5 = 4; 4 – 4 = 0. Show a way of bringing 499 to zero in fewer steps. 
Explain your strategy. 

9. What do you consider to be the best strategies for bringing numbers down to zero? 
10. Think of a number that your classmates would find difficult to bring to zero in five or 

fewer steps. Write down why you think it would be a hard number. Show the solution 
you found for your hard number.  

Fig. 4.4 Tasks of the 10 activity sheets prepared to accompany the “Five Steps to Zero” problem
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The class was to be divided into three groups; each group settling on one of the
“hard” numbers proposed and defended by its group members. Three rounds of
competition involving two teams trying to solve the “hard” number of the third
team were to take place. This competition and the individual justifications written
down by each student as to their “hard” number were to provide further evidence of
the evolution in their structuring activity during the week.

Each student was equipped with a graphing calculator. While the graphing
capability of the calculator was not used, the larger screen of this kind of calculator
made it possible for the students to record and observe at a glance all their steps
toward zero—as opposed to the small one-line screen of a simple four-operation
calculator. The calculator permitted students to carry out each of the basic opera-
tions in one step. Without having to keep track of all the intermediate moves that
would normally capture their attention in a paper-and-pencil environment, they
were free to focus on structural aspects. It is noted that the calculators that were
used in the study did not provide the complete factorization of a number; thus, it
was not possible to know instantly whether a given whole number was a multiple of
some other number, or even whether or not it was prime—a constraint that was
capitalized on for our study.

The teachers introduced the main task situation as follows. They began with the
example of 360 and illustrated with the classroom view-screen (a room-size pro-
jection of the screen of the calculator that was hooked up to the view-screen device)
that they could get down to zero in the following way: 360/2, 180/2, 90/3, 30/6,
5 − 5. The teachers then requested volunteers to come forward to show how they
might get to zero in fewer than five steps. After that, students were asked to suggest
their own starting numbers, say, larger than 200, which other students came forward
to solve. The students then began to work on the tasks of the activity sheets, either
individually or in pairs, but each student filled in his/her own activity sheets.

Regularly during the week, individual students were invited to come forward to
the classroom view-screen and to work out a task using that device. This allowed
both the researchers and the classroom teacher to observe directly the nature of the
approaches that the students were trying out in response to the problem tasks. It is
important to note that the students whose work was being recorded on the
view-screen had not already arrived at a solution beforehand, but were in fact
allowing us to witness all the false starts, dead ends, and various structural relations
they were trying to find. During the week that followed the classroom part of the
study, four students representing a range of mathematical ability (as rated by the
classroom teacher) from each of the participating classes were individually inter-
viewed. A pre-test had also been given to the students prior to the study to inquire
into their knowledge of divisors, multiples, and primes. The interviews, in con-
junction with the pre-test results, gave the researchers the opportunity to explore at
closer range the nature of the structural awarenesses that students had developed
over the course of the previous week. In the sections that follow, we present and
discuss samples of students’ work that are representative of the ways in which the
techniques of the three classes of students evolved.
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4.3.2 The Emergence of Structurally-Oriented Techniques

The techniques that students used at the beginning of the week’s activities tended to
be based on simple criteria for divisibility, such as dividing by 5 if the number
ended in 0 or 5, or dividing by 2 if the number was even. This is illustrated by the
work of Marianne with the given number 151 from the second activity sheet (see
Fig. 4.5). Her two recorded attempts suggested two different decompositions of
151: 5 � 30 + 1 and 5 � 31 − 4, both handled by means of inverse operations.
She was clearly aiming at converting the given number 151 into a multiple of 5. We
wonder whether she noticed the structural property that when two adjacent multi-
ples of 5 (i.e., 150 and 155) are divided by 5, the two quotients that are obtained
(i.e., 30 and 31) are consecutive numbers.

The initial techniques of Marianne evolved, just as they did for her classmates.
On the third activity sheet with 732 (see Fig. 4.6), she showed a shift toward trying
to find larger divisors.

On the fourth activity sheet, in describing the techniques that had emerged thus
far for her, Marianne wrote (translated from Spanish):

Divide by the largest divisor possible from 1 to 9; if there are no divisors, then add or
subtract to obtain another number where the division is possible. After dividing, look at the
result and test whether division is again possible. If not, repeat the previous procedure until
arriving at a number less than 9 and finish the procedure with a subtraction.

Nicolas offers us another example of how pupils in this study were evolving
from more basic techniques to that of trying to find the largest divisor possible.
Having unsuccessfully tested whether 9 or 8 was a divisor of 930 (see lines 2 and 3
of Fig. 4.7), Nicolas’s next efforts centered on finding another number in the
neighbourhood of the given number 931 for which he could use large divisors

L1: 151 – 1 150 L1: 151 + 4 155
L2: 150/5 30 L2: 155/5 31
L3: 30/5 6 L3: 31 – 1 30
L4: 6 – 6 0 L4: 30/5 6

L5: 6 – 6 0

Fig. 4.5 Two consecutive attempts by Marianne to bring 151 to zero (Note that line numbers have
been added to make it easier to refer to specific lines of the screen display)

L1: 732/6 122 L1: 732/4 183
L2: 122/2 61 L2: 183 – 3 180
L3: 61 + 3 64 L3: 180/9 20
L4: 64/8 8 L4: 20/5 4
L5: 8 – 8 0 L5: 4 – 4 0

Fig. 4.6 Two attempts by Marianne with the given number 732
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throughout. In attempting to find numbers in the vicinity of 931 that were divisible
by 9, had Nicolas noticed the structural property that within every interval of 9
numbers there is exactly one number that is divisible by 9? His later work was to
confirm that he had indeed discovered this property.

Toward the end of the week’s activities, several students began to make struc-
tural breakthroughs. Their focus became more controlled in that instead of using
successive trial and error with the divisors 9, 8, and 7, they started to search for
techniques oriented around the use of the factor 9. The challenge of the activity had
become that of finding a structural way to convert the given number into a multiple
of 9 so as to arrive at zero in the fewest number of steps possible. Marianne, for
example, wrote on her sixth activity sheet that she wanted “to subtract or add in
order to arrive at a number divisible by 9; if you divide by the largest number, even
if you do a subtraction or yet an addition, you will reach zero more rapidly.”

With Marianne, it was not until the last day of the week, when she was using the
classroom view-screen and was given the number 971 to bring down to zero, that
we witnessed the structural technique that she had developed (see Fig. 4.8).
Marianne began at once to search for a number in the vicinity of 971 by using the
product of two factors, one of which was 9. She was in fact working in reverse,
using multiplication rather than division, so as to try and arrive at a multiple of 9 in
the neighbourhood of her starting number. Once she had found two multiples that
were on either side of the starting number (see Lines 8 and 9 of Fig. 4.8), she
successively refined her search until she reached a multiple of 9 that was within 9
units of 971 (see Line 11). The structure of multiplication with subtraction
(9 � 108 − 1) was then converted to addition with division (Lines 12 and 13).

L2: 930/9 103.33 L27: 936/9 104
L3: 930/8 116.25 L28: 104/8 13
L4: 930/5 186 L29: 13 – 9 4
L5: 186/9 20.66 L30: 4 – 4 0
L6: 186/8 23.25

L1: 931 – 1 930 L26: 931 + 5 936

Fig. 4.7 Various attempts by Nicolas to find suitable decompositions of 931

L1: 9 × 86 774 L10: 9 × 106 954
L4: 9 × 97 873 L11: 9 × 108 972
L6: 9 × 99 891 L12: 971 + 1 972
L7: 9 × 105 945 L13: 972/9 108
L8: 9 × 110 990 L14: 108/6 18
L9: 9 × 107 963 L15: 18/9 2

L16: 2 – 2 0

Fig. 4.8 Marianne’s shift to multiplication in her search for an appropriate structuring of 971
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A related technique that involved the structural interplay between dividing by 9
and using multiples of 9 emerged for another student, Mara, near the end of the
week. While she was at the front of the class using the view-screen, a classmate
suggested she try 731 as her initial number. After a few unsuccessful tries involving
the search for neighbouring numbers that could be divided by 9, she seemed
suddenly to notice that she could take the whole-number part of the quotient, which
she rounded up to 82, and did a reverse multiplication (see Lines 16 and 17 of
Fig. 4.9). The product told her immediately how much of a structural adjustment
needed to be made to the initial number. We note that, had she truncated rather than
rounding up the quotient, she would have saved a couple of steps in that 81 would
have allowed an immediate subsequent division by 9. Another student, Pablo, had
developed a similar technique (see Fig. 4.10). By multiplying 9 with 103 (Line 2),
Pablo then inferred that the remainder on trial dividing 931 by 9 was 4, thereby
leading to a structural decomposition of 931 as 9 � 103 + 4.

During the week following the classroom study, when individual interviews
were held with some of the students, a revealing conversation took place with
Nicolas. When asked what he would do if a given initial number was not divisible
on the first step by a number between 2 and 9, he answered that he would add or
subtract. So we continued by asking him how he figured out the amount that he
needed to add or subtract, to which he responded that he had a certain “technique”
(see Fig. 4.11 for the transcript of the relevant segment of the interview; I is the
Interviewer and N is Nicolas).

Notice (Episode 36 of Fig. 4.11) that Nicolas is trying to control three factors at
a time, all of them in the range of 2 to 9, in his search for a product in the
neighbourhood of 431. On screen line L4, he enters the following multiple of 9:
9 � 9 � 5, and sees that it yields 405. So, he then decides to adjust the second and
third factors simultaneously. He decreases the 9 to 8 and increases the 5 to 6,
entering 9 � 8 � 6 into the calculator. This numerical expression produces the
result 432, just 1 more than the given number (see screen line L5). He clearly
realizes that 9 � 8 � 6 − 1 = 431. This decomposition will allow him to bring 431

L1: 731 + 1 732 L16: 731/9 81.22
L2: 732/9 81.33 L17: 9 × 82 738
. . . L18: 731 + 7 738
L10: 731 – 8 723 L19: 738/9 82
L11: 723/9 80.33 L20: 82/2 41

Fig. 4.9 Mara’s shift from dividing to the reverse operation of multiplying the divisor by the
rounded-up quotient

L1: 931/9 103.44 L3: 931 – 4 927
L2: 9 × 103 927 L4: 927/9 103

Fig. 4.10 Pablo’s similar shift from dividing to multiplying in decomposing 931
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to zero in four steps by means of inverse operations where each of the factors will
be treated as divisors, except for the last one, which will be subtracted so as to
arrive at zero. The complex of structural relations between multiplication and
division and between addition and subtraction, as well as a structuring according to
divisors and multiples, have all been expressed in Nicolas’s mathematical work.

4.3.3 Analysis of the Evolution of Students’ Structuring
Activity

Some of the most powerful structural explorations that occurred during the week of
activity on the “Five Steps to Zero” tasks involved the search for multiples of 9.
Since students wanted to arrive at zero in the fewest number of steps possible, their
initial techniques soon evolved into attempts to discover whether the given number
was divisible by 9, or whether any numbers in the close vicinity (i.e., within 9 on

32. N: Because (pause) well, I also have a “technique” that I use. First I 
do a multiplication, say, 9 × 9 × 3 or something like that to arrive 
at another number, and I look at that number.

33. I: Let’s see, repeat that for me one more time.
34. N: For example, if I have the number 571 and I multiply 9 × 9, it 

gives 81.
35. I: Let us say that I give you the number 431.
36. N: OK, so I go (and he picks up the calculator):

L1: 9 × 9                     81
L2: 81 × 3                243
L3: 9 × 9 × 4            324
L4: 9 × 9 × 5            405

So, like that, I arrive more quickly.
37. I: But I said 431. With this strategy that you have just described, 

how do you begin?
38. N: First, 9 × 9 × something, no? Until arriving close to the number. 

For example (he again picks up the calculator):
L5: 9 × 8 × 6            432

39. I: Yes, I told you 431.
40. N: So, 431 plus 1, divided by 6, divided by 8, and so on.
41. I: Let’s see.
42. N: (Nicolas picks up the calculator):

L6: 431 + 1              432
L7: 432/6                   72
L8: 72/8                       9
L9: 9 – 9                      0

And there it is!

Fig. 4.11 Segment of transcript from the interview with Nicolas where he describes his
“technique” and illustrates it with the given number 431
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either side of the given number) were. But how to find the right numbers in the
close vicinity was the question. Furthermore, the students seemed unaware of the
criterion for divisibility by 9 (i.e., sum the digits to see if the total is a multiple of 9)
or how this test might be used to locate a multiple of 9 in the neighbourhood of the
given number.

4.3.3.1 Variants of the Division Algorithm

The structural awareness that emerged for many students involved variants of the
division algorithm. According to this theorem, any whole number can be decom-
posed and expressed as the product of two whole numbers plus remainder, that is,
“For any b > 0 and a, there exist unique integers c and d with 0 � d < b such that
a = b � c + d” (e.g., 989 = 9 � 109 + 8). Even though students were not taught
this theorem, their work showed the different structural means by which they tried
to obtain the value of c and thereby illustrated the ways in which they were
beginning to think structurally about division with remainder—even if not always
articulated explicitly. One variant of the division algorithm reflected in their work
was the following: “For any b > 0 and a, there exist unique integers c and d with
0 � d < b such that a = b � c − d” when the decomposition of the initial number
a led to using the multiple of b on the higher side of a rather than on the lower side
(e.g., 989 = 9 � 110 − 1).

But we also witnessed other structural “variants” of the division algorithm. For
example, the techniques of Mara and Pablo evolved to take the form of carrying out
a trial division by 9, followed by the multiplication of the truncated or rounded-up
quotient with 9 in order to see how far the product was from the initial number—a
structural approach that we named the “division algorithm invoking trial division”
(e.g., 989/9 = 109.8888889, followed by 9 � 109 = 981). Since 989 can thereby
be decomposed into 9 � 109 + 8, their approach for bringing 989 to zero involved
using the inverses of addition and multiplication as in 989 − 8 = 981, 981/9 = 109,
and so on. An implicit variant of this technique involved looking at the size of the
decimal portion of the quotient, without actually carrying out the related multi-
plication of 9 with the truncated or rounded-up quotient, to provide a structural clue
as to how close the given number was to a multiple of 9.

Another variant of the division algorithm was based on what we named the
“division algorithm invoking trial multiplication.” This approach, observed with
Marianne, involved carrying out trial multiplications in order to find an appropriate
value of c, as in, for example, the structural relation, 989 = 9 � c + d (e.g.,
9 � 106 = 954, 9 � 108 = 972, 9 � 109 = 981)—the latter multiplication clearly
bringing the solver into the interval that is within 9 of the given number 989,
thereby allowing for decomposing 989 as 9 � 109 + 8.

While the searches by Marianne for multiples of 9 always involved two factors,
the technique that Nicolas came to develop involved a complete decomposition of
the given initial number into three factors or more, accompanied where necessary
by an addend-adjustment. His technique is one that we named “trial multiplication
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involving more than two factors” and synthesized as a = b � c � d � e ± k,
where b, c, d, and e are whole number factors between 2 and 9, and k is a whole
number addend or subtrahend such that 0 � k � 9. In Nicolas’s above work with
the given number 431, he was able to analyze his trial sequence of operations,
9 � 9 � 5, which had yielded 405, and adjust the expression in such a way that, by
decreasing the second 9 to 8 and increasing the 5 to 6, the result (9 � 8 � 6) would
be slightly larger than 405. The degree of control he showed not only in generating
the multiple factors approach but also in changing the specific decomposition from
9 � 9 � 5 to 9 � 8 � 6 hinted at the structural eye that he was beginning to
develop for number and numerical operations.

4.3.3.2 Developing a Structural Eye for Decomposing Number

Developing an eye for structure is surely a long process that needs to reinvent itself
with every new type of mathematical object that is encountered. While the “Five
Steps to Zero” activity lasted only a week, and there was no follow-up opportunity
to see whether the ways in which students sought structure within that activity
would carry through to their everyday mathematical work, the shifts in structural
techniques that we observed suggest that the students had indeed begun to develop
a structural eye for the multiplicative decomposition of number. This was high-
lighted in, for example, Mara’s noticing that she could replace several trial divisions
by just one, followed by multiplication of the rounded-up quotient by the divisor.
From our observations, we conjecture that the shifts that emerged were partially
motivated by students’ lack of satisfaction with the initial trial-and-error methods
they were using—dissatisfaction that pushed them to “develop a technique,” to use
Nicolas’s words.

As was seen in the students’ early trial divisions with the large divisors 8 and 9,
the quotients usually contained decimals, which “got in the way” of reaching zero
quickly. In the search for more effective means of tackling the tasks, Mara, as noted
above, came to realize that she could “clean up” the decimal quotient and multiply
it by the divisor to arrive immediately at a product that was in the required range of
the given number. Marianne became aware that she could supplant her “messy” trial
divisions with more focused multiplications involving two factors, one of which
was 9. Nicolas came to develop a method that allowed him to arrive at a decom-
position of the given number consisting of a complete set of factors plus any
required additive adjustment. According to Subramaniam and Banerjee (2011), a
refined, structural understanding of operational composition includes accurate
judgments about relational and transformational aspects, such as judging how the
contribution of one part of the expression will change if some of the numbers
involved in the expression change. Such judgments were reflected in the com-
pensations made by Nicolas in arriving at his complete decomposition of 431 (in
Episodes 36–38 of Fig. 4.11) during the post-study interview.

One last point needs to be made with respect to students’ beginning to develop a
structural eye: It concerns the role of the tasks and the calculator. In Radford’s
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(2012) study with younger children, the teacher played a key role in helping them
come to see the spatial structure of the pattern and to coordinate this with the
numerical structure. In our study, the teachers played much more of an observa-
tional role. On the other hand, the inherent challenge of the “Five Steps to Zero”
problem, as well as the wording of the task questions and the actual numbers used
(Fig. 4.4), is likely to have contributed to encouraging the students to think more
deeply about the structures that combine multiplication and division. Furthermore,
had it not been for the presence of the calculator, the tasks that led to the devel-
opment of students’ structurally-based techniques, although doable, would surely
have been less feasible. The calculators with their multiline screens permitted
students to analyze successive results for possible indications of numerical struc-
ture. The classroom view-screen also enabled the sharing of newly discovered
techniques. In sum, the nature of the tasks, the technological tool, students’ col-
laborative work in pairs and in teams, as well as their own personal determination to
find satisfying techniques to meet the challenges of the “Five Steps to Zero”
problem, are considered to have all contributed to constituting an emergent,
culturally-shared activity that underpinned the evolution of their “structural eye”
and shaped the movement of their structural growth. But for such movement to
further develop into what could be referred to as persistent structure-oriented
practice in mathematical activity would require, in our opinion, “the mathematical
work of the teacher in pressing students, provoking, supporting, pointing, and
attending with care” (Bass and Ball 2003, p. vii).

4.4 Concluding Remarks

The aim of this chapter has been to instigate greater attention to structure and to
elaborate more broadly on its meaning with respect to number and numerical
operations in the development of early algebraic thinking. As characterized by
Freudenthal (1983, 1991), structure encompasses the whole web of relations
associated with the order, addition, and multiplication structures. These basic
structures provide the foundation for multiple additional means of structuring.
Furthermore, countless properties, in addition to the oft-cited basic properties of
arithmetic, are generated by these structures. But, early algebra involves more than
number and numerical operations; it also involves patterning activity and the
development of functional thinking. Thus, other structures enter into play such as
the spatial structures of figural patterns and various functional structures, namely
linear, quadratic, and exponential. Nevertheless, a common aspect of all of these
various approaches to early algebraic activity is the multitude of properties and
means of structuration that are related to number and numerical operations.

To contribute to illustrating some of the ways in which we might elaborate more
broadly on the meaning of structure within number and numerical operations and
extend the discussion of the structural properties associated with arithmetical
activity, a study (Kieran and Guzmán 2005) on the “Five Steps to Zero” problem
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was presented. It involved three classes of 12-year-olds who were observed as they
generated multiple structural decompositions of the numbers they were given in
their problem-solving activity. While students’ structural decompositions of the
given numbers were not unique, they all displayed an order structure, additive
structure, multiplicative structure, and a structure combining the inverse relations
between multiplication and division within the division algorithm; but their tech-
nical approaches also evolved to express structurings according to the related ele-
ments of factors, divisors, multiples, and remainder on dividing.

Structural properties that were explicitly indicated in the students’ work included
the following:

• If a number has both a and b as divisors, then it is also divisible by a � b.
• When two adjacent multiples of a number n are divided by n, then the two

quotients that are obtained are consecutive (e.g., “738 and 729 are two adjacent
multiples of 9; when they are both divided by 9, the quotients are the consec-
utive numbers 82 and 81”).

• Within every interval of n numbers, there is exactly one number divisible by
n (e.g., “In the 9-number interval from 735 to 743 inclusive, there is exactly one
number divisible by 9”).

• If adding n to a number x yields a multiple of m, then so too will subtracting
m − n (e.g., “If adding 1 to 989 yields a multiple of 9, then so too will sub-
tracting 8, due to the resulting difference of 9 between the two adjusted numbers
990 and 981”).

Students’ early solving strategies evolved in ways that entailed a genesis from
the use of trial and error to more deliberate structuring according to the network of
relations between multiplication and division. That the evolution occurred speaks
powerfully for the initial use of trial-and-error methods that sparked the rise of
stronger and more controlled techniques. The details that were provided of the ways
in which students attempted to seek, use, and express alternative structures within
the “Five Steps to Zero” problem contribute to better understanding how students of
this age can come to extract certain multiplication/division structures within
numerical activity.

The problem situation itself was pivotal to students’ structural growth. But the
“Five Steps to Zero” problem should not be considered only in the form in which it
was used within this research study. This problem with the challenge of arriving at
zero in a restricted number of steps has a generic quality to it. It could easily be
adapted for younger students by changing the range of numbers, the range of
operations, the number of steps, and even the permissible numbers to be used
within the operations, such as even or odd numbers only, or just multiples of, say, 3,
and so on. Researchers and practitioners could create variants of this problem,
perhaps even for use without a calculator, as a means of developing students’
awareness of structure for number and numerical operations at various grade levels
in elementary school.
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We consider the structuring activity described in this chapter to be a fundamental
path to developing students’ early algebraic thinking. As mentioned in the intro-
ductory remarks, high school algebra requires the ability to see structure within
generalized forms. Algebra researchers have argued that students’ difficulties with
algebraic structure are in part due to their lack of understanding of structural notions
in arithmetic. They have thus offered several recommendations as to how instruc-
tion in arithmetic might be designed to foster the development of structure sense.
A central suggestion has been that of providing experience with decomposition and
recomposition of numerical expressions and with their structural equivalence. The
activity involving the “Five Steps to Zero” problem has included exactly this type
of experience—experience in ways of thinking that will be of value for the later
structuring demands to be made in secondary school algebra (e.g., see Guzmán
et al. 2010, for algebra students’ work involving the structural relation that links
factorizability, polynomial division with/without remainder, and cancelling terms in
the simplification of expressions such as (4x + 4y)/(x + y) and (3x + 4y)/(x + y)). In
sum, we concur with Subramaniam and Banerjee (2011, p. 101), when they state
that: “Numerical expressions emerge as a domain for reasoning and for developing
an understanding of the structure of symbolic representation.”More specifically, we
contend that developing an understanding of the structure of number and numerical
operations by means of various property-based, structural decompositions is vital to
the emergence of early algebraic thinking. Indeed, to conclude we would argue that
there is a dual face to activity that promotes early algebraic thinking: one face
looking towards generalizing, and, alternatively but complementarily, the other face
looking in the opposite direction towards “seeing through mathematical objects”
and drawing out relevant structural decompositions.
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Chapter 5
Cultivating Early Algebraic Thinking

David W. Carraher and Analúcia D. Schliemann

Abstract This chapter describes a functions approach to early algebraic thinking
developed in the context of classroom research with young students. We outline our
approach, examine examples of students’ reasoning in the classroom, and present
interview and written assessment evidence of student learning. We also describe
and evaluate a related program aimed at preparing teachers to promote algebraic
thinking across the curriculum. Throughout, we attempt to identify conditions
favorable to the cultivation of algebraic thinking in mathematics education.

Keywords Early algebra � Algebraic reasoning � Functions approach
Teachers’ algebraic thinking

5.1 Introduction

Although young students may manifest rudimentary forms of algebraic thinking
before they have been introduced to symbol-letter notation, there are good reasons
for promoting algebraic thinking well before a first course in algebra. Fortunately,
there are many opportunities for this, given the underlying algebraic nature of
mathematics in the early grades. Here we examine how the basic operations of
arithmetic can be approached from the standpoint of functional relations, facilitating
the discovery of interconnections among standard topics and promoting students’
formulation and representations of generalizations from early on. We illustrate,
through examples taken from early algebra research, how we have engaged young
students in various sorts of classroom activities designed to promote algebraic
thinking. We also describe the key features of an in-service teacher education
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program that, with the contributions of mathematicians and physicists, was
developed to build on early algebra research. The reader is cautioned that the
present claims are still somewhat speculative and subject to modification over time
as additional ideas are explored and new findings emerge in the field of early
algebra. This is also to be expected given that principles for instruction cannot be
justified solely through research, involving, as they do, value premises and goals
(Hiebert 1999).

5.2 Algebra and Algebraic Thinking

Algebra is a branch of mathematics as well as a way of thinking (Gowers et al.
2008). In K–12 educational settings, it is often identified with a system of notation
and procedures, heavily driven by syntax, for solving pure and applied problems.
Most would agree that algebraic thinking emerged long before the advent of
modern algebraic notation. Boyer (1968) breaks down the history of algebra into
three stages: the rhetorical, syncopated, and symbolic phases. In the rhetorical stage
of ancient Greece, statements and arguments were expressed verbally, occasionally
accompanied by diagrams. Greek mathematicians before and including Diophantus
were solving algebra problems and thinking algebraically without algebraic nota-
tion. It is useful to keep this in mind when attempting to define the minimal
conditions for algebraic reasoning. There are ample opportunities for employing
non-notational forms of representation, most notably, formulations in natural lan-
guage, for students to express generalizations. This, however, does not imply that
conventional algebraic notation should be withheld from instruction with young
learners. We would claim, as do Blanton et al. (2017, also this volume), that
algebraic notation has an important role to play in early instruction, especially in
modeling extra-mathematical phenomena. Although there are dangers in premature
mathematical formalism (Piaget 1964), it is also important to avoid belated for-
malism, including an overly delayed introduction of algebraic notation and other
conventional forms of representation. Striking a balance is admittedly a challenge.
However, we have found, and will attempt to exemplify that, in the early grades,
students may easily learn to employ algebraic notation to express generalizations
that they have reached by reflecting on the problem situation at hand. Gradually
they begin to act directly on algebraic expressions in order to derive additional
expressions. In this sense, algebraic notation initially tends to take on a “trailing,”
rather than a leading, role.

We would suggest that “early algebra” refers to the algebraic knowledge, the
algebraic thinking, and the (occasionally unconventional) representations and
techniques of young students in solving problems that one would generally expect
more advanced students to solve using modern algebraic notation.

As we have noted before (Carraher et al. 2000, 2005; Schliemann et al. 2007),
there is no clear-cut break between early algebra and algebra. Early algebra, unlike
what some have referred to as “pre-algebra,” is not to be viewed as a bridge
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students cross after they have studied arithmetic and before they study algebra. In
principle, it can be developed and nurtured wherever there is arithmetic. This is
because arithmetic is inherently algebraic. Were this algebraic character of arith-
metic widely acknowledged and exploited in the early mathematics curriculum,
perhaps the expression, early algebra, could be dispensed with. But, for the time
being, at least in the United States, it can serve the useful purpose of highlighting
important, often overlooked, facets of mathematics in the K–8 curriculum.

In the United States, algebra was long understood as entering the mathematics
curriculum around adolescence, after, all being well, students had achieved a solid
grounding in arithmetic. Earlier attempts to teach algebra would have been con-
sidered unpromising in view of the well-documented difficulties middle and high
school students are known to have with algebra (see the extensive review by Kieran
2007). Studies have shown that, when students were introduced to algebra towards
the end of middle school, many (a) displayed a limited interpretation of the equals
sign (Booth 1988; Kieran 1981, 1985; Vergnaud 1985); (b) failed to understand the
meaning of letters meant to serve as variables (Kieran 1985; Küchemann 1981;
Vergnaud 1985); (c) refused to accept algebraic expressions as valid answers to
problems (Sfard and Linchevski 1994); and (d) failed to solve equations with
variables on each side of the equals sign (Filloy and Rojano 1989; Herscovics and
Linchevski 1994).

Some researchers attributed such difficulties to constraints imposed by cognitive
(under) development (Collis 1975; Küchemann 1981), concrete thinking
(MacGregor 2001), or the inherently challenging nature of algebra. Herscovics and
Linchevski (1994) claimed that many students were unable “to operate sponta-
neously with or on the unknown.” Filloy and Rojano (1989) proposed that
first-degree equations with a variable on both sides of the equals sign (e.g.,
38x + 72 = 56x) represent an historical and developmental divide separating
arithmetical from algebraic thinking.

These views, however, were far from universal. Some mathematics educators
(see, for example, Booth 1988; Kaput 1995, 1998; LaCampagne et al. 1995;
Schoenfeld 1995) suspected that such difficulties tended to reflect shortcomings of
early mathematics instruction, including the overly computational approach to
arithmetic in elementary school.

Early on, Davis (1967, 1971–1972, 1985, 1989) proposed that preparation for
algebra should begin in grades two or three; and he had intriguing film footage of
young students working with activities such as “Guess My Rule” providing cre-
dence to his view. Beginning in the 1960s, Davydov and colleagues developed and
undertook an innovative approach to early mathematics instruction centering ini-
tially, not on numbers, but instead on relations among unmeasured physical mag-
nitudes. Their work and their impressive empirical results, made available to the
English-speaking world somewhat later (Davydov 1991), gave rise to noteworthy
initiatives (Dougherty 2008; Schmittau 2005; Schmittau and Morris 2004). Kaput
(1995, 1998) argued that the weaving of algebra throughout the K–12 curriculum
could lend coherence, depth, and power to school mathematics, and replace late,
abrupt, isolated, and superficial high school algebra courses. The Algebra Initiative
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Colloquium Working Group (Lacampagne et al. 1995; Schoenfeld 1995) proposed
that algebra ought to pervade the curriculum instead of appearing in isolated
courses in middle or high school.

At the turn of the century (see Kieran et al. 2016, for the historical background),
the U.S. National Council of Teachers of Mathematics (2000) recommended that
algebra be treated as a major strand interwoven throughout K–12 mathematics:

Algebra is best learned as a set of concepts and techniques tied to the representation of
quantitative relations and as a style of mathematical thinking for formalizing patterns,
functions, and generalizations. Although many adults think that algebra is an area of
mathematics more suited to middle school or high school students, even young children can
be encouraged to use algebraic reasoning as they study numbers and operations and as
they investigate patterns and relations among sets of numbers. In the Algebra Standard, the
connections of algebra to number and everyday situations are extended in the later grade
bands to include geometric ideas (NCTM 2000, p. 3, emphasis added).

This broadened concept of algebra to include certain ways of thinking, still a
novel idea for mainstream American mathematics education, has the virtue of
facilitating the discovery of connections among a variety of topics across the K–12
mathematics curriculum.

Kaput (2008) proposed that algebra and algebraic reasoning be thought of as
being comprised of three strands:

1. Algebra as the study of structures and systems abstracted from computations and
relations, including those arising in arithmetic (algebra as generalized arith-
metic) and in quantitative reasoning.

2. Algebra as the study of functions, relations, and joint variation.
3. Algebra as the application of a cluster of modeling languages both inside and

outside of mathematics (p. 11).

Kaput’s strands provide a useful point of departure for comparing and con-
trasting diverse broad approaches to early algebra (see reviews by Carraher and
Schliemann 2007, 2010). “Generalized arithmetic” approaches focus on mathe-
matical structures and the properties of number systems (e.g., Bastable and Schifter
2008; Carpenter et al. 2003). Other approaches (e.g., Davydov 1991; Dougherty
2008; Schmittau 2005) emphasize the use of mathematics to model and describe
relations among quantities. Kieran et al. (2016) provide an overview of these
approaches as well as somewhat similar approaches being pursued in Korea, China,
and Singapore. Still other approaches (e.g., Blanton 2008; Carraher and Schliemann
2016; Moss and Beatty 2006) employ functions, first encountered in the very
operations of arithmetic, as a means of integrating and deepening the study of
myriad topics of the curriculum.

The three broad approaches to early algebra are really families of approaches.
Ultimately any approach needs to confront many issues that might be addressed in
diverse ways, with varying degrees of success. Take the case of functions, for
example. How are functions to be integrated into specific topics of the curriculum
so as to make sense mathematically, pedagogically, and in terms of learning and
development? In mathematics, it may be legitimate to treat a function as a subset of
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the Cartesian product of two sets. But should students or teachers be introduced to
functions in this manner, given that functions of greatest interest in K–12 mathe-
matics are amenable to definition through a simple rule? What sorts of activities are
particularly promising for introducing variables? What about other topics: fractions,
decimals, etc.? What changes should be introduced into teacher education, both pre-
and in-service, with the aim of promoting early algebraic thinking?

5.3 Functions and Algebraic Reasoning

We believe that a functions-based approach to algebraic reasoning can address
many of the issues highlighted by both generalized arithmetic and modeling
approaches.

The term “function” typically makes its first appearance in the eighth-grade
curriculum, when students are 13 or 14 years old (see, e.g., The Common Core
State Standards Initiative 2010, which mentions functions for the first time among
the content standards for grade 8). There is a considerably broader view of func-
tions, one that we subscribe to (Carraher et al. 2000, 2005), according to which the
very operations of arithmetic, addition, subtraction, multiplication, and division, as
well as a wide range of advanced concepts, are viewed as functions:

One of the most basic activities of mathematics is to take a mathematical object and
transform it into another one, sometimes of the same kind, and sometimes not. “The square
root of” transforms numbers into numbers, as do “four plus,” “two times,” “the cosine of,”
and “the logarithm of.” A nonnumerical example is “the center of gravity of,” which
transforms geometrical shapes…into points—meaning that if S stands for a shape, then “the
center of gravity of S” stands for a point. A function is, roughly speaking, a mathematical
transformation of this kind (Gowers et al. 2008, p. 10).

If “four plus” and “two times” can be regarded as natural language variants of
the functions better known as x + 4 and 2x, it is but a short step to realizing that all
arithmetical operations and combinations of operations may be treated as functions.

We identify the onset of algebraic reasoning not with the solving of equations
but, instead, with the formulation of and operation upon relations, particularly
functional relations. Functions offer ample opportunities for bringing out the
algebraic nature of arithmetic because: (a) the operations of arithmetic are them-
selves functions; (b) the concepts of domain and range (or co-domain), central to
the definition of functions, support the introduction of variables as placeholders for
arbitrary members of sets and the extension of the classes of number; (c) functions
are amenable to multiple forms of representation (notably, written notation, graphs,
tables, and formulations in natural language) that can be profitably employed in
unison; and (d) equations and inequalities are naturally interpreted as the com-
parison of two functions.

Although functions implicitly flow throughout much of current early mathematics
curricula, they are underexploited as resources for teaching and learning. As a simple
example, let us imagine that a student solves aword problembymultiplying 9 by 3 and
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then subtracting 5, obtaining 22 as the answer. Both student and teacher might be
inclined, rightly so, to view the response as a specific computation, 9� 3� 5 ¼ 22,
focusing their attention on the particular numbers at hand. However, with a bit of
effort, the problem could be recontextualized as an instance of the function,
f xð Þ ¼ 9� 3x� 5, thereby representing an association between a set of possible
inputs (the domain) and a set of possible outputs (the range or co-domain).

So, the introduction of functions in the early mathematics curriculum requires
widening the focus of mathematical problem solving beyond operations involving
fixed numbers (constants) to include variables and domains of numbers. This is no
mean task, for it demands that problems be posed in ways that encourage students
to seek out generalizations about numerical relations, be those relations axiomatic
for a class of numbers (e.g., the field axioms) or associated with the constraints of a
particular problem context.

Functions involving quantities pose challenges of their own, a quantity being a
“property of a phenomenon, body, or substance, where the property has a magni-
tude that can be expressed as a number and a reference (BIPM et al. 2012, p. 2).”
Quantities also include “counts” (number of entities) and dimensionless values such
as the quotient of two lengths.

Although some quantities, for example, length, area, volume and speed, are
standard objects of mathematics, developmental and mathematics education studies
have shown that students’ understanding of such concepts and their interrelations
progresses according to characteristic paths and constraints (Piaget and Inhelder
1974), even with the benefits of instruction (e.g., Lehrer 2003). This is no less true
of other quantities—weight, time, speed, unit-price, density, and so forth—that
routinely appear in word problems (Liu et al. 2017; Smith et al. 1992). Whenever a
student attempts to operate on quantities, beginning with the simple arithmetical
operations of addition, subtraction, multiplication, and division, she is engaged in
modeling (Greer 1997). Young students may find it challenging to determine what
operations correspond to certain relations among quantities. For example, a student
may initially find it odd to realize that the product of two different kinds of
quantities (e.g., speed � time) yields a third kind of quantity (distance) (Schwartz
1988, 1996). No such transformations of kind occur for the multiplication of
numbers. There are well-documented conceptual differences between operations on
numbers and operations on quantities for the cases of addition, subtraction
(Vergnaud 1982), and multiplication and division (Vergnaud 1983, 1988).
Although one hopes that students will someday treat certain operations on quan-
tities (joining amounts, offsetting one quantity value by another, comparing two
values) as having clear counterparts in the addition and subtraction of numbers, at
the onset of schooling students will often find it difficult to identify the operations
on numbers that correspond to operations and actions involving quantities.

Shortly we will turn our attention to how mathematics problems may be framed
so as to encourage generalizations and to address issues tied to relations among
quantities in our own work. It is important to note that a growing number of studies
are now available for similar analyses (Blanton et al. 2017, and this volume;
Brizuela 2016; Brizuela et al. (2015); Ellis 2011; Moss and McNab 2011).
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5.4 Algebraic Reasoning in the Classroom

We next describe students’ classroom discussions and written work from a selection
of lessons taken from three longitudinal studies we undertook with students from
grades 3 to 5 (details of lessons and analyses are available at http://ase.tufts.edu/
education/earlyalgebra/about.asp). The activities were designed to introduce
(a) variables, (b) the number line as a resource for representing additive relations
among quantities, (c) linear functions, (d) equations as a comparison between
functions, (e) graphs in the plane, and (f) solving equations with variables on each
side of the equal sign.

5.4.1 Variables in Relations

Students sometimes interpret a variable (typically, a letter in an algebraic expres-
sion) as representing a secret or mystery number, that is, a single value. This
interpretation often happens to be valid for problems involving equations. However,
to cultivate the idea that a letter can act as a placeholder for an arbitrary number or
quantity value in a domain, it may be useful to engage students early on with
problems involving unconstrained variables. When unconstrained, the ordered pair,
(n, f(n)), would then represent all the ordered pairs in a function. This is the
principal reason for considering relations, including functions, before introducing
linear equations.

The Candy Boxes Problem in Fig. 5.1 (see Carraher et al. 2008b for a more
detailed analysis) showed us that, under suitably supportive conditions, children as
young as 8 years of age can acquire the idea of a variable as a placeholder for an
arbitrary element of a set of numbers or quantity values. They can also express an
additive relation over two sets. Such welcome advances tend not to occur spon-
taneously. They generally require scaffolding and discussion management by the
teacher but, in our view, they are essential to students’ future work on algebra.

On a first reading, the story appears to be about John and Mary and two fixed
amounts. Not surprisingly, most students at first interpret the task as requiring them
to guess how many candies there are in the boxes. If actual boxes of candy are used
for the task, students heft or shake the boxes while listening carefully for any telltale
sounds (students are sometimes miffed when they learn that the boxes are padded to
prevent rattling). Some may question whether the instructor truly put equal numbers
of candy in each box.

Students are asked to state, or to draw on paper, something that represents the
number of candies for the two children. Eight- and nine-year-old students are
inclined to assign specific values to each amount. For example, a student may make
a drawing depicting a box with 7 candies to represent John’s amount, and another
box with 7 candies on which 3 additional candies rest, for Mary’s amount. Other
students will assign different numbers for John and for Mary.
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Occasionally, a young student will assign values that are inconsistent with the
given information—for example, 9, 11. It is important that all children come to
realize that, even though one may not know how many candies John has (he may
have 9) nor how many candies Mary has (she may have 11), if we are to accept the
problem description as accurate, it cannot be the case the John has 9 while, at the
same time, Mary has 11. In trying to justify why such a case is invalid, students
inevitably come to express some rule that has been violated, a rule such as “Mary
has to have 3 more than John.” After taking note of the range of predictions their
classmates have made and eliminating invalid pairs, their attention gradually shifts
to the valid pairs. In one classroom, once the invalid pairs were eliminated, a
student expresses this shift in thinking: “Everybody had the right answer because
everybody… has three more [for Mary]. Always.”

As the discussion proceeds, some students may suggest a large number (e.g., one
billion) for the amount in the box and increment that number by 3 for Mary’s
amount, as if to test the bounds of acceptable values. (What should the instructor
adopt as the implicit domain? Should the instructor require that the suggested value
for John’s amount actually fit in the box? Or should any answer consistent with the
problem wording be considered valid?) Others may draw question marks on each of
two boxes and draw an additional three candies atop Mary’s box.

So, gradually, with the help of the teacher, the focus shifts toward all ordered
pairs consistent with the wording of the problem. That is, the teacher attempts to
help students recognize the set of possibilities that are consistent with what we may
describe as the relation, (n, n + 3). Sooner or later, opportunities arise for dis-
cussing variables as placeholders for arbitrary values (although certainly not in
these terms).

At some point, it becomes expedient to introduce a letter for representing
unknown amounts. Although students may readily accept this suggestion, some first
speculate that the letter the instructor suggests, n, likely stands for “nineteen” or
“ninety” or some other number beginning with “n”). Others may suggest that
n stands for 14 (n is the l4th letter in the alphabet). The instructor may continue the
discussion and suggest, instead, that they adopt the convention that n (or some
arbitrary letter) stands for “any number.” Most students readily accept the sug-
gestion. Even so, other issues present themselves. Some students may suggest that
both John’s and Mary’s amounts be designated by the letter, n. It may still require a
bit of discussion for students to realize that John’s and Mary’s amounts should not
be represented by the same letter unless it were the case that they have the same
amounts. Other students may propose that j represents John’s amount and

John and Mary each have a box of candies.
The two boxes have exactly the same number of candies in them.
Mary has three extra candies on top of her box.
Draw or write something that shows how many candies John and Mary have.

Fig. 5.1 The Candy Boxes Problem
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m represents Mary’s amount. Although this is not incorrect, it does not capture the
interdependence of the amounts.

The expressions, j and j + 3, do convey the interdependence of the amounts, but
some students may find it unnatural to employ the letter j (which evokes “John”) in
Mary’s amount, j + 3. In such a case, it is important to stress that j stands, not for
John, but rather for the amount John happens to have.

A few more questions suggest some additional directions one might take after a
first lesson on candy boxes.

• What should we use to represent the total amount of candies of John’s and
Mary’s totals together? Is it possible that the total number of candies is 17? How
about 16?

• If someone told us that there were 21 candies in the box, how many candies
would each child have? What if there were k−1 candies?

With the next classroom example, we explore some of these additional issues
about the use of variables for expressing additive relations, albeit in a different
problem context.

5.4.2 Additive Relations in Diagrams and on the Number
Line

The Heights Problem, described in Fig. 5.2, involves a simple additive (ternary)
relation regarding the relative heights of three children. Two comparisons are given:
the difference between Tom’s and Maria’s heights and the difference between
Maria’s and Leslie’s heights. The question is to determine the difference in Leslie’s
and Tom’s heights. Comparison problems are known to be more challenging for
young children than “transformation” problems (see Vergnaud 1982, on additive
structures). In earlier publications about this lesson (see Carraher et al. 2006, 2016),
we focused on progress the pupils made in describing the general relation. Here we
would like to call attention to some of the scaffolding provided by the instructor in
helping the lesson move along profitably.

On one occasion, when we asked third graders to show the difference in heights
of two students standing side-by-side in front of the classroom, a student tapped the
top of the head of the shorter child and moved her hand horizontally to point to the
shoulder of the taller one. When questioned about where the difference started and
where it ended, she touched, simultaneously, the top of the shoulder and the top of
the head of the taller child. After discussing the problem’s statements, the instructor
encouraged the students to focus on the differences between the protagonists’
heights as lengths to represent the problem on individual worksheets.

Most of the students used drawings, vertical bars, or lines to show the three
heights. Some of them assigned a height to Maria; others, like in the example of
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Fig. 5.3, merely indicated the differences between Maria’s and Tom’s heights and/
or those between Maria’s and Leslie’s and/or between Tom’s and Leslie’s.

On another occasion, a grade 4 class of students encountered the problem for the
first time after they were already familiar with rudimentary letter-symbol usage.
One of the students chose to represent the heights on an “N-number line” (see
Fig. 5.4), similar to one they had been working with during previous lessons. On
this line, the origin was labeled N. To the right were N + 1, N + 2, N + 3, and so
forth; to the left were N − 1, N − 2, etc.

Fig. 5.2 The Heights Problem: Students were asked to show on paper the relative heights of the
three children (reprinted with permission from the Journal for Research in Mathematics Education,
copyright 2006, by the National Council of Teachers of Mathematics; all rights reserved)

Fig. 5.3 A student’s
representation of relative
heights based on the premises
that “Tom is 4 in. taller than
Maria, and Maria is 6 in.
shorter than Leslie”
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In her representation of the Heights Problem (bottom of Fig. 5.5), she had placed
Maria’s name at N, Tom’s name at N + 4, and Leslie’s at N + 6. The instructor
adopted her number line as a basis for a class discussion on the relative heights.

It is intriguing that this student realized that the N-Number Line would help to
clarify the problem at hand. The other students voiced acceptance of her idea and
represented Maria’s, Tom’s, and Leslie’s heights at N, N + 4, and N + 6, respec-
tively (middle line in Fig. 5.6). To explore whether the students realized that the
placement of the first protagonist was arbitrary, the instructor asked the students
whether Leslie’s height might have been N. They were able to determine that Tom’s
height would then be N − 2 and Maria’s would be N − 6 (bottom number line in
Fig. 5.6). When the instructor proposed that Tom be placed at the value N, the
students decided, after some discussion, to place Leslie at N + 2 and Maria at
N − 4 (top number line in Fig. 5.6). When asked which of the three diagrams was
correct, the students agreed that it did not matter; it all depended on the person
whose height would be assigned the value N. It is evident that the number lines and
algebraic notation being employed to help students structure the problem helped
them articulate their thinking about the relations among the three heights.

5.4.3 Linear Functions in Tables and Algebraic Notation

Diagrams provide a useful way to examine the functions underlying figurate
numbers (Weisstein 2017). Likewise, diagrams can be used to help students visu-
alize and systematically explore discrete change in a sequence of geometric figures.
They are often used in early grades for students to extend patterns. For example,
triangular numbers (1, 3, 6, 10, 15, 21, …) can be conveniently modeled with
diagrams of dots arranged in the shape of a right triangle, in which each successive
triangle is formed by adding a new row of dots to the base of the triangle such that
the new base has one more dot than the predecessor’s base. It happens that trian-
gular numbers correspond to the function, f(n) = n(n + 1)/2, where n refers to the
step number.1 Although young students can easily extend the sequence of figures,
identifying the function is considerably more demanding.

Fig. 5.4 The N-Number Line

1As others have noted (Moss and Beatty 2006), if one intends to eventually arrive at a closed form
expression of the function, as opposed to a sequential listing, it is important to systematically keep
track of the step number as well as the corresponding value of the function; this is easily achieved
by using a table with a column for step numbers and another for the corresponding values of the
function.
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Fortunately, there are variants of figurate number problems that correspond to
much simpler functions. In our studies, square-shaped dinner tables, successively
adjoined end to end, provided a useful context for exploring the linear function, g
(n) = 2n + 2, where n refers to the number of tables and g(n) refers to the maximum
seating, assuming that one person can sit at each free individual table edge in the
configuration.

In the second half of third grade, students in one of the studies worked on the
“Dinner Tables Problem” (see detailed analysis by Carraher et al. 2008a). Students
first discussed and represented how many people could sit at the sides of separate
square tables, under the constraint that only one person could sit at each side. Next,
they were told that, in a restaurant, square tables were adjoined in a straight line,
with one person sitting at each free edge of the tables. The instructor started by

Fig. 5.5 A student’s vertical drawing (vertical arrangement of numbered notches) showing that
Tom was 4 in. taller than Maria (at the baseline) and Lesslie [sic] was 2 in. taller than Tom; she
expresses the same relation in the lower part of her drawing using the N-Number Line (reprinted
with permission from the Journal for Research in Mathematics Education, copyright 2006, by the
National Council of Teachers of Mathematics; all rights reserved)
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drawing two, three, or more tables and, together with the students, counting the
number of free edges of the tables and registering the results in a data table.

After exploring the pattern according to which seating capacity increased with
the number of tables, the students were asked to find a rule that would allow them to
determine how many people could sit at any number of tables, based on that
number of tables and presuming that they did not have the time to go through all of
the cases from 1 to n tables.

The students found several ways to parse the problem. And these variants were
reflected both in the explanations and the formulas they came up with. As the
instructor discussed and completed, on the blackboard, a data table emphasizing the
relationships between possible number of tables and possible number of people,
some students noted that the seating capacity could be represented by n + n + 2,
reasoning that each n represented the number of people who could sit at each long
edge of the line of tables and the 2 represented the people at the far ends of the line
of tables. After examining the data in the table, others suggested the expres-
sion 2t + 2 to represent two times the number of tables plus two seats at the ends
(see Fig. 5.7). Those students who produced a valid algebraic rule did so only after

Fig. 5.6 Three “variable number lines” drawn by students and their teacher as they discussed the
cases where Maria (middle number line), Leslie (bottom number line), and Tom (the upper number
line) are successively assigned a height of N (reprinted with permission from the Journal for
Research in Mathematics Education, copyright 2006, by the National Council of Teachers of
Mathematics; all rights reserved)
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reviewing the table of data. On one occasion, a student reasoned that it was as if
each table could seat exactly two people, but, in his imagination, he incremented the
number of tables by one to account for the two seats at the ends. A few students
tried approaching the problem by working from the premise that n unattached tables
offers 4n seats, from which the number of “blocked” edges would be subtracted;
however, in no case did they find a way to succinctly express the number of blocked
seats (2n−2).

5.4.4 An Equation as a Comparison of Functions

After being introduced to various representational forms of functions, from verbal
statements to number lines, tables, algebra notation, and graphs (see details in
Carraher et al. 2006, 2016; Schliemann and Carraher 2002, 2016), we found that
fourth grade students, already familiar with functions and simplified functional
notation, could come to understand and solve a problem as a comparison between
two functions expressed in a data table and as two intersecting lines in a coordinate
space (see details in Carraher et al. 2008b). Figure 5.8 shows the problem students
were given.

Fig. 5.7 A student’s
representation of the Dinner
Tables Problem

Mike has $8 in his hand and the rest of his money is in his wallet;
Robin has exactly 3 times as much money as Mike has in his wallet.
What can you say about the amounts of money Mike and Robin have?

Fig. 5.8 The Wallet Problem
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Note that, unlike typical algebra problems, this problem does not assert at the
outset that Mike and Robin had the same amount of money. Nor does it ask students
to find out how much money there is in the wallet or how much either of the boys
had. Instead, students were simply asked to represent the problem, after a whole
classroom discussion where they read the problem and were asked to consider who
might have more money.

During the discussion, students invariably assumed that one of the two pro-
tagonists had more money than the other. Many interpreted one of the statements as
meaning that Robin’s amount was three times Mike’s total amount; accordingly,
they claimed that Robin had more money than Mike. Others noted that Mike
already “began”2 with more money, namely the $8 held in his hand. Some of those
students claimed that Mike had more money.

Several minutes of whole-class discussion, moderated by the instructor, were
needed for the students to realize that Robin only had three-times as much money as
Mike had in his wallet, not three times Mike’s total. The students were then asked
to individually represent the situation in writing. Over 60% of them used algebraic
notation to capture the functional relationships among the variables (see Fig. 5.9 for
one example).

The instructor then suggested filling in a three-column table on the board, one
for possible number of dollars in the wallet (w), another for Mike’s amount (w + 8),
and a third one for Robin’s amount (3w). By examining the data in a table, the

Fig. 5.9 A student’s representation of the Wallet Problem (it is unclear why the student felt the
need to provide (tautological) equations)

2Such remarks reflect a student’s proclivity to frame the co-variation among the variables in terms
of a story unfolding over time.
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students realized that, if there were $4 in the wallet, Mike and Robin would have
the same amount of money; for amounts smaller than $4 Mike would have more
money; and for amounts larger than $4 Robin would have more.

The instructor then showed the students a line graph in the Cartesian space (for
Mike’s amounts). The students recognized that the line represented Mike’s total,
noting that it “started at 8”. They predicted that Robin’s line would start at 0 and
would be steeper than Mike’s. They also recognized that the point where the two
lines cross indicated that, when there was $4 in the wallet, Mike and Robin had the
same amount. They also noted that Mike’s total increased by $1 while Robin’s
increased by $3, for each additional dollar in the wallet.

For these students, w, the amount of money in the wallet, was a variable, not a
single value. The two functions were equal for the case when there was $4 in the
wallet. For all other values, one boy would have more money than the other.

These observations suggest to us that fairly young students can learn to
understand and represent variables as placeholders for sets (rather than simply a
single missing value). Furthermore, students appear able to grasp that algebraic
expressions, w + 8 and 3w, may represent functions that can be visually depicted
and compared on the Cartesian plane. They also appear able to find solutions as
well as conditions of inequality corresponding to the expressions, 3� w\wþ 8
and 3� w[wþ 8. This corresponds to the idea that the graphs represent both an
equation and two inequalities. The students did not work with an equation in the
traditional sense as a string of characters. We are using equation in the
non-technical sense of a situation in which one amount is equal to another amount.

5.4.5 Solving an Equation-Like Word Problem Using
Algebra

In one of the lessons (see details in Brizuela and Schliemann 2004), taught to fourth
graders (9- and 10-year-olds), the instructor presented to the classroom known
amounts of candies in transparent bags and unknown amounts of candies in two
types of opaque containers, tubes and boxes. Bags, tubes, and boxes were displayed
on two desks, in front of the classroom, so all students could see what each girl in
the problem would have. Figure 5.10 shows how the situation was described.

Two students have the same amount of candies. 
Briana has one box, two tubes, and seven loose candies. 
Susan has one box, one tube, and 20 loose candies. 
If each box has the same amount and each tube has the same amount, can you figure out
how much each tube holds? What about each box?

Fig. 5.10 Description of the Tubes and Boxes problem situation
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The situation corresponds to the equation 2xþ yþ 7 ¼ xþ yþ 20, although it is
important to note that the students were not initially given the equation. Instead,
they were shown a situation in which on one side of the desk there was Briana’s
candy, consisting of the content of two “tubes” (cylindrical containers), one closed
box, and 7 “loose” candies in a transparent bag. On the other side of the desk there
was Susan’s candy, which consisted of the contents of one tube, one closed box,
and 20 loose candies. The students were told that each tube contained the same
number of candies, each box had the same number of candies (though not neces-
sarily the same number as in a tube) and that Briana and Susan had the same total
number of candies. The goal was to have the students determine how many candies
were in each tube.

Early on, one of the students suggests that the tube has 13 candies and explains
that, if there are 13 candies in Susan’s tube, together with the bag, there would be
the same amount of candies as on Briana’s desk. Another one volunteers that the
amount in the boxes does not matter. He explains that if Briana’s tube has thirteen,
then the 7 loose candies would make it 20, plus 13 more for her second tube, which
would be 33. He explained that Susan had 13 in her tube plus the 20 loose candies,
which is 33. He says that because of this, the box, no matter what number it is, will
still make the two girls’ total amounts equal. As another student asks the first
student to, once more, explain his view, he further elaborates: “…in each tube it’s
thirteen chocolates and put together with the chocolates in the bag equal twenty.
And then one tube with one tube will equal the same thing.” Still another student
jumps into the discussion and explains that she thinks that what Albert is “trying to
say is that the candies that are in Susan’s bag, are like sort of making up for another
tube that Briana would have.” She is referring to Susan’s additional candies
(20 − 7 = 13). This difference, favoring Susan, would need to be compensated by
the candies in Briana’s additional tube.

After the discussion, the students were asked to represent the situation and the
solution to the problem in writing. Figure 5.11 illustrates the work of one of the
students. She arranges drawings and algebraic notation to represent the situation in
a two-column table; she cancels out one tube and one box from each side of the
table, and represents what is left on one side (20 candies) as 7 + 13 and what is left
on the other side as N + 7; and she cancels out 7 from each side to show that there
are 13 candies in a tube.

In another example (Fig. 5.12), the student writes the
equation 20 + N + J = 7 + 2N + J, and solves it explaining: “I broke 20 into 7 and
13. Then matched 7 and 7. Then broke 2N into N and N and matched them. Then
13 equals N.”

A student demonstrated a similar solution on the board (similar to that shown in
Fig. 5.12) and suggested that they “trash the boxes” (eliminate the boxes from
consideration).

So, it appears that fourth grade students, after participating in our classes since
third grade, could learn to meaningfully represent equations with variables on each
side of the equals sign by acting on symbolic representations of the equation and
enacting equal transformations on each side of the equation (Brizuela and
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Schliemann 2004; Schliemann et al. 2013). This is perhaps surprising, in light of
previous research results showing that older students (from 12 to 13 years of age)
often have difficulties operating on unknowns, understanding that equivalent
transformations on both sides of an equation do not alter its truth value, and solving
equations where variables appear on both sides of the equal sign.

To be fair, it may well be the case that the first student’s quick reasoning made
the solution available to students who may not have been able to solve the problem
on their own. Although this is quite possibly true, it also seems apparent that there
are ways to frame problems in which the relations among quantities are mean-
ingfully represented before algebraic notation is brought onto the scene.

Fig. 5.11 A student’s solution with drawings and algebra notation

Fig. 5.12 A student’s equation and solution to the problem
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5.5 Evaluating Student Learning

The classroom discussions and students’ written productions across the many les-
sons they participated in along the years of each project show that algebraic rea-
soning and representations are within reach of many eight- to eleven-year-olds. The
reader may, however, question whether this was the case for most of the students or
just for a few of them. To address this question, as we describe next, we conducted
individual interviews and collected data on written assessments by students who had
participated in our lessons and by students in control groups of the same schools.

5.5.1 Interviews at the End of Fourth Grade

In the second of our studies, three to four weeks after the last early algebra class in
grade 4, we evaluated students’ progress in the intervention by individually inter-
viewing them. Their responses were compared to the interview responses of a
control group of 26 fifth graders from the same school. The following are some of
our main findings (see Schliemann et al. 2003):

(a) 85% of the 4th graders in the intervention correctly stated that the equa-
tion 6 + 9 = 7 + 8 was true while 65% of the grader 5 control students did so.

(b) To represent that Mary had three times as much money as John, 70% of the
intervention students represented John’s amount as N and Mary’s as N � 3.
Among the controls only 29% of the children used variable notation.

(c) When asked which of three line graphs showed that “Mary has three times as
much money as John”, 78% of the students in the intervention group chose the
correct line and 39% provided general justifications that took into account any
possible pair of numbers. In the control group, only 46% of the students chose
the correct line and only 25% justified their answers by considering any pos-
sible pair of numbers.

(d) The students were asked to represent in writing and to solve the following
problem:

Harold has some money. Sally has four times as much money as Harold. Harold earns
$18.00 more dollars. Now he has the same amount as Sally. Can you figure out how much
money Harold has altogether? What about Sally?

To solve the problem, 56% of the students in the intervention group represented
Harold’s initial amount as a letter such as N, 49% represented Sally’s amount as
N � 4, 35% wrote N + 18 for Harold’s amount after earning 18 more dollars, 17%
wrote the full equation N + 18 = N � 4, and 27% correctly solved the problem.
However, only 6% (four students) systematically used an algebraic method to
simplify the equation. Among the controls, 23% of the students solved the problem,
but not a single one used algebraic notation or equations to find the solution.
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5.5.2 Written Assessments at the End of Fifth Grade
and Beyond

At the end of the third three-year classroom intervention, in which 26 eight- to
eleven-year-old children (third to fifth graders) participated in weekly early algebra
lessons, we found (see Schliemann et al. 2012) that students’ performance on a
written assessment was significantly better than that of a control group for items
related to the early algebra intervention, with the two groups performing equally
well on items not related to the intervention lessons (Fig. 5.13).

In the following year, the school’s regular teachers taught the third and fourth
grade lessons to a new cohort of 24 students. Over the three years after the end of
our intervention we followed up 20 students from the two cohorts. When they were
at the end of seventh and eighth grade, these students were given a written
assessment on questions related to the early algebra intervention as well as more
advanced problems, typical of the middle and high school algebra curriculum in
their schools. These problems were designed by the research team or taken from the
NAEP (National Assessment of Educational Progress), MCAS (Massachusetts
Comprehensive Assessment System), and TIMSS (Trends in International
Mathematics and Science Study) assessments for middle and high school. Fifteen of
the items were on solving linear equations, solving verbal problems by representing
them as equations, solving the equations, and interpreting the results of their
solutions. Five items included the graphical representation of non-linear functions
in the four quadrants of the Cartesian space. The assessment was also given to 19
students from the same geographic area and grade levels.

Figure 5.14 compares the results of seventh and eighth grade control (n = 19)
and experimental (n = 20) students for Equations and Graphs items, two years

Fig. 5.13 Average number of correct answers by groups at the end of the intervention (fifth
grade) for 28 items related and 22 not related to the intervention
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(seventh graders) and three years (eighth graders) after the end of the intervention.
The treatment group performed better than the control group on both types of
problems; the difference between the two groups was significant for Equations, but
not for items on Graphs.

In addition, three years after the experimental group of students had concluded
fourth and fifth grades and had completed seventh and eighth grades (they were
then 12–14 years of age), our research group implemented a free one-week algebra
Summer Camp. The camp was attended by six of the experimental group students
and by 19 control students in the same grades. Assessment data were obtained for
these students before and after the Summer Camp. Figures 5.15 and 5.16 show the
two groups’ results at the start and at the end of the summer camp, for equation and
for graph items respectively (see Schliemann et al. 2012).

The early algebra students performed better than the control group on both sets
of assessment items, before and after Summer Camp, and the difference between the
two groups increased after participation in camp lessons. Differences were signif-
icant before and after camp for Equations. For Graphs, the difference between
groups was not significant before, but became significant after the camp lessons.
These long-term results, although preliminary and based on relatively few children,
nonetheless suggest that students who had participated in the early algebra inter-
vention were better able than their control peers to benefit from the camp lessons on
topics of algebra that are part of the middle and high school curriculum.

5.5.3 In Summary

Our results, as well as those by Blanton et al. (2017, also this volume), who
systematically documented the substantial and significant progress made by

Fig. 5.14 Average number of correct answers by groups, two to three years after the intervention
(i.e., at seventh and eighth grade), on 15 Equation items and 5 Graphs items
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students who participated in an early algebra intervention that also places strong
emphasis on variables and functions from the early grades, support calls for changes
in the curriculum. A question that frequently arises, however, regards the ability of
teachers to implement such views in the teaching of the curriculum they are asked
to follow. Next, we describe the results of a program that built upon our approach to
algebra and functions in the early grades and aimed at preparing teachers in higher
grades.

Fig. 5.15 Average number of correct answers by groups on 15 Equation items, before and after
Summer Camp

Fig. 5.16 Average number of correct answers by groups on 5 Graph items, before and after
Summer Camp
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5.6 Preparing Teachers to Cultivate Algebraic Thinking

Several years ago, we developed, in close collaboration with mathematicians and
physicists, and with input from target school districts, an intensive, three-semester
long program of in-service teacher education constructed around the idea that
functions and early algebraic thinking can play a central role in integrating other-
wise isolated topics in the early mathematics curriculum, while providing ways to
explore topics in the current mathematics curriculum more deeply. The interested
reader will find a detailed description of the conception and structure of the pro-
gram, known as The Poincaré Institute (https://sites.tufts.edu/poincare/), in
Teixidor-i-Bigas et al. (2013) and Schliemann et al. (2017). In the three
graduate-level courses offered by the program through the Tufts University
departments of Mathematics and Education, teachers analyzed and implemented
ideas and examples of classroom activities based on our previous classroom
research and grounded in the mathematics of functions.

5.6.1 The Teacher Development Program

The program has offered, since 2011, three online and face-to face graduate level
courses to four cohorts of 60 teachers each, from ten school districts in the
Northeastern USA (six in Massachusetts, three in New Hampshire, and one in
Maine). Teachers meet once a semester at the university campus and weekly in their
schools. Instructors participate in online discussions, provide online feedback, and
visit school districts once a month.

Teachers read and discuss written notes on mathematical content and solve and
discuss math challenges in online groups of eight to ten teachers. Working in small
groups of three to five teachers in their schools, they interview students about
selected topics to understand their ways of thinking and plan, implement, evaluate,
and improve classroom activities. They also analyze examples of videotaped les-
sons from our studies on algebraic reasoning in the early grades, in terms of
mathematical concepts and representations, teaching strategies, and students’ ideas
and achievements. They discuss how course topics relate to the lessons they teach
and consider how to modify prescribed curriculum activities based upon what they
are learning in the program. Overall, teachers work an average of 10 h per week in
course assignments.

The written notes, challenge questions, and course activities focus on the role of
functions as a unifying concept throughout the K–12 curriculum, from the stand-
point of mathematics and of mathematics teaching and learning. The courses
emphasize multiple representations, including verbalizations, geometric tools (in
particular, number lines and Cartesian graphs), function tables, and
arithmetical-algebraic notation, as representations of the same abstract mathemati-
cal objects, to deepen the understanding of arithmetic operations, fractions, ratio,
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proportion, and the syntax of arithmetic and algebra. Teachers deal with equations
and inequalities as comparisons between functions, solve equations using trans-
formations of the plane, and are introduced to notions of change and invariance in
terms of the behavior of functions.

The first course builds on the idea of numbers from representations of quantities
to more abstract conceptions of numbers as mathematical objects. Teachers work on
fractions and decimals, rational and irrational numbers, and the many ways num-
bers can be represented, for example, as points on the real line or an oriented
segment. They then consider arithmetic operations as functions of a single or of two
variables. The second course deals mostly with transformations of the line and of
the plane as a way to understand functions and the solution of equations as the
comparison between two functions. The third course compares linear to non-linear
functions and takes a closer look at non-linear functions and rates of change.
Questions regarding divisibility appear in the study of numbers, in the solution of
Diophantine equations, and in the factorization of polynomials for solving poly-
nomial equations.

The program devotes less time to the mechanics of algorithms and far more to
understanding why these algorithms work and how mathematical concepts are
interconnected. There is an emphasis on historic and typical middle school students’
conceptions about the topics, on how mathematics is used to model science and
real-life situations, and on how different representations can engage different types
of learners and emphasize different properties of each model or tool.

5.6.2 The Impact of the Teacher Development Program
on Teaching and Learning

We have encouraging evidence that the teacher development program contributes
significantly to mathematics teaching and learning. Observations of classroom
activities of 48 teachers in the first cohort attending the program by external
evaluators (The Intercultural Center for Research in Education—INCRE), using the
Reformed Teaching Observation Protocol (RTOP) measurements, found that, by
the end of the program, teachers were increasingly (1) using and encouraging their
students to use multiple representations (e.g., number lines, tables, graphs, and
algebraic notation), (2) spending more time addressing their students’ mathematical
reasoning, and (3) analyzing mathematics problems from various perspectives.
Changes in teachers’ practice were even greater six months after this cohort of
teachers had completed the Poincaré program, as found in additional in-class
observations of 28 teachers. By then, the teachers’ average RTOP score was nearly
a full standard deviation above the average at the beginning of the program. These
improvements were maintained one year later (INCRE 2014).

Course 1 was offered to the first cohort of teachers in the spring of 2011. At that
time, student proficiency in mathematics (percentage of students at the Proficient
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and Advanced levels), according to the Massachusetts Comprehensive Assessment
System test (MCAS) results, was below the levels for the state of Massachusetts,
but very close to that of carefully matched districts. Three years later, the situation
had significantly changed. Students in participating districts had narrowed the
performance gap with regard to the state of Massachusetts. Furthermore, they had
significantly outperformed the matched districts in terms of general mathematical
proficiency. From the start to the end of teachers’ participation in the program,
changes for students in participating districts were significantly higher than those in
matched districts, which showed practically no improvement. There was also a
powerful “dosage” effect: districts’ performance advantage over matched compar-
ison districts increased in direct proportion to the percentage of teacher graduates in
the district (Spearman’s r = 0.54, p = 0.007). This provides additional evidence
that performance differences between participating and matched districts were due
to the program (see Schliemann et al. 2017; and short report available at https://
sites.tufts.edu/poincare/research-and-impact/).

We are still in the early stages of understanding the mechanisms underlying the
success of the Poincaré Institute in helping teachers gain expertise in advancing the
mathematical proficiency of students. As the research unfolds, we hope to obtain a
closer look at how functions can help provide teachers and students with tools for
exploring mathematical ideas more deeply.

5.7 Closing Thoughts

We do not expect there to be universal agreement about the definition of “early
algebraic thinking” because the idea entails theoretical issues (e.g., “What mental
processes underlie students’ understanding of functions and how do they
develop?”), as well as value premises (e.g., “What are the most important sorts of
mathematical competence to nurture among young students?”; “What features of
algebra are most appropriate for young learners?”). This is not to say that a defi-
nition of early algebraic thinking is entirely arbitrary. Research about how children
reason, particularly in special circumstances, where there is an effort for them to
develop certain algebra-related competences, can help determine how promising an
approach to early algebra may be.

Here we have taken the view that algebraic thinking refers to reasoning that
expresses itself as statements or other representations denoting relations among sets
of elements, typically numbers or quantities. We have found it useful to include, as
representations of algebraic thinking, various forms (linguistic, tabular, graphical,
diagrammatic, etc.) in addition to algebraic notation because algebraic thinking may
be cultivated before algebraic notation is introduced. These alternative forms of
algebraic expression are widely accepted as legitimate embodiments of relations
(including functions), which, we have argued, play critical roles in algebraic rea-
soning insofar as they express associations between sets of numbers and quantity
values. This inclusion of non-notational expressions of algebraic reasoning does not
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diminish the importance of algebraic notation itself, which, we have tried to argue,
can lend itself favorably to algebraic problem solving among young students.
Algebraic notation first offers itself as a means for succinctly expressing relations
and generalizations that have been attained largely on the basis of semantics. Over
time, algebraic notation plays an increasingly important role in structuring and
guiding reasoning itself.

It is true that algebra entails axioms and conventions regarding the formulation
and transformation of notational expressions. But, for most young students, these
features, or perhaps the spirit with which such axioms and conventions are given,
may not offer the best entryway into algebra. There is a vast body of research
indicating that children’s early mathematical understanding springs from their
actions and reflections upon physical quantities. Actions of counting, partitioning,
and joining sets of objects provide a major inroad to the set of natural numbers.
Measuring and sharing continuous quantities pave the way to the rational numbers
(or at least the non-negative rationals). Algebraic structures are indeed important,
but one cannot reasonably argue that formal mathematical properties, such as the
field axioms, are first accepted as arbitrary axioms. After all, they are confirmed
through the child’s experience. A young student acknowledges the associative,
commutative, and distributive properties of the group of counting numbers for
adding and multiplying not because she is willing to adopt them as axioms but
rather because these properties actually match her own experience with collections
of objects. The student eventually refrains from attributing commutativity to the
operations of subtraction and division because the counterparts of these operations
in the extra-mathematical world, for example, taking away and sharing, do not
behave commutatively.

So, although, the student may someday come to understand algebra as a formal,
self-enclosed language, algebra is born and largely raised, like arithmetic, in
extra-mathematical situations. Arithmetic and algebra both entail modeling rela-
tions among quantities. Each of the tasks discussed here (Candy Boxes, Relative
Heights, Dinner Tables, Wallet Problem, Tubes and Boxes) centered around the
issue of describing relations among quantities.

Are quantities so different from numbers as to merit special consideration? We
would respond with a qualified “yes.” From the moment multiplication and division
are introduced, students are asked to deal with situations for which they must
represent relations involving three different kinds of quantities. For instance, stu-
dents must make sense of the product of a speed and a time as a distance. This does
not have a counterpart in the realm of pure number. Why does a volume divided by
an area produce a length? What sort of function can take a volume as input and
return a weight as output? If such cases fall within the realm of elementary
mathematics (and not solely science), then mathematics, including arithmetic and
algebra, entails the study of both number and quantity. This has significant
implications for the education of prospective teachers of elementary mathematics.

Even so, numbers can have, and need to have, a life of their own. Students need
to be able to operate on numbers without thinking about physical objects or their
attributes. And algebraic expressions need not always be about quantities; they can
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and should represent numbers or even be taken as pure tokens that can be
manipulated without a need for interpretation.

In the classroom episodes reviewed, there were some indications that, although
the tasks were initially presented as “real-world problems,” students increasingly
focused, with encouragement from instructors, on features and constraints of the
representations themselves. Word problems often require students to recast or
reframe the problem in a way that makes it more general and therefore more
amenable to expression through representations involving relations among sets of
values. The Candy Boxes problem was initially presented as an exploration of
specific amounts associated with the contents of boxes brought into the classroom.
As the lesson progressed, the problem gradually became one of determining all
ordered pairs of natural numbers (possibly within a limited domain of values) that
qualified as members of the relation (n, n + 3), the function n 7! nþ 3 or its inverse,
n 7! n� 3.

When a student chose to represent differences in heights as relative distances on
the N-Number Line, the problem was transformed from one merely about the
heights of three children to that of finding diverse, equivalent functions underlying
the relation (n, n + 4, n + 6). The Wallet problem, like the Candy Boxes problem,
was interpreted initially as a simple comparison of two amounts of money. Each
boy’s amount needed to be re-conceptualized, not as a fixed value, but instead as a
function of the amount of money in the wallet. Once several of the ordered pairs
were found, a graph of each function could be drawn. On the graph, the solution
manifested itself as the x-coordinate of the two lines’ intersection; that corre-
sponded to an amount of money in the wallet associated with an equal total amount
for each boy. All values of x (the amount in the wallet) less than $4 correspond to
the inequality according to which Mike’s amount (x + 8) is greater than Robin’s
amount (3x). All values of x greater than $4 correspond to the inequality according
to which Mike’s amount is less than Robin’s amount. So, the graphs express the
equation, xþ 8 ¼ 3x, as well as two inequalities.

The Dinner Tables task was presented as a problem of finding a succinct rule
according to which the seating capacity increased depending on the number of
tables. Tables joined end to end offer seating places according to a “logic” that
might be conceptualized in various ways, for example, as “two places at each table
plus two end places (2tþ 2Þ, or “three places at each end table plus two more for
each table in the middle 3þ 3þ 2 t � 2ð Þð Þ. Successful teachers tend to consider the
degree to which an algebraic expression may match or mismatch a student’s rea-
soning about the relations among quantities. They will also help students realize
that different conceptualizations, and different algebraic expressions, may be
equivalent in the sense that they validly describe the same relation.

The Tubes and Boxes problem corresponded to another comparison of functions,
each of which initially seemed to depend on two variables, the number of candies in
a box and in a tube. Equations with variables on each side are notoriously chal-
lenging for, and sometimes considered beyond the reach of, young students. But in
the context of variable quantities in a meaningful situation, the students approached
the problem by first eliminating one of the variables (the amount of candies in a
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box) and then used their intuitions about the operations that might preserve the
equivalence and enable them to find a value for the remaining variable (the number
of candies in a tube) that would yield the same total for each of two students. The
claim that they solved the problem intuitively requires a proviso. The algebraic
expressions did not simply register what students had concluded by their own
intuitive methods. Once the students had at their disposal the algebraic notation on
their individual written work and on the white board, they found it useful to make
simplifications by acting directly on the notation. For example, they recommended
partitioning the bag of 20 candies into 13 + 7, so as to allow them to remove 7 from
each term. By modifying the equation accordingly, they registered a more
streamlined representation of the problem. Already at this early stage in their
understanding, the notation was helping them express what they knew about how
the quantities were composed and to transform the equation into a simpler form.

In our earlier publications about early algebraic thinking, we placed considerable
emphasis upon the achievements of the students, so much so that we may have
understated the critical roles of the teachers. Although children may be capable of
learning algebra from an early age, realizing this potential is not a simple matter of
unleashing their capabilities. Algebra draws on ways of reasoning, kinds of problem
situations, and systems of representation (notation, graphs, number line diagrams,
certain ways of formulating relations in spoken language) that a child will generally
not learn about, much less invent, on her own. The mathematics teacher and, to a
lesser extent, the student’s peers, play a vital role. The skeptic need merely imagine
how much students would have learned had they been given written versions of the
tasks and instructed to solve them on their own, without further discussion with and
guidance from the instructor.

When algebra is approached from the perspective of relations, especially func-
tional relations, the teachers may help improve students’ performance in mathe-
matics, as suggested by the results of our teacher development program. Whether
this is due to the framing of mathematics, the nature of activities that come to the
fore, or to the teachers’ enhanced ability to attend to and nurture the thinking of
students remains open to discussion. In any case, it would seem to demand
long-term preparation of teachers to view mathematics and the teaching of math-
ematics from fresh perspectives.
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Chapter 6
Characteristics of Korean Students’ Early
Algebraic Thinking: A Generalized
Arithmetic Perspective

JeongSuk Pang and JeongWon Kim

Abstract This chapter reports two studies that examined the early algebraic
thinking of Korean students. Firstly, it deals with students’ understanding of the
equal sign, expressions, and equations as they progress through elementary school.
Secondly, it investigates how third graders respond to diverse assessment items
related to early algebraic thinking. The overall results show high percentages of
correct answers. Whereas a majority of students showed a tendency to use com-
putation, a detailed analysis of strategies used by students indicated some were
capable of employing a structural approach. This chapter closes with discussions of
the development of early algebraic thinking through the mathematics curriculum
and the relationship between computational proficiency and algebraic thinking.

Keywords Early algebraic thinking � Equal sign � Expression � Equation
Variable

6.1 Introduction

Various studies in early algebra have been conducted on the nature, process,
learning, and teaching of algebraic thinking (Kieran et al. 2016). Such studies
demonstrate young students’ algebraic thinking with the support of well-designed
intervention programs promoting early algebraic thinking. This chapter reports two
studies that examined the early algebraic thinking of Korean students. As early
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algebraic thinking has not yet been explicitly mentioned in the national mathe-
matics curriculum of Korea, the results of the studies would be expected to reveal
both the successes and the difficulties of algebraic thinking development under the
current elementary mathematics curriculum. As such, this chapter is expected to
contribute in two ways to the monograph: (a) As little has been known in inter-
national contexts of the algebraic thinking of Korean students, this chapter adds
new and informative data to the field; and (b) by interpreting students’ performance
in relation to the current mathematics curriculum, this chapter urges intentional
interest in improving the current mathematics curriculum to foster early algebraic
thinking.

6.2 Background to the Study

6.2.1 A Generalized Arithmetic Perspective
on Algebraic Thinking

Building on the identification of three strands of algebra by Kaput (2008), most of
the early algebra research adopts a generalized arithmetic perspective with an
emphasis on structures and relations arising in arithmetic, and a functional per-
spective with an emphasis on functions, co-variations, and changes. Note that the
term generalized arithmetic has been used within the context of early algebra in a
broad sense to include the properties and relations arising in arithmetical operations,
without necessarily using letter-symbolic notations. As such, a generalized arith-
metic perspective on content “not only includes number/quantity, operations,
properties, equality, and related representations and diagrams, but also can include
variables, expressions, and equations” (Kieran et al. 2016, p. 12).

As arithmetic has been regarded as the main context for early algebraic thinking
(Carpenter et al. 2003; Kieran 2014), many studies have been conducted to probe
children’s understanding of the equal sign, expressions, and equations (Molina and
Ambrose 2008; Stephens et al. 2013). It has been well documented that many
students regard the equal sign as an operator to perform a calculation or as a signal
to write down the answer that comes next (Kieran 1981).

The development of a relational understanding of the equal sign, which inter-
prets the equal sign as a symbol to represent an equivalence relation between two
expressions rather than as an operator, has been emphasized as fundamental to early
algebraic thinking (Blanton et al. 2011; Knuth et al. 2006). Specifically, Matthews
et al. (2012) developed a construct map for students’ various conceptions of the
equal sign in terms of four levels: (a) students at the rigid operational level are
successful with typical equations having operations on the left side of the equal
sign; (b) students at the flexible operational level are successful with atypical
equations having operations on the right side of the equal sign or no operations;
(c) students at the basic relational level are successful with equations having
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operations on both sides and accept a relational definition of the equal sign; and
(d) students at the comparative relational level compare the expressions on the both
sides of the equal sign and consistently generate a relational interpretation of the
equal sign. The researchers designed a comprehensive set of tasks to assess stu-
dents’ understanding of the equal sign and ultimately of mathematical equality. The
tasks were given to 224 students in Grades 2–6. Results showed that students had
some difficulty when all operations were on the right side of the equal sign and
experienced greater difficulty when operations were on both sides of the equal sign.
Even students who successfully solved the items requiring a relational under-
standing of the equal sign tended to fail to generate a relational definition of the
equal sign in words. An important finding of this study is that the children with an
advanced understanding of the equal sign tended to solve difficult equations, which
suggests a link between knowledge of the equal sign and algebraic thinking.

Byrd et al. (2015) focused on how a specific misconception of the equal sign
may hinder students’ learning of early algebra. The researchers differentiated the
interpretations of the equal sign in three ways: (a) arithmetic-specific (e.g., “it
means when you add something, you get the total”); (b) non-relational (e.g., “end of
question”, “a symbol to let you know the answer is next”); and (c) relational (e.g.,
“something is equivalent to something else”). Children who interpreted the equal
sign in arithmetic-specific terms showed lower performance in solving early algebra
items than those who defined the equal sign in a non-relational way but without
using arithmetic-specific words. The negative effects of an arithmetic-specific view
of the equal sign on early algebra learning occurred more for the fifth graders than
for the third graders. This implies that an arithmetic-specific interpretation needs to
be replaced by a relational or at least another non-relational view before students
learn mathematical equivalence and its concomitant concepts in upper elementary
grades.

An understanding of the different meanings of variable, coupled with a relational
understanding of the equal sign, is fundamental in early algebra (Blanton et al.
2011; Usiskin 1988). A meaning of variable that is frequently used for lower
graders at the elementary school level is that of a fixed but unknown number.
However, it is not always easy for students to understand this prevalent meaning of
variable, and seems to depend on the forms and structures in which it is used. For
instance, according to Matthews et al. (2012), the items with letters as variables
(e.g., 13 = n + 5) proved more difficult than those with a similar format but without
a letter variable (e.g., 8 = 6 + □). Note that students were able to easily solve
equations with operations on the left side of the equal sign, but the use of variables
rendered a dramatic increase in difficulty. In particular, equations with multiple
instances of the unknowns on both sides of the equal sign such as m + m + m =
m + 12 proved more difficult than the item asking for a relational definition of the
equal sign. Students are expected to interpret algebraically the equations in which
variables appear. Regarding the equation above, students need to realize that ‘m’
may be subtracted from each side, and that the simplified equation m + m = 12 or
2 � m = 12 may be divided by 2 on each side.
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A variable can be used to express generalizations beyond specific numerical
instances at the elementary school level (Blanton et al. 2011). For instance, while
working with basic addition facts, young students can conjecture the commutative
property of addition beyond particular number sentences. Young students are able
to attend to general aspects by treating the specific numbers as quasi-variables
(Fujii and Stephens 2008). Furthermore, such a property can be expressed through
words (e.g., the sum of two numbers is the same regardless of the order of the
numbers) or symbols (e.g., □ + △ = △ + □ or a + b = b + a). The ability to use
variables to represent a number in a generalized pattern is powerful for students to
communicate their mathematical ideas succinctly (Brizuela et al. 2015).

A variable can also be employed to represent the relationship between two
co-varying quantities (Blanton et al. 2011). However, children have difficulties in
understanding or representing unknown quantities and tend to assign specific
numerical values to solve a problem with unknown quantities (Carraher and
Schliemann 2007). In conclusion, an understanding of the multiple meanings of
variable and the ability to employ variables to express mathematical relationships or
situations are significant in fostering students’ algebraic thinking.

6.2.2 Development of Early Algebraic Thinking Through
Instruction

Recent studies demonstrate that children are able to engage successfully with
diverse aspects of essential algebraic ideas, and their ability can be enhanced
through appropriate instruction with a well-developed curriculum. Recently some
researchers have begun to compare students in an intervention program promoting
early algebraic thinking with their counterparts being instructed with a typical
arithmetic-based curriculum.

For instance, Britt and Irwin (2011) endeavored to promote students’ algebraic
thinking in arithmetic in their New Zealand Numeracy Project. Students with a new
curriculum developed by the project were more successful than their counterparts
with a conventional curriculum in solving all test items. These included not only
simple compensation in addition but also complex equivalence with fractional
values. The researchers emphasized that the newly developed curriculum led stu-
dents to understand the underlying algebraic structure of arithmetic. By conducting
a longitudinal study including students aged 12–14 the researchers demonstrated
that sustained exposure to algebraic thinking in elementary school leads to more
sophisticated generalization with the special symbols of algebra in intermediate
school.

More recently, Blanton et al. (2015) demonstrated that, as early as grade 3,
students are capable of developing algebraic thinking skills, when they are sup-
ported by appropriate tasks and teacher intervention that foster such thinking for a
substantial period of time. The participants were third graders, 39 students from
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intervention groups and 67 counterparts from non-intervention groups. Whereas the
former received specifically designed 19 one-hour early algebra lessons throughout
the school year, the latter were taught by typical instruction. The study found that
students in the intervention group statistically outperformed the non-intervention
group in the post-test. Students in the intervention group were better in overcoming
their misconceptions about the equal sign and noticing the underlying structure in
equations, which helped them determine if the two sides of the equation had the
same value without computation. More importantly, only students in the inter-
vention group began to use an unwind strategy connected to inverse operations
(e.g., to find the value of n in 3 � n + 2 = 8, students subtracted 2 from 8, and then
divided 6 by 3 to yield 2), though they had not been formally taught this strategy.

Another noteworthy aspect of the Blanton et al. (2015) results was that as many
as 74% of the students in the intervention group were able to model the problems
that involved unknown quantities with variable notation, even though these students
had assigned a specific numerical value to the unknown before participating in the
program. The students were able to connect the variable notation across a series of
problem situations and used it more frequently than words to represent the rela-
tionship between unknown quantities. This study showed that early and sustained
exposure to algebraic thinking has a positive impact on students’ use of variables.

6.3 Study 1: Students’ Understanding of the Equal Sign,
Expressions, and Equations

6.3.1 Overview

Given the importance of students’ understanding of the equal sign as a basis for
developing algebraic ideas, this section reports a study that examined such under-
standing (Kim et al. 2016). Assessment items fromMatthews et al. (2012) were used.
Because the items were developed on the basis of prior studies, this allowed for
increased validity and reliability in examining students’ comprehensive under-
standing of the equal sign, expressions, and equations. Students aged 7–12 years
(i.e., from Grade 2 to Grade 6) were included to investigate whether their under-
standing of the equal sign, expressions, and equations improves as their grade levels
increase following exposure to the current elementary mathematics curriculum.

6.3.2 Method

6.3.2.1 Participants

The participants for this study were from three elementary schools in two provinces.
Overall academic abilities and socio-economic levels of students in the selected
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schools were considered as average in Korea. As this study investigated how stu-
dents at different grades understand equivalence, we included students in Grades
2–6. Two classrooms for each grade in each of the selected schools were randomly
chosen. A total of 695 students were included for the study: 135 second graders,
140 third graders, 140 fourth graders, 144 fifth graders, and 136 sixth graders.

6.3.2.2 Assessment Items

As already mentioned, assessment items from Matthews et al. (2012, pp. 345–347)
were used. This instrument includes 27 items of three types: (a) equation structure
items, such as deciding whether a given number sentence is true or false (e.g.,
31 + 16 = 16 + 31 True/False/Don’t Know), (b) equal sign items, such as asking
students to write the meaning of the equal sign, and (c) equation solving items, such
as finding the unknown number in a given equation (e.g., □ + 2 = 6 + 4). Among
equation structure items, specifically advanced relational reasoning items are
included, such as asking students to solve a given problem without direct com-
putation (e.g., 17 + 12 = 29 is true. Is 17 + 12 + 8 = 29 + 8 true or false? How do
you know?). There are also nine items that ask students to describe their answer or
explain their solution process (e.g., What does the equal sign (=) mean? Can it mean
anything else?). Some minor revisions of the original items were necessary.
Specifically, for second graders, numbers less than 30 were used and letter variables
were replaced by non-letter variables (e.g., “10 = △ + 6” in place of “10 = z + 6”).

6.3.2.3 Data Collection and Analysis

The students in this study solved the assessment items in 40 min and all students’
written responses were analyzed. Each item was scored either 0 for incorrect answer
or 1 for correct answer. For the nine explanation items, three sub-categories were
further used: (a) relational thinking, (b) computation, and (c) incomplete or
incorrect explanation. “Relational thinking” here indicates that students explained
their solution method by using the structure of the given equation or expression. To
emphasize, we employed these sub-categories even for incorrect answers, because
our purpose was to investigate the nature of students’ understanding. Examples of
student responses are included below in the results section.

After responses were coded according to correctness for all items and strategy
use for the explanation items, they were analyzed quantitatively using the SPSS
12.0 program. Specifically, ANOVA and post hoc tests1 were conducted to examine
any significant differences for grades.

1An ANOVA test tells you whether you have an overall difference between your groups, but it
does not tell you which specific groups differed—post hoc tests do.
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6.3.3 Main Results

6.3.3.1 Students’ Overall Performance

Figure 6.1 shows the results of students’ performance for all items. The horizontal
axis refers to items and the vertical axis refers to the percentages of correct answers
from all grades. Note that Fig. 6.1 displays the percentages only for correctness,
regardless of the strategies that students used. The results show that students were
quite successful in almost all items (see the following sections for a detailed
analysis of selected items). Using ANOVA, a significant difference for grade was
found, F(4, 688) = 125.838, p < 0.05. Post hoc tests revealed a significant differ-
ence among grades except between the fifth and the sixth grades. This implies that
students’ understanding of the equal sign, expressions, and equations improves as
their grade levels increase until the fifth grade.

6.3.3.2 Students’ Understanding of Equation Structure

Items from 1a to 2b ask students to decide if the given equation is true, whereas
Items 3–8 ask for relational thinking. The percentages of correct answers for the
latter were lower than those for the former. Generally speaking, the percentages of
correct answers for equation structure items increased according to grade levels.
Using ANOVA, a significant difference for grade was found, F(4, 689) = 125.688,
p < 0.05. Post hoc tests revealed a significant difference among grades except
between the fifth and the sixth grades.

An analysis of the explanation that students wrote for Items 3–8 indicates that less
than 35% of the students got the correct answer based on relational thinking. For
instance, regarding Item 3 in Table 6.1, only 33.1% of the students justified the
correct answer by relational thinking. For instance, some students wrote: “68 is
larger than 67 by 1 and 85 is smaller than 86 by 1. So 67 + 86 is the same as
68 + 85.” Others justified as follows: “67 + 86 is the same as 68 + 85, because
67 + 1 + 86 − 1 = 68 + 85. Here adding 1 and subtracting 1 makes the answer the

Fig. 6.1 Students’ overall performance with respect to correctness
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same.” Still others wrote: “67 + 86 = 68 − 1 + 85 + 1” and drew circles over ‘−1’
and ‘+1.’ The thinking of these students can be described, more formally,
as using the associativity and commutativity properties of addition,
68 + 85 = (67 + 1) + (86 − 1) = 67 + 86 + (1 − 1) = 67 + 86. However, even
for upper graders, the percentage of those using relational thinking based on the
algebraic structure of arithmetic was less than 50%. About 20% of the students in
almost all grades used a computational strategy, even though the item explicitly
states: “without adding 67 + 86.” Some students got the correct answer, but gave
incomplete or incorrect explanations, including “67 + 86 = 68 + 85 is true because
it is the same” or “if you add each number, then 6 + 7 + 8 + 6 = 27 and
6 + 8 + 8 + 5 = 27, the number is the same.” Regarding the incorrect answers, the
most common response type was that of incomplete or incorrect explanations, such
as “67 + 86 = 68 + 85 is false because the addends are different respectively.” A
rare example of an incorrect answer using relational thinking included, “67 < 68 and
86 > 85, so 67 + 86 = 68 + 85 is false.”

Item 8 in Table 6.2 was the most difficult item among the equation structure items
because it includes multiplication and the unknown number□. Note also that the new
multiplier 8 is multiplied from the left in both sides of the first equation. Whereas the
majority of students employed a computational strategy or gave an incomplete
explanation of the strategy used to get the answer (e.g., “You know it if you just see
it”), only 4.2% of the students were able to use relational thinking in their solution
process (e.g., “There is the same 8 on both sides of 8 � 2 � □ = 8 � 58, so you
simply divide by 8 only to get 2 � □ = 58”).

6.3.3.3 Students’ Understanding of the Equal Sign

Items 9 through 14 deal with the meaning of the equal sign. The percentages of
correct answers to these items were high except for Item 12c. The percentages of
correct answers for the equal sign items highly correlated with grade level and, in
fact, a significant difference for grade was found using ANOVA, F(4, 690) = 42.013,

Table 6.1 Item 3 and students’ responses

Item 3
Without adding 67 + 86, can you tell if the number sentence below is true or false?
67 + 86 = 68 + 85. How do you know? (Note: 7 + 4 = 8 + 3 for Grade 2)

Response Frequency (%)

2nd 3rd 4th 5th 6th Total

Incorrect Incomplete 88 (67.2) 58 (41.4) 34 (24.5) 21 (14.6) 25 (18.4) 226 (32.8)

Relational 0 (0) 2 (1.4) 2 (1.4) 0 (0) 0 (0) 4 (0.6)

Computational 1 (0.8) 0 (0) 3 (2.2) 0 (0) 0 (0) 4 (0.6)

Correct Incomplete 13 (9.9) 19 (13.6) 14 (10.1) 24 (17.4) 24 (17.6) 94 (13.6)

Relational 1 (0.8) 44 (31.4) 55 (39.6) 65 (45.1) 64 (47.1) 228 (33.1)

Computational 28 (21.4) 17 (12.1) 31 (22.3) 34 (23.6) 23 (16.9) 133 (19.3)
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p < 0.05. Post hoc tests revealed a significant difference among grades except
between the fifth and the sixth grades.

The most challenging Item 12 (see Table 6.3) asks students to determine whe-
ther the given definition of the equal sign is true or false. The percentages of correct
answers for Items 12a and 12b were quite high from Grade 3 onward. However,
only 21.9% of the students answered correctly for Item 12c. In other words, the
majority of students have an understanding that the equal sign means “the same as”,
and that the equal sign does not mean “add”. However, at the same time, many
students thought that the equal sign means “the answer to the problem”. Maybe
students thought that it means to ‘do’ instead of to ‘add,’ as this might also mean
subtract, multiply, or divide, but they seemed to agree with part c. More impor-
tantly, this non-relational thinking regarding the equal sign was persistent across all
grade levels.

Table 6.2 Item 8 and students’ responses

Item 8
Is the number that goes in the box the same number in the following two number sentences?
2 � □ = 58, 8 � 2 � □ = 8 � 58 (Note: 2 + □ = 10, 5 + 2 + □ = 5 + 10 for Grade 2)
How do you know?

Response Frequency (%)

2nd 3rd 4th 5th 6th Total

Incorrect Incomplete 98 (74.8) 129 (92.1) 98 (70.5) 80 (55.6) 58 (42.6) 463 (67.2)

Relational 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Computational 0 (0) 0 (0) 10 (7.2) 0 (0) 0 (0) 10 (1.5)

Correct Incomplete 19 (14.5) 10 (7.1) 7 (5.0) 33 (22.9) 15 (11.0) 84 (12.2)

Relational 3 (2.3) 0 (0) 1 (0.7) 4 (2.8) 21 (15.4) 29 (4.2)

Computational 11 (8.4) 1 (0.7) 23 (16.5) 27 (18.8) 42 (30.9) 103 (14.9)

Table 6.3 Item 12 and students’ responses

Item 12
Is this a good definition of the equal sign? Circle True or False

a. The equal sign means the same as. True False
b. The equal sign means add. True False
c. The equal sign means the answer to the problem. True False

Response Frequency (%)

2nd 3rd 4th 5th 6th Total

Correct Item 12a 70 (53.4) 113 (80.7) 121 (87.1) 139 (96.5) 132 (97.1) 574 (83.3)

Item 12b 97 (74.0) 128 (91.4) 124 (89.2) 114 (79.2) 133 (97.8) 595 (86.4)

Item 12c 30 (22.9) 31 (22.1) 30 (21.6) 39 (27.1) 21 (15.4) 151 (21.9)
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6.3.3.4 Students’ Equation-Solving

Items 15–27 ask students to find the unknown number in the given equation. The
percentages of correct answers for equation solving items were high except for
Items 24 and 27. Again, the percentages of correct answers increased as grade
levels rose. Once again, a significant difference for grade was found using ANOVA,
F(4, 689) = 95.288, p < 0.05. Post hoc tests revealed a significant difference among
grades except between the fifth and the sixth grades. This may be related to the
elementary mathematics curriculum by which whole number operations are dealt
with in multiple contexts up to the fourth grade but in the fifth and sixth grades
mainly fraction and decimal operations are dealt with.

Whereas items 15–24 use the symbol variable □, the last three items use letter
variables. Simply using a letter variable did not increase item difficulty, as shown in
the results for Items 17 and 25 (see Table 6.4). However, multiple instances of a
letter as a variable made it difficult for students, specifically second and third
graders, to solve the given problem, as shown in the results for Item 26. In fact, the
Korean elementary mathematics textbooks provide little opportunity for students to
experience multiple occurrences of the variable.

Item 24 in Table 6.5 examines whether students use their understanding of the
equal sign and equation structure to solve a given equation with relatively large
numbers. Note that we changed the original equation, 43 + □ = 48 + 76, in
Matthews et al. (2012) into 47 + □ = 48 + 76. This was done in order to see
whether students were able to employ relational thinking for the close numbers 47
and 48, and to interpret the result for Item 24 in relation to the result for Item 3
(67 + 86 = 68 + 85) among the equation structure items. The results for Item 24
show that only 35.6% of the students solved the equation by relational thinking.
Some students explicitly wrote their reasoning process (e.g., “The equal sign (=)
here means the same as, therefore, the expressions are to be the same. Because 47 is
less than 48 by 1, □ should be larger than 76 by 1, so the answer is 77.”). Others
used a computational strategy with an incorrect use of the equal sign (e.g.,
“47 + □ = 124 − 47 = 77, 48 + 76 = 124”) or wrote an incomplete or incorrect

Table 6.4 Selected equation-solving items and students’ responses

Item 17. Find the number that goes in the box. 8 = 6 + □
Item 25. Find the value of z. In other words, what value of z will make the following number

sentence true? Circle your answer.
10 = z + 6 (Note: 10 = △ + 6 for Grade 2)

Item 26. Find the value of n. n + n + n + 2 = 17
(Note: ☆ + ☆ + ☆ + 2 = 17 for Grade 2)

Response Frequency (%)

2nd 3rd 4th 5th 6th Total

Correct Item 17 79 (60.3) 116 (82.9) 118 (84.9) 139 (96.5) 130 (95.6) 582 (84.5)

Item 25 80 (61.1) 111 (79.3) 120 (86.3) 137 (95.1) 128 (94.1) 576 (83.6)

Item 26 40 (30.5) 79 (56.4) 111 (79.9) 119 (82.6) 118 (86.8) 467 (67.8)
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explanation (e.g., “It seems that I can’t explain it without adding the numbers.”).
We also found that the results for Item 24 were quite similar to the results for Item 3
(see Table 6.1), implying that students’ understanding of the equation structure
seems to influence their equation-solving abilities.

6.4 Study 2: Diverse Aspects of Early Algebraic Thinking
in Third Graders

6.4.1 Overview

A multitude of studies have documented that elementary students can successfully
develop essential algebraic ideas. This section reviews a study that examined third
graders’ early algebraic thinking (Pang and Choi 2016). Early algebra has not been
explicitly addressed in the national elementary mathematics curriculum in Korea.
We wondered how students not exposed to a specific intervention program or
curriculum fostering such thinking processes would respond to the diverse
assessment items related to early algebraic thinking.

In order to better understand our students’ performance in the international
context, we adapted Blanton et al. (2015)’s study for at least three reasons. Firstly,
because Blanton et al. (2015) document the data from both the nonintervention
group and the early algebra intervention group, we can locate our students’ per-
formance against both groups. Secondly, third graders participated in the study of
Blanton et al. (2015). It is reasonable to examine the algebraic thinking of
third-graders in our study, considering that it would be useful to examine the
capability of these lower grade students with respect to engaging in early algebraic
ideas. At the same time, these students have been sufficiently exposed to the ele-
mentary mathematics curriculum so as to enable the researchers to interpret their
performance in relation to the curricular experience. Thirdly, the test items in
Blanton et al. (2015) are sufficiently comprehensive in that they include big ideas in

Table 6.5 Item 24 and students’ responses

Directions: Find the number that goes in each box. You can try to find a shortcut so you don’t have to
do all the adding. Show your work and write your answer in the box.
Item 24. 47 + □ = 48 + 76. How do you know? (Note: 7 + □ = 8 + 6 for Grade 2)

Response Frequency (%)

2nd 3rd 4th 5th 6th Total

Incorrect Incomplete 110 (84.0) 69 (49.3) 56 (40.3) 41 (28.5) 29 (21.3) 305 (44.3)

Relational 0 (0) 1 (0.7) 4 (2.9) 1 (0.7) 2 (1.5) 8 (1.2)

Computational 0 (0) 1 (0.7) 5 (3.6) 1 (0.7) 0 (0) 7 (1.0)

Correct Incomplete 6 (4.6) 20 (14.3) 8 (5.8) 23 (16.0) 17 (12.5) 73 (10.6)

Relational 5 (3.8) 42 (30.0) 56 (40.3) 68 (47.2) 74 (54.4) 245 (35.6)

Computational 10 (7.6) 7 (5.0) 10 (7.2) 10 (6.9) 14 (10.3) 51 (7.4)
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early algebra such as equivalence and equations, generalized arithmetic, functional
thinking, and variables. The use of such items was expected to reveal multiple
aspects of students’ algebraic thinking that were developed while using the regular
mathematics curriculum.

6.4.2 Methods

6.4.2.1 Participants

The third-grade students in this study were from seven elementary schools in four
provinces. Overall academic abilities and socio-economic levels of students in the
selected schools were considered as average in Korea. A written assessment was
distributed to a total of 220 students. Unfortunately, 23 students did not answer the
items asking for their explanation or justification. They were mostly in the one
classroom in which the teacher did not emphasize the need to do so. After excluding
the data from these 23 students, the data from the remaining 197 students were
analyzed.

6.4.2.2 Assessment Items

The assessment items were from Blanton et al. (2015, pp. 83–86). One item among
the original 11 items, dealing with proportional reasoning, was not included
because it is not appropriate for Korean third grade students. Careful translation of
the 10 items was conducted and a pilot test was administered in one third-grade
classroom. A few revisions were necessary. Item 4, written in sentences, was
changed into the form of a dialogue so as to make it more understandable, while
keeping the meaning of the original item (see Sect. 6.4.3.3 for the detailed revi-
sion). A critical issue involving variable notation was raised. In Blanton et al.
(2015), concepts associated with variables were integrated into the instruction and
students were expected to be able to use letter variables to represent an unknown
quantity in different problem contexts. However, in Korea, variable notation
without letter symbols is used in the textbooks or workbooks for lower graders: For
instance, (a) a variable as a fixed unknown number: as in 5 + □ = 7 or 9 − □ = 5
and (b) a variable as a tool for generalization: as in ♥ + 0 = ♥, 0 + ♥ = ♥. Given
this, in keeping with the original assessment items for comparison purposes, we
developed supplementary items with the use of non-letter variable notation (see
Sect. 6.4.3.5 for an example).
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6.4.2.3 Data Collection and Analysis

The students in this study solved the assessment items in 40 min. A total of 197
students’ written responses were analyzed for correctness for the items that have
only one correct answer. The strategies employed by students were initially ana-
lyzed according to the coding scheme in Blanton et al. (2015). Whenever different
strategies or responses emerged, new codes were assigned such as “correct answer
with incomplete explanation” and “incorrect answer with an error to be noted”.
Criteria for determining correctness or strategy use are mentioned with the exam-
ples in the following results section.

In addition, unstructured interviews with nine students were conducted to
investigate their reasoning processes in detail. For instance, the interviewees
included students who answered correctly without explanation, students who used
different strategies for similar assessment items, or students who used an apparently
new strategy. The interviews were audiotaped and transcribed, which served to
identify diverse aspects of those students’ algebraic thinking.

6.4.3 Main Results

6.4.3.1 Comparison of Students’ Overall Performance

Table 6.6 shows students’ overall performance with the items rated in terms of
percentage correct. Notice that four items (i.e., Items 3a, 3b, 4a, and 8b) were not
included here because they were analyzed only for strategy use as in Blanton et al.
(2015, p. 87). A cautionary note in reading Table 6.6 is that our main purpose was
to better understand our students’ overall performance in international contexts.
Due to limited space, the results for some items are included in subsequent sections.

For most items, the Korean students performed as well as, or only slightly worse
than, students in the Blanton et al. intervention group, and much higher than
students in their non-intervention group. These items included figuring out a
missing value in the equation (e.g., 7 + 3 = □ + 4), evaluating an equivalence
relationship (e.g., 12 + 3 = 15 + 4 True/False), generalizing the commutative
property of addition, and selecting a generalized algebraic expression on the basis
of particular examples (e.g., a − a = 0 from 8 − 8 = 0 to 12 − 12 = 0). Regarding
Items 5 and 9, the Korean students performed far better than students in the Blanton
et al. intervention group, although they experienced substantial difficulties in Items
7 and 10. What follows is a detailed analysis of the strategies students employed on
selected items.
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6.4.3.2 Students’ Understanding of Equivalence

The percentages of correct responses for the items addressing students’ under-
standing of the equal sign, expressions, and equations were high. But when we
analyzed their solution strategies, we found that the students solved the items by
computation (coded as computational strategy) more often than noticing the
underlying structure in the equation without computing (coded as structural strat-
egy). For instance, whereas a majority of students responded correctly to Item 2b,
64.9% of them used a computational strategy and only 4.5% of the students used a
structural strategy (see Table 6.7). The tendency of employing a computational
strategy was lower for Item 2c, but still served as a main foundation for determining
if the two sides of the equation had the same value. About 20% of the students
consistently added the numbers to the left of the equal sign to get the solution
(coded as operational strategy).

We wondered whether students were unable to use any structural strategy, even
when they had a relational understanding of the equal sign. We interviewed some
students who answered for Item 3 that the meaning of the symbol “=” in the number
sentence 3 + 4 = 7 is “same as” or “equal,” but who used only a computational
strategy to find a missing value or to determine equivalence. As reflected in Episode
1, the student initially approached the item computationally, but was able to use a
structural strategy when asked to solve it without computation.

Table 6.6 Comparison of students’ overall performance by percentage of correct response

Item Korean (N = 197) Blanton et al. (2015)’s posttest correct

Non-intervention (N = 67) Intervention (N = 39)

1 a 69.0 3.2 84.2

b 70.0 1.6 84.2

2 a 74.1 31.7 86.8

b 73.6 9.5 84.2

c 75.1 14.3 89.5

4b 66.3 34.9 73.7

5 73.6 4.8 36.8

6 84.2 57.1 89.5

7 a 16.2 12.7 73.7

b 15.2 7.9 63.2

c 4.5 3.2 39.5

8a 84.7 49.2 89.5

9 85.7 28.6 52.6

10 a 76.1 52.4 86.8

b 29.9 41.3 78.9

c 47.7 7.9 31.6

d 4.5 0.0 15.8

e 47.2 41.3 55.3
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Episode 1 Emergent use of structural strategy versus tendency to compute.

Interviewer (I): (points to the student’s written response 12 + 3 = 15, 15 + 4 = 19
for Item 2a: “12 + 3 = 15 + 4 True False How do you know?”) Do
you necessarily need to compute 15 and 19 to solve this item?

Student (S): Probably.
I: Can it be done without computation?
S: I can solve it by comparison.
I: Okay. Why don’t you compare?
S: If you compare 3 and 4, 3 is less. If you compare 12 and 15, 12 is less. So this

part (pointing to 12 + 3) is less.
I: Okay. How about this (pointing to Item 2b)?
S: 57 plus 22 is 79 and 58 plus 21 is also 79.
I: Without computation? How would you explain by comparison as you just did?
S: It becomes the same if I give 1 from 58, so I know it without calculation.
I: Right, very good! How about this (pointing to Item 2c)? Do you have to add these
two numbers (pointing to 121 and 39) to find out 160?

S: I know right away because it just switches the positions of the numbers.

In the episode above, the student went back to use a computational strategy for
Item 2b, even after she had just solved Item 2a without computation. When asked to
explain by comparison, however, the student was able to use a structural strategy
(i.e., “give 1 from 58”). She then continued to use a structural strategy for Item 2c
by justifying with a fundamental property of number and operations.

Table 6.7 Item 2 and students’ strategy use

Item 2
Circle True or False and explain your choice.

b. 57 + 22 = 58 + 21. True False How do you know?
c. 39 + 121 = 121 + 39. True False How do you know?

Strategy Example or explanation Frequency
(%)

Structural Item 2b: True, because 58 is one more than 57 and 21 is one
less than 22.

9 (4.5*)

Item 2c: True, because 121 + 39 is 39 + 121 in reverse. 66 (33.5)

Computational Item 2b: True, because 57 + 22 = 79 and 58 + 21 = 79. 128 (64.9)

Item 2c: True, because 39 + 121 = 160 and 121 + 39 = 160. 71 (36.0)

Operational Item 2b: False, because 57 + 22 = 79, not 58. 45 (22.8)

Item 2c: False, because 39 + 121 is not 121. 41 (20.8)

*The sum of percentages does not reach 100 because the table includes main strategies

6 Characteristics of Korean Students’ Early Algebraic … 155



6.4.3.3 Students’ Understanding of the Commutative Property
of Addition

Item 2c in Table 6.7 examines students’ understanding of equivalence, but it also
reflects the commutative property of addition. As described, students’ tendency of
using a computational strategy for Item 2b was decreased for Item 2c. More sig-
nificantly, only 3% of the students continued to use a computational strategy for
Item 4a, whereas almost half of them used a structural strategy (see Table 6.8). This
may be related to the slight but important difference between Item 2c and Item 4.
Note that both items involve the commutative property of addition. However, Item
2c asks students to evaluate whether the given equation is true or false, and to
justify their reasoning. In contrast, Item 4 does not include the equal sign and, more
importantly, encourages students to reason without computation.

For Item 4b, 66.3% of the students answered that Yuna’s thinking will work for
all numbers. In fact, the majority of the students justified it by describing the
commutative property of addition in words. It is not surprising because they had
already learned it through their mathematics textbook. What is interesting here is
that about 10% of the students justified their answer by writing another example
(e.g., 1 + 2 = 2 + 1). We wondered whether the students were capable of thinking
beyond particular instances to generalize the fundamental property. Episode 2 is an
interview with a student who wrote a single instance for Item 4b.

Table 6.8 Item 4 and students’ strategy use

Item 4 (original)
Marcy’s teacher asks her to figure out
“23 + 15.” She adds the two numbers and gets
38. The teacher then asks her to figure out
“15 + 23.” Marcy already knows the answer.

Item 4 (revised)
The following is the dialogue between
Yuna and her teacher.

Teacher: Yuna, what is 23 + 15?
Yuna: If I add 23 and 15, I get 38.
Teacher: Then, what is 15 + 23?
Yuna: I already know it without computation!

a. How does Yuna know?
b. Do you think this will work for all numbers? If so, how do you know?

Strategy Example Frequency
(%)

Structural Item 4a: It is the same as 23 + 15,
because only the numbers are
switched.

96 (48.7)

Computational Item 4a: 23 + 15 = 38 and
15 + 23 = 38.

6 (3.0)
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Episode 2 Generalization beyond particular instances regarding the commutative
property of addition.

I: (reads Item 4a) How did Yuna know?
S: Because only the positions of the numbers were switched.
I: Okay, you wrote 21 + 22. What does it mean?
S: 21 + 22 is the same as 22 + 21.
I: Then, is it okay to use 3 and 4 instead of 21 and 22?
S: Yes!
I: Why? (After no response from the student, interviewer continued) Then, let’s say
that the first number is □ and the second number is △. Can we say
□ + △ = △ + □?

S: Yes.
I: Why do you think so?
S: Because it just switches the position of the figures.

As reflected in Episode 2, the student answered with the single instance of
21 + 22. But he knew that the numbers could be changed to other numbers, in fact,
any numbers. In other words, he expressed the generalization in terms of specific
numbers. Given the generalized representation of the symbols □ and △, the student
was able to justify his thinking in words.

6.4.3.4 Students’ Understanding of Equations

Item 9 examines how students solve a simple linear equation and justify their
answer (see Table 6.9). Note that we changed the original equation 3 � n + 2 = 8
to 3 � □ + 2 = 8, because letter variables are not taught in Korea until Grade 6.

A noticeable result was that the percentage of correct answers for Korean stu-
dents (i.e., 85.7%) was the highest for Item 9, which was much higher than for that
of the Blanton et al. intervention group (i.e., 52.6%), as was seen in Table 6.6. To
emphasize, mathematics textbooks in Korea do not deal with equations with two
operations until Grade 3. More interestingly, most students used a different strategy
(coded as intuitive use of number facts) than either the “Guess and Test” or
“Unwind” strategies. According to Blanton et al. (2015, p. 57), the use of the Guess
and Test strategy means that the student works through the equation in a forward
manner, substitutes value(s) in for the variable and computes to see if the value is
correct, and the Unwind strategy refers to the student working backward through
constraints in the equation, inverting operations. Our students worked through the
equation in a forward manner and seemed to notice the underlying structure of the
given equation as a whole. Instead of substituting values for the variable (e.g., 3 and
then 2, or arbitrarily initially choosing 2), our students started with the fact that
(a certain number) +2 is 8, so the number must be 6. Then the question becomes
easier because the original item turns into 3 � □ = 6. A noteworthy aspect is that
students seem to be capable of seeing 3 � □ as an object, which makes it easier for
them to notice the structure of the equation. In this process, students could have
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subtracted 2 from 8 to get 6 and then divided the 6 by 3 to get 2 (i.e., the unwind
strategy). However, our students did not invert the operations, but employed
familiar number facts in an intuitive manner (i.e., 3 � 2 = 6, 6 + 2 = 8). In order to
understand better students’ thinking processes, we interviewed some of them who
simply wrote “3 � 2 = 6, 6 + 2 = 8” for Item 9. Note that we gave them extra
simple equations on the spot to trace their thinking.

Episode 3.1 Using ‘equation sense’ based on number facts.

I: Could you explain how you solved this (pointing to Item 9)?
S1: 3 times 2 is 6 and 6 plus 2 is 8.
I: Aha, how about this problem (writing 7 � □ + 3 = 24)?
S1: Some number less than 24, the product of 7 and a certain number should be

less than 24 but at the same time close enough to 24. 7, 3, 21 and plus 3 is 24.
I: Okay, I will give you another problem with larger numbers. (Writes

12 � □ + 1 = 49.)
S1: 12 times 4 is 48, here (pointing to 12 � □) is 48 and plus 1 is 49.
I: Why did you think this (pointing to 12 � □) is 48?
S1: Because 49 minus 1 is 48, then I thought 12 times what number makes 48.

Episode 3.2 Noticing the structure in a linear equation

I: How did you find 2 for Item 9 (pointing to 3 � 2 + 2 = 8)?
S2: I left ‘plus 2’ alone. 3 times a certain number, that product, that number plus 2

is to be 8. As 3 is there, I thought of the ‘3 times table’. 3, 2, 6 and 6 plus 2 is 8.
I: Okay, why don’t you solve this problem (writing 7 � □ + 3 = 24)?
S2: 3.
I: How did you know so quickly?
S2: This is the same. You just need to see a certain number plus 3. 7, 3, 21 and then

plus 3 is 24.
I: Now, I will give you larger numbers. (Writes 13 � □ + 5 = 31)
S2: 2!
I: Wow! How did you know the answer so quickly?

Table 6.9 Item 9 and students’ strategy use

Item 9
Find the value of □ in the following equation. How did you get your answer?
3 � □ + 2 = 8

Strategy Example Frequency
(%)

Guess and test 3 � 3 + 2 = 11, 3 � 2 + 2 = 8 5 (2.5)

Unwind 8 − 2 = 6, 6 � 3 = 2 2 (1.0)

Intuitive use of
number facts

(A certain number) + 2 is 8, so the number must be 6.
3 � □ = 6, 3 � 2 = 6.
3 � 2 = 6, 6 + 2 = 8

150 (76.1)
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S2: It is the same, too. It says a certain number plus 5 is 31. 31 minus 5 is 26. So 13
times 2 is 26.

As reflected in the episodes above, it was clear that the students were capable of
noticing the structure of a given equation as a whole. On the basis of the under-
standing of the equal sign and expressions, S1 knew that the left side of the
equation (i.e., 7 � □ + 3) should be 24 and, as there is ‘+3’, “the product of 7 and
a certain number should be less than 24 but at the same time close enough to 24.”
For another equation with larger numbers, S1 partially used an unwind strategy by
inverting ‘+1’ as ‘−1.’ However, she still solved the equation in a forward manner;
not by 48 � 12 = 4 but by 12 � 4 = 48, even though the number 12 is not in the
common times table (the 2–9 times table). It was also obvious that S2 in Episode
3.2 was able to see 3 � □ as an object, when he called it “that product, that
number.” His interpretation of numbers and expressions as objects was consistent.
He explained both 7 � □ in the equation 7 � □ + 3 = 24 and 13 � □ in
13 � □ + 5 = 31 as ‘a certain number.’ S2 also partially used an unwind strategy
when converting the addition of 5 to the subtraction of 5 (from 31) in
13 � □ + 5 = 31.

Given that both S1 and S2 partially used an unwind strategy, we might have
coded their responses as the “Unwind” strategy. However, we chose not to do so in
order to emphasize the noticing of the equation structure as a whole, rather than
focusing on employing inverse operations step by step. Also worth noting is that
students solved the equations very quickly in a forward manner through familiar
number facts or “equation sense.” In this respect, students might not use an inverse
operation when they initially solve the equation, but merely mention it later to
justify their answer.

6.4.3.5 Students’ Understanding of Algebraic Expressions
with Variable Notation

Item 7 examines students’ understanding of algebraic expressions and, in particular,
how they represent unknown quantities with variables (see Table 6.10). Note the
original item was slightly altered because pennies are not used in daily life in Korea.
‘Coins’ were addressed instead of the specific coin penny, but kept the critical
aspect of the item, that is to say, an indeterminate amount of coins.

Item 7 was the most challenging problem for our students. The percentage of
correct answer was the lowest among the 10 assessment items (see Table 6.6) and,
in fact, the percentage of “no response” answers was about 38%. The most frequent
strategy students used was to assign a specific numerical value to the unknown
quantity, although the item specifically says that the quantity is not known. Slightly
less than 30% of the students assigned arbitrary numerical values to the unknowns
of Items 7a, 7b, and 7c. In contrast, about 20% of the students assigned specific
numerical values that were related to one another (see the strategy value-related in
Table 6.10). Students used this strategy in a consistent way for Item 7a, 7b, and 7c.
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Another strategy students used was to assign a non-letter variable (i.e., □) to the
unknown quantity (coded as the variable strategy). What is important here is
whether students were able to connect their representations in Items 7b and 7c to
their representation of Item 7a (coded as the variable-related strategy). The
majority of students related their representation in Item 7b to that in Item 7a, but did
not relate their representation in 7c to those in Items 7a and 7b. In other words, the
students who represented the number of coins Hajun has by □ (Item 7a) tended to
keep their non-letter variable to represent the number of coins Yejun has by □ + 8
(Item 7b). However, they had difficulties in representing the combined number of
coins Hajun and Yejun have as □ + □ + 8. Students instead assigned either a
numerical value or □ which is assumed to simply represent that the combined
number of coins is unknown.

In Korea, students are taught to represent the unknown number mostly by □
from the first grade. We wondered how students’ responses would change if we
provided them with variables. Against students’ difficulties with Item 7c, we pro-
vided students with supplementary items in which both the number of coins Hajun
has, and the number of coins Yejun has, are represented in the form of variables
(see Table 6.11). We focused on those strategies in which students used a variable
to represent the combined number of coins (i.e., the sum of responses related to 7a
and 7b in the original items) and to flexibly operate with expressions involving such
variable notation.

As shown in Table 6.11, when the specific variables were provided in the items,
the percentage of correct answers increased in comparison to 4.5% for Item 7c, as
was seen in Table 6.10. What is even more noticeable here is that it was easier for
students to represent the unknown quantity as □ + △ than as □ + □ + 8. As
the representation □ + □ + 8 includes two additions with the same symbol,

Table 6.10 Item 7 and students’ strategy use

Item 7
Hajun and Yejun have coins in their piggy banks, and the kinds of coins are the
same. They know that their piggy banks each contain the same number of coins, but
they don’t know how many. Yejun also has 8 coins in his hand.
a. How would you represent the number of coins Hajun has?
b. How would you represent the number of coins Yejun has?
c. How would you represent the total number of coins they have?

Strategy Example Frequency (%)

Variable Item 7a: □ 25 (12.6)

Variable-related Item 7b: □ + 8 23 (11.6)

Item 7c: □ + □ + 8 9 (4.5)

Value-related* Item 7a: 8 34 (17.2)

Item 7b: 16 38 (19.2)

Item 7c: 24 41 (20.8)

*This strategy code was given only to the responses in which a specific numerical value was
assigned and interrelated with the unknowns of Items 7a, 7b, and 7c, such as in the provided
example
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students seemed to attempt to compute further. Some students wrote it without the
plus sign (i.e., □□8) or put a rectangle to show the result of ‘□ + □’ (i.e., 8).
Others wrote ‘□ + □ + 8 = ?,’ implying that it is not an object per se but some-
thing to be calculated.

6.5 Discussion and Implications

6.5.1 Development of Early Algebraic Thinking Through
a Curriculum

Given the importance of early algebraic thinking, specific content domains aiming
at fostering such thinking skills have emerged in various curricula, such as “pat-
terning and algebra” (Ontario Ministry of Education 2005), “operations and alge-
braic thinking” (National Governors Association Center for Best Practices &
Council of Chief State School Officers 2010), and “number and algebra” (New
Zealand Ministry of Education 2009). As aforementioned, the Korean national
elementary mathematics curriculum does not include early algebra or algebraic
thinking as a specific content domain. However, the two studies reported in this
chapter indicate that students are capable of developing essential algebraic ideas
from a generalized arithmetic perspective through the current curriculum.
Specifically, a promising result was that except for a few items, our students’
overall performance was similar to that of students in the intervention group in the
Blanton et al. (2015) study. This means that new content areas are not necessarily
needed in the current curriculum to induce early algebraic thinking and to make it
accessible to students (McNeil et al. 2015). Early algebraic thinking can instead be
fostered as a specific form of thinking while students learn typical content areas.

Another important result, as shown in Study 1, is that students’ overall under-
standing of the equal sign, expressions, and equations evolves as their grade levels
go up until the fifth grade. This tendency was consistent across different types of

Table 6.11 Supplementary item 7 and students’ strategy use

Supplementary Item 7 (S7).
Hajun and Yejun have coins in their piggy banks, and the kinds of coins are the
same. They know that their piggy banks each contain the same number of coins, but
they don’t know how many. Yejun also has 8 coins in his hand.

a. The number of coins Hajun has is □ and the number of coins Yejun has is □ + 8.
How would you describe the total number of coins Hajun and Yejun have?

b. The number of coins Hajun has is □ and the number of coins Yejun has is △.
How would you describe the total number of coins Hajun and Yejun have?

Strategy Example Frequency (%)

Variable-related Item S7a: □ + □ + 8 34 (17.2)

Item S7b: □ + △ 49 (24.8)
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assessment items. Given the difficulties that lower graders such as Grades 2 and 3
experienced, however, specific pedagogical attention is needed. For instance, the
equal sign is addressed in the first grade in Korea but only about half of the second
graders in Study 1 understood that the equal sign means “the same as.” More
importantly, about 80% of the second graders had the misconception that the equal
sign means “the answer to the problem.” Note that this misconception persists even
in upper grades. Such misconception must be related to curricular materials and
instruction in which students see and use the equal sign (McNeil et al. 2015).
According to Ki and Cheong (2008), our textbooks use equations mostly in a
standard format (i.e., all operations are on the left side of the equation and the
answer comes after the equal sign). Considering the importance of relational
understanding of the equal sign as an essential idea for algebraic thinking (Blanton
et al. 2011), diverse types of equations need to be utilized in curricular materials
and instruction from the earliest grades.

The results of Study 2 also indicate our students’ weaknesses in understanding
algebraic expressions and representing the unknown quantities with variables. The
students tended to assign a specific numerical value to the unknown quantity. Even
the students who were able to use a non-letter variable had difficulty in connecting
such a representation to other related contexts in a consistent way. Although
variables have multiple meanings, they are frequently addressed in the current
Korean curricular materials beginning in the first grade mainly as a fixed unknown
quantity associated with missing-value problems (Pang et al. 2017). Variables to
represent the relationships between varying quantities are addressed only from the
fourth grade. Radford (2014, p. 260) postulates a framework for characterizing
algebraic thinking in terms of three key notions: (a) indeterminacy: not-known
numbers are involved in the given problem, (b) denotation: the indeterminate
numbers are named or symbolized in various ways such as with gestures, words, or
alphanumeric signs, and (c) analyticity: the indeterminate quantities are operated
with as if they were known numbers. In order to increase our students’ exposure to
these key notions, improvement is needed in those parts of the current mathematics
curriculum dealing with numbers and operations, in developing a relational
understanding of equality, and in writing expressions or equations with variables to
represent diverse problem contexts.

6.5.2 Computational Proficiency and Algebraic Thinking

Special attention in this chapter was given to a generalized arithmetic perspective in
a broad sense so as to include equivalence, expressions, equations, and inequalities.
A common and significant result of Studies 1 and 2 was the finding that our
students tend to use a computational strategy in examining an equation structure or
in finding an unknown number in an equation, even when the assessment items
explicitly ask them not to use direct computation. Korean students are confident in
computation; so it may be easy for them to calculate in solving a given problem or
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to use such computational ability when asked to justify their answers. On one hand,
relational thinking or a structural approach over computation is desirable in dealing
with mathematical equivalence. Our students need to be further instructed to notice
the underlying structure of expressions or equations before jumping into calculation
to get the correct answer. On the other hand, computational proficiency does not
need to be discouraged in favor of early algebraic thinking. As shown in Episode 1,
students with relational understanding of the equal sign are capable of using a
structural strategy despite their tendency to compute. More interestingly, our stu-
dents’ computational proficiency seems to help them find the missing value in
simple linear equations such as 3 � □ + 2 = 8, due to the way they think about
such equations. On the basis of familiar number facts our students immediately
noticed the structure of the given equation with two operations by regarding 3 � □
as an object. As reflected in Episodes 3.1 and 3.2, the students were able to apply
their algebraic reasoning about relationships to solve other equations with larger
numbers.

To emphasize, arithmetic is a main context for early algebraic thinking. This
study shows that students can be exposed to algebraic ideas as they develop the
computational proficiency emphasized in arithmetic. The issue is then for teachers
to elicit and foster students’ early algebraic thinking through questioning with an
emphasis on mathematical structure and relationships while they learn typical
mathematical topics (e.g., Can you decide if the given equation is true or false
without computation? Can you find the missing value in the equation without
computation? What are the unknown numbers or quantities in the context and how
can you represent them? Do you think this particular property of number and
operations will work for all numbers?).

To conclude, this chapter is expected to provide information on Korean students’
early algebraic thinking that develops by means of the current elementary mathe-
matics curriculum. This chapter also shows that specific algebraic ideas need to be
intentionally fostered in the curriculum from the earlier grades, because these ideas
are not naturally developed in students as they progress through elementary school.
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Chapter 7
Function Tasks, Input, Output,
and the Predictive Rule: How Some
Singapore Primary Children Construct
the Rule

Swee Fong Ng

Abstract Function-machine tasks are not part of the formal Singapore Primary
Mathematics curriculum and hence not taught formally. The corpus of data shows
that provision of the expressions input, output, and ‘the rule is’ aided primary
children, particularly those in the upper primary grades, to construct the predictive
rule underpinning function-machine tasks. Children’s annotations showed that
many were willing to write the literal form of input ± a = output, while others
were open to the symmetric equivalence construct of the non-literal form of
output = input ± a. Primary children’s knowledge reflected the spiral structure of
the Singapore Primary Mathematics curriculum, where number facts and processes
are introduced in bite sizes. Children at all upper grades found implicit functions
challenging.

Keywords Spiral structure of curriculum � Number facts � Algebraic thinking
Function machines

7.1 Algebraic Thinking, Function, and Function Machines

Algebraic thinking “defies simple definition” (Driscoll 1999, p. 1). Radford (2001,
p. 13) located the historical origins of algebraic thinking as emerging from “pro-
portional thinking as a short, direct and alternative way of solving ‘non-practical’
problems.” The introduction to the book Algebraic Thinking: Grades K–12 sets out
the theoretical discussion on what is algebraic thinking and how it differs from
algebra—that there is “an algebraic way of thinking” (Moses 1999, p. 3, original
emphasis). Such thinking incorporates forming “generalizations from experiences
with number and computation, formalizing these ideas with the use of a meaningful
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symbol system, and exploring the concepts pattern and functions” (Van de Walle
and Bay-Williams 2014, p. 276). Kaput (2008) suggested that there were three
strands of algebraic thinking, all infusing the key ideas of generalization and
symbolization. The first strand involves the study of structures in the number
system, including those used in arithmetic, described by Usiskin (1988) as gener-
alized arithmetic. Strand two explores the study of patterns, relations, and functions.
The third strand seeks to study how best to capture the information or to model the
situation symbolically. It is only normal for the human mind to organize the huge
amount of information present in the environment by constructing meaningful
relations with the various inputs and outputs and capturing the information sym-
bolically (Fosnot and Jacob 2010). Therefore, to be able to organize information,
Mason (1996) argued that it was necessary for the mind to detect what remains the
same and what is changing and to construct an appropriate rule; this thereby reduces
the demands on human attention so that the mind can function economically.

Function is the study of relationships. It is acknowledged that it is one of the
most important topics in secondary school mathematics because it provides a means
for “thinking quantitatively about real world phenomena and a context for studying
relationships and change” (NCTM 2010, p. 7). Authors of the Comprehensive
School Mathematics Program (1975) argued that functions should be used as a
vehicle through which letters as variables and algebra are introduced. However,
studies show that teachers and students alike are challenged by the concept and
definition of function and its attending symbolism (Dubinsky and Harel 1992).

When functions are first introduced at the lower grades, the focus is on the
covariation between the inputs and the outputs, and the rule underpinning a par-
ticular set of inputs and outputs. For example, when asked to look at this set of
inputs and outputs (2, 7), (1, 6), (4, 9) (3, ?), (?, 10), and the question of “the rule is
___?”, a first-grade child can fill in the missing numbers and state the rule as “+5”.
However, after the introduction of letters as variables, the child may complete the
task and offer the general rule: n + 5. Function-machine tasks are instances of
“seeing a generality through the particular and seeing the particular in the general”
(Mason 1996, p. 65). That is, (2, 7) is a specific example of the rule n + 5. To
scaffold the development of the concept of function, the Navigating through
Algebra series (NCTM 2001) provides developmental activities where function is
first introduced to kindergartners through very concrete means and eventually
presented with formalized representations in grades 9–12. Willoughby (1999)
introduced the concept of the function machine to kindergartners by getting them to
guess how many sticks would be produced by a box that was designed to act as a
function machine. There was a child hidden in the function-machine box who had
been asked to use the rule of “adding 2” to produce the relevant outputs with
specific inputs. By studying a number of inputs and the corresponding outputs, the
kindergartners in Willoughby’s class were able to predict the outputs after a number
of examples; they were later able to figure out the rules defining the activity.
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Willoughby continued to increase the complexity of the tasks. The children worked
with composite functions and also with inputs and outputs using letters as variables.
Willoughby concluded that “all children can understand abstract but important
concepts, such as function, if the concepts are developed first from concrete
activities and gradually abstracted over a long period of time” (p. 200). It is possible
to provide such scaffolding because the early activities of function encourage
children to look for relations that are located within simple arithmetic activities—
activities that develop notions of algebraic thinking or algebraic reasoning.
Schliemann et al. (2007) have provided empirical data to support all these theories
of algebraic thinking. Their work has shown how the children who engaged with
the mathematical tasks not only focused on computation but also were encouraged
to think about relations and functional dependencies. The children were able to
reason about the four binary operations as functions and work with mathematical
generalizations before they learned formal algebraic notation.

7.2 The Singapore Situation

The Singapore primary mathematics curriculum places a heavy emphasis on
(i) understanding of patterns, relations, and functions, and (ii) representing and
analyzing mathematical situations and structures using algebraic symbols (Cai et al.
2005). Although the functional approach is developed across the primary mathe-
matics curriculum, it is done on an ad hoc basis emphasizing the ‘doing-undoing’
process and in conjunction with the teaching of the four operations. For example,
the teaching notes provided in the Primary Two teachers’ guide (TG2A 1995) used
the illustration in Fig. 7.1 to emphasize the ‘doing-undoing’ process to highlight the
relationship between addition and subtraction and between multiplication and
division. There was no emphasis on the construction of the forward or predictive
rule that would encourage children to look for relationships between the input and
output if they were given a set of items such as [(4, 7), (2, 5), (1, 4), (5, ?), (?, 12)].
In local textbooks and workbooks, function-machine tasks are offered as practice
items (Ng 2004).

8 14

+6

-6 
8 16 

× 2
÷ 2

Fig. 7.1 Doing-undoing process showing the relationship between addition and subtraction and
between multiplication and division
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7.2.1 The Age and Individual Differences Study

In 2005, the longitudinal study Age and Individual Differences in Mathematical
Abilities: From Kindergarten to Secondary Schools (henceforth Age and Individual
Differences Study) examined the relationships amongst cognitive abilities,
socio-motivational beliefs, and mathematical performance of Singapore children
from kindergarten to secondary schools (see Lee et al. 2009, 2011, 2012, 2017).
Although there is a wealth of information on children’s learning and use of
mathematical patterns (e.g., Nathan and Kim 2007; Orton and Orton 1999;
Rittle-Johnson et al. 2013; Walkowiak 2014), there is a dearth of empirical studies
on the relation between individual differences and knowledge of numbers, algebraic
reasoning tasks, and solution of algebra word problems.

Children of the Age and Individual Differences Study were enrolled in primary
schools that typically serve families from low to middle socioeconomic back-
grounds. Children were tested annually for 4 years, once per year. At each time
point, children were administered a battery of executive functioning tasks (see Lee
et al. 2013), as well as the Knowledge of Numerical Operations test, which included
items related to numerical and arithmetic proficiency. This test used the standard-
ized Wechsler Individual Achievement Test-II (WIAT) (Wechsler 2001), which
provided a measure of mathematics achievement that could be put on a common
scale, with raw scores that could be compared across the grades. The questions were
from a wide range of mathematics domains. With the WIAT, children from all
grades progress as far in the test as their abilities allowed, which permits measures
of individual differences in the questions attempted at each grade.

Children at each grade were tested with curriculum specific mathematics tasks.
These included arithmetic word problems for lower primary grades (Primary One to
Primary Three) and algebraic word problems for upper grades (Primary Four to
Six). Completing number patterns and function-machine tasks were designed for
children across all grades. Because this was a longitudinal study, all the curriculum
mathematics tasks were grade specific, reflecting the mathematics content for each
grade and the complexity of that particular grade.

One of the findings from the Age and Individual Differences Study that was
significant for the research to be reported in this chapter was that the data related to
the paper-and-pencil instrument that measured performance on the function-
machine tasks for all grades showed that children at each grade had difficulties with
such tasks. Given a set of inputs and their corresponding outputs, function-machine
tasks require participants to provide the output for a given input, the input given the
output, and to state the rule that undergirds that particular function machine. Some
of the data for Primary One and Primary Five children are represented in Fig. 7.2.
Each child was given an overall numerical score and the descriptive data showed
that more participants were performing below the mean (Primary One: mean =
19.01, Std. Dev. = 10.94, N = 122; Primary Five: mean = 43.03, Std.
Dev. = 20.58, N = 101).
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The absence of qualitative data within the Age and Individual Differences Study
meant that it was not possible to explain how the children (i) abstracted the rule that
governed a given function, (ii) were convinced that their rule was correct, (iii) wrote
the predictive rule, and (iv) worked out the input given the output. Furthermore it
was not possible to explain why some children in the upper grades (i) succeeded
with explicit functions involving an additive predictive rule (e.g., input ± con-
stant = output) but not implicit functions (e.g., input ± output = constant) and
why Primary Five children were challenged when the letter n was used as an input.
Thus to gain insight into how these children engaged with the range of
function-machine tasks, it was necessary to interview primary children at each level
and listen to their explanations as they worked their way through the different
function-machine tasks. As will be described shortly in Sect. 7.3, the resulting
interview study reports on how primary children across the six primary grades
constructed the predictive rule and what difficulties they encountered with such
tasks. The empirical evidence gathered from the interviews is intended to have
implications regarding the strategies teachers could try when they introduce such
tasks to primary grade children.

7.2.2 The Spiral Nature of the Singapore Primary
Mathematics Curriculum

Children’s ability to engage with mathematical and algebraic type tasks does not
happen in a vacuum. In mathematics, prior achievement is one of the best predictors
of later achievement (Jordan et al. 2009) and is particularly important for mathe-
matics where the learning of skills progresses in a hierarchical manner (Aunola
et al. 2004). The work of Fuchs et al. (2006) highlights how lower mathematics
skills could determine performance in mathematics at a higher level. Thus, the
provision for a spiral structure in a primary mathematics curriculum can help to

Fig. 7.2 Scores and their frequency for Primary One (left side) and Primary Five (right side)
children on the function-machine tasks
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understand why children at each level might be more able to engage with
function-machine tasks designed for that level. While the Singapore Primary
Mathematics Curriculum does not include function-machine tasks, it does develop
the concept of number at two levels: the structure of numbers and operations with
numbers.

Structure and the nature of numbers: The Primary One syllabus partitions
numbers up to one hundred into components of tens and ones. At each subsequent
primary grade, the number size increases: one thousand at Primary Two and ten
million at Primary Five—at each grade the number size increasing by a multiple of
ten. The concept of fraction as an object is developed at Primary Four. The concept
of decimals is also introduced and developed at Primary Four. The use of letters as
variables is introduced only at Primary Six (Curriculum Planning & Development
Division 2006, 2012).

Operations with numbers: By the end of Primary One, the intended curriculum
recommends that children develop facility with addition up to 18. The two, three,
four, five, and ten multiplication tables are formally introduced at Primary Two and
those of six, seven, eight, and nine at Primary Three. Division involving the related
multiplication tables is introduced at Primary Two and continued in Primary Three.
Fraction as division, a� b ¼ a

b, is formally introduced at Primary Five. Likewise,
multiplication involving fractions is developed at Primary Five, and Primary Six
addresses division with proper fractions. Order of operations is introduced at
Primary Five. With letters as variables in Primary Six, the objective is to work with
notations of the form a ± 3, a � 3 = 3a, a� 3 ¼ a

3, including the simplification of
linear expressions involving one unknown and evaluating simple linear expressions
by substitution.

7.2.3 Structure of Items Underpinning the Design
of the Function-Machine Tasks

Figure 7.3 provides the matrix that guided the construction of the function-machine
tasks across the six grades within the Age and Individual Differences Study.

The function-machine tasks were constructed to reflect the progression of the
primary syllabus and hence the items were increasingly more difficult. With the aim
of controlling for the complexity of the tasks across the years, we drew upon Collis
(1975) who theorized that the nature of task elements could have a marked effect on
the facility of a given task. Items involving small numbers are easier than those
constructed using larger numbers, which are easier than those using letters, in this
order. This seemed reasonable because, when it comes to computation, even
savants are affected by number size: “Great calculators struggle with great calcu-
lations like the rest of us” (Dehaene 2011, p. 151). As well, two reasons prompted
us to include within the longitudinal study tasks involving implicit functions: (1) to
increase the structural complexity of the function-machine tasks, and (2) to chal-
lenge the older children with tasks that are not structurally repetitive.
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7.2.4 The Function Tasks

In the Age and Individual Differences Study, in any one year, the function-machine
instrument comprised three sub-parts, each part having five items. Part (a) was
constructed using the more difficult items from the previous year; Part (b) items
were representative of the core content in the present year’s curriculum; Part
(c) items were drawn from the easier items of the subsequent year’s curriculum. The
items were presented in this order. This three-part structure meant that it was
possible to identify the state of the children’s current knowledge. Those children
who could solve all three parts indicated that they were performing beyond the
current curriculum, while those who could complete Parts (a) and (b) were com-
petent with the mathematical knowledge that was reflective of the curriculum for
their grade level. For example, when children engaged with the function-machine
tasks from Part (a), they may have identified the function rule f(x) = x + a, with
task elements being particular examples of the general rule f(x) = x + a. However,
when they moved to Part (b), they would have been confronted with elements
representing the function rule f(x) = ax. The children could still apply the
f(x) = x + a rule, but when they tried to take into account all the (input, output)
pairs, they might have realized that these (input, output) pairs are instances of
particular examples of a different function rule, in this case f(x) = ax.

Fig. 7.3 The framework that guided that construction of the function machine tasks across the
grades
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7.3 The Function-Machine Study

7.3.1 Participants

A total of 60 children were interviewed in the Function-Machine Study, ten chil-
dren from each grade level. They attended the same student care-center that served
to provide before- and after-school care to one neighborhood school, a
non-selective school serving the local community. These children were considered
a good sample because they were taught by different mathematics teachers. Hence
their responses were more likely to reflect how these children engaged with the
function-machine tasks and less so the pedagogy of the respective teachers.
Furthermore there was less disruption to these children’s curriculum time as they
were interviewed before the start of or at the end of their school day. The partic-
ipants were identified according to their levels and name code. Thus, P1S referred
to a Primary One child with the code S.

7.3.2 Interviews

The interviews were not conducted in any chronological order starting with Primary
One and working up to Primary Six. Rather the order was random, based on the
advice of the administrator of the student care-center. It took a week to complete
each grade level as the administrator’s advice was to conduct the interviews two
hours before the start of the afternoon session and two hours after the end of the
morning session. Thus, it was possible to interview at most three children each day.
All interviews were conducted in English, the medium of instruction in all
Singapore schools.

In the Age and Individual Differences Study, the administrator had first read the
general instructions in Fig. 7.4 before the administration of the tests proper, with all
children receiving the same presentation. Hence, in the Function-Machine Study,
the same set of protocols was applied for each child before commencing work on
the function-machine tasks proper.

However, in the Function-Machine Study, because I wanted to learn how chil-
dren made sense of the co-variation between the inputs and the outputs and whether
they could state the relationship between them, the terms input and output were
used from the outset of the interview. Figure 7.5 provides the details of the pre-
liminary interactions with all the participants of the study. I feel it is necessary to
provide this level of detail as a different set of interactions would result in different
responses from the children.

After the introduction, the children were presented with the tasks. Figure 7.6
shows some examples of function-machine tasks, with the two on top exemplifying
Primary One tasks and the two on the bottom, Primary Four (and above) tasks.
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Fig. 7.4 All the children saw this function-machine presentation. The administrator in the main
study read the instructions to the children as they were tested in their classes

Interviewer Interviewer’s intent and Interviewer Action (IA) and Child’s 
Action (CA)

I pointed to the number 1 to 
the left of the function-
machine. This number 1 is 
known as the input. 

Intent: Gave the child a chance to engage with the input and 
output. The act of naming the numbers as input and output meant 
that the children had access to words that would enable them to 
identify the objects and talk about the activity of the function-
machine. Otherwise, children would say “this one, that one,” and 
it would not be clear which object they meant. 
IA: I then wrote the word input for the child. 
CA: The child repeats the word input. 
IA: Pointing to the number 2, the number 2 is the output.  
Writes the word output. 
CA: The child repeats the word output.

Can you name this number? 
Is it input or output? 

Intent: This set of interactions provided children with the 
opportunity to test whether they could differentiate between the 
input-output relationships.  
IA: I pointed to the second input, in this case the number 2.
CR: The pupil offered a response.

Is this number an input or 
output? 

Intent: To provide further opportunities for these terms to become 
fixed in the minds of the children (Gladwell 2000) 
IA: I pointed to the number 3.  
CR: The pupil offered a response. 
IA: Is this number an input or output? I pointed to the number 4. 
IA: Is this number an input or output? I pointed to the last number 
in the sequence. 

I then point to +1 in “the 
rule is” 

Intent: To help children understand the demands of the task. 
IA: This machine uses the rule +1 to change the input into the 
output. I reiterated the point that there is only one rule for each 
group of questions. I point to the statement.

Fig. 7.5 Introductory interview protocol used with children
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Each of the children, after perusing a task, filled in the missing numbers. I used
the following set of semi-structured questions when interviewing the children:

• What is the rule?
• How do you know the rule is correct?
• Write down the rule.
• How do you check the output for this input?
• How do you check the input with this output?
• Can you use the words input and output to show the relationship between the

input and the output?
• Is there another way to write the rule for the machine? (if the child wrote

input + a = output). This was an attempt to get the child to consider symmetric
equivalence.

• Should a Primary Six child write n � 3 as a predictive rule, the prompt “Is there
another way to write this expression” was offered? This was a prompt to
determine whether the child saw the equivalence between n � 3 as the product
of n and its reciprocal: n� 1

3.

Fig. 7.6 Examples of variations of function-machine tasks presented to children across the grades.
Top left simple explicit function of the form f(x) = x + a, f(x) = ax, at top right. Bottom left simple
implicit function where input + output = k; bottom right f xð Þ ¼ a

b x with letter n as variable
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There were fewer items in the lower grades. Thus, the duration of the interviews
varied, from approximately 15 min for Primary One and an hour for Primary Six.
However, if the children were seen to be struggling with a task, I would end the
interview. As well, the interview was discontinued at any time a child expressed a
wish to stop, but no child chose to do so. Note that all the annotations in the
examples presented in the figures are the written work of the children themselves.

7.4 Challenges Faced by Children in Constructing
the Predictive Rule

The performance of children with the function-machine tasks is discussed according
to two levels: lower primary (Primary One to Three) and upper primary (Primary
Four to Six). Because the lower primary mathematics syllabi focus on developing
competency with operating with numbers, the children’s engagement with the
function-machine tasks reflected the ways in which lower primary grade children
worked with the four binary operations. The upper primary grades expanded to
include work with multiple operations, fractions, and variables.

7.4.1 Lower Primary Grades

7.4.1.1 Understanding the Demand of the Function Machine

Children in the lower primary grades (Grades 1–3) had difficulties understanding
what they were expected to do with the function machine although the adminis-
tration notes were read to them and I had demonstrated the workings of the function
machine. Although the children seemed to understand that one machine had only
one rule, some children understood this information differently. For example, for
Q6, a Primary One question, the predictive rule should be input plus 1 = output.
However P1S, who had a reasonably good command of her addition number facts,
assumed the predictive rule was based only on the first input-output pair (Fig. 7.7,
left side). She did not test the predictive rule with the other items in the set. Only
when she was asked if the first predictive rule would apply to other items in the set
(5, 6), (8, 9) did she realize that she had to test the first rule that came to her with the
remaining items in the set. Once she knew what to do, she was able to apply this
knowledge to find the output of the given input for each set of function-machine
questions.

When asked what was the rule to change the input to the corresponding output,
many Primary One children were able to say add 1 (for the case of Q6); however,
they wrote 1 in the box “the rule is _____”, excluding the operation sign from the
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rule. When asked how the machine would know what to do with the input number
without the operation sign, the children promptly wrote the plus sign in front of the
number 1. It was unnecessary to repeat this prompt for the remaining function
questions. This is further evidence that these young children may not have
understood the expectations of the function-machine questions even though an
example had been provided to help them. Therefore in conducting such interviews
with young children, it was important to ensure that children knew precisely what
was expected of them.

Children at Primary Two were also struggling with interpreting the demands of
the function-machine question. It was necessary to show P2A that there was a
relationship between the input and the output by pointing to the input and the output
and asking her to interpret the relationship between the two:

SFN (Interviewer): The input is 3 and the output is 6 (action first pointing to 3 and
then to 6) Here the input is 5 and the output is 8.
P2A took time to mull over the task and wrote down 3 without attending to the plus
sign in the “The rule is ____” space.
SFN: Look at the machine. What did the machine do to the input numbers?
With this prompt, P2A wrote the addition sign in front of 3.

For every specific input, P2A used her fingers to check the accuracy of every
output. It was noteworthy that, although initially she had difficulty interpreting the
demands of the function task, once she had completed figuring out the rule for the
addition function machines, she had no problems with multiplication either. For
example, when she realized she had erroneously written an addition rule instead of
a multiplication rule in “The rule is ____” box, she asked: “If write wrongly, then
how?” She was advised that she could cancel the wrong rule and write the correct
rule in the space provided, which she did (see Fig. 7.7, right side). These children’s
difficulties in understanding the expectations of the function machine may have
contributed to their performing below the mean as presented in Fig. 7.2.

Fig. 7.7 The work of two students, P1S on the left, and P2A on the right. Arrows show how
children indicated the relationship between the output and the input
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7.4.1.2 Competency with Number Facts Is Crucial to Identifying
Predictive Rule

The ten Primary One children were able to use their knowledge of addition number
facts to complete the function-machine task of the form f xð Þ ¼ xþ a. Although
they were able to recall the number facts at will, they used their fingers to check the
accuracy of the output by counting on their fingers. The children who used their
fingers to check the accuracy of the answers often did not wish to show that they
were using their fingers to support them in their counting. They hid their fingers
under the table and moved their fingers to check the relationship between each input
and output. They used the counting-on strategy, by counting on from the larger
number, which they kept in mind, and counted-on using their fingers. Initially, the
children did not use the relationship between addition and subtraction to help them
find the input given the output. Their behavior suggested that they were incre-
menting from what they thought was the input and using the rule they had com-
puted to confirm that the input was correct for the given output.

Most children knew that each function machine was governed by one rule. This
was deduced when children moved from one function-machine task to another.
P1YK moved seamlessly from addition to multiplication. In contrast, there were
some children who, even though they could eventually find the multiplication rule,
interpreted the first input–output pair as one of addition. However, the children who
were confident with their number facts and the nature of the function machine
behaved differently. They inhibited the rule that governed the previous function
machine, studied the next function machine in its entirety, updated the information,
and came up with the new function rule. P1YK was just such a pupil. He studied an
entire function-machine task before quickly coming up with the predictive rule �3.
He was extremely confident about his number facts. In fact, he refused to use
arrows to show how he arrived at the input given the output. When asked how he
was able to come up with the rules so quickly, P1YK explained that he was very
good with numbers because each weekend his grandmother accompanied him to
private mathematics classes where he was taught how to operate with numbers up to
400.

Those children who had not yet learned multiplication—an operation not taught
until Primary Two—would initially apply an addition rule to the first input–output
pair, but they stopped and said the rule (meaning addition) did not work for that
question. Hence, they could not continue with the task because the function rule
f xð Þ ¼ xþ a could not be applied to all the input-output pairs where the rule was
f xð Þ ¼ ax.

The method the Primary Two children used to check their multiplication facts
suggest that they knew that multiplication was repeated addition. For example, for
Q10 (see Q10 displayed in Fig. 7.9), although those children were happy to write
down the rule as �2, they tested their rule by using their fingers or tapping their
pencil on the table, to ascertain that input � 2 ¼ output for every input and its
corresponding output. For example (2, 4) was reflected by tap, tap … tap, tap;
(5, 10) was reflected by tap, tap, tap, tap, tap… tap, tap, tap, tap, tap, tap.
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Figuring the input given the output challenged children. P2A checked by
counting down with her fingers (Q4), making a list (Q5), or finally using tally marks
and crossing out +6 (Q6) (see Fig. 7.8).

To work out the input given the output of 12 (Fig. 7.9, left side), P2A drew rings
and then made a tally mark in each ring, one at a time until she reached 12. Then

Fig. 7.8 P2A working with addition and different ways to figure out the input given the output

Fig. 7.9 P2A working with multiplication
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she wrote 6 in the input space. When asked if �2 changes the input to the output
and what she would write to move the output to the input, she wrote �2:

P2A adopted a guess and check strategy for Q11 (Fig. 7.9, right side). She had
worked out that the rule was �3, but she then used an elimination strategy to work
out the input for 15. Again she used tally marks to support her work. After she had
written 8 in the input space, she drew two rings and she filled each of these rings
with 8 marks. But when she remembered that the predictive rule was �3, she drew
three rings and she put tally marks in each of them until she reached 15. Then she
cancelled out 8 and wrote 5. She repeated the same process with the output 21.
She drew 3 rings and distributed one tally mark to each ring until she reached 21
(one for you, one for you, one for you, …).

7.4.1.3 Relationships Between Operations: The Case of Addition
and Subtraction

It is best not to assume that, if children constructed the predictive rule where they
expressed the relationship between the input and the output as inputþ a ¼ output,
then they would construct the relationship of output�a ¼ input. As discussed in the
above section, to find the input given the output, one would hypothesize that these
children would treat it as output�a ¼ input. However, the behavior of these chil-
dren suggested otherwise. They applied their knowledge of number bonds to find
the input given the output. For example, in Q8 where the rule involved adding 3 to
the input, and they had to supply the input for an output of 9, they asked, “what add
3 to give 9.” They saw it as: ?þ 3 ¼ 9. Because 6þ 3 ¼ 9, hence, the input should
be 6. To help children see that the relationship between the two operations—that is,
subtraction is the inverse of addition, and that it was acceptable to use this rela-
tionship of output�a ¼ input—it was necessary to ask children whether it was
possible to use this relationship to arrive at the input. It was best not to assume that
children saw the relationships immediately. It was necessary to draw their attention
to the relationships between the output, the input, and the function rule. For
example, it was necessary to test the “output–input” relationship by repeatedly
asking the children: how would you go from 5 to 2. After they responded with five
take away 3, the same question was repeated with the remaining outputs of 4 and 7.
Four take away three is 1, seven take away 3 is 4. Then these children were asked if
they could draw lines to show how to move from the output to the input, and only
when they could do so was it possible to hesitate a guess that perhaps these children
had constructed some relationship between addition and subtraction. At all times it
was necessary to ask the children to point to each number in turn so that the
researcher and the pupil were focused on the same numbers, be they inputs or
outputs. This ensured that there was precision in perception and precision in
expression. This form of focusing of attention ensured that there was synchronicity
between the administrator of the test and the participant (Klein 1996).
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7.4.1.4 Structural Equivalence

It is important for learners to know the relationships of equality, for example, the
symmetric property of equality: “If A ¼ B, then B ¼ A” (Davydov 1962, p. 31).
Such knowledge sets the foundation for further work, such as Aþ e ¼ Bþ e and
Bþ e ¼ Aþ e. However, structural relationships did not come naturally to children
in this study. For instance, some of the Primary Two children were unable to
provide the output for (7, ___) when the functional rule was �3, although they had
learned the multiplication table for 3. This was because the multiplication table for
7 was taught only at Primary Three.

To ascertain whether these children were able to use language to state the general
form of the predictive rule, Primary Three children were asked whether it was
possible to state the relationship between the input and the output as: inputþ a ¼
output: I found that it was necessary to mediate between the children and the tasks:

SFN: Can we use words to show how the machine worked with the inputs and the
outputs? Can we say inputþ 2 ¼ output? (Pointing to each input and its
corresponding output).
Or can we write outputþ 2 ¼ input?
I then wrote down these two relationships because it was difficult for the
children to make sense of the words, as this was their first encounter with
such terms. It was unfair to expect these children make sense of what was
said to them. Also variations of the rule were offered to these children to
assess whether they were ready to accept alternative ways of writing the
forward rule.

The children did not reject these presentations, but would mull over the possi-
bility of such relationships. To ensure that we both understood each other, I asked
each pupil to write down the relationships. Of the 10 Primary Three, 6 preferred the
literal form, that is, input + a = output. Figure 7.10 shows the work of one such
child. The two examples on the left side of Fig. 7.10 show how this child prefers
the literal form as it follows the left-to-right sequential order of the transformation
of the input by the function machine into the output for the function f xð Þ ¼ xþ b.
The example to the right shows the corresponding literal form for the function
f xð Þ ¼ ax:

Three of the ten Primary Three children preferred the non-literal form (with left
and right sides of the rule switched) for the function f xð Þ ¼ ax, that is, output ¼
input � a (see Fig. 7.11).

Only one Primary Three child accepted both the literal and non-literal forms for
the functions f xð Þ ¼ xþ b and f xð Þ ¼ ax (see Fig. 7.12).
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7.4.2 Upper Primary Grades

7.4.2.1 Structural Equivalence

Although the order of operations is not taught before Primary Five, Primary Four
children were able to construct the predictive rule for 2-operation functions. Of
those who could provide the predictive rule for such functions, four of the 10

Fig. 7.11 A Primary Three child’s written response for f xð Þ ¼ ax, illustrating the non-literal form
of the relationship

Fig. 7.10 On the left, the preferred literal order for the relationship for f(x) = x + b; on the right,
for f(x) = ax (by Primary Three children)
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children applied a guess-and-check technique to help them work backwards to
figure out the input for the given output. For Q26 (see Fig. 7.13), the thinking
seems to be this: “18 divided by 2 is 9; if the output is 19, then the input must be

Fig. 7.12 One Primary Three child’s acceptance of both the literal and non-literal forms of
equivalence

Fig. 7.13 Guess-and-check strategy used by a Primary Four child to construct the predictive rule
for 2-operation functions
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2� 9þ 1 as this gives a sum of 19.” For Q27 (Fig. 7.13), knowledge of the 6-times
table helped. The thinking was: “1 less than 49 is 48; when this is divided by 6, the
quotient is 8.” Hence, the input was 8. However, none of the Primary Four children
wrote the expression: input � 2þ 1 ¼ output. Instead, they wrote the rule sym-
bolically as �2þ 1 (as shown in Fig. 7.13).

Some Primary 5 children provided the predictive rule as: input � að Þþ b ¼ output
(see Fig. 7.14, left side); others, the non-literal form: output ¼ input � að Þþ b,
(Fig. 7.14, right side).

Despite the noteworthy work involving structural equivalence, it was found that
one Primary Five child treated the equal sign procedurally (cf., Kieran 1981, 1989),
using it to announce the answer. His rule (see Fig. 7.15) could be read as:
input plus 1 and times 2 is equal to output.

Fig. 7.14 The symmetric equivalences accepted by Primary Five children; note too the use of
letters to represent the output

Fig. 7.15 Example of a Primary Five child’s work where the rule, which is written in words,
shows the use of the equal sign to announce the answer; note too that this child was unable to
furnish an output for the input n
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7.4.2.2 Checking the Accuracy of Their Predictive Rules

Children took their work seriously. Although their work suggests that they had
command of their addition facts and multiplication tables, these children checked
their work thoroughly, particularly the examples that involved multiplication and
division. For example, although he was confident with his number facts, P5R
insisted on checking the output obtained from a multiplicative rule by performing a
long division with the multiplier of the predictive rule (see Fig. 7.16, upper half).
Once he was sure of his multiplication-division correspondences, he completed the
other function questions by recalling his number facts. Similarly, P5M (Fig. 7.16,
lower half) meticulously checked the accuracy of his predictive rule with subse-
quent pairs of inputs and outputs: For a multiplicative rule (as in Q18), he divided a
sample output by the multiplier of the predictive rule; for a predictive rule involving
division (as in Q19), he checked his accuracy by multiplying a sample input by the
reciprocal of the divisor of the predictive rule.

Fig. 7.16 The work of P5R, top set Q16–18, and P5M (bottom set Q18–19), showing how they
checked the accuracy of their predictive rules
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7.4.2.3 Working with Variables

Letters as variables are introduced formally at Primary Six. But as discussed in the
design of the Function-Machine task, Part (c) items of the Primary Five
Function-Machine instrument incorporated items where the letter n was used as an
input. Such items were included in the instrument as a means to assess whether
Primary Five children were ready to work with letters, at least as a generalized
number (Küchemann 1981). All Primary Five children asked the same question or
some variation of it: “what is n?” “I don’t know what is n?” In response, I would
say: “The letter n represents a number. It could be any number.” It was interesting
to note that those children who could work with 2-operation functions listened to
my response, thought about it, and then wrote the output. Examples in Figs. 7.14
and 7.15 showed how some Primary Five children were able (and unable,
respectively) to work with the letter n as an input. Perhaps those Primary Five
children who were able to engage with the letter n as input had worked previously
with the “model method” for solving algebraic type word problems, which may
have helped them engage with n as an unknown unit. Readers are referred to Ng
and Lee (2009) for a full discussion of the model method. The discussion in that
paper may help readers understand why work with the model may be precursor to
working with an unknown unit. However, Primary Six children did not have any
problems with the letter n. They continued with each question and filled in the
output as required for similar questions.

7.4.2.4 At the Top of the Spiral Curriculum

Only one of the ten Primary Six children could be said to have a good grasp of the
various forms of the function machine. Child P6PQ was able to engage with
symmetric equivalence for f xð Þ ¼ xþ b, f xð Þ ¼ ax, and f xð Þ ¼ ax� b; and with
implicit functions, the reciprocal relationship where x� b ¼ x� 1

b, and letters as
variables. Figures 7.17 and 7.18 provide some examples of P6PQ’s work.

Compared to Q11 and Q12 (Fig. 7.17), Q13 and Q14 (Fig. 7.18) were more
challenging as the predictive rule involved division, which could be represented by
multiplication with the reciprocal of the divisor. Child P6PQ was still able to see
the symmetric properties of equivalence. Furthermore, P6PQ saw multiplication as
the inverse of division and applied that relationship to construct inverse rules that
mapped the output to the input. Therefore, if input � 3 ¼ output, then
output � 3 ¼ input. Furthermore, this pupil knew that division was related to mul-
tiplication with reciprocal: input �3 ¼ outputwas equivalent to input � 1

3 ¼ output.
With 2-operation functions, Q21 and Q22, P6PQ was able to write the structural
symmetric equivalences for these functions (see Fig. 7.19).

With 2-operation functions, P6HW (see Fig. 7.20) was more experimental with
the predictive rule. For Q21, if output ¼ input � 2ð Þþ 1, then input ¼
output�1ð Þ � 2. Although he had constructed the correct predictive rule for Q21,
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the annotations for Q22 showed that P6HW did not assume the same structure for
Q22. At first, P6HW tried out an additive structure ð2þ 5 ¼ 7; 1þ 3 ¼ 4;
4þ 9 ¼ 13—for the first three input-output pairs). At the same time P6HW kept a
running tally in his head of the pattern to the addends he had calculated; and so, by
the same reasoning, for the input of 3, add 7. P6HW had reordered the inputs so that
they were not randomized as presented in Q22. However, because the difference for

Fig. 7.17 With simple functions involving whole numbers, P6PQ was able to consider symmetric
equivalence of both additive and multiplicative predictive rules

Fig. 7.18 P6PQ also demonstrated understanding of the reciprocal relationships between
multiplication- and division-based predictive rules
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each input-output pair was not a constant, he decided against an additive rule and
eventually wrote the correct predictive rule of output ¼ input � 3ð Þþ 1. He was
also able to find the correct input for the output 16 by carrying out the correct order
of operations in reverse order. He was not, however, able to re-express his pre-
dictive rule for the case of the input being n.

7.5 Conclusion

The Function-Machine study was a component of the longitudinal Age and
Individual Differences Study. The descriptive data from the Age and Individual
Differences Study showed that more children were performing below the mean;
however, it was not possible to provide explanations for this pattern within the data.
Because the function-machine tasks were designed according to the curriculum,
with each of the three parts having its specific role, it could be argued that chil-
dren’s work with the function-machine tasks was supported by the mathematics

Fig. 7.20 Annotations for Q22 show how P6HW did not apply, by default, the 2-operation rule
from Q21 to Q22

Fig. 7.19 P6PQ was able to write the structural symmetric equivalences for 2-operation functions
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they were taught in the spiral curriculum. Fuchs et al. (2006) and Jordan et al.
(2009) have argued that prior knowledge acquired at a lower level supports chil-
dren’s mathematical work at a higher level, and the evidence provided by the
interview data from the Function-Machine study gave credence to support the
extant literature. One could hypothesize that the spiral structure of the Singapore
Mathematics Curriculum helped children expand their knowledge of the four binary
operations, not unlike the work of Schliemann et al. (2007) and Willoughby (1999),
and even explains why children were performing below the mean. If children had
the mathematical knowledge relevant to Parts (a) and (b) of the task set, then they
were likely to complete tasks in these parts because they could see how the (input,
output) pairs were specific examples of a particular predictive rule. However, if they
did not have the mathematical knowledge demanded by Part (c), they were unlikely
to respond to items in Part (c).

The only way to access children’s epistemology of the function-machine tasks
was to talk with them and find out how they worked out the co-variation of the
inputs and the outputs, how they constructed the predictive rule, and whether they
would be comfortable in considering symmetric equivalences and using letters as
variables in the predictive rule. Overall about eight out of ten children at each
primary grade were able to complete the questions used in the study. These children
had sound knowledge of their number facts for the four binary operations. Those
who failed to do so were hampered by poor knowledge of number facts as they had
to rely on their fingers to check their addition or multiplication facts. The corpus of
data shows that these children’s engagement with the function-machine tasks maps
the mathematics of the spiral curriculum. If they have the necessary knowledge of
number facts related to the four operations, then through a series of questions and
answers those children in the lower primary were found to be able to cope with
simple functions of the form f xð Þ ¼ x� b; f xð Þ ¼ ax. Those in the upper grades
were able to work with two-operation functions of the form f xð Þ ¼ axþ b. Primary
Six children were able to construct predictive rules involving the letter n for simple
and 2-operation functions. However, one cannot be sure of the soundness of these
children’s understanding of letters as variables. Do they treat the letter n as a
specific unknown or as a generalized number (Küchemann 1981)? The data suggest
that those who could operate with letter n were treating them as generalized
unknowns in that they could provide predictive rules appropriately for f xð Þ ¼ ax
and f xð Þ ¼ ax� b, where a 2 R.

A few were willing to consider symmetric equivalences, that is, they were
willing to accept the literal representation of the predictive rule of input � a ¼
output and its non-literal form of output ¼ input � a, and likewise for other forms
of the functions discussed. Where division and fractions were concerned, it was
very rare to see Primary Six children come up with the equivalent form of the
predictive rule f xð Þ ¼ x� a as f xð Þ ¼ x� 1

a.
The annotations provided by the children who participated in this study showed

that they have never worked with such tasks in the formal curriculum. In fact the
children’s annotations showed them to be thoughtful and reflective learners in the
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way that they responded to my questions before they filled in the outputs, inputs,
and the predictive rule. The lower primary children took about thirty minutes to
complete the interviews and the upper primary children, at least an hour. The
children in the upper primary grades needed more time as they had to consider a
greater variety of functions tasks. Often children, after a prompt, would go quiet and
remained so for a minute or so. I was left wondering whether I had lost them. But
then they would complete the question, answering my prompt. I learned to respect
these periods of silence without plying them with more questions.

Implicit functions proved to be challenging even to the competent Primary Six
children (those cited in this study). Even with prompts to focus their attention on the
inputs and the outputs, these children were challenged to see the relationship
between the input, the output, that is, regardless of the inputs and the outputs, when
the predictive rule involves the single operation of addition or subtraction, the sum
(or difference) of each pair of inputs and outputs is a constant. Many prompts were
needed before the more able children saw the relationship that input ± out-
put = constant. But then even adults can be challenged by such tasks. This suggests
that it is important to focus attention on explicit and implicit functions so that
children cultivate flexibility in the way that they analyze relationships and not be
fixated on explicit functions.

Words like inputs, outputs, and reciprocals were new terms to all these children.
They are not found in any of the instructional materials. But the children’s reactions
to the introduction of the terms showed their pleasure in learning new words and
using them appropriately. Rather than using generic and non-specific words like
“this one” and “that one” to direct the attention of the interviewer, the use of
specific terms seemed to give the children a sense that doing mathematics was more
than getting the right answer. Using the right words helps.

In conclusion, according to the literature, to be engaged in algebraic thinking
means to attend to relationships among the four binary operations, looking for and
generalizing relationships inherent within the elements presented in the mathe-
matical tasks, be they simple or complex. Findings from the current study show
that, with an appropriate mathematical diet comprising varied function tasks,
children are able to engage in algebraic thinking involving seeing the general in the
particular and articulating and using appropriate symbolism to capture the general
rule.
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Chapter 8
Algebraic Understanding of Equalities
in Primary Classes

Ralph Schwarzkopf, Marcus Nührenbörger and Carolin Mayer

Abstract Learning of mathematics in primary classes should not be reduced to
learning algorithms and routines or procedures. It is more important to foster
children’s thinking and reasoning of meaningful relations between objects and
operations. In addition, from our point of view, the algebraic concepts should be
more relevant than the algebraic symbols. In this sense, the conceptual under-
standing of equalities seems to be an essential basis for a flexible and sophisticated
understanding of equations. Hence, discussing and explaining equalities should
play a prominent role in the teaching and learning of mathematics from the
beginning of primary school. In our design study we develop learning opportunities
for primary school children that involve comparing terms and tasks with a view
toward the underlying mathematical structures. In this chapter we discuss our
theoretical background and some results of our video-based qualitative analysis of
learning situations in the area of reasoning about equalities.

Keywords Algebraic thinking � Equalities � Equations � Collective argumentation

8.1 Introduction: Equations in Primary Classes

Typical arithmetic curricula in primary schools offer potential opportunities to
engage in algebraic thinking. So arithmetical knowledge in primary classes already
includes abilities of conversion that ultimately harbor algebraic potential, but
without relying on formal algebraic tools such as elaborated representations and
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terms (Nührenbörger and Schwarzkopf 2015; Nührenbörger 2015). With regard to
equations, first equations in the sense of “early algebra concepts” (e.g.
3 + 7 = 5 + 5 or 3 + ? = 10) exist to promote algebraic ways of thinking in pri-
mary schools (Kieran 2011). But in contrast to the more formal algebra in sec-
ondary education, in everyday primary school the equal sign mostly appears in a
non-algebraic sense: it assigns a result to the operations, that is, it seems to be
essentially a demand to compute than a sign for symmetric equality between two
terms. It is hence not that surprising that children develop a perspective for the
equals sign as a calculation-operator (see Steinweg 2013 for a summary; Cai and
Knuth 2011; Kieran 1981; Seo and Ginsburg 2003). Within this perspective, the
understanding of equations is fixed to everyday experiences with calculation
problems: 3 + 7 = 10 means that a calculation on the left side of the equal sign
leads to a calculation-result on the right side of the sign. This “calculation-result
interpretation” (Winter 1982) of the equal sign includes that notations like
10 = 3 + 7 are not accepted and that equations like 4 = 4 seem to be senseless
because the computation is on the wrong side or missing at all (Kieran 1981). It is
not very surprising that children, within this somehow empirical understanding of
equations, complete equations like 17 + 23 = __ + 20 in the following way:
17 + 23 = 40 + 20 = 60 (Carpenter et al. 2003; Falkner et al. 1999).

There is no doubt that children have to overcome this dominating
calculation-result interpretation of the equal sign on their way to the algebra of
secondary education (Knuth et al. 2006). To reach this goal, one can foster a
broader understanding of the equal sign by confronting children with equations of
different forms, for example, with missing numbers on the left side of the equal sign
(… + 12 = 35), with the whole calculation on the right side (27 = 13 + …) or with
calculations on both sides (19 + 48 = 20 + …). But, from our point of view, the
concepts are more relevant than the signs. In other words, the teaching and learning
of mathematics in primary school should first work on the development of equality-
concepts before focusing on the formal use and properties of their symbolic rep-
resentations in the sense of equations. Before we discuss this approach in more
detail, we give an example involving children from the 2nd class of school (7 years
old) who argue about equalities without using the signs of equations.

8.2 Theoretical Background

8.2.1 Discussing Equalities: An Example

Jessica and Maria are noting pairs of calculation tasks on a strip of paper as a team:
One of them writes down a problem, and then the partner notes another pair of
terms with the same result. The children have already found two pairs of terms
(“8 + 7” and “7 + 8” as well as “9 + 6” and “6 + 9”), implicitly following the
commutative law. Now Jessica proposes the next term “8 + 6”, but Maria, instead
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of using the commutative law, writes down “9 + 5”. This serves to disrupt the
cooperative activity and gives rise to a dispute between the two children:

Jessica Why put a nine there, this isn’t even a nine and a five.
Maria Look (..) you add one here, ok? And that what you have added here is

taken away there, see? It’s the same problem, only that it doesn’t look the
same. But you get the same result in the end. (..) Get it?

Jessica But eight is nine here and…er… six five. That is plus and that is minus.
Maria No, it’s like, you take away one from the six and you count this one in

addition to the eight. Understand?

Jessica is surprised by Maria’s proposal. She has expected the term 6 + 8,
obviously still having in mind something like the commutative law. Maria, then,
explains how to construct the new task from the already existing one: Adding one to
the first number and taking away “what you have added” from the second number
leads to “the same problem”, although the numbers change. Speaking from an
algebraic point of view, Maria explains the new kind of equality with the asso-
ciative law. In German speaking countries this understanding of the associative law
is called “constancy principle of the sum”.

In her reaction, from the expert’s point of view, Jessica gives a short but cor-
responding interpretation of the same idea: One plus and one minus (see Fig. 8.1).
Nevertheless it is unclear whether Jessica understands that it is the same sum as she
may just be indicating the operation done to each addend (i.e., add 1 and subtract 1).

But, surprisingly, Maria does not agree. In her second explanation, she changes
the order of the operations: First of all, you have to take one from the six, only
afterwards you can give this one to the eight—this in fact seems to be a different
understanding of the same equality (see Fig. 8.2). As well it is possible that she
demonstrates her flexibility in presenting her understanding in a different way to see
if that would help Jessica to understand her point.

As we can see here, the second graders’ discussion about their understandings of
the associative law surely serves as a very fruitful learning opportunity in the sense
of developing their early algebraic understanding. The notation of symbols in the

Fig. 8.1 Jessica: 8 + 6 = 8 + (1 − 1) + 6 = 9 + 5

Fig. 8.2 Maria: 8 + (1 + 5) = (8 + 1) + 5
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sense of equations does not seem to be necessary for this learning opportunity. On
the contrary: If the girls had written the tasks in the form of second graders’
equations (8 + 6 = 14, 9 + 5 = 14), they would probably not have had any dis-
cussion to compare the terms. In this sense the equal sign sometimes avoids the
emergence of fruitful learning opportunities on the way to algebraic understanding.

The discussion develops because one of the girls feels misunderstood by the
other one—Jessica’s interpretation of Maria’s idea seems to irritate Maria so that
she feels the necessity to sharpen her explanation. In other words: The special
circumstance of the interaction process—namely a disagreement between the par-
ticipants—seems to foster the need to discuss the equality in a more sophisticated
way. This kind of disagreement (we call it a productive irritation—see Sect. 2.4)
and its necessity to be negotiated within a collective argumentation plays an
important role in our theoretical approach within our long-term design-science
project PEnDEL (i.e., practice-oriented development projects in discussion with
educators and teachers). One of the project’s main goals is to understand and to
design substantial learning opportunities that help children on their way from
arithmetic to algebra. In the following, we present some core ideas of our project.

8.2.2 The Aim of Our Research

Within our PEnDEL project we started a variety of different design experiments,
such as whole class instruction, group work, and peer interviews (Cobb et al. 2003;
Nührenbörger et al. 2016; Wittmann 1995). The experiments were planned on the
basis of already designed mathematical problems, mainly taken from “mathe 2000”
(Wittmann 2001b), a famous German project that set up the understanding of
mathematics education as a design science (Wittmann 1995). The outcomes of
mathe 2000 are “substantial learning environments,” that is, series of mathematical
problems with the following characteristics:

1. They represent fundamental objectives, contents, and principles of mathematical
learning at a particular level.

2. They are based on fundamental mathematical content, processes, and procedures
beyond this level and contain a wealth of mathematical problems (“exercises”).

3. They can be flexibly tailored to the specific conditions of a particular class.
4. They integrate mathematical, psychological, and educational aspects of math-

ematics teaching and learning and therefore provide a rich field for empirical
research. (Wittmann 2001a, p. 2)

All of our experiments are videotaped and analyzed within a qualitative research
paradigm, based on the theoretical framework of the interactionist-epistemological
approach (Steinbring 2005; Yackel and Cobb 1996). Especially, we understand
mathematical knowledge as a social construction, being constituted and differen-
tiated by the negotiation of meaning within the mathematics classroom interaction
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(Voigt 1994). Following the tradition of interpretative instructional research in
mathematics education, we generate our theory by analyses within video-based case
studies (Bauersfeld et al. 1998).

Our goal is to strengthen the content-related concept of equality in primary
school. Hence, the equal sign and its algebraic correct and formal usage do not play
a leading role within our learning experiments. In some of the learning experiments,
such as those involving arithmogons (Wittmann 2001b), the equal sign does not
even appear in the tasks. In the arithmogon illustrated in Fig. 8.3, one possible task
would be for the designer to provide only the numbers in the outside squares and to
ask the learner to find numbers for the inner fields such that the sum of every two
inner fields corresponds to the number in the square affixed to that side of the
triangle.

But nevertheless, the learning environments focus on equality. In this sense, in
the research project we analyze the ways of (algebraic) reasoning and understanding
of arithmetic equalities, without the latter needing to be formally established in the
form of equations (Nührenbörger 2015; Nührenbörger and Schwarzkopf 2015). The
underlying assumption of the project is that an overly close linking of an equality
concept to the equal sign will, on the basis of teaching routines, seduce the children
into calculating the terms immediately, without examining the underlying
content-related equalities.

8.2.3 The Balance Between Empirical and Relational
Knowledge

According to the theoretical approaches of Steinbring (2005), however, the learning
of mathematics in general and the learning of algebra especially oscillate between
two epistemological poles. At one pole, we have empirical knowledge. On this
level, equations are symbolical representations of calculations. The equa-
tion 49–4 = 45 means the fact that subtracting 4 from 49 will lead to the number
45, that is, the equation relates a calculation of (normally) two numbers to one
result; one equation consists of three objects. From this point of view, the

•••••

•••••

••

7

11

••••

14

Fig. 8.3 Arithmogons:
solution to the arithmogon
whose given outside squares
consist of the numbers 7, 11,
and 14 (Wittmann 2001b,
p. 193)
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equations 81–36 = 45, but also 9 � 5 = 45 and 15 � 3 = 45 symbolize two more
calculations with the same result1: They are different calculations with the same
result. Equations, within an empirical point of view, only exist in the form “op-
eration = result”, that is, the typical equations at this level can be read as “number
sentences”.

At the other pole, mathematics consists of relational knowledge: The focus is no
longer on the numbers, the calculation, or the result, but on the structure of the
numbers, the comparison of terms, regularly (but not always necessarily) written with
variables. As an example, the underlying content of the given equations above is the
difference between square numbers and their structure can be expressed as follows:

a2 � b2 ¼ aþ bð Þ � a� bð Þ for all integers a; b:

It is clear that pure relational expressions like this equation are not typically
accessible to children in primary level. But, it is also clear that algebraically sub-
stantial learning opportunities can not only deal with calculations in the sense of
empirical situatedness. The children would only learn to calculate faster, that is,
they would increase their factual knowledge about calculation results and routines.

So, how can children come to a more algebraic view on equations? We now
discuss this question first in general on the basis of square number differences,
having in mind that the extent of this problem would be too challenging for primary
level children. We then concentrate our discussion on the primary level. For this,
we limit our problem to the special case b ¼ 1 in a special form, namely that of
equalities involving the terms a2 and aþ 1ð Þ � a� 1ð Þþ 1:

According to Steinbring (2005), it is important that new structural insight is
linked with empirical findings. Hence, a fruitful learning opportunity can only arise
if a balance is provided between empirically situated and general relational inter-
pretations. Within this balance, we stress a conceptual understanding of equality,
more or less independent from formal rules in the sense of equations: An equality is
a relation between two different representations of one mathematical object. In
conclusion, the children should learn that two empirically different looking objects
can represent the same mathematical object in a structural sense (Winter 1982). In
the example above, the terms 72 − 22 and 9 � 5 represent the same object, because
one can transform one representation to gain the other:

72 � 22 ¼ 7þ 2ð Þ � 7� 2ð Þ ¼ 9 � 5:

Of course, an equality means more than only the fact that two terms lead to the
same calculation result. For example, although the results of the calculation 15 � 3
and 72 − 22 are the same, the equation 15 � 3 = 72 − 22 does not represent an
equality according to the given definition, because the terms do not represent the
same mathematical object. They are only equal in an empirical sense. Instead,

1Note that the raised dot is used here to signify the operation of multiplication.
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within our context of differences between square numbers, the concerning equality
would be represented by 15 � 3 = (9 + 6) � (9 − 6) = 92 − 62.

Consequently, equations like 4 = 4 seem to be senseless within this under-
standing of equality because already the representations on both sides of the
equation are equal: 4 does not only equal 4, but it is the same. From this point of
view, it is neither surprising nor wrong when children reject equations of the type
a = a (Kieran 1981, p. 319; or Steinweg 2013, p. 73).

Summarizing our point of view (see Fig. 8.4), mathematical knowledge devel-
ops in the oscillation between two poles: on the one side is the empirical situat-
edness, that is, the factual knowledge about numbers, calculations, and
calculating-routines. And on the other side is the relational generality, where the
focus is only on structures between objects, represented in the form of mathematical
symbols. Of course, the way from empirical knowledge to relational knowledge is a
very complex and long term learning process, analyzed by many mathematics
educators. For example, Hefendehl–Hebeker (1998) analyzes “the shift of view”
from arithmetic to algebra, Krummheuer (1995) reconstructs “modulations of
framings”, while van den Heuvel-Panhuizen (2003) discusses the “miracle of
learning.”

8.2.4 Collective Argumentation

In line with Steinbring (2005) and Miller (1986, 2002), we understand the “learning
is a balance between empirical and structural knowledge” as constituting what we
refer to as “fundamental learning processes.” These processes are very hard to
realize because they require that children reorganize their knowledge in order to
re-interpret already familiar learning topics from a new, more structural perspective.
For example, children would not only have to memorize addition facts up to 20;
they are also intended to acquire a structural understanding of addition, using

Relational knowledge: 
Structures between terms

Empirical knowledge: 
More or less isolated facts about 

calculations 

Find a balance: 
Fruitful learning 

opportunities

Conceptual understanding of equalities: 
Two different representations of one 

mathematical object

15 3 = 45 9 5 = 45 49-4 = 45

a2 2 = (a+b) (a-b), for all integers a,b.

72 2 = (7+2) (7-2) = 9 5

92 2 = (9+6) (9-6) = 15 3

Fig. 8.4 Balance between empirical and relational knowledge
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equalities that are based on algebraic laws in order to build up sophisticated cal-
culation strategies like 7 + 9 = 6 + 10 or 7 + 9 = 7 + 10 – 1.

According to Miller (1986) and to our own observations (Nührenbörger and
Schwarzkopf 2015), children often do not feel the need to think about mathematical
structures in a sufficiently intensive manner in the sense of fundamental learning
processes. For example, given a series of tasks that follow a pattern like

30þ 20 ¼ 31þ 19 ¼ 32þ 18 ¼ 33þ 17 ¼ . . .

many children describe the underlying pattern in a quite empirical way, for
example: Increasing the first number by one (two, three, … any number) and at the
same time decreasing the second number by one (two, three, … the same number)
causes the result to remain constant. From our point of view, it is very important
that on the way to algebraic thinking children are able to see and describe patterns
like this, but:

Structural thinking is much more than seeing a pattern, such as ‘when one number increases
by three the other goes down by three’. (Mason et al. 2009, p. 23)

So, how can we encourage children to think in a more intensive manner about
arithmetic terms in order to initiate steps of fundamental learning processes? In our
experiments we confront children with somewhat productive irritations, that is, we
try to disrupt children’s expectations. Knowing the rule “+1−1 = 0” by routine, the
children in our studies analyze pairs of multiplicative terms like these:

5 5 6 6 7 7

4 6 5 7 6 8

When we asked the children what they would expect regarding the results of the
pairs, most of them answered in the same way as within the addition series: 5 � 5
must be the same as 4 � 6 because increasing one number by one (two, three,… any
number) and at the same time decreasing the second number by one (two, three, …
the same number) causes the calculation-result to remain constant. Afterwards, the
children found out by calculating that their expectation was not true—although the
difference between the results is quite small. This phenomenon was nearly always
very surprising for the children—knowledge that always seemed to be true in the
first grade was no longer safe.

This irritation was always very productive, because for the children it seemed to
be clear that their observation stood in contradiction to their arithmetic rule. So they
would have to think about it in a more intensive way to understand the inequality
or, better, to understand the equality between 5 � 5 and 4 � 6 + 1. Children can gain
access to a structural understanding of this equality when they can model the
multiplication with fields of dots, as is illustrated, for example, in Fig. 8.5.

From a theoretical point of view, fundamental learning processes can only be
realized within “collective argumentations”, that is, the social process whereby

202 R. Schwarzkopf et al.



children find reasons for an observation that contradicts the expectations that have
been built up by their past experiences and routines. According to Miller (1986),
these social conditions are necessary to enable children to think about their factual
knowledge in a more structural way, that is, to start the processes of fundamental
learning. Hence, in our experiments we confront the children with problems and
phenomena that make it somehow impossible for them to use their previous routine
so that they have to solve the problem in an argumentative way (Miller 1986;
Schwarzkopf 2000, 2003).

In summary, to enforce the emergence of substantial learning opportunities in
the balance between empirical and structural knowledge, we develop tasks that
initiate mathematical needs for collective argumentation on equalities. Our intention
is to confront the children with a “productive irritation” (Nührenbörger and
Schwarzkopf 2015), that is, with confronting them with equalities that go against
their experience-based expectations. This approach is based on Piaget’s (1985)
work on cognitive conflicts. The tasks or problems, for example, provide phe-
nomena that were not expected by the children so that they have to reflect on the
given structures and see the need to reinterpret the experienced mathematics behind
the problem. In this sense, a productive irritation is based on a deviation from
acquired expectations that has to be cleared up by the participants.

8.3 The Learning Environment “Computing Chains”

8.3.1 Didactical Background of the Learning Environments

In the following we present an example of a substantial learning environment
designed to foster an algebraic understanding of arithmetic equalities. Substantial
learning environments in general are rich in content and based on subject-related
didactical considerations. They refrain from artificial (teaching) set-ups, but con-
centrate on mathematical patterns and structures (Wittmann 2001a). Substantial
learning environments have a special design in common, trying to offer complex
algebraic structures to young children: Objects and operations are presented with
the help of special geometrical forms or pictorial figures as squares, triangles or
arrows, which serve as support for a structural reading of the given problems.

5 5 4 5 + 5 4 6 +1= =4 5 + 4 +1=

Fig. 8.5 Multiplication fields for a structural understanding of 5 � 5 = 4 � 6 + 1
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Numbers and operations are used and combined in a way that allows numerous
fundamental mathematical activities for exploring complex relational networks. As
we have referred to several substantial learning environments in previous articles
(e.g., Nührenbörger and Schwarzkopf 2015), this chapter concentrates on “com-
puting chains” (taken from the German school book “Das Zahlenbuch” [“The
number book”]).

Computing chains (see Fig. 8.6) consist of a series of operations (noted in the
arrows) that transform a “start number” s (noted at the left of the chain) successively
into a “target number” t (noted at the right).

To become familiar with the presentation of the tasks, the children start by
simply calculating some target numbers. The given example represents the structure
t ¼ s � 30þ 30. Thus, the children use their empirical knowledge as they calculate a
given task and note the result in the form of the target number. After a few such
exercises, the children can become aware of the structure beyond the chain, for
example, by analyzing the equality behind the equation sþ 1ð Þ � 30 ¼ s � 30þ 30.
Here, we can speak of relational knowledge in that the focus is no longer on the
results of calculations but on the structure of numbers and the comparison of equal
terms. Of course, children would use the arithmetical language to describe and
understand this phenomenon: Instead of multiplying by 30 and then adding 30
again, you can also add 1 to the start number and multiply the result by 30 to get the
target number. As described earlier, in this way children can develop equality
concepts before using the symbolic representations in the form of equations. The
substantial learning environment of computing chains using boxes and arrows to
present the objects and operations in the problem allows a structural analysis of the
given equality. Hence, computing chains provide opportunities to discuss equalities
on the basis of arithmetic operations. In this problem context, arithmetical opera-
tions can become the central algebraic objects in discussing equalities—this is an
essential aspect of substantial learning opportunities that are aimed at helping
children think in an algebraic way (Steinweg 2013, p. 123).

In the next section we discuss two examples of learning opportunities in the
context of computing chains. In our design study, pairs of 4th graders (10 years old)
were confronted with series of tasks that were intended to initiate a collective
argumentation around some productive irritation. Our focus of analysis will be on
the question of whether we can see an algebraic core within the children’s dis-
cussion of the problematic equalities: Do they discuss only empirical aspects of the
equalities or can we discern indications of more structural arguments?

start target

4 · 30 +30120 150

Fig. 8.6 Computing chains
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8.3.2 Example 1: Comparing Computing Chains

In the first example (Fig. 8.7), the boys Jens and Noah computed the following
working sheets—Jens took the left and Noah the right one.

As you can see, each of them discovered a pattern in his series of tasks and
continued with two appropriate computing chains: The start numbers increase from
row to row by 1 and the operators in the arrows stay constant, which causes the
target number to rise by 30. Obviously, the relation depends on the distributive law:
The start number and the increase of 1 are distributed to the operator “� 30”, so that
an increase of 30 appears in the sequence of target numbers—adding or subtracting
30 in the second step has no effect on this pattern.

After the phase of individual work the learners compared their columns of
computing chains. With regard to a cooperative way of learning they had the chance
to discover mathematical phenomena on their own, discuss these findings, and
make more discoveries together.

Especially, it is often surprising for children that different computing chains lead
to the same target numbers—because of the wide-spread routines in mathematics
lessons, this phenomenon seems to be irritating for many children.

In the example shown in Fig. 8.7, every set of two neighbored chains shows this
equality. The episode starts when the interviewer asks the children to compare their
columns of computing chains:

Interviewer: Let me push them together into the middle (pushes the problem
sheets to the middle). If you compare them now, do you notice
anything?

Fig. 8.7 Jens’ and Noah’s work sheets
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Jens: I see. 4 times, 5 times. Oh. You have lower numbers. You have 4
times, 5 times, 6 times, 7 times, 8 times (points to Noah’s start
numbers)

Noah: Because you have minus here (points to Jens’ second arrow
numbers), you must have higher ones so that the result stays the same

Jens: Yes.

When having a look at both blocks of chains, Jens makes a new discovery. He
no longer compares the vertical differences between the numbers, but focuses on the
problems in the horizontal neighborhood. He seems to be surprised about the
discovery, that the start numbers of Noah’s chains are lower than his numbers. Due
to this discovery, and maybe also to his own astonishment, Noah feels motivated to
start some reasoning. The boys seem to be irritated in a productive way because
they start to examine the detected phenomenon in a more intensive way, especially
starting a collective argumentation involving reasoning about its structure. Noah
points to Jens’ second operator, a subtrahend, and highlights the higher start
numbers of Jens’ chains in comparison with the constant target number.

Noah compares the problems in a qualitative way. He does not specify his
justification numerically, but has a qualitative idea of balancing amounts so that the
total at the end is the same. If one has got more than the other at the beginning, then
one has to take something away, so that it is the same at the end.

After having discovered the differences of start numbers in combination with the
equality of target numbers and having started to justify this phenomenon, the
interviewer asks for further justification.

Interviewer: What do you mean?
Noah: Well (.)
Jens: I get two times more, well more, and so that it’s the same for both of

us in the end, I must sub, subtract 30 and he needs to make 30 plus
[…].

Jens develops Noah’s comparison to a quantitative comparison considering the
numerical values. As Noah does before, Jens relates the starting numbers of the
problems, the target numbers as well as the second operators, to each other and
furthermore articulates these relationships. Jens “gets two times more” at the
beginning and as “it’s the same for both of [them] in the end,” Jens has to “subtract
30” and Noah has to “make 30 plus.” Algebraically speaking, Jens sets up the
following equation: (x � 30 + 2 � 30) − 30 = x � 30 + 30.

In his argumentation, Jens stresses the start number as well as the subsequent
operation. In the first phase of the episode he describes: “You have 4 times, 5 times,
6 times, 7 times, 8 times.” In the second phase he relates his beginning of the
problems to the one of Noah and states that he “gets two times more.” Jens seems to
regard the whole terms 4 � 30, 5 � 30, 6 � 30 etc. in Noah’s chains and the terms
6 � 30, 7 � 30, 8 � 30 etc. in his chains, and not only the particular start numbers. If
he were only looking at the start numbers, he would have talked about “two more”
instead of “two times more.” He therefore interprets each term at the beginning,
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consisting of an operation and an object, as one whole object. Also he relates the
second operator −30 and +30 to the beginning, strengthening the assumption that
Jens looks at the whole objects 4 � 30, 5 � 30 etc. and not only at the start numbers,
as they could not explain the different operations in the opposite direction. To sum
up, Jens does not refer to the start numbers alone in his argumentation, he does not
compare x � 30 and (x + 2) � 30, but relates to the equality between the terms
x � 30 + 30 and (x � 30 + 2 � 30) − 30.

After Jens stated this equality relation between the two columns of computing
chains, he justified it.

Jens: […] because we have I think (.) yes, have 60 more in the middle, me 60
more than Noah, and I must then go minus 30, then Noah is only 30 away
from me, from my number and he goes 30 plus, then we are at the same
number.

At the end of the argumentation, Jens focuses on the middle numbers of the
computing chains. Hence, for him, these middle numbers seem to be important to
secure the reasons for the equality between the target numbers. He remarks that the
middle numbers of his chains are “60 more” than the corresponding ones of Noah.
From our point of view, this empirical observation is a link within the argumen-
tation to the factual knowledge of the children: The difference between the middle
numbers is 60, so adding 30 to the lower one and subtracting 30 from the higher
one equalizes the difference (see Fig. 8.8).

In summary, Jens first specifies the equality relation between the two columns of
target numbers by comparing the relations between start numbers and the second
operators. He then relates these comparisons to each other with the help of the
middle number: The empirical fact that the differences between the middle numbers
are always 60 seems to be essential for Jens to make sure that his thoughts on the
structures are correct. Algebraically speaking, the argument sets up the following
relation:

x � 30þ 2 � 30ð Þ � 30 ¼ x � 30þ 60ð Þ � 30 ¼ x � 30þ 60� 30ð Þ ¼ x � 30þ 30:

x 30

middle number
x 30+2 30

+ (1 30) = + 30

- (1 30) = - 30

target number

N number

2 30=60

Fig. 8.8 Jens’ argument on the equality
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Hence, Jens argues that both computing chains are different representations of
the same mathematical object, namely (x � 30 + 60 − 30).

8.3.3 Example 2: Completing Computing Chains

In the second example (see Fig. 8.9) the children have to figure out the second
operator of computing chains. The intention of the blackened middle numbers is to
push the children to compare objects and operations in order to find the second
operator, without computing the middle number. A help for this problem is the first
row of the column: Having in mind that 320 is the result of 8 � 40 the children
could think that in the second row one has to add 5 � 40 in the second arrow
because of the distributive law: 3 � 40 + 5 � 40 = 8 � 40. To understand the
underlying equality of this equation, the children would have to see that the terms
3 � 40 + 5 � 40 and 8 � 40 are different representations of the mathematical object
(3 + 5) � 40.

Nevertheless, of course, the children might compute the middle number mentally
and find the solution in a more empirical manner: 3 � 40 = 120 and because
320–120 = 200 the operation in the second arrow must be “+200”. This possibility
to link the problems to the empirical pole of mathematical knowledge is always
given in our learning environments: We do not want to demand too much of the
children by confronting them with somehow pure algebra problems that belong to
secondary level. Hopefully, children would evolve from this empirical point of
view to a more structural one, observing the relations between the rows of the
columns, especially the dependence of the second operator on the start number.

However, at the beginning of the following episode, the pair of 4th graders Nils
and Dilay, who are working together, have already found the start number for the

Fig. 8.9 Figuring out the
second operator of the
computing chain
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short computing chain (Fig. 8.10). Dilay first looks at the longer chain with the start
number 7 and finds the second operator for this computing chain:

Dilay: I’ve got it (writes down +40). Here it is plus 40.
Interviewer: Why?
Dilay: Because here it is eight times 40 (points to the short computing

chain) and here it is seven times 40. And when we do not calculate
this (covers the middle number with her fingers), then one just has to
do 40 again because only then it is 320.

Interviewer: Yes, well done.

Dilay finds the correct solution, +40, writes it down and then gives reasons for
her solution. She points to the short computing chain and compares the belonging
term 8 � 40 with the beginning of the second chain, 7 � 40. She concludes that the
missing operator must be +40. Because she stresses the start numbers of both
chains, she might have noticed the difference of 1 between them and reasons that
“one just has to write 40 again” with regard to the distributive structure of the two
problems: 8 � 40 = (7 + 1) � 40 = 7 � 40 + 1 � 40.

Of course we do not know whether Dilay had already calculated the middle
number before she offered her solution. Maybe she calculated the middle number,
determined the difference of 40 between the target and the middle number and
noticed afterwards, that “one just has to do 40 again,” that is, she found the solution
with an empirical point of view. But, the important aspect is that she characterized
her argument in more structural terms: Dilay emphasized that her argument was
valid without referring to the result of the middle number: “And when we do not
calculate this.” However, the argument of Dilay initiated a statement from Nils:

Nils: Is it correct at all? (looks at the computing chains) It is, isn’t it?
Interviewer: Nils, do you know what Dilay just meant?
Nils: Hm. Yes. I think, there is one more (…) (points to the start number of

the short chain). For this there must be one more time forty. (points
to the second arrow of the long chain), because that are seven and
eight, that would be 320 too, but because seven (..) because it uhm
uhm is one less, there has to be one more of the forties in addition (.)
that’s why it is plus forty.

At the beginning, Nils wonders if Dilay’s solution is correct. He agrees quickly,
but still does not seem to be completely satisfied. After the interviewer asks him
whether he understood Dilay’s explanation, he starts to give reasons for Dilay’s
solution by himself. He examines the short chain and points out that there is “one
more”. Maybe he compares the start numbers of both chains and states that eight is
one more than seven. Eventually, Nils not only compares the start numbers but, as
Jens did in the above mentioned example as well, looks at them in connection with
the first operator “times 40”. He might then have realized that the short computing
chain has one more “times forty” than the beginning of the long chain. When
looking at Nils’ further argumentation, this interpretation can be assumed.
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He regards the second operator of the long chain and states: “there has to be one
more of the forties in addition.” Nils seems to balance the lower amount in the
beginning of the long chain with the second operator, so that the result is the same
as the one of the short chain. Algebraically speaking, he uses the distributive law to
distribute 8 times 40 to 7 times 40 and 1 times 40: 8 � 40 = 7 � 40 + 1 � 40. Nils
compares the numbers in the two chains, focuses on their differences, and trans-
forms one term into the other: 8 � 40 ¼ 7þ 1ð Þ � 40 ¼ 7 � 40þ 1 � 40.

Hence, Dilay and Nils develop an argument that justifies the equality of the
terms 8 � 40 and 7 � 40 + 1 � 40 by referring to the common mathematical object
(7 + 1) � 40. Although we do not know whether Dilay found the solution empiri-
cally, she did state her argument with reasons for the solution that were not based
on the empirical finding of the middle number.

8.4 Closing Remarks

In this chapter we tried to highlight two aspects related to the learning of algebra
within primary levels of schooling. First, we argued for concentrating on the
concepts of equality rather than stressing the use of the equal sign in a formally
correct way. From our point of view, this conceptual understanding is essential to
bridge the gap between the empirical knowledge about calculation tasks and the
pure relational knowledge about the structures of algebraic terms. It is clear that this
kind of conceptual understanding can only be realized in learning settings of
adequate complexity in the sense of substantial learning environments. But, and this
is the second main focus of our chapter, the processes of fundamental learning that
involve the interplay between empirical and relational knowledge can only take
place when children are engaged in collective argumentation—only processes of
argumentation enable children to overcome their empirical understanding of
mathematics. We tried therefore to stress the importance of productive irritations for
the emergence of fruitful learning opportunities on children’s pathway to algebraic
concepts—exemplified by a focus on equalities between arithmetical terms.
Irritations arise in situations where previously held mathematical views, approa-
ches, notions, or expectations fail in the socially-specific necessities of interaction.
They become productive for the initiation of fundamental learning processes if
children develop options for bridging the gap between expectation and disap-
pointment by collective argumentation. These social processes are the source and

Fig. 8.10 Discussed part of
the task “Figuring out the
second operator”
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motivation for children on their way from an empirical use of calculating rules to
more algebraic, structural understandings of equalities. This in turn can lead, later
on, to an adequate understanding of algebraic equations and to a conceptual
foundation for the use of algebraic formalism in general.
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Chapter 9
Observations of Structure Within Shape
Patterns

Aisling Twohill

Abstract Constructing general terms for shape patterns supports children in rea-
soning algebraically about relationships between quantities and relative rates of
change. This chapter describes a research project wherein I investigated the
strategies children attending Irish schools used when asked to solve
shape-patterning tasks. The research instrument was a task-based group interview,
and the children’s interactions shed light on a number of catalysts for the broad-
ening of their observations of the pattern structure. Such catalysts included peer
interactions, concrete materials, and teacher prompts. In this chapter I draw atten-
tion to children’s observations of structure, and seek to trace the thinking of chil-
dren whose observations broadened from an initially narrow or limited perspective.

Keywords Shape patterns � Generalization � Structure � Task-based interview

9.1 Introduction

Blanton et al. (2011) have pinpointed four key practices of algebraic thinking:
(a) generalizing, (b) representing, (c) justifying, and (d) reasoning with general-
izations. They emphasize that these practices must focus upon structures and
relationships. As well, Blanton et al. (2015) have identified functional thinking as
an appropriate content domain within which children may apply key practices of
algebraic thinking. Functional thinking embodies an approach that sees functions as
descriptions of relationships about how the values of some quantities depend in
some way upon the values of other quantities (Chazan 1996). In shape patterns,
children are asked to discover or explore a function that relates the number of
elements of some component of a term, to the position of that term in the pattern.
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For example, in the pattern of fences depicted in Fig. 9.1, the number of posts in
each fence is a function of the position number (x), where the specific function is f
(x) = 3x + 1.

Blanton et al. (2015) highlight the role of functional thinking in young children’s
algebraic thinking by stating that functional thinking includes generalizations of
co-varying quantities and their relationship, representations of these relationships,
and reasoning with the relationships in order to predict functional behavior.
Concurrent with the definition of functional thinking above, many of these con-
stituent skills of functional thinking focus on quantities and the relationship
between quantities. For children to explore these relationships, and in order to
define and apply functions, their thinking can be supported by broad and
multi-faceted observations of structure within patterns. Such observations may
include figural aspects of terms along with numerical quantities of components. In
this regard, Rivera and Becker (2011) have stressed that sole attention to the
numerical aspects of a pattern indicates that children are only superficially grasping
the commonality within the structure of the pattern. Examples of figural observa-
tions of Fig. 9.1 pattern are depicted in Fig. 9.2.

The focus of the research described in this chapter is children’s observations of
structure within patterns. Sixteen children, with an average age of 9.6 years, par-
ticipated in group, task-based interviews where they sought to collaboratively
construct general terms from shape patterns. Children were expected to apply
functional thinking to the context of shape patterns, as they were prompted to
reason about and represent co-varying quantities and their relationships. In my
analysis of the children’s discussions, constructions, drawings, and gestures, I
explored children’s tendencies to attend to relationships between terms, or rela-
tionships between a term and its associated position in a sequence. Research sug-
gests that when children begin to explore the structure of patterns, their natural
tendency inclines towards a recursive approach, that is, the examination of the
mathematical relationship between consecutive terms in a sequence (Lannin 2004;
Rivera and Becker 2011). When children are learning to interpret patterns it may be

Fig. 9.1 A pattern of fences, wherein the number of posts in each fence is a function of the
position number of the fence

2n horizontal posts
n+1 vertical posts
Total number of posts: 3n+1

Fences consist of 3-post sections, and each fence 
has 1 additional post: 3n+1

Fig. 9.2 Possible figural observations of the Fences pattern
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necessary for a teacher to encourage the child to consider an explicit approach,
whereby the child identifies a rule for the relationship between a term and its
position in the pattern (Lannin et al. 2006). Taking into consideration the challenges
inherent in solving problems when children attend only to numerical aspects of the
pattern structure, rather than also incorporating figural aspects, my investigation of
the children’s observations of structure incorporated an exploration of their incli-
nations to discern both figural and numerical aspects of the shape patterns presented
to them (Twohill 2017).

The analysis and findings in this chapter are drawn from a research study
involving primary school children in Ireland.1 Within the Irish Primary School
Mathematics Curriculum (PSMC), recursive reasoning is favored in the presenta-
tion of learning objectives and associated activities, while explicit reasoning is not
outlined as an approach to pattern solving (Government of Ireland 1999). As I will
outline later in this chapter, the omission of functional thinking, and specifically
shape patterning, from the Irish PSMC indicates that it is highly improbable that
most children attending Irish primary schools will have engaged with activities
designed to develop functional thinking. In my research I aimed to investigate what
strategies children attending Irish primary schools would adopt when asked to
construct general terms for shape patterns, with and without real life contexts. In
this chapter I focus on the children’s observations of relationships within the
structure of the patterns presented to them.

9.2 Generalization

9.2.1 Generalization from Shape Patterns

A core aspect of algebraic thinking is the construction of a general case for a
pattern, or for a scenario that contains a generalizable phenomenon (Kaput et al.
2008). Within formal algebra, students are required to apply a mastery of gener-
alization skills, to understand what it is to generalize, and to manipulate expressions
of generalizations while accepting their generalizability. Traditional curricula
prevalent in many countries delay children’s engagement with generalization until
secondary school; thus, many students fail to successfully develop the skills and
habits of mind involved in abstract thinking (e.g., Arcavi 2008; Kilpatrick and Izsák
2008; Mason 2008).

1In Ireland children attend primary school for eight years, typically from the age of four or five.
The classes are referred to as Junior Infants, Senior Infants, and 1st through to 6th class. As such,
Senior Infants would be equivalent to 1st grade, 1st class to 2nd grade, etc. The children who
participated in this study were attending 4th class, and for ease of reference I refer to their grade as
5th grade throughout this chapter. In the study of Nic Mhuirí (2014) the children attended 6th
class, and in this chapter their grade is referred to as 7th grade.
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Generalization of a phenomenon involves the analysis of visible instances of the
phenomenon, and the application of conclusions to cases that are not observable. As
such, the capacity to generalize supports us in utilizing the structure of the world
around us so that we can conjecture and predict. In mathematics, young children are
often encouraged to generalize properties of computation, such as the addition or
multiplication of zero, so that they may build on what they have observed with
some numbers, in order to perform mental computations with other numbers.
Indeed, Mason asserts in this volume that, in order to make sense of much of
mathematics, children must generalize. Mason highlights evidence pointing to
children’s early ability to generalize, and also describes typical instances of young
children working from the abstract to the particular, thereby applying generaliza-
tions to specific instances. In exploring children’s construction and application of
generalization, many research studies have focused on shape patterns, for example,
Radford (2011), Rivera and Becker (2011), and Warren and Cooper (2008). Lannin
et al. (2006) suggest that generalizing through patterning activities may create a
bridge between students’ knowledge of arithmetic and their understanding of
symbolic representations.

Central to an understanding of children’s early algebraic thinking are concepts of
“the particular” and “the general” (Mason and Pimm 1984). Mason and Pimm
identified three ways of talking about numbers: as specific numbers, generic
numbers, and the general case. Specific numbers are identified without the use of
symbols, or when symbols are used, there is no ambiguity about the value asso-
ciated with the symbol. The general case is an expression of something that is true
for all numbers, or in the solution of patterns, an expression that defines all terms of
the pattern. A generic example is an example where a specific number plays the role
of the general number, “but one presented in such a way as to bring out its intended
role as the carrier of the general” (Mason and Pimm 1984, p. 287). For example,
when solving for patterns, children may refer to specific far terms, such as the 100th
term, in order to express their generalization; but their use of a numbered term is
intended to describe the general case (Mason and Pimm 1984; Radford 2010).

Resonating with Mason and Pimm’s trichotomy of specific, generic, and general
cases, Radford (2001) asserted that children’s algebraic generalizations may be
factual, contextual or symbolic. Factual generalizations involve instantiating a
general structure to specific terms, whereby children do not express a generalization
as applicable to all terms, but apply an “operational scheme” which allows them to
calculate a value for particular terms. Contextual generalizations, by comparison,
involve the consideration of non-specific terms. While contextual generalizations
are not completely abstract, or general to all terms, they indicate a distancing from
the specific, whereby children may refer to “the next term” or to a generic term.
Symbolic generalizations involve the abstract expression of disembodied mathe-
matical objects, wherein children express the algebraic concepts with no reference
to their method of calculation, or to any specific term. Radford (2001, p. 88) has
emphasized the complex developments required in children’s thinking in order for
them to engage in this level of abstract expression. For children to express their
thinking symbolically, without reference to specific or situated instances, requires a
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different perspective on the mathematical objects involved. This higher order per-
spective must be accompanied by a “layer of discourse” appropriate to the
description of the mathematical objects—in this case general terms for patterns,
without alluding to any specificities, either in specific terms or in pointing towards
thought processes involved in constructing the generality.

9.2.2 Generalization in the Irish Primary School
Mathematics Curriculum

Mason (2009) stated that “young children are able to generalize, because without it
they could not function in the world and certainly could not grasp language”
(p. 159). When children enter primary schools, they bring with them nascent skills
in generalization. It is the role of educators to nurture and develop such skills so
that, by the time children leave primary school, they possess the competences
necessary for engagement in abstract symbol manipulation. In this section I
describe the content of the Irish PSMC as it pertains to patterning, and I highlight
what I perceive as missing elements which, if present, could support teachers in
fostering existing algebraic thinking skills as identified by Mason (2009).

The Irish PSMC is organized under the five Strands of Number, Algebra, Shape
and Space, Data, and Measures. Content is prescribed under each Strand from when
children commence school at four or five years of age. The Algebra Strand of the
PSMC contains patterning activity, but this is largely limited to repeating patterns in
the first two years of primary school, and numerical sequences thereafter. Also, as
there is no specific guidance within the curriculum as to the purpose of, or intended
pedagogical approach related to, patterning activities, the algebraization of any
patterning activity is very much at the discretion of the classroom teacher, and thus
vulnerable to inconsistencies. Clements and Sarama (2009) caution that teachers
need to be aware of the role of repeating sequential patterns and of where they fit
into children’s observations of structure within patterns. For example, Papic (2007)
emphasized that when teaching patterning to young children, teachers must remain
cognizant of focusing children’s attention on the commonality, or unit of repeat.
Such detail is not outlined in the PSMC. Furthermore, in the presentation of the
curriculum no attention is paid to consideration of far terms for patterns. Children
may not, therefore, consider terms beyond their perceptual range, and may not be
facilitated to consider “indeterminate quantities conceived of in analytic ways”
(Radford 2011, p. 310).

Kaput (1998) suggests that for students to develop algebraic reasoning skills
with which they can unlock many sophisticated areas of mathematics, it is
important that they engage with algebraic processes over time and that this
engagement is purposeful. Within the PSMC, instruction in algebraic thinking
commences early, and patterning serves to support computation throughout primary
school. However, generalization or identifying a far term in a pattern are not
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mentioned. While there is content relating to the formulation of rules for patterns,
all the pattern examples provided lend themselves most readily to recursive solu-
tions. Furthermore strong tendencies towards drilling children in recursive
approaches are evident in textbooks popular in Irish primary schools (Twohill
2013). Eivers et al. (2010) found in an examination of teaching approaches in Irish
classrooms that textbook use was pervasive, and suggested that teachers were
possibly overly reliant on textbooks, indicating that many children’s exposure to
patterning may be limited to recursive approaches with no mention of
generalization.

In assessments of the attainment of Irish children in algebraic thinking, these
gaps within the primary school curriculum appear to be evident. In 2015, the
International Association for the Evaluation of Educational Achievement
(IEA) conducted an iteration of Trends in International Mathematics and Science
Study (TIMSS). TIMSS measured the mathematics and science skills of children in
many countries at both 4th grade and 8th grade. In Ireland more than 9000 children
participated, and both of the Irish cohorts achieved a scale score significantly
greater than the overall mean for all countries (Clerkin et al. 2016). The perfor-
mance of the 8th grade cohort on the Algebra content domain, however, indicates
that Irish students may have experienced greater challenges with items assessing
Algebra than with those assessing Number, and Data and Chance. The Irish cohort
achieved a mean score of 501 for Algebra, significantly lower than the mean score
for Number (544), Data and Chance (534), and the overall scale score for mathe-
matics (523).

Along with curricular content and Irish students’ performance on assessments
that evaluate their algebraic reasoning, it is pertinent to highlight the typical situ-
ation in Irish classrooms in terms of student agency. In this chapter I will refer to
how interactions within interview groups supported children’s thinking. In this
section, therefore, I draw attention to the relevant experience the children may have
had in developing the necessary skills inherent in using ‘exploratory talk’ during
discussions (Mercer and Littleton 2007). Without opportunities to develop shared
practices such as justifying answers, and building upon each other’s suggestions,
children may collaborate at very superficial levels when working together on
mathematical tasks. Nic Mhuirí (2014) researched trends in mathematical talk
occurring in Irish 6th grade classrooms and found that the incidence of exploratory
talk was extremely low. Supporting the findings of Nic Mhuirí, Eivers et al. (2010)
also cited low levels of group discussion during mathematics lessons, where a
teaching approach typified by being textbook based and centered on the teacher
predominated in 7th grade.

9.2.3 Observations of Structure

Strømskag (2015) defines a shape pattern as a sequence of terms, composed of
‘constituent parts,’ where some or all elements of such parts may be increasing, or
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decreasing, in quantity in systematic ways. While a limited number of terms of a
shape pattern may be presented for consideration, the pattern is perceivable as
extending until infinity. In order to construct a general term for a shape pattern,
children must “grasp a regularity” in the structure of the terms presented, and
generalize this regularity to terms beyond their perceptual field (Radford 2010,
p. 6). Similarly, Mulligan and Mitchelmore (2009) present “structure” as the def-
inition of a pattern, which is most often expressed as a generalization, being a
“numerical, spatial, or logical relationship, which is always true in a certain
domain” (p. 34).

In seeking to construct a generalization for a pattern, children may adopt a
variety of approaches. Lannin et al. (2006) identified an explicit approach as
establishing a relationship between a term and its position in the pattern. In contrast,
a recursive approach involves comparing consecutive terms in order to identify a
relationship, which is then used to construct subsequent or preceding terms.
A ‘whole-object’ strategy entails identifying a term of the sequence as a unit, and
constructing other terms by generating multiples of the unit. To gain insight into a
greater range of patterning, and a structural understanding beyond the most basic
repeating patterns, children may benefit from opportunities to consider an explicit
approach, and some children may require intervention to do so (Lannin et al. 2006;
Rivera and Becker 2011). Thus, teaching activities and materials should avoid
overusing sequences that foster a recursive approach. Students need recourse to
both explicit and recursive methods of solving patterns, and their thinking should be
developed to include an ability to determine which method is appropriate in a
particular situation (Lannin 2004). Watson et al. (2013) concur by emphasizing that
explicit and recursive thinking should not be considered as hierarchical but com-
plementary, and that children will be supported in developing robust, flexible
reasoning skills when facilitated in engaging with both.

9.3 Methods

In seeking to explore the strategies children use, I presented patterning tasks to four
focus groups, each of which had four participants. The children were attending 5th
grade in Irish primary schools and had a mean age of 9.6 years at the time of the
interviews. The children were not schooled in any way in preparation for the
interviews, and no teaching intervention took place prior to the children’s
participation. Of the four interviews (one interview per group), three were video
recorded, and one was audio recorded. To facilitate strong student agency during
the interviews, I encouraged the children to share and explain their ideas with each
other and to explore differences between their approaches without verification from
me (Howe et al. 2007). For ease of reference, Table 9.1 identifies the four
groups of children and their chosen pseudonyms, which I used throughout the
research study.
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Task-specific interview questions were presented on a worksheet, and I asked
further questions to probe children’s thinking and to encourage children to compare
and justify their responses. The written interview questions were designed to
motivate children to firstly explore the patterns and to proceed to the construction of
general terms. The verbal interview questions and prompts were designed to best
facilitate the children in engaging with the patterns and in articulating their thinking
in response to the tasks.

Goldin (2000) advises that “by analyzing verbal and nonverbal behavior or
interactions, the researcher hopes to make inferences about the mathematical
thinking, learning, or problem-solving of the subjects” (p. 518). In seeking to
explore children’s mathematical constructions, I was conscious throughout that my
inferences from children’s comments were approximations of their true meaning.
As Van Manen (1990) attests, “a good phenomenological description is an ade-
quate elucidation of some aspect of the lifeworld” (p. 27, emphasis added). While I
sought to unpick as best I could how and why children thought about the mathe-
matical tasks, I posit that it is not possible to feel a sense of completion, or closure,
in relation to the children’s thinking, but rather that interpretation is ongoing
(Postelnicu and Postelnicu 2013).

As discussed above, shape patterning and explicit thinking are not formally
explored in most primary school mathematics classrooms in Ireland and many of
the children would experience the tasks as novel. I felt, therefore, that children’s
interaction with the tasks would be best explored if the children were supported to
work within their ZPD (Vygotsky 1978). Working alone with an unfamiliar adult
researcher, children may be inclined to respond in ways they believe are expected
(Ginsburg 1997), and this may limit their autonomy to take risks with novel tasks,
or to tease ideas out. In comparison, working within groups, children have
opportunities to create “personal mathematical insights” (Goos 2004, p. 263).

The patterns presented to the children are outlined in Fig. 9.3. As seen in
Fig. 9.3, Pattern 1 is a Beams pattern used in previous research by Radford (2010).
Pattern 2 is a modified version of an X pattern. Similar patterns have been used by
Rivera and Becker (2011) and by Warren and Cooper (2008). The difference
between this pattern and those used in previous research is that the pattern grows in
an asymmetrical fashion. Participants are required therefore to consider both the
rate of change, the element of the pattern that is growing, and the direction of
growth. For example, even-numbered terms are relatively simple to describe, as
expressed by Jane: “the same way in term 10, it was like half of 10 was the amount
of tiles on the legs.” Odd-numbered terms are more challenging, and during this

Table 9.1 The four groups
of children who participated
in the task-based interviews

Group name Participants

Group 1 Grace, Ciaran, Fiona, and Daniel

Group 2 Arina, Alex, Jay, and Cherry

Group 3 Christopher, Danny, Lily Rose, and Jane

Group 4 Emily, Wyatt, Luigi, and Orla
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research project, some children struggled to find the number of tiles on each leg for
the 75th term, due to difficulty in halving 75. The thinking required in order to
realize that 75 must be reduced by one, halved, and then a final adjustment of 2
diamonds added to the lower legs involves considerable algebraic reasoning, which
was beyond the capabilities of some children during their interviews. Grace was
reasonably successful in this, when she articulated: “Because ehm, you could just
find eh, the nearest number to, eh, but like eh, you could choose the doubles that
equal 74, and then you just add one more.”

To begin thinking about each pattern the children were asked to describe what
they observed of the pattern terms presented. I then asked them to extend to the
subsequent two terms, for Patterns 1 and 2, and to a preceding and a subsequent
term for Pattern 3. Children were asked to construct the subsequent and preceding
terms using tiles or matchsticks, and to draw them. Some children constructed their
own terms whereas some collaborated with a fellow group member. I anticipated
that manipulation of concrete materials might support the children in constructing
understanding, particularly in a context where they are encouraged to interact with
their peers, learning from and questioning each other (Bruner 1966; Dunphy et al.
2015). In the introduction to each interview I urged children to discuss their
thinking, to question each other, and to share their ideas.

Following the children’s discussions and constructions of next terms, I asked the
children to construct near and far terms, where far terms were sufficiently large as to
play “the role of generalized number” (Stacey 1989, p. 150). To conclude work
with each pattern, the children were asked to verbally describe a general term. I did
not ask children to express their generalization using symbols, but rather I took the
position that abstract symbolism is not a necessary component of algebraic thinking
(Radford 2010). The use of variables in generating rules from patterns is seman-
tically challenging, as children must see a single variable as simultaneously ful-
filling the roles of “dynamic general descriptor” of terms in relation to their position
and as a generic number in an expression (Radford 2000). Variable use is not
present in the PSMC in Ireland before 5th grade, and therefore would be entirely

1st Pattern

Term 1 Term 2 Term 3 Term 4

2nd Pattern

Term 1 Term 2 Term 3 Term 4

3rd Pattern

4-panel fence 5-panel fence 6-panel fence

Fig. 9.3 Patterns presented to the children
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novel to most, if not all, of the children who participated in this research. In
planning the interviews, I did not consider it appropriate therefore to expect chil-
dren participating in this study to work with the position number of terms in a
pattern in both ordinal and cardinal roles (Radford 2000).

9.4 Findings and Discussion

9.4.1 Overall Findings

When coding the children’s utterances I deemed a comment to indicate an explicit
approach if it identified, described, queried, or drew upon a relationship between
terms and their position in the pattern. Comments that spoke of relationships
between consecutive terms were deemed indicative of a recursive approach. Other
approaches identified during transcription and coding were approaches using
‘counting’ of elements and ‘whole-object approaches.’ Children who used a
whole-object approach treated a term, or the constituent part of a term, as an object
and constructed a subsequent term by generating multiples of this object. Some
whole-object approaches involved a ‘final adjustment’ wherein the child adjusted
the construction to cater for contextual or numerical aspects of the pattern.
Table 9.2 contains examples of children’s comments and their corresponding
codes, and Table 9.3 presents the number of comments coded as recursive, explicit,
whole-object, or counting, broken down by pattern.

Table 9.2 Examples of children’s comments and the corresponding codes

Child Pattern Comment Code

Cherry 3 I matched the number in the middle and then, like, on
the outside they add one on

Explicit

Wyatt 1 I think the 86th will have one more than 86 that’s 87 on
top and then take away and it’s 86 on the bottom

Explicit

Alex 3 To make the 3-panel fence you would have to take
away 3 posts from the 4-panel

Recursive

Ciaran 2 That’s like, it’s going up in twos each time, look cos
these grow then these grow then these grow so it’d
probably be like 16, at the other end

Recursive

Daniel 2 Ok, 1, 2, 3, 4, 5, 6, 7. 1, 2, 3, 4, 5, 6, 7, 8, 9. So term 3
is 7 and then that’s 9

Counting

Emily 1 Because if you add the… On term 6 if you add… If
you double it, it would equal to… if you doubled the
top number 6 and 6 it would make 12

Whole-object

Emily 1 I think it could be since this one is 6, you double the
top and that’s 12, it could be 12 on the top row, then
since it’s 5 on the bottom, it could be 11 on the bottom.
12 on the top and 11 on the bottom

Final
adjustment
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It is important to emphasize while presenting these statistical counts that they are
an approximation of the proportions of time and focus given by children to the
various approaches. Many factors impacted my production of these counts, which
could alter the true proportion of focus given by the children. For example, it was
not possible for me to hear every comment uttered. Some children may have
repeated themselves at different times within the interviews and I may have
included this as two comments. Also, all coding depended upon my interpretation
of the children’s comments. As such, these counts must be seen as the best
information available at the moment, but not as an exact representation of the
situation.

Patterns observed in the numbers of coded comments presented in Table 9.3
suggest that children expressed more ideas of an explicit nature, than of any other,
when describing, extending, and generalizing from the patterns presented to them
(180 comments in total). It may be surprising that an explicit approach seemed to
dominate the groups’ thinking about the patterns presented to them, considering
previous research in the area and the approach to patterning within the PSMC, as
discussed earlier in this chapter (Government of Ireland 1999; Lannin 2004).
Twelve of the 16 children demonstrated explicit thinking at some stage during their
engagement with the patterns, while the remaining four children did not apply
explicit thinking in order to construct terms. It is pertinent to highlight that the high
figure for the counting approach relates predominantly to children’s comments
during the initial description and extension elements of their engagement with the
patterns. As identified by Barbosa (2011), counting is a natural and appropriate
approach to take to one’s exploration of the structure of a pattern.

While there seem to be indications from research that recursive thinking is likely
to be the intuitive approach of many children, I found the inclination of children to
demonstrate explicit thinking to be of particular interest. Adopting a hermeneutic
phenomenological stance, I analyzed contributing factors to children’s inclination
to think explicitly. In this section I outline the impact on the children’s thinking of
(a) the concrete materials; (b) my contributions as facilitator; and (c) the children’s
interactions with each other within the interview groups.

Table 9.3 Tally of coded comments per pattern

Total Counting Whole object Final adjustment Recursive Explicit

Pattern 1 18 4 2 28 64

Pattern 2 15 1 0 63 77

Pattern 3 16 4 1 14 39

Total 49 9 3 105 180
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9.4.2 Concrete Manipulatives and the Physical Construction
of Terms

Six of the sixteen children seemed to have spontaneously explored connections
between terms and their positions, before observing their peers making this con-
nection. For example, in response to Pattern 1, when asked to construct the 12th
term, Ciaran and Grace (who were both participants in Group 1) demonstrated
spontaneous explicit thinking independently of each other, in saying:

Grace it’s obviously going to have 13, because term 5 had 6 squares on the top
and 5 on the bottom, so term 12, so it’s gonna be really easy

Ciaran how many tiles are needed for term 12? 1, 2, 3, 4…12; 12 multiplied 2 is
24, plus one is 25

Grace identified each term as consisting of a top row and a bottom row, con-
taining n + 1, and n tiles, respectively, as presented in Fig. 9.4. Ciaran identified
terms as containing t diagonal pairs, with an additional tile on the top right corner,
as presented in Fig. 9.5.

Grace and Ciaran made these comments following their physical construction of
pattern terms using tiles. Preceding their construction of the terms, both children
had tended strongly towards recursive thinking where comments such as “each time
you’re adding 2” were typical along with references to the total number of tiles as
always being an odd number. A focus on ‘numerical’ aspects of the terms also
seemed to dominate their group’s interactions before construction of the terms.
However, following their use of the manipulatives, both children succeeded in
drawing on ‘figural’ aspects in constructing factual generalizations (Radford 2010;
Rivera and Becker 2011). I thought therefore that the pathway followed by Grace
and Ciaran in their thinking about this pattern merited further analysis.

n+1 tiles

n tiles

Fig. 9.4 Grace’s construction of Term 12 of Pattern 1, presented as two rows of tiles, where the
bottom row contains n tiles, and the top row contains n + 1 tiles

Fig. 9.5 Ciaran’s construction of Term 12 of Pattern 1, presented as n pairs of tiles presented
diagonally, with one additional shaded tile
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Warren and Cooper (2008) found that the use of manipulatives combined with
number card identifiers for terms, supported children in shifting their focus from
relationships between subsequent terms, to relationships between terms and their
position. In exploring the strategies Ciaran and Grace adopted, I sought to consider
whether the use of manipulatives played a role in broadening the children’s focus in
this way. I examined, therefore, excerpts of the group’s conversation during the
period of the interview when their perspectives appeared to shift. The following
transcript is the initial reaction of the children when they are presented with four
terms of Pattern 1 and asked to describe what they see:

Daniel [reads question] Oh look, it’s going up in twos.
Grace I already said that.
Ciaran Yeah, but you see, [points], 3.
Daniel 3, and then 2, and then another 2.
Ciaran Yeah, but look, each time it gets bigger.

Within this transcript, Grace’s first comment of “I already said that,” referred to a
previous comment, which was inaudible, and immediately preceded Daniel’s
reading of the question. While Grace and Daniel immediately referred to the dif-
ference between subsequent terms, Ciaran seems to prefer to construct his thinking
independently, as he says “but you see” and points to the three tiles comprising the
1st term in the pattern. Having counted the tiles in term 1, he then observes that
each subsequent term is “bigger” without specifying size or the quantity of tiles.
Interpreting this comment, I would suggest that Ciaran was not listening closely to
his peers at this point, as he seems to be trying to convince them that the terms are
growing in size, when Daniel and Grace have both already acknowledged this
aspect. Unfortunately Grace and Fiona tended to whisper to each other during this
section of the interview, and much of their discussion was inaudible, even though I
placed a recorder on the desk right in front of them. In Table 9.4, I present the
children’s discussion following from the transcript above, and I focus on Ciaran’s
comments as he refines his thinking and begins to identify aspects of the structure
of the pattern, such as the difference between consecutive terms.

Ciaran’s initial three comments during this discussion focused on the total
number of tiles for terms in the pattern, and he attributed the property of being odd
or even to the totals rather than mentioning relationships between terms, or between
terms and their positions. Daniel, in contrast, focused strongly on the rate of growth
between terms in the pattern, repeatedly referring to “going up”, and 2 as the rate of
change between consecutive terms. Daniel and Ciaran faced each other during this
exchange, while Grace and Fiona held a parallel discussion.

After Daniel’s comment “3 and then another 2, and then another 2”, Ciaran’s
attention seemed to shift, whereby he used the term “more”, as opposed to “bigger,”
which he had used in the earlier extract, in reference to the difference between
consecutive terms. This may indicate that Ciaran is beginning to refine his sense of
the quantity of tiles that are added to construct each new term (as well, perhaps, of
the physical configuration of pairs of light tiles that increase by 2 each time, in
addition to the darker tile at the end of the pattern that does not increase in number
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—as hinted at by his last comment in Table 9.4). In his comments from this point,
he began to incorporate a comparison of consecutive terms for similarities and
differences “each time you’re adding 2, […] they’re all odd.” Tracking Daniel’s
thinking in a similar way, we can see that his initial observation was of the dif-
ference between successive terms, and he progressed from here to describe both the
odd-numbered total of tiles in each term and the difference between terms. Daniel
and Ciaran seemed to draw each other’s attention to two salient details, the total
number of tiles for each term and the rate of growth between terms. In the following
paragraphs, I analyze subsequent extracts from the children’s discussions, which
offer further insight into their thinking about Pattern 1. During their conversations,
the children’s observations of the structure of the pattern develop to include both
recursive and explicit approaches.

Within this group, an overly zealous consideration of whether total numbers of
elements were odd or even at times dominated the children’s discussions of this

Table 9.4 Discussion among Grace, Ciaran, and Daniel where the progress of Ciaran’s thinking
is isolated for examination

Comment made Description

Daniel 1, 2, 3, then, 1, 2, 3, 4, 5, that’s going up

Ciaran [Counts, pointing with finger]

Ciaran They’re all even Mistakenly observes that the total
quantity of tiles in each term is an even
number

Fiona
and
Grace

[Whispering inaudibly]

Daniel Yeah, they’re always going up in twos

Ciaran Yeah, but, Daniel, look, can’t half a 3,
can’t half a 5, can’t half 7, can’t half 9.
And then they’re all odd

Notices that the totals are not divisible by
2, so his previous observation of evenness
is corrected: the quantity of tiles within
every term is an odd number

Daniel They’re all odd, and these are evens

Grace They’re all odd, 3 s are odd, 5 s are odd,
7 s are odd, so they’re all odd

Ciaran No these are odd. See look can’t half a 3,
can’t half a 5, can’t half a 7, can’t half a 9,
can you?

Repeats the observation that the quantity
of tiles within every term is an odd
number

Daniel No, and also 2s, get it? 3 and then another
2, and then another 2

Ciaran Yeah so, they’re all going up, each time
there’s more

A reference to “more” rather than
“bigger”

Daniel Number 1 they’re all odd and number 2
there’s adding 2

Ciaran Yeah each time you’re adding 2, but
you’re not adding that, the darker one, but
they’re all even, I mean they’re all odd

A recursive description of the pattern,
drawing a connection with the sequence
of odd numbers
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pattern and subsequent patterns. Frobisher and Threlfall (1999) suggest that chil-
dren may notice aspects such as whether the total number of elements of a figure is
odd or even, rather than the aspects we expect them to notice such as the rate of
change or relative rates of change. Aside from the odd or even aspect, the children
seemed to be focusing strongly on recursive and numerical aspects of the pattern,
whereby the term number had not yet been mentioned. Also little reference was
made to the size or shape of terms, other than when Ciaran observed that “each time
it gets bigger.” Shortly after this exchange, and before construction of the terms
using manipulatives, Grace suggested that “the number on the bottom, that eh, the
number on the bottom, eh, each one on the bottom is less and each one on the top is
more.” While this comment does not indicate any relationship between the number
of tiles and their position in the pattern, Grace did separate the two rows of the
terms in a figural manner in order to investigate the structure of the pattern.

After the children commenced physical construction of the 5th term of this
pattern, the following exchange took place:

Ciaran Will I help you on 6 cos I’m done 5 now?
Daniel I’m done 6.
Ciaran No, you have to make it like this. You have to go diagonally see like this.
Daniel Like a pattern.
Grace It goes like that, it goes like that, it doesn’t go straight.
Ciaran Yeah, you have six of them going diagonally, and then you need to put a

red one in the corner, which is the weird one.
Daniel Yeah.

Daniel erred in his construction of the 5th term and, as shown in this transcript,
Ciaran tried to explain the structure of the 6th term to him by describing 6 diagonal
pairs, with an additional top tile, as portrayed in Fig. 9.6.

During this section of the interview Grace and Fiona spoke to each other, at
times almost inaudibly, and Daniel and Ciaran continued to work together. Ciaran
again referred to the tiles “kinda going diagonally”, and Daniel added “oh yeah,
because that one, that’s sticking out, that’s sticking out, so, and they’re not like all
in a line.” When I asked Daniel and Ciaran which terms they had constructed,
Daniel identified his construction as the 6th in the pattern, but Ciaran corrected him,
saying “No, I’ll do 6, look, you need 6 of these going diagonally look, look, you

Fig. 9.6 A diagram based upon Ciaran’s description of the 6th term of Pattern 1
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need like this but do the 3 more, you see” and Grace joined in describing her
construction of the 6th term as “you know you do 7 squares, and 6 at the bottom.”

Both Grace and Ciaran at this point are describing the terms explicitly—they do
not refer to the relationship with previous terms, and the quantities of tiles they
describe are related to the position number of the terms. I next asked the children to
describe the 12th term, as a near generalization of the pattern. At this point Grace
stated “it’s obviously going to have 13, because term 5 had 6 squares on the top and
5 on the bottom, so term 12, so it’s gonna be really easy,” as highlighted at the
beginning of this section. Ciaran did not offer such a confident description at the
start, but he did construct the 12th term perfectly, during which the following
exchange occurred with Daniel:

Ciaran 1, 2, 3, 4, 5, 6, 7, 8, 9, we need 4
Daniel We need 3 more
Ciaran No, do you remember we’re making 12

Ciaran required 13 tiles for the top row of the term, indicating possibly that his
thinking had broadened from the sets of pairs of tiles to a view of the terms as
consisting of two rows, where the top row of a term contains n + 1 tiles.

Ciaran and Grace are referring to particular terms in this situation, and have not
constructed abstract generalizations, but they appear to have applied an under-
standing of the commonality of this pattern, as they worked with “particular
instances of the variable” (Radford 2011). While a variety of factors may contribute
to the children’s thinking, the change in how Ciaran and Grace think about the
pattern after constructing the terms with the concrete manipulatives is noteworthy.
Perhaps the physical act of construction supported them in isolating elements of the
pattern, and in considering the relationship between, on the one hand, quantities of
elements in constituent parts of their constructed terms and, on the other hand, the
relevant position number in the pattern.

9.4.3 Facilitator Prompts and Questions

During two of the interviews, I felt that children’s discussions indicated that their
perspective was focusing on the relationship between consecutive terms, or how the
patterns were growing, to the exclusion of any other aspect of the structure.
Therefore I encouraged the children to consider a relationship between terms and
their position in the patterns. For example, during their discussion of Pattern 2,
Group 1 students were making slow progress and tending to use vague language.
I felt at that point that a prompt would be appropriate in focusing their attention, and
supporting them in engaging with the task. I asked three times whether the children
could see any connection between the term number and the quantity of tiles on the
legs of the x-shape. The children at this time seemed to be struggling to associate a
number with terms or to perceive the rates of change of constituent parts of the
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pattern terms, and my prompts were not supportive of their thinking, as seen in the
following transcript:

AT Can you see any connection between the term number and the length of the
legs? Or between the term number and the term? If we look at term 1, the
number is 1. Look at the term, term 2 the no is 2, look at the term, term 3,
term 4. Ok, Grace can you explain to us where… why you decided 21?

Grace Because like, em, you see the 6 that had em 3 on all each sides and then
one diamond in the middle. So, em two threes would be six, and then two
sixes would be twelve, and then eh twelve add one that would be like 13,
and then the 10, it would be.. Like each time whenever you add something
like 7, that would be just 2 more, so it would be eh 15, and then 8 that
would be 17, and then the 9 that would be the 19, so the 10 has to be the
21.

Daniel Oh yeah.
AT Ok, now em, I’m going to ask again for you to look back and see can you

see any connection between the term and the term number.
Daniel That, they’re longer.

As highlighted by Radford (2000), children need to perceive the same number as
fulfilling both ordinal and cardinal roles simultaneously when engaging with pat-
terning problems. I posit that during this section of the interview, the children were
not succeeding in this dual perception. Daniel’s response to my question may
indicate a persistent focus on the relationship between consecutive terms, but
Grace’s response was more complex in nature. She began by considering the 3 tiles
on each side of the 6th term, whereby she combined four groups of three in order to
find the total quantity of tiles on the legs, to which she added the one central tile for
the total number of tiles. From this 6th term however, she seemed to progress
recursively in order to find a total number of tiles for the 10th term. The children’s
recursive approach did not seem at this point to be supporting them in thinking
about bigger terms, but neither did my promptings to consider an explicit approach.
Most of the children continued to struggle with this pattern, with only Grace
succeeding in constructing the near generalization outlined above. Later in the
conversation I also drew the children’s attention to figural aspects of the patterning
terms, as I felt that their focus was dominated by the numerical aspects. After
receiving this prompt, Ciaran proceeded to construct a far generalization.

Group 2’s discussion of Pattern 2 also seemed to be dominated by recursive
reasoning, to the exclusion of any other perspective. I prompted the children by
asking whether anyone could see a connection between terms and their corre-
sponding term numbers in Pattern 1, but none of the children replied to my
question, and they continued to discuss the terms recursively.

Aside from prompting the children, each of the worksheets on which the patterns
were presented included a final question “Can you see a connection between the
term number and the term?” When designing the interview schedule, I was aware
that it was possible that this question at the end of children’s discussions about
Pattern 1 could have prompted some children to broaden their thinking to include
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an explicit approach to Patterns 2 and 3. I deemed the question appropriate therefore
as a means of exploring the children’s observations of the structure of the pattern.
As indicated by the analysis in this chapter, not all children adopted an explicit
approach in seeking to solve Pattern 2 or Pattern 3, and many did not respond to this
question when it was presented to them. As an example, in interviewing Group 2, I
pressed them to consider whether there was a connection between a term number
and the number of elements within the associated term. Our discussion related to
Pattern 1 is presented in the following transcript:

Arina [Reading the question at the end of the worksheet] So, can you see a
connection between the term number and the term?

Arina It’s just… the connection… term one, sorry.
Alex Well I can’t see any connection, I can’t see any connection between the

term, but I think I can see a connection between the numbers.
Arina Yeah, the numbers, term one.
Alex Oh yeah, like all of them, when term one is going on to term two it skips, it

skips four and then it just goes on to this.
AT What do you think, Jay? Do you see a connection between the term and

the term number?
Jay Erm… no.
AT Cherry?
Cherry I think… because like term one is like, there’s like one on the bottom.

[A child visits the interview room, and interrupts the interview with a
message inviting the children to visit a junior class to teach them
mathematics games, when their interview has concluded. The children
respond with smiles and a chorus of “yes!”]

AT Now, Cherry, you were saying what connection you saw between the term
and the term number?

Cherry Like the term number has one and then the bottom one is one.
AT Great and is that true for every term?
Cherry Yeah.

In this excerpt from the children’s discussion, Arina and Jay proffer no opinion
on the question, and Alex demonstrates recursive thinking in describing the
sequence of the total quantities of tiles in consecutive terms. Cherry does make a
link between the term number and the quantity of elements in one constituent part
of the terms, that is, the bottom row. It is surprising that none of the other children
built upon this observation, as from my viewpoint as facilitator I expected it to be
enlightening for others. Unfortunately, I feel that the message delivered by the child
who visited the interview room drew children’s attention away from the mathe-
matics, as they were obviously looking forward to their visit to the junior class.
Also, Cherry did not indicate an inclination to think explicitly when she was
presented with Patterns 2 and 3. I would hypothesize that my question “is that true
for all terms?” was possibly too closed and summative in nature. A more open
question such as “do you observe anything similar happening elsewhere in the
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pattern?” may have facilitated children in examining the structure of the pattern, in
a manner that the summative question did not.

9.4.4 Group Interactions

In this section I will discuss the impact of verbal interactions between children on
the relationships children explored within the structure of the patterns.

In Group 3, Lily Rose seemed to begin by reasoning recursively when describing
and extending all the patterns. For example, she stated: “I just added one more each
on the top so all of them have three on them now,” in explaining her drawing of the
6th term of Pattern 2. Following their construction of the 5th term and drawing of
the 6th, I asked Lily Rose’s group to consider the 10th term in this pattern. Lily
Rose’s answers focused strongly on figural elements of the terms and were quite
vague, as in “it would be about that long” and “I think it would be this long and this
wide.” Her use of the ‘hedges’ “about” and “I think” may indicate some ambiguity
in her thinking, and a desire on her part to present her ideas as proposals rather than
conclusions (Rowland 2007). Such ambiguity, or unwillingness to present an idea
as fully formed, may be expected in this context, given the novelty of the tasks; but
it may also indicate that she has engaged with the alternative thinking of her group
members and is beginning to question, or rethink, her approach. During the group
discussion, the children’s opinions varied; and so I asked them to discuss the
differences between their ideas. The children discussed the distribution of tiles on
the legs of the x-shape, and the presence of “some middle square.” During this
discussion Lily Rose suggested that the 10th term would have five tiles on each leg
but neglected the central tile. It was not clear whether she was using explicit
thinking, or building from the 6th term to the 10th, in that she followed “because
half of 5 is 10 [sic] and then you give one each every time” with “it would have 5
going up and 5 going down; I think you might have 5 going across and 5 going left
and right.”

After further discussion about the 10th term, I asked the group to construct a far
(75th) term for this pattern. At this point, Lily Rose demonstrated explicit thinking,
as she sought without hesitation to halve 75, and adhered to the asymmetric nature
of the pattern by stating, “you will have to give one side, one extra ones. Like down
at the bottom two, they might have one extra than the top two.” Again Lily Rose
used the plausibility shield “might” in presenting her construction. While she was
quick to suggest halving 75 as a strategy for identifying the number of tiles required
for each leg of the x-shape, her language indicated that she remained tentative about
the structure of the general term. Discussion of this pattern with her peers, along
with attention to the tasks presented, seem to have supported Lily Rose in
fine-tuning her thinking from her early vague statements to a very specific explicit
strategy for describing the 75th term, with attention to the quantities involved and
their positioning.
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9.5 Conclusion

In considering the algebraic thinking demonstrated by the children who participated
in this study, a question arose as to whether it would be reasonable to anticipate that
children would identify explicit relationships in the structure of the patterns.
Radford (2011) presents algebra as a cultural construct and states that children’s
skill development will benefit from facilitation by the children’s educational
environment. Similarly, Lannin (2004) contends that most children will intuitively
reason recursively, and Lannin et al. (2006) recommend that alternative perspec-
tives on the structure of patterns may require intervention. As discussed in a pre-
vious section of this chapter, it is improbable that the children had experienced any
instruction or facilitation in observing structure within shape patterns prior to their
engagement with the patterns in the group interviews. However, Mason (2008)
contends that children demonstrate a facility in thinking algebraically from early
childhood, including specializing and generalizing. Indeed, many of the children
who participated in this research demonstrated a willingness to use explicit thinking
in solving the patterning tasks presented. In the task-based group setting where
children were encouraged to talk and physically construct terms with manipulatives,
some of the children seem to have demonstrated thinking that Radford (2011) and
Lannin (2004) have suggested may not be intuitive.

Two important elements of the children’s engagement with the novel tasks
presented were the interactions within the groups and the use of concrete materials
in constructing pattern terms. Both catalysts of peer interactions and use of
manipulatives were more supportive of the children’s progress than prompts or
leading questions from me as task facilitator. The progress demonstrated by Grace,
Ciaran and Lily Rose may indicate that their thinking was supported by their
interaction with the concrete materials and interactions with their peers. A further
element that supported the thinking of some children was observation of figural, as
well as numerical, elements of pattern structure (Twohill 2017). This study is too
small to present definitive findings in that regard, but would support a rationale for
further investigation in the Irish context.

Within this volume (see Chap. 14), John Mason emphasizes the need for
research to inform teacher actions, and for such actions to broaden children’s
observations of structure. The analysis presented here is consonant with Mason’s
position, and demonstrates how facilitating children in observing structure in
multiple ways supports their success in generalizing shape patterns. The value
inherent in children constructing their understanding is largely accepted in math-
ematics education research, but teaching approaches underpinned by transmission
persist in many classrooms in Ireland (Dooley 2011; Nic Mhuirí 2013). The success
achieved by some children in this research, on novel high-order tasks, demonstrates
the potential of discovery methods, and points to the benefits of specific catalysts to
support children’s observations of structure. A next phase of this research will
involve student teachers in implementing discovery-based approaches with shape
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patterns in task-based group work in order to explore their sense of self-efficacy in
this setting.

Equally, English (2011) warns that teachers and policy makers should not
underestimate children’s ability to take on and work with new ways of thinking.
English states that children “have access to a range of powerful ideas and processes
and can use these effectively to solve many of the mathematical problems they meet
in daily life” (p. 491). In the forthcoming redesign of the Irish Primary Mathematics
Curriculum, it will be important to reflect the broad range of thinking strategies of
which children are capable, as evidenced in this research.
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Chapter 10
Generalizing Fractional Structures:
A Critical Precursor to Algebraic
Thinking

Catherine Pearn and Max Stephens

Abstract Our research focuses on how students find an unknown whole, when
given a known fractional part of the whole, and its equivalent quantity. This chapter
will show how Year 5 and Year 6 students, who have yet to meet formal algebraic
notation, create algebraic meaning and syntax through their solutions of these
fraction problems. Some students rely on diagrammatic representations using dif-
ferent mixes of multiplicative and additive strategies. Other students use fully
multiplicative approaches to find the whole. Some students’ solutions show how
they use “best available” symbols to move beyond arithmetic calculation and show
evidence of algebraic thinking, especially when students are able to treat particular
numerical and fractional values as quasi-variables. This chapter sets out to identify
those precursors of algebraic thinking that allow students to move beyond particular
fraction values to generalize their solutions.

Keywords Fractions � Generalization � Algebraic thinking

10.1 Introduction

The National Mathematics Advisory Panel (NMAP 2008) stated that the conceptual
understanding of fractions and fluency in using procedures to solve fraction prob-
lems are central goals of students’ mathematical development and are the critical
foundations for algebra learning. The links between fractional knowledge and
readiness for algebra have been highlighted by many researchers, such as Wu
(2001), Jacobs et al. (2007), Empson et al. (2011), and Siegler et al. (2012).
According to Wu (2001) the ability to efficiently manipulate fractions is “vital to a
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dynamic understanding of algebra” (p. 17). Many researchers argue that the basis
for algebra rests on a clear understanding of equivalence and rational number
concepts (Lamon 1999; Wu 2001).

Siegler et al. (2012) used longitudinal data from both the United States and
United Kingdom to argue that “elementary school students’ knowledge of fractions
and division uniquely predict those students’ knowledge of algebra and overall
mathematics achievement in high school, five or six years later” when all other
factors such as whole number arithmetic, intelligence, working memory, and family
background were controlled (p. 2).

Three distinct aspects of algebraic thinking identified by Kieran (1981), Jacobs
et al. (2007), Mason et al. (2009), and Stephens and Ribeiro (2012) are important
for this study. They are students’ understanding of equivalence, transformation
using equivalence, and the use of generalizable methods. The importance of these
three key ideas underpins our research.

10.1.1 The Australian Curriculum Context

According to the rationale given for the Australian Curriculum: Mathematics
(ACARA 2016) the mathematics curriculum:

… focuses on developing increasingly sophisticated and refined mathematical under-
standing, fluency, reasoning, and problem-solving skills. These proficiencies enable stu-
dents to respond to familiar and unfamiliar situations by employing mathematical strategies
to make informed decisions and solve problems efficiently.

The Australian Curriculum: Mathematics (ACARA 2016) presents fractions as a
clearly important topic across Years 5–8. However, we notice that the focus at Year
6 is on finding fractional parts of a known whole and at no stage directs the
attention of teachers to finding the whole when given a known fractional part. Some
might think that this could be addressed in Year 7 when students are asked to solve
problems involving addition and subtraction. But, this appears to exclude multi-
plicative solutions to fraction problems especially those involving an unknown
whole. Table 10.1 implies that the link between fractions and algebra is limited to
number patterns and sequences involving fractions. In Year 7 students are expected
to be introduced to the concept of variables and to use letters to represent numbers.
But any bridge between fractional knowledge and algebraic thinking is left unstated
or at best implicit. Drawing attention to the importance of linking fractional com-
petence, in particular, understanding, using, and generalizing fractional structure, is
the focus of this chapter.
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10.2 Previous Related Research

The current study builds on the research of Lee (2012), Lee and Hackenberg
(2014), and Hackenberg and Lee (2015), who investigated students’ quantitative
reasoning with fractions and algebraic reasoning in writing and solving equations.
Their research sample involved 18 students in total from middle school and senior
high school. Lee (2012) focused on two seventh grade students, Lee and
Hackenberg (2014) wrote about one of the two students, and Hackenberg and Lee
(2015) focused on 12 of the larger group of 18 middle and high school students. In
their research, students were given a fractional relationship between two collections
of objects. The actual size of the collections was initially given but in later questions
was unstated and so needed to be represented by “unknowns”. Students were first
asked to “Draw a picture of the situation”, and were then asked to write an algebraic
equation to represent this relationship. An example of the first kind of problem used
by Lee and Hackenberg (2014) is the Tanya-David Money Problem:

Tanya has $84, which is 4/7 of David’s money. Can you draw a picture of this situation?
How much money does David have?

In this fraction task the fraction 4/7 represents an amount of $84. A typical
solution to this problem might require students to represent Tanya’s money by a
rectangular shape consisting of four equal parts, and David’s money by a rectan-
gular shape divided into seven equal parts. With an appropriate pictorial repre-
sentation, this problem could be solved, without writing an algebraic equation,
relying on the fact that the $84 can be split into four equal parts consisting of $21
and so the seven equal parts would be presented by $21 � 7 ($147). But in the

Table 10.1 Content descriptors from Australian Curriculum: Mathematics (ACARA 2016)

Year Fractions and decimals Patterns and algebra

5 Investigate strategies to solve problems
involving addition and subtraction of
fractions with the same denominator
(ACMNA103)

Describe, continue and create patterns
with fractions, decimals and whole
numbers resulting from addition and
subtraction (ACMNA107)

6 Find a simple fraction of a quantity
where the result is a whole number, with
and without digital technologies
(ACMNA127)

Continue and create sequences involving
whole numbers, fractions and decimals.
Describe the rule used to create the
sequence (ACMNA133)

7 Solve problems involving addition and
subtraction of fractions, including those
with unrelated denominators
(ACMNA153)

Introduce the concept of variables as a
way of representing numbers using
letters (ACMNA175)

8 Carry out the four operations with
rational numbers and integers, using
efficient mental and written strategies
and appropriate digital technologies
(ACMNA183)

Simplify algebraic expressions involving
the four operations (ACMNA192)
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algebra tasks the corresponding numerical quantity is unstated. For example, in the
Sam-Theo CD Problem students were told:

Theo has a stack of CDs some number of cm tall. Sam’s stack is two-fifths of that height.
Can you draw a picture of this situation? Can you write an equation for how tall the height
of Sam’s stack is?

Lee and Hackenberg (2014) presented this second problem as an instance of
reciprocal reasoning. Having drawn a picture of a rectangle that was partitioned into
five equal parts, Willa, the student who was the focus of this study, then drew
another rectangle that spanned two of those five parts. Willa used t to represent the
height of Theo’s stack and s to represent the height of Sam’s stack. Willa then wrote
a correct equation s = (2/5) t. A correct pictorial representation of the fractional
relationship allowed Willa to show the relationship between Sam’s smaller CD
stack and Theo’s larger CD stack regardless of the specific number of CDs making
up the respective collections. Willa was also able to write t = (5/2) s, explaining that
she “got 10 pieces by taking Sam’s two-part stack height five times and then
divided by two to find Theo’s five-part stack height”. We call this “reverse frac-
tional thinking”. It is interesting to note that Willa obtained the second “reciprocal”
relationship by manipulating her pictorial representations, as distinct from trans-
posing the first equation algebraically. The research by Lee (2012), Lee and
Hackenberg (2014), and Hackenberg and Lee (2015) shows that fractional
knowledge is closely related to establishing algebra knowledge in the domains of
writing and solving linear equations. They concluded: “Teaching fractions and
equation writing together can create synergy in developing students’ fractional
knowledge and algebra ideas” (Lee 2012, p. 9). Willa and the other students
interviewed in their study needed a clear understanding of fractional structures in
order to write correct algebraic equations in those cases where the physical amounts
being represented by a fraction were left unstated.

The focus of the Lee and Hackenberg research was on whether students were
able to write specific algebraic equations using appropriate algebraic notation,
namely, being able to write and solve an algebraic equation to represent a multi-
plicative relationship between two unknown quantities. Our study involves students
in the final two years of elementary school who have met fractions but are not yet
expected to use and write algebraic notation. While it would be reasonable to invite
these younger students to attempt to solve problems similar to the Tanya-David
Money Problem, it would be less reasonable to present students with problems like
the Sam-Theo CD Problem, unless they can be led into these more abstract prob-
lems by careful scaffolding. With younger students, we are keenly interested in the
methods they use to approach problems such as the Tanya-David Money Problem,
including contexts where they are provided with diagrammatic representations of
the quantities involved and other contexts where no diagram is supplied.

Our research question is focused on identifying indicators of generalized fraction
thinking as students attempt to find an unknown whole when presented with a
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known quantity representing a known fraction of the whole. Like Lee (2012), Lee
and Hackenberg (2014), and Hackenberg and Lee (2015), our study will use
specific fractional quantities. Initially, like Lee and Hackenberg (2014), we will
attach specific quantities to the known fractional part as our younger students are
asked to find the whole. However, it will be necessary to follow Lee and
Hackenberg’s later tasks, such as the Sam-Theo CD Problem and introduce pro-
gressive degrees of generality into our questions if we are to establish strong
evidence of students’ being able to generalize fractional structures even if they do
not express this in written algebraic equations involving appropriately designated
unknowns. That is a major challenge for our research. How we deal with these
challenges will become evident subsequently in this chapter in the development of
our research instruments, especially in our design and use of the interview protocol.

10.3 The Pilot Study

Eighteen Year 6 students (11–12 years old) from a metropolitan school in
Melbourne were chosen as they were deemed by their teachers to be highly suc-
cessful in mathematics. They were assessed using a paper and pencil test including
three reverse fraction tasks (Pearn and Stephens 2016).

The three reverse fraction tasks (Fig. 10.1) specifically require students to find a
whole collection when given a part of a collection and its fractional relationship to
the whole. Similar tasks were used in the research by Lee (2012), Lee and
Hackenberg (2014), and Hackenberg and Lee (2015). Elements of algebraic
thinking may be demonstrated in these fractional tasks where students can use
equivalence, transformation, and generalizable methods to solve them.

Each fraction question (Fig. 10.1) was scored out of three. Zero was given when
the question was not attempted or the answer incorrect. One mark was given for a
correct response with no explanation or if there was some evidence of a correct
diagram which the student did not take further (starting point). Two marks were
given for a correct answer with limited explanation and three marks were given for
a correct answer with a mathematically complete explanation.

Fraction Task 1 Fraction Task 2 Fraction Task 3

Fig. 10.1 The three fraction tasks
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In this pilot phase of the study, three research questions needed to be addressed:

1. What solution strategies were used by students who successfully solved the
three given fraction tasks?

2. What key features are shown in the methods used by these students?
3. Can the methods used be interpreted as providing evidence of algebraic thinking

and generalization?

10.3.1 Results

Of the eighteen students, eleven obtained correct answers to the three questions; and
seven of these provided clear explanations. Four students got two questions correct
and three students got only one correct. Multiplicative methods were used by
fourteen of the eighteen students in at least one question. Two students who solved
only the first problem used additive methods, either arguing that since two-thirds is
equivalent to 10 a further one-third is needed to make a whole; or having found
one-third to be equivalent to 5, two successive thirds needed to be added to make
15.

The remainder of this section examines the strategies used in the solution of the
three reverse fraction tasks by the seven students who provided three correct
solutions together with mathematically complete explanations. Our focus is to
examine closely the strategies these students used to solve the three reverse fraction
tasks and to look for evidence that might anticipate algebraic thinking.

10.3.1.1 Fraction Task 1

In response to Fraction Task 1 all three students shown here initially made the
connection between the number of objects and the given fractional part and divided
by the numerator of the given fraction to find the number of objects in the unit
fractional part. They then calculated the number of objects in the whole by mul-
tiplying by the denominator.

For Fraction Task 1 Student 3 (Fig. 10.2) made the connection between the
number of objects and the given fractional part and started with an equivalence
statement between ten and two-thirds. This student found the number of objects in
the unit fractional part by dividing by the numerator of the given fraction and
calculated the number of objects in the whole by multiplying by the denominator.

Student 3 used abbreviated symbolic/number notation for all three fraction tasks;
such as 10 equals two-thirds as a shorthand way for saying that ten counters is
two-thirds of the group.

Student 6 (Fig. 10.3) started with an equivalence statement between two-thirds
and ten. Like Student 3, the symbolism may seem idiosyncratic but the
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mathematical meaning is clear as this student moved from two-thirds to one-third to
three-thirds, referring to the equivalent number of counters.

In responses to Fraction Task 2 (not included) and Task 3 (see Fig. 10.8),
Student 6 created an initial equivalence statement by writing 4/7 = 12 and 7/6 = 14
respectively. In both cases Student 6 first found the relevant unit fraction and scaled
it up to find the whole. Recording is again idiosyncratic, for example,
1/6 = 2 � 6 = 12 where Student 6 compressed two operations into one symbolic
statement. These two equivalent expressions, 10 = 2

3 by Student 3 and 2
3 ¼ 10 by

Student 6, appear to be mathematical objects that can be operated on to obtain the
unknown whole. Student 5 (Fig. 10.4) used reverse thinking, which started with a
detailed written response.

Fig. 10.2 Student 3 response

Fig. 10.3 Student 6 response to Fraction Task 1

Fig. 10.4 Student 5 response
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10.3.1.2 Fraction Task 2

In the work samples shown here, both students initially made the connection
between the number of objects and the given fractional part and divided by the
numerator of the given fraction to find the number of objects in the unit fractional
part. They then calculated the number of objects in the whole by multiplying by the
denominator.

Student 2 (Fig. 10.5) initially made the connection between the number of
objects and the given fractional part and dividing by the numerator of the given
fraction found the number of objects in the unit fractional part. She then calculated
the number of objects in the whole by multiplying by the denominator. This student
used abbreviated symbolic/number notation for all three fraction tasks.

Student 1 (Fig. 10.6) also used the equal sign in a way that some might deem
incorrect. However, the 4 written after the 12 refers to the numerator of the fraction,
hence the division by 4 to obtain 3. Multiplying by 7 is needed to transform
one-seventh to a whole. The size of the fraction, although unstated, guided this
student to a correct solution that was generalized to the other two fractional tasks.
Some researchers, such as Mason (2017), refer to this as ‘tracking arithmetic,’
where changes to the fractional quantities are tracked onto their equivalent
numerical representations using parallel operations.

The combination of these two methods anticipates very closely how one needs to
solve 4

7 x ¼ 12.

Fig. 10.5 Student 2 response

Fig. 10.6 Student 1 response to Fraction Task 2
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10.3.1.3 Fraction Task 3

The three students shown here initially connected the number of objects and the
given fraction, then found the number of objects equivalent to the unit fraction.
They then calculated the number of objects in the whole by multiplying by the
denominator. Student 5 (Fig. 10.7) incorrectly wrote 7/6 � 1/7 = 1/6 (instead of
multiplying by one-seventh) but correctly operated on 14.

Student 6 gave a more abbreviated response for this task (Fig. 10.8) than for
Fraction Task 1 (Fig. 10.3). Here the 14 (counters) was related by an arrow to the 7
(numerator) and �2 the implied relationship. That is, since the number of counters
is double the numerator, Student 6 divided 14 by 2 and concluded that, since 1

6 = 2,
then “�6” gives 12.

Student 4 used symbolic/number notation for all three fraction tasks. Figure 10.9
shows this student’s response to Fraction Task 3.

Fig. 10.7 Student 5 response

Fig. 10.8 Student 6 response
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In the examples shown above (Figs. 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8 and
10.9) all students initially made the connection between the number of objects and
the given fractional part, and then divided by the numerator of the given fraction to
find the number of objects in the unit fractional part. They then calculated the
number of objects in the whole by multiplying by the denominator. Treating the
fraction and the objects represented by the fraction separately parallels what is
needed to solve simple algebraic equations.

10.3.1.4 Use of Mixed Methods by Student 7

Student 7 was the only student from this group who used different solution methods
for the three fraction tasks. In Fraction Task 1, Student 7 used a mixed method
rather than a totally multiplicative one (see Fig. 10.10), by calculating what
one-third was, then added on one-third to the original two-thirds to find three-thirds.
This student was comfortable with using ‘x’ to denote the whole, but this use of an
unknown did not involve any symbolic manipulation.

Figure 10.11 shows a shorthand response by Student 7 for Fraction Task 2,
finding the unit fraction and then multiplying by the denominator (7) to calculate
the whole: This fully multiplicative response is very similar to the way Student 2
responded to the same task in Fig. 10.5.

Fig. 10.9 Student 4 response

Fig. 10.10 Student 7 response to Fraction Task 1
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For Fraction Task 3 (Fig. 10.12) this student incorrectly wrote 1/7 instead of 1/6
but self-corrected, multiplying by 6 to reach the correct answer.

These Year 6 students know that they must move from any given fraction to its
unit fraction and then scale up to one-whole. Some may do this additively but
scaling up multiplicatively is the ultimate goal for transitioning to algebra. At the
same time, they “track” the same mathematical operations on the number of objects
represented by the given fraction, using “best available” symbols to record their
chains of reasoning.

10.3.2 Algebraic? What Some Experts Say

As part of our pilot study, we asked an international group of 15 mathematicians,
mathematics educators, and practicing teachers to contrast responses of these seven
students with a sample of responses from other students who had obtained the
correct answers by using additive or pictorial methods. We asked the respondents
what if anything, in their opinion, “anticipated algebra” in the group discussed
above, bearing in mind that none of the students has yet been introduced to formal
algebraic notation. We left these experts to give their own meaning to “anticipating
algebra”. Three responses referring to what Students 1 and 6 had written are quoted
here. One Professor of Mathematics expressed concern: “These students may have
difficulty with algebra because they do not understand the meaning of the equals
sign”. By contrast, a Professor of Mathematics Education, referring to Fig. 10.3
said that “23 = 10 is treated like 2

3 x = 10”. She went on to say that “this latter
algebraic expression is solved by dividing by 2 and multiplying by 3, in exactly the

Fig. 10.11 Student 7 response to Fraction Task 2

Fig. 10.12 Student 7 response to Fraction Task 3
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same way as Student 6 had done in Fig. 10.3. A third Professor of Mathematics,
outside Australia, commented that Students 1 and 6 were:

‘tracking arithmetic’: not allowing parameters (numbers) in the problem to be calculated,
so that at the end their role and influence can be tracked, and generalization consists of
treating each original number as a place holder, so treating it algebraically.

Another Professor of Mathematics Education drew attention to “students’ use of
the property (rule) of equality: multiplying or dividing same number to both sides”
as evidence of algebraic thinking. Another mathematics education researcher gave a
more extended response:

As Blanton and Kaput (2005) argue: “algebraic reasoning is characterized by generalizing
from a set of particular instances and expressing them in increasingly formal and age-
appropriate ways” (p. 413). While limited by the arithmetic nature of the three reverse
fraction problems, it is clear that these students are generalizing and formalizing more
effectively than other students who rely on purely pictorial methods such as circling rows in
Task 1 or counting by pairs in Task 3. These methods are least likely to be successful in
Task 2.

Seven practicing teachers who were consulted generally supported the view that
the kind of thinking shown in these three examples was algebraic or could be seen
as anticipating algebra, specifically through students’ use of equivalence and gen-
eralizability. While there was no uniform agreement about what exactly anticipated
algebra in the work samples presented to this group, the majority of the teacher
respondents drew attention to features that indicated a definite shift away from
arithmetical/calculation thinking.

10.3.3 Conclusions from the Pilot Study

These responses call for a stronger conceptual framework for the terms “anticipated
algebra” or “anticipating algebra”. The three fraction tasks used in this pilot study
required students to find an “unknown” whole when presented with a given col-
lection that is a subset representing a given fraction of the whole. While some
students made explicit use of the diagrams provided in the first and third questions,
no student felt a need to create a diagram for the second question. Where students
consistently used multiplicative methods, usually by first finding the unit fraction
and its equivalent quantity and then scaling up to find the unknown whole, there
was stronger evidence of generalizability and algebraic reasoning across the three
questions. However, it should be noted that no student employed explicit sym-
bolism in the form of an unknown. Nor did any student propose a solution strategy
whereby the unknown whole could be found by explicitly dividing the known
quantity by its equivalent fraction. Nor did any student propose multiplying first by
the denominator and then dividing by the numerator. Typical multiplicative solu-
tions where the given quantity was first divided by the numerator of its equivalent
fraction, to find its unit fraction equivalent, and then having this quantity scaled up
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by multiplying by the denominator may be perceived as mathematically equivalent
to dividing by a given fraction. But these are essentially two-step strategies, quite
different from a one-step “divide the quantity by the given fraction” which is more
clearly generalizable.

In answering the three research questions that were to be addressed in this pilot
study, the following tentative conclusions can be drawn:

1. Students who successfully solved these problems typically moved from the
given fraction to its related unit fraction and its corresponding quantity. Some
then moved additively to find the whole. The majority of the eighteen students
were able to find the whole multiplicatively by scaling up. However, “scaling
up” can imply scaling up by multiplication only or it can also include scaling up
by repeated addition. Both approaches are acceptable when the given fraction is
tied to a specific quantity. But as the Lee and Hackenberg (2014) study shows,
repeated addition is conceptually difficult to apply when the quantity associated
with a fractional part is unspecified.

2. Many successful solutions employed a shorthand way of relating the known
fraction and its related quantity. Being able to connect the known fraction and its
related quantity in this way allowed students to operate simultaneously on both
to find the whole. Most students chose to do this multiplicatively although some
successfully employed additive methods.

3. Those experts cited above who see evidence of algebraic thinking appear to
point in particular to where students establish implicitly or explicitly an
equivalence relationship between a given fraction and its related quantity, and
are then able to operate on both components of this relationship to find the
whole fraction and its equivalent quantity. As well, multiplicative methods
based on equivalence appear to be generalizable. However, this rests on an
assumption that students who have used this method will use it when presented
with other fractions and with other related quantities or where no quantity is
specified. That appears to be likely for those students who consistently use an
equivalence-based multiplicative solution strategy across the three questions.
Being able to use this method for any fraction and any quantity would be clearly
algebraic and generalizable. But it is difficult to draw this inference confidently
from the current examples without some stronger evidence of students’ gener-
alized thinking.

In the next phase of the study, we will seek to demonstrate whether and how
students who rely implicitly or explicitly on an equivalence relationship between
given fractions and their related quantities can find an unknown whole regardless
of the particular fractions or quantities used. This reasoning might be expressed
symbolically or it might be equally well described using mathematical terms that
convey a similar generalizable meaning. In other words, are students able to treat
the different given fractions as quasi-variables (Fujii and Stephens 2001)? In other
words, are students able to recognize that the operations that they apply to a given
fraction are repeatable and generalizable across other instances?
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10.4 Follow up Study 2

The findings from the pilot study shaped the second phase of the study in which a
written questionnaire containing the same three reverse fraction tasks were given to
46 Year 5 and Year 6 students in a different school. Unlike the pilot study where
only students who were deemed to be highly successful participated, all Year 5 and
Year 6 students in the second school were given the opportunity to participate.
Working across a broader range of abilities was intended to allow a clearer iden-
tification and classification of solution strategies used by students at these year
levels. It would also allow the researchers to examine whether particular solution
strategies offered greater potential for generalized algebraic thinking. Most
importantly, the second phase of the study was intended to gather more explicit and
robust evidence of algebraic thinking and generalization. Based on an analysis of
students’ written responses, a sub-sample of the 46 students participated in a
one-to-one interview utilizing the same fractions as in the original assessment (see
Fig. 10.1) but where the quantities were changed or unspecified, and no diagrams
provided (see Sect. 10.4.2).

10.4.1 Completing the Paper and Pencil Assessment
Protocols

At the end of the 2016 school year, 46 students from Years 5 and 6 (11 and 12 year
olds) from an inner city Melbourne primary school completed a paper and pencil
test: the Fraction Screening Test (Pearn and Stephens 2015). Three days later, 17
students were selected and interviewed to gain further insights into the strategies
they used to solve the three reverse fraction tasks (Fig. 10.1), which were part of the
Fraction Screening Test. The selection process is described in Sect. 10.4.3.

The students’ previous written responses to the three reverse fraction tasks from
the Fraction Screening Test were analyzed to determine the types of strategies
students used. These responses were then classified according to six categories:
Incomplete, Visual Methods, Additive/Subtractive Methods, Mixed Methods,
Multiplicative Methods, and Advanced Multiplicative Methods. As discussed
below these classifications were applied to students’ responses to the set of three
tasks overall, as distinct from classifying responses task-by-task.

In Table 10.2 Incomplete refers to students whose written responses were
incomplete or who did not attempt any or all of the three reverse fraction tasks in
Fig. 10.1. Visual refers to students who showed explicit partitioning of the dia-
grams shown in Fig. 10.1 for reverse Fraction Tasks 1 and 3 before using additive
or subtractive strategies involving the number of objects, but in the absence of any
fractional notation or any equivalence relationships. Some “visual” students
attempted to create a diagram for reverse Fraction Task 2 (Fig. 10.1) to represent
the 21 CDs before attempting to solve the task.
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Additive methods refers to students who used additive or subtractive methods
with explicit use of fractional notation and equivalence relationships, sometimes
without explicit partitioning of the given diagram, or creating a new diagram, to
find the whole. These students could find the number of objects needed to represent
the unit fraction and then added or subtracted the appropriate number of objects
needed to make the whole. However, to be classified as additive there was no
evidence of any multiplicative strategy apart from finding the unit fraction and its
equivalent quantity.

Mixed methods refers to students who, having found the unit fraction and its
equivalent quantity, used multiplicative strategies to solve at least one task while
still using additive/subtractive strategies to solve at least one other task. This
“scaling up” or “scaling down” would involve (repeated) addition or subtraction of
the quantity corresponding to the unit fraction from the given number of objects—
thus, mixed methods involved only minimal multiplicative reasoning.

Multiplicative methods refers to students who consistently used multiplicative
reasoning to solve at least two questions successfully. Generally these students
found the quantity represented by the unit fraction and then scaled up or down to
find the whole. Multiplicative methods would always, and only, involve scaling up
by means of multiplication from the quantity corresponding to the unit fraction.

Advanced multiplicative methods describes students who consistently used either
algebraic notation to find the whole, or used a one-step method to find the whole by
dividing the given quantity by the known fraction.

10.4.2 Developing an Interview Protocol

The interview protocol included reverse fraction tasks similar to those shown in
Fig. 10.1 but with progressive levels of abstraction, starting from particular
instances and becoming progressively more generalized. Our goal in including
Questions 4b, 5b, and 6b (Fig. 10.13) where the quantity was unspecified was to
assist those students who had used multiplicative thinking in their written solutions
for the three reverse fraction tasks to move forward to more robust generalizations.
A second goal was to investigate whether those students who had correctly used

Table 10.2 Methods used for the three reverse fraction tasks (n = 46)

Incomplete Visual Additive/subtractive Mixed Multiplicative Advanced
multiplicative

Year 5
(n = 26)

6 3 4 10 3 0

Year 6
(n = 20)

6 1 5 4 2 2

Total
(n = 46)

12 4 9 14 5 2
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visual methods or a mix of multiplicative and/or additive methods could be induced
to adopt more consistent multiplicative and generalizable strategies as they com-
pleted the interview tasks.

Some might argue that students who use a mixed method involving division (to
find the quantity equivalent to the unit fraction) and then apply addition (or sub-
traction) of the required number of unit quantities (to reach the whole) are also
using a generalizable method, even if somewhat more difficult to describe than the
use of division followed by multiplication. However, as the interview results show,
while adding on does work when specific fractions are used, this method becomes
quite difficult when the quantity is not known, and was seen to be not feasible or
generalizable when students were presented with ‘any fraction’ (Fig. 10.14).

If students were able to complete these six questions, they were presented with
Question 7 (Fig. 10.14), which required that they come up with a completely
generalizable method.

The interview protocol was intended to respond to questions raised by Carolyn
Kieran (personal communication, July 2016, at ICME-13) who encouraged the
researchers to vary the quantities, and also include non-specific quantities associ-
ated with each of the given fractions. This suggestion is supported by the research

Think about the tasks you have just done.  

What if I gave you any number of counters, and they represented any fraction of the number of 
counters I started with, how would you work out the number of counters I started with? 

Can you tell me what you would do? Please write your explanation in your own words. 

Fig. 10.14 Question 7 from the interview

Fig. 10.13 Six interview tasks linked to the three original written tasks
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of Marton et al. (2004), which shows how numbers can be varied in order to foster a
generalizable pattern. Stronger evidence of algebraic thinking would be apparent if
students consistently used multiplicative methods, or progressed to using multi-
plicative methods, in responding to reverse fraction questions where the quantities
were changed but the fractions remained the same (Questions 4a, 5a, 6a) as in the
first three interview tasks (Questions 1–3, Fig. 10.13).

Where the original three fractions from Fig. 10.1 were used with different known
quantities (see middle column of Fig. 10.13), we were interested to see whether
students’ solution strategies in this Follow Up Study 2 replicated strategies that
other students had used in the earlier Pilot Study or whether the interview questions
induced them to change from additive/subtractive methods to generalizable multi-
plicative methods. In particular, we needed to ascertain whether those students who
had relied on additive or subtractive methods, with or without a diagram, were able
to use multiplicative methods once the diagrams were no longer provided.

Subsequent interview questions (4b, 5b, 6b) were designed to make additive
and/or subtractive strategies less attractive and less easy to use. In these questions
students were asked how to find an unknown whole if they had any number of
counters which represented a specific fraction of the whole. Finally students were
given the general question about any quantity with any fraction and asked how they
would find the whole (Fig. 10.14). This important question type was not included
by Lee and Hackenberg in their research. Our aim was to ascertain whether students
could generalize their solution method, for example, by dividing the unknown
quantity by the numerator and then multiplying by the denominator. This question
also provided an opportunity for more confident multiplicative thinkers to use
algebraic notation to represent the unknown quantity and its accompanying fraction.

10.4.3 The Interview

Students to be interviewed were chosen from the 32 students who successfully
solved at least two of the three reverse fraction tasks regardless of the methods used.
Initially 19 students were interviewed but two interviews were terminated as stu-
dents lost interest or went ‘off-task’. In the final sample shown in Table 10.3 there
were seven girls and 10 boys with nine students in Year 5 and eight in Year 6.

Referring back to Table 10.2, students were selected as follows for the inter-
view. Three of four students described as using only visual strategies were inter-
viewed; five of nine students who used additive strategies; four of 14 students who

Table 10.3 The sample of
students interviewed (n = 17)

Year level Boys Girls Total

Year 5 5 4 9

Year 6 5 3 8

Total 10 7 17
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used a mix of multiplicative and additive methods; three of five students who used
only multiplicative methods; and two students who used advanced multiplicative
strategies. The subgroups of students’ methods are shown in Table 10.4.

10.4.3.1 Administration of the Interview

A one-to-one structured interview was conducted at the school with four inter-
viewers each using up to seven questions designed by the researchers (see
Figs. 10.13 and 10.14). Students, for example, who were unable to answer
Questions 4b, 5b, or 6b were not pressed to answer Question 7. The record of
interview consisted of a three-page document that included the questions and space
for students to record their answers and to explain their thinking. Students were
encouraged to think about, and articulate, their response before writing anything on
paper. At the start of the interview students were shown a copy of their responses to
the three original reverse fraction tasks. This was then left on the table for students
to refer to, if required.

Each interview took approximately 15 min per student. Students were free to
correct their written responses to interview questions. Interviewers encouraged
students to first verbalize and then write down their thinking. Students were able to
leave the interview at any point. The written records from the interviews were
analyzed by two researchers independently, using the scoring framework shown in
Table 10.5.

Table 10.4 Methods used by interview group to solve the original three reverse fraction tasks
(n = 17)

Year level Visual Additive Mixed Multiplicative Advanced multiplicative Total

5 2 3 2 2 0 9

6 1 2 2 1 2 8

Total 3 5 4 3 2 17

Table 10.5 The interview scoring framework

Level Description

0 Not able to successfully complete any questions

1 Completed some or all of Questions 1–3 with known fraction and given quantity

2 Completed all questions with known fractions and a given quantity (Questions 1–3,
4a, 5a, and 6a). Relied on additive methods to solve Questions 4b, 5b, 6b. Could not
give a generalizable response to Question 7

3 Completed Questions 1–6 using multiplicative and/or mixed methods. Gave an
appropriate non-symbolic generalizable response to Question 7

4 Completed Questions 1–6 using consistent multiplicative methods. Used suitable
algebraic notation to give a generalizable response to Question 7
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10.4.4 Results of Interviews

No student was scored at Level 0, a result that is unsurprising given that all students
selected for the interview had successfully answered two of the three reverse
fraction tasks from the Fraction Screening Test. Two of the three students who used
visual methods for the original three reverse fraction tasks were able to use additive
methods for the interview with no diagram, and were deemed to be at Level 2.
A third student who had used visual methods was scored at Level 1. The results of
the interviews are summarized in Table 10.6.

Two students using additive methods in the written test were also at Level 2 in
the interview and one was placed at Level 1. Two students who had used additive
methods in the written test converted to fully multiplicative methods and deemed to
be at Level 3. Four students who used mixed methods in the written test suc-
cessfully solved all interview questions and solved Question 7 multiplicatively.
These four students were all scored at Level 3 for the interview.

All three students who had used multiplicative methods in the written test were
scored at Level 3 in the interview. These students continued to apply generalizable
multiplicative methods throughout the interview. Two students who used advanced
multiplicative methods for the written test answered all questions multiplicatively in
the interview and responded to Question 7 using appropriate symbolic notation and
were deemed to be at Level 4. The numbers boxed in Table 10.6 identify 11 of the
17 students, including two who had used only additive methods on the written test,
who when interviewed scored at either Level 3 or Level 4, thus demonstrating clear
evidence of being able to generalize a procedure that is independent of a particular
fraction or quantity. At Level 3 this was typically expressed as “divide by the
numerator and multiply by the denominator”. Table 10.6 also shows five students
who consistently used multiplicative methods or advanced multiplicative methods
on the reverse fraction tasks, all achieving Level 3 or 4 on the interview.

Table 10.6 Evidence of generalizing fraction structures as a result of the interview

Reverse fraction tasks (Fig. 10.1) Interview score (Table 10.5)
Written test methods Number Level 1 Level 2 Level 3 Level 4
Visual 3 1 2 – –
Additive 5 1 2 2 –
Mixed 4 – – 4 –
Multiplicative 3 – – 3 –
Advanced multiplicative 2 – – – 2
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10.4.4.1 Illustrative Examples

Students scoring at Level 2 or below were restricted to using additive methods
when it was no longer appropriate or useful. This is illustrated in Fig. 10.15 by
Student G’s attempted solution to Question 7 which only appears to be general-
izable since it depends on knowing how many times the quantity equivalent to the
unit fraction needs to be added or subtracted. It appears that Student G has deter-
mined that the number of times the quantity corresponding to the unit fraction needs
to be added to the given quantity can be obtained by subtracting the numerator from
the denominator (with a subtractive compensation when the numerator is larger
than the denominator). Student G’s response to Question 7 has the appearance of
generalizability and demonstrates a deep perception of the problem when the
fraction and the quantity are both unknown, but this method cannot be written as an
algebraic solution. This encapsulates the fundamental limitation of the additive
method employed by Student G. The same limitations are evident in Student E’s
response to Question 7 as shown in Fig. 10.16.

Student E (Fig. 10.16) uses algebraic notation in what looks like a generalized
solution but this solution only works for specific cases where the given fraction is
one part more (or less) than the whole. While this student confidently solved all

Fig. 10.15 Student G’s additive response to Question 7

Fig. 10.16 Student E’s responses to Question 6b and 7

Fig. 10.17 Student K’s response to Question 6b followed by a generalized response to Question 7
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preceding interview tasks, she was unable to give an appropriate multiplicative
response to Question 7. Her overall response was scored at Level 2.

Student K (Fig. 10.17) used a method similar to the one used by Student E to
answer Question 6b (Fig. 10.16). But when presented with Question 7, Student K
suddenly realized that the preceding method would no longer work, and then gave a
fully generalizable answer to Question 7: “Divide the (number of) counters by the
numerator, then use the answer by multiplying it by the denominator”. When
Student K writes “This is the old method,” she is referring to the fully multiplicative
method that she had used in her written responses. As a result Student K was scored
at Level 3 for the interview.

Student J (Fig. 10.18) consistently solved all previous interview questions by
dividing whatever quantity was given by its equivalent fraction. In Question 7
Student J, who represented all quantities and fractions algebraically in a fully
generalized solution, scored at Level 4. Only one other student gave a comparable
symbolic response and was scored at Level 4.

10.4.4.2 Summarizing the Results

The interview achieved its stated purposes.

1. Students who relied on visual partitioning methods to solve the reverse fraction
problems were least likely to be able to generalize their solution strategies. For
these students, each question was a new problem that had to be considered on its
own terms.

2. A necessary precursor to being able to generalize a solution was to recognize,
implicitly or explicitly, an equivalence relationship between the given fraction
and its related quantity. This allowed students to find the quantity related to the
unit fraction that could then be scaled up to a whole, additively or
multiplicatively.

3. Additive methods were less easily generalized, even using an equivalence
relationship.

4. Multiplicative methods were clear precursors to generalization: typically
dividing by the numerator to find the quantity equivalent to the unit fraction and
then multiplying by the denominator. (They are also generalizable by dividing
by a given fraction; or by first multiplying by the denominator to obtain a whole
number equivalent and then scaling down to find the unit equivalent.)

Fig. 10.18 Student J’s symbolic multiplicative response to Question 7
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5. Generalizable methods provided evidence of algebraic thinking when students
could describe what needed to be done if a given fraction was related to any
quantity.

6. Fully generalizable methods demonstrated algebraic thinking when students
could describe in non-symbolic terms how to find the whole, given any fraction
and any quantity.

7. Some students demonstrated clear algebraic thinking by using symbols such as
a/b and c to represent any given fraction and any given quantity respectively in
order to generalize their solutions.

10.5 Discussion and Conclusion

The nine students, who used either mixed methods or multiplicative methods
(including advanced multiplicative) to solve the three reverse fraction tasks from
the Fraction Screening Test, showed clear evidence in the interview that they were
able to deal with variations in both fractions and corresponding quantities and to
generalize their methods. One student, having successfully solved the first three
questions, explained subsequent solutions as: “same as I did before” and later gave
an explicit symbolic response for Question 7.

The interview questions as shown in Figs. 10.13 and 10.14 allowed these nine
students to treat variations in the given fractions as ‘quasi-variables’; that is, rec-
ognizing that the same multiplicative operations applied regardless of the fraction.
In responding to Question 7, which posed the problem in its most generalized form,
students typically referred to dividing by the numerator and multiplying by the
denominator. Two students who had used additive methods to solve specific
fraction problems recognized that additive methods were not appropriate when
dealing with unknown quantities and were able to shift to fully generalizable
multiplicative thinking.

These 11 students appear well positioned for formal algebra as expected in Year
7, as given in the Australian Curriculum: Mathematics (ACARA 2016) where they
will be introduced to “the concept of variables as a way of representing numbers
using letters (ACMNA175)”. The two students in this group who were scored at
Level 4 showed even stronger evidence of being able to create and “simplify
algebraic expressions involving the four operations (ACMNA192)” as recom-
mended for Year 8 (Table 10.1).

Students who are dependent on visual methods or additive methods are likely to
experience difficulty in adopting a multiplicative approach and describing a rule as
implied in ACMNA133 (Table 10.1). These students are most likely to experience
difficulty in transitioning to algebra. It needs to be noted that 14 of the 46 students
who completed the paper and pencil tests were unable to complete more than one of
the reverse fraction tasks in the initial test. Six of these were Year 6 students about
to transition into secondary school. These students appear to be at risk in
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subsequent years when meeting linear equations involving rational coefficients and
in relation to proportional reasoning.

By careful scaffolding of the tasks, the interview also assisted some students who
had relied previously on additive methods for the original three reverse fraction
tasks to convert to multiplicative and generalizable methods. These students were
persuaded to use multiplicative methods when solving questions that presented
either an unknown quantity or, in the case of Question 7, with both an unknown
fraction and unknown quantity.

The current study has limitations relating to its sample size. The pencil and paper
questionnaire was given to students in two classes in the same school and from
these classes seventeen students were subsequently interviewed. While this is a
broader sample than what was used in the pilot study where only Year 6 students
who were identified by their teachers as mathematically capable were involved,
there is a clear need to replicate the study with larger samples of students. This
study expanded the key ideas from Lee and Hackenberg whose research was
confined to 18 secondary aged students. Our study shows that the key algebraic
ideas investigated by Lee and Hackenberg are also important for elementary age
students and need to be systematically addressed in the elementary years prior to
moving into the secondary school system. Three important overarching algebraic
ideas appear to be common across both the Lee and Hackenberg research and our
own. These are equivalence, transformation using equivalence, and the use of
generalizable methods. These three ideas are used to identify algebraic thinking
even when younger students are not able to use symbolic notation.
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Chapter 11
First Encounter with Variables by First
and Third Grade Spanish Students

Marta Molina, Rebecca Ambrose and Aurora del Rio

Abstract This chapter presents findings from a teaching experiment on the initial
understandings that primary Spanish students demonstrated when they were first
introduced to the use of letters to stand for an indeterminate varying quantity in a
functional relationship. We provide a detailed account of our task design and class
activity to show how understanding of variable notation for functional relationships
was cultivated. We discuss the degree to which results from previous studies
generalize to the Spanish context. Our results, similar to those of previous studies,
support the introduction of variables in elementary grades.

Keywords Algebraic symbolism � Functional thinking � Primary school
Variables

11.1 Introduction

Within the curricular innovation proposal and research line known as early algebra,
researchers have begun to establish that young children are capable of developing
an understanding of letters as variables when they are provided with opportunities
to participate in classroom activities and discussions about functions, variables, and
their representations (Blanton et al. 2015; Carraher et al. 2008). It remains to be
seen the extent to which the findings generalize to different contexts and languages.
Our research represents an effort to replicate the success of other projects in a
Spanish setting. We built on the work of Brizuela et al. (2015b) by exploring six-
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and eight-year‐old children’s initial understanding of letters when used to describe
functional relationships between co-varying quantities. Updated curriculum docu-
ments in Spain for primary education (Spanish Ministry of Education and Science
2014) explicitly include as an aim “describing and analyzing change situations,
finding patterns, regularities and mathematical laws in numeric, geometric, and
functional contexts” (p. 19388). Research-based evidence from the Spanish context
is needed to guide the introduction of these new early algebra guidelines in
classrooms. Considering that the early algebra proposal has already begun to have
an effect in many curricula, information about students’ first reactions and ideas
related to algebraic elements is of use to guide the implementation of future cur-
ricular proposals. In this case we focus on variable as well as variable notation and
its use in algebraic expressions together with numbers and operation signs.

11.2 Theoretical Framework

We share with other authors in this volume a belief that arithmetic and algebra can
and should be integrated starting early in children’s educational careers. We chose
to use functional relationships, as a starting point, in part because teachers can
easily adapt story problems in their existing curricula to go beyond “isolated
experiences in computation” (Blanton and Kaput 2011, p. 7) to become algebraic
problems by asking children to think of a variety of cases and then making gen-
eralizations about those cases. Blanton and Kaput (2011) reported that the teachers
they worked with readily incorporated functional thinking tasks into their teaching
when their “algebra sense” was awakened. Moreover, several researchers have
found that young students can engage in thinking about functions. Following up on
these studies, in the study here reported, we elected to launch our work in algebra
by exploring functions.

Since functions are used to describe patterns and relationships that hold for sets
of numbers, students need to go beyond thinking of specific pairings to thinking
more generally. To do so requires conceptualizing an indeterminate quantity, a
placeholder of a sort for any number that might be in the set. Radford (2011) argued
that reasoning about indeterminate quantities is critical to algebraic thinking and
pointed out that mathematicians thought about indeterminate quantities long before
they had a notation for them. Radford provided examples of second-grade students
alluding to the idea of indeterminate quantities when they were discussing a
growing pattern that had gotten so big that they could no longer handle the cal-
culations associated with it. He noted that, while the students did not have a symbol
or even a word for the indeterminate quantity, they could point to it. He emphasized
that the concept of indeterminate quantity was independent from the notation used
to represent it.
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Nevertheless, we need some notation to represent the idea of an indeterminate
quantity in symbolic form. Our modern mathematical convention is to use a letter
from the alphabet to represent indeterminate quantities. We suspect that mathe-
maticians chose to borrow the symbols of our alphabet system for their work in
algebra because these symbols were familiar and at hand (particularly in printing
houses). As adults, they could easily refer to the mathematics context to recognize
the irrelevance of the sound associated with the symbol when interpreting its
meaning. We assume that mathematicians were not considering that children might
not as easily let go of the letter-sound correspondence when encountering letters in
an algebraic context. As will be evident in the data we present, representing the idea
of indeterminate quantity with a letter confounded students’ interpretations of the
notation. Our work with the children has led us to better appreciate Radford’s
(2011) point about the importance of distinguishing between the concept of inde-
terminate quantities and the symbols used to represent them.

Given that mathematicians have chosen to use alphabetic symbols for variables,
most mathematics educators do the same when initially engaging children in
algebraic reasoning. Research on students’ interpretation of letters as variables
(Knuth et al. 2005; Küchemann 1981; Usiskin 1988) distinguishes static concep-
tions of variable as objects (i.e., a label for an object or an object itself) or as
specific unknowns (fixed value), from dynamic conceptions as generalized numbers
(representing multiple values, one at a time) or indeterminate varying quantities
(representing, at once, a range of numbers). To obtain the symbolic representation
of a functional relationship in a problem-solving context, a variable can be tem-
porarily used as an unknown. However, to define or work with the function, the
variable must be understood as an indeterminate quantity that can take on many
values (the domain of the function).

In keeping with others who employ an emergent perspective (see, e.g., Cobb and
Yackel 1996) we believed we should use the students’ initial understandings as the
starting point of instruction as we moved towards the conventional meaning of
variables, so that students could construct their own understandings of variables and
variable notation as they completed tasks and interacted in the classroom. We
believed we needed to provide students with opportunities to grapple with algebraic
notation and build on students’ incipient ideas as we enculturated them into con-
ventional uses of variables in mathematical expressions. By introducing letters to
represent indeterminate quantities, we wanted to create a “semantic space” to be
filled with meaning (Sfard 2000). The introduction of new symbols gives students
the opportunity to negotiate meanings for the mathematical objects they represent
even when they still know very little about them (e.g., just that they represent a
quantity). We share Sfard’s assumption of a dynamic interplay between symbol-
izing and sense making. From this view, the introduction of a new symbol is a
decisive step in the creation of a new object.
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11.3 Connections to Previous Research

Several researchers have reported what happens when students first begin using
letters in algebraic expressions. Radford (2014) described how a fourth-grade
student proposed to use a letter when being asked to simplify the “message prob-
lem.” After writing the formula “1 + 1 + 2 � ____ = ____” on the board, the
teacher asked the students to fill in the gaps. One student suggested using a letter, so
the formula became 1 + 1 + 2 � n = n. Another student disagreed stating that both
“n’s” did not have the same value. During a different activity, this same student
proposed to use the formula N + N + 1 = R, explaining that R is the answer (in
French, ‘la réponse’ is the answer). In both cases, letters appeared spontaneously,
without prompting from the teacher, and the students gave them different meanings.

Brizuela et al. (2015a) explored the first steps of a six-year-old girl making sense
of letters in mathematics in the context of a teaching experiment. They illustrated
the diversity of her understanding related to variables and variable notation, and
how her ideas evolved within and across each of her interviews. In the first inter-
view the child accepted the researcher’s suggestion to use letters in order to shorten
the headers of a function table with the first letter of each word. When she was
asked to use another different letter she argued that she had never used a letter in
mathematics but she had used shapes, making an association between letters and
shapes to represent unknown quantities. She assigned the letter a fixed quantity
based on its position in the alphabet. Later on in the interview she used letters to
represent a fixed quantity with an arbitrary value, and also to represent quantities
with finite variation. In the second and the third interviews she utilized the idea of a
letter representing a varying unknown and variables as mathematical objects. Their
findings contribute to evidence that variable notation is within the reach of lower
primary-grade students and of how the initial understanding of letters can evolve
within the context of working on tasks about co-varying relationships.

In Brizuela et al.’s (2015b) teaching experiment, other first graders could also
overcome their initial tendency to want to fix a specific value to quantities in
functional relationships, with individual children expressing different understand-
ings of variable notation within one interview. Children were able to take a critical
first step in developing fluency with variable notation by coming to accept that
quantities represented by variable notation were indeterminate. From the gathered
evidence, and in line with Sfard’s (2000) position previously mentioned in this
chapter, Brizuela et al. (2015a) argued that conceptual understanding does not need
to precede the introduction of symbolic notation, rather acquiring variable notation
can be considered much like any language acquisition which evolves over time as
students gain fluency. Students take up the use of algebraic notation at different
rates with some incorporating it into their “personal repertoires” (Carraher et al.
2006, p. 109) more readily than others. For that reason, Carraher and colleagues
recommend undertaking “systematic teaching experiments and research” (p. 111).

Blanton et al.’s (2015) analysis of third graders’ (8- to 9-year-olds) assessment
answers showed that students did not initially know what to do with variables to
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represent a functional relationship. This finding indicates that while children are
capable of appropriating the use of variables to express functional relationships, this
knowledge is not part of the informal knowledge that they bring into the classroom
with them. It needs to be cultivated through carefully crafted tasks and artfully
orchestrated discussions in which the teacher steers children toward conventional
uses of variables, while at the same time honors each child’s emergent under-
standing of the notation (Radford 2011).

In this chapter, we expand on Brizuela et al.’s (2015a) work by showing how
Spanish students responded to tasks similar to those used in previous research. In
addition, we compare the work of six-year‐olds and eight-year‐olds to show the
initial understandings children of different ages demonstrated when first introduced
to the notation of using a letter standing for an indeterminate quantity to represent a
functional relationship. We provide a detailed account of task design and class
activity to show how understanding of variable notation for functional relationships
was cultivated.

11.4 Methodology

Our research approach is a teaching experiment (Molina et al. 2011) in which we
designed and implemented generalization tasks that involved linear functional
relationships. The data reported here belong to a larger project aiming to explore
and characterize elementary Spanish students’ functional thinking. We worked with
three groups of students in the same school in the south of Spain, one group from
each of Grade 1 (n = 30), Grade 3 (n = 27), and Grade 5 (n = 25). Here we focus
on the first two groups. In each of the grade levels we implemented four to five
sessions (i.e., lessons) of one to one-and-a-half hours each. One of the researchers
taught the function lessons while the regular classroom teacher was also present in
the classroom. All instruction was in Spanish, the children’s native language. These
students had no prior experience with generalization or with function tasks. They
also had never used symbols or shapes to represent variables or unknowns in
school.

All tasks involved linear functions of one variable with natural numbers pre-
sented through a familiar context (see Table 11.1). We provided students with a
context where they could express their reasoning and strategies and use multiple
representations in a meaningful way. We did not provide them with any intro-
ductory explanation; rather we presented them with a set of questions to consider so

Table 11.1 Contexts and functions considered in the first sessions in Grades 1 and 3

Grade Context Function

1 At an animal shelter, every dog wears a collar with its name on it F(x) = x

3 Maria and Raul are two siblings that live in La Zubia. Maria is the
older sister. We know that Maria is 5 years older than Raul

F(x) = x + 5
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as to elicit their thinking. The first questions asked students to explore the func-
tional relationship by considering particular cases. We intentionally chose
non-consecutive cases to avoid leading the students towards using recursive
thinking where the attention is directed to only one of the sets of numbers con-
nected by the function. Next, we included questions that directed students’ attention
beyond particular cases towards the relationship that connected both variables
mentioned in the context. In this way we anticipated that students would follow the
inductive reasoning process (Cañadas and Castro 2007).

We considered two types of relationships connecting the independent and
dependent variables: correspondence and covariation (Smith 2008). The first one,
correspondence relationship, refers to the rule that allows describing the dependent
variable in terms of the independent one. The second one, covariation relationship,
refers to how changes in the independent variable affect the dependent variable.
Most questions referred to the correspondence relationship (i.e., the relationship of
the dependent variable with the independent one), but some referred to the
covariation relationship. In some later questions, we asked students for the inverse
correspondence relationship: the relationship of the independent variable with the
dependent one.

In some questions, we asked the students to make use of different representa-
tions, such as tables, verbal language, and letters, so that they could have multiple
opportunities to explore the functional relationship and express their thinking.
Letters were introduced to represent indeterminate quantities. For example, in the
first session with the first graders, sentences such as “We need Z collars for Z dogs”
were presented to the students to determine its validity. No specific explanation was
given to them about the meaning of letters until the end of the first session. In
proposing the tasks, we intentionally chose to use a letter (Z) that does not belong to
the Roman numeration system, nor one that was the initial letter of any of the
quantities mentioned in the context of the problem. We did this hoping to move
students away from the interpretation of the letter as a label. In the third grade, the
letter Z was introduced during the discussion group session, instead of in the written
task where students were asked to initially choose their own letters. We also hoped
that using Z as the variable would interfere with children’s consideration of the
ordinal position of the letter in the alphabet, as significant to the interpretation of the
variable, since there are no letters after it.

Tables were used to organize the data and help students to later represent the
general relationship (the function) either with letters or with words. For example, in
the first session in third grade we asked the students to make a table to organize all
the information they had about the ages of both siblings and later we gave them an
incomplete 3 � 9 table with the headings “Raul’s age”, “operations to compute
Maria’s age” and “Maria’s age”.

Students in first grade tended to work individually on the paper and pencil tasks
even though they were sitting in bigger groups of around 10 students. Students in
third grade sat in groups of 3–4 students and freely decided whether to work
individually, in pairs, or in groups. We presented the context to the students and
read most of the questions aloud so that reading difficulties would not interfere with
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students’ participation in the tasks. After most children completed two to three
questions, either individually or in small groups, the researcher orchestrated
whole-group discussions so that their answers and ideas could be shared. The aim
was not getting a correct answer, but rather sharing different verbalizations of the
relationships that connect the two variables and the ways in which children rep-
resented them in writing.

The classroom sessions were video-recorded: one stable camera was used to
capture whole class activity and another roving camera operated by a researcher
was used to capture the activity of individual students and brief one-on-one con-
versations between students and the researcher. Students’ written responses were
also collected.

11.4.1 Description of the First Sessions of Both Grades

As both groups of students had no previous experience working with functions, for
the first session we chose the easiest function for first grade, the identity function,
and a slightly more difficult function for third grade, including just one addition (see
Table 11.1). The contexts described in Table 11.1 were carefully chosen to match
both types of functions.

In the case of first grade we chose the idea of providing dogs with collars. We
made clear to the students that no dog could be left without a collar and no dogs
could get more than one collar. The shelter as the context for the dogs could allow
students to consider large quantities of dogs (e.g., 100, 1000, a “thousand of mil-
lions”). In this context, the idea of variable could emerge because the number of
dogs in a shelter is a varying quantity.

We started the session presenting the context to the students using stickers of
dogs and collars and gluing a collar on each dog. Orally several particular cases of
numbers of dogs and numbers of collars were considered. Afterwards, we presented
the students with true/false (T/F) sentences related to the functional relationship:
first including small numbers, then big numbers, and finally variable notation (see
Table 11.2). Letters were not introduced before the T/F sentences because we
wanted to explore students’ natural reactions to them. As mentioned earlier in the
chapter, symbols were introduced to provoke meaning making and negotiation.
Therefore, the meanings given to the letters by the students would depend on their
own understanding and how the discussion would develop.

The T/F format was chosen to make the tasks approachable to the first-grade
students’ writing level. Students were asked to decide whether the statements were
true or false. They had several minutes to write their answers to the questions and
then we began a whole-group discussion during which students had to give their
answer and explain why they thought that each sentence was correct or not. After
considering some sentences with numbers, we asked them to consider others with
letters. In the group discussion we focused on the sentences, “We need Z collars for
Z dogs,” and later, “If we have N dogs, we need Z collars.” With these two
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sentences we wanted to provoke general verbalizations of the functional relation-
ship as well as invite students to give meaning to the letters. To end the final
discussion, we told the students that letters could represent any number.

In the first session in third grade, we asked the children to consider a situation
about the ages of two siblings (see Table 11.1). The context of ages was chosen
because we thought it was an accessible context for children to think about varying
quantities with a constant difference. Many of the children in the class had siblings
and frequently thought about how their ages would change as they grew up. This
context has the limitation that it doesn’t make sense to think of numbers much
bigger than one hundred but it was considered sufficient for the purpose of the task.
The idea of variable could also emerge as our ages are constantly changing as we
grow older.

First, we asked students for the age of Maria given particular ages for Raul and
required them to verbally express the relationship between both ages. Secondly we
requested that they provide the information in a table. We provided them with a
3 � 9 table with the headings: Raul’s age (1st column), Maria’s age (3rd column),
and the operations that allowed them to get the latter from the former (2nd column).
We hoped that this organization of the data would help them give meaning to our
next request: to represent Raul’s age with a letter in the last row of the table, and to
indicate how to use the letter to work out Maria’s age. We made this request on
paper and clarified it orally to each student who expressed confusion about what to
do. As in first grade, we intentionally avoided specific explanations about the use or
meaning of letters until the end of the session.

In the whole-group discussion, we first asked students for possible values for
Raul’s age, Maria’s age, and the operations they used to find out Maria’s age, while
recording the information in a table on the blackboard. Then, we asked the students

Table 11.2 True/false sentences proposed to first-grade students

Examples of questions Description

If we have three dogs, we need two collars Focused on the correspondence
relationship. Considering small or big
numbers

In the shelter there are one hundred dogs. We
need one hundred collars

We need Z collars for Z dogs Focused on the correspondence
relationship. Using letters to represent
indeterminate quantities

Let’s imagine that in the shelter there are N
dogs. Then we need Z collars

On Friday two more dogs arrive. Then we
need two more collars

Focused on the covariation relationship

Let’s imagine that on Friday many new dogs
arrive to the shelter and we have twice as
many dogs as on Thursday. Then on Friday
we need twice as many collars as on
Thursday

We have seven collars. Then we can put
collars on seven dogs

Focused on the inverse correspondence
relationship. Considering small or big
numbers
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for letters to represent Raul’s age and chose letter Z to work with, in order to avoid
letters that either appear in the Roman numerals or are initials of the names of the
children in the story. However, students decided to use other letters when sharing
their thinking and letter Z was not adopted, except for one case appearing at the end
of the discussion. Asking the students which operation to perform on Raul’s age to
find Maria’s age led to the verbalization of multiple meanings assigned to the letter.
We clarify that we used a letter because we did not know Raul’s age, but that it
could represent any possible age.

11.4.2 Data Analysis

We analyzed students’ written work and their verbal contributions to class dis-
cussion. We employed Blanton et al.’s (2015) scheme to code students’ use of
variable to describe functional relationships:

(a) letter-related (variables are used to relate one quantity to another),
(b) letter-new (letters are assigned to each quantity without representing the rela-

tionship between them) and
(c) value (a specific numerical value is assigned to the unknown).

We created a combined category, “letter related and value”, as some third-grade
students evidenced different uses of letters in their answers. Within both
letter-related categories, we found answers that suggest different understandings of
variable as we comment on below. We also added the category “reject letters”
because some responses evidenced rejection of using letters in favor of particular
quantities.

11.5 Results

We begin by separately presenting the results from each group of students. Then we
compare them. The results correspond to the number of students attending the first
session in each group: 29 and 24 respectively (one first grader and three third
graders did not attend class that day).

11.5.1 First Graders’ Understanding of Variables

In Table 11.3 we show the options chosen by the first-grade students for the written
task in those sentences where letters appeared. Most of the students chose the
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correct answer in each of the four sentences, and 13 of them showed consistency in
their answers by choosing the four sentences correctly.

During the whole-group discussion 13 out of 29 students volunteered to explain
their thinking to the rest of the class. All of them had given some answer in the
sentences including variables in the written task. In Table 11.4 we gather some of
their verbal explanations. Most of the students’ explanations evidenced acceptance
of the use of letters, but five gave it a particular value, using the alphabet-position of
each letter or relating it to the first letter of a particular word (e.g., Z is from zero,
even though in Spanish zero is written as “cero,” but they sound alike). Six students
compared the letters without assigning a value to them, just arguing if they were
“equals” or not. For example, a student said, “I don’t know the meaning of this
letter, but Z and Z are equals and then it is the same number of dogs and collars.”

Table 11.3 Answers of
first-grade students to the
written task (correct answer in
bold) (n = 29)

Sentence True False Empty

We need Z collars for Z dogs 26 3 0

If we have N dogs we need N collars 19 7 3

If we have N dogs we need Z collars 5 21 3

If we have P dogs we need C collars 4 22 3

Table 11.4 Coding of first-grade students’ explanations during the whole-group discussion
(n = 13; one student gave two explanations, classified as letter related and value respectively)

Coding Number
of
students

Examples of students’ responses

Letter
related

6 Student’s explanation Sentence

They are the same letters We need Z
collars for Z dogs

They are different letters If we have N
dogs we need Z
collars

Value 5 Z is zero and there is no collar and no dog We need Z
collars for Z dogsZ has 28 as value, since it is the last letter in the

alphabet

N is the first letter of none, and Z is the first of
zero

If we have N
dogs we need Z
collarsThe value of N is 14, because it is his position

in the alphabet, and the value of Z is 27

Rejects the
use of letters

3 Z is not a number We need Z
collars for Z dogs

This doesn’t exist If we have N
dogs we need Z
collars
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These children were using the letter as a representation of an indeterminate
quantity.

In attending to the consistency between the explanation in the whole-group
discussion and the written task, we realized that only one student gave an incon-
sistent explanation: in the written task she chose that “We need Z collars for Z
dogs” is true, while during the whole-group discussion, she rejected the use of
letters arguing that the phrase was false, because Z wasn’t a number.

11.5.2 Third-Graders’ Understanding of Variables

In Table 11.5 we show our coding of third-grade students’ initial response in
completing the written task and we include some comments made during the
discussion.1

To use letters to represent functions, it is not only necessary to interpret the
letters as an indeterminate varying quantity but also to dare to mix them with the
arithmetic symbols that students have studied and previously represented only with
numbers. We believe this to be an advance in thinking. Eleven of the 24 students
were able to represent the relationship between both ages by incorporating numbers
with letters in expression. Four different ways were detected. First some students
wrote expressions combining letters and numbers to express the relationship
detected in a way similar to that normally used by mathematicians (e.g., see Sara in
Table 11.5). Second and third, others used the positions of the letters in the alphabet
to express the relationship, either by choosing letters five positions away to rep-
resent the ages of each sibling (e.g., see Noelia in Table 11.5), or by using letters
with two meanings at the same time: an indeterminate quantity and a specific value
(e.g., Salma in Table 11.5). This latter use of letters might be the result of rejecting
the combination of letters and numbers in the same sentences as detected by
Brizuela et al. (2015a). Finally, two students (Sergio and Clara in Table 11.5) even
combined several of these ways of expressing the relationship: they represented the
additive relationship existing between the two variables using a letter plus 5 in the
column of the table reserved for the needed operations to get Maria’s age; and then
wrote another letter, five places further in the alphabet, in the column of the table
for Maria’s age. One student (e.g., see Miguel in Table 11.5) used the words
“adding five” in the second column rather than symbols to express the relationship
between the children’s ages. He did so in all the rows of the table.

Three students (Clara, Nuria, Pedro in Table 11.5), using the letter to relate one
quantity to another, wrote a number sentence including letters, numbers, and
operation relating them (e.g., C + 5 = H; G + 5 = 12). Four students wrote number
sentences (with or without letters) in the second column, showing some resistance
to leaving an algebraic or arithmetic expression open.

1Names of students used in this chapter are pseudonyms.
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Five students (those whose responses were classified under “letter related and
value”), even though they were able to represent the relationship between both
quantities, felt the need to assign particular values to both ages (see Table 11.5).

Regarding the answers classified in the “letter new” category, the students
tended to choose the initial of the name of the child in the story to represent his/her
age. Related to this meaning, one of the students used the letter C (initial of “cinco”
in Spanish) to represent “adding five.”

Analysis of the transcript from the whole-group discussion showed students
articulating each type of response illustrated in Table 11.5. During the discussion of
their responses, children demonstrated a willingness to use letters in place of
numbers, and they showed emergent understanding of quantities as indeterminate.
The following interaction (translated from the Spanish original) illustrates this:

Table 11.5 Coding of third-grade students’ written response in completing the table (n = 24)

Coding Number
of
students

Examples of students’ responses

Student Raul’s
age

Operation to
calculate
Maria’s age

Maria’s
age

Comments using
information from the
discussion

Letter related 6 Sara R R + 5 No
answer

Sergio A A + 5 F F is five positions
later than A in the
alphabet

Clara C C + 5 = H H

Noelia R No answer W W is five positions
later than R in the
alphabet

Miguel R “Adding
five”

No
answer

Letter related
and value

5 Carmen A A + 5 65

Salma R R + E 24 E was used because
it is the fifth letter in
the alphabet

Nuria R G + 5 = 12 No
answer

Pedro L L + 5 = 140 140

Letter New 4 Maite R Ca M I wrote here an R of
Raul, and here a C
of fivea

Value 1 A 21 + 5 = 26 No
answer

No answer 8
aC is the first letter for the number 5 in Spanish (cinco)
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Carmen: I’ll do A plus 5
Researcher: A plus 5, and then, what would be the age of Maria?
Carmen: For example, 47
Researcher: 47, why?
Carmen: Because if A is equals to 42, I add 5 to it.

While this child is speaking of a particular case of Maria’s and Raul’s ages, she
specifies it as “an example” and uses the conditional “if” to discuss the case. While
she is not yet articulating an understanding that A could stand for any number, she
does seem to recognize that Maria’s age depends on Raul’s age and will vary. We
concluded that she was developing “a positive disposition toward variables”
(Brizuela et al. 2015a, p. 59) and that, in expressing herself in this way, she was
potentially bringing her classmates along with her.

Other students while understanding letters as indeterminate, turned to the order
of the letters in the alphabet to be able to use letters to express the functional
relationship (see Pedro’s explanation below). In his written work, Pedro was able to
use letters within a number sentence to express the relationship between both
students’ ages, but assigned a specific value to Maria’s age. However, here in this
extract from the discussion, he provides a general representation of Maria’s age
using a letter. Interestingly, as did other students, he felt the need to capture in this
abstract representation the additive relationship between the two quantities by
making use of the order of the letters in the alphabet.

Pedro: Z plus…, no, if it were A plus 5 equals E
Researcher: A plus 5 equals E. Let’s see. Explain it. How do you get to that

answer?
Pedro: Between A and E there are 5
Researcher: There are 5, Where? In the alphabet?
Pedro: Yes
Researcher: Ah, ok. That is why you chose A to express Raul’s age and the E…

what does it mean?
Pedro: The age of Maria.

Other students provided evidence of a static interpretation of letters, as objects or
labels. This is initially the case with Maite, as can be detected in the following
extract from the discussion. Later, she shows a change in her interpretation of the
letter as she is requested to use a letter that cannot be considered as the initial of
Raul’s name. In addition, we observe that initially she is not worried about the order
of the letters in the alphabet, but when Raul’s age is represented with the letter Z
she begins to consider order, an idea that had been introduced by other students
within the discussion.
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Maite: I wrote here an R of Raul (she points to the first column), and here a
C of five2 (She points to the second column)

Researcher: A C of five, here. And why did you write a C of five?
Maite: Because everything was adding five.
Researcher: Ok and if R is Raul’s age, how would you write Maria’s age?
Maite: M
Researcher: Why?
Maite: Because it is the initial.
Researcher: And what does the R have to do with the M? Which relationship is

there between the R and the M that you chose?
Maite: They are the initials.

[a bit later in the discussion, after bringing students’ attention back to
the case of using Z to represent Raul’s age]

Maite: The age you have to write down is D, because Z plus 5 would be D.

Those students who completed the third column of the table did not write an
expression in the form of “n + 5.” These children may have felt that they had to put
something new in the third column. In this case, some students gave Maria’s age a
specific value (see Table 11.5) or chose another letter to represent her age. In the
following extract this is the case.

Noelia: For example, letter C, C plus…
Researcher: If I write a C here, you are saying (she writes in the first column)
Noelia: The other C plus five and now in the other one, H,
Researcher: H? And this H, what does it mean?
Noelia: Because C plus 5 is the H…. H is the age of Maria.

We wondered if Noelia and other children like her felt that Maria’s age had to be
a single symbol rather than an expression with three different symbols. This
reaction could be expected as students even in secondary school evidence need of
closure when working with algebraic and arithmetic expressions. They tend to
conceive of expressions whose numeric value is not shown as incomplete and tend
to finish them (Tirosh et al. 1998).

11.5.3 Comparison of First- and Third-Grade Results

As could be expected, in both groups there were students that rejected the use of
letters. Also in both groups some students showed acceptance of the use of letters
and some were able to argue about the function without having to talk about

2We remind the reader that five in Spanish is “cinco.”
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specific values. Language competence of first-grade students makes it difficult to
analyze the meaning they ascribed to variables in responses classified as “letter
related.” The student might be thinking of the letters as an unknown or as an
indeterminate varying quantity, or even as an object. In the case of third graders, if
we attend to reactions during the group discussion, we notice that understanding of
letters as an indeterminate quantity appears in several cases. For example, Maite
and Pedro argued that they still have to add five, no matter which letter they chose
for Raul’s age. On the other side, we can notice a preliminary approximation to the
idea of variable in Carmen. She assigned the value 60 to the age of Raul in the
written paper, while during the discussion she argued that Raul’s age could be 42.
The use of the letter as an object was clearly evidenced by some third-grade
students’ responses, those that used the initial of the names of the children in the
story, as could be detected in Maite’s initial answers during the discussion.

Tasks proposed in both grade levels made different demands in relation to the
use of letters as a consequence of the different functional relationships involved. In
the case of the first graders, in order to judge the veracity of the T/F statements,
students had to give meaning to given sentences expressing the functional rela-
tionship by using letters to represent indeterminate quantities. In the case of the
third graders, the task requested that students represent operations on the indeter-
minate quantity, and therefore give meaning to operating with letters and numbers.
In that sense, the task had a higher cognitive demand. Some of the uses of symbols
proposed by the students avoided this difficulty. Yet other students used sentences
combining numbers and symbols to describe the function. As a result, an interesting
and diverse use of letters to represent the functional relationship was evidenced,
which gave richness to the later discussion. The more open nature of the third-grade
task, apart from the age difference, was key to allowing this wider variety of
meanings to appear.

11.6 Discussion

In our concluding discussion, we wish to raise a few points, as well as relate our
results to the findings of some others who have done research in the area of early
algebra. We address here the relevance of lower primary-grade students’ use of
letters, the question of which symbols to use to represent the idea of indeterminate
quantity, and how the design of the tasks and the discussions about them played a
role in promoting students’ sense-making of letters in the functional contexts that
were considered.
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11.6.1 Relating Our Findings to the Results of Others

The variety of responses to students’ first exposure to using variable notation is
consistent with data presented by Carraher et al. (2008), which has shown that a few
children appropriate variable notation readily, while others shy away from it, and
some attempt to employ variables but do so in unconventional ways. This finding
indicates that, in the classroom setting, educators can expect to have some “early
adopters” and these early adopters can model for their classmates ways to use
algebraic notation to express mathematical relationships. While the teacher will
have to initiate the idea (Lobato et al. 2005) of using letters to represent indeter-
minate quantities, subsequent interactions can rely on the “early adopters” to
propagate the use of variable notation among their classmates. In this case, this
would be the students who are at the point of formulating the idea asked for by the
teacher. The range of adoption of variable notation indicates the need for teachers to
balance their initiation of this new notation with opportunities for students to use it
to express their ideas and to make sure that, as they adopt it, they can communicate
effectively with others about their thinking.

Unlike the six-year-old girl in Brizuela et al.’s (2015a) study, neither the first nor
the third graders had previous experience representing unknown quantities either
with letters or shapes. In addition they had not yet participated in any of the lessons
of the teaching experiment where the research was framed. Nevertheless, important
similarities are identified in the results of both studies: students assigned to the letter
a fixed quantity based on its position in the alphabet; other students used letters to
represent a fixed quantity with an arbitrary value; and others, to represent inde-
terminate quantities. Both Brizuela et al.’s and our findings evidence that variable
notation is within the reach of lower primary-grade students. Our results provide
interesting examples of how students might accommodate their thinking about the
position of the letters in the alphabet to use letters to represent functional rela-
tionships between indeterminate quantities.

11.6.2 The Relevance of Lower Primary-Grade Students’
Using Letters

Letters, which can be assigned many meanings, are an essential component of
mathematics language. Within the context of algebra, letters are used to represent
unknowns, indeterminate varying quantities, generalized numbers, as well as
parameters (Usiskin 1988). Part of the competency that students are expected to
develop in the study of school algebra is understanding and using this diversity of
meanings given to letters, as well as being able to use letters together with operation
signs and numbers to express mathematical general sentences in a compact and
precise way (Arcavi 2005).
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Research on secondary students’ understanding of variables and variable nota-
tion points to this topic as a content where students have limited understanding
(Fernández-Millán and Molina 2016; Molina et al. 2017). The distinction among
unknowns, indeterminate varying quantities, and parameters is not understood by
most secondary students; most tend to interpret letters as replacers of objects or
words (Furinghetti and Paola 1994; Küchemann 1981). In secondary school, stu-
dents can also show different understandings of the letter in a particular algebraic
expression (Filloy et al. 2008). For example they interpret the letter as unknown as
well as variable in the following equation x + x/4 = 6 + x/4. Therefore, traditional
approaches to teaching algebra are not succeeding in the development of an
appropriate understanding of letters as used in algebraic contexts. This fact supports
the pertinence of exploring both the possibility and the ways of initiating students
into the use of letters much earlier, as a means of giving them more opportunities
and time to develop such understanding.

Within the specific context of functions, which has herein been considered,
letters are tools to lead student thinking to a more general conception of the rela-
tionship existing between two variables, in particular, to recognizing the varying
nature of variables. Using a story context has the potential of helping students make
sense of the math; however, they also carry the risk of leading students to think
about particular cases/values. In the situations we considered, the children could
think about animal shelters or siblings they know, and give answers inspired by
those examples. More research is required to identify rich contexts or differently
designed tasks that give rise to functional relationships where the varying nature of
the variable concept is more perceptible.

11.6.3 Deciding Which Symbols to Use for the Idea
of “Indeterminate Quantity”

Our results, along with those of Brizuela and her colleagues (Brizuela et al. 2015a, b),
raise the question of which notation to use to represent indeterminate quantities. As
noted above,many of our students, like those inBrizuela and her colleagues’ research,
inferred that the position of the letter in the alphabet was significant, treating the
alphabet as having a one-to-one mapping with numbers. In this way, their knowledge
of the alphabet may have been interfering with their understanding of the indeter-
minate quantities we were asking them to consider. Students in first grade have only
recently learned the order of the letters in the alphabet and are just beginning to sort out
the symbol-sound correspondence that makes the alphabet such a powerful tool.
When seeing the same symbol in a mathematics context, they are likely to evoke their
existing associations for the symbol and think about the meaning that it holds when
they are reading andwriting. Interestingly, this type of response has also been found in
studies with secondary students (MacGregor and Stacey 1997).
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Some have argued that mathematics is its own language and, if we adopt this
assumption, then when learners become adept at mathematical notation they
become bilingual, being fluent in expressing ideas in two symbol systems—spoken
words and mathematical symbols. In a way, young children learning algebraic
reasoning could be thought of as acquiring three symbol systems: (1) their native
spoken language and how to use words to express ideas (L1); (2) the written system
of their language and how to use written symbols to represent words (L2); and
(3) the written system of mathematics which has its own symbol system that
represents ideas (L3). This line of reasoning led us to consult the language
acquisition research to think further about introduction of the use of symbols for
indeterminate quantities. When trying to make meaning of new words in one
language, learners can make inferences within that language based on context cues,
or think of associations in other languages making inter-language cues. Both of
these processes are quite natural (Ender 2014). When children are making meaning
for letters in mathematics by referring to their position in the alphabet, we can think
of them as using inter-language cues. Our challenge is to support them in recog-
nizing the differences between L2 and L3, so they do not get distracted by what
language teachers would call “false cognates.”

11.6.4 How the Task Design and Discussion Orchestration
Promoted Students’ Willingness and Ability
to Employ Variables to Express Their Mathematical
Ideas in Both Groups

The familiarity of the context, together with the simplicity of the functions, were
elements that supported students in beginning to make meaning for variables.
Requiring students to use the letter to describe a linear function provoked the
emergence of a wider variety of meanings for the variables than did the identity
task. Even though the function considered in the third-grade task was also quite
simple, it required the students to use letters in combination with numbers and
operation signs. Therefore, it led students to apply the notation and meanings learnt
in arithmetic to create a new mathematical object, that is, an algebraic expression. In
the first-grade task, as the demand of representing the functional relations was not
included, but rather the representation was given to be judged, it was very difficult
for the researchers to distinguish between the students’ answers to determine if they
were thinking of the letter as an indeterminate quantity or as an object.

Using a table to help third-grade students consider various cases involving
known quantities before asking them to think about indeterminate quantities
seemed to foster understanding. In our opinion, the introduction of the letter in the
context of a table helped the students to understand what we were asking them to
do, because the table supported them in seeing the pattern of the relationship
between the two quantities. In the case of first graders, as they are not so familiar
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with the table representation, we used T/F sentences. In the different sentences we
provided, they could also perceive a pattern that helped them give meaning to
letters in that the linguistic structure of the sentences was very similar. We need to
remember that for both groups of students, using letters in mathematics was a new
endeavor. In addition, as previously mentioned, the consideration of a letter dif-
ferent from the initial of the children’s names in the story was a key element of the
discussion in third grade that helped some students to move away from their
interpretation of the letter as an object/label.

To conclude, our data indicate that using letters to represent indeterminate
quantities holds promise as a viable starting point for early algebra instruction.
Furthermore, we recommend introducing letters in mathematics from the first grade
so as to gradually break students’ rejection of their use. As was seen, some students’
answers will help their classmates to develop meaning for the new symbols.
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Chapter 12
Making Implicit Algebraic Thinking
Explicit: Exploiting National
Characteristics of German Approaches

Anna S. Steinweg, Kathrin Akinwunmi and Denise Lenz

Abstract German mathematics teaching-units in primary school lack explicit
algebra learning environments. Then again, many national characteristics of
teachers’ attitudes and beliefs, everyday school life in mathematics classes, and
deep-seated approaches that expect children to communicate and argue about
mathematical findings, provide favorable prerequisites for algebra. Moreover, the
contents taught have the potential to address algebraic thinking if approached from
a new perspective. Yet, teachers and children are mostly unaware of the algebraic
potential of certain tasks. This chapter includes three studies with a special explicit
focus on possible key ideas, children’s abilities, and challenges offered by tasks.
These evaluated ideas illustrate in interweaving perspectives feasible approaches
that enable teachers to integrate algebraic thinking into their classroom culture.
Moreover, the implicitly given opportunities revealed by the special focus of each
study are hoped to lead to a sensible acceptance of algebraic thinking in primary
math classes and its curriculum.
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12.1 Introduction

Algebraic thinking is an important branch of mathematics from the start (Brownell
et al. 2014). Working on numbers and operations is twofold (Müller and Wittmann
1984). On the one hand, numbers are regarded as digits or strings in a place value
system. This allows carrying out algorithms and calculating discrete solutions. On
the other hand, numbers and operations form an algebraic structure with special
properties. This allows thinking about patterns, terms, and equations as special
objects (e.g., Kieran 1981; Sfard 1991; Tall et al. 2001). Both of these perspectives
on numbers and operations are crucial for a substantial mathematical education
from the very start. Yet, the latter is almost neglected in daily school life in
Germany. The authors of this chapter wonder why the various implicit possibilities
for implementing and supporting algebra in primary mathematics are largely
unknown to teachers and not taken up in textbooks and syllabi.

In the next section three different aspects are identified and described which may
pave the way for a sensible and deliberate teaching and learning of algebra in
German primary schools. This analysis of the special situation in Germany there-
fore frames the offered approaches. In particular, the issues and opportunities raised
by the national characteristics are focused on. Afterwards in Sects. 12.3–12.5, the
interwoven perspectives underpinning three research studies, and their respective
theoretical frames, methods, and results, are outlined in detail. The topics of these
studies are at the core of recent research that Kieran et al. (2016) identify as “a focus
on mathematical relations, patterns, and arithmetical structures” (p. 10). The per-
spectives evince optional ways of implementing algebra and algebraic thinking in
daily school life.

12.2 Issues and Opportunities for Supporting Early
Algebra in German Primary Mathematics

The situation of German primary mathematics concerning early algebra is
ambivalent. On the one hand, algebraic topics have no tradition and still no explicit
place in German primary school curricula and teaching-units, unlike in some other
countries (e.g., NCTM 2000). German primary curricula and standards mention
algebra in a very limited way, if at all. Also there are only a few national research
studies on algebraic thinking in the lower grades (e.g., Akinwunmi 2012; Gerhard
2013; Lenz 2016; Nührenbörger and Schwarzkopf 2016) and the ‘Early Algebra’
movement has not (yet) spread in Germany. At the same time, we also face the
same didactical problems concerning this topic that are mentioned internationally
(Malle 1993), for example, weak conceptions of variables (Franke and Wynands
1991; Specht 2009). On the other hand, when we take a closer look at the German
primary mathematics classroom, we can identify many characteristics that offer
opportunities to support algebraic thinking.
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Astonishingly, primary classroom interaction and teachers’ attitudes towards
teaching and learning mathematics are very coherent throughout the country in spite
of the fact that there are different curricula in the federal states, but all based on a
common national standard (KMK 2004). Primary maths in German classrooms is
very up-to-date concerning many fruitful teaching and learning principles
(Krauthausen and Scherer 2007; Radatz et al. 1996; Schütte 2008; Steinweg
2014a). At least regarding the following three themes, a common ground can be
identified.

• Teacher attitudes and practices: Teaching is no longer understood as passing on
knowledge but as supporting individual and constructive life-long-processes.
For instance, it is common to support children’s individual solving strategies in
terms of framing learning as discovery (Winter 1991). This goes hand-in-hand
with seeing each child as an individual being with individual needs, abilities,
and experiences (Bauersfeld 1983). With this in mind teachers also take into
account prior knowledge, and misconceptions or mistakes are treated in class-
room interaction as learning opportunities. Individuals’ reactions and solutions
to tasks are valued and integrated into the classroom discussion and interaction
(e.g., Gallin 2012; Kühnel 1916/1966; Selter 1998).

• Tasks and problem posing: The teaching units offered are mainly substantial
learning environments (Wittmann 1998), closely linked to mathematics as the
science of patterns. Tasks are embedded in learning environments and are
therefore related to each other. So-called operative variations (Wittmann 1985)
of arithmetical tasks build up patterns and offer opportunities to discover
mathematical relations among them. Most German textbooks and worksheets
offer tasks with mathematically sound patterns to be spotted and to be described.

• Expectations on learners: The expected reactions in classroom interaction differ
from just giving numerical answers. The German national standards (KMK
2004) expect children of all ages to communicate and to argue mathematically.
This includes commenting on solutions, describing one’s own solving pro-
cesses, detecting patterns, defending different approaches, explaining certain
patterns, and so forth. Primary teachers are very much aware of the importance
of these so-called process competencies and try to support them in the classroom
(Walther et al. 2008).

In summary, German norms around daily classroom interaction and common
beliefs about teaching and learning reveal bright opportunities for early algebra.
Yet, the algebraic potential of patterns and structures is fairly unknown to both
teachers and children. Algebraic thinking is mostly understood as a content of
secondary school, being very abstract and possessing no links to primary maths.
This might originate from a lack of knowledge about the nature of algebraic
thinking as well as a traditional view of algebra. Kaput et al. (2008b, p. xviii) call
this belief the “algebra-as-we-were-taught-it, [which] follows
arithmetic-as-we-were-taught-it.” In an already overfilled curriculum it is under-
standable that primary school teachers might have some reservations about this
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alleged new additional content. As a consequence, teachers do not promote alge-
braic thinking explicitly in primary maths class.

Because of this situation, we believe that it is of high importance to promote
researchers’ and teachers’ awareness concerning algebraic thinking and to make the
implicit algebraic thinking that is already present in German classrooms explicit.
The objective is to encourage teachers to integrate algebraic thinking into their
classroom. Moreover, the aim is to enable teachers to become aware of their already
addressing algebraic thinking in their maths class. This might finally lead to an
acceptance of algebraic thinking in the primary math class and its curriculum.

In this chapter we present three different research studies, which build on three
perspectives regarding the integration of algebraic thinking in primary maths
classrooms. Each study, which is grounded in the national characteristics of
German primary mathematics teaching, has a separate focus:

1. A focus on topics and contents of primary school mathematics that contain
opportunities for promoting algebraic thinking. Section 12.3 clarifies the nature
of algebraic thinking by describing four essential key ideas.

2. A focus on the algebraic competencies of primary school children. Section 12.4
provides insight into the potential of children’s generalization processes with
respect to the development of algebraic thinking.

3. A focus on the design of tasks and problem posing. Section 12.5 describes the
challenges of task design and how tasks might promote algebraic thinking even
in very young children.

12.3 Study I: All Eyes on Key Ideas

One perspective concerning the integration of algebraic thinking in the primary
maths classroom takes as its starting point the mathematical topics and contents
taught in primary school. In spite of the fact that algebra is not mentioned explicitly
in curricula and syllabi, many topics are related to algebraic ideas and content
fields. From this perspective, algebra is not a new content to add but a content field
to be identified within already taught topics.

12.3.1 Theoretical Framework

The theoretical framework of this study includes two different aspects: an analytical
and a constructive part. The analysis given in the first subsection tries to differ-
entiate between the terms pattern and structure from a mathematical point of view.
The constructive part, which is presented in the second subsection, suggests an
option for categorizing topics into key ideas.
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12.3.1.1 Patterns and Structures

Often mathematics itself is described as the science of patterns (Devlin 1997). In
this view, all mathematical theories arise from patterns spotted. Even axioms
characterize patterns to build on. Not surprisingly, teaching and learning about
patterns and structures is no special topic but fundamental for all mathematics
lessons. “Mathematics ‘makes sense’ because its patterns allow us to generalize our
understanding from one situation to another” (Brownell et al. 2014, p. 84).

Becoming aware of patterns allows us to see sense in mathematics and to
appreciate its beauty. This awareness is at least twofold. On the one hand, seeking
patterns can be classified as meta-cognitive; on the other hand, there is a cognitive
component of awareness that is characterized by “knowledge of structure”
(Mulligan and Mitchelmore 2009, p. 38).

Patterns can be described as “any predictable regularity, usually involving
numerical, spatial or logical relationships” (Mulligan and Mitchelmore 2009,
p. 34). Constructing a pattern of numbers or shapes by making up a rule or a certain
operative variation (Wittmann 1985) of a given number or task is a very creative
process. If, for instance, the pattern of a number sequence is creatively made up, the
regularity then is fixed and can be used, continued, and described (Steinweg 2001).

In this research study structure is understood as mathematical structure and not
as a category system to describe the individual pattern awareness of children (on
different uses of the term structure c.f. Rivera 2013; also Kieran in this volume).
Mason et al. (2009) recommend “to think of structure in terms of an agreed list of
properties which are taken as axioms and from which other properties can be
deduced” (p. 10). They point out the difference between the spotting of (singular)
relations and the use of the given example as such for the general structure with
certain properties:

Recognising a relationship amongst two or more objects is not in itself structural or rela-
tional thinking, which, for us, involves making use of relationships as instantiations of
properties. Awareness of the use of properties lies at the core of structural thinking. We
define structural thinking as a disposition to use, explicate and connect these properties in
one’s mathematical thinking. (Mason et al. 2009, pp. 10–11)

Hence, detecting structures, in contrast to patterns, requires mathematical
knowledge about objects and operations. The relation between mathematical
objects is essentially determined by mathematical structures (Wittmann and Müller
2007). Awareness of structures often suffers from the fact that structures are
mentioned only briefly and only formulated in ‘rules’ in mathematics lessons.
Unfortunately, these condensed statements are not an appropriate tool to become
aware of the logical structures and properties of mathematical objects and relations,
which are fundamental for mathematics.

Sufficient knowledge of mathematical structures is crucial for both teachers and
children. Only well trained teachers are able to understand the mathematical
structures and to make them accessible for children (Chick and Harris 2007; Devlin
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1997). One approach for obtaining access to mathematical structures lies in explicit
learning environments that enable children to explore, use, describe, and even prove
patterns originating from underlying structures (Steinweg 2014b).

12.3.1.2 Algebraic Key Ideas

The main issue, worked on in this study, is to become aware of and to appreciate
algebraic topics in primary class interaction. Hence, the most important question is
which mathematical ideas are key, when it comes to algebraic thinking. The
international research discourses provides several possibilities concerning the
framing of algebra in primary school mathematics, for example, NCTM (2000).
Besides standards and curricula various research projects outline different approa-
ches or major ideas of algebraic thinking. Kaput (2008, p. 11), for example,
identifies three strands of algebra, which are generalized arithmetic, functional
thinking, and the application of modeling languages.

In the German context outlined above further detailing of algebraic content has
not yet occurred. The initial step has to build on the existing terms used in syllabi
and standards in order to receive broad acceptance and to make an impact on daily
school lessons and mathematics textbooks. This possible link is the content area
‘patterns and structures’, which is given in the national standards (KMK 2004).
Mathematics in primary school offers various opportunities to become aware of
algebra as a mathematical background, that is, mathematical structures. In order to
encourage sensitivity to important learning opportunities, the common topics are
re-structured according to key ideas of algebraic thinking (Steinweg 2017).

(1) Patterns (& Structures)
(2) Property Structures
(3) Equivalence Structures
(4) Functional Structures

The first idea is briefly described above (also see Sect. 12.4). The second lies in
the properties of numbers (e.g., parity, divisibility) and operations (e.g., commu-
tativity, associativity, and distributivity). Examples of this key idea are presented
below. The third key idea holds learning opportunities in evaluating, preserving, or
construing equivalence in given correct or incorrect equations by assessing terms,
and so on. The main issue here is to overcome the urge to solve equations but to
focus on the relation of given numbers, sums, differences, products, or quotients
(Steinweg 2006).

Inviting children to find ‘quick ways’ to do arithmetic calculations such as adding the same
to both numbers to reach an easier calculation (47–38 = 49–40) and the many variants, can
be an entry into appreciating structure. (Mason et al. 2009, p. 14)

The last key idea involves learning environments on functional structures, (i.e.,
mainly proportional) relations, and co-variation aspects, for example, ‘number and
partner number’ (Steinweg 2003)—also used in the study described in Sect. 12.4.
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12.3.2 Methodology

The research design follows a constructive approach against the background of
mathematics education as a design science (Wittmann 1995). In the research project
(Steinweg 2013) learning environments that are suitable for the key ideas outlined
above are designed and evaluated. Learning environments provide—besides some
implementation ideas—in particular, tangible examples of common tasks in order to
uncover their algebraic potential. Each learning environment includes various tasks
in a booklet to be handed out to the children along with further mathematical
background and educational information for teachers in a teacher’s guide. The
teachers participated in an introductory meeting in which the tasks and possible
teaching arrangements—given in the guidelines—were discussed. They committed
themselves to implement all of the ‘extra’ tasks in the booklet among the usual
textbook tasks in daily classroom work over a period of 10 months. The frequency,
intensity, and depth of the use of the learning environments were to be decided
freely by the teachers. There was no specific focus on the child-teacher-interaction
while working on the tasks—with the exception of some mathematics lessons
randomly visited by the researcher. The research therefore focused on the question:

Does the implementation of ‘new’ tasks structured by key ideas via learning environments
show any effects on children’s algebraic competencies?

Six German primary school classes with 144 children from 2nd to 4th grade (on
average 7- to 9-year-olds) participated in the project. Additionally, two children per
class took part in video-recorded interviews throughout the project period.

In the results presented here, we focus on distributivity as one element of the key
idea ‘property structures’. The main challenge is to see equations and expressions in
a meta-perspective way. For instance, in the expression 2 � 8 + 5 � 8 children
have to spot the specific ‘internal semantic’ (Kieran 2006, p. 32). Only if the
common factor is identified as an important component in the products can the
‘variable’ factors be summed up. For a start the two products have to be regarded as
objects in a sum and then the two different factors can be added to create a new
product (7 � 8), which is equal to the sum of two products. Of course, it is always
possible to take a procedural perspective and to calculate expressions to determine
the specific result (product, sum, etc.). This arithmetical perspective is very much
supported in primary mathematics. The change in perception of expressions and
equations is therefore crucial and challenging.

12.3.3 Research Results on the Example of Distributivity

Tasks can be designed in such a way as to take advantage of the natural urge to
calculate (Fig. 12.1); for example, summing up multiplication table results yields a
new sequence that can be identified in the 3rd line of the table as consisting of the
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sum of the addends (cf. table with addends and sums in Fig. 12.1). This may, at
first, be a surprising result for the children. If other examples are tested and in a next
step the addends are rediscovered as products, as given in the lower part of
Fig. 12.1, the underlying general idea can become more and more clear.

Besides tasks in symbolic representations, rectangle areas as a representation of
multiplication (length by width) are used as well in the tasks of the given booklet.
Such rectangles are provided by the teachers as representations on worksheets or
‘actively’ made up by the children by cutting out sections of grid paper. If rect-
angles are accepted as multiplication representations, manipulating these rectangles
by cutting and re-interpreting the two part-rectangles as multiplications can be the
next step to explore and understand distributivity (Fig. 12.2).

As the main research question aims to evaluate the effects of the implementation
of the learning environments, results of a pre- and post-test are of interest. The
results of the test item 10 � 5 − 4 � 5 = ___ � ___ (corresponding to distribu-
tivity) are herein documented by way of example (see Table 12.1).

Most likely, the children participating in the project had already experienced
derive-and-combine-strategies for solving multiplication tasks in class. This
approach to the multiplication tables, which is used in German mathematics in
primary school, is somewhat peculiar. There is no longer ‘doing tables,’ but
working on core tasks (e.g., doubles, times 5, times 10) and the use of
derive-and-combine-strategies to solve other multiplications. Only core tasks

Fig. 12.1 Exploring
distributive structures in
symbolic representations

Fig. 12.2 Exploring distributive structures by interpreting rectangles as multiplications
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should be known by heart as facts (sometimes known as ‘helping facts’ in the
Anglo-Saxon literature). For example, in order to solve 7 � 8 the children are
encouraged to combine the known facts 2 � 8 and 5 � 8. This combination is
possible because of distributivity. Even so, the task item was found to be quite hard
to handle for the participating children in the pre-test (Table 12.1).

Prior to the project two-thirds of the children had no idea what to fill in the
blanks. Only in very few cases were children able to combine the two given
multiplications referred to in Table 12.1 into 6 � 5 and thereby make use of the
structure (what we are naming the ‘proceptual’ or algebraic perspective). After
participating in the project, one-third of the children were able to give this answer.
Another third of them responded with a result such as 3 � 10, which is fitting
because of the equivalent result 30 (the “procedural” or arithmetical perspective).
Despite the fact that these results are still far from being satisfactory, the increase in
the numbers of children using an algebraic perspective is considerable.

12.3.4 Discussion

The project gives an initial indication that it is possible to foster algebraic thinking
by providing sound learning environments. The challenges offered to the children
support effects on understanding and increased performance on algebraic tasks. Yet,
the impact of learning environments alone is not enough to support all children.
Teachers’ instructions and interaction in classroom discussions as well as the
specific role of representations have to be focused on in further studies.

As mentioned above, the project provided no binding specifications to teachers
regarding how to focus on distributivity, but offered different opportunities to
explore this mathematical structure via the ‘new’ tasks in learning environments. As
a “good balance between skill and insight, between acting and thinking, is […]
crucial” (Drijvers et al. 2011, p. 22), further effort should focus on exploring the
differences between procedural and structural/conceptual work on tasks.

The developed key ideas may function as bridges and guiding principles
between arithmetical and algebraic topics. If common arithmetical strategies—like
derive-and-combine—are seen from a different angle, they actually are algebraic.
This has to be made more explicit to both teachers and children. From a
meta-perspective view the procedures performed are determined by mathematical
structure and the properties of operations, that is, by algebra. Last but not least, this

Table 12.1 Results for solving 10 � 5 − 4 � 5 = ___ � ___

Category Pre-test (n = 135) (%) Post-test (n = 133) (%)

‘Proceptual’ 1.5 32

Procedural 32.5 35

No answer given 66 33
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‘new’ perspective and awareness implies “better understanding of rules and pro-
cedures” (Banerjee and Subramaniam 2012, p. 364).

12.4 Study II: All Eyes on Children’s Algebraic Thinking

In this section, we explore how to exploit the potential of German primary math-
ematics classroom culture by making explicit the algebraic character of children’s
daily mathematical communication and reasoning. We believe that algebraic
thinking is already taking place in the present maths lessons implicitly due to the
national characteristics described earlier. It is then necessary to clarify the nature of
algebraic thinking and to support its recognition in students’ actions and commu-
nications. We illustrate this by focusing on the generalization of patterns—one of
the most important parts of algebraic thinking (Kieran et al. 2016).

12.4.1 Theoretical Framework

“Patterns and Structures” are fundamental content in German maths classes—
starting from the primary school level or even earlier. To discover, to describe, and
to reason about patterns are essential activities according to the national primary
mathematics standards (KMK 2004). Working on patterns and structures holds
great opportunities for algebraic thinking as it can evoke children’s generalization
processes, which are considered essential for algebraic thinking (Kaput 2008;
Mason et al. 2005). Unfortunately, teachers are mostly unaware that such oppor-
tunities exist.

Generalizing mathematical patterns is one of the main approaches to algebra and
also to the introduction of variables. Mason and Pimm (1984) describe generalizing
as “seeing the general in the particular.” The concepts of variables as general
numbers (or indeterminates, see Freudenthal 1973) and as varying numbers (vari-
ables in functional relations, see Freudenthal 1983) are powerful tools for gener-
alization. Thus, the use of variables enables students to communicate, to reason, to
explore, and to solve problems on a general level (Malle 1993). Variables can
therefore be introduced as meaningful and necessary signs in the context of
generalization.

Generalizing is an important part of any mathematics classroom in which the
focus is laid on patterns and structures—thus also in German primary maths class.
Patterns and structures have to be constructed actively by the learners by inter-
preting the given mathematical signs (Steinbring 2005). In order to achieve this, the
students’ challenge is to see something general in the particular (Steinbring 2005).
Whenever learners communicate about mathematics, including when they talk
about regularities, structures, and relations, they find inevitable the need to gen-
eralize. But before they are introduced to algebraic symbols and conventional signs
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for their generalizations, they face the problem of trying to say something general
without having the necessary tools, such as variables. They are thus compelled to
find their own fitting signs that can represent their explored mathematical patterns
and structures. In the last decade, research has focused on the competencies of
young children in the field of the emergence of algebraic thinking. Studies have
revealed promising findings. Young learners are able to generalize and reason about
patterns, number relations, and arithmetic laws (e.g., Bastable and Schifter 2008;
Cooper and Warren 2011; Schliemann et al. 2007). Radford (2003) claims the
importance of natural language as well as non-symbolic forms of generalization
(e.g., by means of gestures).

In order to exploit the algebraic character of primary school students’ commu-
nication of patterns and structures, a study was conducted to explore their indi-
vidual generalization processes. The study focused on the following research
questions:

How and with which linguistic resources do primary school students generalize mathe-
matical patterns? How do students develop variable concepts by generalizing mathematical
patterns?

12.4.2 Methodology

The presented interview study (Akinwunmi 2012) investigated the generalizing
processes of primary school children. Thirty participating fourth graders (approx-
imately 9–10 years) were engaged in three different task formats that included tasks
that are known to focus on the exploration of patterns:

(1) “Think of a number” (e.g., Mason et al. 1985; Sawyer 1964): Children explore
and explain the structure that lies in the following task. “Think of a number. Add
4. Add 8. Subtract the number you thought of. Subtract 2. The result is 10.”

(2) “partner numbers” (Steinweg 2003): Children explore and describe the rela-
tionship of pairs of numbers (Fig. 12.3) and fill in some missing values.

(3) “growing patterns” (e.g., Orton 1999, see example on the next page).

Fig. 12.3 Example for
“partner numbers”
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The interviews focused on individuals’ oral and written descriptions and
explanations of patterns. The students were chosen from three different schools and
included a heterogeneous range of achievements in mathematics according to their
teachers. All interviews, each of an approximate duration of 45 min, were con-
ducted by one of the authors; they were videotaped and transcribed.

The data were analyzed by a group of researchers by means of the epistemo-
logical triangle (Fig. 12.4) based on Steinbring’s (2005) theory of the construction
of new mathematical knowledge in classroom interaction.

The epistemological triangle can be used to reconstruct the referential mediation
between mathematical signs/symbols and the reference contexts that serve for the
interpretation of the signs. Steinbring (2005) describes the interdependence among
the three entities by explaining that, “the referential mediation is steered by con-
ceptual mathematical knowledge and at the same time, conceptual mathematical
knowledge emerges in the referential mediation” (p. 179).

The study presented here reconstructs the development of variable concepts by
observing the construction of knowledge by means of new referential mediations
between mathematical signs and reference contexts.

12.4.3 Research Results

The presentation of the results is divided into two subsections. The first subsection
(12.4.3.1) gives an insight into the analysis of an exemplary generalization process
from an epistemological oriented perspective by revealing students’ development of
the variable concept. The second subsection (12.4.3.2) gives an overview of the
children’s forms of generalization and presents their linguistic tools from a semiotic
perspective.

Sign/
symbol

Object/
reference context

Concept

Fig. 12.4 The
epistemological triangle
(Steinbring 2005, p. 22)
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12.4.3.1 Epistemologically-Oriented Analysis of the Generalization
Process

The epistemologically-oriented analysis of children’s individual generalization
processes is illustrated below with reference to an interview sequence with Lars, a
student who worked on the growing pattern of “The L-Numbers” (Fig. 12.5).

First, Lars was asked to continue the pattern and to calculate the required number
of squares for L1 to L10, L20, L100, and for other figures. His calculations showed
that he split the figures into two sections: the vertical squares (including the linking
square), which total one more than the term number of the sequence, and the
horizontal squares which equal the term number. Using variables, his strategy could
be described by the explicit formula (n + 1) + n. When requested to explain his
strategy for calculating the required number of squares for any term of the
sequence, his first statement involved citing an example: “I calculate, for example,
5 + 4. That’s how I get the result.” When asked to write down a description of his
strategy, he drew a figure (Fig. 12.6) and explained it as illustrated below.

Lars’ description of ‘The L-Numbers’:

Lars: So this is five (points to the five vertical squares) and this is five
(points to the five horizontal squares including the linking square in
the left corner). So and ehm (adds the two arrows and the plus sign
to his figure).

Interviewer: Great. Now can you explain to me in detail, what exactly you mean
(points to the arrows)?

Lars: This downwards (moves his pen alongside the vertical squares) plus
this (moves his pen alongside the horizontal squares), I calculate.

Interviewer: Ah, ok. Good.

Fig. 12.5 Growing pattern of
“The L-numbers”

Fig. 12.6 Lars’ description
of the pattern
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Lars: And ehm, this here (points to the linking square in the corner of the
‘L’) belongs to the downwards. That’s why I put a thicker line there
(retraces the line between the vertical and the horizontal squares).

In this interview scene Lars used a drawing of the fourth figure of the sequence
to describe the structure that he saw in the growing pattern. To this concrete figure
he added a vertical and a horizontal arrow and a plus sign. With his explanation of
the arrows “this downwards plus this, I calculate,” he pointed out that these
expressions represent the summands of the addition of the two parts of the ‘L’-
figure. The words “downwards” and “this” can therefore be construed as word
variables as they referred to the varying number of squares in the two parts of Lars
pattern. They enable Lars to describe the general structure of the ‘L-numbers’
beyond his first example, 5 + 4. He took these signs from a geometrical context as
they initially indicated a direction within the given figure. In this new context they
now referred to the varying amount of needed squares for one part of the figure.
Thus Lars constructed a new referential mediation between the used words and
arrows and the general structure of “The L-Numbers” (Fig. 12.7).

It is this mediation that is characteristic of the concept of variable as a general or
varying number in the way that it includes the semiotic nature of the relation
between one unifying symbolic object and its referring to multiple instances.
Creating that symbolic object lies at the very heart of generalization (Kaput et al.
2008a, p. 20). It is important to note that this object is not necessarily a symbolic
variable in the form of a letter. A ‘variable’ here appears in the form of words,
signs, or symbols. We agree with Radford (2011, p. 311) that algebra can be
considered as a “particular way of thinking that, instead of being characterized by
alphanumeric signs, is rather characterized by the specific manner in which it
attends to the objects of discourse.” Therefore, we can say that the process of
generalizing mathematical patterns is fostering students’ concept of variable by
naturally establishing this kind of mediation.

Fig. 12.7 Interpreting Lars’ drawing and his explanation with the epistemological triangle
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12.4.3.2 Children’s Linguistic Forms of Generalization

Across the study’s different task formats and the various individual reactions, dif-
ferent linguistic forms of generalization could be identified that served the students
as tools for generalization (Table 12.2).

We found that children mixed and combined the above forms even within one
description. Although the first four forms of generalizing are limited in terms of
creating generally valid statements because the description does not apply to all
objects in the pattern, they nevertheless illustrate the general character of the pat-
tern. As such they also present possibilities for learners to express statements that
can be understood as “general” in the classroom discussion.

12.4.4 Discussion

The analysis of the interviews of which we could just present a brief insight above
shows that when asked to explore and especially requested to describe mathe-
matical patterns and structures, children felt the necessity to generalize in order to
be able to communicate about their discoveries in the way that Lars did. The
individual use of signs or symbols with variable character originated from the
motivation to refer to a mathematical structure in general and to describe it beyond
the visible objects of the pattern. Learners spontaneously used signs or symbols
drawn from other contexts. In the new context of generalization, they served as
variables (as Lars’ adverb of direction “downwards”, the deictic expression “this,”
as well as the arrows in the described interview scene). In the individual process of
generalizing, children constructed new referential mediations between the used
signs and symbols and the general structure. Thus, this mediation shaped the
concept of variable. The linguistic forms of generalization occurred in the

Table 12.2 Children’s linguistic forms of generalization

Forms of
generalization

Description of the category Illustration by means of the term
x2

Stating one
example

Students use one example and
explicitly indicate this as an example

“For example it’s three times
three.”

Listing several
examples

Students list several examples and
sometimes refer to a continuation

“It’s one times one, two times
two, three times three and so on.”

Quasi-variables Students use concrete numbers
combined with a generalizing
expression

“I always calculate three times
three.”

Conditional
sentences

Students phrase conditional
sentences

“If it is three, then I calculate
three times three.”

Variables Students use words or signs with
variable character

“You have to calculate the
number times the same number.”
“?�?”
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interaction while working on mathematical patterns and structures and took on the
role of variables in the context of generalizations. They enabled the learners to
describe mathematical patterns and structures in general and therefore served for the
propaedeutic development of variables as general or as varying numbers.

We believe that it is important for teachers to be able to identify and support
students’ attempts to generalize as they themselves are a key to children’s algebraic
thinking and to the development of the variable concept. Teachers have to under-
stand that these generalization processes take place in primary math class when
students communicate about mathematical patterns and structures. The linguistic
differentiation among forms of generalization presented above can help to open
teachers’ eyes and ears to generalization processes that occur in classroom com-
munication and therefore aid in nurturing the awareness of algebraic thinking.

12.5 Study III: All Eyes on Tasks

This section proposes to expand the scope of common tasks used in maths lessons.
Dealing with variables and establishing relationships as important aspects of
algebraic thinking were addressed by a task design appropriate for children from
5 years on. In addition to addressing different aspects of variables, the tasks also
promoted relational thinking. An interview study tried to find out which relations
children describe between known and unknown quantities, represented as marbles
and boxes.

12.5.1 Theoretical Framework

Algebra focuses not only on procedures, which are directly operable, but also and very
importantly on the concepts that are represented in equations as relations between
numbers, objects, or variables (e.g., Steinweg 2013). Relational thinking especially
describes this way of thinking and therefore is an important part of algebraic thinking.
Relational thinking refers to the recognition and use of relationships among numbers,
sets, and relations. It enriches the learning of arithmetic and can be a foundation for
smoothing the transition to algebra (e.g., Carpenter et al. 2005).

Another important part of algebra and the emergence of algebraic thinking is that
of variables. While “variables” can be hard to define, several authors mention
different aspects of variables with the aim of clarifying the field. At least, three
different kinds of variables can be defined: Unknowns describe a specific, but
undetermined number, whose value can be evaluated. For instance, in the equation
25þ x ¼ 30, x can be determined (e.g., Freudenthal 1973; Usiskin 1988). Variables
describe a range of unspecified values and a relationship between two sets of values
(Küchemann 1981). In this way, variables appear in statements about functional
relationships. General numbers describe indeterminate numbers which appear in

298 A.S. Steinweg et al.



generalizations, such as descriptions of properties of a set as in aþ b ¼ bþ a (e.g.,
Freudenthal 1973). Some research on children’s understanding of variables also
emphasizes quasi-variables, which by the use of examples expresses a basic
structure in general terms (e.g., Fujii and Stephens 2001). Related to this work on
variables is the substantial empirical research on relational thinking about numbers
and operations in symbolic equations (e.g., Carpenter et al. 2005; Steinweg 2013;
Stephens and Wang 2008). We note however that, in some of the tasks used in these
latter studies, namely 28 + 32 = 27 + __, students still have the opportunity to
calculate and, thus, there may be no need to use relational thinking.

In contrast, Stephens and Wang (2008) used the following task to investigate 6th
and 7th-graders’ relational thinking:

18þ h
Box A

¼ 20þ h
Box B

Students had to put numbers in the boxes named A and B to make the sentence
correct. Tasks with more than one unknown quantity seemed to have the potential
to push students to use and show relational thinking, instead of using computational
methods to find a solution. Examples of tasks with more than one unknown and
which are represented with concrete objects can also be found in Affolter et al.
(2003) and Schliemann et al. (2007). In these studies, boxes containing rods and
marbles were used in order to provide access to variables in equation situations. To
encourage student’s relational thinking, concrete materials would seem to have an
advantage, especially for younger students, even as young as kindergarteners.
However, studies on relational thinking with concrete material and unknown
quantities are few. Therefore the following study addressed the question:

How do young children describe relations between known and unknown quantities that are
represented with concrete materials?

12.5.2 Methodology

To find out what competences children already have for dealing with unknown
quantities, clinical interviews (e.g., Selter and Spiegel 1997) with 82 children aged
5–10 years (kindergarten and elementary school) were conducted and videotaped.
The underlying concept was to “translate” different kinds of equations with vari-
ables into a representation that young children could handle. Therefore known and
unknown quantities were represented with concrete materials in the form of marbles
and boxes. The boxes represented unknown quantities because their content was
unknown. To make the task accessible, the following story was told: “Here you see
two children. They are playing with marbles. Some marbles are packed up in
different colored boxes and some marbles are separate. Boxes with the same color
always contain the same amount of marbles.”
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The main study included 12 tasks on four levels of difficulty (Lenz 2016). In this
section of the chapter two tasks are chosen as examples because the transition
between tasks of type B and C (shown in Fig. 12.8) was found to be especially
interesting. In tasks of type B children can answer with a concrete number. For
instance, there is one marble in every green box (see Fig. 12.8). The green box
represents an aspect of variables that can be identified as an unknown. The content
of the red boxes is unknown and their determination is not necessary for the
solution of the task. In contrast, the boxes in task C (see Fig. 12.8) take on another
role. They can be seen as variables that represent a functional dependency. Since
the amount of marbles in both boxes is unknown, no concrete number can be given.
It can only be said that the lime-green box contains one marble more than the other
box. This describes the relationship between the two unknown quantities.

12.5.3 Research Results

To gain insight into students’ work, the following transcript shows how the
4th-grader Rick (11 years old) dealt with the consecutive tasks of type B and C.

Interviewer: How many marbles have to be in the green box, so that both children
have the same amount of marbles? (task B, Fig. 12.8)

Rick: One.
Interviewer: And how did you get that?
Rick: Because…one plus one (points one after another to the girl’s green

boxes) plus this one marble (points to the girl’s marble) are three.
And here (points to the boy’s green box) is also one marble in, plus

Task of type B Following task of type C

How many marbles have to be in the green 

box, so that both children have the same 

amount of marbles?

How many marbles have to be in the lime-

green box, so that both children have the 

same amount of marbles?

Fig. 12.8 Tasks and interview questions (Lenz 2016, p. 176) (The labels designating the colors
were subsequently added to accommodate black-and-white publishing constraints.)
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the two loose marbles. And that’s then the same (points one after
another to the girl’s red box and the boy’s red box).

Rick gave the correct answer immediately and justified the number of marbles in
the green boxes. He also pointed to the two red boxes and named them as “the
same” without having to know the number of marbles contained.

Interviewer: How many marbles have to be in the lime-green box, so that both
children have the same amount of marbles? (task C, Fig. 12.8)

Rick: Two marbles.
Interviewer: And how did you get that?
Rick: Because I think there is one marble in (points to the girl’s box), plus

the loose marble are two marbles. Then there (points to the boy’s box)
just can be two marbles, because you have to get the same result.

… [The interviewer gives different examples of amounts of marbles for
the different boxes. Rick gives the corresponding number of marbles
of the other box.]

Interviewer: Can you say in general, how to indicate the number of marbles in the
boy’s box?

Rick: You have to, uh, here is any number of marbles inside (points to the
girl’s box) plus the one marble (points to the girl’s single marble),
then there must not be as many as in this box (points to the boy’s
box), but one more in there.

Rick was confronted with a task in which both unknowns depended on each
other. In order to give an answer to the interviewer, he mentioned discrete values
for both boxes. In response to the interviewer’s further questions, he was able to
state a general relationship: he described the amount of marbles in the girl’s box as
“any number,” which can be interpreted as a general number.

The responses of the other children covered a broad spectrum. We evaluated
their various responses in two ways—according to the nature of the relationship that
they expressed between the two quantities and according to the way in which they
were handling the unknowns. The categories that were used in the evaluations were
partly based on the distinctions described in the theoretical framework above and
partly on other distinctions that emerged from the children’s responses.

12.5.3.1 A First Evaluation: Relationship Between the Quantities

Regarding the answers to the task of type C, some children directly described a
relationship between the two quantities in the boxes, as was the case with the
4th-grader Luca: “In the green box is always one marble more than in the orange
box.” Other children referred to the dependency between the amounts of marbles in
the boxes, as did the 4th-grader Kathy: “It depends on how many marbles are in the
orange box.” Here, Kathy did not specify the relationship between the amounts of
marbles in the boxes, but did have a sense of the dependency. Other children neither
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described a relation nor referred to the dependency between the amounts of marbles
in the boxes. The 2nd-grader Lena (8 years old) mentioned specific numbers for the
amounts of marbles in both boxes: “In the green box are three marbles and in the
orange box are two marbles.” Other children wanted to shake the boxes to hear how
many marbles were inside.

12.5.3.2 A Second Evaluation: Handling the Unknowns

The children’s answers were also classified according to how they treated the
unknowns. In some cases, the amounts of marbles in the boxes were seen as general
numbers, that is, the amount of marbles in one box was considered a generalized
indeterminate number in relation to the amount of marbles in the other box. As
noted above, Luca said: “In the green box is always one marble more, than in the
orange box.” Here the amount of marbles is undetermined; it is always one marble
more—no matter how many are actually in it.

In other cases, the amounts of marbles in the boxes were seen as quasi-variables:
the children recognized the relationship between the amounts of marbles in the two
boxes, but rather than stating a general description they mentioned specific num-
bers. The six-year old kindergartener Adam said: “…if there are eight or nine
marbles in the orange box, then I take one marble more, that’s nine or ten marbles
for the green box.”

For others, the amounts of marbles in the boxes were seen as variables where the
amounts of marbles in the boxes depended on each other. As mentioned above, the
4th-grader Kathy explained: “It depends on how many marbles are in the orange
box.” Further requests showed that she could handle the variation of numbers as a
functional relationship, even if she did not specify it in terms of a static relationship.

The amount of marbles in the boxes was seen by others as an absolute number in
that they referred to a specific number of marbles in the box, partially without
taking the two related boxes into consideration. Clara from kindergarten (6 years
old) answered: “Four…because the box is so small, there just fit four marbles in.”

Lastly, the amount of marbles in the boxes was seen as an undeterminable:
Children said that the amount of marbles could not be defined. Axel (a 2nd grader)
said: “I’mnot a clairvoyant”; Rob (another 2nd grader) said: “I have to open the box.”

12.5.4 Discussion

The task design shows how algebraic thinking can be built on a concrete level. The
boxes as representations for unknowns offer a possibility to get in touch with
variables at an early stage. Relational thinking can be stimulated at this early stage
by leaving the numerical values ambiguous. The tasks look simple at first glance
and are visually very similar. However, they allow the construction from simple to
mathematically complex contexts. They are therefore suitable for working from
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kindergarten to the secondary level and for addressing different aspects of variables
while promoting relational thinking at the same time. In particular, the difference
between the task types B and C marks a special breaking-point in the use of
variables. Their roles change from an unknown that can be determined to a variable
whose value cannot be known but can be described as a relation. Hence, tasks of
type C strengthen the use of relational thinking since relationships between the sets
have to be established. Different approaches to the solution of the tasks can also be
made clear by operating on the tangible material (boxes and marbles). For example,
in task B, both red boxes can be removed in order to clarify their irrelevance for the
solution of the task. In later grades, it is possible to transfer the underlying struc-
tures to the formal level. Placeholders, symbols, or letters can replace the real
boxes. Thus, with regard to the variables as well as with regard to the establishment
of relationships, different changes in the levels of representation can take place.

12.6 Conclusions

This chapter aimed to explore how existing characteristics of German mathematics
teaching could serve as opportunities to promote early algebraic thinking. Though a
national perspective, it may serve as a framework for many other countries facing
comparable issues and obstacles on the way to supporting algebraic thinking. The
common aim of our research community is to provide fruitful learning environ-
ments and therefore learning opportunities for children regarding algebraic themes.

The above outlined ideas aim to overcome apparent stumbling blocks that cannot
be attributed to children but to the given framing of mathematics lessons. Children are
very capable of generating sound and viable reactions to algebraic challenges. Hence,
we tried to emphasize three evaluated and promising approaches for supporting
children’s algebraic competencies. The common denominator of the three viewpoints
that were presented lies in the existing implicit opportunities that have to be made
explicit. This includes creating sensitivity to the algebraic potential of the mathe-
matical content already taught, encountering children’s abilities, and paying attention
to the nature of the challenges created when designing tasks. If teachers, researchers,
and curricula developers are aware of the potential of already daily used tasks
(Sect. 12.3), the rich scope of children’s abilities (Sect. 12.4), and the great effect of
minor changes in problem posing (Sect. 12.5), then children will benefit sufficiently.
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Chapter 13
Early Algebra as Analysis of Structure:
A Focus on Operations

Deborah Schifter

Abstract This chapter presents examples from classrooms to illustrate how work
within two branches of early algebra—functions and generalized arithmetic—can
provide a context for highlighting the operations as distinct objects. The examples
emphasize two major themes: the role of representations in the study of structures
associated with the operations and teachers’ actions that draw students’ attention to
those structures.

Keywords Functions � Generalized arithmetic � Operations � Structure
Representations

13.1 Introduction

In extant practice, the teaching of calculation in the elementary and middle grades
tends to focus on procedures for producing correct results. Although students
realize there is a different procedure for each operation, the distinction among
operations may fall into the background. Confusion about the operations frequently
results in consistent procedural errors. Indeed, common errors in subtraction or
multiplication can be interpreted as an application of structural properties that apply
only to addition.

For example, consider such errors as these:

• 35 − 16 = 21 Decompose the numbers into tens and ones; subtract the tens
(30 − 10) and subtract the ones (6 − 5); add the results (20 + 1). (The correct
answer is 19.)

• 35 � 16 = 330 Decompose the numbers into tens and ones; multiply the tens
(30 � 10) and multiply the ones (5 � 6); add the results (300 + 30). (The
correct answer is 560.)
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The basic approach behind these errors is related to a strategy that works for
addition: To add 35 + 16, decompose the numbers into tens and ones; add the tens
(30 + 10) and add the ones (6 + 5). The sum of the results provides the correct
answer, 51. Students who make the errors illustrated above may be thinking of their
correct addition strategy as the way numbers work, rather than how addition works.
For that reason, despite a teacher’s corrections, students often continue to apply the
incorrect procedure. The error is likely to persist unless its underlying foundation is
examined.

Early algebra, with its emphasis on recognizing and expressing mathematical
structure (Kieran et al. 2017), has the potential of rooting out such errors. In the
context of this chapter, mathematical structure refers to those behaviors, charac-
teristics, or properties that remain constant across specific instances. Particularly
relevant for the argument made here is that each operation has a unique set of
structures. For example, switching the order of terms in an addition expression does
not change the value of the expression, but switching the terms of a subtraction
expression does (unless the value of the expression is 0). For another example,
given an addition expression, when one addend is increased by some amount, the
value of the expression increases by that same amount; but given a multiplication
expression, when one factor is increased by some amount, the value of the
expression increases by the value of the other factor times that same amount.

A focus on the behavior of addition, subtraction, multiplication, and division
helps students come to see an operation not exclusively as a process or algorithm,
but also as a mathematical object in its own right (Kieran 1989; Sfard 1991; Slavit
1999). As the operations become salient, seen as objects with a set of characteristics
unique to each, students are positioned to recognize and apply their distinct
structures.

Key to this work is representations—diagrams, physical objects, or story con-
texts—that embody relationships among quantities defined by the operations. For
example, addition may be represented as the joining of two sets and subtraction as
comparison or removal. An arrangement of equal groups or an array can represent
multiplication or division.

The linking of spatial and numerical representations of structure, as well as story
contexts that embody the structure, is a feature of early algebra that is gaining
recognition among researchers. In the language of Radford (2011), “The awareness
of these structures and their coordination entail a complex relationship between
speech, forms of visualization and imagination, gesture, and activity on signs (e.g.,
number and proto-algebraic notations)” (p. 23). Warren and Cooper (2009)
hypothesize that “abstraction is facilitated by comparing different representations of
the same mental model to identify commonalities that encompass the kernel of the
mental model” (p. 90). Moss and London McNab (2011) theorize that “the merging
of the numerical and the visual provides the students with a new set of powerful
insights that can underpin not only the early learning of a new mathematical domain
but subsequent learning as well” (p. 280). As illustrated in the classroom examples
below, images of the operations become thinking tools for students that they can
call upon to reason about arithmetic symbols.
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Even if curriculum materials focus on the structure of the operations, in order to
use them effectively, teachers need to understand the underlying mathematics and
maintain an orientation and intention consistent with those of the curriculum
developers (Stein et al. 2007). It is the teacher who, in response to what students say
and do, poses a question or underscores an idea or who offers suggestions to help
students consider and develop new options. The examples below provide an
opportunity to examine teacher moves that draw students’ attention to key issues.

The work presented here draws from three research and development projects1

co-led by the author with Susan Jo Russell and Virginia Bastable. In each project,
the researchers provided professional development for twelve to forty
teacher-collaborators who enacted early algebra lessons in their classrooms.
Teachers audio-recorded a subset of their lessons and wrote narratives, based on
their recordings, of what happened. A smaller subset of the lessons was video
recorded. The classroom lessons described below are taken from the video
recordings and teachers’ written narratives. For purposes of readability, lessons
from different classrooms are presented as a single composite class.

13.2 Analyzing Structure in the Domain of Functions

The study of functions in the elementary grades most often focuses on linear
functions. Because linear functions involve a multiplicative component and an
additive component, they provide students with the opportunity to consider the
difference between multiplicative and additive structures.

In a fourth-grade classroom, the teacher, Ms. Bergeron,2,3 gave the class the
following context: Sam is collecting pennies in a Penny Jar. There are 3 pennies at
the start, and he adds 4 pennies each round.4 Students were to find the number of

1The work presented in this chapter was supported by the National Science Foundation under
Grant Nos. ESI-0242609 (awarded to EDC), ESI-0550176 (awarded to TERC), and ESI-1019482
(awarded to TERC). Any opinions, findings, conclusions, or recommendations expressed in this
work are those of the author and do not necessarily reflect the views of the National Science
Foundation.
2Ms. Bergeron is a composite of teachers whose lessons were video recorded. Students’ names are
pseudonyms.
3Ms. Bergeron was among 40 teachers who field tested the second edition of the curriculum
Investigations in Number, Data, and Space (Russell et al. 2008) and provided cases for the
professional development curriculum module, Patterns, Functions, and Change (Schifter et al.
2017). Field-test teachers met with curriculum writers for professional development for one week
during the summer prior to field testing, two full days during the school year, and three-hour
monthly after-school meetings. Many of the teachers had worked with the curriculum writers in
previous projects that focused on deepening teachers’ understanding of mathematics content and
attending to student thinking.
4The lessons described here were developed by the curriculum writers and currently appear in
TERC (2017). The video recorded lessons appear in Schifter et al. (2017).
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pennies in the jar after 1 round, 2 rounds, 3 rounds, etc. They represented the two
variables in a table (see Table 13.1) and found the number of pennies in the jar for
an increasing number of rounds either by counting or adding.

The objective of the lesson was not only that students find the number of pennies
in the jar at any given time. Rather, the Penny Jar context was a pretext for students
to engage with mathematical structure.

13.2.1 Penny Jar Episode 1

The image of pennies collecting in a jar (see Fig. 13.1) does not bring out the
distinct multiplicative and additive structures in the function, but the image in
Fig. 13.2 does. The additive component, the 3 pennies at the start, is illustrated by a
row of white circles. The multiplicative component, 4 pennies added each round, is
illustrated by the gray array.

After her class explored several Penny Jar contexts, Ms. Bergeron first presented
the image as shown on the left in Fig. 13.2 and then added rows to illustrate adding
groups of pennies to the jar until there were six rows of gray circles, as shown in
Fig. 13.3.

Table 13.1 Representation
of the two variables in the
initial Penny Jar context

Number of rounds Total number of pennies

Start with 3

1 7

2 11

3 15

4 19

Fig. 13.1 Pennies collecting
in a jar

Fig. 13.2 The initial Penny
Jar context: 3 pennies at the
start and 4 pennies added each
round
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Ms. Bergeron: We’ve got 6 gray rows here. Without actually putting the pennies
in, can you imagine what more rounds would look like? On the
10th round, what would it look like? How many rows would we
have and how many columns?

Zoe: I think it will be 10 rows at the end of the 10th round and 4
columns at the end of the 10th round.

Ms. Bergeron: If there are 10 rows, how many pennies did she put in the jar?
Sally: 40
Ms. Bergeron: Where did the 40 come from?
Sally: If there are 10 rows and you put in 4 each time, 10 times 4 is 40.
Ms. Bergeron: And how many pennies are in the jar?
Sally: 43.
Ms. Bergeron: And where did the 3 come from?
Sally: The start number, which is 3.

By showing the students six rows in the array and asking them to imagine ten,
students needed to manipulate the image in their minds, thus building a portable and
flexible tool. The image of the start number as a row of white circles and the
pennies added each round as an array of gray circles was not only a representation
of a small set of instances, but could stand for all instances of the Penny Jar, no
matter how many rounds. That is, in their minds, students could picture an array
with any number of rows, standing for any number of rounds.

In order to help students establish the representation as a meaningful tool, Ms.
Bergeron continued to ask questions, with different students responding, checking
to make sure they not only were seeing its additive and multiplicative components,
but also were making correspondences among the image of circles, the components
of a table, and the context of the Penny Jar.

Later, the class worked on function rules. Each student was given a penny jar
situation with different parameters, and their task was to figure out what rule could
be used to find the number of pennies in the jar for any round. When the class came

Fig. 13.3 The penny jar after
the 6th round of adding
pennies
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together to discuss what they had done, Viktor, who had been given the situation, 4
pennies to start, add 9 each time, presented his rule: “The round number multiplied
by 9, plus 4, is the number of pennies in the penny jar.”

In specifying the function rule as it relates to the context, students have to sort
out what distinguishes addition from multiplication. Precisely because 9 is added
over and over again, the rule is to multiply by 9.

When the teacher asked if students had other ways of writing the rule, Brenda
raised her hand. Instead of stating the specific situation that had been given to her,
Brenda offered a rule that covered all of the Penny Jar situations: “You multiply the
number of rounds by the number you add each time and then you add the start
number.”

Ms. Bergeron recorded students’ rules in a combination of words and symbols,
as shown in Fig. 13.4.

Although it’s not a big leap from here to write the function rules with algebraic
notation—which, in fact, the class would get to—that was not the main goal.
Instead, the major goal was that students more deeply understand the structure
underlying the Penny Jar context. The class continued to offer different ways of
formulating a rule, and checked those rules against the context with specific
numbers.

In formulating a rule, students recognized what was common across specific
instances. In this way, students’ work in early algebra is metacognitive (Cusi et al.
2011). As Malara and Navarra (2003) describe it, students “substitute the act of
calculating with looking at oneself while calculating” (p. 230). Students reflected on
the actions they took to find the number of pennies in the jar at a given round and
found a way to generalize for any round.

In this classroom episode, students generalized at different levels of abstraction.
Viktor specified the common structure for a particular Penny Jar context (start with
4 and add 9 each round), whereas Brenda identified the common structure across all
Penny Jar contexts. Up until now, the class relied on the image of the Penny Jar in
their exploration.

Another level of abstraction is to see common structures across contexts, which
the class would pursue in coming lessons. Students explored sets of buildings in
which the number of windows (including skylights) was a function of the number
of floors. Buildings were represented as cube towers in which each visible square
unit contained a window. Figure 13.5 shows the first three towers for buildings that
have six windows on each floor and two skylights.

Students created tables and function rules for this new context, which also
mapped onto the array representation used for the Penny Jar. Students came to see

(round # x 9) + 4 = total number of pennies 
multiply the number of rounds by the number you add each time and add the start 
number 

Fig. 13.4 Ms. Bergeron’s recording of a student’s rule for the Penny Jar situation
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that the skylights played the same role as the start number in the Penny Jar and the
number of windows on each floor corresponded to the number of pennies added
each round.

13.2.2 Penny Jar Episode 2

In another Penny Jar lesson, students were given problems to draw out the dis-
tinction between proportional and linear relationships. Given the situation, 4 pen-
nies to start and 5 added each round, students created a table (see Table 13.2) for
the first 7 rounds. Then they were asked, how many pennies after 14 rounds?

Many students think that since 14 is double 7, the number of pennies in the 14th
round must be double the number of pennies in the 7th round, that is 78 pennies.
This answer, of course, is incorrect. After the 14th round, there are 74 pennies in the
jar. This doubling error, or more generally the assumption of proportionality, is
common (MacGregor and Stacey 1993; Orton and Orton 1994; Scanlon 1996).

When Ms. Bergeron asked the class about the number of pennies after 14
rounds, one student, Joyce, offered another idea. She didn’t assume proportionality
—she knew she had to pay attention to the additive component—so she suggested
that you double the value for 7 rounds and then add the starting number. Doubling
39 and adding 4, her answer was 82.

There are different moves a teacher might make when an error arises. Frequently
teachers will simply indicate the answer is wrong or suggest a different method to

Fig. 13.5 The first three
towers of the Building Towers
context

Table 13.2 Representation
of the two variables in the
later Penny Jar context

Number of rounds Total number of pennies

Start with 4

1 9

2 14

3 19

4 24

5 29

6 34

7 39
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arrive at the correct answer. In this case, Ms. Bergeron recognized Joyce’s error as
an opportunity for the class to think about structure. She opened up class discus-
sion, inviting students to comment on Joyce’s strategy or offer their own.

Sheenah said, “You would use the start number only once. You would probably
have to do 39 and then minus off 4 and do another 39.” Sheenah recognized that
Joyce’s strategy included the start number too many times. By subtracting 39 − 4,
Sheenah found the number of pennies added in rounds 8 through 14. She added that
to the number of pennies in the jar after 7 rounds, and got the correct answer of 74.

Maria said, “When you double 39, you double the start number. So after you
double, you need to subtract 4.” Maria, too, recognized the problem with Joyce’s
method, and explained why it was necessary to subtract 4 rather than add.

The context of the problem and associated representations played a key role in
allowing students to think through what was incorrect about Joyce’s calculation and
how to correct it. The story of a jar with a fixed number of pennies to start and a
given number added each round provided an image that students could hold onto, as
well as language that supported fluent communication. In their explanations,
Sheenah and Maria talked about needing to include the “start number” only once in
the calculation.

13.3 Analyzing Structure in the Context of Number
Systems

The second area of early algebra involves students noticing, articulating, and jus-
tifying structural properties of the operations. In the context of this chapter, the
term, structural property, refers not only to the commutative, associative, dis-
tributive, inverse, and identity laws of addition and multiplication, but also struc-
tures that can be derived from those laws, as well as structures particular to
subtraction and division.

The structural properties students examine are often implicit in calculation
strategies they frequently use. For example, when asked to solve 39 + 15, a student
might say, “I gave 1 from the 15 to the 39, and that gives me 40 + 14. That’s easy
to solve.” Implicit in this move is the property, In an addition expression, when 1 is
subtracted from one addend and added to the other, the sum is unchanged. Or a
child just learning math facts might say, “6 + 6 = 12 so 6 + 7 must be 13, because
it’s 1 more.” Implicit here is the property, Given an addition expression, when one
addend increases by 1, the sum increases by 1. However, even when such com-
putational strategies have been discussed in class, not all students make sense of
them, and those students who use the strategies fluently are likely not to have
thought through when and why they work.

In order to help students focus on such structures, some projects (e.g., Carpenter
et al. 2003), taking up ideas from Davis (1964), engage students in determining
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whether a given number sentence is true or false. For example, students might be
given such number sentences as

57þ 89 ¼ 56þ 90
or

129þ 58 ¼ 129þ 59

One can determine whether these number sentences are true by calculating:

• 57 + 89 = 146 and 56 + 90 = 146; therefore the first equation is true;
• 129 + 58 = 187 and 129 + 59 = 188; therefore the second equation is false.

However, students are encouraged to apply relational thinking, that is, to ana-
lyze structure to answer the question. The first number sentence is true because one
addend decreased by 1 and the other increased by 1. The second number sentence is
false because one addend remained fixed while the other addend increased.

In the classroom examples below, the teacher uses another approach to explore
structural properties: Students are given sequences of related expressions and dis-
cuss what they notice.

13.3.1 Episode 1: Equivalent Addition Expressions

Third-grade teacher Lauren Fried presented the sequence of expressions shown
below.5,6

14þ 1
13þ 2
12þ 3
11þ 4

The numbers were purposefully low in order to allow students to look for
relationships without getting lost in numbers at the edge of their comprehension.
The property at play was that, given any addition expression, if one addend
decreases by 1 and the other increases by 1, the sum remains the same.

5The classroom interactions described here were taken from video recordings and teachers’ written
narratives based on audio recordings. Ms. Fried is a composite character composed of several
teachers who taught the same lesson sequence, which appears in Russell et al. (2017, pp. 88–111).
The same resource also includes video and more detailed textual descriptions of the classroom
lessons (pp. 45–75).
6The teachers who comprise Ms. Fried are among 21 teachers who participated in a professional
development project. In monthly after-school sessions and three full-day meetings each year,
participants investigated mathematics, shared written narratives of their classrooms, and discussed
video of their lessons. Nine teachers participated for four years; 12 teachers for two. Some teachers
had participated in professional development with the researchers prior to this project.
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Students started with all kinds of observations—“There’s a 4 in the first one and
the last one, and there’s a 3 in the second and third, but they’re in different
places”—but eventually the class discussed the change from one expression to the
next. Students specified that as they went down the list, one addend increased by 1
and the other addend decreased by 1, and the totals were all 15.

After checking their ideas out with two addends that total 24, students were
asked to write a general claim, working individually or in pairs. Some of the
stronger statements included the following.

• If you take away a number and add one number it will equal the same answer.
• If you have two numbers and have a sum and want to have the same sum with a

smaller number then you have to bring the first addend down and bring the
second addend up.

• If you take away one from one number and add one to another number it should
equal the same answer.

Malara and Navarra (2003) coined the term “algebraic babbling,” in recognition
of the fact that stating a generalization is difficult and most likely new to students.
Analogous to the way children learn natural language, students learn to commu-
nicate in mathematical language by starting from the intention to state an idea and
through collective discussion, verbalization, and argumentation, gradually become
proficient in syntax.

Ms. Fried shared these statements with her students and then challenged them to
be more precise. She asked, “What operation are you discussing?” “What does the
word number refer to?” “What about the word one?” In response to each challenge,
students suggested edits until they co-constructed a “class conjecture”: If you have
two addends, and you take away 1 from an addend and add 1 to the other addend,
it should equal the same sum.

The goal in this process is not to formulate the most concise or precise statement
possible. After all, the teacher could present a conjecture to the students, and they
might even understand it. Rather, the goal is to have students learn to communicate
about mathematics, which means they must take on the task of putting their ideas
into their own words.

Once the class had formulated a conjecture, the next task was to use manipu-
latives, pictures, diagrams, or story contexts to illustrate the relationships in the
claim. One pair of students came up with the context of girls at the beach. There are
20 girls sitting on the sand and 4 girls in the water, 24 girls in all. If one girl from
the beach goes into the water, there are 19 girls on the beach and 5 in the water,
but the same 24 girls are still there.

Prior to the whole-class discussion, the teacher cut out 24 “girls” which she
taped to the board for students to illustrate the girls’ movements (see Fig. 13.6).

Working with representations like the one shown in Fig. 13.6, students not only
recognize a numerical pattern, but they see why the pattern holds. The single action
of moving an object from one group to another represents both decreasing one
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addend by 1 and increasing the other addend by 1. Because no objects were
removed and nothing else was included, the total remains the same.

Students also realized that they could move more than one object and the same
principle holds. Any number of girls could move from the sand to the water. As
long as no girls leave the beach and no additional girls arrive, the total number of
girls remains fixed.

It is essential that students not only become clear about the representation, but also
that they see how it corresponds to their conjecture and the arithmetic equations. Just
as Ms. Bergeron asked her students to specify the meaning of the representation of
circles in terms of the Penny Jar, here, too, Ms. Fried asked such questions as,
“Where in the representation do you see the two addends?” “What in the represen-
tation shows that the two numbers are added?” “Where do you see the sum?”

This same idea can be shown with a variety of contexts and manipulatives, and
students used their representations to make a general argument. One child, Melody,
presented as her two addends a long stick of red cubes (shown as light gray in
Fig. 13.7) and a long stick of blue cubes (shown as dark gray in Fig. 13.7), both
sticks longer than shown here. She said, “We don’t know how many cubes are on
the stick.” That is, her stacks of cubes could represent any two addends. “And if we
take this many”—she removed some red cubes—“and put it onto there”—adding
them to the blue stick—“it would be the same thing. The red one got smaller and
the blue one got bigger, and it’s the same.”

Ms. Fried asked questions to clarify with Melody and the class exactly what she
meant and how the representation related to the conjecture. Even though there were
necessarily specific numbers of red and blue cubes, Melody was clear that this was
irrelevant. She hadn’t counted them; they could represent any number. And when

Fig. 13.6 Teacher’s representation of the girls at the beach situation

Fig. 13.7 A student’s representation of alternative decomposition of the same sum
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she broke off some red cubes, it could have been any number up to the number of
red cubes in her stack. The act of moving some cubes from one stack to the other,
conserving the total number of cubes, demonstrated the conjecture, which now
read, If you have two addends, and you take away some amount from an addend
and add the same amount to the other addend, it should equal the same sum. At the
elementary grades, arguments like this one constitute proof.

However, even though the class conjecture stated, “If you have two addends…”
and even though the representations show two quantities that are joined, the fact
that they were adding still fell into the background. Many students think of a
property of addition as about numbers rather than particular to the operation.
For this reason, it is essential for students to continue their exploration by exam-
ining another structural property, analogous to this one, but for a different operation.

13.3.2 Episode 2: Equivalent Subtraction Expressions

Looking at a sequence of equations as shown below, Ms. Fried’s students were
surprised to realize that their rule of adding 1 to one number and subtracting 1 from
the other didn’t work for subtraction; that is, it didn’t produce equal differences. But
this launched an exploration of what does work for subtraction.

17þ 5 ¼ 22 17� 5 ¼ 22
18þ 4 ¼ 22 18� 4 ¼ 14
19þ 3 ¼ 22 19� 3 ¼ 16
20þ 2 ¼ 22 20� 2 ¼ 18

Ms. Fried’s class went through a similar process of examining sequences of
subtraction expressions and working to formulate a class conjecture. They agreed
on this statement: If you’re doing subtraction, you can make both numbers go up by
1 or both numbers go down by 1, and you get the same difference.

Students next devised representations, using cubes, number lines, pictures,
and/or story contexts, to explain why this generalization is true. One pair came up
with a story about a boy holding helium balloons. If he holds more than 12 bal-
loons, he’ll float away. He starts with 15 balloons and quickly has to pop 3. If he
starts with one more balloon, he has to pop one more balloon. Clearly, the story
doesn’t have to be realistic. Its purpose is to provide an image of subtraction that
allows students to reason about how the variables are related.

Latesha: Every time you add another balloon, it has to be popped, so both
numbers keep going up by 1, but he’s always still got 12.

Ms. Fried: Here’s my question. This picture shows the amounts changing by 1
each time. Can we use the balloon context to show adding an amount
that’s not 1?
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The teacher asked students to turn and talk about this. After a few minutes in
pairs, the teacher brought the group together. The discussion started with specific
numbers.

Ezra: If he has 17, he has to pop 5. But it doesn’t just have to go up by 1.
Give him 100 more; then he has 117, so he has to pop 100 more.

Ms. Fried: So how many does he have to pop?
Isaac: He has to pop 105. 117 take away 105 is the same as 17 take away 5.
Roberta: It could be 1017 and 1005.
Maria: He’d have to pop 1005. He’d have to do it really fast.

Then students started using general language.

James: The more balloons you give him, the more he has to pop. That’s why both
numbers keep going up.

Sage: And they have to go up by the same amount. If you higher the first number,
you have to higher the second number, or you won’t get back to the same
answer.

As a result of this discussion, the class revised their conjecture. Their first
conjecture about subtraction dealt with increasing or decreasing the terms by 1.
Now it read, If you’re doing subtraction, you can change the first number and the
second number by the same amount and you get the same difference. You can add
an amount or subtract an amount, but you have to do the same thing to both
numbers or you won’t get the same answer.

At the start of their exploration of subtraction, after having proved a claim for
addition, the class had expected the same claim to work for both operations. They
quickly saw that it didn’t work, and recognized the limits of their first claim. This
brought the operations to the fore in students’ minds. The contrast between addition
and subtraction helps students come to see an operation not exclusively as a process
or algorithm—a set of instructions to do something—but also as a mathematical
object in its own right, each operation with a different set of structures.

Toward the end of their exploration of the subtraction claim, these students
reflected on the work they had done. In the midst of this discussion, one student
said, “When we got the idea of seeing if our addition rule works for subtraction, I
was like, of course it works. And then it was like uh-oh, it doesn’t work, and I lost
all hope.” She concluded, “I’m happy we found a very close but different rule.”

Another student said, “I wonder what happens with multiplication.”

13.4 Comments About the Classroom Examples

This chapter has presented classroom episodes that illustrate students and teachers
working on two different types of early algebra tasks: work with functions and work
with generalizations in the context of arithmetic. Both of these examples demon-
strate early algebra as a way of thinking: Students develop the habit of looking for
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structure, and articulate, test, and prove rules or conjectures for an infinite class.
That is, students think analytically about indeterminate numbers.

In these episodes, the teacher used the tasks to make explicit how structures
differ for each operation. In their work with linear functions, students developed
images to represent the additive component and the multiplicative component of the
function. In their work with generalized arithmetic, students investigated two
conjectures that contrast the behavior of addition and subtraction.

Key to the students’ work in these episodes is the linking of story contexts with
spatial and/or numerical representations of structure. Here, the teacher’s role is
essential. In both classrooms, the teacher continually challenged the students to
identify correspondences across representations. About the Penny Jar: “What is this
row of circles in terms of the Penny Jar story?” “Why do we multiply the number of
rows by 9?” “Where do the rows appear in the table?” About girls on the beach:
“Where in the representation do we see the two addends?” “Where is the sum?”
“How do we see one addend increasing by 1 and the other decreasing by 1?” About
the balloon story: “The more balloons you give him, the more he has to pop. How
does that help us think about our conjecture?” “How do you see that idea in the
equations?”

Having made connections across representations, students were able to explain
their reasoning in terms of story contexts and images. In Ms. Bergeron’s class,
students talked about the “start number” from the Penny Jar context to explain why
one calculation strategy was incorrect and why another approach would result in the
correct answer. In Ms. Fried’s class, students defended their conjectures with stacks
of cubes and stories about girls at the beach or a boy holding balloons. Relying on
such representations, students—both those who were explaining and those fol-
lowing the reasoning of classmates—used their own powers of reasoning rather
than remembered symbol patterns.

13.5 Impact on Student Learning: Focus on Operations
Versus Focus on Numbers

From the projects in which the classroom examples were drawn, two additional data
sources (beyond the classroom interactions documented in video and written nar-
ratives) provide evidence of the impact on student learning of lessons that focus on
the behavior of the operations. One source is a set of interviews with students of
collaborating teachers. The second source is a written assessment of students whose
teachers participated in an online professional development course.
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13.5.1 Interview Data

As part of a teaching experiment with twelve teachers of grades 2–5, teachers
implemented two instructional sequences to explore contrasting generalizations
such as that illustrated in the case of Ms. Fried. The sequences, written by the
researchers, consisted of twenty to twenty-five 15-minute lessons. The twelve
teachers met with the researchers at monthly after-school 3-hour sessions and four
full-day sessions. Nine additional teachers who had already been working in the
project for two years and collaborated with the researchers to design the sequences
also attended these meetings. The sessions were opportunities to work on mathe-
matics together, share narratives in which teachers reported on classroom interac-
tions, and view video of participants’ lessons.

From each of twelve classrooms, one-on-one interviews were conducted at the
beginning and end of the school year with three students representing the range of
learners, characterized in terms of strong, average, or weak in grade-level com-
putation. In one strand of the interview, students were given pairs of subtraction
problems (for example, 10 − 3 = 7; 10 − 4 = ?) that illustrate a structural property
not explored in the instructional sequences: Given a subtraction expression, if the
second term (the subtrahend) increases by 1, the difference decreases by 1.
Students were asked to describe what they noticed, come up with other pairs of
problems that illustrate the same feature, state a conjecture, and use a representation
to explain why the conjecture must be true.

In the analysis of interview data (Higgins, in preparation), one of the dimensions
that distinguished students’ conjectures was “salience of the operation: the degree to
which students attend to the behavior of the operation versus focus almost exclu-
sively on the numbers when drawing generalizations and articulating conjectures.”
Some students articulated generalizations that were fundamentally about the
operation: “When you have the same numbers, once you subtract more, you’ll have
less. And if you subtract less, you will have more.” Other students showed no
evidence of attention to the operation: “The numbers in the middle, you just add 1.
Then the answer you take away 1. The first numbers are the same.”

In interviews conducted at the beginning of the year, lack of salience of the
operation was found for close to half the students (n = 36). After having worked on
lesson sequences that explored a different set of generalizations about the opera-
tions, the percentages improved. At each grade level, more students explicitly
referenced the operation or talked about what they were noticing in
operation-specific terms. The operation was no longer just part of the background,
but became something that students realized they needed to attend to when artic-
ulating what they were noticing.
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13.5.2 Written Assessment Data

Based on what the research team learned with collaborating teachers, the team
designed a year-long on-line professional development course (Russell et al. 2012b)
with the following goals: to help teachers understand and look for structural
properties implicit in students’ work in number and operations, bring students’
attention to such properties, and support students to articulate, represent, and create
mathematical explanations of the properties. The book, Connecting Arithmetic to
Algebra (Russell et al. 2012a), formed the basis of the course. Participants engaged
in three main kinds of activity: discussing chapters from the course text, doing
mathematics activities designed for adult learners, and writing student thinking
assignments in which they analyzed their efforts to engage their students with
course ideas. Teachers posted and responded to weekly assignments and partici-
pated in six synchronous webinars across the year.

The teachers were not given lessons or tasks to take to their students. Rather, the
nine student thinking assignments given over the course of a school year suggested
questions teachers would pose to their class. For example, the first assignment is
shown in Fig. 13.8. Researchers wrote written responses to each teacher’s student
thinking assignments.

The first year the course was offered, pre- and post-course assessment data were
collected from 600 students of 36 participating teachers and, as comparison, 240
students from 16 non-participating teachers in the same school systems (Russell
et al. 2016). Assessment items included those in which students were asked to
explain why they think two expressions are equal. Student responses were coded for
the type of explanation they provided: (a) no explanation; (b) a computational
explanation; or (c) a relational explanation, that is, an explanation that refers to
mathematical structure. For instance, to explain why 9 − 5 and 10 − 6 are equal,

Choose one of the following questions to work on with your own students: 
Is this number sentence true?   2 + 5 = 3 + 4 
Is this number sentence true?   19 + 6 = 20 + 5 
Is this number sentence true?   3 × 7 = 7 × 3 
How do you know they are equal? 3 × 16 and 6 × 8 
How do you know they are equal? 34 + 27 and 31 + 30 
How do you know they are equal? 50 × 10 and 5 × 100 
As you plan, think about how you will help your students learn to have mathematical 
discussions. Record the class discussion (audio or video) to have a record after the class 
session is over. When you listen to the recording, note student responses that particularly 
intrigue, surprise, or please you. Choose a passage to describe in detail in writing, including 
actual student dialogue. Write about two or three of the students’ responses. Your posting 
should be about two pages in length.  

Fig. 13.8 The first student thinking assignment given to the teachers

324 D. Schifter



a student could carry out both computations, showing that each expression equals 4,
or the student could give a relational explanation: e.g., “Since 9 is 1 less than 10 and
5 is 1 less than 6, the difference is the same.” In the post-intervention assessment,
students of teachers in the Participant Group provided significantly more relational
explanations than in the Comparison Group.

The assessment also asked students in grades 3–5 to write a story problem for a
given multiplication expression. In the posttest, 74% of the Participant Group
(n = 475) produced a correct story, but only 48% of the Comparison Group
(n = 180). Students of grades K to 2 were asked to write a story problem for a
subtraction expression. Although the Participant Group (n = 128) showed signifi-
cant progress from pretest to posttest—from 28% correct to 74% correct—the
difference with the Comparison Group (n = 60) was not significant.

13.5.3 In Summary

Data from both sources suggest that lessons in which teachers draw students’
attention to the distinct structures of each operation help to make the operations a
salient object in students’ mathematical experience. The interview data demonstrate
how, when students notice patterns across calculation problems, they recognize the
pattern as related to the structure of a given operation. The written assessment data
reveal that, once students have an opportunity to explore and represent properties of
the operations, they have a better understanding of contexts that are modeled by the
operations and rely on structural properties to explain the equivalence of arithmetic
expressions.

However, within the interview data, even after the intervention, there were still
students at each grade level that produced conjectures in which the operation was
invisible. In the post-intervention written assessments, there were students who
continued to rely on computation to prove the equivalence of two expressions and
students who could not create a story problem for a given arithmetic expression. To
make the operations salient objects in all students’ mathematical experience
requires persistent effort.

13.6 Conclusion

With the considerable attention in the elementary and middle grades given to
calculation procedures for addition, subtraction, multiplication, and division with
different categories of numbers, it might seem that students have extensive expe-
rience with the operations. However, while students might remember calculation
procedures, little attention is given to structural properties that distinguish each
operation from the others. A consequence of such absence is the lack of salience of
the operations in students’ minds. The operations are interpreted as instructions to
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perform a set of steps rather than as objects, each with its own set of characteristics
and properties.

The absence of understanding structure carries into students’ study of algebra.
For example, consider such common errors as these:

• (3 + 5)2 6¼ 32 + 52 but we see algebra students write (a + b)2 = a2 + b2

• 2 � (3 � 5) 6¼ (2 � 3) � (2 � 5) but we see algebra students write 2(ab) =
(2a)(2b)

If students learn to call upon a variety of representations to reason about the
structure of the operations in the elementary grades, the tools they develop will help
them analyze such errors and support their fluency in algebra.

References

Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating
arithmetic and algebra in elementary school. Portsmouth, NH: Heinemann.

Cusi, A., Malara, N., & Navarra, G. (2011). Theoretical issues and educational strategies for
encouraging teachers to promote a linguistic and metacognitive approach to early algebra.
In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 483–510). New York: Springer.

Davis, R. B. (1964). Discovery in mathematics: A text for teachers. Palo Alto, CA:
Addison-Wesley.

Higgins, T. (in preparation). A conceptual framework for analyzing key aspects of student
generated conjecture and generalization in the elementary grades.

Kieran, C. (1989). The early learning of algebra: A structural perspective. In S. Wagner & C.
Kieran (Eds.), Research issues in the learning and teaching of algebra (Volume 4 of Research
agenda for mathematics education, pp. 33–56). Reston, VA: National Council of Teachers of
Mathematics.

Kieran, C., Pang, J. S., Ng, S. F., Schifter, D., & Steinweg, A. S. (2017). Topic Study Group 10:
Teaching and learning of early algebra. In G. Kaiser (Ed.), The Proceedings of the 13th
International Congress on Mathematical Education. New York: Springer.

MacGregor, M., & Stacey, K. (1993). Seeing a pattern and writing a rule. In I. Hirabayashi, N.
Nohda, K. Shigematsu, & F. Lin (Eds.), Proceedings of the 17th Conference of the
International Group for the Psychology of Mathematics Education (Vol. 1, pp. 181–188).
Tsukuba, Japan: PME.

Malara, N. A., & Navarra, G. (2003). ArAl Project: Arithmetic pathways towards favouring
pre-algebraic thinking. Bologna, Italy: Pitagora.

Moss, J., & London McNab, S. (2011). An approach to geometric and numeric patterning.
In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 277–301). New York: Springer.

Orton, J., & Orton, A. (1994). Students’ perception and use of pattern and generalization.
In J. P. daPonte & J. F. Matos (Eds.), Proceedings of the 18th Conference of the International
Group for the Psychology of Mathematics Education (Vol. 3, pp. 407–414). Lisbon, Portugal:
PME.

Radford, L. (2011). Embodiment, perception and symbols in the development of early algebraic
thinking. In B. Ubuz (Ed.). Proceedings of the 35th Conference of the International Group for
the Psychology of Mathematics Education, (Vol. 4, pp. 17–24). Ankara, Turkey: PME.

Russell, S. J., Economopoulos, K., Wittenberg, L., et al. (2008). Investigations in number, data,
and space (second edition). Chicago, IL: Scott Foresman.

326 D. Schifter



Russell, S. J., Schifter, D., & Bastable, V. (2012a). Connecting arithmetic to algebra: Strategies
for building algebraic thinking in the elementary grades. Portsmouth, NH: Heinemann.

Russell, S. J., Schifter, D., & Bastable, V. (2012b). Facilitators guide for connecting arithmetic to
algebra: Strategies for building algebraic thinking in the elementary grades. Portsmouth, NH:
Heinemann.

Russell, S. J., Schifter, D., Bastable, V., & Franke, M. (2016). Algebraic reasoning in the
elementary classroom: Results of a professional development program for teachers. Retrieved
from: https://www.terc.edu/display/Library/Algebraic+Reasoning+in+the+Elementary+Classroom
%3A+Results+of+a+Professional+Development+Program+for+Teachers.

Russell, S. J., Schifter, D., Kasman, R., Bastable, V., & Higgins, T. (2017). But why does it work?
Mathematical argument in the elementary grades. Portsmouth, NH: Heinemann.

Scanlon, D. B. (1996). Algebra is cool: Reflections on a changing pedagogy in an urban setting.
In D. Schifter (Ed.), What’s happening in math class? Envisioning new practices through
teacher narratives (pp. 65–76). New York: Teachers College Press.

Schifter, D., Bastable, V., & Russell, S. J. (2017) Patterns, functions, and change. Reston, VA:
National Council of Teachers of Mathematics.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and
objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.

Slavit, D. (1999). The role of operation sense in transitions from arithmetic to algebraic thought.
Educational Studies in Mathematics. 77, 20–26.

Stein, M. K., Remillard, J., & Smith. M. S. (2007). How curriculum influences student learning.
In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning
(pp. 319–369). Greenwich, CT: Information Age Publishing.

TERC. (2017). Penny jars and towers (Grade 4 Curriculum Unit 8 in Investigations in Number,
Data, and Space, 3rd ed.) Glencoe, IL: Pearson.

Warren, E., & Cooper, T. (2009). Developing mathematics understanding and abstraction: The
case of equivalence in the elementary years. Mathematics Education Research Journal, 21(2),
76–95.

13 Early Algebra as Analysis of Structure … 327

https://www.terc.edu/display/Library/Algebraic%2bReasoning%2bin%2bthe%2bElementary%2bClassroom%253A%2bResults%2bof%2ba%2bProfessional%2bDevelopment%2bProgram%2bfor%2bTeachers
https://www.terc.edu/display/Library/Algebraic%2bReasoning%2bin%2bthe%2bElementary%2bClassroom%253A%2bResults%2bof%2ba%2bProfessional%2bDevelopment%2bProgram%2bfor%2bTeachers


Chapter 14
How Early Is Too Early for Thinking
Algebraically?

John Mason

Abstract My answer is that it is never too early. In order to learn arithmetic it is
necessary to think algebraically, although not necessarily using symbols. Some
evidence for algebraic thinking amongst young children is given, followed by
suggestions as to why such thinking has not always been promoted and developed.
Specific pedagogic actions are outlined that focus on the expression of generality as
the core of algebraic thinking, including examples of task-contexts that invoke
reasoning both with and without using numbers. Finally, it is proposed that the
critical feature for promoting algebraic thinking is not the tasks given to learners,
but rather the opportunities noticed by teachers for calling upon learners’ powers to
express and manipulate generalities, and that this is enriched when teachers engage
in similar tasks at their own level, so as to sensitize themselves to pedagogic
opportunities when working with learners.

Keywords Expressing generality � Algebraic thinking � Teachers’ noticing
Children’s powers

14.1 Introduction

My answer to the title question is that it is never too early for sensitively directed
generalization and abstraction, which is in total agreement with Hewitt (1998) and
with Gattegno (1970). Indeed in some sense it is impossible to be too early,
although of course it is always too early for insensitive instruction. This is con-
firmed by many authors (e.g., Cooper and Warren 2011, p. 207). I develop the
proposal that the use of material objects for learners to manipulate is only a special
case of the general proposition that to appreciate and comprehend something it is
useful to have mediators, to make use of confidently manipulable objects (which
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may be diagrams, symbols, or material objects) in order to recognize, detect, and
locate structural relationships. Such relationships are not confined to any particular
example but are instances of general properties shared by all examples. The whole
point of algebra is to permit the manipulation of referents rather than of material
objects themselves, in order to gain insight into the general. Algebra cannot be ‘too
early’ if it emerges out of growing awareness of and familiarity with expressions of
generality.

My approach follows Maslow (1971): I am interested in what is possible, happy
that others research what is currently the case. The first section (Sect. 14.2) sum-
marizes some of what is possible based on the research of but a few of the many
that could have been used. The second section (Sect. 14.3) indicates why these and
other reports of children’s mathematical behavior ought not to be any surprise,
using the discourse of natural human powers and the education of awareness, again
referring to only a selected few of the many possible authors. The third section
(Sect. 14.4) suggests why the possible is not always actualized. The fourth section
(Sect. 14.5) indicates some ways of working sensitively with children in order to
enable them to display their powers in a mathematical context. The fifth section
(Sect. 14.6) offers some tasks pitched at the adult level but intended to provide
experience roughly parallel to what children might be experiencing, because this is
how teachers can maintain and enrich their sensitivity to their learners. The final
section is by way of a concluding summary.

14.2 A Taste of What Is Possible

This section rehearses some of the possibilities for exploiting the early algebraic
thinking of young children. In each case, whether repeating patterns, symmetry, or
counting, the children are called upon to become aware of, and to articulate, gen-
erality. Arithmetic without generality is a purely clerical activity; arithmetic which
calls upon children to become aware of generality is mathematics.

14.2.1 Repeating Patterns

When kindergarten teachers asked how they might develop the mathematical
thinking of young children using activities they were already using with children,
Papic (2007) suggested making repeating patterns. She reports use of a wide range
of tasks, some used for assessing what children can do with patterns: copying
towers of colored blocks with a repeating pattern and determining missing elements
that are shielded from the child (Papic 2013). The important thing is that very
young children can develop a sense of repetition and indeed even more complex
patterns, if suitably challenged. The pictures in Fig. 14.1 are but instances of all of
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the children in the study displaying the power to copy repeating patterns, and to
create their own. All they need is to have their attention directed to this possibility.

Chen (2015) reports on children detecting repeating patterns despite distracting
aspects of the context. A significant feature of Confucian heritage teaching of
mathematics is to vary the context or setting in which the concept is embedded as
seen in Fig. 14.2. Here Chen shows how children can take into account complexity,
such as changing directions, as well as identifying missing elements in a repeating
pattern.

Achievement Examples 

Copying and extending a 
repeating pattern

Simple repeating patterns

Complex repeating patterns 
           model                       copy: age 4.1 

Generating their own repeating
pattern               age 5                                age 5.4 

Fig. 14.1 Children copying and constructing repeating patterns (Papic 2013) (reprinted with
permission from author)

Complexifying the 
context 

Notice the rising and falling aspect, which has to be 
ignored. 

Recognizing missing 
elements in repeating 
patterns age 6

age 6

Each line of three boats should be the same. Notice the 
change in direction.

Fig. 14.2 Complex contexts for detecting repetition (Chen 2015) (reprinted with permission from
author)
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An important feature of education at every age is to work on expressing what is
imagined using material objects, diagrams, words, and symbols. The next examples
illustrate ways in which the materials can be changed but the essential idea remains
the same. In Fig. 14.3 there are but two of many instances in which children
constructed their own complicated pattern using different materials and in slightly
different settings (e.g., the circularity of the camels).

Papic and Mulligan (2007) developed a sequence of discernible phases or stages
of emergent pattern recognition and use. While recognizing that mathematics
education research usually takes the direction of increasingly fine discernment, I
myself am more interested in alerting teachers to possibilities, and letting them
watch and listen to children responding to stimulating tasks without trying to
classify the complexity of those responses. What is important for me is extending
and challenging, rather than gauging and evaluating, under pressure from institu-
tions seeking evidence of progress. As will emerge later, developing a sensitivity to
notice, accompanied by possible actions arising because of what is noticed, is more
important to me than a series of labels for describing, distinguishing, and even
worse, comparing learners’ behavior.

14.2.2 Symmetry

Bornstein and Stiles-Davis (1984) tested children aged 4–6 on discriminating
between symmetric and asymmetric pictures, finding a range of achievement in
which sensitivity to vertical axes of symmetry dominated horizontal axes, with
oblique axes following rather later. They noticed that many of the patterns con-
structed by children had strong similarities with mirror-symmetric decorations on
stone tools and pots of early humans. Bornstein and Stiles-Davis were also looking

Articulating and 
expressing generality 
about repeating patterns 

Child T11: “See this is a pattern 
of ‘I’ for Isaac, three green 
across, three blue up and three 
yellow across … two times”.

Even more sophisticated 
articulation when the camels 
were joined into a circle

Child T11: “Big 
purple, little purple, 
little yellow, big 
green. It’s three 
times.” 

Fig. 14.3 Articulating observed repetitions (Papic 2013) (reprinted with permission from author)
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for a developmental sequence, but without the children having been encouraged
previously to work at symmetry it is hard to chart development. Figure 14.4 dis-
plays different task structures for stimulating learners to make use of symmetry in
their reasoning.

14.2.3 Counting

Moss and Beatty (2006, p. 449) have shown that promoting conjecturing and
predicting (Fig. 14.5), using the language of “I have a theory” with 9-year-olds, the
children quickly picked up the practice and integrated conjecturing, and presenting
evidence for their conjectures, into their functioning (educating their awareness).
They soon moved from displaying instances of their ‘theories’ on a grid (as a point
graph) to ‘inventing’ negative numbers so as to extend their graphs to the left of 0.
Their pattern sequences extended to quadratic relationships as they continued to
propose and negotiate multiple expressions of generality.

using one axis of symmetry;  

using two axes of symmetry 

Recognizing missing elements in 
symmetrical patterns

Articulating what is missing in symmetric 
patterns with justification

E.g.: “this one has to be the same as 
that one” extending to “to make it 
symmetrical” to “because they are the 
same distance from the mirror line”

Creating patterns with reflective symmetry

Fig. 14.4 Reasoning using symmetry

Predicting the number of elements 
required on a growing pattern

age 9

Fig. 14.5 Predicting (Moss and Beatty 2006) (reprinted with permission from authors)
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Blanton and Kaput (2011, p. 9) reinforce the observation that children’s
development of algebraic thinking has traditionally been constricted by inappro-
priate assumptions about what is possible: “… the genesis of these ideas [functional
analysis] appear[s] at grades earlier than typically expected.”

Cai et al. (2011) report on how learners are supported in developing algebraic
thinking in China and Singapore, suggesting that this accounts for superiority in
algebra later as compared with educational systems in which not only formal
algebra, but expressing generality and development of algebraic thinking are not
introduced until high school, if at all.

Cooper and Warren (2011, p. 197) summarize their own and other people’s
research by saying that “results have … shown that students can generalize rela-
tionships between different materials within repeating patterns across many
repeats.” They go on to suggest that the use of tables can help students generalize
not only in the younger years, but later in school, for example when working with
equivalent fractions.

My claim is stronger still: learners need to generalize simply in order to engage
with arithmetic seen merely as the manipulation of numerals (symbols standing for
numbers). As they meet more and more complex mathematics, more and more
sophisticated mathematical ideas, the need to ‘see the general through the partic-
ular’ and also ‘to see the particular in the general’ grows in complexity and
sophistication correspondingly.

For me, as for most mathematicians, arithmetic is much much more. It is the
study of actions on numbers in order to study and make use of numbers themselves.
This is what makes arithmetic part of mathematics. In order to make sense of
mathematics, in order to appreciate and comprehend the topics that learners meet, it
is necessary to use and develop one’s natural powers to imagine and to express, to
specialize and to generalize, to conjecture and to convince. These can be
strengthened by acknowledging and calling upon them at the earliest opportunities.
For example, Hewitt (1998) shows that arithmetic competence and proficiency
depend on a sense of, an awareness of, generality without which learners are
doomed to tackling each new task ab initio. Competence and proficiency involve
the recognition of particular tasks or situations as instances of a class of similar
situations, which constitute a person’s example space (Watson and Mason 2002,
2005). Learners who have not been called upon to express generality are at a major
disadvantage as they move through school. As Caleb Gattegno famously said
(private communication 1978) “the real problem with teaching mathematics in
school is what to do after age 12, when they have learned the entire [current] school
curriculum” (or words to that effect).

Mason et al. (1985) made a case for multiple roots of algebraic thinking, with
correspondingly multiple routes into explicit algebraic thinking, and showed how
this could be done, drawing on materials and ideas stretching back to Chinese
manuscripts, Egyptian papyry, and Babylonian tablets, as well as projects in the UK
in the 1960s and 1970s. This was extended in Mason with Graham and
Johnston-Wilder (2005) to a program of tasks designed to promote and reinforce the
expressing of generality. School algebra is seen as a language for expressing
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generality, which, because of its succinct use of compact symbols, is readily
manipulable, and so can be used to solve equations. The source of those equations
is the expression of necessary relationships between quantities with as-yet-unknown
values. This goes back to Newton (1707) who famously shifted the focus of
mathematicians from setting up systems of equations that express necessary rela-
tionships to the solving of equations. Newton thought that the translation of
problematic situations into algebra was essentially trivial, though colleagues such as
Ward (1713), who were perhaps more experienced in teaching novices, disagreed
(Mason 1999). Evidence seems to be largely on the side of Ward rather than
Newton, as attempts are made in each generation to simplify, perhaps even auto-
mate, the modeling of simple situations with algebraic symbols. The use of
Singapore bar diagrams (Fong 1993; Lee et al. 2013) is but one recent attempt in
this direction.

It is worth noting that languages that are both expressive and readily manipu-
lable are emerging from algebra into the domain of computer technology. LOGO,
Boxer, TuneTalks, computer algebra systems, and more recent offshoots, such as
TouchCounts, provide people of different ages and maturity with expressive and
manipulable languages. All of these invoke algebraic thinking and algebraic
awarenesses.

14.3 Why What Is Possible Is No Surprise

No one expects young children to internalize or memorize all two- and three-digit
additions and subtractions, much less multiplications and divisions. Instead, chil-
dren are expected to internalize procedures that are sequences of actions for
achieving these tasks. Yet telling someone how to perform these involves complex
action sequences with choices being made according to the particular numbers (see
last section for ways to re-experience this for yourself). However, for procedures
such as long multiplication or division or adding and subtracting fractions to be
effective, it is necessary not simply to memorize a sequence of steps, which are
prone to getting mixed up or be forgotten, but rather to appreciate what the steps
enable to be done next. This is educating awareness, in the sense of Gattegno (1970,
1987), in parallel with training of behavior (Mason 2008a).

It is a plausible conjecture that Egyptian and Babylonian scribes did not attempt
to express methods of solving problems in general because of the effort required in
using cuneiform on moist mud tablets and because of the expense of preparing
papyry. Much more sensibly, they show worked examples, with assertions such as
“thus is it done” (Gillings 1972/1982) to indicate the potential generality. Newton
(1707; see Whiteside 1972, p. 135) comments specifically: “However, so that I may
develop an intimacy with this method of reducing problems of this sort to an
equation and make it clear—and since skills are more easily learned by example
than precept—I have thought it right to append the solutions of the following
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problems ….” The use of worked examples has been an integral component of
teaching mathematics through the ages, despite its weaknesses (Chi and Bassok
1989; Renkl 2002).

Any child who can walk and talk has already exhibited massive use of natural
powers, including generalizing and abstracting. Indeed, Davydov (1990) and fol-
lowers see humans as moving naturally from the abstract to instantiation in the
particular, rather than the other way round (see, e.g., Schmittau 2004; Dougherty
2008). Goutard (1958) independently expressed it as: “In all fields of education, and
especially with young children, we must start with indefinite situations (for such is
the reality in which they live).” One possible reason is that language is funda-
mentally general. In order to be specific and particular, it requires additional work
with adjectives and adverbs and-or direct use of deictics and pronouns, or even the
addition of pointing and touching. The Russian claim is that children quite naturally
learn to perform the reverse process of seeing the particular as an instantiation of
something more general. It was Gattegno’s realization of the complexity and
powerfulness of this move by young children, from the abstract indefiniteness of
language to internalizing it for their own use, by themselves, which led him to
develop his Science of Education, including The Silent Way (Gattegno 1970, 1973,
1975/1988, 1987; see also Young and Messum 2011).

Children appear to comprehend quite readily the use of schematic diagrams such
as bar-diagrams for depicting relationships in word problems, without requiring
correspondence between marked length and actual length (Golomb 1992; Lee et al.
2013). The issue in interpreting any diagram is recognizing what relationships are
being indicated schematically. The same applies to geometrical diagrams as well.
Of particular importance is recognition of what can change in the diagram and still
the relevant relationships will be maintained, in other words, to appreciate the scope
of generality of the properties being instantiated as relationships.

Expressing generality succinctly and precisely is made possible by the use of
referents, and the expression of properties using those symbols. This applies dif-
ferently to algebra and to geometry. Among other things, the symbols help the
reader to ignore attributes that are not relevant to the mathematical relationships.
Young children show themselves to be adept at this, using colored counters to stand
for imagined objects, such as cars in a car park or children in a classroom, as well as
using letters to stand for qualities of objects, such as their size. The power of
succinct expressions lies in the manipulative possibilities, as mentioned earlier.

Where kindergarten teachers, indeed teachers of children of every age make use
of and develop children’s powers to imagine and to express what they are imag-
ining, using gestures, diagrams, words, and symbols, children are being prepared to
think mathematically, to engage with explicit not just implicit algebraic reasoning.
I know of at least one child who burst into speech only when he became frustrated
that his parents were not correctly and quickly interpreting his pointing. Algebra as
a language makes it possible to refer rather than point, to avoid ambiguity in the use
of prepositions such as this and that, and to deal with many, usually infinitely many,
cases all at once. This is truly powerful thinking. Indeed Gattegno (1984, p. 20)
proposed that a lesson is mathematical only when it is “shot through with infinity.”
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Gattegno (1975/1988) also suggested that “I made my brain” and that that is
what every child who can walk and talk has managed to achieve. I think he meant
that the brain develops not simply through experience of the material world, but as a
result of processing that experience; that learning involves ‘educating your
awareness,’ which means becoming sensitized to notice phenomena, and accu-
mulating actions that can be enacted with a minimum of attention so that attention is
available to provide overall direction. One manifestation of this is Jerome Bruner’s
notion that scaffolding involves the teacher upholding attention foci when the
learner’s attention is fully absorbed by some detail (Bruner 1996, pp. 75–76).

The only real constraint on learners is what they impose on themselves.
However, imagined constraints are strongly influenced by the milieu: teachers,
parents, institutions. Dweck (2000) has provided massive evidence that children’s
discourse, often picked up from adults around them, can be altered so as to shift
from a negative, psychologically blocking stance towards a positive, psychologi-
cally opening stance. It can be roughly summarized as helping children turn “I
won’t …” and “I can’t …” into “I can and I will … try harder and differently”
(Open University 1982; see also Boaler 2010).

14.4 Why the Possible Is Not Always Actualized

Teaching is a caring profession that depends on the relationships between teacher
and learners, and between teacher and mathematics in order to engender a pro-
ductive disposition between learners and mathematics (Andrews 2016). Very often
one or other of these ‘cares’ is stressed with the other disappearing into the
background. For example, concentration on social organization of groups of
learners without also attending to the mathematics being discussed stresses one
without building on the other. It leads to unhelpful pedagogic actions such as
‘dumbing down’ (Henningsen and Stein 1997; Stein 1987; Stein et al. 1996).

Just as many textbook authors, educators, and teachers see multiplication as
repeated addition when in fact repeated addition is only an instance of multipli-
cation, so textbook authors, educators, and teachers often seem to mistake the use of
tasks involving pattern generation and expressions of generality for algebraic
thinking, when it is only an instance of generalization. As I have said on many
occasions “A lesson without the opportunity for learners to generalise mathemati-
cally, is NOT a mathematics lesson” (Mason et al. 2005, p. 1). In the absence of
other stimuli, children will generalize from a few lessons that they find tedious, that
“mathematics is not for me.” It is surely much better to provoke them to use their
powers mathematically! To learn to think mathematically, to appreciate and com-
prehend the mathematical enterprise involves actively generalizing and abstracting
at every turn. The only reason children do not succeed is because their powers have
been allowed to atrophy or because they have been induced to leave them at the
classroom door, usually because the child has interpreted the teachers’ actions as
not requiring the use of those powers. This mis-impression is likely whenever the
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teacher tries to do the learning for the children, by doing the specializing and the
generalizing, the imagining and the expressing, under the misapprehension that
‘they are not yet ready to do that for themselves’ when in fact they have been doing
it since birth if not before.

14.4.1 Falling into Habits

It is all too easy to fall into habits of how tasks are offered. “Habit forming can be
habit forming” as the Zen master says (Shigematsu 1981, no. 341). Many, such as
Thorndike (1922, p. 194) have tried to exploit it, following the adage that ‘practice
makes perfect’. But reinforcing mechanicality at best trains behavior, which is
inflexible and which blocks creative responses to situations. One example of habit
forming is always offering learners the particular and expecting them to generalize,
rather than sometimes offering a partial generality, or a very general statement, so
that learners can make use of and develop their power to specialize as well as to
generalize. Another example is providing learners with the first few terms of a
sequence and asking for successive terms. This makes two significant mistakes.
First, it habituates learners into reasoning forward, often inductively, and directs
their attention away from looking at something structurally, that is, seeking out
relationships which are instances of general properties (Kieran this volume).
Second, any sequence can be extended mathematically in any way you like. Before
expressing a generality, it is essential to have some underlying general structure to
express (Mason et al. 1982/2010). Thus when learners are offered a sequence of
pictures, whether geometrical or otherwise, there is no generality to express until
there is a statement of how the picture sequence is formed and extended.
Alternatively, a sequence consisting of a repeating pattern can be presented to
learners, with the proviso that the block that generates the sequence appears at least
twice. Then (and only then, Mason 2014) can you be sure that the sequence can be
extended uniquely.

For example, if you are told only that a block that generates the sequence by
being repeated has occurred at least once, then the sequence AABAABA can be
extended in two ways:

AAB.AAB.AAB.AAB … but also AABAABA.AABAABA.AABAABA … .

An interesting exercise is to look for sequences that can be extended in at least
n ways for different values of n. Notice that that remark has shifted attention to ‘two
ways’ being seen as a potential parameter, and this is precisely what variation
theory exploits (Marton 2015), and the type of thinking that needs to be promoted if
learners are going to appreciate what mathematical thinking is like and what the
enterprise of mathematics is about.
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14.5 Sensitively Promoting Generalization
and Abstraction

The notion of sensitivity is being emphasized because it is all too easy to try to push
children, telling them things that they are not likely to be able to relate to their own
experience. Of course there is nothing wrong in telling people things. The mistake
is to assume that they have internalized what has been said together with the
speaker’s way of perceiving. Indeed, it is a mistake even to assume that they have
made appropriate sense of what has been said. In other words, when something is
expressed, there are two actions expected of the hearer: to comprehend what is said,
and to appreciate what is said by experiencing the situation so that what is said is
experienced as an expression of what is perceived. This often fails because the
teacher and the learners are attending to different things. Even when they are
attending to the same thing, they may be attending in different ways (Mason 2003).

Teaching by listening turns out to be far more effective. Although it lies behind
various reform movements, trying to engineer other people’s teaching to match
some imagined ideal proves to be ineffective (as the vast education experiment of
the last 3000 years amply demonstrates: cycles of attempts at reform rarely move
the center of gravity of practice away from ‘filling and drilling’, that is, telling and
then testing). Instead of asking a question and then waiting for an answer, judging
its appropriateness against the thought which prompted the question (Love and
Mason 1992), teaching by listening involves putting learners in situations where
they naturally ask questions (Davis 1996; Meyer 2013), and where the mere fact of
a respected ‘other’ being present influences learners’ behavior. Care for both
learners and mathematics then enables you to respect the mathematical thinking,
acknowledging (praising if relevant) specific actions, perhaps even labeling those
actions so that they can be referred to and drawn upon in the future (a part of
scaffolding mentioned earlier).

Recognizing that children have already demonstrated and used astounding nat-
ural powers just to be able to walk and talk, and drawing upon, invoking, and
evoking these could be a central feature of teaching. That this has not become
standard practice is for me a sign of failure for my generation of mathematics
educators and teacher supporters.

The transposition didactique, recognized and labeled by Chevallard (1985),
captures the shift from an expert becoming aware of something, to converting that
awareness into a sequence of actions for learners to carry out. What almost always
happens is that expert awareness (expert experience) is converted or transposed into
training in behavior: the instructions the expert gives in order to try to reproduce
their experience in and for the learner. It takes a great deal of care for both the
learner and the mathematics in order to propose tasks that open up possibilities for
learners rather than closing them down.
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14.5.1 Multiple Expressions for the Same Thing

Algebraic manipulation ought, in my view, to be a trivial matter. It can arise
perfectly naturally when several learners each express the same generality, but
differently (as usually happens when generalizing picture sequences, but also in
other situations). If several different looking expressions appear, it is natural to
assume that there is some way to get from one to the other without using the
original source: in other words, by manipulation of the expressions themselves.
Having started in this vein with secondary students, and drawing on various pre-
vious projects in the UK, we at the Open University, like many others, soon realized
that it was also available to primary children (Mason 1990). Appreciation of the
‘rules’ for manipulating algebraic symbols is both informed and reinforced by
reflection on the properties of arithmetic operations (emerging as the axioms of
algebra, and then of arithmetic). This is but one more example of how the rules of
algebra, as well as being the generalization of experience of arithmetic, can arise
perfectly naturally in children’s awareness when they are offered tasks that bring the
need for manipulation to the surface. In the light of the extensive evidence of
children’s natural powers, it is a reasonable conjecture that teachers who have run
into difficulty teaching algebra may not have drawn upon children’s powers
appropriately.

14.5.2 Worked Examples and Tracking Arithmetic

Seeing someone work through an example using a particular technique can be very
instructive especially if the learner then tries a similar example for herself. But I
suggest that it is only effective when the learner has some sense of what is particular
and what is general; what are parameters in the examples, and what is structural. In
other words, it depends on learners attending to the same things as the teacher, and
in the same way. For example, in C = 2pr, both the 2 and the p are structural, while
the r is a parameter; in the example of a circle with radius 2, the circumference is
2p � 2, where one of the 2’s is structural and the other is not. Furthermore, it really
helps if the learner develops an inner incantation or patter that guides their actions,
for the issue is usually not so much what to do next, but how you know what to do
next. This has been verified by researchers looking at what is effective about
worked examples (e.g., Chi and Bassok 1989). Having an appreciation and com-
prehension of the procedure and why it works is also a contributing factor, because
training behavior (memorizing a procedure step by step) is inflexible and by itself,
at best, instrumental (Skemp 1976). Trained behavior is of limited use without
educated awareness, which means developing a repertoire of actions that can then
come-to-mind (actually, come-to-action along with associations coming to intellect
and positive disposition coming to emotion).
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Tracking arithmetic is one way to move quickly from specific examples to
recognizably algebraic symbols (Mason 2016; Mason et al. 2005, p. 21; Mason
et al. 2007). You use a particular number (as in Think of a Number games) but
refuse to permit that number to be absorbed into any calculation. You can then track
its route through the various steps, replace it with a cloud standing for some
as-yet-unknown or unspecified number, and then eventually move to using a
symbol.

In a similar manner, if you can check whether an answer is correct, you can track
that number, then replace it by a cloud or symbol to produce algebraic constraints
(equations or inequalities), which you can then set about resolving. Mary Boole
pointed out that what is needed is to ‘acknowledge the fact of [y]our ignorance,’ to
denote that by a symbol, and then to express what you do know using that symbol
(Tahta 1972). As Davydov and followers have amply demonstrated (Davydov
1990; Dougherty 2008; Schmittau 2004), using letters for as-yet-unspecified
quantities is no barrier when handled sensitively and appropriately, even for young
children. It has long been recognized that expressions often start as verbal phrases
or clauses, migrating to succinct short forms, and then to single letters when
learners are confident in expressing generality. This is the origin of ‘rhetorical
algebra’ as an intermediary between arithmetic and algebra. Indeed Küchemann
(1981) delineated six different modes. If as-yet-unspecifieds (numbers in the mind
of someone not present) are symbolized by, with, and for young children, there
might be no need for long transitions into algebraic manipulation.

For learners who have not yet been stimulated to think generally rather than
always in particular, it may not even occur to them that the context in which a
mathematical task appears can be altered. Getting learners to make alterations to the
context or setting of a task for themselves contributes to their sense of power and
control over a task-type, rather than feeling at the mercy of whatever might appear
on an examination.

14.5.3 Reflection

Pólya (1962) suggested that reflecting back on what had happened during work on a
problem is one of four phases of effective mathematical thinking. But as Jim Wilson
(personal communication 1984) pointed out, “it’s a phase more honored in the
breach.” Although it is always tempting to rush on to the next task either to escape
lack of success, or to capitalize on success, making use of released energy of
satisfaction or frustration in order to reflect and form images of future choices can
be a much more worthwhile investment of time and energy.

One important role for teachers is to have what Bruner called ‘consciousness for
two,’ namely to be aware of actions being enacted while learners are deeply in the
flow of an action (Bruner 1986, pp. 75–76). Teachers can use this awareness
(actually it is an awareness of an awareness of an awareness: Mason 1998) to
prompt learners to withdraw from the action momentarily in order to contemplate
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that action, its effectiveness now, and its potential effectiveness in the future, or
what seems to be blocking progress. This is part of the “discipline of noticing”
(Mason 2002a).

There are numerous pedagogic strategies that can be used to bring back to mind
effective actions so that they are more likely to come-to-action again in the future
when needed. For example, asking yourself:

What was effective?
What is it about the task that made that particular approach effective?
What other similar tasks could be resolved using the same method?
What other choices of parameters would give the same answer?
What is the set of possible answers to tasks like this?
What would make a task similar to this one?
Are there any parameter values that will not work, or constraints on such
parameters?

This last is effectively opening up the ‘question space’ (Sangwin 2006), which in
some sense corresponds to the ‘example space’ (Watson and Mason 2002) being
explored. In addition to a range of central and peripheral examples of some concept
or procedure, the example space includes construction techniques for altering an
example, and when appropriate, a sense of what boundary examples there might be.
The question space is structured around the various constraints that make questions
do-able.

14.5.4 Reasoning About Numbers

Reflecting on the relationships between arithmetic operations, and expressing these,
produces the axioms of algebra, and justifies the claim appearing in most textbooks
since the 15th century, that algebra is (can usefully be seen as) ‘arithmetic with
letters’. Unfortunately this rather off-hand approach has put off many learners, who
have been mystified by what the letters are doing and what they are for. My long
standing conjecture is that it is because the origins of algebraic expressions as
expressions of generality is often circumvented that algebra is taught as if it is about
the manipulation of meaningless symbols. Many adults report that algebra was a
significant watershed for them because no one explained what it was about. This is
a pity, because generalized arithmetic is one of the several roots of, and routes into,
algebra (Mason et al. 1985). For learners experienced in expressing generality, and
using more and more succinct formulations, it soon becomes obvious that in many
cases there are different-looking expressions of general relationships that must
always give the same answer. This suggests that it should be possible to get from
one expression to other equivalent expressions without having to go back to the
source situation. In this way the ‘rules of algebra,’ which are simply the expression
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of properties of arithmetic operations, can be experienced and internalized, then
built upon by a succession of increasingly complex tasks.

Arithmetic seen as part of mathematics must refer to the study of properties of
numbers, including relationships such as associativity, and distributivity of multi-
plication over addition. Merely performing addition, subtraction, multiplication,
and division as algorithms is not mathematics. But making use of properties so that
multiplying 49 by 51 is re-constructed as (50 − 1) (50 + 1) or recognizing that
87 + 54 = 84 + 57 without doing any calculation contributes to and is part of
algebraic thinking. Thinking algebraically is appreciating the generality, recog-
nizing an instance of a general property.

14.5.5 Reasoning Without Counting

Children struggling with arithmetic, for whatever reason, can often display superior
powers of reasoning when the objects are not numbers. For example, reasoning
about game strategy, such as Secret Places (Mason et al. 2012) can be done with
and by young children, as O’Brien (2006) demonstrated. Reasoning about sym-
metry is also accessible to young children. For example, in Fig. 14.6, what colors
must the blank circles have so that all three vertical lines are mirror lines for the
pattern? Reasoning about magic squares (see next section) without actually having
a particular one at hand is also possible, though it requires careful introduction so
that children appreciate what the coloring means (Mason et al. 2012).

Introducing the mathematical implications of prepositions such as between,
ahead, behind, to the left of, and to the right of can be developed through reasoning
that, despite not making much if any reference to numbers, enriches and extends
experience of mathematical reasoning, which seems to me to be algebraic in nature.
For example, a sequence of statements of the form ‘A is ahead of B’ and ‘X is
behind Y’ is revealed and, as each one appears, decisions have to be made as to
whether there is sufficient information accumulated to place all of the ‘people’ in
order, or whether the new information contradicts what is already known. Variants
include statements of the form ‘A is between B and C,’ and even quantitative
statements such as ‘A is 3 ahead of B.’ Forays into two dimensions are also
possible. The point is to invoke children’s natural power to consider possibilities
without having them physically manifested in front of them, so that they develop
control over their mental imagery, and gain familiarity with manipulating what is
not actually present.

Fig. 14.6 Parallel mirror symmetry reasoning
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14.6 Parallel Tasks for Adults

In order to experience something of what it may be like for learners to engage with
new ideas and new procedures, it is useful as a teacher to put oneself through
similar experiences on a regular basis. One way to do this is to take on learning
something new, whether mathematical or not, as for example in Fig. 14.7. Catching
how you use your attention can give you a taste of what it might be like for children
doing similar tasks, including the amount of effort required. Of course using an
actual pegboard is easier for children, but an adult can do it without.

Using unusual lines of symmetry can sensitize you to what it might be like for
children working with a single mirror line (see Fig. 14.8). Variations, including
parallel mirrors, are of course possible. Note also the task structure: deduction and
encountering the mathematical theme of freedom & constraint (Mason and
Johnston-Wilder 2004a, b).

What is required to be able to work from images rather than needing to use
physical manifestations? Jerome Bruner (1966) uses this idea as the basis for his
three modes of (re)presentation, and describes in detail how to encourage learners to
move from physical material to diagrams and images, and thence to symbols. This
was translated into a trio of frameworks for informing pedagogical design and
choices in the moment (Mason 2002b; Mason and Johnston-Wilder 2004a, b; Open
University 1982). Examples are presented in Figs. 14.9 and 14.10.

Expressing the generality (see Fig. 14.9) that gives the position of the one
hundredth (ultimately one would like the nth) cell, and then articulating how to find

The three pictures show a magic square 
whose numbers have been obscured. 
Nevertheless it is the case that the sum of the 
numbers under the cross-hatching must be 
equal to the sum of the numbers under the 
diagonal shading. Justify this by showing 
how both of the shadings are made up of 
overlapping full lines in the magic square.  

Fig. 14.7 Magic square reasoning

Taking both solid lines as mirrors, for which of the empty cells is 
the color already determined, and for how many further cells can 
you freely choose the color while maintaining the symmetry?

Fig. 14.8 Even more complex reasoning using symmetry
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the position of the 100th (ultimately nth) cell of a given color brings many adults up
against a shift in thinking, typical of switching from ‘doing’ to undoing.’

Developing flexibility in interpreting diagrams can contribute to flexibility when
creating diagrams, and in seeing algebraic expressions in different ways. Expressing
generality can be tougher than first appears, as in the task illustrated in Fig. 14.11,
taken from Mason (1988, p. 29). It is worthwhile extending the sequence, by first
articulating for yourself how the sequence could be generated. A Pólya-inspired
approach might be to specialize (Pólya 1945, 1962): work first on the pictures that
appear at stages which are a power of two, before trying to work on the intermediate
stages.

A more focused approach with higher likelihood of experiencing something
relevant, is to ‘tie one’s hands behind one’s back’ so to speak, to force yourself to
re-construct the steps and reasoning behind familiar procedures. See, for example,
Fig. 14.12. Most people experience cognitive dissonance, to put it mildly. They
find that they have to go back to first principles. Because the usual format is altered,
internalized actions are inappropriate and have to be re-thought and re-formed. The
result is that it is possible to experience uncertainty, to notice attention movements
that might parallel the efforts of a child learning to do column addition. If this task
doesn’t succeed, try writing the dictated numbers with the digits in columns.

Two repeating patterns are shown, with at least two copies of 
the generating pattern visible. 

What color is the 100th cell in each case? In what position is 
the 100th shaded square? 

Fig. 14.9 Predicting repeated patterns

Use the first diagram to explain why the ‘up and down’ sum 1 + 2 
+ 3 + 4 + 5 + 4 + 3 + 2 + 1 = 25 and generalize.  

Use the second and third diagrams to provide an alternative way of 
seeing (Mason 2008b).

Extend or modify the diagrams to display other sums, such as the 
sum of the numbers leaving a remainder of one when divided by 3. 

Fig. 14.10 Pebble pattern counting

If you draw a single square, then develop a sequence of pictures by 
adding, at each stage, all the squares touching exactly one vertex of 
one previous square, you get a sequence of pictures. How many 
squares will appear in the nth picture? Pictures 2, 3 and 4 

Fig. 14.11 Complex generalities to express
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Even three-column addition or subtraction can be a challenge on a spreadsheet.
Yet this is what young children are expected to internalize. They are also expected
to appreciate and comprehend what they are doing and why it works! Try to
construct a spreadsheet to perform long division (one digit per cell). The restrictions
imposed by the minimal tools available in a spreadsheet highlight the complexity of
instructing a machine to perform a complex task. This may provide a taste of what it
is like when learners are being instructed in carrying out arithmetic procedures. One
difference is that teachers, experienced with arithmetic, have something to fall back
on, to aid in the reconstruction, whereas learners may not, unless some work has
been done first concerning the essence, the essential awarenesses that lead to the
arithmetic algorithms.

14.7 Conclusions

It is well known that assumptions turn into expectations, and that expectations have
a significant influence on behavior: your own expectations are framed by the
expectations of those around you, both subtly and overtly expressed. The abiding
question is how the assumptions and expectations of parents and institutions can be
opened up to the enormous powers that children have displayed when they learn to
walk and talk, and to call upon these powers when being with children.

Algebra, or rather the use of natural powers which, when expressed in words and
symbols is recognizable as algebra, is called upon from birth if not before. To learn
arithmetic, that is, to gain facility with numbers, is to think algebraically, even if not
explicitly. There is a long tradition of invoking and evoking children’s use of their
own powers, and making opportunities to promote the development and refinement
of those powers, but this tradition is constantly being submerged in the mistaken
desire that children perform arithmetic. Performance follows and is part of

Mirror Dictation

Get someone to read out a sequence of five or six numbers, some with four digits, some with 
three. Everyone else writes them down in a column, EXCEPT that the units digits are on the left. 
Everyone then adds their numbers so as to get the correct answer, even though it has the units 
digit on the left. 

Now write down two four digit numbers from right to left, and subtract the smaller from the 
larger.

Now select a four-digit number and a three-digit number, and write them down from right to left 
so as to perform a long multiplication. 

Now select a five-digit number and a two-digit number, and write them down from right to left 
so as to perform a long division. 

Fig. 14.12 Mirror dictation task
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appreciating and comprehending, but appreciating and comprehending requires
more than simple training of behavior. Behavior is what can be trained, but its
flexibility is only possible when awareness has simultaneously been educated. As
Gattegno (1970, 1987) put it, “Only awareness is educable,” and the Upanishads
(Radhakrishnan 1953, p. 623) effectively extend that to include “Only behavior is
trainable,” which in turn depend on “Only emotion is harnessable,” further aug-
mented by “Only attention is directible” (Mason and Metz 2017).
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Chapter 15
Cycles of Generalizing Activities
in the Classroom

Susanne Strachota, Eric Knuth and Maria Blanton

Abstract This study considers classroom situations in which students and the
teacher co-contribute to promoting generalization. It specifically focuses on the
ways in which students and a teacher in one classroom engage in generalizing
arithmetic. Generalized arithmetic is an important route into early algebra (Kaput in
Algebra in the Early Grades. Routledge, New York, 2008); its potential as a way to
deepen students’ understandings of concepts of school arithmetic makes it an
important focus of early algebra research. In the analysis we identified general-
izations around properties of arithmetic and the actions that promoted these types of
generalizations, and then considered the relationship between these actions.
Analysis revealed that generalizations became platforms for further generalization.

Keywords Early algebra � Teachers promoting generalization � Student learning
Generalizing � Generalization � Generalized arithmetic

15.1 Introduction

For many students, algebra continues to be a gatekeeper to future academic and
employment opportunities. In response, initiatives (e.g., Common Core State
Standards Initiative 2010; National Council of Teachers of Mathematics [NCTM]
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2000, 2006) and conferences [e.g., the Algebra Initiative Colloquium (Lacampagne
et al. 1995), the Nature and Role of Algebra in the K–14 Curriculum Conference
(National Research Council 1998), and the Mathematics Learning Committee
(National Research Council 2001)] have re-conceptualized algebra, suggesting that
algebraic thinking should not only play a prominent role in elementary grade
mathematics, but should also be treated as a longitudinal K–12 strand of mathe-
matical thinking. This shift in perspective has led to increased attention being
placed on early algebra—the introduction of algebraic thinking in the elementary
grades.

Traditionally, for most students the study of algebra has been limited to one or
two courses in secondary school, often with little to no explicit interweaving with
other mathematics topics. In contrast, early algebra initiatives reframe algebra as a
way of thinking about mathematics that extends throughout elementary grade levels
and topics. In 2000, NCTM stated their position when they advocated that algebra
be taught as a way of thinking and problem solving, beginning in elementary school
and extending throughout mathematics, and not as an isolated course in high
school. In response to the question “What is algebra as a strand of a school
mathematics curriculum for all students?” NCTM explains in their position state-
ment that:

All students should have access to algebra in a pre-K-12 mathematics curriculum, including
opportunities to generalize, model, and analyze situations that are purely mathematical and
ones that arise in real-world phenomena. Algebraic ideas need to evolve across grades as a
way of thinking and valuing structure with integrated sets of concepts, procedures, and
applications. (NCTM no date)

15.1.1 Introduction to Generalization

As expressed by NCTM as well as mathematics education scholars, generalizing is
at the core of algebra (Cooper and Warren 2011; Kieran 2007; Mason 1996). Yet,
students struggle to generalize (English and Warren 1995; Lee and Wheeler 1987;
Stacey 1989), often making weak generalizations, and rarely justifying their gen-
eralizations (Breiteig and Grevholm 2006; Knuth el al. 2002; Koedinger 1998;
Usiskin 1987).

Supporting generalizing in the mathematics classroom requires a better
understanding of the source of students’ generalizing, that is, understanding the
instructional mechanisms that encourage students’ generalizing—the focus of
the study reported here. In particular, the study reported here seeks to identify the
processes that prompt and substantiate mathematical generalization, with the aim of
understanding the actions in the classroom that initiate, refine, and sustain
generalization.
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One way to support algebraic thinking in elementary mathematics classrooms is
through generalized arithmetic (Kaput 2008). Generalized arithmetic “involves
looking at arithmetic expressions in a new way, in terms of their form rather than
their value when computed” (Kaput et al. 2008, p. 12). Some early algebra research
focuses on generalizing numbers and operations more broadly, exploring the
potential of building on arithmetic by recognizing and articulating mathematical
structure and relationships (e.g., Blanton and Kaput 2005; Carpenter et al. 2003;
Davis 1985; Kaput 2008). Other research, such as that of Carraher et al. (2008),
hones in on how specific elementary mathematics topics, such as arithmetic
properties, can serve as a means or platform for fostering algebraic reasoning. In
this study, we explore generalizing arithmetic more broadly, but use a specific topic,
the Commutative Property of Addition, to illuminate the findings.

Children have a natural inclination to notice and discuss regularities and patterns
in the number system—this is the foundation for constructing, testing, and justi-
fying generalizations (Schifter et al. 2008). The field offers substantial research that
describes algebraic ways of thinking in elementary grades and supports the feasi-
bility of early algebra by demonstrating students’ capabilities (e.g., Mason 2008).
However, the processes underlying the development of algebraic reasoning “are not
well understood” (Ellis 2011, p. 309). A next step in early algebra research, then, is
to understand ways in which students’ engagement in such activities is both
prompted and supported.

Ellis (2011) defines the activity that supports generalization, or generalizing-
promoting activity, as consisting of actions and interactions, working “in concert”
with one another to promote generalization (p. 310), and she goes on to note that
generalizing is “influenced by—and influences—the interrelated actions of stu-
dents, teachers, problems, representations, and artifacts” (p. 337). Our research
drew upon the work of Ellis (2007, 2011) to identify activity related to generalizing.
Our goal is to demonstrate how the instruction provided during an early algebra
intervention can influence the ways in which students generalize about arithmetic.
We show that “algebrafied” instruction supports students’ in developing and jus-
tifying generalizations, and describe “algebrafied” instruction in a way that may
inform practice (Blanton and Kaput 2003; Kaput and Blanton 2001). We share one
approach to supporting algebraic reasoning in elementary mathematics and outline
this approach in a framework. We view the framework as a potential resource for
pre-service teacher preparation and in-service professional development on early
algebra instruction, as well as for lesson planning for teachers who aim to incor-
porate algebraic reasoning in elementary mathematics.

15.1.2 Introduction to the Study

In this chapter, we present a two-part study that is a part of a larger research project
concerned with the fundamental question of how to support students in elementary
grades to be prepared for middle grades algebra and beyond (viz., Blanton et al.
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2015). The study, from which the data described in this chapter were drawn,
involves a quasi-experimental comparison of Grades 3–5 (ages 8–11) student
performance from two classroom contexts: an intervention classroom (imple-
menting an intervention based on an Early Algebra Learning Progression [EALP])
and a traditional elementary mathematics classroom. The EALP consists of a cur-
ricular framework, with learning goals, an instructional sequence of lessons to
achieve those goals, assessments, and levels of sophistication that characterize
students’ understandings over time (Fonger et al. 2015, in press). Drawing upon
Kaput’s (2008) analysis of algebra in terms of content strands and thinking prac-
tices, we designed the EALP, which then guided the development and imple-
mentation of our longitudinal early algebra intervention, as well as the development
of accompanying assessments.

The study we report on here had a two-part approach. The first part of the study
focuses on analyzing intervention and control student responses to EALP assess-
ment items to demonstrate differences in their understandings of the Commutative
Property of Addition. Based on the results from this analysis, we argue that tra-
ditional arithmetic approaches to properties do not provide sufficient opportunities
for students to engage in algebraic thinking practices, and that the critical difference
between the early algebra approach and a traditional approach to elementary
mathematics is the nature of instruction. Therefore, the second part of the study
focuses on exploring the instruction that led to the differences observed in the first
part of the study. Figure 15.1 shows the research questions for both parts of the
study.

In what ways does an early algebra intervention in luence students’ understandings of the Commutative Property of Addition?
In what ways do students’ understandings of the Commutative Property of Addition differ?

In what ways do a teacher and students support generalizing arithmetic in one intervention classroom? What is the nature of "algebra ied" instruction?
Fig. 15.1 Research questions
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15.2 Conceptual Framework

In this section, we define three constructs that are central to the research reported
here: algebraic activity, generalized arithmetic, and generalizing. Additionally, we
elaborate on some of the research in the area of generalization in order to situate our
study within the extant literature.

15.2.1 Algebraic Activity

Consistent with NCTM and other early algebra initiatives, we conceptualize alge-
braic thinking as a mental activity. We also conceptualize algebra as a tool for
representing and reasoning about generality. These ideas align closely with Kaput’s
(2008) core aspects of algebra. Kaput describes algebra in two ways: (1) Algebra as
symbolizing generalizations of patterns and constraints in a consistent, structured
way and (2) algebra as a conventional symbol system that can syntactically orga-
nize and represent reasoning and actions on generalizations. In Kaput’s first core
aspect he conceptualizes algebra as a mental activity or a way that one might
reason, whereas in the second core aspect he conceptualizes algebra as a mathe-
matical system or something that one might reason about. Here we synthesize both
aspects of algebra. That is, we investigate students’ algebraic thinking and the ways
that students interact with the symbol system of algebra to represent their thinking.

15.2.2 Generalized Arithmetic

Although historically, elementary mathematics has tended to focus mainly on
arithmetic and computational fluency, we view generalized arithmetic as a means
for developing students’ algebraic thinking. As mentioned above, Generalized
arithmetic “involves looking at arithmetic expressions in a new way, in terms of
their form rather than their value when computed” (Kaput et al. 2008, p. 12). We
view arithmetic properties as one of the more accessible ways in which teachers
might foster algebraic thinking. Thus, the examples we provide in this study are
situated in classroom contexts of generalizing about arithmetic properties.

Russell et al. (2011) underscore the central role generalizing plays in mathe-
matical activity: “At its core, mathematics is about observing examples to find
regularities, noticing structure and relationships, forming conjectures about the
observations, and then proving and concluding general statements” (p. 2). Likewise,
Kaput (1999) views algebraic thinking as the process of generalizing mathematical
ideas from a set of particular instances, justifying those generalizations through
discourse, and then expressing them in age-appropriate formal ways.
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15.2.3 Generalizing

The process of generalizing, the activities that support generalizing, and the results
of generalizing are distributed, social activities constructed from an interplay and
integration of individual reasoning, collective reasoning, discourse, and tools (Ellis
2007, 2011; Jurow 2004; Latour 1987). From this perspective, generalizations are
shared ideas that occur in verbal and written form, and generalizing is a social and
generative process situated within a context. Generalizing, specifically, occurs
when a person or group of people engage in one of three actions: (a) relating
common characteristics across particular instances, (b) searching for examples
beyond the original situation or idea, or (c) extending to broader or new situations
from particular situations (Ellis 2011, p. 311). See Table 15.1 for a complete
description of each generalizing action. These generalizing actions served to
underpin our lesson design, as well as contribute to our subsequent analyses, which
will be described later.

15.3 Study Part 1: Assessment Performance

In this section, we share the results from the comparison of the performance on the
EALP assessments of students who received an early algebra intervention to stu-
dents who did not receive an early algebra intervention. In particular, we focus here
on ways in which the early algebra intervention influences students’ understandings
of the Commutative Property of Addition, comparing performance of the inter-
vention and control groups.

Table 15.1 Generalizing actions (adapted from Ellis 2007)

Generalizing actions

Relating Relating Situations: forming an association between two or more situations
Relating Objects: forming an association of similarity between two or more
present objects

Searching Searching for the Same Relationship: repeating an action to determine a stable
relationship between two or more objects
Searching for the Same Procedure: repeating a procedure to test whether it
remains valid for all cases
Searching for the Same Pattern: repeating an action to check whether a pattern
remains stable across all cases
Searching for the Same Solution or Result: repeating an action to determine if the
outcome of the action is identical every time

Extending Expanding the Range of Applicability: applying a phenomenon to cases beyond
the case from which it originated
Removing Particulars: removing contextual details to develop a global case
Operating: operating on an object to generate new cases
Continuing: repeating an existing pattern to generate new cases
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15.3.1 Setting and Participants

The initial sample included a Grade 3 (ages 8–9) cohort of 103 intervention students
and 67 comparison students from two different elementary schools in the same
district in the North Eastern part of the United States. In Grade 4 (ages 9–10), 105
of those intervention students and 67 of those comparison students completed the
assessment. Due to attrition, 90 intervention and 61 comparison students completed
the Grade 5 (ages 10–11) assessment. The two elementary schools followed the
same curriculum and pace, and the student populations in each school were similar
in terms of socioeconomic status.

15.3.2 The Comparison Group

The students of the comparison classes were taught mathematics in a regular
classroom setting using the Pearson Education (2014) enVisionMATH curriculum.
A few practices that are highly emphasized throughout the enVision text are
modeling from a story problem, writing and completing a number sentence, writing
to explain, acting ideas out, drawing ideas, talking about ideas, talking with a
partner, thinking about how to solve the problem, making sense of the problem,
modeling thinking aloud, and interacting in small groups. There is also an emphasis
on the use of vocabulary for each topic and using tools such as connecting cubes or
a number chart.

The enVision curriculum differs from the early algebra curriculum because it is
not explicitly focused on fostering students’ engagement with algebraic thinking
practices. While the enVision curriculum includes algebra content (there are exactly
six “algebra sections in Grade 3), none of the “algebra” sections or other sections
address content that is typically described as fundamental ways of thinking about
early algebra. For example, a relational understanding of the equal sign [i.e.,
understanding that the equal sign indicates an equivalence relation rather than a
direction to compute (see Carpenter et al. 2003)] is typically considered essential to
engaging in algebraic thinking. And, there is no explicit focus on the use of the
equal sign or student misconceptions about the equal sign throughout the topics.
Relatedly, with the exception of a few sections that address properties, addition
sentences often appear in the following form “7 + 7 = ?”.

The Commutative Property of Addition is introduced and reintroduced several
times throughout the Grade 3 text. Some questions focused on the Commutative
Property of Addition suggest that students refer to a number line to explain how the
property works. Other questions ask: if students know 3 + 4 = 7, how might the
property help them solve 4 + 3? One section includes missing-number sentences
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that represent the Commutative Property of Addition (e.g., __ + 8 = 8 + 2). In all,
the treatment of this property is exceedingly minimal in comparison to the related
lessons designed for the early algebra intervention curriculum.

15.3.3 The Early Algebra Intervention

The Grades 3–5 early algebra intervention was taught by a teacher-researcher as
part of students’ regular classroom math instruction (the regular classroom teacher
was present during some of these lessons). Each lesson introduced new concepts
and revisited ideas that were addressed in previous lessons; so within and over the
course of each grade the lessons built on each other. Each grade-level intervention
consisted of about 20 lessons per grade constituting about 10% of the mathematics
instruction for each year. Because students received the intervention during their
regularly scheduled mathematics instruction, the total amount of time spent on
mathematics remained unchanged.

The development and implementation of our early algebra intervention was
based on Kaput’s (2008) analysis of algebra in terms of content strands and
thinking practices. Therefore our intervention was designed to support students’
engagement with the four algebraic thinking practices of generalizing, representing,
justifying, and reasoning with mathematical structure and relationships (Blanton
et al. 2011) across three content areas: generalized arithmetic; equivalence,
expressions, equations, and inequalities; and functional thinking. Here we focus
primarily on students’ engagement with the algebraic thinking practices in the area
of generalized arithmetic. However, the content areas of algebra are interrelated;
thus, equivalence, expressions, equations, and inequalities are also addressed.

To offer some insight on the nature of the intervention lessons and the ways in
which they engage students in the aforementioned algebraic thinking practices, we
share an excerpt from one lesson, which later appears in a transcript provided in the
findings section. Table 15.2 outlines part of a Grade 3 intervention lesson on the
Commutative Property of Addition. The lesson objectives were the following:

• Generalize and represent fundamental properties by observing structure in
computational work, describe these properties in words and variables, and
understand for what values they hold true.

• Begin to develop an understanding of the limitations of empirical arguments and
the power of representation-based reasoning when justifying conjectures.

• Understand the use of different variables to represent fundamental properties.

We evaluated students’ algebraic understandings using a one-hour written
assessment at the beginning and end of Grade 3, at the end of Grade 4, and at the
end of Grade 5. The study spanned 3 years, so that we could track students’
learning over time. We compared the performance of students who received the
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Table 15.2 Excerpt from Grade 3 intervention lesson

Grade 3
Lesson 4: Exploring fundamental properties (commutative property of addition)

Student task Teaching tips

A. Which of the following equations are true?
Use numbers, pictures, or words to explain
your reasoning
17 + 5 = 5 + 17
20 + 15 = 15 + 20
148 + 93 = 93 + 148

Pose to students and have a few students
share responses and justifications.
Encourage students to respond to each
other’s contributions

B. What numbers or values make the
following number sentences true?
4 + 6 = ___ + 6
25 + 10 = ____ + 25
___ + 237 = 237 + 395
38 + ___ = ____ + 38

Pose to students and have a few students
share responses and justifications.
Encourage students to respond to each
other’s contributions. Use these problems to
listen for and reinforce a relational view of
the equal sign

C. What do you notice about these problems?
(What can you say about the order in which
you add two numbers?) Describe your
conjecture in words

Encourage students to share conjectures and
respond to each other’s conjectures. Discuss
whether students’ conjectures are
mathematically the same or different. Use
students’ descriptions of “any number” to
discuss the use of letters to represent two
arbitrary numbers in preparation for part D

D. Represent your conjecture using variables Ask students to share their representations
and make sure to include a discussion of
using the same vs. different variables (e.g.,
a + a = a + a vs. a + b = b + a) so that
students understand why it is important to
represent this conjecture using different
variables. Discuss why two different
conjectures using different letters (e.g.,
a + b = b + a and m + n = n + m) are
equivalent. Ask students to describe what
their letters represent

E. Can you express your conjecture a
different way using the same variables?

Using the commutative property, students
should note that a + b could also be
represented as b + a

F. For what numbers is your conjecture true?
Is it true for all numbers? Use numbers,
pictures, or words to explain your thinking

Again, encourage students to share their
justifications and respond to each other. Pay
attention to how students use numbers: as
specific examples or as generic examples to
illustrate a general case? Press students to
explain: “How do you know it is always
true?” Place their conjecture about the
commutative property in a prominent place
so that students can refer back to them
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intervention to that of students who received only regular instruction. The students
who received only regular instruction are referred to as the comparison group.

15.3.4 Data Collection

In the analysis, we focus on one assessment item (see Fig. 15.2), which evaluated
students’ ability to generalize, represent, and justify the Commutative Property of
Addition, a topic taught to both the intervention and comparison students.

15.3.5 Data Analysis

Assessments were coded based on correctness, as well as on the strategies students
used. Inter-rater reliability scores were computed and at least 80% agreement was
achieved between the coders. When coders disagreed, they discussed codes until
agreement was obtained. To determine significance, frequency Tables (2 � 2) of
the intervention versus comparison groups by item correctness were created for all
parts of the task (a, b, and c) and were statistically examined using Chi-square tests
for all assessments.

Part a was coded as correct if the student named the Commutative Property of
Addition, stated the property in words, or explained that the same numbers were
used in the two additions. Part b was coded as correct if the student symbolically
represented the property by writing an equation using letter variables. If the student
represented the property in other ways, such as by writing an equation using
variables and numbers or writing an expression instead of an equation, the response
was coded as incorrect.

Part c was coded as correct if students justified their responses by stating that the
same numbers are used or explained that the numbers are switched/flipped/swapped
or by naming the property. Figures 15.3 and 15.4 illustrate the coding scheme by
means of examples from two students’ work. On Part c in Fig. 15.4, technically the

Fig. 15.2 Assessment item from the Grade 3 pretest and the Grades 3, 4, and 5 posttests
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operations have to be the same and either addition or multiplication, but based on
our conversations with students we infer that they assume the operation does not
change. While we do not know that students are thinking that the operation remains
the same, we believe that giving them the benefit of the doubt is reasonable.

15.3.6 Results: Part 1

At the Grade 3 pretest, results of the written assessments showed no significant
differences between the intervention and comparison students. At the Grades 3, 4,
and 5 posttests, the differences between the intervention and comparison groups
were not significant in Part a; however when students were asked to generalize and

Correct - Student names the 
Commutative Property of 

Addition.

Correct - Student symbolically 
represents property, by writing 
an equation using variables.

Correct - Student justifies that it 
works for all"numbers naming 
the property and"writing it in 

words.

Fig. 15.3 An intervention student’s response from Grade 4 posttest

Correct - Student states the 
Commutative Property of 

Addition in words.

Incorrect - Student symbolically 
represents property, by writing an 

equation using variables and numbers.

Correct - Student justifies that it 
works for all numbers stating that 

the same"numbers are"used.

Fig. 15.4 Another intervention student’s response from Grade 4 posttest
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justify their reasoning in Parts b and c, the differences in the performance of the
groups were significant for each posttest. That is, the students who participated in
the early algebra intervention were more successful in representing a generalization
symbolically and providing a justification for Marcy’s reasoning. This suggests that
the intervention helped students develop and represent generalizations about
arithmetic properties.

Table 15.3 summarizes the results. At the Grade 3 pretest, 36% of comparison
students and 47% of intervention students noticed the structure of the Commutative
Property of Addition in Part a, 1% of comparison students and 1% of intervention
students were able to write an equation using variables to represent the
Commutative Property of Addition in Part b, and 24% of comparison students and
22% of intervention students identified structure in equations when providing a
justification for Marcy’s thinking about the Commutative Property of Addition in
Part c. The differences between the results of the comparison and intervention
groups were not statistically significant for any part of the task at the Grade 3
pretest.

At the Grade 3 posttest, 70% of comparison students and 81% of intervention
students were able to notice the structure of the Commutative Property of Addition
in Part a, 2% of comparison students and 51% of intervention students were able to
write an equation using variables to represent the Commutative Property of
Addition in Part b, and 30% of comparison students and 65% of intervention
students provided a structure-based argument to justify Marcy’s thinking about the
Commutative Property of Addition in Part c. The differences between the results of
the comparison and intervention groups on Parts b and c were statistically signif-
icant with a chi-square value <0.05.

At the Grade 4 posttest, 83% of comparison students and 85% of intervention
students were able to notice the structure of the Commutative Property of Addition
in Part a, 32% of comparison students and 50% of intervention students were able
to write an equation using variables to represent the Commutative Property of
Addition in Part b, and 54% of comparison students and 78% of intervention
students provided a structure-based argument to justify Marcy’s thinking about the
Commutative Property of Addition in Part c. The differences between the results of
the comparison and intervention groups on Parts b and c were statistically signif-
icant with a chi-square value <0.05.

Table 15.3 Percentage correct by item part by testing session

Intervention Comparison

3 pre 3 post 4 5 3 pre 3 post 4 5

Part a 0.466 0.814 0.853 0.889 0.358 0.697 0.825 0.918

Part b 0.01 0.51x 0.495y 0.889z 0.015 0.015 0.317 0.327

Part c 0.223 0.647x 0.878z 0.889z 0.239 0.303 0.54 0.672

Note Superscripts x, y, and z denote a chi-square p-value < 0.05 for Grade 3 post, Grade 4, and
Grade 5, assessments respectively
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At the Grade 5 posttest, 92% of comparison students and 89% of intervention
students were able to notice the structure of the Commutative Property of Addition
in Part a, 33% of comparison students and 89% of intervention students were able
to write an equation using variables to represent the Commutative Property of
Addition in Part b, and 67% of comparison students and 88% of intervention
students provided a structure-based argument to justify Marcy’s thinking about the
Commutative Property of Addition in Part c. The differences between the results of
the comparison and intervention groups on Parts b and c were statistically signif-
icant with a chi-square value <0.05.

Although this study does not explore potential learning progressions in algebra,
it is interesting to note the consistency of percentage correct on Part b between the
Grade 3 posttest and the Grade 4 posttest contrasted with the percentage correct in
Grade 5 for the intervention group. This trend may provide insight as to how these
students progress when generalizing and symbolizing. Of the intervention group,
51% of students at the Grade 3 posttest and 50% of students at the Grade 4 posttest
were able to write a correct response for Part b. This means they were able to write
an equation using variables to represent the Commutative Property of Addition.
Alternatively, if students wrote an equation using variables and numbers (see
Fig. 15.4 for an example) or wrote an expression (e.g., a + b and b + a), Part b was
coded as incorrect. The percent of correct responses provided by the intervention
students on Part b remained the same between Grades 3 and 4 but increased
significantly in Grade 5. The increase in Grade 5 may indicate that these students
are more comfortable using variables and numbers or expressions before using
equations with variables to represent arithmetic properties.

15.3.7 Discussion: Part 1

An analysis of the curriculum used in the students’ regular math instruction—when
the intervention group was not experiencing the research-based lessons—confirmed
that both the intervention and comparison groups studied the Commutative Property
of Addition. Furthermore, both groups were successful in recognizing and referring
to the Commutative Property of Addition. The comparison group, however, was not
as successful as the intervention group when prompted to represent the property and
justify the generalization.

These findings suggest that arithmetic properties can serve as useful contexts to
engage students in developing and symbolizing generalizations, but the inclusion of
properties in early grade mathematics instruction will not initiate students to engage
in these practices. That is, simply teaching arithmetic properties does not foster
generalizing. Rather, the combination of topics that can serve as a springboard for
algebraic reasoning, such as arithmetic properties, and instruction that supports
students’ in developing and symbolizing generalizations, may be key to fostering
algebraic reasoning in elementary grades. That is, the intervention students’ success
in representing the property and justifying why the property holds true for all
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numbers is a result of instruction that promoted generalizing arithmetic. This raises
the question of how instruction served to promote generalizing arithmetic. This
question lies at the core of the second part of this study, which seeks to identify the
processes that prompted and substantiated students’ generalizing in this particular
classroom. The results of the first part motivate the second part of the study, which
investigates the nature of instruction in the context of the early algebra intervention.

15.4 Study Part 2: Classroom Practices

Part 2 focuses on classroom situations in which students and their teacher
co-contribute to promoting generalizing and representing and justifying general-
izations. Based on the results of Part 1, we argue that the way in which properties
were taught in the intervention effectively supported students in reasoning alge-
braically about the Commutative Property of Addition. In response to the findings
above, the aim of this study is to analyze “algebrafied” instruction (Blanton and
Kaput 2005; Kaput and Blanton 2001), specifically by attending to the ways in
which a teacher’s and students’ actions support generalizing in one intervention
classroom. What is the nature of “algebrafied” instruction? Or more specifically, in
what ways do a teacher and students support generalizing arithmetic in one inter-
vention classroom? This is the research question for Part 2 of this study.

15.4.1 Setting and Participants

The sample consists of the participants in the Grade 3 intervention classroom
reported on in Part 1 of this study. Data for the second phase of analysis were the
videotaped intervention lessons.

15.4.2 Data Analysis

Understanding the processes and interactions that foster generalization is critical to
supporting students’ generalizing (Ellis 2011). We integrated into our analysis
Ellis’s seven types of generalizing-promoting actions (see Table 15.4) as a
framework to draw attention to the actions that contributed to generalization. The
categories of generalizing-promoting actions are not mutually exclusive; further-
more, we view generalizing-promoting actions and generalizing actions (see
Table 15.1) not as mutually exclusive, but rather as interactive and interchangeable
actions. Then, in a later phase of our analysis, consistent with Ellis’s (2011) con-
ceptualization of generalizing as a situated and dynamic process, we consider the
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interaction between generalizing-promoting actions and the generalizations that
were the result of generalizing-promoting actions and generalizing actions.

Using Ellis’s (2007) taxonomy of generalizing actions (Table 15.1) and the
framework of generalizing-promoting activity (Table 15.4), we analyzed classroom
video and transcripts to make sense of how students engage in the act of gener-
alizing. After watching the video recoded lessons, we read the associated transcript
and used Ellis’s categorizations to identify and label instances of generalization.

Generalizing actions (GA) represent the mental actions of relating ideas,
searching for similar ideas or extending ideas towards generality; they are inferred
from a person’s activity or talk. For instance, relating might occur if students relate
two or more models that they have constructed with unifix cubes. Searching might
occur if students repeatedly compute arithmetic expressions, reversing the order of
the numbers each time, in search of a pattern or relationship. Extending might occur
if students identify a pattern when repeatedly computing arithmetic expressions and
extend the idea to all cases by replacing the particular numbers with variables.

Generalizations (G), that is, final statements of generalization, which Ellis
(2007) refers to as reflection generalizations, include for instance, identifying a
general pattern when looking at multiple expressions (e.g., 3 + 5, 5 + 3, 2 + 6,
6 + 2…). These can be characterized according to identification or statement,
definition, and influence. Identification or statement involves determining and
articulating “a general pattern, property, rule, or strategy” (Ellis 2007, p. 245).

Table 15.4 Generalizing-promoting actions (adapted from Ellis 2011)

Generalizing-promoting actions

Publicly generalizing
This may involve—(a) creating an association between two or more problems, objects,
situations, or representations; (b) identifying an element of similarity across cases; or
(c) expanding a pattern, idea, or relationship to reach beyond the case at hand

Encouraging generalizing
This may involve—(a) prompting the formation of an association between two or more entities;
(b) prompting the search for a pattern or relationship; (c) prompting the expansion beyond the
case at hand; or (d) prompting the creation of a verbal or algebraic description of a pattern or rule

Encouraging sharing of a generalization or idea
This may occur as formal or informal requests for sharing broadly or restating ideas

Publicly sharing a generalization or idea
This may occur as revoicing another member’s generalization or publicly validating or rejecting
another member’s generalization

Encouraging justification or clarification
This may involve asking members to clarify a generalization, describe its origins, or explain why
it makes sense

Building on an idea or a generalization
This may take include refining an idea or using it to create a new idea, rule, or representation

Focusing attention on mathematical relationships
This may entail directing others’ attention to specific mathematical features of a problem or
activity
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Definition involves recognizing and describing the common characteristic of a
class, pattern, or other situation. Influence involves applying a previously con-
structed reflection generalization to a new situation.

Generalizing-promoting actions (GP) are activity or talk that seems to support
the process of constructing or refining a generalization (Ellis 2011), for instance,
prompting students to identify the similar structure of two or more equations. These
include publicly generalizing, encouraging generalizing, encouraging sharing of a
generalization or idea, encouraging justification or clarification, building on an idea
or a generalization, and focusing attention on mathematical relationships.

The Grade 3 transcript excerpt below (Fig. 15.5) provides an example of the
initial analysis. In the next iteration, we will re-analyze the instances of promoting
generalization and consider the responses that were made to generalizing actions
and their resulting generalizations so as to illuminate the relationship between these
actions. “GA” indicates a generalizing action. “G” indicates a generalization (we
bolded the specific part that was coded as a generalization). “GP” indicates a
generalizing-promoting action (we italicized the specific part that was coded as a
generalizing-promoting action).

In lines 3 and 4 of Fig. 15.5, the teacher is using the task to encourage gener-
alizing. She asks students “What goes in the blank?” to prompt the formation of a
relationship between the expressions. Tammie responds, and the teacher encourages
justification by asking “why?”. Tammie justifies her claim, and in lines 8 and 9 the
teacher encourages another student to revoice Tammie’s idea. This action is an
example of the generalizing-promoting action of publicly sharing a generalization
or idea and encouraging justification or clarification. Sam responds to the teacher’s
request by introducing a new situation in line 10. By introducing a new situation,
Sam is engaging in the generalizing-promoting action of encouraging relating and
focusing attention on mathematical relationships. The teacher and Sam clarify his
idea in lines 13 through 17. Then the teacher states a generalization, “We have to
have the same amount on both sides” in line 19. The teacher continues by
describing the equation and makes another generalization by stating that the sums
are equivalent, “Because it’s the same numbers…” in line 22. Following the gen-
eralization, she encourages relating and searching by introducing a new idea
(4 + 6 = __ + 4) in lines 25 and 26. She requests justification—a
generalizing-promoting action—in line 29, and Morgan responds with a
generalization.

15.4.3 Results: Study 2

By analyzing the data according to the taxonomy (Ellis 2007) and framework (Ellis
2011), we identified the actions of promoting-generalizing, generalizing, and a new
construct: responding to generalizing. As a result, we conducted a second round of
coding, in which we considered the relationships between promoting-generalizing
actions generalizing actions, and generalizations. In the first subsection, we will
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10
11
12

Sam: Um, it’s the only way it could be even because it says 4 + 6, so the 
only other way to do it would be to change the number that it’s af-, 
like, change 6 to a 7, and change 4 to a 3. [GP/GA] 

13
14
15

Teacher: Okay, so, if there was a 7 over here, we could have put a different 
number in the blank.  But because they already put a 6 here, this was 
the only way to do it.  Do you want to add to that, bud? [GP]

16
17

Sam: Um, 4 + 6 and then there’s a 6 on the other side, because you 
couldn’t put a 3 there because then it would be a whole different 
number. [GP] 

18
19
20
21
22
23
24
25
26
27

Teacher: Good.  That equal sign tells us that the amounts have to be the same, 
right?  We have to have the same amount on both sides [G/GP]. So 
when we’re dealing with the same number, like 6, our only option is 
to put this other number here.  4 + 6 = 4 + 6.  Do you have to add 4 + 
6 to figure out if what you have on the left hand side?  No!  Because 
it’s the same numbers, right? [G/GP]  There’s not a lot of math here.  
We don’t have to know our facts for this problem.  We probably do in 
3rd grade, but we don’t have to, because we know 4 + 6 is the same 
as 4 + 6.  Could I do this?  Would this be okay?  4 + 6 = __ + 4? 
Could I put a 6 here? [GP] 

28 Students: Yes!

29 Teacher: Oh, how come?  How come that works? [GP]

30 Morgan: Because it could be, like, a turnaround fact. [G/GP] 

31
32
33
34

Teacher: Very good, Morgan!  This is a turnaround fact, commutative 
property. [GP]  And we’ll talk about this at some point, you’ll talk 
about this in your 3rd grade classroom, 4 + 6 and 6 + 4, same exact 
thing, just turned around like Morgan said. [GP] Turnaround fact.  
Good job. 

1
2
3
4

Teacher: There was some really great 3rd grade thinking that was going on.  
And I want to talk about it whole-group, because I think it’s really 
worth sharing.  Let’s look at this first one, which was probably the 
easiest for everybody. “4 + 6 = ___ + 6.” What goes in the blank?
[GP/GA] 

5 Tammie: 4.

6 Teacher: Why? [GP] 

7 Tammie: Because that’s the only way it could be even. [GP] 

8
9

Teacher: Okay. that’s the only way that it could be even. Somebody want to 
explain that a little differently? [GP] 

Fig. 15.5 Grade 3 transcript excerpt from first round of analysis
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explain the motivation behind a second round of coding. In the following sub-
sections we will describe the actions that we identified in the second analysis, what
we observed about these actions, and demonstrate how they relate to the transcript
excerpts that support our claims.

15.4.3.1 Motivation for Round 2 Analysis

In the first round of analysis, some actions that we identified fit into multiple
categories of Ellis’s generalizing-promoting actions (2011) and generalizing actions
(2007). Furthermore, we noticed that the actions within an episode and across
episodes occurred in interaction with each other. And lastly, we noticed that certain
types of actions emerged from the same kind of action or prompted the same kind
of action. In particular, we observed how the teacher responded to generalizations.

As before, the transcript below (see Fig. 15.6) was coded using Ellis’s taxonomy
(2007) and framework (2011). In this episode, the teacher began the lesson by
asking students to individually build any length “train” using two different colors of
unifix cubes. She then used as an example one student’s, Mikel’s, train, which had a
length of 7 and was composed of 4 red cubes and 3 yellow cubes, and asked if
anyone had a train that was similar (a term that may have been initially quite vague
for some students) to Mikel’s train.

In line 1 of Fig. 15.6, the teacher encourages relating. Next, in lines 4 and 5
Tommy relates the two trains by creating an association (“switcheroo”) between
them and thereby makes a generalization. Then in lines 7 and 8, the teacher focuses
students’ attention on the mathematical relationship by asking if the trains have the
same number of blocks. After students respond, she encourages them to extend
beyond the case at hand by representing the idea in a new way, as a written
expression. This action prompts Tommy to relate the new idea (the expressions) to
the original idea (the trains). Thus, the teacher’s action in lines 14 and 16 functions
both as encouraging extending and encouraging relating. To close, Tommy
generalizes when he identifies a common characteristic of the trains and the
expressions—“they’re switcheroo.”

After reflecting on our analysis, we felt as though some actions were not
accurately captured by our coding scheme. For example, we mentioned that lines 14
and 16 function as a generalizing-promoting action in two different ways. We also
observed that many of these actions in this episode, but also across episodes, were
related, even inseparable, but we were not accounting for these relationships. For
example, we noticed that lines 4–5, 6–8, 10–12 and 19–20 were closely connected.
In particular, lines 4–5 contain a generalization and lines 6–8 are a response to that
generalization.

We actually began drawing arrows between these actions to indicate the
relationship. Lastly, we felt as though some moments that proved to be important
moments later, for example lines 10–12, were not characterized as significant
according to our analysis. As a result, when we revisited the data we had three
goals. First, we looked at related codes to see if we could conflate previous
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categories of activity into a new category. Second, because we observed that actions
within and across episodes were sometimes related, we reconceptualized episodes
as situations that could become objects for relating themselves. This process
enabled us to code actions that seemed insignificant in the moment, but later played
an important role in developing or refining a generalization. Lastly, because we
noticed that certain actions were connected to other actions we focused on the
interrelatedness of activity.

Although we do not elaborate on this finding, we feel as though it is worth
noting that many generalizing-promoting and generalizing actions observed in this
classroom began with or involved relating particulars—either situations or objects
(such as equations). Interestingly, this finding is consistent with Ellis (2007). In her
2007 paper on generalizing actions and generalizations, Ellis categorizes students’
final statements of generalization and refers to these statements as reflection gen-
eralizations. In the teaching episodes we analyzed, the goal of instruction was to

1 Teacher: Ahh.  Maddie has a train similar to this.  Maddie, what does your 
train say? [GP] 

2 Maddie:  4 yellow and 3 red. 

3 Teacher: 3 reds. So, do these trains match each other? What do you think, 
buddy? [GP] 

4
5

Tommy: No, because they, because they, because they switcheroo, because 
the yellow’s 4 and the red is 3 and then the 4 is red and then the 
yellow is 3. [G/GP] 

6
7
8

Teacher: Good, you noticed something that’s happening, but can I ask you 
something?  You said, no these don’t match.  Do they have the same 
amount of blocks in each of the trains? [GP]

9 Students:  Yes.

10
11
12

Teacher: Yes. So they’re good partners.  But let’s write what you just said.  
You said they’re switcheroo.  So, I think it was Maddie, but I just 
switched them in my head.  Maddie, is that yours, 4 yellow? 

13 Maddie:  Yeah.

14 Teacher: How would we write an, how would we write an expression for this 
train? [GP] 

15 Maddie:  4 + 3

16 Teacher: Good.  And let’s stop there.  And Mikel, what could we say for your 
train? [GP]

17 Mikel: 3 + 4 

18 Teacher: 3 + 4. And what did you say about these expressions, buddy? [GP]

19
20

Tommy: They, they’re, they’re, they just switcheroo because 4 is on the, 
because red is 4 and the 3 is yellow and the 3 is 4…[G/GP] 

Fig. 15.6 Grade 3 transcript excerpt motivating the need for interrelatedness analysis
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generalize the Commutative Property of Addition. This generalization corresponds
to Ellis’s reflection generalization of identifying sameness or a general principle.
Moreover, Ellis argues that the reflection generalization of making a statement of
sameness often emerges from the generalizing action of relating (Ellis 2007,
p. 245), which was prevalent in this classroom.

15.4.3.2 Round 2 Analysis

After our first round of analysis we revisited the data in a second round of analysis
that focused on the interrelatedness of activity. Through the iterative analysis, we
identified a continuous and dynamic cycle of generalizing-promoting and gener-
alizing actions. By dynamic we mean that there are many ways in which the
students and teacher may navigate through the sequence. Each cycle builds on the
previous cycle because generalizations build on previous generalizations.
Furthermore, as the sequence is continuous it increases in sophistication and has a
generative quality. Through the iterations of analysis, we found that (1) general-
ization becomes a platform for further generalization, (2) generalizing-promoting
activity can become the object of further generalizing-promoting activity, and
(3) generalizing is generative in nature.

(1) Generalization becomes a platform for further generalization.

For instance, in the following classroom episode Kyle’s generalization is the basis
for another generalization. Note that the interaction described below is occurring in
a whole class discussion and the actions identified in brackets refer to the new
framework of interacting generalizing-promoting actions (see Fig. 15.7), which is
introduced in the following section.

Teacher: Let’s think about this. If you have 3 + 2 like we had, 3 + 2, and 2 + 3,
so you have 3 + …you’re adding 3 + 2 on this side and you have the
same numbers on this side, what happens? [action a]

Kyle: Um, it’s a true equation. [action e]
Teacher: It’s a true equation. That’s good. Why is it a true equation? [action a]
Kyle: Because there’s a, there’s the same amount on the equal sign, and if

there’s the same amount on the equal sign it’s true. [action g]
Teacher: All right. I think I know what you’re saying. Tell me if this is it. “Then it

is a true equation because you have the same amount on both sides.”
[action c1] Right?

Kyle: Mmhmm.

Kyle generalizes when he says “if there’s the same amount on the equal sign it’s
true.” Later when students represent the Commutative Property of Addition using
variables—another generalization—Kyle’s generalization becomes an object of
generalization itself because students are able to relate Kyle’s generalization to
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other generalizations or equations or instances that represent the Commutative
Property of Addition to construct a formal mathematical representation using
variables (e.g., a + b = b + a). This is evident in the previous transcript (Fig. 15.6),
which actually occurred after Kyle’s generalization. For example, Tommy creates
an association, which he refers to as “switcheroo,” by building on Kyle’s idea.
Specifically, he connects the particular situations for which Kyle generalized about
with the particular situations, which were constructed using the unifix cubes.

The episode with Kyle is also an example of relating particulars. As noted,
according to Ellis (2011), one way to promote generalization is to encourage
relating particulars. In the classroom episode above, students relate particular
instances to build a generalization (Fig. 15.7, action a); that generalization becomes
an object for relating and thus constructing future generalizations (action g leads to
action a).

Through the iterative analysis, we identified a cycle of action in this particular
classroom; in this cycle are actions that promote generalizing, then generalizing
occurs, and the generalizing itself becomes an action that promotes further gener-
alizing. The cycle is a framework of interacting that illustrates actions and types of
talk observed in this classroom. While some actions emerge from a certain action or
prompt the same action, the framework is not absolutely linear. In no cases did we
observe all actions (a–e in Fig. 15.7) in the order of the framework.

Fig. 15.7 The framework of interacting generalizing-promoting actions
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(2) Generalizing-promoting activity can become the object of further generalizing-
promoting activity.

Generalization often prompts further generalization. In some instances, it was
evident that students were engaging in generalizing-promoting actions, but the
teaching episode did not result in a generalization; instead the episode produced an
idea used for relating, which prompted future generalization. The following tran-
script was used previously to demonstrate the first round of coding. We use the
same transcript again to demonstrate our point and to provide an example of how
the second round of analysis enhanced our understanding of students’ generalizing.

As previously explained, the teacher began this lesson by asking students to
individually build any length “train” using two different colors of unifix cubes. She
then used one student’s, Mikel’s, train, which had a length of 7 and was composed
of 4 red cubes and 3 yellow cubes, as an example. She prompted relating by asking
if anyone had a train that was similar to Mikel’s train (action a).

Teacher: Ahh. Maddie has a train similar to this. Maddie, what does your train
say? [action a]

Maddie: 4 yellow and 3 red. [action b1]
Teacher: 3 reds [action c1]. So, do these trains match each other? What do you

think, buddy? [action d]
Tommy: No, because they, because they, because they switcheroo, because the

yellow’s 4 and the red is 3 and then the 4 is red and then the yellow is 3.
[action e]

Teacher: Good, you noticed something that’s happening [action c1], but can I ask
you something? You said, no these don’t match. Do they have the same
amount of blocks in each of the trains? [action d]

Students: Yes.
Teacher: Yes. So they’re good partners. But let’s write what you just said. You

said they’re switcheroo. So, I think it was Maddie, but I just switched
them in my head. Maddie, is that yours, 4 yellow? [action a]

Maddie: Yeah.
Teacher: How would we write an, how would we write an expression for this

train? [action f]
Maddie: 4 + 3 [action b1]
Teacher: Good. And let’s stop there. And Mikel, what could we say for your

train? [action a]
Mikel: 3 + 4 [action b1]
Teacher: 3 + 4. And what did you say about these expressions, buddy? [action a]
Tommy: They, they’re, they’re, they just switcheroo because 4 is on the, because

red is 4 and the 3 is yellow and the 3 is 4…[action e]

Tommy relates the two trains and makes an observation when he describes the
trains as “switcheroo.” In response, the teacher validates Tommy’s observation and
helps to clarify his claim (actions c1 and d). She then encourages the class to build
on the observations by representing them in a new way, as a written expression
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(action f), and prompts Tommy to relate the new idea (the expressions) to the
original idea (the trains) (action a). Tommy identifies a common characteristic of
the trains and the expressions—“they’re switcheroo” (action e).

As noted, this transcript was previously presented to demonstrate our data
analysis process. By applying the new framework, the framework of interacting
generalizing-promoting actions (Fig. 15.7), to this transcript we are able to high-
light potential implications for instruction. In this instance, the new framework
suggests that a productive next step would be for the teacher or an activity to
prompt relating, searching, or extending by building on Tommy’s generalization
(action a). For example, the teacher might recommend that students search for other
instances of “switcheroo” by encouraging them to test particular instances with
other operations. Then she might suggest that students relate these particular
instances, aiming to extend the application of the concept of “switcheroo” to
multiplication. Not surprisingly, since the framework emerged from these data, we
observe the teacher taking this approach.

(3) Generalizing is generative in nature.

The teacher uses the conversation about “switcheroo” to prompt extending (action
a) when she asks students to describe what they noticed by making a conjecture, or
a “math statement” (action f). A student makes a generalization by stating the
Commutative Property of Addition in words when she says, “If you are adding two
numbers and you have the same numbers on the other side of the equal sign, then it
is a true equation because you have the same amount on both sides.” The teacher
writes the statement on the board and pushes students to clarify the meaning of the
statement (action c1). The teacher continues to build on the generalization by asking
students to think about representing the generalization in a different way (action
g leads to action f). Without being prompted to use variable notation, one student,
Una, surprises the teachers (the intervention teacher and the classroom teacher who
happened to be present) by suggesting that letters replace the specific numbers to
represent that the conjecture works for all numbers.

Teacher: How could we represent that this will work for all numbers all of the
time [action a and f because the action is stemming from g]? So for any
number that this conjecture that we wrote is true, and our conjecture
was: “If you have two numbers on the left-hand side of the equal sign
and you’re adding them, and the same two numbers on the other side but
in a different order, then it’ll be a balanced equation because you have
the same amount on both sides,” right? Una, do you think you could
already do it today?

Una: Yes. e + a = a + e. [teacher writes e + a = a + e] [action g]
Teacher: Okay. So. Ms. O [the classroom teacher] just got blown away over

there.
Ms. O: I almost fell off this little seat.
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Teacher: She almost fell off her chair. Almost down. Okay, let’s look at this. Let’s
look at what Una wrote. “e + a = a + e.” Una, talk to me about this.
[action c2]

Una: Um, the e stands for one number and the a stands for the other number
and the a and the e on the other side stand for the same number except I
changed it to a + e instead of leaving it e + a. [action d]

Teacher: Okay. So talk to me about this. Why did you choose to use two different
variables? I agree with you. Why’d you do that? [action c2]

Una: Because if I did the same, because if I did um, one, both of, one letter on
both sides it would be the same number and it wouldn’t be a turnaround
fact, but if I did two letters it would be different, it would stand for
different numbers, so it would be a turnaround fact. [action d]

Teacher: Good. So what you’re saying is you chose an e and an a because you
wanted to represent two different values, and you wrote them in a
different order, e + a and a + e, because you wanted to show that you
turned them around. Una, slap me five. Nice job. Do you guys agree
with what Una wrote?

Students: Yes.
Teacher: Yep. Could Una use different letters if she wanted to? [action f]
Students: Yes.
Teacher: Yep. She could do different combinations of letters.

The teacher responds to Una’s suggestion by requesting clarification (action c2).
After Una clarifies her reasoning (action d), the teacher prompts students to build on
Una’s idea by discussing the possibility of representing Una’s idea a different way
in the same form (action f). Each generalizing-promoting and generalizing action in
these episodes contributed to Una’s final statement in which she represented an
arithmetic property with variable notation. Furthermore, Una’s generalization can
serve as a platform for future generalization.

15.4.3.3 Discussion: Part 2

The series of teaching episodes presented here is but one example of the pattern
identified in this classroom. In sum, we have presented a framework that represents
how generalizing-promoting actions and generalizations occurred in relation to each
other in this classroom. We observed that generalizing-promoting actions and
generalizations interact in a generative cycle, and the cycle is generative because it
is continuous and each action builds on a previous action. Thus, actions in the cycle
increase in sophistication and generalizing becomes a platform for further
generalizing.

In the first round of analysis in Part 2 we learned that some actions could be
characterized as contributing to generalizing in multiple ways and that actions
interacted within an episode and across episodes. In the second round of analysis,
we observed a cycle of actions that promote generalizing, and learned that
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generalizing itself becomes an action that promotes further generalizing. The first
round of analysis supported Ellis’s (2007) taxonomy of generalizing actions and her
framework for generalizing-promoting activity (2011). Then by attending to the
interrelatedness of actions, we built on Ellis’s work by adding the action of
responding to generalizations.

15.5 Conclusion

The results of this study motivate future research questions. For instance, prompting
relating, searching, or extending was identified frequently in this classroom.
Sometimes prompting occurred in response to a generalization; this was a novel
finding. We consider prompting a critical action because it initiates a cycle of
generalizing actions. Thus, research on prompting relating, searching, and
extending has a strong potential to influence the practice of teaching. Questions that
researchers might explore are: In what ways do students prompt relating, searching,
or extending? Are certain types of prompting more mathematically productive?
How are certain types of prompting related to the generalization they promote?
What is the nature of tasks that prompt relating, searching, or extending?

We argue that the results of this study have a high-impact potential to inform
instruction. We suggest that the framework of interacting generalizing-promoting
actions be viewed as a starting point for research on supporting mathematically
productive generalizing in the elementary classroom. Moving forward, we hope that
researchers will test, scrutinize, and refine the framework and propose that a tested
and refined version of this framework could have direct implications for educators.
For instance, such a framework might be applicable to designing and planning
lessons that promote generalizing. However, we recognize that engaging in actions
that are consistent with this framework does not guarantee generalizing will occur.
We also recognize that there are many ways to support generalizing, and that this is
only one approach.

We hope that future research explores this avenue and aims to uncover other ways
to support generalizing because research in this area is critical to advancements in
mathematics education. Education, in general, is “aimed at helping students develop
robust understandings that will generalize to decision making and problem solving
in other situations, both inside and outside the classroom” (Lobato 2006, p. 431). To
this end, generalization is at the core of research on learning. Furthermore, the
process of generalizing a set of particular instances, and justifying and formalizing
the generalization, are fundamental to mathematics (Kaput 1999). Understanding
how students generalize “will help us understand how students enter into the spe-
cialized disciplinary discourse of mathematics” (Jurow 2004, p. 280). Thus, we view
research on mathematical generalization as relevant to all ages of students and levels
of mathematics and consider research on generalization especially productive. Such
research contributes to knowing how students learn the authentic thinking practices
of mathematics by moving “away from the predominant preoccupation with
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numerical calculations,” and placing the “focal emphasis on typical and important
ways of mathematical thinking” (Dörfler 2008, p. 159).
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Chapter 16
Scaffolding Teacher Practice to Develop
Early Algebraic Reasoning

Jodie Hunter, Glenda Anthony and David Burghes

Abstract In recent years there has been an increased emphasis on algebraic rea-
soning in primary classrooms. This includes introducing students to the mathe-
matical practices of making conjectures, justifying, and generalizing. Drawing on
the findings from a classroom-based case study, this chapter provides an exemplar
of how professional development can lead to shifts in teacher practice to develop a
‘conjecturing atmosphere’ in the classroom. The findings affirm the important role
of the teacher in introducing student-related mathematical practices. Careful task
design and enactment, teacher questioning, and noticing and responding to student
reasoning were all key elements in facilitating students to make conjectures, justify,
and generalize.

Keywords Algebraic reasoning � Primary school � Professional development
Teacher change

16.1 Introduction

Important changes have been proposed for mathematics classrooms of the 21st
century in order to meet the needs of a “knowledge society.” A key aspect of
proposed changes is greater emphasis on the teaching and learning of early algebra

J. Hunter (&)
Massey University, Auckland Campus, Private Bag 102904,
North Shore, Auckland 0745, New Zealand
e-mail: j.hunter1@massey.ac.nz

G. Anthony
Massey University, Manawatu Campus, Private Bag 11 222,
Palmerston North 4442, New Zealand
e-mail: g.j.anthony@massey.ac.nz

D. Burghes
Plymouth University, Drake Circus, Plymouth, Devon PL4 8AA, UK
e-mail: david.burghes@plymouth.ac.uk

© Springer International Publishing AG 2018
C. Kieran (ed.), Teaching and Learning Algebraic Thinking
with 5- to 12-Year-Olds, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-68351-5_16

379



in primary classrooms (Blanton et al. 2016; Carpenter et al. 2003). Mason (2008)
identifies algebraic reasoning as an essential type of thinking for “participation in a
democratic society” (p. 79). The design and enactment of tasks along with specific
pedagogical actions are important factors to develop early algebraic reasoning in the
classroom. When existing curriculum materials are used, teachers need to recognize
and adapt materials to exemplify opportunities and enact planned tasks in such a
way that algebraic reasoning occurs (Blanton and Kaput 2005). Alternatively,
teachers may purposefully design tasks to elicit aspects of algebraic reasoning. In
addition to developing tasks, teachers need to recognize spontaneous opportunities
for algebraic reasoning during enactment across a range of tasks. This can present
challenges for primary teachers who have often not had experience in using ped-
agogical actions that facilitate algebraic reasoning (Blanton and Kaput 2005)

Creating a classroom culture that focuses on justification and generalization is
not an easy task for a number of reasons. Firstly, there are considerable challenges
related to the difficulties that students may encounter in both constructing and
justifying generalizations. These challenges are related to a lack of understanding of
generality along with difficulties with mathematical language and symbolism, and a
lack of problem-solving skills necessary to construct an argument (e.g., Bieda et al.
2006; Callingham et al. 2004; Chick 2009). Secondly, many teachers themselves
may not have had experience in constructing and justifying generalizations or
promoting these practices in their own classrooms. In classrooms where frequent
viable algebraic reasoning opportunities occur, students make purposeful conjec-
tures, construct mathematical arguments, justify ideas, use age-appropriate proof,
and generalize their ideas (Bastable and Schifter 2008; Blanton and Kaput 2005).
Mason (2008) terms this the development of a ‘conjecturing atmosphere’ where-
upon an ongoing expectation is that generalizations will be expressed and treated as
conjectures, and then justified or disproved. Traditionally in mathematics class-
rooms, the space for students to generalize has been constrained because as Mason
(2008) maintains it is often the teacher who provides the examples, cases, and
methods during lessons.

Within the field of early algebra, previous research studies have typically
focused on either professional development for teachers (e.g., Blanton and Kaput
2008; Franke et al. 2008; Jacobs et al. 2007) or shifts in the classroom practices and
the consequent student understanding as early algebraic reasoning is introduced
(e.g., Bastable and Schifter 2008; Blanton and Kaput 2005). The purpose of this
chapter is to bridge these two areas of research by linking the professional devel-
opment experiences of one teacher with the shifts in her classroom practice. Drawn
from a larger study involving qualitative case studies of six teachers, we provide an
account of this teacher’s journey in shifting her practice to optimize algebraic
reasoning opportunities over a school year. Specifically, we focus on this teacher to
explore the following two key research questions:

(1) How can professional development scaffold teachers to identify and use
opportunities to engage students in making conjectures, justification, and
generalization?
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(2) What pedagogical strategies and teacher actions support students in making
conjectures, justification, and generalization in primary classrooms?

Before presenting the research findings we provide a summary of the research
literature that informed the initial design of the professional development focus. In
particular, we review what is known about effective professional development and
the teacher’s role in developing opportunities for students to engage in algebraic
reasoning.

16.2 Literature Review

16.2.1 Effective Professional Development for Teachers
in Early Algebra

Teachers take a critical role in reforming classroom practice by the use of peda-
gogical actions that facilitate algebraic reasoning and through the development of
norms that support classroom and mathematical practice. However, many teachers
themselves have had little experience with the classroom practices and rich, con-
nected types of algebra that support integration of algebraic reasoning into primary
classrooms (Blanton and Kaput 2005; Franke et al. 2008). Consequently, teachers
require lengthy and in-depth support across many components of their daily
practice. It is important to cultivate professional development experiences that both
re-conceptualize algebraic reasoning for teachers and also support them to engage
with the types of algebraic reasoning experiences that are relevant to primary school
students (Franke et al. 2008). Effective professional learning is situated in practice.
Ghousseini and Sleep (2011) note that “learning in and from practice requires being
able to see, hear, and understand the many details of classrooms (e.g., the content,
the students, and the work of the teacher) and use this knowledge to analyze and
improve one’s own teaching” (p. 148). These researchers maintain that effective
practice-based professional development uses representations (activities, exemplars,
and tasks) that engage learners (the teachers) with a particular representation of
practice, for example, developing algebraic reasoning, and then supports the
teachers as learners to become a deliberate user of this practice.

The findings of research studies that have investigated effective professional
development (e.g., Back et al. 2009; Earley and Porritt 2009) and those studies that
have specifically investigated teacher development programs focused on algebraic
reasoning (e.g., Blanton and Kaput 2003; Franke et al. 2008; Koellner et al. 2011;
Schifter et al. 2008a) provide us with insight into the important elements of
effective practice-based professional development. These studies highlight the key
indicators of effective continuing professional development to support the devel-
opment of algebraic reasoning as: (1) opportunities to develop learning commu-
nities; (2) a focus on student learning and understanding; and (3) the facilitation of
reflection on teaching practice.
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16.2.1.1 Opportunities to Develop Learning Communities

A key aspect of effective professional development is offering teachers the
opportunity and space to collaborate and build a strong professional community
(Back et al. 2009; Earley and Porritt 2009; Franke et al. 2008; Koellner et al. 2011).
For improved learning for students to occur, teachers need to have opportunities
and reasons to question their practice through intentional inquiry (Ghousseini and
Sleep 2011; Jaworski 2008). The use of inquiry as a tool within a community can
enable teachers and educators to explore key questions and issues in practice.
A community of inquiry develops when the use of inquiry shifts from being a tool
to becoming a ‘way of being’ through which the participants in a community
develop their practice (Jaworski 2008). Examples of how a community of inquiry
can be developed are evident in research studies (e.g., Blanton and Kaput 2008;
Franke et al. 2008; Jacobs et al. 2007; Koellner et al. 2011) that report on the
principles of effective professional development in early algebra. Common features
of these successful case studies are the facilitation of reflection on mathematical
understandings, student thinking, and instructional practices.

16.2.1.2 A Focus on Student Learning and Understanding

Teacher knowledge is recognized as key to effective teaching, both within early
algebra and in a wider context (Askew et al. 1997; Blanton and Kaput 2008;
Shulman 1987). Solving and analyzing tasks and predicting student responses
during professional development offers teachers the opportunity to develop peda-
gogical and specialized content knowledge required for teaching. For example,
Franke et al. (2008) report on an aspect of their professional development where
teachers worked collaboratively to create a written conjecture about commutativity,
edit, and justify it. By working through the process of justification, teachers were
both able to consider the arguments that students may use but also reflect on their
own proof schemes. The use of tasks such as these during professional development
also offers opportunities for teachers to understand how to develop specific aspects
of algebraic reasoning.

16.2.1.3 The Facilitation of Reflection on Teaching Practice

A key element of professional learning that facilitates change such as the cultivation
of early algebraic reasoning in the classroom is teacher reflection on practice (Back
et al. 2009; Ghousseini and Sleep 2011; Jacobs et al. 2010; Schön 1987). The first
essential step in developing the capacity to reflect on practice is that of noticing. As
Jacobs et al. (2010) note, “noticing is a common act of teaching” (p. 169).
However, to develop expertise within a profession, it is important to learn to notice
relevant phenomena in a particular way (Jacobs et al. 2010; Schön 1987). This
process of learning to notice is only developed through engaging with the act of
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noticing. It requires both knowledge of the relevant aspects to notice within a
situation and the ability to be aware of them and respond appropriately while
engaged in the act of teaching (Franke et al. 2008; Jacobs et al. 2010). Within the
context of early algebra, professional development activities need to facilitate
teachers to develop their understanding of the pedagogies they are using, the
mathematical content involved, and the ways in which students make sense of
algebra. Furthermore, teachers also need to develop a disposition of inquiry and
reflect how their own practices are aligned or are in contrast with the ideas of
pedagogies from research into early algebra, which they are seeking to adopt
(Ghousseini and Sleep 2011).

16.2.2 Teachers’ Roles in Developing Opportunities
for Algebraic Reasoning

Within the classroom, in order to develop a conjecturing atmosphere, the teacher
takes an important role by both planning opportunities for generalization and
drawing on spontaneous opportunities during task enactment or discussion. Blanton
(2008) proposes a model that characterizes the five components of building a
generalization in the classroom. These include facilitating students to (1) explore a
mathematical situation; (2) develop a conjecture or mathematical statement; (3) test
the conjecture; (4) revise the conjecture if it is not true; and (5) develop the con-
jecture into a generalization if there is sufficient evidence to show it is true.
Research studies (e.g., Carpenter et al. 2003, 2005; Fosnot and Jacob 2010; Schifter
et al. 2008b) have explored how tasks may be purposely designed to elicit con-
jectures and generalizations from students. For example, Carpenter et al. (2005)
describe how true and false number sentences can be used to facilitate student
exploration of the properties of zero. The students were initially provided with a
false number sentence (e.g., 78 − 49 = 78), which provoked an in-depth discussion
of the property of zero in relation to subtraction. The teacher introduced number
sentences involving addition and subtraction with large numbers (e.g.,
78956 − 0 = 78956 and 0 + 5869 = 5869) to press the students to articulate gen-
eralizations about the properties of zero in addition and subtraction.

As an alternative to purposefully designed algebraic tasks, other researchers have
noted the value of supporting opportunities for algebraic reasoning across a wider
range of mathematical tasks and activity. That is, by carefully monitoring student
observations and questions during small group work, teachers can identify student
conjectures for exploration and draw on this as a spontaneous opportunity. For
example, Schifter et al. (2008b) report on a classroom episode where young stu-
dents were working to generate ways to make 10. As the teacher observed the
students working, she noted that many of them were utilizing the commutative
principle, which they had informally termed ‘turn arounds.’ Noting that some
students were making statements such as, turn arounds always work, prompted the
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teacher to use this to lead a discussion and probe understanding of additive
commutativity.

Research has identified other pedagogical actions that are also important during
task enactment and large group discussion to facilitate student engagement in both
mathematical practices and algebraic reasoning. For example, when launching a
task to the class, teacher questioning can be used to specifically focus student
attention on the patterns and relationships within the task (Smith and Thompson
2008). Following the development of conjectures such as described above, students
then need opportunities to engage in testing whether they are true. This requires the
teacher to position students to agree or disagree based on mathematical arguments
and to facilitate students to use concrete materials and representations to develop
their arguments. For example, Bastable and Schifter (2008) provide an example of a
teacher positioning students and facilitating them to build arrays using unifix cubes
to convince their classmates of the generality of the commutative principle for
multiplication. Further examples are provided in research studies (e.g., Carpenter
et al. 2003; Schifter 2009; Schifter et al. 2008b) that demonstrate how students can
justify conjectures about operations involving odd and even numbers. In these
studies, students represented even and odd numbers using blocks, cubes, or
drawings. They showed the meaning of the operation (addition) through joining the
sets that represented all even or odd numbers and were able to use the structure of
the representation to show the claim would always work. Through engaging stu-
dents in this type of process, they begin to privilege reasoning based on repre-
sentations (Schifter 2009).

16.3 Methodology

The data used within this chapter are drawn from a larger study (Hunter 2013)
involving a year-long professional development and classroom-based intervention
focused on developing early algebraic reasoning in a mathematical inquiry com-
munity. An aim of the larger study was to examine the key pedagogical strategies
and classroom and mathematical practices that teachers can use to facilitate early
algebraic reasoning in the classroom.

Participants in the study included two groups of primary teachers, one group of
three teachers from England and the other group of three teachers from the Channel
Islands. The schools in the study used the Mathematics Enhancement Programme
(MEP) curriculum material. The MEP curriculum material was developed in order
to improve mathematics teaching and learning in the United Kingdom by drawing
on findings from the Kassel project (Burghes 2004). It includes resources such as
lesson plans, workbooks, and online inter-active resources. Many of the tasks in the
curriculum material have implicit opportunities to facilitate students to engage in
algebraic reasoning due to their structural basis.

The focus in this chapter is on one teacher and her 25 Year-Three students (7- to
8-year-olds) from a semi-rural school in the Channel Islands. The teacher was an
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experienced teacher who was interested in strengthening her ability to develop early
algebraic reasoning within her classroom. This teacher was selected as an exem-
plary case study. The changes that she undertook and shifts in practice observed
were similar to half of the teachers who participated within this study (three out of
six participants).

The study was split into four phases, the first, which was in the year prior to the
beginning of the professional development, and the remaining three phases, which
corresponded with the three terms over the school year during which the profes-
sional development in the form of cluster workshops was undertaken. These
comprised of a mix of half-day or full-day workshops when the participating
teachers were released from their classroom teaching. There was one full-day
workshop in term one, two full-day workshops in term two, and one full-day and
two half-day workshops in term four. The focus of professional learning during the
workshops consisted of four separate but related components: (1) understanding of
algebraic concepts, (2) task development, modification, and enactment, (3) class-
room practices, and (4) mathematical practices.

Data gathering included classroom observations prior to and during the
year-long professional development, video records of professional development
meetings, audio recorded interviews, post lesson observations, detailed field notes
of 23 lessons with each teacher, and classroom artifacts. The results reported in this
chapter draw on the data from the professional development meetings related to
developing classroom and mathematical practices to provide a context for the
changes in the classroom. Other key sources of data include the classroom obser-
vations and audio-recorded teacher interviews.

Data from the classroom observations were analyzed and used to inform and
shape the overall framework of teacher actions that emerged within the teacher over
the three phases of professional development—a framework that aimed at sup-
porting the development of early algebraic reasoning in her students. Ongoing data
analysis supported the revision of the professional development. For example, from
analysis of the classroom observations and discussions during study group meet-
ings, it was observed that the teachers needed professional development in facili-
tating students to generate and explore conjectures. In response a task was designed
to enable the teachers to explore possible conjectures that students would make and
how these could be justified.

Retrospective data analysis used the QSR International (2012) NVivo 10 qual-
itative software program. This included multi-levels of coding using both parent
and child nodes. The initial codes were developed from a variety of sources
including research literature, the initial viewing of the video records, and the
observational and reflective field notes. Repeated viewing of the videos and
re-reading of the transcripts and field notes confirmed or refuted the initial
hypotheses and codes and other hypotheses and codes were developed as necessary.

Two central aspects that constituted the development of the framework of tea-
cher actions and which are described shortly are the following: (1) teacher actions to
develop and modify tasks and enact them in ways that facilitate algebraic reasoning
and (2) teacher actions to develop mathematical practices in students that support
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the development of their algebraic reasoning. Both types of teacher actions are
summarized in a table within each of the three sections that focus on the
professional-development-related phases of the study and illustrate the changes in
the teacher actions over the course of the study.

16.4 Findings and Discussion

Within this section examples are provided of how the teacher shifted from, on the
one hand, task enactment and lessons that were conducted in a teacher directed,
procedural way, devoid of opportunities for students to engage in algebraic rea-
soning to, on the other hand, enacting tasks and lessons in a way that supported her
students’ engagement in algebraic reasoning. The findings from the four phases of
the study begin with a snapshot of the classroom prior to the professional devel-
opment. Data from the professional development sessions relevant to the devel-
opment of mathematical practices are presented at the beginning of each section.
This is followed by an explanation of the changing teacher actions and an analysis
of classroom episodes to illustrate the shifts in the teacher’s practice toward inte-
grating algebraic reasoning into the everyday mathematics lessons.

16.4.1 Phase One: Prior to the Professional Development

Prior to the professional development, observations of five lessons suggested that
the teacher did not draw on opportunities to develop or enact tasks in a way that
facilitated the students’ engagement in algebraic reasoning. The tasks used in the
lessons were taken directly from the curriculum with no modification and enacted in
a teacher directed, procedural way. Tasks that had the potential to develop algebraic
reasoning were enacted in ways that focused on computation rather than on the
relationships within the task. Opportunities to explicitly identify or examine the
properties of numbers and operations were not drawn upon. For example, in one
lesson the students constructed two alternative solutions that implicitly drew on the
commutative property. However, after recording these on the whiteboard and
asking the students to describe what they had noticed, the teacher then stepped into
offer a brief explanation of the commutative property herself:

Otto: It’s the other way around…it’s, it’s the same but it’s just changed around
Teacher: And that’s one of the really important things in multiplication, isn’t it? It

doesn’t matter if we do two times five or five times two.

During the observations prior to the professional development, there was no
evidence of explicit identification or examination of the properties of numbers or
operations during lessons. This meant that, for students, the properties remained
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implicit and they were not provided with opportunities to develop deep generalized
understanding as advocated by many researchers (e.g., Carpenter et al. 2003;
Schifter et al. 2008b).

16.4.2 Phase Two

16.4.2.1 Learning to Recognize Algebraic Reasoning Opportunities

In the first phase of professional development, there was an emphasis on developing
the teacher’s understanding of the links between arithmetic and algebra. This
included extending pedagogical content knowledge to include the expected pro-
gression of student learning and potential misconceptions related to early algebra.
Key activities were used during the professional development to achieve this. For
example, research articles (e.g., Blanton and Kaput 2003; Carpenter et al. 2000,
2003; Kazemi 1998) were used as multi-purpose tools. The range of articles and
excerpts that were used focused on extending teacher understanding of early
algebra, providing models of classrooms that would support early algebraic rea-
soning, and promoting reflection on current practice. Discussions held after reading
each article required the teachers to respond to questions such as “what did you find
interesting?” or “are there any ideas that you could bring to your classroom after
reading that?” The articles also served the purpose of developing links between
research and classroom practice.

The teacher in this case study used the research articles to reflect on her own
practice. For example, when presented with an adapted framework from Hunter
(2007), which detailed classroom and mathematical practices linked to the devel-
opment of algebraic reasoning, she described how she would use this to analyze her
own practice: I’d like to take this away and highlight the things I think I do all the
time and then look at the things I never do; but then to also go and have a look
because what you think you do, is it really what you do? And look at my philosophy
in terms of my practice. She also used excerpts from research material to develop
her understanding of the areas within the primary mathematics curriculum that had
links to early algebra and noted how she could use the material while planning
mathematics lessons to select and/or modify tasks to focus on early algebraic
concepts.

Further activities in the initial professional development meeting included pre-
dicting and analyzing student responses to algebraic tasks, which could be used in
the classroom. For example, one activity included predicting potential responses to
an open-number-sentence task (e.g., 8 + 6 = __ + 5). The teacher’s initial response
drew on a previously taught computational strategy: My class would look at the left
hand side and the right hand side and then would say we will start with the left
hand side because we could work that out and they would put the 14 above there
and then write the 14 above that and work it out. Following extended discussion
with the other teachers in the study group and further pressing from the researcher,
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she identified a possible misconception related to the equal sign: they might add
them all. She was also able to identify a potential relational strategy (indicating each
part of the equation): So six and the five and then make that nine. In later phases of
the study, the teacher used activities from the workshops such as these to develop
new tasks and modify existing MEP tasks to use during her mathematics lessons.

The second part of the activity involved an analysis of student assessment data
from task-based interviews where students had responded to similarly structured
tasks. Often the student responses demonstrated misconceptions of the equals sign.
The teacher displayed a strong interest in the second part of the activity focused on
analyzing her students’ responses. She engaged in a prolonged analytical discussion
with the researcher and her colleagues to understand what the varying responses
indicated about her students’ reasoning. At the end of the meeting the teacher
requested copies of the student responses so she could analyze these further.
Initially the teacher showed limited insight into student thinking. She needed
opportunities to develop a framework to make sense of students’ algebraic rea-
soning. Teacher knowledge of expected student progressions and potential mis-
conceptions are important factors in developing classrooms with a focus on early
algebra (Franke et al. 2008). As will be illustrated in Sect. 16.4.3.1, the teacher in
this study used this developing understanding in later lessons to modify existing
MEP tasks to specifically address student misconceptions of the equals sign.

The selection, design, and enactment of tasks were a key focus during the
professional development meetings in all phases of the study. In the first part of the
professional development, the group of teachers and the researcher worked together
to examine the MEP curriculum material for links to early algebra content. The
teachers then highlighted these as focal parts of their mathematics lessons and
discussed ways in which the tasks could be enacted to focus on early algebra.
Additionally, the researcher highlighted specific tasks from the MEP curriculum
material to provide ways for the teachers to investigate how the existing tasks could
be modified and further developed.

16.4.2.2 Early Changes to Task Design and Enactment

Following the initial professional development, the teacher undertook specific
actions to shift her task design and enactment and to introduce mathematical
practices that support the development of students’ algebraic reasoning. An over-
view of these actions is shown in Table 16.1.

The teacher began intentionally developing and trialing ways to adapt her
planning to integrate algebraic reasoning into her lessons. She examined MEP
lesson plans and rather than asking students to complete the whole task, she pre-
sented them with those parts of the task that focused their attention on an algebraic
concept. For example, in one lesson the teacher began by using a task involving an
array and two equations (e.g., 3 � __ = 6, 6 � __ = 2) to focus student attention
on the general relationship between multiplication and division:
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Teacher: (records 3 � 2 = 6 and 6 � 3 = 2) Let’s have a look at those, did anyone
notice anything? Three times two equals six and six divided by three
equals two. With your partner, what do you notice about those please?

After the students talked with their partners, she asked a student to say what he
noticed:

Tristan: They’re just the other way around… because the three is in the middle
and the six is at the beginning and at the end.

The teacher then directed the students to examine related equations where the
position of the numerals has changed. However this, and the following teacher
questioning, moved the focus to specific equations limiting the opportunities for
students to further explore the relationship between multiplication and division:

Teacher: So it’s the same digits. Would it work if I put them in any order? If I did
this (writes 2 � 3 = 6 on the board) two divided by three equals six
because I’ve got the same numbers. Just talk that one through with your
partner or what about this one, three divided by six equals two, is that
true? Or six divided by three equals two (writes the different equations
on the board) Are any of those true?

This was followed by further whole class discussion involving individual students
using magnetic counters to model whether each equation was true. By asking the
students to use magnetic counters to solve each equation, their attention was shifted
specifically to calculating answers and thus the focus on the inverse relationship was
lost. In this case concrete material was introduced as a tool to solve the task rather than
as a means of developing an argument and proving or justifying. The lesson concluded
with the teacher writing the equation a � b = c and then stating a conjecture:

Teacher: I have this theory that for every pair of factors and a product I can make
two multiplications and two divisions let’s see if that’s right. With your
partner at Planet X can you see if you can come up with equations for that?

Table 16.1 Developing framework of teacher actions in Phase Two

Teacher actions to develop and modify tasks and
enact them in ways that facilitate algebraic
reasoning

Implement tasks as problem-solving
opportunities

Emphasize student effort to approach and
complete cognitively challenging tasks

Extend or enact tasks to include
opportunities for generalization

Interrogate tasks for opportunities to
highlight structure and relationships

Teacher actions to develop mathematical
practices that support the development of
algebraic reasoning

Require students to explain their reasoning
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Overall, this lesson illustrates how opportunities for the students to develop and
explore their own conjectures and prove and justify their reasoning were missed by
the teacher telling her students the conjecture that she had developed and then
guiding them towards generating equations to match the conjecture.

At this stage of the study, although the teacher had begun to plan for algebraic
reasoning, there were still limited opportunities for engagement with mathematical
practices associated with algebraic reasoning. For example, key mathematical
practices, such as making conjectures and developing generalizations, justifications,
and proofs (Bastable and Schifter 2008; Mason 2008; Selling 2016), were not
established within the classroom during this phase. The teachers’ practice of
seeking examples and cases was promising, but her propensity to offer conjectures
potentially reduced student opportunity to generalize.

16.4.3 Phase Three

16.4.3.1 A Focus on Mathematical Practices that Support
Algebraic Reasoning

Throughout the third phase of the study, a focus was maintained on task devel-
opment and how this related to developing student reasoning in specific areas of
early algebra. In one professional development meeting, the teacher described how
she reviewed class data from the student task-based interviews that had been a focus
in a previous meeting. She noted that many students gave incorrect responses
related to an operational understanding of the equal sign. In response to this, she
began intentionally adapting tasks from the MEP material to focus student under-
standing on the equal sign. Opportunities were given during the professional
development meetings for the teachers to watch and share video clips of how they
were embedding practices aligned with early algebra into their mathematics lessons.
On this occasion, the teacher shared a video clip from her classroom with the group
in which a task (e.g., 36 − 6 = __ + 20 and 24 + 4 = __ − 2) was developed and
adapted to focus student understanding on the equal sign.

During the professional development meetings in the third phase, another key
focus was on the development of mathematical practices. To investigate how
conjectures could be built upon in the classroom, one activity included the devel-
opment and justification of conjectures. The teachers were first asked to brainstorm
conjectures (both correct and incorrect) that they had heard their students make
during lessons. The teacher was able to readily provide a range of conjectures that
she had begun to notice students making during mathematics lessons. These
involved conjectures about identity elements: if you multiply by zero you will
always end up with zero; about odd and even numbers: odd plus even always makes
odd; and even some incorrect conjectures: if you multiply by ten, you add a zero to
the number you are multiplying.
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The subsequent activity began by asking the teachers to reflect on different types
of age-appropriate proof and justification. The initial discussion focused on different
types of justification strategies used by young students, which have been illustrated
in various research studies (e.g., Carpenter et al. 2003; Knuth et al. 2009; Schifter
2009). These included: an appeal to authority, justification by example, and gen-
eralizable arguments using representations. Following this, the teachers were asked
to work together to develop a verbal explanation along with a physical represen-
tation to justify conjectures about odd and even numbers. This led to the teacher
noting the value of using physical representations as tools to facilitate students’
understanding of the structure and properties of numbers: those ones are very
powerful (points to a diagram of multi-link cubes in rows of twos to represent even
numbers) because we counted in twos, so two, four, six, eight; so with the twos you
can just keep going and how to make it odd, you can just put one in.

In a focus group discussion in a following meeting, the teacher volunteered
information about how she was embedding the suggested new and innovative
practices: Duncan made a statement about adding odd and even numbers. I have
always got them to explore that just by finding lots of examples to sort of support it,
whereas this time we actually proved it because we got two little piles of two unifix
[cubes] and little piles of one; and realized visually that if you were adding an even
number to an even number, you will always get an even number because you will
not get any of the individuals, so that was taking it on board to proof because you
could visually see it.

16.4.3.2 Shifts in Task Design and Enactment

The teacher continued to undertake specific actions to shift her task design and
enactment and to introduce mathematical practices. Table 16.2 presents an over-
view of the actions she undertook in the third phase of the study.

In the classroom, the teacher drew on a case study (Carpenter et al. 2003)
presented during a professional development meeting to introduce the mathematical
practices of generalization, justification, and proof. In a purposefully planned
investigation of zero, student attention was drawn to a number sentence that had
been constructed to involve the target number of 20 (e.g., 20 + 0 = 20) and they
were asked to discuss what they noticed. The teacher then facilitated the students to
develop a conjecture and find examples that illustrated the conjecture. Following
this, she pressed them beyond the use of examples as justification by requiring that
they prove their conjectures using a range of concrete materials (e.g., using
counters, drawings). She then asked them to symbolize their generalization. Similar
to the finding of Carpenter et al. (2003), this context provided the teacher with a
rich area to scaffold students to develop and investigate conjectures and general-
izations. It also provided the students with an initial opportunity to use concrete
materials and representations as a means to develop an argument and establish a
general claim.
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Although the teacher had now begun to adapt her task design to include
opportunities to engage students in mathematical practices, at this point in the study
her interventions did not extend to drawing on spontaneous opportunities during
task enactment. For example, when the students referred to odd and even numbers
or other patterns they had noticed, she heard them but did not let these ideas
develop further. In one lesson, a student listened to two solution strategies and
noted that the solution had drawn on the commutative law. Later the teacher
commented on this:

Teacher: I was really impressed that they retained things from last term. You
know Julio was like ‘oh that’s the commutative law.’

Although she had noticed the statement, she had not used the opportunity to engage
students spontaneously in further investigation or discussion.

It was during the latter half of the third phase that the teacher began to recognize
and draw upon spontaneous opportunities, including student-generated conjectures
about the patterns they noticed. For example, in one lesson a student conjectured

Table 16.2 Further development of framework of teacher actions in Phase Three

Teacher actions to develop and modify tasks
and enact them in ways that facilitate algebraic
reasoning

Adapt tasks to highlight structure and
relationships. This may include changing
numbers or extending to multiple solutions

Structure tasks to address potential
misconceptions

Use enabling prompts to facilitate all students
to access tasks

Implement tasks by focusing attention on
patterns and structure

Recognize and use spontaneous opportunities
for algebraic reasoning during task enactment

Teacher actions to develop mathematical
practices which support the development of
algebraic reasoning

Require students to develop mathematical
explanations which refer to the task and its
context

Facilitate students to use representations to
develop understanding of algebraic concepts

Ask students to develop connections between
tasks and representations

Provide opportunities for students to
formulate conjectures and generalizations in
natural language. Leads students in examining
and refining these conjectures and
generalizations

Listen for conjectures during discussions.
Facilitate students to examine these

Require students to use different
representations to develop the clarity of their
explanation
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that dividing by four was the same as finding one quarter of a set. After recording
this initial conjecture, the teacher then asked her students to work in pairs to
investigate the conjecture by exploring what happened when a set of 12 counters
was divided by four. The teacher then used this opportunity to facilitate students to
explore the relationship between different fractional numbers and division. The
whole class discussion began with a student agreeing with a conjecture Paul had
made:

Jasia: (records 1/3 of 12 = 4 and 12 � 3 = 4) It is because one third is three
(points to the denominator) and there is three (points to � 3) here and you
have divided them all by the same; so the same as 12 and 12 divided by
three equals four.

The teacher revoiced the explanation and then asked the students to generalize the
conjecture:

Teacher: Paul wanted to know, his idea was: is dividing by four the same as
finding one quarter. This time we’ve divided by three. Is that the same as
finding one third? Jasia agreed with that and coming back to Paul’s idea,
dividing by four is the same as finding one quarter. Can anyone think
what dividing by n would be the same as?

After further discussion the teacher returned to Paul who had made the original
conjecture:

Paul: Finding one nth.

As this phase of the study progressed, the teacher continued to recognize
opportunities within the curricular material that could be extended through task
design to facilitate mathematical practices. This was then extended to noticing and
using spontaneous opportunities within enacted tasks. This indicates that she was
now beginning to use pedagogical moves described by Smith and Thompson
(2008) and Blanton and Kaput (2005) to develop algebraic reasoning. The teacher
initiated a growing expectation that students would offer conjectures to be tested
and then developed in generalizations. The teacher herself noted this shift in her
practice in a follow-up interview after the lesson: Now I make more conscious
decisions about which bits to go with and which bits to say I’ll come back to you…
Like today, Paul’s idea was that dividing by four is the same as finding one quarter,
so I thought well I’ll get the counters out and see if we can make that link…So
that’s been the shift because we wouldn’t have done that in the past. We’d have
talked about it and then I would have said ‘dividing by four is the same as finding
one quarter. These actions meant that she was beginning to facilitate a ‘conjec-
turing atmosphere’ in her classroom, such as described by Mason (2008) and
others.
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16.4.4 Phase Four

16.4.4.1 Role Played by Collaboration, Discussion, and Reflection

During the last phase of the professional development research project, the teacher
identified the opportunities for collaboration and discussion within the study group
as an important element for her development. She identified the reflective discus-
sion questions and subsequent conversations about embedding algebraic reasoning
and creating a certain classroom culture as a significant driver of changes in her
classroom practice. In the final meeting she linked changes in practice to: the
amount of time we’ve had working together as a three, because it’s been sustained
over the year and it’s been backed up with the reading and the on-going discussion
between the three of us for the year.

In the final set of professional development meetings, the teacher engaged in
reflective discussions about the changes in both her own understanding of algebra
and her classroom practice. She described her previous understanding of algebra as:
the missing number and shoving in an X here. She related to the group that her
school experiences of mathematics had focused on computation and procedures.
She spoke of encountering algebra at teachers college: I got to the first maths
tutorial in the first week and it was that little problem, you know how many moves
to get those three people and they all have to swap places. My maths lady said ‘why
does that work? Show me with algebra’ and I was like ‘oh my god I’m on the wrong
course’. In contrast, the teacher stated that she now viewed algebra as much bigger
than she previously perceived and related algebra to generalization: it’s the way they
think and it’s the way they take something and can take it to a wider context.

Within this broadening perspective it was clear that the teacher’s perception of
algebra had expanded and she now viewed facilitating algebra in the classroom as
encompassing more than just content. Her own lack of experience with algebra
during schooling was her motivation to ensure her students engaged in mathe-
matical practices related to algebra; her increasing expectation that students would
explain and justify was a personal response: if he doesn’t learn to explain and
justify, he will be like me in his first tutorial and think nobody has ever asked me to
justify that before.

She acknowledged the significant shifts in the way her students engaged in
making conjectures and generalizing and the key role she took in developing these
practices: they talk more mathematically, they come up with conjectures; but if they
weren’t asked the same sort of questions, if the language of conjecture and gen-
eralization suddenly stops, then that’s going to filter away from them. The teacher
was also able to identify how the pedagogical content knowledge she was devel-
oping related to early algebra. In particular, she recognized the growth in her
understanding of relational reasoning. At the same time, she knew her growth was
ongoing because she told the group that, while confident with addition type
problems, she still found using relational reasoning to solve number sentences
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involving subtraction challenging. To solve these she had to either draw a picture or
think with concrete materials.

During professional development meetings in this final phase, the teacher was
able to use her developing pedagogical content knowledge to critique the structure
of tasks planned by the group to develop algebraic reasoning with their students.
For example, a task was designed and used by the group with the aim of developing
student understanding of the equal sign by asking students to record equations
involving the target number 27 (e.g., 27 = 10 + 10 + 7 = 40 − 13 = 27 + 5 − 5).
Following this, in another task students were asked to solve true or false number
sentences. While solving the true or false number sentences, it was evident that
some students still did not view the equal sign as representing equivalence. After
the lesson the teacher critiqued the tasks, telling the group: I think maybe because
we historically present children with a lot of things with the answer just being one
box, that sort of one where they had to look maybe provoked that thinking a little bit
more. You know at the beginning where they said something, something equals and
then the next child does, equals, I don’t know … when I look at it now I think it is a
fantastic activity and a fantastic assessment… but maybe they are just seeing and
the next one, and the next one, and now it’s my turn and they don’t actually see the
equal sign, whereas this question here and that one here in particular really made
them think about the idea of balance.

16.4.4.2 Classroom Context: Development of a ‘Conjecturing
Atmosphere’

Table 16.3 shows the teacher actions that were introduced during the fourth and
final phase. It is important to note that these actions built upon those previously
established and outlined in Tables 16.1 and 16.2.

The teacher now designed tasks and carefully considered how to enact them in a
way that exemplified opportunities for students to engage in mathematical practices.
She described herself thinking as she planned about how to: draw out the com-
mutative law from this one, or this could be a great discussion point for, like the
other week when we were doing timesing by one, or dividing by zero, get them to
come out with conjectures. During lessons the teacher maintained the expectation
that conjectures would be expressed and proved while facilitating a consistent
expectation for generalization. She used questioning such as: would it work for
different numbers? Or: can I change that into something that would work for any
number?

The teacher also consistently engaged her students in building generalizations in
the classroom. She achieved this by noting the conjectures that students made and
then facilitating the whole class to investigate these. This involved testing and
revising the conjecture and developing it into a generalization. A new expectation
that was developed was that students would justify their conjectures using concrete
materials. For example, a student made a conjecture about dividing by one: It’s just
like you’re getting one group and dividing it by one group so you have already
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done it. If you’ve got a number and you divide it by one, it ends up that number. The
teacher then asked the student to demonstrate and justify this idea using materials:
Show what you mean with counters on the board.

As the teacher’s students gained more experience in justification, they more
readily drew on material to prove their reasoning. For example, using a task
involving the distributive property (e.g., Write the correct sign for 9 � 14 __
9 � 7 + 9 � 7), the teacher facilitated the students to draw on representations to
justify their reasoning. Building on previous work that investigated how relational
reasoning could be used to solve tasks involving the distributive property, many
students began to generalize the distributive property to solve the tasks. The teacher
asked a student to share her explanation (see Fig. 16.1): Seven add seven is 14
[notates an arrow from each seven and writes 14 underneath] and there is a 14
there [indicates 14 on the left-hand side] and they are both times nine so you have
got nine times 14 and nine times 14.

The teacher then asked the students to work in pairs using Misty’s reasoning to
prove whether 9 � 6 = 9 � 3 + 9 � 3. A student began by building an array to
represent 9 � 6. Misty then developed this further (see Fig. 16.2): Because there is
three there [indicates splitting the six rows into three by drawing a line]. There is
three rows there and three rows there and that is just the same as those [points to
9 � 3 + 9 � 3 in the equation] and then it is times nine [points across the rows].

Table 16.3 Further development of framework of teacher actions in Phase Four

Teacher actions to develop and modify tasks
and enact them in ways that facilitate
algebraic reasoning

Recognize and use links to algebra in tasks
across mathematical areas

Implement tasks as open-ended problems

Anticipate student responses that could provide
opportunities for algebra

Recognize and use spontaneous opportunities
for algebraic reasoning from student responses

Teacher actions to develop mathematical
practices that support the development of
algebraic reasoning

Lead explicit discussion about mathematical
practices

Listen for implicit use of number or
operational properties. Use these as a platform
for students to make conjectures and generalize

Facilitate students to represent conjectures and
generalizations in number sentences using
symbols

Ask students to consider if the rule or solution
strategy they have used will work for other
numbers. Consider if they can use the same
process for a more general case

Promote use of concrete forms of justification

Require students to translate between different
representations
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Another key shift in the final phase was that the teacher now consistently drew
upon students’ responses to spontaneously and seamlessly integrate algebraic rea-
soning into the lessons. For example, in one lesson the teacher had asked the
students to think about an efficient method to solve 26 − 8 = ___. A student
responded by saying: you could break it down to six and two. The teacher first
clarified the response: Break what down to six and two and after the student
responded, then pressed for justification: Why have you chosen to break eight down
into six and two? Why not one and seven or four and four? After student discus-
sion, the teacher then asked the student to apply and generalize the strategy to
similar equations: Let’s just go off track a bit, if you were doing 34 take away seven,
with your partner can you just talk about how Millie and the other children would
tackle that?

The consistent focus on the mathematical practices of justification, generaliza-
tion, and proof led to students drawing on previously examined conjectures and
generalizations in their explanations. For example, the teacher asked the students to
investigate what numbers would have a remainder of one when you divided them
by two. A student drew on her understanding of odd and even numbers from
previous discussions: fifteen because if you divided it into twos and it is an odd

Fig. 16.1 Student
representation of the equation

Fig. 16.2 Student
justification of reasoning
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number so you have one left over. Similarly, in a later lesson many students used a
generalization from an earlier lesson, that anything multiplied by zero was zero, to
argue that 6 � 0 + 5 = 7 + 4 was a false number sentence.

Together with shifts in the way that the tasks were implemented and the focus on
algebraic reasoning, there were resulting shifts in how the students engaged in the
classroom mathematics activity. Along with the teacher, the students had also
developed their own algebra ears and eyes and more readily drew upon algebraic
reasoning, using structural aspects and patterns to solve tasks. By carefully moni-
toring and using student reasoning, the teacher developed a ‘conjecturing atmo-
sphere’ as advocated by a number of researchers (e.g., Bastable and Schifter 2008;
Blanton 2008; Mason 2008). Using a similar model to the one that Blanton (2008)
describes, the teacher engaged her students in building and using generalizations by
noting and exploring conjectures.

The teacher introduced an expectation that conjectures would be justified with
concrete material. In this way, the students began to use representations to develop
reasoned, general arguments. Schifter (2009) outlines specific criteria for student
justification of general claims through the use of representation-based proofs.
Examples from the current study meet Schifter’s criteria that the meaning of the
operation (e.g., multiplication) be represented in the manipulative and in the
structure that are both involved and that the proof show that the claim (e.g., dis-
tributive nature of multiplication) would work for all cases. A number of
researchers (e.g., Carpenter et al. 2003; Schifter 2009) argue that facilitating stu-
dents to use concrete material to justify conjectures and explanations enhances
students’ work with proof in later years.

16.5 Conclusion and Implications

This chapter illustrates how professional development can scaffold teachers to
identify and use opportunities to engage students in making conjectures, justifica-
tions, and generalizations. The findings illustrate how the use of specifically
designed professional development activities, reflection on and in practice, and the
collegiality of the professional development group supported the teacher to develop
a classroom context in which a ‘conjecturing atmosphere’ (Mason 2008) was
developed.

Research studies that focus on effective professional development (e.g., Earley
and Porritt 2009; Franke et al. 2008) note the importance of teachers having time
and space to collaborate. This was also important in the development of the tea-
cher’s understanding of early algebra and how to integrate this into mathematics
lessons. The teacher’s actions within the group sessions illustrated that she viewed
change as an on-going collaborative process as she sought feedback from both the
researcher and other study group members. The teacher identified the collegiality
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established through working collaboratively over a long period of time as a sig-
nificant factor in the changes in her practice along with the activities that promoted
reflection on practice.

In the initial phase of the professional development program it was important to
develop teacher awareness of potential student reasoning related to early algebra.
The teacher’s knowledge of the expected progression in student understanding and
potential common misconceptions related to areas of early algebra was developed
in a number of ways. Research articles were used as an early stimulus to develop
her personal understanding of early algebra and student pathways in understanding
key concepts. Another important component of teacher development in this area
was the opportunity to actively engage in analyzing student work related to early
algebra concepts. Similar to studies by Stephens et al. (2004) and Franke et al.
(2008), the use of data from assessment tasks was a useful way to increase teacher
understanding of students’ algebraic reasoning and misconceptions. The anticipa-
tion of student responses to tasks and analysis of student responses during math-
ematics lessons were other ways in which understanding of student reasoning was
developed.

Deliberate planning for algebraic opportunities was another important factor in
the teacher’s development and there were notable shifts in the way algebra was
integrated into the mathematics lessons over the duration of the professional
development. Of key importance was for the teacher to recognize the inherent
algebraic structure of number and operations. In the later part of the study, pro-
fessional development activities that facilitated engagement in mathematical prac-
tices such as generalization and justification led to the teacher widening her
conceptualization of early algebra. The teacher was then able to use opportunities to
develop her understanding of these practices further during her lessons.

While the influence of the external expert and community of learners was sig-
nificant for this teacher, her sustained active inquiry into her own practice was a key
feature in warranting her efforts to change practice. Inquiry into her practice
resulted in a new appreciation of the value of physical representations as tools to
facilitate student understanding of the structure and properties of numbers and to
develop forms of proof. In the classroom, shifts in practice were evident as the
teacher provided opportunities and support for students to engage in these mathe-
matical practices. Furthermore, she developed an appreciation for student capacity
to engage in early algebraic reasoning and mathematical practices.
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Chapter 17
Preservice Teachers’ Knowledge to Teach
Functional Thinking

Sharon McAuliffe and Cornelis Vermeulen

Abstract This chapter reflects on a study of preservice teachers’ knowledge to
teach functional thinking as a strand of early algebra, and its implications for
teacher education. While there is a growing body of research related to young
children’s algebraic thinking, much of the research within teacher education has
focused on the assessment and development of teachers’ and students’ early algebra
and less on the preparation of teachers to teach early algebra. The results of this
study, based on the written reflections and video-recorded lessons of preservice
teachers, highlight issues related to the ways in which knowledge is used when
teaching functional thinking in the early grades.

Keywords Mathematical knowledge for teaching � Early algebra � Preservice
teacher education � Functional thinking

17.1 Introduction

Early algebra (EA) is a relatively new topic within the South African primary
school curriculum and is intended to conceptually prepare primary school students
for the future study of formal algebra. Students in the early grades are expected to
work with both geometric and numeric patterns by copying, extending, and
describing patterns, and to create their own patterns. The study of numeric and
geometric patterns in the later grades develops the concepts of variable, relation-
ships, and functions. Understanding functional relationships is intended to enable
students to eventually describe the rules generating the patterns (Department of
Basic Education 2011).
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High school students’ problems with algebra are a well-recognized concern
across different countries and have resulted in a plethora of studies focused on
understanding the nature of the problem and the search for solutions. There is
growing evidence to support the exposure of children in the earlier grades to
algebraic thinking and to help build connections between arithmetic and algebra in
a meaningful way. The intention is to develop children’s arithmetic thinking with a
focus on structure rather than continue the limiting concept of arithmetic as a
computational tool only. Blanton (2008) describes EA as a way of making
important ideas of mathematics, particularly algebra, accessible and relevant to
children. EA provides depth, meaning, and coherence to children’s mathematical
understanding and creates the opportunity to generalize relationships and properties
in mathematics.

Building a practice to develop children’s algebraic thinking requires a significant
process of change for preservice teachers (PSTs), who are often schooled in tra-
ditional arithmetic ways of doing mathematics. PSTs in South Africa enter teacher
education with a diversity of school experiences of learning algebra, which usually
involves a high degree of procedural understanding. While it is important that PSTs
have the opportunity to develop both conceptual and procedural understanding of
the mathematics they will teach, it is equally important for them to be able to
transform and use this knowledge to make it accessible for learners (Rowland et al.
2009). Preservice teacher education, through providing courses that are effective in
building knowledge for teaching mathematics, is a critical element in the devel-
opment of mathematics teachers. Fey et al. (2007, p. 27) asked the question:
“How can prospective teachers be given a good start on developing essential
knowledge of algebra for teaching?” and found there was very little available in the
mathematics education literature at that time. Coincidentally, Hohensee (2017,
p. 232) raised the same issue a number of years later—this time for the case
of early algebra—and found that only four studies had been carried out to inves-
tigate PSTs’ preparation to teach early algebra. This chapter therefore attempts to
contribute to this under-represented aspect in the mathematics education research
literature.

The purpose of this chapter is to investigate PSTs illustrations of knowledge for
teaching functional thinking during their teaching practicum and to better under-
stand the knowledge PSTs need to teach functional thinking, using the findings
from a study undertaken with PSTs in South Africa (Mc Auliffe 2013). Data for this
chapter are taken from PSTs’ written reflections and their video-recorded lessons
related to teaching a “pattern generalization and functional thinking” (Wilkie 2016,
p. 246) lesson using a variety of different approaches. These data provide an
understanding of the issues related to teaching functional thinking as a strand of EA
and their implications for teacher education.
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17.2 Literature Review and Theoretical Framework

This section outlines two aspects of the theoretical framework underpinning the
research, that is, teacher knowledge and early algebra. The framework that is
derived from research on these topics guided the design and implementation of the
EA course for PSTs and the analysis of the PSTs’ written reflections and
video-recorded lessons.

17.2.1 Teacher Knowledge

Much has been written about the importance of teachers’ mathematical knowledge
but there is no agreement on the content and structure of that knowledge, nor a
single accepted framework for describing mathematical knowledge needed for
teaching (Clay et al. 2010). Nevertheless, it is accepted that the work of Shulman
(1986, 1987) and colleagues “initiated a new wave of thinking about teacher
knowledge by suggesting that content should matter in teaching” (Goulding and
Petrou 2008, p. 1). Previous research recognized the role of subject matter
knowledge and pedagogical knowledge, but paid little attention to a special body of
knowledge for teaching. Rather than seeing teacher education from the perspective
of either content or pedagogy, Shulman (1987) proposed to consider the relation-
ship between the two knowledge bases as the intersection of content and pedagogy
and introduced the notion of pedagogical content knowledge (PCK). He described
PCK as the “special amalgam of content and pedagogy that is uniquely the province
of teachers, their own special form of professional understanding,” and defined it
as:

the blending of content and pedagogy into an understanding of how particular topics,
problems, or issues are organized, represented, and adapted to the diverse interests and
abilities of learners, and presented for instruction. (Shulman 1987, p. 8)

There are many different iterations of teacher knowledge frameworks scattered
across mathematics education, focusing on different aspects of teacher knowledge
and emanating from the work of Shulman, such as Ma’s (1999) profound under-
standing of fundamental mathematics, Chick and Harris’s (2007) particular focus on
pedagogical content knowledge, and the Baumert et al. (2010) COACTIV
(Cognitive Activation in the Mathematics Classroom) project.

Holmes (2012) provides an extensive list of frameworks, categorized into con-
tent knowledge and content knowledge for teaching. The latter includes Ball et al.’s
(2008) “Mathematical Knowledge for Teaching” framework, from which the study
herein reported draws. Ball and colleagues have extended the work of Shulman on
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teacher knowledge through practice-based research of teachers’ work in the
classroom. Over the past decade, they have developed a model of teacher knowl-
edge: Mathematical Knowledge for Teaching (MKT), which elaborates in more
detail “the fundamentals of subject matter knowledge for teaching” by delineating
sub-domains of knowledge, and by measuring and validating knowledge of these
domains (Ball et al. 2008, p. 402). MKT is recognized as a kind of professional
knowledge of mathematics different from that demanded by other mathematically
intensive occupations, for example, engineering and carpentry, and constitutes the
mathematical knowledge, skills, and sensibilities required for teaching mathemat-
ics. Ball et al. (2009) define MKT as mathematical knowledge entailed by teaching,
in other words, mathematical knowledge needed to perform the recurrent tasks of
teaching mathematics to learners. MKT is based on the premise that teachers need
to know mathematics and know how to use mathematics in the work of teaching; it
comprises the domains of knowledge shown in Fig. 17.1.

MKT includes both subject matter knowledge and pedagogical content knowl-
edge. Subject matter knowledge is further divided into common content knowledge
(CCK), specialized content knowledge (SCK) and horizon knowledge. Common
content knowledge is the mathematical knowledge and skill used in settings other
than teaching. It involves correctly solving mathematics problems, recognizing
incorrect answers, and using mathematical terms and notation correctly, which is
not exclusive to the work of teachers. Specialized content knowledge, however, is
the mathematical knowledge and skill unique to teaching and involves teachers in
doing a kind of mathematical work that others do not. It implies unique

Fig. 17.1 Model of mathematical knowledge for teaching (Ball et al. 2008, reprinted with
permission)
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mathematical understanding and reasoning for teaching and requires knowledge
beyond that being taught to learners. Horizon knowledge, a provisional inclusion in
the model, is an awareness of how mathematical topics are relayed over the span of
mathematics included in the curriculum. This is about teachers’ understanding what
the mathematics looks like in grades above and below the grade they are
instructing. The category of pedagogical content knowledge in this model is dif-
ferent from that of Shulman and entails knowledge of content and teaching (KCT),
knowledge of content and students (KCS), and knowledge of content and cur-
riculum. It is thus knowledge that combines knowing about content and knowing
about teaching, learners, and the curriculum.

This research focuses on the specific category of SCK, which involves
unpacking mathematics to make it accessible and understandable for learners and
requires the teacher to have a “deep and connected understanding of mathematics
and relationships among ideas” (Bair and Rich 2011, p. 295). Ball et al. (2004)
describe SCK in terms of eight tasks teachers engage in when teaching mathe-
matics. These were later condensed into six by Kazima et al. (2008) and entail the
following: defining—attempts to provide a mathematical definition; explanations—
teachers explain an idea or procedure; representations—teachers represent ideas
and in various ways; working with students’ ideas—teachers engage with both
expected and unexpected students’ mathematical ideas; restructuring tasks—
teachers change set tasks by scaling them either up or down; and questioning—
teachers ask questions to move the lesson on. We return to these characteristic tasks
of SCK in the Discussion section (Sect. 17.5).

17.2.2 Early Algebra with a Focus on Functional Thinking

Bridging the gap from arithmetic to algebraic thinking has been identified as
problematic for students (Herscovics and Linchevski 1994). However, there is a
growing body of research, based largely on the influential work of researchers such
as Lins and Kaput (2004), Kieran (2004), Carpenter et al. (2005), Carraher et al.
(2008), and Kaput and Blanton (2008), which suggests that the development of
algebraic reasoning in the earlier grades could help alleviate the difficulties students
have in learning algebra in high school. Linking arithmetic and algebraic thinking
in the early grades could help develop the necessary skills for future success in
algebra by creating the opportunity for students to “foster a particular kind of
generality” in their thinking (Lins and Kaput 2004, p. 47). If students and teachers
were to regularly spend the first six years of primary school simultaneously
developing arithmetic and algebraic reasoning, the study of algebra later would
become a “natural and non-threatening extension of the mathematics of primary
school” (Cai and Moyer 2008, p. 3).

While there is acknowledgment of the eclectic and diverse views of early algebra
(EA) , the work of the pioneer researcher, Kaput (2008), has helped define the field
in more specific terms. Blanton and Kaput (2005) offer a definition of EA as a
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process in which learners generalize mathematical ideas from a set of particular
instances, establish those generalizations through the discourse of argumentation,
and express them in increasingly formal and age-appropriate ways. They later use
the term “early algebra” to refer to algebraic thinking in the elementary grades,
which is designed to help children “see and describe mathematical structures and
relationships for which they can construct meaning” (Blanton 2008, p. 6). EA is not
an attempt to introduce symbol manipulation earlier to younger children, but rather
an attempt to reform and update the teaching of arithmetic in a way that stresses its
algebraic character. It requires understanding of how the arithmetic concepts and
skills can be better aligned with the concepts and skills needed in algebra so that
learning and instruction is more consistent with the kinds of knowledge needed in
the learning of formal algebra (Carpenter et al. 2005). Early algebra is not to be seen
as additional work to the current curriculum requirements. It is not a topic to be
taught after children acquire arithmetic skills and procedures, but is developed in
parallel with the development of arithmetic knowledge. It is about developing a
way of thinking and reasoning that benefits all aspects of mathematics. Kieran
(2004, p. 149, emphasis added) defines algebraic thinking as follows:

Algebraic thinking in the early grades involves the development of ways of thinking within
activities for which letter-symbolic algebra can be used as a tool but which are not exclusive
to algebra and which could be engaged in without using any letter-symbolic algebra at all,
such as, analyzing relationships between quantities, noticing structure, studying change,
generalizing, problem solving, modeling, justifying, proving, and predicting.

Kaput (2008) identifies two core aspects of algebra: (i) generalizing and
expressing generalizations in increasingly systematic ways using conventional
symbol systems and (ii) acting syntactically on symbols within organized symbol
systems. These core aspects run through each of three algebraic strands:
Generalized arithmetic (algebra as the study of structures and systems in arithmetic
and including quantitative reasoning); functions (algebra as the study of functions,
relations, and joint variation); and modeling (algebra as the application of a cluster
of modeling languages both in and out of mathematics). Functions, and con-
comitantly functional thinking, provide a context for developing ways of thinking
algebraically within pattern activities by creating opportunities for students to study
change, to analyze relationships, to notice structure, to generalize, to problem-solve,
to model, to justify, to prove, and to predict (Kieran 2004).

According to Wilkie (2016, p. 245), a key aspect of early algebra is exploring the
functional relationship between two variables: noticing and generalizing the rela-
tionship, and expressing it mathematically—whether in words or in symbols. Smith
(2008, p. 143) has defined functional thinking as a type of “representational
thinking that focuses on the relationship between two (or more) varying quantities,
specifically the kinds of thinking that lead from specific relationships (individual
incidences) to generalizations of that relationship across instances.” It involves
ideas of change and representation through tables, flow diagrams/function machi-
nes, and graphs. Generalizing with a view toward the idea of a function means
recognizing regularity through elementary patterning.
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There are many reasons given in the literature for a functional approach to
learning algebra through the use of pattern activities. Barbosa et al. (2009, p. 2)
highlight the usefulness of patterns to help build a “more positive and meaningful
image of mathematics,” as well as develop crucial skills related to “problem solving
and algebraic thinking.” Mason et al. (2005) suggest that manipulating familiar
objects can inspire confidence and is the beginning of noticing structure. The
structure eventually emerges in the form of a generalization or expression. Trying
out a case involving familiar objects and moving from the simple case towards
analyzing a collection of particular cases helps build early generalizing. Samson
and Schafer (2007) report that results from their research highlight the benefits of
working with pattern activities that include opportunities to engage with algebraic
thinking processes as a precursor to formal algebra. Pattern activities provide a
special opportunity for teachers to develop a particular kind of generality in stu-
dents’ thinking, that is, an immersion in the “culture of algebra” (Lins and Kaput
2004, p. 60). Such activities provide students with a set of experiences that enables
them to see mathematics—sometimes called the science of patterns—as something
they can make sense of, and provides them with the habits of mind that will support
the use of the specific mathematical tools that they will encounter later (Schoenfeld
2008). Pattern tasks that lead to generalization are important in making the tran-
sition from arithmetic thinking to algebraic thinking in that they provide a useful
introduction to the concept of variable and future work with symbols (Michael et al.
2006).

17.3 Methodology

This section outlines the methodology followed in this study, and highlights the
design and the data collection and analysis process.

17.3.1 Design

This was a qualitative case study involving 26 third-year Bachelor of Education
PSTs, enrolled in an Early Algebra course. There were nine Foundation Phase
(FP) (Grades 1–3) PSTs and 17 Intermediate/Senior Phase (ISP) (Grades 4–7) PSTs
working in small, mixed-ability groups to encourage discussion and interaction
across the phases. The EA course ran for one academic year, spanning 24 weeks,
with contact sessions three times a week, and included eight weeks of teaching
practicum in schools. It was designed to address both CCK (common content
knowledge) and SCK (specialized content knowledge) of EA using an integrated,
dynamic, and student-centered approach. The EA course focused on two of the
Kaput (2008) content strands for algebraic thinking: algebra as the study of
structures and relations arising in arithmetic, and algebra as the study of functions.
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The coursework consisted of working with algebraic problems related to these
two strands through the mathematical activity of generalizing. This involved gen-
eralizing as a process of identifying structure and relationships in mathematical
situations, such as children recognizing that the order of adding two numbers does
not matter (Blanton et al. 2011). It moved beyond “generalizing and expressing
generalizations” and involved “extending one’s thinking beyond producing a
generalization, to reasoning with generalizations as objects in themselves” (Blanton
et al. 2011, p. 9). Groups were expected to work collaboratively in solving prob-
lems and were encouraged to experiment, analyze, generalize, justify, and com-
municate their thinking to one another and the whole class. This process was
mediated by a researcher who guided discussion and highlighted key features of the
mathematics and the related thinking processes. The CCK was integrated with SCK
through two different routes.

The first involved reading and discussing journal articles related to EA,
addressing both theory and empirical work related to EA and children. Each group
took a turn to lead the discussion on a particular article and to be interviewed by the
researcher about key aspects of the article. This was followed by a whole class
discussion and an opportunity to reflect using journaling. The journaling was
encouraged to help the PSTs identify some of the key points of discussion and to
reflect upon the deeper issues related to the teaching and learning of EA.

The second element of the coursework involved researching and planning an EA
lesson to be taught during a future teaching practicum. Students had to share their
planned lesson with their group for feedback and critique. The majority of the PSTs
(22 out of 26) selected to teach a lesson focusing on functional thinking using
growing patterns, which followed the prescribed national curriculum: Foundation
Phase (6- to 9-year-olds) students are expected to be able to copy, extend and
describe patterns using physical objects and to create and describe their own pat-
terns, while the Intermediate/Senior Phase (9- to 13-year-olds) are expected to
extend pattern tasks to include finding input and output values and to practice
thinking about and describing functional relationships between numbers
(Department of Basic Education 2011).

Interestingly, some of the Foundation Phase PSTs chose to extend the pattern
tasks to encourage younger students to look for functional relationships focusing on
two or more varying quantities and to describe “mathematical relationships for
which they could describe meaning” (Blanton 2008, p. 6). Eight out of the 22
pattern and functional thinking lessons were in the Foundation Phase and 14 in the
Intermediate & Senior Phase. The pattern lessons were based on different contexts
and involved using real-life contexts and fictional characters such as
animal/dinosaur/caterpillar eyes and tails, creating different clothing combinations,
using string and cuts, tables and people to be seated, and geometric patterns using
matches. All lessons focused on “functional thinking through a process in which
arithmetic tasks are transformed into opportunities for generalizing mathematical
patterns and relationships by varying a single task parameter,” such as the number
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of people in a group (Blanton and Kaput 2005, p. 10). All pattern tasks involved
linear relationships requiring one and two-step functional rules, that is, y = ax and
y = ax + b.

17.3.2 Data Collection and Analysis

There were various components to the data collection of the original study
(Mc Auliffe 2013): firstly, the EA lessons were video recorded and followed by a
post-lesson interview with each PST to discuss and critically reflect on the teaching
of the lesson. The PSTs used notes from these interviews to prepare written lesson
reflections on their practice, which were later submitted electronically. Secondly,
PSTs were given a copy of their video-recorded lesson and asked to complete a
questionnaire related to their use of SCK to teach the patterns and functional
thinking lesson. Lastly, two focus groups of PSTs were interviewed and asked to
reflect on the development of their knowledge for teaching early algebra content in
the EA course, on the teaching approach used in the EA course, and on the
experience of the teaching practicum. Here, we report on data collected from PSTs’
written lesson reflections and video-recorded lessons only and focus on four dif-
ferent aspects of their SCK for teaching early algebra, namely: (i) representations,
(ii) working with students’ responses, (iii) restructuring tasks, and (iv) questioning.
These aspects were selected as they (a) indicate how PSTs attempt to use their
knowledge to make functional ideas accessible to learners and (b) illustrate the
issues PSTs face when teaching functional thinking lessons.

A content analysis approach was followed in which qualitative data from the
reflections and video recordings were studied and coded either as CCK or SCK,
using ATLAS.ti (2011). The descriptors for each code were guided by the relevant
literature and based on the theoretical framework of the study. The coded data were
then analyzed further in an attempt to extract illustrations of knowledge for teaching
functional thinking with a focus on specialized content knowledge for teaching
functional thinking.

17.4 Results

This section, which begins with a few additional remarks situating our study with
respect to SCK, will then focus on data drawn from the activity of two of the
participating PSTs, one whose practicum teaching involved a Grade 2 class and the
other a Grade 7 class. The presentation of results will include, for each of the two
PSTs, a brief description of the pattern generalization lesson, an excerpt selected
from the PST’s lesson reflection, and a transcript from part of the video-recorded
lesson.
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17.4.1 Specialized Content Knowledge for Teaching
Functional Thinking

Wilkie’s (2016) research on the professional learning of practicing teachers to
develop their students’ functional thinking was designed to provide teachers with an
understanding of pattern generalization. She offers a detailed elaboration of the
types of knowledge needed for teaching functional thinking based on the Ball et al.
(2008) model, that is, specialized content knowledge (SCK), knowledge of content
and students (KCS), knowledge of content and teaching (KCT) and knowledge of
curriculum (KC). SCK in Wilkie’s (2016) research focuses on two different
approaches to pattern generalization, namely recursive and explicit, and includes
some explanation of the different terms used for these approaches, such as near and
far generalization, co-variation and correspondence, and finding local and relational
rules. In her research, KCS focuses on the knowledge of the processes students go
through in using these just-mentioned two approaches, common issues and errors,
the possible learning progression pathways, and assessing written work. KCT
involves knowing more about the types of representation and questions that help
students to develop functional thinking and to be used in teaching, as well as
working with errors and knowledge of progression. KC refers to the teachers’
knowledge of national curriculum requirements for teaching functional thinking,
including content descriptions and activities. The results from our study are also
linked to the Ball et al. (2008) model, but with a predominant focus on SCK, as the
mathematical knowledge and skills unique to the teaching of functional thinking
sometimes overlap with KCS and KCT, as recognized by Wilkie (2016). The
following examples were chosen from a Grade 2 and a Grade 7 class to give
coverage across two different phases of schooling in South Africa. They reveal
interesting and different issues for PSTs in acquiring SCK for teaching functional
thinking.

17.4.2 Keri—Grade 2

17.4.2.1 Brief Summary of the Pattern Task

The focus of this lesson is on doubling and halving and Keri uses the opportunity to
help students understand the interconnected relationship between the inverse
operations. She takes the task further using the context of cutting strings of wool to
introduce the possibility of different representations of the same concept to the
Grade 2 learners. Keri introduces the lesson using different whole-class clapping
activities. This is followed by counting-forward and -backward activities, such as
counting in 2s from 32 upwards and from 67 backwards. Individual students are
then asked to add different double numbers: 2 + 2; 3 + 3; 5 + 5; after which they
double whole numbers such as 7, 4, 9 and halve numbers such as 6, 8, 10, and 12.
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The class of 30 students is then divided into three different ability groups: top,
middle, and bottom. Keri takes the top group onto the mat while the rest of the class
returns to their desks to complete mathematics worksheets. She demonstrates and
explains the “Cutting Wool” pattern problem to the group, which involves taking a
piece of wool, folding it in half and making one cut. Keri then asks the students:
“how many pieces of string do you have?” and records the result in a table (see
Fig. 17.2). She then takes the two pieces left after the cut, folds each in half and
asks a student to make one cut in each and to count the number of pieces of string.
She again records the results in the table. The cutting activity is repeated a number
of times with the remaining pieces of string.

17.4.2.2 Keri’s Reflections on the Lesson

Her lesson reflection provides a summary of her lesson, activities, and sequencing
of actions, including the various representations used to develop the mathematical
concept of doubling and halving:

I really liked the introduction of the lesson, the body percussion, as it introduced patterns
and beats to the Grade 2s in a fun and exciting way. The exposition of the lesson, cutting
wool, was practical and made it easier for the Grade 2s to see the pattern being dealt with.
The table used in the exposition also further helped the Grade 2s grasp the pattern. During
the exposition I also introduced algebraic symbols by getting the Grade 2s to see a shorter
way of writing the information in the table, i.e., instead of writing out the whole words cuts
and pieces they could just write a “c” and a “p.”

There is mention later in her reflection of a focus on algebraic thinking and,
while this is not elaborated upon, she does make use of a data table (function table),
different representations, and varies the input values. It is not clear from the tran-
script whether she expects students to generalize nor is there any mention of how
she establishes a linkage between the table-representation and the previous
numerical activities. She plans different activities to draw attention to the task of
working with multiples of 2 to emphasize the quasi-variable aspects of these
numbers, but it is not used in a general way to represent many numbers—as would
be the case with a variable (Fujii and Stephens 2008).

When it came to the exposition, I feel that I lost the focus of algebraic thinking a bit as my
lesson moved more towards the doubling and halving concept. This was due to the fact that
I took the data table away too soon. It was clear to see that the Grade 2s were grasping the
doubling and halving concepts, so I should have moved onto and focused more on
the algebraic thinking aspect. I could have kept the data table there for longer and gotten the

Number of cuts 1 2 4 8 16 64

Total number of pieces of wool 2 4 8 16 32 128

Fig. 17.2 Function table displaying number of cuts and total pieces of wool
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Grade 2s to see the variety of different relationships between the information filled out on
the data table, i.e., counting in twos, doubling, halving, multiplying by two, etc., thereby
exposing them to different ways of looking at and describing patterns they saw. I could
have exposed the top group a bit more too. I could have extended their algebraic thinking
by giving them different amounts and getting them to predict the answer, as this would have
challenged their thinking more.

Keri appears to want to use the data table to focus more on the algebraic thinking
part of the lesson by transferring the data collected from the cuts and pieces of wool
into the tabular form and helping students to see different relationships. Her
reflection shows awareness of the connections between different representations of
the doubling and halving, but she also identifies some difficulty in moving between
different forms of arithmetic and algebraic reasoning. There is reported evidence
provided by Moss and McNab (2011, p. 278) who have worked with Grade 2
students and who found that the students were able to generate a rule for growing
pattern activities, but needed “targeted specific pedagogical support” to move from
patterns to generalization. They highlight the literature reporting that the move from
“perceiving patterns to finding useful rules and algebraic representations is diffi-
cult.” While Keri’s reflection highlights connections and the search for patterns,
there is no mention of the purpose of the pattern activity to move from the simple
particular case of “seeing what is going on,” in order to generalize for a collection
of particular cases (Mason et al. 2005, p. 23). Patterning activity that does not
involve the work of noticing the “underlying structure to generalize across specific
instances” falls short of engaging students in algebraic thinking (Kieran et al. 2016,
p. 17).

17.4.2.3 Video Extract from the Lesson

The following video extract is taken from a later part of the lesson in which Keri has
moved from the numeric oral activities to the functional thinking task and uses this
to show students how the same concept can be represented in different ways. She
uses the context of the Cutting Wool task to ask students questions so as to elicit
particular responses. Here she reveals more about her knowledge for teaching
functional thinking:

Teacher: How many times did you cut your piece of wool?
Student 1: Two times.
Teacher: Two times and how many pieces of wool are there now?
Student 1: Four.
Teacher: Four pieces of wool and we go back to our data table and we fill in our

information. What must I write by the number of cuts?
Student 1: Two.
Teacher: And what must I write by the pieces of wool?
Student 1: Four.
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Teacher: Okay, so I write two and four, right. So I have two cuts and I have four.
Now who can tell me what happened to the piece of string? Does it
look the same as it did when we started? What’s happened to that piece
of string?

Student 2: It’s getting less.
Teacher: Is it getting less or is it getting more?
Student 2: It’s getting smaller.
Teacher: It’s getting smaller, yes. That piece of wool is getting smaller. Right,

now if I now have four pieces of wool. How many pieces did I have
before I cut it twice?

Student 3: Two.
Teacher: We had two pieces of wool, yes.

She continues the lesson making a different number of cuts and we pick up the
discussion again below:

Teacher: If I made eight cuts how many pieces of string would there be?
Student 4: Sixteen.
Teacher: Yes, and if I made sixteen cuts how many pieces of string would there

be?
Student 4: Thirty-two.
Teacher: The last one, if I made thirty-two cuts how many pieces of string would

there be?
Student 5: Sixty-four.
Teacher: Okay, I’ve got a nice big number. Do you want to try this big one.

Okay let’s see if you can do this one. If you had sixty-four cuts—how
many pieces of string?

Student 6: One hundred and twenty-eight.
Teacher: And how did you know it was one hundred and twenty-eight?
Student 6: I doubled the sixty and I doubled the four.

The questions posed to the students relate specifically to varying input values.
There is an instance later in which she gives the total number of pieces of wool and
asks for the number of cuts and her students answer successfully.

In summary, Keri demonstrates knowledge of different ways of working with
multiples of 2 through the use of clapping, counting forwards and backwards in 2 s,
and doubling and halving activities. She includes the Cutting Wool task (contextual
pattern activity) to extend the students’ understanding of the number pattern and
introduces input and output values related to the function y = 2x with the help of the
students’ responses. The Grade 2 students are able to recognize the correspondence
between the number of cuts and pieces of wool, but Keri does not extend the
questioning to help the students to move from specialization towards generalization.
She misses the opportunity to highlight “the variable on which the pattern or
sequence depends” and keeps “its structure as a function well-hidden” (Kaput 2008,
p. 7). It would have been helpful to expand the students’ algebraic thinking by
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extending the task to include more questions related to higher input values and
eventually moving to generalizing the pattern.

17.4.3 Bryn—Grade 7

17.4.3.1 Brief Summary of the Pattern Task

Bryn is working at a higher grade within primary school and is keen to connect
different representations of functional relationships. There is much in the literature
to support this approach and to help students “to think about functions in diverse
and legitimate ways” (Wilkie 2016, p. 253). He has previously developed the
concept of function over a series of lessons and is currently working with geometric
growing patterns to analyze and generalize for different linear functions. This lesson
starts with a square match pattern and involves the addition of three matches to
create the next term in the sequence. The students help the teacher to extend the
pattern and the relevant data is captured in a function table (Fig. 17.3).

17.4.3.2 Bryn’s Reflections on the Lesson

Bryn’s lesson reflection below shows his interest in helping students make con-
nections to the function activities of previous lessons and he builds on this
knowledge to generalize for a different function. The students have been previously
working with direct proportional problems and he uses this knowledge to link to the
geometric pattern activities.

I decided to go back to some previous work done about three lessons ago where I put the 3
and 8 times table in a flow diagram, and learners were challenged to give the nth term for
both. They then realized that the 3 and 8 times table can be written as 3n and 8n respec-
tively. This knowledge I used when getting them to find the pattern formula y = 3x + 1.
Once they had completed the table and noticed the constant difference of +3, I ask them
where else they find it? Their reply was the 3 times table which could be written y = 3x. I
then got them to compare the output of y = 3x to their pattern and they were easily able to
see that the difference is +1 every time and they were then able to construct the formula
y = 3x + 1. This was not in my lesson plan but I’m glad I used it because it gives the

Number of squares 1 2 3 4 5 6

Total number of matches 4 7 10

Fig. 17.3 Function table of number of squares and matches
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learners a better understanding to constructing formulas and helps them see the relationship
the constant difference and the formula. This works well and I will definitely use it in the
future. I then explained the co-ordinate graph to them and together with them we con-
structed the graph for y = 3x + 1. Learners easily understood the graph. They were now
able to compare the pattern across a range of representations and that was the objective of
the lesson.

This reflection reminds us of the critical role of the teacher in providing the
opportunity for students to engage in functional thinking by “creating activities,
describing variable quantities, posing appropriate questions, and engaging in
classroom discourse” (Smith 2008, p. 145). Bryn links the work from a previous
pattern lesson to help students generate a function rule for the given geometric
pattern. He helps students construct the rule/formula by encouraging them to
compare the outputs of the y = 3x function and the outputs of the new function
y = 3x + 1.

Students recognize the difference between the outputs of the two functions as
“+1” and are able to generate a function rule for the square match pattern above,
which enables them to calculate the output value given a correspondent input value
(Barbosa and Vale 2015). Bryn works hard with the students to connect the outputs
of the different functions to move towards a generalization for the square match
activity. However, there is no mention of or link to the structure of the geometric
pattern: students are not requested to analyze the pattern formed by the matches in
terms of what remains constant and what varies. Thus, while the pattern can be
linked to prior learning, this approach might have limitations when students are
required to generalize different and unrelated functions.

17.4.3.3 Video Extract from the Lesson

The following is a video extract from a later part of Bryn’s lesson and focuses on
representing and comparing functions using tables and graphs. He starts by teaching
students how to plot the y = 2x + 1 graph using the input and output values from
the function table and then gives the students the opportunity to create their own
graph of the y = 3x + 1 function.

Teacher: What I want you to do is, first take one of these. So the line paper I gave
you guys now, you get it with blocks right. So what I want you to do on
the page, just look here quickly. I want you to draw my table that I drew
there okay. So I want you to draw at least 20 blocks this way and 20
blocks that way. So y- and x-axis must have at least 20 blocks on each.
Okay guys, just stop there quickly. I don’t think there will be enough
time for everyone to draw their own one. I will just show you quickly on
the board. Okay so what line is this? Where are these points from? What
is the equation for that line there, those points there? (pointing at the
table of values).

Student: 2x + 1
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Teacher: Remember that table there. Okay, so this table is y = 2x + 1. It
corresponds with this picture and the table corresponds with the
co-ordinates graph. This one with the co-ordinate graph okay. So let’s do
the one that we tried previously, the one that was… What was the
previous one that we did? y equals to?

Student: 3x + 1.

From the planning and execution of the lesson, it seems that Bryn wants students
to understand how the function concept can be represented in different ways starting
with the picture of the geometric pattern, drawing the table of the input and output
values, and then using this to draw the graph of the function. However, there is little
opportunity for students at this stage to discuss what is happening in the trans-
formation between the different representations of the function or to understand the
relevance of such information. Bryn tries to initiate such a discussion towards the
end of the lesson when analyzing his graphs of the two linear functions, but runs out
of time to develop the content further.

Teacher: Okay so which one is adding 2? (pointing to Fig. 17.4). Okay so he
(student) says that, in this one here I’m adding 2 and in this one here I’m
adding 3. So do you see a resemblance between the two?

Teacher: So the more I add here, the steeper my graph is (pointing at Fig. 17.4).
So this number here will affect what is called the gradient of the
equation, the gradient of the graph. So what I want you guys to do firstly,
plot these two in two different colors for me.

Bryn tries to make use of his knowledge of functions to help students “see and
describe mathematical structures and relationships for which they can construct
meaning” (Blanton 2008, p. 6). He assists students to generalize mathematical ideas
and to express them in formal and age-appropriate ways, but fails to establish those

Fig. 17.4 Preservice
teacher’s illustration of linear
graphs
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generalizations through the discourse of argumentation (Blanton and Kaput 2005).
There is strong teacher-guided instruction and prompting of answers, which reduce
the opportunity for students to construct their own understanding of the function
concept. According to Schmidt (2008), curriculum coherence involves the logical
sequencing of a topic to reflect the inherent structure of the discipline (mathematics)
and needs to focus on the interconnections between ideas within concepts. There is
evidence of planning in terms of sequencing of tasks, but there is insufficient
engagement of students in connecting the tasks and understanding the mathematical
relevance.

Overall, Bryn’s written and verbal illustrations demonstrate his knowledge for
teaching functions as a series of tasks related to analyzing geometric patterns,
drawing a table of the data, finding the function rule, and sketching the graph of the
function. However, it is important for students to make effective and purposeful use
of symbols in ways that are inherently sensible and meaningful (Schoenfeld 2008).
It is not clear if Bryn’s students understand the links between the different activities
or appreciate functions as a way of thinking within activities such as “analyzing
relationships between quantities, noticing structures, studying change, and gener-
alizing” (Kieran 2004, p. 149). Students need to have experience of problem
solving and modeling, but they also need to be encouraged to justify, prove, and
predict. It is essential for teachers to select “tasks that encourage students to reason
flexibly” and to allow students “to model a variety of situations, connect important
mathematical ideas, and build a basic understanding of algebraic concepts,” which
will hopefully help to increase their success in algebra at the higher levels (Lannin
2004, p. 223).

17.5 Discussion and Implications

The purpose of this chapter is to investigate PSTs illustrations of knowledge for
teaching functional thinking during their teaching practicum, to better understand
the knowledge PSTs need to teach functional thinking, and to identify the impli-
cations for teacher education. The verbal and written illustrations (reflections and
video transcripts) highlight the complexity of the SCK needed for teaching func-
tional thinking and the challenges PSTs experience in teaching the topic.

Keri makes use of her SCK for teaching functional thinking to plan activities to
help students recognize the link between arithmetic and algebraic thinking, albeit
tentative. She is able to select activities that have the potential to build functional
thinking and she plans to try to connect different representations of the same
function y = 2x. She uses the function table to help students recognize the link
between the number of cuts and the number of pieces of string. Unfortunately, the
activity does not evolve into generalizing relationships, and the opportunity to make
the arithmetic activity algebraic through deliberate generalization is lost (Kaput
2008). Keri experiences some issues in relation to connections and coherence in
how the mathematics is managed in instruction. There is evidence of the
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development of her SCK for teaching functional thinking in her planning to work
with multiples of two using different representations, but she does not do enough to
help her students to analyze the function behavior, to generalize the relationships
between co-varying quantities, or to express these relationships in words (Blanton
et al. 2011). She works with activities in highly separated ways without enough
emphasis on the relationships between them (Venkat and Naidoo 2012). This
highlights the importance of investigating different ways in which PSTs use their
knowledge for teaching, work with, and connect tasks in the context of the class-
room to develop algebraic reasoning.

There are different aspects to Bryn’s SCK for teaching functional thinking at the
Grade 7 level. Students are challenged to work with geometric patterns, analyze
relationships, make predictions, justify their thinking, and construct function rules.
Bryn has high expectations for his students and he wants them to develop a deep
understanding of the inter-connectedness of the different representations of a
function. He extends their understanding beyond the requirements of the curriculum
to include and compare gradients of different but related functions. Bryn demon-
strates SCK for teaching functional thinking through his use of different repre-
sentations of functions, working with students’ responses to help generate a
function rule, and questioning and probing student thinking about the nature of the
sketched graphs. However, there is little connection between the structure of the
geometric pattern and the function rule, and students are not encouraged to study
the function by noticing the relationship between the number of squares and mat-
ches (Blanton 2008). Students are not required to justify their thinking or responses,
and they do not establish generalizations through the discourse of argumentation
(Blanton and Kaput 2005). As with Keri, these are issues related to connections and
coherence in planning and presenting functional thinking lessons, as well as
challenges in working with student responses, task design, and questioning. This
highlights the need for preservice education programs to create greater opportuni-
ties for students to become more fluent and flexible in designing and sequencing
functional thinking lessons for a range of students. The role and actions of the
teacher are crucial in developing algebraic thinking through designing activities that
challenge students, providing coherent explanations, and asking probing and
stimulating questions requiring students to reflect on their observations (Kieran
et al. 2016).

The MKT model offers a useful framework to categorize and describe different
types of knowledge needed for teaching and is used in this context to understand
PSTs’ knowledge for teaching functional thinking. There are some challenges in
terms of the classification of knowledge as illustrations appear to overlap SCK,
KCS, and KCT and the boundaries between knowledge domains are sometimes
blurred. Ball et al. (2009) have acknowledged this challenge and suggest that it may
be useful to see the knowledge categories as inter-related rather than as separate and
unique domains of knowledge. Notwithstanding this difficulty, the model is useful
in helping to focus more specifically on the tasks required for teaching functional
thinking and how PSTs interpret these tasks in practice.
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This research helps us to gain a better understanding of the SCK needed for
teaching and the implications for teacher education programs. Firstly, it is well
documented that for students the shift from arithmetic thinking to algebraic thinking
is difficult—as is evident in Keri’s lesson. It is important for PSTs to have the
knowledge and understanding of the differences between these two ways of
thinking. They should encourage their students to reason flexibly, to make and
justify generalizations, to recognize the limitations of justification by example, and
to move towards general arguments (Lannin 2004; Stephens et al. 2015). Secondly,
PSTs need to have knowledge of patterns, both the strategies and the representa-
tions that can be used to help students to generalize, and they need to be able to
transform this knowledge into forms that are pedagogically powerful (Shulman
1987; Yesildere and Akkoç 2010). Bryn demonstrates knowledge of different
representations of functions, such as geometric patterns, tables, graphs, and equa-
tions, and attempts to render this knowledge understandable to his students. It is
important for PSTs to be able to transform what they know and to make their
knowledge accessible to students through the selection of “appropriate forms of
representations,” giving “clear explanations of concepts,” and using “questioning to
assess and develop students’ knowledge and understanding” of functional thinking
(Rowland et al. 2009, p. 36). This requires opportunities within teacher education
courses for PSTs to experiment in teaching functional thinking and to reflect in and
on the process. Thirdly, it is apparent from this study that PSTs could benefit from
knowledge of learning trajectories for functional thinking. Blanton et al. (2015,
p. 514) use trajectories to describe “children’s thinking about generalizing algebraic
relationships in functions” and identify three essential features of learning trajec-
tories (see also Clements and Sarama 2004): learning goals, instructional activities,
and developmental progression. If Keri and Bryn had a better understanding of
where their students were coming from and going to, it would likely have impacted
on the selection of their lesson goals, their task design, as well as their questioning
of the students. In all probability, it could have produced quite different results.
Including learning trajectories in teacher education courses means that PSTs would
be able to draw upon this knowledge as a framework to develop their students’
functional thinking and to plan and design instruction that involves different levels
of sophistication in generalizing functional relationships.

17.6 Conclusion

The results of this study are useful in helping us understand the development of
knowledge for teaching functional thinking and how this might inform EA teacher
education courses. While much progress has been made in developing a framework
for mathematical knowledge for teaching, there is still work needed to determine
“what kinds of learning opportunities effectively help PSTs to develop such
knowledge” within different mathematics topics (Thanheiser et al. 2010, p. 3). The
illustrations provided by the PSTs begin to elucidate their engagement in the
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development of their own SCK and their understanding of functional thinking,
facilitated by opportunities to discuss and reflect on the theory and practice in the
EA course. Through guided support and reflection, the teaching practicum can
become an important contributing factor to develop knowledge for teaching func-
tional thinking, thereby merging theory and practice. The EA course gives the PSTs
opportunity to gain knowledge of practice through participating in, and reflecting
on, practice, thereby helping to create a reflective disposition (Matos et al. 2009).
This research contributes to a more “reflective mathematics education culture” in
which teacher educators and PSTs begin to engage with the conceptualization of
knowledge needed for teaching EA and hopefully other topics thereafter (Gellert
et al. 2009, p. 54).
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Conclusions and Looking Ahead

A reading of the 17 chapters in this volume discloses the rich and varied per-
spectives according to which the chapter authors theorize about and examine early
algebraic thinking from the 5-year-old in kindergarten to the 12-year-old in lower
middle school, within the content area that has come to be referred to as Early
Algebra. As pointed out in the Introduction to the volume, one cannot help but be
struck by its international dimension, with authors from five of the seven continents.
Early algebra as a bona fide field of research and practice has truly emerged as a
worldwide movement over the past several years.

From its beginnings in the 1980s, when early efforts involved mostly 13- and
14-year-olds and centered on ways of bridging arithmetic and algebra, to its
reorientation for the primary school level in the decades that followed, the historical
evolution of the movement that sparked its global adoption is briefly presented in
Malara and Navarra’s chapter (Chap. 3). The downward push into the primary
grades did much more than expand the emphasis from what was considered
important within the earlier perspective, a perspective that encompassed developing
meaning for variables, the equal sign, and alphanumeric representations of
expressions and equations. The new movement adapted those earlier areas of
attention for the younger student, but even more importantly, it articulated a focus
that included structural aspects of number, operations, patterns, and functions, as
well as the mathematical processes of conjecturing, justifying, and generalizing
structural relationships and properties. This perspective on early algebra, quite
different from its 1980s predecessors, was groundbreaking. In the process of its
evolution, researchers developed a diversity of theoretical frameworks, with some
favoring an early initiation into the use of algebraic symbols and others not. While
many of the volume chapters reflect this diversity, there is also remarkable uni-
formity on certain issues, such as the pivotal role of the teacher in early algebra
instruction.

In this concluding section of the volume, four cross-cutting themes that reflect
the simultaneous diversity and uniformity that permeate the volume are discussed
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and interwoven with some suggestions for further research that can assist in moving
this emerging field even further ahead:

(1) Varied theoretical perspectives on what constitutes early algebraic thinking;
(2) Improving attention to structure with primary and lower middle school

students;
(3) The multiple facets of students’ early algebraic thinking; and
(4) Pivotal roles of the teacher and the curriculum.

Theme 1
Varied Theoretical Perspectives on What
Constitutes Early Algebraic Thinking

As can be discerned from reading this volume, there is no single theoretical per-
spective or unique definition as to what constitutes early algebraic thinking and how
its development can be appropriately investigated or promoted. While little dis-
agreement exists as to the importance of the process of generalization as a central
component of algebraic thinking, the various ways in which this process is con-
ceptualized and integrated within exemplars of the various theoretical frameworks
offer a range of insights for current and future work in this area.

For Mason (Chap. 14), a pioneer in promoting the notion that the expression of
generality is the core of algebraic thinking—but not necessarily requiring
alphanumeric notation—the process of noticing patterns and generalizing starts at a
very early age as a child begins to perceive similarities and differences in the world
around her. For Blanton, who early on collaborated with another of early algebra’s
pioneers, Jim Kaput†, and for the colleagues with whom she currently conducts
research in this area (Chap. 2), early algebraic thinking comprises generalizing,
representing, justifying, and reasoning with mathematical structure and relation-
ships, usually involving recourse to alphanumeric notation. While both of these
theoretical perspectives revolve around the idea of generalization, Radford
(Chap. 1) maintains that one of them conflates algebraic thinking and generalization
and the other conflates algebraic thinking with alphanumeric symbol use. He argues
further that notations are neither a necessary nor a sufficient condition for algebraic
thinking and that generalization is a common attribute of human thinking and
cannot consequently capture the specificity of algebraic thinking. In order for the
reasoning underpinning the generalizing process to be considered truly algebraic, he
proposes that it must “(i) resort to indeterminate quantities and idiosyncratic or
specific culturally and historically evolved modes of representing/symbolizing these
indeterminate quantities and their operations, and (ii) deal with indeterminate
quantities in an analytical manner.”

Another dimension that distinguishes theoretical frameworks is the nature of the
content strands that are the main focus. While the Blanton et al. (Chap. 2)
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framework includes both functional and generalized arithmetic content strands, the
perspective developed by Carraher and Schliemann (Chap. 5) identifies the onset of
algebraic thinking with the formulation of and operation upon relations, particularly
functional relations. Within their framework, the basic operations of arithmetic are
approached from the standpoint of functions. Students from the 3rd grade onward
employ algebraic notation, as well as alternative forms of algebraic expression (e.g.,
linguistic, tabular, graphical, diagrammatic, etc.), to express generalizations of
problem situations.

A framework within the generalized arithmetic content strand, and one that also
favors guiding young students toward the use of letters in expressing generality, is
that of Malara and Navarra (Chap. 3). The epistemological roots of their frame-
work, which are strongly linked to a linguistic approach, make it quite unique
among early algebra frameworks. In their framework, the two disciplines of
arithmetic and algebra are seen as a combined meta-discipline with a singular
unifying language. For Malara and Navarra, developing algebraic thinking involves
building in students an attitude of looking for regularities, relationships, and
properties, of reflecting on them metacognitively, and of expressing them first in
natural, and then in algebraic, language—with “algebraic babbling” characterizing
the initial expressions of early algebraic thinking and progressing to the use of
fully-fledged algebraic language, which is viewed as a tool for thinking.

While different points of view have been expressed within these theoretical
frameworks, in particular with respect to generalization and the introduction of
alphanumeric symbols, as well as the nature of the content strands that are con-
sidered the central focus, their application to the learning and teaching of algebraic
thinking—presented under Themes 3 and 4 below—yields an incredibly rich por-
trait of the early algebra practices of which our young students are capable and the
teacher actions that support such learning.

Theme 2
Improving Attention to Structure with Primary
and Lower Middle School Students

In contrast to the dominant focus on generalizing in the development of algebraic
thinking, Kieran (Chap. 4) argues that such a focus has to a large extent obscured
the process of seeing structure. While generalization-oriented activity remains
highly important in algebra and early algebra, and in fact includes a structural
component, she proposes that equal attention needs to be paid to the complementary
process of looking through mathematical objects and to decomposing and recom-
posing them in various structural ways. She suggests, in the spirit of Freudenthal,
that structure as it pertains to number and numerical operations at the primary and
lower middle school levels encompasses not just the order, additive, and multi-
plicative structures, but also structurings according to factors, multiples, powers of
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10, evens and odds, sums of 10, prime decomposition, and many more—such
structurings often expressed in decomposed, uncalculated form. These structurings
have properties, such as the basic properties of arithmetic, but also a multitude of
other properties such as the successor property, the sum of consecutive odd num-
bers property, the sum of even and odd numbers property, equivalence and equality
properties, and so on. Indeed, she argues that there is a dual face to activity that
promotes early algebraic thinking: one face looking towards generalizing, and,
alternatively but complementarily, the other face looking in the opposite direction
towards “seeing through mathematical objects” and drawing out relevant structural
decompositions.

Related to this stance, Mason (Chap. 14) suggests that, rather than always
offering learners the particular and expecting them to generalize, consideration
should be given to offering a partial generality, or a very general statement, so that
“learners can make use of and develop their power to specialize as well as to
generalize.” He cautions that the routine practice of providing students with the first
few terms of a sequence and asking for successive terms habituates them into
reasoning forward, often inductively, and directs their attention away from “looking
at something structurally, that is, seeking out relationships that are instances of
general properties.”

The notion that structure is a key idea of early algebra is also elaborated in the
chapter by Steinweg et al. (Chap. 12). Based on their premise that early algebra is
not a new content to add, but a content field to be identified within already taught
topics, they have drawn out from the common topics of the existing primary
mathematics curriculum in Germany four key ideas of algebraic thinking: (i) pat-
terns (and structures), (ii) property structures, (iii) equivalence structures, and
(iv) functional structures. The first idea contrasts pattern awareness with detecting
structure, which requires mathematical knowledge about objects and operations.
The second lies in the properties of numbers (e.g., parity, divisibility) and opera-
tions (e.g., commutativity, associativity, and distributivity). The third key idea
relates to evaluating, preserving, or construing equivalence and focusing on the
relations of given numbers, sums, differences, products, or quotients. The fourth
key idea involves learning environments on functional structures, relations, and
co-variation aspects.

Schifter’s chapter (Chap. 13) is another one where structure is emphasized, with
structure being defined as referring to those behaviors, characteristics, or properties
that remain constant across specific instances. Relevant to the content of her chapter
is that each operation has a unique set of structures. She argues that a focus on the
behavior of addition, subtraction, multiplication, and division helps students come
to see an operation not exclusively as a process or algorithm, but also as a math-
ematical object in its own right. Her research shows that “to make the operations
salient objects in all young students’ mathematical experience requires persistent
effort on the part of the teacher with the use of tasks that make explicit how
structures differ for each operation.”
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Theme 3
The Multiple Facets of Students’ Early Algebraic
Thinking

The two main content strands of early algebra are functions and generalized
arithmetic. While these content strands provide the principal orientations of the
learning environments within which students’ early algebraic thinking is developed,
the relative emphases given in the various studies to aspects such as symbolizing,
representing, generalizing, particularizing, justifying, seeking structure, and ver-
balizing, as well as the range of grade levels, topics, and novelty of certain tasks,
disclose a much more nuanced and multi-faceted picture of early algebraic thinking
among 5- to 12-year-olds than would be suggested by the identification of these two
strands alone.

With respect to the functional content strand, the research by Ng (Chap. 7)
highlights an activity that has received comparatively less attention in studies of
early algebraic thinking, that of the function machine. While function-machine
tasks are not part of the current Singapore primary mathematics curriculum, the
latter does emphasize (i) understanding of patterns, relations, and functions, and
(ii) representing and analyzing mathematical situations and structures using alge-
braic symbols (from Grade 6 onward). In an earlier Singaporean paper-and-pencil
assessment study covering a range of topics, students across the primary grades
were found to have difficulties with the function-machine tasks, not really knowing
how to interpret them. Ng (Chap. 7) wished to investigate further this phenomenon
by interviewing students at each primary grade. After initiating students to the
demands of the function-machine tasks, she found that those who had sound
knowledge of their number facts for the four binary operations—supported by a
variety of counting methods and conceptual knowledge of the operations—could
use this knowledge to complete the function-machine questions used in her study.
As will be seen below to be also the case for students taught with the Korean
curriculum (Chap. 6), numerical proficiency—in combination with the contribu-
tions of a curriculum characterized by certain key features from early algebra—can
play a potential role in the development of algebraic thinking.

Other research with a functional thread is presented in the chapter by Molina
et al. (Chap. 11), who conducted a teaching experiment to uncover the initial
understandings of first and third grade students when first introduced to the use of
letters to stand for an indeterminate varying quantity in a functional
relationship. The tasks they designed supported students in beginning to make
meaning for variables. Their results provide further evidence that alphanumeric
notation for variables is within the reach of lower primary-grade students, an
argument that has been made consistently by Blanton et al. (Chap. 2) and by
Carraher and Schliemann (Chap. 5), based on studies conducted within their lon-
gitudinal programs of research. Molina et al. also point out that, while the teacher
will have to initiate the idea of using letters to represent indeterminate quantities,
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subsequent interactions can rely on the “early adopters” to propagate the use of
variable notation among their classmates.

Drawing from a six-year longitudinal program of research, Radford (Chap. 1)
takes us on a journey through the transition from non-symbolic to symbolic forms
of algebraic thinking in pattern-generalizing activity by students as they moved
from Grade 2 to Grade 6. While problems of increased difficulty were presented to
the students in each successive grade, a core problem remained invariant each year:
The Tireless Ant. By reference to this problem, and by focusing on those grades
where the transition from the non-symbolic to symbolic forms of algebraic thinking
actually occurred, Radford begins by describing the nature of the Grade 4 students’
genuinely algebraic generalizations—even if they were not using alphanumeric
symbols. The teacher’s well-designed questioning helped move some of the stu-
dents from a factual to a contextual form of generalization, but the challenges that
other students were experiencing were evident from the lack of linguistic clarity in
expressing the relationship between the variables. While the class made substantial
progress toward the production of alphanumeric formulas, students’ difficulties with
such formulas centered not on the numbers themselves but on the operations, that
is, with dealing with the operations in an unclosed form, which hampered them
from moving more fully toward a symbolic form of generalization. Radford con-
tinues with the story of the evolution that occurred in Grade 5 and finally in Grade 6
when students began to think with algebraic symbols rather than translate language
into symbols.

Also with a functional theme, but without algebraic notation, is the research
reported by Twohill (Chap. 9), which involved 9- and 10-year-olds collaboratively
constructing general terms for shape patterns. While shape patterning can be
approached with or without an explicit connection to functions, neither shape
patterning nor functional thinking is included in the Irish primary mathematics
curriculum. The students in the Twohill study were encouraged to use explicit rather
than recursive means for generating additional members of the pattern sequences,
which most were able to do without too much difficulty. According to Twohill,
however, it was not her prompts that supported the students’ progress as much as it
was the use of concrete materials in constructing the pattern terms and the students’
interactions among themselves. Several other chapters in this volume point to the
importance of the use of manipulable objects (which may be diagrams, symbols, or
material objects) and a variety of representations in order to recognize, use, and
express structural relationships, as well as to the role of students’ interactions with
fellow students, and with their teachers, in the development of early algebraic
thinking.

Moving to the content strand of generalized arithmetic, the research reported by
Schwarzkopf et al. (Chap. 8) deals with algebraic understanding of equalities. In
one of the examples they present involving pairs of numbers, two 2nd grade stu-
dents justify the associative law by means of what the authors refer to as the
constancy principle of the sum: “Adding one to the first number and taking away
‘what you have added’ from the second number leads to ‘the same problem’.” The
authors note that this nice example of early algebraic thinking occurred without any
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written equal sign or equation notation, but in a context of collective argumentation.
They provide additional examples involving collective argumentation and with a
focus not on the numbers, the calculation, or the result, but on the construction of
arithmetical operations as mathematical objects.

The development of algebraic thinking described in the chapter by Kieran
(Chap. 4) involved seeking, using, and expressing structure in activity involving
multiplication, division, multiples, and divisors. Three classes of 12-year-olds, who
worked throughout one week on tasks related to the Five Steps to Zero problem, were
observed as they generated multiple structural decompositions of the numbers they
were given in their problem-solving activity. The structural awareness that emerged
involved variants of the division algorithm and the development of a structural eye
for the multiplicative decomposition of number. A related structural eye was
developed in the students who participated in the research carried out by Malara and
Navarra (Chap. 3). These researchers cite the example of a 5th grade class that was
given the task to represent in mathematical language the statement: The double of the
sum of 5 and its successive number. As soon as the pupils’ proposals were written on
the board, a student, Diana, stepped forward to justify her writing and to critique
what was written by another student: “Filippo has written 2 � (5 + 6), and it is
correct. But I have written 2 � (5 + 5 + 1) because this way it is more evident that
the number following 5 is bigger by a unit.”Malara and Navarra point out that Diana
was explaining how her translation was clearer and more transparent because it
considered the relationship between a number and its successor.

Another recent study within the strand of generalized arithmetic is the research
on generalizing fractional structures reported by Pearn and Stephens (Chap. 10).
Noting the importance of fractional understanding in algebraic equation solving,
they point out that, while the Australian primary mathematics curriculum does
include a focus in 6th grade on finding fractional parts of a known whole, at no
stage does it direct the attention of teachers to finding the whole when given a
known fractional part. In their main study involving Grades 5 and 6 students, and
by means of a paper-and-pencil assessment and subsequent interviews, Pearn and
Stephens found that students who were able to find an unknown whole regardless of
the particular fractions or quantities used were also able to express their reasoning
with mathematical terms that conveyed generalizable meaning. The researchers
argue for three important overarching ideas in identifying algebraic thinking, even
when younger students are not able to use symbolic notation: equivalence, trans-
formation using equivalence, and the use of generalizable methods.

We conclude this theme with some findings related to the longer-term benefits of
the primary-school development of algebraic thinking. Carraher and Schliemann
(Chap. 5) followed up a group of students from their 3rd and 4th grade intervention
studies and assessed these students when they were in 7th and 8th grades on a
variety of topics, including solving linear equations, solving verbal problems by
representing them as equations, solving the equations, interpreting the results of
their solutions, and representing graphically non-linear functions. The assessment
was also given to a group of students from the same geographic area and grade
levels. The early algebra students performed better than the control group on all of
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the problem types. Similar results were found when they carried out an additional
study involving a one-week algebra summer camp for 12- and 14-year-olds, half of
whom had participated in their earlier intervention program at primary school. Once
again, the early algebra students performed better than the control group on the
assessment items, before and after summer camp, and the difference between the
two groups increased after participation in camp lessons.

Theme 4
Pivotal Roles of the Teacher and the Curriculum

In the concluding remarks of their chapter, Carraher and Schliemann (Chap. 5)
draw attention to the crucial role of the teacher in the development of students’
early algebraic thinking:

In our earlier publications about early algebraic thinking, we placed considerable emphasis
upon the achievements of the students, so much so that we may have understated the critical
roles of the teachers. Although children may be capable of learning algebra from an early
age, realizing this potential is not a simple matter of unleashing their capabilities. Algebra
draws on ways of reasoning, kinds of problem situations, and systems of representation
(notation, graphs, number line diagrams, certain ways of formulating relations in spoken
language) that a child will generally not learn about, much less invent, on her own. The
mathematics teacher and, to a lesser extent, the student’s peers, play a vital role. The skeptic
need merely imagine how much students would have learned had they been given written
versions of the tasks and instructed to solve them on their own, without further discussion
with and guidance from the instructor. (Carraher and Schliemann, Chap. 5)

The “further discussion with and guidance from the instructor” is emphasized in
considerable detail in, among others, Chap. 3 (Malarra and Navarra), Chap. 13
(Schifter), Chap. 14 (Mason), and Chap. 15 (Strachota et al.). But a study reported
by Pang and Kim (Chap. 6) suggests that an appropriate curriculum is also essential
for the cultivation of early algebraic thinking.

In Korea, the primary mathematics curriculum, which is rooted in a generalized
arithmetic perspective, does not include mention of early algebraic thinking;
however, attention to the equal sign and the use of variable notation without letter
symbols is found in the textbooks as early as the first grade, with alphanumeric
variables being introduced to represent the relationships between varying quantities
from the 4th grade onward. Pang and Kim (Chap. 6) report two studies that assessed
students’ early algebraic thinking within the existing curriculum, one study (Grades
2–6) dealing with the equal sign, expressions, and equations, and the other study
(Grade 3) with a variety of early algebra topics that were included in one of Blanton
et al.’s (Chap. 2) assessments (see the Blanton et al. 2015b study cited in Chap. 2),
topics such as equivalence, functional thinking, variables, and generalized arith-
metic. In both Korean studies, the students scored very well, with their computa-
tional proficiency often serving as a basis for their relational understanding.
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An additional finding of great interest is drawn from the second Pang and Kim
study that showed that the Grade 3 Korean students performed just about as well as,
or slightly better than, the Grade 3 (USA) intervention group in the Blanton et al.
study and much better than the Grade 3 (USA) non-intervention group that had not
experienced the curricular progression designed by the Blanton team (see Table 6.6
in Chap. 6). The nearly equivalent performance on the Blanton et al. assessment by
the Grade 3 Korean students and by the Grade 3 intervention group of the Blanton
et al. study suggests that it is quite feasible for national curricula to embed features
that allow these curricula to compare well with the curricular progressions designed
and developed within longitudinal programs of research with respect to the culti-
vation of early algebraic thinking. Pang and Kim argue that “new content areas are
not necessarily needed to induce early algebraic thinking and to make it accessible
to students; early algebraic thinking can instead be fostered as a specific form of
thinking while students learn typical content areas.” However, one would likely not
be wrong in inferring from Pang and Kim’s findings that it is not just any existing
curriculum that can support such learning; certain key features would seem to be
necessary, as well as competent teachers who can interpret the, sometimes hidden,
intent of that curriculum. It is perhaps a sign of the relative newness of early algebra
as a field of study that the worldwide emergence of research in this area has yet to
be reflected in the equally worldwide creation of national curricula that promote
early algebraic thinking.

An alternative point of view is expressed by Steinweg et al. (Chap. 12), who
propose that, despite the lack of any early algebraic tradition in German primary
school mathematics, the cultural characteristics of teachers’ attitudes and beliefs
about teaching, the nature of everyday school life in mathematics classes, and
teachers’ pedagogical approaches that include the expectation that students com-
municate and argue about mathematical findings, provide favorable prerequisites
for developing early algebraic thinking. They suggest that the contents of the
existing curriculum have the potential to address algebraic thinking if approached
from a new perspective. The existing curriculum, which is structured around
content and process standards, includes for the 4th grade (when primary schooling
ends, except for Berlin) the following content: number and operation, space and
shape, patterns and structures, magnitude and measurement, and data, frequency
and probability; and the following processes: problem solving, communicating,
arguing, modeling, and representing. To support their proposal, Steinweg et al.
focus on three aspects that they consider would help develop teachers’ awareness of
the algebraic nature of what is already being taught: the structural elements of
primary school mathematics, the existing ability of primary level students to think
algebraically, and the manner in which tasks can be designed so as to promote
algebraic thinking even in very young learners. The next step, which elaborates
how teachers might become aware of the early algebraic perspective that Steinweg
et al. propose, remains, however, to be developed.

Mason (Chap. 14) states that the critical feature for promoting algebraic thinking
is the opportunities noticed by teachers for calling upon learners’ powers to express
and manipulate generalities. He proposes that teaching by listening is far more
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effective than trying to push students and then assuming that they have made
appropriate sense of what has been said. According to Mason, teaching by listening
involves putting learners in situations where they naturally ask questions, but it also
involves developing possible pedagogical actions arising from what is noticed. As
brought out by Strachota et al. (Chap. 15), who focused on the generalization-
promoting actions of a Grade 3 teacher, the ways in which a teacher responds to
students’ generalizations are crucial for generalizations to become platforms for
further generalizations. For example, when one of the students in her 3rd grade
class stated a generalization, the teacher encouraged others to revoice the gener-
alization. This public sharing of the generalization led to the teacher requesting
clarification and justification. Another student subsequently introduced a new, but
related, idea, followed by further questioning on the part of the teacher. This
continued the generalization cycle, which yielded additional generalizations, clar-
ifications, and justifications.

However, the action of “responding to generalizations” seems to be one that can
be difficult for teachers to learn. Mc Auliffe and Vermeulen (Chap. 17) reported a
study on the preparation of preservice teachers to teach early algebra. The results,
based on the written reflections and video-recorded lessons of the practicum
experience of two preservice teachers (Grades 2 and 7), highlight the issues
involved in applying specialized content knowledge to teach functional thinking.
Despite their coursework addressing both theory and empirical research related to
early algebra, both of the case-study preservice teachers experienced difficulties: the
Grade 2 teacher in bringing the students to the point of generalizing the relation-
ships of the problem situation, and the Grade 7 teacher in bringing the students to
connect the structure of the figural pattern and the function rule, and to justify their
thinking and establish generalizations through the discourse of argumentation. By
means of the two case studies, Mc Auliffe and Vermeulen draw out the challenges
faced by preservice teachers in learning to ask probing and stimulating questions.
They point to the need in preservice teacher education for greater emphasis on
generalizing and on how to apply such knowledge in practice. They suggest that
further research in this area could help to determine the kinds of learning oppor-
tunities that would effectively help preservice teachers to develop the knowledge
they need to teach early algebra.

Some suggestions in this regard can be gathered from research in early algebra
professional development. While it can be argued that professional development
offers different, and perhaps more, opportunities than does preservice education for
adapting one’s teaching to the cultivation of early algebraic thinking, the issue of
asking probing questions has been a focus of several studies. For example, Malara
and Navarra (Chap. 3) have conceived and shared with teachers a set of glossaries
that concern the theoretical frame, the mathematical topics, the
methodological-didactic and social issues, and the linguistic demands related to the
managing of discussions with the class. They also make use of what they call
Multicommented Transcripts (MTs), wherein teachers transcribe meaningful
classroom episodes and critically analyze their didactic interventions, in particular
their manner of questioning and of responding to students’ verbalizations, before
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sending the transcripts off to the course mentors who add their own comments.
Schifter (Chap. 13) describes the tool of the Student Thinking Assignments given
over the course of a school year that suggests questions that teachers could pose to
their class. However, the issues involved in shifting one’s teaching practice toward
the development of early algebraic thinking are considerably more complex and
clearly go beyond expanding the ability to ask probing questions and to listen and
react appropriately to students’ responses, as is seen in Chap. 16.

The chapter by Hunter et al. (Chap. 16) describes the year-long evolution that
took place within a 3rd grade teacher as she broadened her own perspective on
algebra, coming to view the facilitation of early algebraic thinking as more than just
dealing with content, rather as also engaging students in mathematical practices
related to conjecturing, justifying, and generalizing. While the influences of the
external professional-development expert and the community of teacher learners in
her group were significant for this teacher, her sustained active inquiry into her own
practice and the development of her own personal framework of teacher actions
were key features in warranting her efforts to change practice.

Summing Up

This concluding section of the volume has attempted to highlight a sampling of the
central contributions offered within its 17 chapters. While a careful reading of each
chapter offers much more nuanced detail with respect to the development of early
algebraic thinking than could be encapsulated above, it is nevertheless hoped that
the synthesis has been able to capture some of the most recent and exciting features
of the newly emerging and rapidly evolving field of research and practice in early
algebra. Its main features can be summed up as follows:

• A view of early algebra that includes not just an adapted version of the
time-honored initial algebraic topics of creating meaning for the equal sign and
equality, variables, and expressions and equations, but also (and especially
important) a focus on relations, patterns, and structures in numbers, operations,
and functions, and on the mathematical processes of seeking structure, con-
jecturing, generalizing, and justifying.

• An identification of early algebraic thinking as reasoning that expresses itself as
statements or other representations denoting structural relations among numbers,
quantities, operations, and patterns.

• An increased emphasis on structuring activity in early algebra, including
detecting structure within numbers, numerical operations, patterns, and func-
tions (i.e., seeing through mathematical objects), with attention to the properties
of numbers (e.g., parity, divisibility) and operations (e.g., commutativity,
associativity, and distributivity), as well as to equivalence expressed through
decomposition, recomposition, and substitution—an emphasis suggesting that
there is a dual face to activity that promotes early algebraic thinking: one face
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looking towards generalizing, and, alternatively but complementarily, the other
face looking in the opposite direction towards “seeing through mathematical
objects” and drawing out relevant structural decompositions.

• Characterizing the diverse ways in which structure is expressed by students who
are developing algebraic thinking in the different content areas of early algebra.

• The need for creating, at the national levels, mathematics curricula for Grades
1–6 that include key features of early algebra and that can thereby contribute to
the development of early algebraic thinking.

• The critical role played by teachers in cultivating early algebraic thinking by
means of actions that include, among others, careful task design and enactment,
the prompting of structuring and generalizing activity, and listening, noticing,
questioning, and responding appropriately to students’ efforts in such activity.

• The need in preservice teacher education for greater emphasis on generalizing
and on how to apply such knowledge in practice.

• The elaboration of key measures within professional development programs
regarding the pedagogical actions that facilitate early algebraic thinking.

• Identification of the possible role played by the interaction between numerical
proficiency and early algebraic thinking in students.

• The introduction of alphanumeric symbols as early as the 1st grade of primary
schooling versus their introduction later in the 3rd, 4th, or 6th grades.

• The importance of the use of manipulable objects (which may be diagrams,
symbols, or material objects) and various representations in order to recognize,
use, and express structural relationships.

• The role of student interactions with both fellow students and teachers in the
development of algebraic thinking.

• The longer-term benefits of developing early algebraic thinking in primary
school.

• Provision by researchers of adequate information on the nature of the curricular
framework and the supporting teaching actions when reporting their studies on
the development of early algebraic thinking.

Future research addressing the above issues, as well as the additional suggested
questions formulated within the body of each individual chapter of this volume, will
serve to enhance further our understanding of how to support the development of
early algebraic thinking in 5- to 12-year-old students around the world. The present
volume contributes to this growing field of knowledge with the evidence it presents
regarding the teaching and learning of algebraic thinking within early algebra from
various theoretical perspectives and in different contexts and cultures.
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