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Abstract. The Web of Data is an inherently distributed environment
where ontologies are located in (physically) remote locations and are
subject to constant changes. Reasoning is affected by these changes, but
the extent and significance of this dependency is not well-studied yet.
To address this problem, this paper presents an empirical study on how
the distribution of ontological data on the Web affects the outcome of
reasoning. We study (1) to what degree datasets depend on external
ontologies and (2) to what extent the inclusion of additional ontological
information via IRI de-referencing and the owl:imports directive to the
input datasets leads to new derivations.

We based our study on many RDF datasets and on a large collection
of RDFa, and JSON-LD data embedded into HTML pages. We used
both Jena and Pellet in order to evaluate the results under different
semantics. Our results indicate that remote ontologies are often crucial
to obtain non-trivial derivations. Unfortunately, in many cases IRIs were
broken and the owl:imports is rarely used. Furthermore, in some cases
the inclusion of remote knowledge either did not yield any additional
derivation or led to errors. Despite these cases, in general, we found that
inclusion of additional ontologies via IRIs de-referencing and owl:imports
directive is very effective for producing new derivations. This indicates
that the two W3C standards for fetching remote ontologies have found
their way into practice.
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1 Introduction

The Web contains large volumes of semantically annotated data encoded in
RDF [21] or similar formats. Often, this data contains expressive ontologies that
machines can leverage to perform reasoning and derive valuable implicit informa-
tion. Since information re-usage is a corner stone of the Semantic Web [18], many
datasets reuse ontologies that are already available rather than creating their own
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ones. These ontologies are distributed across the Web and the W3C standardized
two mechanisms to retrieve them: IRIs de-referencing [7] and owl:imports [18].

The number and correctness of new derivations that reasoners produce
depend on the availability and quality of these external ontologies. Therefore,
it is crucial that reasoners can successfully retrieve them and that the union of
external ontologies is still consistent. Unfortunately, the Web is an inherently
distributed and uncoordinated environment where several factors may preclude
the fetching and reusage of remote data. For example, remote ontologies might
silently disappear or move to other locations, or independent authors may pub-
lish ontologies that contain syntactic and/or semantic mistakes [14]. All these
possibilities can heavily affect the output of reasoning or even make reasoning
impossible.

Although much effort has already been invested on studying the quality and
accessibility of resources on the Web of Data (WoD) [5–7], to the best of our
knowledge no work has ever studied how the distribution of ontological data on
the web affects reasoning. The goal of this paper is to study this from a purely
empirical perspective. To that end, we conduct a number of experiments and
analyse the output of reasoning over a wide range of documents to offer a first
preliminary answer to the following questions: (a) how many derivations can
reasoners derive from individual documents? (b) To what extent do documents
link to external ontologies and how accessible are such links? (c) How many new
derivations can reasoners derive after external ontologies are included and how
can we characterize such derivations? (d) To what extent does the inclusion of
additional ontological data endanger reasoning? This paper presents a number
of experiments to answer these questions.

As the input for our experiments, we took samples from LODLaundromat
(LODL) [5], which is a large crawl of RDF documents from the WoD, and Web
Data Commons (WDC) [27], which contains extracted RDFa, MicroData, and
JSON-LD graphs embedded in the HTML pages. We conducted our experiments
using Jena [24] and Pellet [29], two widely used reasoners, and performed two
types of analyses: a quantitative analysis, which focuses on the number of derived
triples; and a qualitative analysis, which looks into the relevance of derived triples
with the input document.

We summarise below some key outcomes of our experiments. These will be
discussed in the remainder of this paper with more details:

– In the majority of the cases, reasoning on a single document produces a small
number of derivations that are mostly RDF or OWL axioms;

– Only a small number of IRIs were de-referencable. However, when IRIs could
have been accessed, the inclusion of additional knowledge allowed reasoners
to derive new triples. This finding highlights the importance of maintaining
functioning links in the WoD;

– The directive owl:imports is used only in a very small number of documents
(less than 0.2% documents of LODL and only on 121 graphs out of 500M in
WDC). In the documents that use it, the (recursive) inclusion of the remote
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ontologies led to a significant increase of the number of derived triples. This
demonstrates the potential of this mechanism;

– In a non-negligible number of cases, the inclusion of remote ontologies did
not lead to the derivation of new triples. Also, we observed cases where the
inclusion of external ontologies led to conflicts that made Pellet fail. Addi-
tionally, in some cases Jena did not finish reasoning within 72 h (despite the
fact that on average the number of statements in input was fairly small).

In general, our findings are encouraging because they indicate that remote
knowledge (fetched either with IRI de-referencing or via owl:imports) does lead
to new valuable derivations. However, we have also witnessed several problems
that show further research is still very much needed.

This paper is structured as follows: Sect. 2 reports on the experimental
settings; Sect. 3 presents the results of the experiments where reasoning was
applied without fetching remote ontologies, Sect. 4 presents the results after
we de-referenced IRIs and Sect. 5 after we imported ontologies via owl:imports.
Finally, Sect. 6 reports on related work while Sect. 7 concludes the paper. An
extended version of this paper is available as technical report at http://hbi250.
ops.few.vu.nl/iswc2017/survey/iswc2017 tr.pdf.

2 Experimental Setup

Inputs. On the Web, semantically-annotated data are primarily encoded either
as RDF knowledge graphs (which are serialized in a number of files) or be
embedded in HTML pages. Therefore, we considered two large collections of
both types: LODLaundromat (LODL) [5] and the Web Data Commons (WDC)
dataset [27]. LODL contains a collection of RDF files that were either crawled
from online archives or submitted to the system. At the time we conducted this
study, the collection consisted of 500K RDF files from more than 600 domain
names. The WDC dataset contains RDFa, Microdata, Microformat, and JSON-
LD data extracted from HTML pages. We use the 2015 crawl which provides
about 541M named graphs from more than 2.7M domain names. We chose these
two datasets because they are, to the best of our knowledge, the largest available
collections of semantically-annotated data available on the Web. We must stress,
however, that neither of these two collections offers any guarantee of representa-
tiveness. As far as we know, no crawled collection from the Web can make such
a claim. They simply represent the best approximation that we have available.

In this paper, we refer to sets of triples which are locally available as docu-
ments. For LODL, a document corresponds to a RDF file. For WDC, a document
corresponds to the set of triples in a named-graph (the named graph is the URI
of the webpage from which the triples were extracted). We refer to the number
of triples contained in a document as its size. We used two reasoners, Pellet [29]
(version 2.3.1) and the OWLMiniReasoner of Jena [24] (version 3.1.0), to eval-
uate reasoning under different computational logic. We use these two reasoners
(instead of, for instance, more scalable solutions like RDFox [26], VLog [30] or

http://hbi250.ops.few.vu.nl/iswc2017/survey/iswc2017_tr.pdf
http://hbi250.ops.few.vu.nl/iswc2017/survey/iswc2017_tr.pdf
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WebPIE [31]) because they are well-tested implementations and work under dif-
ferent semantics. The OWLMiniReasoner reasoner in Jena works under the RDF
semantics and supports an incomplete fragment of OWL Full that omits the for-
ward entailments of minCardinality/someValuesFrom restrictions (detailed list
of the supported constructs is available online1). In contrast, Pellet supports a
sound but incomplete OWL DL reasoning (i.e., SROIQ(D)) [29] and we use it to
perform ABox DL reasoning2. Once again, we refer to the online documentation
for a detailed list of the supported constructs. Each reasoner is launched with
the default settings. The only modification is that we disabled the automatic
owl:imports inclusion for both reasoners in all experiments.

We refer to the terms and axioms defined in the RDF [21], RDFS [8],
OWL [18], and XSD [13] specifications as standard terms and standard axioms
respectively. A standard predicate is a standard term that appears as predicate
in a triple. We assume that standard terms and axioms are locally available (but
not part of the input document) because in practice the reasoners have stored a
local copy.

Reasoning. In this paper, reasoning is used to derive new conclusions. The
reasoning procedure is simple and equivalent for both reasoners: First, we load
a set of triples G into the reasoner. We refer to the set G as the input of the
reasoning process. In some experiments, G equals to a document while in others
it will include also some remotely fetched triples. Then, we query the reasoner
with the SPARQL query SELECT ?s ?p ?o { ?s ?p ?o }, which is meant to
retrieve all the triples the reasoner can derive. Each answer returned by the
reasoner is translated into a RDF triple 〈?s ?p ?o〉. Let G′ be the set of all
returned triples. We call every triple t ∈ G′ \ G a derived triple and refer to the
set G′ \ G as the set of derived triples or derived triples, or in short derivations.
Clearly, this set will be different depending on the used reasoner. We would like
to stress that the purpose of our experiments is not to compare the output of
two reasoners but to analyse their output w.r.t. the inclusion/exclusion of remote
ontological information.

Categorization of Derivations. In order to perform a more fine-grained analy-
sis of the derived triples, we categorize them based on the complexity of reasoning
process that produces them into the following four disjoint categories:

– Type1 derivations are derivations that contain only standard terms. Typ-
ically, triples in this category are the tautologies extracted from these lan-
guages (e.g., 〈rdf:subject rdf:type rdf:Property〉).

– Type2 derivations contain exactly one non-standard term that appears in
one or more triples in the input set (e.g., 〈:resource rdf:type rdf:Resource〉).

1 https://jena.apache.org/documentation/inference/#owl.
2 TBox and ABox are terms from Description Logics. TBox triples encode ‘schema’

information which is crucial for reasoning while ABox triples encode assertional
information.

https://jena.apache.org/documentation/inference/#owl
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– Type3 derivations contain two non-standard terms that appear in the same
input triple (e.g., if the input contains the triple 〈:ClassA owl:equivalentClass
:ClassB〉 then a Type3 derivation could be 〈:ClassB rdfs:subClassOf :ClassA〉).

– Type4 derivations contain two or more non-standard terms that never
appeared in the same input triple (e.g., if the input contains the triples
〈:resource rdf:type :ClassA〉 and 〈:ClassA rdfs:subClassOf :ClassB〉 then a
Type4 triple could be 〈:resource rdf:type :ClassB〉).
The reason behind such classification is that Type1 derivations should be

easy to return. Type2 and Type3 derivations are less easy because they require
one pass on the data (Type3 have the additional complexity that the reasoner
might need to change the ordering of the terms). The derivation of Type4 deriva-
tions usually requires a join between multiple triples, and thus their derivation
is computationally more demanding. Most non-trivial implicit knowledge that
reasoners derive are usually of Type2, Type3 or Type4.

Failures. In some experiments, the reasoners were unable to complete the rea-
soning process. Causes for failure varied between a limited scalability of the algo-
rithms/implementation, syntactic errors [6], and ontological inconsistencies [28].
Please note that the notion ontological inconsistency usually includes unsatisfi-
ability, incoherence, or inconsistency. However, because reasoners do not crash
as a result of unsatisfiability and incoherence, in this paper we ignore them, and
whenever we use the term ontological inconsistency or in short inconsistency,
we refer to conflicting assertions (ABox) or axioms (TBox) that make reasoning
impossible and cause reasoner to abort the process.

A complete analysis of the failures is beyond the scope of this paper. Here,
we say that a reasoner failed (or that a failure occurred) when the reasoner did
not terminate successfully the reasoning process. We classify failures either as
exceptions, which occurred when the reasoner had prematurely terminated (e.g.,
because of an inconsistency or a syntactic error in the input), or as timeouts in
case the reasoner did not conclude the inference within 72 h.

Computing Infrastructure. Many experiments required several hours to fin-
ish, thus, we launched several of them in parallel using the DAS4 [3] cluster. Each
machine in the cluster has 24G of memory and two quad-core 2.4 GHz CPUs.

Data and Source Code. All data, source code to run the experiments, and all
derived triples are available at http://hbi250.ops.few.vu.nl/iswc2017/survey/.

3 Local Reasoning

First, we intend to evaluate how many new derivations the reasoners can derive
from local data. But what can be considered as “local” in the Web of Data? One
possibility is to consider all the RDF datasets that are stored on the same website
as local. Unfortunately, there are several repositories that contain datasets from
several other locations. Another possibility is to assume that local data is stored
in files that share the same prefix (e.g. dbpedia-01.gz, dbpedia-02.gz ), but this is

http://hbi250.ops.few.vu.nl/iswc2017/survey/


74 H.R. Bazoobandi et al.

a rather weak heuristic which does not always hold in practice. For the LODL
dataset, we eventually concluded that the best solution was to consider as “local”
only the triples that are contained in a single document (i.e., a RDF file for LODL
and a named graph for WDC), because documents are the minimal storage units
that are always entirely available on the same physical location. Thus, we will
compute how many new triples reasoners can derive from single documents.

Data Collection. In our context, performing reasoning on every document is
neither feasible nor desirable. The infeasibility is due to the large number of doc-
uments in LODL and WDC. We estimated that even if we could use all machines
of our cluster it would take months to finish the computation. The undesirability
comes from the fact that more than two thirds of the documents in LODL are
fetched from two sources – sonicbanana.cs.wright.edu and worldbank.270a.info –
while in the WDC dataset there is a significant difference between the number of
documents from popular domain names such as http://wordpress.com and the
ones from less popular sources.

With such large skew in terms of provenance, aggregations over the entire
datasets will be strongly biased towards a few sources. While a simple random
sampling strategy would be enough to reduce the input to a manageable size, it
would be ineffective in removing the bias. To avoid this second problem, we first
perform a random sampling over domain names with the sample size determined
by the Cochram’s formula [9] with a confidence level of 95%, and less than 0.5%
margin of error. Then, from every selected domain name, we randomly picked
as many documents as the logarithmic transformation of number of documents
from that domain. This is a well-known methodology for sampling from skewed
sources [19]. We call LODL1 the sample extracted from LODL, and WDC1 the
sample extracted from WDC. Statistics about them are reported in Table 1.

One surprising number in Table 1 is the relatively small number of documents
in LODL1. In fact, 673 documents are indeed only a small fraction of all documents
in the LODL collection. Such aggressive reduction is due to the relatively low
number of domains in the collection and the extreme skew in the distribution of
files among them. With such input, we are forced to select only a few documents
per domain, otherwise we would be unable to construct a sample without skew.
We believe this is the fairest methodology in order to present results which are
most representative (i.e., cover the largest number of sources). If the reader is
interested in biased results, we report in the TR the results obtained with a
larger randomly selected sample.

Table 1. Statistics about the samples of LODL1 and WDC1 used for local reasoning.

#Domains #Documents #Documents per domain #Triples per documents

Max Average Median Min Max Average Median Min

LODL1 510 673 7 1.3 1 1 5.2M 80.9K 70 1

WDC1 67K 74K 8 1.35 1 1 10.6K 20.5 6 1

http://wordpress.com
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Fig. 1. Number of derived triples w.r.t document size on LODL1 (left) and WDC1 (right).

Reasoning Results. We launched Pellet and Jena over both samples, and
report in Fig. 1 the number of derivations in relation with the size of the docu-
ments. We can draw a few interesting considerations from these results: First, the
number of Pellets’ derivations is proportional to the size of the input documents.
This occurs both with LODL1 and WDC1. The number of the derivations produced
by Jena was instead more constant. It only starts to grow proportionally with
the largest LODL1 documents.

Figure 2a shows the percentage of documents that yielded triples in each of
the four categories outlined in Sect. 2. We see that all documents led to Type1
and Type2 derivations, regardless of the reasoner used. We inspected samples
of the triples in each category and found that most Type1 triples are RDFS
and OWL axioms, while most of the Type2 derivations are triples that describe
resources or predicates, e.g., both reasoners always derive that predicates are
instances of rdf:Property. In general, almost all documents have also led to Type3
derivations. The only exception was WDC1 in combination with Jena since in this
case almost 20% of the documents did not return any Type3 derivation. We man-
ually inspected a sample of Type3 derivations and found that they resemble to
Type2 information in the sense that they also describe predicates and resources.

Fig. 2. (a) Percentage of documents that yielded derivations of each type. (b) Ratio of
each derivation type w.r.t total number of derivations.
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For example, the statement “a property is a rdfs:subPropertyOf itself” is a Type3
statement that both reasoners have frequently derived.

We observed that Jena did not derive any Type3 triples if the document con-
tained only standard predicates. Instead, Pellet frequently derived Type3 triples
that state that classes are equivalent/subclass of themselves. In contrast to Pel-
let, we noticed that Jena always returned about 600 Type1 triples regardless of
the actual input. This explains why the number of derivations tends to be con-
stant for Jena in Fig. 1: It mainly consists of 600 Type1 statements plus some
Type2 or Type3 statements that describe resources and predicates. To explain
this more clearly, we show in Fig 2b the ratio of each derivation type against
total number of derivations in the samples. We see from the figure that Jena
on WDC1 only produces Type1 derivations, thus the total number of derivations
tends to remain constant for each document. The situation is different for LODL1
where the sizes of documents vary considerably. There, a smaller number of
all derivations is of Type1 which indicates that Jena derives significantly more
derivations of other types. Interestingly, we notice from Fig. 2a that all WDC1
documents derive Type2 triples and about 80% of them derive Type3 deriva-
tions with Jena. However, in Fig. 2b we see that these triples are fewer than
Type1 triples. This means that each document led to only few Type2 and Type3
statements while the largest number of derivations is of Type1 .

Finally, we observed that neither reasoner was able to derive Type4 triples
from WDC1, while for LODL1 only 24% of the documents yielded such derivation.
This suggests that in general most of the derivations that we can obtain from
single documents are sort of “descriptions” of the terms in the dataset (e.g., a
predicate is an instance of rdfs:Property, a class is an instance of rdfs:Class, etc.).

Failures. Type2 and Type3 derivations should be easy to calculate since they
can be typically derived with a single pass on the data. Unfortunately, we still
witnessed a number of failures with both reasoners. These failures were rare in
WDC1 (i.e., less than 0.1% for both reasoners, and all these cases were exceptions
caused by syntax errors). With LODL1, Jena successfully finished for more than
99.9% of the input documents. When it did not, timeout was the primary cause
of failure. With Pellet we witnessed a higher percentage of failures (about 12%
of the inputs). In more than 72.5% of these cases, Pellet threw an exception,
while the rest of the cases the reasoner timed out. Interestingly, more than 92%
of exceptions were raised by inconsistencies while the rest were raised due to
other internal reasons (e.g. Unknown concept type exception).

4 IRI De-referencing

We will now present the results of our experiments to investigate whether the
inclusion of additional remote content obtained by de-referencing IRIs in the
documents leads to more derivations. To this end, we considered all documents
of LODL1 and WDC1 for which local reasoning succeeded. Given the low failure rate,
these samples are roughly equivalent to the original LODL1 and WDC1 datasets. In
this section, we refer to these two subsets as LODL2 and WDC2 respectively.
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Unfortunately, de-referencing every IRI in each document is not technically
feasible due to high latencies and limited bandwidth. To reduce the workload,
first, we avoided de-referencing IRIs that were part of standard vocabularies
(RDF, RDFS, OWL, XSD) since that content is typically already known by the
reasoner. Second, we limited de-referencing to only two subsets of IRIs: predicate
IRIs and Class IRIs. The firsts are IRIs that appear as predicates of triples.
These IRIs (excluding those from standard vocabularies) appear in 99.7% of the
LODL2 documents and 83.4% of the WDC2 documents. The seconds are IRIs that
were either explicitly defined as instances of rdfs:Class or appeared as subjects
or objects of predicates that we knew their domains or ranges were instances of
rdfs:Class (e.g., the object of the rdf:type predicate). De-referencing class IRIs
was not always possible: in fact, only 67.63% of documents in LODL2 and 71.79%
of documents in WDC2 contain class IRIs. Table 2 reports statistics about the
number of distinct predicates and classes in the LODL2 and WDC2 datasets.

Table 2. Statistics of predicate/classes IRIs per document in each sample.

LODL2 WDC2

Max Average Median Min Max Average Median Min

Predicate 432 14.3 6 0 67 3.6 3 0

Predicate domains 11 2.5 2 0 5 1.4 1 0

Class 496 7.9 1 0 14 1.3 2 0

Class domains 11 1.5 1 0 4 0.7 1 0

Furthermore, not all IRIs could be accessed: Only 4.7% of predicates and
35.9% of the class IRIs in WDC2 were de-referencable. The LODL2 dataset presented
a significantly different situation: There, roughly 73% of predicates and 74.5% of
class IRIs were accessible. We analyzed the inaccessible predicate IRIs in WDC2
and found that more than 84.6% of them pointed to non-existent resources on
http://schema.org. We reported the full list of accessible and inaccessible IRIs
in the public repository of this study.

Experimental Procedure. We proceeded as follows: First we performed rea-
soning only on the single document (see Sect. 3). Then, we repeated the process
only considering the remotely-fetched triples, and finally considering the doc-
ument plus its remotely-fetched triples. We counted as new only those deriva-
tions that could have been derived in this last step (document plus the remote
triples). In other words, we only count the derivations that were impossible to
derive without adding external content to the input.

4.1 Experimental Results

Based on the number of new derivations, we divided the input documents into
three groups: Those that yielded new derivations (Deriving), those that produced

http://schema.org
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Fig. 3. After de-referencing predicate (P) and class (C) IRIs: Ratio of Deriving, Not
Deriving and Failed reasoning processes (a). Ratio of documents that derive each
derivation type (b).

no new derivations (Not-Deriving), and those for which the reasoning process
failed (Failure). Figure 3a shows the percentage of documents in each group. The
figure shows that a relatively large percentage of documents in LODL2 derived
no additional information after remote triples were added. Furthermore, docu-
ments in WDC2 are more likely to yield new derivation after de-referencing IRIs
than documents in LODL2. Moreover, the figure also suggests that de-referencing
class IRIs is more likely to produce additional derivations than de-referencing
predicate IRIs. This is interesting because documents often contain more predi-
cate IRIs than class IRIs.

Deriving Documents. To study how the de-referencing of IRIs affects the
number of derivations, Fig. 4 shows a comparison between the size of the input
documents and the number of new derivations. The figure shows that for WDC2,
regardless the type of IRI that is de-referenced and irrespective of the reasoner,
the number of new derived triples is proportional to the size of input document.
This is similar to the local reasoning results (see Fig. 1). On the contrary, the
reasoning for LODL2 is different from local reasoning results, especially with Jena.

In order to gain more insights, we classified the newly derived triples into the
four categories defined in Sect. 2. Figure 3b reports the ratio of documents that
derive each specific derivation type (T1–T4 ) after de-referencing predicate (P)
or class (C) IRIs. Figure 3b shows a different situation than in the local case
(Fig. 2b). If we perform only local reasoning, then only a rather small percentage

Fig. 4. Number of derivations vs input size after de-referencing: classes with Jena (a),
predicates with Jena (b), classes with Pellet (c), predicates with Pellet (d).
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of LODL1 documents derived Type4 triples. Instead, after we de-reference IRIs,
the majority of documents in both datasets did derive Type4 triples.

Also, while every document in the local reasoning experiments derived Type1
triples, such new derivation is almost non-existent after IRIs are de-referenced.
The absence of Type1 new derivations was expected because Type1 triples are
most often RDFS and OWL axioms that reasoners can derive anyway, thus
they are not considered as new derivation. Aside from that, Fig. 3b shows that
Jena derived many more Type2 and Type3 derivations than Pellet. Our manual
inspection of these new Type2 and Type3 triples revealed that these derivations
are mostly basic statements such as “an entity is of type owl:Thing”, or “resource
is different from another resource”. Pellet is usually capable of concluding such
derivation without additional data; hence, for this reasoner these statements are
not counted as new derivations. This is not the case for Jena, and therefore it
can derive them after external triples are included.

Finally, we observed that with WDC2 documents the number of all Type2 ,
Type3 , and Type4 derivations tends to be proportional to the size of input doc-
ument. This situation is different for larger LODL2 documents because these doc-
uments tend to use richer OWL ontologies which trigger more reasoning. Con-
sequently, the number of derived triples is no longer proportional to the input
size.

Not Deriving Documents. Figure 3a also shows that there are cases where
both reasoners did not derive any new triples. We scrutinized each Not Deriving
document and the corresponding remotely-fetched triples, and found two main
reasons for this: First, in some cases these triples only stated comments, labels,
and descriptions intended for human interpretation. Reasoners can only conclude
a limited number of derivations from such data. Second, the remote ontologies
are dependent on yet more external ontologies, and so the inclusion of the remote
data without its dependencies leads to no new derivation. Figure 3a also shows
a larger number of Not Deriving and Failure cases with LODL2 than with WDC2.
This was surprising to us since we expected that IRI de-referencing was more
effective in native RDF datasets than in datasets embedded in HTML pages.

Failures. Figure 3a reports a non-negligible number of cases where the inclusion
of remote triples led to a failure of the reasoning process. Note that in this
experiment the input samples only contain documents for which local reasoning
had succeeded. Therefore, the failures we refer to are caused by the inclusion of
external ontologies. Pellet had the largest proportion of failed cases over LODL2
documents (20–40%). From our execution traces, we noticed that Pellet almost
always failed due to inconsistencies (this accounts for 99% of the cases with
predicates, and almost 94% with classes). Sometimes these inconsistencies were
caused by conflicts introduced between triples fetched from different sources,
while sometimes the conflict was between the external knowledge and the input
document. Jena failed less times, but this is due to the fact that it is less stringent
about consistency. Whenever Jena failed, it was because it timed out.

Further inspections indicated that inconsistencies are exacerbated when
triples are included from more sources. When Pellet failed due to inconsistencies
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over LODL2, on average we de-referenced predicates from more than 18 sources
(median 9), and classes from more than 11 sources (median 6). The average is
significantly lower if we consider the cases where Pellet did not fail: predicates
were from 5 sources (median 2), and classes from around 7 sources (median 2).
This indicates that an excessive linking to multiple sources increases the chances
of stumbling into inconsistencies.

5 OWL Imports

Data Collection. The directive owl:imports is another standard mechanism
to link the document to external ontologies. In this section, we study how such
inclusion affects the outcome of the reasoning process. This directive is used in
less than 0.2% (939 documents) of the whole LODL dataset and in only 121
documents of the WDC dataset. Therefore, we do not sample them but instead
use all of them. First, we executed local reasoning on them and filtered out
all the documents for which this process failed. This reduced our input to 554
LODL documents (83 sources) while the size of the WDC documents remained
unchanged: 121 documents from 16 different sources. In this section, we refer to
these subsets of documents as LODL3 and WDC3 respectively.

The owl:imports directive defines a transitive process, i.e., an imported ontol-
ogy may itself import additional ontologies [1]. The documents in WDC3 only
import the goodrelations3 ontology, which is accessible and does not contain
links to any other ontology. On the other hand, the documents in LODL3 import
221 distinct ontologies from 62 different domain names. 76.9% of such imported
ontologies were accessible, and only 52 of the documents imported ontologies
with nested owl:imports statements. We found that the maximum length of
transitive owl:imports chain is 4. Table 3 provides more information about the
documents and the imported ontologies they mention. In the public repository,
we report also the list of all inaccessible ontologies and more details on the ones
that we fetched.

Experimental Procedure. We proceeded in a similar way to Sect. 4, namely,
we performed three reasoning processes: one over the documents without the
imported ontologies, one over only the set of imported ontologies, and one over
the document and its imported ontologies combined. Also in this case, we count
as new derivation only those triples that are exclusively present in the last step
(i.e., triples that are impossible to derive without importing external ontologies).

5.1 Experimental Results

Similarly to Sect. 4.1, we categorized documents into the three groups of Deriv-
ing, Not-Deriving, and Failure, and present the collected statistics in Fig. 5a.
The figure shows that both reasoners derived new triples from every document
in WDC3. However, we also see that for a significant number of documents in LODL3

3 http://purl.org/goodrelations/v1.

http://purl.org/goodrelations/v1
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Table 3. Number of triples and number of imported links per document.

# Triples # Imported ontologies

Max Average Median Min Max Average Median Min

LODL3 4.3M 51.7K 397 2 48 4.5 4 1

WDC3 281 31.1 29 22 1 1 1 1

Fig. 5. (a) Ratio of documents in Derived/Not Derived/Failed groups. (b) Ratio of
documents that derived each type of derivations.

both reasoners were not able to derive any new triple. This was surprising to us
since these documents were explicitly pointing to the external ontologies so we
assumed that the import process would lead to at least some new derivations.

Deriving Documents. Figure 6 reports the number of new derived triples
against the number of triples in the input document. We observe no proportional
relation between the number of derived triples and the size on input document
in LODL3 and the outcome with the two reasoners is different. This is in con-
trast with WDC3 because here both reasoners derived roughly an equal number of
derivations. Furthermore, each reasoner in WDC3 derived almost the same number

Fig. 6. Number of new derivations vs the document size after importing ontologies
using Jena (a), and Pellet (b).
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of triples per document (dots overlay each other in the figure). There are two
reasons behind such regularity on WDC3: First, as Table 3 shows, documents in
WDC3 tend to be of similar size; second, all documents in WDC3 import the same
ontology (goodrelations).

Similarly as before, we classified the newly derived triples into our four cate-
gories and report the results in Fig. 5b. We notice that the type of new derivations
is akin to what reasoners derived when IRIs were de-referenced (see Fig. 3b).
In both cases, new Type1 triples are almost nonexistent and almost all docu-
ments lead to the derivation of Type3 and Type4 triples. Additionally, we also
observe that with Jena more documents derive Type2 and Type3 triples than
with Pellet. As we explained in Sect. 4, this is because Type2 and Type3 triples
usually include information that Pellet can derive without external ontological
data (and hence are not counted as new derivations).

Not Deriving Documents. While there is no Not Deriving document in WDC3,
as Fig. 5a shows, the percentage of Not Deriving documents in LODL3 is remark-
ably higher than when IRIs are de-referenced (see Fig. 3a). To find the cause, we
studied the connections between the documents and the ontologies they import.
In some cases, we found that the ontological information included from external
sources was either already in the document or reasoners were able to derive it
from the triples in the document itself. In other cases (which were the majority),
we found that the owl:imports statement was the only link between the docu-
ment and the imported ontology. In other words, no term from the directly or
indirectly imported ontologies was used in triples of the input document.

We can only speculate on the possible reasons behind the lack of links between
the documents and the imported ontologies. One possible explanation could be
that publishers put the owl:imports statements at the beginning of a large file
(as a sort of “header”) even though the remote knowledge was relevant for triples
that were serialized much later on. Then, the large file was split in smaller ones
without replicating the owl:imports statement on each file. In such a case, the
only file that would contain the owl:imports statement is the first split, but this
split does not contain any relevant triple for the remote ontology and hence no
new derivation is produced (and the ones that could benefit from the remote
content do not contain a link to the ontology).

Similarly, another case could occur if the publisher stores the TBox and ABox
triples into different files and the owl:imports statement is put in the TBox file
even though it points to relevant information for the ABox triples. In this case, if
the ABox files do not import the TBox file, then the owl:imports statement will
appear in a file (the TBox one) where it is not needed while files which might
need it are not properly linked.

Failures. In about 18% of the cases, Pellet failed and threw an exception about
inconsistency. There were no failures with WDC3. Jena timed out in only ∼0.3%
of the cases. Pellet never timed out.
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6 Related Work

Various aspects of Linked Open Data have been extensively studied in the
last decade. Studies span a wide range of subjects including the quality of
data [5,22,25], inconsistencies in the schema [2], the utilization of the standard
vocabularies, and the depth and quality of the ontologies [11,12,32]. In [12], the
authors provide some statistics about the utilization of ontologies and vocabu-
laries. Bechhofer et al. [4] analyze a number of ontologies on the Web and find
that the majority are OWL Full, mostly because of the syntactic errors or misuse
of the vocabulary. Wang et al. [32] present similar finding and also report the
frequency of the OWL language constructs and the shape of class hierarchies
in the ontologies. Authors of [16] processed a large number of ontologies with
various reasoners and show that most OWL reasoners are robust against the
web.

As part of their research, authors of [10] report that only a small percentage
of graphs on the Web uses owl:imports, a claim that our results confirm. The
authors of [17] introduce ε-Connections to provide modelers with suitable means
for developing Web ontologies in a modular way, and to provide an alternative
to owl:imports.

More recently, Glimm et al. [15] discuss the current availability of OWL data
on the Web. They report a detailed analysis on the number of used RDFS/OWL
terms and highlight that the owl:sameAs triples are very popular. Similarly,
Matentzoglu et al. [23] present another evaluation of the OWL landscape on the
Web and a method to build an OWL DL corpus for evaluation of OWL engines.
There have also been extensive studies on quality assessments and consistency
of graphs on the Web. For instance, Zaveri et al. [33] provide a framework for
linked data assessment. Feeney et al. [14] found string interdependencies between
vocabularies and provide a tool to combine common linked data vocabularies into
a single local logical model. Furthermore, they suggest a set of recommendation
for linked data ontology design. None of these methods evaluate the interplay
between data distribution and reasoning as we do. Therefore, we believe our
results are a natural complement to all the above works.

7 Conclusions

The goal of this paper was to better understand how the distribution and reusage
of ontologies affect reasoning on the Web of data. To this end, we analyzed several
samples from LODLaundromat, which is a large crawl of RDF documents, and
from Web Data Commons, which contains knowledge graphs that are embedded
in HTML pages. We selected samples from hundreds of different domains in order
to be as representative as possible. We compared the derivations produced by
Pellet and Jena with and without remote external ontologies to understand, both
from a quantitative and qualitative perspective, which are the major changes in
terms of new derivations.

What have we learned? If we do not include any remote ontology, then reason-
ing tends to be rather trivial in the sense that it mainly returns RDFS and OWL
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axioms or description of the terms used in the document (e.g. that a property
is an instance of rdfs:Property). However, if we do include remote ontologies,
either by IRI de-referencing or owl:imports, then reasoners are able to derive
many more non-trivial derivations.

Next to these positive findings, our analysis highlights some important problems:

– Reasoning on single documents is not always possible. In fact, we observed a
number of failures (0.1–12%) during the reasoning process with both reason-
ers. These failures are due to either syntax errors, timeouts or inconsistencies;

– There are a non-negligible number of cases where the inclusion of the remote
ontologies did not lead to any new derivation. Also, there are cases where
the inclusion of remote ontologies breaks the reasoning process since it causes
inconsistencies;

– The owl:imports directive is rarely used. Furthermore, it seems in many cases
it is not used correctly (e.g., if the dataset is split in multiple files, the
owl:imports statement is not replicated on each file) and this greatly reduces
its potential;

– A significant number of IRIs are not accessible anymore. This is an important
problem because the Semantic Web encourages ontological reuse as a basic
principle, and if an ontology becomes unavailable then all documents that
link to it will be unable to access its knowledge.

Some of these issues are already being studied in the community (for instance
the rare usage of owl:imports is shown in [10], and the problem of non-accessible
IRIs is well-known [20]) while others are not well-studied yet. Possible directions
for future work could aim at researching techniques to selectively pick the “best”
remote ontologies to avoid stumbling in errors. Also, it would be interesting to
design methods to try to recover from situations where the documents do not
point to any remote ontology by considering, for instance, ontologies that were
linked for similar data. All these techniques could be potentially useful to make
the Semantic Web more resilient to adverse situations. With this paper, we
provided a first snapshot of the current state of reasoning on the Web of Data.
Our findings are encouraging, and our hope is that they stimulate the community
to reflect on the adoption of current semantic technologies.
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