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Abstract. We present two effective algorithms for removing impulse
noise from color images. Our proposed algorithms take a two-step app-
roach: in the first step, noise color pixel candidates are identified by an
impulse detector, and in the second step, only those identified noise can-
didates in the image are restored by using a modified weighted vector
median filter. Extensive experiments indicate that our proposed algo-
rithms have good performance, and are more effective than most of the
existing algorithms in removing impulse noise from color images.
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1 Introduction

Removing impulse noise is an import and challenging problem in image process-
ing. A lot of researches have been done for this problem. For example, nonlinear
filters such as median filter are successfully applied to impulse noise removal
in scalar valued images [6]. For a color image, its pixel has three scalar values.
Suppose it is encoded by red, green and blue values in RGB color space. Then it
is natural to apply the traditional nonlinear filtering techniques to each channel
separately [2]. However, such technique does not use the correlation exists among
the three different color channels, and therefore may lead to problems that are
not present in scalar valued images [1]. Therefore vector processing techniques
for color image denoising are desirable.

To our knowledge, vector median filter (VMF) [1] may be the first and the
best-known vector filtering technique for its simplicity, robustness and impulse
noise removing ability [13]. Since the development of VMF, many vector filtering
techniques are proposed. For example, the vector directional filters (VDF) which
consider the vectors’ direction is proposed [17]. In [10], the directional-distance
filters (DDF) is developed. In [7], a hybrid directional filter (HDF) is proposed
by using the output of the VDF and the VMF. Similar to the scalar median
filter, the above mentioned vector filters have some undesirable side effects that
tend to smear sharp edges and fine details of an image [8]. In order to eliminate
such defects, some new vector processing techniques have been developed, see for
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example [11,12] and references therein. We remark here that, relaxation Labeling
[4] may also be applied to solving color image denoising problem.

Recently, a two-step approach for removing impulse noise from scalar valued
images was developed [3,5]. In this work, we present two effective algorithms
for removing impulse noise from color images. Our proposed algorithms take a
two-step approach. In the first step, noise color pixel candidates are identified
by an impulse detector, and then in the second step, only those identified noise
candidates in the image are restored by using a modified weighted vector median
filter. Extensive experiments indicate that our proposed algorithms have good
performance, and are more effective than most of the existing algorithms in
removing impulsive noise from color images.

The remainder of the paper is organized as follows. In Sect. 2, we clarify
the problems we are considered. In Sect. 3, we present our denoising algorithms.
Experimental results are presented in Sect. 4 and Sect. 5 concludes the paper.

2 Problem Setting

The problem we are considered is the impulse noise removal in color images.
Given an M by N noisy image, let xij be the vector of the given image, let
vij be the impulse noise vector, and let zij be the noise-free color pixel, for
(i, j) ∈ I ≡ {1, · · · ,M} × {1, · · · , N}, and let p be impulse noise probability.
Then impulse noise model is described as,

xij =
{

vij with probability p
zij with probability 1 − p

(1)

The model (1) gives many kinds of impulse noise for color images. Depending
on the type of vector vij , we consider two impulse noise models, called salt-and-
pepper noise model, and random-valued impulse noise model. See [9] for example.

For salt-and-pepper noise model, vij is characterized by the following expres-
sion,

vij =

⎧⎪⎪⎨
⎪⎪⎩

(d1, vG
ij , v

B
ij) with probability p1

(vR
ij , d2, v

B
ij) with probability p2

(vR
ij , v

G
ij , d3) with probability p3

(d4, d5, d6) with probability p4

(2)

where dk takes an extreme value for k = 1, 2, · · · , 6, and p1 + p2 + p3 + p4 = 1.
In the remainder of the paper, the two extreme values are denoted by xmin and
xmax, respectively.

In the case of random-valued impulse noise model, we define vij by using the
following model:

vij =
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where rk is independent uniformly distributed random numbers for k =
1, 2, · · · , 6, and p1 + p2 + p3 + p4 = 1.

In the following, we will design two denoising algorithms based on the pre-
sented noise models.

3 Our Proposed Method

As we have known, it should consider the correlations that exists among the
different color channels in the processing of color image data [1,8,14]. However,
this correlation property does not need to be considered when detecting impulses
in color images. Since for a color vector Xi = (XR

i ,XG
i ,XB

i ), if one of its compo-
nents is corrupted by impulse, then the whole vector would be contaminated by
the impulse. Therefore we can detect impulses in color images by using impulse
detection algorithms for scalar valued images.

In the following, we first present the adaptive median filter (AMF) [6], which
will be used to identify salt-and-pepper noise in scalar valued images. Then we
present our denoising algorithm.

Let W s
ij be a window of size (2s + 1) × (2s + 1) centered at location (i, j).

More definitely, W s
ij = {(k, l)| (k, l) ∈ I, |k − i| ≤ s and |l − j| ≤ s}. The

observed color image vectors in this window consisting of samples denoted by
X = {X1,X2, · · · ,XS}, with xij = X(S+1)/2, and S = (2s+1)2. The correspond-
ing three individual color channel are denoted as XR = {XR

1 ,XR
2 , · · · ,XR

S },
XG = {XG

1 ,XG
2 , · · · ,XG

S } and XB = {XB
1 ,XB

2 , · · · ,XB
S }, respectively. We use

XC to represent either of the XR,XG,XB .

Algorithm 1 (AMF for scalar valued images)
Initialize s = 1, and set the maximum window size be smax. For all pixel

location (i, j), do

1. Compute xC
max, xC

med, xC
min, which are respectively the maximum, median and

minimum of the pixel values in W s
ij.

2. If xC
med = xC

max or xC
med = xC

min, set s = s + 1; otherwise, go to step 4.

3. If s > smax, replace xC
ij by xC

med; otherwise, go to step 1.

4. If xC
min < xC

ij < xC
max, then xC

ij is noise-free; replace xC
ij by xC

med, otherwise.

Based on the color image noise model (1)(2), we can identify salt-and-pepper
noise in color images by using Algorithm1.

Algorithm 2 (Noise identification)
Let yC be the image obtained by applying Algorithm1 to the channel xC .

Since noisy pixels take only extreme values xmin or xmax, the noise candidate set
can be obtained by

N = {(i, j)| (i, j) ∈ I, yC
ij �= xC

ij and xC
ij = xmin, or xC

ij = xmax}.

We use
N c = {(i, j)| (i, j) ∈ I, and (i, j) /∈ N},

to denote the set of noise-free pixels.
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By using Algorithm 2, we now present our denoising algorithm for removing
salt-and-pepper noise from color images.

Algorithm 3 (Denoising algorithm for color images corrupted by salt-and-
pepper noise)

1. (Noise identification): Dividing the image vectors into noise-free set N c

and noise corrupted set N by using Algorithm2.
2. (Restoration): Let the observed image vectors in Sw

ij consisting of samples
denoted by X = {X1,X2, · · · ,XS}, with xij = X(S+1)/2. If xij ∈ N c, the output
is xij itself. Otherwise, the output is defined as,

X(1) = arg min
Xk∈X

W∑
l=1

l∈Nc

‖Xk − Xl‖2,

where l ∈ N c denotes that (i, j) ∈ N c for some xi,j = Xl,

‖Xk − Xl‖2 =
√

(XR
k − XR

l )2 + (XG
k − XG

l )2 + (XB
k − XB

l )2,

and arg min is argument of the minimum, that is,
S∑

l=1
l∈Nc

‖X(1) − Xl‖2 = min
Xk∈X

S∑
l=1

l∈Nc

‖Xk − Xl‖2.

We can easily see that our proposed algorithm (Algorithm 3) is easy to imple-
ment. In the used distance measure, we give zeros weights on the noise color
pixels. This strategy ensures more effective impulse removal than other methods
in the literature such as VMF.

We now consider to remove random-valued impulse noise from color images.
Here we use the rank-ordered logarithmic difference (ROLD) algorithm devel-
oped in [5] to identify noise color pixels.

Algorithm 4 (ROLD algorithm)
Let the observed color image vectors in W s

ij consisting of samples denoted
by X = {X1,X2, · · · ,XS}, with xij = X(S+1)/2. Let Dj(XC

(S+1)/2) = 1 +
max{log2 |XC

j − XC
(S+1)/2|,−5}/5, for j = 1, 2, · · · , S, j �= (S + 1)/2. Arrange

all Dj in an increasing order,

D(1) ≤ D(2) ≤ · · · ≤ D(S−1).

Define local image order statistics as

ROLDl(XC
(S+1)/2) =

l∑
k=1

D(k)(XC
(S+1)/2).

We then identify random-valued impulse noise candidates by using ROLD
with threshold TC : a color vector X(S+1)/2 or equivalently, xij is corrupted with
impulse noise if one of its component XC

(S+1)/2 satisfies ROLDl(XC
(W+1)/2) >

TC , and it is noise free otherwise.
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Now we present our denoising algorithm for color images contaminated by
random-valued impulse noise.

Algorithm 5 (Denoising algorithm for color images contaminated by random
valued impulse noise.)

1. (Noise identification): Dividing the image vectors into noise free set N c

and noise corrupted set N by using Algorithm4.
2. (Restoration): Let the observed image vectors in W s

ij consisting of samples
denoted by X = {X1,X2, · · · ,XS}, with xij = X(S+1)/2. If xij ∈ N c, the output
is xij itself. Otherwise, the output is given by,

X(1) = arg min
Xk∈X

S∑
l=1

l∈Nc

‖Xk − Xl‖2.

4 Experimental Results

We conduct two experiments in this section, to exam the noise removal abil-
ity of our proposed algorithms. Three 512 × 512 color images are used in our
experiments. These three images are “Lena”, “Mandril”, and “Lake”, which are
shown in Fig. 1. We also compared performance of our algorithms with many
other algorithms in the literature, including VMF [1], AVMF [12], MAVMF [12],
quaternion based algorithm, denoted by QVMF [8], VDF [17], AVDF [15], DDF
[10] and HDF [7].

In the experiments, 3 × 3 filter window is used for all above-mentioned tech-
niques. For AVMF, we set λ1 = 4, and for MAVMF, we set λ2 = 12 [12]. For
QVMF, we set the parameter Tol to be 22 as it was set in [8]. For DDF, we
set p = 0.75 [10]. For AVDF, we use AVDF2, since it performances best in all
AVDFs proposed in [15].

We use AMF of maximum size 13 to identify salt-and-pepper noise for Algo-
rithm3,.

For Algorithm 5, we use ROLD algorithm to identify noise as described. We
set l = 4 and set the window size to be 3 × 3, and the threshold is set to be
T = s · q with s = 1.9 if noise ratio is equal or less than 25%; we set l = 12, and
set the window size to be 5 × 5, and the threshold is set to be T = s · q with
s = 5.4 if noise ratio is greater than 25%. Where q is the fraction of the pixels
in each color channel whose ROLD values are less than s.

To get quantitative measure for the noise removal ability of above mentioned
algorithms, the normalized color difference (NCD) and the normalized mean
square error (NMSE) are used in this section. Let M,N be the image dimen-
sions, and xij and x̃ij be the original image vector and its filtered image vector at
location (i, j), respectively. Let L∗ and (u∗, v∗) be lightness values and chromi-
nance values corresponding to xij and x̃ij samples encoded in CIE L∗u∗v∗ color
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Fig. 1. Original images. (a) Lena, (b) Mandril, (c) Lake.

space, respectively. Then NCD is defined as [16],

NCD =

M∑
i=1

N∑
j=1

√
(L∗

xij
− L∗

x̃ij
)2 + (u∗

xij
− u∗

x̃ij
)2 + (v∗

xij
− v∗

x̃ij
)2

M∑
i=1

N∑
j=1

√
(L∗

xij
)2 + (u∗

xij
)2 + (v∗

xij
)2

,

and NMSE is defined as

NMSE =

M∑
i=1

N∑
j=1

‖xij − x̃ij‖22
M∑
i=1

N∑
j=1

‖xij‖22
.

Experiment 1. In this experiment, we test the salt-and-pepper noise removal
ability of the above mentioned algorithms. To this end, we use the noise model
(1)(2) to corrupt the three original test images by salt-and-pepper noise. In the
corruption, different noise levels ranging from 5% to 35% with increments of
10% are carried out. Tables 1, 2 and 3 show respectively, the values of NCD and
NMSE for the restored images “Lena”, “Mandril” and “Lake”. Where “Alg3”
denotes our proposed algorithm (Algorithm 3). In Fig. 2, we show the restored
images by applying VMF, AVMF and Alg5 to the 25% noise corrupted Lena
image.

From the Tables 1, 2 and 3 and Fig. 2, we see that Algorithm 3, has low-
est NCD and NMSE values and good subjective performance. Moreover, our
algorithm is easy to implement. Based on the given results, we draw a conclu-
sion that our proposed algorithm, Algorithm3, is competitive with most existing
algorithms when applied to salt-and-pepper noise removal.

Experiment 2. In this experiment, we test the random-valued impulse noise
removal ability of the above mentioned algorithms. To this end, we use the noise
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Table 1. Values of NCD and NMSE obtained by different algorithms applied to salt-
and-pepper noise corrupted Lena image.

Noise level 5% 15% 25% 35%

Algorithm NCD NMSE NCD NMSE NCD NMSE NCD NMSE

VMF 0.0301 0.0016 0.0326 0.0019 0.0359 0.0024 0.0401 0.0036

AVMF 0.0065 0.0005 0.0101 0.0011 0.0210 0.0046 0.0424 0.0136

MAVMF 0.0272 0.0015 0.0310 0.0018 0.0351 0.0024 0.0398 0.0035

QVMF 0.0029 0.0003 0.0091 0.0012 0.0176 0.0026 0.0281 0.0048

VDF 0.0410 0.0091 0.0705 0.0299 0.1068 0.0565 0.1525 0.0901

AVDF 0.0851 0.0550 0.1862 0.1579 0.2781 0.2487 0.3653 0.3335

DDF 0.0428 0.0093 0.0687 0.0296 0.1046 0.0558 0.1492 0.0882

HDF 0.0393 0.0083 0.0633 0.0248 0.0942 0.0445 0.1318 0.0676

Alg3 0.0021 0.0001 0.0065 0.0004 0.0114 0.0008 0.0172 0.0017

Table 2. Values of NCD and NMSE obtained by different algorithms applied to salt-
and-pepper noise corrupted Lena image.

Noise level 5% 15% 25% 35%

Algorithm NCD NMSE NCD NMSE NCD NMSE NCD NMSE

VMF 0.1185 0.0228 0.1268 0.0246 0.1322 0.0269 0.1388 0.0302

AVMF 0.0484 0.0085 0.0557 0.0110 0.0738 0.0189 0.1035 0.0341

MAVMF 0.1163 0.0228 0.1267 0.0246 0.1321 0.0269 0.1388 0.0302

QVMF 0.0603 0.0150 0.0866 0.0304 0.1116 0.0435 0.1349 0.0551

VDF 0.1650 0.0551 0.1954 0.0845 0.2339 0.1210 0.2787 0.1643

AVDF 0.1771 0.0767 0.2681 0.1765 0.3545 0.2713 0.4348 0.3565

DDF 0.1418 0.0380 0.1701 0.0616 0.2075 0.0936 0.2499 0.1305

HDF 0.1309 0.0291 0.1544 0.0468 0.1843 0.0689 0.2178 0.0930

Alg3 0.0076 0.0016 0.0399 0.0049 0.0544 0.0088 0.0702 0.0135

Fig. 2. Restored images by using different algorithms. (a) 25% salt-and-pepper noise
corrupted Lena image, (b) VMF, (c) AVMF, (d) Alg3.
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Table 3. Values of NCD and NMSE obtained by different algorithms applied to salt-
and-pepper noise corrupted Lena image.

Noise level 5% 15% 25% 35%

Algorithm NCD NMSE NCD NMSE NCD NMSE NCD NMSE

VMF 0.0611 0.0051 0.0714 0.0058 0.0753 0.0069 0.0799 0.0085

AVMF 0.0334 0.0015 0.0387 0.0030 0.0521 0.0076 0.0749 0.0175

MAVMF 0.0602 0.0051 0.0711 0.0058 0.0751 0.0069 0.0799 0.0085

QVMF 0.0380 0.0054 0.0522 0.0136 0.0677 0.0222 0.0844 0.0315

VDF 0.0865 0.0165 0.1146 0.0396 0.1518 0.0705 0.1977 0.1091

AVDF 0.1155 0.0589 0.2125 0.1581 0.3063 0.2562 0.3883 0.3382

DDF 0.0808 0.0140 0.1077 0.0352 0.1435 0.0641 0.1859 0.0982

HDF 0.0767 0.0118 0.0990 0.0279 0.1284 0.0484 0.1610 0.0695

Alg3 0.0042 0.0005 0.0331 0.0014 0.0402 0.0025 0.0481 0.0041

model (1)(3) to contaminate the three original test images by random-valued
impulse noise. In the corruption, different noise levels ranging from 5% to 35%
with increments of 10% are carried out. Tables 4, 5 and 6 show the values of NCD
and NMSE for the restored images “Lena”, “Mandril” and “Lake”, respectively.
Where “Alg5” denotes our proposed algorithm, Algorithm5. In Fig. 3, we show
the restored image by applying VMF, AVMF and Alg5 to the 25% noise cor-
rupted Lena image.

Table 4. Values of NCD and NMSE obtained by different algorithms applied to
random-valued impulse noise corrupted Lena image.

Noise level 5% 15% 25% 35%

Algorithm NCD NMSE NCD NMSE NCD NMSE NCD NMSE

VMF 0.0303 0.0016 0.0341 0.0021 0.0398 0.0034 0.0511 0.0071

AVMF 0.0066 0.0005 0.0111 0.0017 0.0254 0.0070 0.0573 0.0213

MAVMF 0.0274 0.0015 0.0325 0.0021 0.0390 0.0034 0.0508 0.0071

QVMF 0.0034 0.0006 0.0106 0.0017 0.0213 0.0035 0.0379 0.0074

VDF 0.0342 0.0021 0.0381 0.0030 0.0457 0.0060 0.0637 0.0152

AVDF 0.0334 0.0016 0.0371 0.0021 0.0453 0.0036 0.0636 0.0080

DDF 0.0322 0.0018 0.0355 0.0024 0.0413 0.0039 0.0540 0.0089

HDF 0.0316 0.0016 0.0355 0.0021 0.0422 0.0035 0.0566 0.0077

Alg5 0.0028 0.0003 0.0085 0.0010 0.0142 0.0016 0.0205 0.0024

From the Tables 4, 5 and 6 and Fig. 3, we see that Algorithm 5, has lowest
NCD and NMSE values and good subjective performance. Moreover, our algo-
rithm is easy to implement. Based on the above results, we conclude that our
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Table 5. Values of NCD and NMSE obtained by different algorithms applied to
random-valued impulse noise corrupted Lena image.

Noise level 5% 15% 25% 35%

Algorithm NCD NMSE NCD NMSE NCD NMSE NCD NMSE

VMF 0.1170 0.0226 0.1230 0.0242 0.1285 0.0266 0.1371 0.0302

AVMF 0.0331 0.0087 0.0580 0.0112 0.0693 0.0164 0.0934 0.0260

MAVMF 0.1159 0.0226 0.1218 0.0242 0.1284 0.0266 0.1371 0.0302

QVMF 0.0578 0.0135 0.0811 0.0276 0.1051 0.0421 0.1297 0.0569

VDF 0.1571 0.0483 0.1698 0.0630 0.1867 0.0825 0.2138 0.1135

AVDF 0.1295 0.0227 0.1408 0.0281 0.1554 0.0364 0.1779 0.0499

DDF 0.1273 0.0292 0.1328 0.0318 0.1411 0.0367 0.1544 0.0459

HDF 0.1183 0.0218 0.1244 0.0235 0.1332 0.0261 0.1438 0.0302

Alg5 0.0161 0.0053 0.0522 0.0104 0.0596 0.0176 0.0818 0.0228

Table 6. Values of NCD and NMSE obtained by different algorithms applied to
random-valued impulse noise corrupted Lena image.

Noise level 5% 15% 25% 35%

Algorithm NCD NMSE NCD NMSE NCD NMSE NCD NMSE

VMF 0.0613 0.0052 0.0705 0.0064 0.0832 0.0090 0.0973 0.0154

AVMF 0.0334 0.0015 0.0405 0.0039 0.0598 0.0123 0.0971 0.0318

MAVMF 0.0604 0.0052 0.0701 0.0064 0.0830 0.0090 0.0972 0.0154

QVMF 0.0360 0.0028 0.0478 0.0056 0.0633 0.0093 0.0854 0.0160

VDF 0.0776 0.0083 0.0826 0.0106 0.0924 0.0165 0.1116 0.0298

AVDF 0.0639 0.0048 0.0713 0.0062 0.0819 0.0096 0.1026 0.0170

DDF 0.0636 0.0063 0.0730 0.0075 0.0822 0.0103 0.0975 0.0167

HDF 0.0611 0.0051 0.0710 0.0063 0.0835 0.0088 0.0996 0.0146

Alg5 0.0282 0.0010 0.0371 0.0028 0.0459 0.0061 0.0566 0.0087

Fig. 3. Restored images by using different methods. (a) 25% random-valued impulse
noise corrupted Lena image, (b) VMF, (c) AVMF, (d) Alg5.
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proposed algorithm, Algorithm5, is competitive with the most of other existing
algorithms in removing random-valued impulse noise.

5 Conclusions

We present two classes of effective approaches for removing impulse noise from
color images. Our proposed algorithms are effective and performance good.
Experimental results show that our proposed algorithms have improvements in
NCD and NMSE over most of the existing algorithms.
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