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Abstract. Knowledge graphs (KGs) are huge collections of primarily
encyclopedic facts. They are widely used in entity recognition, structured
search, question answering, and other important tasks. Rule mining is
commonly applied to discover patterns in KGs. However, unlike in tradi-
tional association rule mining, KGs provide a setting with a high degree
of incompleteness, which may result in the wrong estimation of the qual-
ity of mined rules, leading to erroneous beliefs such as all artists have
won an award, or hockey players do not have children.

In this paper we propose to use (in-)completeness meta-information
to better assess the quality of rules learned from incomplete KGs. We
introduce completeness-aware scoring functions for relational association
rules. Moreover, we show how one can obtain (in-)completeness meta-
data by learning rules about numerical patterns of KG edge counts.
Experimental evaluation both on real and synthetic datasets shows that
the proposed rule ranking approaches have remarkably higher accuracy
than the state-of-the-art methods in uncovering missing facts.

1 Introduction

Motivation. Advances in information extraction have led to general-purpose
knowledge graphs (KGs) containing billions of positive facts about the world
(e.g., [1-3,21]). KGs are widely applied in semantic web search, question answer-
ing, web extraction and many other tasks. Unfortunately, due to their wide scope,
KGs are generally incomplete. To account for the incompleteness, KGs typically
adopt the Open World Assumption (OWA) under which missing facts are treated
as unknown rather than false.

An important task over KGs is rule learning, which is relevant for a
variety of applications ranging from knowledge graph curation (completion,
error detection) [10,12,24] to data mining and semantic culturonomics. How-
ever, since such rules are learned from incomplete data, they might be erro-
neous and might make incorrect predictions on missing facts. E.g., r;
hasChild(X,Y) «— worksAt(X, Z), educatedAt(Y, Z) could be mined from the
KG in Fig.1, stating that workers of certain institutions often have children

© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 507-525, 2017.
DOI: 10.1007/978-3-319-68288-4_30



508 T.P. Tanon et al.

/ worksAt \

dave —_ educatedAt > tuwien mpi
hasFather worksAt worksAt educatedAt
hasSibling ~ john v . \mary/ eatedAL
hasSibling hasChild / \ hasChild / ~ worksAt
hasChild  hasChild /
hasFather hasFathQ P4 ~

alice bob hasSibling —— carol

Fig. 1. Example KG

among the people educated there, as this is frequently the case for popular scien-
tists. While r; is clearly not universal and should be ranked lower than the rule
re 1 hasSibling(X, Z) <« hasFather(X,Y), hasChild(Y, Z), standard rule mea-
sures like confidence (i.e., conditional probability of the rule’s head given its
body) incorrectly favor r; over rp for the given KG.

Recently, efforts have been put into detecting the concrete numbers of facts
of certain types that hold in the real world (e.g., “Finstein has 3 children”)
by exploiting Web extraction and crowd-sourcing methods [23,26]. Such meta-
data provides a lot of hints about the topology of KGs, and reveals parts that
should be especially targeted by rule learning methods. However, surprisingly,
despite its obvious importance, to date, no systematic way of making use of such
information in rule learning exists.

In this work we propose to exploit meta-data about the expected number of
edges in KGs to better assess the quality of learned rules. To further facilitate this
approach, we discuss a method for learning edge count information by extracting
rules like “If a person has more than 2 siblings, then his parents are likely to have
more than 3 children.”

State of the art and its limitations. In [12] a completeness-aware rule scoring
based on the partial completeness assumption (PCA) was introduced. The idea
of PCA is that whenever at least one object for a given subject and a predicate
is in a KG (e.g., “Fduard is Finstein’s child”), then all objects for that subject-
predicate pair (Finstein’s children) are assumed to be known. This assumption
was taken into account in rule scoring, and empirically it turned out to be indeed
valid in real-world KGs for some topics. However, it does not universally hold,
and treats cases inappropriately when edges in a graph are randomly missing.
Similarly, whether to count absence of contradiction as confirmation for default
rules was discussed in [8]. In [11] new completeness data was learned from a KG
by taking as ground truth completeness data obtained via crowd-sourcing. The
acquired statements were then used in a post-processing step of rule learning to
filter out predictions that violate these statements. However, this kind of filtering
does not have any impact on the quality of the mined rules and the incorrect
predictions for instances about which no completeness information exists.
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Contributions. This work presents the first proper investigation of how meta-
information about (in-)completeness, more specifically, about the number of
edges that should exist for a given subject-predicate pair in a KG, can be used
to improve rule learning. The salient contributions of our work are as follows:

1. We present an approach that accounts for meta-data about the number of
edges that should exist for given subject-predicate pairs in the ranking stage
of rule learning.

2. We discuss a method for the automated acquisition of approximate upper and
lower bounds on the number of edges that should exist in KGs.

3. We implement the proposed rule ranking measures and evaluate them both on
real-world and synthetic dataset, showing that they outperform existing mea-
sures both with respect to the quality of the mined rules and the predictions
they produce.?

2 Related Work

Rule learning. The problem of automatically learning patterns from KGs has
gained a lot of attention in the recent years. Some relevant works are [12,28],
which focus on learning Horn rules and either ignore completeness information,
or make use of completeness by filtering out predicted facts violating complete-
ness in a post-processing step. On the contrary we aim at injecting the statements
into the learning process.

In the context of inductive and abductive logic programming, learning rules
from incomplete interpretations given as a set of positive facts along with a
possibly incomplete set of negative ones was studied, e.g., in [18]. In contrast to
our approach, this work does not exploit knowledge about the number of missing
facts, and neither do the works on terminology induction, e.g., [27]. Learning
nonmonotonic rules in the presence of incompleteness was studied in hybrid
settings [16,20], where a background theory or a hypothesis can be represented
as a combination of an ontology and Horn or nonmonotonic rules. The main
point in these works is the assumption that there might be potentially missing
facts in a given dataset. However, it is not explicitly mentioned which parts of the
data are (in)complete like in our setting. Moreover, the emphasis of these works
is on the complex reasoning interaction between the components, while we are
more concerned with techniques for deriving rules with high predictive quality
from large KGs. Recent work by d’Amato et al. [4] shows how in the presence
of ontologies that allow to determine incorrect facts, rules can be ranked by
the ratio of correct versus incorrect predictions. In contrast to our scenario of
interest, in this work, the knowledge about exact numbers of missing KG facts
has not been exploited.

There are also a number of less relevant statistical approaches to complet-
ing knowledge graphs based on, e.g., low-dimensional embeddings [30] or tensor
factorization [29].

! The extended version of this paper is available as a technical report at https://raw.
githubusercontent.com/Tpt/CARL/master/technical_report.pdf.
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Completeness information. The idea of bridging the open and closed world
assumption by using completeness information was first introduced in the data-
base world in [9,19], and later adapted to the Semantic Web in [5]. For describing
such settings, the common approach is to fix the complete parts (and assume
that the rest is potentially incomplete).

Recent work [11] has extended the rule mining system AMIE to mine rules
about completeness, that predict in which parts a knowledge graph may be
complete or incomplete. The focus of the work is on the learning of association
rules like “If someone has a date of birth but no place of birth, then the place
of birth is missing.” In contrast, we reason about the missing edges trying to
estimate the exact number (bounds on the number) of edges that should be
present in a KG. In [11] it has also been shown that completeness information
can be used to improve the accuracy of fact prediction, by pruning out in a post-
processing step those facts that are predicted in parts expected to be complete.
In the present paper, we take a more direct approach and inject completeness
information already into the rule acquisition phase, in order to also prune away
problematic rules, not only individual wrong predictions.

Our cardinality statements (e.g., John has 3 children) encode knowledge
about parts of a KG that are (un)known, and thus should have points of contact
with operators from epistemic logic; we leave the extended discussion on the
matter for future work.

3 Preliminaries

Knowledge graphs. Knowledge graphs (KG) represent interlinked collec-
tions of factual information, and they are often encoded using the RDF data
model [17]. The content of KGs is a set of (subject predicate object) triples,
e.g., (john hasChild alice). For encyclopedic knowledge graphs on the semantic
web, usually the open world assumption (OWA) is employed, i.e., these graphs
contain only a subset of the true information.

In the following we take the unique name assumption, and for simplicity,
write triples using binary predicates, like hasChild(john, alice). A signature of a
KG G is Xg = (R,C), where R is the set of binary predicates and C is the set of
constants appearing in G. Following [5], we define the gap between the available
graph G% and the ideal graph G?, which contains all correct facts over R and C
that hold in the real world.

Definition 1 (Incomplete data source). An incomplete data source is a pair
G = (G* G") of two KGs, where G* C G' and Xga = Ygi.

Note that the ideal graph G* is an imaginary construct whose content is gen-
erally not known. What is known instead is to which extent the available graph
approximates/lacks information wrt. the ideal graph, e.g., “Finstein is miss-
ing 2 children and Feynman none”. We formalize this knowledge as cardinality
assertions in Sect. 4.
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Rule learning. Association rule learning concerns the discovery of frequent
patterns in a data set and the subsequent transformation of these patterns into
rules. Association rules in the relational format have been subject of intensive
research in ILP (see, e.g., [7] as the seminal work in this direction) and more
recently in the KG community (see [12] as the most prominent work). In the
following, we adapt basic notions in relational association rule mining to our
case of interest.

A conjunctive query @ over G is of the form Q(X) - p1(X1),..., pm(Xm)-
Its right-hand side (i.e., body) is a finite set of atomic formulas over X'g, while the
left-hand side (i.e., head) is a tuple of variables occurring in the body. The answer
of @ on G is the set Q(G) = {v(X) | v is a function from variables to C and Vi :
p:(v(X;)) € G}. As in [7], the support of @ in G is the number of distinct tuples
in the answer of Q on G.

An association rule is of the form Q1 = @2, such that @Q; and @2 are both
conjunctive queries and Q1 C @2, i.e., @1(G") C Q2(G’) for any possible KG G'.
In this work we exploit association rules for reasoning purposes, and thus (with
some abuse of notation) treat them as logical rules, i.e., for Q1 = Q2 we write
Q2\Q1 — Q1, where Q2\ Q1 refers to the set difference between Q2 and @1 seen
as sets of atoms.

Classical scoring of association rules is based on rule support, body support
and confidence, which in [12] for a rule r : H « B with H = h(X,Y) are
defined as:

supp(r) == #(z,y) : 3Z : B A h(z,y) (1)
supp(B) := #(z,y) : 3Z : B (2)

_ supp(r)
conf (r) :== supp(B) (3)

where #a : A denotes the number of « that fulfill the condition A, and conf(r) €
[0,1]. As in [12] we compute the support of the rule (body) w.r.t. to the head
variables.

Ezxample 1. Consider the KG in Fig. 1 and the rules r; and 7o mined from it:

— 17 hasChild(X,Y) «— worksAt(X, Z), educatedAt(Y, Z)
— 19 : hasSibling(X, Z) < hasFather(X,Y), hasChild(Y, Z)

The body and rule supports of r; over the KG are supp(B) = 8 and
supp(r;) = 2 respectively. Hence, we have conf(r;) = %. Analogously,
conf(rg) = O

=

Support and confidence were originally developed for scoring rules over com-
plete data. If data is missing, their interpretation is not straightforward and
they can be misleading. In [12], confidence under the Partial Completeness
Assumption (PCA) has been proposed as a measure, which guesses negative facts
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by assuming that data is usually added to KGs in batches, i.e., if at least one
child of John is known then most probably all John’s children are present in the
KG. The PCA confidence is defined as

supp(r) (@)
#(z,y):AZ : BATY : h(x,y') € G°

CONfipeq (1) 1=

Ezample 2. We obtain confpe,(r;) = %. Indeed, since carol and dave are not
known to have any children in the KG, four existing body substitutions are
not counted in the denominator. Meanwhile, we have confpeq(re) = %, since all
people that are predicted to have siblings by rs already have siblings in the
available graph. a

Given a rule r and a KG G the application of » on G results in a rule-
based graph completion defined relying on the Answer Set semantics (see [13]
for details), which for positive programs coincides with the least model datalog
semantics.

Definition 2 (Rule-based KG completion). Let G be a KG over the sig-
nature Xg = (R,C) and let r be a rule mined from G, i.e. a rule over Xg. Then
the completion of G is a graph G, constructed from the answer set of r UG.

Ezample 3. We have G = G U {hasChild(john, dave), hasChild(carol, mary),
hasChild(dave, dave), hasChild(carol, carol), hasChild(dave, bob),
hasChild(mary, dave)}. O

Note that G is the perfect completion of G¢, i.e., it is supposed to contain
all correct facts with entities and relations from Yg« that hold in the current
state of the world. The goal of rule-based KG completion is to extract from G%
a set of rules R such that U,er G2 is as close to G' as possible.

4 Completeness-Aware Rule Scoring

Scoring and ranking rules are core steps in association rule learning. A variety of
measures for ranking rules have been proposed, with prominent ones being confi-
dence, conviction and lift. The existing (in-)completeness-aware rule measure in
the KG context (the PCA confidence (4)) has two apparent shortcomings: First,
it only counts as counterexamples those pairs (z, y) for which at least one h(x,y’)
is in G for some y’ and a rule’s head predicate h. Thus, it may incorrectly give
high scores to rules predicting facts for very incomplete relations, e.g., place of
baptism. Second, it is not suited for data in non-functional relations that is not
added in batches, such as awards, where the important ones are added instantly,
while others much slower or even possibly never.

Thus, in this work we focus on the improvements of rule scoring functions by
making use of the extra (in-)completeness meta-data. Before dwelling into the
details of our approach we discuss the formal representation of such meta-data.
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Cardinality statements. Overall, one can think of 6 different cardinality tem-
plates obtained by fixing subject, predicate or object in a triple and report the
number of respective facts that hold in G'. E.g., for (john hasChild mary) we
can count (1) children of john; (2) edges from john to mary; (3) incoming edges
to mary; (4) facts with john as a subject; (5) facts over hasChild relation; (6)
facts with mary as an object.

In practice, numerical statements for templates (1) and (3) can be obtained
using web extraction techniques [23], from functional properties of relations or
from crowd-sourcing. For other templates things get trickier; one might be able
to learn them from the data or they could be defined by domain experts in topic-
specific KGs. We leave this issue for future work, and focus here only on tem-
plates (1) and (3), which could be rewritten as the instances of the template
(1) provided that inverse relations can be expressed in a KG. For instance,
#s : hasChild(s, john) = #o : hasParent(john,o) for the predicates hasChild
and hasParent, which are inverses of one another.

We represent the (in)completeness meta-data using cardinality statements
by reporting (the numerical restriction on) the absolute number of facts over
a certain relation in the ideal graph G°. More specifically, we define the partial
function num that takes as input a predicate p and a constant s and outputs a
natural number corresponding to the number of facts in G* over p with s as the
first argument:

num(p, s) := #o : p(s,0) € G (5)

Naturally, the number of missing facts for a given p and s can be obtained as

miss(p, s) := num(p, s) — #o : p(s,0) € G* (6)

Example 4. Consider the KG in Fig. 1. and the following cardinality statements
for it:

— num
num
— num
num

hasChild, john) = num(hasChild, mary) = 3; num(hasChild, alice) = 1;
hasChild, carol) = num(hasChild, dave) = 0;

hasSibling, bob) = 3; num(hasSibling, alice) = num(hasSibling, carol) =
hasSibling, dave) = 2.

o~ o~~~

We then have:

— miss(hasChild, mary) = miss(hasChild, john) = miss(hasChild, alice) = 1;
miss(hasChild, carol) = miss(hasChild, dave) = 0;

— miss(hasSibling, bob) = miss(hasSibling, carol) = 2;
miss(hasSibling, alice) = miss(hasSibling, dave) = 1. O

We are now ready to define the completeness-aware rule scoring problem.
Given a KG and a set of cardinality statements, completeness-aware rule scoring
aims to score rules not only by their predictive power on the known KG, but also
wrt. the number of wrongly predicted facts in complete areas and the number
of newly predicted facts in known incomplete areas.
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In the following we discuss and compare three novel approachses for
completeness-aware rule scoring. These are (i) the completeness confidence, (ii)
completeness precision and recall, and (iii) directional metric. Henceforth, all
examples consider the KG in Fig. 1, rules from Example 1, and cardinality state-
ments described in Example 4.

4.1 Completeness Confidence

In this work we propose to explicitly rely on incompleteness information in deter-
mining whether to consider an instance as a counterexample for a rule at hand
or not.

To do that, we first define two indicators for a given rule r : h(X,Y) « B,
reflecting the number of new predictions made by r in incomplete (npi(r)) and,
respectively, complete (npc(r)) KG parts:

npi(r) := me(#y sh(z,y) € GG, miss(h, x)) (7)

npe(r) == Zmax(#y ch(z,y) € GG — miss(h, ), 0) (8)

Note that summation is done exactly over those entities for which miss is
defined. Exploiting these additional indicators for r : h(X,Y) < B we obtain
the following completeness-aware confidence:

supp(r) )

COnfcomp(T) = Supp(B) - npi(’/‘)

Ezample 5. Obviously, the rule ro should be preferred over r;. For our novel
completeness confidence, we get confeomp(r1) = % and confeomp(re) = %, result-
ing in the desired rule ordering, which is not achieved by existing measures (see
Examples 1 and 2). O

Our completeness confidence generalizes both the standard and the PCA
confidence:

Proposition 1. For every KG G and rule r it holds that

(1) under the Closed World Assumption (CWA) confeomp(r) = conf(r);
(i1) under the Partial Completeness Assumption (PCA) confeomp (1) = confpeq ().

In other words, if the graph is known to be fully complete, i.e., for all p €
R,s € C we have miss(p,s) = 0, then confeomp is the same as the standard
confidence. Similarly, if miss(p, s) = 0 for such p, s pairs that at least one fact
p(s,-) € G* exists and miss(p, s) = +oo for the rest, then confeomp is the same
as the PCA confidence.
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4.2 Completeness Precision and Recall

Further developing the idea of scoring rules based on their predictions in com-
plete and incomplete KG parts, we propose to consider the notions of complete-
ness precision and recall® for rules defined in the spirit of information retrieval.
Intuitively, rules having high precision are rules that predict few facts in com-
plete parts, while rules having high recall are rules that predict many facts in
incomplete ones. Rule scoring could then be based on any weighted combination
of these two metrics.

Formally, we define the precision and recall of a rule r: h(X,Y) «— B as
follows:

npe(r)
supp(B)

_ __mpi(r) (11)
> miss(h, s)

The recall measure is similar to classical support measures, but now expresses
how many facts on KG parts known to be incomplete, are generated by the rule
(the more the better). The precision measure, in turn, assesses how many of the
generated facts are definitely wrong, namely those in complete parts (the more
of these, the worse the rule). In fact, this is an upper bound on the precision, as
the other facts cannot be evaluated.

Precisioncomp (1) = 1 — (10)

recalleomp (1)

Ezample 6. It holds that npi(r;) = 2, npe(r;) = 4, while npi(re) = 4,
npc(rg) = 1, resulting in precisioncomp(r1) = 0.5, recalleomp(rs) =~ 0.67, and
Precisioneomy (r2) ~ 0.83, recalleomp(re) =~ 0.67, which lead to the expected rel-
ative rule ordering. O

Limitations. While precision and recall are insightful when there are sufficiently
many predictions made in (in-)complete parts, they fail when the number of
(in-)completeness statements in comparison with the KG size is small. Consider,
for instance, a rule that predicts 1000 new facts over hasChild relation, out of which
2 are in complete, and 2 are in incomplete parts, and overall 1 million children are
missing. This would imply a precision of 99.8%, and a recall of 0.0002%, both of
which are not very informative.

Therefore, next we propose to look at the difference between expected num-
bers of predictions in complete and incomplete parts, or simply at their ratio.

4.3 Directional Bias

If rule mining does make use of completeness information, and both do
not exhibit any statistical bias, then intuitively the rule predictions and the
(in)complete areas should be statistically independent. On the other hand, corre-
lation between the two indicates that the rule-mining is (in)completeness-aware.

2 For brevity we skip the word “completeness” if clear from the context.
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Ezxample 7. Suppose in total a given KG stores 1 million humans, and we know
that 10,000 (1%) of these are missing some children (incompleteness informa-
tion), while we also know that 1000 of the persons are definitely complete for
children (0.1%). Let the set of rules mined from a KG predict 50,000 new
facts for the hasChild relation. Assuming independence between predictions and
(in)completeness statements, we would expect 1% out of 50,000, i.e., 500 facts
to be predicted in the incomplete areas and 0.1%, i.e., 50 in the complete KG
parts. If instead we find 1000 children predicted for people that are missing cor-
respondingly many children, and 10 for people that are not missing these, the
former deviates from the expected value by a factor of 2, and the latter by a
factor of 5.

Following the intuition from the above example, we propose to look at the extent
of the non-independence to quantify the (in)completeness-awareness of rule
mining. Let us consider predictions made by rules in a given KG, where E(#facts)
is the expected number of predictions and a = 0..1 is the weight given to com-
pleteness versus incompleteness. Then the directional coefficient of a rule r is
defined as follows:
direct_coef (1) := « - Elnpe(r)) +(1-a)- M
npc(r) E(npi(r))
Unlike the other measures that range from 0 to 1, the directional coefficient
takes values between 0 and infinity, where 1 is the default. If the ratio between
the KG size and the size of the (in)complete parts is the same as the ratio
between the predictions in the (in)complete parts and their total number, i.e., if
the directional coefficient is 1, then the statements do not influence the rule at
all. The higher is the directional coefficient, the more “completeness-aware” the
rules are.

In practice, expected values might be difficult to compute, and statistical
independence is a strong assumption. An alternative that does not require knowl-
edge about expected values is to directly measure the proportion between pre-
dictions in complete and incomplete parts. We call this the directional metric,
which is computed as

(12)

npi(r) — npe(r)
2 (npi(r) + npe(r))

The metric is based on the same ideas as the directional coefficient, but does
not require knowledge about the expected number of predictions in complete/in-
complete KG parts. It is designed to range between 0 and 1 again, thus allowing
convenient weighting with other [0, 1] measures. The directional metric of a rule
that predicts the same number of facts in incomplete as in complete parts is 0.5,
a rule that predicts twice as many facts in incomplete parts has a value of 0.66,
and so on.

Since the real-world KGs are often highly incomplete, it might be reasonable
to put more weight on predictions in complete parts. This can be done by mul-
tiplying predictions made in complete parts by a certain factor. We propose to

direct_metric(r) := 0.5 (13)
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consider the combination of a weighted existing association rule measure, e.g.,
confidence or conviction and the directional metric, with the weighting factor
6 = 0..1. Using confidence, we obtain

weighted_dm(r) = B - conf(r) + (1 — B) - direct_metric(r) (14)

Ezample 8. We get direct_metric(r;) = 0.33 and direct_metric(rg)=0.8. For
B = 0.5 and confidence from Examplel, weighted_dm(r;) ~ 0.29 and
weighted_dm(rg) = 0.48. O

5 Acquisition of Numerical Statements

As we have shown, exploitation of numerical (in-)completeness statements is very
beneficial for rule quality assessment. A natural question is where to acquire
such statements from in real-world settings. Various works have shown that
numerical assertions can be frequently found on the Web [5], obtained via crowd-
sourcing [6], text mining [22] or completeness rule mining [11]. We believe that
mining numerical correlations concerning KG edges and then assembling them
into rules is a valuable and a modular approach to obtain further completeness
information, which we sketch in what follows.
We start with an available KG G* and some statements of the form (5).

Step 1. For every cardinality num(p,s) = k, we create the facts p<j(s) and
p>k(s). For the pairs p € R,s € C with no available cardinality statements
we construct the facts p>o:p(s,0)ege (), encoding that outgoing p-edges from s
might be missing in G%, as the graph is believed to be incomplete by default.
Here, peqrq with card € {< _, > _} are fresh unary predicates not present in Xga,
which describe (bounds on) the number of outgoing p-edges for a given constant.
We store all constructed facts over p.yq in S.

We then complete the domain of each pgqrq predicate as follows. For every
p<k(s) € S, if p<p(s’) € S for some s’ € C and k' > k, we construct the
rule p<g/ (X) «— p<k(X). Similarly, for every p>r(s) € S, if p>p/(s’) € S where
k' < k, we create p>j(X) «— p>i(X). The constructed rules are then applied
to the facts in S to obtain an extended set G°*® of facts over peqrq. The latter
step is crucial when using a rule mining system that is not doing arithmetic
inferences (like z > 4 implies z > 3).

Step 2. We then use such a standard rule learning system, AMIE [12], on
G* UG to mine rules like:

(1) pcard(X) péard(X)

(2) Peara(X) < péard(x)’pcard(X)

(3) pPaTd(X) — pca'rd(X)’ T(X’ Y)

(4) pcard(X) — péard(X)? T(X’ Y)7p/c/ard(y)
(5) pcard(X) — 7"(‘X7 Y)7p/clard(y)
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We rank the obtained rules based on confidence and select the top ones into
the set R.

Step 3. Finally, in the last step we use the obtained ruleset R to derive fur-
ther numerical statements together with weights assigned to them. For that we
compute G’ = Uren{gwd U G*},.. The weights of the statements are inherited
from the rules that derived them. We then employ two simple heuristics: (i)
Given multiple rules predicting the same fact, the highest weight for it is kept.
We then post-process predictions made by different rules for the same subject-
predicate pair as follows. (ii) If p<x(s), p>w(s) € G’ for k' > k, we remove from
G’ predictions with the lowest weight thus resolving the conflict on the numerical
bounds.
From the obtained graph we reconstruct cardinality statements as follows.

— Given p<i(s), p>x(s) € G' with weights w and w’ we create a cardinality
statement num(p, s) = k with the weight min(w,w’).

— If p<i(s),p>w(s) € G’ for k' < k, then we set k' < num(p,s) <k

— Among two facts p<i(s), p<w (s ) (resp. p>x(s), p>r(s)) Wth < k' (resp.
k > k') the first ones are kept and represented similar to 5.

Regular facts in G’ are similarly translated into their numerical representa-
tions.

Ezample 9. Consider the KG in Fig. 1 and the following cardinality statements
for it: num(hasChild, john) = num(hasSibling, bob) = 3. Among others, G°?
contains the facts: hasChild>s(john), hasSiblings 3 (bob), hasChild> 2 (mary),
hasChildsa(john), hasSiblings 2 (bob), hasSiblings ; (dave), and hasSibling>1
(alice). On the graph G® U G°¥?  the confidence of hasSiblingsy(X)«—
hasFather(X,Y), hasChild>3(Y) is 4 and 1 for hasSiblings1(X) < hasFather
(X,Y), hasChilds3(Y). 0

Ideally, provided that sufficiently many similar numerical correlations about
edge numbers are extracted, one can induce more general hypothesis involving
arithmetic functions like the number of person’s siblings is bounded by the num-
ber of his parents’ children plus 1 or the sum of person’s brothers and sisters
equals the number of his siblings. We leave these more complex generalizations
for future work. Similarly, the employed heuristics provide potential for more
advanced voting/weighting schemes and inconsistency resolution in the case of
conflicting cardinality assertions.

6 Evaluation

6.1 Completeness-Aware Rule Learning

We have implemented our completeness-aware rule learning approach into
a C4++ system prototype CARL?, following a standard relational learning

3 The source code and all the data are available at https://github.com/Tpt/CARL.
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algorithm implementation such as [14]. While our general methodology can be
applied to mining rules of arbitrary form, in the evaluation we focus only on
rules of the form

r(X,2) —p(X,Y),qY,2) (15)

We aim at comparing the predictive quality of the top k rules mined by our
completeness-aware approach with the ones learned by standard rule learning
methods: (1) AMIE [12] (PCA confidence) and (2) WarmeR [14] (standard con-
fidence).

Dataset. We used two datasets for the evaluation: (i) WikidataPeople, which is
a dataset we have created from the Wikidata knowledge graph, containing 2.4M
facts over 9 predicates® about biographical information and family relationships
of people; and (ii) LUBM, which is a synthetic dataset describing the structure
of a university [15].

For the WikidataPeople dataset, the approximation of the ideal KG
(G%) is obtained by exploiting available information about inverse rela-
tions (e.g., hasParent is the inverse of hasChild), functional relations (e.g.,
hasFather, hasMother) as well as manually hand-crafted solid rules from the
family domain like®

hasSibling(X,Y) < hasParent(X, Z), hasParent(Y,Z), X # Y.

From WikidataPeople G’ containing 5M facts, we acquired cardinality state-
ments by exploiting properties of functional relations, e.g., hasBirthPlace,
hasFather, hasMother must be uniquely defined, and everybody with a
hasDeathDate has a hasDeathPlace. For the other relations, the PCA [12] is
used. This resulted in 10M cardinality statements.

LUBM G¢, with 1.2M facts, was constructed by running the LUBM data gen-
erator for 10 universities, removing all rdf : type triples and introducing inverse
predicates. 464K cardinality statements were obtained by counting the number
of existing objects for each subject-predicate pair, i.e., assuming the PCA on the
whole dataset.

Experimental setup. To assess the effect of our proposed measures, we first
construct versions of the available KG (G*) by removing parts of the data from
G' and introducing a synthetic bias in the data (i.e., leaving many facts in G®
for some relations and few for others). The synthetic bias is needed to simulate
our scenario of interest, where some parts of G are very incomplete while others
are fairly complete, which is indeed the case in real world KGs. In Wikidata, for
instance, only for 3% of non-living people sibling information is reported, while
children data is known for 4%.

We proceed in two steps: First, we define a global ratio, which deter-
mines a uniform percentage of data retained in the available graph. To fur-
ther refine this, we then factor a predicate ratio individually for each predicate.

4 hasFather, hasMother, hasStepParent, hasSibling, hasSpouse, hasChild,
hasBirthPlace, hasDeathPlace, and hasNationality.
5 See https://github.com/Tpt/CARL/tree/master/eval /wikidata for details.
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For the WikidataPeople KG, this ratio is chosen as (i) 0.8 for hasFather and
hasMother; (ii) 0.5 for hasSpouse, hasStepParent, hasBirthPlace, hasDeathPlace
and hasNationality; (iii) 0.2 for hasChild; and (iv) 0.1 for hasSibling. For the
LUBM dataset, the predicate ratio is uniformly defined as 1 for regular predi-
cates and 0.5 for inverse predicates.

For a given predicate, the final ratio of facts in G® retained from those in G’
is then computed as min(1,2*k xn), where k is the predicate ratio and n is the
global ratio.

The assessment of the rules learned from different versions of the available
KG is performed by comparing rule predictions with the approximation of G°.
More specifically, every learned rule is assigned a quality score, defined as the
ratio of the number of predictions made by the rule in G¢\ G* over the number
of all predictions outside G°.

, Gr N G'\ G|
quality_score(r) AN (16)

This scoring naturally allows us to control the percentage of rule predictions
that hit our approximation of G?, similar to standard recall estimation in machine
learning.
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Fig. 2. Number of kept rules (#Rules) and their average support for WikidataPeople
and LUBM datasets

Results. From every version of the available KG we have mined rules of the
form (15) and kept only rules r with conf(r) > 0.001 and supp(r) > 10, whose
head coverage® is greater than 0.001. Figure 2 shows the number of kept rules
and their average support (1) for each global ratio used for generating G*.

5 Head coverage is the ratio of the number of predicted facts that are in G* over the
number of facts matching the rule head.
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Fig. 3. Evaluation results for WikidataPeople and LUBM datasets

Evaluation results for WikidataPeople and LUBM datasets are in Fig. 3. The
horizontal axis displays the global ratio used for generating G*. We compared
different rule ranking methods as previously discussed, including standard con-
fidence (3), PCA confidence (4), completeness confidence (9), completeness pre-
cision (10), completeness recall (11), directional metric (13) and weighted direc-
tional metric (3 = 0.5) (14). The Pearson correlation factor” (vertical axis)
between each ranking measure and the rules quality score (16) is used to evalu-
ate the measures’ effectiveness. We measured the Pearson correlation, as apart
from the ranking order (captured by, e.g., the Spearman’s rank correlation), the
absolute values of the measures are also insightful for our setting.

Since facts are randomly missing in the considered versions of G, the PCA
confidence performs worse than the standard confidence for given datasets,
while our completeness confidence significantly outperforms both (see Table 1
for examples).

Table 1. Example of rules mined from WikidataPeople with global ratio of 0.5

Rule r conf (r)|confpca (1) confeomp (r)|dir_metric(r)
hasSibling(X, Z) «— hasSibling(X,Y), 0.10 1|0.10 0.89 0.98
hasSibling (Y, Z)

hasStepParent(X, Z) < hasMother(X,Y’),|0.0015 |0.48 0.0015 0.38
hasSpouse(Y, Z)

" The Pearson correlation factor between two variables X and Y is defined by px,y =

cov(X,Y)
OXO0y

with cov being the covariance and o the standard deviation.



522 T.P. Tanon et al.

For the WikidataPeople KG, directional metric, weighted directional metric
and completeness confidence show the best results, followed by completeness pre-
cision. For the LUBM KG, the completeness confidence outperforms the rest of
the measures, followed by the standard confidence and the weighted directional
metric. Correlation for completeness recall in the LUBM dataset behaved erratic
and was slightly negative, thus is not displayed at all. We conjecture that com-
pleteness recall might be unsuited in certain settings, because it may reward rules
that predict many facts, irrespective of whether these facts are true or false. It
is noteworthy that the standard confidence performs considerably better on the
LUBM KG with correlation factor higher than 0.9 than on the WikidataPeople
KG. Still, completeness confidence shows better results, reaching a nearly per-
fect correlation of 0.99. We hypothesize that this is due to the bias between the
different predicates of the LUBM KG being less strong than in the Wikidata-
People KG, where some predicates are missing a lot of facts, while others just a
few. Completeness precision, directional metric and weighted directional metric
outperform PCA confidence for most settings on the WikidataPeople KG.

6.2 Automated Acquisition of Cardinality Statements

To evaluate our method for automated acquisition of cardinality statements from
a KG we reused the WikidataPeople dataset—without completing the data.

Dataset. We have collected around 282K cardinality statements from various
sources:

— Wikidata schema, i.e., hasFather, hasMother, hasBirthPlace, and
hasDeathPlace are functional properties and, thus, should have at most one
value.

— The 7.5K values of the Wikidata predicate numberOfChildren;

— 663 novalue statements from Wikidata;

— 86K cardinality statements from [23] for the hasChild predicate of Wikidata,;

— 182K cardinality statements are extracted from human-curated and complete
Freebase facts (1.6M). The mapping to Wikidata has been done using tools
from [25].

Experimental setup. We set aside random 20% of the cardinality statements
as validation set, while the rest were incorporated into the WikidataPeople KG,
as explained in Sect.5. We then ran our rule learning algorithm to mine cardi-
nality rules. Rules with support less than 200 or confidence smaller than 0.01
were pruned out. Examples of mined rules along with their standard confidences
include

— hasSibling>s(x) «— hasSibling(x,y), hasSibling>4(y): 0.97
— hasChild>s(x) < hasFather(y, x), hasSibling(y)>a(y): 0.90.

The learned rules were then applied to the enriched WikidataPeople KG to
retrieve new exact cardinalities num(p, s) by only keeping (p, s) pairs where the
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higher and lower bounds matched. The minimum of the standard confidence of
the best rules used to get the upper and lower bounds were assigned as the final
confidence of each num(p, s).

107 >
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3 0.75 - S
E _S —e— Precision
& 05 H SM 5;: —3— Recall
0.25 5
=
0 S

0 02 04 06 08 1

Minimal confidence

Fig. 4. Number of (in-)complete statements for generated cardinalities num(p, s), and
quality of predicted cardinalities.

Results. We aim to evaluate whether we can accurately recover the cardinality
statements in the validation set—as the gold standard-by utilizing the learned
cardinality rules. For different minimal confidence thresholds, the quality of the
predicted cardinalities is measured with standard precision and recall, which is
presented in Fig. 4. We get a nearly perfect precision and a fair recall (around
40%) for the generated cardinalities, which amount to 7.5M-10M depending on
the threshold. Around one third of num(p, s) statements indicate completeness
of the KG for given (p,s) pairs. If we remove the schema information from
the KG, we get lower precision (around 70%) and recall (around 1%) before a
minimal confidence of 0.6, and similar values after.

7 Conclusion and Future Work

We have defined the problem of learning rules from incomplete KGs enriched
with the exact numbers of missing edges of certain types, and proposed three
novel rule ranking measures that effectively make use of the meta-knowledge
about complete and incomplete KG parts: completeness confidence, precision/re-
call and the (weighted) directional metric. Our measures have been injected in
the rule learning prototype CARL and evaluated on real-world and synthetic
KGs, demonstrating significant improvements both w.r.t. the quality of mined
rules and predictions they produce. Moreover, we have proposed a method for
acquiring cardinality meta-data about edge counts from KGs.

For future work, we plan to encode the cardinality information into back-
ground knowledge, e.g., using qualified role restrictions in OWL ontologies and
exploit it to get rid of faulty rules that introduce inconsistencies. Another inter-
esting further direction is to learn general correlations about edge counts that
include mathematical functions, e.g., the number of siblings should be equal to
the sum of the number of sisters and brothers.
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