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Abstract. Precise daily weather forecasts are necessary for the utilization of
renewable energy sources and their penetration into grid systems. Standard
meteorological statistical post-processing methods relate local observations with
numerical predictions to eliminate systematic forecast errors. Neural networks,
trained with the last historical series, can model the current weather frame to
refine a target forecast for specific local conditions and reduce random predic-
tion errors. Their daily correction models can process numerical prediction
model outcomes of the same data types (instead of the unknown data) to
recalculate 24-hour wind speed forecast series. Global numerical weather
models succeed generally in forecasting upper air patterns but are too crude to
account for local variations in surface weather. Long-term complex forecast
systems, which simulate the dynamics of the complete atmosphere in several
layers, cannot exactly detail local conditions near the ground, determined by the
terrain relief, structure, landscape character, pattern and other factors. Extended
polynomial networks can decompose and solve general linear partial differential
equations, being able to model properly unknown dynamic systems. In all the
network nodes are produced series of relative polynomial derivative terms,
which convergent sum combinations can directly define and substitute for the
general differential equation to model an uncertain system target function. The
proposed local forecast correction procedure using adaptive derivative regres-
sion model can improve numerical daily wind speed forecasts in the majority of
days.

Keywords: Polynomial neural network � General partial differential equation
substitution � Wind speed local correction model � Daily forecast revision

1 Introduction

Global forecast systems are based on the numerical integration of differential equation
systems, which can describe atmospheric processes on account of meteorological
observations. Statistical methods, which apply historical time-series to predict several
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hours ahead, are excellent at forecasting idiosyncrasies in local weather [4]. Model
output statistics (MOS) post-process first outputs of complex Numerical Weather
Prediction (NWP) models, able to forecast large-scale weather patterns, using regres-
sion equations to reduce systematic NWP errors and clarify surface weather details [7].
Adaptive methods can improve conventional statistical corrections, eliminating also
random forecast errors of NWP models, induced due to uncertain initial conditions and
data computational limitations. However their applications are limited to some cases of
a limited number of input data for specific model resolutions [8]. Artificial Neural
Networks (ANN) can approximate any continuous nonlinear function that offers an
effective alternative to more traditional regression techniques. Polynomial Neural
Networks (PNN) can adapt some mathematical principles of the Partial Differential
Equation (PDE) substitution to decompose and solve the general linear PDE, able to
describe properly the local weather dynamics [10]. Extended PNNs, trained for local
actual weather conditions to model relevant data fluctuant relations in few last days, can
process numerical model outcomes of the same data types (replacing the unknown
data) to refine target forecast series for specific local situation features.
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n – number of input variables x(x1, x2,…, xn)
a(a1, a2,…, am),… – vectors of parameters

Differential polynomial neural network (D-PNN) is a new neural network type,
which adopts some principles of the GMDH (Group Method of Data Handling) theory,
created by a Ukrainian scientist Aleksey Ivakhnenko in 1968. The GMDH decomposes
the complexity of the Kolmogorov-Gabor general polynomial (1), which can describe
connections between input and output system variables, into a lot of simpler rela-
tionships each described by low order polynomials (2) for every pair of input variables.
The GMDH network polynomials can approximate any stationary random sequence of
observations and can be computed by either adaptive methods or system of Gaussian
normal equations. A typical PNN maps a vector input x to a scalar output Y, which is an
estimate of the searched true function [6]. The PNN is a flexible architecture, whose
structure is developed through learning. The number of layers of the PNN is not fixed
in advance but becomes dynamically meaning that this self-organizing network grows
over the trained period.

y ¼ a0 þ a1xi þ a2xj þ a3xixj þ a4x2i þ a5x2j ð2Þ

D-PNN defines and solves the general PDE to model an unknown searched
function, producing sum series of fractional substitution derivative terms in all the PNN
layer nodes. The D-PNN extends the basic PNN structure functionality to decompose
the general PDE analogous to the GMDH does the general connection polynomial (1).
In contrast with the ANN functionality, each neuron (i.e. substitution PDE term) can be
directly included in the total network output, calculated as the sum of selected (active)
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neuron values [10]. The D-PNN application merits become evident in the modeling of
uncertain dynamic systems (including weather variables), which PDE can preferably
describe and which are too complex requiring mass of input data to be solved by
standard regression or soft-computing methods [9].

2 Short-Term Wind Speed Forecasting

One of the main problems of the wind speed forecasting are wind frequent continuous
fluctuations. The NWP models smoothing and averaging the orographic and landscape
characteristics lead to the weak representation of local effects on the airflow, empha-
sized by possible errors in the initial and lateral boundary conditions [6]. Only rough
24–48 h prognoses are usually provided by a meso-scale meteorological model
resulting from a NWP global system, which does not take into account local obstacles
and terrain asperity that can influence the wind speed (power) in a great measure. The
wind power is primarily a result of the current wind-speed, much less affected by other
conditions, e.g. the unstable wind direction, speed change, dusts or turbine operating
temperature. Wind flow prediction inaccuracies become 3-times larger when the
wind-speed is converted into the power through the characteristic curve of a wind
turbine. The potential benefits of forecasting the wind energy production are obviously
useful in the power control and load scheduling. Wind or power forecast models
usually apply lagged values of the average data measurements together with some
relevant meteorological variables. Forecasting methods can be generally divided into
two main groups based on:

• physics of the atmosphere is applied in NWP models
• statistical consideration takes into account historical time-series only

Statistical methods can apply ANNs, wavelet or classical time-series analysis [5]
combined with neuro-fuzzy or ARIMA models. The spatial correlation takes rela-
tionships of the wind speed at different sites into account and time-series of the pre-
dicted point and its neighboring sites are employed in prediction. Forecasting models
developed for one location usually do not match the other site due to variety of reasons
like change in terrain, different wind speed patterns and atmospheric factors. The
physical method has advantages in long-term prediction, while the statistical method
does well in short-term hourly forecasts. The iterative training can provide slightly
different model results therefore the final solution is usually the average of several runs.
Most of the existing methodologies show some drawbacks such as over-fitting or
dependence on the particular local conditions. Hybrid methods combine different
model unique features to overcome the single negative performance and try to improve
the final forecast. These methods need as a rule a pre-processing of input data to show a
better performance. The spatial averaging and temporal interpolation can derive
specific prediction intervals to improve wind speed local forecasts. On-line forecast
systems can monitor actual wind speed NWP errors and calculate several hour ahead
intra-day corrections [2]. Most models combine time-series observations with NWP
outputs, to relate measured data with the forecasts [3]. Adaptive post-processing
methods require as a rule to reduce substantially the number of input variables,
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necessary to model detailed weather data relations [8]. They may equal or exceed the
MOS, starting from the given NWP that does not include local characteristics. The
proposed revision methods process final NWP model outcomes, which were already
corrected primarily for systematic forecast errors by several MOS and secondary data
analysis models. The D-PNN forms daily correction models that can adopt corre-
sponding NWP output data to recalculate the target 24-hour wind speed forecast series
in consideration of the trained actual weather frame and local specifics.

3 The General PDE Decomposition and Substitution

The key idea of the D-PNN is to define and substitute for the general linear PDE, which
exact form is not known in advance and which can describe any data relations, with
sum series of selected relative polynomial derivative terms (3). The searched function
u, which is possible to calculate as the sum of its derivative terms (+ bias) (3), may be
expressed in the form of sum series (5), consisting of convergent series arisen from the
competent partial derivatives (3) in the case of 2 input variables.
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u(x1, x2,, …, xn) – unknown function of n-input variables
a, B(b1, b2,,…, bn), C(c11, c12,,…) – polynomial parameters

Substitution PDE terms (3) are built form the GMDH polynomials (2) according to
the adapted Similarity Dimensional Analysis (SDA) that applies various formal
adaptations of a PDE or data units to form dimensionless characteristic groups of
variables. It replaces original mathematical operators and symbols of a PDE by the ratio
of corresponding variables [1].
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n – combination degree of a complete polynomial of n-variables
m – combination degree of polynomial denominator
f – polynomial substitution for the unknown function u

The complete combination polynomials (2) of the numerators substitute for the
partial unknown functions uk of derivative term sum series u (5), while the reduced
polynomials of denominators represent the alterative derivative parts (5) that result
from the competent derivatives.
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The root function of the numerator (4), which takes the complete polynomials into
competent combination degree, may or may not be applied. The general PDE (3) can be
converted into an ordinary differential equation with only time derivatives (7) that
describe 1-variable time-series. It is solved analogously using the same PDE
multi-variable substitution terms (4) with time-series. Most models take a combined
form of the ordinary-time and PDE solutions [10].
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s(x) – function of independent time-series observations x(x1, x2,…, xm)

Blocks (extended nodes) of the D-PNN (Fig. 1.) form substitution sum DE terms
(neurons in this context) with the same input variables, one for each fractional poly-
nomial derivative combination (4). Each block contains a single output polynomial (2),
without derivative part. Neurons do not affect the block output but can be directly
included in the total network output sum calculation of a DE solution. Each block has 1
and neuron 2 vectors of adjustable parameters a, and a, b respectively.
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where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables

While using 2 input variables the 2nd order partial DE may be expressed in the form
(7), which involves derivative terms formed in respect of all the GMDH polynomial (2)
variables. Each D-PNN block forms 5 corresponding simple derivative neurons in
respect of single x1, x2 (7) squared x1

2, x2
2 (8) and combination x1x2 (9) derivative

Block output 

GMDH 
polynomial 

…
neurons

/

Input 
variables 

Π

/ /

CT 

Differential 
equation 
solution 

x1                           x2

CT = composite
terms    

Fig. 1. D-PNN blocks forms simple (/) and composite (CT) substitution PDE terms (neurons)
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variables, which combination sum can directly solve and substitute for the 2nd order
partial DE (6), most often used to model physical or natural system non-linearities.
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The Root Mean Squared Error (RMSE) is calculated for the polynomial parameter
optimization and neuron combination selection (11).
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4 Backward Differential Polynomial Neural Network

Multi-layer networks form composite functions (Fig. 2.). Composite Terms (CT),
which substitute for the derivatives with respect to variables of previous layers, are
calculated according to the composite function (12) partial derivation rules (13).

F x1; x2; . . .; xnð Þ ¼ f z1; zz2; . . .; zmð Þ ¼ f ð/1ðXÞ;/2ðXÞ; . . .;/mðXÞÞ ð12Þ
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Each D-PNN block can form 5 simple neurons (8)–(10) and the blocks of the 2nd and
next hidden layers produce additional CTs using composite substitution derivatives with
respect to the output and input variables of the back connected previous layers blocks,
e.g. 3rd layer blocks can form linear CTs in respect of 2nd (14) and 1st layer (15). The
number of block neurons, i.e. CTs that include composite function derivatives, doubles
each previous back-connected layer. Thus the probability activations PA of CTs, formed
with respect to the previous layers block derivative input variables, must halve together
with the increasing number of hidden layers they backward comprise in the network
tree-like structure (Fig. 2) [10].
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The square and combination derivative terms are formed analogously. The D-PNN
with an increased number of input variables must select from possible block nodes in
each hidden layer (analogously to the GMDH combinatorial explosion) as the number
of input combination couples grows exponentially in each next hidden layer. The
D-PNN need not define all the possible PDE terms (using a deep multi-layer structure),
e.g. 4–5 hidden layers can form an optimal model for 10-20 input variables (Fig. 3.).

Y ¼
Pk
i¼1

yi

k
k ¼ actual number of active neurons ð16Þ

Only some of all the potential combination PDE terms (neurons) may be included
in a PDE solution, in despite of they have the adjustable term weight (wi). A specific
neurons combination, which forms a PDE solution, is not able to accept a disturbing
effect of the rest of the neurons (possible to form other solutions) in the parameter
optimization. The D-PNN total output Y is the arithmetic mean of active neurons output
values so as to prevent their changeable number (in a combination) from influencing
the total network output value (16) [10].

Fig. 2. N-variable D-PNN selects from 2-variable combination blocks in each hidden layer
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The 2 simultaneous random gradually finishing processes of the optimal block
2-inputs and neurons combination selection are the principal initial phase of the D-PNN
structure formations and PDE composition, performed simultaneously along with the
continual polynomial parameters adjustment using the Gradient Steepest Descent
(GSD) method (Fig. 4). The binary Particle Swarm Optimization (PSO), able to solve
large combinatorial problems, may perform the optimal neurons selection. The Sim-
ulated Annealing (SA), which not only accepts changes that decrease the objective
function (in a minimization problem) but also some changes that increase it, can
improve the block inputs reconnection process.

5 Wind Speed NWP Local Revisions

The National Oceanic and Atmospheric Administration (NOAA) provides the free
National Weather Service (NWS), which includes among others tabular 4-day forecasts
of the hourly average temperature, relative humidity and wind speed at a selected
locality [11]. Daily wind speed correction models processed the last 3-input time-series
(lags) of the above 3 local forecasted quantities, i.e. 9 input variables in total, in Helena,
Montana [11] (Fig. 4, 5 and 6). The D-PNN was trained with corresponding hourly
observation series (of the same data types) for the period of 2 to 6 days previously
(48-144 data samples). The training data can be downloaded from NOAA complete
free historical archives [12], which the Weather Underground (WU) shares [13], or
current daily tabular NOAA observations [14] at many land-based stations.

Fig. 3. 3-simultaneous separate processes of the structure and parameters optimization
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Settled weather periods of several days allow to train the D-PNN with historical
observations, which actual fluctuant relevant data relations do not change essentially in
the forecasted days (Fig. 6). It is infeasible to revise the NOAA wind speed NWP in
sporadic days of an overnight break change in the weather however intervals of more or

Fig. 4. 29.1.2014, Helena - RMSE: NOAA = 6.79, D-PNN = 4.31

Fig. 5. 30.1.2014, Helena - RMSE: NOAA = 3.89, D-PNN = 2.59

Fig. 6. 31.1.2014, Helena - RMSE: NOAA = 5.90, D-PNN = 3.77
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less settled stable conditions tend to prevail (Fig. 7). The NOAA North American
Meso-scale (NAM) forecast model may be also accurate enough to allow any suc-
cessful revisions using the proposed procedure.

Figure 7 shows daily wind speed prediction RMSEs of the original NOAA and
D-PNN minimal error correction models in a week period; the x-axis represents the
ideal (real) approximation.

6 Conclusions

Meteorological conditions mostly do not change fundamentally within short time
periods, which allow to form models that represent the forecasted day actual data
relations. An appropriate NWP data analysis can detect overnight weather changes,
followed by days, which out of date models show big prediction errors, to reject the
failed revisions. Proposed method results are naturally bound to the accuracies of input
NWP model outcomes, which are not completely valid and that enter correction
models. The presented D-PNN output wind speed predictions were compared with the
observations at the complete 24-hour forecasted interval, which are clearly not known
in real-time, to select the best PDE correction solutions. It is necessary to estimate the
D-PNN optimal daily training errors or test its models with the previous day several
hours past forecasts and corresponding last observations to eliminate the weather
dynamics and the NWP outputs inaccuracy in real predictions. The approximate
training or testing parameters will any debase the presented minimal prediction errors
however some improvements in the NWP are feasible according to the experiments.
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Fig. 7. The week wind speed average prediction RMSE: NOAA = 4.65, D-PNN = 2.99, Helena
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