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Abstract. A task of sequential pattern generation can be considered
as a problem which is inverse to sequential pattern mining. This paper
presents two novel approaches to the sequential pattern generation with
noise, namely the approach based on stochastic automata and context-
free grammars and the approach based on Hidden Markov model. The
distinctive feature of these methods is the suitability to produce an out-
put in the noisy and fuzzy input data. Also, we present the detailed
calculation algorithms to the proposed approaches.
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1 Introduction and Preliminary Work

We live in the real world which can be characterized as Big Data era. Intelli-
gent systems, network devices traffic, Internet of Things, Machine-to-Machine
interaction and social networks creates unprecedented huge data arrays. The
data itself has a heterogeneity and in some sense the unlimited volume. Under
this circumstances, the traditional statistical verification-driven Data Mining
are giving way to discovery-driven Data Mining [1]. One of the basic elements
of modern discovery-driven Data Mining is a pattern concept. Patterns repre-
sent some regularities in acquired data and can be obtained in compact form
and understandable to people. It is worth to notice that raw data can contain
some level of incompleteness, vagueness, uncertainty and other factors making
them non-crisp data. The most prominent methods to describe these phenomena,
surely the probability theory, fuzzy sets theory, rough sets theory and numerous
their extensions.

Patterns discovery is being implemented by methods are not framed any a
priori assumptions about the sample structure, probability laws, fuzziness or
roughness of sets of values. The important position of modern Data Mining
methods is the non-triviality of patterns to be discovered. The found patterns

The work was financially supported by Russian Foundation for Basic Research
(projects 15-01-03067-a, 16-01-00597-a, 15-08-01886-a).

c© Springer International Publishing AG 2018
A. Abraham et al. (eds.), Proceedings of the Second International
Scientific Conference “Intelligent Information Technologies for Industry” (IITI’17),
Advances in Intelligent Systems and Computing 679, DOI 10.1007/978-3-319-68321-8 21



206 M.A. Butakova et al.

should reflect non-obvious, unexpected regularities in the data that make up the
so-called hidden knowledge. One of the promising approaches to Data Mining is
Sequential Pattern Mining (SPM). The SPM attracts much research attention
[2,3] in recent years. It has broad applications, including behaviour analysis [4],
analysis of web-access patterns [5], discovering the patterns of transactions in
databases [6] and patterns of computer attacks [7] and intrusion detection [8].

The problem of sequential pattern mining formally defined as follows. A set
of sources and a set of items I = {i1, i2, ..., in} exists. At some time moment
we register an event e ⊆ I that is a collection of items. An ordered list of
events defines a sequence s = 〈s1, s2, ..., sk〉. In general case a sequence s can
be stored in a database D with corresponded indication of event source. The
pattern is a some user-defined subsequence sp ⊆ S that is formed depending on
Xi (S,D) indicator variable, whose value equal 1, if spi � Di, where Di is a ith
source sequence in database D, and 0 otherwise. The mining task is finding all
spi patterns suited to some user-defined constrains, for example, patterns with
specific al values, or related to user-defined threshold.

Further extensions of SPM problem we can divide into three categories: the
extensions that concern to adding an uncertainty [9,10], the extensions that
propose improvements concerning to the fuzzification [11,12] and the pattern
discovery in a noisy environment [13]. An uncertainty in SPM problem con-
cerns to the possibility of getting inaccurate data from sources or attribute level
uncertainty [14]. Also, an event level uncertainty exists and described in [15].

Fuzzification procedures for input values can be implemented in different
ways. A simplest procedure is based on the measure of difference between vari-
ables xi and yi in a, b interval one can define with two parameter membership

function: fi(xi, yi) =

⎧
⎨

⎩

0, |xi − yi| ≤ a
|xi−yi|−a

b−a , a < |xi − yi| < a

1, |xi − yi| ≤ a.

.

General considerations about noise structure we describe in the following way.
Let’s denote E = (Ei)i≥1 is a stochastic process with Ei ∈ {0, 1} binary random
variables. Also we mean that Ei ∈ GF (2) with standard addition and multipli-
cation, and further we mean this variables as presence or absence of noise in the
generated sequence. As a noise model base we consider

{
Ω,F, (Fi)i≥0, P

}
sto-

chastic basis, where Ω is a probability space (a state of modelling subsequence),
F is a sigma algebra subsets of Ω, (sequence of random events in modelling
subsequence), Fi is non-decreasing sequence sigma algebras of F and element Fi

is a information about state available up to and including the time i. The initial

sigma algebra is F0 = σ {Ω, ∅} a trivial sigma algebra F =
∞⋃

0
Fi.

The paper contains two sections that present main results. Section 2 proposes
a novel algorithm to sequential pattern generation using a stochastic automata
model. In Sect. 3 we develop an algorithm for sequential pattern generation based
on Hidden Markov model.
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2 Fuzzy Sequential Pattern Generation Based
on Stochastic Automata Model

In this section we propose a novel algorithm for fuzzy sequential pattern gen-
eration and first of all we would notice that fuzzification stage is not being
discussed. The pattern, as it is discussed in the previous section consists of
events series, that modelling two fuzzy states: a “bad” state and a “good” state.
We use of quasi-periodic processes is based on the assumption that the same
events can be stored on a set of contiguous positions, that is, a series of events
distinguish between a series of “bad” events and a series of “good” events in
the pattern. Thus, it is possible to distinguish alternating events, the events, in
which the probabilities of errors are significantly different. Let’s define λ is a
number of erroneous “bad” events, and μ is a number of “good” events without
errors. Obviously, the lengths of series of “bad” events and “good” events are
random variables with probability distributions fλ (τ) and fμ (τ) respectively,
τ = 0, 1, ..., n, .... The we consider a sequence 〈λi, μi〉i≥0. Random variables
λi and μi are independent. Random variables λ0, λ1, ... are independent and
identically distributed with distribution fλ (τ) and random variables μ0, λ1, ...
are independent and identically distributed with distribution fμ (τ). A sequence
(λi, μi)i≥0 can be divided into two non-overlapping intervals as follows:
if pattern starts with “good” state

[0, μ0 − 1] , [μ0, μ0 + λ0 − 1] , ...,
[

n∑

i=0

μi +
n−1∑

i=0

λi,
n∑

i=0

μi +
n∑

i=0

λi − 1
]

, ...,

and if pattern starts with “bad” state

[0, λ0 − 1] , [λ0, λ0 + μ0 − 1] , ...,
[

n∑

i=0

λi +
n−1∑

i=0

μi,
n∑

i=0

λi +
n∑

i=0

μi − 1
]

, ....

Then, let’s consider a noise as a binary sequence E which is divided into
segments by stochastic intervals E0, E1, ... and obtain a concatenation of quasi-
periods. Based on widely known average moving models we denote M1 is a
model related to generation of “bad” erroneous events sequence and M2 is a
model related to generation of “good” error-free events sequence. We use fol-
lowing generation rule: if the segment of generated pattern is related to interval[

n∑

i=0

μi +
n−1∑

i=0

λi,
n∑

i=0

μi +
n∑

i=0

λi − 1
]

then it is created M1 model; if the segment

of generated pattern is related to interval
[

n∑

i=0

λi +
n−1∑

i=0

μi,
n∑

i=0

λi +
n∑

i=0

μi − 1
]

then it is created M2 model.
The more general generation model can be obtained using attribute gram-

mars [16] in the following way. A context-free grammar is a quad-tuple G =
〈S,N, T, P 〉, where S is starting symbol, N is alphabet of non-terminal symbols,
T is alphabet of terminal symbols, P is set of inference rules. We assume that
in grammar there are no non-terminal symbols that are not belonging to any of
the conclusions. Attribute grammar consists of context-free grammar G, which
is called the base of attribute grammar, mappings Z and I, which match each
character X ∈ N ∪ T disjoint sets Z (X) and I (X) of synthesized and inherited
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attributes, as well as from sets M (p) we obtain the sets of semantic rules (rules
of calculation of attributes) for each rule p ∈ P .

2.1 Formal-Grammar Noise Model

Next we propose a modified attribute grammar and as a base we use a stochastic
context-free grammar G = 〈S,N, T,Q〉. The element Q is a finite set of stochastic
inference rules. The stochastic inference rule is Y

q−→ X, where Y ∈ N , X ∈
(N ∪ T )∗, q is a probability of application of inference rule. We assume that Q

has a set of stochastic inference rules Y
q1−→ X1, Y

q2−→ X2, ..., Y
qn−→ Xn, then

n∑

i=1

qi = 1 and all qi > 0. Mappings Z (X) and I (X) are defined for each X ∈ T .

The set of semantic rules is defined for each X ∈ T .
Next we interpret a terminal symbols alphabet. Attributes in alphabet A

are a (X) , b(X), M (X) . Attribute a (X) is inherited attribute, attributes b (X)
and b (X) are synthesized attributes. Variable b (X) is a random variable with
probability distribution fX (τ). Attribute M (X) is an average moving model
related to pattern state (“bad” or “good”). Let’s X is included into subse-
quence λ ∈ (N ∪ T )∗ and if Y is a symbol that previous to X in subsequence
λ, then a(X) = a (Y ) + b (Y ). If in the subsequence λ there is no terminal
symbols preceding to X, then a (X) = 0. Hence, every terminal symbol cre-
ates stochastic interval [a (X) , a (X) + b (X) − 1] and defines the probability
distribution for noisy segments in generated pattern corresponding to interval
[a (X) , a (X) + b (X) − 1] using M (X) model. Further, we will consider only
automata attribute grammars with following inference rules: Y

q−→ ZX, where
Z ∈ T and X ∈ N or Y

q−→ Z or Y
q−→ ε, where ε is an empty subsequence. The

reasoning above allow us to propose the following Algorithm1 for generating
noisy segments of the pattern.

Algorithm 1. Generation of noisy segments of the pattern
1: Initialization
2: Gen1 - random normal variable, Gen2 - uniform random variable in [0,1]
3: Define length of segment. i = 0
4: Generate initial terminal symbol X0

5: a (X0) = 0, b (X0) ← Gen2, fX0 (τ), d (X0) = min (b (X0) − 1, N), seq0 ← Gen1,
M (X0)

6: Iteration
7: if d (Xi) = N then then 12
8: i = i + 1
9: Generate Xi, a (Xi) = d (Xi−1) + 1, b (X0) ← Gen2, fX0 (τ)

10: d (Xi) = min (a (Xi) + b (Xi) − 1, N)
11: seqi ← Gen1, M (Xi)
12: Stop

Next we give some comments about method above. A model is described
by modified attribute grammar N = {S,A,B}, T = {a, b}, where symbol a is
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a fuzzy “good” state, and symbol b is a fuzzy “bad” state and inference rules
are Q =

{
S

q−→ aB, S
1−q−−→ bA,A

1−→ aB,B
1−→ bA

}
. Sequence can start on sub-

sequence with “good” state or on a “bad” state with probabilities q or 1 − q
respectively. The range of good states corresponds to the gap between groups
of states. Within the group, the intervals of “bad” states alternate with inter-
vals of “good” states. State groups alternate with intervals of “good” states.
The number of “bad” intervals within a group is a random variable distributed
geometrically.

Next, we propose more general Algorithm 2, which takes into account inter-
mediate state of subsequence between “bad” and “good” intervals. In the fol-
lowing we use notation “a,b,c” for “bad”, “intermediate” and “good” intervals
in generated sequence pattern respectively, fX (τ) is a random variable that
denotes length of interval. M (X) is an moving average model the following
type: xi = d0 + d1xi−1 + d2xi−2, where instead of the coefficients we take
a0, a1, a2, b0, b1, b2 and c0, c1, c2 for “bad”, “intermediate” and “good” intervals
respectively.

Algorithm 2. Generation sequential pattern with noise
1: Start
2: for i = 1, N do
3: Generate random variable xi

4: Compute Ei =

{
0, d0xi + d1xi−1 + d2xi−2 ≤ Θ
1, otherwise.

5: Forming a grammar N = {S, L, M, Q}. A set of terminal symbols is {a, b, c}, S is
starting symbol.

6: Inference rules are: S
P1−−→ cL, S

P2−−→ cM , S
P3−−→ cQ, S

P0−−→ ε,
∑

Pi = 1, M
P6−−→ bM,

M
P7−−→ bQ, Q

P8−−→ aS, Q
P9−−→ aS.

7: Generate subsequence’s lengths k and obtain random variables ξ1, ξ2, ..., ξk, |λ| = k
8: for each i do
9: interval 1: [0, ξ];

10: interval 2: [ξ1 + 1, ξ1 + ξ2];
11: interval 3: [ξ1 + ξ2 + 1, ξ1 + ξ2 + ξ3];

12: interval i:

[
i−1∑
j=1

ξj + 1,
i∑

j=1

ξj

]
.

13: Produce output sequence
14: Stop

The algorithm above requires the data chosen from arrays must be deleted
in order to avoid repetitions in generated sequence.

3 Sequential Pattern Generation with Fuzziness Based
on Hidden Markov Model

Hidden Markov models, the doubly embedded stochastic process with an
underlying not observable stochastic process now is a tool for SPM [17,18].
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Again, we will consider and additive noise E = {Ei}, as a random dis-
crete sequence, and will add random state of the generated pattern interval
D = {Di} with Di ∈ WD. The probability distribution of noise E : P (E) =∑

D

P
(
E/D

)
P (D).

The presence of the conditional distribution P
(
E/D

)
is due to the occur-

rence of interference is completely determined by the state of interval D. The
independence condition leads us to the P

(
E/D

)
=

∏

i

P
(
Ai/D

)
probability dis-

tribution. From the casual condition it follows P
(
Ei/D

)
= P

(
Ei/D(i)

)
, where

D(i) = (...,Di−1,Di). We decide that enough condition of the noise dependency
on the state is D(i) = (...,Di−1,Di) which means that Ei depends on Di only.
This, the probability distribution law is:

P (E) =
∑

D

∏

i

P
(
Ei/Di

)
P (D) (1)

If sequence D is a Markov sequence P (D) = P (D0)
∏

i≥1

P
(
Di/Di−1

)
than (1)

has following form:

P (E) =
∑

D0

P (D0)
∑

D1

P
(
E1/D1

)
P

(
D1/D0

) ∑

D2

P
(
E2/D2

)
P

(
D2/D1

)
..., (2)

∑

Dn

P
(
En/Dn

)
P

(
Dn/Dn−1

)
, where n = |E|. We assume sequences E,D are finite.

Equation (2) creates recurrent procedure calculation of P (E) sequence of func-
tions φ as follows:

φn (En,Dn−1) =
∑

Dn

P
(
En/Dn

)
P

(
Dn/Dn−1

)
;

φk

(
Ek,Dk−1

)
=

∑

Dk

P
(
Ek/Dk

)
P

(
Dk/Dk−1

)
φk+1

(
Ek+1,Dk

)
; (3)

k = n − 1, ..., 1;

P (E) =
∑

D0

P (D0) φ1

(
E1,D0

)
.

Hence, from (3) it is following that Ek = {Ei}n
i=k, and particularly, E = E1.

Let’s consider a model with Ei ∈ {0, 1} ,Di ∈ {0, 1} interleaving “bad”
and “good” states, where P

(
Ei=1/0

)
= 0, P

(
Ei=1/1

)
= 1 − ε, P

(
0/0

)
=

p0, P
(
1/1

)
= 1 − p1. The proposed model is completely defined by three para-

meters ε, p0, p1. Condition probability distributions is defined as:

P
(
Ei/0

)
= −Ei + 1, P

(
Ei/1

)
= (1 − 2ε) Ei + ε,

P
(
Di/0

)
= (1 − 2p0) Di + p0, P

(
Di/1

)
= (2p1 − 1) Di + p1 (4)
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From (2) and (4) it follows

P (E) = α

n∏

i=1

Ei +
n∑

i=1

αi

n∏

j=1,j �=i

Ej +
n∑

i=1

n∑

j=1,j �=i

αi,j

n∏

k=1,k �=i,k �=j

Ek + α1,2,...,n (5)

The Eq. (5) is not quite suited for P (E) calculation, thus we use Eq. (3) in
the following way:

φn (En, 0) = (−En + 1) p0 + ((1 − 2ε) En + ε) (1 − p0) ,

φn (En, 1) = (−En + 1) p1 + ((1 − 2ε) En + ε) (1 − p1) ,

φk (En, 0) = (−En + 1) p0φk−1

(
Ek−1, 0

)
+ ((1 − 2ε) En + ε) (1 − p0) φk−1

(
Ek−1, 1

)
,

(6)
φk (En, 1) = (−En + 1) p1φk−1

(
Ek−1, 0

)
+ ((1 − 2ε) En + ε) (1 − p1) φk−1

(
Ek−1, 1

)
,

P (E) = P (0) φ1

(
E1, 0

)
+ (1 − P (0))φ1

(
E1, 1

)
.

Let’s consider the estimation of hidden sequence D from observed sequence
E. It should be noticed that sequence D∗

i = 1, if Ei = 1 and D∗
i is equal to 0 or

1, if D∗
i . Due to this circumstance we can divide our task into two subtasks:

max
D

i1
0

(
i1∑

i=1

(
ln P

(
Ei=0/Di

)
+ lnP

(
Di/Di−1

))
+ lnP (D0)

)

max
D

ik+1
ik

(
ik+1∑

i=ik

(
ln P

(
Ei=0/Di

)
+ lnP

(
Di/Di−1

))
)

D
ik+1
ik

=
{
Dik , ...,Dik+1

}

where
k = 2, ..., l.

With our parameters ε, p0, p1 we can apply following equation

max
ε

n∑

i=1

ln P
(
Ei/Di

, ε
)

and

max
p0,p1

n∑

i=1

P
(
Di/Di−1 , p0, p1

)

And, based on considerations above we propose Algorithm3 for generating
a sequence pattern using a Hidden Markov model. We also use two states of
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generated interval: g is a “good” state and b is a “bad” state. The probabilities
P

(
Ei=1/g

)
and P

(
Ei=1/b

)
is done. In preliminary we have a stochastic matrix

Q =
(

p 1 − q
1 − p q

)

, where p is a probability of “good” state, and q is probability

of “bad” state. Initial probabilities p0 and 1 − p0 also are defined.

Algorithm 3. Generation sequential pattern based on Hidden Markov model
1: Start
2: Input N - the length of the sequence
3: Generate random variables according Gen1, Gen2
4: Generate initial values with Gen1 and probabilities P

(
Ei=1/g

)
or P

(
Ei=1/b

)
.

5: i = 0

6: R =

(
p0

1 − p0

)

7: if i �= N then
8: i = i + 1
9: Calculation i = i + 1

10: Generation of interval of sequence pattern with R and Gen2
11: Generation of “good” state with probability P

(
Ei=1/g

)
12: Generation of “bad” state with probability P

(
Ei=1/b

)
13: Goto 6
14: Stop

Generating a random binary sequence using a generator will be quasi-periodic
with alternating “bad” and “good” intervals. The length of “bad” interval is a
random variable distributed with P (λ = i) = qi (1 − q). The length of “good”
intervals is a random variable distributed with P (μ = i) = pi (1 − p).

4 Conclusions

In this paper, two novel approaches to sequential pattern generation prob-
lems have been proposed. In the first approach, authors have proposed a novel
algorithm suited for fuzzy sequential pattern generation based on stochastic
automata model. The distinctive feature of the presented algorithm is the pos-
sibility of modeling noisy segments with original formal-grammar noise model.
The second novel approach for sequential pattern generation problem authors is
based on Hidden Markov model. In this case, authors consider additive noise as
a random discrete sequence and fuzzification procedure with stochastic matrix
generating based on quasi-periodic intervals. Three detailed algorithms for imple-
menting approaches above have been developed.
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