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Abstract. In this paper, we introduce a stereo vision based CNN tracker
for a person following robot. The tracker is able to track a person in
real-time using an online convolutional neural network. Our approach
enables the robot to follow a target under challenging situations such
as occlusions, appearance changes, pose changes, crouching, illumination
changes or people wearing the same clothes in different environments.
The robot follows the target around corners even when it is momentarily
unseen by estimating and replicating the local path of the target. We
build an extensive dataset for person following robots under challenging
situations. We evaluate the proposed system quantitatively by comparing
our tracking approach with existing real-time tracking algorithms.
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1 Introduction

Person following robots have many applications such as autonomous carts in
grocery stores [26], personal guides in hospitals, or airports for autonomous suit-
cases [1]. Person following robots in dynamic environments need to address the
tracking problem under different challenging situations (appearance changes,
varying illumination, occlusions, pose changes such as crouching, exchanging
jackets etc.). An online convolutional neural network (CNN) is used to track
the given target under different situations. The target being tracked might move
around corners making it disappear from the field of view of the robot. We
address this problem by computing the recent poses of the target and have the
robot replicate the local path of the target when the target is not visible in the
current frame. The robot being used is a Pioneer 3AT robot which is equipped
with a stereo camera. We tested our approach with two stereo cameras namely
the Point Grey Bumblebee21 and the ZED stereo camera2.

B.X. Chen and R. Sahdev—Denotes equal contribution.
1 http://www.ptgrey.com/stereo-vision-cameras-systems.
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The main contributions of this paper are: (i) A Person Following Robot
application using a CNN trained online in real-time (≈20 fps) making use of RGB
images and a stereo depth image for tracking, (ii) a robot following behaviour
which can follow the person even when the person is transiently not in the field of
view of the camera, (iii) a novel stereo dataset for the task of person following.
First, we describe the relevant work for human following robots and tracking
using CNNs in Sect. 2. In Sect. 3, we describe our proposed CNN model and the
navigation system of the robot. We describe the dataset and experimental results
of our approach in Sect. 4. Finally, Sect. 5 concludes the paper and provides
possible future work.

2 Related Works

Person Following Robots: Person Following robots have been researched as
early as 1998 [31] where the authors used color and contour information of the
target for tracking. Similar color based tracking was done in [34] and using an
H-S Histogram in hue saturation value (HSV space) in [33]. These approaches
could not handle appearance changes or occlusions very well. Some early optical
flow based works include that of [8,36]. Optical flow requires the target motion
to be different from background motion which limits its usability. Simple fea-
ture based works were presented by using edges, corners with color and texture
information by Yoshimi et al. [37]. Pre-trained appearance models were used
in [4]. Some other feature based methods include Lucas-Kanade features [7],
SIFT features [30], HOG features [2] and height and gait with appearance based
features in [25]. Recently in 2017 [6] used Selected Online Ada-Boosting to do
online learning using depth as a filter to restrict the search for the target. People
have been using various other sensors for person following robots like laser based
approaches [24] and RGBD camera based approaches, e.g., Kinect [9,12]. Kinect
has the drawback of only working indoors. Laser based approaches might not
be suitable for places like hospitals, schools, or retail stores which might have a
restriction on the usage of laser. Our approach uses a stereo camera which can
be used both indoors and outdoors.

Object Tracking: Real-time object tracking is an important task for a person-
following robot. Many state of the art algorithms exist that can achieve high
accuracy (robustness), e.g., [29] (MGbSA), [17] (CNN as features), [22] (Proposal
Selection), [38] (deep learning), [28] (Locally Orderless tracking), etc. However,
these approaches do not target real-time performance. Some other works that
focus on computation speed include [20] (Struck SVM with GPU), [41] (Struc-
ture preserving), [39] (Online Discrimination Feature Selection), [18] (Online
Ada-Boosting), etc. Recent work from Camplani et al. [5] (DS-KCF) used RGBD
image sequences from a Kinect sensor to track objects under severe occlusions
and rank highly on the Princeton Tracking Benchmark [32] with real-time per-
formance (40 fps). One of the earliest works using convolutional neural networks
(CNNs) for tracking appeared in 2010 by Fan et al. [14]. They considered track-
ing as a learning task by using spatial and temporal features to estimate location
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and scale of the target. Hong et al. [21] used a pre-trained CNN to generate fea-
tures to train an SVM classifier. Zhai et al. [38] also used a pre-trained CNN, but
added a Naive Bayes classifier after the last layer of the CNN. Zhang and Sug-
anthan [40] used one single convolutional layer with 50 4-by-4 filters in the CNN
structure. The network was trained from scratch and updated every 5 frames.
Gao et al. [17] used pre-trained CNN as feature generator to enhance the ELDA
Tracker [16].

CNN Using RGBD Images: Training a CNN model with RGB and stereo
depth images is another focus of this paper. Previous work used RGBD CNNs on
object detection [19] and object recognition [13]. Couprie et al. [10] used RGBD
images to train a single stream CNN classifier to handle semantic segmentation.
Eitel et al. [13] trained RGB layers and D layer separately in two CNN streams.
These two streams were combined in the fully connected layer.

3 Approach

Here we describe our proposed CNN models and the learning process. The input
to the CNN is the RGB channel and the computed depth from the stereo images,
we call this as RGBSD (RGB-Stereo Depth). Stereo Depth (SD) is computed
using the ZED SDK3. The CNN Tracker outputs the depth and the centroid of
the target. The depth and centroid are then used by the navigation module of
the robot to follow the target and replicate the path when required.

3.1 CNN Models with RGBSD Images

We develop three different CNN models and use each of them separately to val-
idate our approach. The first model (CNN v1) uses RGBSD layers as a single
image to feed the ConvNet. Similar to conventional CNN architectures, the net-
work contains convolutional layers, fully-connected layers, and an output layer
(see Fig. 1). The second model (CNN v2) uses 2 convolutional streams and the
input is RGB channels for one stream and just the stereo depth image for the
other (see Fig. 1). In the fully connected layer, the input is a combination of
the flattened output from those two convolutional streams. The third ConvNet
(CNN v3) is a regular RGB image based CNN. It has a similar structure as that
of the first model. Now we describe our approach to initialize and update the
CNN tracker.

Initial Training Set Selection: In order to use the CNN model to track a
person, we must initialize the CNN classifier. The initialization is done from
scratch using random weights. A pre-defined rectangular bounding box is placed
in the center of the first frame. To activate the robot following behaviour, a
person must stand inside the bounding box at a certain distance from the robot or
the target to be tracked can be manually selected. Once the CNN is activated, the

3 https://github.com/stereolabs/zed-opencv.

https://github.com/stereolabs/zed-opencv
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Fig. 1. Three CNN models: Model 1 takes a 4-channel RGBSD image as input; Model
2 takes an RGB image and an SD image as input; Model 3 takes an RGB image only
as the input. The parameters of the CNN in each of the layers are chosen empirically
for real-time performance.

patch in the bounding box is labeled as class-1. The patches around the bounding
box are labeled as class-0. Since these two classes are highly unbalanced, we
uniformly select n patches from class-0, and copy the class-1 patch n times to
form the training set (n = 40 in our experiment). This initial training set is
used to train a CNN classifier until it has a very high accuracy on the training
set. This might make the classifier overfit the training set. To handle this strong
over-fitting, we assume that the target pose and appearance should not change
dramatically in the first 50 frames (about 2–3 s).

Test Set Selection: Once the CNN classifier is initialized or updated, we use
it to detect the target in the next frame. When a new frame is available along
with the stereo depth layer, we search the test patches in a local image region
as shown in Fig. 2(a). We also restrict the search space with respect to the
depth as shown in Fig. 2(b). If the patches in the image do not have the depth
within previous depth ± α, we do not consider them (Fig. 2(c)), where α is the
search region in depth direction (we use α = 0.25 m). By doing this, most of the
patches belonging to the background will be filtered out before passing to the
CNN classier. Only the highest responses on class-1 will be considered as the
target in the current frame. If no target is detected (e.g., highest responses on
class-1 < 0.5) after 0.5 s, it will enter the target missing mode. Then, the whole
image is scanned to create a test set.

Update CNN Tracker: To update the classier, a new training set needs to be
selected. The update step is performed only if the detection step finds the target
(class-1) in the test set. In order to maintain robustness, the most recent 50 class-
1 patches are retained from the previous frames to form the class-1 patch pool
which is implemented as a First-In-First-Out queue. The patches around the
target form the class-0 patch pool. In this new training set, we again uniformly
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Fig. 2. 3D search region for test set (a) candidate test patches in 2D region (based
on a sliding window approach), (b) search region with respect to depth, (c) pixels in
black are within ±α meters from the previous depth. If black pixels are less than 70%
of the patch, the patch will be discarded, else, it will be retained. The number 70% is
chosen experimentally as this covers the human body completely in most of the cases.
According to (c), the red and blue patches in (a) will be discarded, the green, pink,
and yellow patches will be retained. (Color figure online)

select n patches from class-0 patch pool. For selecting n patches from class-1
patch pool, we sample the patches based on a Poisson distribution with λ = 1.0
and k = � queue index

10 � (see Eq. 1 and Fig. 3). This gives a higher probability of
selecting patches from the recent history rather than selecting older patches.
This training set is used to update the classifier. The Poisson distribution based
sampling of class-1 patches avoids overfitting and provide a chance to recover
from bad detection in the previous frame(s).

P (k) = e−λ λk

k!
(1)

(a) normalized PMF (b) CDF

Fig. 3. Poisson distribution with λ = 1.0 and k = � queue index
10

�, where queue index is
the patch index in First-In-First-Out queue. To select an index, just randomly generate
a real number from 0 to 1.0. Then, base on (b) the CDF graph, an index is selected.

3.2 Navigation of the Robot

In this section, we describe the navigation aspect of the robot. There are 2 cases:
(i) when the robot can see the target (human) in the image; (ii) when the robot
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cannot see the target. A proportional integral derivative (PID) controller [27] is
used in the former case while the path of the target is replicated in the latter. A
local history of the target poses is maintained to compute the local path of the
robot. The robot moves to the last observed pose of the target to find the target
and continue the following behaviour. There are 4 basic components involved
here: Localization of the robot, Target Pose Estimation, Robot following using
a PID based controller, and a local path planner (trajectory replication).

Robot Following Using PID Controller: In this section we describe the
robot following behavior for the case when the human can be seen in the image.
A pre-specified distance, D is maintained between the robot and the target.
The linear velocity, v of the robot is directly proportional to the error in current
depth, (d−D), where d is the current depth of the target. The angular velocity, ω
is proportional to the error in the x coordinate of the target (x−X mid). X mid
is the centre of the image in the horizontal direction. Only the Proportional and
Integral components of the PID controller are used. We use D = 1.0 m. Following
equations detail the velocities as a function of the error terms.

v = Kp ∗ (d − D) + Ki ∗
∫

T

(d − D)dt; (2)

ω = K
′
p ∗ (x − X mid) + K

′
i ∗

∫
T

(x − X mid)dt; (3)

where Kp, Ki, K ′
p, K ′

i are the PI constants, (d − D), (x − X mid) are the error
terms for the linear and angular velocities and dt is the time difference between
successive frames.

Localization: Localization of the robot requires estimating the robot pose with
respect to a global coordinate frame. In the 2D case, this is x,y coordinates
and the orientation, θ of the robot. The robot must maintain an estimate of its
pose as it moves in the presence of dynamic obstacles. Here we address local-
ization using wheel odometry. Wheel odometry is reliable for short distances
with an error of less than 4% for environments with a smooth surface (e.g.,
indoor flooring, outdoor pavement, sidewalk, etc.) for our robot (Pioneer3AT).
For this work, the robot is tested in university hallways/corridors which often
have minimal features or are featureless (blank walls), hence Visual Odometry
based approaches [15] do not give accurate localization. Moreover, the environ-
ment is dynamic (has humans walking) which makes Visual odometry even less
reliable.

For our work, it is only important that the pose of the robot is accurate for
any short time (e.g., 5 s). This is the time we require localization information of
the robot to compute the local path of the target and previously accumulated
errors due to dead reckoning [3] do not matter.

Target Pose Estimation: The pose (World coordinates) of the target with
respect to the camera frame is estimated using the depth and the focal length
of the camera [23]. Knowing the pose of the robot and target pose with respect
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Fig. 4. (a)Estimation of the target pose in the global frame (top view) (b) Local
Trajectory of the target poses is stored, when the robot cannot see the target in the
image the robot simply replicates the latest local history of target poses stored to find
the target. In this work, local history of 100 poses is stored.

to the camera frame, the 2D pose of the target can be estimated accurately in a
global frame. Figure 4(a) shows the top view for computing target pose.

Trajectory Replication/Path Planner: Here we describe the navigation
algorithm used to follow the human when the robot cannot see the human.
This part is used when the person is turning around a corner or around a tree in
an outdoor context. The robot always keeps a local history of the recent p poses
of the target with respect to the global coordinate frame, this is called the recent
trajectory of the target (See Fig. 4(b)). We use p = 100 here. If the robot cannot
see the target transiently for 0.5 s, it implies that the human turned around a
corner or is blocked by something else, so the robot replicates the recent trajec-
tory of the target. By doing so, the robot reaches the last observed pose of the
target. After reaching this position, the robot should be able to find the target
and resume the following behaviour using the PID based controller. If for some
reason the robot cannot find the target after replicating the path, the robot
turns on the spot to see if it can find the target, if not the robot stops there
and the following behaviour terminates. On the other hand, if the robot finds
the target while replicating the local path, the robot shifts to the PID based fol-
lowing behavior. Some of the cases when the target might not be found include
when target runs away after the turn or turns somewhere else unexpectedly or
vanishes due to some reason. In all these cases it is reasonable to assume that
the robot would not be able to find the target. A similar behaviour is expected
if a human is following another human.

The overview of our proposed approach is described in Fig. 5. The input to
our system is an RGB image and a computed stereo depth image. These images
are then run through an online CNN which runs at a frame rate of 20 fps. The
CNN returns the depth, the centroid coordinates of the target being tracked
and a flag which indicates the presence/absence of the target. If the target is
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Fig. 5. Overview of the system design of our approach.

present in the scene a PID based controller is used to steer in such a way so as
to keep the target in the center of the image; in case of absence of the target,
the local path of the target is replicated by the robot to continue the following
process. We run our robot at speeds up to 1.0 m/s. The Robot Operating System
(ROS) was used for integrating the different components in this work. We tested
our approach on a Dell Alienware Laptop with Intel core i7, 7th Gen, 2.8 GHz
processor and a GTX 1070 mobile graphics card.

4 Dataset and Experiments

Dataset: Several Datasets exist for pedestrian detection and tracking4. In par-
ticular, the Princeton Tracking Benchmark [32] provides a unified RGBD dataset
for object tracking which includes various occlusions and some appearance
changes. But, each sequence is very short (maximum 900 frames, most of them
are under 300 frames). Many other works exist that aim at solving the person fol-
lowing problem, but there is a lack of a standardized dataset which could be used
to validate the tracking algorithm used for person following robots. In this work,
we built an extensive stereo dataset (left, right, and depth images) of 9 indoor
and 2 outdoor sequences. Each sequence has more than 2000 frames and up to
approximately 12000 frames. The dataset has challenging sequences which have
pose changes, intense illumination changes, appearance changes (target remov-
ing/wearing a jacket, exchanging jacket with another person, removing/wearing
a backpack or picking-up/putting-down an object), crouching and walking, sit-
ting on a chair and getting up, partial and complete occlusions, occlusions by
another person wearing same clothes and some other different situations. The
dataset also has image sequences when the target is not visible transiently in
the image and reappears after some time. The dataset is built in different indoor
and outdoor environments in a university context. Some of the samples from the
dataset can be seen in Fig. 6. The images are captured at a frame rate of 20 Hz

4 http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm#people.

http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm#people
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Fig. 6. Compare some tracking algorithms on our dataset. (1): Hallway 2; (2): Walking
Outdoor; (3): Sidewalk; (4): Corridor Corners; (5): Lab & Seminar; (6): Same Clothes
1; (7): Long Corridor; (8): Hallway 1; (9): Lecture Hall. (SOAB [6], OAB [18], ASE [11],
DS-KCF [5])
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and the resolution is standard VGA (640× 480) for bumblebee2 and (672× 376)
for ZED. We also provide with ground truth of the image sequences5. The ground
truth contains the bounding box labeled for the target (human) which is manu-
ally labeled by human annotators for each frame.

Evaluation Metric: The interest of person following task is to follow a per-
son, so the size of the bounding box is not important for the robot. However,
the centroid of the target plays an important role. The evaluation of tracking
algorithms has been done in numerous ways. Wu et al. [35] provide details about
various existing evaluation metrics that have been used for tracking. For our
dataset we use the precision-plot as defined in [35] as the metric to evaluate the
performance of our approach. We report the percentage of frames in which center
of the detected bounding box is within a specific range of pixels from the ground
truth (See Fig. 8). Since the initial bounding box size is about (100× 350) for
all the video sequences, we compute the average precision of all sequences using
location error threshold 50 pixels to evaluate tracker performance(see Fig. 9(a)).
Figure 9(b) shows the average precision plot over all sequences from Fig. 8.

(a) normal person following case (b) path replication case

Fig. 7. Overall performance of our robot system. (a) Ground truth is the path the
robot should have taken ideally maintaining a 1-m distance from the target. Robot
Odometry trials are the robot paths based on wheel odometry. (b) Ground truth is the
same as the human path we are testing the path replication behaviour here. We have
a maximum error (includes tracking, control, and wheel odometry errors) of roughly
30 cm which is not high for our task.

Experiments: We validated our proposed approach in different indoor and out-
door environments. We achieved a frame rate of approx. 20 fps depending on the
search window size that we use for the depth range and the local image search
region. For evaluation, we compare 3 versions of our tracking algorithm with 4
other existing stereo vision based trackers (for which the code is publicly avail-
able). We used the precision-plot evaluation metric as defined in [35] to report
5 demo videos and dataset available at http://jtl.lassonde.yorku.ca/2017/05/person-

following-cnn/.

http://jtl.lassonde.yorku.ca/2017/05/person-following-cnn/
http://jtl.lassonde.yorku.ca/2017/05/person-following-cnn/
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(a) Hallway 1 (b) Multi-crossings (c) Same Clothes 1 (d) Lecture Hall

(e) Same Clothes 2 (f) Long Corridor (g) Walking Outdoor (h) Sidewalk

(i) Lab & Seminar (j) Corridor Corners (k) Hallway 2

Fig. 8. Precision-plots: comparison between our trackers and different tracking algo-
rithms, SOAB [6], OAB [18], ASE [11], DS-KCF [5]

(a) Precision at location error threshold 50 pixels (b) Precision Plot

Fig. 9. Comparison over 11 sequences (SOAB [6], OAB [18], ASE [11], DS-KCF [5])

the performance of our system. The performance can be seen in Figs. 6, 8, and 9.
We evaluated the performance of our approach on 11 challenging sequences which
exhibit varying situations as described in the previous section. It was found that
the RGBSD based CNN (CNN v1) outperformed all other existing approaches.
The RGB based CNN (CNN v3) could not perform better than SOAB [6] in
some sequences. We also compare our approach with Danelljan et al. [11] (ASE
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with monocular images) and Camplani et al. [5] (DS-KCF with RGBD images).
We show the performance of our overall robot system in Fig. 7. A demo video
of our approach on the robot under different situations can be found at the link
(See footnote 5).

5 Conclusion and Future Work

In this paper, we described a robust person following robot system using an
online real-time Convolutional Neural Network in the context of robotics. The
proposed system could perform very well in dynamic environments under chal-
lenging situations. The presented approach could find the person even when the
robot could not see it by replicating the local trajectory of the target being fol-
lowed. Possible future work includes incorporating dynamic obstacle avoidance
techniques with the person following robot to give it more intelligence. Person
following could also be addressed for places with known maps like using a social
robot to follow people in a specific house, malls, retail stores and other places.
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