
Global RDF Vector Space Embeddings

Michael Cochez1,2,3(B), Petar Ristoski4, Simone Paolo Ponzetto4,
and Heiko Paulheim4

1 Fraunhofer FIT, 53754 Sankt Augustin, Germany
michael.cochez@fit.fraunhofer.de

2 Informatik 5, RWTH University Aachen, Aachen, Germany
3 Faculty of Information Technology, University of Jyvaskyla, Jyväskylä, Finland
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Abstract. Vector space embeddings have been shown to perform well
when using RDF data in data mining and machine learning tasks. Exist-
ing approaches, such as RDF2Vec, use local information, i.e., they rely
on local sequences generated for nodes in the RDF graph. For word
embeddings, global techniques, such as GloVe, have been proposed as an
alternative. In this paper, we show how the idea of global embeddings
can be transferred to RDF embeddings, and show that the results are
competitive with traditional local techniques like RDF2Vec.

Keywords: Graph embeddings · Linked open data · Data mining

1 Introduction

While RDF data is graph shaped by nature, most traditional data mining and
machine learning software expect data to be in propositional form. Hence, to
be used in machine learning and data mining pipelines, RDF data needs to be
transformed to propositional feature vectors.

Recently, vector space embeddings have been proposed as a means to cre-
ate low-dimensional feature vector representations of nodes in an RDF graphs.
Inspired by techniques from NLP, such as word2vec [14], they train neural net-
works for automatically learning the mapping of RDF nodes to feature vectors.
Vector space embeddings have been shown to outperform traditional methods for
creating propositional feature vectors from RDF [22], e.g., in tasks like content-
based recommender systems [24].

Unlike the first models for RDF vector space embeddings, which are based
on paths, walks, or kernels, and therefore rely on local patterns, in this paper
we present an approach in that exploits global patterns for creating vector space
embeddings, inspired by the Global Vectors (GloVe) [20] approach for learning
vector space embeddings for words from a text corpus. We show that using the
GloVe approach on the same data as the older RDF2Vec approach does not
improve the created embeddings. However, this approach is able to incorporate
larger portions of the graph, without substantially increasing the computational
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time, leading to comparable results. The main contributions of this paper are
this new embedding approach and an approach to approximate all-pairs Person-
alized PageRank (PPR) computation, which is used to efficiently compute such
embeddings.

The rest of this paper is structured as follows. Section 2 presents an overview
on related work. In Sect. 3, we explain the basic idea of GloVe embeddings, and
show how we transfer that idea to RDF graphs. Section 4 discusses an evaluation
in different scenarios. We close with a summary and an outlook on future work.

The source code used in this evaluation can be found from https://github.
com/miselico/globalRDFEmbeddingsISWC. Possible further developments will
also be on http://users.jyu.fi/∼miselico/software/.

2 Related Work

RDF vector space embeddings, i.e., projections of an RDF graph into a low-
dimensional, dense vector space, have recently been proposed as a means to
make RDF data accessible for propositional machine learning techniques, and
shown to outperform traditional feature generation techniques [22].

RDF2Vec [22] is one of the first approaches that uses language modeling
approaches for unsupervised feature extraction from sequences of words, and
adapts them to RDF graphs. The approach generates sequences by leveraging
local information from graph sub-structures, harvested by Weisfeiler-Lehman
Subtree RDF Graph Kernels and graph walks, and then learns latent numerical
representations of entities in RDF graphs.

The RDF2Vec approach is closely related to the approaches DeepWalk [21]
and Deep Graph Kernels [31]. DeepWalk uses language modeling approaches
to learn social representations of vertices of graphs by modeling short random-
walks on large social graphs, like BlogCatalog, Flickr, and YouTube. The Deep
Graph Kernel approach extends the DeepWalk approach, by modeling graph
substructures, like graphlets, instead of graph walks. In this paper, we pursue
and deepen the idea of random and biased walks since those have proven to be
scalable even to large RDF graphs, unlike other transformation approaches, such
as graph kernels. Node2vec [7] is another approach very similar to DeepWalk,
which uses second order random walks to preserve the network neighborhood of
the nodes.

Furthermore, multiple approaches for knowledge graph embeddings for the
task of link prediction have been proposed [16], which could also be considered
as approaches for generating propositional features from graphs. RESCAL [17]
is one of the earliest approaches, which is based on factorization of a three-way
tensor. The approach is later extended into Neural Tensor Networks (NTN) [28],
which can be used for the same purpose (optionally using multilingual informa-
tion [10]). One of the most successful approaches is the model based on translat-
ing embeddings, TransE [2]. This model builds entity and relation embeddings by
regarding a relation as translation from head entity to tail entity. This approach
assumes that relationships between words could be computed by their vector

https://github.com/miselico/globalRDFEmbeddingsISWC
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difference in the embedding space. However, this approach cannot deal with
reflexive, one-to-many, many-to-one, and many-to-many relations. This problem
was resolved in the TransH model [30], which models a relation as a hyperplane
together with a translation operation on it. More precisely, each relation is char-
acterized by two vectors, the norm vector of the hyperplane, and the translation
vector on the hyperplane. While both TransE and TransH, embed the relations
and the entities in the same semantic space, the TransR model [13] builds entity
and relation embeddings in separate entity space and multiple relation spaces.
This approach is able to model entities that have multiple aspects, and various
relations that focus on different aspects of entities.

Unlike the first models for RDF vector space embeddings, which are based on
paths, walks, or kernels, and therefore rely on local patterns, the approach in this
paper exploits global patterns for creating vector space embeddings, inspired by
the Global Vectors (GloVe) [20] approach for learning vector space embeddings
for words from a text corpus.

3 Global Vectors from RDF Data

The embedding method which we propose borrows the optimization problem
and approach from GloVe [20]. Glove training, however, is based on the creation
of a global co-occurrence matrix from text. Consequently, in our approach we
need to devise a way to build a co-occurrence matrix from graph data. To this
end, we first weigh the edges of the graph and compute approximate person-
alized PageRank scores starting from each node. The PageRank score for the
other nodes (i.e., context nodes) is then used as the absolute frequency in a
matrix. This procedure is then repeated on the graph with all edges reversed
and the result is added to the co-occurrence matrix. This combined matrix is
then subsequently used for training the vectors with the original Glove approach.

3.1 The GloVe Model

GloVe was designed for creating dense word vectors (also known as word embed-
dings) from natural language texts, which have been recently used with much
success in a plethora of Natural Language Processing tasks. GloVe follows a dis-
tributional semantic view of word meaning in context, which basically relies on
the assumption that ‘words which are similar in meaning occur in similar con-
texts’ [25] – i.e., meaning can be derived from the context (i.e., the surrounding
words) of the word in a large corpus of text.

Consequently, to build a GloVe model a word-word co-occurrence matrix
is first built, which contains for each word how often other words occur in its
context. Model parameters then include the size of the context window, whether
to distinguish left context from right context, as well as a weighting functions to
weight the contribution of each word co-occurrence – e.g., a decreasing weighting
function, where word pairs that are d words apart contribute 1/d to the total
co-occurrence count.
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After obtaining a co-occurrence matrix, GloVe attempts to minimize the
following cost function using Adagrad [5].

J =
V∑

i,j=1

f (Xij)
(
wT

i w̃j + bi + b̃j − log Xij

)2

(1)

where f (Xij) is a weighting function on co-occurrence counts of word j in the
context of word i (Xij), wi are word vectors, w̃j context vectors and bi and
bj biases. The intuition behind this cost function is the following one. Each
summand of the summation represents the amount of error attributed to a count
Xij in the co-occurrence matrix. The error consists of a weighing function f , to
dampen the effect of very large co-occurrence counts, and a squared error factor.
The squared error factor will become smaller when the dot product of word
vectors becomes closer to the logarithm of the probability that the words co-
occur. Or turned the other way, when two words co-occur often, their vectors’
dot product will be relatively high, meaning that the vectors are more similar
to make the error factor smaller. The logarithm also causes that ratios of co-
occurrence probabilities are associated with differences of vectors. As a result,
the embedding contains information useful for determining analogies.

3.2 Building a Co-occurrence Matrix from Graph Data

The co-occurrence matrix for textual data is obtained by linearly scanning
through the text and counting the occurrence of context words in the context
of each word. However, the graph which we use as input data does not have a
linear structure. This problem has been worked around in the past by perform-
ing random walks starting from each of the nodes in the graph. Recording the
paths of these walks results in a linear sequence of node (and optionally edge)
labels, which can then, in turn, be used as a pseudo-text to train a model. This
approach is, for example, used in node2vec [7] and RDF2Vec [22]. However, in
these approaches, the trained model is different from the GloVe model and it
does not use the co-occurrence counts, but rather trains a neural network on the
individual context windows directly. In the case of GloVe, only the counts are
needed and hence we are looking for a method to obtain these without generating
the random walks explicitly.

A possible solution would be to perform a breadth-first search of a certain
depth starting from each node in turn, and take all reachable nodes as the con-
text of each start node. Given these kinds of contexts, one could then straight-
forwardly apply GloVe’s co-occurrence weighting and assign a lower weight to
co-occurrence counts of nodes which are further away from the focus node. How-
ever, this simple approach is problematic in that: (a) there could be nodes reach-
able through multiple paths at different levels, (b) there could be loops in the
graph, making a walk pass through the same node multiple times, and (c) if
there is a node with many context nodes at level d, but only few ones at level
d− 1, then the ones at level d will dominate the closer ones in the co-occurrence
matrix as there are that many of them.



194 M. Cochez et al.

To solve this problem, we investigate the use of Personalized PageRank [18] to
determine how important nodes are in the context of a focus node. In general,
PageRank is used to find important nodes in a directed graph. Its first, well-
known use is the ranking of web pages, but later PageRank has also been applied
in other areas (e.g., peer-to-peer networks [9] and social network analysis [15],
among others). At its heart, PageRank works by simulating random walkers
over the graph and observing where these random walkers end up. A simplified
model which we will elaborate below would be as follows. First, we denote the
out degree of a node i as deg(i). Then, if there are n nodes in the graph, construct
an n×n matrix P filled with zeros except for positions i, j, for which there exists
an arc i → j. These positions contain 1/deg(i). Now, the simplified page rank
problem is solved by finding the stationary solution to (notation from [1] – p(i)

is the vector converging to the PageRank value for each page after i iterations.)

p(k+1) = PT p(k). (2)

This simplified version of PageRank can run into a number of problems, namely
some pages may have a zero out degree (so called dangling nodes) and there
could be groups of pages which form closed cycles. In the first case, PageRank
(i.e., random walkers) will get lost from the graph and any node linking directly
or indirectly to a zero out-degree node will get a PageRank of zero. In the sec-
ond case walkers will get trapped and the pages in the cycles will accumulate all
PageRank. To amend these problems, the above equation is adapted to include
parts which ensure that when a walk ends up in a dangling node, it will continue
from another node selected from a distribution v, called the teleportation dis-
tribution. Further, to avoid ending in a cycle, a random jump is also performed
with probability α to a node selected from the same distribution. Usually, v is
chosen to be a uniform distribution, making each node equally likely to be the
target of the jump. However, in the case of personalized page rank the distrib-
ution is degenerate as the target of these random jumps is always the node for
which the rank vector is computed (which we called the focus node). In effect,
the Personalized PageRank vector indicated the importance of nodes from the
perspective of the focus node.

Computing PageRank (and also the PPR variant) is reasonably scalable.
However, as we need to compute PPR for each individual node in turn, in order
to build the co-occurrence matrix, the rapidly becomes too expensive. Moreover,
the PageRank algorithm assigns a value to all nodes in the graph. If we computed
the co-occurrence matrix this way, we would end up with a very large (in our
experiments below this would become around 500 TB) dense matrix with many
small values, which have little to no impact on the later training. Hence, we
designed a faster, approximate all-pairs PPR computation method, which results
in a sparse matrix. This algorithm is based on an approximate PPR method
which we will introduce next.
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3.3 BCA: A Fast Personalized PageRank Approximation

A method for faster computation of Personalized PageRank, called Bookmark-
Coloring Algorithm (BCA) was presented by Berkhin [1]. The main idea behind
this method is to create an approximation to the standard PPR such that the
effort of the algorithm is only used for these nodes which will receive a signifi-
cant rank. This requires fewer computations and since nodes with no significant
PageRank are not assigned a value, a sparse representation is obtained.

An intuitive version of the BCA algorithm is as follows (for full details,
see [1]). To compute the PPR vector p(b) for a focus node b, we start by inject-
ing a unit amount of paint, representing the walkers in the standard personal
PageRank computation, to b. From this paint an α-portion is retained and added
to the value for b in p(b). The remaining (1−α)-portion is distributed uniformly
over the out-links. This retain-and-distribute process is then repeated recursively
for all nodes which got paint injected. When a node has a zero out degree, the
outgoing paint is discarded.

This basic algorithm can be improved by choosing the order in which nodes
considered for the retain-and-distribute. It is more efficient to select nodes with
a larger amount of paint fist. To achieve this, a max priority queue, with the
amount of paint as priorities is maintained. In principle, the queue could contain
an entry for each node involved in each distribute step. However, it is more effi-
cient to merge the separate wet paint amounts into one entry. Hence, the queue
must allow efficient finding and updating of elements. Finally, when the amount
of paint to be distributed becomes negligible (i.e., less than the parameter ε)
it gets discarded, making the resulting rank vector sparse. All these improve-
ments are described in more detail in the BCA paper [1]. One more technique
described in the same paper is reuse of Bookmark-Coloring Vectors (BCV – the
equivalent to the PageRank vector) for the computation of other BCVs. This is
analyzed further for the case of hubs (i.e., nodes which correspond to a subset
of important pages). The BCV is precomputed for these pages and whenever
the retain-and-distribute process forwards paint to a page p(h) in the hub, the
amount is multiplied with the BCV corresponding to p(h) and added to p(b).
This optimization makes sense when many BCVs have to be computed, which
is also the case for the co-occurrence matrix. However, since we are interested
in computing the BCV for all nodes, further enhancements are possible, as we
will discuss in the following subsection.

3.4 A Fast All-Pairs PPR Algorithm

The method introduced in the previous subsection speeds up the computation
of individual PPR computations. Now, the observation leading to reuse of BCVs
for pages in a hub can be adapted to our setting. The main point is that the
computation of the BCV of node b can reuse the BCV of nodes reachable through
its out links. Especially, it is beneficial if the BCV of nodes one hop away have
already been computed. Adopting this viewpoint, we say that computation of
the BCV of the node b depends on the BCV computation of all one-hop reachable
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Algorithm 1. Determining the BCV Computation Order
function BCVOrder(Graph & Goriginal)

G ← Goriginal � Copied because G will be modified in the function
Initialize list Order � The list with the node ordering
Initialize max priority queue Qindeg � The nodes in ascending in-degree
Add all nodes to Qindeg

repeat
while G has a node n with out-degree 0 do

Add n to Order, Remove n from G, Remove n from Qindeg

end while
if G is not empty then � There is a cycle which needs to be broken

n ← Qindeg.pop()
Add n to Order, Remove n from G
for all d dependent on n do

Update priority of d in Qindeg

end for
end if

until G is empty
return Order

end function

nodes and hence b is a dependent of these nodes. Now, what we want to achieve
is that we only compute the BCV for nodes once the BCVs of all its dependent
nodes have been computed. However, this will not always be feasible as the
graphs contains cycles. Hence, we want to quickly find an ordering of nodes,
such that we can likely reuse as many BCV computations as possible. To achieve
this we break cycles and in that case compute the BCV for the node at which
we break without being able to count on all dependents being available. We
choose the node for breaking the cycle to be the one with the highest in-degree
as that one is likely to cause most reuse and break multiple cycles at once. The
pseudocode of the Algorithm is shown in Algorithm1, the actual implementation
also includes a couple of indexes and bitmaps to speed up the computation. Now,
with the order determined, we can compute each BCV, reusing many previously
computed values.

3.5 Biasing the Random Walks

The default PageRank and BCA algorithm assume that a random walker will
follow the out edges of a node with equal likelihood. However, one can also
create a setup in which given out edges are more likely than others. For BCA,
this possibility was already hinted in the original paper [1], but not elaborated
much further. This so called biasing can be accomplished by taking into account
the out edge weights when distributing the paint over them.

Following our previous work [3], we apply twelve different strategies for
assigning these weights to the edges of the graph. These weights will then in
turn bias the random walks on the graph. In particular, when a walk arrives in
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a vertex v with out edges vo1, . . . vod, then the walk will follow edge vol with a
probability computed by

Pr[follow edge vol] =
weight(vol)∑d
i=1 weight(voi)

In other words, the normalized edge weights are directly interpreted as the prob-
ability to follow a particular edge. To obtain these edge weights, we make use of
the following statistics computed from the RDF data:

Predicate Frequency for each predicate in the dataset, we count the number
of times the predicate occurs (only occurrences as a predicate are counted).

Object Frequency for each resource in the dataset, we count the number of
times it occurs as the object of a triple.

Predicate-Object frequency for each pair of a predicate and an object in the
dataset, we count the number of times there is a statement with this predicate
and object.

Besides these statistics, we also use PageRank [18] computed for the enti-
ties in the knowledge graph [29]. This PageRank is computed based on links
between the Wikipedia articles representing the respective entities. When using
the PageRank computed for DBpedia, not each node has a value assigned, as
only entities which have a corresponding Wikipedia page are accounted for in
the PageRank computation. Examples of nodes which do not have a PageR-
ank include DBpedia types or categories, like http://dbpedia.org/ontology/
Place and http://dbpedia.org/resource/Category:Central Europe. Therefore, we
assigned a fixed PageRank to all nodes which are not entities. We chose a value
of 0.2, which is roughly the median PageRank in the non-normalized page rank
values we used.

We have essentially two types of metrics, those assigned to nodes, and those
assigned to edges. The predicate frequency and predicate-object frequency, as
well as the inverses of these, can be directly used as weights for edges. Therefore,
we call these weighting methods edge-centric. In the case of predicate frequency
each predicate edge with that label is assigned the weight in question. In the case
of predicate-object frequency, each predicate edge which ends in a given object
gets assigned the predicate-object frequency. We also use the inverse metrics,
where not the absolute frequency is assigned, but its multiplicative inverse.

In contrast, the object frequency, and also the used PageRank metric, assign a
numeric score to each node in the graph. Therefore, we call weighting approaches
based on them node-centric. To obtain a weight for the edges, we either push
the weight down, meaning that the number assigned to a node is used as the
weight of all in edges, or we split the number down, meaning that the weight is
divided by the number of in edges and then assigned to all these edges. If split
is not mentioned explicitly in node centric weighting strategies, then it is a push
down strategy.

Note that uniform weights are equivalent to using object frequency with
splitting the weights. To see why this holds true, we have to follow the steps

http://dbpedia.org/ontology/Place
http://dbpedia.org/ontology/Place
http://dbpedia.org/resource/Category:Central_Europe
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which will be taken. First, each node gets assigned the amount of times it is
used as an object. This number is equal to the number of in edges to the node.
Then, this number is split over the in edges, i.e., each in edge gets assigned the
number 1. Finally, this weight is normalized, assigning to each out link a uniform
weight. Hence, this strategy would result in the same walks as using unbiased
random walks over the graph.

So, even if we add unbiased random walks to the list of weighting strategies,
we retain 12 unique ones, each with their own characteristics. These strategies,
which we further elaborated upon in our earlier work [3], are:

Uniform approach:

1. Uniform = Object Frequency Split

Edge-centric approaches:

2. Predicate Frequency
3. Inverse Predicate Frequency
4. Predicate-Object Frequency
5. Inverse Predicate-Object Frequency

Node-centric object freq. approaches
(See also strategy 1):

6. Object Frequency
7. Inverse Object Frequency
8. Inverse Object Frequency Split

Node-centric PageRank approaches:

9. PageRank
10. Inverse PageRank
11. PageRank Split
12. Inverse PageRank Split

3.6 Combining the Pieces

In earlier work on RDF graph embeddings (specifically RDF2Vec [22]), symmet-
ric windows were used on top of generated random walks, which include both
node and edge labels. These symmetric windows have the focus word in the mid-
dle and the context of the word is both before and after it. This means that the
context of a node b consists of the nodes it can reach by following edges, as well as
the nodes which can reach b. What this means is that the result RDF2Vec would
be the same, independently of whether the original walks would be performed
forward or backward. Inspired by this, we investigated the effect of creating the
co-occurence matrix as the sum of the normal PPR matrix as described above
and the PPR matrix of the graph with all edges reversed. Since a positive effect
on the embeddings was obtained (at least for the tasks we used in the evaluation)
we chose to use this approach.

RDF2Vec also includes edge labels into the walks and the embedding proce-
dure. We also noticed a positive effect including the edge labels whenever they
are traversed by paint with a weight equal to the amount of paint. Because the
summation and additions of the label weights might lead to a skew in the values,
we normalize each BCV in the co-occurence matrix by removing the value on the
diagonal and scaling the remaining values such that their sum is 1. This oper-
ation led to improvements in the results and hence we adopted this technique
for the overall algorithm. The pseudo code of the Global RDF Vector Space
Embedding algorithm can be found in Algorithm2.
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Algorithm 2. Global RDF Vector Space Embedding
function CreateEmbeddings(Graph & G, Weighting Strategy W)

Weigh G according to W
Order ← BCV Order(G)
Compute all BCV according to Order, reusing results
Gr ← ReverseEdges(G)
Weigh Gr according to W
ReverseOrder ← BCV Order(Gr)
Compute all BCV according to ReverseOrder, reusing results
Sum the BCVs obtained for the normal and reversed graph and normalize,

forming the co-occurrence matrix.
Execute Glove training for the co-occurrence matrix.
return The resulting vectors

end function

The overall algorithm has several parameters. First, there is the weighting
strategy; the options are described above. Second, there are the parameters α and
ε for the BCA algorithm. We chose the α parameter to be 0.1 and ε = 0.00001,
which is within the ranges stated by Berkhin [1]. Third, there are the parameters
for the GloVe training. There is the vector length, which we choose to be 200,
which is in the middle of the sizes used in the original Glove experiments [20]. We
use 20 training iterations as we noticed that more iterations did not significantly
decrease the cost function. We used the default values for the Adagrad learning
rate and damp function.

4 Evaluation

First, we evaluate the different weighting strategies on a number of classifica-
tion and regression tasks, comparing the results of different feature extraction
strategies combined with different learning algorithms. Second, we evaluate the
weighting strategies on the task of computing document similarity. We evaluate
our approach using DBpedia [12]. We use the English version of the 2016-04
DBpedia dataset, which contains 4, 678, 230 instances and 1, 379 mapping-based
properties. In our evaluation we only consider object properties, and ignore lit-
erals. All the experiments were run using a Linux machine using at most 300 GB
RAM and 24 Intel Xeon 2.60 GHz CPUs. For all the weighing strategies the
processes took between 6 h for the least demanding strategy, the Predicate Fre-
quency strategy, and up to 48 h for the most demanding strategy, the Predicate-
Object Frequency. The runtime for building the related work approaches, using
the publicly available code,1 was more than a week.

1 https://github.com/thunlp/KB2E.

https://github.com/thunlp/KB2E
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4.1 Machine Learning Tasks

We use the DBpedia entity embeddings on five different datasets from different
domains, for the tasks of classification and regression, i.e., Cities2, Metacritic
Movies3, Metacritic Albums4, AAUP5 and Forbes6. Details on the dataset can
be found in [23]. We follow the same experimental setup as in our RDF2Vec paper
[22], using Naive Bayes, k-Nearest Neighbors, C4.5, and Support Vector Machine
for classification, and Linear Regression, M5Rules, and k-Nearest Neighbors for
regression, measuring accuracy and root mean squared error (RMSE) in stratified
10-fold cross validation. The results on parameter settings for the algorithms can
be found in [22].

Furthermore, from our original RDF2Vec paper [22], we report the best base-
line and the best RDF2Vec performance. As an additional baseline, we use the
same set of random walks used in [22] to build a simple GloVe model, and report
the results under RDF2VecGloVe. Furthermore, we compare our results to the
embedding approaches TransE, TransH, and TransR, which have shown to be
scalable to large knowledge graphs.

Tables 1 and 3 depict the results for the classification and regression task. We
determine the significance in ranking of the approaches using the approach intro-
duced by Demšar [4], as discussed in [22]. The results are depicted in Tables 2
and 4.

We can observe that although RDF2Vec is a very strong competitor, the
approach introduced in this paper is capable of producing embeddings which
outperform the results achieved with RDF2Vec in specific cases. In particular
for classification algorithms which yield inferior results with RDF2Vec. It is also
remarkable that TransE, TransH, and TransR are often outperformed by the
baselines. Furthermore, we can observe that a naive application of the GloVe
approach to walks (RDF2VecGloVe) does not lead to convincing results.

4.2 Document Modeling

Calculating entity similarity lies at the heart of knowledge-rich approaches to
computing semantic similarity, a fundamental task in Natural Language Process-
ing and Information Retrieval [32]. As previously mentioned, in the feature
embedding space semantically similar entities appear close to each other in the
feature space. Therefore, the problem of calculating the similarity between two
instances is a matter of calculating the distance between two instances in the
given feature space. To do so, we use the standard cosine similarity measure,
which is applied on the vectors of the entities.

2 https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html.
3 http://www.metacritic.com/browse/movies/score/metascore/all.
4 http://www.metacritic.com/browse/albums/score/metascore/all.
5 http://www.amstat.org/publications/jse/jse data archive.htm.
6 http://www.forbes.com/global2000/list/.

https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.forbes.com/global2000/list/
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Table 2. Classification average rank results. The best ranked results for each method
are marked in bold. The learning models for which the strategies were shown to have
significant difference based on the Friedman test with α < 0.05 are marked with *. The
single values marked with ∗ mean that are significantly worse than the best strategy
at significance level q = 0.05

Method NB KNN* SVM* C4.5*

Uniform weight 7.2 9.4 8.9 8.8

Predicate frequency weight 11.5 13 14.7 12.4

Inverse predicate frequency weight 10.2 11.4 9.9 14.2*

Predicate object frequency weight 10.1 12.1 11.5 10.8

Inverse predicate object frequency weight 11.7 9.2 12.6 11.9

Object frequency weight 9.8 13.1 11.7 11.8

Inverse object frequency weight 12.3 11.2 12.3 11.9

Inverse object frequency split weight 11.5 12.8 12.7 10.9

PageRank weight 5.2 6.2 6.6 2.6

Inverse PageRank weight 7.4 6.4 7.5 5.8

PageRank split weight 8.8 5.4 4.7 9

Inverse PageRank split weight 9 9.4 7.1 6.2

RDF2VecGloVe 12 9.4 10 8.6

Best baseline 9 8.8 3.4 7.2

DB TransE 9.4 9.8 10.9 9.9

DB TransH 8.6 9.4 11.2 11.6

DB TransR 9.7 11.8 11.5 12

Best RDF2Vec 7.6 2.2 3.8 5.4

We use the entity similarity approach in the task of calculating semantic
document similarity. We follow an approach similar to the one presented in
[19], where two documents are considered to be similar if many entities of the
one document are similar to at least one entity in the other document. More
precisely, we try to identify the most similar pairs of entities in both documents,
ignoring the similarity of all the other 1–1 similarities values. The similarity of
two documents is then defined as the average maximum similarity for all entities
in each document (see [3]).

We evaluate performance on document similarity approach using the LP50
dataset [11]. We follow standard practices and use Pearson’s linear correlation
coefficient and Spearman’s rank correlation plus their harmonic mean as eval-
uation metrics. In addition to the baselines introduced above, we compare our
approach to the following approaches:
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Table 4. Regression average rank results. The best ranked results for each method
are marked in bold. The learning models for which the strategies were shown to have
significant difference based on the Friedman test with α < 0.05 are marked with *. The
single values marked with ∗ mean that are significantly worse than the best strategy
at significance level q = 0.05

Method LR* KNN* M5*

Uniform weight 9.2 9.7 11.4

Predicate frequency weight 6.7 9.5 11.3

Inverse predicate frequency weight 12.2 8.3 8.5

Predicate object frequency weight 9.3 10.1 7.7

Inverse predicate object frequency weight 5.3 6.9 8.4

Object frequency weight 7.1 10.3 9.1

Inverse object frequency weight 10.5 9.7 10.6

Inverse object frequency split weight 12 8.1 12.9

PageRank weight 8.4 6.1 6.3

Inverse PageRank weight 8.9 5.3 8.6

PageRank split weight 7.4 8.9 6.3

Inverse PageRank split weight 7.5 9.3 10

RDF2VecGloVe 15.5* 17.5* 15*

Best baseline 15.2* 7.2 9.2

DB TransE 10.7 14.1 11.9

DB TransH 11 11.9 11.2

DB TransR 11.7 14.1 11

Best RDF2Vec 2.4 4 1.6

– TF-IDF: Distributional baseline algorithm.
– AnnOv: Similarity score based on annotation overlap that corresponds to

traversal entity similarity with radius 0, as described in [19].
– Explicit Semantic Analysis (ESA) [6].
– GED: semantic similarity using a Graph Edit Distance based measure [27].
– Salient Semantic Analysis (SSA), Latent Semantic Analysis (LSA) [8].
– Graph-based Semantic Similarity (GBSS) [19].

The results for the related approaches were taken from the respective papers,
except for ESA, which was taken from [19], where it is calculated via the public
ESA REST endpoint7. All results are collected in Table 5. We can see that
our approach, using inverse predicate object frequency weights, outperforms the
state-of-the-art approaches, as well as the embeddings generated by RDF2Vec.

7 http://vmdeb20.deri.ie:8890/esaservice.

http://vmdeb20.deri.ie:8890/esaservice
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Table 5. Document similarity results - Pearson’s linear correlation coefficient (r)
Spearman’s rank correlation (ρ) and their harmonic mean μ

Approach r ρ μ

Uniform weight 0.537 0.535 0.536

Predicate frequency weight 0.534 0.532 0.533

Inverse predicate frequency weight 0.632 0.621 0.627

Predicate object frequency weight 0.331 0.323 0.327

Inverse predicate object frequency weight 0.541 0.544 0.542

Object frequency weight 0.346 0.348 0.347

Inverse object frequency weight 0.523 0.547 0.534

Inverse object frequency split weight 0.504 0.513 0.509

PageRank weight 0.488 0.485 0.486

Inverse PageRank weight 0.429 0.481 0.454

PageRank split weight 0.539 0.528 0.533

Inverse PageRank split weight 0.512 0.511 0.512

RDF2VecGloVe 0.569 0.432 0.491

Best RDF2Vec 0.708 0.556 0.623

DB TransE 0.565 0.432 0.490

DB TransH 0.570 0.452 0.504

DB TransR 0.578 0.461 0.513

TF-IDF 0.398 0.224 0.287

AnnOv 0.590 0.460 0.517

LSA 0.696 0.463 0.556

SSA 0.684 0.488 0.570

GED 0.630 \ \
ESA 0.656 0.510 0.574

GBSS 0.704 0.519 0.598

5 Conclusion and Outlook

In this paper, we have introduced a novel approach for generating embeddings of
RDF graphs, which exploits global instead of local patterns. We have shown that
it is possible to outperform local graph embeddings techniques, in particular on
document similarity. For most other tasks similar performance can be obtained.

One key finding of this work is that weighting techniques are a crucial fac-
tor in the overall performance. In the future, we would like to investigate this
point more thoroughly, and analyze the interplay of the dataset, the task, the
learning algorithm, and the weighting technique more formally and with more
exhaustive experimentation. One way to achieve this is by evaluating the embed-
ding using intrinsic measures such as those suggested in [26]. Besides, we would
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like to further investigate how the literals in the dataset can be incorporated
while learning the embedding. Furthermore, as GloVe embeddings are known to
work particularly well for finding analogies, we plan to adapt the approach for
predicting missing links in RDF data sets.
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