
Claudia d’Amato · Miriam Fernandez
Valentina Tamma · Freddy Lecue
Philippe Cudré-Mauroux · Juan Sequeda
Christoph Lange · Jeff Heflin (Eds.)

 123

LN
CS

 1
05

87

16th International Semantic Web Conference
Vienna, Austria, October 21–25, 2017
Proceedings, Part I

The Semantic Web –
ISWC 2017

Lecture Notes in Computer Science 10587

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Claudia d’Amato • Miriam Fernandez
Valentina Tamma • Freddy Lecue
Philippe Cudré-Mauroux • Juan Sequeda
Christoph Lange • Jeff Heflin (Eds.)

The Semantic Web –

ISWC 2017
16th International Semantic Web Conference
Vienna, Austria, October 21–25, 2017
Proceedings, Part I

123

Editors
Claudia d’Amato
University of Bari
Bari
Italy

Miriam Fernandez
KMi, The Open University
Milton Keynes
UK

Valentina Tamma
University of Liverpool
Liverpool
UK

Freddy Lecue
Accenture Technology Labs
Dublin
Ireland

Philippe Cudré-Mauroux
University of Fribourg
Fribourg
Switzerland

Juan Sequeda
Capsenta, Inc.
Austin, TX
USA

Christoph Lange
Universität Bonn
Bonn
Germany

Jeff Heflin
Lehigh University
Bethlehem, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68287-7 ISBN 978-3-319-68288-4 (eBook)
DOI 10.1007/978-3-319-68288-4

Library of Congress Control Number: 2017955717

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-3385-987X
http://orcid.org/0000-0001-9879-3827

Preface

The International Semantic Web Conference (ISWC) is the premier forum for Semantic
Web researchers and practitioners from around the world to gather and share ideas and
discoveries. The conference continues to bring together a diverse set of individuals
with skills and interests ranging from artificial intelligence to information systems and
Web systems. We continue to see steadily increasing adoption of semantic technolo-
gies, although more often than not, their use is invisible to consumers.

This volume contains the proceedings of ISWC 2017 with all the papers accepted to
the main conference tracks: the Research, Resources, and In-Use Tracks. In addition to
the long-standing Research and In-Use Tracks, we have continued the Resources and
Journal Tracks that were introduced last year. We also brought back an Industry Track
and hope that this will encourage even more cross-fertilization between practitioners
and researchers.

The Research Track is home to the most ground-breaking results in the field. This
year, we received 197 full submissions, of which 44 were accepted for publication in
this volume and presentation at the conference. A large team of reviewers, including
423 Program Committee (PC) members and 23 Senior Program Committee
(SPC) members, was carefully selected to ensure a wide coverage of expertise. Each
paper was assigned to five reviewers and to an SPC member. The assignment process
was based on a bidding phase where PC and SPC members selected papers to review
based on their expertise. PC members received a maximum of three papers to review,
while SPC members received a maximum of nine papers. A specific form was designed
by the Research Track chairs to facilitate the reviewing process and to ensure that all
important aspects of the papers were examined. As per the usual process, we included a
rebuttal period where authors could respond to the initial reviews. SPC members
oversaw the reviews and discussion for each paper in order to resolve disagreements
when possible and ensure constructive feedback. Discussions for the papers took place
before and after the rebuttal phase to ensure that the authors could answer the key
concerns highlighted by the reviewers and that the provided answers were debated,
acknowledged, and considered for the final recommendation. Over the course of five
days, the SPC members and Research Track chairs held discussions to assess all papers
and to make a final decision on which papers to select. During this process, additional
reviews were requested for controversial papers. Meta-reviews were written to sum-
marize these discussions and the final recommendation for each paper. While the
names of PC members were not visible to the authors, or to each other, during the
reviewing period, PC members were given the opportunity to sign their reviews and
discussions before the final decision was sent to the authors.

The purpose of the Resources Track is to share resources and best practices for
developing them, as we strongly believe that this is crucial in order to consolidate
research material, ensure reproducibility of results, and in general gain new scientific
insights. The term “resource” can refer to: datasets, ontologies, vocabularies,

workflows, evaluation benchmarks or methods, replication studies, services, APIs, and
software frameworks that have contributed to the generation of novel scientific work.
One of the requirements of this track is that the resources were published with a
permanent URI in order to guarantee future access. This year, our publisher piloted a
dedicated infrastructure for publishing snapshots of resources to facilitate this process.
The track received 76 submissions and accepted 23 of them; seven of these, as well as
three of the Research Track, made use of the dedicated resource publishing facility, as
can be seen from the respective references in these papers. Each paper received four
reviews, and an SPC member provided a meta-review. Similar to the Research Track,
there was a rebuttal phase, which was then followed by further discussion among the
reviewers and managed by the SPC member who summarized all views in a recom-
mendation to the Resource Track chairs. The final decisions were determined through
discussions between the track chairs and the SPC members and were based on the
overall views expressed by the reviewers, the meta-reviews and the lively discussions
that occurred before and after the rebuttal phase.

The In-Use Track provides a forum for the community to explore the benefits and
challenges of applying semantic technologies in concrete, practical applications, in
contexts ranging from industry to government and science. This year, the track required
that papers provide evidence that there is use of the proposed application or tool by the
target user group, preferably outside the group that conducted the development. We
received 29 submissions, and accepted nine. Each submission was assigned four
reviewers.

Traditionally, ISWC has a different keynote speaker to kick off each day of the main
conference. This year we had three exciting keynote talks delivered by Nada Lavrac
(Jozef Stefan Institute), Deborah L. McGuinness (Rensselaer Polytechnic Institute), and
Jamie Taylor (Google). The titles and abstracts of these talks are included in this
volume.

There were many important activities at ISWC 2017 that are not represented in these
proceedings. The two days prior to the main conference involved many smaller ses-
sions: workshops, tutorials, and the doctoral consortium. Aidan Hogan and Valentina
Presutti were our workshops and tutorials chairs, and selected seven tutorials and 19
workshops for the program. The doctoral consortium was chaired by Lora Aroyo and
Fabien Gandon. In all, 26 PhD students submitted papers, and after review by the PC,
13 were accepted to the event.

The Journal Track provided the authors of papers recently published in Semantic
Web journals the opportunity to present their papers to the conference community. The
editors of the Journal of Web Semantics and the Semantic Web Journal selected a total
of 12 papers published in the previous year (but never presented at ISWC).

The first day of the main conference included an Industry Track and a Posters and
Demonstrations Session. The Industry Track was chaired by Achille Fokoue and Peter
Haase with the goal of presenting the state of adoption of semantic technologies in
industrial applications, whether it be specific industries or as a horizontal technology.
This track received 30 submissions and accepted 18 for presentation. The Posters and
Demonstrations Track was chaired by Nadeschda Nikitina and Dezhao Song.

VI Preface

This year saw the return of a reinvigorated Semantic Web Challenge. Led by Dan
Bennett, Axel Ngonga, and Heiko Paulheim, this year’s challenge involved two
measurable tasks, i.e., knowledge graph population and knowledge graph validation.

In recognition of the maturing of the field, we added two new events to the con-
ference. In order to reach out to the general public, we featured an event supported by
the Vienna Business Agency for the local community in the form of a combined local
business lounge and Semantic Web meet-up, co-located with the Posters and
Demonstration Track. In addition, this year ISWC celebrated its first Job Fair, bringing
together job candidates with open positions in both industry and academia.

The success of a large conference like ISWC also depends on a number of people
whose contribution is not directly reflected in the program. We would like to thank our
sponsorship chairs Michel Dumontier, Sabrina Kirrane, and Harald Sack, for their
efforts in securing external funding to help offset the fixed costs of the conference. We
would like to thank our student coordinators Lalana Kagal and Gianluca Demartini for
managing the student travel fellowships and organizing the mentoring lunch. Stefan
Dietze and Davide Taibi provided the valuable service of collecting and organizing our
metadata; an essential task for a community that places so much value on semantics.
Our publicity chair Anna Lisa Gentile did a fantastic job of getting the word out on
multiple platforms. And of course, the proceedings you are reading today (whether in
“old-school” paper form or electronically) would not have been possible without the
diligent efforts of our proceedings chair, Christoph Lange.

Last, but certainly not least, we would like to give a big thank you to our local chairs
Axel Polleres and Elmar Kiesling. Few people realize the amount of work that goes
into the logistics of a conference of this scale, and often the local chairs are invisible
unless something goes horribly wrong. Axel, Elmar, and their team have worked
countless hours over the course of two years to ensure that everything runs smoothly.

October 2017 Claudia d’Amato
Miriam Fernandez
Valentina Tamma

Freddy Lecue
Philippe Cudré-Mauroux

Juan Sequeda
Jeff Heflin

Preface VII

Organization

Organizing Committee

General Chair

Jeff Heflin Lehigh University, USA

Local Chairs

Axel Polleres WU Wien, Austria
Elmar Kiesling TU Wien, Austria

Research Track Chairs

Claudia d’Amato University of Bari, Italy
Miriam Fernandez KMi, The Open University, UK

Resources Track Chairs

Valentina Tamma University of Liverpool, UK
Freddy Lecue Accenture, Dublin, Ireland/Inria, Sophia Antipolis, France

In-Use Track Chairs

Philippe Cudré-Mauroux University of Fribourg, Switzerland
Juan Sequeda Capsenta, Austin, USA

Workshop and Tutorial Chairs

Aidan Hogan Universidad de Chile, Chile
Valentina Presutti Institute of Cognitive Sciences and Technologies,

CNR, Italy

Poster and Demo Track Chairs

Nadeschda Nikitina University of Oxford, UK
Dezhao Song Thomson Reuters, Eagan, USA

Journal Track Chairs

Abraham Bernstein University of Zurich, Switzerland
Pascal Hitzler Wright State University, USA
Steffen Staab University of Koblenz, Germany

Industry Track Chairs

Achille Fokoue IBM Yorktown, USA
Peter Haase metaphacts, Germany

Doctoral Consortium Chairs

Lora Aroyo Vrije Universiteit Amsterdam, The Netherlands
Fabien Gandon Inria Sophia Antipolis, France

Semantic Web Challenge Chairs

Dan Bennett Thomson Reuters, Eagan, USA
Axel Ngonga University of Paderborn, Germany
Heiko Paulheim University of Mannheim, Germany

Proceedings Chair

Christoph Lange University of Bonn and Fraunhofer IAIS, Germany

Metadata Chairs

Stefan Dietze L3S, Leibniz University, Germany
Davide Taibi Institute for Educational Technology, CNR, Italy

Sponsorship Chairs

Michel Dumontier Maastricht University, The Netherlands
Sabrina Kirrane WU Wien, Austria
Harald Sack FIZ Karlsruhe, KIT Karlsruhe, Germany

Student Coordinators

Lalana Kagal Massachusetts Institute of Technology, USA
Gianluca Demartini University of Queensland, Australia

Publicity Chair

Anna Lisa Gentile IBM Research Almaden, USA

Local Committee

Bettina Bauer SBA Research, Vienna, Austria
Fajar J. Ekaputra TU Wien, Austria
Javier D. Fernández WU Wien, Austria
Yvonne Poul SBA Research, Vienna, Austria
Doris Wyk WU Wien, Austria

Program Committee

Senior Program Committee – Research Track

Harith Alani Knowledge Media Institute, Open University, UK
Abraham Bernstein University of Zurich, Switzerland
Kalina Bontcheva University of Sheffield, UK
Philipp Cimiano Bielefeld University, Germany

X Organization

Oscar Corcho Universidad Politécnica de Madrid, Spain
Mathieu D’Aquin Insight Centre, National University of Ireland Galway,

Ireland
Fabien Gandon Inria, France
Jose Manuel

Gomez-Perez
Expert System, Spain

Jorge Gracia Universidad Politécnica de Madrid, Spain
Claudio Gutierrez Universidad de Chile, Chile
Olaf Hartig Linköping University, Sweden
Pascal Hitzler Wright State University, USA
Craig Knoblock University of Southern California, USA
Vanessa Lopez IBM Research, USA
Thomas Lukasiewicz University of Oxford, UK
H. Sofia Pinto Instituto Superior Tecnico, Portugal
Uli Sattler University of Manchester, UK
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Steffen Staab Institut WeST, University of Koblenz-Landau, Germany

and WAIS, University of Southampton, UK
Vojtěch Svátek University of Economics, Prague, Czech Republic
Tania Tudorache Stanford University, USA
Maria Esther Vidal Universidad Simon Bolivar, Venezuela
Denny Vrandečić Google, USA

Program Committee – Research Track

Maribel Acosta Institute AIFB, Karlsruhe Institute of Technology,
Germany

Alessandro Adamou Knowledge Media Institute, The Open University, UK
Nitish Aggarwal IBM Watson, USA
Guadalupe

Aguado-De-Cea
Universidad Politécnica de Madrid, Spain

Panos Alexopoulos Textkernel B.V., The Netherlands
Jose Julio Alferes Universidade Nova de Lisboa, Portugal
Muhammad Intizar Ali Insight Centre for Data Analytics, National University of

Ireland, Galway
Marjan Alirezaie Orebro University, Sweden
Faisal Alkhateeb Yarmouk University, Jordan
Tahani Alsubait Umm Al-Qura University, Saudi Arabia
José Luis Ambite University of Southern California, USA
Pramod Anantharam Bosch Research and Technology Center, USA
Renzo Angles Universidad de Talca, Chile
Grigoris Antoniou University of Huddersfield, UK
Kemafor Anyanwu North Carolina State University, USA
Manuel Atencia University of Grenoble Alpes and Inria, France
Ioannis N. Athanasiadis Wageningen University, The Netherlands
Medha Atre IIT Kanpur, India

Organization XI

Sören Auer TIB Leibniz Information Center Science and Technology
and University of Hannover, Germany

Nathalie
Aussenac-Gilles

IRIT CNRS, France

Franz Baader TU Dresden, Germany
Payam Barnaghi University of Surrey, UK
Valerio Basile Inria, France
Zohra Bellahsene LIRMM, France
Michael K. Bergman Cognonto Corporation, USA
Elisa Bertino Purdue University, USA
Leopoldo Bertossi Carleton University, Canada
Isabelle Bichindaritz State University of New York at Oswego, USA
Christian Bizer University of Mannheim, Germany
Eva Blomqvist Linköping University, Sweden
Fernando Bobillo University of Zaragoza, Spain
Uldis Bojars IMCS – University of Latvia, Latvia
Alex Borgida Rutgers University, Taiwan
Mihaela Bornea IBM Research, USA
Paolo Bouquet University of Trento, Italy
Loris Bozzato Fondazione Bruno Kessler, Italy
Adrian M.P. Brasoveanu MODUL Technology GmbH, Austria
Charalampos Bratsas Open Knowledge Greece and Aristotle University, Greece
John Breslin NUI Galway, Ireland
Christopher Brewster TNO, The Netherlands
Carlos Buil Aranda Universidad Técnica Federico Santa María, Chile
Paul Buitelaar Insight Centre for Data Analytics,

National University of Ireland Galway, Ireland
Gregoire Burel The Open University, UK
Elena Cabrio Université Côte d’Azur, CNRS Inria I3S, France
Jean-Paul Calbimonte University of Applied Sciences and Arts Western

Switzerland HES-SO, Switzerland
Diego Calvanese Free University of Bozen-Bolzano, Italy
Andrea Calì University of London Birkbeck College, UK
Jose Camacho Collados Sapienza University of Rome, Italy
Amparo Cano Cube Global, UK
David Carral TU Dresden, Germany
Rommel Novaes

Carvalho
Universidade de Brasília, Brazil

Gerard Casamayor University Pompeu Fabra, Spain
Nuria Casellas Wolters Kluwer GPO, The Netherlands
Irene Celino CEFRIEL, Italy
Davide Ceolin VU University Amsterdam, The Netherlands
Ismail Ilkan Ceylan TU Dresden, Germany
Pierre-Antoine Champin LIRIS, Université Claude Bernard Lyon 1, France
Thierry Charnois LIPN CNRS University of PARIS 13, France
Gong Cheng Nanjing University, China

XII Organization

Christian Chiarcos Universität Frankfurt am Main, Germany
Michael Cochez Fraunhofer Institute for Applied Information

Technology FIT, Germany
Pieter Colpaert Ghent University, Belgium
Simona Colucci Politecnico di Bari, Italy
Sam Coppens Autodesk, USA
Olivier Corby Inria, France
Paulo Costa George Mason University, USA
Luca Costabello Fujitsu Ireland, Ireland
Fabio Cozman Universidade de Sao Paulo, Brazil
Isabel Cruz University of Illinois at Chicago, USA
Philippe Cudré-Mauroux University of Fribourg, Switzerland
Bernardo Cuenca-Grau University of Oxford, UK
Edward Curry Insight Centre for Data Analytics, NUI Galway, Ireland
Olivier Curé Université Paris-Est LIGM, France
Aba-Sah Dadzie KMi – The Open University, UK
Enrico Daga The Open University, UK
Florian Daniel Politecnico di Milano, Italy
Laura Daniele TNO/Netherlands Organization for Applied Scientific

Research, The Netherlands
Jérôme David Inria Rhône-Alpes, France
Victor de Boer VU University Amsterdam, The Netherlands
Gerard de Melo Rutgers University, USA
Jeremy Debattista ADAPT Centre, School of Computer Science and

Statistics, Trinity College Dublin, Ireland
Thierry Declerck DFKI GmbH, Germany
Jaime Delgado Universitat Politecnica de Catalunya, Spain
Daniele Dell’Aglio University of Zurich, Switzerland
Emanuele Della Valle DEIB Politecnico di Milano, Italy
Gianluca Demartini University of Queensland, Australia
Elena Demidova L3S Research Center, Germany
Ronald Denaux Expert System, Spain
Tommaso Di Noia Politecnico di Bari, Italy
Ian Dickinson Epimorphics Ltd., UK
Dennis Diefenbach Jean Monnet University, France
Stefan Dietze L3S Research Center, Germany
Ying Ding Indiana University, USA
Leigh Dodds Leigh Dodds, UK
John Domingue KMi – The Open University, UK
Derek Doran Wright State University, USA
Mauro Dragoni Fondazione Bruno Kessler – FBK-IRST, Italy
Michel Dumontier Maastricht University, The Netherlands
Maud Ehrmann EPFL DHLAB, Switzerland
Thomas Eiter Vienna University of Technology, Austria
Henrik Eriksson Linköping University, Sweden
Vadim Ermolayev Zaporizhzhya National University, Ukraine

Organization XIII

Jérôme Euzenat Inria and University of Grenoble Alpes, France
James Fan HelloVera.ai, USA
Nicola Fanizzi Università di Bari, Italy
Catherine Faron-Zucker Université Nice Sophia Antipolis, France
Anna Fensel Semantic Technology Institute (STI) – University of

Innsbruck, Austria
Alberto Fernandez University Rey Juan Carlos, Spain
Javier D. Fernández Vienna University of Economics and Business WU Wien,

Austria
Sebastien Ferre University of Rennes 1, France
Besnik Fetahu L3S Research Center, Germany
Tim Finin University of Maryland Baltimore County, USA
Valeria Fionda University of Calabria, Italy
Lorenz Fischer Sentient Machines, UK
Fabian Flöck GESIS Cologne, Germany
Antske Fokkens VU University Amsterdam, The Netherlands
Muriel Foulonneau Luxembourg Institute of Science and Technology,

Luxembourg
Enrico Franconi Free University of Bozen-Bolzano, Italy
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Fred Freitas Universidade Federal de Pernambuco (UFPE), Brazil
Adam Funk University of Sheffield, UK
Aldo Gangemi Université Paris 13 and CNR-ISTC, Italy
Shen Gao University of Zurich, Switzerland
José Maria García University of Seville, Spain
Raúl García Castro Universidad Politécnica de Madrid, Spain
Andrés García-Silva Expert System, Spain
Claire Gardent CNRS/LORIA Nancy, France
Daniel Garijo Information Sciences Institute, University of Southern

California, USA
Anna Lisa Gentile IBM Research Almaden, San Jose, CA, USA
Chiara Ghidini FBK-irst, Italy
Alain Giboin Inria Sophia Antipolis/Méditerranée, France
Rafael S. Gonçalves Stanford University, USA
Gregory Grefenstette Biggerpan, France
Ruediger Grimm University of Koblenz Landau, Germany
Paul Groth Elsevier Labs, The Netherlands
Tudor Groza The Garvan Institute of Medical Research, Australia
Alessio Gugliotta Innova, Italy
Cathal Gurrin Dublin City University, Ireland
Christophe Guéret Accenture, Ireland
Olaf Görlitz Chefkoch GmbH, Germany
Peter Haase metaphacts, Germany
Armin Haller Australian National University, Australia
Harry Halpin World Wide Web Consortium, UK
Karl Hammar Jönköping University, Sweden

XIV Organization

Siegfried Handschuh University of Passau, Germany
Andreas Harth AIFB, Karlsruhe Institute of Technology, Germany
Oktie Hassanzadeh IBM Research, USA
Tom Heath Open Data Institute, UK
Johannes Heinecke Orange Labs, France
Andreas Herzig IRIT-CNRS, France
Stijn Heymans Amazon, USA
Aidan Hogan DCC Universidad de Chile, Chile
Laura Hollink Centrum Wiskunde & Informatica, The Netherlands
Matthew Horridge Stanford University, USA
Katja Hose Aalborg University, Denmark
Andreas Hotho University of Würzburg, Germany
Geert-Jan Houben TU Delft, The Netherlands
Wei Hu Nanjing University, China
Yingjie Hu University of Tennessee Knoxville, USA
Ioana Hulpus University of Mannheim, Germany
Eero Hyvönen University of Helsinki and Aalto University, Finland
Ignacio Iacobacci Sapienza Università di Roma, Italy
Yazmin Angelica

Ibanez-Garcia
Vienna University of Technology, Austria

Luis-Daniel Ibáñez University of Southampton, UK
Oana Inel VU University Amsterdam, The Netherlands
Valentina Ivanova Linköping University, Sweden
Krzysztof Janowicz University of California Santa Barbara, USA
Mustafa Jarrar Birzeit University, Palestine
Ernesto Jimenez-Ruiz University of Oslo, Norway
Clement Jonquet University of Montpellier LIRMM, France
Martin Kaltenböck Semantic Web Company, Austria
Mark Kaminski University of Oxford, UK
Pavan Kapanipathi IBM T.J. Watson Research Center, USA
Md. Rezaul Karim Fraunhofer Institute for Applied Information

Technology FIT, Germany
Marcel

Karnstedt-Hulpus
Springer Nature

Tomi Kauppinen Aalto University School of Science, Finland
Takahiro Kawamura Japan Science and Technology Agency, Japan
Maria Keet University of Cape Town, South Africa
Mayank Kejriwal Information Sciences Institute, University of Southern

California, USA
Kristian Kersting TU Darmstadt, Germany
Carsten Keßler Aalborg University, Denmark
Haklae Kim Samsung, South Korea
Hong-Gee Kim Seoul National University, South Korea
Sabrina Kirrane Vienna University of Economics and Business WU Wien,

Austria
Matthias Klusch DFKI, Germany

Organization XV

Matthias Knorr Universidade Nova de Lisboa, Portugal
Magnus Knuth Hasso Plattner Institute, University of Potsdam, Germany
Boris Konev University of Liverpool, UK
Stasinos

Konstantopoulos
NCSR Demokritos, Greece

Roman Kontchakov Birkbeck, University of London, UK
Jacek Kopecky University of Portsmouth, UK
Manolis Koubarakis National and Kapodistrian University of Athens, Greece
Adila Krisnadhi Wright State University, USA and Universitas Indonesia,

Indonesia
Udo Kruschwitz University of Essex, UK
Tobias Kuhn VU University Amsterdam, The Netherlands
Benedikt Kämpgen Empolis Information Management GmbH, Germany
Patrick Lambrix Linköping University, Sweden
Steffen Lamparter Siemens AG Corporate Technology, Germany
Christoph Lange University of Bonn and Fraunhofer IAIS, Germany
David Laniado Eurecat - Technology Centre of Catalonia, Spain
Ken Laskey The MITRE Corporation, USA
Agnieszka Lawrynowicz Poznan University of Technology, Poland
Danh Le Phuoc Technische Universität Berlin, Germany
Maxime Lefrançois MINES Saint-Etienne, France
Maurizio Lenzerini University of Rome La Sapienza, Italy
Chengkai Li University of Texas at Arlington, USA
Juanzi Li Tsinghua University, China
Wenwen Li Arizona State University, USA
Giorgia Lodi DigitPA, Italy
Nuno Lopes TopQuadrant Inc., Ireland
Chun Lu Université Paris-Sorbonne and Sépage, France
Markus Luczak-Roesch Victoria University of Wellington, New Zealand
Carsten Lutz Universität Bremen, Germany
Ioanna Lytra Enterprise Information Systems, Institute of Applied

Computer Science, University of Bonn and
Fraunhofer IAIS, Germany

Alexander Löser Beuth Hochschule für Technik Berlin, Germany
Frederick Maier Institute for Artificial Intelligence, USA
Maria Maleshkova AIFB, Karlsruhe Institute of Technology, Germany
Claudia Marinica ETIS/ENSEA UCP CNRS, France
David Martin Nuance Communications, USA
Trevor Martin University of Bristol, UK
Mercedes

Martinez-Gonzalez
University of Valladolid, Spain

Miguel Martinez-Prieto University of Valladolid, Spain
Wolfgang May Universität Göttingen Germany, Germany
Diana Maynard University of Sheffield, UK
John McCrae National University of Ireland Galway, Ireland
Fiona McNeill Heriot Watt University, UK

XVI Organization

Lionel Médini LIRIS/University of Lyon, France
Eduardo Mena University of Zaragoza, Spain
Robert Meusel SAP SE, Germany
Franck Michel Université Côte d’Azur, CNRS, I3S, France
Nandana

Mihindukulasooriya
Universidad Politécnica de Madrid, Spain

Peter Mika Schibsted, Norway
Alessandra Mileo INSIGHT Centre for Data Analytics, Dublin City

University, Ireland
Daniel Miranker Institute for Cell and Molecular Biology, The University of

Texas at Austin, USA
Riichiro Mizoguchi Japan Advanced Institute of Science and Technology,

Japan
Dunja Mladenic Jozef Stefan Institute, Slovenia
Marie-Francine Moens KU Leuven, Belgium
Pascal Molli University of Nantes/LS2N, France
Gabriela Montoya Aalborg University, Denmark
Federico Morando Nexa Center for Internet and Society, Politecnico di

Torino, Italy
Luc Moreau King’s College London, UK
Yassine Mrabet National Library of Medicine, USA
Paul Mulholland The Open University, UK
Raghava Mutharaju GE Global Research, USA
Ralf Möller University of Lübeck, Germany
Claudia Müller-Birn Freie Universität Berlin, Germany
Hubert Naacke UPMC, France
Amedeo Napoli LORIA Nancy (CNRS - Inria - Université de Lorraine),

France
Axel-Cyrille

Ngonga-Ngomo
University of Paderborn, Germany

Matthias Nickles Digital Enterprise Research Institute, National University
of Ireland Galway, Ireland

Nadeschda Nikitina Oxford University, UK
Andriy Nikolov metaphacts GmbH, Germany
Malvina Nissim University of Groningen, The Netherlands
Lyndon Nixon MODUL Technology GmbH, Austria
Andrea Giovanni

Nuzzolese
STLab ISTC-CNR, Italy

Leo Obrst MITRE, USA
Francesco Osborne KMi, The Open University, UK
Raul Palma Poznan Supercomputing and Networking Center, Poland
Matteo Palmonari University of Milano-Bicocca, Italy
Jeff Pan University of Aberdeen, UK
Rahul Parundekar Toyota Info-Technology Center, USA
Bibek Paudel University of Zurich, Switzerland
Heiko Paulheim University of Mannheim, Germany

Organization XVII

Terry Payne University of Liverpool, UK
Tassilo Pellegrini University of Applied Sciences St. Pölten, Austria
Laura Perez-Beltrachini University of Edinburgh, UK
Silvio Peroni University of Bologna, Italy
Catia Pesquita LaSIGE, Universidade de Lisboa, Portugal
Rafael Peñaloza Free University of Bozen-Bolzano, Italy
Reinhard Pichler Vienna University of Technology, Austria
Emmanuel Pietriga Inria, France
Giuseppe Pirrò Institute for High Performance Computing and Networking

(ICAR-CNR), Italy
Vassilis Plachouras Thomson Reuters, UK
Dimitris Plexousakis Institute of Computer Science FORTH, University of

Crete, Greece
Simone Paolo Ponzetto University of Mannheim, Germany
Mike Pool Goldman Sachs Group, USA
Livia Predoiu University of Oxford, UK
Laurette Pretorius University of South Africa, South Africa
Cédric Pruski Luxembourg Institute of Science and Technology,

Luxembourg
Guilin Qi Southeast University, China
Yuzhong Qu Nanjing University, China
Jorge-Arnulfo

Quiané-Ruiz
QCRI, Qatar

Filip Radulovic Sépage Paris, France
Dnyanesh Rajpathak General Motors, Operations Research R&D, USA
Ganesh Ramakrishnan IIT Bombay, India
Maya Ramanath IIT Delhi, India
David Ratcliffe CSIRO Data61 and Australian National University,

Australia
Dietrich

Rebholz-Schuhmann
Insight Centre for Data Analytics, National University of

Ireland Galway, Ireland
José Luis

Redondo-García
Amazon Research, UK

Georg Rehm DFKI, Germany
Achim Rettinger Karlsruhe Institute of Technology, Germany
Juan Reutter Pontificia Universidad Catòlica, Chile
Martin Rezk Rakuten Inc., Japan
German Rigau IXA Group – UPV/EHU, Spain
Carlos Rivero Rochester Institute of Technology, USA
Giuseppe Rizzo ISMB, Italy
Mariano Rodríguez

Muro
IBM Research, USA

Marco Rospocher Fondazione Bruno Kessler, Italy
Camille Roth CNRS, Germany
Marie-Christine Rousset University of Grenoble Alpes, France
Ana Roxin University of Burgundy UMR CNRS, France

XVIII Organization

Sebastian Rudolph Technische Universität Dresden, Germany
Owen Sacco Institute of Digital Games, University of Malta, Malta
Harald Sack FIZ Karlsruhe Leibniz Institute for Information

Infrastructure and KIT Karlsruhe, Germany
Hassan Saif KMi, The Open University, UK
Angelo Antonio Salatino KMi, The Open University, UK
Muhammad Saleem AKSW, University of Leizpig, Germany
Cristina Sarasua Institute for Web Science and Technologies (WeST),

Universität Koblenz-Landau, Germany
Felix Sasaki Lambdawerk, Germany
Bahar Sateli Concordia University, Canada
Kai-Uwe Sattler TU Ilmenau, Germany
Vadim Savenkov Vienna University of Economics and Business (WU),

Austria
Marco Luca Sbodio IBM Research, Ireland
Johann Schaible GESIS, Leibniz Institute for the Social Sciences, Germany
Bernhard Schandl mySugr GmbH, Austria
Ansgar Scherp Kiel University and ZBW, Leibniz Information Center for

Economics Kiel, Germany
Marvin Schiller University of Ulm, Germany
Claudia Schon Universität Koblenz-Landau, Germany
Marco Schorlemmer Artificial Intelligence Research Institute IIIA-CSIC, Spain
Lutz Schröder Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Daniel Schwabe PUC-Rio, Brazil
Erich Schweighofer University of Vienna, Austria
Frederique Segond Viseo Innovation, France
Giovanni Semeraro University of Bari, Italy
Juan Sequeda Capsenta, USA
Luciano Serafini Fondazione Bruno Kessler, Italy
Estefania Serral KU Leuven, Belgium
Saeedeh Shekarpour Kno.e.sis Center, USA
Sakr Sherif The University of New South Wales, Australia
Gerardo Simari Universidad Nacional del Sur and CONICET, Argentina
Kiril Simov Linguistic Modelling Department, IICT-BAS, Bulgaria
Elena Simperl University of Southampton, UK
Hala Skaf-Molli Nantes University, France
Sebastian Skritek TU Wien, Austria
Monika Solanki University of Oxford, UK
Dezhao Song Thomson Reuters, USA
Biplav Srivastava IBM Research, USA
Yannis Stavrakas Institute for the Management of Information Systems,

Research and Innovation Center Athena, Greece
Sławek Staworko University of Lille 3, France
Armando Stellato University of Rome Tor Vergata, Italy

Organization XIX

Audun Stolpe Norwegian Defence Research Establishment (FFI),
Norway

Umberto Straccia ISTI-CNR, Italy
Markus Strohmaier RWTH Aachen and GESIS, Germany
Heiner Stuckenschmidt University of Mannheim, Germany
Gerd Stumme University of Kassel, Germany
Fabian Suchanek Télécom ParisTech University, France
Jing Sun The University of Auckland, New Zealand
York Sure-Vetter Karlsruhe Institute of Technology (KIT), Germany
Marcin Sydow PJIIT and ICS PAS Warsaw, Poland
Pedro Szekely USC/Information Sciences Institute, USA
Mohsen Taheriyan Google, USA
Hideaki Takeda National Institute of Informatics, Japan
Kerry Taylor Australian National University, Australia
Annette Ten Teije VU University Amsterdam, The Netherlands
Andrea Tettamanzi University of Nice Sophia Antipolis, France
Kia Teymourian Rice University, USA
Dhavalkumar Thakker University of Bradford, UK
Matthias Thimm Universität Koblenz-Landau, Germany
Allan Third The Open University, UK
Krishnaprasad

Thirunarayan
Wright State University, USA

Ilaria Tiddi KMi, The Open University, UK
Ramine Tinati University of Southampton, UK
Thanassis Tiropanis University of Southampton, UK
Konstantin Todorov LIRMM/University of Montpellier, France
David Toman University of Waterloo, Canada
Nicolas Torzec Yahoo, USA
Farouk Toumani Limos Blaise Pascal University Clermont-Ferrand, France
Yannick Toussaint LORIA, France
Sebastian Tramp eccenca GmbH, Germany
Cassia Trojahn UT2J and IRIT, France
Raphaël Troncy EURECOM, France
Dmitry Tsarkov Google, Switzerland
Anni-Yasmin Turhan Technische Universität Dresden, Germany
Jürgen Umbrich Vienna University of Economy and Business (WU),

Austria
Jörg Unbehauen University of Leipzig, Germany
Jacopo Urbani Vrije Universiteit Amsterdam, The Netherlands
Alejandro Vaisman Instituto Tecnològico de Buenos Aires, Argentina
Herbert Van De Sompel Los Alamos National Laboratory Research Library, USA
Marieke van Erp KNAW Humanities Cluster, The Netherlands
Willem Robert van Hage Netherlands eScience Center, The Netherlands
Jacco van Ossenbruggen CWI and VU University Amsterdam, The Netherlands

XX Organization

Ruben Verborgh Ghent University – imec, Belgium
Daniel Vila-Suero Ontology Engineering Group UPM, Spain
Serena Villata CNRS, Laboratoire d’Informatique Signaux et Systèmes de

Sophia Antipolis, France
Marta Villegas Barcelona Supercomputing Center, Spain
Piek Vossen VU University Amsterdam, The Netherlands
Domagoj Vrgoc Pontificia Universidad Catòlica de Chile, Chile
Holger Wache University of Applied Science and Arts Northweastern

Switzerland, Switzerland
Claudia Wagner GESIS-Leibniz Institute for the Social Sciences, Germany
Simon Walk Graz University of Technology, Austria
Haofen Wang Shenzhen Gowild Robotics Co. Ltd., China
Kewen Wang Griffith University, Australia
Shenghui Wang OCLC Research, The Netherlands
Zhichun Wang Beijing Normal University, China
Paul Warren KMi, The Open University, UK
Grant Weddell University of Waterloo, Canada
Rigo Wenning W3C, France
Erik Wilde CA Technologies, Switzerland
Cord Wiljes CITEC, Bielefeld University, Germany
Gregory Todd Williams Rensselaer Polytechnic Institute, USA
Jiewen Wu Accenture Tech Labs, Ireland
Marcin Wylot TU Berlin, Germany
Josiane Xavier Parreira Siemens AG Österreich, Austria
Yong Yu Shanghai Jiao Tong University, China
Fouad Zablith American University of Beirut, Lebanon
Ondřej Zamazal University of Economics Prague, Czech Republic
Benjamin Zapilko GESIS, Leibniz Institute for the Social Sciences, Germany
Amrapali Zaveri Maastricht University, The Netherlands
Sergej Zerr L3S Research Center, Germany
Qingpeng Zhang City University of Hong Kong, China
Ziqi Zhang Nottingham Trent University, UK
Jun Zhao University of Oxford, UK
Antoine Zimmermann École des Mines de Saint-Étienne, France

Additional Reviewers – Research Track

Ahn, Jinhyun
Anelli, Vito Walter
Ara, Safina Showkat
Atencia, Manuel
Bader, Sebastian
Bakhshandegan Moghaddam, Farshad
Basile, Valerio
Batsakis, Sotiris

Binns, Reuben
Blume, Till
Bosque-Gil, Julia
Bourgaux, Camille
Brank, Janez
Calleja, Pablo
Čerāns, Kārlis
Charalambidis, Angelos

Organization XXI

Charron, Bruno
Chen, Jiaoyan
Chernushenko, Iurii
Ciortea, Andrei
Collarana, Diego
Comerio, Marco
Dehghanzadeh, Soheila
Di Francescomarino, Chiara
Dimitrov, Dimitar
Donadello, Ivan
Feier, Cristina
Frank, Matthias
Freitas, Andre
Galkin, Mikhail
Gao, Shen
Gao, Yimei
Giboin, Alain
Giménez-García, José M.
Gottschalk, Simon
Hanika, Tom
Hildebrandt, Marcel
Janke, Daniel
Jiaoyan, Chen
Kaefer, Tobias
Kamdar, Maulik R.
Kasper, Patrick
Keppmann, Felix Leif
Keskisärkkä, Robin
Kilias, Torsten
Kling, Christoph
Kondylakis, Haridimos
Koopmann, Patrick
Laforest, Frederique
Lee Sungin
Lima, Rinaldo
Liu, Qian
Mehdi, Gulnar
Mihindukulasooriya, Nandana
Mireles, Victor
Molinari, Andrea
Moodley, Kody

Mossakowski, Till
Musto, Cataldo
Nanni, Federico
Narducci, Fedelucio
Niebler, Thomas
Nishioka, Chifumi
Novalija, Inna
Osmani, Aomar
Padia, Ankur
Patkos, Theodore
Pham, Le Thi Anh Thu
Piao, Guangyuan
Plu, Julien
Qiu, Lin
Rettig, Laura
Revenko, Artem
Ringsquandl, Martin
Rokicki, Markus
Saeef, Mohammed Samiul
Sarker, Md Kamruzzaman
Schneider, Patrik
Setty, Vinay
Shivaprabhu, Vivek
Simkus, Mantas
Smirnova, Alisa
Soru, Tommaso
Steinmetz, Nadine
Suchanek, Fabian M.
Tachmazidis, Ilias
Thoma, Steffen
Thost, Veronika
Tommasini, Riccardo
Usbeck, Ricardo
Van Harmelen, Frank
Wang, Xin
Wang, Zhe
Xiao, Guohui
Xu, Kang
Yimei, Gao
Zaraket, Fadi
Zhang, Gensheng

XXII Organization

Senior Program Committee – Resources Track

Mauro Dragoni Fondazione Bruno Kessler – FBK-IRST, Italy
Daniel Garijo Information Sciences Institute, University of Southern

California, USA
Alasdair Gray Heriot-Watt University, UK
Matthew Horridge Stanford University, USA
Ernesto Jimenez-Ruiz University of Oslo, Norway
Bijan Parsia University of Manchester, UK
Stefan Schulte Vienna University of Technology, Austria

Program Committee – Resources Track

Muhammad Intizar Ali Insight Centre for Data Analytics,
National University of Ireland, Galway, Ireland

Elena Cabrio Université Côte d’Azur, CNRS Inria I3S, France, France
Mari Carmen

Suárez-Figueroa
Universidad Politécnica de Madrid, Spain

David Carral TU Dresden, Germany
Tim Clark Massachusetts General Hospital/Harvard Medical School,

USA
Francesco Corcoglioniti Fondazione Bruno Kessler, Italy
Daniele Dell’Aglio University of Zurich, Switzerland
Ying Ding Indiana University, USA
Mohnish Dubey Computer Science Institute, University of Bonn, Germany
Fajar J. Ekaputra Vienna University of Technology, Austria
Diego Esteves University of Bonn, Germany
Stefano Faralli University of Mannheim, Germany
Mariano Fernández

López
Universidad San Pablo CEU, Spain

Aldo Gangemi Université Paris 13 and CNR-ISTC, Italy
Alejandra

Gonzalez-Beltran
University of Oxford, UK

Rafael S. Gonçalves Stanford University, USA
Christophe Guéret Accenture, Ireland
Amelie Gyrard Ecole des Mines de Saint Etienne, France
Pascal Hitzler Wright State University, USA
Robert Hoehndorf King Abdullah University of Science and Technology,

Saudi Arabia
Aidan Hogan DCC, Universidad de Chile, Chile
Antoine Isaac Europeana and VU University Amsterdam,

The Netherlands
Chen Jiaoyan GIScience, Heidelberg University, Germany
Simon Jupp European Bioinformatics Institute, UK
Maria Keet University of Cape Town, South Africa, South Africa
Elmar Kiesling Vienna University of Technology, Austria

Organization XXIII

Christoph Lange University of Bonn and Fraunhofer IAIS, Germany,
Germany

Steffen Lohmann Fraunhofer IAIS, Germany
Phillip Lord Newcastle University, UK
Maria Maleshkova AIFB, Karlsruhe Institute of Technology, Germany
Nicolas Matentzoglu University of Manchester, UK
Fiona McNeill Heriot Watt University, UK
Nandana

Mihindukulasooriya
Universidad Politécnica de Madrid, Spain

Raghava Mutharaju GE Global Research, USA
Giulio Napolitano Fraunhofer IAIS and University of Bonn, Germany
Vinh Nguyen Kno.e.sis Center, Wright State University, USA
Alessandro Oltramari Bosch Research and Technology Center, USA
Tommaso Pasini Sapienza University of Rome, Italy
Heiko Paulheim University of Mannheim, Germany
Silvio Peroni University of Bologna, Italy
María Poveda-Villalón Universidad Politécnica de Madrid, Spain
Mariano Rico Universidad Politécnica de Madrid (UPM), Spain
German Rigau IXA Group, UPV/EHU, Spain
Giuseppe Rizzo ISMB, Italy
Mariano Rodríguez

Muro
IBM Research, USA

Marco Rospocher Fondazione Bruno Kessler, Italy
Edna Ruckhaus Universidad Politécnica de Madrid
Anisa Rula University of Milano-Bicocca, Italy
Michele Ruta Politecnico di Bari, Italy
Satya Sahoo Case Western Reserve University, USA
Cristina Sarasua Institute for Web Science and Technologies (WeST),

Universität Koblenz-Landau, Germany
Marco Luca Sbodio IBM Research, Ireland
Jodi Schneider University of Illinois Urbana Champaign, USA
Hamed Shariat Yazdi University of Siegen, Germany
Stian Soiland-Reyes The University of Manchester, UK
Krishnaprasad

Thirunarayan
Wright State University, USA

Cassia Trojahn UT2J and IRIT, France
Raphaël Troncy EURECOM, France
Federico Ulliana University of Montpellier II, France
Natalia

Villanueva-Rosales
University of Texas at El Paso, USA

Serena Villata CNRS, Laboratoire d’Informatique, Signaux et Systèmes
de Sophia Antipolis, France

Simon Walk Graz University of Technology, Austria
Peter Wetz TIPCO, Austria
Amrapali Zaveri Maastricht University, The Netherlands
Jun Zhao University of Oxford, UK

XXIV Organization

Additional Reviewers – Resources Track

Amini, Reihaneh
Atemezing, Ghislain Auguste
Bianchi, Federico
Bosque-Gil, Julia
Byamugisha, Joan
Chakraborty, Nilesh
Daquino, Marilena
Francis, Jonathan
Gracia, Jorge
Halilaj, Lavdim
Hu, Wei
Kastler, Leon
Lehrig, Sebastian
Mader, Christian
Mulligan, Natasha
Navas-Loro, María

Nayyeri, Mojtaba
Poggi, Francesco
Priyatna, Freddy
Radulovic, Filip
Sarker, Md Kamruzzaman
Sarntivijai, Sirarat
Sazonau, Viachaslau
Shimizu, Cogan
Spahiu, Blerina
Tommasi, Pierpaolo
Wadkar, Sudarshan
Warrender, Jennifer
Weller, Tobias
Wiens, Vitalis
Zhou, Lu

Program Committee – In-Use Track

Jean-Paul Calbimonte University of Applied Sciences and Arts Western
Switzerland HES-SO, Switzerland

Christophe Guéret Accenture, Ireland
Mauro Dragoni Fondazione Bruno Kessler, FBK-IRST, Italy
Oshani Seneviratne Massachusetts Institute of Technology, USA
Tudor Groza The Garvan Institute of Medical Research, Australia
Stefan Dietze L3S Research Center, Germany
Héctor Pérez-Urbina Google, USA
Tim Clark Massachusetts General Hospital/Harvard Medical School,

USA
Anna Lisa Gentile IBM Research Almaden, USA
Dezhao Song Thomson Reuters, USA
Prateek Jain BlackRock, USA
Brian Davis Insight Centre for Data Analytics, Galway, Ireland
Andriy Nikolov metaphacts GmbH, Germany
Raphaël Troncy EURECOM, France
Pedro Szekely USC/Information Sciences Institute, USA
Harald Sack FIZ Karlsruhe, Leibniz Institute for Information

Infrastructure and KIT Karlsruhe, Germany
Daniel Garijo Information Sciences Institute, University of Southern

California, USA
Achille Fokoue IBM Research, USA
Matthew Horridge Stanford University, USA
Irene Celino CEFRIEL, Italy
Jérôme Euzenat Inria and University of Grenoble Alpes, France
Boris Motik University of Oxford, UK

Organization XXV

Maria Sokhn University of Applied Sciences of Western Switzerland,
Switzerland

Raghava Mutharaju GE Global Research, USA
Peter Mika Schibsted, Norway
Ruslan Mavlyutov University of Fribourg, Switzerland
Varish Mulwad GE Global Research, USA
Jose Manuel

Gomez-Perez
Expert System, Spain

Jerven Bolleman Swiss Institute of Bioinformatics, Switzerland
Giuseppe Rizzo ISMB, Italy
Thomas Steiner Google, Germany
Paul Groth Elsevier Labs, The Netherlands
Vanessa Lopez IBM Research, Ireland
Craig Knoblock University of Southern California, USA
Oscar Corcho Universidad Politécnica de Madrid, Spain
Peter Haase metaphacts GmbH, Germany
Steffen Lamparter Siemens AG, Corporate Technology, Germany

Additional Reviewers – In-Use Track

Alrifai, Ahmad
Biswas, Russa
Garijo, Daniel
Gentile, Anna Lisa

Palumbo, Enrico
Tudorache, Tania
Türker, Rima

XXVI Organization

Sponsors

Platinum Sponsors

http://www.ibm.com/ http://www.elsevier.com/

Gold Sponsors

https://www.semantic-web.at/

http://www.metaphacts.com/

https://www.big-data-europe.eu/

http://www.oracle.com/

http://siemens.at/

Organization XXVII

http://www.ibm.com/
http://www.elsevier.com/
https://www.semantic-web.at/
http://www.metaphacts.com/
https://www.big-data-europe.eu/
http://www.oracle.com/
http://siemens.at/

https://data.world/

http://www.thomsonreuters.com/

http://www.ontoforce.com/

http://ontotext.com/

http://www.videolectures.net/

Bronze Sponsors

https://www.inria.fr/centre/sophia/

http://www.google.com/

XXVIII Organization

https://data.world/
http://www.thomsonreuters.com/
http://www.ontoforce.com/
http://ontotext.com/
http://www.videolectures.net/
https://www.inria.fr/centre/sophia/
http://www.google.com/

Student Travel Award Sponsors

https://www.nsf.gov/

http://swsa.semanticweb.org/

WiFi Sponsor

https://www.kapsch.net/

Supporters

Supported by

http://swsa.semanticweb.org/

https://viennabusinessagency.at/

Organization XXIX

https://www.nsf.gov/
http://swsa.semanticweb.org/
https://www.kapsch.net/
http://swsa.semanticweb.org/
https://viennabusinessagency.at/

https://www.w3.org/

https://www.eurai.org/

http://www.iospress.nl/

http://www.springer.com/

Organizers

https://www.wu.ac.at/en/

XXX Organization

https://www.w3.org/
https://www.eurai.org/
http://www.iospress.nl/
http://www.springer.com/
https://www.wu.ac.at/en/

https://www.tuwien.ac.at/en/

https://www.sba-research.org/

Organization XXXI

https://www.tuwien.ac.at/en/
https://www.sba-research.org/

Abstracts of Invited Talks

From Relational to Semantic Data Mining

Nada Lavrač1,2,3

1 Jožef Stefan Institute, Ljubljana, Slovenia
nada.lavrac@ijs.si

2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
3 University of Nova Gorica, Nova Gorica, Slovenia

Abstract. Relational Data Mining (RDM) addresses the task of inducing models
or patterns from multi-relational data. One of the established approaches to
RDM is propositionalization, characterized by transforming a relational database
into a single-table representation. The talk provides an overview of proposi-
tionalization algorithms, and a particular approach named wordification, all of
which have been made publicly available through the web-based ClowdFlows
data mining platform. The focus of this talk is on recent advances in Semantic
Data Mining (SDM), characterized by exploiting relational background
knowledge in the form of domain ontologies in the process of model and pattern
construction. The open source SDM approaches, available through the
ClowdFlows platform, enable software reuse and experiment replication. The
talk concludes by presenting the recent developments, which allow to speed up
SDM by data mining and network analysis approaches.

Ontologies for the Modern Age

Deborah L. McGuinness

Rensselaer Institute for Data Exploration and Applications, USA
dlm@cs.rpi.edu

Abstract. Ontologies are seeing a resurgence of interest and usage as big data
proliferates, machine learning advances, and integration of data becomes more
paramount. The previous models of sometimes labor-intensive, centralized
ontology construction and maintenance do not mesh well in today’s interdis-
ciplinary world that is in the midst of a big data, information extraction, and
machine learning explosion. In this talk, we will provide some historical per-
spective on ontologies and their usage, and discuss a model of building and
maintaining large collaborative, interdisciplinary ontologies along with the data
repositories and data services that they empower. We will give a few examples
of heterogeneous semantic data resources made more interconnected and more
powerful by ontology-supported infrastructures, discuss a vision for
ontology-enabled future research and provide some examples in a large health
empowerment joint effort between RPI and IBM Watson Health.

Applied Semantics: Beyond the Catalog

Jamie Taylor

Google, USA
jamietaylor@google.com

Abstract. A decade ago a number of semantic catalogs started appearing. These
catalogs gave identifiers to things, assigned them categories and asserted facts
about them. Dubbed knowledge graphs, the intent is to describe the world in a
machine readable way.

These catalogs have proved incredibly useful, allowing publishers to orga-
nize their content management systems, powering machines that can win game
shows and allowing search engines to guide users by interpreting their queries as
being about “things not strings.”

While useful, these catalogs are semantically limited. The connections
entities participate in are sparse, requiring human understanding when decoding
relationships and categorical membership. Entities are frequently identified by
lucky linguistic matches rather than constraints against semantic intent.

If machines are to understand our world and react intelligently to requests
about it, knowledge graphs need to grow beyond catalogs, encoding things
which stretch the notion of “fact” and act as semantic APIs for the real world.

Contents – Part I

Research Track

Multi-label Based Learning for Better Multi-criteria Ranking
of Ontology Reasoners. 3

Nourhène Alaya, Myriam Lamolle, and Sadok Ben Yahia

The Efficacy of OWL and DL on User Understanding of Axioms
and Their Entailments . 20

Eisa Alharbi, John Howse, Gem Stapleton, Ali Hamie,
and Anestis Touloumis

A Decidable Very Expressive Description Logic for Databases 37
Alessandro Artale, Enrico Franconi, Rafael Peñaloza,
and Francesco Sportelli

Improving Visual Relationship Detection Using Semantic Modeling
of Scene Descriptions . 53

Stephan Baier, Yunpu Ma, and Volker Tresp

An Empirical Study on How the Distribution of Ontologies
Affects Reasoning on the Web . 69

Hamid R. Bazoobandi, Jacopo Urbani, Frank van Harmelen,
and Henri Bal

Expressive Stream Reasoning with Laser . 87
Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani

Semantics and Validation of Shapes Schemas for RDF 104
Iovka Boneva, Jose E. Labra Gayo, and Eric G. Prud’hommeaux

Temporal Query Answering in DL-Lite over Inconsistent Data 121
Camille Bourgaux and Anni-Yasmin Turhan

Semantic Wide and Deep Learning for Detecting Crisis-Information
Categories on Social Media . 138

Grégoire Burel, Hassan Saif, and Harith Alani

Tractable Query Answering for Expressive Ontologies
and Existential Rules . 156

David Carral, Irina Dragoste, and Markus Krötzsch

http://dx.doi.org/10.1007/978-3-319-68288-4_1
http://dx.doi.org/10.1007/978-3-319-68288-4_1
http://dx.doi.org/10.1007/978-3-319-68288-4_2
http://dx.doi.org/10.1007/978-3-319-68288-4_2
http://dx.doi.org/10.1007/978-3-319-68288-4_3
http://dx.doi.org/10.1007/978-3-319-68288-4_4
http://dx.doi.org/10.1007/978-3-319-68288-4_4
http://dx.doi.org/10.1007/978-3-319-68288-4_5
http://dx.doi.org/10.1007/978-3-319-68288-4_5
http://dx.doi.org/10.1007/978-3-319-68288-4_6
http://dx.doi.org/10.1007/978-3-319-68288-4_7
http://dx.doi.org/10.1007/978-3-319-68288-4_8
http://dx.doi.org/10.1007/978-3-319-68288-4_9
http://dx.doi.org/10.1007/978-3-319-68288-4_9
http://dx.doi.org/10.1007/978-3-319-68288-4_10
http://dx.doi.org/10.1007/978-3-319-68288-4_10

Zooming in on Ontologies: Minimal Modules and Best Excerpts 173
Jieying Chen, Michel Ludwig, Yue Ma, and Dirk Walther

Global RDF Vector Space Embeddings . 190
Michael Cochez, Petar Ristoski, Simone Paolo Ponzetto,
and Heiko Paulheim

LDScript: A Linked Data Script Language . 208
Olivier Corby, Catherine Faron-Zucker, and Fabien Gandon

Practical Update Management in Ontology-Based Data Access 225
Giuseppe De Giacomo, Domenico Lembo, Xavier Oriol, Domenico
Fabio Savo, and Ernest Teniente

Computing Authoring Tests from Competency Questions:
Experimental Validation. 243

Matt Dennis, Kees van Deemter, Daniele Dell’Aglio, and Jeff Z. Pan

Matching Web Tables with Knowledge Base Entities: From Entity
Lookups to Entity Embeddings . 260

Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro,
and Vassilis Christophides

Learning Commonalities in SPARQL . 278
Sara El Hassad, François Goasdoué, and Hélène Jaudoin

Meta Structures in Knowledge Graphs . 296
Valeria Fionda and Giuseppe Pirrò

Challenges of Source Selection in the WoD . 313
Tobias Grubenmann, Abraham Bernstein, Dmitry Moor,
and Sven Seuken

AMUSE: Multilingual Semantic Parsing for Question Answering
over Linked Data . 329

Sherzod Hakimov, Soufian Jebbara, and Philipp Cimiano

Computing FO-Rewritings in EL in Practice: From Atomic
to Conjunctive Queries . 347

Peter Hansen and Carsten Lutz

A Formal Framework for Comparing Linked Data Fragments 364
Olaf Hartig, Ian Letter, and Jorge Pérez

Language-Agnostic Relation Extraction from Wikipedia Abstracts. 383
Nicolas Heist and Heiko Paulheim

XL Contents – Part I

http://dx.doi.org/10.1007/978-3-319-68288-4_11
http://dx.doi.org/10.1007/978-3-319-68288-4_12
http://dx.doi.org/10.1007/978-3-319-68288-4_13
http://dx.doi.org/10.1007/978-3-319-68288-4_14
http://dx.doi.org/10.1007/978-3-319-68288-4_15
http://dx.doi.org/10.1007/978-3-319-68288-4_15
http://dx.doi.org/10.1007/978-3-319-68288-4_16
http://dx.doi.org/10.1007/978-3-319-68288-4_16
http://dx.doi.org/10.1007/978-3-319-68288-4_17
http://dx.doi.org/10.1007/978-3-319-68288-4_18
http://dx.doi.org/10.1007/978-3-319-68288-4_19
http://dx.doi.org/10.1007/978-3-319-68288-4_20
http://dx.doi.org/10.1007/978-3-319-68288-4_20
http://dx.doi.org/10.1007/978-3-319-68288-4_21
http://dx.doi.org/10.1007/978-3-319-68288-4_21
http://dx.doi.org/10.1007/978-3-319-68288-4_21
http://dx.doi.org/10.1007/978-3-319-68288-4_22
http://dx.doi.org/10.1007/978-3-319-68288-4_23

Alignment Cubes: Towards Interactive Visual Exploration and Evaluation
of Multiple Ontology Alignments . 400

Valentina Ivanova, Benjamin Bach, Emmanuel Pietriga, and Patrick
Lambrix

Attributed Description Logics: Ontologies for Knowledge Graphs 418
Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost

Reliable Granular References to Changing Linked Data 436
Tobias Kuhn, Egon Willighagen, Chris Evelo, Núria Queralt-Rosinach,
Emilio Centeno, and Laura I. Furlong

Cost-Driven Ontology-Based Data Access . 452
Davide Lanti, Guohui Xiao, and Diego Calvanese

The Odyssey Approach for Optimizing Federated SPARQL Queries 471
Gabriela Montoya, Hala Skaf-Molli, and Katja Hose

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases. . . . 490
Andreas Nolle, Melisachew Wudage Chekol, Christian Meilicke,
German Nemirovski, and Heiner Stuckenschmidt

Completeness-Aware Rule Learning from Knowledge Graphs. 507
Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski,
Paramita Mirza, and Gerhard Weikum

Entity Comparison in RDF Graphs . 526
Alina Petrova, Evgeny Sherkhonov, Bernardo Cuenca Grau,
and Ian Horrocks

Provenance Information in a Collaborative Knowledge Graph:
An Evaluation of Wikidata External References . 542

Alessandro Piscopo, Lucie-Aimée Kaffee, Chris Phethean,
and Elena Simperl

Strider: A Hybrid Adaptive Distributed RDF Stream Processing Engine. 559
Xiangnan Ren and Olivier Curé

Mining Hypotheses from Data in OWL: Advanced Evaluation
and Complete Construction . 577

Viachaslau Sazonau and Uli Sattler

Semantic Faceted Search with Aggregation and Recursion 594
Evgeny Sherkhonov, Bernardo Cuenca Grau, Evgeny Kharlamov,
and Egor V. Kostylev

Contents – Part I XLI

http://dx.doi.org/10.1007/978-3-319-68288-4_24
http://dx.doi.org/10.1007/978-3-319-68288-4_24
http://dx.doi.org/10.1007/978-3-319-68288-4_25
http://dx.doi.org/10.1007/978-3-319-68288-4_26
http://dx.doi.org/10.1007/978-3-319-68288-4_27
http://dx.doi.org/10.1007/978-3-319-68288-4_28
http://dx.doi.org/10.1007/978-3-319-68288-4_29
http://dx.doi.org/10.1007/978-3-319-68288-4_30
http://dx.doi.org/10.1007/978-3-319-68288-4_31
http://dx.doi.org/10.1007/978-3-319-68288-4_32
http://dx.doi.org/10.1007/978-3-319-68288-4_32
http://dx.doi.org/10.1007/978-3-319-68288-4_33
http://dx.doi.org/10.1007/978-3-319-68288-4_34
http://dx.doi.org/10.1007/978-3-319-68288-4_34
http://dx.doi.org/10.1007/978-3-319-68288-4_35

Investigating Learnability, User Performance, and Preferences of the Path
Query Language SemwidgQL Compared to SPARQL 611

Timo Stegemann and Jürgen Ziegler

Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding . . . 628
Zequn Sun, Wei Hu, and Chengkai Li

Blockchain Enabled Privacy Audit Logs . 645
Andrew Sutton and Reza Samavi

VICKEY: Mining Conditional Keys on Knowledge Bases 661
Danai Symeonidou, Luis Galárraga, Nathalie Pernelle, Fatiha Saïs,
and Fabian Suchanek

Ontolex JeuxDeMots and Its Alignment to the Linguistic Linked
Open Data Cloud . 678

Andon Tchechmedjiev, Théophile Mandon, Mathieu Lafourcade,
Anne Laurent, and Konstantin Todorov

Towards Holistic Concept Representations: Embedding Relational
Knowledge, Visual Attributes, and Distributional Word Semantics 694

Steffen Thoma, Achim Rettinger, and Fabian Both

An Extension of SPARQL for Expressing Qualitative Preferences 711
Antonis Troumpoukis, Stasinos Konstantopoulos,
and Angelos Charalambidis

Encoding Category Correlations into Bilingual Topic Modeling
for Cross-Lingual Taxonomy Alignment . 728

Tianxing Wu, Lei Zhang, Guilin Qi, Xuan Cui, and Kang Xu

Cross-Lingual Infobox Alignment in Wikipedia Using Entity-Attribute
Factor Graph . 745

Yan Zhang, Thomas Paradis, Lei Hou, Juanzi Li, Jing Zhang,
and Haitao Zheng

Author Index . 761

XLII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-68288-4_36
http://dx.doi.org/10.1007/978-3-319-68288-4_36
http://dx.doi.org/10.1007/978-3-319-68288-4_37
http://dx.doi.org/10.1007/978-3-319-68288-4_38
http://dx.doi.org/10.1007/978-3-319-68288-4_39
http://dx.doi.org/10.1007/978-3-319-68288-4_40
http://dx.doi.org/10.1007/978-3-319-68288-4_40
http://dx.doi.org/10.1007/978-3-319-68288-4_41
http://dx.doi.org/10.1007/978-3-319-68288-4_41
http://dx.doi.org/10.1007/978-3-319-68288-4_42
http://dx.doi.org/10.1007/978-3-319-68288-4_43
http://dx.doi.org/10.1007/978-3-319-68288-4_43
http://dx.doi.org/10.1007/978-3-319-68288-4_44
http://dx.doi.org/10.1007/978-3-319-68288-4_44

Contents – Part II

Resource Track

Diefficiency Metrics: Measuring the Continuous Efficiency of Query
Processing Approaches . 3

Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter

CodeOntology: RDF-ization of Source Code . 20
Mattia Atzeni and Maurizio Atzori

Linked Data Publication of Live Music Archives and Analyses. 29
Sean Bechhofer, Kevin Page, David M. Weigl, György Fazekas,
and Thomas Wilmering

The MedRed Ontology for Representing Clinical Data
Acquisition Metadata . 38

Jean-Paul Calbimonte, Fabien Dubosson, Roger Hilfiker,
Alexandre Cotting, and Michael Schumacher

IGUANA: A Generic Framework for Benchmarking the Read-Write
Performance of Triple Stores . 48

Felix Conrads, Jens Lehmann, Muhammad Saleem, Mohamed Morsey,
and Axel-Cyrille Ngonga Ngomo

Ireland’s Authoritative Geospatial Linked Data . 66
Christophe Debruyne, Alan Meehan, Éamonn Clinton,
Lorraine McNerney, Atul Nautiyal, Peter Lavin, and Declan O’Sullivan

LOD-a-lot: A Queryable Dump of the LOD Cloud 75
Javier D. Fernández, Wouter Beek, Miguel A. Martínez-Prieto,
and Mario Arias

IMGpedia: A Linked Dataset with Content-Based Analysis
of Wikimedia Images. 84

Sebastián Ferrada, Benjamin Bustos, and Aidan Hogan

WIDOCO: A Wizard for Documenting Ontologies 94
Daniel Garijo

The CEDAR Workbench: An Ontology-Assisted Environment
for Authoring Metadata that Describe Scientific Experiments 103

Rafael S. Gonçalves, Martin J. O’Connor, Marcos Martínez-Romero,
Attila L. Egyedi, Debra Willrett, John Graybeal, and Mark A. Musen

http://dx.doi.org/10.1007/978-3-319-68204-4_1
http://dx.doi.org/10.1007/978-3-319-68204-4_1
http://dx.doi.org/10.1007/978-3-319-68204-4_2
http://dx.doi.org/10.1007/978-3-319-68204-4_3
http://dx.doi.org/10.1007/978-3-319-68204-4_4
http://dx.doi.org/10.1007/978-3-319-68204-4_4
http://dx.doi.org/10.1007/978-3-319-68204-4_5
http://dx.doi.org/10.1007/978-3-319-68204-4_5
http://dx.doi.org/10.1007/978-3-319-68204-4_6
http://dx.doi.org/10.1007/978-3-319-68204-4_7
http://dx.doi.org/10.1007/978-3-319-68204-4_8
http://dx.doi.org/10.1007/978-3-319-68204-4_8
http://dx.doi.org/10.1007/978-3-319-68204-4_9
http://dx.doi.org/10.1007/978-3-319-68204-4_10
http://dx.doi.org/10.1007/978-3-319-68204-4_10

WebIsALOD: Providing Hypernymy Relations Extracted
from the Web as Linked Open Data . 111

Sven Hertling and Heiko Paulheim

Ontology-Based Data Access to Slegge . 120
Dag Hovland, Roman Kontchakov, Martin G. Skjæveland,
Arild Waaler, and M. Zakharyaschev

BiOnIC: A Catalog of User Interactions with Biomedical Ontologies. 130
Maulik R. Kamdar, Simon Walk, Tania Tudorache, and Mark A. Musen

Neural Embeddings for Populated Geonames Locations 139
Mayank Kejriwal and Pedro Szekely

Distributed Semantic Analytics Using the SANSA Stack 147
Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal,
Claus Stadler, Ivan Ermilov, Simon Bin, Nilesh Chakraborty,
Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, and Hajira Jabeen

The MIDI Linked Data Cloud . 156
Albert Meroño-Peñuela, Rinke Hoekstra, Aldo Gangemi, Peter Bloem,
Reinier de Valk, Bas Stringer, Berit Janssen, Victor de Boer, Alo Allik,
Stefan Schlobach, and Kevin Page

SocialLink: Linking DBpedia Entities to Corresponding Twitter Accounts . . . 165
Yaroslav Nechaev, Francesco Corcoglioniti, and Claudio Giuliano

UNDO: The United Nations System Document Ontology. 175
Silvio Peroni, Monica Palmirani, and Fabio Vitali

One Year of the OpenCitations Corpus: Releasing RDF-Based
Scholarly Citation Data into the Public Domain . 184

Silvio Peroni, David Shotton, and Fabio Vitali

An Entity Relatedness Test Dataset . 193
José Eduardo Talavera Herrera, Marco Antonio Casanova,
Bernardo Pereira Nunes, Luiz André P. Paes Leme,
and Giseli Rabello Lopes

RSPLab: RDF Stream Processing Benchmarking Made Easy 202
Riccardo Tommasini, Emanuele Della Valle, Andrea Mauri,
and Marco Brambilla

LC-QuAD: A Corpus for Complex Question Answering
over Knowledge Graphs. 210

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey,
and Jens Lehmann

XLIV Contents – Part II

http://dx.doi.org/10.1007/978-3-319-68204-4_11
http://dx.doi.org/10.1007/978-3-319-68204-4_11
http://dx.doi.org/10.1007/978-3-319-68204-4_12
http://dx.doi.org/10.1007/978-3-319-68204-4_13
http://dx.doi.org/10.1007/978-3-319-68204-4_14
http://dx.doi.org/10.1007/978-3-319-68204-4_15
http://dx.doi.org/10.1007/978-3-319-68204-4_16
http://dx.doi.org/10.1007/978-3-319-68204-4_17
http://dx.doi.org/10.1007/978-3-319-68204-4_18
http://dx.doi.org/10.1007/978-3-319-68204-4_19
http://dx.doi.org/10.1007/978-3-319-68204-4_19
http://dx.doi.org/10.1007/978-3-319-68204-4_20
http://dx.doi.org/10.1007/978-3-319-68204-4_21
http://dx.doi.org/10.1007/978-3-319-68204-4_22
http://dx.doi.org/10.1007/978-3-319-68204-4_22

PDD Graph: Bridging Electronic Medical Records and Biomedical
Knowledge Graphs via Entity Linking . 219

Meng Wang, Jiaheng Zhang, Jun Liu, Wei Hu, Sen Wang, Xue Li,
and Wenqiang Liu

In-Use Track

A Controlled Crowdsourcing Approach for Practical Ontology Extensions
and Metadata Annotations . 231

Yolanda Gil, Daniel Garijo, Varun Ratnakar, Deborah Khider,
Julien Emile-Geay, and Nicholas McKay

An Investigative Search Engine for the Human Trafficking Domain 247
Mayank Kejriwal and Pedro Szekely

Lessons Learned in Building Linked Data for the American
Art Collaborative . 263

Craig A. Knoblock, Pedro Szekely, Eleanor Fink, Duane Degler,
David Newbury, Robert Sanderson, Kate Blanch, Sara Snyder,
Nilay Chheda, Nimesh Jain, Ravi Raju Krishna,
Nikhila Begur Sreekanth, and Yixiang Yao

Modeling and Using an Actor Ontology of Second World War Military
Units and Personnel. 280

Petri Leskinen, Mikko Koho, Erkki Heino, Minna Tamper, Esko Ikkala,
Jouni Tuominen, Eetu Mäkelä, and Eero Hyvönen

Sustainable Linked Data Generation: The Case of DBpedia 297
Wouter Maroy, Anastasia Dimou, Dimitris Kontokostas,
Ben De Meester, Ruben Verborgh, Jens Lehmann, Erik Mannens,
and Sebastian Hellmann

Semantic Rule-Based Equipment Diagnostics . 314
Gulnar Mehdi, E. Kharlamov, Ognjen Savković, G. Xiao,
E. Güzel Kalaycı, S. Brandt, I. Horrocks, Mikhail Roshchin,
and Thomas Runkler

Automatic Query-Centric API for Routine Access to Linked Data 334
Albert Meroño-Peñuela and Rinke Hoekstra

Realizing an RDF-Based Information Model for a Manufacturing
Company – A Case Study . 350

Niklas Petersen, Lavdim Halilaj, Irlán Grangel-González,
Steffen Lohmann, Christoph Lange, and Sören Auer

Contents – Part II XLV

http://dx.doi.org/10.1007/978-3-319-68204-4_23
http://dx.doi.org/10.1007/978-3-319-68204-4_23
http://dx.doi.org/10.1007/978-3-319-68204-4_24
http://dx.doi.org/10.1007/978-3-319-68204-4_24
http://dx.doi.org/10.1007/978-3-319-68204-4_25
http://dx.doi.org/10.1007/978-3-319-68204-4_26
http://dx.doi.org/10.1007/978-3-319-68204-4_26
http://dx.doi.org/10.1007/978-3-319-68204-4_27
http://dx.doi.org/10.1007/978-3-319-68204-4_27
http://dx.doi.org/10.1007/978-3-319-68204-4_28
http://dx.doi.org/10.1007/978-3-319-68204-4_29
http://dx.doi.org/10.1007/978-3-319-68204-4_30
http://dx.doi.org/10.1007/978-3-319-68204-4_31
http://dx.doi.org/10.1007/978-3-319-68204-4_31

Personalizing Actions in Context for Risk Management
Using Semantic Web Technologies . 367

Jiewen Wu, Freddy Lécué, Christophe Gueret, Jer Hayes,
Sara van de Moosdijk, Gemma Gallagher, Peter McCanney,
and Eugene Eichelberger

Author Index . 385

XLVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-68204-4_32
http://dx.doi.org/10.1007/978-3-319-68204-4_32

Research Track

Multi-label Based Learning for Better
Multi-criteria Ranking of Ontology Reasoners

Nourhène Alaya1,2(B), Myriam Lamolle1, and Sadok Ben Yahia2

1 LIASD EA4383, IUT of Montreuil, University of Paris 8, 93520 Saint-Denis, France
{n.alaya,m.lamolle}@iut.univ-paris8.fr

2 LIPAH LR11ES14, Faculty of Sciences of Tunis,
University of Tunis El-Manar, 2092 Tunis, Tunisia

sadok.benyahia@fst.rnu.tn

Abstract. A growing number of highly optimized reasoning algorithms
have been developed to allow inference tasks on expressive ontology lan-
guages such as OWL(DL). Nevertheless, there is broad agreement that
a reasoner could be optimized for some, but not all the ontologies. This
particular fact makes it hard to select the best performing reasoner to
handle a given ontology, especially for novice users. In this paper, we
present a novel method to support the selection ontology reasoners. Our
method generates a recommendation in the form of reasoner ranking. The
efficiency as well as the correctness are our main ranking criteria. Our
solution combines and adjusts multi-label classification and multi-target
regression techniques. A large collection of ontologies and 10 well-known
reasoners are studied. The experimental results show that the proposed
method performs significantly better than several state-of-the-art rank-
ing solutions. Furthermore, it proves that our introduced ranking method
could effectively be evolved to a competitive meta-reasoner.

Keywords: Ontology · Reasoner · Multi-label classification · Multi-
target regression · Multi-criteria · Ranking · Advising · Meta-reasoning

1 Introduction

A growing number of highly optimized ontology reasoners [10] have been devel-
oped to allow inference tasks on expressive ontology languages such as OWL(DL)
[6]. Nevertheless, it is well accepted that a reasoner could be optimized for some
but not all the ontologies. Indeed, the respective authors of [5,18] have out-
lined that, often in practice, reasoners tend to exhibit unpredictable behaviours
when dealing with real world ontologies. They noticed that the reasoner perfor-
mances can considerably vary across the ontologies, even when the size or/and
the expressivity of these ones are fixed. Furthermore, Gardiner et al. [4] and more
recently Lee et al. [9] pinpointed out that reasoners may disagree over inferences
or query answers, computed from the same input ontology. All of the aforemen-
tioned authors offered different explanations of these phenomena: bottlenecks in
the ontology design [5]; interactions between reasoning optimisation techniques
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-68288-4 1

4 N. Alaya et al.

[4]; or even reasoner implementation bugs [9]. Given all of these findings, it is
obvious that for a typical OWL user, deciding the most performing reasoner
to handle a given ontology is not a trivial task. Recently, we conducted a pre-
liminary study [2] on designing a system to support users in reasoner selection
task for the classification of OWL ontologies. The proposed system, called Rak-
SOR, automatically ranks a set of candidate reasoners based on their predicted
robustness. The ranked list gathers relevant reasoners, those capable to achieve
the reasoning task within a fixed time limit and to deliver correct results. It also
includes the irrelevant ones. Such configuration allows users to figure out which
reasoners to select and the ones to avoid. To put this specification into practice,
we defined a set of preference rules based on bucket order principal [3], a spe-
cial case of partial order. Our method showed good ranking prediction quality
comparing to our baseline method1. Nevertheless, we admit that the prediction
accuracy of RakSOR depends heavily on the accuracy of the robustness pre-
dictive model of each examined reasoner. This dependency makes it difficult to
further improve the effectiveness of its results. Furthermore, both the RakSOR
learning and prediction process are time consuming and highly complex. Finally,
RakSOR supports only reasoners specifically tuned for the OWL 2 DL profile.

In a continuous improvement outlook, in this paper, we present a novel accu-
racy boosted solution for reasoner ranking, based on multi-label learning para-
digm [16,20]. We also demonstrate that this method could be used as the core
component of a very competitive meta-reasoner [8]. The novel solution, called
Multi-RakSOR, uses reasoner efficiency and result correctness as main ranking
criteria. It reuses our previous reasoner preference rules and order principals [2],
but also considers the ontology OWL profile as an additional reasoner ranking
criteria. Indeed, it supports both OWL 2 DL and EL profiles. Subsequently, it
has two seperated sets of alternative reasoners. Multi-RakSOR maps the feature
values describing an input ontology into a complete ranking over a set of alter-
native reasoners. It also indicates the expected relevance2 of each of the ranked
reasoners. To achieve this end, the introduced ranking solution combines, in
a consistent way, multi-label classification [20] and multi-target regression [14]
techniques. The ontology features as well as the ranking predictions can effi-
ciently be computed in a polynomial time with respect to the size of the input.
Thanks to the various optimization efforts, a novel meta-reasoner was built upon
the Multi-RakSOR ranking solution.

The main contributions of this paper can be summarized as follows:

1. The design description of a novel multi-label based solution for the multi-
criteria ranking of ontology reasoners.

2. The summary of a large scale experimental evaluations covering 10 well known
reasoners and 1954 unique ontologies, collected from the corpus of the latest
Ontology Reasoner Evaluation Workshop (ORE’2015) [13].

1 It is a trivial solution which outputs the same reasoner ranking regardless of the
ontology under study.

2 This refers to the success or the failure of the ontology classification task.

Multi-label Based Learning for Better Ranking of Ontology Reasoners 5

3. The depiction of a comparative study which includes several multi-label learn-
ing algorithms. The obtained results show that Multi-RakSOR performs sig-
nificantly better than state-of-the-art multi-label solutions, in terms of accu-
racy in ranking and relevance prediction.

4. The characterization of a meta-reasoner based on the introduced multi-label
ranking solution of ontology reasoners. Evaluation results prove that the novel
meta-reasoner can outperform all of the examined reasoners, in terms of result
correctness. Evaluations also highlight that, at average, the meta-reasoner can
significantly boost the reasoning efficiency on OWL DL ontologies, but it is
less capable when headling OWL EL ontologies.

2 Background and Related Works

2.1 Key Notions of Multi-label Learning Paradigm

In the multi-label learning context [14,16,20], each input instance is character-
ized by a d -dimensional feature vector X(i) = (xi

1, x
i
2, . . . , x

i
d), associated with a

set of m output labels Y(i) = (yi
1, y

i
2, . . . , y

i
m). Let X be the space domain of the

input features and let Y be the domain of the output labels, also called the target
variables space. The task of multi-label learning is to train a model, i.e. a func-
tion h : X → Y. The model is capable to predict the proper output label vector
̂Y = (ŷ1, ŷ2, . . . , ŷm), given the feature vector X ∈ X of an unseen input instance.
The model is learned from a dataset D = {(X(1), Y (1)), . . . , (X(n), Y (n))}, which
assembles n training examples.

2.2 Multi-label Learning Techniques for Algorithm Selection

In our context, an input instance stands for the vector of feature values which
describes a user ontology. On the other hand, each target variable stands for a
reasoner. More precisely, a target label depicts a reasoner rank or any other score
value. Indeed, the target labels could be real-valued, binary, ordinal, categorical
or even of mixed types. Each form of target labels has specific multi-label learning
task. In this paper, we are interested in three of these tasks. They are mainly:

– Multi-Label Classification task (MLC) [20]. It is concerned with learning
a model that outputs a bipartition of the output labels into relevant label set
Px and irrelevant label set Nx, where Px∩Nx = ∅ and Px∪Nx = Y. Literally,
the outputs are binary labels, i.e. Y = {0, 1}m, with 0 means irrelevant target.
This approach was used by Olmo et al. [12] to introduce a recommendation
system of relevant machine learning algorithms.

– Label Ranking task (LR) [20]. It is concerned with learning a model that
outputs an ordering of the labels according to their relevance to the input
instance. Hence, the h function maps every instance X ∈ X to a total strict
order, ≺, over the set of the output labels. A ranking over Y can conveniently
be represented by a permutation σ of the set of indices {1, . . . ,m}, where
σ(i) stands for the rank value of the target variable yi. LR techniques are the

6 N. Alaya et al.

building blocks of various algorithm selection systems: meta-learning solutions
[15], SAT solver portfolios [11] and the ontology meta-reasoner R2O2 [8].

– Multi-target Regression task (MTR) [14]. It is also known as the multi-
variate or multi-output regression task. It is the most general form of multi-
label learning task. Indeed, MTR techniques are designed to predict multiple
real-valued target variables, whether they are binary ones (MLC case), per-
mutations (LR case) or float values. Formally, the MTR output space has the
following form: Y ≡ R

m. To best of our knowledge, no previous work have
employed MTR techniques to rank algorithms.

Based on this review, it seems that label ranking (LR) techniques are promising
solutions for the automatic selection of ontology reasoners. Indeed, they simplify
the ranking process, i.e. just one predictive model to train and they are known
to be highly accurate. Nevertheless, we are convinced that they cannot satisfy
all of our requirements. Actually, all of the reviewed works employ single ranking
criterion. Besides, they output the rank values of the alternatives without any
indication of their relevance. In fact, the computed rankings follow strict total
order, with the assumption that all the alternatives are relevant ones. This is a
quite different specification from what we need to fulfil. As previously explained,
we are interested in ranking relevant and irrelevant reasoners by applying partial
order rules. The real challenge is to find a way to incorporate our multi-criteria
preference rules in a multi-label learning method without any precision or infor-
mation lost. Details of the proposed solution to overcome this challenge are
outlined in the forthcoming sections.

2.3 Ontology Features

In our previous work [1], we proposed a rich set of ontology features, qualita-
tive and quantitative ones, covering a broad range of structural and syntactic
attributes of OWL ontologies. These features were put forward to thoroughly
describe the ontology design complexity. Our collection gathers a lot of well
known state-of-art metrics, some of them are already used reasoner prediction
solutions and in ontology quality evaluation systems. Our features are arranged
into four categories: (1) size description features, which characterize the amount
of knowledge explicitly asserted in the ontology; (2) expressivity description fea-
tures, which mainly includes the OWL profile and the description logic family
name; (3) structural features, which outline the design of named class and prop-
erty respective inheritance hierarchies; (4) syntactic features, which delineate the
main characteristic of the OWL grammar. To compute feature values, any full
translation of the OWL ontology to particular kind of graph representation is
avoided. In this paper experimentations, we discarded the metrics with high-
computing cost, like the tree depth of named class hierarchy. This left us with
123 ontology feature values to be measured.

Multi-label Based Learning for Better Ranking of Ontology Reasoners 7

3 Novel Multi-label Learning Method for Multi-criteria
Ranking of Ontology Reasoners

In this section, we introduce the Multi-RakSOR method. We give a short spec-
ification of its reasoner ranking rules, before outlining its learning mechanism.

3.1 Reasoner Ranking Criteria and Preference Rules

A ranking represents a preference function over a set of alternatives. In our con-
text, the alternatives are some set of ontology reasoners considered as promising
candidates. This set is denoted by R. In [1,2], we stressed on the importance of
considering not only the runtime of reasoners but also the correctness of their
derived results, as comparison criteria. We also highlighted the need to specify
particular reasoner robustness judgement constraints, like the range of ontolo-
gies, the reasoning task and the success/failure respective states.

In this paper, our study concerns the classification task of OWL DL and
OWL EL ontologies within a tight time schedule. We apply the Gardiner et al.
[4] reasoner correctness checking method. Accordingly, results delivered by a
reasoner are either correct or unexpected. Subsequently, we can specify a first
ordinal criterion which split up the set of reasoners into four groups according
to their termination state: (1) Success, when the reasoner terminates the task
within a fixed time-limit and delivers correct results; (2) Unexpected, in case of
an achieved task within the time limit, but has unexpected results, i.e. incorrect;
(3) Timeout, when the fixed time lapse is exceeded; and (4) Halt, when the
reasoner crashes and do not terminate the task. Given this specification, we can
formally describe the preference rules over ontology reasoners using bucket order
principals [3]. In short, a bucket is a set of equally ranked alternatives. Initially,
four buckets are defined each of them corresponds to a specific termination state
(S,U,T,H). A strict total order over the buckets is also decided: BS ≺ BU ≺
BT ≺ BH . Clearly, reasoners belonging to BS bucket are the most preferred
ones. The BU reasoners can terminate the reasoning task but the correctness
of their results is not approved by our correctness checking method. In our
opinion, they are much preferred than reasoners falling in the BT bucket, which
can not release any results within the fixed time lapse. Of course, the worse
reasoners are in BH bucket. Seeking more precision, a second ranking criterion
standing for the efficiency of the reasoner over the correctly classified ontologies is
applied. Accordingly, reasoners within the success bucket BS are linearly sorted
in an increasing order w.r.t their reasoning runtime. The final ordered bucket
partition over the set of the alternative reasoners, i.e. R, has the following form:
B = B1 ≺ . . . ≺ Bk ≺ BU ≺ BT ≺ BH , where k = |BS |. Reasoner ranks are
computed by following these rules. Subsequently, ties may appear in the list of
ranks. Indeed, tied reasoners imply that they did not succeed to classify the
ontology for the same failure cause.

Multi-RakSOR considers a further important criterion. This is the OWL pro-
file of the input ontology. It is widely known that some reasoners are specifically
tuned to particular OWL profiles. For instance, ELK is a highly performing OWL

8 N. Alaya et al.

EL specialised reasoner. On the other hand, there is no proof of the correctness
of its results when applied to OWL DL ontologies. In short, it is absurd to advise
an EL reasoner to handle a DL ontology. Given this fact, Multi-RakSOR splits
the set of alternative reasoners into DL and EL specialised subsets, i.e. RDL and
REL. Once the profile of an input ontology is identified, the above usual ranking
rules are applied over the corresponding set of reasoners.

3.2 Specification of the Novel Multi-label Ranking Method

In the Multi-RakSOR system, the ranks of reasoners are computed prior to any
learning step, by applying to afore-described rules on actual results of reasoner
evaluations. The produced ranks together with the metrics describing the studied
ontologies are then, provided to the learning component. Afterwards, a multi-
label predictive model is trained, to be able to predict these ranks for future
unseen ontologies. We assert that providing only the reasoner ranks might be
misleading for the users. This is because the ranked list might include some,
or even only, reasoners expected to fail the classification of the input ontology.
Hence, it is important not only to predict the ranks but also to outline the
successful/unsuccessful reasoners.

To satisfy all of these requirements, we introduce a novel multi-label rank-
ing method applied to ontology reasoners. The learning process involves two
equally important subsequent goals. The first is to produce the bipartition of
set of the output labels Y into relevant label set Px and irrelevant label set
Nx, with Px ∪ Nx = Y and Px ∩ Nx = ∅. The second is a ranking over Y which
respects the previously introduced preference rules. Specially, the ranking should
be consistent, this means to satisfy the following couple of conditions:

– There should be no irrelevant labels ranked higher than relevant ones and
vice versa. Formally, whenever ∀yi ∈ Px and ∀yj ∈ Nx, then yi ≺ yj . In other
words, yi is preferred to yj and it is ranked lower σ(i) < σ(j).

– The relevant labels must form a strict total ordered set. Formally, ∀yi,∀yj ∈
Px with i
= j, then either yi is preferred to yj or yj is preferred to yi. The
irrelevant labels are allowed to have equal ranks.

3.3 Multi-RakSOR Learning and Prediction Steps

To put the above specification into practice, a transformation of the multi-label
ranking process is proposed. Indeed, the key idea of our solution is to learn a
separate multi-label model for each of the following sub-problems: (i) a model to
predict the ranking with ties of the alternative reasoners, denoted by hr() and
(ii) a model to predict the relevance of each reasoner, denoted by hb(). After-
wards, at the prediction time, the computed relevance bipartition and ranking of
reasoners for an input ontology, are synchronized by checking their consistency
and probably correcting their values. A further issue is about predicting a rank-
ing with ties using multi-label learning techniques. We previously highlighted the
lack of multi-label based solutions to predict a ranking which involves a partial

Multi-label Based Learning for Better Ranking of Ontology Reasoners 9

order. To overcome this absence, multi-target regression (MTR) techniques [14]
are employed. The latter ones can handle different kinds of learning problems
provided that the domain of the output variables is within R

m. In other words,
no matter whether the rank values are strict or tied, the MTR model will try to
predict the closest possible values to the real ones. Now, we can list the required
steps to train the Multi-RakSOR predictive model.

Training time. the Multi-RakSOR model hmlti is comprised of 2 sub-models:
a multi-label classification (MLC) model, hb : Fd → {0, 1}m, which predicts
the relevance of the output labels, and a multi-target regression (MTR) model,
hr : Fd → R

m, which predicts the ranking with ties of these labels. Each of these
models is learned independently from dedicated datasets, respectively Db and Dr.
The latter ones share the same input vectors, which describes the features of the
ontologies. It is important to note that the training datasets are profile specific
ones. In other terms, for each supported OWL profile, a dataset is assembled
and a dedicated Multi-RakSOR predictive model is trained.

Prediction time. During this online stage, to compute the ranking for a new
introduced ontology, our system operates in five steps. Firstly, the feature values
of the introduced ontology are computed and provided to the prediction compo-
nent. Afterwards, the Multi-RakSOR predictive model which corresponds to the
ontology OWL profile is invoked. Then, the MLC sub-model is applied to get
the predicted relevance of each reasoner. Similarly, the MTR model is addressed
to get the predicted ranks. Finally, the consistency of the computed ranks are
checked and probably adjusted. More details about our ranking checking method
are provided in the upcoming subsection.

3.4 Ranking Consistency Checking Method

Based on the specification provided in Subsect. 3.2, the ranking checking method
must ensure that: (1) the rank values of the relevant labels form a strict total
ordered set of natural numbers; and (2) no irrelevant reasoner is ranked lower
than a relevant one. If one of these rules is broken, then the ranking is adjusted.
Algorithm 1 shows the steps achieved by rankingCheckingMethod(). The proce-
dure takes as input the matrix ̂Y, which encodes the different computed pre-
dictions. We design by maxPx

σ the maximal rank value of the relevant output
labels. Known that the ranks take values in N

∗ and they are expected to be lin-
early sorted in an increasing strict order, then we can assert that maxPx

σ = |Px|.
Through the first loop of Algorithm1, the maxPx

σ value is computed. The rank
values corresponding to the relevant labels are stored in the Rx array. The cells
of this array corresponding to irrelevant reasoners are set to 0. The resulting Rx

array is then handled by rankOrderTransformation(). The main role of this func-
tion is to ensure the application of our 1st consistency rule. This idea behind
this function is quite straightforward. The ranks in the Rx array are seen as
numerical scores. By consequence, the function computes the strict total order
of their values. Potential ties of the relevant reasoners rank values are arbitrary

10 N. Alaya et al.

Algorithm 1: The ranking consistancy checking method

1 Function rankingCheckingMethod(̂Y ∈ Mm×2(R))
2 Rx ← [0, . . . , 0] ; // Rx is of size m

3 maxPx
σ ← 0 ;

4 for i ← 1 to | ̂Y| do
5 if ̂Y[i][1] = 1 then

6 Rx[i] ← ̂Y[i][2] ;

7 maxPx
σ ← maxPx

σ + 1 ;

8 end

9 end
10 Rx ← rankOrderTransformation(Rx) ;

11 for i ← 1 to | ̂Y| do
12 if ̂Y[i][1] <> 0 then // Relevant label, update the rank

13 ̂Y[i][2] ← Rx[i] ;

14 else if ̂Y[i][2] ≤ maxPx
σ then // Irrelevant label, Inconsistency case

15 updateIrrelevantRanks(̂Y,maxPx
σ , i) ;

16 end

17 end

18 return ̂Y ;

broken. For instance, let [1, 3, 3, 3, 5, 4] be the predicted ranks of 6 reasoners and
[1, 0, 1, 1, 1, 0] their predicted relevance. By substituting the ranks of the irrele-
vant reasoners by 0, the resulting Rx array is equal to [1, 0, 3, 3, 5, 0]. It is clear
that these are non consistent rank values3. In this case, rankOrderTransforma-
tion() function ignores the 0 values and considers the remaining values as scores
to be ranked. It finally returns [1, 0, 2, 3, 4, 0]. Afterwards, the inconsistencies
w.r.t. the second rule are caught by simply verifying whether an irrelevant label
has a rank lower than maxPx

σ (see Algorithm 1, Line 14). If this is the case, then
the first inconsistent rank is set to (maxPx

σ +1), and subsequently, all the remain-
ing rank values of irrelevant reasoners are updated. Our solution is intuitive and
inexpensive one, capable at least to fix the inconsistencies. As a matter of fact,
in our opinion, the exact ranking of the irrelevant reasoners is less important for
the user. In this example, the final adjusted ranking is equal to [1, 5, 2, 3, 4, 6].

4 Data Collection

To build up the Multi-RakSOR system, data describing the empirical perfor-
mances of reasoners are required. Therefore, a large scale evaluations of an impor-
tant number of reasoners is conducted using the evaluation tools employed in the

3 The ranking contains ties and is not linear.

Multi-label Based Learning for Better Ranking of Ontology Reasoners 11

latest Ontology Reasoner Evaluation Workshop (ORE 2015) [13]. This includes
the evaluation Framework4 and the ontology corpus.

Ontologies. This includes 1967 ontology collected from the ORE 2015 corpus
[13]. 1920 of them are sampled from three different source corpora5 and 47
are user submitted ontologies6. At first, the OWL profiles of the ontologies are
checked. The process revealed that 11 user submitted ontologies do not fit to any
of the standard OWL profiles. It was also impossible to load 2 other ontologies.
This left us with 1954 validated ontologies, 1191 are within the OWL DL profile
and the remaining 763 are OWL EL ones. Afterwards, the selected ontologies
are arranged into 2 different collections, based on their profiles.

Reasoners and evaluations. To build up our advising system, we selected a
representative subset of popular and efficient ontology reasoners. More precisely,
we picked up the 10 best ranked reasoners7 in both the DL and EL classifica-
tion challenges of ORE 2015. Then, we assigned them to 2 groups: OWL DL
and OWL EL specialised reasoners. In the first group, we can find Konclude,
HermiT8, MORe9, TrOWL, FaCT++, JFact, Racer and finally Pellet10.
The second group has the same reasoners as the first one, in addition to, ELK
and ELepHant. Description and references to these systems could be found in
[13]. By following the ORE competition processing steps, two classification chal-
lenges (DL and EL) are set up. Each challenge puts the selected reasoners into
comparison when attempting to classify the ontology collection that corresponds
to their group. To conduct these evaluations, we run the ORE Framework in the
sequential mode on a machine equipped with an Intel Core I7, CPU running
at 3.4 GHz and having 32 GB RAM, where 10 GB were made available for each
reasoner. We set the condition of 3 min time limit to classify an ontology by
a reasoner, where only 150 s were allowed for reasoning and 30 s could be used
for parsing and writing results. In the ORE Framework, the times are mea-
sured in wall clock time instead of CPU time. Figure 1 summarizes the results of
the carried out challenges11. For each OWL profile and for every reasoner, the
percentage of ontologies classified with success is illustrated, together with the
failure percentage. Figure 1 details also the different cases of failure (Unexpected,
Timeout and Halt). Worth to be noted, the reasoners are ordered according to
their success rate. Furthermore, Fig. 2 depicts the average runtime exhibited by
every reasoner over the correctly classified ontologies, i.e. the success cases, and
for each ontology collection. We can notice that Konclude is the most robust

4 ORE Framework is available at https://github.com/andreas-steigmiller/
ore-2014-competition-framework/.

5 Available at https://zenodo.org/record/18578#.WReUzlXyjcc.
6 Available at https://zenodo.org/record/50737#.WReW01Xyjcc.
7 Reasoners are available at https://zenodo.org/record/50738#.WRhPVVXyjcc.
8 Specifically, it is the HermiT implementation based on OWL API 4 (HerimT-OA4).
9 This is exactly the MOReHermiT implementation.

10 We used the Pellet implementation based on OWL API 4 (Pellet-OA4).
11 Evaluation results produced by ORE for the 10 reasoners are available at https://

github.com/Alaya2016/OntoClassification-Results2017/.

https://github.com/andreas-steigmiller/ore-2014-competition-framework/
https://github.com/andreas-steigmiller/ore-2014-competition-framework/
https://zenodo.org/record/18578#.WReUzlXyjcc
https://zenodo.org/record/50737#.WReW01Xyjcc
https://zenodo.org/record/50738#.WRhPVVXyjcc
https://github.com/Alaya2016/OntoClassification-Results2017/
https://github.com/Alaya2016/OntoClassification-Results2017/

12 N. Alaya et al.

reasoner over the DL ontologies, while ELK outperforms all the system over the
EL Ontologies. Konclude is rated the 3rd on the EL classification challenge. In
general, the success rates of the different reasoners are very close when consid-
ering EL ontologies, but they are quiet distinct in the case of DL ones. Indeed,
there is a much important failure rate in the DL classification challenge. This
is due to the high expressivity of the OWL 2 DL profile. By closely looking
to Fig. 2, we can remark that the Hermit system, which has the 2nd best suc-
cess rate, achieved the worst reasoning average runtime over the correct cases.
Several other systems showed similar behaviours. Overall, we can pinpoint that
reasoner ranks computed based on correctness does not completely meet their
ranks based on efficiency. Based on these facts, it is obvious that defining general
rules to select “best” reasoner for any ontology is not a trivial task and might
not be effective in practice.

Fig. 1. Summary of reasoner evaluation results of the classification track over DL and
EL respective ontology collections.

Fig. 2. Comparison of reasoner average runtime for correctly classified ontologies (suc-
cess cases, time in millisconds) over the DL and the EL respective ontology collections.

Multi-label Based Learning for Better Ranking of Ontology Reasoners 13

Training and testing datasets. For learning evaluation purpose, we split
up the ontology collection into training and testing sets. The decomposition
respects, in the best possible way, the distribution of ontologies over the size
bins. We selected 654 test ontologies, i.e. 391 DL and 263 EL. This selection is
hold out to later assess the quality of predictions. The remaining 800 DL and
500 EL ontologies are gathered in the training set to build up the Multi-RakSOR
predictive models. As final step, the features values of the selected ontologies are
measured (c.f. Subsect. 2.3). Then, the reasoner ranking and relevance vectors
are computed. Hence, OWL profile based datasets are created by incorporating
the feature vectors and their corresponding relevance and rank vectors.

5 Experimental Evaluation of Multi-RakSOR

Multi-RakSOR12 is realised with Java. It has a generic design and three main
building blocks: the ontology profiler, the multi-learner and the multi-predictor
components. In this paper experiments, Multi-RakSOR uses the Binary Rele-
vance (BR) algorithm [7] as the base MLC learner and the Ensemble of Regressor
Chains (ERC) algorithm [14] as the base MTR learner. Mulan13 [17], the Java
multi-label learning API, allowed the access to these state-of-art algorithms.
We recall that 654 ontologies were held out to evaluate the prediction quality
of Multi-RakSOR. Given a test ontology, the predicted reasoner relevance and
ranking values are compared to the ideal ones. These are the actual correct
relevance values and ordering of the reasoners given the ontology under exam-
ination. Afterwards, the agreement between the predicted and the ideal values
are assessed using the metrics, we describe in the following. Our results are then
compared against existing multi-label learning solutions.

5.1 Evaluation Metrics

A two-step evaluation procedure is designed to adjudge the prediction quality
of Multi-RakSOR. First, the accuracy of the predicted reasoner relevance bipar-
tition is checked. For this kind of evaluations, the assessment metrics of binary
multi-label classification models [20] are employed. In particular, the F1-Measure
for each test case is computed and then, averaged over the whole test set. Sim-
ilarly, the Hamming loss (HM-Loss) score is measured and averaged across
all the test cases. This metric computes the percentage of misclassified labels.
Generally speaking, a good MLC model should maximize its F1-Measure value,
while minimizing its HM-Loss value. Later on, the quality of the produced rank-
ings is assessed using 4 metrics falling in 2 categories. We already employed these
metrics in [2]. The main purpose of the first metric category is to show to what
extent a predicted ranking is correlated to the ideal one. It is composed of the
average value of the generalized Kendall Tau correlation coefficient, denoted by
12 A demo application reproducing the evaluations of Multi-RaKSOR is available at

https://github.com/Alaya2016/Multi-RakSORDemo/.
13 Mulan is available at http://mulan.sourceforge.net/download.html.

https://github.com/Alaya2016/Multi-RakSORDemo/
http://mulan.sourceforge.net/download.html

14 N. Alaya et al.

KendalTauX and the average value of the Spearman rank correlation coefficient,
denoted by SpearmanRho. The second category is made up from information
retrieval based metrics. They examine how well we are ranking the reasoners at
the top of the list, i.e. at the Kth position. To get an overall idea of precision
considering the whole test set, the Mean Average Precision is computed and
denoted by MAP@K. Two particular values are retained: MAP@1 and MAP@3.

5.2 Multi-label Learning Methods

We compare the quality of Multi-RakSOR relevance prediction against 4 well
known MLC solutions [20]: (1) the neural network approach for the multi-label
classification task (BP-MLL); (2) the Random K -Labelsets method (RAKEL);
(3) the adaptive boosting algorithm for multi-label learning (AdaBoost.MH); and
(4) the multi-label k-Nearest Neighbor (ML-kNN) algorithm. In a second stage,
we compare the quality of Multi-RakSOR predicted rankings to those produced
by 4 label ranking (LR) solutions [15]: (1) the K-Nearest Neighbor approach for
label ranking (LR-kNN); (2) the predictive clustering trees for ranking (PCTR);
(3) the label ranking trees (LRT); and (4) the ranking by pairwise comparison
algorithm (RPC). It is worth to be noted that these algorithms predict only the
ranks of the target labels and do not separate them into relevant/irrelevant ones.
However, they are the building blocks of the meta-reasoner14 R2O2 [8]. For each
learning task (MLC, MTR) and for every training dataset (DL, EL), we train
the predictive models of all of the aforementioned learning solutions. Then, we
assess their predictive quality over our testing datasets.

5.3 Relevance Prediction Assessment Results

Figure 3 depicts the assessment results of the reasoner relevance bipartition pre-
dictions achieved by the the studied solutions. For both the DL and the EL

Fig. 3. Comparison summary of relevance prediction quality achieved by the examined
works over each of the OWL profile based test datasets.

14 It is to be considered that we didn’t get access to R2O2 running executable. Hence,
we were enable to establish any comparison with this system.

Multi-label Based Learning for Better Ranking of Ontology Reasoners 15

datasets, Multi-RakSOR showed very high prediction capabilities, characterized
by a score of F1-measure above 0.91 and low Hamming Loss (HM-Loss) value.
It outperformed all the other MLC solutions and rated the first over the two
datasets. We can also remark that predicting the relevance bipartition over EL
test cases seems to be more easier than over DL cases. Actually, Multi-RakSOR
has achieved a close to optimum F1-Measure. This could be explained that all of
the studied reasoners has showed closer performances when classified EL ontolo-
gies. Hence, their performance are almost predictable on this kind of ontologies.

5.4 Ranking Prediction Assessment Results

Figure 4 sketches the assessment results of the ranking quality achieved by the
examined MTR methods over the DL and EL testing datasets. First, it can
be noted that in both the datasets and according to the different assessment
metrics, Multi-RakSOR have outperformed its base MTR leaner, the ERC algo-
rithm. This observation pinpoints the positive impact of our proposed ranking
correction step (c.f. Subsect. 3.4). Accordingly, we can assert that checking the
consistency of the predicted ranks w.r.t. the predicted relevance of reasoners is
effective and can contribute to the overall improvement of the ranking quality.
Multi-RaKSOR can identify the top most performing reasoner, regarding both
the correctness and the efficiency criteria, with a precision of more than 88%, for
both DL and EL ontologies. According to Kendall TauX, Multi-RaKSOR is also
capable to predict the ties across the irrelevant reasoners and produce rankings
that are at 94% positively correlated to the real ones.

Fig. 4. Comparison summary of the ranking prediction quality achieved by the exam-
ined works over each of the OWL profile based test datasets.

16 N. Alaya et al.

More interestingly, Multi-RakSOR method have overpassed all of its coun-
terparts, LR-KNN, RPC, PCTR and LRT, w.r.t. the different assessments mea-
sures. This result is important since these are well recognized algorithms in the
field of label ranking. Besides, they are part of R2O2, the only existing rea-
soner ranking system. These empirical results could be explained by the fact
that none of these algorithms is originally designed to predict a ranking which
includes ties. Even that they can handle such ranking, they are not particularly
optimized for. Once again, these findings show that our proposed Multi-RakSOR
method adds good multi-label ranking abilities to the existing solutions. Despite
the challenges, these results proves that it was worthwhile to investigate time
and effort in exploring and accommodating multi-label learning techniques for
better automatic ranking of ontology reasoners.

6 Experimental Evaluation of Meta-RakSOR

The main purpose of this set of evaluations is to investigate the effectiveness of
building a meta-reasoner upon our multi-label ranking solution. A meta-reasoner
has various common treats with SAT algorithm portfolio approach [11,19]. The
portfolio aims to take advantage of the complementarity of the algorithms by
combining them. Roughly speaking, a portfolio could be built in by gathering
a set of performing algorithms, together with an intelligent selector capable to
decide the most performing one to any input instance. Multi-RakSOR ranking
method could be seen as an intelligent selector by only considering the reasoner
on the top of the ranked list. From a theoretical perspective, Multi-RakSOR
could easily be evolved into a meta-reasoner. Indeed, the computing algorithms
of ontology features have polynomial complexity with respect to the size of the
inputs. Furthermore, the predictions are computed in constant time. In the fol-
lowing, we experimentally examine the worthiness of this assumption.

The upgraded version of our system is called Meta-RakSOR. Given an
input ontology, Meta-RakSOR computes its feature vector then, predicts the
ranks of the available reasoners using the approach described in Sect. 3. Finally,
the reasoner with the lowest predicted rank value is invoked. In our experiments,
we repeated this process for each EL and DL test ontology. We stored the com-
putational time of the full prediction and classification steps. Then, we compared
the Meta-RakSOR achieved results to those computed by the other reasoners (c.f.
Sect. 4). Tables 1 and 2 report the evaluation results respectively over DL and EL
ontology test sets15. They report the number of success and failure cases and the
average runtime in milliseconds over the correctly classified ontologies (i.e. the
AVG. Time column). It can be observed that Meta-RakSOR has the highest level
of correctly processed ontologies for both the DL and EL ontologies. It is rated
the first on both challenges. However, Meta-RakSOR has not outperformed the
other reasoners in terms of classification runtime. It has the 2nd lowest average
runtime over correctly classified DL ontologies, just behind Konclude. However,

15 Meta-RakSOR can handle both DL and EL profiles.

Multi-label Based Learning for Better Ranking of Ontology Reasoners 17

Table 1. Results summary of the
OWL DL classification challenge
(Test Set).

Reasoner Success Failure AVG. time

#U #T #H

M-RakSOR 367 12 8 4 1545.69

Konclude 366 12 11 2 1358.43

HermiT 334 3 42 12 14243.19

MORe 326 26 35 4 6428.77

FaCT++ 295 4 69 23 4509.77

Pellet 287 4 84 16 2157.61

TrOWL 274 84 0 33 2157.61

Racer 245 67 75 4 4813.06

JFact 196 39 94 62 8258.99

Table 2. Results summary of the
OWL EL classification challenge (Test
Set).

Reasoner Success Failure AVG. time

#U #T #H

M-RakSOR 263 0 0 0 2166.13

ELK 262 0 0 1 635.68

Konclude 259 4 0 0 817.01

MORe 259 3 1 0 1807.03

ELepHant 258 1 4 0 1179.67

HermiT 256 0 7 0 6418.43

TrOWL 243 0 0 20 1116.69

Pellet 242 1 16 4 6081.54

FaCT++ 232 0 29 2 6092.75

Racer 214 31 18 0 3994.49

JFact 186 24 52 1 5767.34

it is placed the 6th by considering the average runtime over EL ontologies. Nev-
ertheless, for this set of ontologies, it showed better performance than known
reasoners, like FaCT++, HermiT and Pellet. In overall, the achieved results are
very encouraging ones. It proves the potential benefits of Meta-RakSOR, espe-
cially in terms of result correctness. Still, we assert that using a meta-reasoner
for light-weighted and inexpressive ontologies is not worthwhile, since the time
overhead due to the prediction steps may overpass the actual classification time.
Based on this observation, Meta-RakSOR could be improved by fixing a default
reasoner to be applied for easy cases without needing any prediction effort.

7 Conclusion

In this paper, we introduced an automatic ranking mechanism of ontology rea-
soners. It combines multi-label classification and multi-target regression tech-
niques. It achieves both reasoner ranking and reasoner relevance prediction in
a consistent way. The proposed system considers the correctness and the effi-
ciency of reasoners in the ranking process. We studied separately OWL DL and
OWL EL specific reasoners. We achieved high ranking prediction quality and
outperformed existing solutions. We also examined the feasibility of employing
our ranking solution as the key component of a novel meta-reasoner. The exper-
imental results of the latter one showed the potential of our proposals. It also
revealed that more optimisation steps are required to improve its efficiency. For
future work, we are intending to examine more reasoner evaluation criteria, such
as the energy and memory consumption. We are also planning to study different
reasoning tasks, like consistency checking and realisation. Actually, our ultimate
goal is to conduct different reasoner evaluation campaigns under a variety of
machine, time and memory configurations and for different reasoning tasks. Once
these data is gathered, a larger scale multi-criteria ranking system of ontology
reasoners could be established.

18 N. Alaya et al.

References

1. Alaya, N., Yahia, S.B., Lamolle, M.: What makes ontology reasoning so arduous?
Unveiling the key ontological features. In: Proceedings of the 5th International
Conference on Web Intelligence, Mining and Semantics, pp. 4:1–4:12 (2015)

2. Alaya, N., Yahia, S.B., Lamolle, M.: RakSOR: ranking of ontology reasoners based
on predicted performances. In: Proceedings of the 28th IEEE International Con-
ference on Tools with Artificial Intelligence, pp. 1076–1083 (2016)

3. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial
rankings. SIAM J. Discrete Math. 20, 628–648 (2006)

4. Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated comparison
of description logic reasoners. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol.
4273, pp. 654–667. Springer, Heidelberg (2006). doi:10.1007/11926078 47

5. Gonçalves, R.S., Parsia, B., Sattler, U.: Performance heterogeneity and approxi-
mate reasoning in description logic ontologies. In: Cudré-Mauroux, P., et al. (eds.)
ISWC 2012. LNCS, vol. 7649, pp. 82–98. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35176-1 6

6. W.O.W. Group: OWL 2 Web Ontology Language: Document Overview. W3C Rec-
ommendation, 27 October 2009. http://www.w3.org/TR/owl2-overview/

7. Ioannou, M., Sakkas, G., Tsoumakas, G., Vlahavas, I.P.: Obtaining bipartitions
from score vectors for multi-label classification. In: Proceedings of the 22nd Inter-
national Conference on Tools with Artificial Intelligence, ICTAI, pp. 409–416. IEEE
Computer Society (2010)

8. Kang, Y.-B., Krishnaswamy, S., Li, Y.-F.: R2O2: an efficient ranking-based rea-
soner for OWL ontologies. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol.
9366, pp. 322–338. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 19

9. Lee, M., Matentzoglu, N., Parsia, B., Sattler, U.: A multi-reasoner, justification-
based approach to reasoner correctness. In: Arenas, M., et al. (eds.) ISWC
2015. LNCS, vol. 9367, pp. 393–408. Springer, Cham (2015). doi:10.1007/
978-3-319-25010-6 26

10. Matentzoglu, N., Leo, J., Hudhra, V., Sattler, U., Parsia, B.: A survey of current,
stand-alone OWL reasoners. In: Proceedings of the 4th International Workshop on
OWL Reasoner Evaluation, pp. 68–79 (2015)

11. Oentaryo, R.J., Handoko, S.D., Lau, H.C.: Algorithm selection via ranking. In:
Proceedings of Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 1826–
1832 (2015)

12. Olmo, J.L., Romero, C., Gibaja, E., Ventura, S.: Improving meta-learning for algo-
rithm selection by using multi-label classification: a case of study with educational
data sets. Int. J. Comput. Intell. Syst. 8(6), 1144–1164 (2015)

13. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
Reasoner Evaluation (ORE) 2015 resources. In: Groth, P., Simperl, E., Gray, A.,
Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS,
vol. 9982, pp. 159–167. Springer, Cham (2016). doi:10.1007/978-3-319-46547-0 17

14. Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target
regression via input space expansion: treating targets as inputs. Mach. Learn.
104(1), 55–98 (2016)

15. Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algo-
rithm ranking. Mach. Learn. 93(1), 141–161 (2013)

http://dx.doi.org/10.1007/11926078_47
http://dx.doi.org/10.1007/978-3-642-35176-1_6
http://dx.doi.org/10.1007/978-3-642-35176-1_6
http://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1007/978-3-319-25007-6_19
http://dx.doi.org/10.1007/978-3-319-25010-6_26
http://dx.doi.org/10.1007/978-3-319-25010-6_26
http://dx.doi.org/10.1007/978-3-319-46547-0_17

Multi-label Based Learning for Better Ranking of Ontology Reasoners 19

16. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Data Min-
ing and Knowledge Discovery Handbook, 2nd edn., pp. 667–685 (2010)

17. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: a Java
library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)

18. Wang, T.D., Parsia, B.: Ontology performance profiling and model examination:
first steps. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp.
595–608. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 43

19. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for sat. J. Artif. Int. Res. 32, 565–606 (2008)

20. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014)

http://dx.doi.org/10.1007/978-3-540-76298-0_43

The Efficacy of OWL and DL on User
Understanding of Axioms and Their Entailments

Eisa Alharbi(B), John Howse, Gem Stapleton, Ali Hamie,
and Anestis Touloumis

University of Brighton, Brighton, UK
{e.alharbi2,John.Howse,g.e.stapleton,a.a.hamie,

a.touloumis}@brighton.ac.uk

Abstract. OWL is recognized as the de facto standard notation for
ontology engineering. The Manchester OWL Syntax (MOS) was devel-
oped as an alternative to symbolic description logic (DL) and it is
believed to be more effective for users. This paper sets out to test that
belief from two perspectives by evaluating how accurately and quickly
people understand the informational content of axioms and derive infer-
ences from them. By conducting a between-group empirical study, involv-
ing 60 novice participants, we found that DL is just as effective as MOS
for people’s understanding of axioms. Moreover, for two types of infer-
ence problems, DL supported significantly better task performance than
MOS, yet MOS never significantly outperformed DL. These surprising
results suggest that the belief that MOS is more effective than DL, at
least for these types of task, is unfounded. An outcome of this research
is the suggestion that ontology axioms, when presented to non-experts,
may be better presented in DL rather than MOS. Further empirical stud-
ies are needed to explain these unexpected results and to see whether
they hold for other types of task.

Keywords: Ontologies · OWL · DL · Manchester OWL Syntax ·
Usability

1 Introduction

This paper sets out to provide evidence to support the untested belief that the
Manchester syntax [6] for OWL [2] is more effective for users than Description
Logic (DL) [3]. Research efforts have focused on the usability of OWL itself,
demonstrating the importance placed on effectively supporting ontology engi-
neers and other stakeholders [4,14,17]. In light of this, it is equally as important
to determine whether OWL, or more specifically the Manchester OWL Syntax
(MOS), is an effective choice of notation. After all, MOS is widely employed
and was developed with the intention of being usable by people [6]. Surprisingly,
however, in this paper we found no evidence that MOS is superior to DL but
instead that DL was sometimes more effective than MOS.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 20–36, 2017.
DOI: 10.1007/978-3-319-68288-4 2

The Efficacy of OWL and DL on User Understanding of Axioms 21

To probe deeply into the relative usability of notations, it is necessary to
consider the tasks for which they are to be used. In the context of ontology
engineering, notations are used to write axioms which must then be understood.
Inferences are derived from those axioms and, ideally, ontology engineers would
at least be able to accurately identify when sound inferences hold. Of course,
numerous other activities are performed, such as debugging and repair [8,12], but
in this paper, we focus on relative usability from the perspective of understanding
axioms and deriving inferences from them. The specific questions we address,
via an empirical study, represent the first steps towards determining the relative
efficacy of MOS as compared to DL and are as follows:

1. Does MOS support significantly more accurate understanding of axioms than
DL? We found MOS to be no more effective than DL.

2. Does MOS support significantly more accurate identification of sound infer-
ences than DL? We found that MOS does not and, sometimes, DL is more
effective than MOS.

3. Does MOS lead to significantly fewer unsound inferences than DL? We found
that MOS does not and, sometimes, DL is more effective than MOS.

Given the surprising answers to these questions, particularly with respect to
MOS not significantly outperforming DL, additional research is needed. In par-
ticular, future empirical studies should evaluate MOS and DL to determine the
extent to which DL can outperform MOS and to identify tasks for which MOS
outperforms DL. A key take-away message is that it is not clear-cut that MOS
is a more usable notation.

The paper is set out as follows. Section 2 provides an overview of related
work, focusing on the usability of MOS. In Sect. 3, we illustrate the nature of
task that users were required to perform in our empirical study. The hypotheses
to be tested are given in Sect. 4 and the experiment design is described in Sect. 5,
together with the statistical methods employed. The results obtained are given
in Sect. 6 and discussed in Sect. 7. We identify threats to validity in Sect. 8 and
conclude in Sect. 9. The experiment materials and data collected are at https://
sites.google.com/site/eisamalharbi/owlanddlefficiency.

2 Background

Ontology engineering has become a major activity with many stakeholders
involved in producing ontologies. The W3C OWL working group devised several
different syntaxes – e.g. RDF/XML and a functional style syntax – designed to
serve different purposes. However “none of them ... are designed for ease of use
by humans when building or analyzing ontologies” [6]. Given the diversity of
expertise held by different stakeholders, it is important to ensure the efficacy of
notations used for ontology engineering.

The Manchester syntax was created with a view that it “would be easier to
write and understand, particularly for non-logicians” [6]. This is supported by
the official W3C working group documentation: “The Manchester syntax is a

https://sites.google.com/site/eisamalharbi/owlanddlefficiency
https://sites.google.com/site/eisamalharbi/owlanddlefficiency

22 E. Alharbi et al.

user-friendly compact syntax for OWL 2 ontologies”[1]. Indeed, the Manchester
syntax is the de facto standard notation used for ontology engineering and var-
ious tools support its use, such as Protégé [11]. It is believed that because the
Manchester syntax uses short and intuitive English words instead of logical sym-
bols, such as those employed by DL, usability is improved [6].

Despite these beliefs, it is known that some users find interpreting OWL
difficult. Warren et al. provide insight into the relative efficacy of different
Manchester OWL constructs, with a focus on drawing sound inferences from
given axioms [17]. Whilst this study revealed that users were “prone to certain
misconceptions” it did not compare the Manchester syntax with DL or other
notations. An evaluation by Sarker et al. [15] reported that ROWLtab, a Protégé
plugin that allows users to enter OWL axioms by way of rules, “ is much quicker
than the standard interface, while at the same time, also less prone to errors
for hard modeling tasks.” Others have also considered the understandability of
OWL, such as [14], and Horridge et al. [4] provided insight into the relative
cognitive complexity of OWL justifications, but again not in comparison to DL.

In summary, insight has been gained about the relative understandability of
different Manchester OWL axioms, particularly within the context of inference
problems. However, the perceived superiority of the Manchester syntax has not
been rigorously tested by empirical studies that aim to understand its relative
cognitive advantages over DL. In this paper we present the first such empirical
study, revealing unexpected results.

3 Tasks: Understanding Axioms and Inference

When presented with an ontology, users need to understand the informational
content of axioms as well as derive insights from them. Consider the following:

1. Demon SubClassOf Elf
2. Korrigan SubClassOf Demon
3. Mermaid SubClassOf Spirit
4. Elf DisjointWith Nisse

5. Demon SubClassOf hates only Goblin
6. Elf SubClassOf chases some Spirit
7. Halfling SubClassOf watches some Fairy
8. guides Domain Mermaid

Each of these axioms needs to be understood. For example, axiom 2 indicates class
subsumption and is taken to mean ‘All Korrigans are Demons’. Axiom 4 asserts
class disjointness: ‘No Elf is a Nisse’. More complex axioms involve quantifiers,
such as axiom 7 which tells us that ‘Halflings watch at least one Fairy’.

The derivation of inferences requires people to reason about their informa-
tional content. Reasoning is clearly a harder task than understanding axioms,
since the axioms must be understood in order to make sound inferences from
them. Considering the axioms above, many inferences can be drawn, such as:

– ‘No Demon is a Nisse’: from axiom 1 we know ‘All Demons are Elves’ and
from axiom 4 we see that ‘No Elf is a Nisse’; so ‘No Demon is a Nisse’.

– ‘Korrigans hate only Goblins’: follows from axioms 2 and 5.
– ‘Demons chase at least one Spirit’: follows from axioms 1 and 6.

The Efficacy of OWL and DL on User Understanding of Axioms 23

In each case, two axioms have been used to derive the conclusions; more complex
reasoning can also occur, but we focus on inferences drawn from two axioms.

It is also important that people do not make incorrect inferences. Examples of
statements that are not semantically entailed by the axioms above include: ‘No
Halfling is a Spirit’, ‘Fairies track only Elves’, and ‘Things scare only Halflings.’
It would be unsound to deduce any of these three statements. In summary, it is
important that ontology engineers and end-users understand axioms correctly,
draw sound inferences from them, and do not make unsound inferences. The
study we design covers all three aspects.

4 Main Hypotheses

There is a belief that the Manchester syntax is usable, in that it is easy to
read (i.e. understandable) and write, as exemplified by Sect. 2. A possible rea-
son for this is the use of text rather than symbols. For instance, contrast
Goblin SubClassOf Imp with Goblin � Imp: both express ‘all goblins are imps’.
The MOS is likely to be easier for people to understand than the DL even
though it requires people to understand what is meant by SubClassOf.

DL, by contrast to MOS, exploits purely syntactic conventions whose seman-
tics are defined in a stipulative way; the symbols do not immediately correspond
to a natural language interpretation of the axioms. Therefore, DL’s syntactic
objects are further removed from their semantics than those of MOS. This means
that DL could provide an additional cognitive burden on users, as there is a need
to learn how to read the symbols in addition to then deriving an understand-
ing of the axioms. This suggests that users of DL need to be more conscious of
semantic conventions than users of MOS. Consequently, we expect an increased
cognitive load for DL users which could be a deterrent to their performance when
understanding and reasoning about axioms.

Given the above discussion, we identify the following hypotheses:

– People more accurately understand axioms using MOS than DL.
– People identify sound inferences more accurately using MOS than DL.
– People make fewer unsound inferences using MOS than DL.
– People perform tasks more quickly overall using MOS than DL.

With regard to the first three hypotheses, we will present a fine-grained statis-
tical analysis that inspects performance with respect to understanding different
types of axioms and different styles of inference task. Regarding the last hypoth-
esis, time data was collected for each question, which involved all three types of
task (i.e. understanding, sound inference and unsound inference). This design
decision was to reduce the impact of fatigue effect on the data, since fewer ques-
tions and, thus, fewer sets of axioms needed to be presented to participants; if we
collected time data at the fine-grained level, participants would need to answer
nine times as many questions - given our design - which is not feasible. Conse-
quently, there was no time data specifically for measuring the understanding of
different types of axioms or for different styles of inference task.

24 E. Alharbi et al.

5 Empirical Study Design

In order to determine whether MOS or DL most effectively helped people under-
stand and reason about ontologies, we focused on six axiom types:

1. simple class subsumption: C1 SubClassOf C2 and C1 � C2,
2. simple class disjointness: C1 DisjointWith C2 and C1 � C2 �⊥,
3. complex class subsumption, involving all values from constraints:

C1 SubClassOf R only C2 and C1 � ∀R.C2,
4. complex class subsumption, involving some values from constraints:

C1 SubClassOf R some C2 and C1 � ∃R.C2,
5. domain: R Domain C1 and ∃R.� � C1,
6. range: R Range C1 and � � ∀R.C1,

where the Ci are primitive concepts. These were chosen because they are com-
monly occurring, especially simple class subsumption and complex class sub-
sumption involving some values from which are prominent in biomedical ontolo-
gies. It was deemed important that participants had no prior knowledge of the
information contained in the axioms, so that they could not work out the answers
without reading the MOS or DL. Equally, the use of abstract-style axioms, such
as in the enumerated list above, could be off-putting to participants. Therefore,
the axioms presented information about mythical creatures to give some con-
text to the questions. A between-group design was used, with participants being
exposed to one of the two notations1. We measured relative efficacy through
accuracy and time performance data. Accuracy was taken to be the primary
performance indicator: one notation was more effective than another if people
performed tasks significantly more accurately with it. To establish whether sig-
nificant performance differences existed, we designed an empirical study that
required participants to answer questions that required a set of checkboxes to be
selected, corresponding to understanding the axioms and deriving sound infer-
ences from the axioms. Further checkboxes were included that related to informa-
tion that could not be deduced from the axioms. The nature of these checkboxes
will be further explained below.

5.1 Designing Questions for the Study

A screenshot of a question used in the study is given in Fig. 1. There is a list
of 14 axioms, presented in DL in this case. Participants are asked one question:
‘Which of the following statements hold?’ This is followed by a list of nine
checkbox statements, given in natural language. Therefore, each question can
be viewed as comprising nine tasks: for each checkbox, determine whether the
information conveyed by the associated statement is necessarily true. Figure 1
will be used as a running example where we describe the question design process.
The next three subsections consider factors that informed the question design.
1 The study included a third group which saw a diagrammatic representation of the

axioms. We do not report on that group in this paper.

The Efficacy of OWL and DL on User Understanding of Axioms 25

Fig. 1. Screenshot of a DL question.

Understanding Axioms. As discussed earlier, an axiom can be understood
through a natural language statement. For example, Gnome � Dwarf, given in
Fig. 1 is understood as ‘All Gnomes are Dwarfs’. The axiom types and their rep-
resentations in MOS and DL are given in Table 1 together with their associated
natural language interpretation written in an abstract form; we call these inter-
pretations statement styles which will be used in the context of inference as well
as understanding. To obtain a sufficient number of data points to statistically
analyse accuracy performance, each axiom type was tested for understandability
three times, in three different questions. Since there are six axiom types, we had a
total of 18 tasks (resp. 18 checkboxes) relating to understanding axioms. These
18 tasks were distributed evenly across the questions: each question included
three.

Table 1. Representing axioms

Axiom type MOS DL Statement style

Simple class subsumption C1 SubClassOf C2 C1 � C2 All C1 are C2

Simple class disjointness C1 DisjointWith C2 C1 � C2 � ⊥ No C1 is a C2

Complex class subsumption: all VF C1 SubClassOf p only C2 C1 � ∀p.C2 C1 p only C2

Complex class subsumption: some VF C1 SubClassOf p some C2 C1 � ∃p.C2 C1 p at least one C2

Domain p Domain C ∃p.� � C Only C p things

Range p Range C � � ∀p.C Things p only C

26 E. Alharbi et al.

Making Sound Inferences from Axioms. From Banshee � Spirit and
Spirit � ∃annoys.Fiend in Fig. 1 we can deduce Banshee � ∃annoys.Fiend, which
is interpreted as ‘Banshees annoy at least one Fiend’. We tested inferences that
involved only two axioms and, in each case, one of the axioms was simple class
subsumption. To give a controlled variety of inference tasks, simple class sub-
sumption axioms were paired with each of the six axiom types we are consider-
ing. Such a pairing resulted in an inference whose interpretation is one of the six
statement styles given in Table 1. Each such pairing was used to give three infer-
ence tasks for each statement style and 18 sound inference tasks overall. These
18 tasks were distributed evenly across the questions: each question included
three sound inference tasks.

Making Unsound Inferences from Axioms. To test the ability of each
notation to reduce the likelihood of unsound reasoning, tasks were included that
corresponded to statements that were not semantically entailed by the axioms.
For example, in Fig. 1, the statement Things chase only Imps cannot be inferred
from the axioms. To ensure the unsound inference tasks were non-trivial, we used
statements that contained classes and properties that were present in the axiom
list. For consistency with the other two test types and to facilitate the statistical
analysis we produced three statements that were unsound inferences from the
axioms for each of the six statement styles. This gave a total of 18 statements
that are unsound inferences from the axioms, again distributed evenly across the
questions: each question included three unsound inference tasks.

Generating Axioms for Questions. Overall, we required participants to
perform 54 tasks: 18 each for understanding axioms, sound inferences, unsound
inferences. Each question had nine checkboxes, so we required six questions. Each
question needed a set of axioms from which three statements could be under-
stood, three sound inferences made, and three unsound inferences identified.

It was important to have tasks of sufficient complexity to reveal statistically
significant differences – should they exist – and, therefore, a reasonable number
of axioms was required for each question. However, if too many axioms were
involved, participants may have found the tasks too difficult to perform with
minimal training. Informal experimentation indicated that providing two axioms
of each type was appropriate. As discussed, the sound inference tasks involved
just two axioms, one of which was always simple class subsumption. Hence to
include, for each question, three sound inference tasks and, for half the questions,
a simple class subsumption understanding task - each question contained four
simple class subsumption axioms. So each of the six questions involved a list of
14 axioms: four simple class subsumption axioms and two of each other type.

Each set of 14 axioms was randomly generated in order to avoid selection
bias, using ten named classes and eight named properties; in total 27 different
class names and 15 different property names were used across the six questions.
Each class name started with a different letter to avoid potential misreading,
the same was true for property names. The axioms were ordered according to

The Efficacy of OWL and DL on User Understanding of Axioms 27

axiom type: simple class subsumption, simple class disjointness, followed by com-
plex class subsumption involving all values from, some values from constraints,
domain, and, lastly, range. Within these axiom types the axioms were ordered
alphabetically; see Fig. 1. The checkbox statements were generated randomly
by statement style and task type, whilst ensuring the required distribution of
checkboxes. The statements for each question were presented in fixed random
order, see Fig. 1. The presentation of each question (i.e. order of axioms, order
of checkbox statements, position of items on the screen), was identical for each
participant, except for the use of MOS and DL.

Summary. The six questions were designed to test participants’ ability to
understand axioms, to make sound inferences, and to recognize unsound infer-
ences. Each question involved a list of 14 axioms and nine checkbox statements.
The 14 axioms consisted of four simple class subsumption axioms and two each of
the other axiom types. The nine checkbox statements involved three statements
testing axiom understanding, three testing sound inference and three testing
unsound inference. In total participants were required to consider 54 checkbox
statements. To be answered correctly, the axiom understanding statements and
sound inference statements boxes should be checked, but the unsound inference
statements boxes should be unchecked.

5.2 Experiment Phases

The experiment had three phases: paper-based training, software-based train-
ing, and the main study. The paper-based training taught participants how
to understand axioms. This consisted of one A4 sheet containing one training
axiom for each of the six axiom types. They were written using the mythical
creatures scenario and presented alongside English language explanations, like
those in Sect. 3. For example, the MOS group were shown the statement Boggart
SubClassOf scares only Midget (among others) and were told this meant ‘Boggarts
scare only Midgets’; the DL group saw Boggart � ∀scares.Midgets alongside the
same meaning. Participants retained their training sheet throughout the study.

In the second phase of the study, participants were taught how to answer the
questions using the software that collected performance data, familiarizing them
with the user interface. This involved participants answering questions similar to
those designed for the main study. The training material was identical for each
group, except that the notation used was different. They were told that some
of the possible answers required inferences to be made from the axioms pre-
sented. The participants attempted the training questions, then the experiment
facilitator told them the correct answers and explained why they were correct.

The third phase collected performance data based on the six questions
described in Sect. 5.1. Participants were told that the information presented in
each question was independent of the information in the other questions, so

28 E. Alharbi et al.

inferences should only be made from the axioms on the screen. They could not
re-attempt questions but were able to refer to the single side of A4 paper train-
ing material from phase 1. To reduce the impact of learning effect, the questions
were presented in a random order generated separately for each participant.
After the answers to a question were submitted, the software showed a pause
screen, allowing participants to decide when to start the next question. This fea-
ture was designed to reduce fatigue effect and to ensure that the time recorded
to answer each question was appropriate; the recorded time was the duration
from when the question was displayed until an answer was submitted, not the
time taken to select individual checkboxes as this would not be meaningful. No
time limit was imposed on the participants, allowing them to spend as long as
they needed to answer each question.

5.3 Experiment Execution

Participants were recruited by word-of-mouth and were all students, studying
a variety of subjects, at the University of Brighton, none associated with the
authors’ research group. Some participants were not native English speakers but
all had proficiency in English. Participants were randomly divided into groups,
one for MOS the other for DL. A pilot study was conducted to test the experi-
ment design, the software used to display the questions, and the data collection
process. Ten participants (6F, 4M, ages 18–38) took part in the pilot, five per
group. No changes were required after the pilot study. A further 50 participants
(18F, 32M, ages 18–45) took part in the main study, 25 in each group.

The experiment was performed in a usability laboratory, providing a quiet
environment without interruption. Participants were treated equally with the
same environment, equipment, materials and procedures. They performed the
experiment individually, and were provided with full details about the purpose
of their role by an experiment facilitator. Upon completion, each participant was
provided with a debrief summary, telling them how to access the study’s results.
Participants were offered a £6 canteen voucher for their time spent in the study
(approximately 30 min).

5.4 Statistical Methods

Statistical analysis was based on the Generalized Estimation Equations (GEE)
method [10] implemented in the R package geepack [18]. In addition, the function
ComparisonStats was used to evaluate the statistical significance of the desired
comparisons for the accuracy data. The notation type (participant group), the
axiom type, and checkbox type were used as explanatory variables that are
linearly connected with the probability of providing a correct answer. The sig-
nificance of the explanatory variables and their interaction will be assessed to

The Efficacy of OWL and DL on User Understanding of Axioms 29

determine whether they affect the probability of correctly performing a task.
The following model was fitted to the accuracy data:

log

[
Pr(Yij = 1)

1 − Pr(Yij = 1)

]
= β0 + β1xij1 + β2xij2 + β3xij3 + β4xij4 + β5xij5 + β6xij6

+ β7xij7 + β8xi8 + β9xij1xij6 + β10xij2xij6

+ β11xij3xij6 + β12xij4xij6 + β13xij5xij6 + β14xij1xij7

+ β15xij2xij7 + β16xij3xij7 + β17xij4xij7 + β18xij5xij7

+ β19xij1xi8 + β20xij2xi8 + β21xij3xi8 + β22xij4xi8

+ β23xij5xi8 + β24xij6xi8 + β25xij7xi8 + β26xij1xij6xi8

+ β27xij2xij6xi8 + β28xij3xij6xi8 + β29xij4xij6xi8

+ β30xij5xij6xi8 + β31xij1xij7xi8 + β32xij2xij7xi8

+ β33xij3xij7xi8 + β34xij4xij7xi8 + β35xij5xij7xi8

where Pr(Yij = 1) is the probability for participant i to answer checkbox j
correctly (i.e. ticked for understanding and sound inference tasks, not ticked for
unsound inference tasks) and

– xij1 is the indicator for the simple class disjointness statement style,
– xij2 is the indicator for the domain statement style,
– xij3 is the indicator for the range statement style,
– xij4 is the indicator for the simple class subsumption statement style,
– xij5 is the indicator for the complex class subsumption statement style involv-

ing some values from,
– xij6 is the indicator for the unsound inference task type,
– xij7 is the indicator for the sound inference task type,
– xi8 is the indicator for the MOS group,

for i = 1, . . . , 60, corresponding to the individual participants, and j = 1, . . . , 54,
corresponding to the individual checkboxes. The βs are coefficients of the model
computed using the data. ComparisonStats uses the βs to produce the p-value
and the confidence interval for the contrast under study. Using this GEE-based
model, we could determine whether the odds of providing a correct answer for any
one combination statement style and task type is significantly different between
groups (i.e. notation); this model also takes into account the expected correlation
among the responses provided by each individual participant.

The regression model log (Zik) = γ0+γ1xi8 was fitted to the time data where
Zik is the time needed for participant i to answer question k, xi8 is the indicator
for the MOS group, for i = 1, . . . , 60 and k = 1, . . . 6. This GEE-based model
allowed us to determine whether the time taken to answer questions for one
notation was significantly different from the other.

6 Results

The following results are based on the data collected from 60 participants
(30 per group); as no changes were made after the pilot study, we carried forward

30 E. Alharbi et al.

the data when performing the statistical analysis. Each participant answered six
questions providing a total of 3240 accuracy observations: 1620 for each group,
1080 for task type and 540 for each statement style. For each statistical compar-
ison, arising from the 18 combinations of task type and statement style, there
were 180 accuracy observations (90 each group). For the time data there were
60 × 6 = 360 observations, 180 for each group. Throughout, results were taken
to be statistically significant at the 5% level.

6.1 Understanding Tasks

We present a full explanation for understanding tasks where the statement style
was All C1 are C2; the remaining cases are similar and are in Table 2. Both
treatments yielded a mean accuracy rate of 90.00%. Using the GEE-based model,
the odds of providing a correct answer in the OWL group are 1.00 times that
in the DL group, with a 95% confidence interval of (0.40, 2.52) and p-value of
1.00. Therefore, there is no significant difference between MOS and DL when
understanding simple class subsumption axioms. No significant differences were
found between MOS and DL for any of the understanding tasks.

Table 2. Results for understanding tasks.

Statement Style MOS DL Odds CI p-value Significant

All C1 are C2 90.00% 90.00% 1.00 (0.40, 2.52) 1.00 ×
No C1 are C2 82.22% 83.33% 0.93 (0.34, 2.53) 0.88 ×
C1 p only C2 87.78% 92.22% 0.61 (0.21, 1.76) 0.36 ×
C1 p at least one C2 85.56% 93.33% 0.42 (0.31, 1.33) 0.14 ×
Only C p things 84.44% 80.00% 1.36 (0.58, 3.18) 0.48 ×
Things p only C 81.11% 83.33% 0.32 (0.32, 2.33) 0.76 ×

6.2 Sound Inference Tasks

We present a full explanation for sound inference tasks where the statement style
was Things p only C since this case yielded a significant result; the remaining
cases are given in Table 3. MOS and DL yielded mean accuracy rates of 58.89%
and 83.33%. Using the GEE-based model, the odds of providing a correct answer
in the MOS group are 0.29 times that in the DL group, with a 95% confidence
interval of (0.13, 0.61) and a p-value <0.005. Therefore, there is a significant
difference between MOS and DL when performing sound inference tasks for
this statement style: DL better supports sound reasoning using a simple class
subsumption axiom with a complex class subsumption axiom involving range.
In terms of effect size for this task type, on average we would expect 24 more
correct answers per 100 tasks when people use DL instead of MOS.

The Efficacy of OWL and DL on User Understanding of Axioms 31

Table 3. Results for sound inference tasks.

Statement Style MOS DL Odds CI p-value Significant

All C1 are C2 78.89% 63.33% 2.16 (0.84, 5.60) 0.11 ×
No C1 are C2 70.00% 56.67% 1.78 (0.90, 3.53) 0.10 ×
C1 p only C2 67.78% 82.22% 0.45 (0.20, 1.04) 0.06 ×
C1 p at least one C2 71.11% 80.00% 0.62 (0.31, 1.20) 0.16 ×
Only C p things 64.44% 67.78% 0.86 (0.40, 1.87) 0.71 ×
Things p only C 58.89% 83.33% 0.29 (0.13, 0.61) 0.00 �

6.3 Unsound Inference Tasks

We present the case for unsound inference tasks where the statement style was
All C1 are C2; the remaining cases are given in Table 4. MOS and DL yielded
mean accuracy rates of 93.33% and 100.00%. Using the GEE-based model to
compare MOS and DL for this task, we obtained a p-value <0.005. Therefore,
there is a significant difference between MOS and DL when identifying unsound
inference tasks for this statement style: DL better prevents unsound reasoning.
In terms of effect size for this task type, on average we would expect 7 more
correct answers per 100 tasks when people use DL instead of MOS.

Table 4. Results for unsound inference tasks.

Statement Style MOS DL Odds CI p-value Significant

All C1 are C2 93.33% 100.00% 0.00 (0.00, 0.00) 0.00 �
No C1 are C2 77.78% 77.78% 1.00 (0.41, 2.47) 1.00 ×
C1 p only C2 90.00% 90.00% 1.00 (0.30, 3.32) 1.00 ×
C1 p at least one C2 91.11% 91.11% 1.00 (0.30, 3.30) 1.00 ×
Only C p things 90.00% 92.22% 0.76 (0.26, 2, 23) 0.62 ×
Things p only C 88.89% 81.11% 0.91 (0.91, 3.81) 0.09 ×

6.4 Time Performance

The fastest mean time was for DL, where participants answered questions in 2
minutes 22.46 s, on average, which increased to 2 min 37.88 s for MOS. Using the
regression model for the time data, no significant differences were found, with
p = 0.075. Therefore, we have not found evidence that using OWL supports
significantly improved task performance, with respect to time.

32 E. Alharbi et al.

7 Discussion

The participants were not familiar with MOS or DL, so by that measure they
were novices. They were trained to understand the axioms types in the appropri-
ate notation (MOS or DL) by considering a natural language form. They were
also trained to perform the inference tasks used in the study. We hypothesized
that participants using MOS would perform significantly better than those using
DL. The results of this empirical study are surprising: there were few significant
differences between MOS and DL and, where there were significant differences,
it was DL that performed better. This result does, however, chime with Keet [9]
who reported that non-English language modellers preferred Protégé v3 with a
symbolic DL interface over Protégé v3 using MOS.

7.1 Understanding Axioms

The success rates for understanding the axioms were high for both notations,
indicating that participants had a strong understanding of their meaning. Par-
ticipants using MOS achieved between 81.11% (range) and 90.00% (simple
class subsumption) accuracy, with the DL group achieving between 80.00%
(domain) and 93.33% (complex class subsumption involving some values from).
We hypothesized that MOS would, however, outperform DL due to its textual
nature: MOS appears more closely aligned with its natural language interpreta-
tion, potentially placing a lower cognitive burden on users. The lack of significant
differences show, at least for tasks of this type, no difference in cognitive burden.
The axioms considered in this study were chosen due to their simple form and
their frequent use in ontologies but future work should consider more complex
axioms to determine whether MOS brings performance benefits.

7.2 Sound Inferences

We expected the sound inference tasks to be cognitively more demanding than
understanding tasks for both notations. This is confirmed by the accuracy rates
which are higher for understanding axioms than for sound inference. Partici-
pants using MOS achieved between 58.89% (‘range’ statement styles) and 78.89%
(‘simple class subsumption’ statement styles), with the DL group achieving
between 56.67% (‘disjointness’ statement styles) and 82.22% (‘complex class sub-
sumption involving all values’ from statement styles). These lower accuracy rates
are consistent with Warren et al. [17] who found “users are prone to certain
misconceptions. These include confusion ... about the inheritance of property
characteristics,” although the sound inference tasks in the study involved class
inheritance only. Despite increased difficulty, we still expected the OWL group to
perform significantly better, in part due to the expected improved understand-
ing that did not materialize. Since the accuracy rates reduced, as compared to
the understanding tasks, we can be sure that the sound inference tasks required
reasonable cognitive effort to perform. As cognitive effort was demonstrably
required, we cannot readily attribute lack of significant differences - found in

The Efficacy of OWL and DL on User Understanding of Axioms 33

five of the six cases - to triviality of the inference tasks. Thus, we suggest that
our hypothesis is not supported: MOS does not support more accurate inferences
to be made. DL can, in fact, sometimes outperform MOS. Further work needs to
consider more complex inference tasks to reinforce, or otherwise, these results.

The evidence for cognitive burden arising from the task difficulty further
supports the significant difference found in the ‘range’ statement style case, i.e.
‘Things p only C’. The ‘range’ statement style is expressed as p Range C in MOS
and � � ∀p.C in DL, an example is in Fig. 1. The checkbox statement ‘Things
like only Spirits’ can be inferred from the axioms � � ∀like.Banshee (like Range
Banshee) and Banshee � Spirit (Banshee SubClassOf Spirit). Of the participants
using DL, 25 out of 30 correctly made this inference against, surprisingly, only
13 out 30 for MOS users. It is not immediately clear why there is a significant
difference only in this case. One possible explanation is that participants may
be misunderstanding Range to mean the image of the relation (as is the case
in some languages such as Z [16]) implying that two different classes cannot be
the range. So participants interpreting Range in this way would only partially
understand range axioms, leading to lack of ability to make sound inferences.
If this conjecture is correct, it indicates a problem with using natural language
in notations: some people may interpret natural language in a reasonable but
incorrect way; a case of a little knowledge being a dangerous thing.

7.3 Unsound Inferences

The success rates for the unsound inference tasks were high for both notations,
indicating that they were effective. Again, we expected MOS to outperform DL,
but this was not the case. Interestingly, the DL group performed significantly
better than the MOS group for unsound inferences involving ‘simple class sub-
sumption’ style statements that were unsound inferences. Further work is needed
to understand why these results were obtained.

8 Threats to Validity

Threats to validity are categorized as internal, construct and external [13]. With
respect to internal validity, a major consideration related to carry-over effect
which can arises when the measure of one treatment is affected by the mea-
surement of another treatment. Using a between-group design ensured that each
participant was only exposed to one notation and this threat was eliminated.

Construct validity focuses on dependent variables (accuracy rate, false neg-
atives, and time) and independent variables (questions and treatments). Errors
could arise if the axioms were ordered in such a way that cognition was hindered
(this could also increase time taken). To manage this effect, all axioms were
carefully ordered, ensuring that simple class subsumption axioms appeared first
and so forth, minimizing unwanted variation between questions. The classes and
properties in each question did not share a common first letter in an attempt to
reduce false negatives due to misreading. Careful consideration was paid to the

34 E. Alharbi et al.

time taken to submit an answer: the inclusion of a pause screen between each
question ensured that the question was only displayed when the participant was
ready and they used the same PC with no applications running in the back-
ground. These steps were taken to ensure that the time to answer the questions
was measured accurately, so far as is reasonably possible.

Lastly, we focus on external validity, by examining the limitations of the
results and the extent to which they can be generalized. We observe the following.
The questions involved three types of task: understanding axioms, drawing sound
inferences from them, and identifying unsound inferences. Thus, our results are
for these types of task only and exclude, for example, writing axioms or identify-
ing incoherence and subsequently repairing the ontology (see [7]). Moreover, the
sound inference tasks only required two axioms to be used to make the desired
inference. More complex reasoning tasks were not considered.

Our tasks were limited in that each question involved 14 axioms of six com-
monly occurring types. Other styles of axioms may yield different results. In
terms of inference, we realise that, in practice, ontologies can contain thousands
of axioms. This makes the task of identifying axioms from which inferences can
be made more difficult. Horridge et al. [5] identify minimal sets of axioms from
which entailments holds, making inference tasks closer in cognitive complexity to
the tasks in our study. Despite being able to focus on only the axioms involved in
an entailment, it is important to extend our findings to inference tasks involving
more than two axioms; the authors of [4] stated that “fewer than 10” axioms
can still give rise to “difficult justifications” from the perspective of cognition.

The participants were all novices and were (minimally) trained in the nota-
tions. With ontologies being developed in a range of areas, where stakeholders
need not have expertise in MOS or DL, our results are particularly relevant. We
might obtain different results for expert participants who are familiar with one
of DL and MOS. Ultimately, our results should be taken to be valid within the
constraints imposed by the study design and execution.

9 Conclusion

The belief that the Manchester syntax for OWL is more usable than competing
notations is widespread. Our findings suggest that for a range of task types - under-
standing axioms, deriving sound inferences from them, and preventing unsound
reasoning - the Manchester syntax for OWL is not more effective than DL. This
result itself is surprising, but our study also suggests that DL can sometimes bet-
ter support users than the Manchester syntax. These results begin to challenge the
belief that the Manchester syntax is easier for people to use.

Further work is needed to determine the extent to which DL better supports
task performance than the Manchester syntax and our research raises more ques-
tions than it answers. For instance, for more complex versions of the three task
types considered in our study, does the Manchester syntax support more accu-
rate understanding than DL or other notations? Other types of task were not
considered, such as writing axioms and ontology debugging and repair: does the

The Efficacy of OWL and DL on User Understanding of Axioms 35

Manchester syntax support more accurate task performance than DL, or other
notations, for these other tasks? Would we see similar results if our study was
re-run with expert users? Answering these questions could yield exciting new
insights into the relative cognitive complexity of competing notation choices and
the different types of task that ontology engineers must perform. Indeed, not
only are such answers important for ontology engineers and end-users, but also
more widely in that they could impact the design of future notations. Beyond
this, our major takeaway message is that it is not clear-cut that the Manchester
syntax for OWL is a more usable notation than competing alternatives.

Acknowledgement. Gem Stapleton was funded by a Leverhulme Trust Research
Project Grant (RPG-2016-082).

References

1. OWL 2 Web Ontology Language Manchester Syntax, 2nd edn. W3C WG Note 11.
https://www.w3.org/TR/owl2-manchester-syntax/. Accessed May 2017

2. The OWL 2 Web Ontology Language (2016). http://www.w3.org/TR/
owl2-overview/. Accessed Apr 2016

3. Baader, F., Calvanese, D., McGuinness, D., Nadi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

4. Horridge, M., Bail, S., Parsia, B., Sattler, U.: The cognitive complexity of OWL
justifications. In: Aroyo, L. et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 241–256.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6 16

5. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In:
Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan,
K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-88564-1 21

6. Horridge, M., Patel-Schneider, F.: Manchester syntax for OWL 1.1. In: 4th Inter-
national Workshop OWL: Experiences and Directions (2008)

7. Hou, T., Chapman, P., Blake, A.: Antipattern comprehension: an empirical evalu-
ation. In: FOIS, pp. 211–224. IOS Press (2016)

8. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in
OWL ontologies. Web Semant. 3(4), 268–293 (2005)

9. Keet, C.M.: The use of foundational ontologies in ontology development: an
empirical assessment. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B.,
Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp.
321–335. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21034-1 22

10. Liang, K., Zeger, S.: Longitudinal data analysis using generalized linear models.
Biometrika 73, 13–22 (1986)

11. Musen, M.: The Protégé project: a look back and a look forward. AI Matters 4(1),
4–12 (2015)

12. Neuhaus, F., Vizedom, A., Baclawski, K., Bennett, M., Dean, M., Denny, M.,
Grueninger, M., Hashemi, A., Longstreth, T., Obrst, L.: Towards ontology evalu-
ation across the life cycle. Appl. Ontol. 8(3), 179–194 (2013)

13. Purchase, H.: Experimental Human Computer Interaction: A Practical Guide with
Visual Examples. Cambridge University Press, Cambridge (2012)

https://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1007/978-3-642-25073-6_16
http://dx.doi.org/10.1007/978-3-540-88564-1_21
http://dx.doi.org/10.1007/978-3-642-21034-1_22

36 E. Alharbi et al.

14. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL pizzas: practical experience of teaching OWL-DL.
Engineering Knowledge in the Age of the SemanticWeb. LNCS, vol. 3257, pp.
63–81. Springer, Berlin, Heidelberg (2004). doi:10.1007/978-3-540-30202-5 5

15. Sarker, M.K., Krisnadhi, A., Carral, D., Hitzler, P.: Rule-Based OWL Modeling
with ROWLTab Protégé Plugin. In: Blomqvist, E., Maynard, D., Gangemi, A.,
Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp.
419–433. Springer, Cham (2017). doi:10.1007/978-3-319-58068-5 26

16. Spivey, J.: The Z Notation: A Reference Manual. Prentice Hall, Upper Saddle River
(1989)

17. Warren, P., Mulholland, P., Collins, T., Motta, E.: The usability of description
logics. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai,
A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 550–564. Springer, Cham (2014).
doi:10.1007/978-3-319-07443-6 37

18. Yan, J., Fine, J.: Estimating equations for association structures. Stat. Med. 23,
859–880 (2004)

http://dx.doi.org/10.1007/978-3-540-30202-5_5
http://dx.doi.org/10.1007/978-3-319-58068-5_26
http://dx.doi.org/10.1007/978-3-319-07443-6_37

A Decidable Very Expressive Description Logic
for Databases

Alessandro Artale, Enrico Franconi(B), Rafael Peñaloza,
and Francesco Sportelli

KRDB Research Centre, Free University of Bozen-Bolzano, Bolzano, Italy
{artale,franconi,penaloza,sportelli}@inf.unibz.it

Abstract. We introduce DLR+, an extension of the n-ary proposition-
ally closed description logic DLR to deal with attribute-labelled tuples
(generalising the positional notation), projections of relations, and global
and local objectification of relations, able to express inclusion, functional,
key, and external uniqueness dependencies. The logic is equipped with
both TBox and ABox axioms. We show how a simple syntactic restric-
tion on the appearance of projections sharing common attributes in a
DLR+ knowledge base makes reasoning in the language decidable with
the same computational complexity as DLR. The obtained DLR± n-
ary description logic is able to encode more thoroughly conceptual data
models such as EER, UML, and ORM.

1 Introduction

We introduce the description logic (DL) DLR+ extending the n-ary DL DLR
[6], in order to capture database oriented constraints. While DLR is a rather
expressive logic, tailored for conceptual modelling and ontology design, gener-
alising many aspects of classical description logics and OWL, it lacks a number
of expressive means relevant for database applications that can be added with-
out increasing the complexity of reasoning—when used in a carefully controlled
way. The added expressivity is motivated by the increasing use of description
logics as an abstract conceptual layer (an ontology) over relational databases.
For example, the DLR family of description logics is used to formalise and per-
form reasoning in the ORM conceptual modelling language for database design
(adopted by Microsoft in Visual Studio) [8,15].

We remind that a DLR knowledge base, as defined in [6], can express axioms
with (i) propositional combinations of concepts and (compatible) n-ary relations
– as opposed to just binary roles as in classical description logics and OWL,
(ii) concepts as unary projections of n-ary relations – generalising the exis-
tential operator over binary roles in classical description logics and OWL, and
(iii) relations with a selected typed component.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 37–52, 2017.
DOI: 10.1007/978-3-319-68288-4 3

38 A. Artale et al.

As an example of DLR, in a knowledge base where Pilot and RacingCar
are concepts and DrivesCar, DrivesMotorbike, DrivesVehicle are binary rela-
tions, the following statements:

Pilot Ď D[1]σ2:RacingCarDrivesCar

DrivesCar \ DrivesMotorbike Ď DrivesVehicle

assert that a pilot drives a racing car and that driving a car or a motorbike
implies driving a vehicle.

The language we propose here, DLR+, extends DLR in the following ways.

– While DLR instances of n-ary relations are n-tuples of objects—whose com-
ponents are identified by their position in the tuple—instances of relations
in DLR+ are attribute-labelled tuples of objects, i.e., tuples where each com-
ponent is identified by an attribute and not by its position in the tuple (see,
e.g., [11]). For example, the relation Employee may have the signature:

Employee(firstname, lastname, dept, deptAddr),

and an instance of Employee could be the tuple:

〈firstname : John, lastname : Doe, dept : Purchase, deptAddr : London〉.

– Attributes can be renamed, for example to recover the positional attributes:

firstname, lastname, dept, deptAddr Õ 1, 2, 3, 4.

– Relation projections allow to form new relations by projecting a given relation
on some of its attributes. For example, if Person is a relation with signature
Person(name, surname), it could be related to Employee as follows::

π[firstname, lastname]Employee Ď Person,

firstname, lastname Õ name, surname.

– The objectification of a relation (also known as reification) is a concept whose
instances are unique object identifiers of the tuples instantiating the relation.
Those identifiers could be unique only within an objectified relation (local
objectification), or they could be uniquely identifying tuples independently on
the relation they are instance of (global objectification). For example, the con-
cept EmployeeC could be the global objectification of the relation Employee,
assuming that there is a global 1-to-1 correspondence between pairs of values
of the attributes firstname, lastname and EmployeeC instances:

EmployeeC ” å D[firstname, lastname]Employee.

Consider the relations with the following signatures:

DrivesCar(name, surname, car), OwnsCar(name, surname, car),

A Decidable Very Expressive Description Logic for Databases 39

and assume that anybody driving a car also owns it: DrivesCar Ď OwnsCar.
The locally objectified events of driving and owning, defined as

CarDrivingEvent ”
⊙

DrivesCar, CarOwningEvent ”
⊙

OwnsCar,

do not imply that a car driving event by a person is the owning event by
the same person and the same car: CarDrivingEvent �Ď CarOwningEvent.
Indeed, they are even disjoint: CarDrivingEvent [CarOwningEvent Ď ⊥.

It turns out that DLR+ is an expressive description logic able to assert
relevant constraints typical of relational databases. In Sect. 3 we will consider
inclusion dependencies, functional and key dependencies, external uniqueness
and identification axioms. For example, DLR+ can express the fact that the
attributes firstname, lastname play the role of a multi-attribute key for the
relation Employee:

π[firstname, lastname]Employee Ď π�1[firstname, lastname]Employee,

and that the attribute deptAddr functionally depends on the attribute dept
within the relation Employee:

D[dept]Employee Ď D�1[dept] (π[dept, deptAddr]Employee) .

While DLR+ turns out to be undecidable, we show how a simple syntac-
tic condition on the appearance of projections sharing common attributes in a
knowledge base makes the language decidable. The result of this restriction is a
new language called DLR±. We prove that DLR±, while preserving most of the
DLR+ expressivity, has a reasoning problem whose complexity does not increase
w.r.t. the computational complexity of the basic DLR language.

We also present in Sect. 6 the implementation of an API for the reasoning
services in DLR±.

2 The Description Logic DLR+

We start by introducing the syntax of DLR+. A DLR+ signature is a tuple
L = (C,R,O,U , τ) where C, R, O and U are finite, mutually disjoint sets of
concept names, relation names, individual names, and attributes, respectively,
and τ is a relation signature function, associating a set of attributes to each
relation name τ(RN) = {U1, . . . , Un} Ď U , with n � 2.

Fig. 1. The syntax of DLR+.

40 A. Artale et al.

The syntax of concepts C, relations R, formulas ϕ, and attribute renaming
axioms ϑ is given in Fig. 1, where CN P C, RN P R, U P U , o P O, q is a positive
integer and 2 � k < arity(R). The arity of a relation R is the number of the
attributes in its signature; i.e., arity(R) = |τ(R)|, with the relation signature
function τ extended to complex relations as in Fig. 2. Note that it is possible
that the same attribute appears in the signature of different relations.

Fig. 2. The signature of DLR+ relations.

As mentioned in the introduction, the DLR+ constructors added to DLR
are the local and global objectification (

⊙
RN and

Å
R, respectively); relation

projections with the possibility to count the projected tuples (π�q[U1, . . . , Uk]R),
and renaming axioms over attributes (U1 Õ U2). Note that local objectification
(
⊙

R) can be applied to relation names, while global objectification (
Å

RN) can
be applied to arbitrary relation expressions. We use the standard abbreviations:

⊥ = C [¬C, � = ¬⊥, C1 \ C2 = ¬(¬C1 [¬C2), D[Ui]R = D�1[Ui]R,

D�q[Ui]R = ¬(D�q+1[Ui]R), π[U1, . . . , Uk]R = π�1[U1, . . . , Uk]R.

A DLR+ TBox T is a finite set of concept inclusion axioms of the form
C1 Ď C2 and relation inclusion axioms of the form R1 Ď R2. We use X1 ” X2

as a shortcut for the two axioms X1 Ď X2 and X2 Ď X1. A DLR+ ABox A
is a finite set of concept instance axioms of the form CN(o), relation instance
axioms of the form RN(U1 :o1, . . . , Un :on), and same/distinct individual axioms
of the form o1 = o2 and o1 �= o2, with oi P O. Restricting ABox axioms to
concept and relation names only does not affect the expressivity of DLR+ due
to the availability of unrestricted TBox axioms. A DLR+ renaming schema �
is a finite set of renaming axioms of the form U1 Õ U2. We use the shortcut
U1 . . . Un Õ U ′

1 . . . U ′
n to group many renaming axioms with the meaning that

Ui Õ U ′
i for all i = 1, . . . , n. A DLR+ knowledge base (KB) KB = (T ,A,�) is

composed by a TBox T , an ABox A, and a renaming schema �.
The renaming operator Õ is an equivalence relation over the attributes U ,

(Õ,U). The partitioning of U into equivalence classes induced by a renaming
schema is meant to represent the alternative ways to name attributes in the
knowledge base. A unique canonical representative for each equivalence class
is chosen to replace all the attributes in the class throughout the knowledge
base. From now on we assume that a knowledge base is consistently rewritten by

A Decidable Very Expressive Description Logic for Databases 41

substituting each attribute with its canonical representative. After this rewriting,
the renaming schema does not play any role in the knowledge base. We allow only
arity-preserving renaming schemas, i.e., there is no equivalence class containing
two attributes from the same relation signature.

As shown in the introduction, the renaming schema is useful to reconcile the
named attribute perspective and the positional perspective on relations. It is
also important to enforce union compatibility among relations involved in rela-
tion inclusion axioms, and among relations involved in [- and \-set expressions.
Two relations are union compatible (w.r.t. a renaming schema) if they have the
same signature (up to the attribute renaming induced by the renaming schema).
Indeed, as it will be clear from the semantics, a relation inclusion axiom involv-
ing non union compatible relations would always be false, and a [- and \-set
expression involving non union compatible relations would always be empty.

The semantics of DLR+ uses the notion of labelled tuples over a countable
potentially infinite domain Δ. Given a set of labels X Ď U an X -labelled tuple
over Δ (or tuple for short) is a total function t : X → Δ. For U P X , we write
t[U] to refer to the domain element d P Δ labelled by U . Given d1, . . . , dn P Δ,
the expression 〈U1 : d1, . . . , Un : dn〉 stands for the tuple t defined on the set of
labels {U1, . . . , Un} such that t[Ui] = di, for 1 � 1 � n. The projection of the
tuple t over the attributes U1, . . . , Uk is the function t restricted to be undefined
for the labels not in U1, . . . , Uk, and it is denoted by t[U1, . . . , Uk]. The relation
signature function τ is extended to labelled tuples to obtain the set of labels on
which a tuple is defined. TΔ(X) denotes the set of all X -labelled tuples over Δ,
for X Ď U , and we overload this notation by denoting with TΔ(U) the set of all
possible tuples with labels within the whole set of attributes U .

A DLR+ interpretation is a tuple I = (Δ, ·I , ı, L) consisting of a nonempty
countable potentially infinite domain Δ specific to I, an interpretation function
·I , a global objectification function ı, and a family L containing one local objectifi-
cation function �RNi

for each named relation RNi P R. The global objectification

Fig. 3. The semantics of DLR+ expressions.

42 A. Artale et al.

function is an injective function, ı : TΔ(U) → Δ, associating a unique global iden-
tifier to each tuple. The local objectification functions, �RNi

: TΔ(U) → Δ, are
associated to each relation name in the signature, and as the global objectifica-
tion function they are injective: they associate an identifier—which is guaranteed
to be unique only within the interpretation of a relation name—to each tuple.

The interpretation function ·I assigns a domain element to each individual,
oI P Δ, a set of domain elements to each concept name, CNI Ď Δ, and a set
of τ(RN)-labelled tuples over Δ to each relation name RN , RNI Ď TΔ(τ(RN)).
Note that the unique name assumption is not enforced. The interpretation func-
tion ·I is unambiguously extended over concept and relation expressions as spec-
ified in Fig. 3. Notice that the construct π�q[U1, . . . , Uk]R is interpreted as a
classical projection over a relation, thus including only tuples belonging to the
relation.

The interpretation I satisfies the concept inclusion axiom C1 Ď C2 if CI
1 Ď CI

2 ,
and the relation inclusion axiom R1 Ď R2 if RI

1 Ď RI
2 . It satisfies the concept

instance axiom CN(o) if oI P CNI, the relation instance axiom RN(U1 :o1, . . . , Un :
on) if 〈U1 : oI1 , . . . , Un : oIn〉 P RNI , and the axioms o1 = o2 and o1 �= o2 if oI1 = oI2 ,
and oI1 �= oI2 , respectively. I is a model of the knowledge base (T ,A,�) if it satisfies
all the axioms in the TBox T and in the ABoxA, once the knowledge base has been
rewritten according to the renaming schema.

Example 1. Consider the relation names R1, R2 with τ(R1)={W1,W2,W3,W4},
τ(R2) = {V1, V2, V3, V4, V5}, and a knowledge base with the renaming axiom
W1W2W3 Õ V3V4V5 and a TBox Texa:

π[W1,W2]R1 Ď π�1[W1,W2]R1 (1)

π[V3, V4]R2 Ď π�1[V3, V4](π[V3, V4, V5]R2) (2)
π[W1,W2,W3]R1 Ď π[V3, V4, V5]R2. (3)

The axiom (1) expresses that W1,W2 form a multi-attribute key for R1; (2)
introduces a functional dependency in the relation R2 where the attribute V5

is functionally dependent from attributes V3, V4, and (3) states an inclusion
between two projections of the relation names R1, R2 based on the renaming
schema axiom. [\

KB satisfiability refers to the problem of deciding the existence of a model
of a given knowledge base; concept satisfiability (resp. relation satisfiability) is
the problem of deciding whether there is a model of the knowledge base with a
non-empty interpretation of a given concept (resp. relation). A knowledge base
entails (or logically implies) an axiom if all models of the knowledge base are also
models of the axiom. For instance, it is easy to see that the TBox in Example 1
entails that V3, V4 are a key for R2:

Texa |= π[V3, V4]R2 Ď π�1[V3, V4]R2,

and that axiom (2) is redundant in Texa. The decision problems in DLR+ can
be all reduced to KB satisfiability.

A Decidable Very Expressive Description Logic for Databases 43

Lemma 2. In DLR+, concept and relation satisfiability and entailment are
reducible to KB satisfiability.

3 Expressiveness of DLR+

DLR+ is an expressive description logic able to assert relevant constraints in
the context of relational databases, such as inclusion dependencies (namely
inclusion axioms among arbitrary projections of relations), equijoins, functional
dependency axioms, key and foreign key axioms, external uniqueness axioms,
identification axioms, and path functional dependencies.

An equijoin among two relations with disjoint signatures is the set of all
combinations of tuples in the relations that are equal on their selected attribute
names. Let R1, R2 be relations with signatures τ(R1) = {U,U1, . . . , Un1} and
τ(R2) = {V, V1, . . . , Vn2}; their equijoin over U and V is the relation R =
R1 	

U=V
R2 with signature τ(R) = τ(R1) Y τ(R2) \ {V }, which is expressed by

the DLR+ axioms:

π[U,U1, . . . , Un1]R ” σU :(D[U]R1[D[V]R2)R1

π[V, V1, . . . , Vn2]R ” σV :(D[U]R1[D[V]R2)R2

U Õ V.

A functional dependency axiom (R : U1 . . . Uj → U) (also called internal unique-
ness axiom [9]) states that the values of the attributes U1 . . . Uj uniquely deter-
mine the value of the attribute U in the relation R. Formally, the interpreta-
tion I satisfies this functional dependency axiom if, for all tuples s, t P RI ,
s[U1] = t[U1], . . . , s[Uj] = t[Uj] imply s[U] = t[U]. Functional dependencies can
be expressed in DLR+, assuming that {U1, . . . , Uj , U} Ď τ(R), with the axiom:

π[U1, . . . , Uj]R Ď π�1[U1, . . . , Uj](π[U1, . . . , Uj , U]R).

A special case of a functional dependency are key axioms (R : U1 . . . Uj → R),
which state that the values of the key attributes U1 . . . Uj of a relation R uniquely
identify tuples in R. A key axiom can be expressed in DLR+, assuming that
{U1 . . . Uj} Ď τ(R), with the axiom:

π[U1, . . . , Uj]R Ď π�1[U1, . . . , Uj]R.

A foreign key is the obvious result of an inclusion dependency together with
a key constraint involving the foreign key attributes.

The external uniqueness axiom ([U1]R1 ↓ . . . ↓ [Uh]Rh) states that the join R
of the relations R1, . . . , Rh via the attributes U1, . . . , Uh has the joined attribute
functionally dependent on all the others [9]. This can be expressed in DLR+ with
the axioms:

R ” R1 	

U1=U2

· · · 	

Uh−1=Uh

Rh

R : U1
1 , . . . , U1

n1
, . . . , Uh

1 , . . . , Uh
nh

→ U1

44 A. Artale et al.

where τ(Ri) = {U i, U i
1, . . . , U

i
ni
}, 1 ≤ i ≤ h, and R is a new relation name with

τ(R) = {U1, U1
1 , . . . , U1

n1
, . . . , Uh

1 , . . . , Uh
nh

}.
Identification axioms as defined in DLRifd [4] (an extension of DLR with

functional dependencies and identification axioms) are a variant of external
uniqueness axioms, constraining only the elements of a concept C; they can
be expressed in DLR+ with the axiom:

[U1]σU1:CR1 ↓ . . . ↓ [Uh]σUh:CRh.

Path functional dependencies—as defined in the description logics family
CFD [16]—can be expressed in DLR+ as identification axioms involving joined
sequences of functional binary relations. DLR+ also captures the tree-based iden-
tification constraints (tid) introduced in [5] to express functional dependencies
in DL-LiteRDFS,tid.

The rich set of constructors in DLR+ allows us to extend the known map-
pings in description logics of popular conceptual database models, and to pro-
vide the foundations for their reasoning tasks. The EER mapping as introduced
in [1] can be extended to deal with multi-attribute keys (by using identification
axioms) and named roles in relations; the ORM mapping as introduced in [8,15]
can be extended to deal with arbitrary subset and exclusive relation constructs
(by using inclusions among global objectifications of projections of relations),
arbitrary internal and external uniqueness constraints, arbitrary frequency con-
straints (by using projections), local objectification, named roles in relations,
and fact type readings (by using renaming axioms); the UML mapping as intro-
duced in [3] can be fixed to deal properly with association classes (by using local
objectification) and named roles in associations.

Aside from conceptual modelling, DLR+ could be studied in relation to
other tasks relevant for database scenarios, such as query answering [6], con-
straint checking with respect to a partially closed world (i.e., with DBoxes [13]),
inconsistent database repairing, etc. In this paper, we focus just on the basic con-
sistency and entailment reasoning tasks.

4 The DLR± Fragment of DLR+

Since a DLR+ knowledge base can express inclusions and functional dependen-
cies, the entailment problem is undecidable [7]. Thus, in this section we present
DLR±, a decidable syntactic fragment of DLR+ limiting the coexistence of
relation projections in a knowledge base.

Given a DLR+ knowledge base KB = (T ,A,�), we define the projection
signature of KB as the set T containing the signatures τ(RN) of all relations
RN P R, the singleton sets associated with each attribute name U P U , and the
relation signatures that appear explicitly in projection constructs in some axiom
from T , together with their implicit occurrences due to the renaming schema.
Formally, T is the smallest set such that (i) τ(RN) P T for all RN P R; (ii)
{U} P T for all U P U ; and (iii) {U1, . . . , Uk} P T for all π�q[V1, . . . , Vk]R
appearing as sub-formulas in T and Vi P [Ui]� for 1� i�k.

A Decidable Very Expressive Description Logic for Databases 45

The projection signature graph of KB is the directed acyclic graph corre-
sponding to the Hasse diagram of T ordered by the proper subset relation Ą,
whose sinks are the attribute singletons {U}. We call this graph (Ą,T). Given
a set of attributes τ = {U1, . . . , Uk} Ď U , the projection signature graph domi-
nated by τ , denoted as Tτ , is the sub-graph of (Ą,T) with τ as root and con-
taining all the nodes reachable from τ . Given two sets of attributes τ1, τ2 Ď U ,
pathT (τ1, τ2) denotes the set of paths in (Ą,T) between τ1 and τ2. Note that,
pathT (τ1, τ2) = ∅ both when a path does not exist and when τ1 Ď τ2. The
notation childT (τ1, τ2) means that τ2 is a child (i.e., a direct descendant) of τ1
in (Ą,T). We now introduce DLR± as follows.

Definition 3. A DLR± knowledge base is a DLR+ knowledge base that satis-
fies the following syntactic conditions:

1. the projection signature graph (Ą,T) is a multitree: i.e., for every node τ P
T , the graph Tτ is a tree; and

2. for every projection construct π�q[U1, . . . , Uk]R and every concept expression
of the form D�q[U1]R appearing in T , if q > 1 then the length of the path
pathT (τ(R), {U1, . . . , Uk}) is 1.

The first condition in DLR± restrict DLR+ in the way that multiple projections
of relations may appear in a knowledge base: intuitively, there cannot be differ-
ent projections sharing a common attribute. Moreover, observe that in DLR±

pathT is necessarily functional, due to the multitree restriction. By relaxing the
first condition the language becomes undecidable, as we mentioned at the begin-
ning of this Section. The second condition is also necessary to prove decidability
of DLR±; however, we do not know whether this condition could be relaxed
while preserving decidability.

Figure 4 shows that the projection signature graph of the knowledge base
from Example 1 is indeed a multitree. Note that in the figure we have collapsed

Fig. 4. The projection signature graph of Example 1.

46 A. Artale et al.

equivalent attributes in a unique equivalence class, according to the renaming
schema. Furthermore, since all its projection constructs have q = 1, this knowl-
edge base belongs to DLR±.

DLR is included in DLR±, since the projection signature graph of any
DLR knowledge base is always a degenerate multitree with maximum depth
equal to 1. Not all the database constraints as introduced in Sect. 3 can be
directly expressed in DLR±. While functional dependency and key axioms can
be expressed directly in DLR±, equijoins, external uniqueness axioms, and
identification axioms introduce projections of a relation which share common
attributes, thus violating the multitree restriction. For example, the axioms for
capturing an equijoin between two relations, R1, R2 would generate a projection
signature graph with the signatures of R1, R2 as projections of the signature of
the join relation R sharing the attribute on which the join is performed, thus
violating condition 1.

However, in DLR± it is still possible to reason over both external uniqueness
and identification axioms by encoding them into a set of saturated ABoxes (as
originally proposed in [4]) and check whether there is a saturation that satisfies
the constraints. Therefore, we can conclude that DLRifd extended with unary
functional dependencies is included in DLR±, provided that projections of rela-
tions in the knowledge base form a multitree projection signature graph. Since
(unary) functional dependencies are expressed via the inclusions of projections
of relations, by constraining the projection signature graph to be a multitree, the
possibility to build combinations of functional dependencies as the ones in [4]
leading to undecidability is ruled out.

Note that the non-conflicting keys sufficient condition guaranteeing the
decidability of inclusion dependencies and keys of [12] is in conflict with our
more restrictive requirement: indeed [12] allow for overlapping projections, but
the considered datalog language is not comparable to DLR+. In general, descrip-
tion logic based languages, such as DLR+, and datalog based languages, such
as the language proposed in [12], are incomparable in terms of expressiveness,
due to the inability of description logics to distinguish non-tree models in the
TBox. Note that, unlike the typical restrictions of datalog-like languages, there is
no problem in stating arbitrary cyclic dependencies in relation inclusion axioms
involving projections on the left and right hand sides.

Concerning the ability of DLR± to capture conceptual data models, only the
mapping of ORM schemas is affected by the DLR± restrictions: DLR± is able
to correctly express an ORM schema if the projections involved in the schema
satisfy the DLR± multitree restriction.

5 Mapping DLR± to ALCQI
This section shows constructively the main technical result of this paper, i.e.,
that reasoning in DLR± is an ExpTime-complete problem. The lower bound
is clear by observing that DLR is a sublanguage of DLR±. More challenging is
the upper bound obtained by providing a mapping from DLR± knowledge bases

A Decidable Very Expressive Description Logic for Databases 47

to ALCQI knowledge bases—a propositionally complete description logic with
qualified number restrictions D�qR.C, and inverse roles R− (see [2] for more
details). We adapt and extend the mapping presented for DLR in [6], with the
modifications proposed by [10] to deal with ABoxes without the unique name
assumption.

We recall that the renaming schema � does not play any role since we
assumed that a DLR± knowledge base is rewritten by choosing a single canon-
ical representative for each equivalence class of attributes induced by �. Thus,
we consider DLR± knowledge bases as pairs of TBox and ABox axioms.

Fig. 5. The mapping to ALCQI for concept and relation expressions.

We first introduce a mapping function ·† from DLR± concepts and relations
to ALCQI concepts. The function ·† maps each concept name CN and each
relation name RN appearing in the DLR± KB to the ALCQI concept names CN
and ARN , respectively. The latter can be informally understood as the “global”
reification of RN . For each relation name RN , the ALCQI signature also includes
a concept name Al

RN and a role name QRN to capture local objectification. The
mapping ·† is extended to concept and relation expressions as illustrated in Fig. 5,
where the notation D�1,�qR.C is a shortcut for the conjunction DR.C [D�qR.C.

The mapping crucially uses the projection signature graph to map projec-
tions and selections, by accessing paths in the projection signature graph (Ą,T)
associated to the DLR± KB. If there is a path pathT (τ, τ ′) = τ, τ1, . . . , τn, τ ′

48 A. Artale et al.

from τ to τ ′ in T , then the ALCQI signature contains role names Qτ ′ , Qτi , for
i = 1, . . . , n, and the following role chain expression is generated by the mapping:

pathT (τ, τ ′)† = Qτ1 ◦ . . . ◦ Qτn ◦ Qτ ′ ,

In particular, the mapping uses the following notation: the inverse role chain
(R1 ◦ . . . ◦ Rn)−, for Ri a role name, stands for the chain R−

n ◦ . . . ◦ R−
1 , with

R−
i an inverse role, the expression D�1R1 ◦ . . . ◦ Rn.C stands for the ALCQI

concept expression D�1R1. D�1Rn.C and ∀R1 ◦ . . . ◦ Rn.C for the ALCQI
concept expression ∀R1. ∀Rn.C. Thus, since DLR± restricts to q = 1 the
cardinalities on any path of length strictly greater than 1 (see condition 2 in
Definition 3), the above notation shows that we remain within the ALCQI syn-
tax when the mapping applies to cardinalities. If, e.g., we need to map the
DLR± cardinality constraint D�q[Ui]R with q > 1, then, to stay within the
ALCQI syntax, Ui must not be mentioned in any other projection in such a
way that |pathT (τ(R), {Ui})| = 1. Finally, notice that the mapping introduces
a concept name Aτi

RN for each projected signature τi in the projection signature
graph dominated by τ(RN), i.e., τi P Tτ(RN), informally to capture the global
reifications of the various projections of RN in the given KB. We also use the
shortcut ARN which stands for A

τ(RN)
RN .

Intuitively, each node in the projection signature graph associated to a DLR±

KB denotes a relation projection and the mapping reifies each of these projec-
tions. The target ALCQI signature resulting from mapping the DLR± KB of
Example 1 is partially presented in Fig. 6, together with the projection signature
graph (showed in Fig. 4). Each node of the graph is labelled with the correspond-
ing global reification concept (Aτj

Ri
), for each Ri P R and each projected signature

Fig. 6. The ALCQI signature generated by Texa.

A Decidable Very Expressive Description Logic for Databases 49

τj in the projection signature graph dominated by τ(Ri), while the edges are
labelled by the roles (Qτi) needed for the reification.

To better clarify the need for the path function in the mapping, notice that
each DLR± relation is reified according to the decomposition dictated by the
projection signature graph it dominates. Thus, to access, e.g., an attribute
Uj of a DLR± relation Ri it is necessary to follow the path through the
projections that use the attribute. Such a path, from the node denoting the
whole signature of the relation, τ(Ri), to the node denoting the attribute Uj

is returned by the pathT (τ(Ri), Uj) function. For example, considering the
example in Fig. 6, to access the attribute W1 of the relation R2 in the expres-
sion (σW1:CR2), the mapping of the path pathT (τ(R2), {W1})† is equal to the
role chain Q{W1,W2,W3} ◦ Q{W1,W2} ◦ Q{W1}, so that (σW1:CR2)† = AR2 [
∀Q{W1,W2,W3}. ∀Q{W1,W2}. ∀Q{W1}.C. Similar considerations can be done when
mapping cardinalities over relation projections.

Figures 7 and 8 present in details the mapping of a DLR± KB into a KB
in ALCQI. Let KB = (T ,A) be a DLR± KB with signature (C,R,O,U , τ).
The mapping γ(KB) is assumed to be unsatisfiable (i.e., it contains the axiom
� Ď ⊥) if the ABox contains the relation assertion RN(t) with τ(RN) �= τ(t),
for some relation RN P R and some tuple t. Otherwise, γ(KB) = (γ(T), γ(A))
defines the mapped ALCQI KB.

Intuitively, γdsj ensures that relations with different signatures are disjoint,
thus, e.g., enforcing the union compatibility. The axioms in γrel introduce classi-
cal reification axioms for each relation and its relevant projections. The axioms
in γlobj make sure that each local objectification differs from the global one while
each role QRN defines a bijection.

To translate the ABox, we first map each individual o P O in the DLR± ABox
A to an ALCQI individual o. Each tuple in relation instance axioms occurring
in A is mapped via an injective function ξ to a distinct individual. That is,

Fig. 7. The mapping into a ALCQI KB.

50 A. Artale et al.

Fig. 8. The mapping γ(A)

ξ : TO(U) → OALCQI , with OALCQI = OYOt being the set of individual names
in γ(KB), O ∩Ot = ∅ and

ξ(t) =

{
o P O, if t = 〈U :o〉
o P Ot, otherwise.

Following [10], the mapping γ(A) in Fig. 8 introduces a new concept name Qo

for each individual o P O and a new concept name Qt for each relation instance
t occurring in A, with each Qt restricted as follows:

Qt ĎD�1
(
pathT (τ(t), {U1})†

)−
.

D(pathT (τ(t), {U2})†
)
.Qo2 [. . .[D(pathT (τ(t), {Un})†

)
.Qon

Intuitively, (6) and (7) reify each relation instance axiom occurring in A using
the projection signature of the involved tuple itself. The Formulas (8) and (9)
together with the axioms for concepts Qt guarantee that there is exactly one
ALCQI individual reifying a given tuple in a relation instance axiom. Clearly,
the size of γ(KB) is polynomial in the size of KB under the same coding of the
numerical parameters.

We are now able to state our main technical result.

Theorem 4. A DLR± knowledge base KB is satisfiable iff the ALCQI knowl-
edge base γ(KB) is satisfiable.

As a direct consequence of this theorem and the fact that DLR is a sublanguage
of DLR±, we obtain the following corollary.

Corollary 5. Reasoning in DLR± is ExpTime-complete.

6 Implementation of a DLR± API

We have implemented the framework discussed in this paper. DLRtoOWL is a
Java library fully implementing DLR± reasoning services. The library is based
on the tool ANTLR4 to parse serialised input, and on OWLAPI4 for the OWL2
encoding, and it includes the OWL reasoner JFact. DLRtoOWL provides a Java

A Decidable Very Expressive Description Logic for Databases 51

DLR API package to allow developers to create, manipulate, serialise, and reason
with DLR± knowledge bases in their Java-based application, extending in a
compatible way the standard OWL API with the DLR± tell and ask services.

During the development of this new library we strongly focused on perfor-
mance. Since the OWL encoding is only possible if we have already built the
ALCQI projection signature multitree, in principle the program should perform
two parsing rounds: one to create the multitree and the other one to generate
the OWL mapping. We faced this issue using dynamic programming: during the
first (and only) parsing round we store in a data structure each axiom that we
want to translate in OWL and, after building the multitree, by the dynamic
programming technique we build on-the-fly a Java class which generates the
required axioms.

We have used the DLR± API within a plugin for general ontology reason-
ing for conceptual design tools based on languages such as EER, UML (with
OCL), and ORM (with derivation rules) [14]. This plugin supports the detection
of inconsistencies, redundancies, complete derivations of the strictest implicit
constructs and unexpected behaviours. Reasoning helps the modeller to detect
relevant formal properties of the ontology that may be undetected during the
modelling phase, which give rise to design quality degradation and/or increased
development times and costs. The system is still at an early stage of completion,
but it has been proved to be highly effective and efficient: indeed, it computes
derivations in real time in the background while the ontology is being designed.

7 Conclusions

We have introduced the very expressive DLR+ description logic, which extends
DLR with database oriented constraints. DLR+ is expressive enough to cover
directly and more thoroughly the EER, UML, and ORM conceptual data models,
among others. Although reasoning in DLR+ is undecidable, we show that a
simple syntactic constraint on KBs restores decidability. In fact, the resulting
logic DLR± has the same complexity (ExpTime-complete) as the basic DLR
language. In other words, handling database constraints does not increase the
complexity of reasoning in the logic. To enhance the use and adoption of DLR±,
we have developed an API that fully implements reasoning for this language, and
maps input knowledge bases into OWL. Using a standard OWL reasoner, we are
able to provide a variety of DLR± reasoning services.

We plan to investigate the problem of query answering under DLR± ontolo-
gies and to check whether the complexity for this problem can be lifted from
known results in DLR to DLR±.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-75563-0 20

http://dx.doi.org/10.1007/978-3-540-75563-0_20

52 A. Artale et al.

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory Implementation and Applications. Cam-
bridge University Press, New York (2003)

3. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1–2), 70–118 (2005)

4. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and func-
tional dependencies in description logics. In: Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 155–160.
Morgan Kaufmann (2001)

5. Calvanese, D., Fischl, W., Pichler, R., Sallinger, E., Simkus, M.: Capturing rela-
tional schemas and functional dependencies in RDFS. In: Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI), pp. 1003–1011. AAAI Press
(2014)

6. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Conjunctive query containment and
answering under description logic constraints. ACM Trans. Comput. Logic 9(3),
22:1–22:31 (2008)

7. Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion
dependencies is undecidable. SIAM J. Comput. 14(3), 671–677 (1985)

8. Franconi, E., Mosca, A., Solomakhin, D.: ORM2: formalisation and encoding in
OWL2. In: International Workshop on Fact-Oriented Modeling (ORM 2012), pp.
368–378 (2012)

9. Halpin, T., Morgan, T.: Information Modeling and Relational Databases, 2nd edn.
Morgan Kaufmann, San Francisco (2008)

10. Horrocks, I., Sattler, U., Tessaris, S., Tobies, S.: How to decide query containment
under constraints using a description logic. In: Parigot, M., Voronkov, A. (eds.)
LPAR 2000. LNAI, vol. 1955, pp. 326–343. Springer, Heidelberg (2000). doi:10.
1007/3-540-44404-1 21

11. Kanellakis, P.C.: Elements of relational database theory. In: Meyer, A., Nivat, M.,
Paterson, M., Perrin, D., van Leeuwen, J. (eds.) The Handbook of Theoretical
Computer Science, vol. B, Chap. 17, pp. 1075–1144. North Holland (1990)

12. Lukasiewicz, T., Cali, A., Gottlob, G.: A general datalog-based framework for
tractable query answering over ontologies. Web Semant. Sci. Serv. Agents World
Wide Web 14, 57–83 (2012)

13. Patel-Schneider, P.F., Franconi, E.: Ontology constraints in incomplete and com-
plete data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp.
444–459. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1 28

14. Sportelli, F.: NORMA: A software for intelligent conceptual modeling. In: Proceed-
ings of the Joint Ontology Workshops 2016 (JOWO-2016) (2016). http://ceurws.
org/Vol-1660/demo-paper3.pdf

15. Sportelli, F., Franconi, E.: Formalisation of ORM derivation rules and their map-
ping into OWL. In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Kühn, E.,
O’Sullivan, D., Ardagna, C.A. (eds.) OTM 2016. LNCS, vol. 10033, pp. 827–843.
Springer, Heidelberg (2016)

16. Toman, D., Weddell, G.E.: Applications and extensions of PTIME description
logics with functional constraints. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI 2009, pp. 948–954 (2009)

http://dx.doi.org/10.1007/3-540-44404-1_21
http://dx.doi.org/10.1007/3-540-44404-1_21
http://dx.doi.org/10.1007/978-3-642-35176-1_28
http://ceurws.org/Vol-1660/demo-paper3.pdf
http://ceurws.org/Vol-1660/demo-paper3.pdf

Improving Visual Relationship Detection
Using Semantic Modeling of Scene Descriptions

Stephan Baier1(B), Yunpu Ma1,2, and Volker Tresp1,2

1 Ludwig Maximilian University, 80538 Munich, Germany
stephan.baier@campus.lmu.de

2 Siemens AG, Corporate Technology, Munich, Germany
{yunpu.ma,volker.tresp}@siemens.com

Abstract. Structured scene descriptions of images are useful for the
automatic processing and querying of large image databases. We show
how the combination of a statistical semantic model and a visual model
can improve on the task of mapping images to their associated scene
description. In this paper we consider scene descriptions which are rep-
resented as a set of triples (subject, predicate, object), where each triple
consists of a pair of visual objects, which appear in the image, and the
relationship between them (e.g. man-riding-elephant, man-wearing-hat).
We combine a standard visual model for object detection, based on con-
volutional neural networks, with a latent variable model for link pre-
diction. We apply multiple state-of-the-art link prediction methods and
compare their capability for visual relationship detection. One of the
main advantages of link prediction methods is that they can also gener-
alize to triples which have never been observed in the training data. Our
experimental results on the recently published Stanford Visual Relation-
ship dataset, a challenging real world dataset, show that the integration
of a statistical semantic model using link prediction methods can sig-
nificantly improve visual relationship detection. Our combined approach
achieves superior performance compared to the state-of-the-art method
from the Stanford computer vision group.

Keywords: Visual relationship detection · Knowledge graph · Link pre-
diction

1 Introduction

Extracting semantic information from unstructured data, such as images or text,
is a key challenge in artificial intelligence. Semantic knowledge in a machine-
readable form is crucial for many applications such as search, semantic querying
and question answering.

Novel computer vision algorithms, mostly based on convolutional neural net-
works (CNN), have enormously advanced over the last years. Standard applica-
tions are image classification and, more recently, also the detection of objects

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 53–68, 2017.
DOI: 10.1007/978-3-319-68288-4 4

54 S. Baier et al.

Fig. 1. The input to the model is a raw image. In combination with a semantic prior
we generate triples, which describe the scene.

in images. However, the semantic expressiveness of image descriptions that con-
sist simply of a set of objects is rather limited. Semantics is captured in more
meaningful ways by the relationships between objects. In particular, visual rela-
tionships can be represented by triples of the form (subject, predicate, object),
where two entities appearing in an image are linked through a relation (e.g.
man-riding-elephant, man-wearing-hat).

Extracting triples, i.e. visual relationships, from raw images is a challenging
task, which has been a focus in the Semantic Web community for some time
[2–4,27,32,38] and recently also gained substantial attention in main stream
computer vision [6,7,18,25]. First approaches used a single classifier, which
takes an image as input and outputs a complete triple [7,25]. However, these
approaches do not scale to datasets with many object types and relationships,
due to the exploding combinatorial complexity. Recently, [18] proposed a method
which classifies the visual objects and their relationships in independent pre-
processing steps, and then derives a prediction score for the entire triple. This
approach was applied to the extraction of triples from a large number of poten-
tial triples. In the same paper, the first large-scale dataset for visual relationship
extraction was published.

The statistical modeling of graph-structured knowledge bases, often referred
to as knowledge graphs, has recently gained growing interest. The most popular
approaches learn embeddings for the entities and relations in the knowledge
graph. Based on the embeddings a likelihood for a triple can be derived. This
approach has mainly been used for link prediction, which tries to predict missing
triples in a knowledge graph. A recent review paper can be found in [20].

Visual Relationship Detection Using Semantic Modeling 55

In the approach described in this paper, statistical knowledge base models,
which can infer the likelihood of a triple, are used to support the task of visual
link prediction. For example if the visual model detects a motorbike, it is very
likely that the triple motorbike-has part-wheel is true, as all motorbikes have
wheels. We suggest that integrating such prior knowledge can improve various
computer vision tasks. In particular, we propose to combine the likelihood from
a statistical semantic model with a visual model to enhance the prediction of
image triples.

Figure 1 illustrates our approach. The model takes as input a raw image and
combines it with a semantic prior, which is derived from the training data. Both
types of information are fused, to predict the output, which consists of relevant
bounding boxes and a set of triples describing the scene.

For combining the semantic prior with the visual model we employ a proba-
bilistic approach which can be divided into a semantic part and a visual part. We
show how the semantic part of the probabilistic model can be implemented using
standard link prediction methods and the visual part using recently developed
computer vision algorithms.

We train our semantic model by using absolute frequencies from the training
data, describing how often a triple appears in the training data. By applying
a latent variable model, we are able to also generalize to unseen or rarely seen
triples, which still have a high likelihood of being true, due to their similarity to
other likely triples. For example if we frequently observe the triple person-ride-
motorcycle in the training data we can generalize also to a high likelihood for
person-ride-bike due to the similarity between motorcycle and bike, even if the
triple person-ride-bike has not been observed or just rarely been observed in the
training data. The similarity of motorcycle and bike can be derived from other
triples, which describe, for example, that both have a wheel and both have a
handlebar.

We conduct experiments on the Stanford Visual Relationship dataset recently
published by [18]. We evaluate different model variants on the task of predict-
ing semantic triples and the corresponding bounding boxes of the subject and
object entities detected in the image. Our experiments show, that including the
semantic model improves on the state-of-the-art result in the task of mapping
images to their associated triples.

The paper is structured as follows. Section 2 gives an overview of the state-
of-the-art link prediction models, the employed computer vision techniques and
related work. Section 3 describes the semantic and the visual part of our model
and how both can be combined in a probabilistic framework. In Sect. 4 we show
a number of different experiments. Finally, we conclude our work with Sect. 5.

2 Background and Related Work

Our proposed model joins ideas from two areas, computer vision and statistical
relational learning for semantic modeling. Both fields have developed rapidly in
recent years. In this chapter we discuss relevant work from both areas.

56 S. Baier et al.

2.1 Statistical Link Prediction

A number of statistical models have been proposed for modeling graph-
structured knowledge bases often referred to as knowledge graphs. Most methods
are designed for predicting missing links in the knowledge graph. A recent review
on link prediction can be found in [20]. A knowledge graph G consists of a set
of triples G = {(s, p, o)i}Ni=1 ⊆ E × R × E . The entities s, o ∈ E are referred to
as subject and object of the triple, and the relation between the entities p ∈ R
is referred to as predicate of the triple.

Link prediction methods can be described by a function θ : E × R × E → R,
which maps a triple (s, p, o) to a real valued score. The score of a triple θ(s, p, o)
represents the likelihood of the triple being true. Most recently developed link
prediction models learn a latent representation, also called embedding, for the
entities and the relations. In the following we describe the link prediction meth-
ods, which are used in paper.

DistMult: DistMult [35] scores a triple by building the tri-linear dot product of
the embeddings, such that

θ(s, p, o) = 〈a(s), r(p), a(o)〉 =
∑

j

a(s)jr(p)ja(o)j (1)

where a : E → R
d maps entities to their latent vector representations and simi-

larly r : R → R
d maps relations to their latent representations. The dimension-

ality d of the embeddings, also called rank, is a hyperparameter of the model.

ComplEx: ComplEx [33] extends DistMult to complex valued vectors for the
embeddings of both, relations and entities. The score function is

θ(s, p, o) = Re(〈a(s), r(p), a(o)〉) = 〈Re(a(s)), Re(r(p)), Re(a(o))〉
+ 〈Im(a(s)), Re(r(p)), Im(a(o))〉
+ 〈Re(a(s)), Im(r(p)), Im(a(o))〉
− 〈Im(a(s)), Im(r(p)), Re(a(o))〉

(2)

where a : E → C
d and r : R → C

d; Re(·) and Im(·) denote the real and
imaginary part, respectively, and · denotes the complex conjugate.

Multiway NN: The multiway neural network [8,20] concatenates all embeddings
and feeds them to a neural network of the form

θ(s, p, o) =
(
βT tanh (A [a(s), r(p), a(o)])

)
(3)

where [·, ·, ·] denotes the concatenation of the embeddings a(s), r(p), a(o) ∈ R
d.

A is a weight matrix and β a weight vector.

Visual Relationship Detection Using Semantic Modeling 57

RESCAL: The tensor decomposition RESCAL [21] learns vector embeddings
for entities and matrix embeddings for relations. The score function is

θ(s, p, o) = a(s) · R(p) · a(o) (4)

with · denoting the dot product, a : E → R
d and R : R → R

d×d.
Typically, the models are trained using a ranking cost function [20]. For our

task of visual relationship detection, we will train them slightly differently using
a Poisson cost function for modeling count data, as we will show in Sect. 3.2.
Another popular link prediction method is TransE [5], however it is not appro-
priate for modeling count data; thus we are not considering it in this work.

2.2 Image Classification and Object Detection

Computer vision methods for image classification and object detection have
improved enormously over the last years. Convolutional neural networks (CNN),
which apply convolutional filters in a hierarchical manner to an image, have
become the standard for image classification. In this work we use the following
two methods.

VGG: The VGG-network is a convolutional neural network, which has shown
state-of-the-art performance at the Imagenet challenge [28]. It exists in two ver-
sions, i.e. the VGG-16 with 16 convolutional layers and VGG-19 with 19 convo-
lutional layers.

RCNN: The region convolutional neural network (RCNN) [11] proposes regions,
which show some visual objects in the image. It uses a selective search algorithm
for getting candidate regions in an image [31]. The RCNN algorithm then rejects
most of the regions based on a classification score. As a result, a small set of
region proposals is derived. There are two extensions to RCNN, which are mainly
faster and slightly more accurate [10,23]. However, in our experiments we use
the original RCNN, for a fair comparison with [18]. Our focus is on improving
visual relationship detection trough semantic modeling rather than on improving
computer vision techniques.

2.3 Visual Relationship Detection

Visual relationship detection is about predicting triples from images, where the
triples consist of two visual objects and the relationship between them. This is
related to visual caption generation, which recently gained considerable popu-
larity among the deep learning community, where an image caption, consisting
of natural text, is generated given an image [16,17,34]. However, the output in
visual relationship detection is more structured (a set of triples), and thus it is
more appropriate for further processing, e.g. semantic querying. Related work
on relational reasoning with images can also be found in visual question answer-
ing [1,15,26,39] and has also been subject to neural symbolic reasoning [27,38].

58 S. Baier et al.

The extraction of semantic triples has also been successfully applied to text
documents, e.g. the Google Knowledge Vault project for improving the Google
Knowledge Graph [8].

Some earlier work on visual relationship detection was concerned with learn-
ing spatial relationships between objects, however with a very limited set of only
four spatial relations [9,12]. Other related work attempted to learn actions and
object interactions of humans in videos and images [13,19,22,24,36,37]. Full
visual relationship detection has been demonstrated in [6,7,25], however, also
with only small amounts of possible triples. In [6], an ontology over the visual
concepts is defined and combined with a neural network approach to maintain
semantic consistency.

The Stanford computer vision group proposed a scalable model and applied
it to a large-scale dataset, with 700,000 possible triples. In their work, entities
of the triples were detected separately and a joint score for each triple candidate
was computed [18]. The visual module in [18] uses the following computer vision
methods, which we will also use in our approach. An RCNN for object detection
is used to derive candidate regions. Further, a VGG-16 is applied to the detected
regions for obtaining object classification scores for each region. Finally, a second
VGG, which classifies relationships, such as taller-than, wears, etc., is applied to
the union of pairs of regions. The model also contains a language prior, which
can model semantic relationships to some extend based on word embeddings.
The language prior allows the model to generalize to unseen triples. However,
our experiments show that integrating state-of-the-art link prediction methods
for modeling semantics is more appropriate for improving general prediction and
generalization to unseen triples.

3 Modeling Visual Relationships

In the following we describe our approach to jointly modeling images and their
corresponding semantics.

3.1 Problem Description

We assume data consisting of images and corresponding triple sets. For each
subject s of a triple (s, p, o) there exists a corresponding region is in the image.
Similarly, each object o corresponds to an region io, and each predicate p to an

Fig. 2. The subject and object of the triple relate to two regions in the image, and the
predicate relates to the union of the two regions.

Visual Relationship Detection Using Semantic Modeling 59

Fig. 3. The pipeline for deriving a ranked list of triples is as follows: The image is
passed to a RCNN, which generates region candidates. We build pairs of regions and
predict a score for every triple, based on our ranking method. The visual part is similar
to [18], however the ranking method is different as it includes a semantic model.

region ip, which is the union of the regions is and io. Thus, one data sample
can be represented as a six-tuple of the form (is, ip, io, s, p, o). Figure 2 shows an
example of a triple and its corresponding bounding boxes. During training, all
triples and their corresponding areas are observed. After model training the task
is to predict the most likely tuples (is, ip, io, s, p, o) for a given image. Figure 3
shows the processing pipeline of our method, which takes a raw image as an
input, and outputs a ranked list of triples and bounding boxes.

3.2 Semantic Model

In contrast to typical knowledge graph modeling, we do not only have one global
graph G, but an instance of a knowledge graph Gi for every image i. Each triple
which appears in a certain image can be described as a tuple (s, p, o, i). The
link prediction model shall reflect the likelihood of a triple to appear in a graph
instance, as a prior without seeing the image. By summing over the occurrences
in the i-th dimension, we derive the absolute frequency of triples (s, p, o) in the
training data, which we denote as ys,p,o. We aim to model ys,p,o using the link
prediction methods described in Sect. 2.1. As we are dealing with count data, we
assume a Poisson distribution on the model output θ(s, p, o). The log-likelihood
for a triple is

log p(ys,p,o|(s, p, o), Θ) = ys,p,o log η(θ(s, p, o)) − η(θ(s, p, o)) − log(ys,p,o!), (5)

where Θ are the model parameters of the link prediction method and η is the
parameter for the Poisson distribution, namely

η(θ(s, p, o)) = exp(θ(s, p, o)). (6)

We train the model by minimizing the negative log-likelihood. In the objective
function the last term log(ys,p,o!) can be neglected, as it does not depend on
the model parameters. Thus the cost function for the whole training dataset
becomes

cost =
∑

(s,p,o)

η(θ(s, p, o)) − ys,p,o log η(θ(s, p, o)). (7)

60 S. Baier et al.

Using this framework, we can train any of the link prediction methods described
in Sect. 2, by plugging the prediction into the cost function and minimizing
the cost function using a gradient-descent based optimization algorithm. In this
work we use Adam, a recently proposed first-order gradient-based optimization
method with adaptive learning rate [14].

3.3 Visual Model

Our visual model is similar to the approach used in [18]. Figure 3 shows the
involved steps. An image is first fed to an RCNN, which generates region pro-
posals for a given image. The region proposals are represented as bounding boxes
within the image. The visual model further consists of two convolutional neural
networks (CNNs). The first CNN which we denote as CNNe takes as input the
subregion of the image defined by a bounding box and classifies entities from
the set E .

The second CNN, which we denote as CNNr takes the union region of two
bounding boxes as an input, and classifies the relationship from the set R. While
training, both CNNs use the regions (bounding boxes) provided in the training
data.

For new images, we derive the regions from the RCNN. We build all possible
pairs of regions, where each pair consists of a region is and io. We apply CNNe to
the regions, to derive the classification scores CNNe(s|is) and CNNe(o|io). Then
the union of the regions is and io is fed to CNNr to derive the score CNNr(p|ip),
where ip = union(is, io). Figure 2 shows an example of the bounding boxes of
the subject and the object, as well as the union of the bounding boxes, which
relates to the predicate of the triple.

3.4 Probabilistic Joint Model

In the last step of the pipeline in Fig. 3, which we denote as ranking step, we need
to combine the scores from the visual model with the scores from the semantic
model. For joining both, we propose a probabilistic model for the interaction
between the visual and the semantic part. Figure 4 visualizes the joint model for
all variables in a probabilistic graphical model. The joint distribution factors as

p(s, p, o, is, ip, io) ∝ p̃(s, p, o) · p̃(is|s) · p̃(ip|p) · p̃(io|o) (8)

with p̃ denoting unnormalized probabilities. We can divide the joint probability
of Eq. (8) into two parts. The first part is p̃(s, p, o), which models semantic triples.
The second part is p̃(is|s) · p̃(ip|p) · p̃(io|o), which models the visual part given
the semantics.

Following [29,30] we derive the unnormalized joint probability of the triples
p̃(s, p, o) using a Boltzmann distribution. With the energy function E(s, p, o) =
− log η(θ(s, p, o)) the unnormalized probability for the triples becomes

p̃(s, p, o) = η(θ(s, p, o)). (9)

Visual Relationship Detection Using Semantic Modeling 61

Fig. 4. The probabilistic graphical model describes the interaction between the visual
and the semantic part for a given image. We assume the image regions is, ip and io to
be given by the RCNN and infer the underlying s, p, o triples.

The visual modules described in the previous section, model the unnormalized
probabilities p̃(s|is), p̃(p|ip), and p̃(o|io). By applying Bayes rule to Eq. (8) and
assuming equal probabilities for all image regions we get

p(s, p, o, is, ip, io) ∝ p̃(s, p, o) · p̃(s|is) · p̃(p|ip) · p̃(o|io)
p̃(s) · p̃(p) · p̃(o)

. (10)

The additional terms of the denominator p̃(s), p̃(p), p̃(o) can be derived through
marginalization of p̃(s, p, o).

For each image, we derive the region candidates is, ip, io from the RCNN.
We do not have to normalize the probabilities as we are finally interested in a
ranking of the most likely six-tuples (is, ip, io, s, p, o) for a given image. The final
unnormalized probability score on which we rank the tuples is

p̃(s, p, o, is, ip, io) = η(θ(s, p, o))
CNNe(s|is) · CNNr(p|ip) · CNNe(o|io)

p̃(s) · p̃(p) · p̃(o)
. (11)

4 Experiments

We evaluate our proposed method on the recently published Stanford Visual
Relationship dataset [18]. We compare our proposed method against the state-of-
the-art method from [18] in the task of predicting semantic triples from images.
As in [18] we will divide the setting into two parts: First an evaluation on how
well the methods perform when predicting all possible triples and second only
evaluating on triples, which did not occur in the training data. This setting is
also referred to as zero-shot learning, as the model has not seen any training
images containing the triples which are used for evaluation.

4.1 Dataset

The dataset consists of 5000 images. The semantics are described by triples, con-
sisting of 100 entity types, such as motorcycle, person, surfboard, watch, etc. and
70 relation types, e.g. next to, taller than, wear, on, etc. The entities correspond
to visual objects in the image. For all subject and object entities the correspond-
ing regions in the image are given. Each image has in average 7.5 triples, which

62 S. Baier et al.

describe the scene. In total there are 37993 triples in the dataset. The dataset is
split into 4000 training and 1000 test images. The data split is identical to the
split in [18], thus we can directly compare our results. There are 1877 triples,
which only occur in images from the test set but not in the training set.

4.2 Visual Relationship Detection

Experimental Setting. For doing visual relationship detection, we consider
four different types of settings. Three of them are identical to the experimental
settings in [18]. We add a fourth setting, which eliminates the evaluation of
correctly detecting the bounding boxes, and solely evaluates the predicted triples.
The four settings are as follows.

Phrase Detection: In phrase detection the task is to give a ranking of likely
triples plus the corresponding regions for the subject and object of the triple.
The bounding boxes are derived from the RCNN. Subsequently, we apply our
ranking function (see Eq. (11)) to the pairs of objects, as shown in Fig. 3. A triple
with its corresponding bounding boxes is considered correctly detected, if the
triple is similar to the ground truth, and if the union of the bounding boxes has
at least 50% overlap with the union of the ground truth bounding boxes.

Relationship Detection: The second setting, which is also considered in [18] is
relationship detection. It is similar to phrase detection, but with the difference
that it is not enough when the union of the bounding boxes is overlapping by at
least 50%. Instead, both the bounding box of the subject and the bounding box
of the object need at least 50% of overlap with their ground truth.

Triple Detection: We add a setting, which we call triple detection, which evalu-
ates only the prediction of the triples. A triple is correct if it corresponds to the
ground truth. The position of the predicted bounding boxes is not evaluated.

Predicate Detection: In predicate detection, it is assumed that subject and object
are given, and only the correct predicate between both needs to be predicted.
Therefore, we use the ground truth bounding boxes with the respective labels for
the objects instead of the bounding boxes derived by the RCNN. This separates
the problem of object detection from the problem of predicting relationships.

For each test image, we create a ranked list of triples. Similar to [18] we report
the recall at the top 100 elements of the ranked list and the recall at top 50.
Note, that there are 700000 possible triples, out of which the correct triples need
to be ranked on top.

When training the semantic model, we hold out 5% of the nonzero triples as
a validation set. We determine the optimal rank for the link prediction methods
based on that hold-out set. For the visual model (RCNN and VGG) we use a
pretrained model provided by [18].

Visual Relationship Detection Using Semantic Modeling 63

Table 1. Results for visual relationship detection. We report recall at 50 and 100 for
four different validation settings.

Task evaluation Phrase det. Rel. det. Predicate det. Triple det.

R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [18] 2.61 2.24 1.85 1.58 7.11 7.11 2.68 2.30

Lu et al. full [18] 17.03 16.17 14.70 13.86 47.87 47.87 18.11 17.11

RESCAL 19.17 18.16 16.88 15.88 52.71 52.71 20.23 19.13

MultiwayNN 18.88 17.75 16.65 15.57 51.82 51.82 19.76 18.53

ComplEx 19.36 18.25 17.12 16.03 53.14 53.14 20.23 19.06

DistMult 15.42 14.27 13.64 12.54 42.18 42.18 16.14 14.94

Results. Table 1 shows the results for visual relationship detection. The first
row shows the results, when only the visual part of the model is applied. This
model performs poorly, in all four settings. The full model in the second row
adds the language prior to it and also some regularization terms during training,
which are described in more detail in [18]. This drastically improves the results.
As expected the recall at top 100 is better than at top 50, however the difference
is rather small, which shows that most of the correctly ranked triples are ranked
quite high. The results for predicate detection are much better than for the
other settings. This shows that one of the main problems in visual relationship
detection is the correct prediction of the entities. In the last four rows we report
the results of our method, which adds a link prediction model to the visual model.
We compare the results for the integration of the four link prediction methods
described in Sect. 2.1. We see that with all link prediction methods the model
performs constantly better than the state-of-the-art method proposed by [18],
except for DistMult. For Relationship detection, which is the most challenging
setting, ComplEx works best, with a recall of 17.12 and 16.03 for the top 100 and
top 50 results respectively. RESCAL performs slightly better than the Multiway
Neural Network in all evaluation settings. For the setting of Triple Detection the
scores are higher for all methods, as expected, as the overlap of the bounding

Fig. 5. Recall at 50 as a function of the rank

64 S. Baier et al.

boxes is not taken into account. However, the relative performance between the
methods does not vary much.

Figure 5 shows the recall at 50 on the test set for our different variants as a
function of the rank. We see that the performances of ComplEx and RESCAL
converge relatively quickly to a recall of around 16. The Multiway Neural Network
converges a bit slower, to a slightly smaller maximum. DistMult converges slower
and to a much smaller maximum recall of 12.5.

4.3 Zero-Shot Learning

Experimental Setting. We also include an experimental setting, where we
only evaluate on triples, which had not been observed in the training data. This
setting reveals the generalization ability of the semantic model. The test set
contains 1877 of these triples. We evaluate based on the same settings as in the
previous section, however for the recall we only count how many of the unseen
triples are retrieved.

Results. Table 2 shows the results for the zero-shot experiments. This task is
much more difficult, which can be seen by the huge drop in recall. However,
also in this experiment, including the semantic model significantly improves the
prediction. For the first three settings, the best performing method, which is
the Multiway Neural Network, almost retrieves twice as many correct triples,
as the state-of-the-art model of [18]. Especially, for the Predicate Detection,
which assumes the objects and subjects to be given, a relatively high recall of
16.60 can be reached. In the zero-shot setting for Predicate Detection even the
integration of the worst performing semantic model DistMult shows significantly
better performance than the state-of-the-art method. These results clearly show
that our model is able to infer also new likely triples, which have not been
observed in the training data. This is one of the big benefits of the link prediction
methods.

Table 2. Results for the zero shot learning experiments. We report recall at 50 and
100 for four different validation settings.

Task evaluation Phrase det. Rel. det. Predicate det. Triple det.

R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50

Lu et al. V [18] 1.12 0.95 0.78 0.67 3.52 3.52 1.20 1.03

Lu et al. full [18] 3.75 3.36 3.52 3.13 8.45 8.45 5.39 4.79

RESCAL 6.59 5.82 6.07 5.30 16.34 16.34 6.07 5.30

MultiwayNN 6.93 5.73 6.24 5.22 16.60 16.60 6.24 5.22

ComplEx 6.50 5.73 5.82 5.05 15.74 15.74 5.82 5.05

DistMult 4.19 3.34 3.85 3.08 12.40 12.40 3.85 3.08

Visual Relationship Detection Using Semantic Modeling 65

Fig. 6. Recall at 50 as a function of the rank for the zero-shot setting.

Figure 6 shows the recall at 50 on the zero-shot test set as a function of the
rank. As expected, the models start to overfit in the zero-shot setting if the
rank is to high. With a limited rank the models have less freedom for explaining
the variation in the data; this forces them to focus more on the underlying
structure, which improves the generalization property. ComplEx, which has more
parameters due to the complex valued embeddings, performs best with small
ranks and reaches the maximum at a rank of around 8. Multiway Neural Network
reaches the maximum at a rank of 10 and RESCAL at a rank of 14. The highest
recall is achieved by RESCAL at 5.3.

5 Conclusion

We presented a novel approach for including semantic knowledge into visual
relationship detection. We combine a state-of-the-art computer vision procedure
with latent variable models for link prediction, in order to enhance the modeling
of relationships among visual objects. By including a statistical semantic model,
the predictive quality can be enhanced significantly. Especially the prediction
of triples, which have not been observed in the training data, can be enhanced
through the generalization properties of the semantic link prediction methods.
The recall of the best performing link-prediction method in the zero-shot setting
is almost twice as high as the state-of-the art method. We proposed a probabilis-
tic framework for integrating both the semantic prior and the computer vision
algorithms into a joint model. This paper shows how the interaction of semantic
and perceptual models can support each other to derive better predictive accu-
racies. The developed methods show great potential also for broader application
areas, where both semantic and sensory data is observed. For example, in an
industrial setting it might be interesting to model sensor measurements from a
plant jointly with a given ontology. The improvement over the state-of-the-art
vision model shows that performance improvement does not only rely on better
computer vision models but also on improvements in the semantic modeling. As
part of future work, we will explore more expressive ontologies, for example by
integrating external information from publicly available knowledge graphs, to
further improve the results.

66 S. Baier et al.

References

1. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 39–48 (2016)

2. Bagdanov, A.D., Bertini, M., Del Bimbo, A., Serra, G., Torniai, C.: Semantic anno-
tation and retrieval of video events using multimedia ontologies. In: International
Conference on Semantic Computing, ICSC 2007, pp. 713–720. IEEE (2007)

3. Bannour, H., Hudelot, C.: Towards ontologies for image interpretation and annota-
tion. In: 2011 9th International Workshop on Content-Based Multimedia Indexing
(CBMI), pp. 211–216. IEEE (2011)

4. Bloehdorn, S., et al.: Semantic annotation of images and videos for multimedia
analysis. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532,
pp. 592–607. Springer, Heidelberg (2005). doi:10.1007/11431053 40

5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

6. Chen, N., Zhou, Q.Y., Prasanna, V.: Understanding web images by object relation
network. In: Proceedings of the 21st International Conference on World Wide Web,
pp. 291–300. ACM (2012)

7. Choi, W., Chao, Y.W., Pantofaru, C., Savarese, S.: Understanding indoor scenes
using 3d geometric phrases. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 33–40 (2013)

8. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 601–610. ACM (2014)

9. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-
occurrence, location and appearance. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

10. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

12. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation
with relative location prior. Int. J. Comput. Vis. 80(3), 300–316 (2008)

13. Gupta, A., Kembhavi, A., Davis, L.S.: Observing human-object interactions: using
spatial and functional compatibility for recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 31(10), 1775–1789 (2009)

14. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L.J., Shamma, D.A., et al.: Visual genome: connecting language
and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1),
32–73 (2017)

16. Kulkarni, G., Premraj, V., Ordonez, V., Dhar, S., Li, S., Choi, Y., Berg, A.C.,
Berg, T.L.: Babytalk: understanding and generating simple image descriptions.
IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2891–2903 (2013)

http://dx.doi.org/10.1007/11431053_40
http://arxiv.org/abs/1412.6980

Visual Relationship Detection Using Semantic Modeling 67

17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

18. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection
with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.)
ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). doi:10.1007/
978-3-319-46448-0 51

19. Maji, S., Bourdev, L., Malik, J.: Action recognition from a distributed representa-
tion of pose and appearance. In: 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3177–3184. IEEE (2011)

20. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

21. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning
on multi-relational data. In: Proceedings of the 28th International Conference on
Machine Learning (ICML 2011), pp. 809–816 (2011)

22. Ramanathan, V., Li, C., Deng, J., Han, W., Li, Z., Gu, K., Song, Y., Bengio,
S., Rosenberg, C., Fei-Fei, L.: Learning semantic relationships for better action
retrieval in images. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1100–1109 (2015)

23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information
Processing Systems, pp. 91–99 (2015)

24. Rohrbach, M., Qiu, W., Titov, I., Thater, S., Pinkal, M., Schiele, B.: Translat-
ing video content to natural language descriptions. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 433–440 (2013)

25. Sadeghi, M.A., Farhadi, A.: Recognition using visual phrases. In: 2011 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1745–1752.
IEEE (2011)

26. Santoro, A., Raposo, D., Barrett, D.G., Malinowski, M., Pascanu, R., Battaglia,
P., Lillicrap, T.: A simple neural network module for relational reasoning. arXiv
preprint arXiv:1706.01427 (2017)

27. Serafini, L., Donadello, I., Garcez, A.d.: Learning and reasoning in logic tensor
networks: theory and application to semantic image interpretation. In: Proceedings
of the Symposium on Applied Computing, pp. 125–130. ACM (2017)

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

29. Tresp, V., Esteban, C., Yang, Y., Baier, S., Krompaß, D.: Learning with memory
embeddings. arXiv preprint arXiv:1511.07972 (2015)

30. Tresp, V., Ma, Y., Baier, S., Yang, Y.: Embedding learning for declarative mem-
ories. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P.,
Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 202–216. Springer, Cham
(2017). doi:10.1007/978-3-319-58068-5 13

31. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

32. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management: sequirements and
a survey of the state of the art. J. Web Semant. Sci. Serv. Agent World Wide Web
4(1), 14–28 (2006)

33. Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple
link prediction. In: Proceedings of the 33rd International Conference on Machine
Learning (2016)

http://dx.doi.org/10.1007/978-3-319-46448-0_51
http://dx.doi.org/10.1007/978-3-319-46448-0_51
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1511.07972
http://dx.doi.org/10.1007/978-3-319-58068-5_13

68 S. Baier et al.

34. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

35. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

36. Yao, B., Fei-Fei, L.: Grouplet: A structured image representation for recognizing
human and object interactions. In: 2010 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9–16. IEEE (2010)

37. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-
object interaction activities. In: 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 17–24. IEEE (2010)

38. Yilmaz, Ö., Garcez, A.S.d., Silver, D.L.: A proposal for common dataset in neural-
symbolic reasoning studies. In: NeSy@ HLAI (2016)

39. Zhu, Y., Lim, J.J., Fei-Fei, L.: Knowledge acquisition for visual question answering
via iterative querying (2017)

http://arxiv.org/abs/1412.6575

An Empirical Study on How the Distribution
of Ontologies Affects Reasoning on the Web

Hamid R. Bazoobandi(B), Jacopo Urbani, Frank van Harmelen, and Henri Bal

Department of Computer Science, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

h.bazoubandi@vu.nl, {jacopo,frank.van.harmelen,bal}@cs.vu.nl

Abstract. The Web of Data is an inherently distributed environment
where ontologies are located in (physically) remote locations and are
subject to constant changes. Reasoning is affected by these changes, but
the extent and significance of this dependency is not well-studied yet.
To address this problem, this paper presents an empirical study on how
the distribution of ontological data on the Web affects the outcome of
reasoning. We study (1) to what degree datasets depend on external
ontologies and (2) to what extent the inclusion of additional ontological
information via IRI de-referencing and the owl:imports directive to the
input datasets leads to new derivations.

We based our study on many RDF datasets and on a large collection
of RDFa, and JSON-LD data embedded into HTML pages. We used
both Jena and Pellet in order to evaluate the results under different
semantics. Our results indicate that remote ontologies are often crucial
to obtain non-trivial derivations. Unfortunately, in many cases IRIs were
broken and the owl:imports is rarely used. Furthermore, in some cases
the inclusion of remote knowledge either did not yield any additional
derivation or led to errors. Despite these cases, in general, we found that
inclusion of additional ontologies via IRIs de-referencing and owl:imports
directive is very effective for producing new derivations. This indicates
that the two W3C standards for fetching remote ontologies have found
their way into practice.

Keywords: RDF · RDFa · JSON-LD · OWL · Reasoning · Web of data

1 Introduction

The Web contains large volumes of semantically annotated data encoded in
RDF [21] or similar formats. Often, this data contains expressive ontologies that
machines can leverage to perform reasoning and derive valuable implicit informa-
tion. Since information re-usage is a corner stone of the Semantic Web [18], many
datasets reuse ontologies that are already available rather than creating their own

This work is partially funded by the Dutch public-private research community COM-
MIT/ and NWO VENI project 40 639.021.335.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 69–86, 2017.
DOI: 10.1007/978-3-319-68288-4 5

70 H.R. Bazoobandi et al.

ones. These ontologies are distributed across the Web and the W3C standardized
two mechanisms to retrieve them: IRIs de-referencing [7] and owl:imports [18].

The number and correctness of new derivations that reasoners produce
depend on the availability and quality of these external ontologies. Therefore,
it is crucial that reasoners can successfully retrieve them and that the union of
external ontologies is still consistent. Unfortunately, the Web is an inherently
distributed and uncoordinated environment where several factors may preclude
the fetching and reusage of remote data. For example, remote ontologies might
silently disappear or move to other locations, or independent authors may pub-
lish ontologies that contain syntactic and/or semantic mistakes [14]. All these
possibilities can heavily affect the output of reasoning or even make reasoning
impossible.

Although much effort has already been invested on studying the quality and
accessibility of resources on the Web of Data (WoD) [5–7], to the best of our
knowledge no work has ever studied how the distribution of ontological data on
the web affects reasoning. The goal of this paper is to study this from a purely
empirical perspective. To that end, we conduct a number of experiments and
analyse the output of reasoning over a wide range of documents to offer a first
preliminary answer to the following questions: (a) how many derivations can
reasoners derive from individual documents? (b) To what extent do documents
link to external ontologies and how accessible are such links? (c) How many new
derivations can reasoners derive after external ontologies are included and how
can we characterize such derivations? (d) To what extent does the inclusion of
additional ontological data endanger reasoning? This paper presents a number
of experiments to answer these questions.

As the input for our experiments, we took samples from LODLaundromat
(LODL) [5], which is a large crawl of RDF documents from the WoD, and Web
Data Commons (WDC) [27], which contains extracted RDFa, MicroData, and
JSON-LD graphs embedded in the HTML pages. We conducted our experiments
using Jena [24] and Pellet [29], two widely used reasoners, and performed two
types of analyses: a quantitative analysis, which focuses on the number of derived
triples; and a qualitative analysis, which looks into the relevance of derived triples
with the input document.

We summarise below some key outcomes of our experiments. These will be
discussed in the remainder of this paper with more details:

– In the majority of the cases, reasoning on a single document produces a small
number of derivations that are mostly RDF or OWL axioms;

– Only a small number of IRIs were de-referencable. However, when IRIs could
have been accessed, the inclusion of additional knowledge allowed reasoners
to derive new triples. This finding highlights the importance of maintaining
functioning links in the WoD;

– The directive owl:imports is used only in a very small number of documents
(less than 0.2% documents of LODL and only on 121 graphs out of 500M in
WDC). In the documents that use it, the (recursive) inclusion of the remote

An Empirical Study on How the Distribution 71

ontologies led to a significant increase of the number of derived triples. This
demonstrates the potential of this mechanism;

– In a non-negligible number of cases, the inclusion of remote ontologies did
not lead to the derivation of new triples. Also, we observed cases where the
inclusion of external ontologies led to conflicts that made Pellet fail. Addi-
tionally, in some cases Jena did not finish reasoning within 72 h (despite the
fact that on average the number of statements in input was fairly small).

In general, our findings are encouraging because they indicate that remote
knowledge (fetched either with IRI de-referencing or via owl:imports) does lead
to new valuable derivations. However, we have also witnessed several problems
that show further research is still very much needed.

This paper is structured as follows: Sect. 2 reports on the experimental
settings; Sect. 3 presents the results of the experiments where reasoning was
applied without fetching remote ontologies, Sect. 4 presents the results after
we de-referenced IRIs and Sect. 5 after we imported ontologies via owl:imports.
Finally, Sect. 6 reports on related work while Sect. 7 concludes the paper. An
extended version of this paper is available as technical report at http://hbi250.
ops.few.vu.nl/iswc2017/survey/iswc2017 tr.pdf.

2 Experimental Setup

Inputs. On the Web, semantically-annotated data are primarily encoded either
as RDF knowledge graphs (which are serialized in a number of files) or be
embedded in HTML pages. Therefore, we considered two large collections of
both types: LODLaundromat (LODL) [5] and the Web Data Commons (WDC)
dataset [27]. LODL contains a collection of RDF files that were either crawled
from online archives or submitted to the system. At the time we conducted this
study, the collection consisted of 500K RDF files from more than 600 domain
names. The WDC dataset contains RDFa, Microdata, Microformat, and JSON-
LD data extracted from HTML pages. We use the 2015 crawl which provides
about 541M named graphs from more than 2.7M domain names. We chose these
two datasets because they are, to the best of our knowledge, the largest available
collections of semantically-annotated data available on the Web. We must stress,
however, that neither of these two collections offers any guarantee of representa-
tiveness. As far as we know, no crawled collection from the Web can make such
a claim. They simply represent the best approximation that we have available.

In this paper, we refer to sets of triples which are locally available as docu-
ments. For LODL, a document corresponds to a RDF file. For WDC, a document
corresponds to the set of triples in a named-graph (the named graph is the URI
of the webpage from which the triples were extracted). We refer to the number
of triples contained in a document as its size. We used two reasoners, Pellet [29]
(version 2.3.1) and the OWLMiniReasoner of Jena [24] (version 3.1.0), to eval-
uate reasoning under different computational logic. We use these two reasoners
(instead of, for instance, more scalable solutions like RDFox [26], VLog [30] or

http://hbi250.ops.few.vu.nl/iswc2017/survey/iswc2017_tr.pdf
http://hbi250.ops.few.vu.nl/iswc2017/survey/iswc2017_tr.pdf

72 H.R. Bazoobandi et al.

WebPIE [31]) because they are well-tested implementations and work under dif-
ferent semantics. The OWLMiniReasoner reasoner in Jena works under the RDF
semantics and supports an incomplete fragment of OWL Full that omits the for-
ward entailments of minCardinality/someValuesFrom restrictions (detailed list
of the supported constructs is available online1). In contrast, Pellet supports a
sound but incomplete OWL DL reasoning (i.e., SROIQ(D)) [29] and we use it to
perform ABox DL reasoning2. Once again, we refer to the online documentation
for a detailed list of the supported constructs. Each reasoner is launched with
the default settings. The only modification is that we disabled the automatic
owl:imports inclusion for both reasoners in all experiments.

We refer to the terms and axioms defined in the RDF [21], RDFS [8],
OWL [18], and XSD [13] specifications as standard terms and standard axioms
respectively. A standard predicate is a standard term that appears as predicate
in a triple. We assume that standard terms and axioms are locally available (but
not part of the input document) because in practice the reasoners have stored a
local copy.

Reasoning. In this paper, reasoning is used to derive new conclusions. The
reasoning procedure is simple and equivalent for both reasoners: First, we load
a set of triples G into the reasoner. We refer to the set G as the input of the
reasoning process. In some experiments, G equals to a document while in others
it will include also some remotely fetched triples. Then, we query the reasoner
with the SPARQL query SELECT ?s ?p ?o { ?s ?p ?o }, which is meant to
retrieve all the triples the reasoner can derive. Each answer returned by the
reasoner is translated into a RDF triple 〈?s ?p ?o〉. Let G′ be the set of all
returned triples. We call every triple t ∈ G′ \ G a derived triple and refer to the
set G′ \ G as the set of derived triples or derived triples, or in short derivations.
Clearly, this set will be different depending on the used reasoner. We would like
to stress that the purpose of our experiments is not to compare the output of
two reasoners but to analyse their output w.r.t. the inclusion/exclusion of remote
ontological information.

Categorization of Derivations. In order to perform a more fine-grained analy-
sis of the derived triples, we categorize them based on the complexity of reasoning
process that produces them into the following four disjoint categories:

– Type1 derivations are derivations that contain only standard terms. Typ-
ically, triples in this category are the tautologies extracted from these lan-
guages (e.g., 〈rdf:subject rdf:type rdf:Property〉).

– Type2 derivations contain exactly one non-standard term that appears in
one or more triples in the input set (e.g., 〈:resource rdf:type rdf:Resource〉).

1 https://jena.apache.org/documentation/inference/#owl.
2 TBox and ABox are terms from Description Logics. TBox triples encode ‘schema’

information which is crucial for reasoning while ABox triples encode assertional
information.

https://jena.apache.org/documentation/inference/#owl

An Empirical Study on How the Distribution 73

– Type3 derivations contain two non-standard terms that appear in the same
input triple (e.g., if the input contains the triple 〈:ClassA owl:equivalentClass
:ClassB〉 then a Type3 derivation could be 〈:ClassB rdfs:subClassOf :ClassA〉).

– Type4 derivations contain two or more non-standard terms that never
appeared in the same input triple (e.g., if the input contains the triples
〈:resource rdf:type :ClassA〉 and 〈:ClassA rdfs:subClassOf :ClassB〉 then a
Type4 triple could be 〈:resource rdf:type :ClassB〉).
The reason behind such classification is that Type1 derivations should be

easy to return. Type2 and Type3 derivations are less easy because they require
one pass on the data (Type3 have the additional complexity that the reasoner
might need to change the ordering of the terms). The derivation of Type4 deriva-
tions usually requires a join between multiple triples, and thus their derivation
is computationally more demanding. Most non-trivial implicit knowledge that
reasoners derive are usually of Type2, Type3 or Type4.

Failures. In some experiments, the reasoners were unable to complete the rea-
soning process. Causes for failure varied between a limited scalability of the algo-
rithms/implementation, syntactic errors [6], and ontological inconsistencies [28].
Please note that the notion ontological inconsistency usually includes unsatisfi-
ability, incoherence, or inconsistency. However, because reasoners do not crash
as a result of unsatisfiability and incoherence, in this paper we ignore them, and
whenever we use the term ontological inconsistency or in short inconsistency,
we refer to conflicting assertions (ABox) or axioms (TBox) that make reasoning
impossible and cause reasoner to abort the process.

A complete analysis of the failures is beyond the scope of this paper. Here,
we say that a reasoner failed (or that a failure occurred) when the reasoner did
not terminate successfully the reasoning process. We classify failures either as
exceptions, which occurred when the reasoner had prematurely terminated (e.g.,
because of an inconsistency or a syntactic error in the input), or as timeouts in
case the reasoner did not conclude the inference within 72 h.

Computing Infrastructure. Many experiments required several hours to fin-
ish, thus, we launched several of them in parallel using the DAS4 [3] cluster. Each
machine in the cluster has 24G of memory and two quad-core 2.4 GHz CPUs.

Data and Source Code. All data, source code to run the experiments, and all
derived triples are available at http://hbi250.ops.few.vu.nl/iswc2017/survey/.

3 Local Reasoning

First, we intend to evaluate how many new derivations the reasoners can derive
from local data. But what can be considered as “local” in the Web of Data? One
possibility is to consider all the RDF datasets that are stored on the same website
as local. Unfortunately, there are several repositories that contain datasets from
several other locations. Another possibility is to assume that local data is stored
in files that share the same prefix (e.g. dbpedia-01.gz, dbpedia-02.gz), but this is

http://hbi250.ops.few.vu.nl/iswc2017/survey/

74 H.R. Bazoobandi et al.

a rather weak heuristic which does not always hold in practice. For the LODL
dataset, we eventually concluded that the best solution was to consider as “local”
only the triples that are contained in a single document (i.e., a RDF file for LODL
and a named graph for WDC), because documents are the minimal storage units
that are always entirely available on the same physical location. Thus, we will
compute how many new triples reasoners can derive from single documents.

Data Collection. In our context, performing reasoning on every document is
neither feasible nor desirable. The infeasibility is due to the large number of doc-
uments in LODL and WDC. We estimated that even if we could use all machines
of our cluster it would take months to finish the computation. The undesirability
comes from the fact that more than two thirds of the documents in LODL are
fetched from two sources – sonicbanana.cs.wright.edu and worldbank.270a.info –
while in the WDC dataset there is a significant difference between the number of
documents from popular domain names such as http://wordpress.com and the
ones from less popular sources.

With such large skew in terms of provenance, aggregations over the entire
datasets will be strongly biased towards a few sources. While a simple random
sampling strategy would be enough to reduce the input to a manageable size, it
would be ineffective in removing the bias. To avoid this second problem, we first
perform a random sampling over domain names with the sample size determined
by the Cochram’s formula [9] with a confidence level of 95%, and less than 0.5%
margin of error. Then, from every selected domain name, we randomly picked
as many documents as the logarithmic transformation of number of documents
from that domain. This is a well-known methodology for sampling from skewed
sources [19]. We call LODL1 the sample extracted from LODL, and WDC1 the
sample extracted from WDC. Statistics about them are reported in Table 1.

One surprising number in Table 1 is the relatively small number of documents
in LODL1. In fact, 673 documents are indeed only a small fraction of all documents
in the LODL collection. Such aggressive reduction is due to the relatively low
number of domains in the collection and the extreme skew in the distribution of
files among them. With such input, we are forced to select only a few documents
per domain, otherwise we would be unable to construct a sample without skew.
We believe this is the fairest methodology in order to present results which are
most representative (i.e., cover the largest number of sources). If the reader is
interested in biased results, we report in the TR the results obtained with a
larger randomly selected sample.

Table 1. Statistics about the samples of LODL1 and WDC1 used for local reasoning.

#Domains #Documents #Documents per domain #Triples per documents

Max Average Median Min Max Average Median Min

LODL1 510 673 7 1.3 1 1 5.2M 80.9K 70 1

WDC1 67K 74K 8 1.35 1 1 10.6K 20.5 6 1

http://wordpress.com

An Empirical Study on How the Distribution 75

Fig. 1. Number of derived triples w.r.t document size on LODL1 (left) and WDC1 (right).

Reasoning Results. We launched Pellet and Jena over both samples, and
report in Fig. 1 the number of derivations in relation with the size of the docu-
ments. We can draw a few interesting considerations from these results: First, the
number of Pellets’ derivations is proportional to the size of the input documents.
This occurs both with LODL1 and WDC1. The number of the derivations produced
by Jena was instead more constant. It only starts to grow proportionally with
the largest LODL1 documents.

Figure 2a shows the percentage of documents that yielded triples in each of
the four categories outlined in Sect. 2. We see that all documents led to Type1
and Type2 derivations, regardless of the reasoner used. We inspected samples
of the triples in each category and found that most Type1 triples are RDFS
and OWL axioms, while most of the Type2 derivations are triples that describe
resources or predicates, e.g., both reasoners always derive that predicates are
instances of rdf:Property. In general, almost all documents have also led to Type3
derivations. The only exception was WDC1 in combination with Jena since in this
case almost 20% of the documents did not return any Type3 derivation. We man-
ually inspected a sample of Type3 derivations and found that they resemble to
Type2 information in the sense that they also describe predicates and resources.

Fig. 2. (a) Percentage of documents that yielded derivations of each type. (b) Ratio of
each derivation type w.r.t total number of derivations.

76 H.R. Bazoobandi et al.

For example, the statement “a property is a rdfs:subPropertyOf itself” is a Type3
statement that both reasoners have frequently derived.

We observed that Jena did not derive any Type3 triples if the document con-
tained only standard predicates. Instead, Pellet frequently derived Type3 triples
that state that classes are equivalent/subclass of themselves. In contrast to Pel-
let, we noticed that Jena always returned about 600 Type1 triples regardless of
the actual input. This explains why the number of derivations tends to be con-
stant for Jena in Fig. 1: It mainly consists of 600 Type1 statements plus some
Type2 or Type3 statements that describe resources and predicates. To explain
this more clearly, we show in Fig 2b the ratio of each derivation type against
total number of derivations in the samples. We see from the figure that Jena
on WDC1 only produces Type1 derivations, thus the total number of derivations
tends to remain constant for each document. The situation is different for LODL1
where the sizes of documents vary considerably. There, a smaller number of
all derivations is of Type1 which indicates that Jena derives significantly more
derivations of other types. Interestingly, we notice from Fig. 2a that all WDC1
documents derive Type2 triples and about 80% of them derive Type3 deriva-
tions with Jena. However, in Fig. 2b we see that these triples are fewer than
Type1 triples. This means that each document led to only few Type2 and Type3
statements while the largest number of derivations is of Type1 .

Finally, we observed that neither reasoner was able to derive Type4 triples
from WDC1, while for LODL1 only 24% of the documents yielded such derivation.
This suggests that in general most of the derivations that we can obtain from
single documents are sort of “descriptions” of the terms in the dataset (e.g., a
predicate is an instance of rdfs:Property, a class is an instance of rdfs:Class, etc.).

Failures. Type2 and Type3 derivations should be easy to calculate since they
can be typically derived with a single pass on the data. Unfortunately, we still
witnessed a number of failures with both reasoners. These failures were rare in
WDC1 (i.e., less than 0.1% for both reasoners, and all these cases were exceptions
caused by syntax errors). With LODL1, Jena successfully finished for more than
99.9% of the input documents. When it did not, timeout was the primary cause
of failure. With Pellet we witnessed a higher percentage of failures (about 12%
of the inputs). In more than 72.5% of these cases, Pellet threw an exception,
while the rest of the cases the reasoner timed out. Interestingly, more than 92%
of exceptions were raised by inconsistencies while the rest were raised due to
other internal reasons (e.g. Unknown concept type exception).

4 IRI De-referencing

We will now present the results of our experiments to investigate whether the
inclusion of additional remote content obtained by de-referencing IRIs in the
documents leads to more derivations. To this end, we considered all documents
of LODL1 and WDC1 for which local reasoning succeeded. Given the low failure rate,
these samples are roughly equivalent to the original LODL1 and WDC1 datasets. In
this section, we refer to these two subsets as LODL2 and WDC2 respectively.

An Empirical Study on How the Distribution 77

Unfortunately, de-referencing every IRI in each document is not technically
feasible due to high latencies and limited bandwidth. To reduce the workload,
first, we avoided de-referencing IRIs that were part of standard vocabularies
(RDF, RDFS, OWL, XSD) since that content is typically already known by the
reasoner. Second, we limited de-referencing to only two subsets of IRIs: predicate
IRIs and Class IRIs. The firsts are IRIs that appear as predicates of triples.
These IRIs (excluding those from standard vocabularies) appear in 99.7% of the
LODL2 documents and 83.4% of the WDC2 documents. The seconds are IRIs that
were either explicitly defined as instances of rdfs:Class or appeared as subjects
or objects of predicates that we knew their domains or ranges were instances of
rdfs:Class (e.g., the object of the rdf:type predicate). De-referencing class IRIs
was not always possible: in fact, only 67.63% of documents in LODL2 and 71.79%
of documents in WDC2 contain class IRIs. Table 2 reports statistics about the
number of distinct predicates and classes in the LODL2 and WDC2 datasets.

Table 2. Statistics of predicate/classes IRIs per document in each sample.

LODL2 WDC2

Max Average Median Min Max Average Median Min

Predicate 432 14.3 6 0 67 3.6 3 0

Predicate domains 11 2.5 2 0 5 1.4 1 0

Class 496 7.9 1 0 14 1.3 2 0

Class domains 11 1.5 1 0 4 0.7 1 0

Furthermore, not all IRIs could be accessed: Only 4.7% of predicates and
35.9% of the class IRIs in WDC2 were de-referencable. The LODL2 dataset presented
a significantly different situation: There, roughly 73% of predicates and 74.5% of
class IRIs were accessible. We analyzed the inaccessible predicate IRIs in WDC2
and found that more than 84.6% of them pointed to non-existent resources on
http://schema.org. We reported the full list of accessible and inaccessible IRIs
in the public repository of this study.

Experimental Procedure. We proceeded as follows: First we performed rea-
soning only on the single document (see Sect. 3). Then, we repeated the process
only considering the remotely-fetched triples, and finally considering the doc-
ument plus its remotely-fetched triples. We counted as new only those deriva-
tions that could have been derived in this last step (document plus the remote
triples). In other words, we only count the derivations that were impossible to
derive without adding external content to the input.

4.1 Experimental Results

Based on the number of new derivations, we divided the input documents into
three groups: Those that yielded new derivations (Deriving), those that produced

http://schema.org

78 H.R. Bazoobandi et al.

Fig. 3. After de-referencing predicate (P) and class (C) IRIs: Ratio of Deriving, Not
Deriving and Failed reasoning processes (a). Ratio of documents that derive each
derivation type (b).

no new derivations (Not-Deriving), and those for which the reasoning process
failed (Failure). Figure 3a shows the percentage of documents in each group. The
figure shows that a relatively large percentage of documents in LODL2 derived
no additional information after remote triples were added. Furthermore, docu-
ments in WDC2 are more likely to yield new derivation after de-referencing IRIs
than documents in LODL2. Moreover, the figure also suggests that de-referencing
class IRIs is more likely to produce additional derivations than de-referencing
predicate IRIs. This is interesting because documents often contain more predi-
cate IRIs than class IRIs.

Deriving Documents. To study how the de-referencing of IRIs affects the
number of derivations, Fig. 4 shows a comparison between the size of the input
documents and the number of new derivations. The figure shows that for WDC2,
regardless the type of IRI that is de-referenced and irrespective of the reasoner,
the number of new derived triples is proportional to the size of input document.
This is similar to the local reasoning results (see Fig. 1). On the contrary, the
reasoning for LODL2 is different from local reasoning results, especially with Jena.

In order to gain more insights, we classified the newly derived triples into the
four categories defined in Sect. 2. Figure 3b reports the ratio of documents that
derive each specific derivation type (T1–T4) after de-referencing predicate (P)
or class (C) IRIs. Figure 3b shows a different situation than in the local case
(Fig. 2b). If we perform only local reasoning, then only a rather small percentage

Fig. 4. Number of derivations vs input size after de-referencing: classes with Jena (a),
predicates with Jena (b), classes with Pellet (c), predicates with Pellet (d).

An Empirical Study on How the Distribution 79

of LODL1 documents derived Type4 triples. Instead, after we de-reference IRIs,
the majority of documents in both datasets did derive Type4 triples.

Also, while every document in the local reasoning experiments derived Type1
triples, such new derivation is almost non-existent after IRIs are de-referenced.
The absence of Type1 new derivations was expected because Type1 triples are
most often RDFS and OWL axioms that reasoners can derive anyway, thus
they are not considered as new derivation. Aside from that, Fig. 3b shows that
Jena derived many more Type2 and Type3 derivations than Pellet. Our manual
inspection of these new Type2 and Type3 triples revealed that these derivations
are mostly basic statements such as “an entity is of type owl:Thing”, or “resource
is different from another resource”. Pellet is usually capable of concluding such
derivation without additional data; hence, for this reasoner these statements are
not counted as new derivations. This is not the case for Jena, and therefore it
can derive them after external triples are included.

Finally, we observed that with WDC2 documents the number of all Type2 ,
Type3 , and Type4 derivations tends to be proportional to the size of input doc-
ument. This situation is different for larger LODL2 documents because these doc-
uments tend to use richer OWL ontologies which trigger more reasoning. Con-
sequently, the number of derived triples is no longer proportional to the input
size.

Not Deriving Documents. Figure 3a also shows that there are cases where
both reasoners did not derive any new triples. We scrutinized each Not Deriving
document and the corresponding remotely-fetched triples, and found two main
reasons for this: First, in some cases these triples only stated comments, labels,
and descriptions intended for human interpretation. Reasoners can only conclude
a limited number of derivations from such data. Second, the remote ontologies
are dependent on yet more external ontologies, and so the inclusion of the remote
data without its dependencies leads to no new derivation. Figure 3a also shows
a larger number of Not Deriving and Failure cases with LODL2 than with WDC2.
This was surprising to us since we expected that IRI de-referencing was more
effective in native RDF datasets than in datasets embedded in HTML pages.

Failures. Figure 3a reports a non-negligible number of cases where the inclusion
of remote triples led to a failure of the reasoning process. Note that in this
experiment the input samples only contain documents for which local reasoning
had succeeded. Therefore, the failures we refer to are caused by the inclusion of
external ontologies. Pellet had the largest proportion of failed cases over LODL2
documents (20–40%). From our execution traces, we noticed that Pellet almost
always failed due to inconsistencies (this accounts for 99% of the cases with
predicates, and almost 94% with classes). Sometimes these inconsistencies were
caused by conflicts introduced between triples fetched from different sources,
while sometimes the conflict was between the external knowledge and the input
document. Jena failed less times, but this is due to the fact that it is less stringent
about consistency. Whenever Jena failed, it was because it timed out.

Further inspections indicated that inconsistencies are exacerbated when
triples are included from more sources. When Pellet failed due to inconsistencies

80 H.R. Bazoobandi et al.

over LODL2, on average we de-referenced predicates from more than 18 sources
(median 9), and classes from more than 11 sources (median 6). The average is
significantly lower if we consider the cases where Pellet did not fail: predicates
were from 5 sources (median 2), and classes from around 7 sources (median 2).
This indicates that an excessive linking to multiple sources increases the chances
of stumbling into inconsistencies.

5 OWL Imports

Data Collection. The directive owl:imports is another standard mechanism
to link the document to external ontologies. In this section, we study how such
inclusion affects the outcome of the reasoning process. This directive is used in
less than 0.2% (939 documents) of the whole LODL dataset and in only 121
documents of the WDC dataset. Therefore, we do not sample them but instead
use all of them. First, we executed local reasoning on them and filtered out
all the documents for which this process failed. This reduced our input to 554
LODL documents (83 sources) while the size of the WDC documents remained
unchanged: 121 documents from 16 different sources. In this section, we refer to
these subsets of documents as LODL3 and WDC3 respectively.

The owl:imports directive defines a transitive process, i.e., an imported ontol-
ogy may itself import additional ontologies [1]. The documents in WDC3 only
import the goodrelations3 ontology, which is accessible and does not contain
links to any other ontology. On the other hand, the documents in LODL3 import
221 distinct ontologies from 62 different domain names. 76.9% of such imported
ontologies were accessible, and only 52 of the documents imported ontologies
with nested owl:imports statements. We found that the maximum length of
transitive owl:imports chain is 4. Table 3 provides more information about the
documents and the imported ontologies they mention. In the public repository,
we report also the list of all inaccessible ontologies and more details on the ones
that we fetched.

Experimental Procedure. We proceeded in a similar way to Sect. 4, namely,
we performed three reasoning processes: one over the documents without the
imported ontologies, one over only the set of imported ontologies, and one over
the document and its imported ontologies combined. Also in this case, we count
as new derivation only those triples that are exclusively present in the last step
(i.e., triples that are impossible to derive without importing external ontologies).

5.1 Experimental Results

Similarly to Sect. 4.1, we categorized documents into the three groups of Deriv-
ing, Not-Deriving, and Failure, and present the collected statistics in Fig. 5a.
The figure shows that both reasoners derived new triples from every document
in WDC3. However, we also see that for a significant number of documents in LODL3

3 http://purl.org/goodrelations/v1.

http://purl.org/goodrelations/v1

An Empirical Study on How the Distribution 81

Table 3. Number of triples and number of imported links per document.

Triples # Imported ontologies

Max Average Median Min Max Average Median Min

LODL3 4.3M 51.7K 397 2 48 4.5 4 1

WDC3 281 31.1 29 22 1 1 1 1

Fig. 5. (a) Ratio of documents in Derived/Not Derived/Failed groups. (b) Ratio of
documents that derived each type of derivations.

both reasoners were not able to derive any new triple. This was surprising to us
since these documents were explicitly pointing to the external ontologies so we
assumed that the import process would lead to at least some new derivations.

Deriving Documents. Figure 6 reports the number of new derived triples
against the number of triples in the input document. We observe no proportional
relation between the number of derived triples and the size on input document
in LODL3 and the outcome with the two reasoners is different. This is in con-
trast with WDC3 because here both reasoners derived roughly an equal number of
derivations. Furthermore, each reasoner in WDC3 derived almost the same number

Fig. 6. Number of new derivations vs the document size after importing ontologies
using Jena (a), and Pellet (b).

82 H.R. Bazoobandi et al.

of triples per document (dots overlay each other in the figure). There are two
reasons behind such regularity on WDC3: First, as Table 3 shows, documents in
WDC3 tend to be of similar size; second, all documents in WDC3 import the same
ontology (goodrelations).

Similarly as before, we classified the newly derived triples into our four cate-
gories and report the results in Fig. 5b. We notice that the type of new derivations
is akin to what reasoners derived when IRIs were de-referenced (see Fig. 3b).
In both cases, new Type1 triples are almost nonexistent and almost all docu-
ments lead to the derivation of Type3 and Type4 triples. Additionally, we also
observe that with Jena more documents derive Type2 and Type3 triples than
with Pellet. As we explained in Sect. 4, this is because Type2 and Type3 triples
usually include information that Pellet can derive without external ontological
data (and hence are not counted as new derivations).

Not Deriving Documents. While there is no Not Deriving document in WDC3,
as Fig. 5a shows, the percentage of Not Deriving documents in LODL3 is remark-
ably higher than when IRIs are de-referenced (see Fig. 3a). To find the cause, we
studied the connections between the documents and the ontologies they import.
In some cases, we found that the ontological information included from external
sources was either already in the document or reasoners were able to derive it
from the triples in the document itself. In other cases (which were the majority),
we found that the owl:imports statement was the only link between the docu-
ment and the imported ontology. In other words, no term from the directly or
indirectly imported ontologies was used in triples of the input document.

We can only speculate on the possible reasons behind the lack of links between
the documents and the imported ontologies. One possible explanation could be
that publishers put the owl:imports statements at the beginning of a large file
(as a sort of “header”) even though the remote knowledge was relevant for triples
that were serialized much later on. Then, the large file was split in smaller ones
without replicating the owl:imports statement on each file. In such a case, the
only file that would contain the owl:imports statement is the first split, but this
split does not contain any relevant triple for the remote ontology and hence no
new derivation is produced (and the ones that could benefit from the remote
content do not contain a link to the ontology).

Similarly, another case could occur if the publisher stores the TBox and ABox
triples into different files and the owl:imports statement is put in the TBox file
even though it points to relevant information for the ABox triples. In this case, if
the ABox files do not import the TBox file, then the owl:imports statement will
appear in a file (the TBox one) where it is not needed while files which might
need it are not properly linked.

Failures. In about 18% of the cases, Pellet failed and threw an exception about
inconsistency. There were no failures with WDC3. Jena timed out in only ∼0.3%
of the cases. Pellet never timed out.

An Empirical Study on How the Distribution 83

6 Related Work

Various aspects of Linked Open Data have been extensively studied in the
last decade. Studies span a wide range of subjects including the quality of
data [5,22,25], inconsistencies in the schema [2], the utilization of the standard
vocabularies, and the depth and quality of the ontologies [11,12,32]. In [12], the
authors provide some statistics about the utilization of ontologies and vocabu-
laries. Bechhofer et al. [4] analyze a number of ontologies on the Web and find
that the majority are OWL Full, mostly because of the syntactic errors or misuse
of the vocabulary. Wang et al. [32] present similar finding and also report the
frequency of the OWL language constructs and the shape of class hierarchies
in the ontologies. Authors of [16] processed a large number of ontologies with
various reasoners and show that most OWL reasoners are robust against the
web.

As part of their research, authors of [10] report that only a small percentage
of graphs on the Web uses owl:imports, a claim that our results confirm. The
authors of [17] introduce ε-Connections to provide modelers with suitable means
for developing Web ontologies in a modular way, and to provide an alternative
to owl:imports.

More recently, Glimm et al. [15] discuss the current availability of OWL data
on the Web. They report a detailed analysis on the number of used RDFS/OWL
terms and highlight that the owl:sameAs triples are very popular. Similarly,
Matentzoglu et al. [23] present another evaluation of the OWL landscape on the
Web and a method to build an OWL DL corpus for evaluation of OWL engines.
There have also been extensive studies on quality assessments and consistency
of graphs on the Web. For instance, Zaveri et al. [33] provide a framework for
linked data assessment. Feeney et al. [14] found string interdependencies between
vocabularies and provide a tool to combine common linked data vocabularies into
a single local logical model. Furthermore, they suggest a set of recommendation
for linked data ontology design. None of these methods evaluate the interplay
between data distribution and reasoning as we do. Therefore, we believe our
results are a natural complement to all the above works.

7 Conclusions

The goal of this paper was to better understand how the distribution and reusage
of ontologies affect reasoning on the Web of data. To this end, we analyzed several
samples from LODLaundromat, which is a large crawl of RDF documents, and
from Web Data Commons, which contains knowledge graphs that are embedded
in HTML pages. We selected samples from hundreds of different domains in order
to be as representative as possible. We compared the derivations produced by
Pellet and Jena with and without remote external ontologies to understand, both
from a quantitative and qualitative perspective, which are the major changes in
terms of new derivations.

What have we learned? If we do not include any remote ontology, then reason-
ing tends to be rather trivial in the sense that it mainly returns RDFS and OWL

84 H.R. Bazoobandi et al.

axioms or description of the terms used in the document (e.g. that a property
is an instance of rdfs:Property). However, if we do include remote ontologies,
either by IRI de-referencing or owl:imports, then reasoners are able to derive
many more non-trivial derivations.

Next to these positive findings, our analysis highlights some important problems:

– Reasoning on single documents is not always possible. In fact, we observed a
number of failures (0.1–12%) during the reasoning process with both reason-
ers. These failures are due to either syntax errors, timeouts or inconsistencies;

– There are a non-negligible number of cases where the inclusion of the remote
ontologies did not lead to any new derivation. Also, there are cases where
the inclusion of remote ontologies breaks the reasoning process since it causes
inconsistencies;

– The owl:imports directive is rarely used. Furthermore, it seems in many cases
it is not used correctly (e.g., if the dataset is split in multiple files, the
owl:imports statement is not replicated on each file) and this greatly reduces
its potential;

– A significant number of IRIs are not accessible anymore. This is an important
problem because the Semantic Web encourages ontological reuse as a basic
principle, and if an ontology becomes unavailable then all documents that
link to it will be unable to access its knowledge.

Some of these issues are already being studied in the community (for instance
the rare usage of owl:imports is shown in [10], and the problem of non-accessible
IRIs is well-known [20]) while others are not well-studied yet. Possible directions
for future work could aim at researching techniques to selectively pick the “best”
remote ontologies to avoid stumbling in errors. Also, it would be interesting to
design methods to try to recover from situations where the documents do not
point to any remote ontology by considering, for instance, ontologies that were
linked for similar data. All these techniques could be potentially useful to make
the Semantic Web more resilient to adverse situations. With this paper, we
provided a first snapshot of the current state of reasoning on the Web of Data.
Our findings are encouraging, and our hope is that they stimulate the community
to reflect on the adoption of current semantic technologies.

References

1. Antoniou, G., van Harmelen, F.: Web ontology language: OWL. In: Staab, S.,
Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 91–110. Springer, Heidelberg
(2009). doi:10.1007/978-3-540-92673-3 4

2. Baclawski, K., Kokar, M.M., Waldinger, R., Kogut, P.A.: Consistency checking of
semantic web ontologies. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 454–459. Springer, Heidelberg (2002). doi:10.1007/3-540-48005-6 40

3. Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F.,
Snoek, C., Wijshoff, H.: A medium-scale distributed system for computer science
research: infrastructure for the long term. Computer 49(5), 54–63 (2016)

http://dx.doi.org/10.1007/978-3-540-92673-3_4
http://dx.doi.org/10.1007/3-540-48005-6_40

An Empirical Study on How the Distribution 85

4. Bechhofer, S., Volz, R.: Patching syntax in OWL ontologies. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 668–682.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30475-3 46

5. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD
Laundromat: a uniform way of publishing other people’s dirty data. In: Mika, P.,
Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P.,
Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 213–228.
Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 14

6. Behkamal, B., Kahani, M., Bagheri, E., Jeremic, Z.: A metrics-driven approach for
quality assessment of linked open data. J. Theor. Appl. Electron. Commer. Res.
9(2), 64–79 (2014)

7. Berners-Lee, T.: Linked data-design issues (2006). http://www.w3.org/
DesignIssues/LinkedData.html

8. Brickley, D., Guha, R.V.: RDF Schema 1.1. W3C Recommendation (2014)
9. Cochran, W.G.: Sampling Techniques. Wiley, New York (2007)

10. Delbru, R., Tummarello, G., Polleres, A.: Context-dependent OWL reasoning in
Sindice - experiences and lessons learnt. In: Rudolph, S., Gutierrez, C. (eds.)
RR 2011. LNCS, vol. 6902, pp. 46–60. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23580-1 5

11. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web:
a survey. In: Ontologies, pp. 79–113 (2007)

12. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005).
doi:10.1007/11574620 14

13. Fallside, D.C., Walmsley, P.: XML schema part 0: primer. W3C Recommendation
(2004)

14. Feeney, K., Mendel-Gleason, G., Brennan, R.: Linked data schemata: fixing
unsound foundations. Semant. Web J. Spec. Issue Qual. Manag. Semant. Web
Assets 1–23 (2015)

15. Glimm, B., Hogan, A., Krötzsch, M., Polleres, A.: OWL: yet to arrive on the web
of data? In: WWW 2012 Workshop on Linked Data on the Web, vol. 937 (2012).
http://CEUR-WS.org

16. Gonçalves, R.S., Matentzoglu, N., Parsia, B., Sattler, U.: The empirical robustness
of description logic classification. In: Proceedings of the 2013th International Con-
ference on Posters & Demonstrations Track, vol. 1035, pp. 277–280 (2013). http://
CEUR-WS.org

17. Grau, B.C., Parsia, B., Sirin, E.: Combining OWL ontologies using ε-connections.
J. Web Semant. 4(1), 40–59 (2006)

18. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2
web ontology language primer. W3C Recommendation (2009)

19. Jackson, S.L.: Research Methods and Statistics: A Critical Thinking Approach.
Cengage Learning, Boston (2015)

20. Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked
data dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S.
(eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38288-8 15

21. Klyne, G., Carroll, J.J., McBride, B.: RDF 1.1 concepts and abstract syntax. W3C
Recommendation (2014)

http://dx.doi.org/10.1007/978-3-540-30475-3_46
http://dx.doi.org/10.1007/978-3-319-11964-9_14
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://dx.doi.org/10.1007/978-3-642-23580-1_5
http://dx.doi.org/10.1007/978-3-642-23580-1_5
http://dx.doi.org/10.1007/11574620_14
http://CEUR-WS.org
http://CEUR-WS.org
http://CEUR-WS.org
http://dx.doi.org/10.1007/978-3-642-38288-8_15

86 H.R. Bazoobandi et al.

22. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of
WWW (2014)

23. Matentzoglu, N., Bail, S., Parsia, B.: A snapshot of the OWL web. In: Alani, H.,
et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 331–346. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-41335-3 21

24. McBride, B.: Jena: a semantic web toolkit. IEEE Internet Comput. 6(6), 55–59
(2002)

25. Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and
fusion. In: Proceedings of Joint EDBT/ICDT Workshops, pp. 116–123. EDBT-
ICDT (2012)

26. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In: Proceedings
of AAAI, pp. 129–137 (2014)

27. Mühleisen, H., Bizer, C.: Web data commons-extracting structured data from two
large web corpora. In: Proceedings of the Workshop Linked Data Web, vol. 937,
pp. 133–145 (2012)

28. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings
of WWW, pp. 633–640 (2005)

29. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5, 51–53 (2007)

30. Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented datalog materialization for
large knowledge graphs. In: Proceedings of AAAI, pp. 258–264 (2016)

31. Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: WebPIE: a web-
scale parallel inference engine using MapReduce. J. Web Semant. 10, 59–75 (2012)

32. Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 682–694. Springer, Heidelberg
(2006). doi:10.1007/11926078 49

33. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2015)

http://dx.doi.org/10.1007/978-3-642-41335-3_21
http://dx.doi.org/10.1007/11926078_49

Expressive Stream Reasoning with Laser

Hamid R. Bazoobandi1, Harald Beck2(B), and Jacopo Urbani1

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
h.bazoubandi@vu.nl, jacopo@cs.vu.nl

2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
beck@kr.tuwien.ac.at

Abstract. An increasing number of use cases require a timely extrac-
tion of non-trivial knowledge from semantically annotated data streams,
especially on the Web and for the Internet of Things (IoT). Often, this
extraction requires expressive reasoning, which is challenging to com-
pute on large streams. We propose Laser, a new reasoner that sup-
ports a pragmatic, non-trivial fragment of the logic LARS which extends
Answer Set Programming (ASP) for streams. At its core, Laser imple-
ments a novel evaluation procedure which annotates formulae to avoid
the re-computation of duplicates at multiple time points. This proce-
dure, combined with a judicious implementation of the LARS operators,
is responsible for significantly better runtimes than the ones of other
state-of-the-art systems like C-SPARQL and CQELS, or an implemen-
tation of LARS which runs on the ASP solver Clingo. This enables the
application of expressive logic-based reasoning to large streams and opens
the door to a wider range of stream reasoning use cases.

1 Introduction

The Web and the emerging Internet of Things (IoT) are highly dynamic envi-
ronments where streams of data are valuable sources of knowledge for many
use cases, like traffic monitoring, crowd control, security, or autonomous vehicle
control. In this context, reasoning can be applied to extract implicit knowledge
from the stream. For instance, reasoning can be applied to detect anomalies in
the flow of information, and provide clear explanations that can guide a prompt
understanding of the situation.

Problem. Reasoning on data streams should be done in a timely manner [11,21].
This task is challenging for several reasons: First, expressive reasoning that sup-
ports features for a fine-grained control of temporal information may come with
an unfavourable computational complexity. This clashes with the requirement
of a reactive system that shall work in a highly dynamic environment. Second,
the continuous flow of incoming data calls for incremental evaluation techniques

This work is partially funded by the Dutch public-private research community COM-
MIT/ and NWOVENI project 639.021.335 and by the Austrian Science Fund (FWF)
projects P26471 and W1255-N23.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 87–103, 2017.
DOI: 10.1007/978-3-319-68288-4 6

88 H.R. Bazoobandi et al.

that go beyond repeated querying and re-computation. Third, there is no con-
sensus on the formal semantics for the processing of streams which hinders a
meaningful and fair comparison between stream reasoners.

Despite recent substantial progress in the development of stream reasoners,
to the best of our knowledge there is still no reasoning system that addresses
all three challenges. Some systems can handle large streams but do not support
expressive temporal reasoning features [3,5,17,19]. Other approaches focus on
the formal semantics but do not provide implementations [14]. Finally, some
systems implemented only a particular rule set and cannot be easily general-
ized [16,27].

Contribution. We tackle the above challenges with the following contributions.

• We present Laser, a novel stream reasoning system based the recent rule-
based framework LARS [9], which extends Answer Set Programming (ASP)
for stream reasoning. Programs are sets of rules which are constructed on
formulae that contain window operators and temporal operators. Thereby,
Laser has a fully declarative semantics amenable for formal comparison.

• To address the trade-off between expressiveness and data throughput, we
employ a tractable fragment of LARS that ensures uniqueness of models.
Thus, in addition to typical operators and window functions, Laser also sup-
ports operators such as �, which enforces the validity over intervals of time
points, and @, which is useful to state or retrieve specific time points at which
atoms hold.

• We provide a novel evaluation technique which annotates formulae with two
time markers. When a grounding of a formula ϕ is derived, it is annotated
with an interval [c, h] from a consideration time c to a horizon time h, during
which ϕ is guaranteed to hold. By efficiently propagating and removing these
annotations, we obtain an incremental model update that may avoid many
unnecessary re-computations. Also, these annotations enable us to imple-
ment a technique similar to the Semi-Naive Evaluation (SNE) of Datalog
programs [1] to reduce duplicate derivations.

• We present an empirical comparison of the performance of Laser against the
state-of-the-art engines, i.e., C-SPARQL [5] and CQELS [19] using micro-
benchmarks and a more complex program. We also compare Laser with an
open source implementation of LARS which is based on the ASP solver Clingo
to test operators not supported by the other engines.

Our empirical results are encouraging as they show that Laser outperforms the
other systems, especially with large windows where our incremental approach
is beneficial. This allows the application of expressive logic-based reasoning to
large streams and to a wider range of use cases. To the best of our knowledge, no
comparable stream reasoning system that combines similar expressiveness with
efficient computation exists to date. See [7] for an extended version of this paper.

Expressive Stream Reasoning with Laser 89

2 Theoretical Background: LARS

As formal foundation, we use the logic-based framework LARS [9]. We focus
on a pragmatic fragment called Plain LARS first mentioned in [8]. We assume
the reader is familiar with basic notions, in particular those of logic program-
ming. Throughout, we distinguish extensional atoms AE for input and inten-
sional atoms AI for derivations. By A = AE ∪ AI , we denote the set of atoms.
Basic arithmetic operations and comparisons are assumed to be given in form of
designated extensional predicates, but written with infix notation as usual. We
use upper case letters X,Y,Z to denote variables, lower case letters x, y, . . . are
for constants, and p, a, b, q for predicates for atoms.

Definition 1 (Stream). A stream S = (T, v) consists of a timeline T , which
is a closed interval in N, and an evaluation function v : N �→ 2A. The elements
t ∈ T are called time points.

Intuitively, a stream S associates with each time point a set of atoms. We call S
a data stream, if it contains only extensional atoms. To cope with the amount of
data, one usually considers only recent atoms. Let S = (T, v) and S′ = (T ′, v′)
be two streams s.t. S′ ⊆ S, i.e., T ′ ⊆ T and v′(t′) ⊆ v(t′) for all t′ ∈ T ′. Then S′

is called a window of S.

Definition 2 (Window function). Any (computable) function w that returns,
given a stream S = (T, v) and a time point t ∈ N, a window S′ of S, is called a
window function.

In this work, we focus on two prominent sliding windows that select recent
atoms based on time, respectively counting. A sliding time-based window selects
all atoms appearing in the last n time points.

Definition 3 (Sliding Time-based Window). Let S = (T, v) be a stream,
t ∈ T = [t1, t2] and let n ∈ N, n ≥ 0. Then the sliding time-based win-
dow function τn (for size n) is τn(S, t) = (T ′, v|T ′), where T ′ = [t′, t] and
t′ = max{t1, t − n}.
Similarly, a sliding tuple-based window selects the last n tuples. We define the
tuple size |S| of stream S = (T, v) as |{(a, t) | t ∈ T, a ∈ v(t)}|.
Definition 4 (Sliding Tuple-based Window). Let S = (T, v) be a stream,
t ∈ T = [t1, t2] and let n ∈ N, n ≥ 1. The sliding tuple-based window function
#n (for size n) is

#n(S, t) =

{
τt−t′(S, t) if |τt−t′(S, t)| ≤ n,

S′ else,

where t′ = max({u ∈ T | |τt−u(S, t)| ≥ n} ∪ {t1}) and S′ = ([t′, t], v′) has tuple
size |S′| = n such that v′(u) = v(u) for all u ∈ [t′ + 1, t] and v′(t′) ⊆ v(t′).

90 H.R. Bazoobandi et al.

35

•

36

•

37

•

38

•

39

•

40

•

41

•

42

•

36 38 40

{a(x1, y)} {a(x2, y), b(y, z)} {a(x3, y)}

Fig. 1. A time (resp. tuple) window of size 3 at t = 41

We refer to these windows simply by time windows, resp. tuple windows. Note
that for time windows, we allow size n = 0, which selects all atoms at the current
time point, while the tuple window must select at least one atom, hence n ≥ 1.

Note that we associate with each time point a set of atoms. Thus, for the
tuple-based window, if [t′, t] is the smallest timeline in which n atoms are found,
then in general one might have to delete arbitrary atoms at time point t′ such
that exactly n remain [t′, t].

Example 1. Consider a data stream D = (T, vD) as shown in Fig. 1, where
T = [35, 42] and vD = {36 �→ {a(x1, y)}, 38 �→ {a(x2, y), b(y, z)}, 40 �→
{a(x3, y)}}. The indicated time window of size 3 has timeline [38, 41] and only
contains the last three atoms. Thus, the window is also the tuple window of size
3 at 40. Notably, [38, 41] is also the temporal extent of the tuple window of size
2, for which there are two options, dropping either a(x2, y) or b(y, z) at time 38.

Although Definition 4 introduces nondeterminism, one may assume a determin-
istic function based on the implementation at hand. Here, we assume data is
arriving in a strict order from which a natural deterministic tuple window fol-
lows.

Window operators �w. A window function w can be accessed in rules by
window operators. That is to say, an expression �wα has the effect that α
is evaluated on the “snapshot” of the data stream delivered by its associated
window function w. Within the selected snapshot, LARS allows to control the
temporal semantics with further modalities, as will be explained below.

2.1 Plain LARS Programs

Plain LARS programs as in [8] extend normal logic programs. We restrict here
to positive programs, i.e., without negation.

Syntax. We define the set A+ of extended atoms by the grammar

a | @ta | �w@ta | �w�a | �w�a ,

where a ∈ A and t ∈ N is a time point. The expressions of form @ta are called
@-atoms. Furthermore, if � ∈ {@t,�,�}, �a is a quantified atom and �w � a a
window atom. We write �n instead of �τn for the window operator using a time
window function, and �#n uses the tuple window of size n.

A rule r is of the form α ← β1, . . . , βn, where H (r) = α is the head and
B(r) = {β1, . . . , βn} is the body of r. The head α is of form a or @ta, where

Expressive Stream Reasoning with Laser 91

a ∈ AI , and each βi is an extended atom. A (positive plain) program P is a set
of rules. We say an extended atom β occurs in a program P if β ∈ {H (r)} ∪ B(r)
for some rule r ∈ P .

Example 2 (cont’d). The rule r = q(X,Y,Z) ← �3�a(X,Y),�#3�b(Y,Z)
expresses a query with a join over predicates a and b in the standard snapshot
semantics: If for some variable substitutions for X,Y,Z, a(X,Y) holds some time
during the last 3 time points and b(Y,Z) at some time point in the window of
the last 3 tuples, then q(X,Y,Z) is must be inferred.

We identify rules α ← β1, . . . , βn with implications β1 ∧ · · · ∧ βn → α, thus
obtaining by them and their subexpressions the set F of formulae.

Semantics. We first define the semantics of ground programs, i.e., programs
without variables, based on a structure M = 〈S,W,B〉, where S = (T, v) is
a stream, W a set of window functions, and B a static set of atoms called
background data. Throughout, we use W = {τn,#n | n ∈ N}. We define when
extended atoms β (and its subformulae) hold in a structure M at a given time
point t ∈ T as follows. Let a ∈ A and ϕ be a quantified atom. Then,

M, t � a iff a ∈ v(t) or a ∈ B,
M, t � �a iff M, t′ � a for some t′ ∈ T,
M, t � �a iff M, t′ � a for all t′ ∈ T,
M, t � @t′a iff M, t′ � a and t′ ∈ T,
M, t � �wϕ iff M ′, t � ϕ, where M ′ = 〈w(S, t),W,B〉.

For a data stream D = (T, vD), any stream I = (T, v) ⊇ D that coincides with D
on AE is an interpretation stream for D, and a structure M = 〈I,W,B〉 an inter-
pretation for D. Satisfaction by M at t ∈ T is as follows: For a rule r of form
α ← β1, . . . , βn, we first define M, t |= B(r) iff M, t � βi for all i ∈ {1, . . . , n}.
Then, M, t |= r iff M, t � α or M, t �|= B(r); M is a model of program P (for D)
at time t, denoted M, t |= P , if M, t |= r for all r ∈ P ; and M is minimal, if in
addition no model M ′ = 〈S′,W,B〉 �= M of P exists s.t. S′ = (T, v′) and v′ ⊆ v.

Definition 5 (Answer Stream). An interpretation stream I is an answer
stream of program P for the data stream D ⊆ I at time t, if M = 〈I,W,B〉
is a minimal model of the reduct PM,t = {r ∈ P | M, t |= B(r)}.
Note that using tuple windows over intensional data seems neither useful nor
intuitive. For instance, program P = {a ← �#1�b} is inconsistent for a data
stream D at time t, where the last atom is b, occurring at time t−1: by deriving a
for time t, suddenly a would be the last tuple.

Proposition 1. Let P be a positive plain LARS program that employs only
time windows, and tuple window operators only over extensional atoms. Then, P
always has a unique answer stream.

92 H.R. Bazoobandi et al.

Non-ground programs. We obtain the semantics for non-ground programs in a
straightforward way by considering rules with variables as schematic descriptions
of respective ground instantiations. Substitutions σ are defined as usual.

Example 3 (cont’d). Consider the ground program P obtained from rule r
of Example 2 by replacing variables with constants from the data stream D in
Example 1:

r1 : q(x1, y, z) ← �3�a(x1, y),�#3�b(y, z)
r2 : q(x2, y, z) ← �3�a(x2, y),�#3�b(y, z)
r3 : q(x3, y, z) ← �3�a(x3, y),�#3�b(y, z)

At time t = 41, the time window �3 and the tuple window �#3 are identical, as
indicated in Fig. 1, and contain atoms a(x2, y), b(y, z), and a(x3, y). Consider rule
r1. Window atom �3�a(x1, y) does no hold, since there is not a time point t
in the selected window such that a(x1, y) holds at t. However, the remaining
window atoms in P all holds, hence the body of rules r2 and r3 hold. Thus, a
model of P (for D at time 41) must include q(x2, y, z) and q(x3, y, z). We obtain
the answer stream D ∪ (T, {41 �→ {q(x2, y, z), q(x3, y, z)}}).

Definition 6 (Output). Let I = (T, v) be the answer stream of program P (for
a data stream D) at time t. Then, the output (of P for D at t) is defined by
v(t) ∩ AI , i.e., the intensional atoms that hold at t.

Given a data stream D = (T, v), where T = [t1, tn], we obtain an output stream
S = (T, v) by the output at consecutive outputs, i.e., for each t′ ∈ T , v(t′) is the
output for (T ′, v|T ′), where T ′ = [t1, t′]. Thus, an output stream is the formal
description of the sequence of temporary valid derivations based on a sequence
of answer streams over a timeline. Our goal is to compute it efficiently.

Example 4 (cont’d). Continuing Example 3, the output of P for D at 41
is {q(x2, y, z), q(x3, y, z)}. The output stream S = (T, v) is given by v =
{t �→ {q(x1, y, z), q(x2, y, z) | t = 38, 39} ∪ {t �→ {q(x2, y, z), q(x3, y, z)} | t =
40, 41, 42}.

3 Incremental Evaluation of LARS Programs

In this section, we describe the efficient output stream computation of Laser. The
incremental procedure consists in continuously grounding and then annotating
formulae with two time points that indicate when and for how long formulae hold.
We thus address two important sources of inefficiency: grounding (including time
variables) and model computation.

Our work deliberately focuses on exploiting purely sliding windows. The
longer a (potential) step size [9], the less incremental reasoning can be applied.
In the extreme case of a tumbling window (i.e., where the window size equals
the step size) there is nothing that can be evaluated incrementally. However, as
long as the two subsequent windows share some data, the incremental algorithm
can be beneficial. We now give the intuition of our approach in an Example.

Expressive Stream Reasoning with Laser 93

Example 5 (cont’d). Consider again the stream of Fig. 1, and assume that
we are at t = 36, where a(x1, y) appears as first atom in the stream. In rule
r = q(X,Y,Z) ← �3�a(X,Y),�#3�b(Y,Z), the atom matches the window
atom α = �3�a(X,Y), and we obtain a substitution σ = {X �→ x1, Y �→ y}
under which a(X,Y) holds at time 36. However, for α, we can use σ for the next
3 time points due to the size of the window and operator �. That is, we start
considering σ at time 36 and we have a guarantee that the grounding ασ (written
postfix) holds until time point 39, which we call the horizon time. We thus write
ασ[36,39] for the annotated ground formula, which states that �3�a(x1, y) holds
at all evaluation t ∈ [36, 39], i.e., at t ∈ [37, 39], the neither the grounding nor
the truth of �3�a(x1, y) needs to be re-derived.

Definition 7. Let α ∈ F be a formula, and c, h ∈ N such that c ≤ h, and σ
a substitution. Then, ασ denotes the formula which replaces variables in α by
constants due to σ; ασ[c,h] is called an annotated formula, c is called the con-
sideration time and h the horizon time, and the interval [c, h] the annotation.

As illustrated in Example 5, the intended meaning of an annotated formula
ασ[c,h] is that formula ασ holds throughout the interval [c, h]. Annotations might
overlap.

Example 6. Consider an atom a(y) streams at time points 5 and 8. Then, for
the formula α = �9�a(X), we get the substitution σ = {X �→ y} and an
annotation a1 = [5, 14] at t = 5, and then a2 = [8, 17] at t = 8. That is to say,
ασ = �9�a(y) holds at all time points [5, 14] due to annotation a1 and at time
points [8, 17] due to a2, and for each t ∈ [8, 14] it suffices to retrieve one of these
annotations to conclude that ασ holds at t.

We note that the tuple window can be processed dually by additionally introduc-
ing a consideration count c# and a horizon count h#, i.e., an annotated formula
ασ[c#,h#] would indicate that ασ holds when the number of atoms received so far
is between c# and h#. In essence, the following mechanisms work analogously
for time- and tuple-based annotations. We thus limit our presentation to the
time-based case for the sake of simplification.

The consideration time allows us to implement a technique similar to semi-
naive evaluation (SNE) (see, e.g., VLog [26], RDFox [24], Datalog [1]) which
increases efficiency by preventing duplicate derivations. Conceptually, SNE is a
method which simply imposes that at least one formula that instantiates the
body should be derived during or after the previous execution of the rule, oth-
erwise the rule would surely derive a duplicate derivation. Based on the horizon
time, on the other hand, we can quickly determine which formulae should be
maintained in the working memory and which ones can be erased because they
no longer hold. We delete an annotated formula ασ[c,h], as soon as the current
time t exceeds h. This way of incrementally adding new groundings and immedi-
ately removing outdated is more efficient than processing all possible groundings.
In particular, it is more efficient to maintain duplicates with temporal overlaps
as in Example 6 than looking up existing groundings and merging their intervals.

94 H.R. Bazoobandi et al.

Algorithm 1. Evaluation Eval . INPUT: Data stream D=(T, vD), where
T = [t1, tn]; program P . OUTPUT: Output stream of P for D.
1 S0, I0 ← ∅; (set of ground formulae)
2 for ti ∈ 〈t1, . . . , tn〉 do
3 Si ← Si−1 ∪ { a[ti,ti] | a ∈ vD(ti) };
4 Ii ← Si ∪ { a[c,h] | a[c,h] ∈ Ii−1 ∧ ti ≤ h };
5 while True do
6 I ← Ii;
7 for α ← β1, . . . , βn ∈ P do
8 for j ∈ {1, . . . , n} do Ii ← Ii ∪ grd(βj , I, t1, ti);
9 X ← {ασ[max(c1,...,cn),min(h1,...,hn)] | βσ[c1,h1], . . . , βσ[cn,hn] ∈ Ii

10 ∧ c1, . . . , cn ≤ ti ∧∨n
j=1(cj=ti)};

11 Ii ← Ii ∪ X ∪ {ασ[ti,ti] | @Uα(σ ∪ {U
→ ti})[ti,h] ∈ Ii};
12 end
13 if Ii = I break;

14 end

15 v(ti) = {a ∈ AI | a[c,h] ∈ Ii ∧ c ≤ ti ≤ h}; (can be streamed out if needed)

16 end
17 return S = (T, v)

Algorithm 1. We report in Algorithm1 the main reasoning algorithm per-
formed by the system. Sets I1, . . . , In contain the annotated formulae at times
t1, . . . , tn; S0, I0 are convenience sets necessary for the very first iteration. At
the beginning of each time point ti we first collect in line 3 all facts from the
input stream. Each atom a ∈ v(ti) is annotated with [ti, ti], i.e., its validity will
expire to hold already at the next time point. In line 4, we expire previous con-
clusions based on horizon times, i.e., among annotated intensional atoms a[c,h]

only those are retained where ti ≤ h. Note that we do not delete atoms from the
data stream.

In lines 5–14, the algorithm performs a fixed-point computation as usual
where all rules are executed until nothing else can be derived (line 13). Lines 8–
11 describe the physical execution of the rules and the materialization of the new
derivations. First, line 8 collects all annotated groundings for extended atoms
from the body of the considered rule. We discuss the details of this underlying
function grd later (see Algorithm 2). In line 9 we then consider any substitution
for the body that currently holds (c1, . . . , cn ≤ ti). In order to produce a new
derivation, we additionally require at least one formula was not considered in
previous time points (

∨n
j=1(cj = ti)).

The last condition implements a weak version of SNE, which we call sSNE .
In fact, it only avoids duplicates between time points and not within the same
time point. In order to capture also this last source of duplicates, we would need
to add an additional internal counter to track multiple executions of the same
rule. We decided not to implement this to limit the space overhead.

Expressive Stream Reasoning with Laser 95

Algorithm 2. Function grd . INPUT: Formula α, database I, beginning
time point tb, end time point te. OUTPUT: Annotated groundings for α.
1 switch α do
2 case p(x) : return {ασ[c,h] | ασ[c,h] ∈ I}
3 case �nβ : S ← grd(β, I, max(0, te − n), te);
4 return S ∪ {ασ[c,min(c+n,h)] | βσ[c,h] ∈ S}
5 case �β : S ← grd(β, I, tb, te); return S ∪ {ασ[c,∞] | βσ[c,h] ∈ S}
6 case �β : S ← grd(β, I, tb, te);
7 return S ∪ {ασ[te,te] | βσ[c1,h1], . . . , βσ[cn,hn] ∈ S ∧
8 ci ≤ ci+1, hi ≥ ci+1 ∀1 ≤ i < n ∧
9 c1 ≤ tb ∧ te ≤ hn}}

10 case @Uβ : S ← grd(β, I, tb, te);
11 return S ∪ {ασ[c,h] | ασ[c,h] ∈ I} ∪
12 {ασ′

[c,∞] | βσ[c,h] ∈ S ∧ u ∈ [c, h] ∧ u ∈ [tb, te] ∧ σ′ = σ ∪ {U
→ u}}
13 end

Matching substitutions in line 9 then are assigned to the head, where variables
which are not used can be dropped as usual. Notice that consideration/horizon
time for the ground head atom is given by intersection of all consideration/hori-
zon times of the body atoms, i.e., the guarantee for the derivations is in the
longest interval for which the body is guaranteed to hold. If the head is of form
@Uα and holds now, i.e., at ti, we also add an entry for α to Ii (line 11). After
the fixed-point computation has terminated (line 13), we can either stream the
output at ti, i.e., v′(ti) (line 15), or store it for a later output of the answer
stream S after processing the entire timeline (line 17).

Algorithm 2. The goal of function grd is to annotate and return all ground
formulae which hold now or in the future. Depending on the input formula α,
the algorithm might perform some recursive calls to retrieve annotated ground
subformulae. In particular, this function determines the interval [c, h] from a
consideration time c to a horizon time h during which a grounding holds. It is
precisely this annotation which allows us to perform an incremental computation
and avoid the re-calculation of the entire inference at any time point.

Function grd works by a case distinction on the form of the input formula α,
similarly as the entailment relation of the LARS semantics (Sect. 2). We explain
the first three cases directly based on an example.

Example 7 (cont’d). As in Example 6, assume α = �9�a(X) and input atom
a(y) at time 5. Towards annotated groundings of α, we first obtain the substitu-
tion σ = {X �→ y} which can be guaranteed only for time point c = 5 for atom
a(X), i.e., a(X)σ[5,5] = a(y)[5,5]. Based on this, we eventually want to compute
ασ[5,14]. This is done in two steps. First, the subformula β = �a(X) is agnostic
about the timeline, and its grounding βσ gets an annotation [5,∞]. The intuition
behind setting the horizon time to ∞ at this point is that �β will always hold as
soon β holds once. The restriction to a specific timeline is then carried out when

96 H.R. Bazoobandi et al.

βσ[5,∞] is handled in case �9β, which limits the horizon to min(c + n,∞) = 14;
any horizon time h received for β that is smaller than 14 would remain.

Thus, the conceptual approach of Algorithm2 is to obtain the intervals when
a subformula holds and adjust the temporal guarantee either by extending or
restricting the annotation. Since the operator � evaluates intervals, we have to
include the boundaries of the window. That is, if a formula �n�p(x) must be
grounded, we call grd in Algorithm 1 for the entire timeline [t1, ti], where ti is
the current evaluation time. Thus, we get tb = t1, te = ti initially. However, in
order for �p(x) to hold under a substitution σ within the window of the last n
time points, p(x)σ must hold at every time point [t − n, t]. Thus, the recursive
call for �nβ limits the timeline to [te − n, te]. Then, the case �β seeks to find a
sequence of ordered, overlapping annotations [c1, h1], . . . , [cn, hn] that subsumes
the considered interval [tb, te]. In this case, �β holds at te, but it cannot be
guaranteed to hold longer. Thus, when ασ[te,te] is returned to the case for �n,
the horizon time will not be extended.

Example 8 (cont’d). Consider α′ = �2�a(X). Assume that in the timeline
[0, 7] at time points t = 5, 6, 7, we received the input a(y), hence �2�a(y) has
to hold at t = 7. When we call (in Algorithm1) grd(α′, I, 0, 7), where I =
{a(y)[5,5], a(y)[6,6], a(y)[7,7]}, the case for �2β will call grd(�a(X), I, 5, 7). The
sequence of groundings as listed in I subsumes [5, 7], i.e., the scope given by
tb = 5 and te = 7, and thus the case for � returns �a(y)[7,7]. The annotation
remains for α′, i.e., grd(α′, I, 0, 7) = {�2�a(y)[7,7]}. Note when at time 8 atom
a(y) does not hold, neither does �2�a(y). Hence, in contrast to �, the horizon
time is not extended for �.

With respect to the temporal aspect, the case for @ works similarly as the one
for �, since both operators amount to existential quantification within the time-
line. In addition �, the @-operator also includes in the time point substitution
U �→ u where the subformula β holds (line 12). In Line 11, we additionally take
from I the explicit derivations for @-atoms derived so far.

Proposition 2. For every data stream D and program P , Algorithm1 termi-
nates.

Theorem 1. Let P be a positive plain LARS program, D be a data stream with
timeline T = [t1, tn]. Then, S is the output stream of P for D iff S = Eval(D,P).

Tuple-based windows. As noted earlier, our annotation-based approach based
on consideration time c and horizon time h works analogously from the tuple-
based window by additionally working with a consideration count c# and a
horizon count h# for every ground formula. Each formula can then hold and
expire in only one of these dimensions, or both of them at the same time.

Example 9. Consider again rule r from Example 5. When b(y, z) streams
in at time 38 as third atom, we obtain an annotated ground formula
�#3�b(y, z)[3#,5#]. That is, when the fourth and fifth atoms stream in, regard-
less at which time points, �#3�b(y, z) is still guaranteed to hold.

Expressive Stream Reasoning with Laser 97

Adding negation. Notably, our approach can be extended for handling nega-
tion as well. In plain LARS as defined in [8], extended atoms β from rule bod-
ies may occur under negation. We can, however, instead assume negation to
occur directly in front of atoms: Due to the FLP-semantics [13] of LARS [9],
where “not” can be identified with ¬, we get the following equivalences for both
w ∈ {τn,#n}: ¬ �w �a(x) ≡ �w�¬a(x) and ¬ �w �a(x) ≡ �w�¬a(x). The
case is more subtle for @, since @t¬a(x) implies that a(x) is false. However, due
to the definition of @, ¬@ta(x) can also hold if t is not contained in the consid-
ered timeline. Thus, the equivalence ¬ �w @ta(x) ≡ �w@t¬a(x) (necessarily)
holds only if the timeline contains t. This assumption is safe when we assume
that the timeline always covers all considered time points.

Our approach extends naturally to a variant of plain LARS where negation
appears only in front of atoms: In addition to the base case p(x) in Line 2 in
Algorithm 2 we must add a case for a negative literal � = ¬p(x). Using standard
conventions, we then have to consider all possible substitutions σ for variables
in x that occur positively in the same rule r, such that p(x)σ does not hold.

We obtain a fragment that is significantly more expressive, but results in
having multiple answer streams in general: note that plain LARS essentially sub-
sumes normal logic programs, and the program a ← not b; b ← not a has two
answer sets {a} and {b}. Analogously, we get multiple answer streams by allow-
ing such loops through negation. To retain both unique model semantics and
tractability, we propose restricting to stratified negation, i.e., allowing negation
but no loops through negation. Then, we can add to Algorithm1 an additional
for-loop around lines 6–13 to compute the answer stream stratum by stratum
bottom up as usual. In fact, our implementation makes use of this extension.

4 Evaluation

We evaluate the performance of Laser1 on two dimensions: First, we mea-
sure the impact of our incremental procedures on several operators by micro-
benchmarking the system on special single-rule programs. Second, we compare
the performance against the state of the art on more realistic programs.

Streams. Unfortunately, we could not use some well-known stream reasoning
benchmarks (e.g.,SRBench [28],CSRBench [12]LSBench [20], andCityBench [2])
because (i) we need to manually change the window sizes and the speed of stream
in order to benchmark our incremental approach, but this is not often supported in
these benchmarks; (ii) in order to be effective, a micro-benchmark needs to intro-
duce as little overhead as possible; (iii) we needed to make sure that all reasoners
return the same results for a fair comparison, and this was easier with a custom
data generator that we wrote for this purpose.

State-of-the-art. In line with current literature, we selected C-SPARQL [5],
and CQELS [19] as our main competitors. For LARS operators that are not
supported by these engines, we compare Laser with Ticker [10], another recent
1 https://github.com/karmaresearch/Laser.

https://github.com/karmaresearch/Laser

98 H.R. Bazoobandi et al.

engine for (non-stratified) plain LARS programs.2 Ticker comes with two reason-
ing modes, a fully incremental one, and another one that uses an ASP encoding
which is then evaluated by the ASP solver Clingo [15]. The incremental reason-
ing mode was not available at the time of this evaluation. Thus, our evaluation
against Ticker concerns only the reasoning mode which is based on Clingo.

Data generation. Unfortunately, each engine has its own routines for reading
the input. As a result, we were compelled to develop custom data generators
to guarantee fairness. A key problem is that CQELS processes every new data
item immediately after the arrival in contrast to Laser and C-SPARQL that
process them in batches. Hence, to control the number of triples that stream
into CQELS, and make sure that all engines receive equal number of triples at
every time point, we configured each data generator to issue a triple at calculated
intervals. For this same reason, we report the evaluation results as the average
runtime per input triple and not runtime per time point.

Experimental platform. The experiments were performed on a machine with
32-core Intel(R) Xeon(R) 2.60 GHz and 256 G of memory. We used Java 1.8 for
C-SPARQL and CQELS and PyPy 5.8 for Laser. We set the initial Java heap
size to 20 G and increase the maximum heap size to 80 G to minimize potential
negative effects of JVM garbage collection. For Ticker we used Clingo 5.1.0.

Window-Diamond. The standard snapshot semantics employed in C-SPARQL
and CQELS selects recent data and then abstracts away the timestamps. In
LARS, this amounts to using � to existentially quantify within a window. Here,
we evaluate how efficiently each engine can evaluate this case.

We use the rule q(A,B) ← �n�p(A,B), where a predicate of form r(A,B)
corresponds to a triple 〈A, r,B〉. The window size and the stream rate (i.e. the
number of atoms streaming in the system at every time point) are the experiment
parameters. We create a number of artificial streams which produces a series of
unique atoms with predicate p at different rates; we vary window sizes from 1 s
to 80 s and the stream rate from 200 to 800 triples per second (t/s).

Figure 2(a) reports the average runtime per input triple for each engine. The
figure shows that Laser is faster than the other engines. Furthermore, we observe
that average runtime of Laser grows significantly slower with the window size as
well as with the stream rate. Here, incremental reasoning clearly is beneficial.

Window-Box. The Box operator is not available in C-SPARQL and CQELS.
The semantics of � (as well as @) may be encoded using explicit timestamps
in additional triples but the languages themselves do not directly support it.
Therefore, we evaluate the performance of Laser against Ticker. Similar to the
experiments with ��, we employ the rule q(A,B) ← �n�p(A,B). The experi-
mental settings are similar to the previous experiment and results are reported in
Fig. 2(b), showing that Laser was orders of magnitude faster than Ticker. Notice
that with � we cannot extend the horizon time, therefore the incremental eval-
uation cannot be exploited. Thus, the performance gain stems from maintaining
existing substitutions instead of full recomputations.
2 https://github.com/hbeck/ticker.

https://github.com/hbeck/ticker

Expressive Stream Reasoning with Laser 99

Fig. 2. (a) Avg runtime of � (b) and of � on multiple window sizes and stream rates.

Data joins. We now focus on a rule which requires a data join. The computation
evaluates the rule q(A,C) ← �n�p(A,B),�n�p(B,C) with different window
sizes/stream rates. This program adds the crucial operation of performing a join.
From the results reported in Fig. 3(a), we observe the following:

Fig. 3. (a) Avg. runtimes when the rule requires a data join (b) Avg. runtimes with
multiple rules.

(i) Laser is significantly faster that CQELS and C-SPARQL with all configu-
rations of window and stream sizes. (ii) The difference becomes bigger for larger
window sizes for which the benefit of incremental evaluation increases.

We profiled the execution of Laser with the larger windows and stream sizes
and discovered that only about half of the time is spent on the join while half
is needed to return the results. We also performed an experiment where we
deactivated sSNE and did a normal join instead. We observed that sSNE is
slightly slower than the normal join with small window sizes, but as the size of
windows and stream rate increase, sSNE is significantly faster. In the best case,
the activation of sSNE produced a runtime which was 10 times lower.

Evaluating multiple rules. We now evaluate the performance of Laser in a
situation where the program contains multiple rules. In C-SPARQL or CQELS,
this translates to a scenario where there are multiple standing queries. To do so,

100 H.R. Bazoobandi et al.

we run a series of experiments where we changed the number of rules and the
window sizes (stream rate was constant at 200 t/s). To that end, we utilize the
same rule that we used in the data join benchmark with the same data generator.
Figure 3(b) presents the average runtime (per triple). We see that also in this
case Laser outperforms both C-SPARQL and CQELS, except in the very last
case where all systems did not finish on time.

Cooling use case. So far we have evaluated the performance using analytic
benchmarks. Now, we measure the performance of Laser with a program that
deals with a cooling system. The program of Fig. 4 determines based on a water
temperature stream whether the system is working under normal conditions, or
it is too hot and produces steam, or is too cold and the water is freezing.

The system also reports temperature readings that are either too high or too
low. Note that both @ (especially in the rule head) and � go beyond standard
stream reasoning features. It is not possible to directly translate this program
into C-SPARQL or CQELS queries, so we can only compare the performance of
Laser with Ticker. In this case, the data generator produces a sequence of random
temperature readings. Like before, we gradually increased the window size and
stream rate. The results, shown in Fig. 5, indicate that Laser is considerably
faster than Ticker and can maintain a good response time (≤100μs) even when
the readings come with high frequency (800 t/s).

r1 : @T steam(V) ← �n
@T temp(V), V ≥ 100 r6 : normal ← �n

�isLiquid

r2 : @T liquid(V) ← �n
@T temp(V), V ≥ 1, V < 100 r7 : freeze ← not alarm, notnormal

r3 : @T isSteam ← �n
@T steam(V) r8 : veryHot(T) ← �n

@T steam(V), V ≥ 150

r4 : @T isLiquid ← �n
@T liquid(V) r9 : veryCold(T) ← �n

@T liquid(V), V = 1

r5 : alarm ← �n
� isSteam

Fig. 4. Program for a cooling system monitoring.

Fig. 5. Average execution time per atom of Lars program in Fig. 4.

Expressive Stream Reasoning with Laser 101

5 Related Work and Conclusion

Related Work. The vision of stream reasoning was proposed by Della Valle
et al. in [11]. Since then, numerous publications have studied different aspects of
stream reasoning such as: extending SPARQL for stream querying [4,19], build-
ing stream reasoners [4,19,22], scalable stream reasoning [16], and ASP models
for stream reasoning [14]. However, due to lack of standardized formalism for
RDF stream processing, each of these engines provide a different set of features,
and results are hard to compare. A survey of these techniques is available at [21].
Our work differs in the sense that it is based on LARS [9], one of the first formal
semantics for stream reasoning with window operators.

An area closely related to stream processing is incremental reasoning, which
has been the subject of a large volume of research [23,27]. In this context, [6]
describes a technique to add expiration time to RDF triples to drop them when
the are no longer valid. Nonetheless, this approach does not support expressive
operations such as � and @ that our engine supports. In a similar way, [18]
proposes another incremental algorithm for processing streams which again boils
down to efficiently identifying expired information. We showed that our approach
outperforms their work. Next, [8] proposes a technique to incrementally update
an answer stream of a so-called s-stratified plain LARS program by extending
truth maintenance techniques. While [8] focuses on multiple models, we aim at
highly efficient reasoning for use cases that guarantee single models. Similarly,
the incremental reasoning mode of Ticker [10] focuses on model maintenance but
not on high performance. Stream reasoning based on ASP was also explored in
a probabilistic context [25] which however did not employ windows.

Conclusion. We presented Laser, a new stream reasoner that is built on the
rule-based framework LARS. Laser distinguishes itself by supporting expressive
reasoning without giving up efficient computation. Our implementation, freely
available, has competitive performance with the current state-of-the-art. This
indicates that expressive reasoning is possible also on highly dynamic streams
of data. Future work can be done on several fronts: Practically, our techniques
extend naturally to further windows operators such as tumbling windows or
tuple-based windows with pre-filtering. From a theoretical perspective, the ques-
tion arises which variations or more involved syntactic fragments of LARS may
be considered that are compatible with the presented annotation-based incre-
mental evaluation. Moreover, our support of stratified negation is prototypical
and can be made more efficient. More generally, investigations on the system-
related research question of reducing the runtimes even further are important
to tackle the increasing number and volumes of streams that are emerging from
the Web.

102 H.R. Bazoobandi et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-
Wesley, Reading (1995)

2. Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate RSP
engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS,
vol. 9367, pp. 374–389. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6 25

3. Anicic, D., Fodor, P., Rudolph, S., Nenad Stojanovic, E.-S.: A unified language
for event processing and stream reasoning. In: Proceedings of WWW, pp. 635–644
(2011)

4. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL:
SPARQL for continuous querying. In: Proceedings of WWW, pp. 1061–1062. ACM
(2009)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
a continuous query language for RDF data streams. Int. J. Semant. Comput. 4(1),
3–25 (2010)

6. Barbieri, D.F., Braga, D., Ceri, S., Valle, E., Grossniklaus, M.: Incremental rea-
soning on streams and rich background knowledge. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010. LNCS, vol. 6088, pp. 1–15. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13486-9 1

7. Bazoobandi, H.R., Beck, H., Urbani, J.: Expressive Stream Reasoning with Laser.
CoRR, abs/1707.08876 (2017)

8. Beck, H., Dao-Tran, M., Eiter, T.: Answer update for rule-based stream reasoning.
In: Proceedings of IJCAI, pp. 2741–2747 (2015)

9. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for
analyzing reasoning over streams. In: Proceedings of AAAI, pp. 1431–1438 (2015)

10. Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental ASP-based stream
reasoning. TPLP (2017, to appear)

11. Della Valle, E., Ceri, S., Van Harmelen, F., Fensel, D.: It’s a streaming world! rea-
soning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)

12. Dell’Aglio, D., Calbimonte, J.-P., Balduini, M., Corcho, O., Della Valle, E.: On
correctness in RDF stream processor benchmarking. In: Alani, H., et al. (eds.)
ISWC 2013. LNCS, vol. 8219, pp. 326–342. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41338-4 21

13. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30227-8 19

14. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Answer set programming for stream reasoning. arXiv preprint arXiv:1301.1392
(2013)

15. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. CoRR, abs/1405.3694 (2014)

16. Hoeksema, J., Kotoulas, S.: High-performance distributed stream reasoning using
S4. In: Ordring Workshop at ISWC (2011)

17. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams. In: DEBS, pp. 58–68 (2012)

18. Le-Phuoc, D.: Operator-aware approach for boosting performance in RDF stream
processing. Web Semant. Sci. Serv. Agents World Wide Web 42, 38–54 (2017)

http://dx.doi.org/10.1007/978-3-319-25010-6_25
http://dx.doi.org/10.1007/978-3-642-13486-9_1
http://dx.doi.org/10.1007/978-3-642-13486-9_1
http://dx.doi.org/10.1007/978-3-642-41338-4_21
http://dx.doi.org/10.1007/978-3-642-41338-4_21
http://dx.doi.org/10.1007/978-3-540-30227-8_19
http://dx.doi.org/10.1007/978-3-540-30227-8_19
http://arxiv.org/abs/1301.1392

Expressive Stream Reasoning with Laser 103

19. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data.
In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25073-6 24

20. Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: facts and figures. In: Cudré-Mauroux, P., et al.
(eds.) ISWC 2012. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35173-0 20

21. Margara, A., Urbani, J., Van Harmelen, F., Bal, H.: Streaming the web: Reasoning
over dynamic data. Web Semant. Sci. Serv. Agents World Wide Web 25, 24–44
(2014)

22. Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: a non-
monotonic stream reasoning system for the semantic web. In: International Con-
ference on Web Reasoning and Rule Systems, pp. 247–252 (2013)

23. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental update of datalog mate-
rialisation: the backward/forward algorithm. In: Proceedings of AAAI, pp. 1560–
1568 (2015)

24. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp.
3–20. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6 1

25. Nickles, M., Mileo, A.: A hybrid approach to inference in probabilistic non-
monotonic logic programming. In: Proceedings of the 2nd International Workshop
on Probabilistic Logic, pp. 57–68 (2015)

26. Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented datalog materialization for
large knowledge graphs. In Proceedings of AAAI, pp. 258–264 (2016)

27. Urbani, J., Margara, A., Jacobs, C., Harmelen, F., Bal, H.: DynamiTE: par-
allel materialization of dynamic RDF data. In: Alani, H., et al. (eds.) ISWC
2013. LNCS, vol. 8218, pp. 657–672. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41335-3 41

28. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a stream-
ing RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC
2012. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35176-1 40

http://dx.doi.org/10.1007/978-3-642-25073-6_24
http://dx.doi.org/10.1007/978-3-642-35173-0_20
http://dx.doi.org/10.1007/978-3-319-25010-6_1
http://dx.doi.org/10.1007/978-3-642-41335-3_41
http://dx.doi.org/10.1007/978-3-642-41335-3_41
http://dx.doi.org/10.1007/978-3-642-35176-1_40
http://dx.doi.org/10.1007/978-3-642-35176-1_40

Semantics and Validation of Shapes Schemas
for RDF

Iovka Boneva1(B), Jose E. Labra Gayo2, and Eric G. Prud’hommeaux3

1 Univ. Lille - CRIStAL, 59000 Lille, France
iovka.boneva@univ-lille.fr

2 University of Oviedo, Oviedo, Spain
labra@uniovi.es

3 W3C and Stata Center, MIT, Cambridge, USA
eric@w3.org

Abstract. We present a formal semantics and proof of soundness for
shapes schemas, an expressive schema language for RDF graphs that is
the foundation of Shape Expressions Language 2.0. It can be used to
describe the vocabulary and the structure of an RDF graph, and to con-
strain the admissible properties and values for nodes in that graph. The
language defines a typing mechanism called shapes against which nodes
of the graph can be checked. It includes an algebraic grouping operator,
a choice operator and cardinality constraints for the number of allowed
occurrences of a property. Shapes can be combined using Boolean oper-
ators, and can use possibly recursive references to other shapes.

We describe the syntax of the language and define its semantics. The
semantics is proven to be well-defined for schemas that satisfy a reason-
able syntactic restriction, namely stratified use of negation and recursion.
We present two algorithms for the validation of an RDF graph against
a shapes schema. The first algorithm is a direct implementation of the
semantics, whereas the second is a non-trivial improvement. We also
briefly give implementation guidelines.

1 Introduction

rdf’s distributed graph model encouraged adoption for publication and manipu-
lation of e.g. social and biological data. Coding errors in data stores like DBpedia
have largely been handled in a piecemeal fashion with no formal mechanism for
detecting or describing schema violations. Extending uptake into environments
like medicine, business and banking requires structural validation analogous to
what is available in relational or xml schemas.

While owl ontologies can be used for limited structural validation, they are
generally used for formal models of reusable classes and predicates describing
objects in some domain. Applications typically consume and produce graphs
composed of precise compositions of such ontologies. A company’s human
resources records may leverage terms from foaf and Dublin Core, but only
certain terms, composed into specific structures, and subject to additional use-
specific constraints. We would no more want to impose the constraints of a single
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 104–120, 2017.
DOI: 10.1007/978-3-319-68288-4 7

Semantics and Validation of Shapes Schemas for RDF 105

human resources application suite on foaf and Dublin Core than we would want
to assert that such applications need to consume all ontologically valid permuta-
tions of foaf and Dublin Core entities. Further, open-world constraints on owl
ontologies make it impossible to use conventional owl tools to e.g. detect miss-
ing properties. Shape expression schemas (ShEx 1.0) [6,8] were introduced as a
high level language in which it is easy to mix terms from arbitrary ontologies.
They provide a schema language in which one can define structural constraints
(arc labels, cardinalities, datatypes, etc.) and since version 2.0 (ShEx 2.0)1, mix
them using Boolean connectives (disjunction, conjunction and negation).

A schema language for any data format has several uses: communicating
to humans and machines the form of input/output data; enabling machine-
verification of data for production, publication, or consumption; driving query
and input interfaces; static analysis of queries. In this, ShEx provides a simi-
lar role as relational and xml schemas. A ShEx schema validates nodes in a
graph against a schema construct called a shape. In xml, validating an element
against an XML Schema2 type or element or Relax NG3 production recursively
tests nested elements against constituent rules. In ShEx, validating a node in a
graph against a shape recursively tests the nodes which are the object of triples
constrained in that shape. An essential difference however is that unlike trees,
graphs can have cycles and recursive definitions can yield infinite computation.
Moreover, ShEx 2.0 includes a negation operator, and it is well known that
mixing recursion with negation can lead to incoherent semantics.

Contributions. In this paper we present shapes schemas, a schema language that
is the foundation of ShEx 2.0 (Sect. 2). The precise relationship between shapes
schemas and ShEx 2.0 is given at the end of Sect. 2. We formally define the
semantics of shapes schemas and show that it is sound for schemas that mix
recursion and negation in a stratified manner (Sect. 3). We then propose two
algorithms for validating an RDF graph node against a shapes schema. Both
algorithms are shown to be correct w.r.t. the semantics (Sect. 4). We finally
discuss future research directions and conclude (Sect. 5).

Related Work. In [8] we gave semantics for ShEx 1.0. The latter does not use
Boolean operators end because of negation, the extension to ShEx 2.0 (and thus
to shapes schemas) is non trivial.

Closest to shapes schemas is the shacl4 language both in terms of pur-
pose and expressiveness. shaclalso defines named constraints called shapes to
be checked on rdf graph nodes. Unlike ShEx, shaclis not completely indepen-
dent from the RDF Schema vocabulary: rdfs:Classes play a particular role there
as a shape can be required to hold for all the nodes that are instances of some
rdfs:Class. Therefore validation in shaclrequires partial RDF Schema entailment

1 Shape Expressions Language 2.0. http://shex.io/shex-semantics/index.html.
2 W3C XML Schema. http://www.w3.org/XML/Schema.
3 RELAX NG home page. http://relaxng.org.
4 Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/.

http://shex.io/shex-semantics/index.html
http://www.w3.org/XML/Schema
http://relaxng.org
https://www.w3.org/TR/shacl/

106 I. Boneva et al.

in order to discover all rdfs:Classes of a node. Regarding expressiveness, the main
differences between shacland shapes schemas are that shaclallows to define
constraints based on property paths and for comparison of values; shacldoes
not have the algebraic operators some-of and each-of and uses Boolean connec-
tives for defining complex shapes; finally shacldoes not define the semantics of
recursive shapes.

Ontology languages such as owl, description logics or RDF Schema are not
meant to define (complex) constraints on the data and we do not compare shapes
schemas with them. Proposals were made for using owl with a closed world
assumption in order to express integrity constraints [5,9]. They associate alter-
native semantics with the existing owl syntax and can be misleading for users.

Someapproachesuse sparql to express constraints ongraphs (spin5,RDFUnit
[3]), or compile a domain specific language into sparql queries [2]. sparql allows
to express complex constraints but does not support recursion. While sparql con-
straints can be validated by standard sparql engines, they are harder to write and
maintain compared to high-level schemas like ShEx and shacl.

Description Set Profiles6 is a constraint language that uses an rdf vocabulary
to define templates and constrain the value and cardinality of properties. It does
not have any equivalent of the each-of algebraic operator, and was not designed
to be human-readable.

Introductory Example. Let is: be a namespace prefix from some ontology, ex: be
the prefix used in the example schema and instance, and foaf: and xsd: be the
standard foaf and xsd prefixes, respectively. The schema S0 is as follows

<UserShape> → foaf:name @<StringValue> ; foaf:mbox @<IRIValue> [0;1]
<ProgShape> → ex:expertise @<IRIValue> [0;*] ; ex:experience @<ExpValueSet>
<ClientShape> → ex:clientNbr @<IntValue> | ex:clientAffil @<AnythgShape>
<IssueShape> → is:reportedBy @<ClientAndUser> ;

is:reproducedBy @<ProgShape> [1;5] ;
is:relatedTo @<IssueShape> [0;*]

<AnythgShape> → IRI @<AnythgShape> [0;*]
<ClientAndUser> → Def Client ; IRI − {ex:clientNbr, ex:clientAffil} @<AnythgShape> [0;*]

AND Def User ; IRI − {foaf:name, foaf:mbox} @<AnythgShape> [0;*]
<StringValue> → xsd:string
<IRIValue> → IRI
<ExpValueSet> → {ex:senior, ex:junior}
<IntValue> → xsd:integer

where Def Client is the definition of <ClientShape>, and similarly for Def User,
and − in the definition of <ClientAndUser> is the set difference operator.
The schema S0 defines four shapes intended to describe users, programmers,
clients and issues, respectively. <UserShape> requires that a node has one
foaf:name property with string value, and an optional foaf:mbox that is an
iri. The optional mailbox is specified by the cardinality constraint [0;1]. Other

5 SPIN - Modeling Vocabulary. http://www.w3.org/Submission/spin-modeling/.
6 Description Set Profiles: A constraint language for Dublin Core Application Profiles.
http://dublincore.org/documents/dc-dsp/.

http://www.w3.org/Submission/spin-modeling/
http://dublincore.org/documents/dc-dsp/

Semantics and Validation of Shapes Schemas for RDF 107

cardinality constraints used in S0 are [0;*] for zero or more, and [1;5] for
one up to five. When no cardinality is given, the default is “exactly one”. A
<ProgShape> node has zero or more ex:expertise properties with values that
are iris, and one ex:experience property whose value is one among ex:senior
and ex:junior. A <ClientShape> has either a ex:clientNbr that is an integer, or
a ex:clientAffil(iation) with unconstrained value (i.e. <AnythgShape>), but not
both. Finally, an issue (<IssueShape>) is reported by somebody who is client
and user, is reproduced by one to five programmers, and can be related to zero
or more issues.

The shapes in S0 whose name contains Value specify the set of allowed values
for a node. This can be the set of all values of some literal datatype (e.g. string,
integer), the set of all nodes of some kind (e.g. iri), or an explicitly given set
(e.g. <ExpValueSet>). <AnythgShape> is satisfied by every node. It states that
the node can have zero or more outgoing triples whose predicates can be any
iri, and whose objects match <AnythgShape>. Finally, <ClientAndUser> uses a
conjunction to require that a node has both the client and the user properties.
Its definition is a bit technical. The right hand side of the conjunction states that
the node must have a foaf:name and an optional foaf:mbox (Def User). Moreover
(the ; operator), the node can have any number ([0;*]) of properties that can be
any iri except for foaf:name and foaf:mbox and whose value is unconstrained.
The latter is necessary in order to allow the “client” properties required by the
left hand side of the conjunction.

Graph G0 here after is described by schema S0. Nodes ex:issue1 and ex:issue2
have shape <IssueShape>; ex:fatima and ex:emin are <ClientAndUser>; ex:ren
and ex:noa have shape <ProgShape>.
ex:issue1

is:reportedBy ex:fatima ;
is:reproducedBy ex:ren , ex:noa ;
is:relatedTo ex:issue2 .

ex:issue2
is:reportedBy ex:emin ;
is:reproducedBy ex:ren ;
is:relatedTo ex:issue1 .

ex:fatima ex:clientNbr 1 ;
foaf:name “Fatima Smith”.

ex:ren ex:expertise ex:semweb ;
ex:experience ex:senior .

ex:noa ex:experience ex:junior .
ex:emin ex:clientAffil “ABC”;

foaf:name “Emin V. Petrov” ;
foaf:mbox <mailto:evp@example.org> .

The RDF Graph Model. As usual, we assume three disjoint sets: IRI a set of
iris, Lit a set of literals, and Blank a set of blank nodes. An RDF graph is a set
of triples over IRI ∪ Blank × IRI × IRI ∪ Lit ∪ Blank. For a triple (s, p, o) in some
graph, s is called its subject, p is called its predicate, and o is called its object.
We denote Nodes(G) the set of nodes of the graph G, that is, the elements that
appear in a subject or object position in some triple of G. The neighbourhood
of node n in graph G is the set of triples in G that have n as subject, and is
denoted neighG(n) or simply neigh(n) when G is clear from the context. We
use disjoint union on sets of triples, denoted �: if N,N1, N2 are sets of triples,
N = N1 � N2 means that N1 ∪ N2 = N and N1 ∩ N2 = ∅.

108 I. Boneva et al.

2 Shapes Schemas

A shapes schema S defines a set of named shapes. A shape is a description of
the graph structure that can be visited starting from a particular node. It can
talk about the value of the node itself and about its neighbourhood. Shapes can
use (Boolean combinations of) other shapes and can be recursive.

Formally, a shapes schema S is a pair (L,def), where L is a set of shape
labels used as names of shapes and def is a function that with every shape
label associates a shape expression. In examples, we write L → S as short for
def(L) = S (for a shape label L and a shape expression S).

Shape Expressions. The grammar for shape expressions is given on Fig. 1a.
A shape expression (ShExpr) is a Boolean combination of two atomic components:
value description and neighbourhood description. A neighbourhood description
(NeigDescr) defines the expected neighbourhood of a node and is given by a
triple expression (TExpr, see below). A value description (ValueDescr) is a set
that declares the admissible values for a node. The set can contain iris, liter-
als, and the special constant b to indicate that the node can be a blank node.
ShEx 2.0 proposes concrete syntax for different kinds of value description sets
(literal datatypes, regex patterns to be matched by IRIs, intervals, etc.). Here we
focus on defining the semantics so the concrete syntax for such sets is irrelevant.
A ValueDescr can be an arbitrary set with the unique assumption that it has a
finite representation for which membership can be effectively computed.

ShExpr ::= ValueDescr | NeigDescr
| ShapeAnd | ShapeOr
| ShapeNot

ValueDescr ::= a subset of IRI ∪ Lit ∪ { b}
NeigDescr ::= TExpr
ShapeAnd ::= ShExpr ‘AND’ ShExpr
ShapeOr ::= ShExpr ‘OR’ ShExpr
ShapeNot ::= ‘NOT’ ShExpr

(a) Shape expressions.

TExpr ::= TriplePattern | ‘EMPTY’
| SomeOfExpr | EachOfExpr
| RepetExpr

TriplePattern ::= PropSet ’@’ShapeRef
SomeOfExpr ::= TExpr ‘|’ TExpr
EachOfExpr ::= TExpr ‘;’ TExpr
RepetExpr ::= TExpr ‘[’ min ‘;’ max ‘]’
PropSet ::= a subset of IRI
ShapeRef ::= a shape label in L

(b) Triple expressions.

Fig. 1. The grammar for shape expressions and triple expressions.

Triple expressions. Triple expressions describe the expected neighbourhood of a
node. They are inspired by regular expressions likewise dtds and XML Schema
for xml. A triple expression will be matched by the neighbourhood of a node in
a graph, similarly to type definitions in XML Schema that are matched by the
children of some node. The main difference is that the neighbourhood of a node
in an rdf graph is a (unordered) set, whereas the children of a node in an xml
document form a sequence.

Semantics and Validation of Shapes Schemas for RDF 109

The grammar for triple expressions (TExpr) is given on Fig. 1b, in which min
is a natural, and max is a natural or the special value ∗. The basic triple expres-
sion is a triple pattern and it constrains triples. A triple expression composed
of each-of (separated by a ‘;’), some-of (separated by a ‘|’) and repetition opera-
tors is satisfied if some distribution of the triples in the neighborhood of a node
exactly satisfies the expression. Section 3.1 defines this and draws the analogy
with regular expressions. In examples, we omit the braces for singleton PropSets,
e.g. we write foaf:name @<StringValue> instead of {foaf:name} @<StringValue>.

Example 1 (Shape expressions, triple expressions). In schema S0 from the intro-
ductory example, the definitions of the five shapes with name . . . Shape. . . are
triple expressions and collectively make use of all the operators: each-of (;),
some-of (|), repetition. All shapes with name . . . Value. . . are defined by atomic
ValueDescrs. The definition of <ClientAndUser> is a ShapeAnd expression. �	

Relationship between Shapes Schemas and ShEx 2.0. Shapes schemas slightly
generalizes ShEx 2.0 and thus allows for a more concise definition of syntax
and semantics. For readers familiar with ShEx 2.0 we now explain how shapes
schemas differ from ShEx 2.0. First, TriplePattern uses a set of properties, whereas
the analogous triple constraint in ShEx 2.0 uses a single property. This slight
generalization allows to encode the closed and extra constructs of ShEx 2.0.
In shapes schemas, triple expressions are always closed (whereas in ShEx 2.0
they are non closed by default) but an expression E can be made non-closed
by transforming it into E;P @<AnythgShape>[0; ∗], where P is the set of all
IRIs not mentioned as properties in E, and <AnythgShape> is as defined in the
introductory example. The extra modifier is encoded in a similar way, using sets
of properties in triple patterns and negation. Second, a ValueDescr is an arbitrary
set of values that can be iris, literals or blank nodes, whereas the analogous node
constraint in ShEx 2.0 defines a set of allowed values using a combination of
elementary constraints such as xsd datatypes, facets, numerical intervals, node
kinds. Using an arbitrary set of values allows to get rid of unnecessary (w.r.t.
defining the semantics) details. Third, ShEx 2.0 allows to use shape labels in
shape definitions; this is syntactic sugar and is equivalent to replacing the label
by its definition. Finally, in shapes schemas we omit inverse properties which
would make the proofs longer without representing any additional challenge
w.r.t. the semantics.

3 Semantics of Shapes Schemas

A shape defines the structure of a graph when visited starting from a node
that has that shape. In this section we give a precise meaning of the following
statement

shapes sem: node n in graph G has shape (or type) L from schema S7

7 “type” is used as synonym of “shape”, esp. in the notion of typing to be introduced
shortly. The use of “type” must not be confused with rdf:type from RDF Schema.
Shapes schemas are totally independent from the RDF Schema vocabulary.

110 I. Boneva et al.

To give a sound definition for shapes sem is not trivial because of the presence
of recursion. It also requires to make a design choice that we explain now.

Example 2 (Simple recursive schema). Let schema S1 and graph G1 be:

<IssueSh> → is:reportedBy @<Str> ; is:relatedTo @<IssueSh> [0;*]
<Str> → xsd:string

<i1> is:reportedBy “Ren” ; is:relatedTo <i2> .
<i2> is:reportedBy “Bob” ; is:relatedTo <i1> .

Example 2 captures the essence of recursion. If <i1> has shape <IssueSh> then
<i2> also has shape <IssueSh>. If on the other hand <i1> does not have shape
<IssueSh>, then neither does <i2>. This illustrates two important aspects of
the semantics of shapes schemas. First, whether a node has some shape cannot
be defined independently of the shapes of the other nodes in the graph. The
consequence of this apparently simple fact is that we need a global statement
about which nodes satisfy which shapes; we call this a typing. A typing must be
correct, i.e. coherent with itself. Second, in the above example there is a (design)
choice to make. Clearly, there are two acceptable alternatives: either (1) both
<i1> and <i2> have shape <IssueSh>, or (2) none of them does. Such choice is
well known for recursive languages: (1) corresponds to a maximal solution, and
(2) to a minimal solution. Both choices can lead to sound semantics. In shapes
schemas we choose the maximal solution. This is justified by applications: in the
above example we do want to consider <i1> as a valid <IssueSh>. It would not
be the case with semantics based on a minimal solution.

3.1 Typing and Correct Typing

The semantics is based on the notion of typing : this is a set of couples that
associate a node of an RDF graph with a shape label (a type). In the sequel we
consider a graph G and a schema S = (L,def).

Definition 1 (node-type association, typing). A node-type association is
a couple (n,L) in Nodes(G) × L. A typing of G by S is a set of node-type
associations.

Example 3. With S1 and G1 from Example 2, the following are typings

typing1 = {(<i1>, <IssueSh>), (<i2>, <IssueSh>), (”Ren”, <Str>), (“Bob”, <Str>)}
typing2 = {(“Ren”, <Str>), (“Bob”, <Str>)}
typing3 = {(<i1>, <IssueSh>), (<i2>, <IssueSh>)}
typing4 = ∅.

Semantics and Validation of Shapes Schemas for RDF 111

A typing is correct if, intuitively, it contains an evidence for every node-type
association in it. In the above example typing1 and typing2 are correct, whereas
typing3 is not correct as it contains e.g. the association (<i1>, <IssueSh>) but
does not contain the association (”Ren”, <Str>) that is required for <i1> to
have type <IssueSh>. The empty typing (typing4) is always correct.

Definition 2 (correct typing). Let typing ⊆ Nodes(G) × S. We say that
typing is a correct typing if for any (n,L) ∈ typing, it holds typing , n � def(L),
where � is the relation defined on Fig. 2a.

se-value-descr1
n ∈ V

typing , n � V

se-value-descr2

b ∈ V
n ∈ Blank

typing , n � V

se-neig-descr
typing ,neigh(n) � E

typing , n � E

se-shape-and

typing , n � S1

typing , n � S2

typing , n � S1 AND S2

se-shape-or1
typing , n � S1

typing , n � S1 OR S2

se-shape-or2
typing , n � S2

typing , n � S1 OR S2

se-shape-not
typing , n �� S

typing , n � NOTS

(a) Node satisfies a shape expression.

te-tpattern

N = {(subj , pred , obj)}
pred ∈ P

(obj , L) ∈ typing

typing , N � P @L

te-empty
N = ∅

typing , N � EMPTY

te-some-of1
typing , N � E1

typing , N � E1|E2

te-some-of2
typing , N � E2

typing , N � E1|E2

te-each-of

N = N1 � N2

typing , N1 � E1

typing , N2 � E2

typing , N � E1;E2

te-repet

N = N1 � . . . � Nk

min ≤ k ≤ max
typing , Ni � E for all 0 ≤ i ≤ k

typing , N � E[min;max]

(b) Set of triples matches a triple expression.

Fig. 2. Definitions of the � and � relations.

Discussion on �. For a shape expression S, the definition of typing , n � S on
Fig. 2a is by recursion on the structure of S. In Rules se-value-descr, V is a subset
of IRI ∪ Lit ∪ { b} defining a ValueDescr. A node n satisfies the value description
V if n belongs to the set V , or if n is a blank node and b is in V . The other
base case is Rule se-neig-descr, in which E is a TExpr representing a neighbour-
hood description. A node n satisfies the NeigDescr E if the neighbourhood of n
matches the triple expression E. The matching relation � is defined on Fig. 2b
and discussed below. The remaining four rules are for the Boolean operators.
The rules for AND and OR are as one would expect. Regarding negation, a node
satisfies a ShapeNot expression if it does not satisfy its sub-expression, as stated

112 I. Boneva et al.

by Rule se-shape-not. The premise of that rule is typing , n � S and means that
(using the inference rules on Fig. 2a) it is impossible to construct a proof for
typing , n � S.

Discussion on �. For a set of triples N , a typing typing and a TExpr E, we say
that N matches E with typing , and we write typing , N � E, as defined recursively
on the structure of E on Fig. 2b. Note that the � relation is defined for an
arbitrary set of triples N . In practice, N will be (a subset of) the neighbourhood
of some node. In the basic Rule te-tpattern, P@L is a TriplePattern with P a set
of IRIs and L a shape label. A singleton set of triples {(subj , pred , obj)} matches
the triple pattern if the predicate pred belongs to P and the object has type L
in typing . The other basic rule is Rule te-empty: an empty set of triples satisfies
the EMPTY triple expression.

The remaining rules are about the composed triple expressions. A set of
triples matches a SomeOfExpr if it matches one of its sub-expressions (Rules te-
some-of). The semantics of a EachOfExpr is a bit more complex. A set N matches
an each-of triple expression E1;E2 if N is the disjoint union of two sets N1

and N2, and N1 matches the sub-expressions E1, and N2 matches the sub-
expression E2. Let us make a parallel between regular expressions and triple
expressions. The each-of operator is analogous to concatenation. Recall that a
string w matches a regular expression R1 ·R2 (where · is concatenation) whenever
w can be “split” into two strings w1 and w2 such that their concatenation gives
w (w = w1 · w2), and w1 matches R1, and w2 matches R2. In the case of triple
expressions, the set of triples N is “split” into two disjoint sets N1 and N2:
disjoint union on sets is analogous to concatenation on words. Following the
same analogy, repetition in triple expressions corresponds to Kleene star (the
star operator) in regular expressions, with the difference that it allows to express
arbitrary intervals for the number of allowed repetitions, whereas Kleene star
is always [0, ∗]. So, in Rule te-repet, a set of triples N matches a repetition
triple expression E[min;max] if N can be split as the disjoint union of k sets
N1, . . . , Nk such that k is within the interval bound [min;max] and each of these
sets matches the sub-expression E. Note that k = 0 is possible only when N = ∅.

The laws of the Boole algebra can be used to put a shape expression in
disjunctive normal form in which only atomic sub-expressions ValueDescr and
NeigDescr are negated. From now on we consider only shape expressions in dis-
junctive normal form. Note also that the each-of and some-of operators are
associative and commutative and we use them as operators of arbitrary arity, as
e.g. in schema S0 from the introductory example.

3.2 Stratified Negation

Because of the presence of recursion and negation, the notion of correct typing
is not sufficient for defining sound semantics of shapes schemas.

Example 4 (Negation and recursion). Let schema S2 and graph G2 below:

<L1> → NOT(ex:p <L2>)
<L2> → NOT(ex:p <L1>)

<n1> ex:p <n2> .
<n2> ex:p <n1> .

Semantics and Validation of Shapes Schemas for RDF 113

These two typings of G2 by S2 are both correct: typing5 = {(<n1>, <L1>)}
and typing6 = {(<n2>, <L2>)}. �	
The two typings in Example 4 strongly contradict each other. In order to prove
that node <n1> has shape <L1> (in typing5), we need to prove that <n1>
does not have shape <L2>. The latter however does hold in typing6. Such
strong contradictions are possible only in presence of negation. In comparison,
in Example 2 we also have two contradicting typings, but none of them uses in
its proof a negative statement that is positive in the other typing.

This problem is well known in logic programming e.g. in Datalog, see Chap. 15
in [1] for an overview. The literature considers several solutions for defining
coherent semantics in this case, among which the most popular are negation-
as-failure, stratified negation and well-founded semantics. For instance, well-
founded semantics would answer undefined to the question “does n have shape
L” whenever there exist two proofs that contradict each-other on that fact. We
exclude this solution for two reasons: it is not helpful for users, and it might
require to compute all possible typings which is costly. We opt for stratification
semantics instead. It imposes a syntactic restriction on the use of recursion
together with negation, so that schemas as the one on Example 4 are not allowed.
This is a reasonable restriction because negation in ShEx is expected to be used
mainly locally, e.g. to forbid some property in the neighbourhood of a node.

We now define of stratified negation. The dependency graph of S is a graph
whose set of nodes is L, and that has two kinds of edges labelled dep− and dep+

defined by (recall that shape expressions in disjunctive normal form):

– There is a negative dependency edge dep−(L1, L2) from L1 to L2 iff the shape
label L2 appears in def(L1) under an occurrence of the NOT operator;

– There is a positive dependency edge dep+(L1, L2) from L1 to L2 iff the shape
label L2 appears in def(L1) but never under an occurrence of NOT.

Definition 3 (schema with stratified negation). A schema S = (L,def) is
with stratified negation if there exists a natural number k and a mapping strat
from L to the interval [1; k] such that for all shape labels L1, L2:

– if dep−(L1, L2), then strat(L1) > strat(L2);
– if dep+(L1, L2), then strat(L1) ≥ strat(L2).

The mapping strat is called a stratification of S. A well known property of
stratified negation is that the dependency graph does not have a cycle that
goes through a negative dependency edge. This intuitively means that if shape
L1 depends negatively on shape L2, then L2 does not (transitively) depend
on L1. Positive interdependence is allowed in an unrestricted manner, as in
S1 from Example 2. S2 from Example 4 is not with stratified negation because
dep−(<L1>, <L2>) and dep−(<L2>, <L1>).

Example 5 (Stratification). Let schema S3 below.

<L1> → NOT(ex:a @<L2> ; ex:b @<Str>)
<L2> → ex:c @<L3>

<L3> → ex:c @<L2>
<Str> → xsd:string

114 I. Boneva et al.

The dependency graph contains the edges dep−(<L1>,<L2>), dep−(<L1>,
<Str>), dep+(<L2>,<L3>), dep+(<L3>,<L2>). The unique loop is around
<L2> and <L3> and it goes through positive dependencies only, so the schema
is stratified. A stratification should be such that<Str> and<L2> are on stratums
strictly lower than<L1>, and<L2> and<L3> are on the same stratum.Onepossi-
ble stratification is<L1> on stratum 2 and the other three shape labels on stratum
1. Another one is<L2> and<L3> on stratum 1,<Str> on stratum 2, and<L1> on
stratum 3. The latter is called a most refined stratification as none of the stratums
can be split.

3.3 Maximal Correct Typing

Recall from Example 3 that both typing1 and typing4 are correct. Note that
<i1> has shape <IssueSh> according to typing1 but not according to typing4.
Then what is the correct answer of shapes sem for <i1> and <IssueSh>? Does
<i1> have shape <IssueSh> at the end? This section provides an answer to that
question. In one sentence: we trust typing1 because it is greater; actually it is
the greatest (maximal) typing. The comparison is based on set inclusion.

The following Lemma 1 establishes that a maximal typing always exists in
absence of negation. The proof is based on Lemma 2 in [8] that can be easily
extended for the richer schemas we have here.

Lemma 1. Let S be a schema that does not use the negation operator NOT.
Then for all graphs G, there exists a correct typing typingg of G by S such that
for every typing ′, if typing ′ is a correct typing of G by S, then typing ′ ⊆ typingg.

The typing typingg can be computed as the union of all correct typings typing ′.
Let us now define a maximal typing in presence of negation. Let strat be a

stratification of S that has k strata, with k ≥ 1. For any 1 ≤ i ≤ k, the schema
Si is the restriction of S that uses only the shape labels whose stratum is less
than i. Formally, Si = (Li,def i) with Li = {L ∈ L | strat(L) ≤ i}, and their
respective definitions def i(L) = def(L). Remark that if S is stratified, then S1

is negation-free.
For a set of labels Li ⊆ L, typing |Li

= {(n,L) ∈ typing | L ∈ Li} is the
restriction of typing on the labels from Li.

Definition 4 (stratification-maximal correct typing). Let S = (L,def)
be a schema, G be a graph, and strat be a stratification of S with k stratums (for
k ≥ 1). For any 1 ≤ i ≤ k, let typing i be the typing of G by Si, defined by:

– typing1 is the maximal correct typing of G by S1, as defined in Lemma 1;
– for any 1 ≤ i < k, typing i+1 is the union of all correct typings typing ′ of G

by Si+1 s.t. typing ′|Li
= typing i.

The stratification-maximal correct typing of G by S with stratification strat is
Typing(G,S, strat) = typingk.

Semantics and Validation of Shapes Schemas for RDF 115

Typing(G,S, strat) from the above definition is indeed a correct typing for G by
S, as shown in the following proposition that is the core of the proof of soundness
for the semantics of shapes schemas.

Proposition 1. For any schema S, any stratification strat of S and any graph
G, Typing(G,S, strat) is a correct typing of G by S.

Proof. Goes by induction on the number of stratums. The base case (1 stratum)
is Lemma 1. For the induction case and stratum i + 1, by induction hypothesis
typing i is correct for G and Si. It is enough to show that if typing ′ and typing ′′

are two correct typings for G by Si+1 and typing ′|Li = typing ′′|Li = typing i, then
their union typing = typing ′ ∪ typing ′′ is correct for G by Si+1. Let (n,L) ∈
typing and suppose that (n,L) ∈ typing ′. Because typing ′ is correct, we have
typing ′, n � def(L). We will show that (*) the proof for typing ′, n � def(L) can
be used as a proof for typing , n � def(L). If def(L) does not contain a negation
of a triple expression, then (*) easily follows from the definition of �.

So suppose def(L) contains a negation operator on top of the triple expres-
sions E1, . . . , El. That is, (recall that shape expressions are in disjunctive normal
form), NOTEj is a sub-expression of def(L) for every 1 ≤ j ≤ l. Then the proof
for typing ′, n � def(L) contains applications of Rule se-shape-not for NOTEj

that witness that there does not exist a proof for typing ′, n � Ej , for every
1 ≤ j ≤ l. We need to show that a proof typing , n � Ej cannot exist. Suppose
by contradiction that P is a proof for typing , n � Ej , for some 1 ≤ j ≤ l. Let
L′ be the set of all shape labels that appear in Ej , then P uses only node-
type associations with labels from L′. That is, typing |L′ , n � Ej holds. As Ej

is negated in def(L), we have L′ ⊆ Li, so typing |Li
, n � Ej also holds. But

typing |Li
= typing i ⊆ typing ′. Contradiction. �	

Lemma 2 below establishes that Typing(G,S, strat) does not depend on the
stratification being chosen. This allows to define the maximal correct typing
(Definition 5) and to give a precise meaning of shapes sem (Definition 6) which
was the objective of this section.

Lemma 2. Let S = (L,def) be a schema and G be a graph. Let
strat1 and strat2 be two stratifications of S. Then Typing(G,S, strat1) =
Typing(G,S, strat2).

Proof. (Idea) The proof uses a classical technique as e.g. for stratified Datalog.
There exists a unique (up to permutation on the numbering of stratums) most
refined stratification strat ref such that for any other stratification strat ′, each
stratum of strat ′ can be obtained as a union of stratums of strat ref. Then we show
that for any stratification strat ′, Typing(G,S, strat ′) = Typing(G,S, strat ref).

Definition 5 (maximal correct typing). Let S = (L,def) be a schema and
G be a graph. The maximal correct typing of G by S is denoted Typing(G,S)
and is defined as Typing(G,S, strat) for some stratification strat of S.

116 I. Boneva et al.

Input: G: a graph, S = (L,def): a schema, strat a stratification for S with k
strata

Output: Typing(G,S)

1 typing ← ∅;
2 for i from 1 to k do

// Add all node-type associations for stratum i
3 foreach n in Nodes(G) do
4 foreach L in Li do
5 add (n,L) to typing ;

// Refine w.r.t the types on stratum i
6 changing ← true;
7 while changing do
8 changing ← false;
9 foreach (n,L) in typing s.t. L ∈ Li do

10 if not typing , n � def(L) then
11 remove (n,L) from typing ;
12 changing ← true;

13 return typing

Algorithm 1. The algorithm refine(G,S, strat).

Definition 6 (shapes sem). Let S = (L,def) be a schema and G be a graph.
We say that node n (of G) has shape L (from S) if (n,L) ∈ Typing(G,S).

4 Validation

In Sect. 3 we have given a declarative semantics of the shapes language. We
now consider the related computational problem. We are again interested by the
shapes sem statement (as defined in Sect. 3), i.e. checking whether a given node
has a given shape.

4.1 Refinement Algorithm

Algorithm 1 computes Typing(G,S, strat). The i-th iteration of the loop on
line 2 computes typing i from Definition 4. The algorithm is correct thanks to
Lemma 2 from [8] applied to every stratum i. According to that lemma, the
maximal typing defined as the union of all correct typings (i.e. typing i) can be
computed by iteratively removing unsatisfied node-type associations (done on
line 11) until a fixed point is reached (detected when changing remains false).
The advantage of the refine algorithm is that once Typing(G,S) is computed,
testing whether node n has shape L is done with no additional cost by testing
whether (n,L) belongs to Typing(G,S). The drawback is that it considers all
node-type associations which is not always necessary, as shown here after.

Semantics and Validation of Shapes Schemas for RDF 117

Input: n: node in G, L: label in L, Hyp: a stack over Nodes(G) × L
Output: true if n has label L, false otherwise

1 Hyp = Hyp. push((n,L));
2 Dep = ∅;
3 foreach (n′, L′) in dep(n,L) � Hyp do
4 if prove(n′, L′,Hyp) then
5 Dep = Dep ∪ {(n′, L′)};
6 result = Dep ∪ Hyp, n � def(L) ;
7 Hyp = Hyp. pop();
8 return result ;

Algorithm 2. prove(n,L,Hyp). Graph G and schema S are global variables.

4.2 Recursive Algorithm

Algorithm 2 allows to check whether node n has shape L without construct-
ing Typing(G,S). The idea is to visit only a sufficiently large portion of
Typing(G,S).

Example 6 (Motivation of the prove algorithm). Considering schema S3 from
Example 5 and graph G3 below:

ex:n1 ex:a ex:n2
ex:n1 ex:b 4 .

ex:n2 ex:c ex:n3 .
ex:n3 ex:c ex:n2 .

We want to check whether ex:n1 has shape <L1>. Remark that the neighbor
nodes of ex:n1 are ex:n2 and 4, whereas the shape labels on which the definition of
<L1> depends are <L2> and <Str>. Any correct proof for typing , ex:n1 � <L1>
(or for typing , ex:n1 � <L1>) would have as leaves either applications of Rule se-
value-descr that do not depend on typing , or applications of Rule te-tpattern that
uses node-type associations (n,L) where n is a neighbor of ex:n1 and L′ is a label
such that dep+(<L1>,L′) or dep−(<L1>,L′).

Assume schema S = (L,def) and graph G. For a shape label L in S and
a node n in G, we denote dep(n,L) the set of node-type associations (n′, L′)
s.t. n′ is a neighbor of n (that is, (n, p, n′) ∈ neigh(n) for some IRI p) and L′

appears as a shape reference in def(L). Algorithm 2 uses this easy to show
property: typing , n |= def(L) iff typing ∩ dep(n,L), n |= def(L). In order to
check whether n has shape L, Algorithm 2 will (recursively) check whether n′

has shape L′ for all (n′, L′) in dep(n,L). The parameter Hyp is a stack of node-
type associations that is also seen (on line 3) as the set of node-type associations
it contains. Dep is a set of node-type associations.

Example 7 (Execution trace of the prove algorithm). Here is the tree of recursive
calls generated during the evaluation of prove(ex:n1, <L1>, []) for graph G3 and
schema S3, where [] is the empty stack. The returned value is given on the
right. prove(ex:n1, <L1>, []) generates four recursive calls that correspond to

118 I. Boneva et al.

dep(ex:n1, <L1>). The call for ex:n3 and <L3> does not generate any recursive
call: dep(ex:n3, <L3>) contains only (ex:n2, <L2>) which is on the stack.

prove(ex:n1, <L1>, []) true
|–prove(ex:n2, <L2>, [(ex:n1, <L1>)]) true
| |–prove(ex:n3, <L3>, [(ex:n1, <L1>), (ex:n2, <L2>)]) true
|–prove(ex:n2, <Str>, [(ex:n1, <L1>)]) false
|–prove(4, <L2>, [(ex:n1, <L1>)]) false
|–prove(4, <Str>, [(ex:n1, <L1>)]) false

The correctness of the prove algorithm is stated by the following:

Proposition 2 (Correctness of the prove algorithm). For any node n and
any shape label L, the evaluation of prove(n,L, []) terminates and returns true
if (n,L) ∈ Typing(G,S) and false otherwise.

Proof (Sketch). For termination: the recursion cannot be infinite-breadth as
prove generates a finite number of recursive calls on line 4. Infinite-depth recur-
sion is also impossible because Hyp is a call stack and the condition on line 3
prevents from (recursively) calling prove with the same node and label.

The proof of correctness goes by induction on the stratum of L using the
most refined stratification strat . For every stratum i we show that whenever
Hyp contains only node-type associations (n′, L′) with strat(L′) > i, and for
any L s.t. strat(L) = i, Typing , n � def(L) iff prove(n,L,Hyp) returns true.
For the ⇒ direction, the main argument is that if Typing , n � def(L) then also
Typing ∪Hyp, n � def(L). This is not true in general because of negation, but is
true if Hyp is on stratum ≥ strat(L) as in this case no type in Hyp is negated in
def(L). For the ⇐ direction, we need to show that if prove(n,L,Hyp) returns
true then (n,L) ∈ Typing(G,S). The problematic case is when prove(n,L,Hyp)
returns true whereas n does not have label L. Such error necessarily comes from
the fact that on line 6 the algorithm used some (n′, L′) ∈ Hyp � Typing(G,S)
in the proof for Dep ∪ Hyp, n � def(L). Consequently, strat(L) = strat(L′),
and because we consider the most refined stratification, it follows that L and
L′ mutually depend on each other in the dependency graph of G. Then we
need to distinguish two cases. Either all shape labels on stratum i only depend
on each others, as for instance <L2> and <L3> from Example 5. In that case
prove(n,L,Hyp) returns true based only on hypotheses in Hyp, which is correct
w.r.t. the semantics based on maximal solution: if nothing outside stratum i
allows to disprove that n has label L, then it is indeed the case. The other
possibility is that a shape label L′ on stratum i depends also on shapes from
lower stratums, as <IssueSh> from Example 2 that depends on <Str>. Then the
test on line 6 of the call of prove with L′ will take this dependency into account
and return true only if all conditions, including those that depend on the lower
stratums, are satisfied. �	

Semantics and Validation of Shapes Schemas for RDF 119

4.3 On Implementation of the Validation Algorithms

Both algorithms use a test for typing , n � def(L), which non trivial part is the
test of the � relation required in Rule se-neig-descr. The latter is equivalent to
checking whether a word (a string) matches a regular expression disregarding the
ordering of the letters of the word. Here the word is over the alphabet of triple
patterns that occur in the triple expression. In [4] we presented an algorithm
for this problem based on regular expression derivatives. In [8] we gave another
algorithm for so called deterministic single-occurrence triple expressions. That
algorithm can be extended to general expressions, and was used in several of the
implementations of ShEx available as open source8.

The prove algorithm was presented in a form that is easier to understand but
not optimized. An implementation could reduce considerably the search space of
the algorithm by exploring only relevant node-shape associations from dep(n,L)
For instance, in Example 7 checking 4 against L2 is useless first because 4 is
accessible from ex:n1 by ex:b whereas <L2> in the schema is accessible from
<L1> by ex:a.

A more involved version of the prove algorithm could memorize portion of
Typing(G,S) to be reused. This however should be done carefully: one should not
memorize all node-shape associations (n,L) for which the algorithm returned true,
as some of these can be false positives as discussed in the proof of Proposition 2.

5 Conclusion

In this paper we introduced shapes schemas that formalize the semantics of
ShEx 2.0 and we showed that the semantics of ShEx 2.0 is sound. We also
presented two algorithms for validating an rdf graph against a shapes schema.

ShEx and the underlying formalism presented here are still evolving, and
there are several promising directions some of which are already being explored:
introduce operators for value comparison, use property paths in triple patterns,
define an rdf transformation language based on ShEx. We also plan to consider
several heuristics and optimizations as the ones discussed in Sect. 4.3 in order to
accelerate the validation of shapes schemas. These will be validated on examples.
Another open problem is error reporting in ShEx: how to give useful feedback
for correcting validation errors. We also plan to explore the exact relationship
between shapes schemas and shacland establish whether shapes schemas can
be encoded in sparql extended with recursion as the one defined in [7].

Acknowledgments. This work was partially supported by CPER Nord-Pas de
Calais/FEDER DATA Advanced data science and technologies 2015–2020, ANR
project DataCert ANR-15-CE39-0009.

8 A list of the available ShEx implementations can be found on http://shex.io/.

http://shex.io/

120 I. Boneva et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF constraint checking.
In: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference.
CEUR-WS.org (2015)

3. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of the
23rd International Conference on World Wide Web (WWW 2014) (2014)

4. Labra Gayo, J.E., Prud’hommeaux, E., Boneva, I., Staworko, S., Solbrig, H.R.,
Hym, S.: Towards an RDF validation language based on regular expression deriva-
tives. In: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference.
CEUR-WS.org (2015)

5. Motik, B., Horrocks, I., Sattler, U.: Adding integrity constraints to OWL. In: OWL:
Experiences and Directions 2007 (OWLED 2007) (2007)

6. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.R.: Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems, SEMANTICS 2014. ACM (2014)

7. Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in SPARQL. In: Arenas, M., et al.
(eds.) ISWC 2015. LNCS, vol. 9366, pp. 19–35. Springer, Cham (2015). doi:10.
1007/978-3-319-25007-6 2

8. Staworko, S., Boneva, I., Labra Gayo, J.E., Hym, S., Prud’hommeaux, E.G.,
Solbrig, H.R.: Complexity and expressiveness of ShEx for RDF. In: 18th Interna-
tional Conference on Database Theory (ICDT). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2015)

9. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In:
Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI (2010)

http://dx.doi.org/10.1007/978-3-319-25007-6_2
http://dx.doi.org/10.1007/978-3-319-25007-6_2

Temporal Query Answering in DL-Lite
over Inconsistent Data

Camille Bourgaux and Anni-Yasmin Turhan(B)

Technische Universität Dresden, Dresden, Germany
{camille.bourgaux,anni-yasmin.turhan}@tu-dresden.de

Abstract. In ontology-based systems that process data stemming from
different sources and that is received over time, as in context-aware sys-
tems, reasoning needs to cope with the temporal dimension and should
be resilient against inconsistencies in the data. Motivated by such set-
tings, this paper addresses the problem of handling inconsistent data
in a temporal version of ontology-based query answering. We consider
a recently proposed temporal query language that combines conjunc-
tive queries with operators of propositional linear temporal logic and
extend to this setting three inconsistency-tolerant semantics that have
been introduced for querying inconsistent description logic knowledge
bases. We investigate their complexity for DL-LiteR temporal knowledge
bases, and furthermore complete the picture for the consistent case.

1 Introduction

Context-aware systems [3,18] observe their environment over time and are able
to detect situations while running in order to adapt their behaviour. They rely
upon heterogeneous sources such as sensors (in a broad sense) or other applica-
tions that provide them with data. A context-aware system needs to integrate this
data and should behave resilient towards erroneous or contradictory data. Since
the collected data usually provides an incomplete description of the observed sys-
tem, the closed world assumption employed by database systems, where facts not
present are assumed to be false, is not appropriate. Moreover, it is convenient to use
some knowledge about the system to reason with the data and get more complete
answers to the queries that capture the situations to be recognized than from the
data alone. To address these requirements and facilitate data integration, ontolo-
gies have been used to implement situation recognition [3,14,18,25].

Ontology-mediated query answering [15] performs database-style query
answering over description logic (DL) knowledge bases that consist of an ontol-
ogy (called a TBox) expressing conceptual knowledge about a domain and a
dataset (or ABox) containing facts about particular individuals [5]. An impor-
tant issue that may arise when querying data through ontology reasoning is the
inconsistency of the data w.r.t. the ontology. This is especially true for context-
aware systems, since in the applications that need to perform situation recog-
nition, the ABox is usually populated by frequently changing data from sensors

Supported by the DFG in CRC 912 (HAEC) and the DAAD.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 121–137, 2017.
DOI: 10.1007/978-3-319-68288-4 8

122 C. Bourgaux and A.-Y. Turhan

or other sources. The problem is that under the classical semantics, every query
is entailed from an inconsistent knowledge base and thus classical reasoners are
rendered useless. Several inconsistency-tolerant semantics have been introduced
for DL knowledge bases (see [7] for a survey) to remedy this problem.

A situation is often defined not only w.r.t. the current state of the system
but depends also on its history. For instance, a system that operates on a cluster
of servers may need the list of servers which have been almost overloaded at
least twice in the past ten time units. Likewise in the medical domain a critical
situation for a patient can depend on the patient’s medical history. That is why
research efforts have recently been devoted to temporalizing query answering
[4,11] by allowing to use operators of linear temporal logic (LTL) [26] in the
queries. In this setting, the query is answered over a temporal knowledge base con-
sisting of a global TBox and a sequence of ABoxes that represents the data at dif-
ferent time points. The situation previously described can then be recognized by
answering the query “♦−(AlmostOverloaded(x) ∧ �−♦−AlmostOverloaded(x))”,
where ♦− is the LTL operator “eventually in the past” and �− the opera-
tor “previous”, over the sequence of datasets that correspond to the last ten
observations of the system, an ontology defining the concept AlmostOverloaded.
A lot of work has been dedicated to the temporalization of DL, combining dif-
ferent temporal logics and DL languages (see [23] for a survey). As efficiency is
a primary concern, particular attention has been paid to temporalized DLs of
the DL-Lite family [16] (see [2] for different temporal extensions of DL-Lite).
The DLs of this family cover an important fragment of the RDF query language
SPARQL and underlie the OWL 2 QL profile of the Semantic Web standard
[24]. They possess the notable property that query answering can be reduced to
evaluation of standard database queries. The construction of temporal queries
has also attracted a lot of interest recently [1,19,20], and querying temporal
databases has been studied as well (see e.g., [17]). Here, we consider the setting
proposed in [11] which does not allow for temporalized concepts or axioms in
the TBox but focuses on querying sequences of ABoxes with temporal queries.

This work presents results on lifting inconsistency-tolerant reasoning to tem-
poral query answering. To the best of our knowledge, this is the first inves-
tigation of temporal query answering under inconsistency-tolerant semantics.
We consider three semantics that have been defined for DL knowledge bases
and that we find particularly relevant. They are all based upon the notion of
a repair, which is a maximal consistent subset of the data. The AR semantics
[21,22], inspired by consistent query answering in the database setting [6], con-
siders the queries that hold in every repair. This semantics is arguably the most
natural and is widely accepted to query inconsistent knowledge bases. However,
AR query answering is intractable even for DL-Lite, which leads [21,22] to pro-
pose a tractable approximation of AR, namely the IAR semantics, which queries
the intersection of the repairs. Beside its better computational properties, this
semantics is more cautious since it provides answers supported by facts that
are not involved in any contradictions, so it may be interesting in our setting
when the system should change its behaviour only if some situation has been

Temporal Query Answering in DL-Lite over Inconsistent Data 123

recognized with a very high confidence. Finally, the brave semantics [9] returns
every answer that holds in some repair, so is supported by some consistent set
of facts. This less cautious semantics may be relevant for context recognition,
when critical situations must be handled imperatively.

The contributions of this paper are as follows. In Sect. 3 we extend the AR,
IAR and brave semantics to the setting of temporal query answering. We dis-
tinguish in our analysis three cases for rigid predicates, i.e., whose extensions
do not change between time points: no rigid predicates, rigid concepts only, or
rigid concepts and roles. We show that when there is no rigid predicate, existing
algorithms for temporal query answering and for IAR query answering can be
combined to perform IAR temporal query answering. We also show that this
method can sometimes be used for AR and provides in any case an approxima-
tion of the AR answers. In Sect. 4 we investigate the computational properties
of the three semantics, considering both data complexity (in the size of the data
only), and combined complexity (in the size of the whole problem), and distin-
guishing three different cases regarding the rigid symbols that are allowed. We
show that in all cases except for brave semantics with rigid predicates, the data
complexity is not higher than in the atemporal setting. In all cases, adding the
temporal dimension does not increase the combined complexity. Our complexity
analysis also leads us to close some open questions about temporal query answer-
ing under the classical semantics in the presence of rigid predicates. In particular,
we show that it can often be reduced to the case without rigid predicates.

Detailed proofs of all the results are provided in [13].

2 Preliminaries

We briefly recall the syntax and semantics of DLs, the three inconsistency-
tolerant semantics we consider, and the setting of temporal query answering.

Syntax. A DL knowledge base (KB) K consists of an ABox A and a TBox T ,
constructed from three countably infinite sets: a set NC of concept names (unary
predicates), a set NR of role names (binary predicates), and a set NI of individ-
ual names (constants). The ABox (dataset) is a finite set of concept assertions
A(a) and role assertions R(a, b), where A ∈ NC, R ∈ NR, a, b ∈ NI. The TBox
(ontology) is a finite set of axioms whose form depends on the particular DL. In
DL-LiteR, TBox axioms are either concept inclusions B � C or role inclusions
P � S built according to the following syntax (where A ∈ NC and R ∈ NR):

B := A | ∃P, C := B | ¬B, P := R | R−, S := P | ¬P

Inclusions of the form B1 � B2 or P1 � P2 are called positive inclusions (PI),
those of the form B1 � ¬B2 or P1 � ¬P2 are called negative inclusions (NI).

Semantics. An interpretation has the form I = (ΔI , ·I), where ΔI is a non-
empty set and ·I maps each a ∈ NI to aI ∈ ΔI , each A ∈ NC to AI ⊆ ΔI ,
and each R ∈ NR to RI ⊆ ΔI × ΔI . We adopt the unique name assumption
(i.e., for all a, b ∈ NI, aI �= bI if a �= b). The function ·I is straightforwardly

124 C. Bourgaux and A.-Y. Turhan

extended to general concepts and roles, e.g., (R−)I = {(d, e) | (e, d) ∈ RI} and
(∃P)I = {d | ∃e : (d, e) ∈ P I}. An interpretation I satisfies an inclusion G � H
if GI ⊆ HI ; it satisfies A(a) (resp. R(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ RI). We
call I a model of K = 〈T ,A〉 if I satisfies all axioms in T and all assertions in A.
A KB is consistent if it has a model, and we say that an ABox A is T -consistent
(or simply consistent for short), if the KB 〈T ,A〉 is consistent.

Queries. A conjunctive query (CQ) takes the form q = ∃y ψ(x ,y), where ψ
is a conjunction of atoms of the forms A(t) or R(t, t′), with t, t′ individuals or
variables from x ∪ y . A CQ is called Boolean (BCQ) if it has no free variables
(i.e. x = ∅). A BCQ q is entailed from K, written K |= q, iff q holds in every
model of K. Given a CQ q with free variables x = (x1, . . . , xk) and a tuple of
individuals a = (a1, . . . , ak), a is a certain answer to q over K just in the case
that K |= q(a), where q(a) is the BCQ resulting from replacing each xj by aj .

Inconsistency-Tolerant Semantics. A repair of K = 〈T ,A〉 is an inclusion-
maximal subset of A that is T -consistent. We consider three semantics based on
repairs.

A tuple a is an answer to q over K under

– AR semantics, written K |=AR q(a),
iff 〈T ,A′〉 |= q(a) for every repair A′ of K;

– IAR semantics, written K |=IAR q(a),
iff 〈T ,A∩〉 |= q(a) where A∩ is the intersection of all repairs of K;

– brave semantics, written K |=brave q(a),
iff 〈T ,A′〉 |= q(a) for some repair A′ of K.

In DL-LiteR, IAR or brave CQ answering is in P w.r.t. data complexity (in the
size of the ABox) and NP-complete w.r.t. combined complexity (in the size of
the whole KB and the query), and AR CQ answering is coNP-complete w.r.t.
data complexity and Πp

2-complete w.r.t. combined complexity [9,21].

Temporal Query Answering. We consider the framework presented in [11].

Definition 1 (TKB). A temporal knowledge base (TKB) K = 〈T , (Ai)0≤i≤n〉
consists of a TBox T and a finite sequence of ABoxes (Ai)0≤i≤n. A sequence
J = (Ii)0≤i≤n of interpretations Ii = (Δ, ·Ii) over a fixed non-empty domain
Δ is a model of K iff for all 0 ≤ i ≤ n, Ii is a model of 〈T ,Ai〉, and for every
a ∈ NI and all 1 ≤ i ≤ j ≤ n, aIi = aIj . Rigid predicates are elements from
the set of rigid concepts NRC ⊆ NC or of rigid roles NRR ⊆ NR. A sequence of
interpretations J = (Ii)0≤i≤n respects the rigid predicates iff for every X ∈
NRC ∪ NRR and all 1 ≤ i ≤ j ≤ n, XIi = XIj . A TKB is consistent if it has
a model that respects the rigid predicates. A sequence of ABoxes (Ai)0≤i≤n is
T -consistent, or simply consistent, if the TKB 〈T , (Ai)0≤i≤n〉 is consistent.

It is sometimes convenient to represent a sequence of ABoxes as a set of
assertions associated with timestamps, which we call timed-assertions: (Ai)0≤i≤n

becomes {(α, i) | α ∈ Ai, 0 ≤ i ≤ n}. A rigid assertion is of the form A(a) with
A ∈ NRC or R(a, b) with R ∈ NRR. We distinguish three cases in our analysis:

Temporal Query Answering in DL-Lite over Inconsistent Data 125

Case 1 with NRC = NRR = ∅, Case 2 with NRC �= ∅ and NRR = ∅, and Case 3 with
NRC �= ∅ and NRR �= ∅. Note that since rigid roles can simulate rigid concepts,
these three cases cover all possibilities. We denote by NK

X the elements of NX

occurring in K.

Definition 2 (TCQ). Temporal conjunctive queries (TCQs) are built from
CQs as follows: each CQ is a TCQ, and if φ1 and φ2 are TCQs, then so are
φ1∧φ2 (conjunction), φ1∨φ2 (disjunction), �φ1 (strong next), �φ1 (weak next),�−φ1 (strong previous), �−φ1 (weak previous), �φ1 (always), �−φ1 (always in
the past), ♦φ1 (eventually), ♦−φ1 (some time in the past), φ1Uφ2 (until), and
φ1Sφ2 (since). Given a TCQ φ with free variables x = (x1, . . . , xk) and a tuple of
individuals a = (a1, . . . , ak), φ(a) denotes the Boolean TCQ (BTCQ) resulting
from replacing each xj by aj. The tuple a is an answer to φ in a sequence of inter-
pretations J = (Ii)0≤i≤n at time point p (0 ≤ p ≤ n) iff J , p |= φ(a), where
the entailment of a BTCQ φ is defined by induction on its structure as shown in
Table 1. It is a certain answer to φ over K at time point p, written K, p |= φ(a),
iff J , p |= φ(a) for every model J of K that respects the rigid predicates.

Table 1. Entailment of BTCQs

φ J , p |= φ iff

∃y ψ(y) Ip |= ∃y ψ(y)

φ1 ∧ φ2 J , p |= φ1 and J , p |= φ2

φ1 ∨ φ2 J , p |= φ1 or J , p |= φ2

�φ1 p < n and J , p + 1 |= φ1

�φ1 p < n implies J , p + 1 |= φ1

�−φ1 p > 0 and J , p − 1 |= φ1

�−φ1 p > 0 implies J , p − 1 |= φ1

�φ1 ∀k, p ≤ k ≤ n, J , k |= φ1

�−φ1 ∀k, 0 ≤ k ≤ p, J , k |= φ1

♦φ1 ∃k, p ≤ k ≤ n, J , k |= φ1

♦−φ1 ∃k, 0 ≤ k ≤ p, J , k |= φ1

φ1Uφ2 ∃k, p ≤ k ≤ n, J , k |= φ2 and ∀j, p ≤ j < k, J , j |= φ1

φ1Sφ2 ∃k, 0 ≤ k ≤ p, J , k |= φ2 and ∀j, k < j ≤ p, J , j |= φ1

Thus, TCQ answering is straightforwardly reduced to entailment of BTCQs
and we can focus w.l.o.g. on the latter problem.

3 Temporal Query Answering over Inconsistent Data

We extend the three inconsistency-tolerant semantics to temporal query answer-
ing. The main difference to the atemporal case is that in the presence of rigid

126 C. Bourgaux and A.-Y. Turhan

predicates a TKB K = 〈T , (Ai)0≤i≤n〉 may be inconsistent even if each KB
〈T ,Ai〉 is consistent. In this case there need not exist a sequence of interpreta-
tions J = (Ii)0≤i≤n such that each Ii is a model of 〈T ,Ai〉 and which respects
rigid predicates. That is why we need to consider as repairs the T -consistent
sequences of subsets of the initial ABoxes that are component-wise maximal.

Definition 3 (Repair of a TKB). A repair of a TKB K = 〈T , (Ai)0≤i≤n〉
is a sequence of ABoxes (A′

i)0≤i≤n such that {(α, i) | α ∈ A′
i, 0 ≤ i ≤ n} is a

maximal T -consistent subset of {(α, i) | α ∈ Ai, 0 ≤ i ≤ n}. We denote the set
of repairs of K by Rep(K).

The next example shows the influence of rigid predicates on the repairs.

Example 1. Consider the following TKB K = 〈T , (Ai)1≤i≤2〉. The TBox
expresses that web servers and application servers are two distinct kinds of
servers, and the ABoxes provide information about a server a that executes
two processes.

T = {WebServer � Server, AppServer � Server, WebServer � ¬AppServer}
A1 = {WebServer(a), execute(a, b)}
A2 = {AppServer(a), WebServer(a), execute(a, c)}

Assume that no predicate is rigid. The TKB K is inconsistent because the timed-
assertions (AppServer(a), 2) and (WebServer(a), 2) violate the negative inclusion
of T , since AppServer(a) and WebServer(a) cannot both be true at time point 2.
It follows that K has two repairs (A′

i)1≤i≤2 and (A′′
i)1≤i≤2 with A′

1 = A′′
1 = A1,

and A′
2 = {AppServer(a), execute(a, c)} and A′′

2 = {WebServer(a), execute(a, c)}
which correspond to the two different ways of restoring consistency.

Assume now that AppServer is rigid. There is a new reason for K being
inconsistent: the timed-assertions (WebServer(a), 1) and (AppServer(a), 2) violate
the negative inclusion of T due to the rigidity of AppServer which implies that
AppServer(a) and WebServer(a) should be both entailed at time point 1. Then
K has two repairs (A′

i)1≤i≤2 and (A′′
i)1≤i≤2 with A′

1 = {execute(a, b)}, A′
2 =

{AppServer(a), execute(a, c)}, and A′′
1 = A1, A′′

2 = {WebServer(a), execute(a, c)}.
Note that even if (A′

i)1≤i≤2 is maximal (since adding WebServer(a) to A′
1 renders

the TKB inconsistent), A′
1 is not a repair of 〈T ,A1〉 since it is not maximal.

Next we extend the semantics AR, IAR, and brave to the temporal case in
the natural way by regarding sequences of ABoxes.

Definition 4 (AR, IAR, brave semantics for TCQs). A tuple a is an
answer to a TCQ φ over a TKB K = 〈T , (Ai)0≤i≤n〉 at time point p under

– AR semantics, written K, p |=AR φ(a),
iff 〈T , (A′

i)0≤i≤n〉, p |= φ(a) for every repair (A′
i)0≤i≤n of K;

– IAR semantics, written K, p |=IAR φ(a),
iff 〈T , (AIR

i)0≤i≤n〉, p |= φ(a), with AIR
i =

⋂
(A′

j)0≤j≤n∈Rep(K) A′
i, 0 ≤ i ≤ n;

– brave semantics, written K, p |=brave φ(a),
iff 〈T , (A′

i)0≤i≤n〉, p |= φ(a) for some repair (A′
i)0≤i≤n of K.

Temporal Query Answering in DL-Lite over Inconsistent Data 127

The following relationships between the semantics are implied by their definition:

K, p |=IAR φ(a) ⇒ K, p |=AR φ(a) ⇒ K, p |=brave φ(a)

Next, we illustrate the effect of the different semantics in the temporal case.

Example 2 (Example 1 cont’d). Consider the three temporal conjunctive queries:

φ1 = �(∃y execute(x, y)) φ2 = �(∃y Server(x) ∧ execute(x, y))
φ3 = �(∃y AppServer(x) ∧ execute(x, y))

In Case 1 with no rigid predicate, the intersection of the repairs is (AIR
i)1≤i≤2

with AIR
1 = A1, AIR

2 = {execute(a, c)}. Then K, 1 |=IAR φ1(a), since in every
model of the intersection of the repairs a executes b at time point 1 and c at
time point 2. For φ2, K, 1 |=AR φ2(a), since every model of every repair assigns
a to WebServer at time point 1 and either to AppServer (in models of (A′

i)1≤i≤2)
or to WebServer (in models of (A′′

i)1≤i≤2) at time point 2, but K, 1 �|=IAR φ2(a).
Finally, K, 1 �|=brave φ3(a) because no repair entails AppServer(a) at time point 1.

If AppServer is rigid, the intersection of the repairs is (AIR
i)1≤i≤2 with

AIR
1 = {execute(a, b)}, AIR

2 = {execute(a, c)}. So still K, 1 |=IAR φ1(a) holds.
Since every model of every repair assigns a to Server at time points 1 and 2
(either because a is a web server or an application server), K, 1 |=AR φ2(a),
but K, 1 �|=IAR φ2(a). Finally, K, 1 |=brave φ3(a) because every model of
〈T , (A′

i)1≤i≤2〉 assigns a to AppServer at any time point by rigidity of AppServer,
but K, 1 � |=AR φ3(a).

We point out some characteristics of Case 1. Since there is no rigid predicate,
the interpretations Ii of a model J = (Ii)0≤i≤n of K that respects the rigid
predicates are independent, besides the interpretation of the constants.

Proposition 1. If NRC = NRR = ∅, then K = 〈T , (Ai)0≤i≤n〉 is consistent iff
every 〈T ,Ai〉 is consistent. Moreover, if K is consistent, for every 0 ≤ p ≤ n, I ′

p

is a model of 〈T ,Ap〉 iff there exists a model (Ii)0≤i≤n of K such that Ip = I ′
p.

Proposition 1 has important consequences. First, the repairs of K are all possible
sequences (A′

i)0≤i≤n where A′
i is a repair of 〈T ,Ai〉, so the intersection of the

repairs of K is (A∩
i)0≤i≤n where A∩

i is the intersection of the repairs of 〈T ,Ai〉.
Second, we show that the entailment (resp. IAR entailment) of a BTCQ from a
consistent (resp. inconsistent) DL-LiteR TKB can be equivalently defined w.r.t.
the entailment (resp. IAR entailment) of the BCQs it contains as follows:

Proposition 2. If K is a DL-LiteR TKB and NRC = NRR = ∅, the entailments
shown in Table 2 hold for S = classical when K is consistent, and for S = IAR.

This is a remarkable result, since it implies that answering temporal CQs
under IAR semantics can be done with the algorithms developed for the consis-
tent case [10,11] by replacing classical CQ answering by IAR CQ answering (see
[8,22,27] for algorithms). The following example shows that this is unfortunately
not true for brave or AR semantics.

128 C. Bourgaux and A.-Y. Turhan

Table 2. Entailment under classical or IAR semantics without rigid predicates

φ K, p |=S φ iff

∃y ψ(y) 〈T , Ap〉 |=S ∃y ψ(y)

φ1 ∧ φ2 K, p |=S φ1 and K, p |=S φ2

φ1 ∨ φ2 K, p |=S φ1 or K, p |=S φ2

�φ1 p < n and K, p + 1 |=S φ1

�φ1 p < n implies K, p + 1 |=S φ1

�−φ1 p > 0 and K, p − 1 |=S φ1

�−φ1 p > 0 implies K, p − 1 |=S φ1

�φ1 ∀k, p ≤ k ≤ n, K, k |=S φ1

�−φ1 ∀k, 0 ≤ k ≤ p, K, k |=S φ1

♦φ1 ∃k, p ≤ k ≤ n, K, k |=S φ1

♦−φ1 ∃k, 0 ≤ k ≤ p, K, k |=S φ1

φ1Uφ2 ∃k, p ≤ k ≤ n, K, k |=S φ2 and ∀j, p ≤ j < k, K, j |=S φ1

φ1Sφ2 ∃k, 0 ≤ k ≤ p, K, k |=S φ2 and ∀j, k < j ≤ p, K, j |=S φ1

Example 3. Consider the following TKB K = 〈T , (Ai)1≤i≤n〉 and TCQ φ.

T ={T � ¬F} Ai ={T (a), F (a)} for 1 ≤ i ≤ n φ =�−(T (a) ∧ �−F (a))

Now, K, k |=brave T (a)∧�−F (a) for every 0 ≤ k ≤ n, but K, n �|=brave φ. This is
because the same repair cannot entail T (a) ∧ �−F (a) both at time point k and
k + 1, since it would contain both (T (a), k) and (F (a), k) which is not possible.
For AR semantics, consider φ = T (a) ∨ F (a) over the TKB K: while φ holds
under AR semantics at each time point, neither T (a) nor F (a) does.

However, if the operators allowed in the TCQ are restricted to
∧,�,�,�−,�−,�, and �−, then AR TCQ answering can be done with the
algorithms developed for the consistent case by simply replacing classical CQ
answering by AR CQ answering (see [8] for algorithms). Moreover, contrary to
the brave semantics, this method still provides a sound approximation of AR
answers even for unrestricted TCQs, since for all operators, the “if” direction
from Table 2 is true.

4 Complexity Analysis for DL-LiteR

The complexity of TCQ answering under the classical semantics in DL-LiteR
with negations in the query has been shown ALogTime-complete w.r.t. data
complexity and PSpace-complete w.r.t. combined complexity, rigid concepts
and roles being present or not [12]. In our case, i.e., without negations, CQ
evaluation over databases provides a NP lower bound for combined complexity
and it has been shown in [10,11] that TCQs in DL-LiteR are rewritable so that

Temporal Query Answering in DL-Lite over Inconsistent Data 129

they can be answered over a temporal database—albeit for a restricted setting
without rigid roles and with rigid concepts only for TCQs that are rooted. The
NP membership of TCQ answering in Case 1 for combined complexity is implied
by this latter work as follows: it is possible to guess for each time point i and
CQ q from the TCQ either a rewriting q′ of q that holds in Ai together with the
rewriting steps that produce q′ and the variables assignment that maps q′ in Ai,
or to guess “false”. Checking that q′ is indeed a rewriting of q and holds in Ai

can be done in polynomial time and there are polynomially many such pairs of
a time point and a CQ to test. Moreover, verifying that the propositional LTL
formula obtained by replacing the CQs by propositional variables is satisfied by
the sequence of truth assignments that assigns the propositional abstraction of
q to false at time point i if “false” has been guessed and to true otherwise is in
P since the formula does not contain negation. It follows that TCQ answering is
NP-complete w.r.t. combined complexity. To alleviate the limitations imposed
in [10,11], we first show that TCQ answering without negations is NP-complete
w.r.t. combined complexity even in the presence of rigid concepts and roles, with
the restriction that a rigid role can only have rigid sub-roles. Indeed, we show
that under this restriction, TCQ answering in Case 3 can be reduced to TCQ
answering in Case 1 by adding to every ABox a set of assertions that models
rigid consequences of the TKB and is computable in polynomial time.

For the remainder of this section, K = 〈T , (Ai)0≤i≤n〉 is a DL-LiteR TKB
and φ is a BTCQ. The set of constants of φ is denoted by Nφ

I . We make use
of the following notations: for a role P and two constants or variables x and y,
P− := S if P = S− and P (x, y) denotes S(x, y) if P = S and S(y, x) if P = S−.
We assume w.l.o.g. that no x ∈ NK

I is of the form xe
w where w, e are words built

over NK
I ∪ NK

C ∪ NK
R and N respectively.

As a first step, we assume that K is consistent and construct a model JK of
K such that for any Boolean conjunctive query q = ∃y ψ(y) such that Nq

I ⊆ NK
I ,

K, p |= q iff JK, p |= q. We build a sequence of (possibly infinite) ABoxes
(chaseK

rig(Ai))0≤i≤n similar to the chase presented in [15] for KBs. Let S be a
set of DL-LiteR assertions. A PI α is applicable in S to an assertion β ∈ S if

– α = A1 � A2, β = A1(a), and A2(a) /∈ S
– α = A � ∃P , β = A(a), and there is no b such that P (a, b) ∈ S
– α = ∃P � A, β = P (a, b), and A(a) /∈ S
– α = ∃P1 � ∃P2, β = P1(a1, a2), and there is no b such that P2(a1, b) ∈ S
– α = P1 � P2, β = P1(a1, a2), and P2(a1, a2) /∈ S.

Applying a PI α to an assertion β means adding a new suitable assertion βnew

to S such that α is not applicable to β in S ∪ {βnew}.

Definition 5 (Rigid chase of a TKB). Let K = 〈T , (Ai)0≤i≤n〉 be a DL-
LiteR TKB. Let (A′

i)0≤i≤n = (Ai ∪{β | ∃k, β ∈ Ak and β is rigid})0≤i≤n, let Tp

be the set of positive inclusions in T , and let Ni be the number of assertions in
A′

i. Assume that the assertions of each A′
i are numbered from N1+ · · ·+Ni−1+1

130 C. Bourgaux and A.-Y. Turhan

to N1 + · · · + Ni following their lexicographic order. Consider the sequences of
sets of assertions Sj = (Sj

i)0≤i≤n defined as follows:

S0 = (A′
i)0≤i≤n and Sj+1 = Sj ∪ Snew = (Sj

i ∪ Snew
i)0≤i≤n,

where Snew is defined in terms of the assertion βnew obtained from: let β ∈ Sj
iβ

be the first assertion in Sj such that there is a PI in Tp applicable in Sj
iβ

to β and

α be the lexicographically first PI applicable in Sj
iβ

to β. If α, β are of the form

– α = A1 � A2 and β = A1(a) then βnew = A2(a)
– α = A � ∃P and β = A(a) then βnew = P (a, anew)
– α = ∃P � A and β = P (a, b) then βnew = A(a)
– α = ∃P1 � ∃P and β = P1(a, b) then βnew = P (a, anew)
– α = P1 � P2 and β = P1(a1, a2) then βnew = P2(a1, a2)

where anew is constructed from α and β as follows:

– if a ∈ NK
I then anew = x

iβ

aP

– otherwise a /∈ NK
I , then let a = xi1...il

a′P1...Pl
and define anew = x

i1...iliβ

a′P1...PlP
.

If βnew is rigid, then Snew = ({βnew})0≤i≤n, otherwise, Snew = (Snew
i)0≤i≤n

with Snew
iβ

= {βnew} and Snew
i = ∅ for i �= iβ. Let N be the total number of

assertions in Sj. If βnew is not rigid, βnew is numbered by N + 1, otherwise for
every 0 ≤ i ≤ n, the assertion βnew ∈ Snew

i added to Sj
i is numbered by N +1+i.

We call the rigid chase of K, denoted by chaserig(K) = (chaseK
rig(Ai))0≤i≤n,

the sequence of sets of assertions obtained as the infinite union of all Sj, i.e.,

chaserig(K) = (chaseK
rig(Ai))0≤i≤n =

⋃

j∈N

Sj = (
⋃

j∈N

Sj
i)0≤i≤n.

If K is consistent, let JK = (Ii)0≤i≤n where Ii = (Δ, ·Ii) is defined as follows:
Δ = NK

I ∪ ΓN where ΓN is the set of individuals that appear in chaserig(K) but
not in K, aIi = a for every a ∈ Δ, AIi = {a | A(a) ∈ chaseK

rig(Ai)} for every
A ∈ NC, and RIi = {(a, b) | R(a, b) ∈ chaseK

rig(Ai)} for every R ∈ NR. Then:

Lemma 1. JK is a model of K that respects the rigid predicates, and for any
BCQ q = ∃yψ(y) such that Nq

I ⊆ NK
I , K, p |= q iff JK, p |= q iff Ip |= q.

We want to construct in polynomial time a set of assertions R that captures all
relevant information about rigid concepts and roles for TCQ answering. Without
any restriction on the TBox, R may be infinite. To see this, consider K with T =
{∃R− � ∃R, R � S} with S rigid, A0 = {R(a, b)}, Ai = ∅ for 1 ≤ i ≤ n. Since a
model of K that respects rigid predicates is such that φ = ∃x1 . . . xk+1S(x1, x2)
∧ . . . ∧ S(xk, xk+1) holds for any k > 0 and at any time point, but can be such
that no cycle of S, nor ∃xyR(x, y) holds at some time point i > 0, R has to
contain an infinite chain of S. Therefore we assume the restriction that rigid
roles only have rigid sub-roles, i.e., T does not entail any role inclusion of the
form P1 � P2 with P1 := R1|R−

1 , R1 ∈ NR\NRR and P2 := R2|R−
2 , R2 ∈ NRR.

Temporal Query Answering in DL-Lite over Inconsistent Data 131

Proposition 3. Let R be as follows:

R = {A(a) | A ∈ NK
RC, a ∈ NK

I ,∃i, 〈T ,Ai〉 |=brave A(a)} ∪
{R(a, b) | R ∈ NK

RR, a, b ∈ NK
I ,∃i, 〈T ,Ai〉 |=brave R(a, b)} ∪

{P (a, xaP) | R ∈ NK
RR, P := R|R−, a ∈ NK

I ,∃i, 〈T ,Ai〉 |=brave ∃xP (a, x)} ∪
{A(xP1) | S ∈ NK

R \NK
RR, P1 := S|S−, A ∈ NK

RC,

∃i, 〈T ,Ai〉 |=brave ∃xyP1(x, y) and T |= ∃P−
1 � A} ∪

{P2(xP1 , xP1P2) | S ∈ NK
R \NK

RR, P1 := S|S−, R ∈ NK
RR, P2 := R|R−,

∃i, 〈T ,Ai〉 |=brave ∃xyP1(x, y) and T |= ∃P−
1 � ∃P2}

The set R is computable in polynomial time and such that (i) K is consistent iff
KR = 〈T , (Ai ∪ R)0≤i≤n〉 is consistent with NRC = NRR = ∅, and (ii) for any
BTCQ φ such that Nφ

I ⊆ NK
I , K, p |= φ iff KR, p |= φ with NRC = NRR = ∅.

The size of R is polynomial in the size of NK
C ,NK

R , and NK
I , and since atomic query

answering under brave semantics as well as subsumption checking can be done
in polynomial time, R can be computed in P. The first three parts of R retain
information about the participation of individuals of NK

I in rigid predicates. The
last two witness the participation in rigid predicates of the role-successors w.r.t.
non-rigid roles, thus take into account also anonymous individuals that are cre-
ated in chaserig(K) when applying PIs whose right-hand side is an existential
restriction with a non-rigid role. Note that the individuals created in chaserig(K)
when applying such a PI with a rigid role are witnessed by the xaP or xP1P2

if they do not follow from a rigid role assertion. They do not need to be wit-
nessed otherwise, since the assertion P2(xP1 , xP1P2) is sufficient to trigger all the
anonymous part implied by the fact that xP1P2 is in the range of P2.

The key point of the proof for Claim (i) in Proposition 3, is that a minimal
inconsistent subset of K of the form (α, i), (β, j) with i �= j entails the violation
of a NI that involves a rigid predicate, and that the rigid consequences of α and
β are captured by R. For the other direction, the main idea is that a minimal
inconsistent subset of KR of the form (α, i), (β, i) with α ∈ R is such that there
is some α′ ∈ Aj that triggered the addition of α in R, and a model of K that
respects the rigid predicates should satisfy both β and the rigid consequences of
α′ at time point i. To prove Claim (ii) of Proposition 3, we first show that for
any Boolean conjunctive query q = ∃y ψ(y) such that Nq

I ⊆ NK
I , JK, p |= q iff

KR, p |= q with NRC = NRR = ∅ by defining homomorphisms between Ip and
the canonical model of 〈T , (Ap ∪ R)〉.

Lemma 2. If q = ∃yψ(y) is such that Nq
I ⊆ NK

I , then Ip |= q iff KR, p |= q.

We then show by induction on the structure of the BTCQ φ that if Nφ
I ⊆ NK

I ,
then K, p |= φ iff KR, p |= φ with NRC = NRR = ∅, so that TCQ answering
over K in Case 3 can be done by TCQ answering over KR in Case 1 and pruning
answers that contain individual names not from NK

I . Note that a model of KR is a
model of K but does not respect rigid predicates in general. We can reduce BTCQ

132 C. Bourgaux and A.-Y. Turhan

entailment over K with rigid predicates to BTCQ entailment over KR without
rigid predicates only because our TCQs do not allow LTL operators to be nested
in existential quantifications. This prevents existentially quantified variables to
link different time points. Otherwise a query as ∃xy�(R(a, x) ∧ R(x, y)) with
T = {B � ∃R,∃R− � ∃R}, R ∈ NRR and Ai = {B(a)} would be entailed from
K but not from KR with NRR = ∅. Indeed, in this case R = {R(a, xaR)}, so xaR

may have a different R-successor in each interpretation of a model of KR and y
cannot be mapped to the same object at every time point.

It follows from Proposition 3 and the NP-completeness of TCQ answering in
Case 1 that TCQ answering is NP-complete w.r.t. combined complexity with the
lower bound coming from the atemporal case. The following theorem summarizes
the known complexity results for the classical semantics.

Theorem 1. If T does not entail any role inclusion of the form P1 � P2 with
P1 := R1|R−

1 , R1 ∈ NR\NRR and P2 := R2|R−
2 , R2 ∈ NRR, then consistency

checking is in P w.r.t. combined complexity and TCQ answering is in P w.r.t.
data complexity, and NP-complete w.r.t. combined complexity.

We now turn our attention to the inconsistency-tolerant semantics.

Theorem 2. The results in Fig. 1 hold.

AR IAR brave

Case 1 (NRC = ∅,NRR = ∅) coNP-c in P in P

Case 2 (NRC
= ∅,NRR = ∅) coNP-c in P NP-c

Case 3* (NRC
= ∅,NRR
= ∅) coNP-c in P NP-c

AR IAR brave

Πp
2 -c NP-c NP-c

Πp
2 -c NP-c NP-c

Πp
2 -c NP-c NP-c

Fig. 1. Data [left] and combined [right] complexity of BTCQ entailment over DL-LiteR
TKBs under the different semantics. *: only with rigid specializations of rigid roles

In what follows, we present the key ideas underlying Theorem 2. First note
that verifying that a sequence of ABoxes (A′

i)0≤i≤n is a repair of K can be done
in P by checking that A′

i ⊆ Ai for every i, that (A′
i)0≤i≤n is consistent, and that

adding any other timed-assertion of K renders it inconsistent.

AR Upper Bounds. We show that φ does not hold under AR semantics by guess-
ing a repair of K that does not entail φ.

IAR Upper Bounds. We compute the minimal inconsistent subsets of K in P by
checking the consistency of every timed-assertion and pair of timed-assertions,
then answer the query over the TKB from which they have been removed. Indeed,
if a timed-assertion (α, i) is inconsistent it cannot be in a repair, and if there
exists a consistent (β, j) such that {(α, i), (β, j)} is inconsistent, (α, i) is not in
the repairs that contain (β, j). In the other direction, if (α, i) does not appear in

Temporal Query Answering in DL-Lite over Inconsistent Data 133

some repair (A′
i)0≤i≤n of K, since the repairs are maximal, (A′

i)0≤i≤n ∪ {(α, i)}
is inconsistent so (α, i) is in some minimal inconsistent subset of K.

AR and IAR Lower Bounds. Hardness results come from the atemporal case.

Combined Complexity of Brave. We show that φ holds under brave semantics by
guessing a repair of K that entails φ. Hardness comes from the atemporal case.

Data Complexity of Brave. The data complexity upper bound for brave CQ
answering relies on the fact that the size of the minimal sets of assertions that
support the query is bounded by the query size, which is not true in the temporal
setting (e.g., consider φ = �A(a), which needs n assertions to be entailed).
Moreover, while brave BCQ entailment is tractable in the atemporal setting, we
show that if rigid concepts are allowed, brave BTCQ entailment is NP-hard.

Proposition 4. If NRC �= ∅, brave TCQ answering is NP-complete w.r.t. data
complexity.

Proof. We show the lower bound by reduction from SAT. Let ϕ = C1 ∧ . . . ∧ Cn

be a CNF formula over variables x1, . . . , xm. We define the following problem of
BTCQ entailment under brave semantics over TKB K with concepts T, F ∈ NRC:

T = {∃Pos � Sat , ∃Neg � Sat , ∃Pos− � T, ∃Neg− � F, T � ¬F}
Ai = {Pos(c, xj) | xj ∈ Ci} ∪ {Neg(c, xj) | ¬xj ∈ Ci} for 1 ≤ i ≤ n

Let φ = �−Sat(c). We show that ϕ is satisfiable iff K, n |=brave φ. Indeed, since
T and F are rigid, a repair of K is such that each xj has either only Pos or Neg
incoming edges in the whole TKB. Thus, each repair defines a valuation such
that xj is true if xj has no incoming Neg-edge, and false otherwise. A repair of
K that entails φ, i.e., that is such that c has an outgoing edge in every ABox,
corresponds thus to a valuation of the xj that satisfies every clause Ci.

It remains to show that in Case 1, brave TCQ answering is in P. We describe
a method for brave BTCQ entailment when NRC = NRR = ∅ that proceeds by
type elimination over a set of tuples built from the query and that represent the
TCQs that are entailed at each time point. First, we define the structure on which
the method operates. We consider the set L(φ) of leaves of φ, that is, the set of
all BCQs in φ, and the set F (φ) of subformulas of φ. In what follows, we identify
the BCQs of L(φ) and the BTCQs of F (φ) with their propositional abstractions:
if we write that a KB or a TKB entails some elements of L(φ) or F (φ), we
consider them as BCQs or BTCQs, and if we write that some elements of L(φ)
or F (φ) entail others, we consider the elements of L(φ) as propositional variables
and those of F (φ) as propositional LTL formulas built over these variables.

Definition 6. A justification structure J for φ in K is a set of tuples of the
form (i, Lnow, Fnow, Fprev, Fnext), where 0 ≤ i ≤ n, Lnow ⊆ L(φ), Fnow ⊆ F (φ),
Fprev ⊆ F (φ), and Fnext ⊆ F (φ).

Note that the size of a justification structure for φ in K is linearly bounded in n
and independent of the size of the ABoxes. A tuple (i, Lnow, Fnow, Fprev, Fnext)
is justified in J iff it fulfills all of the following conditions:

134 C. Bourgaux and A.-Y. Turhan

(1) 〈T ,Ai〉 |=brave

∧
q∈Lnow

q
(2) If i > 0, there exists (i − 1, L′

now, F ′
now, F ′

prev, F
′
next) ∈ J such that

Fprev = F ′
now and Fnow = F ′

next

(3) If i < n, there exists (i + 1, L′
now, F ′

now, F ′
prev, F

′
next) ∈ J such that

Fnext = F ′
now and Fnow = F ′

prev

(4) For every ψ ∈ L(φ), if Fnow |= ψ, then ψ ∈ Lnow

(5) For every ψ ∈ F (φ), if Fnow |= ψ, then ψ ∈ Fnow

(6) For every ψ ∈ F (φ), if
∧

q∈Lnow
q ∧ �−(

∧
χ∈Fprev

χ) ∧ �(
∧

χ∈Fnext
χ) |= ψ,

then ψ ∈ Fnow

(7) For every ψ,ψ′ ∈ F (φ):
if ψ ∨ ψ′ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow

if ♦ψ ∈ Fnow, then either ψ ∈ Fnow or ♦ψ ∈ Fnext

if ♦−ψ ∈ Fnow, then either ψ ∈ Fnow or ♦−ψ ∈ Fprev

if ψ′Uψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow and ψ′Uψ ∈ Fnext

if ψ′Sψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow and ψ′Sψ ∈ Fprev

(8) If i = n,
∀ψ ∈ F (φ) of the form �ϕ, ψ ∈ Fnow

∀ψ ∈ F (φ) of the form �ϕ, ψ /∈ Fnow

∀ψ ∈ F (φ) of the form ♦ϕ,�ϕ,ϕ′Uϕ, ψ ∈ Fnow iff ϕ ∈ Fnow

(9) If i = 0,
∀ψ ∈ F (φ) of the form �−ϕ, ψ ∈ Fnow

∀ψ ∈ F (φ) of the form �−ϕ, ψ /∈ Fnow

∀ψ ∈ F (φ) of the form ♦−ϕ,�−ϕ,ϕ′Sϕ, ψ ∈ Fnow iff ϕ ∈ Fnow

We give the intuition behind the elements of the tuples fulfilling these con-
ditions. The first element i is the time point considered, Lnow is a set of BCQs
whose conjunction is entailed under brave semantics by 〈T ,Ai〉 (Condition 1),
and Fnow is the set of formulas that can be entailed together with Lnow, depend-
ing on what is entailed in the previous and next time points, this information
being stored in Fprev and Fnext, respectively (Condition 6). Conditions 2 and 3
ensure that there is a sequence of tuples representing every time point from 0
to n such that this information is coherent between consecutive tuples. Condi-
tion 4 expresses that Lnow is precisely the set of BCQs contained in Fnow and
Condition 5 that Fnow is maximal in the sense that it contains its consequences.
Condition 7 enforces that Fnow, Fprev and Fnext respect the semantics of LTL
operators and Conditions 8 and 9 enforce this semantics at the ends of the finite
sequence.

A justification structure J is correct if every tuple is justified, and φ is
justified at time point p by J if there is (p, Lnow, Fnow, Fprev, Fnext) ∈ J such
that φ ∈ Fnow. We show that φ is entailed from K at time point p under
brave semantics iff there is a correct justification structure for φ in K that
justifies φ at time point p. The main idea is to link the tuples of a sequence
((i, Lnow, Fnow, Fprev, Fnext))0≤i≤n to a consistent TKB K′ = 〈T , (A′

i)0≤i≤n〉
such that for every i, A′

i ⊆ Ai and 〈T ,A′
i〉 |=

∧
q∈Lnow

q. We show that there
is such a K′ such that K′, p |= φ iff there is such a sequence of tuples that is a
correct justification structure for φ in K and justifies φ at time point p.

Temporal Query Answering in DL-Lite over Inconsistent Data 135

The complexity of brave TCQ answering follows from the characterization of
brave BTCQ entailment with justification structures.

Proposition 5. In Case 1, brave TCQ answering is in P w.r.t. data complexity.

Proof. We start with a justification structure J for φ in K that contains all
possible tuples and remove the unjustified tuples as follows: (i) remove every
tuple that does not satisfy Conditions 1, 4– 8 or 9, and (ii) repeat the following
steps until a fix-point has been reached: iterate over the tuples from time point
0 to n, eliminating those which do not satisfy Condition 3, then from n to 0
eliminating those which do not satisfy Condition 2. We then check whether the
resulting justification structure contains a tuple (p, Lnow, Fnow, Fprev, Fnext) such
that φ ∈ Fnow. Since the size of J is linear in n, this process requires at most
quadratically many steps. Verifying that a given tuple is justified is in P w.r.t.
data complexity (checking Conditions 3 or 2 is linear in n and only the brave
entailment of a BCQ from a DL-LiteR KB for Condition 1 depends on the size
of the ABox), so the complete procedure runs in P w.r.t. data complexity.

5 Conclusion and Future Work

We extended the AR, IAR and brave semantics to the setting of temporal query
answering in description logics. We first showed that in the case where rigid pred-
icates are not allowed, TCQ answering under IAR semantics can be achieved by
combining algorithms developed for TCQ answering under the classical seman-
tics with algorithms for CQ answering under IAR semantics over atemporal KBs.
We also showed that in some cases, the same applies to AR semantics and that
in any case, this method provides a sound approximation of AR answers. Since
this is not true for brave semantics and we believe that this semantics can be rel-
evant, for instance in the application of situation recognition, it would be useful
to characterize the queries for which this method would be correct. Indeed, for
many pairs of a TBox and query, the minimal subsets of the TKB such that the
query can be mapped into them cannot be inconsistent (e.g., if pairs of predicates
that may be needed at the same time point do not appear in any NI entailed by
the TBox. If T = {A � ¬C,B � ¬C} and φ = ∃xA(x)∧♦(∃xB(x)∧�(∃xC(x))),
for φ being entailed at time point p, ∃xA(x) should hold at p, ∃xB(x) at time
point i ≥ p and ∃xC(x) at i + 1 ≥ p. Thus, there cannot be a conflict between
the C and the A or B timed-assertions used to satisfy the different CQs).

Our second contribution is a complexity analysis of the three semantics for
DL-LiteR, depending on which predicates are allowed to be rigid. Encourag-
ingly, only brave semantics in the cases with rigid predicates has a higher data
complexity than in the atemporal case. In the other cases handling of inconsis-
tencies comes at no extra cost for temporal reasoning in terms of computational
complexity. These results rise hope for feasibility of making ontology-based appli-
cations in temporal settings resilient against noise in the data.

136 C. Bourgaux and A.-Y. Turhan

We also showed that for the classical semantics, rigid predicates can be han-
dled by adding a set of assertions to each ABox of the TKB, proving that disal-
lowing negations in the query makes the combined complexity of TCQ answering
drop from PSpace to NP. However, our approach that adds the set of assertions
R to every ABox to reduce Cases 2 or 3 to Case 1 works only for the classical
semantics. Now, practical algorithms still remain to be found for inconsistency-
tolerant temporal query answering with rigid predicates.

References

1. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F.,
Zakharyaschev, M.: First-order rewritability of temporal ontology-mediated
queries. In: Proceedings of IJCAI (2015)

2. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. ACM Trans. Comput.
Log. 15(3), 25:1–25:50 (2014)

3. Baader, F., Bauer, A., Baumgartner, P., Cregan, A., Gabaldon, A., Ji, K., Lee,
K., Rajaratnam, D., Schwitter, R.: A novel architecture for situation awareness
systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp.
77–92. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02716-1 7

4. Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data
access. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 330–344.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 23

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, New York (2003)

6. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, USA (2011)

7. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic
knowledge bases. In: Pan, J.Z., Calvanese, D., Eiter, T., Horrocks, I., Kifer, M., Lin,
F., Zhao, Y. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 156–202. Springer,
Cham (2017). doi:10.1007/978-3-319-49493-7 5

8. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic
knowledge bases under preferred repair semantics. In: Proceedings of AAAI (2014)

9. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proceedings of IJCAI (2013)

10. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the descrip-
tion logic DL-Lite. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS
2013. LNCS, vol. 8152, pp. 165–180. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40885-4 11

11. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages
over knowledge bases. J. Web Semant. 33, 50–70 (2015)

12. Borgwardt, S., Thost, V.: Temporal query answering in DL-Lite with negation. In:
Proceedings of GCAI (2015)

13. Bourgaux, C., Turhan, A.Y.: Temporal query answering in DL-Lite over inconsis-
tent data. LTCS-Report 17–06, Chair for Automata Theory, TU Dresden (2017).
https://lat.inf.tu-dresden.de/research/reports.html

14. Calbimonte, J., Jeung, H., Corcho, Ó., Aberer, K.: Enabling query technologies for
the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)

http://dx.doi.org/10.1007/978-3-642-02716-1_7
http://dx.doi.org/10.1007/978-3-642-38574-2_23
http://dx.doi.org/10.1007/978-3-319-49493-7_5
http://dx.doi.org/10.1007/978-3-642-40885-4_11
http://dx.doi.org/10.1007/978-3-642-40885-4_11
https://lat.inf.tu-dresden.de/research/reports.html

Temporal Query Answering in DL-Lite over Inconsistent Data 137

15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tes-
saris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C.,
Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03754-2 7

16. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. (JAR) 39(3), 385–429 (2007)

17. Chomicki, J., Toman, D., Böhlen, M.H.: Querying ATSQL databases with temporal
logic. ACM Trans. Database Syst. 26(2), 145–178 (2001)

18. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum.
Factors 37(1), 32–64 (1995)

19. Gutiérrez-Basulto, V., Klarman, S.: Towards a unifying approach to representing
and querying temporal data in description logics. In: Krötzsch, M., Straccia, U.
(eds.) RR 2012. LNCS, vol. 7497, pp. 90–105. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33203-6 8

20. Klarman, S., Meyer, T.: Querying temporal databases via OWL 2 QL. In:
Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 92–107.
Springer, Cham (2014). doi:10.1007/978-3-319-11113-1 7

21. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-
tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15918-3 9

22. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015)

23. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: a survey. In:
Proceedings of TIME (2008)

24. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
web ontology language profiles. W3C Recommendation, 11 December 2012. http://
www.w3.org/TR/owl2-profiles/

25. Özçep, Ö.L., Möller, R.: Ontology based data access on temporal and stream-
ing data. In: Koubarakis, M., Stamou, G., Stoilos, G., Horrocks, I., Kolaitis, P.,
Lausen, G., Weikum, G. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 279–312.
Springer, Cham (2014). doi:10.1007/978-3-319-10587-1 7

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS (1977)
27. Tsalapati, E., Stoilos, G., Stamou, G.B., Koletsos, G.: Efficient query answering

over expressive inconsistent description logics. In: Proceedings of IJCAI (2016)

http://dx.doi.org/10.1007/978-3-642-03754-2_7
http://dx.doi.org/10.1007/978-3-642-33203-6_8
http://dx.doi.org/10.1007/978-3-642-33203-6_8
http://dx.doi.org/10.1007/978-3-319-11113-1_7
http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1007/978-3-319-10587-1_7

Semantic Wide and Deep Learning for Detecting
Crisis-Information Categories on Social Media

Grégoire Burel(B), Hassan Saif, and Harith Alani

Knowledge Media Institute, The Open University, Milton Keynes, UK
{g.burel,h.saif,h.alani}@open.ac.uk

Abstract. When crises hit, many flog to social media to share or con-
sume information related to the event. Social media posts during crises
tend to provide valuable reports on affected people, donation offers, help
requests, advice provision, etc. Automatically identifying the category of
information (e.g., reports on affected individuals, donations and volun-
teers) contained in these posts is vital for their efficient handling and con-
sumption by effected communities and concerned organisations. In this
paper, we introduce Sem-CNN; a wide and deep Convolutional Neural
Network (CNN) model designed for identifying the category of infor-
mation contained in crisis-related social media content. Unlike previous
models, which mainly rely on the lexical representations of words in the
text, the proposed model integrates an additional layer of semantics that
represents the named entities in the text, into a wide and deep CNN net-
work. Results show that the Sem-CNN model consistently outperforms
the baselines which consist of statistical and non-semantic deep learning
models.

Keywords: Semantic deep learning · Crisis information processing ·
Social media

1 Introduction

Social media has become a common place for communities and organisations
to communicate and share various information during crises, to enhance their
situational awareness, to share requests or offers for help and support, and to
coordinate their recovery efforts.

The volume and velocity of this content tend to be extremely high, rendering
it almost impossible for organisations and communities to manually analyse and
process the content shared during such crises [12,16]. For example, in a single
day during the 2011 Japan earthquake, 177 million tweets related to the crisis
were sent [5]. In 2013, more than 23 million tweets were posted about the haze
in Singapore [22].

Olteanu and colleagues study samples of tweets posts during various crisis
situations, and found that crisis-related social tweets tend to bare one of the fol-
lowing general information categories [20]: affected individuals, infrastructures

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 138–155, 2017.
DOI: 10.1007/978-3-319-68288-4 9

Semantic Wide and Deep Learning 139

and utilities, donations and volunteer, caution and advice, sympathy and emo-
tional support, other useful information. However, tools to automatically identify
the category of information shared during crises are still largely unavailable.

Recent research is mostly focused on processing social media content to deter-
minewhat documents are related to a crisis andwhat documents are not (e.g., [20]),
or todetect the emergenceofmajor crisis event (e.g.,floods [26],wildfires [29], earth-
quakes [23], nuclear disasters [28], etc.). However, the automatic identification of
the category or type of information shared about events is still in its infancy [20].

For example, although both of the tweets ‘Colorado fire displaces hundreds;
1 person missing.’ and ‘If you are evacuating please dont wait, take your pets
when you evacuate’ were posted during the 2012 Colorado’s wildfire crisis,1 they
bare different information, i.e., while the former tweet reports information on
individuals affected by the fire, the latter offers advices to the public. The app-
roach presented in this paper is aimed at classifying such kind of documents to
automatically determine which ones provide which category of information. Such
a mechanism can help users (e.g., citizens, humanitarian organisation, govern-
ment officials, police forces) to quickly filter big volumes of crisis-related tweets
to only those that provide the types of information they are interested in.

Most current research on identifying crisis information from social media rely
on the use of supervised and unsupervised Machine Learning (ML) methods, such
as classifiers, clustering and language models [1]. More recently, deep learning
has emerged as a new ML technique able to capture high level abstractions in
data, thus providing significant improvement over traditional ML methods in
certain tasks, such as in text classification [13], machine translation [2,8] and
sentiment analysis [10,27].

Applying deep learning to enhance the analysis of crisis-related social media
content is yet to be thoroughly explored [4]. In this paper, we hypothesise that
the encapsulation of a layer of semantics into a deep learning model can provide a
more accurate crisis-information-category identification by better characterising
the contextual information, which is generally scarce in short, ill-formed social
media messages.

We therefore propose Sem-CNN; a semantically enhanced wide and deep
Convolutional Neural Network (CNN) model, to target the problem above. We
also investigate the integration of semantic information in two different methods;
(a) using semantic concept labels, and (b) using semantic concept abstracts from
DBpedia.2 Our main contributions in this paper are:

– Generation of a wide and deep learning model (Sem-CNN) to identify the
category of crisis-related information contained in social media posts.

– Demonstration of two methods for enriching deep learning data representa-
tions with semantic information.

– Evaluation of the approach on three samples of the CrisisLexT26 dataset,
which consists around 28,000 labelled tweets.

1 High Park fire Wikipedia article, https://en.wikipedia.org/wiki/High Park fire.
2 DBpedia, http://dbpedia.org.

https://en.wikipedia.org/wiki/High_Park_fire
http://dbpedia.org

140 G. Burel et al.

– Produce an accuracy that outperforms the best baselines by up to +22.6%
F-measure (min +0.5%), thus proving the potential of semantic deep learning
approaches for processing crisis-related social media content.

The rest of the paper is structured as follows. Section 2 shows related work in
the areas of event detection and deep learning. Section 3 describes our proposed
deep learning model for event identification. Sections 4 and 5 show our evaluation
set up and the results of our experiments. Section 6 describes our reflections and
our planned future work. Section 7 concludes the paper.

2 Related Work

Crisis-related data analysis is often divided into three main tasks [20]. First,
crisis-related posts are separated from non-related documents. This allows the
filtering of documents that may have used a crisis-related term or hashtag, but
does not contain information that is relevant to a particular crisis event. Second,
the type of events mentioned (e.g., fires, floods, bombing) are identified from
each remaining post in order to identify the main type of event discussed in a
document. Third, the category of information contained in these crisis-related
tweets are determined. Olteanu and colleagues observed that there is a small
number of information categories that most crisis-related tweets tend to bare [20].
These categories are shown in Table 1 along with examples of tweets related to
the Colorado’s Wildfires. Crisis-information-category can be used by responders
to better asses an event situation as they tend to be more actionable than the
more general event categories.

Table 1. Crisis information categories from [20], and tweet examples

Category Example

Affected individuals ‘Colorado fire displaces hundreds; 1 person missing:
Firefighters in Colorado and new mexico are battling
wind-fu’

Caution and advice ‘If you are evacuating please dont wait, take your
pets when you evacuate #HighParkFire’

Donations and volunteering ‘RT @username: we are available to house a displaced
kitty or two if needed #flagstafffire cc @username’

Infrastructure and utilities ‘Homes at risk from Colorado wildfire: Hundreds of
families took refuge early Monday at a northern
Colorado’

Sympathy and support ‘Pray for rain! RT @username: #HighParkFire is
now at 36,930 acres.’

Other useful information ‘Photo of the Colorado wildfire from space (via
@NASA) URL #HighParkFire’

Semantic Wide and Deep Learning 141

In our previous work [4], we showed that the first two tasks can be per-
formed relatively successfully with traditional classification techniques (e.g.,
SVM), achieving higher than 80% in precision and recall values. However, the
automatic identification of crisis information categories proved to be a more
challenging task.

Identifying information categories from social media is a commonly used step
in event detection literature, and several recent works used deep learning for
event detection in different contexts. The advantage brought by deep learning
models over traditional ML feature-based methods is the lightweight feature
engineering they require and their reliance instead on word embeddings as a
more general and richer representation of words [18].

Pioneer works in this field include [6,11,18], which address the problem of
event detection at the sentence and/or phrase level by first identifying the event
triggers in a given sentence (which could be a verb or nominalisation) and clas-
sifying them into specific categories. Multiple deep learning models have been
proposed to address this problem. For example, Nguyen and Grishman [18] use
CNNs [15] with three input channels, corresponding to word embeddings, word
position embeddings, and ACE entity type embeddings3, to learn a word repre-
sentation and use it to infer whether a word is an event trigger or not. Contrary
to the general DBpedia entities and concepts that we use in our research, ACE
entities are limited to only a few concepts and cannot be associated to concept
or entity descriptions or abstracts.

We investigated the use of semantics for crises-event detection with deep
learning methods in [4], where we added a CNN layer to a traditional CNN
model by combining two parallel layers that join word embeddings and semantic
embeddings initialised from extracted concepts. Although the model performed
well for identifying crisis-related tweets and the general crisis events they men-
tion, its performance in identifying information categories could not outperform
the more traditional classification methods such as SVM. This was perhaps due
to the training complexity of CNN and the semantic embeddings as the amount
of semantics in each document is limited.

The approach introduced in this paper differs from [4] by using a variation of
the wide and deep learning model [7] that is designed for balancing the richness
of semantic information with the shallowness of textual content of documents. In
particular, it reuses the strength of CNN models for dealing with textual content
and a more traditional linear model for dealing with the richness of semantic
information. Contrary to the approach in [4], our new model also considers entity
and concept abstracts in its semantic input for allowing a better representation
of the document semantics.

3 Automatic Content Extraction (ACE) Entities, http://ldc.upenn.edu/collabora
tions/past-projects/ace.

http://ldc.upenn.edu/collaborations/past-projects/ace
http://ldc.upenn.edu/collaborations/past-projects/ace

142 G. Burel et al.

3 The Sem-CNN Approach for Identifying Crisis
Information Categories

In the context of Twitter,4 the identification of the category of information
contained in crises-related tweets is a text classification task where the aim is
to identify which posts contain which category of crisis-related information. In
this section we describe our proposed Sem-CNN model, which is a semantically
enriched deep learning model for identifying crisis-related information categories
on Twitter.

The proposed approach is a wide and deep learning model [7] that jointly
integrates shallow textual information in a deep Convolutional Neural Network
(CNN) model with semantic annotations in a wide generalised linear model.

The pipeline of our model consists of five main phases as depicted in Fig. 1:

Tweets Preprocessing

Concept
Extraction

Word
Vectors

Initialisation

Sem-CNN
Training

Pre-trained
Embeddings

Semantic
Vectors

Initialisation

Bag of Words

Bag of Concepts

T = “Obama
attends vigil for

Boston Marathon
bombing victims”

W = [obama, attends, vigil, for, boston,
marathon, bombing, victims]

C = [obama, politician, none, none,
none, boston, location, none, none,

none]

Term-Document Vector
(Term Presence)

Embeddings

obama
politician

boston
location

...

...

...

...
none

obama
attends

vigil
for

boston
marathon
bombing

victims

1
1
1
1
0
0
0
0
1

Concepts
Vector

Fig. 1. Pipeline of the proposed semantic Sem-CNN deep learning model for detecting
crises information categories.

1. Text Processing : A collection of input tweets are cleaned and tokenised for
later stages;

2. Word Vector Initialisation: Given a bag of words produced in the previous
stage and a pre-trained word embeddings, a matrix of word embedding is
constructed to be used for model training;

3. Concept Extraction: This phase run in parallel with the previous phase. Here
the semantic concepts of named-entities in tweets are extracted using an
external semantic extraction tool (e.g., TextRazor5, Alchemy API6, DBpedia
Spotlight [9]);

4. Semantic Vector Initialisation: This stage constructs a vector representation
for each of the entities and concepts extracted in the previous phase. The
vector is either constructed from DBpedia concept labels or from DBpedia
concept abstracts;

4 Twitter, http://twitter.com.
5 TextRazor, https://www.textrazor.com/.
6 Alchemy API, http://www.ibm.com/watson/alchemy-api.html..

http://twitter.com
https://www.textrazor.com/
http://www.ibm.com/watson/alchemy-api.html.

Semantic Wide and Deep Learning 143

5. Sem-CNN Training : In this phase the proposed Sem-CNN model is trained
from both, the word embeddings matrix and the semantic term-document
vector (concept names or concept abstracts).

In the following subsections we detail each phase in the pipeline.

3.1 Text Preprocessing

Tweets are usually composed of incomplete, noisy and poorly structured sen-
tences due to the frequent presence of abbreviations, irregular expressions, ill-
formed words and non-dictionary terms. This phase therefore applies a series of
preprocessing steps to reduce the amount of noise in tweets including, for exam-
ple, the removal of URLs, and all non-ASCII and non English characters. After
that, the processed tweets are tokenised into words that are consequently passed
as input to the word embeddings phase. Although different methods can be used
for preprocessing textual data, we follow the same approach used by Kim in the
CNN sentence classification model [13].

3.2 Word Vector Initialisation

An important part for applying deep neural networks to text classification is to
use word embeddings. As such, this phase aims to initialise a matrix of word
embeddings for training the information classification model.

Word embeddings is a general name that refers to a vectorised representation of
words, where words are mapped to vectors instead of a one dimension space [3]. The
main idea is that semantically close words should have a similar vector represen-
tation instead of a distinct representation. Different methods have been proposed
for generating embeddings such has Word2Vec [17] and GloVe [21] and they have
shown to improve the performance in multiple NLP tasks. Hence, in this work we
choose to initialise our model with Google’s pre-trained Word2Vec model [17] to
construct our word embeddings matrix, where rows in the matrix represent embed-
ding vectors of the words in the Twitter dataset.

3.3 Concept Extraction and Semantic Vector Initialisation

As mentioned in the previous step, using word embeddings for training deep
learning classification models has shown to substantially improve classification
performance. However, conventional word embedding methods merely rely on
the context of a word in the text to learn its embeddings. As such, learning
word embeddings from Twitter data might not be as sufficient for training our
classifier because tweets often lack context due to their short length and noisy
nature.

One possible approach to address this issue is to enrich the training process
of our proposed model with the semantic embeddings of words in order to better
capture the context of tweets. This approach we pursued in [4] was to add semantic
embeddings (i.e., a vectorised representation of semantic concepts) to a two layer

144 G. Burel et al.

CNN model [4]. However, since tweets are small documents the number of unique
concepts available within a corpus of documents is much lower than the number of
words present in the corpus. As a consequence, the number of available concepts
may not allow the efficient training of the semantic embeddings.

In this context, rather than using semantic embeddings, we propose to use
the more traditional vector space model representation of documents where the
semantics of each document is represented as a vector that identifies the presence
of individual semantic concepts as vector indexes within a concept space. We also
represent the presence of individual semantic concepts (or associated abstract
words) rather than the frequency of concepts within a tweet since tweets are
short textual documents.

Before converting the tweets’ semantics into the vector space model represen-
tation, we first extract the named-entities in tweets (e.g., ‘Oklahoma’, ‘Obama’,
‘Red Cross’) and map them to their associated semantic concepts (aka semantic
types) (e.g., ‘Location’, ‘Politician’, ‘Non-Profit Organisation’) using multiple
semantic knowledge bases including DBpedia and Freebase.7

We decided to use the TextRazor tool due to its higher accuracy, coverage,
and performance in comparison with other entity extraction and semantic linking
tools [24].

We use the extracted entities along with their concepts to enrich the training
process in the Sem-CNN model. We investigate two different methods for inte-
grating the semantics into the vector space model: (1) the usage of the semantic
concepts and entities labels, and; (2) the usage of the DBpedia descriptions of
semantic concepts and entities (i.e., concept abstracts). In the following subsec-
tions we describe these methods in more detail.

3.3.1 Semantic Concepts Vector Initialisation
The first method for converting the concepts and entities extracted from
tweets using the TextRazor tool is to use, when available, their semantic labels
(rdfs:label) from DBPedia. When such labels are unavailable, the labels that
are returned from TextRazor are used directly instead.

The method used for converting a given document using the semantic con-
cepts vector initialisation method is displayed in Fig. 1. For an example document
D = ‘Obama attends vigil for Boston Marathon bombing victims.’, the concepts
and entities labels are extracted and tokenised using a semantic extraction tool
and DBpedia so that the words that do not have extracted semantics are con-
verted to a none label. Using this method the document D may be tokenised
as Ts = [‘obama’, ‘politician’, ‘none’, ‘none’, ‘none’, ‘boston’, ‘location’, ‘none’,
‘none’, ‘none’] using entity and entity-type tokens. The tokenised version is then
converted into the vector space model that the depends on the concept space
size Ns = [‘obama’, ‘politician’, ‘boston’, ‘location’, · · · , ‘none’] of size ns, where
ns represents the total number of concepts and entities in the corpus of docu-
ments where D is extracted from. Using the previous concept space, Ts can be
converted to the following vector space model Vs = [1, 1, 1, 1, 0, 0, 0, · · · , 1].
7 Freebase, http://www.freebase.com.

http://www.freebase.com

Semantic Wide and Deep Learning 145

3.3.2 Semantic Abstracts Vector Initialisation
The second method uses, when available, the first sentence of the DBpedia
abstracts (dbo:abstract) rather than the semantic labels (rdfs:label). This
has the potential advantage of providing richer contextual representation of
the semantics contained in the tweets as DBpedia abstracts normally contain
additional implicit semantics that are not available in the rdfs:label. In par-
ticular, since DBpedia abstracts are extracted from Wikipedia articles,8 the
first sentence of each abstract tends to contain highly descriptive terms that
are effectively semantic concepts even though they are not explicitly repre-
sented as such (i.e., DBpedia concepts). For example, for the semantic con-
cept dbpedia:Barack Obama, the first sentence of the dbo:abstract property
is ‘Barack Hussein Obama II; born August 4, 1961) is an American politi-
cian serving as the 44th President of the United States, the first African
American to hold the office.’. This sentence contains multiple implicit entities
and concepts such as dbo:President of the United States, dbo:Politician,
dbpedia:United States. As a consequence, by using the dbo:abstract of the
concepts and entities found in the documents, we effectively increase the concept
space size of the concept vectors and increase the contextual semantics of the
document.

The method used for converting the extracted semantics to the vector space
model is the same as the one used when doing the semantic concepts vector
initialisation except that the concept and entity labels are replaced with the
first sentence of the DBpedia abstracts. Effectively, we obtain longer vectors
for each documents since the semantic vocabulary space na, is larger than the
label-only semantic space ns (na � ns).

In principle, it is possible to use both the content of abstracts and semantic
concepts labels together. However, it does not necessarily increase the amount of
semantics found each semantic vector since each dbo:abstract already contains
the labels of the extracted concept and entities found in tweets. As a consequence,
we focus our research on the semantic concepts vectorisation and the semantic
abstracts vectorisation approaches individually.

3.4 A Wide and Deep Semantic CNN Model for Text Classification

This phase aims to train our Sem-CNN model (Fig. 2) from the word embed-
dings matrices and semantic vectors described in the previous section. Below we
describe the wide and deep CNN model that we propose to tackle the task of
identifying fine-grained information within crisis-related documents.

As discussed in Sect. 2, CNN can be used for classifying sentences or doc-
uments [13]. The main idea is to use word embeddings coupled with multiple
convolutions of varying sizes that extract important information from a set of
words in a given sentence, or a document, and then apply a softmax function
that predicts its class.

CNN models can be also extended with semantic embeddings in order to use
contextual semantics when classifying textual documents [4]. However, there are

8 Wikipedia, http://en.wikipedia.org.

http://en.wikipedia.org

146 G. Burel et al.

Fig. 2. Wide and Deep Convolutional Neural Network (CNN) for text classification
with word embeddings and semantic document representations: (1) A word embedding
matrix is created for a document: (2) Multiple convolutional filters of varying sizes
generate features vectors; (3) Max pooling is performed on each features vector; (4)
The resulting vectors are concatenated with the semantic vector representation of the
document, and; (5) A softmax layer is used for classifying the document.

some drawbacks in simply adding an additional parallel layer of convolutions
that integrates these extracted semantic embeddings (Sect. 2).

First, the limited number of available semantics across tweets is low, which
limits the usefulness of embeddings since little data is available for training
them. Second, the CNN networks takes into account the location of the entities
within the tweets. Although this might be beneficial in principle, the number of
non-annotated terms in tweets makes this less useful, and make the model more
complicated to train.

A potential solution to those problems is to create a deep learning model
that takes into account the richness and depth of the semantics contained in the
entities and concepts extracted from documents (tweets) and the shallowness of
the textual content.

The wide and deep learning model [7] is a deep learning model that jointly
trains a wide linear model and a deep neural network. This approach can be
potentially useful for our particular task where we need to combine shallow

Semantic Wide and Deep Learning 147

textual information with the richer semantic information. In particular, we can
use the deep neural network on the textual part of documents whereas the wide
part is trained on the entities extracted from documents. This means that we
effectively balance the shallowness of textual content with the richer information
of semantic concepts and entities.

Although in general the Sem-CNN model (Fig. 2) is philosophically similar
to the wide and deep learning model, the proposed model has three major dif-
ferences:

1. Rather than using a set of fully connected layers for the deep part of the
model, we use a set of convolutions since this is known to perform well for
text classification tasks [4,13].

2. In the standard wide and deep learning model, the wide and deep layers use
the same input features encoded in different formats (i.e., feature embeddings
and feature vectors) whereas our model uses two different feature sets for each
part of the model (i.e., word embeddings and concept/entity feature vectors).

3. The standard wide and deep learning model uses cross product transforma-
tions for the feature vectors in the wide part of the model. In the Sem-CNN
model we omit this transformation due to the small size of the semantic
vocabulary and the number of semantics extracted in each document.

The design of the Sem-CNN model allows the integration of semantics in
different ways as long as the semantic layer is encoded as a vector space model.
In particular, Sem-CNN can integrate semantics using the two semantic vectori-
sation approaches discussed in Sect. 3.3. In the next section, we compare both
integration approaches in the particular context of fine-grained information iden-
tification in crisis-related tweets.

4 Experimental Setup

Here we present the experimental setup used to assess our event detection model.
As described earlier, the aim is to apply and test the proposed model on the task
of information-category detection in crisis-related tweets. As such, our evaluation
requires the selection of: (1) a suitable Twitter dataset; (2) the identification of
the most appropriate semantic extraction tool, and; (3) the identification of
baseline models for cross-comparison.

4.1 Dataset

To assess the performance of our model we require a dataset where each
tweet is annotated with an information-category label (e.g. affected individu-
als, infrastructures, etc.). For the purpose of this work we use the CrisisLexT26
dataset [19].

CrisisLexT26 includes tweets collected during 26 crisis events in 2012 and
2013. Each crisis contains around 1,000 annotated tweets for a total of around

148 G. Burel et al.

28,000 tweets with labels that indicate if a tweet is related or unrelated to a
crisis event (i.e. related/unrelated).

The tweets are also annotated with additional labels, indicating the informa-
tion categories present in the tweet as listed in Table 1. More information about
the CrisisLexT26 dataset can be found on the CrisisLex website.9

Note that in our experiments (Sect. 5) we discard the tweets’ related and
unrelated labels and keep only the information type labels since the task we
experiment with focuses on the identification of information categories within
crisis-related tweets.

Three data sets are used in this experiment:

– Full Dataset: This consists of all the 28,000 labeled tweets mentioned above.
– Balanced Dataset 1: Since the annotations tend to be unbalanced, we

create a balanced version of our dataset by performing biased random under-
sampling using tweets from each of the 26 crisis events present in the
CrisisLexT26 dataset. As a result, 9105 tweets (32.6%) are extracted from
the full dataset.

– Balanced Dataset 2: Besides the previous under-sampled dataset, we also
consider an under-sampled dataset where only tweets that contain at least
two semantic entities or concepts are extracted. The aim of this dataset is
to better understand the availability of semantic annotations on the Sem-
CNN dataset. After under-sampling the model with at least two entities and
concepts for each tweet, we obtain 1194 tweets (4.3% of the tweets present in
the full dataset).

Table 2 shows the total number of tweets and unique words under each of the
three dataset subsets.

Table 2. Statistics of the three Twitter datasets used for the evaluation.

Dataset No. of tweets No. of words No. of word
embeddings

No. of tweets with
extracted entities

Full dataset 27,933 57,563 16,617 18,298

Balanced dataset 1 9,105 26,933 10,429 5,420

Balanced dataset 2 1,194 5,671 3,540 1,194

4.2 Concept Extraction

As mentioned in Sect. 3, the Sem-CNN model integrates both, the entities’
semantic concepts and abstracts of these concepts into the training phase of
the classifier in order to better capture information-category clues in tweets.

9 CrisisLex T26 Dataset, http://www.crisislex.org/data-collections.html#CrisisLex
T26.

http://www.crisislex.org/data-collections.html#CrisisLexT26
http://www.crisislex.org/data-collections.html#CrisisLexT26

Semantic Wide and Deep Learning 149

Using TextRazor, we extract 4,022 semantic concept and entities and from
those concepts and entities, we manage to match them to 3,822 unique abstract.

Looking at the different datasets, we notice that most of the semantics found
in our dataset refer either to a type of event (e.g., Earthquake, Wildfire) men-
tioned in the tweets or to the place (e.g., Colorado, Philippines) where the event
took place. This shows the value of using these types of semantics as discrimi-
native features for event detection in tweets and may be beneficial for the iden-
tification of crisis-related information types.

4.3 Baselines

As discussed in Sect. 2, the task of event detection and information category iden-
tification in crisis-related documents in social media has been typically targeted
by traditional machine learning classifiers (e.g., Naive Bayes, MaxEnt, SVM).
Hence, in our evaluation we consider the following baselines for comparison:

– SVM (TF-IDF): A linear kernel SVM classifier trained from the words’
TF-IDF vectors extracted from our dataset.

– SVM (Word2Vec): A linear kernel SVM classifier trained from the Google
pre-trained 300-dimensional word embeddings [17].

In order to provide a thorough evaluation for our model, we also consider
two additional variations of SVM as baselines: a SVM trained from the semantic
concepts of words (SVM-Concepts) as well as a SVM trained from the semantic
abstracts (SVM-Abstracts). Note that in [4], SVM was found to outperform other
ML methods such as Naive Bayes and CART in various tasks on crisis-related
tweets, and hence we focus our comparison here to SVM only.

5 Evaluation

In this section, we report the results obtained from using the proposed Sem-
CNN model for identifying crisis-related information categories from social media
posts. Our baselines of comparison is the SVM classifiers trained from TF-
IDF, Word2Vec (pre-trained word embeddings), semantic concepts, and semantic
abstracts features, as described in Sect. 4.3.

We train the proposed Sem-CNN model using 300 long word embeddings
vectors with Fn = 128 convolutional filter of sizes Fs = [3, 4, 5]. For avoiding
over-fitting, we use a dropout of 0.5 during training and use the ADAM gradient
decent algorithm [14]. We perform 2,000 iterations with a batch size of 256.

Table 3 shows the results computed using 5-fold cross validation for our crisis
information category classifiers on the full dataset, the balanced dataset sample,
and the two balanced dataset samples. In particular, the table reports the preci-
sion (P), recall (R), and F1-measure (F1) for each model and dataset. The table
also reports the types of features and embeddings used to train the different
classifiers.

150 G. Burel et al.

Table 3. Crisis information category detection performance of baselines and our pro-
posed Sem-CNN model on the full and under-sampled datasets.

Model Features Semantics Full dataset Balanced dataset 1 Balanced dataset 2

P R F1 P R F1 P R F1

SVM TF-IDF - 0.644 0.604 0.617 0.608 0.610 0.607 0.555 0.548 0.540

SVM Word2Vec - 0.565 0.499 0.508 0.539 0.548 0.541 0.611 0.618 0.609

SVM TF-IDF Concepts 0.644 0.606 0.618 0.612 0.615 0.612 0.549 0.547 0.542

SVM Word2Vec Concepts 0.572 0.500 0.509 0.543 0.552 0.544 0.577 0.586 0.576

SVM TF-IDF Abstracts 0.633 0.590 0.603 0.595 0.598 0.595 0.499 0.499 0.495

SVM Word2Vec Abstracts 0.541 0.455 0.467 0.506 0.517 0.506 0.502 0.511 0.497

Sem-CNN CNN-Embed Concepts 0.645 0.600 0.621 0.627 0.625 0.626 0.675 0.601 0.636

Sem-CNN CNN-Embed Abstracts 0.646 0.604 0.624 0.628 0.628 0.628 0.676 0.608 0.640

5.1 Baselines Results

From Table 3 we can see that identifying information categories within crisis-
related messages is a challenging tasks, where both, the SVM models produce
relatively low results that vary between 46.7% and 61.8% in average F1, based
on the type of training features and dataset.

For the full dataset, we notice that SVM trained from Word2Vec features only
gives 56.5%, 49.9% and 50.8% in P , R and F1 measures respectively. However,
using SVM with TF-IDF features improves the performance substantially by
around +18.83% yielding in 64.4% P , 60.4% R and 61.7% F1.

A similar performance trend can be observed under the balanced dataset 1,
where SVM with TF-IDF gives higher performance than SVM with Word2Vec
features although the performance of SVM with either type of feature on this
datasets stays similar to the one reported under the full dataset.

For the balanced dataset 2, we notice a different trend. Here, Word2Vec
features seem to outperform TF-IDF features by +10.6% in all measures on
average. This might be due to the small size of this dataset in comparison with
the size of the full dataset and the balanced dataset 1 as shown in Table 2. This
issue is further discussed in Sect. 6.

The second part of Table 3 shows the performance of our baselines when
semantic features are added to the feature space of the SVM models. Here we
can observe that SVM classifiers trained either from concepts or abstract fea-
tures do not have much impact on the overall performance. In particular, SVMs
trained from concept features under both, the full and balanced dataset 1 give
up to 61.8% F1, which is in general similar to F1 of a SVM trained from TF-
IDF features solely. Nonetheless, on the balanced dataset 2 the performance
when using concept features with SVM drops. It is also worth noting that using
semantic abstracts as features for event information classification yields in more
noticeable changes in the classification performance. In essence, the performance
in this case drops even further compared with the concept features.

The above results suggest that plainly using semantic concepts or abstracts
with traditional machine learning classifiers (SVM in this case) for identifying
crises-related information categories has no additional value on the performance

Semantic Wide and Deep Learning 151

of these classifiers and that more complex classifier are necessary in order to
integrate semantic concepts and entities efficiently.

5.2 Sem-CNN Results

In general, we observe that the Sem-CNN models needs relatively few steps in
order to obtain the best F1 results with the models converging around 400–600
steps (Fig. 3).

(a) Full Dataset (b) Balanced Dataset 1 (c) Balanced Dataset 2

Fig. 3. F-measure against the number of training steps for Sem-CNN on each dataset
with concept labels and concept abstracts.

The third part of Table 3 depicts the results of the proposed Sem-CNN model.
From these results, we notice that Sem-CNN trained either from the concepts or
abstract features yields noticeable improvement in the identification performance
on all the three datasets. In particular, applying Sem-CNN on the first two
datasets (full and balanced dataset 1) increases P/R/F1 on average by +1.19%
compared to SVM with TF-IDF and concepts features (the best performing
baseline model).

On the balanced dataset 2, we noticed that Sem-CNN gives the highest
detection performance with 63.6% F-measure for concepts features and 64%
F-measure for the abstracts features. This represents +17.71% F-measure aver-
age increase in performance upon using the traditional SVM classifier on this
dataset. These results show that our semantic deep learning model is able to use
the semantic features of words more efficiently than SVM and find more specific
and insightful patterns to distinguish between the different types of event-related
information in tweets.

The significance of the results obtained by Sem-CNN against the best seman-
tic baselines (SVM TF-IDF with concepts or abstract) can be compared by per-
forming paired t-tests. We observe that the Sem-CNN with concepts and Sem-
CNN with abstracts models mostly significantly outperform their SVM TF-IDF
counterparts in term of F-measure (with p < 0.001 for Sem-CNN with abstracts

152 G. Burel et al.

for the balanced dataset 1 and 2; p < 0.01 for Sem-CNN with concept for the bal-
anced dataset 2, and; p < 0.05 for Sem-CNN with concept for the full dataset).
The only non-significant cases appears to be Sem-CNN with abstracts on the
full dataset (p = 0.062) and Sem-CNN with concepts on the balanced dataset
2 (p = 0.146). The difference in F-measure for the Sem-CNN with abstract and
Sem-CNN with concepts is non-significant (0.395 < p < 0.092) meaning that in
general both approaches can be used with similar results.

6 Discussion and Future Work

In this paper we presented Sem-CNN, a semantic CNN model designed for iden-
tifying information categories in crisis-related tweets. This section discusses the
limitations of the presented work and outlines future extensions.

We evaluated the proposed Sem-CNN model on three data samples of the Cri-
sisLexT26 dataset and investigated two related methods for integrating semantic
concepts and entities into the wide component of our model. Results showed that
identifying information categories in crisis-relatedposts is a highly challenging task
since tweets belonging to a given event contain, in many cases, general terms that
may correspond to several categories of information [4]. Nevertheless, we showed
that ourdeep learningmodel outperforms thebestmachine learningbaselines,with
an average gain between +0.48% and +22.6% in F-measure across each dataset
subset. Compared to the best baselines, the proposed models significantly outper-
formed the best baselines in 67% of the cases (p < 0.05).

When creating our model, we used the DBpedia abstracts (dbo:abstract)
of concepts in addition to their labels (rdfs:label) in order to add additional
semantic context to the Sem-CNN model. Results showed a minimal average
increase of +0.3% (0.395 < p < 0.092) in F-measure when using DBpedia
abstracts in comparison with solely using semantic concepts. Despite the non-
significance of such improvement, we can speculate that such small increase in
F-measure might be attributed to the inclusion of more detailed descriptions of
the abstract concepts that are often identified by entity extraction tools. This can
be taken as a small demonstration of the potential value of expanding beyond the
simple labels of concepts in such analysis scenarios. One obvious next step would
be to replace, or extend, these abstracts in our model with semantics extracted
from these abstracts. This could help refining and extending the concept labels
used in the Sem-CNN model.

The proposed semantic wide and deep CNN model is built on top of a CNN
network and a wide generalised linear model. Our model assumes that all inputs
(i.e., words and semantic concepts and entities) are loosely coupled with each
other. However, it might be the case that the latent clues of the information cate-
gories can be determined based on the intrinsic dependencies between the words
and semantic concepts of a tweet. Hence, room for future work is to incorporate
this information in our detection model, probably by using recurrent neural net-
works (RNN) [8] due to their ability to capture sequential information in text
or by using Hierarchical Attention Network (HAN) [30] in order to allow the

Semantic Wide and Deep Learning 153

model to focus on key semantic concepts and entities. Another direction would
be by moving from the back-of-concepts representation used in our model to the
back-of-semantic-relations [25]. This can be done by extracting the semantic rela-
tions between named-entities in tweets (e.g., Tsunami < location > Sumatra,
Evacuation < place > HighPark) and use them to learn a more effective
semantic vector representation similarly.

We also plan to better optimise our model by adding additional layers and
performing parameter optimisation. Results could also be improved modifying
the size of the model filters as well as the number of filters present in the deep part
of Sem-CNN. In our experiments, we used the general Google pre-trained 300-
dimensions word embeddings. Although previous work showed that not using
pre-trained embeddings only slows down the learning phase of similar CNN
models, [4] it would be interesting to experiment with embeddings tailored to
social media such as pre-trained Twitter embeddings.10

In our evaluation we merely relied on SVM as a baseline and a case study of
traditional machine learning baseline. This is because in our previous work [4]
SVM showed to outperform other ML models (e.g., Naive Bayes, MaxEnt, J48,
etc.) in identifying information categories in tweets. Those results are discussed
in detail in [4].

We experimented with the SVM model using TF-IDF and Word2Vec features.
Results showed that while TF-IDF features outperform Word2Vec features on
both, the full and balanced 1 datasets, Word2Vec gives higher performance on
the balanced dataset 2. This might be due the small size of the balanced dataset
2. As shown in Table 2, the balanced dataset 2 comprises 4.3% of the tweets
in full dataset only, which may have had impact on the performance of these
two types of features. We plan to further investigate this issue by extending our
experiments to cover more datasets with different sizes and characteristics.

7 Conclusion

Very large numbers of tweets are often shared on Twitter during crises, report-
ing on crisis updates, announcing relief distribution, requesting help, etc. In
this paper we introduced Sem-CNN, a wide and deep CNN model that uses
the conceptual semantics of words for detecting the information categories of
crisis-related tweets (e.g., affected individuals, donations and volunteer, emo-
tional support).

We investigated the addition of the semantic concepts that appear in tweets
to the learning component of the Sem-CNN model. We also showed that using
semantic abstracts can marginally (i.e. non-significantly) improve upon semantic
labels when integrating semantics into deep learning models.

We used our Sem-CNN model on a Twitter dataset that covers 26 differ-
ent crisis events, and tested its performance in classifying tweets with regards

10 Twitter Word2Vec model, http://www.fredericgodin.com/software.

http://www.fredericgodin.com/software

154 G. Burel et al.

to the category of information they hold. Results showed that our model gen-
erally outperforms the baselines, which consist of traditional machine learning
approaches.

Acknowledgment. This work has received support from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 687847
(COMRADES).

References

1. Atefeh, F., Khreich, W.: A survey of techniques for event detection in Twitter.
Computat. Intell. 31(1), 132–164 (2015)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint (2014). arXiv:1409.0473

3. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

4. Burel, G., Saif, H., Fernandez, M., Alani, H.: On semantics and deep learning for
event detection in crisis situations. In: Proceedings of the workshop on Semantic
Deep Learning (SemDeep) at 14th Extended Semantic Web Conference (ESWC),
Portoroz, Slovenia (2017)

5. Campanella, T.J.: Urban resilience and the recovery of New Orleans. J. Am. Plan-
ning Assoc. 72(2), 141–146 (2006)

6. Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-
pooling convolutional neural networks. In: Proceedings of Annual Meeting of the
Association for Computational Linguistics (ACL), Beijing, China (2015)

7. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H.,
Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & Deep learning
for recommender systems. CoRR abs/1606.07792 (2016)

8. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: Proceedings of Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Doha, Qatar (2014)

9. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: Proceedings of the 9th International
Conference on Semantic Systems (I-Semantics) (2013)

10. Dos Santos, C.N., Gatti, M.: Deep convolutional neural networks for sentiment
analysis of short texts. In: Proceedings of International Conference on Computa-
tional Linguistics (COLING), Dublin, Ireland (2014)

11. Feng, X., Huang, L., Tang, D., Qin, B., Ji, H., Liu, T.: A language-independent
neural network for event detection. In: Proceedings of Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), Berlin, Germany (2016)

12. Gao, H., Barbier, G., Goolsby, R.: Harnessing the crowdsourcing power of social
media for disaster relief. IEEE Intell. Syst. 26(3), 10–14 (2011)

13. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar (2014)

14. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of International Conference on Learning Representations (ICLR). Banff, Canada
(2014)

http://arxiv.org/abs/1409.0473

Semantic Wide and Deep Learning 155

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

16. Meier, P.: Digital humanitarians: how big data is changing the face of humanitarian
response. Taylor & Francis Press, London (2015)

17. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint (2013). arXiv:1301.3781

18. Nguyen, T.H., Grishman, R.: Event detection and domain adaptation with convo-
lutional neural networks. In: Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL). Beijing, China (2015)

19. Olteanu, A., Castillo, C., Diaz, F., Vieweg, S.: CrisisLex: A lexicon for collecting
and filtering microblogged communications in crises. In: Proceedings of Interna-
tional Conference on Weblogs and Social Media (ICWSM). Oxford, UK (2014)

20. Olteanu, A., Vieweg, S., Castillo, C.: What to expect when the unexpected hap-
pens: social media communications across crises. In: Proceedings of ACM Confer-
ence on Computer Supported Cooperative Work & Social Computing (CSCW).
Vancouver, Canada (2015)

21. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word rep-
resentation. In: Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar (2014)

22. Prasetyo, P.K., Ming, G., Ee-Peng, L., Scollon, C.N.: Social sensing for urban
crisis management: the case of Singapore haze. In: Proceedings of International
Conference on Social Informatics (SocInfo). Kyoto, Japan (2013)

23. Qu, Y., Huang, C., Zhang, P., Zhang, J.: Microblogging after a major disaster
in China: a case study of the 2010 Yushu earthquake. In: Proceedings of ACM
Conference on Computer Supported Cooperative Work (CSCW). Hangzhou, China
(2011)

24. Rizzo, G., van Erp, M., Troncy, R.: Benchmarking the extraction and disambigua-
tion of named entities on the semantic web. In: LREC. Reykjavik, Iceland (2014)

25. Saif, H., Dickinson, T., Leon, K., Fernandez, M., Alani, H.: A semantic graph-based
approach for radicalisation detection on social media. In: European Semantic Web
Conference. Portoroz, Slovenia (2017)

26. Starbird, K., Palen, L., Hughes, A.L., Vieweg, S.: Chatter on the red: what hazards
threat reveals about the social life of microblogged information. In: Proceedings of
ACM Conference on Computer Supported Cooperative Work (CSCW). Savannah,
Georgia, USA (2010)

27. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network
for sentiment classification. In: Proceedings of Conference on Empirical Methods
in Natural Language Processing (EMNLP). Lisbon, Portugal (2015)

28. Thomson, R., Ito, N., Suda, H., Lin, F., Liu, Y., Hayasaka, R., Isochi, R., Wang,
Z.: Trusting tweets: the Fukushima disaster and information source credibility
on Twitter. In: Proceedings of International ISCRAM Conference on Vancouver,
Canada (2012)

29. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural
hazards events: what twitter may contribute to situational awareness. In: Proceed-
ings of Conference on Human Factors in Computing Systems (CHI). Atlanta, GA,
USA (2010)

30. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A.J., Hovy, E.H.: Hierarchical atten-
tion networks for document classification. In: HLT-NAACL, pp. 1480–1489 (2016)

http://arxiv.org/abs/1301.3781

Tractable Query Answering for Expressive
Ontologies and Existential Rules

David Carral(B), Irina Dragoste, and Markus Krötzsch

Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, Germany
david.carral@tu-dresden.de

Abstract. The disjunctive skolem chase is a sound and complete (albeit
non-terminating) algorithm that can be used to solve conjunctive query
answering over DL ontologies and programs with disjunctive existential
rules. Even though acyclicity notions can be used to ensure chase termi-
nation for a large subset of real-world knowledge bases, the complexity
of reasoning over acyclic theories still remains high. Hence, we study
several restrictions which not only guarantee chase termination but also
ensure polynomiality. We include an evaluation that shows that almost
all acyclic DL ontologies do indeed satisfy these general restrictions.

1 Introduction

Answering conjunctive queries (CQs) over knowledge bases is an important
reasoning task with many applications in data management and knowledge rep-
resentation. A flurry of research efforts have significantly improved our under-
standing of this problem, and led to different solutions for description logics
(DL) ontologies [2,6,25] and programs with disjunctive existential rules [1,5].
One such proposed approach is the use of acyclicity notions [9,10,19,21]; i.e.,
sufficient conditions that guarantee termination of the disjunctive chase algo-
rithm [3]—a sound and complete materialization-based procedure where all rel-
evant consequences of a knowledge base are precomputed, allowing queries to be
directly evaluated over materialized sets of facts. As shown in [9,10], acyclicity
notions can be used to determine that the chase will indeed terminate over a
large subset of real-world DL ontologies.

Nevertheless, even if a knowledge base is characterized as acyclic, CQ answer-
ing still remains a problem of high theoretical complexity: CQ answering over
acyclic programs with disjunctive existential rules is coN2ExpTime-complete
[7]. For acyclic Horn-SROIQ ontologies, it is ExpTime-complete [10].

Example 1. Let Rn = {Di−1(x) → ∃yi.Li(x, yi) ∧ Di(yi),Di−1(x) → ∃zi.
Ri(x, zi) ∧ Di(zi) | i = 1, . . . , n}. The chase of the program P = 〈Rn, {D0(c)}〉,
depicted in Fig. 1, is exponentially large in n. Note that, P is acyclic with respect
to all notions described in [10] and can be expressed in most DL fragments.

M. Krötzsch—The author thanks the competent and friendly staff of trauma surgery
ward OUC-S2 at the University Hospital Carl Gustav Carus, Dresden, where some
of this research has been executed.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 156–172, 2017.
DOI: 10.1007/978-3-319-68288-4_10

Tractable Query Answering for Expressive Ontologies and Existential Rules 157

c : D0

fy1(c) : D1 fz1(c) : D1

fy2(fy1(c)) : D2 fy2(fz1(c)) : D2

fz2(fy1(c)) : D2

fz2(fz1(c)) : D2

L1 R1

L2 R2 L2 R2

Fig. 1. Graphical representation of the chase of P.

In this paper, we study the limits of tractable reasoning using the chase and
propose a series of restrictions that, if combined, prevent the exponential blow-
up highlighted in the previous example. Moreover, we define a novel acyclicity
notion, namely tractable acyclicity, tailored for DL ontologies, which ensures that
the size of the chase stays polynomial. In turn, this implies that CQ answering
over deterministic “tractably acyclic” ontologies is (theoretically) as hard as
solving the same problem over a given set of facts. On the practical side, we
assess the generality of tractable acyclicity using two different corpuses of real-
world ontologies. As it turns out, our notion does characterize almost all acyclic
ontologies, thus showing that CQ answering may be quite efficient in practice.

In summary, our main contributions are as follows:

– We consider five general restrictions on the expressivity of rules and ontolo-
gies, and thoroughly study the complexity of CQ answering when combina-
tions of these restrictions are satisfied (Sect. 3).

– Using some of these restrictions, we define tractable acyclicity, a notion spe-
cially tailored for DL ontologies which guarantees tractability of reasoning
over expressive deterministic ontologies (Sect. 4). To the best of our knowl-
edge, the use of notion is the only approach to guarantee tractable CQ answer-
ing over ontologies besides the combined approach [12,17,18,20,25].

– We empirically study the generality of tractable acyclicity on two large cor-
puses of real-world ontologies with encouraging results (Sect. 5).

2 Preliminaries

Let P, V and F be some infinite countable and pairwise disjoint sets of predi-
cates, variables and function symbols, respectively, such that every S ∈ P∪F is
associated with some arity ar(S) ≥ 0. Constants are function symbols of arity 0.
Terms are built from variables and function symbols as usual. We abbreviate a
sequence of terms t1, . . . , tn with t, and identify such a sequence with the set {t}.
An atom is a formula of the form P (t) with P a |t|-ary predicate. With ϕ[x] we
stress that x are the free variables in the formula ϕ. We identify a conjunction
of formulas with the set of all the formulas in the conjunction and vice-versa.

158 D. Carral et al.

A (disjunctive existential) rule is a first-order logic (FOL) formula of the
form

∀x,y.(B[x,y] → ∨n
i=1∃vi.Hi[x,vi]) (1)

where B (the body) and Hi (the heads) are conjunctions of atoms with Hi �= ∅
for all i = 1, . . . , n; and v1, . . . ,vn, y and x are pairwise disjoint. For the sake of
brevity, we omit universal quantifiers when writing rules. The variables in x are
called frontier variables. A rule is Horn if n = 1 and non-Horn otherwise. A fact
is a ground atom; i.e., an atom without occurrences of variables. An instance I
is a finite set of facts only containing constants as terms. A program is a pair
〈R, I〉 with R a rule set and I an instance. Without loss of generality, we assume
that every existentially quantified variable occurs in at most one rule (†).

The main reasoning task we are studying in this paper is CQ answering.
Nevertheless, without loss of generality, we restrict our attention to the simpler
task of entailment of Boolean conjunctive queries (BCQs). A BCQ, or simply a
query, is a formula of the form ∃y.Q[y] with Q a conjunction of atoms.

A substitution is a partial function defined over the set of terms. The applica-
tion of a substitution σ to an atom α, denoted with ασ, is the atom that results
from replacing all occurrences of every term t in the domain of σ with σ(t). We
denote the substitution {(t1, u1), . . . , (tn, un)} with [t1/u1, . . . , tn/un].

The skolemization sk(ρ) of a rule ρ as in (1) is the formula B →
∨n

i=1 sk(Hi)
where, for every i = 1, . . . , n, sk(Hi) is the conjunction that results from replacing
every (existentially quantified variable) v ∈ vi by the term fv(x) with fv a fresh
function symbol specific to v (which, by assumption (†) and the definition of a
rule, is also specific to the i-th disjunct in the head of the rule ρ).

Definition 2. Consider a rule ρ of the form (1), a substitution σ defined only
on x ∪ y, and a set of facts F . Then, 〈ρ, σ〉 is applicable to F if Bσ ⊆ F . In
this case, the result of applying 〈ρ, σ〉 to F is {F ∪ sk(Hi)σ | i = 1, . . . , n}.

A chase tree of 〈R, I〉 is a (possibly infinite) tree where each node is labeled
by a set of facts, such that all of the following conditions hold.

(1) The root is labeled with I.
(2) If a node labeled with F has n children labeled with F1, . . . ,Fn, then there

is some rule ρ ∈ R and some substitution σ such that {F1, . . . ,Fn} is the
result of applying 〈ρ, σ〉 to F .

(3) (Fairness) If there is a node α labeled with a set F , a rule ρ ∈ R, and a
substitution σ such that 〈ρ, σ〉 ∈ R is applicable to F ; then, in all paths
starting from α, there is some node β with n children, each of them labeled
with a different set in the result of applying 〈ρ, σ〉 to the label of β.

The result of the (Skolem) chase is the (possibly infinite) set of all (possibly
infinite) sets of facts obtained as the union of all sets of facts along some path.

Due to the order of rule applications, a program P may admit many different
chase trees but, nevertheless, the result of the Skolem chase of P is always unique.

Tractable Query Answering for Expressive Ontologies and Existential Rules 159

Fact 3. A program P entails a query ∃v.Q if and only if F |= ∃v.Q holds for
every set of facts F in the result of the chase of P.

If the chase terminates for some program, then the result of the chase is the
set of all (finite) leaf labels. In this case, Fact 3 leads to an effective decision
procedure for BCQ entailment. Therefore, in the subsequent section, we study
several restrictions on a set of rules which ensure efficient chase termination.

3 Tractable Reasoning for Disjunctive Existential Rules

In this section we present and study several restrictions, which can ensure
tractability of BCQ entailment over rule sets. These insights will be the basis
for our investigation of tractable query answering for ontologies in Sect. 4. An
important concept for predicting the behaviour of the chase procedure is the
dependency graph of a rule set:

Definition 4. The dependency graph G(R) of a rule set R has the existential
variables in R as nodes, and an edge y → z if the skolem chase of some program
〈R, I〉 contains terms of the form fz(t) and fy(s) such that fy(s) ∈ t.

The key to our tractability results is the notion of a braid, which, intuitively
speaking, consists of a possibly large number of intertwined paths.

Definition 5. Consider a directed graph G. A path is a sequence of nodes
α1, . . . , αn with αi → αi+1 ∈ G for all i = 1, . . . , n − 1. The graph G is acyclic
if, for every path α1, . . . , αn with n ≥ 2, α1 �= αn. A simple path is a path
which does not contain two occurrences of the same node. A braid is a sequence
of nodes α1, . . . , αn such that, for all i = 1, . . . , n − 1, there are at least two
different simple paths from αi to αi+1.

A number of natural conditions on a set of rules R might be considered in
order to reduce the complexity of the chase. We will consider the following five:

(a) The graph G(R) is acyclic.
(f) The arity of all function symbols in sk(R) is at most 1.
(b) The length of the braids in G(R) is bounded.
(w) The treewidth of the rules in R is bounded.
(p) The arity of the predicates in R is bounded.

Most of these conditions are self-explanatory and straightforward to check.
The treewidth of rules is the treewidth of the graph that has the terms of a rule
as nodes, and an undirected edge whenever two terms appear in the same atom
[13]. It is a well-known measure for “tree-likeness”, which is bounded by the
number of terms per rule.1 Checking if a graph G has treewidth at most k for
a given constant k is polynomial in G. Both acyclicity and the maximal braid

1 Readers not familiar with treewidth may safely use this number as a surrogate.

160 D. Carral et al.

Fig. 2. Complexity of BCQ entailment with respect to the size of the rule set satisfying
some combination of (a), (f), (b), (w) and (p). All of the above results are tight and refer
to the combined complexity of BCQ entailment over nondeterministic and deterministic
rule sets, respectively.

length can be computed efficiently if the dependecy graph is known. We present
ways of approximating these conditions efficiently in Sect. 4.

In the remainder of the section, we characterize the (combined) complexity
of BCQ entailment over sets of rules satisfying every possible combination of the
above restrictions. We summarize our findings in Fig. 2, which only includes cases
that satisfy (a), since its omission leads to undecidability (Theorem 11). More-
over, as indicated in Theorem 7, the “coNP/ P” result refers to the complexity
regarding the size of the rule set, with the query considered fixed.

Whilst restrictions (a), (f), (w), and (p) have been considered in previous
work [10], (b) is a novel notion instrumental to ensure tractability of reasoning.
See how the rule set from Example 1 may not satisfy such a restriction.

Example 6. Let Rn be the set of rules presented in Example 1 and let G(Rn)
be the graph depicted in Fig. 3. Note how, for every every odd n ≥ 1, there is a
braid of length (n + 1)/2 in G(Rn); e.g., z1, z3, . . . , zn or y1, y3, . . . , yn.

y1

z1

y2

z2

y3

z3

y4

z4

yn−1

zn−1

yn

zn

Fig. 3. Dependency graph of the set of rules Rn from Example 6.

Tractable Query Answering for Expressive Ontologies and Existential Rules 161

Combining all restrictions allows us to obtain the main result of this section.

Theorem 7. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (b), and (w) is in coNP provided that the size of the query is
fixed. Moreover, if R is a set of deterministic rules, then it is in P.

The key for proving this result is a property that relates braid length to the
size of the chase. As we will show, if a rule set R satisfies (f), then every term
in the chase of 〈R, I〉 corresponds to some path in G(R) and some constant. In
turn, this implies that, if there is a polynomial bound on the number of paths in
G(R), then the number of terms introduced during the computation of the chase
of 〈R, I〉 is also polynomially bounded. Therefore, we first show that there is
indeed such a polynomial upper bound on the number of paths in a graph if the
length of the braids in such a graph is fixed. Once this is shown, we can easily
verify that, if R satisfies (b) and (f), then there is a polynomial upper bound on
the number of terms that may occur in the chase of a program 〈R, I〉.
Lemma 8. Consider some directed acyclic graph G with n nodes. If there is a
bound k on the length of the braids, then there are at most 3k · n3k paths in G.

Proof. First, we verify the following intermediate result: (∗) Consider two nodes
α and β in G. If, for every node γ, the sequence α, γ, β is not a braid in G; then
PG(α, β) ≤ 3n2 with PG(α, β) the number of paths from α to β.

Let G′ be the graph that results from removing every node γ not occurring
in a path from α to β. Then, for every node γ in G′ with γ �= α and γ �=
β, PG′(α, γ) = 1 or PG′(γ, β) = 1. Let G′′ be the graph obtained from G′

via simultaneous application of the following rules to every node γ in G′: If
PG′(α, γ) = 1 and α → γ /∈ G′, then remove the (only) edge of the form
δ → γ ∈ G′ and add α → γ. If PG′(γ, β) = 1 and γ → β /∈ G′, then remove the
edge of the form γ → δ ∈ G′ and add γ → β.

The previously presented transformation preserves the number of paths from
α to β; i.e., PG(α, β) = PG′′(α, β). Moreover, the nodes in G′′ can be fully
distributed into four pairwise disjoint s ets L1, L2, L3 and L4 such that all of
the following hold: L1 = {α}; L4 = {β}; and, for every pair of nodes γ and δ,
γ → δ ∈ G′′ only if (i) γ = α and δ ∈ L2 ∪ L4, (ii) γ ∈ L2 and δ ∈ L3 ∪ L4,
or (iii) γ ∈ L3 and δ = β. As the sets L2 and L3 may contain at most n nodes,
then PG′′(α, β) ≤ n2 + n + 1 ≤ 3n2 (as n is at least 2).

We now proceed to show the lemma. Let Bm be the set of paths con-
taining a path p in G iff (i) p contains a braid of length m and (ii) p does
not contain a braid of length m + 1. Then, every path p ∈ Bm is of the
form α1, s1, α2, s2, . . . , sm−1, αm where α1, . . . , αm is a braid; and, for every
i = 2, . . . ,m − 1, si is a sequence of nodes not containing a node γ such
that αi, γ, αi+1 is a braid in G (as this would imply that p contains a braid
of length m + 1). By (∗), there are at most 3n2 possible paths in G for every
si. Moreover, there are at most nm braids of length m. Therefore, Bm contains
at most nm · 3n2(m−1) ≤ 3n3m paths. The number of paths in G is at most∑k

i=0 |Bi| ≤ k|Bk| (as every Bj with j > k is empty). Hence, the number of
paths in G is necessarily less than 3k · n3k. �

162 D. Carral et al.

Proof (of Theorem 7). Since R satisfies (w), we can apply a normalization proce-
dure to compute a conservative extension 〈R′, I〉 of 〈R, I〉 with an upper bound
on the number of variables per rule [13]. Moreover, this transformation does not
modify the dependency graph of R (i.e., G(R) = G(R′)).

We first determine an upper bound on the maximal number of terms T and
atoms A that may occur in the chase of 〈R′, I〉. By (f), every term in the chase
of 〈R′, I〉 is of the form fyn

(. . . (fy1(c)) . . .) with c a constant. Furthermore,
such a term occurs in the chase only if y1, . . . , yn is a path in G(R′). Hence,
every term in the chase of 〈R′, I〉 corresponds to some path in G(R′) and some
constant. By Lemma 8 and the fact that R′ satisfies (b), we conclude that the
number of paths in G(R′) is polynomial in the number of nodes in G(R′) (which
coincides with the number of existentially quantified variables in R′). Therefore,
T is polynomially large with respect to 〈R′, I〉 and, since the number of variables
per rule in R′ is fixed, so is A. If R′ is a set of deterministic rules, then we can
compute the only branch on some (arbitrarily chosen) chase tree of 〈R′, I〉 to
solve BCQ entailment. This branch is a sequence of at most A sets of facts; and,
as there is an upper bound on the number of variables per rule in R′, each of
these sets can be computed in polynomial time. Moreover, checking if the facts
in the branch entail a query is in P if the size of the query is fixed.

In the nondeterministic case, we can guess some sequence of facts and then
check whether (i) such a sequence is a complete branch in some chase tree of
〈R′, I〉. Then, a query is not entailed by 〈R′, I〉 iff (ii) it is not entailed by the
facts in this branch. Note that, (i-ii) can be checked in P. �

We proceed by showing the complexity of BCQ answering for any other com-
bination of the restrictions (a), (f), (b), (w), and (p). This shows, in particular,
that our chosen set of restrictions is minimal (among these selected conditions)
and any other combination leads to intractability.

Theorem 9. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (b), (w), and (p) is coNP-hard. Moreover, if R is a set of
deterministic rules, then it is P-hard.

Proof. The results stated in the theorem follow from hardness of SAT and propo-
sitional Horn logic entailment, respectively. �

Theorem 10. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (b), and (p) is in coNPNP-complete. Moreover, if R is a set
of deterministic rules, then it is in NP-complete.

Proof. To show membership, we can make an analogous argument to the one in
the proof of Theorem 7 to show that there is a polynomial upper bound on the
number of terms T that may occur during the computation of the chase 〈R, I〉.
Moreover, since the arity of the predicates is bounded by some 	, the number of
atoms in the chase is at most A = P � · T .

If R is a set of deterministic rules, then we can guess some sequence of sets
F1, . . . ,Fn of facts with F1 = I; some sequence 〈ρ1, σ1〉, . . . , 〈ρn−1, σn−1〉 of

Tractable Query Answering for Expressive Ontologies and Existential Rules 163

pairs of rules and substitutions with ρi ∈ R for every i = 1, . . . , n − 1; and some
additional substitution σ. To determine if 〈R, I〉 entails some query Q, we check
that, for every i = 1, . . . , n−1, (i) Fi+1 is the result of the application of 〈ρi, σi〉
on Fi; and (ii) Fn |= Qσ. Note that, (i-ii) can be verified in polynomial time, and
F1, . . . ,Fn may not necessarily be a complete branch in a chase tree of 〈R, I〉.

If R is a set of nondeterministic rules, then we simply guess some sequence
of sets F1, . . . ,Fn of facts with F1 = I. To determine that 〈R, I〉 does not entail
some query Q, we check that, for every i = 1, . . . , n − 1, (i)Fi+1 is the result of
the application of some rule in R and some substitution on Fi; (ii) no rule in R
and substitution is applicable to Fn; and (iii)Fn �|= Q. (i-iii) can be polynomially
checked using an NP oracle.

For coNPNP-hardness, we reduce from the valuation problem of quantified
Boolean formulas (QBF) of the form ∀X.∃Y .ϕ, where X,Y are lists of proposi-
tional variables and ϕ is in 3CNF, i.e., ϕ = (L1

1 ∨L1
2 ∨L1

3)∧ . . .∧ (Ln
1 ∨Ln

2 ∨Ln
3),

such that the literals Li
j are variables or negated variables from X ∪ Y .

We construct a set of nondeterministic without existential variables rules
using constants t (true) and f (false). We add two facts tf(t) and tf(f). For every
i ∈ {1, . . . , n}, we add all (polynomially many) facts of the form ci(v1, v2, v3)
with v1, v2, v3 ∈ {t, f} such that (Li

1 ∨ Li
2 ∨ Li

3) is true when assigning the
values v1, v2, v3 to the (at most) three variables in the clause. In addition, for
each universally quantified X ∈ X, we add a disjunctive fact valX(t) ∨ valX(f).
Finally, QBF valuation is encoded in the rule:

∧

1≤i≤n

ci(xi
1, x

i
2, x

i
3) ∧

∧

X∈X

valX(vX) ∧
∧

Y ∈Y

tf(vY) → trueQBF (2)

where each variable has the form vZ for Z ∈ X ∪ Y , and xi
j denotes vZ for

the propositional variable Z that occurs in Li
j . Then trueQBF is entailed iff,

for all models (i.e., all assignments of universal variables X ∈ X), there is an
assignment for the variables Y ∈ Y , such that each clause in ϕ is true.

The hardness result for deterministic rules follows when considering QBF
without universally quantified variables; i.e., propositional satisfiability. �

Theorem 11. BCQ entailment for programs 〈R, I〉 with R a set of determin-
istic rules satisfying (f), (b), (w), and (p) is undecidable.

Proof. We use a reduction from a known undecidable problem described as fol-
lows (see Sect. 2.5.1 of [16] for a very similar and more detailed argument). A
context-free grammar is a tuple 〈S, P 〉 with S a non-terminal, and P a set of
production rules of the form A → BC or A → a where A, B and C are non-
terminals and a is a terminal. The language generated by a grammar 〈S, P 〉 is
the set of all strings of terminals which can be produced by rewriting S applying
the production rules in P . The following problem is undecidable [14]: Given two
context-free grammars G1 = 〈P1, S1〉 and G2 = 〈P2, S2〉, with disjoint sets of
non-terminals and common terminal symbols 0 and 1, determine whether there
is some word in the intersection of the languages generated by G1 and G2.

164 D. Carral et al.

Consider two binary predicates T0 and T1, a specific binary predicate NTA

for every non-terminal A occurring in G1 or G2, a unary predicate X, and a
constant c. For all i ∈ {1, 2}, let Ri = {Ta(x, y) → NTA(x, y) | A → a ∈
Pi} ∪ {NTB(x, y) ∧ NTC(y, z) → NTA(x, z) | A → BC ∈ Pi}. Moreover, let
R = R1 ∪R2 ∪{X(x) → ∃y.T0(x, y)∧X(y),X(x) → ∃z.T1(x, z)∧X(z)}. Then,
the intersection of the languages generated by G1 and G2 is empty iff 〈R, {X(c)}〉
does not entail the query ∃x.NTS1(c, x) ∧ NTS2(c, x).

The rules in R satisfy (f), (b), (w), and (p): The arity of all of the symbols
in sk(R) (i.e., fy and fz) is one, G(R) contains two nodes, and the arity of every
predicate is at most two. Moreover, the number of variables per rule is bounded
and hence, so is the treewidth. �

Theorem 12. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a) is in coN2ExpTime. Moreover, if R is a set of deterministic rules,
then it is in 2ExpTime.

Proof. We first determine the maximal number of ground (skolem) terms and
corresponding facts that may occur in the chase. Let n be the number of skolem
functions in sk(R), and let m be the maximal arity of such functions. The max-
imal nesting depth of ground terms in the chase is n, since every term of greater
depth is cyclic and, by (a), such terms may not occur in the chase of 〈R, I〉.
Ground terms then correspond to trees of depth at most n, fan-out at most m,
and with leaves from the set C of constants in 〈R, I〉. Such trees have most n·mn

nodes in total. As each node is assigned a constant or function symbol, there
are at most T = (|C| + n)n·mn

trees, and hence ground terms, overall. Now, if
〈R, I〉 contains k different predicate symbols of arity at most 	, then the max-
imal number of ground facts based on T terms is A = kT � = k(CI + n)�·n·mn

.
The number of facts A is therefore double exponential in the size of 〈R, I〉 and
hence, so is the length of every branch in a chase tree of a program 〈R, I〉.

If R is a set of deterministic rules, then there is only one branch in every
possible chase tree of a program 〈R, I〉 which can be computed in double-
exponentially many steps. Then, a query is entailed by 〈R, I〉 iff such query
is entailed by the set of facts in the branch. If R only contains nondeterminis-
tic rules, membership in coN2ExpTime follows from the fact that BCQ non-
entailment can be shown by guessing some branch of the tree, and then checking
that the set of facts in such branch does not entail the query. �

Theorem 13. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a) and (f) is in coNExpTime. Moreover, if R is a set of deterministic
rules, then it is in ExpTime.

Proof. We determine that the maximal number of facts that may occur in the
chase of 〈R, I〉 is exponential in the size of the program. The remainder of the
proof is analogous to that of Theorem 12.

Let n be the number of skolem functions in sk(R) which, by (f), have an
arity of at most 1. The maximal nesting depth of ground terms in the chase
is n, since every term of greater depth is cyclic and, by (a), such terms may

Tractable Query Answering for Expressive Ontologies and Existential Rules 165

not occur in the chase of 〈R, I〉. Ground terms then correspond to sequences of
depth at most n and, since each element in the sequence is assigned a constant
or function symbol, there are at most T = (C + n)n ground terms, overall. In
turn, the maximal number of facts in the chase is A = kT � = k(C + n)�·n with
k the number of predicates and 	 the maximal arity of a predicate in 〈R, I〉. �

Theorem 14. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (b), (w), and (p) is coN2ExpTime-hard. Moreover, if R is a set
of deterministic rules, then it is 2ExpTime-hard.

Proof. For the first result, we present a reduction of the word problem of double-
exponentially time-bounded non deterministic Turing machines (TMs) to BCQ
non-entailment. Given such reduction, it is clear how to produce a similar reduc-
tion to prove the second result stated in the theorem.

Consider a N2ExpTime Turing Machine (TM) M . We simulate the compu-
tation of M on an input string I by constructing a program 〈R, I〉 such that
〈R, I〉 does not entail some nullary predicate Reject iff M accepts I. To address
computation steps and tape cells, we recall a construction by [4] to (determin-
istically) construct a chain of double exponentially many elements. Let I =
{r0(0), r0(a),Scc0(0, 1),Min0(0),Max0(a)}. For each i ∈ {0, . . . , n − 1}, with n
the length of the input I, we add the rules in {Ri(x)∧Ri(y) → ∃vi.Si(x, y, vi+1)∧
Ri+1(vi+1), Si(x, y, z) ∧ Si(x, y′, z′) ∧ Scci(y, y′) → Scci+1(z, z′), Si(x, y, z) ∧
Si(x′, y′, z′)∧Maxi(y)∧Mini(y′)∧Scci(x, x′) → Scci+1(z, z′),Mini(x)∧Si(x, x, y)
→ Mini+1(y),Maxi(x)∧Si(x, x, y) → Maxi+1(y)} It can be shown, by induction
on i, that in any path of any chase tree of 〈R, I〉, the relation rn contains 22

n

elements, which are linearly ordered by Sccn.
The remaining TM simulation follows standard constructions (cf. [11]), using

elements of the rn chain to refer to specific time points and tape cells when
encoding a run of the TM. Nondeterministic transitions are captured using
rules with disjunction. Assuming that the state of M at step s is captured
with facts Stateq(s) for all states Q, we can complete the simulation by adding
rules Stateq(x) ∧ Maxn(x) → Reject for all non-accepting states q of M . We
can assume without loss of generality that M runs for the maximum double-
exponential number of steps on all rejecting runs, so that the query Reject is
entailed iff there are no accepting runs.

The rules in R satisfy (a), (b), (w), and (p): G(R) is the smallest graph
containing vi → vi+1 for every i = 1, . . . , n and hence, this graph is acyclic
and does not contain any braids. Also, both the arity of the predicates, and
treewidth of the rules in R is fixed. Finally, it can be checked that the rules
added to finalize the reduction (cf. [11]) do not violate (a), (b), (w), nor (p). �

Theorem 15. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), (w), and (p) is coNExpTime-hard. If R is a set of determin-
istic rules, then it is ExpTime-hard.

Proof. We show that, using a set of rules satisfying (a), (f), (w), and (p), we can
define a program that, given some n, can generate an exponentially long chain of

166 D. Carral et al.

terms sorted by some binary predicate. The remainder of the proof is analogous
to that of Theorem 14.

Let R be the set containing the rules in {Si(x) → ∃yi+1, zi+1.Li(x, y) ∧
Ri(x, zi+1) ∧ Scci+1(yi+1, zi+1), Ri(x, z) ∧ Scci(x, y) ∧ Li(y, w) → Scci+1(z, w)}
for each i ∈ {0, . . . , n − 1}. We can show, by induction on i, that in any path of
any chase tree of 〈R, {S0(c)}〉, the relation Sn contains 2n elements, which are
linearly ordered by Sccn.

The rules in R satisfy (a), (f), (w), and (p): G(R) is the smallest graph
containing yi → yi+1, yi → zi+1, zi → yi+1, and zi → zi+1 for every i = 1, . . . , n,
and hence, this graph is acyclic. Also, the arity of every function symbol in sk(R)
is 1, and both the arity of the predicates and treewidth of the rules is fixed. �

Theorem 16. Deciding BCQ entailment for programs 〈R, I〉 with R a rule set
satisfying (a), (f), and (b) is coNExpTime-hard. Moreover, if R is a set of
deterministic rules, then it is ExpTime-hard.

Proof. The first and second parts of the theorem follow from the hardness of
fact entailment over disjunctive and non-disjunctive Datalog [11], respectively.
Note that, every (possibly disjunctive) Datalog program—a program containing
only deterministic rules without existential variables—satisfies (a), (f) and (b).

�

4 Tractable Reasoning for Ontologies

Across this section we discuss how to employ the chase to reason over DL ontolo-
gies and then, using some of the results from the previous section, we define
tractable acyclicity, an acyclicity condition tailored for DL ontologies which
ensures tractability of BCQ entailment.

We consider the SRI fragment of the description logic SROIQ, which is
the logical basis of OWL 2 DL. We present this DL using a normal form close to
that of [8]. Note that, in such a normal form, occurrences of the negation logical
constructor are normalized into axioms of the form (3) in Fig. 4. Moreover, we
do not consider number restrictions nor nominals in our definition of DL, as the
use of these logical constructors would require equality reasoning. There are well-
known techniques to axiomatize the meaning of equality—e.g., singularization
[10,21]—but these are not our focus.

Let C, R, and I be some infinite countable and pairwise disjoint sets of
concepts, roles, and individuals, respectively. Moreover, let R− = R∪{R− | R ∈
R}; and, for every R ∈ R−, R−− = R. A TBox axiom is a formula of one of
the forms given on the left hand side of Fig. 4. An ABox axiom or assertion is a
formula of the form A(a) or R(a, b) with A ∈ C, R ∈ R and a, b ∈ I. A ontology
is a tuple 〈T ,A〉 with T a set of TBox axioms and A a set of assertions.

We do not consider any structural restrictions, such as role regularity [15],
in our definition of ontologies. These restrictions are unnecessary for preserving
correctness when using the chase and hence, we ignore them.

Tractable Query Answering for Expressive Ontologies and Existential Rules 167

n�

i=1

Ci �
m⊔

i=1

Di �→
n∧

i=1

Ci(x) →
m∨

i=1

Di(x) (3)

C � ∀R.D �→ C(x) ∧ R〈x, y〉 → D(y) (4)
C � ∃R.Self �→ C(x) → R〈x, x〉 (5)
∃S.Self � D �→ R〈x, x〉 → D(x) (6)

n�

i=1

Si � R �→
n∧

i=1

Si〈x, y〉 → R〈x, y〉 (7)

S1 ◦ . . . ◦ Sn � R �→ S1〈x0, x1〉 ∧ . . . ∧ Sn〈xn−1, xn〉 → R〈x0, xn〉 (8)
C � ∃R.D �→ C(x) → ∃y.R〈x, y〉 ∧ D(y) (9)

Fig. 4. Mapping Ψ. In the above, C(i), D ∈ C, R,S(i) ∈ R−, and m,n ≥ 1. Moreover,
for every R ∈ R, R−〈t, u〉 = R(u, t) and R〈t, u〉 = R(t, u).

The semantics of ontologies are given by means of a mapping into programs.

Fact 17. An ontology O entails some query Q iff 〈Ψ(R), I〉 |= Q with Ψ the
function mapping axioms to rules defined in Fig. 4.

Due to the close correspondence between DL axioms and rules highlighted
by the previous result, we identify an axiom α with the rule Ψ(α), a TBox T
with the set of rules Ψ(R), and an ontology 〈T ,A〉 with the program 〈Ψ(R),A〉.

By definition, every TBox T satisfies restrictions (f) and (w) and hence, we
only need to determine whether T satisfies (a) and (b) to guarantee tractability
of reasoning over a deterministic ontology 〈T ,A〉. Unfortunately, the dependency
graph of a TBox—which needs to be checked in order to verify (a) and (b)—
cannot be computed in polynomial time.

Lemma 18. Given a TBox T , the computation of G(T) is ExpTime-hard.

Proof. The lemma follows from the fact that entailment of concept subsump-
tions by a TBox (which is ExpTime-hard) can be decided by computing the
dependency graph of another TBox T ′.

Consider a TBox T and two concepts C and D. Moreover, let T ′ = T ∪{α1 =
C � ∃RY .C � Y, α2 = Y � D � ∃RZ .Z} with RY and RZ , and Y and Z some
fresh roles and concepts, respectively. Then, T |= C � D iff y → z ∈ G(T ′) with
y and z the variables occurring in the rules Ψ(α1) and Ψ(α2). �

Since the computation of the dependency graph of a TBox is rather expensive,
we define an over-approximation of this graph based on the definition of model-
summarizing acyclicity (MSA) [10] which can be computed more efficiently.

Definition 19. Given a set of rules R, let RS be the set of rules that results
from replacing every rule ρ ∈ R of the form (1) by the following rule.

B →
∧

1≤i≤n

(
Hi ∧

∧

x∈x

∧

v∈vi

Scc(x, v)
)
θ (10)

168 D. Carral et al.

In the above, Scc is a fresh binary predicate and θ is the substitution mapping
every variable in v ∈ vi to a fresh constant cv (which, by (†) and the definition
of a rule, is also specific to the i-th disjunct in the head of the rule ρ).

The summarizing dependency graph GS(R) of a rule set R is the smallest
graph containing an edge y → z if 〈RS , I�

R〉 |= Scc(cy, cz) where I�
R is the critical

instance of R; i.e., the set of all facts that can be constructed using the predicates
in R and the special constant �.

Lemma 20. Consider a rule set R. Then, the summarizing dependency graph
of R is a superset of the dependency graph of R.

Proof. Consider some chase tree T of a program 〈R, I〉; and a function h map-
ping every constant to �, and every skolem term of the form fy(t) to the constant
cy. Then, for every set of facts F associated to some node α in T , h(F) is con-
tained in the result of the chase of 〈RS , I�

R〉. The previous claim can be verified
by induction on the path from the root of T to α.

Let us assume that there is some edge y → z ∈ G(R). Then, by the definition
of the dependency graph, there must be some terms fz(t) and fy(s) with fy(s) ∈
t occurring in some set of facts F in some chase tree of a program 〈R, I〉. Let
B[x,y] →

∨n
i=1 ∃vi.Hi[x,vi] be the only rule in R containing z in some disjunct

in the head. Then, B[x/t] ⊆ F , and hence, h(B[x/t]) is contained in the result
of the chase of 〈MSA(R), I�

R〉. Since B →
∧n

i=1(H
′
i ∧

∧
x∈x

∧
v∈vi

Scc(x, v))θ ∈
MSA(R), then Scc(cy, cz) is also in the result of the chase of 〈MSA(R), I�

R〉. In
turn, this implies that y → z ∈ GS(R). �

We proceed with the definition of tractable acyclicity, and thereafter establish
the complexity of checking this condition and reasoning over such ontologies

Definition 21. A TBox T is k-tractable acyclic (TAk) if its summarizing graph
is acyclic and the length of every braid in this graph is at most k.

Theorem 22. Deciding TAk membership of a TBox T is P-complete.

Proof. To verify membership, we propose a polynomial procedure to determine
if GS(T) is acyclic and then compute the length of the longest braid in GS(T).
Let P = 〈R, I〉 be the program where I is the instance containing E(cy, cz)
for every y → z ∈ GS(T), and Neq(cy, cz) for every pair of nodes y and z in
GS(T) with y �= z; and R = {→ P(x, x),E(x, y) → P(x, y),P(x, y) ∧ P(y, z) →
P(x, z),P(x, y) ∧ P(y, z) → P(x, z),P(x, y) ∧ P(x, z) ∧ Neq(y, z) ∧ E(y, w) ∧
E(z, w) → B(x,w),B(x, y) ∧ B(y, z) → B(x, z)}. Then, there is a braid starting
in y and ending in z in GS(R) if and only if P |= B(cy, cz). Thus, to determine
the maximum length of a braid in GS(R), we simply have to look for the largest
path over the binary predicate B in the result of the chase of P. Moreover,
GS(R) is acyclic if and only if P does not entail the query ∃x.P(x, x). Note that,
the program P can be constructed in polynomial time since the computation
of GS(T) is tractable. Moreover, as the number of variables per rule in R is at
most 4 and the maximum arity of a predicate is 2, the chase of such a program
can be computed in polynomial time.

Tractable Query Answering for Expressive Ontologies and Existential Rules 169

Hardness of the TAk membership check can be readily ascertained via reduc-
tion from propositional horn entailment. �

Theorem 23. Deciding BCQ entailment for TAk ontologies 〈T ,A〉 is coNP-
complete provided the size of the query is fixed. Moreover, if T is a deterministic
TBox, then it is P-complete.

Proof. If T is TAk, then GS(T) is acyclic and every braid in GS(T) is of length
at most k. In turn, this implies that G(T) is acyclic and every braid in G(T)
is of length at most k by Lemma 20. Since the TBox T satisfies restrictions (a),
(b), (f), and (w), the theorem follows from Theorems 7 and 23. �

5 Evaluation

To assess the empirical generality of TAk, we analyzed ontologies from MOWL-
Corp [22] and Oxford Ontology Library,2 two large corpora of real-world OWL
ontologies. These ontologies were transformed into the normal form defined in
Fig. 4 using standard normalization techniques [8]. After this step, we disre-
garded ontologies with nominals and number restrictions; and also ontologies
without any axiom of type (9), as these are trivially TA0. Since the MOWLCorp
is rather large, we only considered ontologies in this corpus with up to 1,000
axioms of type (9). The final set contained 1,576 TBoxes from MOWLCorp and
225 TBoxes from the Oxford Ontology Library.

To determine TAk membership, we first constructed the summarizing depen-
dency graphs of the TBoxes. For this, we transformed axioms to rules using
the mapping in Fig. 4 and derived the programs described in Definition 19, over
which we reasoned using the RDFox [24] datalog rule engine. Out of the obtained
graphs, we found 974 (61.8%) acyclic ones from MOWLCorp and 171 (76%)
from Oxford Library. Then, we determined TAk membership of acyclic graphs
by counting the length of their longest braid. We did this by constructing the
program defined in Theorem 22, over which we reasoned using RDFox.

As our results show in Table 1, 78.3% of acyclic ontologies from MOWLCorp
are TA1, 90.8% are TA2, 95.5% are TA3, 98.8% are TA4 and 99% are TA5. In the
Oxford Library, 51.4% of the acyclic ontologies are TA1, 69.5% are TA2, 81.2%
are TA3, 92.3% are TA4, 97.6 % are TA5 and 98.2 % are TA6. There was only
one ontology from the Oxford corpus (00477.owl), containing more than 150,000
rules of type (9), for which computing TAk membership did not terminate.

Our acyclicity notion is theoretically equivalent to MSA and as general as
MFA with respect to the evaluated ontologies: In our test set, there are no MFA
ontologies which were not MSA. This validates the claims from [7,10], where
it was observed that MFA (the most general known acyclicity criterion for the
skolem chase) is not empirically more general than MSA. Moreover, our results
show that almost all acyclic ontologies are TAk with a small k: TA5 characterizes
97% of the ontologies in both corpora.

2 http://www.cs.ox.ac.uk/isg/ontologies/.

http://www.cs.ox.ac.uk/isg/ontologies/

170 D. Carral et al.

Table 1. Histogram of TAk on ontologies from MOWL and Oxford corpora, where for
TAk we only count ontologies that do not also belong to TAj for all j < k

MOWLCorp TA1 TA2 TA3 TA4 TA5 TA22 TA23 TA25 Total

763 122 36 42 2 2 6 1 974

Oxford Onto. Library TA1 TA2 TA3 TA4 TA5 TA6 TA11 TA23 Total

88 31 20 19 9 1 1 1 170

6 Conclusions and Future Work

To the best of our knowledge, this is the first systematic study of tractability
of CQ answering with disjunctive existential rules. An important application is
tractable query answering over OWL ontologies, a task which in general is known
to be intractable [25]. We have shown that our restrictions do indeed apply, for
small bounds of the related parameters, to many practical ontologies.

Our work therefore suggests a new approach to efficient reasoning that might
be applicable to many realistic ontologies, and which might be natural to imple-
ment in existing reasoners such as HermiT [23], which use chase-like procedures
already. The extension of our work with more general conditions for restricted
chase termination, which was recently shown to work well with many OWL
ontologies [7], may further help to extend the applicability of this approach.

Acknowledgements. Supported by the DFG within the cfaed Cluster of Excellence,
CRC 912 (HAEC), and Emmy Noether grant KR 4381/1-1.

References

1. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

2. Bienvenu, M., Hansen, P., Lutz, C., Wolter, F.: First order-rewritability and con-
tainment of conjunctive queries in Horn description logics. In: Proceedings of 25th
International Joint Conference on Artificial Intelligence (IJCAI’16), pp. 965–971.
IJCAI/AAAI Press (2016)

3. Bourhis, P., Morak, M., Pieris, A.: The impact of disjunction on query answering
under guarded-based existential rules. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013, pp.
796–802. IJCAI/AAAI (2013)

4. Cal̀ı, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in
Datalog+/-. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp.
1–17. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15918-3 1

5. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174 (2013)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. (JAR) 39(3), 385–429 (2007)

http://dx.doi.org/10.1007/978-3-642-15918-3_1

Tractable Query Answering for Expressive Ontologies and Existential Rules 171

7. Carral, D., Dragoste, I., Krötzsch, M.: Restricted chase (non)termination for exis-
tential rules with disjunctions. In: Sierra, C. (ed.) Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 922–928 (2017)

8. Carral, D., Feier, C., Cuenca Grau, B., Hitzler, P., Horrocks, I.: EL-ifying ontolo-
gies. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 464–479. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 36

9. Carral, D., Feier, C., Hitzler, P.: A practical acyclicity notion for query answering
over Horn- SRIQ ontologies. In: Groth, P., Simperl, E., Gray, A., Sabou, M.,
Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp.
70–85. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 5

10. Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B.,
Wang, Z.: Acyclicity notions for existential rules and their application to query
answering in ontologies. JAIR 47, 741–808 (2013)

11. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

12. Feier, C., Carral, D., Stefanoni, G., Grau, B.C., Horrocks, I.: The combined app-
roach to query answering beyond the OWL 2 profiles. In: Yang, Q., Wooldridge,
M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp.
2971–2977. AAAI Press (2015). http://ijcai.org/Abstract/15/420

13. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

15. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceed-
ings, Tenth International Conference on Principles of Knowledge Representation
and Reasoning, United Kingdom, 2–5 June 2006, pp. 57–67. AAAI Press (2006)

16. Kazakov, Y.: Saturation-based decision procedures for extensions of the guarded
fragment. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany (2006)

17. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in dl-lite. In: Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Twelfth International Conference,
KR 2010, Toronto, Ontario, Canada, 9–13 May 2010. AAAI Press (2010) http://
aaai.org/ocs/index.php/KR/KR2010/paper/view/1282

18. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: IJCAI, pp. 2656–2661 (2011)

19. Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclic-
ity and guardedness. In: Proceedings 22nd IJCAI, pp. 963–968. AAAI Press (2011)

20. Lutz, C., Seylan, İ., Toman, D., Wolter, F.: The combined approach to OBDA:
taming role hierarchies using filters. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.)
ISWC 2013. LNCS, vol. 8218, pp. 314–330. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41335-3 20

21. Marnette, B.: Generalized schema-mappings: from termination to tractability. In:
Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS 2009, June 2009, USA, pp. 13–22. ACM (2009)

22. Matentzoglu, N., Bail, S., Parsia, B.: A snapshot of the OWL web. In: Alani, H.,
Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N.,
Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 331–346. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41335-3 21

http://dx.doi.org/10.1007/978-3-319-08587-6_36
http://dx.doi.org/10.1007/978-3-319-46523-4_5
http://ijcai.org/Abstract/15/420
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1282
http://dx.doi.org/10.1007/978-3-642-41335-3_20
http://dx.doi.org/10.1007/978-3-642-41335-3_20
http://dx.doi.org/10.1007/978-3-642-41335-3_21

172 D. Carral et al.

23. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artif. Intell. Res. (JAIR) 36(1), 165–228 (2009)

24. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of Datalog programs in centralised, main-memory RDF systems. In: AAAI (2014)

25. Stefanoni, G., Motik, B., Krötzsch, M., Rudolph, S.: The complexity of answering
conjunctive and navigational queries over OWL 2 EL knowledge bases. J. Artif.
Intell. Res. 51, 645–705 (2014)

Zooming in on Ontologies: Minimal Modules
and Best Excerpts

Jieying Chen1(B), Michel Ludwig3(B), Yue Ma1(B), and Dirk Walther2(B)

1 LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
{jieying.chen,yue.ma}@lri.fr

2 Fraunhofer Institute for Transportation and Infrastructure Systems (IVI),
Zeunerstrasse 38, 01069 Dresden, Germany

dirk.walther@ivi.fraunhofer.de
3 Beaufort, Luxembourg
michel.ludwig@gmail.com

Abstract. Ensuring access to the most relevant knowledge contained in
large ontologies has been identified as an important challenge. To this
end, minimal modules (sub-ontologies that preserve all entailments over
a given vocabulary) and excerpts (certain, small number of axioms that
best capture the knowledge regarding the vocabulary by allowing for a
degree of semantic loss) have been proposed. In this paper, we introduce
the notion of subsumption justification as an extension of justification (a
minimal set of axioms needed to preserve a logical consequence) to cap-
ture the subsumption knowledge between a term and all other terms in
the vocabulary. We present algorithms for computing subsumption justi-
fications based on a simulation notion developed for the problem of decid-
ing the logical difference between ontologies. We show how subsumption
justifications can be used to obtain minimal modules and to compute
best excerpts by additionally employing a partial Max-SAT solver. This
yields two state-of-the-art methods for computing all minimal modules
and all best excerpts, which we evaluate over large biomedical ontologies.

1 Introduction

Knowledge about a complex system represented in ontologies yields a collection
of axioms that are too large for human users to browse, let alone to comprehend
or reason about it. In this paper, we propose a computational framework to zoom
in on large ontologies by providing users with either the necessary axioms that
act as explanations for sets of entailments, or fix-sized sub-ontologies containing
the most relevant information over a vocabulary.

Various approaches to extracting knowledge from ontologies have been
suggested including ontology summarization [23,25,29], ontology modulariza-
tion [9,14,26–28], ontology decomposition [6,20], and consequence justifica-
tions [3,11]. Existing ontology summarization systems focus on producing an
abridged version of RDF/S ontologies by identifying the most important nodes

This work is partially funded by the ANR project GoAsQ (ANR-15-CE23-0022).

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 173–189, 2017.
DOI: 10.1007/978-3-319-68288-4 11

174 J. Chen et al.

Ontology ⊥��-Module

MEX-Module

Minimal Module

Best Excerpt

Fig. 1. Zooming in on an ontology

Decreased blood volume � Cardiovascular finding (1)

Cardiovascular shunt � Cardiovascular finding (2)

Cardiac shunt � Cardiovascular shunt � (3)

∃RG.(∃FS.Heart structure)

Cardiovascular structure � Body system structure (4)

Fig. 2. Example axioms in Snomed CT (FS for
Finding site, RG for Role Group)

and their links under certain numeric measures, e.g., in/out degree centrality of
a node [25]. In contrast, ontology modularization and decomposition developed
for Description Logics (DLs) [2] is to identify ontological axioms needed to define
the relationships between concept and role names contained in a given signature.
Modules are sub-ontologies that preserve all logical consequences over a given
signature, and ontology decomposition partitions an ontology into atoms that
are never split by different modules. Computing minimal modules is known to be
hard. Hence, existing systems are either restricted to tractable DLs [5,13,15] or
they compute approximations of minimal modules [6,9,21]. This has resulted in
two important module notions: the semantics-based modules computed by the
system MEX [13] and the syntactic locality-based ⊥��-modules [22]. Figure 1
shows the set inclusion relationship between these notions, where we focus on
MEX-modules, minimal modules and best excerpts (see below) in this paper. A
justification for a particular logical consequence is a minimal set of axioms that
preserve the entailment. Although computing all justifications is generally a hard
task, different approaches have been shown promising for this task [1,10,17,30].

Different module notions and justifications share the property that the num-
ber of the axioms they contain is not bounded (besides the size of the entire
ontology). Even minimal modules for small signatures may be large rendering
human understanding more difficult. To this end, the notion of best excerpts [4]
has been introduced as size-bounded subsets of ontologies that preserve as much
knowledge about a given signature as possible.

The following real-world example illustrates possible benefits of best excerpts.
Suppose a user is concerned with the cardiovascular disease defined in the
Snomed CT1 ontology T consisting of 317 891 axioms. The user then selects the
terms Cardiovascular finding, Decreased blood volume and Cardiac shunt from
T as her signature Σ of interest. To help the user zoom in on T for Σ, we can
extract, for instance, the ⊥��-module and obtain 51 axioms, or the smallest min-
imal modules, which yields a further reduction down to 15 axioms,2 among which
are the axioms given in Fig. 2. Arguably our user still feels overwhelmed by the
amount of 15 axioms. This is where the notion of best k-excerpt steps in. By set-
ting k = 3, the user can get a best 3-excerpt E1 consisting of the axioms 1–3 listed
1 http://www.ihtsdo.org/snomed-ct.
2 Refer to https://goo.gl/o1QFGm for the whole list and for cases where larger mini-

mal modules appear in practice.

http://www.ihtsdo.org/snomed-ct
https://goo.gl/o1QFGm

Zooming in on Ontologies: Minimal Modules and Best Excerpts 175

above. By zooming in further, say extracting one-sized excerpts, she obtains E2

consisting of the first axiom. As a best excerpt, E1 guarantees all logical entail-
ments over the terms Cardiac shunt and Decreased blood volume. And the sin-
gleton E2 keeps the complete information over the term Decreased blood volume.
Note that E2 is returned due to the fact that it needs more than two axioms to
preserve the full information for any other concept in Σ. Moreover, axiom 4 is
in M but missing in E1 and in E2. This is because they merely serve to provide
background knowledge for reasoning over, thus not directly linked to, the user’s
input terms Σ, which are excluded from best excerpts due to the size restric-
tion. In this way, the user gains control over a large ontology. An approximate
approach to computing ontology excerpts based on information retrieval was
introduced in [4]. However, it cannot guarantee to compute the best excerpt.

In this paper, we generalise the notion of a justification to subsumption jus-
tification as a minimal set of axioms needed to define the relationship between a
selected term to the remaining terms in a given vocabulary. Inspired by a proof-
theoretic solution to the logical difference problem between ontologies [7,18], we
develop recursive algorithms to compute subsumption justifications. A minimal
module preserving the knowledge about a vocabulary can now be characterised
as the union of subsumption justifications, one for each term in the vocabulary.
By taking the union of subsumption justification for as many terms as possible
without exceeding a given size limitation yields a best excerpt. The algorithm
operates in two stages: First, for every term in the vocabulary, all subsumption
justifications are computed. Similarly to modules, no bound on the size of such
justifications exists. Second, minimal modules are obtained by taking the union
of one subsumption justification for every term, and best k-excerpts, for k > 0,
are obtained by packing a subsumption justification for as many terms as pos-
sible into a space of at most k axioms. The latter is solved via an encoding into
a partial Max-SAT problem [8]. Note that [4] only considers excerpts based on
information retrieval, which provide an approximate solution that can be com-
puted rather quickly, albeit not capturing the knowledge in an optimal way. In
this paper, however, we provide an algorithm for computing best excerpts via
subsumption justifications. Best excerpts can be used as a benchmark to evaluate
the quality of other excerpt or incomplete module notions.

Our contribution is three-fold: (i) We define the notion of subsumption justi-
fication and then introduce two of its applications (Sect. 3): computing minimal
modules and best excerpts; (ii) moreover, we present algorithms of computing
subsumption justifications (Sect. 4); (iii) finally, we evaluate the performance
of overall algorithms (Sect. 5). Our algorithm for computing minimal modules
outperformed the search-based approach from [5], and as the first best excerpt
extraction algorithm, we can obtain the excerpts of a better quality than the
excerpts based on information retrieval [4].

2 Preliminaries

Let NC and NR be mutually disjoint (countably infinite) sets of concept names
and role names. We use A, B, X, Y , Z to denote concept names, and r, s for

176 J. Chen et al.

role names. The set of ELH-concepts C and the set of ELH-inclusions α are
built by the following grammar rules: C ::= � | A | C � C | ∃r.C, α ::= C � C |
C ≡ C | r � s, where A ∈ NC and r, s ∈ NR. An ELH-TBox is a finite set of
ELH-inclusions (also called axioms).

The semantics is defined using interpretations I = (ΔI , ·I), where the domain
ΔI is a non-empty set, and ·I is a function mapping each concept name A to a sub-
set AI of ΔI and every role name r to a binary relation rI over ΔI . The exten-
sion CI of a possibly complex concept C is defined inductively as: (�)I := ΔI ,
(C � D)I := CI ∩ DI , and (∃r.C)I := {x ∈ ΔI | ∃y ∈ CI : (x, y) ∈ rI}.

An interpretation I satisfies a concept C, an axiom C � D, C ≡ D, or r � s
iff CI
= ∅, CI ⊆ DI , CI = DI , or rI ⊆ sI , respectively. An interpretation I is
a model of T if I satisfies all axioms in T . An axiom α follows from T , written
T |= α, if for all models I of T , it holds that I satisfies α.

An ELH-terminology T is an ELH-TBox consisting of axioms of the form
A � C, A ≡ C, r � s, where A is a concept name, r and s are role names, C is
an ELH-concept and no concept name A occurs more than once on the left-hand
side of an axiom of the form A ≡ C. To simplify the presentation we assume
that terminologies do not contain any occurrence of � and no axioms of the
form A ≡ B (after having removed multiple B-conjuncts) for concept names A
and B. Note that the material presented in the paper can easily be extended to
take � into account. A terminology is said to be acyclic iff it can be unfolded
(i.e., the process of substituting each concept name A by the right-hand side C
of its defining axiom A ≡ C terminates).

We say that a concept name A is conjunctive in T iff there exist concept
names B1, . . . , Bn, n > 0, such that A ≡ B1 � . . . � Bn ∈ T ; otherwise A is
said to be non-conjunctive in T . An ELH-terminology T is normalised iff it
only contains axioms of the forms A � B1 � . . . � Bm, A ≡ B1 � . . . � Bn,
A � ∃r.B and A ≡ ∃r.B, where m ≥ 1, n ≥ 2, A,B,Bi are concept names,
and each conjunct Bi is non-conjunctive in T . Every ELH-terminology T can
be normalised in polynomial time into a terminology T ′ such that for all ELH-
inclusions α formulated using concept and role names from T only, it holds that
T |= α iff T ′ |= α. Note that each axiom α ∈ T is transformed individually into
a set of normalised axioms. Moreover, we assume that when T is normalised, a
denormalisation function δT : T ′ → 2T is computed that maps every normalised
axiom β ∈ T ′ to a set of axioms δT (α) ⊆ T that consists of all axioms α ∈ T
that generated β during their normalisation.

We denote the number of axioms in a TBox T with |T |. A signature Σ is a
finite subset of NC ∪ NR. For a syntactic object χ (i.e., a concept, an axiom, or
a TBox), sig(χ) is the set of concept and role names occurring in χ. We denote
with sigNC(χ) the set of concept names in sig(χ). We write ELHΣ to denote
the set of ELH-concepts C such that sig(C) ⊆ Σ. A subset M ⊆ T is called a
justification for an ELH-concept inclusion α from T iff M |= α and M ′
|= α
for every M ′ � M . We denote the set of all justifications for an ELH-concept
inclusion α from an ELH-terminology T with JustT (α). Note that JustT (α) may
contain exponentially many justifications in the number of axioms in T .

Zooming in on Ontologies: Minimal Modules and Best Excerpts 177

The logical difference between two ELH-terminologies T1 and T2, denoted
as cDiffΣ(T1, T2), is the set of all ELH-inclusions α of the form C � D for
ELH-concepts C and D such that sig(α) ⊆ Σ, T1 |= α, and T2
|= α.

If two terminologies are logically different, the set cDiffΣ(T1, T2) consists of
infinitely many concept inclusions. The primitive witnesses theorems from [12]
allow us to consider only certain inclusions of a simpler syntactic form. It states
that if α ∈ cDiffΣ(T1, T2), where T1 and T2 are ELH-terminologies and Σ a
signature, then either A � D or C � A is a member of cDiffΣ(T1, T2), where
A ∈ sigNC(α) and C,D are ELH-concepts occurring in α. We call such concepts A
witnesses and denote the set of witnesses with cWtnΣ(T1, T2). It holds that
cWtnΣ(T1, T2) = ∅ iff cDiffΣ(T1, T2) = ∅.

A k-excerpt of T w.r.t. Σ is a subset E of T such that | E |≤ k. Let μ be an
incompleteness measure, we say a k-excerpt E is the best excerpt of T w.r.t. Σ
if μ(T , Σ, E) = min{μ(T , Σ, E ′) | E ′ is a k-excerpt of T }. In this paper, we use
the size of concept witness cWtnΣ(T , E) as the incompleteness measure.

3 Application of Subsumption Justification

In this section, we introduce the notion of subsumption justification, and give
two applications of this notion. The algorithms for computing subsumption jus-
tifications are given separately in Sect. 4.

We assume that T , T1, and T2 are acyclic normalised ELH-terminologies, Σ
is a signature, X ∈ NC is concept names.

Definition 1. We say that M ⊆ T is an 〈X,Σ〉-subsumee module of T iff for
every C ∈ ELHΣ, T |= C � X implies M |= C � X. Similarly, we define the
notion of an 〈X,Σ〉-subsumer module M of T to be a subset of T such that for
every D ∈ ELHΣ, T |= X � D implies M |= X � D.

Additionally, a set M is called an 〈X,Σ〉-subsumption module of T iff M
is an 〈X,Σ〉-subsumee and 〈X,Σ〉-subsumer module of T . An 〈X,Σ〉-subsumee
(resp. subsumer, subsumption) justification is an 〈X,Σ〉-subsumee (resp. sub-
sumer, subsumption) module of T that is minimal w.r.t. �.

We denote the set of all 〈X,Σ〉-subsumee (resp. subsumer, subsumption) justi-
fications as J ←

T (X,Σ) (resp. J →
T (X,Σ),JT (X,Σ)). Note that there may exist

multiple 〈X,Σ〉-(subsumer, subsumee) subsumption justifications.

Example 1. Let Σ = {A1, A2, B} and let T = {α1, α2, α3, α4, α5, α6, α7}, where
α1 = X ≡ Y � Z, α2 = Y � B, α3 = Z ≡ Z1 � Z2, α4 = A1 � Y , α5 = A2 � Z,
α6 = A2 � Z1, and α7 = A2 � Z2. Then the sets M1 = {α1, α3, α4, α6, α7},
M2 = {α1, α4, α5}, and T are all 〈X,Σ〉-subsumee modules of T , whereas only
M1 and M2 are 〈X,Σ〉-subsumee justifications of T . The set M3 = {α1, α2} is
an 〈X,Σ〉-subsumer justification of T . Finally, the sets M1 ∪M3 and M2 ∪M3

are 〈X,Σ〉-subsumption justifications of T .

Proposition 1. M is an 〈X,Σ〉-subsumption module of T iff X
∈
cWtnΣ(T ,M).

Proposition 1 follows from the primitive witnesses theorems [12] and Definition 1.

178 J. Chen et al.

3.1 Application 1: Computing Minimal Modules

A module is a subset of an ontology that can act as a substitute for the ontology
w.r.t. a given signature. In this paper, we consider the notion of basic modules
from [5] for acyclic ELH-terminologies.

Definition 2 (Basic Module [5]). Let T be an ELH-terminology, and let Σ
be a signature. A subset M ⊆ T is called a basic ELH-module of T w.r.t. Σ iff
cDiffΣ(T ,M) = ∅.

To apply subsumption justifications for computing all modules that are
minimal w.r.t. �, we define the operator ⊗ to combine subsumption jus-
tifications of T for all Σ-concept names, as follows: Given a set S and
S1, S2 ⊆ 2S , S1 ⊗ S2 := {S1 ∪ S2 | S1 ∈ S1, S2 ∈ S2 }. For instance,
if S1 = {{α1, α2}, {α3}} and S2 = {{α2, α3}, {α4, α5}}, then S1 ⊗ S2 =
{{α1, α2, α3}, {α1, α2, α4, α5}, {α2, α3}, {α3, α4, α5}}. Note that the ⊗ operator
is associative and commutative.

For a set M of sets, we define a function Minimise⊆(M) as follows: M ∈
Minimise⊆(M) iff. M ∈ M and there does not exist a set M′ ∈ M such that
M′ � M. Finally, we can use the ⊗ operator and the Minimise⊆(M) function
to combine sets of subsumer and sets of subsumee modules to obtain a set of
subsumption modules, whose correctness is guaranteed by Proposition 1.

Theorem 1. Let MT
Σ be the set of all minimal basic ELH-modules of T w.r.t.Σ.

Then MT
Σ := Minimise⊆(⊗X∈Σ∩NC

(J →
X (X,Σ) ⊗ J ←

X (X,Σ))).

Please note that, given a TBox and a signature, MEX-module is unique
[14] but there may exist exponential many minimal basic modules in theory. A
relation between basic module and MEX module is given below:

Proposition 2. Let M be the MEX-module of T w.r.t. Σ. It holds that for
every minimal basic EL-module M′ of T w.r.t. Σ, M′ ⊆ M.

Intuitively, Proposition 1 follows from the fact that MEX-modules are based
on a semantic inseparability notion [14], whereas the notion of basic modules
uses a weaker, deductive inseparability notion based on EL-inclusions [5]; see,
e.g., [19] for more on inseparability.

3.2 Application 2: Computing Best Excerpts

Based on subsumption justifications, in this section, we present an encoding
of the best k-excerpt problem in a partial Max-SAT problem, with the aim of
delegating the task of finding the best excerpt to a Max-SAT solver. In that way
we can leverage the decades of research efforts dedicated to developing efficient
SAT solvers for our problem setting. We continue with reviewing basic notions
relating to propositional logic and Max-SAT.

Partial Max-SAT is an extension of the Boolean Satisfiability (SAT) to opti-
mization problems. Formally, a partial Max-SAT problem P is pair P = (H,S)

Zooming in on Ontologies: Minimal Modules and Best Excerpts 179

where H and S are finite sets of clauses, called hard and soft clauses, respec-
tively. We say that a valuation v is a solution of P iff. v satisfies all the clauses
in H and there does not exist a valuation v′ that satisfies all the clauses in H
and

∑
ψ∈S v′(ψ) >

∑
ψ∈S v(ψ).

The objective of a partial Max-SAT problem is hence to find a propositional
valuation that satisfies all the hard clauses in H and that satisfies a maximal
number of the soft clauses in S. Note that a partial Max-SAT problem may
nevertheless admit several solutions.

We now describe of our encoding of the best k-excerpt problem into partial
Max-SAT. For every axiom α ∈ T , we introduce a fresh propositional variable
pα. Consequently, each solution v to our partial Max-SAT problem yields a best
excerpt that consists of all axioms α such that v(pα) = 1.

For a 〈A,Σ〉-subsumption justification j ∈ JT (A,Σ), we introduce the for-
mula Fj :=

∧
α∈j pα. Consequently, Fj is valued 1 iff. pα is valued 1, equivalently,

each axiom in j is selected to be contained in a best excerpt.
For the set of 〈A,Σ〉-subsumption justifications J = JT (A,Σ), we define

GJ :=
∨

j∈J Fj . For instance, let T = {α1, α2, α3, α4, α5}, J = {{α2, α3},
{α1, α4}}, and j = {α2, α3}. Then Fj = pα2 ∧ pα3 and GJ := (pα2 ∧ pα3) ∨
(pα1 ∧ pα4).

Definition 3 (Encoding of the Best Excerpt Problem). For every A ∈ Σ,
let JA(X,Σ) be the set of all the 〈A,Σ〉-subsumption justifications of a termi-
nology T , and let qA be a fresh propositional variable. The partial Max-SAT
problem for finding best k-excerpts of T w.r.t. Σ, denoted with Pk(T , Σ), is
defined as follows. We set Pk(T , Σ) := (Hk(T), Sk(T , Σ)), where

Hk(T) := Card(T , k) ∪
⋃

A∈Σ∩NC

Clauses(qA ↔ GJA
),

Sk(T , Σ) := { qA | A ∈ Σ ∩ NC },

and Card(T , k) is the set of clauses specifying that at most k clauses from the
set { pα | α ∈ T } must be satisfied.

In the hard part of our partial Max-SAT problem, the clauses in Card(T , k)
specify that the cardinality of the resulting excerpt E ⊆ T must be equal to k.
We do not fix a certain encoding that should be used to obtain Card(T , k), but
we note that there exist several techniques that require a polynomial number of
clauses in k and in the size of T (see e.g. [24]). Moreover, for every concept name
A ∈ Σ, the variable qA is set to be equivalent to the formula GJ , i.e. qA will
be satisfied in a valuation iff the resulting excerpt will have the property that
the knowledge of A w.r.t. Σ in T is preserved (A ∈ PreservedΣ(T , E)). Finally,
the set Sk(T , Σ) of soft clauses specifies that a maximal number of qA must be
satisfied, enforcing that the resulting excerpt E will yield the smallest possible
number of difference witnesses (whilst obeying the constraint that |E| = k).

We can now show the correctness of our encoding, i.e. a best k-excerpt can
be obtained from any solution to the partial Max-SAT problem Pk(T , Σ).

180 J. Chen et al.

Theorem 2 (Correctness & Completeness). Let T be a normalised ELH-
terminology, let Σ be a signature, and let 0 ≤ k ≤ |T |. It holds that E ⊆ T is a
best k-excerpt of T w.r.t. Σ iff there exists a solution v of the partial Max-SAT
problem Pk(T , Σ) such that E = {α ∈ T | v(pα) = 1 }.

Algorithm 1 shows how best excerpts are computed by using partial Max-
SAT encoding. In Line 7, the algorithm iterates over every concept name A
in Σ and the set of all subsumption justifications JT (A,Σ) are computed. The
formula GJA

is computed next and stored in a set S. After the iteration over all
the concept names A in Σ is complete, the partial Max-SAT problem Pk(T , Σ) is
constructed with the help of the formulas GJA

that are stored in S. Subsequently,
a solution v of Pk(T , Σ) is computed using a partial Max-SAT solver and the
best k-excerpt is returned by analysing which variables pα have been set to 1 in
the valuation v.

Our algorithm of computing subsumption justifications given below runs in
exponential time in the size of T and Σ. Hence, we have that Algorithm 1 overall
requires exponential time in the size of T and Σ in the worst case.

Algorithm 1. Computing Best k-Excerpts

1 function ComputeBestExcerpt(T , Σ, k)

2 if k = 0 then

3 return ∅
4 if k = |T | then

5 return T
6 S := ∅
7 for every A ∈ Σ ∩ NC do

8 Compute 〈A, Σ〉-subsumption justifications of T : JT (A, Σ)

9 Transfer 〈A, Σ〉-subsumption justifications of T to its propostional formula GJA

10 S := S ∪ {GJA
}

11 Compute Pk(T , Σ) using S

12 Find the set of solutions V of Pk(T , Σ) using partial Max-SAT solver

13 return { α ∈ T | v(pα) = 1, v ∈ V }

4 Algorithms of Computing Subsumption Justifications

In the following subsections, we present algorithms for computing subsumer and
subsumee justifications. The algorithms use the following notion of a cover of a
set of sets. For a finite set S and a set T ⊆ 2S , we say that a set M ⊆ 2S is a cover
of T iff M ⊆ T and there exists M′ ∈ M such that M′ ⊆ M for every M ∈ T. In
other words, a cover is a subset of T containing all sets from T that are minimal
w.r.t. �. Therefore, a cover of the set of all subsumption modules also contains
all subsumption justifications. We will use covers to characterise the output of
our algorithms to ensure that all justifications have been computed.

The algorithms expect the input terminologies to be normalised. Thus, we
have to normalise our terminologies first if they are not yet normalised (cf.
Sect. 2). The denormalisation function δT that we obtain from the process of
normalisation is then applied to the outputs of the algorithms to obtain the sub-
sumer and subsumee justifications of the original terminology. More precisely,

Zooming in on Ontologies: Minimal Modules and Best Excerpts 181

each subsumer or subsumee justification M = {β1, . . . , βn} of the normalised
terminology is transformed into the set { {γ} | γ ∈ δT (β1) } ⊗ . . . ⊗ {{γ} | γ ∈
δT (βn) } to obtain subsumer or subsumee justifications of the original termi-
nology, respectively. In what follows we assume that T , T1, and T2 are acyclic
normalised ELH-terminologies.

4.1 Computing Subsumer Justifications

The algorithm for computing subsumer justifications relies on the notion of a
subsumer simulation between terminologies from [7,18], which we introduce first.

Definition 4 (Subsumer Simulation). A relation S ⊆ sigNC(T1) × sigNC(T2)
is called a Σ-subsumer simulation from T1 to T2 if the following conditions hold:

(S→
1) if (X1,X2) ∈ S, then for every B ∈ Σ with T1 |= X1 � B it holds that
T2 |= X2 � B; and

(S→
2) if (X1,X2) ∈ S, then for each Y1
�1 ∃r.Z1 ∈ T1 with T1 |= X1 � Y1,
T1 |= r � s, s ∈ Σ,
�1 ∈ {�,≡}, there exists Y2
�2 ∃r′.Z2 ∈ T2 with
T2 |= X2 � Y2,
�2 ∈ {�,≡}, T2 |= r′ � s, and (Z1, Z2) ∈ S.

We write simΣ
→([T1,X1], [T2,X2]) iff there is a Σ-subsumer simulation S from T1

to T2 with (X1,X2) ∈ S; and in the case of T2 ⊆ T1 we write simT1,Σ
→ (X1,X2).

A subsumer simulation conveniently captures the set of subsumers in the
following sense: If a Σ-subsumer simulation from T1 to T2 contains the pair
(X1,X2), then X2 entails w.r.t. T2 all subsumers of X1 w.r.t. T1 that are formu-
lated in the signature Σ. Formally, we obtain the following theorem from [18].

Theorem 3. It holds that simΣ
→([T1,X1], [T2,X2]) iff for all D ∈ ELHΣ: T1 |=

X1 � D implies T2 |= X2 � D.

Guided by the subsumer simulation notion, we can device our algorithm for
computing subsumer justifications. Algorithm 2 computes the subsumer justi-
fications for an acyclic normalised ELH-terminology T , a signature Σ, and a
concept name X. Lines 3–10 of the algorithm compute all 〈X,Σ〉-subsumption
modules of T . To ensure that the returned modules are minimal w.r.t. �, the
algorithm calls the function Minimise⊆(MX) in Line 11, which removes any set
in MX that is not minimal.

We illustrate Algorithm 2 (Fig. 3) with the following two examples. First
example, let T = {X � B, X � Y, Y � B} and Σ = {B}. Consider the
execution of Cover→(T ,X,Σ). In Line 4, M→

X is set to JustT (X � B), where
JustT (X � B) = {{X � B}, {X � Y, Y � B}}. Since there are no axioms of
the form Y � ∃r.Z ∈ T or Y ≡ ∃r.Z ∈ T , the lines 5–10 have no effect. Finally,
the algorithm returns M→

X in Line 11.
For the second example, let T = {α1, α2, α3, α4, α5} and Σ = {A,B, s},

where α1 = X � ∃r.A, α2 = X � ∃r.B, α3 = X � ∃r.Y , α4 = Y ≡ A � B,
and α5 = r � s. We consider again the execution of Cover→(T ,X,Σ). We

182 J. Chen et al.

Fig. 3. Algorithms of computing subsumer and subsumee justifications

proceed to Line 5 as there are no concept names in Σ entailed by X w.r.t. T .
However, the concepts ∃r.A, ∃r.B and ∃r.Y are entailed by X w.r.t. T . It holds
that simT ,Σ

→ (Z,Z ′) for every (Z,Z ′) ∈ {(A,A), (B,B), (Y, Y), (A, Y), (B, Y)},
whereas simT ,Σ

→ (Z,Z ′) does not hold for any (Z,Z ′) ∈ {(A,B), (B,A), (Y,A),
(Y,B)}. Therefore, for every Z ∈ {A,B, Y } the recursive call Cover→(T , Σ, Z)
is made in Line 8. The following sets are computed in lines 6–10: M→

A = {∅},
M→

B = {∅}, and M→
Y = {{α4}} as well as

Zooming in on Ontologies: Minimal Modules and Best Excerpts 183

M→
∃s.A = ({α1, α5} ⊗ M→

A) ∪ ({α3, α5} ⊗ M→
Y) = {{α1, α5}, {α3, α4, α5}}

M→
∃s.B = ({α2, α5} ⊗ M→

B) ∪ ({α3, α5} ⊗ M→
Y) = {{α2, α5}, {α3, α4, α5}}

M→
∃s.Y = {α3, α5} ⊗ M→

Y = {{α3, α4, α5}}
M→

X = M→
∃r.A ⊗ M→

∃s.B ⊗ M→
∃r.Y = {{α3, α4, α5}}.

Finally, Cover→(T ,X,Σ) returns Minimise⊆(M→
X) = {{α3, α4, α5}} in

Line 11.
The following theorem shows that Algorithm 2 indeed computes the set of

subsumer modules, thus producing a cover of subsumer justifications.

Theorem 4. Let M→
X := Cover→(T ,X,Σ). Then M→

X is a cover of the set of
〈X,Σ〉-subsumer justifications of T .

Observe that Cover→(T ,X,Σ) may be called several times during the exe-
cution of Algorithm 2. The algorithm can be optimised by caching the return
value of the first execution, and retrieving it from memory for subsequent calls.

4.2 Computing Subsumee Justifications

The algorithm for computing subsumee justifications relies on the notion of sub-
sumee simulation between terminologies [7,18]. First we present some auxiliary
notions for handling conjunctions on the left-hand side of subsumptions.

We define for each concept name X a so-called definitorial forest consisting of
sets of axioms of the form Y ≡ Y1 � . . . � Yn which can be thought of as forming
trees. Any 〈X,Σ〉-subsumee justification contains the axioms of a selection of
these trees, i.e., one tree for every conjunction formulated over Σ that entails X
w.r.t. T . Formally, we define a set of a DefForest�

T (X) ⊆ 2T to be the smallest set
closed under the following conditions: ∅ ∈ DefForest�

T (X); {α} ∈ DefForest�
T (X)

for α = X ≡ X1 � . . . � Xn ∈ T ; and Γ ∪ {α} ∈ DefForest�
T (X) for Γ ∈

DefForest�
T (X) with Z ≡ Z1 � . . . � Zk ∈ Γ and α = Zi ≡ Z1

i � . . . � Zn
i ∈ T .

Given Γ ∈ DefForest�
T (X), we set leaves(Γ) := sig(Γ) \ {X ∈ sig(C) | X ≡

C ∈ Γ } if Γ
= ∅; and {X} otherwise. We denote the maximal element of
DefForest�

T (X) w.r.t. ⊆ with max-tree �
T (X). Finally, we set non-conjT (X) :=

leaves(max-tree �
T (X)).

For example, let T = {α1, α2, α3}, where α1 = X ≡ Y �Z, α2 = Y ≡ Y1�Y2,
and α3 = Z ≡ Z1 � Z2. Then DefForest�

T (X) = {∅, {α1}, {α1, α2}, {α1, α3},
{α1, α2, α3}}. We have that leaves({α1, α3}) = {Y,Z1, Z2}, max-tree �

T (X) =
{α1, α2, α3}, and non-conjT (X) = {Y1, Y2, Z1, Z2}.

We say that X ∈ NC is Σ-entailed w.r.t. T iff there exists C ∈ ELΣ with
T |= C � X. We say that r ∈ NR is Σ-entailed w.r.t. T iff there exists
s ∈ Σ ∩ NR with T |= s � r. Moreover, we say that X is complex Σ-entailed
w.r.t. T iff for every Y ∈ non-conjT (X) one of the following conditions holds:

(i) there exists B ∈ Σ such that T |= B � Y and T
|= B � X;
(ii) there exists Y ≡ ∃r.Z ∈ T such that r and Z are both Σ-entailed in T .

184 J. Chen et al.

For example, let T = {X ≡ X1 � X2, B1 � X1, X2 ≡ ∃r.Z, B2 � Z, s � r}.
We have that non-conjT (X) = {X1,X2}, then r is Σ-entailed w.r.t. T ; X is
complex Σ-entailed w.r.t. T for Σ = {B1, B2, s}; but X is not complex Σ′-
entailed w.r.t. T , where Σ′ ranges over {B1, B2}, {B1, s}, {B2, s}. Additionally,
X is not complex Σ-entailed w.r.t. T ∪ {B1 � X}.

Definition 5 (Subsumee Simulation). We say that a relation S ⊆
sigNC(T1) × sigNC(T2) is a Σ-subsumee simulation from T1 to T2 iff the following
conditions are satisfied:

(S←
1) if (X1,X2) ∈ S, then for every B ∈ Σ with T1 |= B � X1 it holds that
T2 |= B � X2;

(S←
2) if (X1,X2) ∈ S and X1 ≡ ∃r.Y1 ∈ T1 such that T1 |= s � r, s ∈ Σ
and Y1 is Σ-entailed in T1, then for every X ′

2 ∈ non-conjT2
(X2) there exists

X ′
2 ≡ ∃r′.Y2 ∈ T2, such that (Y1, Y2) ∈ S and T2 |= s � r′;

(S←
3) if (X1,X2) ∈ S and X1 ≡ Y1 � . . . � Yn ∈ T1, then for every X ′

2 ∈
non-conjT2

(X2) there exists X ′
1 ∈ non-conjT1

(X1) with (X ′
1,X

′
2) ∈ S.

We write simΣ
←([T1,X1], [T2,X2]) iff there exists a Σ-subsumee simulation S

from T1 to T2 with (X1,X2) ∈ S. Moreover, we write simT1,Σ
← (X1,X2) iff there

exists a Σ-subsumee simulation S from T1 to T1 with (X1,X2) ∈ S.

Analogously to subsumer simulations, a subsumee simulation captures the
set of subsumees as it is made precise in the following theorem from [18].

Theorem 5. It holds that simΣ
←([T1,X1], [T2,X2]) iff for every D ∈ ELHΣ:

T1 |= D � X1 implies T2 |= D � X2.

Using the notion of a subsumee simulation, we can device Algorithm 4 for
computing a cover of the subsumee justifications for a given ELH-terminology
T , a concept name X, and a signature Σ. The correct function call for obtaining
the 〈X,Σ〉-subsumee justifications of T is Cover←(T ,X,Σ, T ,X). Note that
Algorithms 3, 5, and 6 are called as subroutines in Line 4, 8 and 10 in Algorithm 4.
The four different parameters for Algorithm 4 are needed due to the recursive
calls in Algorithm 3 (Line 11) and Algorithm 6 (Line 8).

We illustrate Algorithm 4 with the following example. Let T = {X ≡
∃r.Y, Y ≡ ∃s.Z, Z ≡ A � Z ′, A � B, B � Z ′, Z ′ � A} be an EL-terminology,
and let Σ = {A,B, r, s} be a signature. It can easily be seen that T is normalised.

Consider the execution of Cover←(T ,X,Σ, T ,X). As X is (complex)
Σ-entailed, CoverNC

← (T ,X,Σ, T ,X) is called in Line 4. The for-loop in
lines 3–4 of Algorithm 5 does not apply as T
|= A � X and T
|=
B � X. We obtain CoverNC

← (T ,X,Σ, T ,X)={∅} backtracking to Line 4 of
Cover←(T ,X,Σ, T ,X). The if-statement in Line 7 applies as T contains
an axiom of the form X ≡ ∃r.Y , where X and r are each Σ-entailed.
We proceed with Cover∃

←(T ,X,Σ, T ,X) in Line 8. We obtain M←
(X,X) :=

{max-tree �
T (X)} = {∅} in Line 3 of Algorithm 6. Since non-conjT (X) = {X}

and X ≡ ∃r.Y ∈ T , the recursive call Cover←(T , Y,Σ, T , Y) in Line 8 of
Algorithm 6 is made.

Zooming in on Ontologies: Minimal Modules and Best Excerpts 185

Then, in Line 8 of Algorithm 4, Cover∃
←(T , Y,Σ, T , Y) is called as Y is

complex Σ-entailed w.r.t. T , Y ≡ ∃s.Z ∈ T , and s, Z are each Σ-entailed.
Similar to Cover∃

←(T ,X,Σ, T ,X), the execution of Cover∃
←(T , Y,Σ, T , Y)

invokes Cover←(T , Z,Σ, T , Z) from Line 8 of Algorithm 6.
As Z is Σ-entailed w.r.t. T , we have that CoverNC

← (T , Z,Σ, T , Z) is exe-
cuted. The for-loop in Line 3 of Algorithm 5 applies as T |= A � Z and
T |= B � Z so that we have M←

Z := JustT (A � Z) ⊗ JustT (B � Z), where
JustT (A � Z) = JustT (B � Z) = {Z ≡ A � Z ′, A � B, B � Z ′, Z ′ � A}.
This finishes the call CoverNC

← (T , Z,Σ, T , Z), and we backtract to Line 4 of
Cover←(T , Z,Σ, T , Z). As Z is not complex Σ-entailed, this finishes the call
Cover←(T , Z,Σ, T , Z) with M←

Z = {Z ≡ A � Z ′, A � B, B � Z ′, Z ′ � A}.
We backtrack to Line 8 of Cover∃

←(T , Y,Σ, T , Y) and set M←
Y := M←

Y ⊗
{{Y ≡ ∃s.Z}} ⊗ M←

Z which yields M←
Y = {{Y ≡ ∃s.Z, Z ≡ A � Z ′, A �

B, B � Z ′, Z ′ � A}}. This finishes the call Cover∃
←(T , Y,Σ, T , Y) and it

backtracks to Line 8 and ends the call Cover←(T , Y,Σ, T , Y). We set M←
X :=

M←
X ⊗{{X ≡ ∃r.Y }}⊗M←

Y in Line 9 of Algorithm 6 for Cover∃
←(T ,X,Σ, T ,X).

Thus Cover∃
←(T ,X,Σ, T ,X) returns M←

X = {{X ≡ ∃r.Y, Y ≡ ∃s.Z, Z ≡
A � Z ′, A � B, B � Z ′, Z ′ � A}} and we backtrack to Line 10 of Algorithm 4.
Finally, all sets that are not minimal w.r.t. � are removed from M←

X in Line 11,
which ends the execution of Cover←(T ,X,Σ, T ,X).

The following theorem shows that Algorithm 4 indeed computes a cover of
the set of subsumee modules. Thus every subsumee justification is guaranteed
to be among the computed sets of axioms.

Theorem 6. Let M←
X := Cover←(T ,X,Σ, T ,X). Then M←

X is the set of all
〈X,Σ〉-subsumee justifications of T .

5 Evaluation

We have implemented our algorithms for computing subsumption justifications,
minimal (basic) modules, and best excerpts in Java. The performance of the
implementation has been evaluated using the EL-fragment of two prominent
biomedical ontologies: Snomed CT (version Jan 2016), a terminology consist-
ing of 317 891 axioms, and NCI (version 16.03d),3 a terminology containing
165 341 axioms. To compute the sets JustT (α), we deployed the SAT-based tool
BEACON [1], which uses an efficient group-MUS enumerator. To solve our par-
tial Max-SAT problem, we made use of the system Sat4j [16]. All experiments
were conducted with a timeout of 10 min on machines equipped with an Intel
Xeon Core 4 Duo CPU running at 2.50 GHz and with 64 GiB of RAM.

Computation of all Subsumption Justifications. Table 1 shows the results
obtained for computing all subsumption justifications. The first row indicates
the ontology used in each experiment. The experiments are divided into four
categories according to the numbers of concept and role names included in an

3 http://evs.nci.nih.gov/ftp1/NCI Thesaurus.

http://evs.nci.nih.gov/ftp1/NCI_Thesaurus

186 J. Chen et al.

Table 1. The statistics of experiments on computing all subsumption justifica-
tions for signatures generated at random, 1000 signatures of each size (mini-
mal/maximal/median/standard deviation)

Ontologies Snomed CT NCI

(|Σ ∩ NC|, |Σ ∩ NR|) (10,10) (30,10) (10,10) (30,10)

Nb. of all

subsumption

justifications

1.0/19.0/1.0/0.9 1.0/1328.0/1.0/10.7 1.0/136.0/1.0/3.5 1.0/7008.0/1.0/41.8

Card. of a

subsumption

justification

0.0/18.0/0.0/1.7 0.0/15.0/0.0/3.2 0.0/15.0/0.0/3.2 0.0/27.0/0.0/8.1

Success rate 88.7% 82.4% 84.8% 91.7%

Computation time

(s)

0.2/519.7/0.4/59.2 0.7/576.3/1.6/28.5 0.2/472.4/1.3/66.9 0.2/577.3/7.6/97.0

Table 2. Percentage of computation time consumed by sub-task of the algorithm for
computing subsumption justifications

Sub-task JUST Reasoner Simulation check others
Percentage (%) 94.60 1.79 1.57 2.04

input signature, as specified in the second row. For each category, we generated
1000 random signatures and computed the corresponding subsumption justi-
fications for each concept name in the signature. Row 3 shows that multiple
subsumption justifications can exist in real-world ontologies, e.g., there are 1328
subsumption justifications for a random signature consisting of 30 concept and
10 role names in Snomed CT. Meanwhile, Row 4 reports the cardinality of sub-
sumption justifications, e.g., the largest one having 27 axioms for a signature
of 30 concept and 10 role names from NCI. Row 5 shows that the subsump-
tion justifications for more than 82.4% of random signatures can be computed
within 10 mins, whereas the statics of the actual computation times is given in
Row 6. Moreover, Table 2 details how the computation time was spent on dif-
ferent sub-tasks which determined the bottleneck of our tool. Indeed, 94.6% of
the computation time was spent by BEACON on computing all justifications for
concept name inclusions. Therefore, a considerable boost in performance of our
tool can be expected by precomputing such justifications.

Computation of all Minimal Basic Modules. We compare our approach for com-
puting all minimal basic modules with the search algorithm proposed in [5] in
terms of computation time, as depicted in Fig. 4. The x-axis stands for the sizes
of input ontologies. To obtain different sized input ontologies, we used random
signatures to extract their MEX-modules [14], yielding 328 sub-ontologies of sizes
ranging from 14 to 2 271. Our method (red squares) was generally about 10 times
faster than the search-based approach (blue triangles) except for 11 small sized
input ontologies. This indicates that our approach is suitable for computing all
minimal basic modules, esp. for large ontologies.

Zooming in on Ontologies: Minimal Modules and Best Excerpts 187

Fig. 4. Time comparison of computing
minimal modules by our method (sub-
sumption justification based approach,
cf. Theorem 1) and the existing mod-
ule search tree based approach [5] over
different sized input ontologies (Color
figure online)

Fig. 5. Comparison of the best
excerpts (our approach) and the
approximating excerpts (IR app-
roach [4]) over 2500 signatures, each
of which consists of a concept name
from Snomed CT and its TOP-concept
named SNOMED CT Concept (Color
figure online)

Computation of Best Excerpts. We compare the size of locality based modules
with the number of axioms in IR-excerpts [4] and best excerpts needed to pre-
serve the same amount of knowledge. We denote with #PreservedΣ(IR) = n
and #PreservedΣ(best) = n, for n ∈ {1, 2}, the minimal number of axioms
needed to preserve the knowledge of n concept names w.r.t. the signature Σ
by an IR-excerpt and best excerpt, respectively. In this experiment, instead of
using random signatures, we consider a scenario where a user searches for sub-
ontologies of Snomed CT related to a particular concept name. We compute
2 500 different signatures each consisting of a concept name related to diseases,
the TOP-concept and all role names of Snomed CT.

In Fig. 5, these 2 500 signatures are ranked increasingly by the sizes of
their ⊥�∗-local modules (the black line) along the x-axis. The y-axis repre-
sents the number of axioms in the module and excerpts for a signature. The red
(resp. green) line presents the sizes of best excerpts that preserve the knowl-
edge for one (resp. two) concept names, i.e., #PreservedΣ(best) = 1 (resp.
#PreservedΣ(best) = 2); similarly, the blue (resp. orange) dots for IR-excerpts.
We can see that the red line is below all blue dots and the green line is below
all orange dots. Consequently, the best excerpts are always smaller than IR-
based excerpts for preserving same degree of information. In other words, best
excerpts provide a more concise way to zoom in on an ontology. Our experiment
also shows that our Max-SAT encoding works efficiently. After computing the
subsumption justifications for all concept names in a signature, it only takes
0.15 s on average to compute best excerpts.

188 J. Chen et al.

6 Conclusion

We have presented algorithms of computing subsumption justifications, minimal
modules and best excerpts for an acyclic ELH-terminology and a signature.
Minimal modules and best excerpts can be applied in the ontology selection
process and they can be used for ontology summarization and visualization. We
have conducted an evaluation with large biomedical ontologies that demonstrates
the viability of our algorithms in practice. It turns out that in most cases the
set of all minimal modules can be computed faster than with another algorithm
based on search [5]. Best excerpts can be used to evaluate the quality of ontology
excerpts based on Information Retrieval or of other (incomplete) module notions.
We expect that the algorithms can be extended to deal with cyclic terminologies,
domain and range restrictions in order to be applicable for, e.g., linked data
summarization by providing small sized basic modules.

References

1. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.:
BEACON: an efficient SAT-based tool for debugging EL+ ontologies. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 521–530. Springer, Cham
(2016). doi:10.1007/978-3-319-40970-2 32

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation and Applications, 2nd
edn. Cambridge University Press, Cambridge (2010)

3. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667,
pp. 52–67. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74565-5 7

4. Chen, J., Ludwig, M., Ma, Y., Walther, D.: Towards extracting ontology excerpts.
In: Zhang, S., Wirsing, M., Zhang, Z. (eds.) KSEM 2015. LNCS (LNAI), vol. 9403,
pp. 78–89. Springer, Cham (2015). doi:10.1007/978-3-319-25159-2 7

5. Chen, J., Ludwig, M., Walther, D.: On computing minimal EL-subsumption mod-
ules. In: Proceedings of WOMoCoE 2016 (2016)

6. Del Vescovo, C., Peñaloza, R.: Dealing with ontologies using cods. In: Proceedings
of DL 2014, pp. 157–168 (2014)

7. Ecke, A., Ludwig, M., Walther, D.: The concept difference for EL-terminologies
using hypergraphs. In: Proceedings of DChanges 2013 (2013)

8. Fu, Z.: Extending the Power of Boolean Satisfiability: techniques and applications.
Ph.D. thesis, Princeton University (2007)

9. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. JAIR 31(1), 273–318 (2008)

10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825,
pp. 267–280. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 20

11. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Semant. 3(4), 268–293 (2005)

12. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the
lightweight description logic EL. JAIR 44, 633–708 (2012)

http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://dx.doi.org/10.1007/978-3-540-74565-5_7
http://dx.doi.org/10.1007/978-3-319-25159-2_7
http://dx.doi.org/10.1007/978-3-540-76298-0_20

Zooming in on Ontologies: Minimal Modules and Best Excerpts 189

13. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module
extraction in description logics. In: Proceedings of ECAI 2008, pp. 55–59 (2008)

14. Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and
modularity of description logic ontologies. Artif. Intell. 203, 66–103 (2013)

15. Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Selmer, P., Wolter, F.,
Zakharyaschev, M.: Minimal module extraction from DL-lite ontologies using QBF
solvers. In: Proceedings of DL 2009, pp. 836–841 (2009)

16. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput. 7(2–3), 59–64 (2010)

17. Ludwig, M.: Just: a tool for computing justifications w.r.t. ELH ontologies. In:
Proceedings of ORE 2014, pp. 1–7 (2014)

18. Ludwig, M., Walther, D.: The logical difference for ELHr-terminologies using
hypergraphs. In: Proceedings of ECAI 2014, pp. 555–560 (2014)

19. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput. 45(2), 194–228 (2010)

20. Mart́ın-Recuerda, F., Walther, D.: Fast modularisation and atomic decomposi-
tion of ontologies using axiom dependency hypergraphs. In: Mika, P., et al. (eds.)
ISWC 2014. LNCS, vol. 8797, pp. 49–64. Springer, Cham (2014). doi:10.1007/
978-3-319-11915-1 4

21. Romero, A.A., Kaminski, M., Grau, B.C., Horrocks, I.: Module extraction in
expressive ontology languages via datalog reasoning. JAIR 55, 499–564 (2016)

22. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract?. In: Proceedings of DL 2009 (2009)

23. Schlicht, A., Stuckenschmidt, H.: Criteria-based partitioning of large ontologies.
In: Proceedings of K-CAP 2007, pp. 171–172 (2007)

24. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints.
In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). doi:10.1007/11564751 73

25. Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF digest: efficient
summarization of RDF/S KBs. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C.,
Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp.
119–134. Springer, Cham (2015). doi:10.1007/978-3-319-18818-8 8

26. Vescovo, C., Gessler, D.D.G., Klinov, P., Parsia, B., Sattler, U., Schneider, T.,
Winget, A.: Decomposition and modular structure of bioportal ontologies. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 130–145. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-25073-6 9

27. Vescovo, C.D., Parsia, B., Sattler, U.: Logical relevance in ontologies. In: Proceed-
ings of DL 2012 (2012)

28. Vescovo, C.D., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: atomic decomposition. In: Proceedings of IJCAI 2011, pp. 2232–2237
(2011)

29. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence
graph. In: Proceedings of WWW 2007, pp. 707–716 (2007)

30. Zhou, Z., Qi, G., Suntisrivaraporn, B.: A new method of finding all justifications
in OWL 2 EL. In: Proceedings of WI 2013, pp. 213–220 (2013)

http://dx.doi.org/10.1007/978-3-319-11915-1_4
http://dx.doi.org/10.1007/978-3-319-11915-1_4
http://dx.doi.org/10.1007/11564751_73
http://dx.doi.org/10.1007/978-3-319-18818-8_8
http://dx.doi.org/10.1007/978-3-642-25073-6_9

Global RDF Vector Space Embeddings

Michael Cochez1,2,3(B), Petar Ristoski4, Simone Paolo Ponzetto4,
and Heiko Paulheim4

1 Fraunhofer FIT, 53754 Sankt Augustin, Germany
michael.cochez@fit.fraunhofer.de

2 Informatik 5, RWTH University Aachen, Aachen, Germany
3 Faculty of Information Technology, University of Jyvaskyla, Jyväskylä, Finland
4 Data and Web Science Group, University of Mannheim, Mannheim, Germany

{petar.ristoski,simone,heiko}@informatik.uni-mannheim.de

Abstract. Vector space embeddings have been shown to perform well
when using RDF data in data mining and machine learning tasks. Exist-
ing approaches, such as RDF2Vec, use local information, i.e., they rely
on local sequences generated for nodes in the RDF graph. For word
embeddings, global techniques, such as GloVe, have been proposed as an
alternative. In this paper, we show how the idea of global embeddings
can be transferred to RDF embeddings, and show that the results are
competitive with traditional local techniques like RDF2Vec.

Keywords: Graph embeddings · Linked open data · Data mining

1 Introduction

While RDF data is graph shaped by nature, most traditional data mining and
machine learning software expect data to be in propositional form. Hence, to
be used in machine learning and data mining pipelines, RDF data needs to be
transformed to propositional feature vectors.

Recently, vector space embeddings have been proposed as a means to cre-
ate low-dimensional feature vector representations of nodes in an RDF graphs.
Inspired by techniques from NLP, such as word2vec [14], they train neural net-
works for automatically learning the mapping of RDF nodes to feature vectors.
Vector space embeddings have been shown to outperform traditional methods for
creating propositional feature vectors from RDF [22], e.g., in tasks like content-
based recommender systems [24].

Unlike the first models for RDF vector space embeddings, which are based
on paths, walks, or kernels, and therefore rely on local patterns, in this paper
we present an approach in that exploits global patterns for creating vector space
embeddings, inspired by the Global Vectors (GloVe) [20] approach for learning
vector space embeddings for words from a text corpus. We show that using the
GloVe approach on the same data as the older RDF2Vec approach does not
improve the created embeddings. However, this approach is able to incorporate
larger portions of the graph, without substantially increasing the computational
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 190–207, 2017.
DOI: 10.1007/978-3-319-68288-4 12

Global RDF Vector Space Embeddings 191

time, leading to comparable results. The main contributions of this paper are
this new embedding approach and an approach to approximate all-pairs Person-
alized PageRank (PPR) computation, which is used to efficiently compute such
embeddings.

The rest of this paper is structured as follows. Section 2 presents an overview
on related work. In Sect. 3, we explain the basic idea of GloVe embeddings, and
show how we transfer that idea to RDF graphs. Section 4 discusses an evaluation
in different scenarios. We close with a summary and an outlook on future work.

The source code used in this evaluation can be found from https://github.
com/miselico/globalRDFEmbeddingsISWC. Possible further developments will
also be on http://users.jyu.fi/∼miselico/software/.

2 Related Work

RDF vector space embeddings, i.e., projections of an RDF graph into a low-
dimensional, dense vector space, have recently been proposed as a means to
make RDF data accessible for propositional machine learning techniques, and
shown to outperform traditional feature generation techniques [22].

RDF2Vec [22] is one of the first approaches that uses language modeling
approaches for unsupervised feature extraction from sequences of words, and
adapts them to RDF graphs. The approach generates sequences by leveraging
local information from graph sub-structures, harvested by Weisfeiler-Lehman
Subtree RDF Graph Kernels and graph walks, and then learns latent numerical
representations of entities in RDF graphs.

The RDF2Vec approach is closely related to the approaches DeepWalk [21]
and Deep Graph Kernels [31]. DeepWalk uses language modeling approaches
to learn social representations of vertices of graphs by modeling short random-
walks on large social graphs, like BlogCatalog, Flickr, and YouTube. The Deep
Graph Kernel approach extends the DeepWalk approach, by modeling graph
substructures, like graphlets, instead of graph walks. In this paper, we pursue
and deepen the idea of random and biased walks since those have proven to be
scalable even to large RDF graphs, unlike other transformation approaches, such
as graph kernels. Node2vec [7] is another approach very similar to DeepWalk,
which uses second order random walks to preserve the network neighborhood of
the nodes.

Furthermore, multiple approaches for knowledge graph embeddings for the
task of link prediction have been proposed [16], which could also be considered
as approaches for generating propositional features from graphs. RESCAL [17]
is one of the earliest approaches, which is based on factorization of a three-way
tensor. The approach is later extended into Neural Tensor Networks (NTN) [28],
which can be used for the same purpose (optionally using multilingual informa-
tion [10]). One of the most successful approaches is the model based on translat-
ing embeddings, TransE [2]. This model builds entity and relation embeddings by
regarding a relation as translation from head entity to tail entity. This approach
assumes that relationships between words could be computed by their vector

https://github.com/miselico/globalRDFEmbeddingsISWC
https://github.com/miselico/globalRDFEmbeddingsISWC
http://users.jyu.fi/~miselico/software/

192 M. Cochez et al.

difference in the embedding space. However, this approach cannot deal with
reflexive, one-to-many, many-to-one, and many-to-many relations. This problem
was resolved in the TransH model [30], which models a relation as a hyperplane
together with a translation operation on it. More precisely, each relation is char-
acterized by two vectors, the norm vector of the hyperplane, and the translation
vector on the hyperplane. While both TransE and TransH, embed the relations
and the entities in the same semantic space, the TransR model [13] builds entity
and relation embeddings in separate entity space and multiple relation spaces.
This approach is able to model entities that have multiple aspects, and various
relations that focus on different aspects of entities.

Unlike the first models for RDF vector space embeddings, which are based on
paths, walks, or kernels, and therefore rely on local patterns, the approach in this
paper exploits global patterns for creating vector space embeddings, inspired by
the Global Vectors (GloVe) [20] approach for learning vector space embeddings
for words from a text corpus.

3 Global Vectors from RDF Data

The embedding method which we propose borrows the optimization problem
and approach from GloVe [20]. Glove training, however, is based on the creation
of a global co-occurrence matrix from text. Consequently, in our approach we
need to devise a way to build a co-occurrence matrix from graph data. To this
end, we first weigh the edges of the graph and compute approximate person-
alized PageRank scores starting from each node. The PageRank score for the
other nodes (i.e., context nodes) is then used as the absolute frequency in a
matrix. This procedure is then repeated on the graph with all edges reversed
and the result is added to the co-occurrence matrix. This combined matrix is
then subsequently used for training the vectors with the original Glove approach.

3.1 The GloVe Model

GloVe was designed for creating dense word vectors (also known as word embed-
dings) from natural language texts, which have been recently used with much
success in a plethora of Natural Language Processing tasks. GloVe follows a dis-
tributional semantic view of word meaning in context, which basically relies on
the assumption that ‘words which are similar in meaning occur in similar con-
texts’ [25] – i.e., meaning can be derived from the context (i.e., the surrounding
words) of the word in a large corpus of text.

Consequently, to build a GloVe model a word-word co-occurrence matrix
is first built, which contains for each word how often other words occur in its
context. Model parameters then include the size of the context window, whether
to distinguish left context from right context, as well as a weighting functions to
weight the contribution of each word co-occurrence – e.g., a decreasing weighting
function, where word pairs that are d words apart contribute 1/d to the total
co-occurrence count.

Global RDF Vector Space Embeddings 193

After obtaining a co-occurrence matrix, GloVe attempts to minimize the
following cost function using Adagrad [5].

J =
V∑

i,j=1

f (Xij)
(
wT

i w̃j + bi + b̃j − log Xij

)2

(1)

where f (Xij) is a weighting function on co-occurrence counts of word j in the
context of word i (Xij), wi are word vectors, w̃j context vectors and bi and
bj biases. The intuition behind this cost function is the following one. Each
summand of the summation represents the amount of error attributed to a count
Xij in the co-occurrence matrix. The error consists of a weighing function f , to
dampen the effect of very large co-occurrence counts, and a squared error factor.
The squared error factor will become smaller when the dot product of word
vectors becomes closer to the logarithm of the probability that the words co-
occur. Or turned the other way, when two words co-occur often, their vectors’
dot product will be relatively high, meaning that the vectors are more similar
to make the error factor smaller. The logarithm also causes that ratios of co-
occurrence probabilities are associated with differences of vectors. As a result,
the embedding contains information useful for determining analogies.

3.2 Building a Co-occurrence Matrix from Graph Data

The co-occurrence matrix for textual data is obtained by linearly scanning
through the text and counting the occurrence of context words in the context
of each word. However, the graph which we use as input data does not have a
linear structure. This problem has been worked around in the past by perform-
ing random walks starting from each of the nodes in the graph. Recording the
paths of these walks results in a linear sequence of node (and optionally edge)
labels, which can then, in turn, be used as a pseudo-text to train a model. This
approach is, for example, used in node2vec [7] and RDF2Vec [22]. However, in
these approaches, the trained model is different from the GloVe model and it
does not use the co-occurrence counts, but rather trains a neural network on the
individual context windows directly. In the case of GloVe, only the counts are
needed and hence we are looking for a method to obtain these without generating
the random walks explicitly.

A possible solution would be to perform a breadth-first search of a certain
depth starting from each node in turn, and take all reachable nodes as the con-
text of each start node. Given these kinds of contexts, one could then straight-
forwardly apply GloVe’s co-occurrence weighting and assign a lower weight to
co-occurrence counts of nodes which are further away from the focus node. How-
ever, this simple approach is problematic in that: (a) there could be nodes reach-
able through multiple paths at different levels, (b) there could be loops in the
graph, making a walk pass through the same node multiple times, and (c) if
there is a node with many context nodes at level d, but only few ones at level
d− 1, then the ones at level d will dominate the closer ones in the co-occurrence
matrix as there are that many of them.

194 M. Cochez et al.

To solve this problem, we investigate the use of Personalized PageRank [18] to
determine how important nodes are in the context of a focus node. In general,
PageRank is used to find important nodes in a directed graph. Its first, well-
known use is the ranking of web pages, but later PageRank has also been applied
in other areas (e.g., peer-to-peer networks [9] and social network analysis [15],
among others). At its heart, PageRank works by simulating random walkers
over the graph and observing where these random walkers end up. A simplified
model which we will elaborate below would be as follows. First, we denote the
out degree of a node i as deg(i). Then, if there are n nodes in the graph, construct
an n×n matrix P filled with zeros except for positions i, j, for which there exists
an arc i → j. These positions contain 1/deg(i). Now, the simplified page rank
problem is solved by finding the stationary solution to (notation from [1] – p(i)

is the vector converging to the PageRank value for each page after i iterations.)

p(k+1) = PT p(k). (2)

This simplified version of PageRank can run into a number of problems, namely
some pages may have a zero out degree (so called dangling nodes) and there
could be groups of pages which form closed cycles. In the first case, PageRank
(i.e., random walkers) will get lost from the graph and any node linking directly
or indirectly to a zero out-degree node will get a PageRank of zero. In the sec-
ond case walkers will get trapped and the pages in the cycles will accumulate all
PageRank. To amend these problems, the above equation is adapted to include
parts which ensure that when a walk ends up in a dangling node, it will continue
from another node selected from a distribution v, called the teleportation dis-
tribution. Further, to avoid ending in a cycle, a random jump is also performed
with probability α to a node selected from the same distribution. Usually, v is
chosen to be a uniform distribution, making each node equally likely to be the
target of the jump. However, in the case of personalized page rank the distrib-
ution is degenerate as the target of these random jumps is always the node for
which the rank vector is computed (which we called the focus node). In effect,
the Personalized PageRank vector indicated the importance of nodes from the
perspective of the focus node.

Computing PageRank (and also the PPR variant) is reasonably scalable.
However, as we need to compute PPR for each individual node in turn, in order
to build the co-occurrence matrix, the rapidly becomes too expensive. Moreover,
the PageRank algorithm assigns a value to all nodes in the graph. If we computed
the co-occurrence matrix this way, we would end up with a very large (in our
experiments below this would become around 500 TB) dense matrix with many
small values, which have little to no impact on the later training. Hence, we
designed a faster, approximate all-pairs PPR computation method, which results
in a sparse matrix. This algorithm is based on an approximate PPR method
which we will introduce next.

Global RDF Vector Space Embeddings 195

3.3 BCA: A Fast Personalized PageRank Approximation

A method for faster computation of Personalized PageRank, called Bookmark-
Coloring Algorithm (BCA) was presented by Berkhin [1]. The main idea behind
this method is to create an approximation to the standard PPR such that the
effort of the algorithm is only used for these nodes which will receive a signifi-
cant rank. This requires fewer computations and since nodes with no significant
PageRank are not assigned a value, a sparse representation is obtained.

An intuitive version of the BCA algorithm is as follows (for full details,
see [1]). To compute the PPR vector p(b) for a focus node b, we start by inject-
ing a unit amount of paint, representing the walkers in the standard personal
PageRank computation, to b. From this paint an α-portion is retained and added
to the value for b in p(b). The remaining (1−α)-portion is distributed uniformly
over the out-links. This retain-and-distribute process is then repeated recursively
for all nodes which got paint injected. When a node has a zero out degree, the
outgoing paint is discarded.

This basic algorithm can be improved by choosing the order in which nodes
considered for the retain-and-distribute. It is more efficient to select nodes with
a larger amount of paint fist. To achieve this, a max priority queue, with the
amount of paint as priorities is maintained. In principle, the queue could contain
an entry for each node involved in each distribute step. However, it is more effi-
cient to merge the separate wet paint amounts into one entry. Hence, the queue
must allow efficient finding and updating of elements. Finally, when the amount
of paint to be distributed becomes negligible (i.e., less than the parameter ε)
it gets discarded, making the resulting rank vector sparse. All these improve-
ments are described in more detail in the BCA paper [1]. One more technique
described in the same paper is reuse of Bookmark-Coloring Vectors (BCV – the
equivalent to the PageRank vector) for the computation of other BCVs. This is
analyzed further for the case of hubs (i.e., nodes which correspond to a subset
of important pages). The BCV is precomputed for these pages and whenever
the retain-and-distribute process forwards paint to a page p(h) in the hub, the
amount is multiplied with the BCV corresponding to p(h) and added to p(b).
This optimization makes sense when many BCVs have to be computed, which
is also the case for the co-occurrence matrix. However, since we are interested
in computing the BCV for all nodes, further enhancements are possible, as we
will discuss in the following subsection.

3.4 A Fast All-Pairs PPR Algorithm

The method introduced in the previous subsection speeds up the computation
of individual PPR computations. Now, the observation leading to reuse of BCVs
for pages in a hub can be adapted to our setting. The main point is that the
computation of the BCV of node b can reuse the BCV of nodes reachable through
its out links. Especially, it is beneficial if the BCV of nodes one hop away have
already been computed. Adopting this viewpoint, we say that computation of
the BCV of the node b depends on the BCV computation of all one-hop reachable

196 M. Cochez et al.

Algorithm 1. Determining the BCV Computation Order
function BCVOrder(Graph & Goriginal)

G ← Goriginal � Copied because G will be modified in the function
Initialize list Order � The list with the node ordering
Initialize max priority queue Qindeg � The nodes in ascending in-degree
Add all nodes to Qindeg

repeat
while G has a node n with out-degree 0 do

Add n to Order, Remove n from G, Remove n from Qindeg

end while
if G is not empty then � There is a cycle which needs to be broken

n ← Qindeg.pop()
Add n to Order, Remove n from G
for all d dependent on n do

Update priority of d in Qindeg

end for
end if

until G is empty
return Order

end function

nodes and hence b is a dependent of these nodes. Now, what we want to achieve
is that we only compute the BCV for nodes once the BCVs of all its dependent
nodes have been computed. However, this will not always be feasible as the
graphs contains cycles. Hence, we want to quickly find an ordering of nodes,
such that we can likely reuse as many BCV computations as possible. To achieve
this we break cycles and in that case compute the BCV for the node at which
we break without being able to count on all dependents being available. We
choose the node for breaking the cycle to be the one with the highest in-degree
as that one is likely to cause most reuse and break multiple cycles at once. The
pseudocode of the Algorithm is shown in Algorithm1, the actual implementation
also includes a couple of indexes and bitmaps to speed up the computation. Now,
with the order determined, we can compute each BCV, reusing many previously
computed values.

3.5 Biasing the Random Walks

The default PageRank and BCA algorithm assume that a random walker will
follow the out edges of a node with equal likelihood. However, one can also
create a setup in which given out edges are more likely than others. For BCA,
this possibility was already hinted in the original paper [1], but not elaborated
much further. This so called biasing can be accomplished by taking into account
the out edge weights when distributing the paint over them.

Following our previous work [3], we apply twelve different strategies for
assigning these weights to the edges of the graph. These weights will then in
turn bias the random walks on the graph. In particular, when a walk arrives in

Global RDF Vector Space Embeddings 197

a vertex v with out edges vo1, . . . vod, then the walk will follow edge vol with a
probability computed by

Pr[follow edge vol] =
weight(vol)∑d
i=1 weight(voi)

In other words, the normalized edge weights are directly interpreted as the prob-
ability to follow a particular edge. To obtain these edge weights, we make use of
the following statistics computed from the RDF data:

Predicate Frequency for each predicate in the dataset, we count the number
of times the predicate occurs (only occurrences as a predicate are counted).

Object Frequency for each resource in the dataset, we count the number of
times it occurs as the object of a triple.

Predicate-Object frequency for each pair of a predicate and an object in the
dataset, we count the number of times there is a statement with this predicate
and object.

Besides these statistics, we also use PageRank [18] computed for the enti-
ties in the knowledge graph [29]. This PageRank is computed based on links
between the Wikipedia articles representing the respective entities. When using
the PageRank computed for DBpedia, not each node has a value assigned, as
only entities which have a corresponding Wikipedia page are accounted for in
the PageRank computation. Examples of nodes which do not have a PageR-
ank include DBpedia types or categories, like http://dbpedia.org/ontology/
Place and http://dbpedia.org/resource/Category:Central Europe. Therefore, we
assigned a fixed PageRank to all nodes which are not entities. We chose a value
of 0.2, which is roughly the median PageRank in the non-normalized page rank
values we used.

We have essentially two types of metrics, those assigned to nodes, and those
assigned to edges. The predicate frequency and predicate-object frequency, as
well as the inverses of these, can be directly used as weights for edges. Therefore,
we call these weighting methods edge-centric. In the case of predicate frequency
each predicate edge with that label is assigned the weight in question. In the case
of predicate-object frequency, each predicate edge which ends in a given object
gets assigned the predicate-object frequency. We also use the inverse metrics,
where not the absolute frequency is assigned, but its multiplicative inverse.

In contrast, the object frequency, and also the used PageRank metric, assign a
numeric score to each node in the graph. Therefore, we call weighting approaches
based on them node-centric. To obtain a weight for the edges, we either push
the weight down, meaning that the number assigned to a node is used as the
weight of all in edges, or we split the number down, meaning that the weight is
divided by the number of in edges and then assigned to all these edges. If split
is not mentioned explicitly in node centric weighting strategies, then it is a push
down strategy.

Note that uniform weights are equivalent to using object frequency with
splitting the weights. To see why this holds true, we have to follow the steps

http://dbpedia.org/ontology/Place
http://dbpedia.org/ontology/Place
http://dbpedia.org/resource/Category:Central_Europe

198 M. Cochez et al.

which will be taken. First, each node gets assigned the amount of times it is
used as an object. This number is equal to the number of in edges to the node.
Then, this number is split over the in edges, i.e., each in edge gets assigned the
number 1. Finally, this weight is normalized, assigning to each out link a uniform
weight. Hence, this strategy would result in the same walks as using unbiased
random walks over the graph.

So, even if we add unbiased random walks to the list of weighting strategies,
we retain 12 unique ones, each with their own characteristics. These strategies,
which we further elaborated upon in our earlier work [3], are:

Uniform approach:

1. Uniform = Object Frequency Split

Edge-centric approaches:

2. Predicate Frequency
3. Inverse Predicate Frequency
4. Predicate-Object Frequency
5. Inverse Predicate-Object Frequency

Node-centric object freq. approaches
(See also strategy 1):

6. Object Frequency
7. Inverse Object Frequency
8. Inverse Object Frequency Split

Node-centric PageRank approaches:

9. PageRank
10. Inverse PageRank
11. PageRank Split
12. Inverse PageRank Split

3.6 Combining the Pieces

In earlier work on RDF graph embeddings (specifically RDF2Vec [22]), symmet-
ric windows were used on top of generated random walks, which include both
node and edge labels. These symmetric windows have the focus word in the mid-
dle and the context of the word is both before and after it. This means that the
context of a node b consists of the nodes it can reach by following edges, as well as
the nodes which can reach b. What this means is that the result RDF2Vec would
be the same, independently of whether the original walks would be performed
forward or backward. Inspired by this, we investigated the effect of creating the
co-occurence matrix as the sum of the normal PPR matrix as described above
and the PPR matrix of the graph with all edges reversed. Since a positive effect
on the embeddings was obtained (at least for the tasks we used in the evaluation)
we chose to use this approach.

RDF2Vec also includes edge labels into the walks and the embedding proce-
dure. We also noticed a positive effect including the edge labels whenever they
are traversed by paint with a weight equal to the amount of paint. Because the
summation and additions of the label weights might lead to a skew in the values,
we normalize each BCV in the co-occurence matrix by removing the value on the
diagonal and scaling the remaining values such that their sum is 1. This oper-
ation led to improvements in the results and hence we adopted this technique
for the overall algorithm. The pseudo code of the Global RDF Vector Space
Embedding algorithm can be found in Algorithm2.

Global RDF Vector Space Embeddings 199

Algorithm 2. Global RDF Vector Space Embedding
function CreateEmbeddings(Graph & G, Weighting Strategy W)

Weigh G according to W
Order ← BCV Order(G)
Compute all BCV according to Order, reusing results
Gr ← ReverseEdges(G)
Weigh Gr according to W
ReverseOrder ← BCV Order(Gr)
Compute all BCV according to ReverseOrder, reusing results
Sum the BCVs obtained for the normal and reversed graph and normalize,

forming the co-occurrence matrix.
Execute Glove training for the co-occurrence matrix.
return The resulting vectors

end function

The overall algorithm has several parameters. First, there is the weighting
strategy; the options are described above. Second, there are the parameters α and
ε for the BCA algorithm. We chose the α parameter to be 0.1 and ε = 0.00001,
which is within the ranges stated by Berkhin [1]. Third, there are the parameters
for the GloVe training. There is the vector length, which we choose to be 200,
which is in the middle of the sizes used in the original Glove experiments [20]. We
use 20 training iterations as we noticed that more iterations did not significantly
decrease the cost function. We used the default values for the Adagrad learning
rate and damp function.

4 Evaluation

First, we evaluate the different weighting strategies on a number of classifica-
tion and regression tasks, comparing the results of different feature extraction
strategies combined with different learning algorithms. Second, we evaluate the
weighting strategies on the task of computing document similarity. We evaluate
our approach using DBpedia [12]. We use the English version of the 2016-04
DBpedia dataset, which contains 4, 678, 230 instances and 1, 379 mapping-based
properties. In our evaluation we only consider object properties, and ignore lit-
erals. All the experiments were run using a Linux machine using at most 300 GB
RAM and 24 Intel Xeon 2.60 GHz CPUs. For all the weighing strategies the
processes took between 6 h for the least demanding strategy, the Predicate Fre-
quency strategy, and up to 48 h for the most demanding strategy, the Predicate-
Object Frequency. The runtime for building the related work approaches, using
the publicly available code,1 was more than a week.

1 https://github.com/thunlp/KB2E.

https://github.com/thunlp/KB2E

200 M. Cochez et al.

T
a
b
le

1
.
C

la
ss

ifi
ca

ti
o
n

re
su

lt
s.

T
h
e

b
es

t
re

su
lt

s
fo

r
ea

ch
d
a
ta

se
t

a
re

m
a
rk

ed
in

b
o
ld

.

S
tr
a
te

g
y
/
D
a
ta

se
t

C
it
ie
s

M
e
ta

c
ri
ti
c
m

o
v
ie
s

M
e
ta

c
ri
ti
c
a
lb

u
m

s
A
A
U
P

F
o
rb

e
s

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

N
B

K
N
N

S
V
M

C
4
.5

U
n
if
o
rm

5
7
.3
2

6
3
.8
9

6
7
.4
7

5
8
.3
2

6
8
.4
1

6
8
.6
6

7
0
.6
5

6
6
.1
1

6
2
.0
5

6
0
.4
4

6
4
.1
2

5
8
.6
8

8
3
.6
4

8
9
.4
2

2
9
.5
4

8
9
.9
8

9
4
.0
8

7
9
.7
4

7
4
.5
1

9
4
.6
4

P
re

d
ic
a
te

fr
e
q
u
e
n
c
y

6
0
.0
0

5
9
.3
2

6
6
.3
9

5
4
.7
9

5
8
.3
1

5
6
.2
2

5
8
.9
2

5
8
.0
6

6
1
.7
3

5
8
.3
0

6
1
.4
0

5
9
.2
7

8
3
.6
5

8
9
.4
2

2
7
.7
5

8
8
.6
8

9
1
.9
3

7
9
.7
4

7
4
.5
1

9
4
.3
7

In
v
e
rs
e
p
re

d
ic
a
te

fr
e
q
u
e
n
c
y

4
9
.0
8

5
2
.1
6

5
3
.0
5

4
1
.9
7

6
6
.3
2

6
6
.6
2

6
9
.7
3

6
1
.6
3

6
4
.9
0

6
2
.5
6

6
4
.5
2

5
9
.3
3

8
3
.2
1

8
9
.4
2

2
9
.8
4

8
9
.0
0

9
2
.4
8

7
9
.7
4

7
4
.5
1

9
3
.7
0

P
re

d
ic
a
te

o
b
je
c
t
fr
e
q
u
e
n
c
y

5
7
.3
9

6
1
.8
4

6
7
.8
9

5
2
.7
9

6
4
.2
8

6
2
.8
5

6
4
.7
3

6
4
.1
2

5
8
.1
1

5
6
.4
9

6
0
.1
7

5
6
.6
8

8
3
.6
5

8
9
.4
2

2
9
.5
1

9
0
.9
7

9
3
.1
4

7
9
.7
4

7
4
.5
1

9
3
.8
3

In
v
.
p
re

d
ic
a
te

o
b
je
c
t
fr
e
q
.

5
4
.3
7

6
3
.4
7

6
0
.2
6

4
7
.5
3

6
2
.5
0

6
5
.5
5

6
7
.3
4

6
1
.8
8

6
1
.2
7

6
4
.3
8

6
2
.8
3

5
9
.1
4

8
2
.4
5

8
9
.4
2

2
9
.3
9

8
9
.8
7

9
3
.2
8

7
9
.7
4

7
4
.5
1

9
3
.9
6

O
b
je
c
t
fr
e
q
u
e
n
c
y

6
1
.8
9

5
6
.3
2

6
8
.4
2

4
6
.1
6

6
5
.6
5

6
2
.8
5

6
5
.0
4

6
3
.9
7

5
7
.7
2

5
5
.9
1

5
9
.2
0

5
9
.5
9

8
4
.0
8

8
9
.4
2

2
9
.4
2

9
0
.9
6

9
2
.8
7

7
9
.7
4

7
4
.5
1

9
3
.4
3

In
v
e
rs
e
o
b
je
c
t
fr
e
q
u
e
n
c
y

5
3
.8
7

5
6
.2
6

6
0
.7
6

4
7
.1
1

6
2
.4
9

6
5
.5
0

6
8
.1
0

6
3
.1
5

5
9
.0
1

6
2
.1
2

6
3
.8
6

5
8
.4
3

8
2
.4
5

8
9
.4
2

2
9
.0
3

8
9
.6
5

9
3
.2
8

7
9
.7
4

7
4
.5
1

9
4
.9
0

In
v
e
rs
e
o
b
je
c
t
fr
e
q
.
sp

li
t

5
6
.7
9

5
4
.2
9

5
6
.2
6

5
0
.2
1

6
0
.7
6

6
1
.2
7

6
3
.7
7

6
1
.3
2

6
1
.3
5

6
0
.7
0

6
1
.8
6

6
1
.7
3

8
2
.4
5

8
9
.4
2

2
9
.6
0

8
9
.7
6

9
3
.2
8

7
9
.7
4

7
4
.5
1

9
3
.9
6

P
a
g
e
R
a
n
k

6
3
.3
7

6
4
.9
5

6
6
.8
9

5
9
.3
4

7
3
.5
6

7
8
.2
6

7
7
.7
9

7
5
.0
9

7
6
.3
9

7
8
.2
0

7
9
.6
9

7
1
.6
6

8
1
.5
8

8
9
.4
2

2
9
.9
1

9
3
.3
1

9
3
.9
3

7
9
.7
4

7
4
.5
1

9
5
.7

8

In
v
e
rs
e
P
a
g
e
R
a
n
k

5
3
.2
9

5
5
.1
3

6
9
.6
9

5
1
.6
1

8
0
.0
9

8
0
.4
4

7
9
.6
9

7
6
.7
8

7
1
.6
6

7
2
.2
4

7
9
.6
9

6
6
.6
8

8
4
.3
0

8
9
.4
2

2
9
.4
6

9
3
.2
1

9
2
.2
2

8
0
.2
9

6
4
.6
9

9
4
.0
9

P
a
g
e
R
a
n
k

sp
li
t

5
4
.7
9

5
7
.7
1

6
9
.9
0

5
1
.7
6

7
8
.6
6

8
1
.0
1

7
9
.5
6

7
6
.6
7

7
5
.0
9

7
2
.3
1

8
0
.9

9
6
9
.5
3

8
2
.0
1

8
9
.4
2

2
9
.3
9

8
9
.5
4

9
0
.8
8

8
0
.2
9

7
5
.6
5

9
3
.2
8

In
v
e
rs
e
P
a
g
e
R
a
n
k

sp
li
t

5
0
.6
6

5
4
.2
1

6
6
.9
9

4
9
.7
1

7
1
.6
8

7
2
.1
3

7
4
.6
4

7
1
.3
2

6
9
.8
5

7
0
.7
6

7
2
.0
5

6
7
.7
8

8
2
.7
8

8
9
.4
2

3
0
.7
0

9
3
.0
9

9
3
.0
2

7
9
.7
4

7
4
.5
1

9
4
.9
1

R
D
F
2
V
e
c
G
lo
V
e

6
4
.8
4

4
8
.1
8

6
7
.2
6

5
3
.3
4

6
4
.2
5

6
7
.2
0

6
9
.6
1

6
2
.6
9

6
3
.7
5

6
6
.1
0

6
5
.2
1

5
9
.1
3

7
3
.8
9

8
5
.6
6

2
7
.4
9

9
2
.4
5

8
6
.9
8

8
1
.0
7

7
4
.9
2

9
5
.4
2

B
e
st

b
a
se

li
n
e

7
2
.7
1

6
0
.0
0

7
1
.7
0

7
5
.2
9

7
8
.5
0

6
6
.9
0

7
9
.3
0

7
0
.8
0

7
4
.2
5

6
4
.6
9

7
7
.9
4

6
4
.5
0

6
3
.4
4

9
1
.0
4

9
3
.4
4

9
2
.8
1

6
7
.0
9

7
6
.4
9

7
6
.9
7

7
6
.4
7

D
B

T
ra

n
sE

6
5
.7
9

7
5
.7
1

7
4
.6
3

6
1
.5
0

6
5
.7
5

6
4
.1
7

6
8
.9
6

6
1
.1
6

6
2
.8
1

6
0
.4
8

6
4
.1
7

5
6
.8
6

8
0
.2
8

8
4
.8
6

2
8
.9
5

8
9
.6
5

9
2
.8
8

7
9
.9
8

7
4
.3
7

9
5
.4
4

D
B

T
ra

n
sH

6
4
.3
9

7
2
.6
6

7
6
.6
6

6
0
.8
9

6
3
.5
1

6
3
.2
5

6
7
.4
3

6
0
.9
6

6
3
.9
7

6
3
.1
3

6
5
.0
7

6
0
.2
3

8
0
.3
9

8
4
.8
6

2
7
.5
5

8
9
.2
1

9
3
.8
2

7
9
.9
8

7
4
.3
7

9
3
.6
8

D
B

T
ra

n
sR

6
3
.0
8

6
7
.3
2

7
4
.5
0

5
9
.8
4

6
4
.3
8

6
0
.1
6

6
4
.4
3

5
2
.0
4

6
3
.5
6

5
9
.6
8

6
6
.4
1

6
0
.3
9

7
9
.1
9

8
4
.8
6

2
8
.9
5

8
9
.0
0

9
3
.2
8

7
9
.9
8

7
4
.3
7

9
3
.7
0

B
e
st

R
D
F
2
V
e
c

8
9
.7

3
6
9
.1
6

8
4
.1
9

7
2
.2
5

8
0
.2
4

7
8
.6
8

8
2
.8

0
7
2
.4
2

7
3
.5
7

7
6
.3
0

7
8
.2
0

6
8
.7
0

7
5
.0
7

9
4
.4

8
2
9
.1
1

9
4
.1
5

8
8
.5
3

8
0
.5
8

7
7
.7
9

8
6
.3
8

Global RDF Vector Space Embeddings 201

4.1 Machine Learning Tasks

We use the DBpedia entity embeddings on five different datasets from different
domains, for the tasks of classification and regression, i.e., Cities2, Metacritic
Movies3, Metacritic Albums4, AAUP5 and Forbes6. Details on the dataset can
be found in [23]. We follow the same experimental setup as in our RDF2Vec paper
[22], using Naive Bayes, k-Nearest Neighbors, C4.5, and Support Vector Machine
for classification, and Linear Regression, M5Rules, and k-Nearest Neighbors for
regression, measuring accuracy and root mean squared error (RMSE) in stratified
10-fold cross validation. The results on parameter settings for the algorithms can
be found in [22].

Furthermore, from our original RDF2Vec paper [22], we report the best base-
line and the best RDF2Vec performance. As an additional baseline, we use the
same set of random walks used in [22] to build a simple GloVe model, and report
the results under RDF2VecGloVe. Furthermore, we compare our results to the
embedding approaches TransE, TransH, and TransR, which have shown to be
scalable to large knowledge graphs.

Tables 1 and 3 depict the results for the classification and regression task. We
determine the significance in ranking of the approaches using the approach intro-
duced by Demšar [4], as discussed in [22]. The results are depicted in Tables 2
and 4.

We can observe that although RDF2Vec is a very strong competitor, the
approach introduced in this paper is capable of producing embeddings which
outperform the results achieved with RDF2Vec in specific cases. In particular
for classification algorithms which yield inferior results with RDF2Vec. It is also
remarkable that TransE, TransH, and TransR are often outperformed by the
baselines. Furthermore, we can observe that a naive application of the GloVe
approach to walks (RDF2VecGloVe) does not lead to convincing results.

4.2 Document Modeling

Calculating entity similarity lies at the heart of knowledge-rich approaches to
computing semantic similarity, a fundamental task in Natural Language Process-
ing and Information Retrieval [32]. As previously mentioned, in the feature
embedding space semantically similar entities appear close to each other in the
feature space. Therefore, the problem of calculating the similarity between two
instances is a matter of calculating the distance between two instances in the
given feature space. To do so, we use the standard cosine similarity measure,
which is applied on the vectors of the entities.

2 https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html.
3 http://www.metacritic.com/browse/movies/score/metascore/all.
4 http://www.metacritic.com/browse/albums/score/metascore/all.
5 http://www.amstat.org/publications/jse/jse data archive.htm.
6 http://www.forbes.com/global2000/list/.

https://www.imercer.com/content/mobility/quality-of-living-city-rankings.html
http://www.metacritic.com/browse/movies/score/metascore/all
http://www.metacritic.com/browse/albums/score/metascore/all
http://www.amstat.org/publications/jse/jse_data_archive.htm
http://www.forbes.com/global2000/list/

202 M. Cochez et al.

Table 2. Classification average rank results. The best ranked results for each method
are marked in bold. The learning models for which the strategies were shown to have
significant difference based on the Friedman test with α < 0.05 are marked with *. The
single values marked with ∗ mean that are significantly worse than the best strategy
at significance level q = 0.05

Method NB KNN* SVM* C4.5*

Uniform weight 7.2 9.4 8.9 8.8

Predicate frequency weight 11.5 13 14.7 12.4

Inverse predicate frequency weight 10.2 11.4 9.9 14.2*

Predicate object frequency weight 10.1 12.1 11.5 10.8

Inverse predicate object frequency weight 11.7 9.2 12.6 11.9

Object frequency weight 9.8 13.1 11.7 11.8

Inverse object frequency weight 12.3 11.2 12.3 11.9

Inverse object frequency split weight 11.5 12.8 12.7 10.9

PageRank weight 5.2 6.2 6.6 2.6

Inverse PageRank weight 7.4 6.4 7.5 5.8

PageRank split weight 8.8 5.4 4.7 9

Inverse PageRank split weight 9 9.4 7.1 6.2

RDF2VecGloVe 12 9.4 10 8.6

Best baseline 9 8.8 3.4 7.2

DB TransE 9.4 9.8 10.9 9.9

DB TransH 8.6 9.4 11.2 11.6

DB TransR 9.7 11.8 11.5 12

Best RDF2Vec 7.6 2.2 3.8 5.4

We use the entity similarity approach in the task of calculating semantic
document similarity. We follow an approach similar to the one presented in
[19], where two documents are considered to be similar if many entities of the
one document are similar to at least one entity in the other document. More
precisely, we try to identify the most similar pairs of entities in both documents,
ignoring the similarity of all the other 1–1 similarities values. The similarity of
two documents is then defined as the average maximum similarity for all entities
in each document (see [3]).

We evaluate performance on document similarity approach using the LP50
dataset [11]. We follow standard practices and use Pearson’s linear correlation
coefficient and Spearman’s rank correlation plus their harmonic mean as eval-
uation metrics. In addition to the baselines introduced above, we compare our
approach to the following approaches:

Global RDF Vector Space Embeddings 203

T
a
b
le

3
.
R

eg
re

ss
io

n
re

su
lt

s.
T

h
e

b
es

t
re

su
lt

s
fo

r
ea

ch
d
a
ta

se
t

a
re

m
a
rk

ed
in

b
o
ld

.

S
tr
a
te
g
y
/
D
a
ta

se
t

C
it
ie
s

M
e
ta

c
ri
ti
c
M

o
v
ie
s

M
e
ta

c
ri
ti
c
A
lb
u
m
s

A
A
U
P

F
o
rb

e
s

L
R

K
N
N

M
5

L
R

K
N
N

M
5

L
R

K
N
N

M
5

L
R

K
N
N

M
5

L
R

K
N
N

M
5

U
n
if
o
rm

1
8
.4
1

1
8
.0
2

1
1
.2
0

1
6
.3
2

2
3
.3
1

2
0
.5
0

1
1
.9
6

1
3
.1
9

1
3
.3
5

6
.3
5

5
7
.1
0

6
.4
5

1
9
.2
7

2
0
.8
5

1
8
.0
1

P
re
d
ic
a
te

fr
e
q
u
e
n
c
y

1
6
.1
0

1
7
.3
1

1
9
.6
8

1
7
.6
3

2
1
.7
5

1
8
.1
4

1
0
.9
8

1
5
.7
2

1
3
.7
3

6
.3
6

5
7
.1
0

6
.4
1

1
7
.5
8

1
9
.3
3

1
7
.8
9

In
v
e
rs
e
p
re
d
ic
a
te

fr
e
q
u
e
n
c
y

2
1
.7
1

1
6
.4
2

1
4
.4
0

2
0
.6
9

2
1
.8
8

1
8
.4
4

1
2
.6
7

1
3
.4
4

1
2
.9
4

6
.3
5

5
7
.1
0

6
.3
7

1
8
.9
3

2
0
.5
8

1
8
.0
4

P
re
d
ic
a
te

o
b
je
c
t
fr
e
q
u
e
n
c
y

1
6
.0
2

1
5
.7
8

1
4
.3
1

2
0
.7
7

2
4
.3
3

1
9
.4
2

1
2
.5
4

1
4
.0
0

1
2
.3
2

6
.3
0

5
7
.1
0

6
.3
7

1
9
.1
4

1
9
.5
0

1
7
.5
9

In
v
e
rs
e
p
re
d
ic
a
te

o
b
je
c
t
fr
e
q
u
e
n
c
y

1
4
.5
2

1
4
.2
4

1
9
.5
0

1
8
.0
3

2
2
.6
2

1
7
.6
0

1
0
.7

9
1
3
.4
7

1
1
.2
8

6
.3
0

5
7
.1
0

6
.3
6

1
8
.9
1

1
9
.1
4

1
9
.2
5

O
b
je
c
t
fr
e
q
u
e
n
c
y

1
1
.7
4

1
6
.4
9

1
6
.7
7

2
0
.8
4

2
2
.6
3

1
7
.8
3

1
2
.5
1

1
4
.2
3

1
2
.1
2

6
.3
4

5
7
.1
0

6
.4
1

1
8
.0
7

2
0
.3
8

1
8
.9
2

In
v
e
rs
e
o
b
je
c
t
fr
e
q
u
e
n
c
y

1
5
.8
7

1
8
.3
1

1
5
.4
0

1
8
.4
9

2
2
.0
0

1
8
.4
9

1
3
.3
7

1
4
.6
0

1
3
.3
8

6
.3
7

5
7
.1
0

6
.4
4

1
7
.8
6

1
9
.0
7

1
7
.0
0

In
v
e
rs
e
o
b
je
c
t
fr
e
q
u
e
n
c
y
sp

li
t

1
5
.9
6

1
4
.0
1

2
0
.5
2

2
1
.4
0

2
3
.3
2

1
8
.9
4

1
1
.6
1

1
3
.2
0

1
2
.6
3

6
.4
0

5
7
.1
0

6
.4
3

1
9
.6
2

2
0
.3
1

1
9
.8
7

P
a
g
e
R
a
n
k

1
7
.6
1

9
.5

0
1
4
.4
3

1
8
.0
8

1
9
.7
5

1
9
.2
0

1
2
.5
6

1
4
.3
1

1
2
.4
8

6
.2
8

5
7
.1
0

6
.3
2

1
8
.9
8

1
9
.4
0

1
6
.2

7

In
v
e
rs
e
P
a
g
e
R
a
n
k

1
3
.4
1

1
3
.3
3

1
0
.4
7

1
7
.9
1

2
0
.5
2

1
6
.6
3

1
3
.1
7

1
3
.7
3

1
2
.7
2

6
.3
7

5
7
.1
0

6
.4
6

1
8
.7
9

1
8
.9
9

1
8
.9
3

P
a
g
e
R
a
n
k
sp

li
t

1
9
.7
0

2
0
.5
1

1
2
.4
4

1
7
.2
2

1
9
.8
6

1
8
.8
4

1
2
.5
8

1
2
.4
6

1
0
.9
3

6
.3
1

5
7
.1
0

6
.3
2

1
7
.6
1

2
0
.9
0

1
9
.2
2

In
v
e
rs
e
P
a
g
e
R
a
n
k
sp

li
t

1
7
.2
2

1
8
.6
3

1
2
.6
5

1
7
.7
6

2
3
.0
9

1
9
.8
2

1
2
.0
4

1
4
.1
7

1
1
.9
0

6
.3
6

5
7
.1
0

6
.3
9

1
7
.4
2

1
8
.9
3

2
0
.1
0

R
D
F
2
V
e
c
G
lo
V
e

2
0
.5
0

2
0
.2
4

2
0
.5
7

2
3
.1
0

2
6
.3
7

2
3
.0
4

1
3
.8
7

1
5
.7
4

1
3
.9
3

6
.3
4

5
7
.3
1

6
.3
7

2
0
.4
5

2
1
.5
5

1
9
.1
8

B
e
st

b
a
se
li
n
e

1
7
.7
9

1
8
.2
1

1
7
.0
4

2
1
.4
5

2
1
.6
2

1
9
.1
9

1
3
.3
2

1
3
.9
9

1
2
.8
1

8
.0
8

3
4
.9
4

6
.3
6

1
9
.1
6

1
9
.8
1

1
8
.2
0

D
B

T
ra

n
sE

1
4
.2
2

1
4
.4
5

1
4
.4
6

2
0
.6
6

2
3
.6
1

2
0
.7
1

1
3
.2
0

1
4
.7
1

1
3
.2
3

6
.3
4

5
7
.2
7

6
.4
3

2
0
.0
0

2
1
.5
5

1
7
.7
3

D
B

T
ra

n
sH

1
3
.8
8

1
2
.8
1

1
4
.2
8

2
0
.7
1

2
3
.5
9

2
0
.7
2

1
3
.0
4

1
4
.1
9

1
3
.0
3

6
.3
5

5
7
.2
7

6
.4
7

1
9
.8
8

2
1
.5
4

1
6
.6
6

D
B

T
ra

n
sR

1
4
.5
0

1
3
.2
4

1
4
.5
7

2
0
.1
0

2
3
.3
7

2
0
.0
4

1
3
.8
7

1
5
.7
4

1
3
.9
3

6
.3
4

5
7
.3
1

6
.3
7

2
0
.4
5

2
1
.5
5

1
7
.1
8

B
e
st

R
D
F
2
V
e
c

1
1
.9
2

1
2
.6
7

1
0
.1
9

1
5
.4

5
1
7
.8
0

1
5
.5
0

1
0
.8
9

1
1
.7
2

1
0
.9
7

6
.2

6
5
6
.9
5

6
.2
9

1
8
.3
5

2
1
.0
4

1
6
.6
1

204 M. Cochez et al.

Table 4. Regression average rank results. The best ranked results for each method
are marked in bold. The learning models for which the strategies were shown to have
significant difference based on the Friedman test with α < 0.05 are marked with *. The
single values marked with ∗ mean that are significantly worse than the best strategy
at significance level q = 0.05

Method LR* KNN* M5*

Uniform weight 9.2 9.7 11.4

Predicate frequency weight 6.7 9.5 11.3

Inverse predicate frequency weight 12.2 8.3 8.5

Predicate object frequency weight 9.3 10.1 7.7

Inverse predicate object frequency weight 5.3 6.9 8.4

Object frequency weight 7.1 10.3 9.1

Inverse object frequency weight 10.5 9.7 10.6

Inverse object frequency split weight 12 8.1 12.9

PageRank weight 8.4 6.1 6.3

Inverse PageRank weight 8.9 5.3 8.6

PageRank split weight 7.4 8.9 6.3

Inverse PageRank split weight 7.5 9.3 10

RDF2VecGloVe 15.5* 17.5* 15*

Best baseline 15.2* 7.2 9.2

DB TransE 10.7 14.1 11.9

DB TransH 11 11.9 11.2

DB TransR 11.7 14.1 11

Best RDF2Vec 2.4 4 1.6

– TF-IDF: Distributional baseline algorithm.
– AnnOv: Similarity score based on annotation overlap that corresponds to

traversal entity similarity with radius 0, as described in [19].
– Explicit Semantic Analysis (ESA) [6].
– GED: semantic similarity using a Graph Edit Distance based measure [27].
– Salient Semantic Analysis (SSA), Latent Semantic Analysis (LSA) [8].
– Graph-based Semantic Similarity (GBSS) [19].

The results for the related approaches were taken from the respective papers,
except for ESA, which was taken from [19], where it is calculated via the public
ESA REST endpoint7. All results are collected in Table 5. We can see that
our approach, using inverse predicate object frequency weights, outperforms the
state-of-the-art approaches, as well as the embeddings generated by RDF2Vec.

7 http://vmdeb20.deri.ie:8890/esaservice.

http://vmdeb20.deri.ie:8890/esaservice

Global RDF Vector Space Embeddings 205

Table 5. Document similarity results - Pearson’s linear correlation coefficient (r)
Spearman’s rank correlation (ρ) and their harmonic mean μ

Approach r ρ μ

Uniform weight 0.537 0.535 0.536

Predicate frequency weight 0.534 0.532 0.533

Inverse predicate frequency weight 0.632 0.621 0.627

Predicate object frequency weight 0.331 0.323 0.327

Inverse predicate object frequency weight 0.541 0.544 0.542

Object frequency weight 0.346 0.348 0.347

Inverse object frequency weight 0.523 0.547 0.534

Inverse object frequency split weight 0.504 0.513 0.509

PageRank weight 0.488 0.485 0.486

Inverse PageRank weight 0.429 0.481 0.454

PageRank split weight 0.539 0.528 0.533

Inverse PageRank split weight 0.512 0.511 0.512

RDF2VecGloVe 0.569 0.432 0.491

Best RDF2Vec 0.708 0.556 0.623

DB TransE 0.565 0.432 0.490

DB TransH 0.570 0.452 0.504

DB TransR 0.578 0.461 0.513

TF-IDF 0.398 0.224 0.287

AnnOv 0.590 0.460 0.517

LSA 0.696 0.463 0.556

SSA 0.684 0.488 0.570

GED 0.630 \ \
ESA 0.656 0.510 0.574

GBSS 0.704 0.519 0.598

5 Conclusion and Outlook

In this paper, we have introduced a novel approach for generating embeddings of
RDF graphs, which exploits global instead of local patterns. We have shown that
it is possible to outperform local graph embeddings techniques, in particular on
document similarity. For most other tasks similar performance can be obtained.

One key finding of this work is that weighting techniques are a crucial fac-
tor in the overall performance. In the future, we would like to investigate this
point more thoroughly, and analyze the interplay of the dataset, the task, the
learning algorithm, and the weighting technique more formally and with more
exhaustive experimentation. One way to achieve this is by evaluating the embed-
ding using intrinsic measures such as those suggested in [26]. Besides, we would

206 M. Cochez et al.

like to further investigate how the literals in the dataset can be incorporated
while learning the embedding. Furthermore, as GloVe embeddings are known to
work particularly well for finding analogies, we plan to adapt the approach for
predicting missing links in RDF data sets.

Acknowledgements. The work presented in this paper has been partially funded
by the Junior-professor funding programme of the Ministry of Science, Research and
the Arts of the state of Baden-Württemberg (project “Deep semantic models for high-
end NLP application”), and by the German Research Foundation (DFG) under grant
number PA 2373/1-1 (Mine@LOD).

References

1. Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing.
Internet Math. 3(1), 41–62 (2006)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

3. Cochez, M., Ponzetto, S.P., Paulheim, H.: Biased graph walks for RDF graph
embeddings. In: WIMS (2017)

4. Demšar, J.: Statistical comparisons of classifiers over multiple datasets. J. Mach.
Learn. Res. 7, 1–30 (2006)

5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

6. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-
based explicit semantic analysis. In: IJCAI, pp. 1606–1611 (2007)

7. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD,
pp. 855–864 (2016)

8. Hassan, S., Mihalcea, R.: Semantic relatedness using salient semantic analysis. In:
AAAI, pp. 884–889 (2011)

9. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for
reputation management in P2P networks. In: WWW, pp. 640–651 (2003)

10. Klein, P., Ponzetto, S.P., Glavaš, G.: Improving neural knowledge base completion
with cross-lingual projections. In: EACL, vol. 2, pp. 516–522 (2017)

11. Lee, M., Pincombe, B., Welsh, M.: An empirical evaluation of models of text doc-
ument similarity. Cogn. Sci. Soc. 27, 1254–1259 (2005)

12. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-
scale. Multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6,
167–195 (2013)

13. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: IMC, pp. 29–42 (2007)

16. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

17. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML, pp. 809–816 (2011)

http://arxiv.org/abs/1301.3781

Global RDF Vector Space Embeddings 207

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web. Technical report 1999–66, Stanford InfoLab, November
1999

19. Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A., Szekely, P.: Efficient graph-
based document similarity. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini,
C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 334–349.
Springer, Cham (2016). doi:10.1007/978-3-319-34129-3 21

20. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP 2014, pp. 1532–1543 (2014)

21. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: KDD, pp. 701–710 (2014)

22. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F.,
Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016).
doi:10.1007/978-3-319-46523-4 30

23. Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets
for systematic evaluations of machine learning on the semantic web. In: Groth, P.,
Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.)
ISWC 2016. LNCS, vol. 9982, pp. 186–194. Springer, Cham (2016). doi:10.1007/
978-3-319-46547-0 20

24. Rosati, J., Ristoski, P., Di Noia, T., Leone, R.D., Paulheim, H.: RDF graph embed-
dings for content-based recommender systems. In: CEUR Workshop Proceedings,
vol. 1673, pp. 23–30. RWTH (2016)

25. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun.
ACM 8(10), 627–633 (1965)

26. Schnabel, T., Labutov, I., Mimno, D.M., Joachims, T.: Evaluation methods for
unsupervised word embeddings. In: EMNLP, pp. 298–307 (2015)

27. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In:
WSDM, pp. 543–552 (2014)

28. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: NIPS, pp. 926–934 (2013)

29. Thalhammer, A., Rettinger, A.: PageRank on Wikipedia: towards general impor-
tance scores for entities. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer,
S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 227–240. Springer, Cham
(2016). doi:10.1007/978-3-319-47602-5 41

30. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

31. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD, pp. 1365–1374
(2015)

32. Zhang, Z., Gentile, A.L., Ciravegna, F.: Recent advances in methods of lexical
semantic relatedness - a survey. Nat. Lang. Eng. 19(4), 411–479 (2013)

http://dx.doi.org/10.1007/978-3-319-34129-3_21
http://dx.doi.org/10.1007/978-3-319-46523-4_30
http://dx.doi.org/10.1007/978-3-319-46547-0_20
http://dx.doi.org/10.1007/978-3-319-46547-0_20
http://dx.doi.org/10.1007/978-3-319-47602-5_41

LDScript: A Linked Data Script Language

Olivier Corby1(B) , Catherine Faron-Zucker2 , and Fabien Gandon1

1 Université Côte d’Azur, Inria, CNRS, I3S, Sophia Antipolis, France
{olivier.corby,fabien.gandon}@inria.fr

2 Université Côte d’Azur, I3S, Inria, CNRS, Sophia Antipolis, France
faron@i3s.unice.fr

Abstract. In addition to the existing standards dedicated to representa-
tion or querying, Semantic Web programmers could really benefit from a
dedicated programming language enabling them to directly define func-
tions on RDF terms, RDF graphs or SPARQL results. This is espe-
cially the case, for instance, when defining SPARQL extension functions.
The ability to capitalize complex SPARQL filter expressions into exten-
sion functions or to define and reuse dedicated aggregates are real cases
where a dedicated language can support modularity and maintenance of
the code. Other families of use cases include the definition of functional
properties associated to RDF resources or the definition of procedural
attachments as functions assigned to RDFS or OWL classes with the
selection of the function to be applied to a resource depending on the
type of the resource. To address these needs we define LDScript, a Linked
Data script language on top of the SPARQL filter expression language.
We provide the formal grammar of the syntax and the Natural Seman-
tics inference rules of the semantics of the language. We also provide a
benchmark and perform an evaluation using real test bases from W3C
with different implementations and approaches comparing, in particular,
script interpretation and Java compilation.

Keywords: SPARQL · Linked Data · Programming · Semantic Web

1 Introduction

RDF is the standard framework recommended by the W3C to represent and
exchange Linked Data on the Web. It is associated with RDF Schema and
OWL for ontology-based modelling on the semantic Web and with SPARQL
for data and ontology querying. The development of the Web of data opens up
a wide range of use cases where, in addition to the existing standards, Semantic
Web programmers would benefit from having a dedicated programming lan-
guage enabling them to define functions on RDF terms or RDF graphs. This is
the case, for instance, when defining SPARQL extension functions implemented
for a special purpose and domain or application dependent. This would also be
needed to capitalize a complex SPARQL filter expression or the definition of
special purpose extension aggregates to be reused across queries or sub-queries.
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 208–224, 2017.
DOI: 10.1007/978-3-319-68288-4 13

http://orcid.org/0000-0001-6610-0969
http://orcid.org/0000-0001-5959-5561
http://orcid.org/0000-0003-0543-1232

LDScript: A Linked Data Script Language 209

Another kind of use cases is the definition of functional properties associated
to RDF resources, the results of which are computed on demand. For instance,
the value of the surface property of a rectangular object could be computed
as the product of the values of its width and length properties; the age of a
person could also be computed from her date of birth. These use cases can also
be extended to the definition of procedural attachments as functions assigned to
RDFS or OWL classes. The selection of the function to be applied to a resource
can then be made dependent on the types (classes) of the resource.

The requirements we propose for a programming language enabling such
definitions of functions are:

– The objects of the language are RDF terms (URIs, blank nodes and literals),
RDF triples and graphs as well as SPARQL query solutions. This is required
to facilitate the access and manipulation of Linked Data in their native model
without adding the burden of parsing, encapsulating, mapping, and serializing
in other programming languages.

– The statements of the language include SPARQL filter expressions and
SPARQL queries (the select and construct query forms). This is required
to be able to directly leverage in the program these operations that are tai-
lored to Linked Data access and processing. Again, encapsulating and mapping
these operations to other programming paradigms can make them clumsy and
inefficient.

– The language provides function definition and function call. This is the core
motivation of our proposal to add all the needed primitives to program and
execute functions inside RDF frameworks.

– Functions can be exchanged and shared among Semantic Web plaforms and
are interoperable.

In this paper, we address the research question: Can we define a standard-
based programming language that meets the above described requirements? To
answer this question, we define LDScript, a Linked Data script language on top
of the SPARQL filter expression language, taking advantage of the fact that
the SPARQL filter expression language potentially enables users to express the
definitions of functions. We effectively define a programming language on top
of SPARQL filter expression language. Syntactically, it consists in a couple of
additional statements: a function statement enabling users to define functions
and a let statement enabling them to define local variables. We present the
syntax and semantics of LDScript as well as an implementation and we illustrate
the simplicity as well as the expressive power of this extension with real cases
of LDScript functions. We also provide a benchmark and we report the results
of an evaluation of LDScript using real test bases from W3C with different
implementations and approaches comparing, in particular, script interpretation
and Java compilation.

This article is based on an initial research report [4] and presents our scien-
tific contributions with the following plan. In Sect. 2 we present state-of-the-art
approaches to define extension functions. In Sect. 3 we introduce LDScript with

210 O. Corby et al.

an overview of this language. In Sect. 4 we formally define the syntax and seman-
tics of LDScript. In Sect. 5 we study several use cases and we show how they can
easily be addressed by using LDScript. In Sect. 6 we evaluate the efficiency of dif-
ferent implementations of LDScript on various test cases. In Sect. 7 we conclude
and draw some perspectives of our work.

2 Related Work

Although no contribution so far has directly addressed the research question we
target in this paper, a number of previous works are somehow related to the issue.
SPIN is a W3C member submission which proposes a SPARQL-based rule and
constraint language and, additionally, enables one to represent both SPARQL
queries (SPIN templates) and SPARQL extension functions (SPIN functions) [6].
SPIN is represented in RDF. In SPIN, a SPARQL extension function is identi-
fied by a resource of type sp:Function (with sp the prefix denoting the SPIN
namespace) which is linked by property sp:body to its definition as a SPARQL
query of the form select or ask.

Jena provides a java URI scheme for naming and accessing SPARQL exten-
sion functions implemented in Java. This enables one to dynamically load the
bytecode implementing the function. By convention, the location of the Java
class must be found in the Java classpath and the local name of the function
must be the name of the Java class implementing it1. Here is an example of a
SPARQL query using an extension function f:myTest implemented in Java. It
filters the RDF triples for which f:myTest returns true when called with the
triple’s subject and object as parameters:

PREFIX f: <java:app.myFunctions.>
SELECT ?x WHERE { ?x ?p ?y FILTER f:myTest(?x, ?y) }

When compared to the above stated requirements for a Semantic Web program-
ming language, Jena relies only on Java for extension functions and the code
of the function has to deal with mappings from the Linked Data models and
syntaxes to the object oriented models and syntax of Java.

G. Williams [9] proposes to implement SPARQL extension functions in Java-
Script as an agreed-upon programming language, and to share implementations
among query engines by using an embedded JavaScript interpreter. Functions
are identified by URLs and their source code may be retrieved at run time by
dereferencing their URL. It relies on an RDF schema enabling one to describe a
SPARQL extension function and retrieve its source code at run time by deref-
erencing its URL. Here is an example of RDF statements describing a SPARQL
extension function to compute a geographical distance in kilometers. The loca-
tion of its JavaScript source code is the value of property ex:source (with ex
the namespace prefix of the extension function schema) and the function name
in the source code that should be called to execute the extension function is the
value of property ex:function.
1 https://jena.apache.org/documentation/query/writing functions.html.

https://jena.apache.org/documentation/query/writing_functions.html

LDScript: A Linked Data Script Language 211

<http://example.com/functions/distance> a ex:Function;
dc:description"Geographic distance in km";
ex:source <http://example.com/distance.js>;
ex:function "gdistance" .

When compared to our proposed requirements, the code of the function has to
deal with mappings from the Linked Data models and syntaxes to the object
oriented model and syntax of JavaScript.

M. Atzori [1] proposes to implement SPARQL extension functions based on
both a generic extension function wfn:call and the SPARQL service clause.
Function wfn:call is similar to the Lisp funcall function and takes the exten-
sion function to be evaluated as its first argument. Any occurrence of the
wfn:call function is replaced by a service call to delegate the evaluation of
the extension function to the SPARQL endpoint implementing the function. The
SPARQL endpoint’s IRI is computed from the extension function’s IRI, based
on a Function-to-Endpoint IRI pattern. When compared to the requirements
for a Semantic Web programming language, this proposal does not provide a
language but rather an RPC-like hook to call functions that have to be hosted
and executed in a separate server process.

When compared to these four state-of-the-art proposals, the key idea of our
proposal described in the following is to extend the SPARQL language, and
more precisely its filter language, in order to enable the definition of extension
functions in the SPARQL filter language itself and using its native syntax. With
LDScript we propose a self-contained and Linked Data oriented programming
language for extension functions.

Relatedly, SPARQL-Generate [7] also extends SPARQL with a few constructs
with the specific target of enabling the generation of RDF from heterogeneous
sources. It is a template language whereas our proposal is a programming lan-
guage. In fact we could emulate SPARQL-Generate with LDScript and STTL
SPARQL Template Transformation Language [3].

PL/SQL2 is a programming language that is tightly integrated with the SQL
query language for relational databases. LDScript is designed with similar goals
but for triple stores.

Finally, it must be noted that Prolog may be worth considered for entailments
purpose which is not the topic of this work.

3 Overview of LDScript

Our goal is to define functions, the objects of which are Linked Data enti-
ties (URI, RDF literals, RDF triples, etc.) with the main objective of defining
SPARQL extension functions and possibly extend SPARQL itself. One possi-
bility is to rely on an existing programming language, e.g. Java, and use the
specific API of the SPARQL implementation of the RDF entities. However, this
approach has several weaknesses. First, it is not interoperable because other
2 http://www.oracle.com/technetwork/database/features/plsql/.

http://www.oracle.com/technetwork/database/features/plsql/

212 O. Corby et al.

SPARQL implementations of RDF entities do not use the same API. Hence, the
functions cannot be reused across different SPARQL implementations. Second,
one does not benefit of SPARQL native function library dedicated to RDF terms
(functions isURI, isBlank, isLiteral, datatype, strdt, strlang, langMatch,
uri, bnode, etc.) Third, one must switch back and forth from SPARQL to (e.g.)
Java environments with their compiler, project management environment, etc.,
and link the compiled functions to the SPARQL interpreter.

Another possibility would be to design a specific programming language the
object of which would be RDF entities with a library implementing SPARQL
functions. The weakness of this approach would be that users would have to
learn yet another programming language.

We propose LDScript, a third way that reconciles the above two approaches:
a programming language whose objects are RDF entities, SPARQL compatible
and embedding the complete SPARQL function library.

LDScript primarily relies on the SPARQL filter expression language. A
SPARQL filter is either (a disjunction or conjunction of) a relational expres-
sion or a call to a built-in or externally defined boolean function. Among the
built-in SPARQL functions stands the if ternary function which evaluates the
first argument and returns the value of the second argument if the first argu-
ment results in an effective value of true, or else the value of the third argument.
A SPARQL filter restricts the solutions of a graph pattern matching to those
satisfying the constraint it expresses: the filtered solutions result in the boolean
value true when substituted into the filter expression.

We propose to define functions by taking advantage of the fact that the
SPARQL filter language enables users to define expressions. Handbooks of pro-
gramming languages explain that typical programming languages include as
commands: variables declaration, assignment, call, return, sequential blocks,
iterative commands and if statements. For this reason, in this section we will
introduce the corresponding statements in LDScript. LDScript primitives are
also directly descending from the historical definitions of function and function
definition as introduced by John McCarthy [8].

Here are the namespaces and prefixes used in the definitions:

prefix xt: <http://ns.inria.fr/sparql-extension/>
prefix us: <http://ns.inria.fr/sparql-extension/user/>
prefix rq: <http://ns.inria.fr/sparql-function/>
prefix dt: <http://ns.inria.fr/sparql-datatype/>
prefix ex: <htp://example.org/>

3.1 LDScript Function Definition

In LDScript, a function definition starts with the function keyword. The first
argument of the declaration is the name (a URI) of the function being defined fol-
lowed by its argument list. The variables in the argument list play the usual role
of function arguments. The second argument is the body of the function being
defined. It is an LDScript expression or a sequence of expressions. For example,

LDScript: A Linked Data Script Language 213

the factorial function us:fac is defined as follows, by using the SPARQL if
built-in function and embedding a recursive call:

FUNCTION us:fac(?n) {
IF (?n = 0, 1, ?n * us:fac(?n - 1)) }

Here is another example of function definition. A call to the us:status function
returns the status (married or single) of the resource given as parameter. Its
definition uses the SPARQL built-in if function and exists operator.

FUNCTION us:status(?x) {

IF (EXISTS { ?x ex:hasSpouse ?y } || EXISTS { ?y ex:hasSpouse ?x },

ex:Married, ex:Single) }

A call to a defined function returns the result of the evaluation of its body,
with its arguments bound by the function call. In the body, the arguments are
local variables in the sense that the variable bindings are local to the body of
the function and exist only during the execution of the function. For instance,
according to its above definition, a call to function us:fac will return the value
returned by a call to the if SPARQL built-in function form, with a given value
for variable ?n.

The language for defining the body of a function is LDScript, i.e. the SPARQL
filter expression language extended with statements presented in this document.
Hence, to define extension functions, LDScript programmers can make use of
the expressivity of the whole SPARQL filter expression language. In particular,
this includes built-in SPARQL functions, among which the if function form
enabling to consider alternatives, and the exists operator to test the existence
of graph patterns. This also includes extension functions defined in LDScript or
externally defined in another language (as SPARQL allows it). LDScript provides
overloading in the sense that it enables users to define several functions with the
same name and a different number of arguments.

For example, the SPARQL query below comprises the definition of function
us:fac in a function clause and the where clause embeds a call to this func-
tion to search the resources whose income is greater or equal to 10! = 3,628,800.

SELECT ?x ?i
WHERE { ?x ex:income ?i FILTER (?i >= us:fac(10)) }
FUNCTION us:fac(?n) { IF (?n = 0, 1, ?n * us:fac(?n - 1)) }

3.2 Local Variable Declaration

LDScript function definitions can embed local variable declarations. These are
expressed in a let statement. Its first argument declares a local variable and
its value; its second argument is an expression which is evaluated with the tran-
sient binding of the local variable declared. After completion of the expression
evaluation, the binding vanishes. The result of a let statement is the result of
its second argument. For instance, the example let statement below returns the
pretty-printing of the current date, e.g. "29/01/2017".

214 O. Corby et al.

LET (?n = now()) { concat(day(?n), "/", month(?n), "/", year(?n)) }

A let statement can also execute a SPARQL query in its first argument and
bind the select variables with the first query solution. For instance, the following
function uses a let statement to return the first retrieved type of a resource.

FUNCTION us:type(?s){ LET (SELECT ?t WHERE {?s a ?t}){ ?t }}

An alternative syntax enables users to explicit the (subset of) variables to be
bound. The binding of the variables of the let statement is done by name (not
by position).

FUNCTION us:type(?s){ LET (((?t)) = SELECT ?t WHERE {?s a ?t}){?t}}

3.3 Loop Statements

In order to iterate a statement on the elements of a list of values, LDScript is
provided with the for loop statement. As an example, the following function
iteratively calls the xt:display function on the prime numbers among a given
list of natural numbers.

FOR (?n IN xt:list(1, 2, 3, 4, 5)) {
IF (us:prime(?n)) { xt:display(?n) } }

The for statement can iterate on the results of a SPARQL select or con-
struct query. In the case of a construct query, it iterates on the triples of
the graph. For instance, the following function iteratively calls the xt:display
function on RDF triples of the form ?x a foaf:Person.

FOR ((?s, ?p, ?o) IN CONSTRUCT WHERE { ?x a foaf:Person }) {
xt:display(?s, ?p, ?o) }

Note that there are a lot of possibilities to integrate queries as expressions. We
have chosen a generic principle that matches let/for statements and selec-
t/construct queries with the same design pattern. In addition this choice has
the advantage of being generalizable to other objects such as lists, triples and
graphs:

FOR ((?fst, ?snd) IN ?listOfPairs)
LET ((?s, ?p, ?o) = ?triple)

The model and the implementation take such objects as solution mappings
and graphs into account. They are implemented using a pointer datatype, that is
a kind of blank node pointing to an object. As a blank node it can pass through
all statements. As a pointer, it is exploited by pattern matching expressions like
in the above let and for statements.

LDScript: A Linked Data Script Language 215

3.4 Function Evaluation

LDScript is provided with the funcall function to call a function whose name
is dynamically computed. For instance, the following example retrieves the name
of the appropriate us:surface method and applies it to argument ?x.

FUNCALL(us:method(us:surface, ?x), ?x)

LDScript is provided with the apply function to iteratively call a binary
function on a list of arguments. For example, the following function call enables
to compute the sum of the elements of a list of numbers with the binary rq:plus
function.

APPLY(rq:plus, xt:list(1, 2, 3, 4, 5))

3.5 List Datatype

LDScript is provided with a dt:list datatype to manage lists of values. A
dt:list datatype value is a list whose elements are RDF terms: URIs, literals,
blank nodes or sublists of type dt:list. The elements of a list need not be of
the same kind, neither of the same datatype. The dt:list datatype comes with
a set of predefined functions among which xt:size returns the size of the list,
xt:get returns the nth element, xt:sort sorts the list according to the order
by rules of SPARQL, xt:iota returns the list of n first integers, xt:cons adds
an element to the head of the list, etc.

The maplist function enables one to apply a function to the elements of a
list and return the list of the results. For instance, the call to function maplist
shown below returns the list of the results of the calls to function us:fac on the
first ten integers.

MAPLIST(us:fac, xt:iota(10))

There are several variants of the maplist function: map applies a function and
returns true, mapselect returns the list of elements such that the boolean
function returns true.

4 LDScript Formal Definition

The previous section gave an overview of LDScript. In this section we formally
define the syntax and semantics of this language.

4.1 LDScript Syntax

LDScript grammar is based on SPARQL3. The definition of BuiltInCall is
extended with let, for, map, funcall and apply statements.
3 http://www.w3.org/TR/sparql11-query/#grammar.

http://www.w3.org/TR/sparql11-query/#grammar

216 O. Corby et al.

Function ::= ’FUNCTION ’ iri (’()’ | VarList) Body

Body ::= ’{’ ’}’ | ’{’ Expression (’;’ Expression)* ’}’

VarList ::= ’(’ Var (’,’ Var)* ’)’

BuiltInCall ::= SPARQL_BuiltInCall | IfThenElse

| ’LET ’ ’(’ (Decl (’,’ Decl) * | SelectQuery) ’)’ Body

| ’FOR ’ ’(’ (VarOrList ’IN’ ExpQuery | SelectQuery) ’)’ Body

| Map ’(’ iri ’,’ Expression ’)’

| ’funcall ’ ’(’ Expression (’,’ Expression)* ’)’

| ’apply ’ ’(’ iri ’,’ Expression ’)’

IfThenElse ::= ’IF’ ’(’ BuiltInCall ’)’ Body

(’ELSE ’ (Body | IfThenElse)) ?

Decl ::= VarOrList2 ’=’ ExpQuery

VarOrList ::= Var | VarList

VarOrList2 ::= VarOrList | ’(’ VarList ’)’

ExpQuery ::= Expression | SelectQuery | ConstructQuery

Map ::= ’MAP ’ | ’MAPLIST ’ | ’MAPSELECT ’

4.2 LDScript Semantics

As usually done for programming languages, we formally defined the semantics
of the core of LDScript by a set of Natural Semantics inference rules [5]. These
rules enable us to define the semantics of the evaluation of the expressions of
the language in an environment with variable bindings. The bottom of the rule
is the conclusion and the top is the condition. The � symbol states that the
expression on the right side is evaluated in the environment given on the left
side. The → symbol represents the evaluation of the expression on the left side
into the value on the right side. An environment is a couple (μ, ρ) where μ is
the basic graph pattern (BGP) solution mapping and ρ represents local variable
bindings. In addition, the environment must contain a reference to the SPARQL
dataset, which is not detailed hereafter.

Rule 1 states that local variables are evaluated within ρ which is managed
as a stack, latest variable binding first; rule 2 states that global variables are
evaluated within μ which is a BGP solution. Rules 3 and 4 specify the evaluation
of function calls. The ⇒ symbol represents a function definition lookup for the
function name on the left side. The solution mapping environment is empty
during function body evaluation: there are no global variables. Each function call
creates a fresh environment with function parameters (if any) as local variables.
Rule 5 specifies the evaluation of the let clause which declares a local variable to
be added to environment ρ. Hence, a declared local variable may hide a function
parameter or a BGP variable. BGP variables are accessible in a let statement
(e.g. in a filter), but recall that, inside a function body, the μ environment is
empty. Rules 6 & 7 specify the evaluation of a let clause with a SPARQL
query of the select form which binds the variables of the select clause and
evaluates the expression. Rule 8 specifies the evaluation of the for statement
by evaluating the first expression that returns a list of values and then binds
the variable successively with each element of this list and evaluates the second

LDScript: A Linked Data Script Language 217

expression with each local binding. Since this statement does not compute a
result in itself, it always returns true. Rules 9, 10, 11, 12, and 13 specify map,
funcall and appy statements. Rule 14 specifies the evaluation of an LDScript
expression. The semantics is that of standard SPARQL expression evaluation,
except that the overall environment comprises an environment for local variables
in addition to the standard environment for BGP variables.

μ, ρ[x = v] � x → v
(1)

x /∈ ρ

μ[x = v], ρ � x → v
(2)

f() ⇒ f() = body ∧ ∅, ∅ � body → res

μ, ρ � f() → res
(3)

f(e1, ... en) ⇒ f(x1, ... xn) = body
∀i ∈ {1..n} μ, ρ � ei → vi
∅, [x1 := v1; ... xn := vn] � body → res

μ, ρ � f(e1, ... en) → res
(4)

μ, ρ � e1 → v1 ∧ μ, ρ [x := v1] � e2 → res

μ, ρ � let(x = e1, e2) → res
(5)

μ, ρ � query → {μ1} ∪ Ω
μ, ρ.μ1 � exp → v

μ, ρ � let(query, exp) → v
(6)

μ, ρ � query → ∅
μ, ρ � exp → v

μ, ρ � let(query, exp) → v
(7)

μ, ρ � e → (v1, ...vn)
∀i ∈ {1..n} μ, ρ [x := vi] � b → ri

μ, ρ � for(x = e, b) → true
(8)

μ, ρ � e → (v1, ..vn)
∀i ∈ {1..n} μ, ρ � f(vi) → ri

μ, ρ � map(f, e) → true
(9)

μ, ρ � e → f ∧ μ, ρ � f(e1, ..en) → v

μ, ρ � funcall(e, e1, ..en) → v
(10)

μ, ρ � e → (v1, ..vn)
μ, ρ � apply(f, (v1, ..vn)) → v

μ, ρ � apply(f, e) → v
(11)

218 O. Corby et al.

μ, ρ � f() → v

μ, ρ � apply(f, ()) → v
(12)

μ, ρ � apply(f, (v2, ..vn)) → r
μ, ρ � f(v1, r) → v

μ, ρ � apply(f, (v1, ..vn)) → v
(13)

sparql(μ, ρ � exp → v)
μ, ρ � exp → v

(14)

The above described Natural Semantics inference rules defining the semantics
of the evaluation of LDScript expressions should be completed with the Natural
Semantics inference rules defining the semantics of the evaluation of SPARQL
queries within LDScript. These should be written according to Sect. 18.6 of the
SPARQL recommendation4.

5 Examples of Use Cases

In this section, we present the definition of several LDScript extension functions
showing the expressive power and usability of the language. Some additional
examples can be found at: http://ns.inria.fr/sparql-extension.

5.1 Extended Aggregates

LDScript enables programmers to simply define extended aggregates with a sim-
ple extension of the SPARQL interpreter. We introduce the aggregate function
which is as an additional generic aggregate. This function takes as arguments
an expression (e.g. ?v in the example below) and aggregates the results of the
expression into a dt:list. Then we can call a custom aggregation function with
this list as argument. The example below defines sort concat, a variant of the
group concat aggregate which sorts the elements before concatenation occurs.
The rq prefix and namespace are used to assign a URI to each SPARQL standard
function, hence rq:concat function is SPARQL concat function.

SELECT (aggregate(?v) AS ?list) (us:sort_concat(?list) AS ?res)
WHERE { ?x rdf:value/rdf:rest*/rdf:first ?v }
FUNCTION us:sort_concat(?list){ apply(rq:concat, xt:sort(?list)) }

4 https://www.w3.org/TR/sparql11-query/#sparqlAlgebraEval.

http://ns.inria.fr/sparql-extension
https://www.w3.org/TR/sparql11-query/#sparqlAlgebraEval

LDScript: A Linked Data Script Language 219

5.2 Procedural Attachment

LDScript enables programmers to perform procedural attachment to RDF
resources. The idea is to annotate the URI of a function to declare that it is
a method associated to a class. In the example RDF annotation below, two
functions are described, us:surfaceRectangle and us:surfaceCircle which
compute surfaces; it states that they implement the method us:surface for
us:Rectangle and us:Circle respectively.

us:surfaceRectangle a xt:Method ; xt:name us:surface ;
xt:input (us:Rectangle) ; xt:output xsd:double .

us:surfaceCircle a xt:Method ; xt:name us:surface ;
xt:input (us:Circle) ; xt:output xsd:double .

Then, the method us:surface can be called on a resource as follows, without
mentioning its type:

SELECT * (funcall(xt:method(us:surface, ?x), ?x) as ?m)
WHERE { ?x a us:Figure }

The xt:method function is defined below. It retrieves the function ?fun imple-
menting the method ?m by finding the type ?t of the resource (line 3) and then
finding a method attached to the type, or a superclass of the type (line 4). In the
latter case, this implements method inheritance following the rdfs:subClassOf
relation.

01 FUNCTION xt:method(?m, ?x){
02 LET (SELECT * WHERE {
03 ?x rdf:type/rdfs:subClassOf* ?t .
04 ?fun a xt:Method ; xt:name ?m ; xt:input(?t)})
05 { ?fun } }

Finally, the methods us:surfaceRectangle and us:surfaceCircle are defined
as follows:

FUNCTION us:surfaceRectangle(?x){
LET (SELECT * WHERE {?x us:width ?w ; us:length ?l})
{ ?w * ?l } }

FUNCTION us:surfaceCircle(?x){
LET (SELECT * WHERE {?x us:radius ?r})
{ 3.14159 * power(?r, 2) } }

Below are some RDF descriptions of figures for which we can now compute the
surface using the above defined procedural attachment.

us:Circle rdfs:subClassOf us:Figure .
us:Rectangle rdfs:subClassOf us:Figure .
us:cc a us:Circle ; us:radius 1.5 .
us:rr a us:Rectangle ; us:width 2 ; us:length 3 .

220 O. Corby et al.

5.3 Calendar

We wrote LDScript functions to compute the weekday of a date literal of type
xsd:date5 and functions to generate a calendar given a year6. We designed a
dynamic Web page generated from DBpedia events where events of a given year
are placed into the calendar7. The performance of LDScript is such that the Web
page is computed and displayed in real time.

5.4 SHACL

As part of a SHACL validator, we wrote an interpreter for W3C SHACL Property
Path language8. This real use case shows that LDScript enables users to write
such programs in a few lines: the function below recursively rewrites a property
path shape expression ?pp as an LDScript list.

FUNCTION sh:path(?shape, ?pp){
LET (SELECT ?shape ?pp ?q ?path WHERE {

GRAPH ?shape {
rdf:rest is for a sequence
values ?q {

sh:inversePath sh:alternativePath
sh:zeroOrMorePath sh:oneOrMorePath
sh:zeroOrOnePath rdf:rest }

?pp ?q ?path } }) {
IF (! bound(?q)){

IF (isURI(?pp)){ ?pp } ELSE { error() }}
ELSE IF (?q = rdf:rest) {

xt:list(sh:sequence, sh:list(?shape, ?pp)) }
ELSE { xt:list(?q, sh:path(?shape, ?path)) } } }

6 Implementation and Evaluation

We implemented LDScript using the SPARQL interpreter of the Corese Semantic
Web Factory [2]. The function, let and other statements are implemented by
the SPARQL parser, compiler and interpreter. Should an error occur, function
evaluation resumes in error mode, according to the same model as SPARQL
evaluation error: in a filter, the filter fails; in a select or a bind clause, “the
variable remains unbound for that solution but the query evaluation continues”9.

5 http://ns.inria.fr/sparql-extension/calendar.
6 http://corese.inria.fr/srv/template?transform=st:calendar.
7 http://corese.inria.fr/srv/template?profile=st:calendar3.
8 http://ns.inria.fr/sparql-extension/datashape.
9 http://www.w3.org/TR/2013/REC-sparql11-query-20130321/#assignment.

http://ns.inria.fr/sparql-extension/calendar
http://corese.inria.fr/srv/template?transform=st:calendar
http://corese.inria.fr/srv/template?profile=st:calendar3
http://ns.inria.fr/sparql-extension/datashape
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/#assignment

LDScript: A Linked Data Script Language 221

6.1 Generic Evaluation and Validation

LDScript has been validated on the functions described in Sect. 5 and extensively
used in several STTL transformations on a server available online10 [3]. We
measured the performance of our implementation of LDScript on the execution
of (1) a recursive Fibonacci function to test an exponential number of calls, (2)
on the Bubble sort algorithms to evaluate loops and (3) on statistics functions for
the calculation aspect. We compared with Java and JavaScript implementations
which, of course, benefit from many years of optimizations. The goal of this first
evaluation was just to show that a direct implementation on top of a SPARQL
engine without dedicated optimizations is already usable. The results are shown
using a logarithmic scale in Fig. 1. The extension function fib implements the
Fibonacci sequence. The computation of fib(35) = 9227465 on a HP EliteBook
laptop takes 3650 ms in LDScript, 68.8 ms in JavaScript and 24.9 ms in Java.

FUNCTION us:fib(?n) {
IF (n <= 2, 1, us:fib(?n - 2) + us:fib(?n - 1)) }

Bubble sort on an array of 1000 items takes 580.1 ms in LDScript, 6 ms in
JavaScript and 9.5 ms in Java. Three statistic functions together (average,
median and standard deviation) on an array containing 100000 integer values
take 157.1 ms in LDScript, 80.5 ms in JavaScript and 6.9 ms in Java.

Fig. 1. Comparison of mean times and their mean absolute differences for JavaScript
(JS), Java and LDScript (LDS) computing recursive Fibonacci (-Fib in Blue), Bubble
sort (-Bub in green) and statistics (-Stat in red) using a logarithmic scale. (Color figure
online)

The above described first implementation of LDScript is a proof of concept
where we focused on the design and the semantics. Although focusing on perfor-
mance is future work, we already took the first step of providing and comparing
alternative implementations, as described in the following.

10 http://corese.inria.fr.

http://corese.inria.fr

222 O. Corby et al.

6.2 Java Compiling and Specific Evaluation

In addition to LDScript interpreter, we have written a compiler from LDScript
to Java. This enables us, among other things, to evaluate the performance of the
LDScript interpreter compared to the equivalent Java code. We have compared
performances on three LDScript programs with different programming charac-
teristics (e.g. recursive calls) as well as a full implementation of the SHACL
standard as a real use case. We therefore have four programs for this last eval-
uation: the recursive Fibonacci function, a calendar function that computes the
weekday of a given date, a parser of Roman to Arabic numbers and reverse, and
a SHACL validator. As a result, the execution time of the compiled Java code is
higher than pure Java because the compiled code operates on RDF terms with
XSD datatypes whereas a native Java code would operate on Java datatypes.
Our experiments show that the LDScript interpreter can be as fast as the Java
code produced by the LDScript compiler and sometimes slightly faster. One
exception is the generated Java code for the Fibonacci function which is much
more efficient, e.g. by a factor of 20 for fib(35). This is due to the optimized
implementation of function call and recursion in Java. For the three other use
cases, the performances of the LDScript interpreter and the Java code are equiv-
alent. For the SHACL validator, we have tested it on the 97 SHACL test cases
from W3C. The Java code runs in 5.2 s while the LDScript interpreter runs
in 4.93 s (average time of ten runs after warmup on an HP laptop). The Java
source code is 3220 lines and 37055 bytes, the LDScript source code is 2009 lines
and 17819 bytes. The complete codes, the evaluation report and the table of
performance are documented and available online11.

7 Conclusion and Future Work

Dedicated programming language enabling Semantic Web programmers to define
functions on RDF terms, triples and graphs or SPARQL query results can facil-
itate the development and improve the reuse and maintenance of the code pro-
duced for Linked Data. To address these needs we detailed in this article a
lightweight extension of SPARQL filter expression language to enable the defi-
nition of extension functions and we defined a Linked Data script language on
top of the SPARQL filter expression language. Compared to the state-of-the-art
we directly extend the SPARQL language in order to enable the definition of
extension functions in the SPARQL language itself and using its native syntax,
building on a well-known and widely accepted component of the Web of data.
The key point of our proposal is that a programming language can easily be
integrated in SPARQL to define extension functions.

LDScript has all the features of Turing-complete programming languages:
constants, lists, variables, expressions, boolean connectors, if-then-else, iteration,
local variable definition, function definition, function call, recursion. LDScript is
a programming language where values are RDF terms, hence its use to define

11 http://ns.inria.fr/sparql-extension/example/table.html.

http://ns.inria.fr/sparql-extension/example/table.html

LDScript: A Linked Data Script Language 223

extension functions avoids to cast datatype values from RDF to the target
language (e.g. Java) and back. It enables us to associate function definitions
directly to a SPARQL query, with no need to compile nor link code. All stan-
dard SPARQL functions are natively available in LDScript and can be used
directly in a LDScript function definition. LDScript extends the SPARQL fil-
ter expression language with several classical programming statements, among
which function, let, for, funcall and apply. The select and construct
SPARQL query forms are also statements of LDScript and can be used as well
in the definition of functions. In addition, the language provides recursion, hence
enabling recursive SPARQL queries: a function can execute a SPARQL query
that can call the function. An LDScript interpreter is implemented in the Corese
Semantic Web Factory as well as a compiler of LDScript into Java and the per-
formances of the LDScript interpreter have been demonstrated on generic and
concrete test cases. We successfully implemented several use cases with LDScript,
among which a SHACL validator.

As future work, we will work on type checking function definition. LDScript
indeed needs a type analysis because several new constructs have implicit type
constraints: for example, the expression argument in Map must be list-valued; the
first argument of funcall must be URI-valued. We also intend to extend higher
order functions application to predefined functions. In the current version, higher
order functions operate only on LDScript user-defined functions. On another
note, we will work on the improvement of the performance of our implementation,
and plan to provide a second implementation of LDScript on another triple store
to validate the language. Finally, we plan to investigate the notion of “Linked
Functions” and go further in the definition of a function programming language
for SPARQL. The principle would consist in (1) dereferencing a function URI to
get the function definition, provided security rules on function namespaces, and
(2) annotating function URIs in the spirit of Linked Data.

References

1. Atzori, M.: Toward the Web of functions: interoperable higher-order functions in
SPARQL. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 406–421.
Springer, Cham (2014). doi:10.1007/978-3-319-11915-1 26

2. Corby, O., Faron-Zucker, C.: The KGRAM abstract machine for knowledge graph
querying. In: IEEE/WIC/ACM International Conference on Web Intelligence,
Toronto, Canada (2010)

3. Corby, O., Faron-Zucker, C., Gandon, F.: A generic RDF transformation software
and its application to an online translation service for common languages of linked
data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 150–165.
Springer, Cham (2015). doi:10.1007/978-3-319-25010-6 9

4. Corby, O., Faron-Zucker, C., Gandon, F.: LDScript: a Linked Data Script Language.
Research report RR-8982, INRIA (2016)

5. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M.
(eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987). doi:10.
1007/BFb0039592

http://dx.doi.org/10.1007/978-3-319-11915-1_26
http://dx.doi.org/10.1007/978-3-319-25010-6_9
http://dx.doi.org/10.1007/BFb0039592
http://dx.doi.org/10.1007/BFb0039592

224 O. Corby et al.

6. Knublauch, H.: SPIN - SPARQL Syntax. Member Submission, W3C (2011). http://
www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/

7. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating
RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A.,
Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp.
35–50. Springer, Cham (2017). doi:10.1007/978-3-319-58068-5 3

8. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part I. Commun. ACM 3(4), 184–195 (1960)

9. Williams, G.: Extensible SPARQL functions with embedded javascript. In: ESWC
Workshop on Scripting for the Semantic Web, SFSW 2007, Innsbruck, Austria.
CEUR Workshop Proceedings, vol. 248 (2007)

http://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/
http://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/
http://dx.doi.org/10.1007/978-3-319-58068-5_3

Practical Update Management
in Ontology-Based Data Access

Giuseppe De Giacomo1, Domenico Lembo1(B), Xavier Oriol2,
Domenico Fabio Savo1, and Ernest Teniente2

1 Sapienza Università di Roma, Rome, Italy
{degiacomo,lembo,savo}@dis.uniroma1.it

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{xoriol,teniente}@essi.upc.edu

Abstract. Ontology-based Data Access (OBDA) is gaining importance
both scientifically and practically. However, little attention has been paid
so far to the problem of updating OBDA systems. This is an essential
issue if we want to be able to cope with modifications of data both at
the ontology and at the source level, while maintaining the independence
of the data sources. In this paper, we propose mechanisms to properly
handle updates in this context. We show that updating data both at
the ontology and source level is first-order rewritable. We also provide
a practical implementation of such updating mechanisms based on non-
recursive Datalog.

1 Introduction

Ontology Based Data Access (OBDA) is a data integration approach that allows
for querying data sources through a unified conceptual view of the application
domain, expressed as an ontology [17]. In this way, users may ask queries without
being aware of the underlying structure of the data, while considering additional
knowledge provided by the ontology. One interesting feature of OBDA is that
data sources remain independent and only loosely coupled with the ontology
through the use of declarative mappings.

In OBDA, the ontology is usually specified in a lightweight language, like
a Description Logic (DL) of the DL-Lite family [4]. DL-Lite logics have the
ability of essentially capturing conceptual models such as UML class diagrams,
while being characterized by nice computational properties with respect to query
answering. Indeed, this task in DL-Lite based OBDA systems is first-order (FO)
rewritable, which means that any conjunctive query over the ontology (or TBox)
can be answered by rewriting it first into a FO-query over a virtual set of facts
(or ABox), and then into FO-queries over the data sources, by suitably unfolding
(traversing backward) the mappings [17].

Little attention has been paid so far in OBDA to the problem of updat-
ing, which is the main target of this paper. Namely, we consider “write-also
OBDA systems”, where a user may change the extensional level of the system,
in contrast with “read-only OBDA systems”, where this service is not provided.
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 225–242, 2017.
DOI: 10.1007/978-3-319-68288-4 14

226 G. De Giacomo et al.

We recall that updating a logical theory means changing the old beliefs with new
ones, through both addition and removal of pieces of information. This is usually
accomplished according to the principle of minimal change, i.e., old information
contradicting the new one should be removed in a way that the new theory is as
close as possible to the previous one [8,9,16,18,21].

Besides guaranteeing the above behaviour, our goal is to allow users to update
the data at the ontology level while maintaining the independence of the data
sources. This is in contrast with the traditional way to handle updates in data-
bases, since we should not force the update to propagate to the sources, as done
in view updating [10,11,19]. Indeed, sources are not under the exclusive con-
trol of the ontology, and changing them has a high risk of deeply impacting the
contents used by other source clients.

Fig. 1. UML ontology of a library

For example, consider the ontology of a library specified as a UML class
diagram in Fig. 1, where books are approved by reviewers, movies and books are
items, some of which are available. Obviously, a movie is not a book, and an
item is not a reviewer. Such an ontology can be encoded through the following
DL-Lite axioms:

Movie � Item ∃ApprovedBy � Book ∃ApprovedBy− � Reviewer

Available � Item Book � Item Book � ¬Movie Item � ¬Reviewer

Then, consider an external source whose schema contains the relational tables
T Movie, T Book, T Copy, T Borrow, T RevAuthor, and T Rev, and link it to the
ontology through the mapping below, which we write as Datalog rules, whose
heads (resp. bodies) contain only ontology (resp. database) predicates.

Movie(x) :- T Movie(x)

Book(x) :- T Book(x)

Available(x):- T Copy(x,y), ¬T Borrow(y,z)

Reviewer(y) :- T RevAuthor(r,y)

ApprovedBy(x,y):- T Rev(x,r,z), z>=5, T RevAuthor(r,y)

Let the following set of facts be a database instance at the sources:

T Movie(Alien), T Book(Ubik), T Copy(Ubik,C1), T Copy(Ubik,C2),

T Borrow(C1,Bob)

Practical Update Management in Ontology-Based Data Access 227

It is not difficult to see that the above mapping and database imply the (virtual)
ABox { Movie(Alien),Book(Ubik),Available(Ubik)}. Assume now that we want
to insert Item(Matrix) and to delete Available(Ubik). Notice that this update
does not correspond to any source database update. Indeed, to insert in the
database the item ‘Matrix’, we have to classify it either as a movie or as a book,
thus, entailing an unintended fact. The problem is even worse for the case of
deleting the availability of ‘Ubik’, for which we have to either delete the copy
‘C2’ (and thus deleting an existing copy of the book), or mark it as borrowed by
some unknown user of the library (when no borrowing might exist). Moreover,
these (unintended) changes in the database affect the contents used by other
database clients, whereas we only want to change some ABox assertions for the
users of the OBDA system.

To avoid these situations, we materialize the ABox facts that the user of the
OBDA system inserts (resp. deletes) and that are not derived (resp. derived)
from the data sources. In this way, the requested updates can always be accom-
plished without affecting the contents of the sources. This is achieved by materi-
alizing the differences between the current (virtual) ABox (as generated by the
data sources through the mappings) and the one desired by the user. To handle
these materialized facts, we use some special auxiliary ins/del relational tables
and suitably extend the mappings. As an example, consider the following new
mappings for Item and Available (which replaces the previous one):

Item(x) :- ins Item(x)

Available(x):- T Copy(x,y), ¬T Borrow(y,z), ¬del Available(x)

Now, we can achieve the previous ontology update by materializing the facts
ins Item(Matrix) and del Available(Ubik).

Let us now consider an update that contradicts previous data. Assume that
we want to insert Book(Alien). This contrasts the fact that ‘Alien’ is already
known to be a movie. We manage situations like this through the materialization
of additional insertions/deletions that allow us to keep the system consistent,
according to a specific minimal change criterion introduced in [7]. In our exam-
ple, to fully accomplish the update we materialize both ins Book(Alien) and
del Movie(Alien).

There is a further update scenario of interest in write-also OBDA systems.
Since the data sources are autonomous, they in turn can be freely changed by
their users. Thus we need to deal with two kinds of updates: ontology-level and
source-level. An ontology-level update is posed over the ontology, and is the
update we discussed so far. Instead, a source-level update occurs when a data
source is modified.

For the source-level case, our framework detects how the update at the
sources is reflected, through the mapping, in ABox insertions/deletions, and
based on them it computes the additional insertions/deletions that will main-
tain the system consistent. As we will show, only ABox insertions induced by a
source-level update may cause inconsistency, and to repair it we essentially treat
them as if they were ontology-level updates. Note however that, whereas we can
expect ontology-level updates directly specified by users to be coherent with

228 G. De Giacomo et al.

the ontology, i.e., they alone do not violate TBox axioms, which is a classical
assumption in update theory, this does not necessarily hold for ABox insertions
induced by a source-level update. Consider an update at the sources that inserts
the facts T Movie(TheShining) and T Book(TheShining). This is a legal source-
level update, since no constraints are specified on the source database (it can
even be possible that tables T Movie and T Book belong to different databases).
This source-level update induces two ABox insertions, i.e., Movie(TheShining)

and Book(TheShining), which together violate the disjointness Book � ¬Movie.
To cope with this problem our framework repairs the induced ontology-level
update according to a minimality criterion which allows to filter away the con-
flicting insertions but to maintain their common consistent logical consequences.
In our example, this means that both Movie(TheShining) and Book(TheShining)

will be invalidated at the ontology level (i.e., the OBDA system will not infer
them), but their common consequence Item(TheShining) will be considered as
an ABox insertion induced by the source-level update. We remark that the last
form of inconsistency, which we call incoherence, is due to mutually conflicting
insertions in the update itself, and should not to be confused with the case when
the update is inconsistent with the previous state of the OBDA system, which
we discussed before.

The contributions we provide in this paper can be then summarized as fol-
lows.

– We define a new formal framework for ontology-level and source-level updates.
– We show that both update mechanisms are first-order rewritable, that is,

the new contents of the materialized differences when an update occurs can
be computed by means of first-order queries. This entails that ontology-level
and source-level updates are in AC0 (i.e., sub-polynomial) in data complexity,
which is the usual desired complexity for OBDA tasks.

– We prove these results by computing updates by means of non-recursive Data-
log programs, which can be straightforwardly translated into other (relational-
algebra equivalent) languages, such as SQL or SPARQL. Thus, we argue
that our framework is not only computationally feasible, but also practically
embeddable in current OBDA solutions with existing technology, and without
affecting the clients working on the source databases.

– We propose variants of update semantics to handle incoherent (in the sense
explained above) update specifications, which naturally arise in source-level
updates. To the best of our knowledge, incoherent updates have not been
studied before, and, as a side contribution, we formalize and study different
solutions to this problem.

The rest of the paper is organized as follows. In Sect. 2 we provide some
preliminaries on ontologies and read-only OBDA systems. In Sect. 3 we describe
how to transform read-only OBDA systems into write-also ones and provide
an overview of our techniques to manage both ontology-level and source-level
updates. In Sects. 4 and 5 we provide the algorithms to accomplish the two
kinds of updates, respectively, and show that both are first-order rewritable. We
conclude the paper in Sect. 6.

Practical Update Management in Ontology-Based Data Access 229

2 Preliminaries

We assume to have three pairwise disjoint, countably infinite alphabets: NO for
ontology predicates, NS for relational predicates, and NI for constants. Moreover,
we use standard notions for relational databases [1].

Ontologies. A DL ontology O is pair 〈T ,A〉, where T is the TBox and A
is the ABox, providing intensional and extensional knowledge, respectively [2].
Roughly, DL ontologies represent knowledge in terms of concepts, denoting sets
of objects, and roles, denoting binary relationships between objects. In this paper
we focus on ontologies expressed in DL-LiteA [17]. A DL-LiteA TBox is a finite
set of axioms of the form B1 � B2, B1 � ¬B2, R1 � R2, R1 � ¬R2, and
(funct R), where: R, possibly with subscript, is an atomic role P , i.e., a binary
predicate in NO, or its inverse P−; Bi, called basic concept, is an atomic concept
A, i.e., a unary predicate in NO, or a concept of the form ∃R, which denotes the
set of objects occurring as first argument of R; (funct R) denotes the functionality
of R, which states that its first argument is a key. Suitable restrictions are
imposed on the combination of inclusions among roles and functionalities. A
DL-LiteA ABox is a finite set of facts of the form A(c) or P (c, c′), where c, c′ ∈ NI.

As for the semantics, we denote with Mod(O) the set of models of O. We say
that O is consistent if Mod(O) �= ∅, inconsistent otherwise, and that an ABox
A is T -consistent if 〈T ,A〉 is consistent. Moreover, we denote with O |= α the
entailment of a fact or axiom α by O, and with clT (A) the ground closure of A,
i.e., set of ABox facts α such that 〈T ,A〉 |= α. We assume that, for each atomic
concept or role N , T �|= N � ¬N .

Read-only OBDA systems. An OBDA specification is a triple J =
〈T ,M,S〉, where T is a DL TBox, S is a relational schema, called source schema,
and M is a mapping between S and T . As usual in OBDA, we assume M to be a
GAV mapping [14], which we represent as Datalog rules, whose head predicates
are from NO and body predicates are from NS. As usual in Datalog we require
such rules to be safe [1]. It is easy to see that M, seen as a program, is non-
recursive. Note that OBDA specifications of the above form can be considered
read-only, since they are not specifically thought to be updated, but are usually
only queried by users.

An OBDA system is a pair (J ,D), where J = 〈T ,M,S〉 is an OBDA
specification, and D is a source database, i.e., a set of facts for S. A representation
of a read-only OBDA system is given in Fig. 2(a). The semantics of (J ,D) is
given in terms of interpretations of T . To define it, we make use of the retrieved
ABox, i.e., the set

ret(M, D) = {N(t) | t ∈ eval(ϕ(x), D) and N(x):-ϕ(x) ∈ M}

where N is a concept or role in NO and eval(ϕ(x),D) denotes the evaluation of
ϕ(x), seen as a query, over D. Then, a model of (J ,D) is a model of the ontology
〈T , ret(M,D)〉, and the notions of consistency and entailment introduced before
naturally extend to an OBDA system. We point out that in OBDA systems the
retrieved ABox is usually not really computed. To emphasize this, we often refer
to the retrieved ABox as the virtual ABox of an OBDA system.

230 G. De Giacomo et al.

Fig. 2. (a) Read-only OBDA architecture (b) Write-also OBDA architecture.

3 Write-also OBDA Systems

Given a “read-only” OBDA specification J = 〈T ,M,S〉, our framework extends
the source schema S to be able to materialize some ABox insertions/deletions
without affecting the original source database. More in detail, the framework
extends the database schema S to a new schema S ′ by considering, for each
ontology atomic concept/role N , two additional tables ins N and del N, used to
trace insertions/deletions of ABox facts for N1. Then, the framework systemat-
ically changes the mapping M into a mapping M′ in the following way:

1. For each atomic concept/role N , add the new mapping assertion N(x) :-
ins N(x). This guarantees that the instances in ins N belong to the retrieved
ABox as instances of N (i.e., as N facts);

2. Replace each mapping assertion of the form N(x) :- φ(x), with the mapping
assertion N(x) :- φ(x) ∧ ¬del N(x). This avoids the entailment of N facts
that are stored as deleted through instances of del N .

We call J ′ = 〈T ,M′,S ′〉 a write-also OBDA specification. It is not difficult
to realize that the OBDA specifications J and J ′ are equivalent, in the sense
that, when the contents of the new tables ins N /del N are empty, both OBDA
specifications have the same retrieved ABox. Thus, this mapping extension pre-
serves the semantics of the original one, but permits modifying the retrieved
ABox through the ins N /del N tables without collateral effects. In the follow-
ing, given a write-also mapping M′, we denote by π(M′) the original read-only
mapping M.

1 These tables are typically stored in a different database from those containing actual
data, but conceptually are part of S ′.

Practical Update Management in Ontology-Based Data Access 231

We now intuitively illustrate how the framework modifies the contents of the
ins N /del N tables for accomplishing ontology-level and source-level updates.

Ontology-level update. An ontology-level update refers to the situation where
the update is posed over the ontology. It is intended to change the extensional
level of the write-also OBDA system, but without modifying the data at the
sources. Thus, it does not change the content of source predicates in the original
source schema S. It is accomplished by (1) computing the full set of ontological
insertions/deletions that are required to satisfy it in a consistent manner, and
(2) realizing the previous set of ontological insertions/deletions. The first step
is done through a Datalog program computed at compile time (that is, the
Datalog rules are fully determined by the OBDA specification, whereas Datalog
facts comes from the user requested update and the current database state of
the source schema S ′). Such program encodes the update semantics presented
in [7], which allows for solving possible inconsistencies between the new beliefs
implied by the update and the old ones. Such semantics also allow to preserve
logical consequences of the old beliefs that are still consistent with the update.
Then, the second step manipulates the ins/del tables accordingly, in order to
satisfy the previously computed insertions/deletions. Since such tables are not
accessible to data source clients, such update is transparent to them.

Source-level update. A source-level update refers to the situation in which the
update is posed over the source database. Such kind of update is always applied
to the sources as requested. However, it may have effects at the ontological
level, since it is propagated by the mapping. To handle source-level updates, the
framework: (1) computes which insertions/deletions of ABox facts are caused by
the database update (we call such facts retrieved ABox changes); (2) computes
the set of ontological insertions/deletions that are required to accomplish the
changes computed previously in a consistent manner; (3) realizes the previous
ontological updates. Step (1) is performed through the adaptation of a technique
from the literature on view change computation [20]. Step (2), even though
similar in principle to Step (1) for ontology-level updates, presents some further
complications. Indeed, even though the modification is coherent at the level of
the sources, there are no guarantees that it corresponds to a coherent update
at the level of the ontology. For instance, a source-level update might cause the
insertion of both the facts C(o) and D(o) in the retrieved ABox, whereas the
ontology entails that C and D are disjoint. In this situation, our framework
adopts a new update semantics suited for dealing with incoherent updates and,
according to it, modifies the content of the ins/del tables in order to reflect the
proper changes upon the retrieved ABox. Similarly as before, the first two steps
are computed through Datalog programs built at compile time.

4 Ontology-Level Update

We start with some notions on update over ontologies. Following [5,7,15], an
ontology update U is a pair of sets of ABox facts (A+

U ,A−
U), where A+

U are inser-
tions and A−

U are deletions. We say that an update U = (A+
U ,A−

U) is coherent

232 G. De Giacomo et al.

with a TBox T if: (i) Mod(〈T ,A+
U 〉) �= ∅, i.e., the set of facts we are adding

is consistent with T ; (ii) A−
U ∩ clT (A+

U) = ∅, i.e., the update is not asking for
deleting and inserting the same knowledge at the same time. Specifically, we
define the result of updating an ontology as follows.

Definition 1 [7]. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology and let
U = (A+

U ,A−
U) be an update coherent with T . The result of updating O with U ,

denoted by O • U , is the ABox AU = A′ ∪ A+
U , where A′ is a maximal subset of

the closure clT (A) such that A′ ∪A+
U is T -consistent, and 〈T ,AU 〉 �|= β for each

β ∈ A−
U .

The above update semantics is syntax-independent, consequence conserva-
tive, and the ABox resulting from the update operation is, up to logical equiva-
lence, unique [7].

An ontology-level update over a write-also OBDA system (〈T ,M,S〉,D)
is an update over the ontology 〈T , ret(M,D)〉. To realize the update, we first
compute the ABox facts that should be inserted-to/deleted-from the retrieved
ABox ret(M,D), according to Definition 1. Then, we specify the changes to be
performed on the ins/del tables from these ABox facts.

For the first task, we make use of a non-recursive Datalog program able to
manage updates over DL-LiteA ontologies, which has been presented in [7]. This
program derives the insertions/deletions for a concept/role N as derived literals
of the form ins N’(x) and del N’(x). To do so, the program uses as base facts
the current contents of the database D, together with the requested ontology
update. That is, the program has a fact ins N ol(t) for each N(t) ∈ A+

U , and
del N ol(t) for each N(t) ∈ A−

U . Since the Datalog derivation rules are fully
determined by T and M, we refer to it as Datalog(T ,M), and denote the base
facts as D+U .

Basically, Datalog(T ,M) derives insertions/deletions from the requested
update, and computes some extra deletions to avoid violating dis-
joint/functionality axioms in T , and some extra insertions to preserve infor-
mation, according to the update semantics of Definition 1. We illustrate these
ideas by showing some of the rules for our example:

del Movie’(x) :- T Movie(x), del Item ol(x)

del Movie’(x) :- T Movie(x), ins Book ol(x)

ins Item’(x) :- del Movie’(x), ¬del Item ol(x)

The first rule states that a movie should be deleted if it is deleted as an item.
This is required to fully accomplish the deletion since, otherwise, the item would
still be implied because of Movie � Item. The second rule implies the deletion
of a movie because of the insertion of a book when the movie is in the database,
to avoid violating Book � ¬Movie. This reflects the principle that information
in the update has to be preferred to the old one, in case of contradiction. The
third one entails the insertion of an item when it is deleted as a movie for
preserving this entailed belief. This reflects the consequence conservative nature
of our update semantics (cf. Definition 1).

Practical Update Management in Ontology-Based Data Access 233

Algorithm 1. ontology-level-Update(T , M, U , D)
1 D′ ← D
2 foreach fact ins N’(t) derived by Datalog(T , M) from D+U do
3 if del N(t) ∈ D then remove del N(t) from D′ else insert ins N(t) into D′

4 foreach fact del N’(t) derived by Datalog(T , M) from D+U do
5 if ins N(t) ∈ D then remove ins N(t) from D′ else insert del N(t) into D′

6 return D′

Datalog(T ,M) is sound and complete to compute the ABox modifications
required to accomplish an update [7].

Then, we realize these derived insertions/deletions using the ins/del database
tables by means of Algorithm 1. Intuitively, the algorithm tries to insert a fact
by first removing its deletion from D′ (if any). Indeed, this means that the fact
is implied by π(M) (i.e., the read-only version of the mapping) and D. If there
is no deletion of this fact in D, then, it is recorded as an insertion. The case of
deletions is analogous. The following result is a consequence of the correctness
of Datalog(T , M) and Algorithm 1.

Theorem 1. Let (〈T ,M,S〉,D) be a consistent write-also OBDA system, and
U be an update coherent with T . Algorithm 1 computes D′ s.t. 〈T , ret(M,D)〉•U
= ret(M,D′).

The above theorem says that Algorithm 1 correctly realizes an ontology-level
update. Considering the data complexity of non-recursive Datalog, Theorem 1
immediately implies that computing ontology-level updates is in AC0 in data
complexity, i.e., in the size of D+U .

5 Source-Level Update

A source level update is a set of update operations, both insertions and deletions,
over the source database. We denote it by Usl. The basic idea is to first use the
event rules in [20] to compute the changes over the ABox that are induced by Usl.

ABox changes induced by Usl are of two kinds: insertion and deletion. More
formally, let (〈T ,S,M〉,D) be a write-also OBDA system, Usl a source-level
update, and D′ the database obtained by applying Usl to D. The retrieved ABox
changes derived by D, M and Usl are represented as a pair (A+,A−), where
A+ = ret(π(M),D′) \ ret(π(M),D), and A− = ret(π(M),D) \ ret(π(M),D′).
A+ and A− are called the retrieved ABox insertions and deletions, respectively.

The deletion of ABox facts cannot make the ontology inconsistent. So, when
a new ABox deletion is retrieved, we simply check if such deletion was present
in the corresponding del table, and if so, we remove it. In this way, we ensure
that del tables only contains deletions of facts currently retrieved by π(M). The
case of retrieved ABox insertions is more complicated, since adding new ABox
facts might make the ontology inconsistent. Hence, besides removing from the

234 G. De Giacomo et al.

ins tables the facts corresponding to the new retrieved insertions (if any), we
need to deal with possible inconsistencies. This is similar to what happens for
ontology-level updates. However, in this case, retrieved ABox insertions might
not be coherent with the TBox (i.e. the newly inserted ABox facts alone might
directly contradict the TBox). Thus, we need some further machinery to deal
with incoherency.

For ease of exposition, in the following we first discuss the simplified setting in
which we assume that the retrieved ABox insertions are coherent with the TBox
(although not necessarily consistent with the TBox and the virtual retrieved
ABox). Then we tackle the full setting, providing a solution for the case in
which retrieved ABox insertions may be incoherent (and inconsistent).

5.1 Coherent Source-Level Updates

Let J = 〈T ,M,S〉 be a write-also OBDA specification, D a database for S,
and Usl a source-level update (thus, involving source predicates but no auxiliary
ins/del predicates in S). We proceed as follows: (1) obtain the retrieved ABox
changes (A+,A−) derived by D, M, and Usl; (2) for that part of (A+,A−) that
is already realized through facts in the ins/del tables (due to previous updates)
remove the corresponding ins/del facts that become redundant, (3) for the non-
redundant part of A+ proceed as for ontology-level updates to compute the
necessary deletions from the current retrieved ABox for preserving the ontology
consistency.

The first step can be performed by exploiting a view change computation
technique. Indeed, each mapping rule can be seen as a relational view by consid-
ering the head of the rule as a relational query. Specifically, we use the technique
described in [20], which has been shown to be sound and complete for comput-
ing insertions and deletions of view contents in the view change computation
problem for general first-order queries.

The idea of this technique is to materialize the insertion/deletion
operations in an update Usl over the source database in some ad-hoc
ins T Table/del T Table, and compute the resulting retrieved ABox change
(A+,A−) through a Datalog program: for each N(t) fact in A+/A− the program
generates a ins N sl(t)/del N sl(t) fact.

For instance, in our running example, we can detect that an item is inserted
as available through the following rules:2

ins Avail sl(x):- ins T Copy(x,y), del T Borrow(y,z),

¬ins T Borrow(y,w), ¬T Borrowed pre(y), ¬T Avail(x)

ins Avail sl(x):- ins T Copy(x,y), ¬T Borrow(y,w),

¬ins T Borrow(y,z), ¬T Avail(x)

ins Avail sl(x):- T Copy(x,y), ¬del T Copy(x,y), del T Borrow(y,z),

¬ins T Borrow(y,w), ¬T Borrowed pre(y), ¬T Avail(x)

T Borrowed pre(y):- T Borrow(y,z),¬del T Borrow(y,z)

T Avail(x):- T Copy(x,y),¬T Borrow(y,z)

2 Unsafe rules in the example can be made easily safe using auxiliary predicates.

Practical Update Management in Ontology-Based Data Access 235

The first two rules detect that x is newly available when we insert a new copy
of it which is not borrowed anymore, or has never been borrowed, respectively
(provided that x was not available according to the original mapping M before
the update). The third rule corresponds to the case that a preexisting copy of
the item is no longer borrowed. Deletions are computed using similar rules:

del Avail sl(x):- del T Copy(x,y), ¬T Borrow(y,z),

¬T Avail pre(x), ¬ins Avail sl(x)

del Avail sl(x):- T Copy(x,y), ¬T Borrow(y,w), ins T Borrow(y, z),

¬T Avail pre(x), ¬ins Avail sl(x)

T Avail pre(x):- T Copy(x,y), ¬del T Copy(x,y), ¬T Borrowed pre(y),

¬ins T Borrow(y, w)

The first rule detects that x is no longer available because we have deleted a
copy of it that was not borrowed, being this copy the unique one still available,
and without adding any other copy nor deleting a borrowing from another one.
Similarly, the second detects that x is no longer available because of borrow-
ing the last available copy without inserting new copies nor deleting previous
borrowings.

The computed ins N sl/del N sl facts are directly derived from the update
over the source database and the mapping M. Therefore, if the corresponding
ins N /del N facts were already present in the OBDA system due to some pre-
vious updates, now there is no need to still keep them. Hence, for the sake of
non-redundancy, they must be deleted from D if they were part of it. We notice
that in this case, we do not have to take care of inconsistencies that may arise
due to the update. Indeed, inconsistencies, if any, have been already solved by
the accomplishment of previous updates, which required the insertions of the
same facts that now are entailed by the source-level update.

However, ins N sl facts that do not already have a corresponding ins N
(due to previous updates), may lead to inconsistencies when combined with the
current retrieved ABox. Indeed, consider the case that our current retrieved
ABox contains Book(Eat), and because of a source-level update we have
ins Movie sl(Eat). Note that Book(Eat) is not violating any TBox constraint,
neither applying ins Movie sl(Eat) violates any TBox constraint per se, but the
combination of both violates the TBox disjunction assertion between Book and
Movie.

To solve this situation, we have to delete some ABox facts. This deletion is
exactly the same we do in the case of ontology-level insertions. Thus, we can com-
pute these extra deletions by directly invoking the ontology-level update algo-
rithm given in Sect. 4 (Algorithm 1: ontology-level-Update). Note that del N sl
updates cannot lead to inconsistencies, therefore, they can be omitted when
invoking the ontology-level-Update.

All this behavior is formally shown in Algorithm 2. Given a write-also OBDA
system (〈T ,M,S〉,D), the algorithm takes as input T , M, the requested source-
level update Usl (expressed as ins T Table/del T Table facts3) and D. Also,
it makes use of Datalogsl, the Datalog program encoding the rules discussed
3 These rules can be transparently captured through database triggers.

236 G. De Giacomo et al.

Algorithm 2. source-level-Update(T , M, Usl, D)
1 A+ ← ∅
2 foreach fact ins N sl(t) derived by Datalogsl(T , M) from Usl + D do
3 if ins N(t) ∈ D then remove ins N(t) from D else include N(t) in A+

4 foreach fact del N sl(t) derived by Datalogsl(T , M) from Usl + D do
5 if del N(t) ∈ D then remove del N(t) from D
6 D′ = apply(Usl,D)
7 return ontology-level-Update(T , M, (A+, {}), D′)

above. In the algorithm, apply(Usl,D) indicates the application Usl to the source
database D.

5.2 Incoherent Source-Level Update

When the retrieved ABox insertions are not necessarily coherent with the ontol-
ogy (i.e., they might violate, by themselves, the TBox), we can no longer proceed
as done in Sect. 5.1. In particular, we cannot simply invoke, as in Algorithm 2, the
algorithm ontology-level-Update, since this algorithm requires the input update
to be coherent.

To cope with the above problem, in the following we consider a new kind of
ontology-level update, which we call weakly-coherent, and study it. Intuitively,
a weakly-coherent update is an ABox update whose insertions might directly
contradict the TBox, but that cannot contradict its own deletions. More formally,
given a consistent ontology O = 〈T ,A〉 and an update U = (A+

U ,A−
U), we

say that U is weakly-coherent with T if A−
U ∩ clT (A+

U) = ∅. In other terms,
differently from coherent updates, in weakly-coherent ones we do not require
that Mod(〈T ,A+

U 〉) �= ∅. Note that all updates of the form (A+, ∅), like the
ontology-level updates inferred by source-level ones, which we are analyzing in
this section, are always trivially weakly-coherent.

Then, our idea is to introduce a new operator for ontology-level weakly-
coherent updates, and show that the result of applying such operator can be
easily computed by adapting the previous algorithms and Datalog programs for
coherent updates.

To this aim, in the following we in fact present and discuss two new seman-
tics for updating a consistent ontology with a weakly-coherent update. Similar
to the update semantics given in Definition 1, these new semantics are conse-
quence conservative, that is, they allow to preserve both coherent consequences
of incoherent updates, as well as consistent knowledge inferred by the ontology
before an inconsistent update is performed. We will show that the result of the
update obtained according to the first semantics that we present always con-
tains the result that we obtain with the second semantics, that is, the former is
more conservative than the latter. Thus, we will base our algorithmic solution
for incoherent source-level updates on the second semantics.

Practical Update Management in Ontology-Based Data Access 237

Before proceeding further we need to give some notions. Given an ontology
O = 〈T ,A〉 we denote with HB(O) the Herbrand Base of O, i.e. the set of ABox
facts that can be built over the ontology alphabet NO. Moreover, we introduce
the notion of consistent logical consequences [12] of A with respect to T as the
set clcT (A) = {α | α ∈ HB(O) and there exists A′ ⊆ A such that A′ is T -
consistent, and 〈T ,A′〉 |= α}. Note that, if the ontology A is T -consistent, then
clcT (A) = clT (A).

The new update semantics we are presenting refer to the notion of closed
ABox repair [12] of an inconsistent ontology.

Definition 2. Let T be a TBox and A be an ABox. A closed ABox repair (CA-
repair) of A with respect to T is a T -consistent ABox A′ such that clT (A′) is a
maximal subset of clcT (A) that is T -consistent.

The set of all CA-repairs of an ABox A with respect to T is denoted by
carSetT (A).

Example 1. Consider the TBox T of our running example and the following
ABox:

Ainc = {Movie(Moon), ApprovedBy(Moon,Pit)}.

It is easy to see that the ABox Ainc is not T -consistent, since both Movie(Moon)

and Book(Moon) follows from T and Ainc. The set carSetT (Ainc) contains the
following T -consistent ABoxes:

Ar1 = {Movie(Moon), Reviewer(Pit), Item(Moon)};
Ar2 = {Book(Moon), ApprovedBy(Moon,Pit), Reviewer(Pit), Item(Moon)}. �

Intuitively, our first solution for updating an ontology with a weakly-coherent
update consists in first restoring the consistency of the update with respect to
the TBox, and then proceeding as in the case of coherent update. Since, given
an update U and an ontology O = 〈T ,A〉, there may exist more then one repair
of A+

U with respect to T , we compute a single update by taking the intersection
of all the CA-repairs of A+

U with respect to T , thus following the When In Doubt
Throw It Out (WIDTIO) principle [21].

Definition 3. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology, and let U
be a weakly-coherent update. The operator •1 is the update operator such that
O •1 U = O • Urep, where Urep = (

⋂
Ar

i ∈carSetT (A+
U) clT (Ar

i),A−
U).

We note that Urep actually coincides with the repair of A+
U with respect to

T under the ICAR semantics presented in [12].

Example 2. Let O = 〈T ,A〉 be a DL-LiteA ontology where T is the TBox of
our running example and A is the ABox {Movie(Moon)}. Moreover, let U be the
weakly-coherent update (Ainc, {}), where Ainc is as in Example 1. It is easy
to see that Urep = clT (Ar1 ∩ Ar2) = {Reviewer(Pit), Item(Moon)}. Consequently,
O •1 U = O • Urep = {Movie(Moon), Reviewer(Pit), Item(Moon)}. �

238 G. De Giacomo et al.

The second update semantics follows a different approach. Instead of com-
puting a coherent update by performing the intersection of all the repairs of the
original weakly-coherent update and then using it for updating the ontology as
described in Sect. 4, we first update the ontology with each repair separately, and
then we apply the WIDTIO principle in order to have a single ABox as result.

Definition 4. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology, and let U
be a weakly-coherent update. The operator •2 is the update operator such that
O •2 U = 〈T ,A∩〉 where A∩ =

⋂
Ar

i ∈carSetT (A+
U) clT (O • (Ar

i ,A−
U)).

Example 3. Consider the ontology O and the update U of Example 2. The
update semantics given in Definition 4 requires, for each repair Ari of Ainc

with respect to T , to compute O • Ari. Easily, one can see that:

O • Ar1 = {Movie(Moon), Reviewer(Pit), Item(Moon)}
O • Ar2 = {Book(Moon), ApprovedBy(Moon,Pit), Reviewer(Pit), Item(Moon)}.

Hence, we have that 〈T , A〉 •2 U = clT (O • Ar1) ∩ clT (O • Ar2) = {Reviewer(Pit),
Item(Moon)}. �

The following result determines the relation between the above update semantics.

Theorem 2. Let O = 〈T ,A〉 be a consistent DL-LiteA ontology, and U be an
update possibly inconsistent with T . Then clT (O •2 U) ⊆ clT (O •1 U).

Proof. Let A∩ =
⋂

Ar
i ∈carSetT (A+

U) clT (Ar
i). Toward a contradiction, assume that

clT (O •2 U) �⊆ clT (O •1 U). This means that there is at least one ABox assertion
α ∈ clT (O •2 U) such that α �∈ clT (O •1 U). Only two cases are conceivable.

First case: O |= α. Since α �∈ clT (O •1 U), then there is an assertion β ∈
clT (A∩) such that 〈T , {β}〉 |= ¬α. Since for each Ar

i ∈ carSetT (A+
U) we have

that A∩ ⊆ Ar
i , then β ∈ clT (Ar

i). This means that for each ABox Anew
i =

O • (Ar
i ,A−), β ∈ clT (Anew

i). Therefore β ∈ clT (O •2 U), and 〈T ,O •2 U〉 |= ¬α
which is a contradiction.

Second case: O �|= α. Since α ∈ clT (O•2U), then for each Ar
i ∈ carSetT (A+

U),
and for each Anew

i = O • (Ar
i ,A−), α ∈ clT (Anew

i). Since O �|= α, then for each
Ar

i ∈ carSetT (A+
U), α ∈ Ar

i . Hence, α ∈ clT (A∩) and so 〈T ,O •1 U〉 |= α which
is a contradiction. �

Interestingly, the converse is not true (cf. Examples 2 and 3). As a conse-
quence, we see that the first semantics is more conservative then the second. For
this reason (and for lack of space), in the rest of this paper we focus on the first
semantics and leave the study of the second for future work.

We now turn back to the management of the case in which the ontology
update implied by a source-level update is incoherent. To this aim, we modify
step (2) described in Sect. 5.1. In particular, in step (2) we now identify the
part of the update that is coherent with the TBox, which has to be realized as
before. Also, we repair the remaining part (i.e., the incoherent one) according to
Definition 3, that is, by deriving the deletion of all incoherent inserted facts and

Practical Update Management in Ontology-Based Data Access 239

the insertion of all their coherent consequences. Again, all these computations
can be done with a non-recursive Datalog program.

We note that retrieved ABox deletions are always coherent since they cannot
contradict the TBox, but an insertion is coherent only if it is not paired to an
insertion in a disjoint predicate, or if there is no other insertion that together with
it violates a functional role. To compute this we make use of suitable Datalog
rules. Namely, for each atomic concept A we pose:

ins A coherent(x) :- ins A sl(x),¬ins A1 sl(x),..,¬ins An sl(x),
¬ins P1 sl(x, y1),..,¬ins Pm sl(x, ym),

¬ins Q1 sl(z1, x),..,¬ins Qk sl(zk, x)

where each Ai is an atomic concept such that T |= A � ¬Ai, each Pi is an
atomic role such that T |= A � ¬∃Pi, and each Qi is an atomic role such
that T |= A � ¬∃Q−

i . We proceed similarly for roles. In this case however,
besides disjointnesses, we have also to consider that a role R can be involved
in functionality axioms or can be asymmetric, i.e., R is such that T |= R �
¬R−. Assuming R functional and not involved in any disjointness (both between
concepts and relations), we write the following rules to deal with insertions in R:

ins R coherent(x, y) :- ins R sl(x, y), ¬clash R(x)
clash R(x):- ins R sl(x, y), ins R sl(x, z), y
= z

Note that the above rules are similar in spirit to those used in [13] for query
rewriting.

Next, we deal with the rest of ins N sl, i.e., those that directly contradict a
TBox axiom. For each one of them, we obtain the additional insertions/deletions
that must be effectively performed, according to Definition 3, for both solving
incoherency and preserving consistent consequences. In explaining this step we
consider only inclusions and disjointnesses between atomic concepts. Other forms
of axioms are dealt with in a similar way.

We consider two kinds of Datalog rules. The first kind computes the insertions
(coherent or not) entailed by insertions clashing with the TBox. That is, for each
pair of TBox axioms of the form A1 � A2, A1 � ¬A3 entailed by T we have the
rule:

ins A2 closure(x):-ins A1 sl(x), ins A3 sl(x)

The second kind of rules filters these insertions to apply only those not contra-
dicting the TBox. Concretely, for each atomic concept A, we consider a Datalog
rule with the form:

ins A ol(x):-ins A closure(x), ¬ins A1 sl(x),..,¬ins An sl(x)

where each Ai is an atomic concept such that T |= A � ¬Ai.
Note that we derive a new ontology-level insertion. Indeed, we use such new

insertions to invoke the ontology-level-Update algorithm, which will insert these
new facts while deleting those currently retrieved ABox facts that clashes with
it, so, ensuring the consistency of the ontology. This ontology-level update invo-
cation is performed after applying the source-level update in D, that is, after

240 G. De Giacomo et al.

Algorithm 3. source-level-Update(T , M, Usl, D)
1 A+ ← ∅
2 foreach fact ins N coherent(t) derived by Datalogsl(T , M) from Usl + D do
3 if ins N(t) ∈ D then remove ins N(t) from D else include N(t) in A+

4 foreach fact del N sl(t) derived by Datalogsl(T , M) from Usl + D do
5 if del N(t) ∈ D then remove del N(t) from D
6 // Dealing with incoherent insertions

7 foreach fact ins N ol derived by Datalogsl(T , M) from Usl + D do
8 include N(t) in A+

9 foreach fact del N’(t) derived by Datalogsl(T , M) from Usl + D do
10 if ins N(t) ∈ D then remove ins N(t) from D
11 else insert del N(t) into D
12 D′ = apply(Usl, D)
13 return ontology-level-Update(T , M, (A+, {}), D′)

inserting/deleting each tuple in the ins T Table/del T Table tables in/from the
corresponding T Table.

Finally, we must avoid entailing a clash because of the insertions in the
database. Thus, for each A1 � ¬A2 assertion entailed by the TBox, where each
Ai is a basic concept/role, we consider the rules:

del A1’(x):-ins A1 sl(x), ins A2 sl(x)
del A2’(x):-ins A1 sl(x), ins A2 sl(x)

Intuitively, these rules are only meant to cancel the insertions that cause the
clash. The entire general procedure is described by Algorithm 3. Notice that by
removing rows 6–11, this algorithm is exactly as Algorithm 2, with the proviso
that in line 2 we are using ins N coherent in place of ins N sl. Indeed, in the gen-
eral setting we have to add the treatment of facts ins N ol, and del N’ produced
by the new version of the program Datalogsl(T , M). We conclude by stating
the correctness of the algorithm.

Theorem 3. Let (〈T ,M,S〉,D) be a consistent write-also OBDA system, Usl

an update over D, and Aret = (A+,A−) be the retrieved ABox change derived
by D, π(M), and Usl. Algorithm 3 returns a D′ such that 〈T , ret(M,D)\A−〉•1
(A+, ∅) = ret(M,D′).

Intuitively, the retrieved ABox computed from D′, in turn obtained by Algo-
rithm 3, is equivalent to realizing the ontology-level update (A+, ∅) over the
ontology 〈T , ret(M,D) \ A−〉, i.e., over the original retrieved ABox after delet-
ing A−.

From this theorem we get that computing the result of a source-level update
is in AC0 in data complexity as for ontology-level update.

Practical Update Management in Ontology-Based Data Access 241

6 Conclusion

In this paper we have studied write-also OBDA Systems under ontology-level
and source-level updates. We have shown how to handle both updates through
non-recursive Datalog programs. Such programs can be easily translated into
first-order query languages, and thus we have shown that update computation
in our framework is first-order rewritable. We stress that the techniques proposed
in this paper are ready-implementable and can be adopted by state-of-the-art
tools for OBDA, such as Mastro [6] and Ontop [3]. This will be the subject of
our future work.

Acknowledgments. This work has been partially supported by the Ministerio de
Economia y Competitividad (under project TIN2014-52938-C2-2-R).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
Publ. Co., Reading (1995)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

3. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational
databases. Semantic Web J. 8(3), 471–487 (2017)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

5. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite
knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang,
L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp.
112–128. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17746-0 8

6. Civili, C., Console, M., De Giacomo, G., Lembo, D., Lenzerini, M., Lepore, L.,
Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Santarelli, V., Savo, D.F.: MAS-
TRO STUDIO: managing ontology-based data access applications. Proc. VLDB
Endowment 6(12), 1314–1317 (2013)

7. Giacomo, G., Oriol, X., Rosati, R., Savo, D.F.: Updating DL-Lite ontologies
through first-order queries. In: Groth, P., Simperl, E., Gray, A., Sabou, M.,
Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981,
pp. 167–183. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 11

8. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision,
updates and counterfactuals. Artif. Intell. 57, 227–270 (1992)

9. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.:
Ontology change: classification and survey. Knowl. Eng. Rev. 23(2), 117–152 (2008)

10. Guessoum, A., Lloyd, J.W.: Updating knowledge bases. New Gener. Comput. 8(1),
71–89 (1990)

11. Kakas, A.C., Mancarella, P.: Database updates through abduction. In: Proceedings
of the 16th International Conference on Very Large Data Bases (VLDB), pp. 650–
661 (1990)

http://dx.doi.org/10.1007/978-3-642-17746-0_8
http://dx.doi.org/10.1007/978-3-319-46523-4_11

242 G. De Giacomo et al.

12. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-
tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15918-3 9

13. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query Rewriting
for Inconsistent DL-Lite Ontologies. In: Rudolph, S., Gutierrez, C. (eds.) RR
2011. LNCS, vol. 6902, pp. 155–169. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23580-1 12

14. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the
21st ACM SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems (PODS), pp. 233–246 (2002)

15. Lenzerini, M., Savo, D.F.: Updating inconsistent description logic knowledge bases.
In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI),
pp. 516–521 (2012)

16. Olivé, A.: Integrity constraints checking in deductive databases. In Proceedings of
the 17th International Conference on Very Large Data Bases (VLDB), pp. 513–523
(1991)

17. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Seman-
tics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-77688-8 5

18. Reiter, R.: On specifying database updates. J. Logic Programm. 25(1), 53–91
(1995)

19. Teniente, E., Olivé, A.: Updating knowledge bases while maintaining their consis-
tency. Very Large Database J. 4(2), 193–241 (1995)

20. Urṕı, T., Olivé, A.: A method for change computation in deductive databases.
In: Proceedings of the 18th International Conference on Very Large Data Bases
(VLDB), pp. 225–237 (1992)

21. Winslett, M.: Updating Logical Databases. Cambridge University Press, Cam-
bridge (1990)

http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/10.1007/978-3-642-23580-1_12
http://dx.doi.org/10.1007/978-3-642-23580-1_12
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5

Computing Authoring Tests from Competency
Questions: Experimental Validation

Matt Dennis1,2(B), Kees van Deemter1, Daniele Dell’Aglio1,3, and Jeff Z. Pan1

1 University of Aberdeen, Aberdeen, UK
2 University of Portsmouth, Portsmouth, UK

matt.dennis@port.ac.uk
3 University of Zurich, Zurich, Switzerland

Abstract. This paper explores whether Authoring Tests derived from
Competency Questions accurately represent the expectations of ontology
authors. In earlier work we proposed that an ontology authoring inter-
face can be improved by allowing the interface to test whether a given
Competency Question (CQ) is able to be answered by the ontology at a
given stage of its construction, an approach known as CQ-driven Ontol-
ogy Authoring (CQOA). The experiments presented in the present paper
suggest that CQOA’s understanding of CQs matches users’ understand-
ing quite well, especially for inexperienced ontology authors.

Keywords: Ontology authoring · Competency questions

1 Introduction

Ontology Authoring. Formal ontologies have become a widely accepted vehi-
cle for representing knowledge in a range of domains, where they offer precise
explanations of key terminologies. Many of these ontologies are formulated in
terms of Description Logic (DL, [2]), a family of formalisms based on decidable
fragments of First-Order Logic (FOL).

Examples include the medical SNOMED CT ontology1, and the ontologies
of the Open Biomedical Ontologies Consortium (GO [1], MGED [30]). The W3C
standard Web Ontology Language (OWL 2) uses DLs as its underpinnings.

However, the precision offered by DL comes at a cost. Despite the existence
of sophisticated ontology authoring interfaces such as Protégé [17], users and
developers frequently fail to comprehend important implications of the informa-
tion contained in the ontology [8,24]. In some cases, particular DL constructs
are to blame (such as DL’s use of the universal quantifier); in other cases, the
main difficulty is to combine a large number of individually simple propositions
and to establish their combined reasoning consequences.

Competency Questions and CQOA. These challenges have led to the notion
of a Competency Question (CQ) [12]: a question that, in the opinion of the devel-
oper, the finished ontology should be able to answer. Initially, CQs were mainly
1 Cf. http://www.ihtsdo.org/snomed-ct/.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 243–259, 2017.
DOI: 10.1007/978-3-319-68288-4 15

http://www.ihtsdo.org/snomed-ct/

244 M. Dennis et al.

used as a “pencil and paper” tool for ontology authors (henceforth: authors):
the idea is to encourage authors to formulate a number of CQs at the start of
the authoring process. For example, a CQ for a restaurant domain might ask:
“What is the price of asparagus soup?”. The idea is that listing such CQs can
help to make authors aware of what information they need to encode.

Recently a number of authors have proposed that CQs should become part
of the authoring interface.

One approach, which comes to terms with a particularly wide range of
CQs, was Ren et al.’s [25], where we proposed CQ-driven Ontology Authoring
(CQOA), in which the authoring interface checks continually, during authoring,
which of the CQs are handled correctly by the ontology.

In formalising what it means to handle a CQ correctly, we draw on a key
concept in linguistics, called presupposition (e.g., [18]). A presupposition of a
declarative sentence is a proposition whose truth is a precondition to assessing
the truth or falsity of the sentence: if the presupposition does not hold, the
sentence is neither true nor false. Applied to a question, a presupposition is a
proposition that needs to be true in order for the question to have an answer.
For example, the question “What is the price of the cutlery?”, when asked in a
restaurant, presupposes that cutlery is on sale in that restaurant: if it is not,
then the question cannot be answered. We argued that the idea of a failed
presupposition (i.e., a question presupposing a falsehood) captures what happens
when an ontology is unable to answer a CQ.

[25] contains an empirical study into the kinds of CQs that ontology authors
tend to ask, yielding a set of CQ archetypes, see Table 1 (and their sub-types,
see Table 2). Next, each type of presuppositions was mapped to some Authoring
Tests (ATs), each of which is testable using satisfiability checking or subsumption
checking services in the ALCQ DL. For example, the CQ “Which pizzas contain
chocolate?” (called a Selection Question) triggers the following ATs:

Positive Presupposition: Pizza � ∃contains.Choc is satisfiable
Complement Presupposition: Pizza � ∀contains.¬Choc is satisfiable

The first formula denotes the set of things that are pizzas and contain chocolate.
By using the standard logical notion of satisfiability (e.g., [10]), the Positive Pre-
supposition asserts not simply that the above-mentioned set is non-empty, but
that the ontology permits it to be non-empty (i.e., its emptiness does not follow
logically from the ontology). The second formula denotes the set of things that
are pizzas and do not contain chocolate; the Complement Presupposition asserts
that the ontology permits this set to be non-empty. If both presuppositions hold,
it is possible for the ontology to contain pizzas that contain chocolate and ones
that do not. Complement Presuppositions are less often discussed than Positive
ones (though see e.g., [32]), suggesting that they might be less firmly associ-
ated with the sentences in question; we return to this issue in Sect. 3. CQOA
is potentially powerful because it can help ontology authors to understand, at
every stage of the authoring process, whether each of the CQs that they have
specified is handled correctly by the ontology they are constructing.

Computing Authoring Tests from Competency Questions 245

Use in an Authoring Tool. We are incorporating CQs and the checking of
their presuppositions into an ontology authoring tool. This tool uses a natural
language-like dialogue as the main mode of interaction, using the controlled
natural language OWL Simplified English (OSE) [23].

Fig. 1. Our prototype authoring tool

Figure 1 shows the main panel of the authoring tool, which consists of three
main regions. On the left is a (clickable) presentation of the hierarchy of named
classes in the ontology and a small window which can show a simple verbalisation
of the axioms about a given class. In the centre is a history log, which shows the
whole past dialogue interaction, and an area where the user can compose their
next contribution to the dialogue. The user can choose between using OSE and
using Manchester Syntax for DLs [14].

18 out of the 28 types of CQs identified by [25] have wordings that can
be incorporated into an extension of OSE. Once the CQ has been entered, its
presuppositions are extracted for use as authoring tests. The “task list” (shown
in Fig. 2) is expanded to show the new CQ; the authoring tests coming from the
CQ are shown indented underneath. From then on, the status of the authoring
tests (succeed or fail) from reasoning [22] is indicated by “traffic lights” in front of
the tests. When an authoring action (e.g. adding a new axiom) creates a change
in the status of one or more authoring tests, this is announced in feedback as
part of the main dialogue (the top central panel of Fig. 1). We hope that this
kind of dynamic feedback can help authors to understand their progress.

However, CQOA hinges on the accuracy of the mapping from presupposi-
tions to ATs: it hinges on whether a CQOA system’s understanding of what it
means for a CQ to be “handled correctly” matches the user’s understanding.

246 M. Dennis et al.

Fig. 2. Task list—the CQs are the top level list elements, with their associated ATs
shown below

It is conceivable, for example, that authors who have entered the CQ “Which
pizzas contain chocolate?” are happy with an ontology that defines pizzas as not
containing chocolate. If so, the Complement Presupposition fails, yet the author
might consider the CQ to have been handled correctly: Ren et al.’s mapping
would be wrong. In this paper, we present a series of experiments to investigate
whether the interpretation of CQs embodied in the mapping from presupposi-
tions to ATs is in accordance with users’ understanding.

2 Related Work

Empirical studies of ontology authoring emphasise the complexity of the ontol-
ogy authoring task both for novice and experienced users [9,24]. These studies
suggest that current ontology authoring tools let users control the authoring
process while many users prefer to be guided by the system.

A range of solutions has been proposed. Ontology testing is widely used to pro-
vide feedback to authors on the quality of the ontology. For example, the Rabbit
interface [6] and the Simplified English prototype [23] test for the presence of incor-
rect words and syntactically disallowed structures in the ontology. Protégé [17] and
OntoTrack [19] use reasoners to offer basic semantic checking, testing for inconsis-
tency, for example. Systems such as Roo [7] intend to advise the user of the con-
sequences of an authoring action. Justification engines [19] explain the feedback
given by the system, for example when an inconsistency is detected. Systems such

Computing Authoring Tests from Competency Questions 247

as the OWL Unit Test Framework in Protégé, Tawny-OWL [20] and OntoStudio2

allow users to define unit tests and run these in the authoring environment.
These techniques have difficulty capturing requirements specific to the ontol-

ogy in question. CQOA, by contrast, has the potential of capturing requirements
that are specific to one ontology and one user. Exploiting CQs for ontology
authoring is not a new idea [11,16,27,29]—interesting approaches include the
formalisation of CQs into SPARQL queries [31] or DL queries [21]. An algo-
rithm for checking natural language CQs has been developed by [4]. However,
most of these studies have focused on simple CQs such as “What is . . . ?”, “How
much . . . ?”, and on answering CQs, instead of informing the user which CQs can
be answered, and explaining why this is. An exception is Hofer et al. [13], which
evaluates the coverage of biomedical ontologies by checking whether all termi-
nologies in CQs can be mapped to terminologies in a target biomedical ontology.
The CQOA approach goes further by addressing a wider range of CQs.

With a feature-based framework, Ren et al. [25] identified 12 archetypes of
CQ patterns in their collection (Table 1), where the 2nd and 3rd columns show
the pattern and an example from the corpus. The last four columns show the
primary features of a pattern. Some archetype patterns have sub-types; subtypes
of archetype 1 are shown in Table 2, in which the last three columns are the
secondary features of the subtype.

Table 1. CQ Archetypes (from [25]) (PA= Predicate Arity, RT = Relation Type,
M = Modifier, DE = Domain-independent Element; obj. = object property relation,
data. = datatype property relation, num. = numeric modifier, quan. = quantitative
modifier, tem. = temporal element, spa.= spatial element; CE= class expres-
sion, OPE = object property expression, DP= datatype property, I= individual,
NM = numeric modifier, PE= property expression, QM = quantity modifier)

ID Pattern Example PA RT M DE

1 Which [CE1] [OPE] [CE2]? Which pizzas contain pork? 2 obj.

2 How much does [CE] [DP]? How much does Margherita Pizza

weigh?

2 data.

3 What type of [CE] is [I]? What type of software (API,

Desktop application etc.) is it?

1

4 Is the [CE1] [CE2]? Is the software open source

development?

2

5 What [CE] has the [NM] [DP]? What pizza has the lowest price? 2 data. num.

6 What is the [NM] [CE1] to [OPE]

[CE2]?

What is the best/fastest/most robust

software to read/edit this data?

3 both num.

7 Where do I [OPE] [CE]? Where do I get updates? 2 obj. spa.

8 Which are [CE]? Which are gluten free bases? 1

9 When did/was [CE] [PE]? When was the 1.0 version released? 2 data. tem.

10 What [CE1] do I need to [OPE]

[CE2]?

What hardware do I need to run this

software?

3 obj.

11 Which [CE1] [OPE] [QM] [CE2]? Which pizza has the most toppings? 2 obj. quan.

12 Do [CE1] have [QM] values of [DP]? Do pizzas have different values of

size?

2 data. quan.

2 http://www.semafora-systems.com/en/products/ontostudio/.

http://www.semafora-systems.com/en/products/ontostudio/

248 M. Dennis et al.

Table 2. CQ Sub-types of Archetype 1 (from [25]) (QT = Question Type,
V= Visibility, QP = Question Polarity, sel. = selection question, bin. = binary ques-
tion, cout. = counting question, exp. = explicit, imp. = implicit, sub. = subject,
pre. = predicate, pos. = positive, neg. = negative)

ID Pattern Example QT V QP

1a Which [CE1] [OPE]

[CE2]?

What software can read a .cel file? sel. exp. pos.

1b Find [CE1] with [CE2] Find pizzas with peppers and olives sel. imp. pre. pos.

1c How many [CE1] [OPE]

[CE2]?

How many pizzas in the menu contains meat? cout. exp. pos.

1d Does [CE1] [OPE] [CE2]? Does this software provide XML editing bin. exp. pos.

1e Be there [CE1] with

[CE2]?

Are there any pizzas with chocolate? bin. imp. pre. pos.

1f Who [OPE] [CE]? Who owns the copyright? sel. imp. sub. pos.

1g Be there [CE1] [OPE]ing

[CE2]?

Are there any active forums discussing its use? bin. exp. pos.

1h Which [CE1] [OPE] no

[CE2]?

Which pizza contains no mushroom? sel. exp. neg.

3 Study Design

Our question is whether the interpretation of CQs embodied in the mapping
from presuppositions to ATs is in accordance with users’ understanding.

We conducted a series of three experiments mainly for the ATs of occurrence
and relation satisfiability. Study 1 used a lay audience with participants recruited
from the general population; the ontology and authoring tests were presented in
English. Studies 2 and 3 were run with participants who had some experience
with Description Logics, so the ontology and authoring tests in these experiments
were expressed using DL syntax.

3.1 Participants

Study 1 (English, crowdsourcing). Participants were recruited by Mechan-
ical Turk (www.mturk.com), a crowdsourcing tool. Participants had to have an
approval rate of 90% (i.e. 90% of their work was judged by other requesters as of
good quality) and pass a Cloze test [28] for English fluency. We recruited 54 par-
ticipants (50% male, 50% female; 32% aged 18–25, 57% 26–40, and 11% 40–65).

Study 2 (DL, Summer School). The first of the two experiments related
to the DL version occurred during the 12th Reasoning Web Summer School
(Aberdeen 2016). The event targeted beginner and intermediate DL practition-
ers, such as PhD students and researchers in the Semantic Web area. Of our
15 participants, 86% were male, 14% female. 33% were aged 18–25 and 66%
aged 26–40. 46% of participants were self-assessed novices, 40% were beginners
and 14% reported as having intermediate skills; no participants identified as
experts. The experiment was conducted during a dedicated 60-minute session of
the school. The average time to complete the test was 32 (SD 21) min.

www.mturk.com

Computing Authoring Tests from Competency Questions 249

Study 3 (DL, Conference in China). The second DL-based experiment was
conducted at the CCKS2016 conference, held in China in September 2016. The
conference targeted people interested in learning about semantic technologies; it
contained tutorial sessions about DLs and ontology authoring. The experiment
was conducted after the tutorial, to ensure that participants were able to under-
stand the proposed DL formulae. 67 participants were recruited. 55% were male,
42% were female, and 3% undisclosed. 36% were aged 18–25, 54% 26–40, 7%
41–65, and 3% undisclosed. 61% were self-assessed novices, 22% beginners, 12%
intermediate, 3% experts and 2% undisclosed. The average time to complete the
test was 17 (SD 6) min.

3.2 Materials

Ontology. Given that our interest was not in testing people’s comprehension
of complex ontologies, but in testing the treatment of presuppositions in CQs,
we wanted the ontology to be fairly easy to comprehend, in a domain that many
people understand, while still containing all the phenomena we are interested
in. We therefore created a simple ontology from scratch. The subject was hot
drinks, a topic that many people have a good understanding of. The complete
ontology is shown in Table 3.

Table 3. The ontology, as presented to participants in the DL and in the English
studies reported below.

DL Non DL

1 hasContent ◦ hasContent �
hasContent

The robot understands that things can
‘contain’ other things, and that this is
transitive. Transitive means that, for
example, if flour contains gluten, and
a loaf of bread contains flour, then the
loaf of bread therefore contains gluten

2 Drink ≡ CoffeeDrink � TeaDrink All drinks are coffee drinks or tea
drinks

3 Coffee � ∃hasContent.Caffeine Coffee beans contain caffeine

4 CoffeeDrink ≡
∃hasContent.Coffee

Coffee drinks contain coffee beans

5 TeaDrink ≡ ∃hasContent.Tea Tea Drinks contain tea leaves

6 CoffeeDrink � TeaDrink � ⊥ Nothing can be both a coffee drink
and a tea drink at the same time

7 Cappuccino �
Drink�∃hasContent.SteamedMilk�
∃hasContent.Coffee

A cappuccino is a drink that contains
steamed milk and coffee beans

8 Americano � CoffeeDrink An Americano is a coffee drink

250 M. Dennis et al.

Competency Questions. Seven CQs were used. All but one were judged (via
their authoring tests) to be non-answerable. In other words, the criteria of [25]
assert that the ontology in its current form fails to make all the CQs answerable.
Table 4 shows the CQs, their archetype according to the classification proposed
in [25], and whether they can be answered: if not, a brief explanation is provided.

Table 4. The competency questions proposed to the participants of the study

Competency question Archetype Answ. Reason

1 Which are the coffee drinks? 8 Yes

2 Which coffee drinks contain
caffeine?

1 No All the coffee drinks contain
caffeine

3 Which tea drinks contain
caffeine?

1 No The relation between tea
drinks and caffeine is
undefined

4 Which coffee drinks contain
tea leaves?

1 No No coffee drink contains tea
leaves

5 Which coffee drinks contain
the most caffeine?

11 No The answer cannot be
computed

6 Which drinks contain coffee
beans or tea leaves?

1 No All drinks contain either
beans or tea leaves

7 Which drinks contain coffee
beans and tea leaves?

1 No No drink contains both coffee
beans and tea leaves

Most of the CQs are of archetype 1 (see Table 1)—a realistic design choice,
as this is the most common type of CQ used by human users [25]. CQs 6 and 7
are more complex than 2, 3 and 4, since they exploit logical connectors between
the concepts proposed.

Authoring Tests. Each CQ had a set of ATs associated with it, following the
mapping proposed by Ren and colleagues. We focus on four types (from [25]) of
AT in this paper, with examples shown in Table 5.

ATs of types 1 and 2 assess the presence in the ontology of concepts and
properties, respectively. These tests pass if the concept or property is defined in
the ontology. The example AT of type 1 presented in Table 5 is associated with
CQs 1, 2, 4 and 5 of Table 4; similarly, the AT example of type 2 is associated
with all the CQs except 1.

ATs of types 3 and 4 are Relation Satisfiability tests. They aim at verifying
whether relations between classes are possible. For example, the AT proposed
(in Table 3) for Relation Satisfiability assesses whether a coffee drink can contain
caffeine. If it cannot, the associated CQ is judged to be not answerable.

55 ATs were used in total: 21 fillers (Non-relevant ATs used as an attention
check) and 34 non-fillers. Disregarding fillers, there were 16 of type 1, 6 of type
2, 6 of type 3 and 6 of type 4.

Computing Authoring Tests from Competency Questions 251

Table 5. Authoring test types and examples

Type DL Non DL

1. Occurrence (conc.) CoffeeDrink should
occur in the ontology

A coffee drink should be
defined

2. Occurrence (prop.) hasContent should occur
in the ontology

It must be possible for
something to contain
something

3. Relation
Satisfiability

CoffeeDrink �
∃hasContent.Caffeine
should be satisfiable in the
ontology

It must be possible for a
coffee drink to contain
caffeine

4. Relation
Satisfiability
(complement)

CoffeeDrink �
¬∃hasContent.TeaLeaf
should be satisfiable in the
ontology

It must be possible for a
coffee drink to not contain
tea leaves

3.3 Variables

The independent variable was the type of authoring test. The dependent vari-
able was what we call relevance; this records whether a participant judged an
authoring test to be relevant to a given CQ (i.e., whether the AT expresses a
presupposition of the CQ) or not.

3.4 Procedure

In the DL experiment, we collected information about participants’ experience
in ontology authoring. Next, participants were given a written scenario to read.
The scenario was designed to make sense to people not previously acquainted
with the notion of an ontology, and in such a way that the role of the CQs would
nonetheless be clear. The scenario read as follows:

Costabucks is a hot drinks company. They are creating a robot that can answer
questions from customers about the hot drinks that they sell. The robot’s program-
mers have to tell the robot some facts about hot drinks so that it understands
enough to answer the questions. To do this, the robot’s designers give the robot
“rules” about the world.

Once all of the Customer Questions (CQs) can be answered by the robot, its
knowledge of the coffee menu is considered complete, and it can be used in the
shop.

The programmers are using a special programming tool which allows them
to add possible customer questions to its interface, and the tool can inform them
when the questions are able to be answered by the current set of rules.

To do this, the tool breaks down the questions into several smaller author-
ing tests, which all must be passed in order for the question to be judged as
answerable. The authoring tests are automatically generated by the tool, based
on what the customer question is.

252 M. Dennis et al.

Participants were shown the ontology (set of axioms) shown in Table 3, using
one of the two formats (DL or English). Next, a simple example CQ was shown
and the types of authoring test that could arise from it. The symbols used to
highlight whether the AT ‘passed’ or not were explained. Following this, par-
ticipants were shown the 7 CQs, one by one. For each CQ, participants were
shown the CQ’s associated ATs and asked, in each case, whether they agreed.
Participants could give a reason to explain their judgement if they wished; an
example is shown in Fig. 3. The list of authoring tests also contained certain
non-relevant fillers which served as an attention check, and allowed us to gauge
the ability of participants to understand the task. For example, for the first CQ:
Which are the coffee drinks?, we inserted fillers such as Steamed milk should be
defined and Tea-leaves should be defined, which are not relevant to coffee drinks.

Participants were told that as long as all ATs had passed, the CQ was consid-
ered answerable by the programming tool, and if any ATs were failing, then the
CQ was judged as non-answerable. Participants were asked whether they agreed
with this answerability judgement or not.

Fig. 3. Screenshot of study 2 showing one experimental participant’s judgement of ATs
for one CQ. The participant has so far only addressed the first three ATs. In two cases,
she has offered a reason.

Computing Authoring Tests from Competency Questions 253

3.5 Hypotheses

In order to verify the mappings from presuppositions to the 4 types of ATs from
[25], we formulated the following hypotheses before conducting our experiments.

H1: occurrence ATs are agreed with more often than disagreed with.
H2: satisfiability ATs that focus on a concept mentioned in a CQ are agreed
with more often than disagreed with.
H3: satisfiability ATs that focus on the complement of a concept mentioned
in a CQ are agreed with more often than disagreed with.
H4: satisfiability ATs that focus on a concept mentioned in a CQ are agreed
with more often than satisfiability ATs that focus on the complement of a
concept mentioned in a CQ.

The first three hypotheses are the core of our investigation, making explicit
an expectation inherent in the literature. They assert that these ATs proposed
in [25] are agreed with more often than disagreed with (separating out three
different types of ATs). If linguistic theory is right about presuppositions, then
we would expect to see at least the first two of these hypotheses overwhelmingly
supported. The fourth hypothesis reflects a more tentative expectation, namely
that positive presuppositions are more firmly associated with questions of the
form “Which . . . ” than are complement presuppositions (cf., Sect. 1).

4 Results

Results are given for all participants, followed by participants who successfully
identified at least 50% of the filler ATs (i.e. a 50% filler threshold), and finally
results for those participants who successfully identified at least 66% of filler ATs.
H1, H2 and H3 were assessed by binomial test. Hypothesis H4 was analysed by
a χ2 test of attype (authoring test type)× answer (relevant or not relevant). In
all analyses, a significance threshold of p < .05 was used.

Table 6. Results of study 1 (English, crowdsourcing), showing the percentage of times
an AT of a particular type was marked as relevant. * indicates significance of binomial
test. Here and in Table 5 and 6, Filler thresholds indicate the percentage of filler ATs
that has to be answered correctly to be counted. Thus, the 66% column shows only
results for those who understood ATs quite well, whereas the 0% column shows all.

Filler threshold 0% 50% 66%

AT type Relevant Not relevant Relevant Not relevant Relevant Not relevant

Occurrence (conc) 96% (830) 4% (34)* 97% (482) 3% (14)* 98% (298) 2% (6)*

Occurrence (prop) 91% (296) 9% (28)* 90% (168) 10% (18)* 84% (96) 16% (18)*

Satisfiability (conc) 76% (245) 24% (79)* 82% (152) 18% (34)* 83% (95) 17% (19)*

Satisfiability (comp) 72% (233) 28% (91)* 71% (132) 29% (54)* 72% (82) 28% (32)*

254 M. Dennis et al.

Study 1 (English, crowdsourcing). As shown in Table 6, H1, H2 and H3 are
confirmed with a significant majority of participants agreeing with the generated
authoring tests. H4 is not supported.

Study 2 (DL, Summer school, UK). The results from the first description
logic experiment are shown in Table 7, for filler thresholds 0 and 50%, H1, H2
and H3 are confirmed with a significant majority agreeing with the generated
ATs. However, at a 66% filler threshold, H3 is not supported, with only a small
majority of ‘satisfiability of complement of concept’ ATs being marked as rele-
vant. Once again, H4 is not supported.

Table 7. Results of study 2 (DL, Summer School, UK) showing the percentage of
times an AT of a particular type was marked as relevant. * indicates significance of
binomial test. Bold - non significance

Filler threshold 0% 50% 66%

AT type Relevant Not relevant Relevant Not relevant Relevant Not relevant

Occurrence (conc) 95% (227) 5% (13)* 94% (181) 6% (11)* 96% (108) 4% (4)*

Occurrence (prop) 100% (90) 0% (0)* 100% (72) 0% (0)* 100% (42) 0% (0)*

Satisfiability (conc) 78% (70) 22% (20)* 82% (59) 18% (13)* 93% (39) 7% (3)*

Satisfiability (comp) 64% (58) 36% (32)* 62.5% (45) 37.5% (27)* 55% (23) 45% (19)

Study 3 (DL, Conference in China). The results from the second description
logic experiment are shown in Table 8. As before, H1 and H2 are confirmed for all
filler thresholds, but this time there is no support for H3: as the filler threshold is
increased, more of the ‘satisfiability of complement of concept’ ATs are marked
as non-relevant. For the filler thresholds of 50% and 66% (representing the
DL-logically more capable participants), significant majorities marked these ATs
as non-relevant. For hypothesis H4, a χ2 test of ATtype × answer (for both
types of satisfiability AT) shows this to be significant for all filler thresholds
(0%: χ2 = 31.517, p < 0.001; 50%: χ2 = 44.211, p < 0.001; 66%: χ2 = 34.036,
p < 0.001), hence this hypothesis is confirmed.

Table 8. Results of study 3 (DL, Conference in China) showing the percentage of
times an AT of a particular type was marked as relevant. * indicates significance of
binomial test. Bold - non significance

Filler threshold 0% 50% 66%

AT type Relevant Not relevant Relevant Not relevant Relevant Not relevant

Occurrence (conc) 83% (893) 17% (179)* 82% (499) 18% (109)* 78% (250) 22% (70)*

Occurrence (prop) 86% (347) 14% (55)* 88% (201) 12% (27)* 79% (95) 21% (25)*

Satisfiability (conc) 70% (280) 30% (122)* 74% (168) 26% (60)* 73% (88) 27% (32)*

Satisfiability (comp) 50% (202) 50% (200) 43% (98) 57% (130) 36% (43) 64% (77)*

Computing Authoring Tests from Competency Questions 255

5 Discussion

We have found that occurrence ATs are almost universally agreed with; this was
not surprising, since an ontology that does not define a given concept or relation
is unable to shed light on any CQ containing it. We also found broad agree-
ment that the key concept involved in a Selection Question must be satisfiable.
However, when dealing with the complement of such a concept, participants in
study 3 did not agree that this had to satisfiable. Remarkably (cf., the three
levels of Filler threshold in Table 6), the better a participant was at identifying
relevant ATs, the more this type of ATs was disagreed with. We did not reliably
find this declining pattern with the other DL experiment (study 2, the three
levels of Filler threshold in Table 5); this could be due to the smaller number of
participants or to the type of participants taking part in study 2.

How to explain these findings? Presentation format may have affected CQ
interpretation: when an ontology is presented using DL formulas, a less “nat-
ural language-like” interpretation of CQs (which were themselves formulated in
English in all experiments) may be triggered. It seems possible that participants’
exposure to DL formulas in the DL-based experiments activates in their minds a
literal interpretation of CQs, which has no presuppositions. For example, accord-
ing to this literal interpretation, “Which As have a B?” can have “none of the
As” and “all of the As” as legitimate answers. If this explanation is correct, one
would expect that H2 and H3 are less well supported by the DL experiments
than by the non-DL experiment, which was not the case. Conversely, the reason-
ing above gives one no reason to expect the observed difference between positive
and complement presuppositions. Alternative explanations need to be explored.

It might seem plausible that subjects with more experience using formal
logic are more likely to use a literal interpretation of these formulas, which
has no presuppositions (as explained above). If this is correct, then one should
expect that both H2 and H3 are less well supported by participants with a
high level of expertise in logic than by subjects with a low level of expertise
in logic. To investigate this, we performed a post-hoc analysis on the two DL
experiments. We partitioned participants into two groups - those who reported
their experience as ‘novice’ vs. those reporting as ‘beginner’,‘intermediate’ and
‘expert’ (because only those reporting as novices had no prior DL experience).
We found no significant differences between the two groups. For satisfiability of a
concept, 69% were marked as relevant by the novice group and 73% were marked
as relevant by the others. For satisfiability of the complement of a concept, 52%
of ATs were marked as relevant and 54% for the other group.

A second option is to use the filler ATs (rather than self-reported experience)
as a guide to participants’ expertise. We split the results into three groups - one
for those who identified under 50% of fillers, a second for those who identified
over 50% but under 66%, and a third for those who identified over 66% Table 9.
For both types of AT, a χ2 test of relevant×group was significant (Satisfiability
of Concept: χ2 = 8.955, p < 0.02; Satisfiability of complement of concept: χ2 =
15.053, p < 0.001). Strikingly, the trend differs for the two types of AT. For
satisfiability of a concept, more ATs are marked as relevant as the filler threshold

256 M. Dennis et al.

Table 9. Results of the post-hoc test for authoring test relevance across the three
groups of participants.

Filler group Relevant Not-relevant

Satisfiability (conc) <50% 64% 36%

50–66% 72.5% 27.5%

Over 66% 78% 22%

Satisfiability (comp) <50% 61% 39%

50–66% 56% 44%

Over 66% 41% 59%

is increased. However, for satisfiability of the complement of a concept, the trend
is in the other direction, with fewer of these ATs being marked relevant as the
filler threshold is increased.

6 Conclusions

Our experimental findings suggest that the CQ-driven Ontology Authoring
(CQOA) approach to testing the answerability of a CQ, as embodied in Ren
et al.’s mapping from CQs to ATs, is on the right track: in each of our three
experiments, participants agreed with the way in which this mapping decides
whether a CQ can be answered by a given ontology.

We consider these findings to be an important milestone towards the goal
of improving ontology authoring via CQOA. Our results do not yet prove the
usefulness of CQs for ontology authoring: it is possible that even an authoring
interface that understands perfectly how a user has intended a given set of CQs,
and which uses this understanding to tell the user which CQs have yet to be
addressed, might still not contribute much to the authoring task, for example
because of the manner in which the interface indicates which CQs and ATs have
been met (perhaps the “traffic lights” illustrated in Fig. 2 are not understood
well enough). We hope to do further experiments, to investigate the effect of
CQOA on the speed and accuracy of ontology authoring, and the effect on the
user’s understanding of, and trust in, the ontology they have authored.

Our studies allowed us to flesh out some additional issues. Intriguing ques-
tions arose from the asymmetry between positive and complement presupposi-
tions, particularly among users with higher DL proficiency. While it is easy to see
why these users may have “unlearnt” to assign presuppositions to sentences, it is
more difficult to see why this should hold particularly for complement presuppo-
sitions. These issues should be investigated further, to find out whether CQOA’s
usefulness is different for users with different backgrounds and/or aptitudes.

The literature on Linguistic Pragmatics is rich in theories that formalise what
the presuppositions of a given sentence type are thought to be [3,18], but there
has only been a limited amount of empirical testing of these theories ([26] for an

Computing Authoring Tests from Competency Questions 257

overview; [5,15] for empirical studies). Our findings suggest that the support for
many presuppositions is far from universal, where some were supported by as
few as 36% of participants. In other words, the idea of “determining the presup-
positions of a question” turns out to be a subtle affair. Perhaps the question of
what information is presupposed by a given sentence is a matter of degrees, best
thought of in terms of an expectation that the sentence can raise in the hearer’s
mind, where the strength of this expectation can differ. To vary on a classic
example, suppose someone asks you “Is the king of France bald?”. Traditional
approaches can only say that this question does, or does not, presuppose that
France has a king; perhaps a more graded approach is preferable, which asserts
that the question raises the expectation that France has a king, but the strength
of this expectation can differ in strength between different hearers.

Acknowledgments. This research has been funded by the EPSRC project:
WhatIf: Answering “What if” questions for Ontology Authoring. EPSRC reference
EP/J014176/1.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for
the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

2. Baader, F.: The Description Logic Handbook: Theory, Implementation and Appli-
cations. Cambridge University Press, Cambridge (2003)

3. Beaver, D.: Presupposition. In: van Benthem, J., ter Meulen, A. (eds.) Handbook
of Logic and Language, pp. 939–1009. North Holland, Amsterdam (1997)

4. Bezerra, C., Freitas, F., Santana, F.: Evaluating ontologies with competency ques-
tions. In: IEEE/WIC/ACM International Joint Conference on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 284–285. IEEE (2013)

5. Breheny, R., Katsos, N., Williams, J.: Are generalised scalar implicatures generated
by default? An on-line investigation into the role of context in generating pragmatic
inferences. Cognition 100, 434–463 (2006)

6. Denaux, R., Dimitrova, V., Cohn, A.G., Dolbear, C., Hart, G.: Rabbit to OWL:
ontology authoring with a CNL-based tool. In: Fuchs, N.E. (ed.) CNL 2009.
LNCS (LNAI), vol. 5972, pp. 246–264. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14418-9 15

7. Denaux, R., Thakker, D., Dimitrova, V., Cohn, A.G.: Interactive semantic feedback
for intuitive ontology authoring. In: FOIS, pp. 160–173 (2012)

8. Dzbor, M., Motta, E., Buil, C., Gomez, J.M., Görlitz, O., Lewen, H.: Develop-
ing ontologies in OWL: an observational study. In: OWLED. CEUR Workshop
Proceedings, vol. 216. CEUR-WS.org (2006)

9. Dzbor, M., Motta, E., Gomez, J.M., Buil, C., Dellschaft, K., Görlitz, O., Lewen,
H.: D4.1.1 analysis of user needs, behaviours & requirements wrt user interfaces
for ontology engineering. Technical report, August 2006

10. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, San Diego
(2001)

11. Fernandes, P.C.B., Guizzardi, R.S., Guizzardi, G.: Using goal modeling to capture
competency questions in ontology-based systems. JIDM 2(3), 527 (2011)

http://dx.doi.org/10.1007/978-3-642-14418-9_15
http://dx.doi.org/10.1007/978-3-642-14418-9_15

258 M. Dennis et al.

12. Grueninger, M., Fox, M.: Methodology for the design and evaluation of ontologies.
In: IJCAI Workshop on Basic Ontology Issues in Knowledge Sharing (1995)

13. Hofer, P., Neururer, S., Helga Hauffe, T.I., Zeilner, A., Göbel, G.: Semi-automated
evaluation of biomedical ontologies for the biobanking domain based on compe-
tency questions. Stud. Health Tech. Inform. 212, 65–72 (2015)

14. Horridge, M., Drummond, N., Goodwin, J., Rector, A.L., Stevens, R., Wang, H.:
The manchester OWL syntax. In: OWLed, vol. 216 (2006)

15. Huang, Y.T., Snedeker, J.: On-line interpretation of scalar quantifiers: insight into
the semantic-pragmatics interface. Cogn. Psychol. 58, 376–415 (2009)

16. Keet, C.M., �Lawrynowicz, A.: Test-driven development of ontologies. In: Sack,
H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.)
ESWC 2016. LNCS, vol. 9678, pp. 642–657. Springer, Cham (2016). doi:10.1007/
978-3-319-34129-3 39

17. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plu-
gin: an open development environment for semantic web applications. In: McIl-
raith, S.A., Plexousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
229–243. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30475-3 17

18. Levinson, S.C.: Pragmatics. Cambridge University Press, Cambridge (1983)
19. Liebig, T., Noppens, O.: Ontotrack: a semantic approach for ontology authoring.

Web Semant. Sci. Serv. Agents World Wide Web 3(2), 116–131 (2005)
20. Lord, P.: The semantic web takes wing: programming ontologies with Tawny-OWL.

In: OWLED 2013 (2013). http://www.russet.org.uk/blog/2366
21. Malheiros, Y., Freitas, F.: A method to develop description logic ontologies iter-

atively based on competency questions: an implementation. In: ONTOBRAS, pp.
142–153 (2013)

22. Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL. Artif.
Intell. 235, 95–155 (2016)

23. Power, R.: OWL simplified english: a finite-state language for ontology editing. In:
Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32612-7 4

24. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL pizzas: practical experience of teaching OWL-DL:
common errors & common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A.,
Gibbins, N. (eds.) EKAW 2004. LNCS, vol. 3257, pp. 63–81. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30202-5 5

25. Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., Deemter, K., Stevens, R.: Towards
competency question-driven ontology authoring. In: Presutti, V., d’Amato, C.,
Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol.
8465, pp. 752–767. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6 50

26. Sedivy, J.C.: Implicature during real time conversation: a view from language
processing research. Philos. Compass 2(3), 275–496 (2007)

27. Suárez-Figueroa, M.C., Gómez-Pérez, A.: Ontology requirements specification. In:
Suárez-Figueroa, M., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology
Engineering in a Networked World, pp. 93–106. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-24794-1 5

28. Taylor, W.L.: Cloze procedure: a new tool for measuring readability. Journal. Q.
30, 415–433 (1953)

29. Uschold, M., Gruninger, M., et al.: Ontologies: principles, methods and applica-
tions. Knowl. Eng. Rev. 11(2), 93–136 (1996)

http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-319-34129-3_39
http://dx.doi.org/10.1007/978-3-540-30475-3_17
http://www.russet.org.uk/blog/2366
http://dx.doi.org/10.1007/978-3-642-32612-7_4
http://dx.doi.org/10.1007/978-3-540-30202-5_5
http://dx.doi.org/10.1007/978-3-319-07443-6_50
http://dx.doi.org/10.1007/978-3-642-24794-1_5
http://dx.doi.org/10.1007/978-3-642-24794-1_5

Computing Authoring Tests from Competency Questions 259

30. Whetzel, P.L., Parkinson, H.E., Causton, H.C., Fan, L., Fostel, J., Fragoso, G.,
Game, L., Heiskanen, M., Morrison, N., Rocca-Serra, P., Sansone, S., Taylor, C.F.,
White, J., Stoeckert, C.J.: The MGED ontology: a resource for semantics-based
description of microarray experiments. Bioinformatics 22(7), 866–873 (2006)

31. Zemmouchi-Ghomari, L., Ghomari, A.R.: Translating natural language compe-
tency questions into SPARQL queries: a case study. In: The First International
Conference on Building and Exploring Web Based Environments, WEB 2013, pp.
81–86 (2013)

32. Zuber, R., Zuber, R.: Non-declarative Sentences. John Benjamins Publishing,
Amsterdam (1983)

Matching Web Tables with Knowledge Base
Entities: From Entity Lookups to Entity

Embeddings

Vasilis Efthymiou1(B), Oktie Hassanzadeh2, Mariano Rodriguez-Muro2,
and Vassilis Christophides3

1 ICS-FORTH & University of Crete, Heraklion, Greece
vefthym@ics.forth.gr

2 IBM Research, New York, USA
3 INRIA Paris-Rocquencourt, Paris, France

Abstract. Web tables constitute valuable sources of information for
various applications, ranging from Web search to Knowledge Base (KB)
augmentation. An underlying common requirement is to annotate the
rows of Web tables with semantically rich descriptions of entities pub-
lished in Web KBs. In this paper, we evaluate three unsupervised anno-
tation methods: (a) a lookup-based method which relies on the minimal
entity context provided in Web tables to discover correspondences to
the KB, (b) a semantic embeddings method that exploits a vectorial
representation of the rich entity context in a KB to identify the most rel-
evant subset of entities in the Web table, and (c) an ontology matching
method, which exploits schematic and instance information of entities
available both in a KB and a Web table. Our experimental evaluation
is conducted using two existing benchmark data sets in addition to a
new large-scale benchmark created using Wikipedia tables. Our results
show that: (1) our novel lookup-based method outperforms state-of-the-
art lookup-based methods, (2) the semantic embeddings method outper-
forms lookup-based methods in one benchmark data set, and (3) the lack
of a rich schema in Web tables can limit the ability of ontology matching
tools in performing high-quality table annotation. As a result, we pro-
pose a hybrid method that significantly outperforms individual methods
on all the benchmarks.

1 Introduction

A large amount of data is published on the World Wide Web as structured
data, embedded in HTML pages. A study by Cafarella et al. [9] estimated that
Google’s index of English documents contains 154 million high-quality relational
tables, which constitute a valuable source of facts about real-world entities (e.g.,
persons, places, products). On the other hand, a great variety of real-world
entities are described on the Web as Linked Data. Only the English version of

V. Efthymiou—Work done while at IBM Research.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 260–277, 2017.
DOI: 10.1007/978-3-319-68288-4 16

Matching Web Tables with Knowledge Base Entities 261

Fig. 1. (a) An example of a Web table describing countries ranked by population (b)
parts of two of those countries’ descriptions from Wikidata.

DBpedia [8] describes 6.2M entities using 1.1B triples, including 1.6M persons,
800K places, 480K works (e.g., films, music albums), 267K organizations, 293K
species, and 5K diseases.

In this paper, we study the problem of interpreting the rows of Web tables
and matching them to semantically rich descriptions of entities published in Web
KBs. Web table annotation [20,23] (or interpretation [25,39]) is a prerequisite
for a number of applications, such as Web table search [6,35] or KB augmen-
tation [11,13,29,30,37,38]. We focus only on the evaluation of instance-level
matching (table rows to KB entities) and leave the evaluation of schema-level
matching (table columns to KB properties) outside the scope of this work.

Example 1. Figures 1(a) and (b) contain the descriptions of countries, as they
can be found in a Web table and in Wikidata [4]. The header row (in gray
color), gives the property names of the described entities. Each row in the
table describes a real-world entity (e.g., the second row describes China), and
each column contains the value of the corresponding property, e.g., (“Popula-
tion”, “1,377,516,162”), (“Capital”, Beijing)1. Graph-based descriptions of the
same entities are available in the KB, e.g., China is described by node Q148,
which is of type country (node Q6256) and has a label “People’s Republic of
China”. Entity Q148 (China) is related with Q956 (Beijing) by the property P36
(capital).

There are several key challenges in Web table annotation:

1. The types of the entities described in a table are not known in advance,
and the entities described may correspond to more than one type in the

1 This model is only applicable to horizontal relational tables, leaving out vertical
tables such as Wikipedia infoboxes. Turning vertical tables to horizontal, identifying
sub-tables, grouped columns, etc. are challenges beyond the scope of this work.

262 V. Efthymiou et al.

target KB. Most of the entities described in the table of Fig. 1(a), can uniquely
be matched to an entity of type country in Wikidata. However, there are
some exceptions. For example, “China” is also the name of a city in Japan
(Q932423) and a city in Texas (Q288864)2. Also, “Falkland Islands” is of type
“British overseas territory” and not “country” according to Wikidata.

2. Which columns should be used to check for correspondences may differ from
one table row to another. In our example, column “Country” can be used
to uniquely identify the names of the entities described in the table. How-
ever, some of the values are not unique: e.g., “Congo” in rows 16 and 122,
corresponds to two neighbor countries, namely the Democratic Republic of
the Congo, and the Republic of the Congo. To successfully match entities, we
need to compare descriptions using a variable subset of columns/properties
per entity (e.g., “Country” only is enough for most rows, but for Congo,
“Country” and “Capital” are required).

3. The names of an entity described both in a Web table and in a KB, may sig-
nificantly differ. This implies that high string similarity of entity labels does
not provide sufficient matching evidence and additional information, such as
relations to other entities, might be needed as well. For example, the entity
described in row 26 of Fig. 1(a) has name “Burma” (the old name of the
country), which is different from label “Myanmar” used in Wikidata. How-
ever, those descriptions can be matched, based on their capital Naypyidaw,
which has the same name both in Wikidata and the table.

Clearly, the quality of the entity mapping process depends on the richness
of the context (e.g., types, names, relationships) exploited to establish the map-
pings between Web tables and KBs. In this work, we benchmark three alterna-
tive unsupervised approaches for matching entities whose contextual information
may vary from poor (in Web tables) to rich (in KBs).

First, we examine a lookup-based method, which exploits the columns of the
Web tables recognized as entity names. It essentially detects correspondences
using the minimal contextual information available in Web tables, which is then
refined (based on frequently occurring terms in entity descriptions) or enriched
(by exploiting relationships with other entities) with respect to the context of
entities available in the KB. In the opposite direction, we can exploit a semantic
embeddings method that exploits a vectorial representation of the rich entity
context in a KB to identify the most relevant subset of entities in the Web table.
In-between, we explore an ontology matching approach, which exploits schematic
and instance information of entities available both in a KB and a Web table.

In summary, the contributions of our work are as follows:

– We experimentally evaluate the effectiveness of different Web table annotation
methods on gold standards exhibiting different data characteristics (varying
number of rows and columns, the existence of related entities, etc.).

2 Note that although the column header may indicate the right type for the column
contents, the majority of tables on the Web have missing or obscure headers [6].

Matching Web Tables with Knowledge Base Entities 263

– We provide a new Web table annotation gold standard, which is the largest in
the literature (by 3 orders of magnitude in the number of tables and 2 orders
of magnitude in the number of rows and provided matches), while it contains
the greatest diversity on Web table sizes in both rows and columns. We show
that this gold standard is more challenging than other gold standards used
in this field, due to its structure, diversity, and size.

– We introduce a novel lookup-based method that exploits entity relations and
frequent words in the values of entity descriptions, outperforming the accu-
racy of state-of-the-art lookup method by up to 15% in F-score.

– We propose a hybrid method for Web table annotation, which outperforms
existing methods on all benchmarks, by up to 16% in F-score, while it is able
to discover up to 14% more annotations than the individual methods it is
composed of.

Outline. In what follows, we first discuss the scope of our study and position our
work in the literature (Sect. 2). In Sect. 3, we introduce the three classes of anno-
tation methods. In Sect. 4, we present our experimental evaluation using existing
gold standards, as well as our Wikipedia-based gold standard, and finally, we
conclude our paper in Sect. 5.

2 Background and Related Work

In this section, we position our work in the literature, with respect to the different
tasks on which the Web table annotation problem is decomposed. While there
has been some remarkable work on supervised Web table annotation (e.g., [7,23,
32]), here we focus on unsupervised and scalable methods, which do not require
training sets of annotated tables, or any kind of human interaction (e.g., [18]).
Our motivation for this focus is our use case in designing a fully unsupervised
and generic cloud API, making no assumptions about the input corpus and
availability of training data. Our aim is not an exhaustive evaluation of every
possible method, such as supervised (e.g., [7,23,32]) or less scalable (e.g., [19])
methods.

Interpretation of Web tables. Our goal is to map each Web table row to an
entity described in a KB, unlike related works [7,23,39] treating individual cells
as entities. The attribute values for an entity described in a row, are given by
the contents of the cells for each column of the row, following the definition of
entity descriptions in the Web of data as sets of attribute-value pairs [10].

Label column detection. The vast majority of Web tables contain a column,
whose values serve as the names of the described entities [6]. Rather than super-
vised learning [6], we rely on a heuristic method: the label column is defined as
the leftmost column with the maximum number of distinct (non-numeric) val-
ues [28]. In other words, the label of an entity (given by the label column) is the
most important attribute of an entity (described as a table row).

264 V. Efthymiou et al.

Lookup. Recent works follow an iterative approach between instance- and
schema-level refinements, until convergence. The first step for such refinements
is to look up the contents of the label column in a KB index and get a list of
first, unrefined candidate matches. For instance, Ritze et al. [28] use the DBpedia
lookup service [1], while Zhang [39] uses the Freebase lookup service as baselines.
In our experiments, we also use the unrefined results of DBpedia lookup as a base-
line. In our lookup-based approach, we use our own generic search index over
Wikidata entities that we refer to as FactBase. Another interesting approach is
to use a trained text classifier to extract the entity types from the snippets of
Google search results, given the content of the cell which has been inferred to
contain the entity name [27].

Relations extraction. Relationships between entities described in the same
row of a Web table can be induced by a probabilistic model built from a Web doc-
ument corpus and natural language processing [6,30]. Our relationship extrac-
tion method is inspired by Venetis et al. [35], which consults an isA database
and a relations database to identify binary relations in Web tables. Instead, we
exploit the information contained in the target KB, and the unambiguous entity
mappings that have been already identified.

Ontology matching and link discovery tools. There is a large body of
work on Ontology Matching [33]. LogMap [22] is a logic-based tool for matching
semantically rich ontologies. It iteratively explores new correspondences, based
on a first list of lexicographically and structurally similar entities and the ontolo-
gies’ class hierarchies, which are then searched for logical inconsistencies. It has
been evaluated as one of the best and most efficient publicly available ontology
matching tools [12]. PARIS [34] is an iterative probabilistic tool, that defines
a normalized similarity score between the entities described in two ontologies,
representing how likely they are to match. This similarity depends on the simi-
larity of their neighbors, and is obtained by first initializing the scores on literal
values, and then propagating the updates through a relationship graph, using
a fixed point iteration. We have chosen these tools based on their popularity
and availability, while we are planning to extend our experiments with other
ontology matching tools such as RiMOM-IM [31] and SERIMI [5], which have
also shown good results in the recent OAEI [2] benchmarks.

Link discovery tools (e.g., [26,36]) have a similar goal, but their applicability
to our problem is limited as they require linkage rules that are manually-specified,
or learned from training data [21].

Entity matching context. T2K [28] annotates Web tables by mapping their
columns to DBpedia properties, and their rows to DBpedia entities, associating
the whole table with a DBpedia class. The initial candidate instance mappings
stem from a lexicographical comparison between the labels used in the table
and those of the entities described in DBpedia, which allows a first round of
property mapping. The results of property mapping can then be used to refine
the instance mappings, and this process continues until convergence. Our lookup-
based method uses a similar candidate generation phase, and then exploits entity

Matching Web Tables with Knowledge Base Entities 265

types, relations and frequent terms in the descriptions of candidate matches to
refine or even expand the candidate matches.

TableMiner [39] maps columns to ontology classes and single cells to enti-
ties, following a two-phase process. In the first sampling phase, it searches for
candidate matches, which are ranked based on similarity computations using
the contents of the table, as well as the page title, surrounding paragraphs and
table caption. Then, it scans the table row-by-row, until a dynamic confidence
value for the type of each column has been reached. In the second phase, it uses
the class mappings of the first phase to refine the candidate instance mappings.
Although new candidate matches can be provided in the second phase, conver-
gence is usually reached from the first iteration. We use a similar sampling phase
to detect the entity types in a table (using the label column).

Gold standards. T2D [28] consists of a schema-level gold standard of 1,748
Web tables, manually annotated with class- and property-mappings, as well as
an entity-level gold standard of 233 Web tables. Limaye [23] consists of 400 man-
ually annotated Web tables with entity-, class-, and property-level correspon-
dences, where single cells (not rows) are mapped to entities. We have adapted
the corrected version of this gold standard [7] to annotate rows with entities,
from the annotations of the label column cells. Finally, Bhagavatula et al. [7]
use a gold standard extracted from 3,000 Wikipedia tables, using the hyperlinks
of cells to Wikipedia pages. In this paper, we introduce a new, instance-level gold
standard from 485K Wikipedia tables, the biggest that exists in the literature,
in which we use the links in the label column to infer the annotation of a row to
a DBpedia entity. Overall, those gold standards exhibit a variety in their sizes,
existence of relations, and sparseness, helping us show how these characteristics
affect the quality of different annotation methods.

3 Matching Algorithms

In this section, we describe three different individual methods for the problem
of Web table annotation, as well as a hybrid solution, built on them.

3.1 Lookup Method

The lookup-based method tries to match the poor information for entities offered
by Web tables to the rich information offered for those entities in a KB. In order
to search for the closest possible result in the KB to the contents of a Web table,
it uses a lookup service on the target KB.

Refined lookup. In this baseline, we keep the type of the top lookup result for
each label column cell in a first scan of the table and then store the top-5 most
frequent types for each column as acceptable types3. Then, we perform a second
lookup, but this time, we restrict the results to those of an acceptable type.
3 We assume entities described in the same column to be of the same conceptual type,

which can be expressed by different OWL classes, not considering class hierarchies.

266 V. Efthymiou et al.

We select the top result from the refined lookup as the annotation of each row.
This method tries to increase the cohesiveness of the results, by filtering lookup
results which do not fit well with the rest. As an example, consider that many
lookup results are returned for the query “China”, but we only want to restrict
our results to those of an acceptable type (e.g., country, populated place).

FactBase lookup. The lookup method that we introduce, identifies and exploits
frequent terms in the description of an entity, as well as entity relations. We build
on a generic indexing mechanism over a KB with IDs and textual descriptions,
and call the generated index FactBase. FactBase offers a lookup service, allowing
the retrieval of entities with a specific label, or any given attribute-value pair.
The pseudocode of FactBase lookup can be found in Algorithm1.

Algorithm 1. FactBase lookup.
Data: Table T
Result: Annotated table T ′

1 T ′ ← T ;
2 allTypes ← ∅ ; /* a multiset of types */

3 descriptionTokens ← ∅ ; /* a multiset of tokens */
/* samplePhase */

4 labelColumn ← getLabelColumn(T);
5 referenceColumns ← getReferenceColumns(T);
6 for each row i of T do
7 label ← T.i.labelColumn;
8 results ← search(label);
9 if results.size > 0 then

10 topResult ← results.get(0);
11 allTypes.addAll(topResult.getTypes());
12 tokens ← topResult.getDescriptionTokens();
13 descriptionTokens.addAll(tokens);
14 if results.size = 1 then
15 annotate(T ′.i, topResult);
16 for each column j of referenceColumns do
17 v ← T.i.j;
18 if topResult.containsFact(a,v) then /* v is the value of a relation a */
19 candidateRelations.add(j,a);
20 acceptableTypes ← allTypes.get5MostFrequent();
21 descriptionTokens ← descriptionTokens.getMostFrequent();
22 for each column j of referenceColumns do
23 relations[j] ← candidateRelations.get(j).getFirst();

/* annotation phase */
24 for each row i of T do
25 if isAnnotated(T ′.i) then continue;
26 label ← T.i.labelColumn;
27 results ← search strict(label, acceptableTypes, descriptionTokens);
28 if results.size > 0 then
29 topResult ← results.get(0);

30 annotate(T ′.i, topResult);
31 continue ; /* go to the next row */

32 for each column j in relations do
33 r ← relations[j];
34 results ← search loose(label,r,T.i.j);
35 if results.size > 0 then
36 topResult ← results.get(0);

37 annotate(T ′.i, topResult);
38 break ; /* go to the next row */

Matching Web Tables with Knowledge Base Entities 267

We perform a first scan of the Web table similar to the refined lookup method
(Lines 6−19). In addition to frequent types, in this method, we also extract the
most frequent words, excluding stopwords, used in the values of rdfs:description.
Another feature that we extract in the first scan, is the set of binary relations
between the entity described in a table row and entities mentioned in the same
row, as part of its description (Lines 16−19). To identify binary relations, we
build on the observation that when the lookup result is unique, it is in most cases
a correct annotation. For the unique results, we further examine if any of their
attribute-value pairs have the same value with any of the cells of the current row
marked as entity references. If that is the case, then we add the attribute of the
attribute-value pair as a candidate binary relation expressed by the column of
this cell. After a small number of agreements on the same attribute for a column
(5 agreements in our experiments), we use this attribute as the final extracted
relation expressed in this column. Finally, we use the unique lookup result for a
row as the annotation of this row, skipping the next phase (Lines 15, 25).

After the first scan, many rows are now annotated with a unique lookup
result4. For the rest of the rows, either many results were returned, i.e., a more
fine-grained lookup is needed (disambiguation), or no results were returned, so
a more coarse-grained lookup is needed. For the first case, we perform a new,
refined lookup (search strict), restricting the results to those of an acceptable
type, having one of the most frequent tokens in their rdfs:description values, if
applicable (Lines 28 − 31). For the second case, we perform a new, looser lookup
(search loose) in the labels, allowing a big margin of edit distance (Levenshtein),
restricting the results to have in their facts one of the binary relations that we
have extracted (Lines 32 − 38). Allowing a big margin of edit distance offers a
tolerance to typos, nicknames, abbreviations, etc., while relating to the same,
third entity, in the same way (i.e., using the same relationship) is a positive
evidence for two entities to match [15]. The final annotation is the lookup result
with the most similar label.

For example, in Fig. 1, if many results for the query term “China” are
returned, we keep those with an acceptable type (e.g., country, populated place)
and having the most frequent words (e.g., “country”, “state”) in their descrip-
tion. If no results are returned for the query “China”, then we perform a new
query, restricting the results to only those whose capital is called “Beijing”, even
if their label is not exactly “China”, but something as close to that as possible.

3.2 Entity Embeddings Method

The approach we now describe is a variation of a linking approach for text disam-
biguation. We considered this approach promising for table annotation because
its core hypothesis is compatible with the task. The technique is an instance
of a family of techniques called global disambiguation techniques, which assume
that the entities that appear in sentences or paragraph tend to form coherent

4 We assume that some of the results will be unique, but this is not a requirement. If
it holds, it only speeds up the process and helps in identifying binary relations.

268 V. Efthymiou et al.

Fig. 2. Disambiguation graph for two terms. China candidates are the country or the
city. Edges stand for the topic similarity score between the candidate objects.

sets with respect to the topic being discussed in the text. For example, consider
two terms, China and Beijing, as shown in Fig. 2. There are two candidates for
China, either the city or the country. However, a global approach would anno-
tate “China” with the country (Q148) because it has a stronger connection to
the city of Beijing (Q956). This assumption also applies to entities described in
tables, where columns are usually strongly typed, and hence coherent at least
with respect to types and topics.

We base our work on the global disambiguation technique used in the DoSeR
framework [40], where similarity between entities is computed as the cosine dis-
tance between their vector representations. These vectors, called embeddings, are
a continuous-space representation of the entities in the target KB (e.g., DBpe-
dia), that capture the structure of the neighborhood of each node. In DoSeR,
embeddings are computed using word2vec [24], an embedding algorithm for text
that is known for its performance and scalability in computing embeddings for
words. While graphs are clearly different than text, e.g., they have no clear start
or end, DoSeR uses a novel approach to apply word2vec that has shown good
results in terms of scalability and performance of the resulting embeddings. We
will now describe this approach and the way we apply it for table disambiguation,
which we divide in two stages, off-line and a on-line.

During the off-line stage, we first create a surface form index that maps each
entity e of the KB to a set of known names for the entity m(e). It is collected from
properties in the KB that are known to contain common names for entities, e.g.,
rdfs:label, skos:altLabel, etc. In the case of DBpedia, we also use the property
dbo:wikiPageWikiLinkText, which contains the anchor text used in Wikipedia to
refer to the wiki page of e. Second, we compute entity embeddings using word2vec
as follows: given the target KB, we generate a text document d by performing a
random walk over the neighborhood of each entity in the KB and at each step of
the walk, we append the visited node URIs to d. The resulting text document d
is now used as input to word2vec which produces the embeddings for all words
(node URIs) in the corpus in the standard way.

During the on-line stage, we use the embeddings and the surface form index
to annotate tables. We consider only columns with text values, and regard each
string value as an entity mention e. Then, given a set of entity mentions E, we
annotate each entity e ∈ E as follows. First, we create a disambiguation graph
where the set of vertices V is the union of all candidates entities m(e) (obtained
from the surface form index) for all mentions e ∈ E. For each pair for vertices
v1, v2 ∈ V such that the vertices are not candidates for the same mention, i.e.,
there is no e ∈ E such that v1, v2 ∈ m(e), we add a weighted directed edge

Matching Web Tables with Knowledge Base Entities 269

(v1, v2, etp(v1, v2)), where etp(v1, v2) is the normalized cosine similarity between
the embeddings emb(v1), emb(v2) of v1, v2, respectively, computed as follows:

etp(v1, v2) =
cos(emb(v1), emb(v2))∑
k∈V cos(emb(v1), emb(k)

.

Finally, we create an assignment for each node by applying a weighted PageRank
algorithm [40] that allows us to compute the relevance of each node. We use 50
iterations for PageRank and select the nodes with the highest score from the set
of candidates for each mention.

3.3 Ontology Matching Method

In this section, we briefly describe an ontology matching framework for anno-
tating Web tables. Our framework provides the required input to any ontology
matching tool, resulting in Web table annotations. Our candidate mapping selec-
tion enables even the less scalable ontology matching tools to provide annotations
to large-scale KBs. For this approach, we require the existence of a header row,
since each cell of this row defines the name of a property, and the cell of the label
column in the header row defines the name of the table’s class. For more details
and preliminary results of this method, please refer to our previous work [17].

TBox. The values of an entity description can be literals, i.e., the column prop-
erty is a datatype property, or references to other entities, i.e., the column prop-
erty is an object property. We distinguish them by a pre-processing scan of the
table and by sampling the data types of each column. To identify columns with
entity references, we perform a small number of lookups in FactBase using the
first few values from this column, if we have not already assigned it a numeric
or date type. If most of those lookups return any result, we mark this column
as an object property. The same scan also identifies the label column.

ABox. We perform a second scan, in which we create a new instance of the
table class for each row. The label and URI suffix assigned to each instance are
determined by the label column cell. The values of this instance for the property
of each column, are the cell contents of this row for the respective column.

In Fig. 1, the header row defines the class of the table, Country, and the
properties Population, Capital, and Date, all having the domain Country. Capital
is an object property with range Capital. For the first row of the table in Fig. 1,
we create an instance of the class Country, having the label “China”, the value
1,377,516,162 for the property Population, the value Beijing for the property
Capital, and the value 09-22-2016 for the property Date.

Blocking. To enable ontology matching tools that do not scale well be applicable
in this framework, and to improve the efficiency of matching tools that do scale,
we have applied a pre-processing step of candidate mappings selection, known
as blocking [10]. Specifically, we retain only the DBpedia instances whose labels
have at least one common token with the labels of our ontology’s instances.

Finally, we call an ontology matching tool with the table ontology and the
DBpedia ontology after blocking, as input, and return the mapping results.

270 V. Efthymiou et al.

3.4 Hybrid

We introduce two simple hybrid methods, to explore the benefits of combining
FactBase lookup and embeddings, in the following way:

Hybrid I. If FactBase lookup provides a mapping for the entity of a row, then
this hybrid method keeps this mapping. Otherwise, it uses the annotation pro-
vided by the embeddings for this row, if one exists.

Hybrid II. Same as Hybrid I in inverse order, i.e., using the embeddings first,
before FactBase lookup.

The motivation is that individual methods handle different aspects of the
contextual information that is offered in Web tables. As our experiments show,
where one approach fails to perform correct annotations, the other approach
often succeeds. This approach can only improve the recall of its first component
(i.e., FactBase lookup for Hybrid I and embeddings for Hybrid II), since it returns
all the annotations of the first component, plus additional annotations from the
second component, if the first fails.

4 Experiments

Settings. For our experiments, we use MapReduce for annotating and eval-
uating multiple tables in parallel, and a key-value store as our index. We do
not report run times for each experiment as they depend on the cluster con-
figuration and other settings. Our experiments on smaller datasets take only
a few minutes on our cluster of 16 medium-sized nodes, while experiments on
larger datasets take several hours to finish. Our FactBase index implementation
uses a 2016 dump of Wikidata, with entities linked to corresponding DBpedia
entities. Hence, FactBase lookup results using gold standards annotated with
older versions of DBpedia may slightly underestimate its accuracy. The datasets
generated or used are made publicly available [16] along with implementation
details: http://ibm.biz/webtables.

4.1 Datasets

In our experiments, we use three gold standards, whose characteristics are sum-
marized in Table 1. Rows per table show the min, max and average number of
rows per table in each gold standard. The same holds for columns per table. For
the number of tables featuring entity relations, we applied the relation detection
method from FactBase lookup. For a measure of cell completeness, we use struc-
turedness as defined in [14]. In this context, we compute the percentage of cells
in a table that are not empty (or “NULL” or “-”), as the structuredness of a
table. Then, the overall structuredness of a gold standard is a weighted sum of
each table’s structuredness, where the weight of each table is based on its sum
of columns and rows, normalized by the total sum of columns and rows in this
gold standard. Intuitively, a structuredness value of 1 indicates that no cells are
empty and 0 structuredness represents that all cells are empty.

http://ibm.biz/webtables

Matching Web Tables with Knowledge Base Entities 271

Table 1. Characteristics of the gold standards. All are made publicly available [16].

Name Tables Rows Matches Rows per

table (av.)

Columns per

table (av.)

Tables with

relations

Structuredness

T2D 233 28,647 26,124 6 - 586 (123) 3 - 14 (4.95) 108 (46%) 0.97

Limaye 296 8,670 5,278 6 - 465 (29) 2 - 6 (3.79) 78 (26%) 0.59

Wikipedia 485,096 7,437,606 4,453,329 2 - 3,505 (15) 1 - 76 (5.58) 24,628 (5%) 0.85

T2D [3] consists of 233 Web tables, manually annotated with instances from
the 2014 version of DBpedia. It has the highest average number of rows per table
(123), and the highest ratio of tables with relations (46%). It is also the gold
standard with the highest structuredness (0.97), meaning that very few cells are
empty in this corpus.

The updated version of the Limaye gold standard [23] published by
Bhagavatula et al. [7], annotates cells with Wikipedia pages. We have replaced
Wikipedia annotations with the corresponding entities from the October 2015 ver-
sion of DBpedia. To make this gold standard applicable to our model, we have kept
only one annotation per row, the one assigned to the cell of the label column, in
296 Web tables for which a label column could be detected. This is the gold stan-
dard with the lowest number of columns per table on average (3.79), still, one out
of four tables (26%) contains entity relations. Due to a big number of empty cells,
it presents the lowest structuredness (0.59), while it also contains a big number of
empty rows. Missing data have a negative impact in the quality of the annotations
for some systems, such as T2K. This dataset could not be used in the evaluation of
ontology matching methods, as it misses header rows, thus no meaningful property
and class names could be created for a table ontology.

Finally, we have created our own Wikipedia gold standard, by extracting
the hyperlinks of existing Wikipedia tables to Wikipedia pages, which we have
replaced with annotations to the corresponding entities from the October 2015
version of DBpedia. Since the header rows in Wikipedia tables are not linked to
properties, our gold standard does not contain schema-level mappings. For the
needs of our experiments, we only consider one mapping per row to evaluate the
different methods, using the annotations for the label column. This gold standard
is much more noisy than the other two, as it contains unannotated rows, multi-
column and multi-row cells, which we split and replicate to avoid empty cells,
and cells whose contents are entity labels with additional information for an
entity (e.g., the cell “George Washington February 22, 1732 - December 14,
1799 (aged 67)”, refers to George Washington), which makes the annotation
task more difficult, as such labels are very dissimilar to the corresponding entity
labels in a KB. Finally, even if the average number of rows (15) is much smaller
than in the other two gold standards, we note that it contains almost 800 tables
with more than 1,000 rows and the largest table consists of 3.5K rows. This gold
standard contains the lowest ratio of tables with detected relations (only 5%),
while it exhibits the highest average number of columns per table (5.58). Its
structuredness is high (0.85), thus, only a few cells are empty.

272 V. Efthymiou et al.

4.2 Evaluation

In Table 2, we present the experimental results over the three gold standards,
with respect to micro-averaged recall, precision, and F-score. The micro-averaged
values over a set of tables are acquired by using the sums of true positives, false
positives, true negatives and false negatives from each table, as if they were a
single test. Different methods are separated by double horizontal lines.

Table 2. Results over T2D, Limaye, and Wikipedia Gold Standards.

Method T2D gold standard Limaye gold standard Wikipedia gold standard

Re Pr F1 Re Pr F1 Re Pr F1

DBpedia lookup 0.73 0.79 0.76 0.73 0.79 0.76 - - -

DBpedia refined 0.76 0.86 0.81 0.68 0.73 0.71 - - -

T2K 0.76 0.90 0.82 0.63 0.70 0.66 0.22 0.70 0.34

FactBase lookup 0.78 0.88 0.83 0.78 0.84 0.81 0.50 0.70 0.58

Embeddings 0.77 0.86 0.81 0.65 0.84 0.73 0.53 0.70 0.60

Blocking 0.71 0.32 0.44 - - - 0.39 0.16 0.23

LogMap 0.57 0.89 0.70 - - - 0.29 0.34 0.32

PARIS 0.04 0.42 0.07 - - - - - -

Hybrid I 0.83 0.87 0.85 0.79 0.84 0.81 0.57 0.66 0.61

Hybrid II 0.81 0.85 0.83 0.79 0.84 0.82 0.60 0.69 0.64

Results over T2D Gold Standard. As the results in Table 2 show, a sim-
ple DBpedia lookup without any schema-level refinements has very good results,
verifying the numbers reported in [28]. Moreover, the DBpedia lookup refined is
almost as good as state-of-the-art methods. FactBase lookup is the overall win-
ner in this gold standard, having a slightly better recall than T2K (+2%) and a
slightly worse precision (−2%). The embeddings are also better than T2K with
respect to recall (+1%), but worse overall (−1% in F-score), showing almost the
same results as the DBpedia lookup refined baseline. The almost perfect struc-
turedness value of T2D provides the ideal conditions for methods that exploit all
the columns of a table for their annotations, such as T2K.

The ontology matching tools exhibit much worse results, mainly in recall. For
a fair comparison between the methods, we have included the results of blocking,
which the ontology matching tools use as input. It is important to note that the
recall of blocking is the upper recall threshold that an ontology matching tool can
achieve and in this case, it is already lower than the recall of the other methods.
Still, the difference between the recall of blocking and the recall of LogMap [22]
(−14%) and PARIS [34] (−73%), is substantial. Most ontology matching tools
are not designed to provide mappings between such heterogeneous ontologies
with respect to the information richness and diversity they contain, like the ones
we produce. The number of attributes (i.e., columns) used to describe entities in
a Web table are quite different than the respective information in the ontology of

Matching Web Tables with Knowledge Base Entities 273

a KB. Efthymiou et al. [15] show that an average entity description in DBpedia
uses 11.44 attributes, whereas the number of attributes used in a Web table
corpus is typically between 4 and 6 (Table 1). Furthermore, Duan et al. [14] show
that unlike Web tables, KBs such as DBpedia are of very low structuredness.

The effectiveness of lookup-based methods heavily relies on the lookup service
that is employed. Thus, lookup-based annotations could be used as an evalua-
tion of such services. For example, when substituting DBpedia lookup with an
unrefined version of FactBase lookup, the results were 0.57 recall, 0.62 precision,
and 0.59 F-measure, as opposed to the T2D results for the DBpedia lookup (0.73
recall, 0.79 precision, and 0.76 F-measure). This shows that the DBpedia lookup
service is much better than the FactBase lookup service, as FactBase lookup is
still in the development phase. This difference is observed, mainly due to the
different ranking of the results in those two services. DBpedia lookup service
exploits the in-degree of entities in its returned rankings, whereas the lookup
service of FactBase only considers the label similarity to the query.

Results over Limaye Gold Standard. As shown in Table 2, FactBase lookup
outperforms other approaches with a difference of +8% in F-score from the sec-
ond best technique, the embeddings, even if they are both tied at the highest
precision. The difference in recall from the second best method DBpedia lookup
is +5%. As we can see in Table 1, even if this gold standard contains more
tables than T2D, the number of rows in those tables is significantly lower. Thus,
methods that rely on a sampling phase (e.g., FactBase lookup), or on a set of
coherent results (e.g., embeddings), perform worse than in datasets with bigger
tables, which is also the reason why DBpedia lookup performs better than DBpe-
dia refined in this gold standard. Nonetheless, even if this gold standard contains
small and sparse tables (0.59 structuredness), there is a decent percentage (26%)
of tables with entity relations, which FactBase lookup can exploit to achieve a
much better performance than embeddings. The recall values of DBpedia lookup
and DBpedia lookup refined are close to those of embeddings, while the latter
show a much better precision. Due to the missing rows in this gold standard,
T2K may disregard some tables as of low quality. It may also detect a differ-
ent label column than the one FactBase lookup detects. This also explains the
worse performance of T2K compared to DBpedia lookup. FactBase lookup yields
a 15% higher F-score than T2K, showing that it can better handle tables of low
structuredness, i.e., with many missing values.

Results over Wikipedia Gold Standard. As shown in Table 2, the embed-
dings show the best results for the Wikipedia gold standard, with FactBase
lookup following (−4% in F-score) with worse recall (−6%) and equally good
precision. Ontology matching is again worse than the other methods, even from
the step of blocking (we excluded PARIS from this experiment given its poor
performance on T2D). As expected, the results presented in this table are much
worse than the other two gold standards, which can be justified by the nois-
iness of this dataset, as explained in Sect. 4.1. Noisiness seems to favor the

274 V. Efthymiou et al.

embeddings over the other methods, since it can better handle ambiguous men-
tions to entities in a textual context. Another challenge in this gold standard is
the small number of rows, which makes it more difficult for FactBase lookup and
embeddings to have a decent sample for type refinements and relations extrac-
tion, and provide a set of coherent results, respectively. For the same reason, due
its strict matching policy favoring precision over recall - at least 50% of the rows
must be mapped to KB entities of the same type - T2K managed to annotate
only 119K out of the 485K Web tables, resulting in a very low recall, presenting
an overall performance close to that of LogMap. DBpedia lookup could not be
applied to this gold standard, as the public server hosting it could not handle
such a large amount of queries.

Hybrid Methods. As shown in Table 2, the hybrid methods seem to improve
the results of their constituent methods, by enhancing recall, with a minor impact
on precision. In T2D, Hybrid I exhibits an important improvement of the quality
results over either of its constituent methods. Its recall is 5% better than that
of FactBase lookup, while its precision is only 1% lower, resulting in a 2% higher
F-score. Hybrid II is also better than its constituent methods, but slightly worse
than Hybrid I. In T2D, the individual methods that constitute the hybrid have a
76% Jaccard similarity in the table rows that they annotate correctly, while their
recall values are very close. An ideal solution that always chooses the correct
annotation among the annotations provided by those methods would yield a
recall of 0.88 for T2D.

In the Limaye gold standard, the benefit of using a hybrid method is not as
significant as in T2D, but it is still the best-performing method. This is due to
the fact that FactBase lookup performs much better than the embeddings, so the
latter has little to offer in their combination. Still, the recall of their combination
is better than that of FactBase lookup by 1% and the precision is the same as
that of both methods (0.84). The two hybrid methods are almost identical, with
Hybrid II showing a slightly better F-score (+1%). Again, the Jaccard similarity
of correctly annotated rows in the constituent methods is 75%, while an ideal
combination of those methods would yield a recall of 0.81.

In the Wikipedia gold standard, the hybrid methods significantly outperform
the individual methods, as both of the constituent methods have a good precision
and modest recall, which is the ideal case for such hybrids. Intuitively, in such
cases the first constituent method has given only few annotations, still they
are mostly correct. Thus, it has skipped to annotate many rows, which can be
annotated by the second constituent method, mostly with a correct KB entity
(good precision). Specifically, the recall of Hybrid II is better than that of the
embeddings (+7%), while its precision is worse by only 1%, yielding an F-score
that is 4% better than the embeddings. The difference to the FactBase lookup
results is even bigger (+10% recall and +6% F-score). Hybrid II is much better
than Hybrid I (+3% F-score) in this gold standard, since it exploits the better
performance of embeddings.

Matching Web Tables with Knowledge Base Entities 275

Lessons Learned. The following are the key lessons learned from our results:
(1) Both FactBase lookup and embeddings work better with tables of many rows.
In tables with few rows (less than 5), embeddings provide better annotations than
FactBase lookup. (2) When the Web tables contain entity relations, FactBase
lookup provides the best annotation results. (3) Embeddings can cope with noise
in the string similarity of labels better than the other methods. (4) Most ontology
matching tools are not suited to match a flat ontology to another which has a
rich structure. (5) Hybrid methods work better when the constituent methods
have modest recall and good precision.

5 Conclusion and Future Work

In this paper, we performed a thorough evaluation of three different families
of methods to annotate Web tables, and discussed key lessons learned from
our experiments. We introduced a new benchmark and a hybrid approach that
outperforms individual methods by up to 16% in F-score. In the future, we plan
to expand our evaluation of ontology matching tools and propose a new track for
the upcoming OAEI campaign to encourage the community to use and extend
ontology matching tools as knowledge base population systems.

Acknowledgments. We would like to thank the authors of T2K [28], LogMap [22],
and TabEL [7] (TabEL results not included in our experiments as it was not yet func-
tional at the time of writing this manuscript, missing some custom resources.) for
sharing their code and their assistance.

References

1. DBpedia Lookup. http://wiki.dbpedia.org/projects/dbpedia-lookup. Accessed 27
July 2017

2. Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org/.
Accessed 27 July 2017

3. T2D Gold Standard for Matching Web Tables to DBpedia. http://
webdatacommons.org/webtables/goldstandard.html. Accessed 27 July 2017

4. Wikidata. http://www.wikidata.org. Accessed 27 July 2017
5. Araújo, S., Tran, D.T., de Vries, A.P., Schwabe, D.: SERIMI: class-based matching

for instance matching across heterogeneous datasets. IEEE TKDE 27(5), 1397–
1440 (2015)

6. Balakrishnan, S., Halevy, A.Y., Harb, B., Lee, H., Madhavan, J., Rostamizadeh,
A., Shen, W., Wilder, K., Wu, F., Yu, C.: Applying webtables in practice. In: CIDR
(2015)

7. Bhagavatula, C.S., Noraset, T., Downey, D.: TabEL: entity linking in web tables.
In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srini-
vas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 425–441. Springer, Cham (2015). doi:10.1007/
978-3-319-25007-6 25. http://websail-fe.cs.northwestern.edu/

http://wiki.dbpedia.org/projects/dbpedia-lookup
http://oaei.ontologymatching.org/
http://webdatacommons.org/webtables/goldstandard.html
http://webdatacommons.org/webtables/goldstandard.html
http://www.wikidata.org
http://dx.doi.org/10.1007/978-3-319-25007-6_25
http://dx.doi.org/10.1007/978-3-319-25007-6_25
http://websail-fe.cs.northwestern.edu/

276 V. Efthymiou et al.

8. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia - a crystallization point for the web of data. JWS 7(3), 154–165
(2009)

9. Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: explor-
ing the power of tables on the web. PVLDB 1(1), 538–549 (2008)

10. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of
Data. Morgan & Claypool Publishers, San Rafael (2015)

11. Dalvi, B.B., Cohen, W.W., Callan, J.: WebSets: extracting sets of entities from the
web using unsupervised information extraction. In: WSDM (2012)

12. Daskalaki, E., Flouris, G., Fundulaki, I., Saveta, T.: Instance matching benchmarks
in the era of linked data. Web Semant. Sci. Serv. Agents World Wide Web 39, 1–14
(2016)

13. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: KDD (2014)

14. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a com-
parison of RDF benchmarks and real RDF datasets. In: SIGMOD (2011)

15. Efthymiou, V., Stefanidis, K., Christophides, V.: Big data entity resolution: from
highly to somehow similar entity descriptions in the web. In: IEEE Big Data (2015)

16. Efthymiou, V., Hassanzadeh, O., Rodrguez-Muro, M., Christophides, V.: Evaluat-
ing Web Table Annotation Methods: From Entity Lookups to Entity Embeddings.
figshare (2017). https://doi.org/10.6084/m9.figshare.5229847

17. Efthymiou, V., Hassanzadeh, O., Sadoghi, M., Rodriguez-Muro, M.: Annotating
web tables through ontology matching. In: OM (2016)

18. Fan, J., Lu, M., Ooi, B.C., Tan, W., Zhang, M.: A hybrid machine-crowdsourcing
system for matching web tables. In: ICDE (2014)

19. Guo, X., Chen, Y., Chen, J., Du, X.: ITEM: extract and integrate entities from
tabular data to rdf knowledge base. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf,
M.A. (eds.) APWeb 2011. LNCS, vol. 6612, pp. 400–411. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20291-9 45

20. Hassanzadeh, O., Ward, M.J., Rodriguez-Muro, M., Srinivas, K.: Understanding a
large corpus of web tables through matching with knowledge bases: an empirical
study. In: OM (2015)

21. Isele, R., Bizer, C.: Learning expressive linkage rules using genetic programming.
PVLDB 5(11), 1638–1649 (2012)

22. Jiménez-Ruiz, E., Grau, B.C.: LogMap: logic-based and scalable ontology match-
ing. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-25073-6 18

23. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. PVLDB 3(1), 1338–1347 (2010)

24. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

25. Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables.
In: COLD (2010)

26. Ngomo, A.C.N., Auer, S.: LIMES - a time-efficient approach for large-scale link
discovery on the web of data. In: IJCAI (2011)

27. Quercini, G., Reynaud, C.: Entity discovery and annotation in tables. In: EDBT
(2013)

28. Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to DBpedia. In: WIMS
(2015)

https://doi.org/10.6084/m9.figshare.5229847
http://dx.doi.org/10.1007/978-3-642-20291-9_45
http://dx.doi.org/10.1007/978-3-642-25073-6_18

Matching Web Tables with Knowledge Base Entities 277

29. Ritze, D., Lehmberg, O., Oulabi, Y., Bizer, C.: Profiling the potential of web tables
for augmenting cross-domain knowledge bases. In: WWW (2016)

30. Sekhavat, Y.A., Paolo, F.D., Barbosa, D., Merialdo, P.: Knowledge base augmen-
tation using tabular data. In: LDOW (2014)

31. Shao, C., Hu, L., Li, J., Wang, Z., Chung, T.L., Xia, J.: RiMOM-IM: a novel
iterative framework for instance matching. J. Comput. Sci. Technol. 31(1), 185–
197 (2016)

32. Shen, W., Wang, J., Luo, P., Wang, M.: LIEGE: link entities in web lists with
knowledge base. In: KDD (2012)

33. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE TKDE 25(1), 158–176 (2013)

34. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic align-
ment of relations, instances, and schema. PVLDB 5(3), 157–168 (2011).
http://webdam.inria.fr/paris/

35. Venetis, P., Halevy, A.Y., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G.,
Wu, C.: Recovering semantics of tables on the web. PVLDB 4(9), 528–538 (2011)

36. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - a link discovery framework
for the web of data. In: LDOW, April 2009

37. Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In:
Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 141–155.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34002-4 11

38. Yakout, M., Ganjam, K., Chakrabarti, K., Chaudhuri, S.: InfoGather: entity aug-
mentation and attribute discovery by holistic matching with web tables. In: SIG-
MOD (2012)

39. Zhang, Z.: Towards efficient and effective semantic table interpretation. In: Mika,
P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P.,
Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 487–502.
Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 31

40. Zwicklbauer, S., Seifert, C., Granitzer, M.: DoSeR - a knowledge-base-agnostic
framework for entity disambiguation using semantic embeddings. In: Sack, H.,
Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.)
ESWC 2016. LNCS, vol. 9678, pp. 182–198. Springer, Cham (2016). doi:10.1007/
978-3-319-34129-3 12

http://webdam.inria.fr/paris/
http://dx.doi.org/10.1007/978-3-642-34002-4_11
http://dx.doi.org/10.1007/978-3-319-11964-9_31
http://dx.doi.org/10.1007/978-3-319-34129-3_12
http://dx.doi.org/10.1007/978-3-319-34129-3_12

Learning Commonalities in SPARQL

Sara El Hassad, François Goasdoué(B), and Hélène Jaudoin

IRISA, Univ. Rennes 1, Lannion, France
{sara.el-hassad,fg,helene.jaudoin}@irisa.fr

Abstract. Finding the commonalities between descriptions of data or
knowledge is a foundational reasoning problem of Machine Learning. It
was formalized in the early 70’s as computing a least general generaliza-
tion (lgg) of such descriptions. We revisit this well-established problem
in the SPARQL query language for RDF graphs. In particular, and by
contrast to the literature, we address it for the entire class of conjunc-
tive SPARQL queries, a.k.a. Basic Graph Pattern Queries (BGPQs), and
crucially, when background knowledge is available as RDF Schema onto-
logical constraints, we take advantage of it to devise much more precise
lggs, as our experiments on the popular DBpedia dataset show.

Keywords: BGP queries · RDF · RDFS · Least general generalization

1 Introduction

Finding the commonalities between descriptions of data or knowledge is a fun-
damental Machine Learning problem, which was formalized in the early 70’s as
computing a least general generalization (lgg) of such descriptions [21]. Since
then, it has also received consideration in the Knowledge Representation field,
where least general generalizations were rebaptized least common subsumers [5],
in Description Logics [1,5,14,27] and in Conceptual Graphs [3]. More recently,
this problem started being investigated in RDF [7,9] and its associated SPARQL
query language [2,10,16], the two prominent Semantic Web standards by W3C.

Motivations. We study this old reasoning problem in the SPARQL setting
(contributions to be outlined shortly), i.e., when input descriptions are SPARQL
queries. Solutions to this problem can be applied to a variety of useful impor-
tant applications, ranging from optimization to exploration and recommenda-
tion in RDF data management systems or in SPARQL endpoints. For instance,
an lgg of incoming queries characterizes the largest set of their commonali-
ties whose processing may be shared in multi-query optimization [15]. Similarly,
lggs of subsets of a query workload correspond to candidate views that may
be recommended for materialization in view selection [11], a typical optimiza-
tion for data warehouses [6], and among which can be selected those that allow
rewriting (partially or totally) the workload while minimizing a combination of
rewriting processing, view storage and view maintenance costs. Also, clustering
user queries found in system logs, based on their lggs, may help classifying the
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 278–295, 2017.
DOI: 10.1007/978-3-319-68288-4 17

Learning Commonalities in SPARQL 279

queries and identifying the kind of data each category accesses [4]. Finally, finding
the relevant user query cluster for an incoming query may help recommending
similar and complementary searches [13].

Contributions. We bring the following contributions to the problem of finding
an lgg of SPARQL queries:

1. We carefully study a novel notion of lgg for the popular conjunctive frag-
ment of SPARQL (Sect. 3), a.k.a. Basic Graph Pattern Queries (BGPQs).
Our definition, which we briefly outlined in [10], significantly departs from
the literature by (i) considering general BGPQs, instead of unary tree-shaped
ones [2,16], and crucially by (ii) taking advantage of background knowl-
edge formalized as RDF Schema (RDFS) ontological constraints. Further-
more, to establish this definition of an lgg, we revise the standard general-
ization/specialization relation (a.k.a. entailment) between BGPQs in order
to devise a well-founded entailment relation that allows comparing BGPQs
w.r.t. extra RDFS constraints, i.e., the counterpart to subsumption between
concepts w.r.t. a terminology in Description Logics and to containment
between queries w.r.t. constraints in Databases.

2. We provide a solution to the above problem (Sect. 4), which technically differs
from the state of the art [2,16] in that it cannot exploit the (imposed) tree-
shape of the input BGPQs to compute their lgg through a simultaneous
root-to-leaves traversal. Instead, our solution traverses blindly the general
(hence arbitrary-shaped) input BGPQs and builds their lgg using the notion
of least general anti-unification of atoms [21,23], which is dual to the well-
known notion of most general unification of atoms [22,23]. Also, to take into
account background knowledge, we define a well-founded notion of saturation
of BGPQs w.r.t. extra RDFS constraints, which we devise inspired by that of
RDF graphs.

3. We report on experiments made to assess the added-value of considering
background knowledge when computing lggs of BGPQs (Sect. 5). Notably,
we use real data from DBpedia to show how much more precise lggs are when
background knowledge is considered, by measuring the gain in precision it
yields.

Organization. Following the presentation of [8–10], we first recall the basics of
RDF and SPARQL in Sect. 2. Then, we detail the above contributions. Finally,
we discuss related work and conclude in Sect. 6.

Supplementary material (proofs of our technical results, implemented
algorithms, additional experiments, etc) is available in our online research
report [8].

2 Preliminaries

2.1 The Resource Description Framework (RDF)

RDF Graphs. The RDF data model allows specifying RDF graphs. An RDF
graph is a set of triples of the form (s, p, o). A triple states that its subject s

280 S.E. Hassad et al.

Table 1. RDF & RDFS statements.

RDF statement Triple

Class assertion (s, rdf:type, o)

Property assertion (s, p, o) with p �= rdf:type

RDFS statement Triple

Subclass (s, rdfs:subClassOf, o)

Subproperty (s, rdfs:subPropertyOf, o)

Domain typing (s, rdfs:domain, o)

Range typing (s, rdfs:range, o)

Table 2. Sample RDF entailment rules.

Rule [25] Entailment rule

rdfs2 (p, ←↩d, o), (s1, p, o1) → (s1, τ, o)

rdfs3 (p, ↪→r, o), (s1, p, o1) → (o1, τ, o)

rdfs5 (p1, �sp, p2), (p2, �sp, p3) → (p1, �sp, p3)

rdfs7 (p1, �sp, p2), (s, p1, o) → (s, p2, o)

rdfs9 (s, �sc, o), (s1, τ, s) → (s1, τ, o)

rdfs11 (s, �sc, o), (o, �sc, o1) → (s, �sc, o1)

ext1 (p, ←↩d, o), (o, �sc, o1) → (p, ←↩d, o1)

ext2 (p, ↪→r, o), (o, �sc, o1) → (p, ↪→r, o1)

ext3 (p, �sp, p1), (p1, ←↩d, o) → (p, ←↩d, o)

ext4 (p, �sp, p1), (p1, ↪→r, o) → (p, ↪→r, o)

b ”LGG in SPARQL”

ConfPaper hasContactAuthor b1

Publication hasAuthor Researcher

hasTitle

τ

�sc

τ

�sp

↪→r←↩d

↪→r←↩d

hasContactAuthor
hasAuthor

τ

Fig. 1. Sample RDF graph G.

b

b2

Publication

hasTitle

τ

Fig. 2. Sample RDF graph G′.

has the property p, the value of which is the object o. Triples are built using
three pairwise disjoint sets: a set U of uniform resources identifiers (URIs), a
set L of literals (constants), and a set B of blank nodes allowing to support
incomplete information. Blank nodes are identifiers for missing values (unknown
URIs or literals). Well-formed triples, as per the RDF specification [24], belong
to (U ∪ B) × U × (U ∪ L ∪ B); we only consider such triples hereafter.

Notations. We use s, p, o in triples as placeholders. We note Val(G) the set
of values occurring in an RDF graph G, i.e., the URIs, literals and blank nodes;
we note Bl(G) the set of blank nodes occurring in G. A blank node is written b
possibly with a subscript, and a literal is a string between quotes. For instance,
the triples (b,hasTitle), “LGG in SPARQL” and (b,hasContactAuthor, b1) mean:
something (b) entitled “LGG in SPARQL” has somebody (b1) as contact author.

A triple models an assertion, either for a class (unary relation) or for a
property (binary relation). Table 1 (top) shows the use of triples to state such
assertions. The RDF standard [24] provides built-in classes and properties, as
URIs within the rdf and rdfs pre-defined namespaces, e.g., rdf:type which
can be used to state that the above b is a conference paper with the triple
(b, rdf:type,ConfPaper).

Learning Commonalities in SPARQL 281

Adding Ontological Knowledge to RDF Graphs. An essential feature
of RDF is the possibility to enhance the descriptions in RDF graphs by
declaring ontological constraints between the classes and properties they use.
This is achieved with RDF Schema (RDFS) statements, which are triples
using particular built-in properties. Table 1 (bottom) lists the allowed con-
straints and the triples to state them; domain and range denote respec-
tively the first and second attribute of every property. For example, the
triple (ConfPaper, rdfs:subClassOf,Publication) states that conference papers
are publications, the triple (hasContactAuthor, rdfs:subPropertyOf,hasAuthor)
states that having a contact author is having an author, the triple
(hasAuthor, rdfs:domain,Publication) states that only publications may have
authors, and the triple (hasAuthor, rdfs:range,Researcher) states that only
researchers may be authors of something.

Notations. For conciseness, we use the following shorthands for RDFS built-in
properties: τ for rdf:type, �sc for rdfs:subClassOf, �sp for rdfs:subPropertyOf,
←↩d for rdfs:domain, and ↪→r for rdfs:range.

Figure 1 displays the usual representation of the RDF graph G made of the
seven above-mentioned triples, which are called the explicit triples of G. A triple
(s, p, o) corresponds to a p-labeled directed edge from the s node to the o node:
s

p−→ o. Explicit triples are shown as solid edges, while the implicit ones, which
are derived using ontological constraints (see below), are shown as dashed edges.

Importantly, it is worth noticing the deductive nature of ontological con-
straints, which begets implicit triples within an RDF graph. For instance, in
Fig. 1, the constraint (hasContactAuthor,�sp,hasAuthor) together with the
triple (b,hasContactAuthor, b1) imply the implicit triple (b,hasAuthor, b1),
which, further, with the constraint (hasAuthor, ↪→r,Researcher) yields another
implicit triple (b1, τ,Researcher).

Deriving the Implicit Triples of an RDF Graph. The RDF standard
defines a set of entailment rules in order to derive automatically all the triples
that are implicit to an RDF graph. Table 2 shows the strict subset of these rules
that we will use to illustrate important notions as well as our contributions in the
next sections; importantly, our contributions hold for the entire set of entailment
rules of the RDF standard, and any subset of thereof. The rules in Table 2 concern
the derivation of implicit triples using ontological constraints (i.e., RDFS state-
ments). They encode the propagation of assertions through constraints (rdfs2,
rdfs3, rdfs7, rdfs9), the transitivity of the �sp and �sc constraints (rdfs5,
rdfs11), the complementation of domains or ranges through �sc (ext1, ext2),
and the inheritance of domains and of ranges through �sp (ext3, ext4).

The saturation (or closure) of an RDF graph G w.r.t. a set R of RDF entail-
ment rules (a.k.a. entailment regime) is the RDF graph G∞ obtained by adding
to G all the implicit triples that follow from G and R. Roughly speaking, the satu-
ration G∞ materializes the semantics of G. It corresponds to the fixpoint reached
by repeatedly applying the rules in R to G in a forward-chaining fashion, while
adding to G the triples they derive. In RDF, the saturation is finite, unique (up to
blank node renaming), and can be computed in polynomial time [25].

282 S.E. Hassad et al.

The saturation of the RDF graph G shown in Fig. 1 corresponds to
the RDF graph G∞ in which all the G implicit triples (dashed edges) are
made explicit (solid edges). It is worth noting how, starting from G, apply-
ing RDF entailment rules mechanizes the construction of G∞. For instance,
recall the reasoning sketched above for deriving the triple (b1, τ,Researcher).
This is automated by the following sequence of applications of RDF entail-
ment rules: (hasContactAuthor,�sp,hasAuthor) and (b,hasContactAuthor, b1)
trigger rdfs7 that adds (b,hasAuthor, b1) to the RDF graph. In turn, this
new triple together with (hasAuthor, ↪→r,Researcher) triggers rdfs3 that adds
(b1, τ,Researcher).

Comparing RDFGraphs. The RDF standard defines a generalization/special-
ization relationship between two RDF graphs, called entailment between graphs.
Roughly speaking, an RDF graph G is more specific than another RDF graph G′,
or equivalently G′ is more general than G, whenever there is an embedding of G′ into
the saturation of G, i.e., the complete set of triples that G models.

More formally, given any subset R of RDF entailment rules, an RDF graph G
entails an RDF graph G′, denoted G |=R G′, iff there exists an homomorphism
φ from Bl(G′) to Val(G∞) such that [G′]φ ⊆ G∞, where [G′]φ is the RDF graph
obtained from G′ by replacing every blank node b by its image φ(b).

Figure 2 shows an RDF graph G′ entailed by the RDF graph G in Fig. 1
w.r.t. the entailment rules displayed in Table 2. In particular, G |=R G′ holds
for the homomorphism φ such that: φ(b) = b and φ(b2) = “LGG in SPARQL”.
By contrast, when R is empty, this is not the case (i.e., G �|=R G′), as the
dashed edges in G are not materialized by saturation, hence the G′ triple
(b, τ,Publication) cannot have an image in G through some homomorphism.

Notations. When relevant to the discussion, we designate by G |=φ
R G′ the fact

that the entailment G |=R G′ holds due to the graph homomorphism φ. Also,
when RDF entailment rules are disregarded, i.e., R = ∅, we note the entailment
relation |= (without indicating the rule set at hand).

Importantly, from the definition of entailment between two RDF graphs
[24,25], the following holds:

Property 1. Given two RDF graphs G,G′ and a set R of RDF entailment rules,
(i) G and G∞ are equivalent (G |=R G∞ and G∞ |=R G hold), noted G ≡R G∞,
and (ii) G |=R G′ holds iff G∞ |= G′ holds.

From a practical viewpoint, Property 1 points out that checking G |=R G′ can
be done in two steps: a reasoning step that computes the saturation G∞ of G,
followed by a standard graph homomorphism step that checks if G∞ |= G′ holds.

2.2 SPARQL Conjunctive Queries

Basic Graph Pattern Queries. The well-established conjunctive fragment of
SPARQL queries, a.k.a. Basic Graph Pattern queries (BGPQs), is the counter-
part of the select-project-join queries for databases; it is the most widely used
subset of SPARQL queries in real-world applications [19].

Learning Commonalities in SPARQL 283

A Basic Graph Pattern (BGP) is a set of triple patterns, or simply triples by
a slight abuse of language. They generalize RDF triples by allowing the use of
variables. Given a set V of variables, pairwise disjoint with U , L and B, triple
patterns belong to: (V ∪ U ∪ B) × (V ∪ U) × (V ∪ U ∪ L ∪ B).

Notations. We adopt the usual conjunctive query notation q(x̄) ← t1, . . . , tα,
where {t1, . . . , tα} is a BGP. The head of q, noted head(q), is q(x̄), and the body of
q, noted body(q), is the BGP {t1, . . . , tα} the cardinality of which is the size of q.
The query head variables x̄ are called answer variables, and form a subset of the
variables occurring in t1, . . . , tα; for Boolean queries, x̄ is empty. The cardinality
of x̄ is the arity of q. We use x and y in queries, possibly with subscripts, for
answer and non-answer variables respectively. Finally, we note VarBl(q) the set
of variables and blank nodes occurring in the query q, and Val(q) the set of all
its values, i.e., URIs, blank nodes, literals and variables.

Entailing and Answering Queries. Two related important notions charac-
terize how an RDF graph contributes to a query.

The weaker notion, called query entailment, indicates whether or not an RDF
graph holds some answer(s) to a query. It generalizes entailment between RDF
graphs, to account for the presence of variables in the query body, for establish-
ing whether an RDF graph entails a query, i.e., whether the query embeds in
that graph. Formally, given a BGPQ q, an RDF graph G and a set R of RDF
entailment rules, G entails q, noted G |=R q, iff G |=R body(q) holds, i.e., there
exists a homomorphism φ from VarBl(q) to Val(G∞) such that [body(q)]φ ⊆ G∞.

The RDF graph G in Fig. 1 entails the query q(x1, x2) ← (x1, τ, x2) asking for
all the resources and their classes for instance, because of the homomorphism
φ such that φ(x1) = b and φ(x2) = ConfPaper. Observe that this entailment
holds for any subset of RDF entailment rules, since the above homomorphism φ
already holds for R = ∅, i.e., considering only the explicit triples in Fig. 1.

Notations. Similarly to entailment between RDF graphs, we denote by G |=φ
R q

that the entailment G |=R q holds due to the homomorphism φ.
The stronger notion characterizing how an RDF graph contributes to a query,

called query answering, identifies all the query answers that this graph holds.
Formally, given a BGPQ q with set x̄ of answer variables, the answer set of q
against G is q(G) = {(x̄)φ | G |=φ

R body(q)}, where (x̄)φ is the tuple of G∞ values
obtained by replacing every answer variable xi ∈ x̄ by its image φ(xi). In case
of a Boolean query, q is false iff q(G) = ∅; otherwise q is true and q(G) = {〈〉}
where 〈〉 denotes the empty tuple.

The answer set to the above query q(x1, x2) ← (x1, τ, x2) against the RDF
graph G in Fig. 1 is:

• {〈b,ConfPaper〉, 〈b,Publication〉, 〈b1,Researcher〉} for R the set of entailment
rules in Table 2, i.e., considering the explicit and implicit triples in Fig. 1;
• {〈b,ConfPaper〉} for R = ∅, i.e., considering only the explicit triples in Fig. 1.

Importantly, from the definition of answer set of a SPARQL query against
an RDF graph [26], the following holds:

284 S.E. Hassad et al.

Property 2. Given an RDF graph G, a set R of entailment rules and a BGPQ q,
(i) G |=R q holds iff G∞ |= q holds, and (ii) q(G) = q(G∞) holds.

From a practical viewpoint, Property 2 points out that query entailment G |=R
q, respectively query answering q(G), can be done in two steps: a reasoning step
that computes the saturation G∞ of G, followed by a standard graph homomor-
phism step that checks if G∞ |=φ q holds for some homomorphism φ, respectively
enumerates all the homomorphisms φ for which G∞ |=φ q holds.

Comparing Queries. Similarly to RDF graphs, queries can be compared
through the generalization/specialization relationship of entailment between
queries.

Let q, q′ be BGPQs with the same arity, whose heads are q(x̄) and q′(x̄′),
and R the set of RDF entailment rules under consideration. q entails q′,
denoted q |=R q′, iff body(q) |=φ

R body(q′) with (x̄′)φ = x̄ holds. Here,
body(q) |=φ

R body(q′) is the adaptation of the above-mentioned entailment rela-
tionships between RDF graphs to the fact that the query bodies may feature
variables, i.e., φ is a homomorphism from VarBl(body(q′)) to Val(body(q)∞)
such that [body(q′)]φ ⊆ body(q)∞; the saturation of a BGP body, here body(q)∞,
is the obvious generalization of RDF graph saturation that treats variables as
blank nodes, since they both equivalently model unknown information within
BGPs [26].

For instance, the query q1(x) ← (x, τ,ConfPaper), (x,hasContactAuthor, y)
entails the query q2(x) ← (x, τ, y) with φ(x) = x, φ(y) = ConfPaper and any set
of entailment rules.

We remark that entailment between queries, query entailment and query
answering (obviously) relate as follows:

Property 3. Given an RDF graph G, a set R of entailment rules and two BGPQs
q, q′ such that q |=R q′, (i) if G |=R q holds then G |=R q′ holds, and (ii)
q(G) ⊆ q′(G) holds.

Finally, query entailment, query answering and entailment between queries
treat blank nodes in queries exactly as non-answer variables [26]. Hence, here-
after, we assume without loss of generality that queries do not use blank nodes.

3 Problem Statement

A least general generalization (lgg) of n descriptions d1, . . . , dn is a most spe-
cific description d generalizing d1, . . . , dn for some generalization/specialization
relation [21]. In our SPARQL setting, we may use off-the-shelf BGPQs as descrip-
tions and entailment between BGPQs as generalization/specialization relation:

Definition 1 (lgg of BGPQs). Let q1, . . . , qn be BGPQs with the same arity
and R a set of RDF entailment rules.

Learning Commonalities in SPARQL 285

– A generalization of q1, . . . , qn is a BGPQ qg such that qi |=R qg for 1 ≤ i ≤ n.
– A least general generalization of q1, . . . , qn is a generalization qlgg of q1, . . . , qn

such that for any other generalization qg of q1, . . . , qn: qlgg |=R qg.

Unfortunately, this straightforward definition is of limited practical interest
as the next example shows. Consider the BGPQs q1 and q2 in Fig. 3, which
respectively ask for the conference papers having some contact author, and for
the journal papers having some author. Clearly, with the RDF entailment rules
shown in Table 2, an lgg of q1 and q2 is the very general BGPQ qlgg(x) ← (x, τ, y)
asking for the resources having some type.

We argue that the value of lggs could be significantly augmented by taking
into account some background knowledge formalized as ontological constraints.
For example, if we consider the RDFS statements shown in Fig. 3 that hold in
the scientific publication domain, a more precise lgg for the above-mentioned
q1, q2 would be qlgg(x) ← (x, τ,Publication), (x,hasAuthor, y), (y, τ,Researcher)
asking for the publications having some researcher as author, since (i) having a
contact author is having an author, (ii) only publications have authors, (iii) only
researchers are authors, and (iv) conference and journal papers are publications.

x1 ConfPaper

y1

τ

hasContactAuthor

x2 JourPaper

y2

τ

hasAuthor

Publication hasAuthor Researcher

ConfPaper JourPaper

hasContactAuthor

←↩d ↪→r

�sp←↩d ↪→r�sc�sc

q1(x1) q2(x2) O

Fig. 3. Sample BGPQs q1 and q2; sample set O of RDFS ontological constraints.

To define such more precise lggs and state our learning problem in Sect. 3.2,
we start by generalizing the standard specialization/generalization relation of
entailment between BGPQs in Sect. 3.1, in order to allow comparing BGPQs
w.r.t. an extra set of RDFS ontological constraints. In particular, this novel
relation (i) coincides with the standard one when extra constraints are unavail-
able and (ii) behaves like the standard one w.r.t. the central reasoning tasks of
query entailment and of query answering when extra constraints are available.

3.1 Comparing Queries w.r.t. Ontological Constraints

Our new entailment relation between queries builds on the following notion,
which leverages the relevant background knowledge to complement a query:

Definition 2 (BGPQ saturation w.r.t. RDFS constraints). Let R be a
set of RDF entailment rules, O a set of RDFS statements, and q a BGPQ. The
saturation of q w.r.t. O, noted q∞

O , is the BGPQ with the same answer variables
as q and whose body, noted body(q∞

O), is the maximal subset of (body(q) ∪ O)∞

such that for any of its subset S: if O |=R S holds then body(q) |=R S holds.

286 S.E. Hassad et al.

x1

ConfPaper

y1

Researcher

Publication
τ

τ

hasContactAuthor

τ

hasAuthor

x2

JourPaper

y2

Researcher

Publication

τ
τ

hasAuthor

τ

(body(q) ∪ O)∞ q1
∞
O (x1) q2

∞
O (x2)

Fig. 4. Characterization of the body of a saturated BGPQ q w.r.t. a set O of RDFS
constraints (left), and saturations of q1 and of q2 w.r.t. O from Fig. 3 (center and right
respectively); triples shown in gray are added by saturation.

In essence, the saturation of a BGPQ comprises all the triples in the satura-
tion of its body together with the RDFS constraints, from which are pruned out
the triples derived solely from the constraints, i.e., which are not related to what
the query is asking for. This corresponds exactly to the non-hatched subset of
(body(q)∪O)∞ shown in Fig. 4: body(q∞

O) = (body(q)∪O)∞\(O∞\body(q)∞). Of
course, such a saturation is pertinent just in case the RDF entailment rules under
consideration utilize the RDFS constraints, e.g., those in Table 2; otherwise the
set of constraints is useless.

Figure 4 illustrates the saturation of queries w.r.t. ontological constraints
using the BGPQs and RDFS contraints from Fig. 3.

The next theorem states that a BGPQ and its saturation w.r.t. RDFS con-
straints are equivalent from the query entailment and query answering viewpoints:

Theorem 1. Let R be a set of RDF entailment rules, O a set of RDFS state-
ments, and q a BGPQ whose saturation w.r.t. O is q∞

O . For any RDF graph G
whose set of RDFS statements is O, (i) G |=R q holds iff G |=R q∞

O holds, and
(ii) q(G) = q∞

O (G) holds.

We can now endow entailment between queries with background knowledge:

Definition 3 (Entailment between BGPQs w.r.t RDFS constraints).
Given a set R of RDF entailment rules, a set O of RDFS statements, and two
BGPQs q and q′ with the same arity, q entails q′ w.r.t. O, denoted q |=R,O q′,
iff q∞

O |= q′ holds.

Using the set R of entailment rules in Table 2, the above mentioned
BGPQ qlgg(x) ← (x, τ,Publication), (x,hasAuthor, y), (y, τ,Researcher) is nei-
ther entailed by q1 nor by q2 from Fig. 3, while it is entailed by both of them
w.r.t. the set O of constraints displayed in the same Figure, i.e., it is entailed in
the standard fashion by their saturations shown in Fig. 4: q1

∞
O |=φ1 q holds for

φ1(x) = x1 and φ1(y) = y1, and q2
∞
O |=φ2 q holds for φ2(x) = x2 and φ2(y) = y2.

Clearly, the above definition coincides with standard RDF entailment
between BGPQs when O is empty (recall Sect. 2). Further, the main theorem

Learning Commonalities in SPARQL 287

below states the required behaviour for a query entailed by another w.r.t. onto-
logical constraints, i.e., the counterpart of Property 3 in Sect. 2: the former gen-
eralizes the latter from the query entailment and query answering viewpoints:

Theorem 2. Let R be a set of RDF entailment rules, O a set of RDFS state-
ments, and two BGPQs q and q′ such that q |=R,O q′. For any RDF graph G
whose set of RDFS statements is O, (i) if G |=R q holds then G |=R q′ holds,
and (ii) q(G) ⊆ q′(G) holds.

3.2 Learning lggs w.r.t. Ontological Contraints

In the light of the preceding results, we revise/generalize Definition 1 as follows:

Definition 4 (lgg of BGPQs w.r.t RDFS constraints). Let R be a set of
RDF entailment rules, O a set of RDFS statements, and q1, . . . , qn BGPQs with
the same arity.

– A generalization of q1, . . . , qn w.r.t. O is a BGPQ qg such that qi |=R,O qg

for 1 ≤ i ≤ n.
– A least general generalization of q1, . . . , qn w.r.t. O is a generalization qlgg

of q1, . . . , qn w.r.t. O such that for any other generalization qg of q1, . . . , qn

w.r.t. O: qlgg |=R,O qg.

By constrast with an lgg of RDF graphs that always exists [9], we found:

Theorem 3. An lgg of BGPQs w.r.t. RDFS statements may not exist for some
set of RDF entailment rules; when it exists, it is unique up to entailment (|=R,O).

Indeed, consider the BGPQs q1(x1) ← (x1,hasAuthor, y1) asking for the
resources having some author, and q2(x2) ← (y2,hasAuthor, x2) asking for the
authors of some resource. Clearly, when the set R of entailment rules is empty
or comprises the rules in Table 2, no BGPQ can generalize q1 and q2, hence there
is no lgg of them. By contrast, if we use the complete set of RDF entailment
rules, an lgg of q1 and q2 is qlgg(x) ← (x, τ, rdf:Resource), since every RDF
value is an instance of the built-in class rdf:Resource. Also, when an lgg of
BGPQs w.r.t. RDFS constraints exists, it is unique up to entailment, i.e., is
semantically unique, because qlgg |=R,O qg holds for any qg in Definition 1. If
it were that queries have multiples lggs incomparable w.r.t. entailment, say the
BGPQs lgg1(x̄), . . . , lggm(x̄), the BGPQ defined as qlgg(x̄) ← body(lgg1)∪· · ·∪
body(lggm) would be a single strictly more specific lgg, a contradiction.

Though unique up to entailment, there exist many syntactic variants (an infin-
ity actually) of an lgg due to redundant triples, i.e., triples entailed by others
within the lgg. For example, think of an lgg qlgg(x) ← (x, τ, A), (x, τ,B), (x, y, z)
w.r.t. the set of constraintsO = {(A,�sc, B), (B,�sc, A)}, which asks for resources
of types A and B that are somehow related to some resource, and it is known that
A and B are equivalent classes. Clearly, different equivalent and minimal variants
(w.r.t. the number of triples) of this lgg are qlgg(x) ← (x, τ, A) and qlgg(x) ←

288 S.E. Hassad et al.

(x, τ,B), since (x, y, z) is entailed by each of the two other triples, and (x, τ,B)
is entailed by (x, τ, A) w.r.t. O, and vice versa, because A and B are equivalent.
Importantly, redundancy of triples is not specific to lggs of BGPQs w.r.t. RDFS
constraints, since obviously anyBGPQmay feature redundancy.Thedetectionand
eliminationof such redundancyhavebeen studied in the literature [18,20], hencewe
focus in this work on learning some lgg of BGPQs w.r.t. RDFS constraints; learn-
ing as minimal as possible lggs is a perspective of this work discussed in Sect. 6.

Based on the above discussion, the learning problem we propose to study is:

Problem 1. Given a set R of RDF entailment rules, a set O of RDFS statements,
and the BGPQs q1, . . . , qn with the same arity, find an lgg of q1, . . . , qn w.r.t. O.

Importantly, the proposition below shows that an lgg of n ≥ 3 BGPQs can be
inductively defined, hence computed, as a sequence of n−1 lggs of two BGPQs.
That is, assuming that �k≥2 is an operator computing an lgg of k input BGPQs,
the next proposition establishes that:

[basis] �3(q1, q2, q3) ≡R,O �2(�2(q1, q2), q3)
[induction] �n(q1, . . . , qn) ≡R,O �2(�n−1(q1, . . . , qn−1), qn)

≡R,O �2(�2(· · · �2(�2(q1, q2), q3) · · · , qn−1), qn)

Proposition 1. Let q1, . . . , qn≥3 be n BGPQs, O a set of RDFS statements and
R a set of RDF entailment rules. qlgg is an lgg of q1, . . . , qn w.r.t. O iff qlgg is
an lgg w.r.t. O of an lgg of q1, . . . , qn−1 w.r.t. O and qn.

Based on the above result, without loss of generality, we study in the next
Section the particular instance of our learning problem for n = 2.

4 Computing lggs of Queries w.r.t. Ontological
Constraints

Our solution to the above learning problem (Problem1) builds on the notion
of least general anti-unifier of two atoms [21,23], which is dual to the well-
known notion of most general unifier of two atoms [22,23]. We use it to devise
the cover query of two BGPQs q1 and q2 (to be defined shortly, Definition 5
below), which is an lgg of q1 and q2 just in case both RDF entailment rules and
ontological constraints are ignored (Theorem 4). Further, we show (Theorem 5)
that an lgg of q1 and q2 as defined in Definition 4, i.e., when RDF entailment
rules and ontological constraints are taken into consideration, is the cover query
of the saturations of q1 and of q2 with the RDF entailment rules and ontological
constraints at hand (Definition 2). We also provide the size of these cover query-
based lggs (i.e., number of triples), as well as the time to compute them.

Definition 5 (Cover query). Let q1, q2 be two BGPQs with the same arity n.
If there exists the BGPQ q such that

– head(q1) = q(x1
1, . . . , x

n
1) and head(q2) = q(x1

2, . . . , x
n
2) iff head(q) =

q(vx1
1x1

2
, . . . , vxn

1 xn
2
)

Learning Commonalities in SPARQL 289

– (t1, t2, t3) ∈ body(q1) and (t4, t5, t6) ∈ body(q2) iff (t7, t8, t9) ∈ body(q) with,
for 1 ≤ i ≤ 3, ti+6 = ti if ti = ti+3 and ti ∈ U ∪ L, otherwise ti+6 is the
variable vtiti+3

then q is the cover query of q1, q2.

The rationale behind the above definition of cover query is that (i) q’s head
is defined as the least general anti-unifier of the heads of q1 and q2 (first item
above) and (ii) each q triple is defined as a least general anti-unifier of an explicit
q1 triple and an explicit q2 triple (second item above), so that, when the cover
query exits (If . . . then . . . above), it is a generalization of q1 and q2 just in case
RDF entailment rules and ontological constraints are not considered (first item in
Definition 4 with R = ∅ and O = ∅). Moreover, crucially, (iii) the variables used
to generalize pairs of distinct values across all the anti-unifications begetting
q are consistently named: each time the distinct values α from q1 and β from
q2 are generalized by a variable across these anti-unifications, it is always by
the same q variable vαβ . This naming scheme enforces joins between q triples,
which capture the common join structure within q1 and q2, so that q is not only a
generalization of q1 and q2 but also a least general generalization of them (second
item in Definition 4 with R = ∅ and O = ∅).

vx1x2vCPy2

vCPJP vy1JP

vy1y2vhCAhA

τ vhCAτ

vτhA

q(vx1x2)

vx1x2

vPJP vy1PvPy2

vy1JP

vy1y2vCPy2

vCPPvCPJP Researcher

Publication

vx1y2

vy1R vPRvCPR

vy1x2

vRy2vRJP vRP

τ

vτhA

τ

τ

τ

vτhA

vhCAτ

vhAτ

vhAτ

vhCAτ

τ

vhCAhA

hasAuthor

τ τvτhA

τ τ
vhCAτ vhAτ

q(vx1x2)

Fig. 5. Cover queries of the BGPQs q1 and q2 in Fig. 3 (top) and of their saturations
q1

∞
O and q2

∞
O in Fig. 4 (bottom). Triples in grey are redundant w.r.t. those in black.

The cover query q of the BGPQs q1 and q2 is displayed in Fig. 5 (top). Its
triple (vx1x2 , τ, vCPJP) results from anti-unifying the q1 triple (x1, τ,ConfPaper)
and the q2 triple (x2, τ, JourPaper); the variable vx1x2 is the least general value
for the subject values x1 and x2, the URI τ is that for the property values τ

290 S.E. Hassad et al.

(because a constant is the least generalization of itself), and the variable vCPJP

is that for the object values ConfPaper and JourPaper. This q triple captures
that q1 and q2 both ask for resources having some type. Here, the fact this type
is related to scientific publications is missed, due to the absence of background
knowledge relating conference papers, journal papers and scientific publications.
Similarly, the q triple (vx1x2 , vhCAhCA, vy1y2) results from anti-unifying the q1
triple (x1,hasContactAuthor, y1) and the q2 triple (x2,hasAuthor, y2). Because
of our consistent naming of variables within q, this q triple and the preceding one
join on vx1x2 . Unfortunately, this second triple does not enhance the description
of vx1x2 in q, since it generalizes, hence is redundant with, the preceding one. It
only captures from q1 and q2 that q asks for resources having somehow related
to something. Here again, the fact that this relationship is to have some author
is missed due to the absence of background knowledge. The two other anti-
unifications begetting q’s body also produce redundant triples.

As mentioned earlier, the cover query q of two BGPQs q1 and q2 may not
exist. This happens when q, as defined in Definition 5, has its head not compatible
with its body: some required answer variable(s) cannot be supplied by q’s body.
For instance, recall the BGPQs q1 and q2 used in Sect. 3.2 to point out that an
lgg may no exist. Their cover query does not exist either, because Definition 5
leads to q(vx1x2) ← (vx1y2 ,hasAuthor, vy1x2), which is not a BGPQ (the answer
variable vx1x2 does not appear in the body). Importantly, the existence of an
lgg of BGPQs and the existence of their cover query coincide.

The next theorem formalizes the above discussion:

Theorem 4. Given two BGPQs q1, q2 with the same arity and empty sets R of
RDF entailment rules and O of RDFS statements:

1. the cover query of q1 and q2 exists iff an lgg of q1 and q2 exists;
2. the cover query of q1 and q2 is an lgg of q1 and q2.

It follows from the above result that the cover query q of two BGPQs q1 and
q2 displayed in Fig. 5 (top) is an lgg of them just in case both RDF entailment
rules and extra RDFS ontological constraints are ignored.

We provide below the worst-case time to compute a cover query, and its size.

Proposition 2. The cover query of two BGPQs q1 and q2 can be computed in
O(|body(q1)| × |body(q2)|); its size is |body(q1)| × |body(q2)|.

The next theorem generalizes the preceding one in order to use the notion
of cover query to compute an lgg of two queries w.r.t. extra RDFS ontological
constraints and any set of RDF entailment rules.

Theorem 5. Given a set R of RDF entailment rules, a set O of RDFS state-
ments and two BGPQs q1, q2 with the same arity,

1. the cover query q of q1
∞
O , q2

∞
O exists iff an lgg of q1, q2 w.r.t. O exists;

2. the cover query q of q1
∞
O , q2

∞
O is an lgg of q1, q2 w.r.t. O.

Learning Commonalities in SPARQL 291

As an immediate consequence of the above results, we get the following worst-
case time to compute an lgg of two BGPQs q1 and q2, and its size. We assume
given the saturation q1

∞
O and q2

∞
O w.r.t. the sets O of RDFS constraints and R

of RDF entailment rules under consideration, as the times to compute q1
∞
O and

q2
∞
O , and their sizes, depend on the particular sets O and R at hand.

Corollary 1. A cover query-based lgg of two BGPQs q1 and q2 is computed in
O(|body(q1∞

O)| × |body(q2∞
O)|) and its size is |body(q1∞

O)| × |body(q2∞
O)|.

Figure 5 (bottom) displays the cover query of the BGPQs q1
∞
O and q2

∞
O shown

in Fig. 4. It is therefore (Theorem 5) an lgg of the BGPQs q1 and q2 w.r.t. the
set O of RDFS constraints, all shown in Fig. 3, using the RDF entailment rules
shown in Table 2.

Figure 5 exemplifies the benefits of taking into account extra ontologi-
cal constraints modeling background knowledge when identifying the com-
monalities between queries, thus of endowing the RDF relation of generaliza-
tion/specialization between queries with such knowledge. When background
knowledge is ignored (top), we only learn that both q1 and q2 ask for the resources
having some type. In contrast, when we do consider background knowledge
(bottom), we further learn that these resources, which both q1 and q2 ask for, are
publications, which have some researcher as author.

5 Experiments

Goal. We study the added-value of considering background knowledge when
learning lggs of queries. As Proposition 3 shows below, this amounts to mea-
suring how much more precise is an lgg of queries that considers background
knowledge than an lgg of the same queries that ignores background knowledge:

Proposition 3. Given a set R of RDF entailment rules, a set O of RDFS state-
ments, two BGPQs q1, q2 with the same arity, an lgg qlgg of q1, q2 (Definition 1)
and an lgg qO

lgg of q1, q2 w.r.t. O (Definition 4), qO
lgg |=R qlgg holds.

Intuitively, this result follows from the fact that (i) qlgg is equivalent to the
cover query-based lgg q of the saturations of q1 and of q2 w.r.t. the empty set
of RDFS constraints, (ii) qO

lgg is equivalent to the cover query-based lgg q′ of
the saturations of q1 and of q2 w.r.t. O, and (iii) by definition of a cover query
(Definition 5), q and q′ have the same heads and the body of q is a subset of that
q′, thus q′ |=R q holds, hence qO

lgg |=R qlgg holds.
From this result and Property 3 (Sect. 2.2), qO

lgg(G) ⊆ qlgg(G) holds for any
RDF graph G, and clearly the more qO

lgg is specific w.r.t. qlgg, the smaller the
subset qO

lgg(G) of qlgg(G) is, i.e., the smaller |qO
lgg(G)| is w.r.t. |qlgg(G)|. Therefore,

as a practical metric for measuring the semantic distance between qO
lgg and qlgg

through |=R , we compute the gain in precision in (%) that background knowl-
edge yields w.r.t. query answering as:

292 S.E. Hassad et al.

gain in precision = 1 − |qO
lgg(G)∩ qlgg(G)|

|qlgg(G)| = 1 − |qO
lgg(G)|

|qlgg(G)| since qO
lgg(G) ⊆ qlgg(G).

Prototype. We implemented our technical contributions in Java 1.8, on top of
the Jena 3.0.1 RDF reasoner and of a PostgreSQL 9.3.11 server, all used with
default settings; our implemented algorithms are detailed in [8].

We used Jena to compute the saturation of an RDF graph, against which
queries must be evaluated to obtained their complete answer sets (Sect. 2.1).
We also used Jena to compute the saturation q∞

O of a BGPQ q w.r.t. a set
O of RDFS constraints (Definition 2): we rely on Jena’s saturation, union and
difference operators to compute q∞

O ’s body as described in Sect. 3.1.
We used PostgreSQL to evaluate SQLized BGPQs against a saturated RDF

graph stored in a Triple(s,p,o) table.
We deployed our prototype on an Intel Xeon X5550 2.67 GHz machine with

32 GB of RAM, running Ubuntu 14.04.3 64bits; times reported below are in ms.

Setting. We conducted experiments using real DBpedia data [17] and synthetic
LUBM data [12]. For space reasons, we present only our DBpedia experiments;
LUBM ones can be found in [8] and allow drawing similar conclusions.

We used the subset of standard RDF entailment rules in Table 2, which fully
allows exploiting RDFS ontological constraints, i.e., background knowledge.

From the DBpedia dataset, we picked four complementary files1 to build the
RDF graph GDBpedia comprising 41.18M triples, whose subset ODBpedia of 30.31k
RDFS constraints represents DBpedia’s background knowledge. The saturation
of GDBpedia comprises 78.14M triples and takes about 30 min to be computed.

Finally, we defined 42 test BGPQs, among which we picked 8 representative
ones with 2 variables; they can be found in [8]. Table 3 displays their characteris-
tics (top), as well as their saturation size and time (bottom): the size augments
from ×3.16 for Q2 up to ×4.75 for Q3; the time is 692 ms on average. Also,
importantly, queries Q1–Q4 (left) are heterogeneous in the sense that they differ
significantly both on their structure and the kind of information they ask for,
hence use many distinct classes, properties and URI values, while Q4–Q8 (right)
are homogeneous and only differ in some classes, properties and URI values.

Table 3. Characteristics of our test BGPQs (top) and of their saturations (bottom).

Query Q1≤i≤8: Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Qi’s shape tree tree tree graph graph graph graph graph

|body(Qi)| 4 6 4 6 4 6 6 6

Number of URI/variable occurrence in Qi 7/5 9/9 5/7 7/11 5/7 9/9 9/9 9/9

|Qi(GDBpedia)| 77 0 41,695 13 6 0 1 0

|body(Qi
∞
ODBpedia

)| 16 19 19 23 16 23 23 23

Time to compute Qi
∞
ODBpedia

666 643 677 734 681 706 697 736

1 We use the dbpedia 2015-10.nt RDF Schema file and the instance types en.ttl,
mappingbased literals en.ttl and mappingbased objects en.ttl RDF data files.

Learning Commonalities in SPARQL 293

Table 4. Characteristics of cover query-based lggs of test queries, w/ or w/o using
the DBpedia RDFS constraints.

lgg of: Q1Q2 Q1Q3 Q1Q4 Q2Q3 Q4Q5 Q5Q6 Q5Q7 Q7Q8

Time to compute qlgg 3 3 5 4 4 5 6 5

|qlgg(GDBpedia)| 477,455 34,747,102 34,901,117 60,356,807 1,977 1,221 35 70

Time to compute q
ODBpedia
lgg 13 14 14 15 15 14 17 18

|qODBpedia
lgg (GDBpedia)| 10,637 7,874,768 456,690 7,874,768 1,701 780 34 36

Gain in precision 98 77 99 87 14 36 3 49

Results. First, as Table 4 (lines 1 and 3) shows, the cover query-based lggs of
test queries are always computed fast whether or not the DBpedia constraints
are considered: from 3 to 6 ms when ignored, to 13 to 18 ms when considered.

Table 4 (lines 2 and 4) also shows that the answer set of an lgg is significantly
larger when DBpedia constraints are not taken into account: the size difference
goes from a small ×1.02 for the homogeneous queries Q5, Q7 up to a striking
×76.42 for the heterogeneous queries Q1, Q4, with a significant average of ×17.38
(×33.34 for the heterogeneous queries and ×1.42 for the homogeneous ones).
This translates into the precision gains shown at line 5: 58% overall, 90% for the
heterogeneous queries, and 25% for the homogeneous ones.

These results confirm our claim that taking into account background knowl-
edge yields more precise lggs. Indeed, ontological constraints help finding com-
mon super- classes and properties to be used in lggs in place of the different ones
used in input queries; when constraints are ignored, these can just be generalized
using variables. Therefore, the more heterogeneous input queries are, the more
such common super-classes and properties are used in their lgg instead of vari-
ables, and the more the gain in precision of their lgg is high. For homogeneous
input queries, while less striking, the gain in precision is significant in general.

6 Related Work and Conclusion

The reasoning problem of learning lggs has been studied in various formalisms,
e.g., Conceptual Graphs (CGs), Description Logics (DLs), RDF and SPARQL.

Most of the solutions exploit the (underlying) structure of the input descrip-
tions, like trees for DL formulae (e.g., [1,14,27]) and for unary tree-shaped
BGPQs [2,16], and directed single-root graphs for the RDF r-graphs of [7].
Roughly speaking, they all consist in a simultaneous traversal of the input
descriptions, starting from their roots, while incrementally computing their lgg.
In contrast, when the input descriptions do not have a particular (or imposed)
structure, solutions need to blindly traverse them while still being able to com-
pute their lgg. They rely on standard categorial graph product for the so-called
simple (i.e., purely conjunctive) CGs [3], on anti-unifications of triples for gen-
eral RDF graphs [9], and on anti-unifications of query heads and of query body
triples for the general BGPQs considered in this paper. Further, while (some
of) the above solutions take into account background knowledge in CGs, DLs,

294 S.E. Hassad et al.

and RDF, this is not the case for the state of the art in SPARQL [2,16]: unary
tree-shaped BGPQs are solely compared based on standard graph homomor-
phism (|=∅).

Our results significantly advance the state of the art [2,16] by considering
(i) general BGPQs and (ii) background knowledge to obtain more precise lggs,
as our experiments showed. Next, we plan studying heuristics that prune out
as much as possible redundant triples, while computing lggs. Indeed, as Fig. 5
shows, our cover query-based lggs may contain redundant triples. This would
allow having more compact lggs, as well as reducing the a posteriori elimination
effort of redundant triples using standard technique from the literature.

References

1. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer
w.r.t. a background terminology. J. Appl. Logic 5(3), 392–420 (2007)

2. Bühmann, L., Lehmann, J., Westphal, P.: DL-Learner - a framework for inductive
learning on the Semantic Web. J. Web Semant. 39, 15–24 (2016)

3. Chein, M., Mugnier, M.: Graph-Based Knowledge Representation - Computational
Foundations of Conceptual Graphs. Springer, London (2009)

4. Chuang, S.L., Chien, L.F.: Towards automatic generation of query taxonomy: a
hierarchical query clustering approach. In: ICDM (2002)

5. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in
description logics. In: AAAI (1992)

6. Colazzo, D., Goasdoué, F., Manolescu, I., Roatis, A.: RDF analytics: lenses over
semantic graphs. In: WWW (2014)

7. Colucci, S., Donini, F.M., Giannini, S., Sciascio, E.D.: Defining and computing
least common subsumers in RDF. J. Web Semant. 39, 62–80 (2016)

8. El Hassad, S., Goasdoué, F., Jaudoin, H.: Learning commonalities in RDF and
SPARQL (research report) (2016). https://hal.inria.fr/hal-01386237

9. El Hassad, S., Goasdoué, F., Jaudoin, H.: Learning commonalities in RDF. In:
Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O.
(eds.) ESWC 2017. LNCS, vol. 10249, pp. 502–517. Springer, Cham (2017). doi:10.
1007/978-3-319-58068-5 31

10. El Hassad, S., Goasdoué, F., Jaudoin, H.: Towards learning commonalities
in SPARQL. In: d’Amato, C., et al. (eds.) ESWC 2017. LNCS, vol. 10587,
pp. 278–295. Springer, Cham (2017)

11. Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View selection in semantic
web databases. PVLDB 5(2), 97–108 (2011)

12. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

13. Huang, Z., Cautis, B., Cheng, R., Zheng, Y.: KB-enabled query recommendation
for long-tail queries. In: CIKM (2016)

14. Küsters, R.: Non-Standard Inferences in Description Logics. Lecture Notes in Com-
puter Science, vol. 2100. Springer, Heidelberg (2001)

15. Le, W., Kementsietsidis, A., Duan, S., Li, F.: Scalable multi-query optimization
for SPARQL. In: ICDE (2012)

16. Lehmann, J., Bühmann, L.: AutoSPARQL: let users query your knowledge base.
In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer,
P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21034-1 5

https://hal.inria.fr/hal-01386237
http://dx.doi.org/10.1007/978-3-319-58068-5_31
http://dx.doi.org/10.1007/978-3-319-58068-5_31
http://dx.doi.org/10.1007/978-3-642-21034-1_5

Learning Commonalities in SPARQL 295

17. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia. Semant.
Web 6(2), 167–195 (2015)

18. Meier, M.: Towards rule-based minimization of RDF graphs under constraints. In:
Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 89–103. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88737-9 8

19. Picalausa, F., Luo, Y., Fletcher, G.H.L., Hidders, J., Vansummeren, S.: A struc-
tural approach to indexing triples. In: Simperl, E., Cimiano, P., Polleres, A., Cor-
cho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 406–421. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30284-8 34

20. Pichler, R., Polleres, A., Skritek, S., Woltran, S.: Complexity of redundancy detec-
tion on RDF graphs in the presence of rules, constraints, and queries. Semant. Web
4(4), 351–393 (2013)

21. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5, 153–163 (1970)
22. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM

12(1), 23–41 (1965)
23. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier

and MIT Press, Amsterdam and Cambridge (2001)
24. Resource description framework 1.1. https://www.w3.org/TR/rdf11-concepts
25. RDF 1.1 semantics. https://www.w3.org/TR/rdf11-mt/
26. SPARQL 1.1. https://www.w3.org/TR/sparql11-query/
27. Zarrieß, B., Turhan, A.: Most specific generalizations w.r.t. general EL-TBoxes.

In: IJCAI (2013)

http://dx.doi.org/10.1007/978-3-540-88737-9_8
http://dx.doi.org/10.1007/978-3-642-30284-8_34
https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/sparql11-query/

Meta Structures in Knowledge Graphs

Valeria Fionda1 and Giuseppe Pirrò2(B)

1 DeMaCS, University of Calabria, Rende, Italy
fionda@mat.unical.it

2 Institute for High Performance Computing and Networking,
ICAR-CNR, Rende, Italy

pirro@icar.cnr.it

Abstract. This paper investigates meta structures, schema-level graphs
that abstract connectivity information among a set of entities in a knowl-
edge graph. Meta structures are useful in a variety of knowledge dis-
covery tasks ranging from relatedness explanation to data retrieval. We
formalize the meta structure computation problem and devise efficient
automata-based algorithms. We introduce a meta structure-based rele-
vance measure, which can retrieve entities related to those in input. We
implemented our machineries in a visual tool called MEKoNG. We report
on an extensive experimental evaluation, which confirms the suitability
of our proposal from both the efficiency and effectiveness point of view.

1 Introduction

Knowledge Graphs (KGs) are becoming a common support in many application
domains including information retrieval, recommendation, clustering, entity res-
olution, and generic exploratory search. One fundamental task underpinning
these applications is the extraction of connectivity structures such as paths or
graphs between entities. At the data level, these structures reflect fine-grained
semantic associations like: K. Knuth award Turing Award award−1 John Hopcroft;
the abstraction of these structures by using schema information (e.g., typing,
domain and range) allows to capture meta information (e.g., Scientist award Prize
award−1 Scientist). Most of current efforts focus on finding simple connectivity
structures like (meta) paths between a pair of entities [2,17]. This has several
limitations: (i) paths are not enough to capture complex relationships; (ii) limit-
ing the input to a pair of entities does not allow to find refined associations both
at the data and schema level; (iii) enumerating paths is a computationally hard
problem. Recent approaches (e.g., [1]) focus on finding richer structures only but
do not report on their usage in knowledge discovery tasks (see Sect. 5).

In this paper we focus on meta structures, schema-level graphs that abstract
connectivity information among a set of entities in a knowledge graph. We study
the problem of both finding meta structures and computing meta structure-based
relevance and define: (a) efficient algorithms to isolate the subgraph connecting
the input entities without enumerating paths; (b) techniques to pick the most
relevant portion of this subgraph; (c) techniques to abstract data level information
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 296–312, 2017.
DOI: 10.1007/978-3-319-68288-4 18

Meta Structures in Knowledge Graphs 297

into a meta structure; (d) relevance measures based on meta structures; (f) user
supports. The contributions of this paper are as follows:

• Automata-based algorithms to find a subgraph connecting a set of entities.
• Layered-Tuple-Relevance (LTR), a meta structure-based relevance measure.
• A visual tool called MEKoNG implementing our approach.
• An experimental evaluation, which shows the efficiency of our proposal both

in terms of running time and in concrete knowledge discovery tasks.

The goal of this paper is on the efficient computation of meta structures and
their usage for relevance computation; the effectiveness from the user point of
view of several types of connectivity structures has been investigated in [17].

Meta structures are useful in a variety of tasks ranging from find-
ing/visualizing connectivity among entities to recommender systems (e.g., by
computing the relevance between items already purchased and new items). In
Sect. 1.1, we describe an instantiation of our proposal in the MEKoNG tool,
useful to both discover entity relatedness and recommend related entities; other
applications of our framework (e.g., entity resolution) are considered in Sect. 4.
The paper is organized as follows. Section 2 describes the problem and the algo-
rithms. Meta structure-based relevance is discussed in Sect. 3. Experiments are
discussed in Sect. 4. We review related work in Sect. 5 and conclude in Sect. 6.

1.1 Running Example

We now illustrate MEKoNG, a tool that leverages the low-level services pro-
vided by our framework. We consider the tuple (A. Aho, J. Hopcroft, D. Knuth) as
input and focus on the following tasks: (i) retrieve and explore a meta structure
and its instances; (ii) retrieve the top-5 relevant entities.

Figure 1 (a) shows a meta structure retrieved for this entity tuple; we can
see that it is a graph including three entities of type Scientist and two entities
of type Award. In particular, one of the scientist has been a doctoral student
of a second Scientist; note also that all three scientist share the same Award
and that two of them also share a second award. The level of expressiveness of
this meta structure goes beyond the expressiveness of its (meta) paths taken
separately. In fact by using meta paths only it would not have been possible to
capture constraints like the common Award. MEKoNG allows to explore a meta
structure and its instances giving insights about the relatedness among the input
entities. This is extremely useful in large KGs as it allows to find out previously
unknown knowledge that is of relevance and understand how it is of relevance.
We can see (Fig. 1 (b)) that the Award that the three Scientist share is the IEEE
von Neumann Medal and that D. Knuth and J. Hopcroft share the Turing Award.

Building upon meta structures, MEKoNG allows to assess entity relevance.
This occurs by replacing nodes in a meta structure with source entities and
picking one of the remaining nodes as target. In the example (see Fig. 1 (c))
A. Aho and J. Hopcroft are used as seed entities thus replacing the leftmost
Scientist nodes in Fig. 1 (a) and the target is the remaining Scientist. The top-5

298 V. Fionda and G. Pirrò

Fig. 1. The MEKoNG system.

more relevant entities, ranked according to the LTR relevance measure presented
in Sect. 3, are shown in Fig. 1 (d). The top relevant result is T. Hoare followed
by I. Sutherland. We can explain this ranking with the fact that LTR when using
the seed entities A. Aho and J. Hopcroft and the meta structure in Fig. 1 (a)
can both discover Award entities and take into account their specificity (i.e., how
many other scientists have a particular Award). I. Sutherland and T. Hoare are
ranked higher than, for instance, J. Ullman that share more awards, because the
former share the Turing Award with J. Hopcroft and this award is less common
than the ACM Fellowship shared with J. Ullman.

2 Discovering Meta Structures

In this section we introduce our approach to find meta structures. We start with
some preliminaries and formalize the problem in Sect. 2.1. Then, we introduce
algorithms to find a meta structure instance for an input tuple in Sect. 2.2. In
Sect. 2.3 we discuss how to abstract a meta structure instance.

2.1 Problem Formalization

A Knowledge Graph (KG) is a heterogeneous network where nodes are entities of
different types and edges model different types of semantic relationships. Yago,
DBpedia, and Freebase are a few examples of popular KGs available in the RDF
standard data format. Due to the generality of our approach, in what follows
we provide a general notation that models graph data. A KG is a directed node
and edge labeled graph G = (V,E) with two node mapping functions φi:V →Lv,
which assigns to each node a unique id and φt:V →2Ls , which assigns to each
node a set of types in Ls. An edge mapping function ϕ:E →Le associates to
each edge a type from Le. To structure knowledge, KGs resort to an underlying
schema, which is defined in terms of entity types and their links.

Definition 1 (Knowledge Graph Schema). Given a KG G and its mapping
functions φt:V →2Ls and ϕ:E →Le, the schema TG of G is a directed graph
defined over Ls and Le, that is, TG = (Ls,Le).

Meta Structures in Knowledge Graphs 299

doctoralStudent fellow fellow

award promoter fellow almaMater almaMater

award promoter fellow almaMater almaMater

doctoralStudent

fellow

award fellow

promoter

almaMater

doctoralStudent (a) (b)

(c)

Fig. 2. A KG schema (a); some meta paths (b); a meta structure (c). Edge types/colors
represent different kinds of relationships; node shapes represent different entity types.
(Color figure online)

An example of KG schema is reported in Fig. 2 (a); it allows to abstract and
define data and their compatibility (e.g., fellow links Scientist and Association).

Given a KG, a meta path is essentially an abstract data representation, which
uses schema information. Examples of meta paths are shown in Fig. 2 (b). Meta
paths can only capture simple relationship between entities, while meta struc-
tures, being modeled as graphs, allow to capture more complex relationships.
As an example, the meta structure in Fig. 2 (c), can model the fact that the
Association I1 is shared between the Scientists S3, S2, and the Award A1. This
aspect cannot be modeled by using the two meta paths in Fig. 2 (b). We now
introduce the notion of m-meta structure, which generalizes the notion of meta
structure, defined for a pair of entities [10], to a tuple of arbitrary length.

Definition 2 (m-Meta Structure). Given a KG schema TG = (Ls,Le) and
an entity tuple t = 〈e1, ..., em〉, an m-meta structure for t is a graph
S = (N,M, Ts), where N ⊆ Ls is a set of entity type nodes, M a set of edges
and Ts = 〈T1, ..., Tm〉 ⊆ N is a set of entity types each corresponding to an input
entity. For any edge (u, v)∈M we have that (u, v) ∈ Le.

Definition 3 (m-Meta Structure Instance). An instance of an m-meta
structure S = (N,M, Ts) for t = 〈e1, ..., em〉 on a KG G, is a subgraph
s= (Ns,Ms) of G such that there exists a mapping for s, hs:Ns→N satisfy-
ing the following constraints: (i) for any entity v∈Ns its type hs(v)∈φt(v); (ii)
for any edge (u, v)∈(/∈)Ms we have that (hs(u), hs(v))∈(/∈)M .

The first goal of this paper is to tackle the problem of computing an m-
meta structure given a knowledge graph G, its schema TG and an input tuple
〈e1, ..., em〉. This goal can be formalized via the following general problem:

Problem: m-MetaStructureComputation
Input: A KG G, a KG schema TG, an entity tuple 〈e1, ..., em〉
Output: An m-meta structure S

To solve m-MetaStructureComputation we address two subproblems:
SP1, which focuses on building an m-meta structure instance s (Sect. 2.2); and,
SP2, which is about abstracting s by using the KG schema TG (Sect. 2.3).

300 V. Fionda and G. Pirrò

2.2 SP1: Building m-Meta Structure Instances

In computing an m-meta structure instance for the input tuple t = 〈e1, ..., em〉,
our algorithm sets a horizon h; this parameter bounds the portion of the graph
considered where entities in t are connected. If one were not to limit the search
horizon, then paths connecting entities in t can potentially span over large por-
tions of G. These generic paths would be not informative as they fail to capture
the essential relationships between entities in t. Indeed, if a too large horizon is
considered then the whole G (more precisely, the connected component where
entities in t lie) can trivially become the sought m-meta structure instance.

In what follows, we refer to the problem of computing an m-meta structure
instance that connects the m entities in input as m-MetaStrInstComp. One
way to approach the above problem could be to compute paths of length at
most h interlinking the entities in t = 〈e1, ..., em〉 and then merging them to
obtain the m-meta structure instance. Some existing approaches (e.g., [2,17])
obtain paths via SPARQL queries and then merge (a subset of) them according
to different strategies. From a computational point of view, materializing paths
and merging them is not an efficient choice. This is because the number of paths
can be exponential, thus requiring both exponential space (to store them) and
exponential time (to iterate over them). In what follows we give an algorithm
showing that m-MetaStrInstComp can be efficiently solved.

Proposition 4. m-MetaStrInstComp can be solved in time O(m × h × |G|)
To prove the above result, we provide an algorithm based on automata the-
ory. The algorithm encodes the input entity tuple t = 〈e1, ..., em〉 as a regular
expression having the form et = (•)∗/[e2]/.../(•)∗/[em−1]/(•)∗/[em]; here, • is a
wild-card, representing a generic edge label in Le and the notation [ei] encodes a
test, which checks whether an edge endpoint is equals to ei, one of the entities in
t = 〈e1, ..., em〉; such kind of regular expression can be represented via a NFA [5]
over the alphabet

⋃m
i=1{[ei]}∪{•} with state transitions occurring when finding

an input entity. We refer to this automaton as tuple automaton At (see Fig. 3).
The set of strings obtained by concatenating the edge labels of paths passing
through e1, ..., em are the set of strings generated by the language corresponding
to et and recognized by At.

Fig. 3. Tuple-automaton.

Base Algorithm. We are now ready
to present the algorithm to compute
the m-meta structure instance link-
ing entities in t = 〈e1, ..., em〉. The
algorithm includes two main steps:
(i) building a directed label graph

G × At (see Algorithm 1); (ii) filtering the portion of the input KG G that
should not be part of the m-meta structure instance identified in the first step
(see Algorithm 3). The graph G × At is built via the procedure reported in
Algorithm 1 that performs an optimized Breadth-First Search on the graph G,
according to the automaton At.

Meta Structures in Knowledge Graphs 301

Input : KG G, tuple t=〈e1, ..., em〉, horizon h
Output: G × At = (V ′, E′) /* marking of G with states of At */
1: At=buildTupleAutomaton(t) /* build the tuple automaton for the tuple t */

2: V ′={(e1, q0, 0)}; E′ = ∅ /* 0 is the starting depth and q0 the initial state of At */

3: toV isit=visited={(e1, q0, 0)}
4: while toV isit �= ∅ do
5: (v, qi, d)=extract(toV isit) /* remove the pair inserted first */

6: for all 〈(v′, qj), p〉 in expandState((v, qi),G,At) do
7: if ((v′, qj , d + 1) /∈ visited) and (d<h) and (|t|-j-1) <(h-d)) then
8: toV isit.add((v′, qj , d + 1))
9: visited.add((v′, qj , d + 1))

10: V ′=V ′∪{(v′, qj , d + 1)}
11: E′=E′∪{((v, qi, d), p, (v′, qj , d + 1))}
12: return G × At

Algorithm 1. buildMarkedGraph(G, t, l)

Input : node-state pair (v, q), KG G, tuple-automaton At

Output: 〈(node, state), edgeLabel〉 pairs L
1: L = ∅
2: for all (v, p, v′) ∈ G do
3: if (q, [v′], q′) ∈ At then
4: L.add(〈(v′, q′), p〉)

else L.add(〈(v′, q), p〉)
5: for all (v′, p, v) ∈ G do
6: if (q, [v′], q′) ∈ At then
7: L.add(〈(v′, q′), p−〉)

else L.add(〈(v′, q), p−〉)
8: return L

Algorithm 2. expandState((v, q), G, At).

Input : G × At: Marking of G with states of At

Output: s = (Ns, Ms) ⊆ G: m-meta structure Instance
1: toV isit = visited = {(em, qm−1, k) | (em, qm−1, k) ∈ G × At}
2: Ns = ∅, Ms = ∅
3: while toV isit �= ∅ do
4: (v, q, d)= extract(toV isit)
5: Ns=Ns∪{v}
6: for all ((v′, q′, d − 1), p, (v, q, d)) in G × At do
7: Ns=Ns∪{v′}
8: Ms=Ms∪{(v′, p, v)}
9: if (v′, q′, d − 1) /∈ visited then

10: toV isit.add((v′, q′, d − 1))
11: visited.add((v′, q′, d − 1))
12: return s

Algorithm 3. filterMetaStructureInstance(G × At)

The first step is the construction of the tuple-automaton At = 〈Q,Σ,
q0, {qm−1}, δ〉 associated to et (line 1) and reported in Fig. 3; here, Q is the

302 V. Fionda and G. Pirrò

set of states, Σ is the alphabet, q0 the initial state, {qm−1} is the set of final
states, and δ the transition function. The size of At linear in the size of the
input tuple, that is, |At| = O(m). At is used to build the labeled graph G × At

whose nodes are a subset of V × Q × {0, ..., h}. G × At contains an edge from
the node (v, q, d) to the node (v′, q′, d + 1) labeled with p ∈ Le (resp., p−) if,
and only if: (i) G contains an edge (v, v′) (resp., (v′, v)) labeled by p; (ii) the
transition function δ contains the triple (q, [v′], q′), and (iii) the node v has been
visited at depth d. If δ does not contain the triple (q, [v′], q′) then the edge from
(v, q, d) to (v′, q, d + 1) labeled with p ∈ Le (resp., p−) is added to G × At. The
selection of the edges of G to be traversed and the nodes/edges to be added to
G×At is made at lines 6–11. The function expandState (see Algorithm 2) (lines
3, 6) drives the traversal of the data graph according to the transitions of the
automaton At.

Note that an early termination condition is implemented in Algorithm 1 line
7 by: (i) limiting the horizon of the traversal to h and (ii) stopping the traversal
in advance as soon as some node is reached at a depth that does not allow to
reach all the remaining entities of the input tuple. Indeed when the state qj is
reached, it is necessary to perform at least m-1-j additional traversals to reach
the final state, and thus the entity em. It is easy to see that the size of G × At

is linear both in the size of G, the size of the tuple-automaton and the horizon
h, i.e., |G × At| = O(|G| × |At| × h) = O(|G| × m × h).

Lemma 5. There exists a path of length at most h connecting e1 to em in G
and passing, in order, through e2, ..., em−1, if, and only if, there exists a path
from (e1, q0, 0) to (em, qm−1, l) in the graph G × At such that l ≤ h.

By leveraging the above property, Algorithm 3 uses G × At to build the m-
meta structure instance s. The idea is to start with an empty m-meta structure
instance and navigate G × At backward (from (em, qm−1, l) to (e1, q0, 0)) by
adding nodes and edges to s (lines 5, 7 and 8). Each node and each edge of
G×At (in the opposite direction) is visited at most once with cost O(|G×At|) =
O(|G|× |At|×h) = O(m×h×|G|). Thus, the total cost, when also considering
the cost of building G × At, is O(m × h × |G|).

The above algorithm uses a horizon h to only consider paths of length at
most h interlinking the entities in t. We now discuss a variant, which introduces
a generic top-k path filtering mechanism based on an edge weighting function.

Edge weighting function. To filter the m-meta structure instance found by the
base algorithm described above we use an approach that assigns to each edge
label a weight. Weights can be assigned according to several strategies; in this
paper we use informativeness, and specifically we build upon the notion of Inverse
Triple Frequency (ITF) introduced and evaluated in our previous work [16]. Basi-
cally, the less frequent an edge label is the more it is informative thus get-
ting a higher weight. More formally, for an edge label p in G we have that
ITF(p,G) = log |E|

|E|π(p)
, where |E|π(p) is the number of statements in G where

p appears. Note that ITF values can be precomputed offline. Since our top-k

Meta Structures in Knowledge Graphs 303

Input : G × At: Marking of G with states of At, integer k
Output: s = (Ns, Ms) ⊆ G: m-meta structure Instance
1: H = [] /* Heap used to store prioritized paths */
2: Ns=Ms=∅
3: for all (v, q, i) in G × At do
4: count(v,q,i)=0 /* number of times a node (v, q, i) in G × At is visited */

5: P(e1,q0,i) = {(e1, q0, i)}
6: H.add(P(e1,q0,i),0) /* the initial total weight of the path is 0 */

7: while H �=∅ and
∑

i count(em,qm−1,i) < k do
8: (P(v,q,i),C)=H.extractMinCost() /* extract the path with minimum cost C */

9: count(v,q,i) = count(v,q,i) + 1
10: if v = em and q = qm−1 then
11: s.add(P(v,q,i))
12: else if count(u,q,i) ≤ k then
13: for all ((v, q, i), p, (v′, q′, j)) in G × At do
14: if (v′, q′, j) /∈P(v,q,i) then
15: P(v′,q′,j)=concatenatePath(P((v,q,i))((v, q, i), p, (v′, q′, j)))
16: H.add(P(v′,q′,j),C + ITF(p, G) /* insert the path */

Algorithm 4. selectTopK(G × At, k)

algorithm works by extracting minimum cost paths, we assign lower ITF values
to more informative edge labels.

Edge Weight Based Algorithm. We describe a variant of the base algorithm that
exploits edge label informativeness. After building the m-meta structure instance
via the base algorithm, selectTopK (Algorithm 4) is used to build the top-k m-
meta structure instance as the graph obtained by considering the top-k most
informative paths between (e1, q0, 0) and (em, qm−1, l) (line 11). Algorithm 4 is
an adaptation of Eppstein’s algorithm [3] to find k shortest paths in a graph,
where each node can be visited at most k times.

Lemma 6. Algorithm 4 runs in O(|edges(G × At)| + k × |nodes(G × At)| ×
log |nodes(G × At)|) = O(k × m × h × |G| × log(m × h × |G|)) where nodes(G)
is the set of nodes in G and edges(G) the set of edges.

2.3 SP2: Abstracting Meta Structure Instances

The second step to solve the m-MetaStructureComputation is the abstrac-
tion of an instance s into an m-meta structure S by using the KG schema TG. We
considered typing information (the type) of the nodes in the m-meta structure
instance. Existing methods (e.g., [12,21]) often assume that each node in a KG
G belongs to exactly one class; hence, to abstract s it is enough to substitute to
each node in s its class. However, in complex and real KGs, nodes can belong to
multiple classes. Hence, our approach assign to each node in s the Lowest Com-
mon Ancestor (LCA) of all its types in the type hierarchy. We also considered
another strategy based on the domain and range of edge labels. Given a node
n∈s, we consider all its incoming and outgoing edges; then, by considering their

304 V. Fionda and G. Pirrò

range and domain, we obtain a set of types. The type of n in the meta structure
S will be the LCA of the types in this set.

3 Meta Structure Based Relevance

This section outlines an m-meta structure-based relevance measure called Lay-
ered Tuple Relevance (LTR). Given a KG G = (V,E) and an m−meta structure S
including Q nodes, the relevance between a tuple including at most Q-1 distinct
entities and a target entity eQ is defined as follow:

R[(e1, e2, ..eQ−1), eQ | S] =
∑

s instance of S
f [(e1, e2, ..eQ−1), eQ | s]

where f is a relevance measure and s is an instance of the m-meta structure S
(see Definition 3). One basic form of R would be to simply count the number of
instances that the tuple (e1, e2, ..eQ−1) and the target entity eQ share; f would
simply return 1 for each instance s of S matching the tuple (e1, e2, ..eQ). For
instance, R[(A. Aho, J. Hopcroft),D.Knuth | S] where S is shown in Fig. 1 (a)
gives 11 instances; apart from the Turing Award, shown in the instance in Fig. 1
(b), there are 10 more awards, among which the Faraday Medal and Kyoto Prize.
Other entities that are relevant to the input tuple (A. Aho, J. Hopcroft) are I.
Sutherland, J. Ullman and T. Hoare, for which there are 16, 12, and 9 instances,
respectively. Using count leads to biased results for two main reasons: (i) count
is not bound, so it is difficult to have an objective way of interpreting relevance;
(ii) count favors popular objects, as objects with large degrees lead to a larger
number of instances. LTR is bound between 0 and 1 and takes into account the
specificity of m-meta structure instances in the relevance assessment.

LTR splits a m-meta structure S in two parts Sl and Sr. Sl considers the
subgraph of S obtained by removing the node where the target entity eQ is
mapped and its edges; besides, in Sl the Q-1 entities in input are used in lieu
of their types. Sr only retains the node (i.e., the type) where eQ is mapped
and its immediate neighbors. Splitting S in this way models the fact that we
are interested in the relevance between at most Q-1 entities whose structural
information is captured by Sl and a target entity eQ whose structural information
is captured by Sr. We sketch the rationale behind LTR via an example.

Consider the m- meta structure St in Fig. 1 (a) including Q= 5 nodes.
We are interested in measuring the relevance between the pair A. Aho (aa),
J. Hopcroft (jh) and an instance et of Scientist (i.e., S3 in Fig. 4), that is,
RLTR[(aa, jh), et | St] =

∑
s LTR[(aa, jh), et | s] with s being an instance of St.

Here, we are instantiating 2 out of the 4 possible nodes in the m-meta structure.
Although in this example we focus on aa and jh we may use any pair of entities
(or tuple of at most 4 entities) that conform to the m-meta structure in Fig. 1
(a). Figure 4 (a) shows Sl (dotted blue line) and Sr (dotted orange line) while
Fig. 4 (b) shows instances of both Award and Scientist; entities for the relevance
assessment are instances of the node S3. LTR leverages the tree structure shown
in Fig. 4 (c). The root (level 0) is Sl and is used to start the traversal of the

Meta Structures in Knowledge Graphs 305

Fig. 4. Computing meta structure-based relevance via LTR. (Color figure online)

KG by creating at level 1, for each possible pair of instances of A1 and A2,
a new child node; anecdotally there are 10 children in this example; IEEE J.
von Neumann Medal and Turing Award, are examples of instances of A1 and A2,
respectively. Each child node gives a new instance of the (sub)-meta structure
Sl. For each mapping a1 and a2 of A1 and A2, a new child node is created at
level 2 by instantiating these mappings into Sr. Leaves (level 3) are created by
instantiating into S3 the instances s1, ...,sk obtained again by traversing the KG
(level 2). As an example, for the leftmost node at level 2, S3 has p instances
and thus the corresponding subtree has p leaves. Note that level 1 and level 3
contain data triples only, while level 0 and level 2 have the placeholders A1, A2

and S3, respectively. These can be basically treated as variables with a typing
constraint (e.g., S3 is a Scientist). The relevance between the pair (aa, jh) and
a target entity et is computed starting from the leaves of the tree (level 3) and
checking for each leaf whether et appears. As an example, if et = s3, the second
leftmost leaf and the central leaf from the right hand side subtree receive a value
1; all the others receive 0. Relevance is assessed via Eq. 1, where Ni is the num-
ber of nodes at level i, Nn is the number of nodes in the subtree rooted at n
(excluding n), and Nn|1 is the number of nodes in the subtree rooted at n having
value 1 (excluding n).

RLTR =

∑
n∈level2 Θ(n)

N1
with Θ(n) =

Nn|1
Nn

(1)

When traveling up the tree starting from the leaves, each node n at level
2, receives the value Nn|1/Nn. Relevance is computed at the root by summing
values of nodes at level 2 and dividing by the number of children at level 1.
This guarantees that target entities sharing with the other entities of the tuple
less frequent objects (i.e., an Award ai) are ranked higher. Hence, we have that

306 V. Fionda and G. Pirrò

differently from the count based relevance measure, T. Hoare is ranked higher
than J. Ullman because he received the T. Award, which is a less common than the
ACM Fellowship shared with J. Ullman. In Sect. 4.2 we will show the usefulness
of LTR in a variety of knowledge discovery tasks.

4 Implementation and Evaluation

We implemented the algorithms in Java and the interface of MEKoNG in Java
FX. The algorithm to compute and abstract m-meta structures discussed in
Sect. 2 works in main memory whereas the LTR measure has been implemented
by using a combination of Java code and SPARQL queries. We considered dif-
ferent KGs in our experiments; (i) DBLP: the dataset described in Huang
et al. [10], which contains ∼50K nodes and ∼100K edges and includes four types
of entities (Paper, Author, Venue, Topic); (ii) YAGO: Yago core, which consists
of 5M edges, 125 types and ∼2M nodes having ∼365K types; (iii) DBpedia:
a subset including ∼2M nodes and ∼5M edges obtained from classes such as
Person, Location, and City. For the experiments about relevance (Sect. 4.2) the
full datasets have been accessed via their SPARQL endpoints. Experiments have
been performed on a MacBook Pro with a 2.8 GHz i5 CPU and 16 GBs RAM.
Results are the average of 5 runs. We abstract m-meta structure instances using
the LCA of the types of each entity.

Fig. 5. Results about efficiency.

Meta Structures in Knowledge Graphs 307

4.1 Efficiency

To test efficiency we used increasing subsets of Yago (from 1.5M of edges to
the full dataset) and the full DBLP. Entities are randomly chosen for each run.
Figure 5 (a) reports the average running time when varying the number of input
entities ne w.r.t. the depth spanning from ne-1 to 6.

We observe that in general the running time does not strictly depend on the
size of the dataset; it actually depends from the size of the input tuple with
lower values being responsible for higher running times. The reason is that the
early stopping condition in Algorithm 1 (line 7) is satisfied more frequently when
the number of input entities increases (for a given depth). Figure 5 (b) reports
the average running times when varying the depth d of the traversal w.r.t. the
number of entities spanning from 2 to d+1. The running time increases with
the depth (as one would expect); it reaches its maximum value for the subset of
Yago including 3M of edges. Figure 5 (c) reports the size of results as a function
of the depth of the traversal. The size is measured as the % of the triples in
the whole dataset that belong to the m-meta structure discovered. We note that
the higher the depth the larger the m-meta structure discovered. Nevertheless,
the size always remains below 10%. Results for depth equals to 2 and 3 are not
reported as they approach zero.

As for the algorithm that considers top-k paths only, Fig. 5 (d) reports the
average running times as a function of the depth d of the traversal for a fixed k
w.r.t. the number of entities spanning from 2 to d+1. Running times are higher
than those in Fig. 5 (b) since the algorithm requires a further step to find the top-
k most informative paths. In particular, for depth equals to 6 the running time is
∼35 s (it was 25 s without the application of the top-k algorithm). Using the top-
k algorithm allows to obtain significantly smaller and more understandable m-
meta structures As an example, for 3 entities and depth 6, the m-meta structure
instance on DBLP has 390 nodes and 928 edges when using the base algorithm;
the number of nodes is 10 and the number of edges is 11 when using the top-k
algorithm instead. On the whole Yago dataset, for the same depth and number
of entities, the number of nodes and edges is ∼8K and ∼15K, respectively, for
the base algorithm; these numbers become 8 and 10 for the top-k. Running times
for DBpedia are not reported since they showed similar trend to that of Yago.
Overall, the base algorithm is able to retrieve an m-meta structure instance
linking the input tuple in a reasonable amount of time (considering the size of
the dataset and the depth); however, the size of such m-meta structure instance
can become prohibitively large. On the other hand, the top-k requires a slightly
larger running time (with an increase of about 30% on average) but allows to
obtain smaller and more useful m-meta structure instances.

4.2 Effectiveness

We now compare the performance of LTR with the approach that count meta
structure instances (referred to as StrCnt) and SCSE and BSCSE [10]; SCSE per-
forms subgraph expansion (from a source entity) by restricting the traversal

308 V. Fionda and G. Pirrò

of a KG to S) and BSCSE combines and generalizes StrCnt and SCSE. In this
case we consider tuples consisting of two entities. Figure 6 reports some of the
meta structures used to test the effectiveness of the LTR measure. Besides meta
structures we also considered (combinations of) some of their constituent meta
paths.

Entity Resolution. We used LTR to identify entities in a KG that refer to the
same person. In order to construct the ground-truth, we used the entity tuple
(Barack Obama, Republican Party, Presidency of Barack Obama) to obtain the
meta structure in Fig. 6 (a) using data from DBpedia. The meta structure tells
us that two entities of type Person (i.e., P1 and P2) are both married to the same
person P and member of the same Organization (i.e., O); Fig. 6 (a) also shows
(dotted lines) two meta paths P1 and P2.

Fig. 6. Meta structures used in the experiments.

By using this meta structure we obtained a set of 558 entity pairs; then, we
manually inspected these results to discover 124 pairs of entities that refer to the
same person (e.g., Barack Obama, Presidency of Barack Obama). As for Yago, we
used the ground-truth constructed by Huang et al. [10] including 44 positive pairs
and 2967 negative ones. The meta structure used in Yago is slightly different; it
uses marriedTo in lieu of spouse and affiliatedTo in lieu of party. We compared
the performance of LTR, StrCnt, SCSE, BSCSE on the two meta paths P1 and
P2 taken separately and their (optimal) linear combination. Results are shown
in Table 1. Using meta paths alone gives the lowest performance, while their
combination brings slightly better results on DBpedia. The reason is that meta
paths fail in capturing complex relationships that meta structures can capture
using shared nodes. StrCnt gave better results but it favors popular objects
thus giving higher relevance to pairs of entities sharing more meta structure
instances. LTR performs better as it is able to perform a deeper assessment of
relevance by considering the specificity of entities shared (e.g., P and O) in a meta
structure. SCSE/BSCSE work on main memory and could not handle DBpedia
because of a memory overflow. On Yago, the trend of results remains the same
as DBpedia with LTR reporting slightly lower performance than SCSE/BSCSE.
We can explain this behavior by the fact that SCSE/BSCSE perform a finer-
grained layered structural analysis of a meta structure; however, they assume
that the meta structure itself is a DAG. LTR does not impose this constraint and
performs a higher level analysis by splitting a meta structure in two parts (see
Sect. 3). Nevertheless, LTR brings the following advantages over SCSE/BSCSE:

Meta Structures in Knowledge Graphs 309

Table 1. AUC for the Entity Resolution Experiment.

Dataset P1 P2 αP1+(1 − α)P2 StrCnt SCSE BSCSE LTR

Yago 0.223 0.115 0.298 0.495 0.534 0.543 0.512

DBpedia 0.167 0.118 0.213 0.314 – – 0.498

(i) it can work on any existing KG exposed via SPARQL, while SCSE/BSCSE
require preprocessing and index building/maintenance; (ii) it can work with
arbitrarily-shaped meta structures and not only DAGs; (iii) LTR is built given a
tuple of entities while SCSE/BSCSE assume meta structures are given.

Ranking. We now discuss relevance in different domains. The meta structure
in Fig. 6 (b) models relevance with a person (P1) that has acted and directed
movies (M) where also acted a different persons (P2). The meta structure in
Fig. 6 (c) is used to asses relevance on DBLP based on the fact that authors (A)
have published two papers (P1 and P2) in two venues (C1, C2) in the same year
(Y). Table 2 reports the top-5 relevant entities for different source entities (i.e.,
instantiations of nodes in a meta structure).

Table 2. Top-5 relevant entities using different meta structures and source entities.

Meta Structure

S2 (Fig. 6 (b)) S2 (Fig. 6 (b)) S3 (Fig. 6 (c)) S3 (Fig. 6 (c))

Rank P1 =Q. Tarantino P1 =C. Eastwood C1 =ISWC, Y=2010 C1 =ISWC, Y=2016

1 H. Keitel S. Locke ESWC ESWC

2 S. L. Jackson K. Costner EKAW WWW

3 M. Madsen M. Freeman WWW JIST

4 T. Roth M. Hill Description Logics EKAW

5 U. Thurman J. Walter I-Semantics swat4ls

As for S2, in DBpedia Q. Tarantino is highly related to H. Keitel and S. L.
Jackson. On Yago (full ranking not reported) we have that S. L. Jackson is ranked
higher than H. Keitel and that L. Bender enters the top-5. By changing the source
entities to C. Eastwood, on DBpedia we get S. Locke and then K. Costner while
in Yago (ranking not reported) we have M. Freeman ranked second and A. Her
entering the ranking. S3 uses two entities as source (a venue C1 and a year Y)
and retrieve the top-k most related venues (instances of C2). In 2010, ESWC is
the most relevant and I-Semantics is the least relevant according to the meta
structure S3. Interestingly, when changing year we can see that WWW becomes
more relevant and that JIST in included in the top-5. LTR offers a flexible way of
assessing relevance by allowing to fix a subset of entities in a tuple. Fixing two
entities allowed to obtain a more refined (venue-year-centric) ranking than fixing
only the venue. In this latter case the ranking would have been different: OWLED

310 V. Fionda and G. Pirrò

would have entered the ranking in lieu of swat4ls. As an example, by using StrCnt
in 2016 we would have obtained BigData instead of swat4ls, although the latter
(Semantic Web Applications and Tools for Life Science) is clearly more relevant.
Overall, LTR coupled with meta structures offers flexibility in two respects: (i) it
can be applied in a variety of KGs thanks to its SPARQL-based implementation;
(ii) an arbitrary subset of nodes in a meta structure (e.g., a venue and a year)
can be chosen as a source for relevance wrt a target node (e.g., another venue).

5 Related Work

Connectivity Structures. The problem of finding connectivity structures in
graphs has been studied in different fields [19]. Hintsanen [9] focused on find-
ing the most reliable subgraph in a graph subject to edge and node failures.
Ramakrishnan et al. [18] focused on finding the most informative entity-
relationship subgraphs in a given graph. A variant of this problem has been
studied by Mendes et al. [14]. Other approaches have focused on determining
specific substructures such as the minimum spanning tree or approximations
(e.g., STAR [11]). Neither the above approaches focus on finding meta struc-
tures (schema graphs) given a tuple of entities nor on using meta structures
for relevance computation. A number of approaches (e.g., [2,4,6,8,17]) have
reduced the problem of finding paths (and meta paths) between entities to
that of directly querying a KG by fixing a maximum path length and then
displaying/abstracting (a subset of) the paths found. Beside the fact that these
approaches neither focus on meta structure nor on relevance computation, their
major drawback is that they require to enumerate paths first. A few approaches
focused on finding meta paths; Lao et al. [12] tackle this problem by using con-
strained random walks. AMIE [7] is a system to mine association rules from KG.
The difference with meta paths algorithms, and with our meta structure finding
algorithm, is that AMIE does not find associations by taking into account the
user input (i.e., a tuple of entities). Meng et al. [15], focuses on meta paths while
we focus on meta structures. A recent approach [1] focuses on finding associa-
tions given a tuple of entities. Our work differs in several respects: (i) we control
the size of the subgraph linking the input tuple by including top-k informative
paths since this subgraph can be very large and thus difficult to visualize (e.g.,
for relatedness explanation) and reuse (e.g., for relevance computation); (ii) we
do not focus on trees as meta structures are graphs; (iii) we introduce a novel
meta structure-based relevance measure and show its usefulness in a variety of
tasks. Overall, we tackle a more comprehensive problem: finding meta struc-
tures given a tuple of entities as input, meta structure-based relevance, and user
supports (via MEKoNG).

Relevance Measures. Several measures have been proposed to compute rele-
vance; examples include: (i) measure based on the graph structure (e.g., common
neighbors), Jaccards coefficient or based on random walks [12]; (ii) schema-based
measures based on meta-paths (e.g., [20]); (iii) Huang et al. [10] define relevance

Meta Structures in Knowledge Graphs 311

based on meta structures. Our work differs from (i) in the fact that LTR lever-
ages schema information and from (ii) because we use meta structures instead
of meta paths. As for (iii), the underlying assumption that meta structures are
already available may be not realistic for a number of reasons: manually defining
meta structures can be tedious and difficult when dealing with complex KGs like
Yago/DBpedia; and complex meta structures can be difficult to discover, espe-
cially if this is done without automation. Our work is more comprehensive as
it deals with both meta structure finding and relevance computation. Finally,
differently from (i), (ii), and (iii) we focus on entity tuples and not just pairs.

6 Concluding Remarks and Future Work

We discussed an approach to compute meta structures combining an automata-
based algorithm and its variant, which considers the most informative top-k
paths. As our algorithm to find meta structures works in main memory, it cannot
deal with very large KGs. To address this limitation we plan to consider the
vertex-centric Gather Apply Scatter (GAS) paradigm [13] in the future. We
have shown how meta structure-based relevance is useful in a variety of task
(e.g., entity resolution, ranking). Our implementation of LTR, by a combination
of Java code and SPARQL queries, makes it readily available on any SPARQL
endpoint. Testing LTR in other domains is in our research agenda.

References

1. Cheng, G., Liu, D., Qu, Y.: Efficient algorithms for association finding and fre-
quent association pattern mining. In: Groth, P., Simperl, E., Gray, A., Sabou, M.,
Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp.
119–134. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 8

2. Cheng, G., Zhang, Y., Qu, Y.: Explass: Exploring associations between entities via
Top-K ontological patterns and facets. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8797, pp. 422–437. Springer, Cham (2014). doi:10.1007/978-3-319-11915-1 27

3. Eppstein, D.: Finding the k Shortest Paths. SIAM J. Comp. 28(2), 652–673 (1998)
4. Fionda, V., Pirrò, G., Gutierrez, C.: Building knowledge maps of web graphs. Artif.

Intell. 239, 143–167 (2016)
5. Fionda, V., Pirrò, G., Gutierrez, C.: NautiLOD: A formal language for the web of

data graph. ACM Trans. Web 9(1), 5 (2015)
6. Fionda, V., Pirrò, G., Consens, M., Paths, E.P.: Writing more SPARQL queries in

a succinct way. In: AAAI (2015)
7. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: Association rule

mining under incomplete evidence in ontological knowledge bases. In: WWW, pp.
413–422 (2013)

8. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:
Revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y.,
Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol.
5887, pp. 182–187. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10543-2 21

http://dx.doi.org/10.1007/978-3-319-46523-4_8
http://dx.doi.org/10.1007/978-3-319-11915-1_27
http://dx.doi.org/10.1007/978-3-642-10543-2_21

312 V. Fionda and G. Pirrò

9. Hintsanen, P.: The most reliable subgraph problem. In: Kok, J.N., Koronacki, J.,
Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007.
LNCS (LNAI), vol. 4702, pp. 471–478. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74976-9 48

10. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X., Structure, M.:
Computing relevance in large heterogeneous information networks. In: KDD, pp.
1595–1604 (2016)

11. Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M., Weikum, G.: STAR:
Steiner-tree approximation in relationship graphs. In: ICDE, pp. 868–879 (2009)

12. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Mach. Learn. 81(1), 53–67 (2010)

13. Grzegorz. M., Austern, M., et al.: Pregel: a System for Large-Scale Graph Process-
ing. In: SIGMOD, pp. 135–146 (2010)

14. Mendes, P.N., Kapanipathi, P., Cameron, D., Sheth, A.P.: Dynamic associative
relationships on the linked open data web. In: Web Science Conference (2010)

15. Meng, C., Cheng, R., Maniu, S., Senellart, P., Zhang, W.: Discovering meta-paths
in large heterogeneous information networks. In: WWW, pp. 754–764 (2015)

16. Pirrò, G.: REWOrD: Semantic relatedness in the web of data. In: AAAI (2012)
17. Pirró, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas,

M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Cham (2015).
doi:10.1007/978-3-319-25007-6 36

18. Ramakrishnan, C., Milnor, W.H., Perry, M., Sheth, A.P.: Discovering informa-
tive connection subgraphs in multi-relational graphs. SIGKDD Newsl. 7(2), 56–63
(2005)

19. Sheth, A., et al.: Semantic association identification and knowledge discovery for
national security applications. JDBM 16(1), 33–53 (2005)

20. Shi, C., Kong, X., Huang, Y., Yu, P.S., Wu, B.: HeteSim: A general framework for
relevance measure in heterogeneous networks. TKDE 26(10), 2479–2492 (2014)

21. Sun, Y., Han, J., Yan, X., Yu, P.S., PathSim, T.: Meta Path-based top-k Similarity
Search in Heterogeneous Information Networks. In: PVLDB (2011)

http://dx.doi.org/10.1007/978-3-540-74976-9_48
http://dx.doi.org/10.1007/978-3-540-74976-9_48
http://dx.doi.org/10.1007/978-3-319-25007-6_36

Challenges of Source Selection in the WoD

Tobias Grubenmann(B) , Abraham Bernstein , Dmitry Moor ,
and Sven Seuken

Department of Informatics, University of Zurich, Zurich, Switzerland
{grubenmann,bernstein,dmoor,seuken}@ifi.uzh.ch

Abstract. Federated querying, the idea to execute queries over several
distributed knowledge bases, lies at the core of the semantic web vision.
To accommodate this vision, SPARQL provides the SERVICE keyword
that allows one to allocate sub-queries to servers. In many cases, however,
data may be available from multiple sources resulting in a combinatori-
ally growing number of alternative allocations of subqueries to sources.
Running a federated query on all possible sources might not be very
lucrative from a user’s point of view if extensive execution times or fees
are involved in accessing the sources’ data. To address this shortcoming,
federated join-cardinality approximation techniques have been proposed
to narrow down the number of possible allocations to a few most promis-
ing (or results-yielding) ones.

In this paper, we analyze the usefulness of cardinality approximation
for source selection. We compare both the runtime and accuracy of Bloom
Filters empirically and elaborate on their suitability and limitations for
different kind of queries. As we show, the performance of cardinality
approximations of federated SPARQL queries degenerates when applied
to queries with multiple joins of low selectivity. We generalize our results
analytically to any estimation technique exhibiting false positives. These
findings argue for a renewed effort to find novel join-cardinality approxi-
mation techniques or a change of paradigm in query execution to settings,
where such estimations play a less important role.

Keywords: Approximate query processing · Bloom Filter · Federated
SPARQL · Source selection · Web of Data

1 Introduction

At the core of the Semantic Web vision lies the possibility to ubiquitously access
distributed, machine-readable, linked data. This Web of Data (WoD) relies on
the notion of being able to access partial information from a variety of sources
that then gets combined to an integrated answer.

One major approach to achieving this functionality in a distributed fash-
ion is federated querying [2,3,7,14,18,24,25]. It relies on traditional database
approaches to join partial results from multiple sources into a combined answer.
Specifically, it divides a query into subqueries and delegates the execution of

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 313–328, 2017.
DOI: 10.1007/978-3-319-68288-4 19

http://orcid.org/0000-0003-0391-584X
http://orcid.org/0000-0002-0128-4602
http://orcid.org/0000-0002-4658-3489
http://orcid.org/0000-0001-8525-8120

314 T. Grubenmann et al.

each of these subqueries to one or more remote databases, which on the WoD
are called endpoints. A query execution plan assigns the subqueries to a certain
set of endpoints and determines the order of the subquery execution. Hereby,
results from one subquery can vastly reduce the computational effort of answer-
ing another. One major problem of querying the Web of Data is source selection,
which is deciding which subqueries should be delegated to which SPARQL end-
points during query execution and which endpoints should not be considered for
query execution at all. We will focus in this paper on the cardinality of the query
answer as the metric to evaluate the worthiness of including certain sources into
query execution.

Ideally, a user would be able to estimate the cardinality of the query answer
for any subset of all relevant sources. Given the knowledge about the resulting
cardinality for different combinations of sources, a user could make an informed
decision whether a certain source should be included into the federated query
execution or not. By an informed decision we mean deciding whether selecting
and accessing a certain subset of all available endpoints is worth the time and,
potentially, fees which are associated with accessing these endpoints.

In this paper, we argue that the performance of cardinality approxi-
mations of federated SPARQL queries degenerates when applied to
queries with multiple joins having low join selectivities. This means
that such approximations are not sufficiently precise to allow a user to make
an informed decision. As a consequence, a user who cannot afford to query all
relevant sources for a given query must blindly exclude some relevant sources
risking low cardinality or empty query answers, even though solutions to the
query would be available on the WoD. Specifically, our contributions are:

– We show empirically that the cumulative error of cardinality estimation tech-
niques based on Bloom Filters explodes in the combinatorial distributed setting
of the WoD, which questions its usefulness for informed source selection.

– We show empirically that the explosion of the cumulative error often makes
join-cardinality estimation slower than executing the actual query. Hence,
using such a technique may not only lead to suboptimal results but even
slow down the query execution process, which is exactly the opposite of the
goal of source selection.

– Using a theoretical analysis of the problem, we explain why these negative
results necessarily occur when using any estimation technique exhibiting false
positives in combination with queries having low join selectivities.

The remainder of this paper is organized as follows. First, we succinctly
discuss the most relevant related work. Next, Sect. 3 provides empirical evidence
of our claims about the limited usefulness of join approximation techniques using
Bloom Filters, which is followed by a discussion of the results. In Sect. 4, we
present our main result: a theoretical analysis which explains the cumulative
error and associated runtime behavior that federated cardinality approximation
techniques face in the WoD. We close with some conclusions.

Challenges of Source Selection in the WoD 315

2 Related Work

Federated SPARQL querying and source selection: Different approaches
have been proposed to query RDF data in a federated setting. Mediator systems
like FedX [24] and DARQ [20] allow a user to query a federation of endpoints
in a transparent way while incorporating all known SPARQL endpoints into the
query answer. The federation appears to the user as one big SPARQL endpoint
holding the data of all the members of the federation. Once the members are
specified and initialized, the user can issue SPARQL queries against the mediator
without having to adapt the query for federated execution or providing any
additional information about the federation members.

Avalanche [3] and ANAPSID [2] propose different, more dynamic systems
where they relax the requirement of complete results and allow certain end-
points to fail. Their systems focus on robustness of query execution in the Web.
Avalanche [3] executes all possible queries (i.e., all combinations of possible end-
points) in parallel eventually timing out a query when the rate of incoming
results slows down. In queries with many combinations this may lead to a very
high network load and a significant time between querying and query comple-
tion. ANAPSID [2], in contrast, runs only one query plan and dispatches each
sub-query to every possible endpoint using a mediator. This results in a highly
robust execution but again, faces the danger of including a very large number
of endpoints if no sensible source-selection approach is available.

SPLENDID [9] proposed to exploit service descriptions and VoID statis-
tics about each endpoint to perform source selection and query optimization.
HiBISCuS [21] uses join-aware techniques to select relevant sources for feder-
ated query execution. HiBISCuS maintains an index which stores the authori-
ties of certain URIs. [27] introduced Fed-DSATUR, an algorithm for SPARQL
query decomposition in federated settings. They do not use statistics, indices,
or estimates for source selection.

The SPARQL 1.1 Federated Query extension [10] follows a different approach:
a user must explicitly specify which part of the query should be executed on
which server. The extension requires the user to know which SPARQL endpoint
can provide data for which subquery and rewrite the query accordingly using a
special SERVICE-clause.

Duplicate aware source selection [22] tries to eliminate sources with duplicate
data using Min-Wise Independent Permutations. [11] used Bloom Filters for
source selection of RDF sources and investigated the number of requests needed
for an approximation to achieve a certain recall.

Good estimates of the contribution of different sources towards a query
answer plays an important role in [16,17], where users have to pay for accessing
the selected sources.

In contrast to the work presented so far, we perform an empirical and the-
oretical analysis of the error behavior for the problem of source selection when
the cardinality of the result is used as the deciding factor.

316 T. Grubenmann et al.

Cardinality Estimation Techniques: In the traditional database domain,
join approximation has been used as a suitable technique for approximate query
processing [8]. The goal of approximate query processing is to compute an answer
that approximates the query answer without having to execute the query. Join
approximations can be used to calculate the expected cardinality and the join
selectivity of a specific query.

A variety of approaches provide data synopses (i.e., summaries of the data)
for join approximation. Histograms [13] and Wavelets [8] have been used to
approximate the distribution of a dataset over a given domain. Also, Bloom
Filters were first proposed as a space-efficient probabilistic data structure to
approximate sets [5]. The advantage of Bloom Filters is that they allow to spec-
ify the desired false-positive rate for set-membership checking without leading to
false-negatives. Given that they also allow intersections between bloom-filtered
sets they have become a de-facto standard for join approximations. Q-Trees
[19] were introduced as a special data summary technique for RDF data. [26]
compared the runtime and space complexity of indexing techniques, multidimen-
sional histograms, and Q-Trees and evaluated, in particular, their usefulness for
source selection and highlighted the superiority of Q-Trees over the others.

Sampling methods [15] do not rely on a synopsis but on a selection of the
data. Hence, they do not produce false positive matches but might produce false
negatives. Sampling methods provide a lower bound on the cardinality of a join.

Join synopses [1] are special summary structures built for join approximation.
They are constructed for specific, ex-ante known join operations and are therefore
not suitable to the purely ad-hoc federated settings. They are, however, useful
when one knows that certain joins are likely to occur.

Finally, [12] studied the propagation of errors in the size of the join result. In
this paper, we will extend the analysis done by [12] to the domain of SPARQL
queries.

3 Experimental Evaluation of the Cumulative Join
Estimation Error

The goal of this section is to show the relative error and runtime behavior of join
cardinality approximation using Bloom Filters, which motivated our theoretical
analysis of the problem and our conclusion that join approximation techniques
are problematic for source selection. We used Bloom Filters for the approxima-
tion as they provide an easy and straightforward way to encode strings like IRIs
and Literals.

In the following, we will first describe the experimental setup, including the
query approximation engine and the data we used before presenting the results.

3.1 Query Approximation Engine

We implemented a query engine that allows us to execute joins over feder-
ated SPARQL endpoints on dynamically generated data synopses. The query

Challenges of Source Selection in the WoD 317

engine accepts a query consisting of basic graph patterns using the SPARQL 1.1
SERVICE-clause to allocate a certain Basic Graph Pattern (BGP), called ser-
vice pattern, to specified endpoints. Our approximation engine currently does not
yet support UNION-clauses, OPTIONAL-clauses and filters outside of service
patterns.

To approximate a join between two service patterns, a data synopsis of the
data matching the first service pattern is generated by the responsible endpoint.
This synopsis summarizes the bindings of the joining variables for each solution
of the assigned service pattern. The data synopsis is generated by inserting the
string representation of the bindings of a solution into a Bloom Filter. If multiple
variables are joining, the bindings are combined into one string using a special
delimiter. The endpoint responsible for the second SERVICE-clause receives the
data synopsis and does a membership check on the string representation of the
bindings of the joining variables of its assigned service pattern. The bindings for
which the membership check is positive form the basis for the join synopsis. The
join synopsis summarizes the bindings of those variables which are joining with
the next service pattern and is used as input for the next join approximation
step.

To illustrate the approximation process, Fig. 1 shows how the query in
Listing 1 would be approximated. First, ep1.com receives the first service pat-
tern, consisting of only one triple pattern ?a ex:p ?x, and creates a list of
bindings for variable ?a (1 in Figure). These bindings get approximated by an
appropriate data synopsis 2 . The synopsis is joined with the bindings provided
by endpoint ep2.com for the second service pattern ?a ex:p ?b 3 . Note that
only variable ?a is involved in the join while a synopsis for the corresponding
bindings for variable ?b is created 4 . The second synopsis is joined with the
bindings for the third service pattern ?y ex:p ?b 5 . Since this clause is the
last one, there is no further synopsis needed. Instead, we count the number of
bindings that join with this last synopsis 6 . This number is the estimated car-
dinality of the join between the three service patterns when they are assigned to
the sources according to the federated query in Listing 1.

Listing 1. A SPARQL query with 3 Service Patterns, each consisting of 1
Triple Pattern.

PREFIX ex: <http :// example.com/>

SELECT * WHERE {

SERVICE <http :// ep1.com > {

?a ex:p ?x . }

SERVICE <http :// ep2.com > {

?a ex:q ?b . }

SERVICE <http :// ep3.com > {

?y ex:r ?b . }

}

318 T. Grubenmann et al.

Fig. 1. Approximating the query in Listing 1 using our approximation engine.

3.2 Experimental Setup

For our evaluation, we investigated the scenario where each triple pattern must
be sent to a different source. This means that it is not possible to form exclusive
groups to speed up query processing/approximation, as proposed by [24].

For the evaluation, we used FedBench [23] as a benchmark. FedBench consists
of 25 queries and more than 200 million triples distributed over 9 datasets. Since
we do not support UNION or OPTIONAL-clauses at the moment, we removed
queries containing those clauses from our evaluations. To give a baseline for the
execution time of the different approximation techniques, we executed each query
using the query engine Jena ARQ1. We used the SERVICE-clause to direct each
triple pattern to a separate SPARQL endpoint. We used Blazegraph2 as a triple
store. Table 1 shows the queries used, their runtime in milliseconds when using
Jena ARQ, the actual cardinality of the query answer, and the number of triple
patterns in the query.

We simulated both, query execution using Jena ARQ and the approximations
using Bloom Filters, with a network speed of 10 Mbps, which is around the
average speed of the top 10 countries in the world [4]. For the query execution,
we adapted Jena ARQ to do block-nested-loop joins with a block size of 500
bindings to reduce the number of HTTP-connections, which have a negative
impact on the runtime behavior of federated query execution. In addition, we
optimized the join order of the different queries using simple heuristics to keep
query execution in a reasonable time-frame. The query execution and all query
approximations used the same join ordering to keep the results comparable.

1 https://jena.apache.org.
2 https://www.blazegraph.com.

https://jena.apache.org
https://www.blazegraph.com

Challenges of Source Selection in the WoD 319

For the Bloom Filter implementation, we used the Guava Google Core
Library for Java3.

Table 1. The execution time, count, and number of triple patterns of the different
queries.

Query Time [ms] Cardinality Triple patterns

CD3 2.50E+03 2 5

CD4 3.90E+02 1 5

CD5 4.80E+02 2 4

CD6 1.30E+03 11 4

CD7 5.70E+02 1 4

LS3 3.80E+04 9054 5

LS4 5.20E+02 3 7

LS5 1.02E+02 393 6

LS6 4.40E+05 28 5

LD1 6.90E+02 308 3

LD2 4.70E+02 185 3

LD3 7.60E+02 159 4

LD4 3.10E+03 50 5

LD5 3.00E+02 28 3

LD6 6.20E+02 39 5

LD7 1.50E+03 1216 2

LD8 5.90E+02 22 5

LD9 3.20E+02 1 3

LD10 2.90E+02 3 3

LD11 2.00E+03 376 5

3.3 Results

Figure 2 shows the absolute value of the relative error and the relative execution
time of the approximation both computed with respect to the actual runtime
and count when running the query in a federated fashion using Jena ARQ.

The relative error erel is defined as

erel =
cardest − cardactual

cardactual
,

where cardest is the estimated cardinality of the query answer based on the
approximation and cardactual is the actual cardinality of the query answer.
3 https://github.com/google/guava.

https://github.com/google/guava

320 T. Grubenmann et al.

The relative execution time trel is defined as

trel =
test

tactual
,

where test is the runtime of the approximation technique and tactual is the run-
time of the query execution using Jena ARQ.

Clearly, a relative runtime of less than 1 is desirable, as otherwise it would
be faster to execute the query and get the actual cardinality. For the relative
error, it is not so clear what kind of error would still be in an acceptable range.

Each plot in Fig. 2 shows the relative error (solid line) and relative execution
time (dashed line). We measured the error and execution time for false positive
rates of fpp = 0.1, 0.01, 10−4, 10−8.

As we can see in Fig. 2, the runtime of the Bloom Filter approximation is
very often disappointing. The approximation tends to require considerably more
time for the approximation than the actual query execution. Surprisingly, the
execution time for those approximations often improves when increasing the
size of the underlying data synopsis. The discussions in Sect. 4 provide a good
explanation for this behavior: the more accurate the synopsis, the less false
positives must be processed. The overhead in processing more false positives
seem to have a bigger negative impact on the runtime than the reduction of
the size of the synopsis. This behavior somewhat counteracts the actual purpose
of a data synopsis to provide a trade-off between less accurate information and
reduced processing time.

Discussion of selected queries: The Bloom Filter approximation shows good
results for the runtime of queries LS3, LS5, LS6, LD2, and LD4. Also, the error
is comparably low and most of the time below 1. For those queries, the approx-
imation can be considered successful: the approximation is able to return a rea-
sonable approximation of the result size while running considerably faster than
the actual query execution.

Queries CD7, LS4, and LD11 show worse approximation for a false positive
probability of 10−8 than for a probability of 10−4. One likely explanation for
this is the fact that the original false positive analysis done by [5] is incomplete
and only gives a lower bound on the false positive rate. Indeed, as [6] points out,
the actual false positive rate might be worse than expected when a small value
for the false-positive probability is chosen as a parameter and a large number of
hash functions have to be used in the filters.

The approximation yields a relative error of 0 for the query LD9. The reason
for this behavior is that the last triple pattern only matches one single triple.
Thus, our approximation engine predicts a cardinality of at most 1, because
the prediction is based on the number of those triples matching the last triple
pattern which also join the synopsis of the previous joins, which can never be
larger than the number of triples matching the last triple pattern. At the same
time, the actual result of the query is also 1. Hence, approximation technique
which overestimate the cardinality will yield a perfect prediction, necessarily.
However, the relative runtime of the approximation methods is around 1.

Challenges of Source Selection in the WoD 321

The query LD4 is another one where the last triple pattern only matches one
single triple. Again, our approximation engine predicts a cardinality of at most
1. But this time, the actual result is not 1 but 50. In fact, all 50 different results
have the same binding for the last joining variable. As the Bloom Filter does
not account for duplicated values the approximation wrongly predicts 1 instead
of 50. At the same time, the approximation speed profits slightly from this error
by yielding a faster execution time.

4 Theoretical Analysis of the Cumulative Join Estimation
Error

In this section, we investigate to theoretical foundations which can explain the
disapointing performance of our Bloom Filter join approximation. We will esti-
mate the cumulative error for WoD queries for approximation techniques that
overestimate the results due to false positives, which includes all data synopses
which are not based on sampling, in particular, our Bloom Filter-based method.
Such overestimating data synopses can lead to false-positive matches (i.e., the
prediction of a match where there is none) due to loss of information. When
approximating multiple joins, the result of the first join (including its false pos-
itives) is again encoded as a data synopsis passed to the second join, which will
now attempt to match all encoded elements including the false-positives. Hence,
the error of the synopsis gets propagated through each join and accumulates [12].

We now formally discuss the propagation of the error in a multi-join, that
is, a sequence of joins where the output of one join is an input for the next join.
For this we extend the formula for the error derived by [12] by analyzing the
relation between the rate of false positive matches and the join selectivity based
on the following assumption:

Assumption 1. All joins are equality inner-joins.

Assumption 1 is motivated by the fact that we do not consider filter expressions
in our evaluation and hence, we only support equality joins. We will not discuss
outer joins because their cardinality estimation is trivial.

Assume we want to approximate the join result of joining m + 1 basic graph
patterns bgp0, . . . , bgpm. We define ni for i ∈ {0, . . . , m} as the number of results
selected by BGP bgpi from the corresponding dataset. Let nFP

i be the number
of false positives at step i, which is the number of elements that are wrongly
classified as a match given the synopsis from the previous joins. We define the
false positive rate fpri as the ratio between nFP

i and ni.
Let propFP

i for i ∈ {1, . . . , m} be the propagation rate of the false positives
in the synopsis for the join approximation between bgp0, . . . , bgpi−1. The propa-
gation rate indicates how many false-positives matches are produced on average
by a single false-positive propagated from previous join approximations.

The expected number of false positives FPk for the approximation of the join
of bgp0, . . . , bgpk is the number of false positives introduced by fprk for bgpk plus

322 T. Grubenmann et al.

Fig. 2. Relative error (left vertical axis) and relative execution time (right vertical axis)
for different false positive probabilities.

Challenges of Source Selection in the WoD 323

the false-positives given the false-positives FPk−1 of the approximation of the
join of bgp0, . . . , bgpk−1:

FPk = fprk · nk
︸ ︷︷ ︸

synopsis error

+ propFP
k · FPk−1

︸ ︷︷ ︸

propagated error

. (1)

We define FP0 := 0, as there is no propagated error influencing the first join
operation. Applying Eq. 1 recursively gives the following formula for the number
of false positives FPm of the approximation of the join of bgp0, . . . , bgpm:

FPm =
m

∑

i=1

fpri · ni ·
m
∏

j=i+1

propFP
j . (2)

To compare the number of false positive matches with the number of true
positive matches, we analogously compute the number of true positives TPm.
To do that we define the propagation rate of the true-positives propTP

i for the
join between bgp0, . . . , bgpi−1 (just like we defined the propagation rate propFP

i

for false-positives). Using this definition, the number of true positives TPk of
joining bgp0, . . . , bgpk is:

TPk = n0 ·
k

∏

j=1

propTP
j . (3)

To continue our analysis, we introduce the following assumption:

Assumption 2. False-positive matches and true-positive matches have the
same propagation rate, i.e. propFP

j = propTP
j =: propj.

Assumption 2 is motivated by the fact that the propagation rate of both, true
positives and false positives, are influenced by the type of URI and not by the
fact whether they are false or true positive. For example, there is an average
number of addresses joining with a person, independent of whether the person is
true or false positive. Hence, we assume that there is no bias which would cause
that a true positive match has, on average, a lower/higher propagation rate than
a false positive match.

Under Assumption 2, we get the following formula for the relative error E of
the approximation:

E =
FPm

TPm
=

m
∑

i=1

fpri · ni ·
m
∏

j=i+1

propj

n0 ·
m
∏

j=1

propj

(4)

=
m

∑

i=1

fpri · ni

n0 ·
i
∏

j=1

propj

.

324 T. Grubenmann et al.

We define the selectivity selbgp0,...,bgpj
of the join between bgp0, . . . , bgpj as

the number of results of the join divided by the product n0 · · · · · nj , i.e. the
cardinality of the cross product of all results for bgp0, . . . , bgpj . It follows that:

n0 ·
i

∏

j=1

propj = selbgp0,...,bgpj
·

i
∏

j=0

nj (5)

and consequently:

E =
m

∑

i=1

fpri

selbgp0,...,bgpi
·
i−1
∏

j=0

nj

. (6)

Equation 6 shows that the higher the number of joins and the lower the
join-selectivities selbgp0,...,bgpj

are, the smaller the false positive rate fpri of the
approximation must be to produce a reasonably small estimation error. Thus,
the approximation error is determined by the ratio between the false positive
rate and selectivity and not “just” the false positive rate. In addition, this
error does not only lead to inaccurate results but also has a negative impact
on the execution time of the approximation: If the selectivities are low and the
false-positive rates relatively high, it can happen that the query approximation
mainly processes false-positives and that the data synopses based on these false-
positives are larger than the actual data of all true-positives. Thus, the query
approximation might take longer than the actual query execution.

Note that these theoretical findings should be cause for concern for building
federated query systems in the light of false positive baring data synopses. In
the next section, we will explore if these theoretical considerations apply to
the practical Web of Data setting that we are currently exploring in federated
querying.

Verification of the Analysis: We want to verify that our theoretical analy-
sis indeed serves as an explanation of the error and runtime behavior that we
observed in Sect. 3. For this, we compared the estimated error predicted by our
analysis with the actual error which we observed in our evaluation. Figure 3 plots
the estimated error based on Eq. 6 against the actual relative error measured for
the Bloom Filter approximation in a log-log scale (as the values include both
very small and very large numbers). Figure 3 suggests a very strong correlation
between relative error of the estimation and the predicted error by our analysis.
Indeed, both the Pearson correlation coefficient R2 = 0.81 and the Spearman’s
Rank Correlation ρ = 0.76 between the actual (non-log) numbers indicate a
strong correlation between the theoretical estimation of the error and the actual
evaluation. Not included in the figure, but included in the calculation of the
correlation coefficients are those estimates that produced a relative error of 0,
which could not be drawn in the log-log scale plot.

The figure shows that for a false positive probability of 10−8 (indicated by
little pluses “+” mostly at the top left of the Figure) the actual error is not as
small as one might expect. One likely explanation for this is the fact that the

Challenges of Source Selection in the WoD 325

Fig. 3. Estimated error plotted against actual error.

specified false positive rate only gives a lower bound on the actual false positive
rate, as we already discussed in Sect. 3.

Overall, Fig. 3 confirms the theoretical analysis of the error accumulation in
Eq. 6, which indicates that SPARQL queries require data synopses with very low
false-positive rates to produce reasonably accurate results – an effect which is
much more pronounced for queries with a low selectivity, as we have shown in
Eq. 6. This, in turn, might require specific implementations of Bloom Filters that
can handle such low probabilities. However, the need for such accurate synopses
make it questionable whether join approximations that produce false positives
are suitable for such tasks, in general.

5 Limitations and Future Work

In this paper, we focused our evaluations on queries which did not include
UNION, OPTIONALs, and FILTERs outside of service patterns. However, we
think, given the performance of our Bloom Filter approximation in this simpler
setting, one cannot expect the approximations to perform better when extending
the evaluation to include more complex queries. In particular, joins over multi-
ple variables are likely to further constrain a join offering even more potential
for synopses to generate false positives. UNIONS can be seen as a conjunc-
tion of multiple queries, which does not pose a significantly different setting. We
will have to consider OPTIONALs in future work, though our intuition indicates
that they can be seen as a combination of two different queries, which should not
impact our results. FILTER expressions are more complex and warrant future
work, as they might impact synopses construction. In particular, when a filter
compares two bindings from different sources it can only be applied after the

326 T. Grubenmann et al.

join, which may require executing it on the actual data (rather than only on a
synopsis), anyway.

Obviously, Bloom Filters represent only a one possible method to estimate
the join-cardinality of SPARQL queries. Our theoretical considerations, however,
are based on the fact that most synopses have false positives, so we do expect
these findings to generalize.

Our assumption that each triple pattern must be sent to a different source
results in a high number of joins between different endpoints. In practice, it
could be that many queries may not have to be distributed to such an extent and
subqueries with multiple triple patterns may be answered by a single endpoint.
As the WoD grows, however, we are likely to see a rising number of queries that
are getting bigger and are increasingly distributed. Hence, we believe that our
findings do point to a core problem of federated querying on the Web of Data.

6 Conclusion

This paper set out to investigate the applicability of query approximation for
source selection. We hypothesized that the performance of cardinality approxi-
mations of federated SPARQL queries degenerates when applied to queries with
multiple joins of low selectivity. Indeed, both our empirical evaluation and our
theoretical considerations indicate that data synopses are not suitable for this
task due to their cumulative error, which also substantially slows down the esti-
mation process. Based on our analysis, one can only expect good approximation
performance if (1) the number of joins is low, (2) the join-selectivity is high,
and/or (3) there is a bias which causes true positive matches to have a much
higher propagation rate than false positive matches. These findings seriously
hamper the usefulness of current selectivity estimation techniques for domains
such as the WoD, where the number of joins involved in the estimation process
is high. Indeed, our focus on a setting with many joins pinpointed a deficit in the
generalizability of selectivity estimation techniques which came from a domain
where usually only few inter-domain-joins are to be expected.

It is important to note that whilst this paper focused on federated SPARQL-
querying in the context of the WoD our findings generalize to any federated
conjunctive querying setting where join estimates cannot be precomputed.

The consequence of our work is twofold: First, to fulfil the Semantic Web
vision via federated querying requires a renewed effort to find suitable join-
approximations for federated SPARQL queries. As the WoD progresses, we will
require more sophisticated approximation techniques, which are more adapted
to the WoD: i.e., the need to be able to handle many inter-source joins and
low selectivity better. Note, however, that no matter what new technique gets
introduced, in the presence of low selectivity, our analysis of the error propa-
gation adds a limit to what can be achieved by join-approximations that cause
false-positives.

Second, if the community does not manage to drastically improve approxi-
mation techniques, there might be a need to consolidate datasets from different

Challenges of Source Selection in the WoD 327

sources into more centralized structures to reduce the number of endpoints that
must be accessed during federated query execution. This centralization will allow
computing better estimations or incorporating them into the indices.

In conclusion, our findings showed that we may have to rethink well-known
techniques such as the concept of join-approximation when applying them to the
WoD. Doing so, will both advance our understanding of these techniques and
may cause us to rethink the structure of the Web of Data as a whole.

Acknowledgments. This work was partially supported by the Swiss National Science
Foundation under grant #153598.

References

1. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join synopses for approx-
imate query answering. In: Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pp. 275–286 (1999)

2. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25073-6 2

3. Basca, C., Bernstein, A.: Querying a messy web of data with Avalanche. J. Web
Semant. 26, 1–28 (2014)

4. Belson, D.: Akamai’s [state of the internet]. Q3 2015 report. Technical report,
Akamai Technologies (2015)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

6. Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M.,
Tang, Y.: On the false-positive rate of Bloom Filters. Inf. Process. Lett. 108(4),
210–213 (2008)

7. Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in
SPARQL 1.1: syntax, semantics and evaluation. Web Semant. Sci. Serv. Agents
World Wide Web 18(1), 1–17 (2013)

8. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query
processing using Wavelets. VLDB J. 10, 199–223 (2001)

9. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VoID
descriptions. In: Proceedings of the 2nd International Workshop on Consuming
Linked Data, vol. 782, pp. 13–24. Bonn, Germany (2011). http://uni-koblenz.de/
∼goerlitz/publications/GoerlitzAndStaab COLD2011.pdf

10. Harris, S., Seaborne, A.: SPARQL 1.1 query language, March 2013. https://www.
w3.org/TR/sparql11-query/

11. Hose, K., Schenkel, R.: Towards benefit-based RDF source selection for SPARQL
queries. In: SWIM 2012 Proceedings of the 4th International Workshop on Seman-
tic Web Information Management, Scottsdale, Arizona (2012)

12. Ioannidis, Y.E., Christodoulakis, S.: On the propagation of errors in the size of
join results. In: Proceedings of ACM SIGMOD Conference, pp. 268–277 (1991)

13. Ioannidis, Y.E., Poosala, V.: Histogram-based approximation of set-valued query
answers. In: Proceedings of the 25th International Conference on Very Large Data
Bases, pp. 174–185 (1999)

http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://uni-koblenz.de/~ goerlitz/publications/GoerlitzAndStaab_COLD2011.pdf
http://uni-koblenz.de/~ goerlitz/publications/GoerlitzAndStaab_COLD2011.pdf
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

328 T. Grubenmann et al.

14. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

15. Lipton, R.J., Naughton, J.F., Schneider, D.A.: Practical selectivity estimation
through adaptive sampling. In: Proceedings of the 1990 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 1–11 (1990)

16. Moor, D., Grubenmann, T., Seuken, S., Bernstein, A.: A double auction for query-
ing the web of data. In: The Third Conference on Auctions, Market Mechanisms
and Their Applications (2015)

17. Moor, D., Seuken, S., Grubenmann, T., Bernstein, A.: Core-selecting payment rules
for combinatorial auctions with uncertain availability of goods. In: Twenty-Fifth
International Joint Conference on Artificial Intelligence, pp. 424–432 (2016)

18. Ozsu, T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Pren-
tice Hall, New Jersey (1999). http://www.citeulike.org/user/zflavio/article/379597

19. Prasser, F., Kemper, A., Kuhn, K.A.: Efficient distributed query processing for
autonomous RDF databases. In: Proceedings of the 15th International Conference
on Extending Database Technology - EDBT 2012, pp. 372–383 (2012)

20. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL.
In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC
2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68234-9 39

21. Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selec-
tion for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon,
F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp.
176–191. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6 13

22. Saleem, M., Ngonga Ngomo, A.-C., Xavier Parreira, J., Deus, H.F., Hauswirth, M.:
DAW: Duplicate-AWare federated query processing over the web of data. In: Alani,
H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 574–590. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41335-3 36

23. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
a benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25073-6 37

24. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25073-6 38

25. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv. 22(3), 183–236
(1990)

26. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data
summaries for processing live queries over linked data. World Wide Web 14(5),
495–544 (2011)

27. Vidal, M.-E., Castillo, S., Acosta, M., Montoya, G., Palma, G.: On the selec-
tion of SPARQL endpoints to efficiently execute federated SPARQL queries. In:
Hameurlain, A., Küng, J., Wagner, R. (eds.) Transactions on Large-Scale Data-
and Knowledge-Centered Systems XXV. LNCS, vol. 9620, pp. 109–149. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49534-6 4

http://www.citeulike.org/user/zflavio/article/379597
http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-642-41335-3_36
http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-662-49534-6_4

AMUSE: Multilingual Semantic Parsing
for Question Answering over Linked Data

Sherzod Hakimov(B), Soufian Jebbara, and Philipp Cimiano

Semantic Computing Group, Cognitive Interaction Technology – Center of Excellence
(CITEC), Bielefeld University, 33615 Bielefeld, Germany

{shakimov,sjebbara,cimiano}@cit-ec.uni-bielefeld.de

Abstract. The task of answering natural language questions over RDF
data has received wide interest in recent years, in particular in the con-
text of the series of QALD benchmarks. The task consists of mapping a
natural language question to an executable form, e.g. SPARQL, so that
answers from a given KB can be extracted. So far, most systems pro-
posed are (i) monolingual and (ii) rely on a set of hard-coded rules to
interpret questions and map them into a SPARQL query. We present
the first multilingual QALD pipeline that induces a model from training
data for mapping a natural language question into logical form as prob-
abilistic inference. In particular, our approach learns to map universal
syntactic dependency representations to a language-independent logi-
cal form based on DUDES (Dependency-based Underspecified Discourse
Representation Structures) that are then mapped to a SPARQL query
as a deterministic second step. Our model builds on factor graphs that
rely on features extracted from the dependency graph and corresponding
semantic representations. We rely on approximate inference techniques,
Markov Chain Monte Carlo methods in particular, as well as Sample
Rank to update parameters using a ranking objective. Our focus lies on
developing methods that overcome the lexical gap and present a novel
combination of machine translation and word embedding approaches for
this purpose. As a proof of concept for our approach, we evaluate our
approach on the QALD-6 datasets for English, German & Spanish.

Keywords: Question answering · Multilinguality · QALD · Probabilis-
tic graphical models · Factor graphs

1 Introduction

The task of Question Answering over Linked Data (QALD) has received
increased attention over the last years (see the surveys [14,36]). The task consists
in mapping natural language questions into an executable form, e.g. a SPARQL
query in particular, that allows to retrieve answers to the question from a given

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 329–346, 2017.
DOI: 10.1007/978-3-319-68288-4 20

330 S. Hakimov et al.

knowledge base. Consider the question: Who created Wikipedia?, which can be
interpreted as the following SPARQL query with respect to DBpedia1:

SELECT DISTINCT ?uri WHERE { dbr:Wikipedia dbo:author ?uri .}

An important challenge in mapping natural language questions to SPARQL
queries lies in overcoming the so called ‘lexical gap’ (see [13,14]). The lexical
gap makes interpreting the above mentioned question correctly challenging, as
there is no surface relation between the query string created and the URI local
name author. To bridge the lexical gap, systems need to infer that create should
be interpreted as author in the above case.

The lexical gap is only exacerbated when considering multiple languages as
we face a cross-lingual gap that needs to be bridged. Consider for instance the
question: Wer hat Wikipedia gegründet?, which involves mapping gründen to
author to successfully interpret the question.

Addressing the lexical gap in question answering over linked data, we present
a new system we call AMUSE that relies on probabilistic inference to perform
structured prediction in the search space of possible SPARQL queries to predict
the query that has the highest probability of being the correct interpretation
of the given query string. As the main contribution of the paper, we present a
novel approach to question answering over linked data that relies on probabilistic
inference to determine the most probable meaning of a question given a model.
The parameters of the model are optimized on a given training dataset consist-
ing of natural language questions with their corresponding SPARQL queries as
provided by the QALD benchmark. The inference process builds on approximate
inference techniques, Markov Chain Monte Carlo in particular, to assign knowl-
edge base (KB) Identifiers as well as meaning representations to every node in
a dependency tree representing the syntactic dependency structure of the ques-
tion. On the basis of these assigned meaning representations to every node, a
full semantic representation can be computed relying on bottom-up semantic
composition along the parse tree. As a novelty, our model can be trained on
different languages by relying on universal dependencies. To our knowledge, this
is the first system for question answering over linked data that can be trained to
perform on different languages (three in our case) without the need of implement-
ing any language-specific heuristics or knowledge. To overcome the cross-lingual
lexical gap, we experiment with automatically translated labels and rely on an
embedding approach to retrieve similar words in the embedding space. We show
that by using word embeddings one can effectively contribute to reducing the
lexical gap compared to a baseline system where only known labels are used.

2 Approach

Our intuition in this paper is that the interpretation of a natural language ques-
tion in terms of a SPARQL query is a compositional process in which partial
1 The prefixes dbo and dbr stand for the namespaces http://dbpedia.org/ontology

and http://dbpedia.org/resource/, respectively.

http://dbpedia.org/ontology
http://dbpedia.org/resource/

AMUSE: Multilingual Semantic Parsing for Question Answering 331

semantic representations are combined with each other in a bottom-up fashion
along a dependency tree representing the syntactic structure of a given question.
Instead of relying on hand-crafted rules guiding the composition, we rely on a
learning approach that can infer such ‘rules’ from training data. We employ a
factor graph model that is trained using a ranking objective and SampleRank as
training procedure to learn a model that learns to prefer good over bad interpre-
tations of a question. In essence, an interpretation of a question represented as a
dependency tree consists of an assignment of several variables: (i) a KB Id and
semantic type to every node in the parse tree, and (ii) an argument index (1 or
2) to every edge in the dependency tree specifying which slot of the parent node,
subject or object, the child node should be applied to. The input to our approach
is thus a set of pairs (q, sp) of question q and SPARQL query sp. As an example,
consider the following questions in English, German & Spanish : Who created
Wikipedia? Wer hat Wikipedia gegründet? Quién creó Wikipedia? respectively.
Independently of the language they are expressed in, the threes question can be
interpreted as the same SPARQL query from the introduction.

Our approach consists of two inference layers which we call L2KB and QC.
Each of these layers consists of a different factor graph optimized for different
subtasks of the overall task. The first inference layer is trained using an entity
linking objective that learns to link parts of the query to KB Identifiers. In par-
ticular, this inference step assigns KB Identifiers to open class words such as
nouns, proper nouns, adjectives and verbs etc. In our case, the knowledge base
is DBpedia. We use Universal Dependencies2 [28] to get dependency parse trees
for 3 languages. The second inference layer is a query construction layer that
takes the top k results from the L2KB layer and assigns semantic representa-
tions to closed class words such as question pronouns, determiners, etc. to yield
a logical representation of the complete question. The approach is trained on the
QALD-6 train dataset for English, German & Spanish questions to optimize the
parameters of the model. The model learns mappings between the dependency
parse tree for a given question text and RDF nodes in the SPARQL query. As
output, our system produces an executable SPARQL query for a given NL ques-
tion. All data and source code are freely available3. As semantic representations,
we rely on DUDES, which are described in the following section.

2.1 DUDES

DUDES (Dependency-based Underspecified Discourse Representation Struc-
tures) [9] is a formalism for specifying meaning representations and their com-
position. They are based on Underspecified Discourse Representation Theory
(UDRT) [10,33], and the resulting meaning representations. Formally, a DUDE
is defined as follows:

Definition 1. A DUDE is a 5-tuple (v, vs, l, drs, slots) where

2 http://universaldependencies.org/v2, 70 treebanks, 50 languages.
3 https://github.com/ag-sc/AMUSE.

http://universaldependencies.org/v2
https://github.com/ag-sc/AMUSE

332 S. Hakimov et al.

– v is the main variable of the DUDES
– vs is a (possibly empty) set of variables, the projection variables
– l is the label of the main DRS
– drs is a DRS (the main semantic content of the DUDE)
– slots is a (possibly empty) set of semantic dependencies

The core of a DUDES is thus aDiscourse Representation Structure (DRS) [15].
The main variable represents the variable to be unified with variables in slots of
other DUDES that the DUDE in question is inserted into. Each DUDE captures
information about which semantic arguments are required for a DUDE to be com-
plete in the sense that all slots have been filled. These required arguments are mod-
eled as set of slots that are filled via (functional) application of other DUDES.
The projection variables are relevant in meaning representations of questions; they
specify which entity is asked for. When converting DUDES into SPARQL queries,
they will directly correspond to the variables in the SELECT clause of the query.
Finally, slots capture information about which syntactic elements map to which
semantic arguments in the DUDE.

As basic units of composition, we consider 5 pre-defined DUDES types
that correspond to data elements in RDF datasets. We consider Resource
DUDES that represent resources or individuals denoted by proper nouns such
as Wikipedia (see 1st DUDES in Fig. 1). We consider Class DUDES that corre-
spond to sets of elements, i.e. classes, for example the class of Persons (see 2nd
DUDES in Fig. 1). We also consider Property DUDES that correspond to object
or datatype properties such as author (see 3rd DUDES in Fig. 1). We further
consider restriction classes that represent the meaning of intersective adjectives
such as Swedish (see 4th DUDES in Fig. 1). Finally, a special type of DUDES
can be used to capture the meaning of question pronouns, e.g. Who or What
(see 5th DUDES in Fig. 1).

Fig. 1. Exampeles for the 5 types of DUDES

When applying a DUDE d2 to d1 where d1 subcategorizes a number of seman-
tic arguments, we need to indicate which argument d2 fills. For instance, applying
the 1st DUDES in Fig. 1 to the 3rd DUDES in Fig. 1 at argument index 1 yields
the following DUDE:

v:- vs:{} l:1

1:
dbo:author(dbr : Wikipedia, y)

(y, a2, 2)

AMUSE: Multilingual Semantic Parsing for Question Answering 333

2.2 Imperatively Defined Factor Graphs

In this section, we introduce the concept of factor graphs [19], following
the notations in [17,41]. A factor graph G is a bipartite graph that defines
a probability distribution π. The graph consists of variables V and factors
Ψ . Variables can be further divided into sets of observed variables X and
hidden variables Y . A factor Ψi connects subsets of observed variables xi and hid-
den variables yi, and computes a scalar score based on the exponential of the scalar
product of a feature vector fi(xi, yi) and a set of parameters θi: Ψi = efi(xi,yi)·θi .
The probability of the hidden variables given the observed variables is the product
of the individual factors:

π(y|x; θ) =
1

Z(x)

∏

Ψi∈G
Ψi(xi, yi) =

1
Z(x)

∏

Ψi∈G
efi(xi,yi)·θi (1)

where Z(x) is the partition function. For a given input consisting of a dependency
parsed sentence, the factor graph is rolled out by applying template procedures
that match over parts of the input and generate corresponding factors. The
templates are thus imperatively specified procedures that roll out the graph.
A template Tj ∈ T defines the subsets of observed and hidden variables (x′, y′)
with x′ ∈ Xj and y′ ∈ Yj for which it can generate factors and a function
fj(x′, y′) to generate features for these variables. Additionally, all factors gener-
ated by a given template Tj share the same parameters θj . With this definition,
we can reformulate the conditional probability as follows:

π(y|x; θ) =
1

Z(x)

∏

Tj∈T

∏

(x′,y′)∈Tj

efj(x
′,y′)·θj (2)

Input to our approach is a pair (W,E) consisting of a sequence of words
W = {w1, . . . , wn} and a set of dependency edges E ⊆ W × W forming a
tree. A state (W,E,α, β, γ) represents a partial interpretation of the input in
terms of partial semantic representations. The partial functions α : W → KB,
β : W → {t1, t2, t3, t4, t5} and γ : E → {1, 2} map words to KB identifiers, words
to the five basic DUDES types, and edges to indices of semantic arguments, with
1 corresponding to the subject of a property and 2 corresponding to the object,
respectively. Figure 2 shows a schematic visualization of a question along with its
factor graph. Factors measure the compatibility between different assignments
of observed and hidden variables. The interpretation of a question is the one that
maximizes the posterior of a model with parameters θ: y∗ = argmaxyπ(y|x; θ).

2.3 Inference

We rely on an approximate inference procedure, Markov Chain Monte Carlo in
particular [1]. The method performs iterative inference for exploring the state
space of possible question interpretations by proposing concrete changes to sets
of variables that define a proposal distribution. The inference procedure per-
forms an iterative local search and can be divided into (i) generating possible

334 S. Hakimov et al.

Fig. 2. Factor graph for the question: Who created Wikipedia?. Observed variables are
depicted as bubbles with straight lines; hidden variables as bubbles with dashed lines.
Black boxes represent factors.

successor states for a given state by applying changes, (ii) scoring the states using
the model score, and (iii) deciding which proposal to accept as successor state.
A proposal is accepted with a probability that is proportional to the likelihood
assigned by the distribution π. To compute the logical form of a question, we
run two inference procedures using two different models. The first model L2KB
is trained using a linking objective that learns to map open class words to KB
identifiers. The MCMC sampling process is run for m steps for the L2KB model;
the top k states are used as an input for the second inference model called QC
that assigns meanings to closed class words to yield a full fledged semantic rep-
resentation of the question. Both inference strategies generate successor states
by exploration based on edges in the dependency parse tree. We explore only
the following types of edges: Core arguments, Non-core dependents, Nominal
dependents defined by Universal Dependencies4 and nodes that have the follow-
ing POS tags: NOUN, VERB, ADJ, PRON, PROPN, DET. In both inference
models, we alternate across iterations between using the probability of the state
given the model and the objective score to decide which state to accept. Initially,
all partial assignments α0, β0, γ0. are empty.

We rely on an inverted index to find all KB IDs for a given query term.
The inverted index maps terms to candidate KB IDs for all 3 languages. It
has been created taking into account a number of resources: names of DBpedia
resources, Wikipedia anchor texts and links, names of DBpedia classes, synonyms
for DBpedia classes from WordNet [16,26], as well as lexicalizations of properties

4 http://universaldependencies.org/u/dep/index.html.

http://universaldependencies.org/u/dep/index.html

AMUSE: Multilingual Semantic Parsing for Question Answering 335

and restriction classes from DBlexipedia [40]. Entries in the index are grouped
by DUDES type, so that it supports type-specific retrieval. The index stores
the frequency of the mentions paired with KB ID. During retrieval, the index
returns a normalized frequency score for each candidate KB ID.

L2KB: Linking to Knowledge Base. Proposal Generation: The L2KB
proposal generation proposes changes to a given state by considering single
dependency edges and changing: (i) the KB IDs of parent and child nodes, (ii) the
DUDES type of parent and child nodes, and (iii) the argument index attached
to the edge. The Semantic Type variables range over the 5 basic DUDES types
defined, while the argument index variable ranges in the set {1,2}. The result-
ing partial semantic representations for the dependency edge are checked for
satisfiability with respect to the knowledge base, pruning the proposal if it is
not satisfiable. Figure 3 depicts the local exploration of the dobj -edge between
Wikipedia and created. The left image shows an initial state with empty assign-
ments for all hidden variables. The right image shows a proposal that is changed
the KB IDs and DUDE types of the nodes connects by the dobj edge. The
inference process has assigned the KB ID dbo:author and the Property DUDES
type to the created node. The Wikipedia nodes gets assigned the type Resource
DUDES as well as the KB ID dbr:Wikipedia. The dependency edge gets assigned
the argument index 1, representing that dbr:Wikipedia should be inserted at the
subject position of the dbo:author property. The partial semantic representation
represented by this edge is the one depicted at the end of Sect. 2.2. As it is
satisfiable, it is not pruned. In contrast, a state in which the edge is assigned
the argument index 2 would yield the following non-satisfiable representation,
corresponding to things that were authored by Wikipedia instead of things that
authored Wikipedia:

v:- vs:{} l:1

1:
dbo:author(y, dbr : Wikipedia)

(y, a2, 2)

Fig. 3. Left: Initial state based on dependency parse where each node has empty KB
ID and Semantic Type. Right: Proposal generated by the LKB proposal generation
for the question Who created Wikipedia?

336 S. Hakimov et al.

Objective Function: As objective for the L2KB model we rely on a linking objec-
tive that calculates the overlap between inferred entity links and entity links in
the gold standard SPARQL query.

All generated states are ranked by the objective score. Top-k states are passed
to the next sampling step. In the next iteration, the inference is performed
on these k states. Following this procedure for m iterations yields a sequence
of states (s0, . . . , sm) that are sampled from the distribution defined by the
underlying factor graphs.

QC: Query Construction. Proposal Generation: Proposals in this infer-
ence layer consist of assignments of the type QueryVar DUDES to nodes for
class words, in particular determiners, that could fill the argument position of a
parent with unsatisfied arguments.

Objective Function: As objective we use an objective function that measures the
(graph) similarity between the inferred SPARQL query and the gold standard
SPARQL query.

Figure 4 shows an input state and a sampled state for the QC inference layer
of our example query: Who created Wikipedia?. The initial state (see Left) has
Slot 1 assigned to the edge dobj. Property DUDES have 2 slots by definition.
The right figure shows a proposed state in which the argument slot 2 has been
assigned to the nsubj edge and the QueryVar DUDES type has been assigned to
node Who. This corresponds to the representation and SPARQL queries below:

v:- vs:{y} l:1

1:
dbo:author(dbr : Wikipedia, y)

SELECT DISTINCT ?y WHERE { dbr:Wikipedia dbo:author ?y .}

Fig. 4. Left: Input state; Right: Proposal generated by the QC proposal generation
for the question Who created Wikipedia?

2.4 Features

As features for the factors, we use conjunctions of the following information: (i)
lemma of parent and child nodes, (ii) KB Ids of parent and child nodes, (iii) POS

AMUSE: Multilingual Semantic Parsing for Question Answering 337

tags of parent and child nodes, (iv) DUDE type of parent and child, (v) index
of argument at edge, vi) dependency relation of edge, (vii) normalized frequency
score for retrieved KB Ids, (viii) string similarity between KB Id and lemma of
node, (ix) rdfs:domain and rdfs:range restrictions for the parent KB Id (in case
of being a property).

2.5 Learning Model Parameters

In order to optimize parameters θ, we use an implementation of the SampleRank
[41] algorithm. The SampleRank algorithm obtains gradients for these parame-
ters from pairs of consecutive states in the chain based on a preference function
P defined in terms of the objective function O as follows:

P(s′, s) =

{
1, if O(s′) > O(s)
0, otherwise

(3)

We have observed that accepting proposals only on the basis of the model
score requires a large number of inference steps. This is due to the fact that
the exploration space is huge considering all the candidate resources, predicates,
classes etc. in DBpedia. To guide the search towards good solutions, we switch
between model score and objective score to compute the likelihood of acceptance
of a proposal. Once the training procedure switches the scoring function in the
next sampling step, the model uses the parameters from the previous step to
score the states.

2.6 Addressing the Lexical Gap

A key component in the proposed question answering pipeline is the L2KB layer.
This layer is responsible for proposing possible KB identifiers for parts of the
question. Consider the question Who is the writer of The Hunger Games? It
seems to be a trivial task to link the query word writer to the appropriate iden-
tifier dbo:author, however it still requires prior knowledge about the semantics
of the query word and the KB entry (e.g. that the writer of a book is the author).

To address the lexical gap, we rely on the one hand on lexicalizations of
DBpedia properties as extracted by M-ATOLL [39,40] for multiple languages5.
In particular for Spanish and German, however, M-ATOLL produces very sparse
results. We propose two solutions to overcome the lexical gap by using machine
translation to translate English labels into other languages as well as using word
embeddings to retrieve candidate properties for a given mention text.

Machine Translations. We rely on the online dictionary Dict.cc6 as our trans-
lation engine. We query the web service for each available English label and
target language and store the obtained translation candidates as new labels for

5 M-ATOLL currently provides lexicalizations for English, German and Spanish.
6 http://www.dict.cc.

http://www.dict.cc

338 S. Hakimov et al.

the respective entity and language. While these translations are prone to be
noisy without a proper context, we receive a reasonable starting point for the
generation of candidate lexicalizations, especially in combination with the word
embedding approach.

Word Embedding Retrieval. Many word embedding methods such as the skip-
gram method [25] have been shown to encode useful semantic and syntactic prop-
erties. The objective of the skip-gram method is to learn word representations
that are useful for predicting context words. As a result, the learned embeddings
often display a desirable linear structure that can be exploited using simple vec-
tor addition. Motivated by the compositionality of word vectors, we propose a
measure of semantic relatedness between a mention m and a DBpedia entry e
using the cosine similarity between their respective vector representations vm

and ve. For this we follow the approach in [5] to derive entity embedding vectors
from word vectors: We define the vector of a mention m as the sum of the vec-
tors of its tokens7 vm =

∑
t∈m vt, where the vt are raw vectors from the set of

pretrained skip-gram vectors. Similarly, we derive the vector representation of a
DBpedia entry e by adding the individual word vectors for the respective label
le of e, thus ve =

∑
t∈le

vt.
As an example, the vector for the mention text movie director is composed

as vmovie director = vmovie +vdirector. The DBpedia entry dbo:director has the
label film director and is thus composed of vdbo:director = vfilm + vdirector.

To generate potential linking candidates given a mention text, we can com-
pute the cosine similarity between vm and each possible ve as a measure of
semantic relatedness and thus produce a ranking of all candidate entries. By
pruning the ranking at a chosen threshold, we can control the produced candi-
date list for precision and recall.

For this work, we trained 3 instances of the skip-gram model with each 100
dimensions on the English, German and Spanish Wikipedia respectively. Follow-
ing this approach, the top ranking DBpedia entries for the mention text total
population are listed below:

Mention DBpedia entry Cos. Similarity

Total population dbo:populationTotal 1.0

dbo:totalPopulation 1.0

dbo:agglomerationPopulationTotal 0.984

dbo:populationTotalRanking 0.983

dbo:PopulatedPlace/areaTotal 0.979

A more detailed evaluation is conducted in Sect. 3 where we investigate the
candidate retrieval in comparison to an M-ATOLL baseline.

7 We omit all stopword tokens.

AMUSE: Multilingual Semantic Parsing for Question Answering 339

3 Experiments and Evaluation

We present experiments carried out on the QALD-6 dataset comprising of
English, German & Spanish questions. We train and test on the multilingual
subtask. This yields a training dataset consisting of 350 and 100 test instances.
We train the model with 350 training instances for each language from QALD-6
train dataset by performing 10 iterations over the dataset with learning rate set
to 0.01 to optimize the parameters. We set k to 10. We perform a preprocessing
step on the dependency parse tree before running through the pipeline. This
step consists of merging nodes that are connected with compound edges. This
results in having one node for compound names and reduces the traversing time
and complexity for the model. The approach is evaluated on two tasks: a linking
task and a question answering task. The linking task is evaluated by comparing
the proposed KB links to the KB elements contained in the SPARQL question in
terms of F-Measure. The question answering task is evaluated by executing the
constructed SPARQL query over the DBpedia KB, and comparing the retrieved
answers with answers retrieved for the gold standard SPARQL query in terms
of F-Measure.

Before evaluating the full pipeline on the QA task, we evaluate the impact of
using different lexical resources including the word embedding to infer unknown
lexical relations.

3.1 Evaluating the Lexicon Generation

We evaluate the proposed lexicon generation methods using machine transla-
tion and embeddings with respect to a lexicon of manual annotations that are
obtained from the training set of the QALD-6 dataset. The manual lexicon is
a mapping of mention to expected KB entry derived from the (question-query)
pairs in QALD-6 dataset. Since M-ATOLL only provides DBpedia ontology prop-
erties, we restrict our word embedding approach to also only produce this sub-
set of KB entities. Analogously, the manual lexicon is filtered such that it only
contains word-property entries for DBpedia ontology properties to prevent the
unnecessary distortion of the evaluation results due to unsolvable query terms.

The evaluation is carried out with respect to the number of generated can-
didates per query term using the Recall@k measure. Focusing on the recall is
a reasonable evaluation metric since the considered manual lexicon is far from
exhaustive, but only reflects a small subset of possible lexicalizations of KB
properties in natural language questions. Furthermore, the L2KB component is
responsible for producing a set of linked candidate states which act as starting
points for the second layer of inference, the QC layer. Providing a component
with a high recall in this step of the pipeline is crucial for the query construction
component.

Figure 5 visualizes the retrieval performance using the Recall@k metric. We
can see a large increase in recall across languages when generating candidates
using the word embedding method. Combining the M-ATOLL candidates with

340 S. Hakimov et al.

(a) English (b) German (c) Spanish

Fig. 5. Retrieval performance with respect to the manual lexicon.

the word embedding candiates yields the strongest recall performance. The
largest absolute increase is observed for German.

3.2 Evaluating Question Answering

In order to contextualise our results, we provide an upper bound for our app-
roach, which consists of running over all instances in test using 1 epoch and
accepting states according to objective score only, thus yielding an oracle-like
approach. We report Macro F-Measures for this oracle in Table 1 together with
the actual results on test when optimizing parameters on training data. We eval-
uate different configurations of our system in which we consider (i) a name dictio-
nary derived only from DBpedia labels (DBP), (ii) additional dictionary entries
derived from DBLexipedia (DBLex), (iii) a manually created dictionary (Dict),
and (iv) entries inferred using cosine similarity in embedding space (Embed). It
is important to note that even the oracle does not get perfect results, which is due
to the fact that the lexical gap still persists and some entries can not be mapped
to the correct KB Ids. Further, errors in POS tagging or in the dependency tree
prevent the inference strategy to generate the correct proposals.

We see that in all configurations, results clearly improve when using addi-
tional entries from DBLexipedia (DBLex) in comparison to only using labels
from DBpedia. The results further increase by adding lexical entries inferred via
similarity in embedding space (+Embed), but are still far from the results with
manually created dictionary (Dict), showing that addressing the lexical gap is
an important issue to increase performance of question answering systems over
linked data.

On the linking task, while the use of embeddings increases performance as
seen in the DBP + DBLex + Embed vs. DBP + DBLex condition, there is still
a clear margin to the DBP + DBLex + Dict condition (English 0.16 vs. 0.22,
German 0.10 vs. 0.27, Spanish 0.04 vs. 0.30).

On the QA task, adding embeddings on top of DBP + DBLex also has
a positive impact, but is also lower compared to the DBP + DBLex + Dict
condition (English 0.26 vs. 0.34, German 0.16 vs. 0.37, Spanish 0.20 vs. 0.42).
Clearly, one can observe that the different between the learned model and the
oracle diminishes the more lexical knowledge is added to the system.

AMUSE: Multilingual Semantic Parsing for Question Answering 341

Table 1. Macro F1-scores on test data for the linking and question answering tasks
using different configurations

Language Task DBP DBP + DBLex DBP + DBLex + Embed DBP + DBLex + Dict

Oracle

EN Linking 0.05 0.22 0.46 0.59

EN QA 0.05 0.21 0.30 0.51

DE Linking 0.01 0.01 0.10 0.48

DE QA 0.04 0.04 0.18 0.44

ES Linking 0.02 0.04 0.10 0.51

ES QA 0.04 0.06 0.22 0.52

Test

EN Linking 0.05 0.13 0.16 0.22

EN QA 0.05 0.20 0.26 0.34

DE Linking 0.01 0.01 0.10 0.27

DE QA 0.04 0.04 0.16 0.37

ES Linking 0.02 0.02 0.04 0.30

ES QA 0.04 0.04 0.20 0.42

3.3 Error Analysis

An error analysis revealed the following four common errors that prevented the
system from finding the correct interpretation: (i) wrong resource (30% of test
questions), as in When did the Boston Tea Party take place? where Boston Tea
Party is not mapped to any resource, (ii) wrong property (48%), as in the ques-
tion Who wrote the song Hotel California? where our system infers the prop-
erty dbpedia:musicalArtist for song instead of the property dbpedia:writer,
(iii) wrong slot (10%), as in How many people live in Poland?, where Poland is
inferred to fill the 2nd slot instead of the 1st slot of dbepdia:populationTotal
and (iv) incorrect query type (12%), as in Where does Piccadilly start? where
our approach wrongly infers that this is an ASK-query.

4 Related Work

There is a substantial body of work on semantic parsing for question answering.
Earlier work addressed the problem using statistical machine translation meth-
ods [42] or inducing synchronous grammars [43]. Recent work has framed the
task as the one of inducing statistical lexicalized grammars; most of this work
has relied on CCG as grammar theory and lambda calculus for semantic rep-
resentation and semantic composition [2–4,18,20–22,35,46]. In contrast to the
above work, we assume that a syntactic analysis of the input in the form of a
dependency tree is available and we learn a model that assigns semantic repre-
sentations to each node in the tree. Most of earlier work in semantic parsing has
concentrated on very specific domains with a very restricted semantic vocabu-
lary. More recently, a number of researchers have considered this challenge and

342 S. Hakimov et al.

focused on open-domain QA datasets such as WebQuestions, which relies on
Freebase [6–8,30–32,34,44,45].

Our approach bears some relation to the work of Reddy et al. [31] in the
sense that we both start from a dependency tree (or ungrounded graph in their
terminology) and the goal is to ground the ungrounded relations in a KB. We
use a different learning approach and model as well as a different semantic rep-
resentation formalism (DUDES vs. lambda expressions). More recently, Reddy
et al. [32] have extended their method to produce general logical forms rely-
ing on Universal Dependencies, independent of the application, that is question
answering. They evaluate their approach both on the WebQuestions as well as
Graphqueries. While the datasets they use have thousands of training examples,
we have shown that we can train a model using only 350 questions as training
data.

The work of Freitas et al. [12] employs a distributional structured vector
space, the τ -Space, to bridge the lexical gap between queries and KB in order
to map query terms to corresponding properties and classes in the underlying
KB. Further, Freitas et al. [11] studied different distributional semantic models
in combination with machine translation. Their findings suggest that combining
machine translation with a Word2Vec approach achieves the best performance
for measuring semantic relatedness across multiple languages.

Denis et al. [23] have proposed an end-to-end QALD model exploiting neural
networks. The approach works well for answering simple questions and has been
trained on a dataset with 100.000 training instances. In contrast, QALD-6 bench-
marks have less data (350 instances) and questions include more difficult ques-
tions requiring aggregation and comparison. Neelakantan et al. [27] have pro-
posed an approach based on neural model that achieves comparable results to
the state-of-art non-neural semantic parsers on WikiTableQuestions [29] dataset,
which includes questions with aggregation.

The best performing system on the QALD-6 benchmark [36] was the one
by [24], achieving an F-measure of 89%. However, the approach relies on a con-
trolled natural language approach in which queries have been manually refor-
mulated so that the approach can parse them. The only system that is able to
perform on three languages as ours is the UTQA system [38]. The UTQA system
achieves much higher results compared to our system, reaching F-measures of
75% (EN), 68% (ES) and 61% (Persian). The approach relies on a pipeline of
several classifiers performing keyword extraction, relation and entity linking as
well as answer-type detection. All these steps are performed jointly in our model.

Höffner et al. [14] recently surveyed published approaches on QALD bench-
marks, analysed the differences and identified seven challenges. Our approach
addresses four out of these seven challenges: multilingualism, ambiguity, lexical
gap and templates. Our probabilistic model performs implicit disambiguation and
performs semantic interpretation using a traditional bottom-up semantic com-
position using state-of-the-art semantic representation formalisms and thus does
not rely on any fixed templates. We have proposed how to overcome the lexical
gap using an approach to induce lexical relations between surface mentions and

AMUSE: Multilingual Semantic Parsing for Question Answering 343

entities in the knowledge base using a representational learning approach. Multi-
linguality is addressed by building on universal dependencies and our methodol-
ogy which allows to train models for different languages.

5 Conclusion

We have presented a multilingual factor graph model that can map natural
language input into logical form relying on DUDES as semantic formalism. Given
dependency-parsed input, our model infers both a semantic type and KB entity
to each node in the dependency tree and computes an overall logical form by
bottom-up semantic composition. We have applied our approach to the task
of question answering over linked data, using the QALD-6 dataset. We show
that our model can learn to map questions into SPARQL queries by training on
350 instances only. We have shown that our approach works for multiple lan-
guages, English, German and Spanish in particular. We have also shown how
the lexical gap can be overcome by using word embeddings increasing perfor-
mance beyond using explicit lexica produced by lexicon induction approaches
such as M-ATOLL. As a future work, we will extend our approach to handle
questions with other filtering operations. We will also make our system available
on GERBIL [37] to support the direct comparison to other systems.

Acknowledgements. This work was supported by the Cluster of Excellence Cogni-
tive Interaction Technology ‘CITEC’ (EXC 277) at Bielefeld University, which is funded
by the German Research Foundation (DFG).

References

1. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC
for machine learning. Mach. Learn. 50, 5–43 (2003)

2. Artzi, Y., Lee, K., Zettlemoyer, L.: Broad-coverage CCG semantic parsing with
AMR. In: Proceedings of EMNLP, pp. 1699–1710 (2015)

3. Artzi, Y., Zettlemoyer, L.S.: Bootstrapping semantic parsers from conversations.
In: Proceedings of ACL, pp. 421–432 (2011)

4. Baldridge, J., Kruijff, G.J.M.: Coupling ccg and hybrid logic dependency semantics.
In: Proceedings of ACL, pp. 319–326. Association for Computational Linguistics
(2002)

5. Basile, V., Jebbara, S., Cabrio, E., Cimiano, P.: Populating a knowledge base
with object-location relations using distributional semantics. In: Blomqvist, E.,
Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024,
pp. 34–50. Springer, Cham (2016). doi:10.1007/978-3-319-49004-5 3

6. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: Proceedings of EMNLP, 1533–1544, October 2013

7. Berant, J., Liang, P.: Semantic Parsing via Paraphrasing. In: ACL (Figure 1), pp.
1415–1425 (2014)

8. Berant, J., Liang, P.: Imitation learning of agenda-based semantic parsers. Trans.
Assoc. Comput. Linguist. 3, 545–558 (2015)

http://dx.doi.org/10.1007/978-3-319-49004-5_3

344 S. Hakimov et al.

9. Cimiano, P.: Flexible semantic composition with dudes. In: Proceedings of the
8th International Conference on Computational Semantics (IWCS), pp. 272–276
(2009)

10. Cimiano, P., Frank, A., Reyle, U.: UDRT-based semantics construction for LTAG
- and what it tells us about the role of adjunction in LTAG. In: Proceedings of
the 7th International Workshop on Computational Semantics (IWCS), pp. 41–52
(2007)

11. Freitas, A., Barzegar, S., Sales, J.E., Handschuh, S., Davis, B.: Semantic relatedness
for all (languages): a comparative analysis of multilingual semantic relatedness
using machine translation. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F.
(eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 212–222. Springer, Cham (2016).
doi:10.1007/978-3-319-49004-5 14

12. Freitas, A., Curry, E.: Natural language queries over heterogeneous linked data
graphs: a distributional-compositional semantics approach. In: Proceedings of the
19th International Conference on Intelligent User Interfaces, pp. 279–288. ACM
(2014)

13. Hakimov, S., Unger, C., Walter, S., Cimiano, P.: Applying semantic parsing to
question answering over linked data: addressing the lexical gap. In: Biemann, C.,
Handschuh, S., Freitas, A., Meziane, F., Métais, E. (eds.) NLDB 2015. LNCS, vol.
9103, pp. 103–109. Springer, Cham (2015). doi:10.1007/978-3-319-19581-0 8

14. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.C.:
Survey on challenges of question answering in the semantic web. Semantic Web
(Preprint), 1–26 (2016)

15. Kamp, H., Reyle, U.: From Discourse to Logic. Introduction to the Modeltheoretic
Semantics of Natural Language. Kluwer, Dordrecht (1993)

16. Kilgarriff, A., Fellbaum, C.: Wordnet: an electronic lexical database (2000)
17. Klinger, R., Cimiano, P.: Joint and pipeline probabilistic models for fine-grained

sentiment analysis: extracting aspects, subjective phrases and their relations. In:
Proceedings of ICDMW, pp. 937–944 (2013)

18. Krishnamurthy, J., Mitchell, T.M.: Joint syntactic and semantic parsing with com-
binatory categorial grammar. In: Proceedings of ACL, pp. 1188–1198 (2014)

19. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and sum product algo-
rithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

20. Kwiatkowski, T., Choi, E., Artzi, Y., Zettlemoyer, L.: Scaling semantic parsers with
on-the-fly ontology matching. In: Proceedings of EMNLP, pp. 1545–1556, October
2013

21. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing proba-
bilistic CCG grammars from logical form with higher-order unification. In: Pro-
ceedings of EMNLP, pp. 1223–1233, October 2010

22. Lee, K., Lewis, M., Zettlemoyer, L.: Global neural CCG parsing with optimality
guarantees. In: Proceedings of EMNLP pp. 2366–2376 (2015)

23. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question
answering over knowledge graphs on word and character level. In: Proceedings of
the 26th International Conference on World Wide Web, pp. 1211–1220. Interna-
tional World Wide Web Conferences Steering Committee (2017)

24. Mazzeo, G.M., Zaniolo, C.: Answering controlled natural language questions on
RDF knowledge bases. In: Proceedings of the 19th International Conference on
Extending Database Technology, pp. 608–611 (2016)

25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

http://dx.doi.org/10.1007/978-3-319-49004-5_14
http://dx.doi.org/10.1007/978-3-319-19581-0_8

AMUSE: Multilingual Semantic Parsing for Question Answering 345

26. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11), 39–
41 (1995)

27. Neelakantan, A., Le, Q.V., Abadi, M., McCallum, A., Amodei, D.: Learning a
natural language interface with neural programmer. In: International Conference
on Learning Representations (2017)

28. Nivre, J., et al.: Universal dependencies 2.0. LINDAT/CLARIN digital library at
the Institute of Formal and Applied Linguistics, Charles University (2017). http://
hdl.handle.net/11234/1-1983

29. Pasupat, P., Liang, P.: Compositional semantic parsing on semi-structured tables.
In: ACL (2015)

30. Reddy, S., Lapata, M., Steedman, M.: Large-scale semantic parsing without
question-answer pairs. Trans. ACL 2, 377–392 (2014)

31. Reddy, S., Täckström, O., Collins, M., Kwiatkowski, T., Das, D., Steedman, M.,
Lapata, M.: Transforming dependency structures to logical forms for semantic
parsing. Trans. ACL 4, 127–140 (2016)

32. Reddy, S., Täckström, O., Petrov, S., Steedman, M., Lapata, M.: Universal seman-
tic parsing. In: Proceedings of EMNLP (2017)

33. Reyle, U.: Dealing with ambiguities by underspecification: construction, represen-
tation and deduction. J. Semant. 10(2), 123–179 (1993)

34. Rockt, T., Riedel, S.: Injecting logical background knowledge into embeddings for
relation extraction. In: NAACL, pp. 1119–1129 (2014)

35. Steedman, M.: The syntactic process. Comput. Linguist. 131(1), 146–148 (2000)
36. Unger, C., Ngomo, A.-C.N., Cabrio, E.: 6th open challenge on question answering

over linked data (QALD-6). In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.)
SemWebEval 2016. CCIS, vol. 641, pp. 171–177. Springer, Cham (2016). doi:10.
1007/978-3-319-46565-4 13

37. Usbeck, R., Röder, M., Ngonga Ngomo, A.C., Baron, C., Both, A., Brümmer,
M., Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., et al.: Gerbil: general
entity annotator benchmarking framework. In: Proceedings of the 24th Interna-
tional Conference on World Wide Web, pp. 1133–1143. International World Wide
Web Conferences Steering Committee (2015)

38. Veyseh, A.P.B.: Cross-lingual question answering using common semantic space.
In: TextGraphs@ NAACL-HLT, pp. 15–19 (2016)

39. Walter, S., Unger, C., Cimiano, P.: M-ATOLL: a framework for the lexicalization
of ontologies in multiple languages. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 472–486. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 30

40. Walter, S., Unger, C., Cimiano, P.: Dblexipedia: A nucleus for a multilingual lexical
semantic web. In: Proceedings of 3th International Workshop on NLP and DBpe-
dia, co-located with the 14th International Semantic Web Conference (ISWC 2015),
USA, 11–15 October 2015

41. Wick, M., Rohanimanesh, K., Culotta, A., McCallum, A.: SampleRank. Learning
preferences from atomic gradients. In: NIPS Workshop on Advances in Ranking,
pp. 1–5 (2009)

42. Wong, Y.W., Mooney, R.J.: Learning for semantic parsing with statistical machine
translation. In: Proceedings of the main conference on Human Language Technol-
ogy Conference of the North American Chapter of the ACL, pp. 439–446. ACL
(2006)

43. Wong, Y.W., Mooney, R.J.: Learning synchronous grammars for semantic parsing
with lambda calculus. In: Proceedings of ACL, vol. 45, p. 960 (2007)

http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://dx.doi.org/10.1007/978-3-319-46565-4_13
http://dx.doi.org/10.1007/978-3-319-46565-4_13
http://dx.doi.org/10.1007/978-3-319-11964-9_30

346 S. Hakimov et al.

44. Xu, K., Reddy, S., Feng, Y., Huang, S., Zhao, D.: Question answering on freebase
via relation extraction and textual evidence. In: Proceedings of ACL, pp. 2326–
2336 (2016)

45. Yih, W.T., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query
graph generation: question answering with knowledge base. In: ACL, pp. 1321–
1331 (2015)

46. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: struc-
tured classification with probabilistic categorial grammars. In: 21st Conference on
Uncertainty in Artificial Intelligence (2005)

Computing FO-Rewritings in EL in Practice:
From Atomic to Conjunctive Queries

Peter Hansen and Carsten Lutz(B)

University of Bremen, Bremen, Germany
{hansen,clu}@informatik.uni-bremen.de

Abstract. A prominent approach to implementing ontology-mediated
queries (OMQs) is to rewrite into a first-order query, which is then exe-
cuted using a conventional SQL database system. We consider the case
where the ontology is formulated in the description logic EL and the
actual query is a conjunctive query and show that rewritings of such
OMQs can be efficiently computed in practice, in a sound and com-
plete way. Our approach combines a reduction with a decomposed back-
wards chaining algorithm for OMQs that are based on the simpler atomic
queries, also illuminating the relationship between first-order rewritings
of OMQs based on conjunctive and on atomic queries. Experiments with
real-world ontologies show promising results.

1 Introduction

One of the most important tools in ontology-mediated querying is query rewrit-
ing : reformulate a given ontology-mediated query (OMQ) in an equivalence-
preserving way in a query language that is supported by a database system used
to store the data. Since SQL is the dominating query language in conventional
database systems, rewriting into SQL and into first-order logic (FO) as its log-
ical core has attracted particularly much attention [3–7,10,12,15]. In fact, the
DL-Lite family of description logics (DLs) was invented specifically with the
aim to guarantee that FO-rewritings of OMQs (whose ontology is formulated
in DL-Lite) always exist [1,7], but is rather restricted in expressive power. For
essentially all other DLs, there are OMQs which cannot be equivalently rewritten
into an FO query. However, ontologies used in real-world applications tend to
have a very simple structure and, consequently, one may hope that FO-rewritings
of practically relevant OMQs exist in the majority of cases. This hope was con-
firmed in an experimental evaluation carried out in the context of the EL family
of description logics where less than 1% of the considered queries was found not
to be FO-rewritable [12]; moreover, most of the negative cases seemed to be due
to modeling mistakes in the ontology.

In this paper, we focus on the description logic EL, which can be viewed as a
logical core of the OWL EL profile of the OWL 2 ontology language [19]. We use
(L,Q) to denote the OMQ language that consists of all OMQs where the ontology
is formulated in the description logic L and the actual query is formulated in

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 347–363, 2017.
DOI: 10.1007/978-3-319-68288-4 21

348 P. Hansen and C. Lutz

the query language Q. Important choices for Q include atomic queries (AQs)
and the much more expressive conjunctive queries (CQs). It has been shown
in [6] that for OMQs from (EL,AQ), it is ExpTime-complete to decide FO-
rewritability. Combining the techniques from [6] and the backwards chaining
approach to query rewriting brought forward e.g. in [8,15], a practical algorithm
for computing FO-rewritings of OMQs from (EL,AQ) was then developed in
[12]. This algorithm is based on a decomposed version of backwards chaining
that implements a form of structure sharing. It was implemented in the Grind
system and shown to perform very well in practice [12]. It is important to remark
that the algorithm is complete, that is, it computes an FO-rewriting whenever
there is one and reports failure otherwise.

The aim of this paper is to devise a way to efficiently compute FO-rewritings
of OMQs from (EL,CQ), and thus the challenge is to deal with conjunctive
queries instead of only with atomic ones. Note that, as shown in [5], FO-
rewritability in (EL,CQ) is still ExpTime-complete. Our approach is to combine
a reduction with the decomposed algorithm from [12], also illuminating the rela-
tionship between first-order rewritings of OMQs based on CQs and on AQs. It
is worthwhile to point out that naive reductions of FO-rewritability in (EL,CQ)
to FO-rewritability in (EL,AQ) fail. In particular, FO-rewritability of all AQs
that occur in a CQ q are neither a sufficient nor a necessary condition for q to
be FO-rewritable. As a simple example, consider the OMQ that consists of the
ontology and query

O = {∃r.A � A, ∃s.� � A} and q(x) = ∃y (A(x) ∧ s(x, y))

and which is FO-rewritable into ∃y s(x, y), but the only AQ A(x) that occurs in
q is not FO-rewritable in the presence of O.1 In fact, it is not clear how to attain
a reduction of FO-rewritability in (EL,CQ) to FO-rewritability in (EL,AQ), and
even less so a polynomial time one. This leads us to considering mildly restricted
forms of CQs and admitting reductions that make certain assumptions on the
algorithm used to compute FO-rewritings in (EL,AQ)—all of them are satisfied
by the decomposed backwards chaining algorithm implemented in Grind.

We first consider the class of tree-quantified CQs (tqCQs) in which the quan-
tified parts of the CQ form a collection of directed trees. In this case, we indeed
achieve a polynomial time reduction to FO-rewritability in (EL,AQ). To also
transfer actual FO-rewritings from the OMQ constructed in the reduction to
the original OMQ, we make the assumption that the rewriting of the former
takes the form of a UCQ (union of conjunctive queries) in which every CQ is
tree-shaped and that, in a certain sense made precise in the paper, atoms are
never introduced into the rewriting ‘without a reason’. Both conditions are very
natural in the context of backwards chaining and satisfied by the decomposed
algorithm.

1 OMQs also allow to fix the signature (set of concept and role names) that can
occur in the ABox. In this example, we do not assume any restriction on the ABox
signature.

Computing FO-Rewritings in EL in Practice 349

We then move to rooted CQs (rCQs) in which every quantified variable must
be reachable from some answer variable (in an undirected sense, in the query
graph). We consider this a mild restriction and expect that almost all queries
in practical applications will be rCQs. In the rCQ case, we do not achieve a
‘black box’ reduction. Instead, we assume that FO-rewritings of the constructed
OMQs from (EL,AQ) are obtained from a certain straightforward backwards
chaining algorithm or a refinement thereof as implemented in the Grind sys-
tem. We then show how to combine the construction of (several) OMQs from
(EL,AQ), similar to those constructed in the tqCQ case, with a modification of
the assumed algorithm to decide FO-rewritability in (EL, rCQ) and to construct
actual rewritings. The approach involves exponential blowups, but only in para-
meters that we expect to be very small in practical cases and that, in particular,
only depend on the actual query contained in the OMQ but not on the ontology.

We have implemented our approach in the Grind system and carried out
experiments on five real-world ontologies with 10 hand-crafted CQs for each.
The average runtimes are between 0.5 and 19 s (depending on the ontology),
which we consider very reasonable given that we are dealing with a complex
static analysis problem.

Proofs are deferred to the appendix, which is made available at http://www.
cs.uni-bremen.de/tdki/research/papers.html.

Related Work. We directly build on our prior work in [12] as discussed above,
and to a lesser degree also on [5,6]. The latter line of work has recently been
picked up in the context of existential rules [3]. The distinguishing features of
our work are that (1) our algorithms are sound, complete, and terminating, that
is, they find an FO-rewriting if there is one and report failure otherwise, and
(2) we rely on the decomposed calculus from [12] that implements structure
sharing for constructing small rewritings and achieving practical feasibility. We
are not aware of other work that combines features (1) and (2) and is applica-
ble to OMQs based on EL. In the context of the description logic DL-Lite,
though, the construction of small rewritings has received a lot of attention, see
e.g. [11,13,21,22]. Producing small rewritings of OMQs whose ontology is a set
of existential rules has been studied in [14], but there are no termination guar-
antees. Constructing small Datalog-rewritings of OMQs based on EL, which are
guaranteed to always exist, was studied e.g. in [9,20,24,25]. A different approach
to answering EL-based OMQs using SQL databases is the combined approach
where the consequences of the ontology are materialized in the data [18,23].

2 Preliminaries

Let NC, NR, and NI be countably infinite sets of concept names, role names, and
individual names. An EL-concept is formed according to the syntax rule

C,D ::=� | A | C � D | ∃r.C

where A ranges over NC and r over NR. An EL-TBox T is a finite set of concept
inclusions C � D, with C and D EL-concepts. Throughout the paper, we use

http://www.cs.uni-bremen.de/tdki/research/papers.html
http://www.cs.uni-bremen.de/tdki/research/papers.html

350 P. Hansen and C. Lutz

EL-TBoxes as ontologies. An ABox is a finite set of concept assertions A(a) and
role assertions r(a, b) where a and b range over NI. We use Ind(A) to denote the
set of individual names in the ABox A. A signature is a set of concept and role
names. When an ABox uses only symbols from a signature Σ, then we call it
a Σ-ABox. To emphasize that a signature Σ is used to constrain the symbols
admitted in ABoxes, we sometimes call Σ an ABox signature.

The semantics of concepts, TBoxes, and ABoxes is defined in the usual way,
see [2]. We write T |= C � D if the concept inclusion C � D is satisfied in every
model of T ; when T is empty, we write |= C � D. As usual in ontology-mediated
querying, we make the standard names assumption, that is, an interpretation
I satisfies a concept assertion A(a) if a ∈ AI and a role assertion r(a, b) if
(a, b) ∈ rI .

A conjunctive query (CQ) takes the form q(x) = ∃yϕ(x,y) with x,y tuples
of variables and ϕ a conjunction of atoms of the form A(x) and r(x, y) that uses
only variables from var(q) = x∪y. The variables x are the answer variables of q,
denoted avar(q), and the arity of q is the length of x. Unless noted otherwise, we
allow equality in CQs, but we assume w.l.o.g. that equality atoms contain only
answer variables, and that when x = y is an equality atom in q, then y does not
occur in any other atoms in q. Other occurrences of equality can be eliminated
by identifying variables. An atomic query (AQ) is a conjunctive query of the
form A(x). A union of conjunctive queries (UCQ) is a disjunction of CQs that
share the same answer variables.

An ontology-mediated query (OMQ) is a triple Q = (T , Σ, q) where T is a
TBox, Σ an ABox signature, and q a CQ. We use (EL,AQ) to denote the set of
OMQs where T is an EL-TBox and q is an AQ, and similarly for (EL,CQ) and
so on. We do generally not allow equality in CQs that are part of an OMQ. Let
Q = (T , Σ, q) be an OMQ, A a Σ-ABox and a ⊆ Ind(A). We write A |= Q(a) if
I |= q(a) for all models I of T and A. In this case, a is a certain answer to Q
on A.

Example 1. Consider an example from the medical domain. The following ABox
holds data about patients and diagnoses:

A = {Person(a), hasDisease(a, oca1),Albinism(oca1)}

A TBox T1 is used to make domain knowledge available:

T1 = {Albinism � HereditaryDisease,

Person � ∃hasDisease.HereditaryDisease � GeneticRiskPatient}

Let Q1 be the OMQ (T1, Σfull, q1(x)), where q1(x) = GeneticRiskPatient(x), and
Σfull contains all concept and role names. It can be verified that A |= Q1(a).

We do not distinguish between a CQ and the set of atoms in it and associate
with each CQ q a directed graph Gq := (var(q), {(x, y) | r(x, y) ∈ q}) (equality
atoms are not reflected). A CQ q is tree-shaped if Gq is a directed tree and
r(x, y), s(x, y) ∈ q implies r = s. A tree CQ (tCQ) is a tree-shaped CQ with

Computing FO-Rewritings in EL in Practice 351

the root the only answer variable and a tree UCQ (tUCQ) is a disjunction of
tree CQs. Every EL-concept can be viewed as a tree-shaped CQ and vice versa;
for example, the EL-concept A � ∃r.(B � ∃s.A) corresponds to the CQ q(x) =
∃y, z A(x)∧r(x, y)∧B(y)∧s(y, z)∧A(z). We will not always distinguish between
the two representations and even mix them. We might thus write ∃r.q to denote
an EL-concept when q is a tree-shaped CQ; if q(x) is as in the example just
given, then ∃r.q is the EL-concept ∃r.(A � ∃r.(B � ∃s.A)). If convenient, we also
view a CQ q as an ABox Aq which is obtained from q by dropping equality atoms
and then replacing each variable with an individual (not distinguishing answer
variables from quantified variables). A rooted CQ (rCQ) is a CQ q such that in
the undirected graph induced by Gq, every quantified variable is reachable from
some answer variable. A tree-quantified CQ (tqCQ) is an rCQ q such that after
removing all atoms r(x, y) with x, y ∈ avar(q), we obtain a disjoint union of tCQs.
We call these tCQs the tCQs in q. For example, q(x1, x2) = ∃y1, y2 r(x1, x2) ∧
r(x2, x1)∧ r(x1, y1)∧ s(x2, y2) is a tqCQ and the tCQs in q are ∃y1 r(x1, y1) and
∃y2 s(x2, y2); by adding to q the atom r(y1, y2), we obtain an rCQ that is not a
tqCQ.

An OMQ Q = (T , Σ, q) is FO-rewritable if there is a first-order (FO) formula
ϕ such that A |= Q(a) iff A |= ϕ(a) for all Σ-ABoxes A. In this case, ϕ is an FO-
rewriting of Q. When ϕ happens to be a UCQ, we speak of a UCQ-rewriting and
likewise for other classes of queries. It is known that FO-rewritability coincides
with UCQ-rewritability for OMQs from (EL,CQ) [4,6]; note that equality is
important here as, for example, the OMQ ({B � ∃r.A}, {B, r}, q) with q(x, y) =
∃z(r(x, z) ∧ r(y, z) ∧ A(z)) rewrites into the UCQ q ∨ (B(x) ∧ x = y), but not
into an UCQ that does not use equality.

Example 2. We extend the TBox T1 from Example 1 to additionally describe the
hereditary nature of genetic defects:

T2 := T1 ∪ {Person � ∃hasParent.GeneticRiskPatient � GeneticRiskPatient}.

The OMQ Q′
1 = (T2, Σfull, q1(x)) with q1(x) as in Example 1, is not FO-

rewritable, intuitively because it expresses unbounded reachability along the
hasParent role. In contrast, consider the OMQ Q2 = (T2, Σfull, q2(x)) where
q2(x) = ∃y GeneticRiskPatient(x) ∧ hasDisease(x, y) ∧ Albinism(y). Even though
q2 is an extension of q1 with additional atoms, Q2 is FO-rewritable, with
ϕ(x) = q2(x) ∨

(
∃y Person(x) ∧ hasDisease(x, y) ∧ Albinism(y)

)
a concrete

rewriting.

We shall sometimes refer to the problem of (query) containment between two
OMQs Q1 = (T1, Σ, q1) and Q2 = (T2, Σ, q2); we say Q1 is contained in Q2 if
A |= Q1(a) implies A |= Q2(a) for all Σ-ABoxes A and a ⊆ Ind(A). If both
OMQs are from (EL, rCQ) and T1 = T2 = T , then we denote this with q1 ⊆T q2.

We now introduce two more technical notions that are central to the construc-
tions in Sect. 4. Both notions have been used before in the context of ontology-
mediated querying, see for example [16,17]. They are illustrated in Example 3
below.

352 P. Hansen and C. Lutz

Definition 1 (Fork rewriting). Let q0 be a CQ. Obtaining a CQ q from q0
by fork elimination means to select two atoms r(x0, y) and r(x1, y) with y an
existentially quantified variable, then to replace every occurrence of x1−i in q
with xi, where i ∈ {0, 1} is chosen such that xi is an answer variable if any of
x0, x1 is an answer variable, and to finally add the atom xi = x1−i if x1−i is an
answer variable. When q can be obtained from q0 by repeated (but not necessarily
exhaustive) fork elimination, then q is a fork rewriting of q0.

For a CQ q and V ⊆ var(q), we use q|V to denote the restriction of q to the
variables in V , that is, q|V is the set of atoms in q that use only variables
from V .

Definition 2 (Splitting). Let T be an EL-TBox, q a CQ, and A an ABox.
A splitting of q w.r.t. A and T is a tuple Π = 〈R,S1, . . . , S�, r1, . . . , r�, μ, ν〉,
where R,S1, . . . , Sn is a partitioning of var(q), r1, . . . , r� are role names, μ :
{1, . . . , �} → R assigns to each set Si a variable from R, ν : R → Ind(A)
assigns to each variable from R and individual name from A, and the following
conditions are satisfied:

1. avar(q) ⊆ R and x = y ∈ q implies ν(x) = ν(y);
2. if r(x, y) ∈ q with x, y ∈ R, then r(ν(x), ν(y)) ∈ A;
3. q|Si

is tree-shaped and can thus be seen as an EL-concept Cq|Si
, for 1 ≤ i ≤ �;

4. if r(x, x′) ∈ q then either (i) x, x′ belong to the same set R,S1, . . . , S�, or (ii)
x ∈ R and, for some i, r = ri and x′ root of q|Si

.

The following lemma illustrates the combined use and raison d’être of both fork
rewritings and splittings. A proof is standard and omitted, see for example [17].
It does rely on the existence of forest models for ABoxes and EL-TBoxes, that
is, for every ABox A and TBox T , there is a model I whose shape is that of A
with a directed (potentially infinite) tree attached to each individual.

Lemma 1. Let Q = (T , Σ, q0) be an OMQ from (EL,CQ), A a Σ-ABox, and
a ⊆ Ind(A). Then A |= Q(a) iff there exists a fork rewriting q of q0 and a
splitting 〈R,S1, . . . , S�, r1, . . . , r�, μ, ν〉 of q w.r.t. A and T such that the following
conditions are satisfied:

1. ν(x) = a, x the answer variables of q0;
2. if A(x) ∈ q and x ∈ R, then A, T |= A(ν(x));
3. A, T |= ∃ri.Cq|Si

(ν(μ(i))) for 1 ≤ i ≤ �.

Example 3. To illustrate the described notions, consider the following CQ.

q3(x) = ∃y1, y2, z Person(x)∧
hasDisease(x, y1) ∧ MelaminDeficiency(y1) ∧ causedBy(y1, z)∧
hasDisease(x, y2) ∧ ImpairedVision(y2) ∧ causedBy(y2, z)∧
GeneDefect(z)

Computing FO-Rewritings in EL in Practice 353

It asks for persons suffering from two conditions connected with the same
gene defect. Let the ABox A consist only of the assertion OCA1aPatient(a). We
extend the TBox T2 from Example 2, as follows:

T3 := T2 ∪ {OCA1aPatient � Person � hasDisease.OCA1aAlbinism

OCA1aAlbinism � ImpairedVision � MelaninDeficiency

OCA1aAlbinism � ∃causedBy.GeneDefect}

Let Q = (T3, Σfull, q3(x)). It can be verified that A |= Q(a). By Lemma 1,
this is witnessed by a fork rewriting and a splitting Π. The fork rewriting is

q′
3(x) = ∃y1, z Person(x)∧

hasDisease(x, y1) ∧ MelaminDeficiency(y1) ∧ ImpairedVision(y1)∧
causedBy(y1, z) ∧ GeneDefect(z)

The splitting Π = 〈R,S1, r1, μ, ν〉 of q′
3 wrt. A and T3 is defined by setting

R = {x}, S1 = {y1, z}, r1 = hasDisease, μ(1) = x, ν = (x �→ a)

It can be verified that the conditions given in Lemma1 are satisfied.

3 Tree-Quantified CQs

We reduce FO-rewritability in (EL, tqCQ) to FO-rewritability in (EL,AQ) and,
making only very mild assumptions on the algorithm used for solving the lat-
ter problem, show that rewritings of the OMQs produced in the reduction can
be transformed in a straightforward way into rewritings of the original OMQ.
The mild assumptions are that the algorithm produces a tUCQ-rewriting and
that, informally, when constructing the tCQs of the tUCQ-rewriting it never
introduces atoms ‘without a reason’—this will be made precise later.

Let Q = (T , Σ, q0) be from (EL, tqCQ). We can assume w.l.o.g. that q0
contains only answer variables: every tCQ in q with root x can be represented
as an EL-concept C and we can replace the tree with the atom AC(x) (unless it
has only a single node) and extend T with C � AC where AC is a fresh concept
name that is not included in Σ. Clearly, the resulting OMQ is equivalent to the
original one.

Let Q be an OMQ from (EL, tqCQ). We show how to construct an OMQ
Q′ = (T ′, Σ′, q′

0) from (EL,AQ) with the announced properties; in particular,
Q is FO-rewritable if and only if Q′ is. Let CN(T) and RN(T) denote the set
of concept names and role names that occur in T , and let subL denote the set
of concepts that occur on the left-hand side of a concept inclusion in T , closed
under subconcepts. Reserve a fresh concept name Ax for every A ∈ CN(T) and
x ∈ avar(q0), and a fresh role name rx for every r ∈ RN(T) and x ∈ avar(q0). Set

Σ′ = Σ ∪ {Ax | A ∈ CN(T) ∩ Σ and x ∈ avar(q0)}
∪ {rx | r ∈ RN(T) ∩ Σ and x ∈ avar(q0)}.

354 P. Hansen and C. Lutz

Additionally reserve a concept name Ax
∃r.E for every concept ∃r.E ∈ subL(T)

and every x ∈ avar(q0). Define

T ′ := T ∪ {Cx
L � Dx

R | x ∈ var(q0) and C � D ∈ T }
∪ {∃rx.C � Ax

∃r.C | x ∈ var(q0) and ∃r.C ∈ subL(T)}
∪ {Cy

L � Ax
∃r.C | r(x, y) ∈ q0 and ∃r.C ∈ subL(T)}

∪ { �
A(x)∈q0

Ax � N}

where for a concept C = A1 � · · · � An � ∃r1.E1 � · · · � ∃rm.Em, the concepts
Cx

L and Cx
R are given by

Cx
L = Ax

1 � · · · � Ax
n � Ax

∃r1.E1
� · · · � Ax

∃rm.Em

Cx
R = Ax

1 � · · · � Ax
n � ∃rx

1 .E1 � · · · � ∃rx
m.Em

Moreover, set q′
0 := N(x).

Example 4. Consider the OMQ Q = (T1, Σfull, q(x, y)) with T1 as in Example 1
and let q(x, y) the following tqCQ:2

q(x, y) = ∃z GeneticRiskPatient(x) ∧ hasDisease(x, y)∧
Disease(y) ∧ hasDisease(x, z) ∧ Albinism(z)

We first remove quantified variables: all atoms that contain the variable z are
replaced by A∃hasDisease.Albinism(y), and the TBox is extended with the inclusion
∃hasDisease.Albinism � A∃hasDisease.Albinism. We then construct T ′

1 , which we give
here only partially. The final concept inclusion in T1 is

GeneticRiskPatientx � Diseasey � Ax
∃hasDisease.Albinism � N,

representing the updated query without role atoms; for example, the concept
name Diseasey stands for the atom Disease(y). Among others, T ′

1 contains the
further concept inclusions

∃hasDiseasex.HereditaryDisease � Ax
∃hasDisease.HereditaryDisease

HereditaryDiseasey � Ax
∃hasDisease.HereditaryDisease

where, intuitively, the lower concept inclusion captures that case that the truth
of the concept ∃hasDisease.HereditaryDisease is witnessed at y (the role atom
hasDisease(x, y) from q is only implicit here) while the upper concept inclusion
deals with other witnesses.

Before proving that the constructed OMQ Q′ behaves in the desired way,
we give some preliminaries. It is known that, if an OMQ from (EL,AQ) has an
FO-rewriting, then it has a tUCQ-rewriting, see for example [6,12]. A tCQ q is
conformant if it satisfies the following properties:
2 We only use here that T1 contains the concept ∃hasDisease.HereditaryDisease on the

left-hand side of a concept inclusion.

Computing FO-Rewritings in EL in Practice 355

1. if A(x) is a concept atom, then either A is of the form By and x is the answer
variable or A is not of this form and x is a quantified variable;

2. if r(x, y) is a role atom, then either r is of the form sz and x is the answer
variable or r is not of this form and x is a quantified variable.

A conformant tUCQ is then defined in the expected way. The notion of confor-
mance captures what we informally described as never introducing atoms into
the rewriting ‘without a reason’. By the following lemma, FO-rewritability of
the OMQs constructed in our reduction implies conformant tUCQ-rewritability,
that is, there is indeed no reason to introduce any of the atoms that are forbidden
in conformant rewritings.

Lemma 2. Let Q be from (EL, tqCQ) and Q′ the OMQ constructed from Q as
above. If Q′ is FO-rewritable, then it is rewritable into a conformant tUCQ.

When started on an OMQ produced by our reduction, the algorithms pre-
sented in [12] and implemented in the Grind system produce a conformant tUCQ-
rewriting. Indeed, this can be expected of any reasonable algorithm based on
backwards chaining. Let q′ be a conformant tUCQ-rewriting of Q′. The corre-
sponding UCQ for Q is the UCQ q obtained by taking each CQ from q′, replacing
every atom Ax(x0) with A(x) and every atom rx(x0, y) with r(x, y), and adding
all atoms r(x, y) from q0 such that both x and y are answer variables. The answer
variables in q are those of q0. Observe that q is a union of tqCQs.

Proposition 1. Q is FO-rewritable iff Q′ is FO-rewritable. Moreover, if q′ is a
conformant tUCQ-rewriting of Q′ and q the corresponding UCQ for Q, then q
is a rewriting of Q.

The proof strategy is to establish the ‘moreover’ part and to additionally show
how certain UCQ-rewritings of Q can be converted into UCQ-rewritings of Q′.
More precisely, a CQ q is a derivative of q0 if it results from q0 by exchanging
atoms A(x) for EL-concepts C, seen as tree-shaped CQs rooted in x. We are
going to prove the following lemma in Sect. 4.

Lemma 3. If an OMQ (T , Σ, q0) from (EL, tqCQ) is FO-rewritable, then it has
a UCQ-rewriting in which each CQ is a derivative of q0.

Let q be a UCQ in which every CQ is a derivative of q0. Then the corresponding
UCQ for Q′ is the UCQ q′ obtained by taking each CQ from q, replacing every
atom A(x), x answer variable, with Ax(x0), every atom r(x, y), x answer variable
and y quantified variable, with rx(x0, y), and deleting all atoms r(x1, x2), x1, x2

answer variables. The answer variable in q′ is x0. Note that q′ is a tUCQ. To
establish the “only if” direction of Proposition 1, we show that when q is a
UCQ-rewriting of Q in which every CQ is a derivative of the query q0, then the
corresponding UCQ for Q′ is a rewriting of Q′.

356 P. Hansen and C. Lutz

4 Rooted CQs

We consider OMQs based on rCQs, a strict generalization of tqCQs. In this case,
we are not going to achieve a ‘black box’ reduction, but rely on a concrete algo-
rithm for solving FO-rewritability in (EL,AQ). This algorithm is a straightfor-
ward and not necessarily terminating backwards chaining algorithm or a (poten-
tially terminating) refinement thereof, as implemented in the Grind system. We
show how to combine the construction of (several) OMQs from (EL,AQ) with a
modification of the assumed algorithm to decide FO-rewritability in (EL, rCQ)
and to construct actual rewritings.

We start with introducing the straightforward backwards chaining algorithm
mentioned above which we refer to as bcAQ. Central to bcAQ is a backwards
chaining step based on concept inclusions in the TBox used in the OMQ. Let C
and D be EL-concepts, E � F a concept inclusion, and x ∈ var(C) (where C is
viewed as a tree-shaped CQ). Then D is obtained from C by applying E � F at
x if D can be obtained from C by

– removing A(x) for all concept names A with |= F � A;
– removing r(x, y) and the tree-shaped CQ G rooted at y when |= F � ∃r.G;
– adding A(x) for all concept names A that occur in E as a top-level conjunct

(that is, that are not nested inside existential restrictions);
– adding ∃r.G as a CQ with root x, for each ∃r.G that is a top-level conjunct

of E.

Let C and D be EL-concepts. We write D ≺ C if D can be obtained from C by
removing an existential restriction (not necessarily on top level, and potentially
resulting in D = � when C is of the form ∃r.E). We use ≺∗ to denote the reflexive
and transitive closure of ≺ and say that D is ≺-minimal with T |= D � A0 if
T |= D � A0 and there is no D′ ≺ D with T |= D′ � A0.

Now we are in the position to describe algorithm bcAQ. It maintains a set
M of EL-concepts that represent tCQs. Let Q = (T , Σ,A0) be from (EL,AQ).
Starting from the set M = {A0}, it exhaustively performs the following steps:

1. find C ∈ M , x ∈ var(C), a concept inclusion E � F ∈ T , and D, such that
D is obtained from C by applying E � F at x;

2. find D′ ≺∗ D that is ≺-minimal with T |= D′ � A0, and add D′ to M .

Application of these steps might not terminate. We use bcAQ(Q) to denote the
potentially infinitary UCQ

∨
M |Σ where M is the set obtained in the limit and

q|Σ denotes the restriction of the UCQ q to those disjuncts that only use symbols
from Σ. Note that, in Point 2, it is possible to find the desired D′ in polynomial
time since the subsumption ‘T |= D′ � A0’ can be decided in polynomial time.
The following is standard to prove, see [12,15] and Lemma 5 below for similar
results.

Lemma 4. Let Q be an OMQ from (EL,AQ). If bcAQ(Q) is finite, then it is a
UCQ-rewriting of Q. Otherwise, Q is not FO-rewritable.

Computing FO-Rewritings in EL in Practice 357

Example 5. Consider the TBox

T = {Person � ∃hasParent.GeneticRiskPatient � GeneticRiskPatient}

and let Q = (T , Σ,GeneticRiskPatient(x)) with Σ = {Person,GeneticRiskPatient}.
Note that the role name hasParent does not occur in Σ. Even though the set M
generated by bcAQ (in the limit of its non-terminating run) is infinite, bcAQ(Q) =
GeneticRiskPatient(x) is finite and a UCQ-rewriting of Q.

The algorithm for deciding FO-rewritability in (EL,AQ) presented in [12]
and underlying the Grind system can be seen as a refinement of bcAQ. Indeed,
that algorithm always terminates and returns

∨
M |Σ if that UCQ is finite and

reports non-FO-rewritability otherwise. Moreover, the UCQ-rewriting is repre-
sented in a decomposed way and output as a non-recursive Datalog program for
efficiency and succinctness. For our purposes, the only important aspect is that,
when started on an FO-rewritable OMQ, it computes (a non-recursive Datalog
program that is equivalent to) the UCQ-rewriting

∨
M |Σ .

We next introduce a generalized version bc+AQ of bcAQ that takes as input an
OMQ Q = (T , Σ,A0) from (EL,AQ) and an additional EL-TBox T min, such that
termination and output of bc+AQ agrees with that of bcAQ when the input satisfies
T min = T . Starting from M = {A0}, algorithm bc+AQ exhaustively performs the
following steps:

1. find C ∈ M , x ∈ var(C), a concept inclusion E � F ∈ T , and D, such that
D is obtained from C by applying E � F at x;

2. find D′ ≺∗ D that is ≺-minimal with T min |= D′ � A0, and add D′ to M .

We use bc+AQ(Q, T min) to denote the potentially infinitary UCQ
∨

M |Σ , M

obtained in the limit. Note that bc+AQ uses the TBox T for backwards chain-
ing and T min for minimization while bcAQ uses T for both purposes. The refined
version of bcAQ implemented in the Grind system can easily be adapted to
behave like a terminating version of bc+AQ.

Our aim is to convert an OMQ Q = (T , Σ, q0) from (EL, rCQ) into a set
of pairs (Q′, T min) with Q′ an OMQ from (EL,AQ) and T min an EL-TBox such
that Q is FO-rewritable iff bc+AQ(Q′, T min) terminates for all pairs (Q′, T min) and,
moreover, if this is the case, then the resulting UCQ-rewritings can straightfor-
wardly be converted into a rewriting of Q.

Let Q = (T , Σ, q0). We construct one pair (Qqr , T min
qr) for each fork rewriting

qr of q0. We use core(qr) to denote the minimal set V of variables that contains
all answer variables in qr and such that after removing all atoms r(x, y) with
x, y ∈ V , we obtain a disjoint union of tree-shaped CQs. We call these CQs the
trees in qr. Intuitively, we separate the tree-shaped parts of qr from the cyclic
part, the latter identified by core(qr). This is similar to the definition of tqCQs
where, however, cycles cannot involve any quantified variables. In a forest model
of an ABox and a TBox as mentioned before Lemma 1, the variables in core(qr)

358 P. Hansen and C. Lutz

must be mapped to the ABox part of the model (rather than to the trees attached
to it). Now (Qqr , T min

qr) is defined by setting Qqr = (Tqr , Σqr , N(x)) and

Tqr = T ∪ {Cx
R � Dx

R | x ∈ core(qr), C � D ∈ T }
∪ { �

C(x) a tree in qr
Cx

R � N}

where Cx
R is defined as in Sect. 3, and Σqr is the extension of Σ with all concept

names Ax and role names rx used in Tqr such that A, r ∈ Σ.
It remains to define T min

qr , which is Tqr extended with one concept inclusion for
each fork rewriting q of q0 and each splitting Π = 〈R,S1, . . . , S�, r1, . . . , r�, μ, ν〉
of q w.r.t. Aqr , as follows. For each x ∈ avar(qr), the equality atoms in qr give rise
to an equivalence class [x]qr of answer variables, defined in the expected way.
We only consider the splitting Π of q if it preserves answer variables modulo
equality, that is, if x ∈ avar(q), then there is a y ∈ [x]qr such that ν(x) = y. We
then add the inclusion

(
�

A(x)∈q
with x∈R

Aν(x)
)

�
(

�
1≤i≤�

∃r
ν(μ(i))
i .Cq|Si

)
� N

It can be shown that, summing up over all fork rewritings and splittings, only
polynomially many concepts ∃r

ν(μ(i))
i .Cq|Si

are introduced (this is similar to the
proof of Lemma 6 in [17]). Note that we do not introduce fresh concept names
of the form Ax

∃r.C as in Sect. 3. This is not necessary here because of the use of
fork rewritings and splittings in T min.

Example 6. Consider query q3 from Example 3 and TBox T1 from Example 1.
Constructing Tq3 (thus considering q3 as a fork rewriting of itself) would add
concept inclusions like

Personx � ∃hasDiseasex.HereditaryDisease � GeneticRiskPatientx

The final concept inclusion added is the following, listing concepts needed at
x, y1, y2, and z that result in a match of q3:

Personx � MelaminDeficiencyy1 � ImpairedVisiony2 � GeneDefectz � N

When building the TBox T min
q3 , it is necessary to look for matches of q3 by a

splitting Π of a fork rewriting of q3 w.r.t. Aq3 and T1. We consider here the
splitting Π = 〈R,S1, r1, μ, ν〉 of the fork rewriting q′

3 of q3 given in Example 3,
defined by setting

R = {x}, S1 = {y1, z}, r1 = hasDisease, μ(1) = x, ν = (x �→ x)

For Π, the following concept inclusion is added to T min
q3 :

Personx � ∃hasDiseasex.
(
MelaminDeficiency � ImpairedVision�

causedBy.GeneDefect
)

� N

Computing FO-Rewritings in EL in Practice 359

It can be seen that when bc+AQ(Qqr , T min
qr) is finite, then it is a conformant tUCQ

in the sense of Sect. 3. Thus, we can also define a corresponding UCQ q for Q
as in that section, that is, q is obtained by taking each CQ from q′, replacing
every atom Ax(x0) with A(x) and every atom rx(x0, y) with r(x, y), and adding
all atoms r(x, y) from qr such that x, y ∈ core(qr). The answer variables in q are
those of q0.

Proposition 2. Let Q = (T , Σ, q0) be an OMQ from (EL, rCQ). If bc+AQ(Qqr ,

T min
qr) is finite for all fork rewritings qr of q0, then

∨
qr

q̂qr is a UCQ-rewriting of
Q, where q̂qr is the UCQ for Q that corresponds to bc+AQ(Qqr , T min

qr). Otherwise,
Q is not FO-rewritable.

To prove Proposition 2, we introduce a backwards chaining algorithm bcrCQ for
computing UCQ-rewritings of OMQs from (EL, rCQ) that we refer to as bcrCQ.
In a sense, bcrCQ is the natural generalization of bcAQ to rCQs. We then show a
correspondence between the run of bcrCQ on the input OMQ Q from (EL, rCQ)
and the runs of bc+AQ on the constructed inputs of the form (Qqr , T min

qr).
On the way, we also provide the missing proof for Lemma3, which in fact is a

consequence of the correctness of bcrCQ (stated as Lemma 5 in the appendix) and
the observation that, when Q = (T , Σ, q0) is from (EL, tqCQ), then bcrCQ(Q)
contains only derivatives of q0. The latter is due to the definition of the bcrCQ

algorithm, which starts with a set of minimized fork rewritings of q0, and the
fact that the only fork rewriting of a tqCQ is the query itself.

There are two exponential blowups in the presented approach. First, the
number of fork rewritings of q0 might be exponential in the size of q0. We expect
this not to be a problem in practice since the number of fork rewritings of
realistic queries should be fairly small. And second, the number of splittings can
be exponential and thus the same is true for the size of each T min

qr . We expect
that also this blowup will be moderate in practice. Moreover, in an optimized
implementation one would not represent T min

qr as a TBox, but rather check the
existence of fork rewritings and splittings that give rise to concept inclusions in
T min

qr in a more direct way. This involves checking whether concepts of the form

∃r
ν(μ(i))
i .Cq′|Si

are derived, and the fact that there are only polynomially many
different such concepts should thus be very relevant regarding performance.

5 Experiments

We have extended the Grind system [12] to support OMQs from (EL, tqCQ)
and (EL, rCQ) instead of only from (EL,AQ), and conducted experiments with
real-world ontologies and hand-crafted conjunctive queries. The system can be
downloaded from http://www.cs.uni-bremen.de/∼hansen/grind, together with
the ontologies and queries, and is released under GPL. It outputs rewritings in
the form of non-recursive Datalog queries. We have implemented the following
optimization: given Q = (T , Σ, q0), first compute all fork rewritings of q0, rewrite

http://www.cs.uni-bremen.de/~hansen/grind

360 P. Hansen and C. Lutz

away all variables outside of the core (in the same way in which tree parts of the
query are removed in Sect. 3) to obtain a new OMQ (T ′, Σ, q′

0), and then test for
each atom A(x) ∈ q′

0 whether (T ′, Σ,A(x)) is FO-rewritable. It can be shown
that, if this is the case, then Q is FO-rewritable, and it is also possible to transfer
the actual rewritings. If this check fails, we go through the full construction
described in the paper.

Experiments were carried out on a Linux (3.2.0) machine with a 3.5 GHz
quad-core processor and 8 GB of RAM. For the experiments, we use (the EL
part of) the ontologies ENVO, FBbi, SO, MOHSE, and not-galen. The first three
ontologies are from the biology domain, and are available through Bioportal3.
MOHSE and not-galen are different versions of the GALEN ontology4, which
describes medical terms. Some statistics is given in Table 1, namely the number
of concept inclusions (CI), concept names (CN), and role names (RN) in each
ontology. For each ontology, we hand-crafted 10 conjunctive queries (three tqCQs
and seven rCQs), varying in size from 2 to 5 variables and showing several
different topologies (see Fig. 1 for a sample).

Table 1. TBox information and results of experiments

TBox CI CN RN Min CQ Avg CQ Max CQ Avg AQ Aborts

ENVO 1942 1558 7 0.2 s 1.5 s 7 s 1 s 0

FBbi 567 517 1 0.05 s 0.5 s 3 s 0.3 s 0

MOHSE 3665 2203 71 2 s 10 s 40 s 6 s 0

not-galen 4636 2748 159 6 s 9 s 28 s 25 s 2

SO 3160 2095 12 1 s 19 s 2min 23 s 4 s 1

The runtimes are reported in Table 1. Only three queries did not terminate
in 30 min or exhausted the memory. For the successful ones, we list fastest (Min
CQ), slowest (Max CQ), and average runtime (Avg CQ). For comparison, the
Avg AQ column lists the time needed to compute FO-rewritings for all queries
(T , Σ,A(x)) with A(x) an atom in q0. This check is of course incomplete for
FO-rewritability of Q, but can be viewed as a lower bound. A detailed picture
of individual runtimes is given in Fig. 2.

In summary, we believe that the outcome of our experiments is promising.
While runtimes are higher than in the AQ case, they are still rather small given
that we are dealing with an intricate static analysis task and that many parts of
our system have not been seriously optimized. The queries with long runtimes or
timeouts contain AQs that are not FO-rewritable which forces the decomposed
algorithm implemented in Grind to enter a more expensive processing phase.

3 https://bioportal.bioontology.org.
4 http://www.opengalen.org/.

https://bioportal.bioontology.org
http://www.opengalen.org/

Computing FO-Rewritings in EL in Practice 361

q1(x, y) = Patient(x) ∧ shows(x, y) ∧ Endocarditis(y)

q2(w, x, y, z) = Doctor(w) ∧ hasPersonPerforming(x,w) ∧ Surgery(x) ∧
actsOn(x, y) ∧ Tissue(y) ∧ actsOn(x, z) ∧
InternalOrgan(z) ∧ hasAlphaConnection(y, z)

q7(x) = ∃y, z Protein(x) ∧ contains(x, y) ∧ Tetracycline(y) ∧
InternalOrgan(z) ∧ isActedOnSpecificallyBy(z, y)

q8(x) = ∃v, w, y, z Sulphonamide(v) ∧ serves(v, w) ∧ TumorMarkerRole(w) ∧
NamedEnzyme(x) ∧ serves(x,w) ∧ actsOn(x, z) ∧ Liver(z) ∧
TeichoicAcid(y) ∧ actsOn(y, z)

q10(x) = ∃y, z BodyStructure(x) ∧ isBetaConnectionOf(x, y) ∧ Brain(y) ∧
IntrinsicallyNormalBodyStructure(z) ∧ isBetaConnectionOf(z, y)

Fig. 1. Examplary queries used for experiments with TBox not-galen.

ENVO FBbi MOHSE not-galen SO

0.1

1

10

100

5 s

45 s

ti
m

e
in

s

Total runtime per query

Fig. 2. Runtimes for individual OMQs, showing only non-aborting runs.

6 Conclusion

We remark that our approach can also be used to compute FO-rewritings of
OMQs from (EL,CQ) even if the CQs are not rooted, as long as they are not
Boolean (that is, as long as they contain at least one answer variable) and
an algorithm for query containment in (EL,CQ) is also available. This follows
from (a minor variation of) an observation from [5]: FO-rewritability of non-
Boolean OMQs from (EL,CQ) can be polynomially reduced to a combination
of containment in (EL,CQ) and FO-rewritability in (EL, rCQ). As future work,
it would be interesting to extend our approach to UCQs, to the extension of EL
with role hierarchies and domain and range restrictions, or even to the extension
ELI of EL with inverse roles.

Acknowledgements. We acknowledge support by ERC grant 647289 ‘CODA’.

362 P. Hansen and C. Lutz

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logics. Cambridge University Press, Cambridge (2017)

3. Barceló, P., Berger, G., Pieris, A.: Containment for rule-based ontology-mediated
queries, 19 April 2017. https://arxiv.org/abs/1703.07994 [cs.DB]

4. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: a
study through disjunctive datalog, CSP, and MMSNP. J. ACM Trans. Database
Syst. 39(4), 33:1–33:44 (2014)

5. Bienvenu, M., Hansen, P., Lutz, C., Wolter, F.: First order-rewritability and con-
tainment of conjunctive queries in Horn description logics. In: Proceedings of
IJCAI, pp. 965–971 (2016)

6. Bienvenu, M., Lutz, C., Wolter, F.: First order-rewritability of atomic queries in
Horn description logics. In: Proceedings of IJCAI, pp. 754–760 (2013)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

8. Deutsch, A., Popa, L., Tannen, V.: Physical data independence, constraints, and
optimization with universal plans. In: Proceedings of VLDB, pp. 459–470 (1999)

9. Eiter, T., Ortiz, M., Simkus, M., Tran, T., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: Proceedings of AAAI (2012)

10. Feier, C., Lutz, C., Kuusisto, A.: Rewritability in monadic disjunctive datalog,
MMSNP, and expressive description logics. In: Proceedings of ICDT (2017)

11. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T.,
Zakharyaschev, M.: The price of query rewriting in ontology-based data access.
J. Artif. Intell. 213, 42–59 (2014)

12. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the descrip-
tion logic EL and beyond. In: Proceedings of IJCAI, pp. 3034–3040 (2015)

13. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proceedings of KR (2012)

14. König, M., Leclère, M., Mugnier, M.: Query rewriting for existential rules with
compiled preorder. In: Proceedings of IJCAI, pp. 3106–3112 (2015)

15. König, M., Leclère, M., Mugnier, M., Thomazo, M.: Sound, complete and minimal
UCQ-rewriting for existential rules. Semant. Web 6(5), 451–475 (2015)

16. Lutz, C.: The complexity of conjunctive query answering in expressive descrip-
tion logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71070-7 16

17. Lutz, C.: Two upper bounds for conjunctive query answering in SHIQ. In: Pro-
ceedings of DL (2008)

18. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proceedings of IJCAI, pp. 2070–
2075 (2009)

19. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
web ontology language: profiles. W3C recommendation, 11 December 2012. http://
www.w3.org/TR/owl2-profiles/

20. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. J. Appl. Logic 8(2), 186–209 (2010)

https://arxiv.org/abs/1703.07994
http://dx.doi.org/10.1007/978-3-540-71070-7_16
http://dx.doi.org/10.1007/978-3-540-71070-7_16
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/

Computing FO-Rewritings in EL in Practice 363

21. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: Proceedings of KR (2012)

22. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proceedings of KR (2010)

23. Stefanoni, G., Motik, B.: Answering conjunctive queries over EL knowledge bases
with transitive and reflexive roles. In: Proceedings of AAAI, pp. 1611–1617 (2015)

24. Stefanoni, G., Motik, B., Horrocks, I.: Small datalog query rewritings for EL. In:
Proceedings of DL (2012)

25. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.B.: Optimising resolution-based
rewriting algorithms for OWL ontologies. J. Web Semant. 33, 30–49 (2015)

A Formal Framework for Comparing Linked
Data Fragments

Olaf Hartig1(B), Ian Letter2, and Jorge Pérez3(B)

1 Department of Computer and Information Science (IDA), Linköping University,
Linköping, Sweden
olaf.hartig@liu.se

2 Departamento de Ingenieŕıa Matemática, Universidad de Chile, Santiago, Chile
iletter@dim.uchile.cl

3 Department of Computer Science, Universidad de Chile, Santiago, Chile
jperez@dcc.uchile.cl

Abstract. The Linked Data Fragment (LDF) framework has been pro-
posed as a uniform view to explore the trade-offs of consuming Linked
Data when servers provide (possibly many) different interfaces to access
their data. Every such interface has its own particular properties regard-
ing performance, bandwidth needs, caching, etc. Several practical chal-
lenges arise. For example, before exposing a new type of LDFs in some
server, can we formally say something about how this new LDF interface
compares to other interfaces previously implemented in the same server?
From the client side, given a client with some restricted capabilities in
terms of time constraints, network connection, or computational power,
which is the best type of LDFs to complete a given task? Today there are
only a few formal theoretical tools to help answer these and other prac-
tical questions, and researchers have embarked in solving them mainly
by experimentation.

In this paper we propose the Linked Data Fragment Machine (LDFM)
which is the first formalization to model LDF scenarios. LDFMs work
as classical Turing Machines with extra features that model the server
and client capabilities. By proving formal results based on LDFMs, we
draw a fairly complete expressiveness lattice that shows the interplay
between several combinations of client and server capabilities. We also
show the usefulness of our model to formally analyze the fine-grain inter-
play between several metrics such as the number of requests sent to the
server, and the bandwidth of communication between client and server.

1 Introduction

The idea behind Linked Data Fragments (LDFs) is that different Semantic Web
servers may provide (possibly many) different interfaces to access their datasets
allowing clients to decide which interface better satisfies a particular need. Every
such interface provides a particular type of so-called “fragments” of the under-
lying dataset [13]. Moreover, every interface has its own particular properties
regarding performance, bandwidth needs, cache effectiveness, etc. Clients can
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 364–382, 2017.
DOI: 10.1007/978-3-319-68288-4_22

A Formal Framework for Comparing Linked Data Fragments 365

analyze the trade-offs when using one of these interfaces (or a combination of
them) for completing a specific task. There are a myriad of possible interfaces in
between SPARQL endpoints and RDF data dumps. Some interfaces that have
already been proposed in the literature include Linked Data Documents [4,5],
Triple Pattern Fragments (TPF) [13], and Bindings-Restricted Triple Pattern
Fragments (brTPF) [7]. Different options for LDF interfaces are shown in Fig. 1.

Fig. 1. Unidimensional view of Linked Data Fragments (figure taken from [7,13])

LDFs have already had a considerable practical impact. For instance, since
the proposal of the TPF interface, the LOD Laundromat Website has published
more than 650,000 datasets on the Web with this interface [3]. Moreover, DBpe-
dia has also published a TPF interface which had an uptime of 99.99% during
its first nine months [13]. Up to now, the research and development of LDFs
has produced interesting practical results, but the studied interfaces are defi-
nitely not the final answer to querying semantic data on the Web, and one may
expect that many new interfaces with different trade-offs can be made available
by Semantic Web data servers in the near future.

Several practical challenges arise. On the server side, developers need to
construct LDF interfaces that ensure a good cost/performance trade-off. Before
implementing a new interface in some server, can we formally say something
about the comparison of this new type of LDFs with earlier-proposed types? If
the new interface is somehow subsumed in capabilities and cost by previously
implemented interfaces (or by a simple combination of them), then there might
be no reason to implement it. Answering this question requires an answer to the
more general question on how to formally compare the properties of two different
LDF interfaces given only their specifications.

On the client side, developers need to efficiently use and perhaps combine
LDF interfaces. Thus, an interesting problem is the following: given a client
with some restricted capabilities (in terms of time constraints, small budget,
little computational power, restricted local expressiveness, etc.) and a task to be
completed, which is the best interface that can be used to complete the task? Or
even more drastically, can the task be completed at all given the restrictions on
the client and a set of LDF interfaces to choose from? Today there are only a few
formal tools to help answer the previously described questions, and researchers
have embarked in solving them mainly by experimentation. The main goal of
this paper is to help fill this gap by developing solid theoretical foundations for
studying and comparing LDF interfaces.

366 O. Hartig et al.

It is not difficult to see that one can compare LDF interfaces in different
ways. For instance, in Fig. 1 (taken from [7,13]) three criteria are considered:
(1) general vs. specific requests, (2) client vs. server effort, and (3) high vs. low
availability. We note however that this figure is not meant to provide an accurate
account of the trade-offs of the included interfaces but to highlight the existence
of such trade-offs. To this end, the figure has been kept deliberately simplistic by
organizing the criteria and the interfaces along a single axis. While serving the
intended purpose, this deliberate simplification has the disadvantage of suggest-
ing that the given three criteria are correlated and, for example, the Linked Data
Documents interface is always in between data dumps and SPARQL endpoints.
A counterexample to the latter can be shown if we consider expressiveness as
another criterion; more specifically, lets consider the type of queries that can be
answered if we allow the client to use full computational power (Turing com-
plete) to process data after making as many requests to the server as it needs.
Assume that we have a server that provides data dumps, Linked Data Docu-
ments, and a SPARQL endpoint. Then, one can formally prove that the client
is strictly less expressive when accessing the Linked Data Documents instead of
the data dump or the SPARQL endpoint. To see this, consider a query of the
following form:

Q1: “Give me all the subjects and objects of RDF triples whose predicate
is rdf:type.”

This query cannot be answered completely over a dataset by using the Linked
Data Document interface no matter how many requests the client sends to the
server [6]. On the other hand, it is not difficult to show that both, data dumps and
SPARQL endpoints, can answer the query completely. Thus, when considering
the expressiveness dimension, Linked Data Documents are not longer in between
data dumps and SPARQL endpoints.

Consider another scenario in which one wants to measure only the number
of requests that the client sends to the server in order to answer a specific query.
Lets assume this time that the server provides a data dump, a SPARQL endpoint,
and a TPF interface, and consider the following query.

Q2: “Give me all the persons reachable from Peter by following two foaf:knows

links.”

It is straightforward to see that a client using either the data dump or the
SPARQL endpoint can answer this query by using a single request to the server,
while a TPF client needs at least two requests. Thus, in this case, data dumps
are more efficient than TPFs in terms of number of server requests. On the other
hand it is clear that in terms of the amount of data transferred, TPFs are more
desirable for Q2 than data dumps.

Although the two examples described above are very simple, they already
show that the comparison of LDF interfaces is not always one-dimensional. More-
over, the comparison can quickly become more complex as we want to analyze
and compare more involved scenarios. For instance, in both cases above we just
analyzed a single query. In general, one would like to compare LDF interfaces in

A Formal Framework for Comparing Linked Data Fragments 367

terms of classes of queries. Another interesting dimension is client-side computa-
tional power. In both cases above we assumed that the client is Turing complete,
and thus the client is able to apply any computable function to the fragments
obtained from an LDF interface. However, one would like to consider also clients
with restricted capabilities (e.g., in terms of computational power or storage).
Moreover, other dimensions such as bandwidth from client to server, bandwidth
from server to client, time complexity on the server, cacheability of results, and
so on, can substantially add difficulty to the formal analysis. In this paper we
embark on the formal study of Linked Data Fragments by proposing a framework
in which several of the aforementioned issues can be formally analyzed.

Main contributions and organization of the paper: As our main con-
ceptual contribution we propose the Linked Data Fragment Machine (LDFM).
LDFMs work as classical Turing Machines with some extra features that model
the server and client capabilities in an LDF scenario. Our machine model is
designed to clearly separate three of the main tasks done when accessing a
Linked Data Fragment server: (1) the computation that plans and drives the
overall query execution process by making requests to the server, (2) the com-
putation that the server needs to do in order to answer requests issued by the
client, and (3) the computation that the client needs to do to create the final
output from the server responses. These design decisions allow us to have a
model that is powerful enough to capture several different scenarios while sim-
ple enough to allow us to formally prove properties about it. The LDFM model
is presented in Sect. 2.

As one of our main technical contributions, we use our machine to formalize
the notion of expressiveness of an LDF scenario and we draw a fairly com-
plete lattice that shows the interplay between several combinations of client
and server capabilities. While expressiveness is studied in Sect. 3, in Sect. 4 we
analyze LDF scenarios in terms of classical computational complexity. More-
over, our machine model also allows us to formally analyze LDFs in terms of
two additional important metrics, namely, the number of requests sent to the
server, and the bandwidth of communication between the server and the client.
Both notions are formalized as specific computational-complexity measures over
LDFMs. We present formal results comparing different scenarios and demon-
strate the suitability of our proposed framework to also analyze the fine-grain
interplay between complexity metrics. These results are presented in Sect. 5.

For the sake of space most of the details on the proofs have been omitted
but can be found in the appendix at http://dcc.uchile.cl/∼jperez/ldfm-ext.pdf.

2 Linked Data Fragment Machine

This section introduces our abstract machine model that captures possible client-
server systems that execute user queries, issued at the client side, over a server-
side dataset.

Informally, the machine in our model captures the whole of a client-
server system (i.e., both, the server and the client). However, the program of the

http://dcc.uchile.cl/~jperez/ldfm-ext.pdf

368 O. Hartig et al.

machine can be considered to be executed on the client side. To communicate
with the server the machine uses a server language, LS , which essentially repre-
sents the type of requests that the server interface is able to answer. Additionally,
the machine is also in charge of producing the result of the given user query by
combining the responses from the server. The corresponding result-construction
capability is captured by a response-combination language, LC , which is an alge-
bra over the server responses. To answer a user query the machine performs
the following general process: The machine begins by creating requests for the
server in the form of LS queries. After issuing such a request, the corresponding
response becomes available in an internal result container. Then, the machine can
decide to continue with this process by issuing another request. Every response
from the server is stored in a different result container, and moreover, a result
container cannot be modified after it is filled with a server response (i.e., it can
only be read by the machine). In the final step, the machine uses the response-
combination language LC to create a query over the result containers. The exe-
cution of this LC -query produces the final output of the process (that is, the
result of the user query). In the following, we define the machine formally. We
first formally capture the different types of query languages involved and next we
provide the formal definition of the machine; thereafter, we describe the rationale
of the different parts of the machine and we introduce notions of computability
and expressiveness based on the machine.

2.1 Preliminaries

Our model assumes the following three types of queries.
User queries are queries that are issued at the client side and that the

client-server system (captured by our machine) executes over the server-side
dataset. We assume that this dataset is represented as an RDF graph without
blank nodes. Then, a possible class of user queries could be SPARQL queries.
However, to make our model more general we allow user queries to be expressed
also in other query languages. To this end, for our model we introduce the
abstract notion of an RDF query. Formally, an RDF query is an expression q for
which there exists an evaluation function that is defined for every RDF graph
G and that returns a set of SPARQL solution mappings, denoted by �q�G.

Requests are queries that the client sends to the server during the execution
of a user query. The form of these requests depends on the type of interface
provided by the server. We capture such interface types (and, thus, the possible
requests) by introducing the notion of a server language; that is, a language LS

that is associated with an evaluation function that, for every query qR ∈ LS

and every RDF graph G, returns a set of SPARQL solution mappings, which
we denote by �qR�G. Examples of server languages considered in this paper are
given as follows:

– coreSparql is the core fragment of SPARQL that considers triple patterns,
And, Opt, Union, Filter, and Select. Due to space limitations, we refer
to [2,10] for a formal definition of this fragment and its evaluation function.

A Formal Framework for Comparing Linked Data Fragments 369

– Bgp is the basic graph pattern fragment of SPARQL (i.e., triple patterns and
And).

– Tpf is the language composed of queries that are a single triple pattern.
Hence, this language captures servers that support the triple pattern fragments
interface [13].

– Tpf+Filter is the language composed of queries of the form (tp Filter θ)
where tp is a triple pattern and θ is a SPARQL built-in condition as defined
in [10].

– brTpf is the language composed of queries of the form (tp,Ω), where tp
is a triple pattern and Ω is a set of solution mappings. This language cap-
tures the bindings-restricted triple pattern interface [7]. The evaluation func-
tion is defined such that for every RDF graph G it holds that �(tp,Ω)�G =
πvars(tp)(�tp�G �� Ω) where π is the projection operator [11], vars(tp) is the
set of variables in tp, �tp�G is the evaluation of tp over G [10], and �� is the
join operator [10]. For simplicity we assume that a triple pattern tp is also a
brTpf query in which case the evaluation function is simply �tp�G.

– Dump is the language that has a single expression only, namely the triple
pattern (?s, ?p, ?o) where ?s, ?p, and ?o are different variables. This language
captures interfaces for downloading the complete server-side dataset.

For any two server languages LS and L′
S we write LS ⊆ L′

S if every query in LS

is also in L′
S . For instance, Dump ⊆ Tpf ⊆ Bgp ⊆ coreSparql.

Response-combination queries are queries that describe how the result
of a user query can be produced from the server responses. Since each server
response in our model is a set of solution mappings, and so is the result of
any user query, we assume that response-combination queries can be expressed
using languages that resemble an algebra over sets of solution mappings. We call
such a language a response-combination language. In this paper we denote such
response-combination languages by the set of algebra operators that they imple-
ment. For instance, the response-combination language denoted by the set {��, π}
can be used to combine multiple sets Ω1, . . . , Ωn of solution mappings by apply-
ing the aforementioned join and projection operators in an arbitrary manner.
Other algebra operators that we consider in this paper are the union and the
left outer join [2], denoted by ∪ and ��, respectively. Note that based on our nota-
tion, the empty operator set (∅) also denotes a response-combination language.
This language can be used only to simply select one Ωi out of multiple given
sets Ω1, . . . , Ωn of solution mappings (i.e., without being able to modify Ωi).

2.2 Formalization

A Linked Data Fragment Machine (LDFM) M is a multi-tape Turing Machine
with the following special features. In addition to several ordinary working tapes,
M has five special tapes: a query tape TQ, a data tape TD, a server-request
tape TR, a client tape TC , and an output tape TO. Tapes TQ and TD are read-only
tapes, while TR, TC , and TO are write-only tapes. As another special component,

370 O. Hartig et al.

Fig. 2. (LC ,LS)-LDFM M

the machine has an unbounded sequence D1,D2, . . . , Dk, . . . of result contain-
ers (which can also be considered as read-only tapes), and a counter cM , called
the result counter, that defines the last used result container. M also has four dif-
ferent modes: computing the next server request (R), waiting for response (W),
computing client query (C), and done (F). In all these modes the machine may
use the full power of a standard Turing Machine. Additionally, M has access
to two oracle machines: a server oracle OS , which is associated with a server
language LS , and a client oracle OC , associated with a response-combination
language LC .

An LDFM M receives as input an RDF query q and an RDF graph G. Before
the computation begins, q is assumed to be in tape TQ and G is assumed to be
in tape TD. All other tapes as well as the result containers are initially empty,
the counter cM is 0, and the machine is in mode R. Then, during the compu-
tation, the machine can use its ordinary working tapes arbitrarily (read/write).
However, the access to the special tapes is restricted. That is, tape TR can be
used by the machine only when it is in mode R, and tape TC can be used only
in mode C. Moreover, the machine does not have direct access to the tapes TD

and TO; instead, the read-only tape TD can be accessed only by the oracle OS ,
and the write-only tape TO can be accessed only by oracle OC . Regarding the
result containers, M is only able to read from them, and only oracle OS can
write in them. Figure 2 illustrates an LDFM and Fig. 3 shows the possible state
transitions.

The computation of an LDFM M works as follows. While in mode R, the
machine can construct a query qR ∈ LS and write it in tape TR. When the
machine is finished writing qR, it may change to mode W, which is a call to
oracle OS . The oracle then increments the counter cM , deletes the content of
tape TR, and writes the set of mappings �qR�G in the container DcM . Next, the
computation continues, M changes back to mode R, and the previous process
may be repeated. Alternatively, at any point when in mode R, the machine may
decide to change to mode C. In this mode, M constructs a query qC ∈ LC ,
writes it in tape TC , and changes to mode F , which is a call to oracle OC . Then,

A Formal Framework for Comparing Linked Data Fragments 371

Fig. 3. Possible state transitions of an LDFM

oracle OC evaluates qC over data D1, . . . , DcM , and writes the result of this
evaluation in tape TO which is the final output of M . Hence, at this point the
computation terminates. We denote the final output as M(q,G).

Example 1. A typical SPARQL endpoint based client-server scenario may be
captured by an LDFM M whose server language LS is coreSparql and the
response-combination language LC is ∅. For any user query q, assuming q is in
coreSparql, the machine simply copies q into tape TR and enters mode W.
After obtaining �q�G from oracle OS in result container D1, the machine enters
mode C, writes D1 (as an expression in LC = ∅) in tape TC , and changes to
mode F . Then, oracle OC writes the query result �q�G from D1 to the output
tape.

Example 2. Let M be an LDFM such that LS = brTpf and LC = {��,∪}.
Hence, M has access to a server capable of handling brTpf requests, and M
can do joins and unions to construct the final output. Assume now that a user
wants to answer a SPARQL query q of the form ((?X, a, ?Y) And (?X, b, ?Y)),
which is initially in tape TQ. Then, to evaluate q over a graph G (in tape TD),
M may work as follows: First, M writes query (?X, a, ?Y) in tape TR and calls
OS by entering mode W. After this call we have that D1 = �(?X, a, ?Y)�G. Now,
M can write (?X, b, ?Y) in tape TR, which is another call to OS that produces
D2 = �(?X, b, ?Y)�G. Finally, M writes query D1 �� D2 in tape TC and calls
OC , which produces the output, M(q,G), in tape TO. It is not difficult to see
that M(q,G) = �q�G. We may have an alternative LDFM M ′ that computes q
as follows. Initially, M ′ calls the server oracle OS with query (?X, a, ?Y) to
obtain D1 = �(?X, a, ?Y)�G. Next, M ′ performs the following iteration: for every
mapping μ ∈ D1 it writes the brTpf query ((?X, b, ?Y), {μ}) in TR and calls
the oracle OS to produce �((?X, b, ?Y), {μ})�G = �(?X, b, ?Y))�G �� {μ} in one
of its result containers. After all these calls, M ′ writes query (D2∪D3∪· · ·∪Dk)
in tape TC , where k = cM ′ is the index of the last used result container. The
oracle OC then produces the final output M ′(q,G). In this case we also have
that M ′(q,G) = �q�G.

2.3 Rationale and Limitations of LDFMs

Machine models to formalize Web querying have been previously proposed in
the literature [1,6,9]. Most of the early work in this context is based on an
understanding of the Web as a distributed hypertext system consisting of Web

372 O. Hartig et al.

pages that are interconnected by hyperlinks. These machines then formalized the
notion of navigation and of data retrieval while navigating, and their focus was
on classical computability issues (what can, and what cannot be computed in
a distributed Web scenario). Though similar in motivation, our machine model
in contrast formalizes a different approach to access and to query Web data. In
this section we explain the rationale behind our design.

The perhaps most important characteristic of our model is that it sepa-
rates the computation that creates the final output (as done by the client ora-
cle OC) from the computation that plans and drives the overall query execu-
tion process (as done by the LDFM itself). Hence, the expressive power of the
response-combination language LC only determines how the query result to be
returned to the user can be computed by using the result containers, but it does
not have any impact whatsoever on the computations that the machine can do
when it generates any of the server requests (in mode R) or when it generates
the final LC-query (in mode C). This separation allows us to precisely pinpoint
the computational power needed for the latter without mixing it up with the
power needed for constructing the output (and vice versa). Of course, in prac-
tice the two tasks do not need to be separated into two consecutive phases as
suggested by our model. In fact, an alternative version of our model could allow
the machine to use oracle OC multiple times to produce the first elements of the
complete output as early as possible.

Another separation, which is perhaps more natural because it also exists in
practice, is the delegation of the computation of the server responses to the
server oracle OS . Besides also avoiding a mix-up when analyzing required com-
putational power, this separation additionally allows us to prevent the LDFM
from accessing the data tape TD directly. This features captures the fact that,
in practice, a client also has to use the server interface instead of being able to
directly access the server-side dataset.

The result containers (D1,D2, . . .), with their corresponding result
counter (cM), provide us with an abstraction based on which notions of network
cost of different pairs of client/server capabilities can be quantified. We shall use
this abstraction to define network-related complexity measures in Sect. 5.

While our notion of the LDFM provides us with a powerful model to formally
study many phenomena of LDF-based client-server settings, there are a few
additional factors in practice that are not captured by the model in its current
form. In particular, the model does not capture the option for the server to
(i) decide to split responses into pages (that have to be requested separately)
and (ii) send metadata with its responses that clients can use to adapt their
query execution plans. Additionally, in practice there may be a cache located
between the server and the client, which might have to be captured to study
metrics related to server load (given that such a cache is not equally effective for
different LDF interfaces [7,13]). We deliberately ignored these options to keep
our model sufficiently simple. However, corresponding features may be added to
our notion of an LDFM if useful for future analyses.

A Formal Framework for Comparing Linked Data Fragments 373

2.4 Computability and Expressiveness for LDFMs

We conclude the introduction of our machine model by defining notions of com-
putability and expressiveness based on LDFMs.

The most basic notion of computability for LDFMs is that of a computable
query. We say that an RDF query q is computable under an LDFM M if for
every RDF graph G it holds that M(q,G) = �q�G. That is, q is computable
under M if, with (q,G) as input, M produces �q�G as output, for every possible
graph G. We can also extend this notion to classes of queries. Formally, the class
of queries computed by an LDFM M , denoted by C(M), is the set of all RDF
queries that are computable under M .

Notice that every LDFM comes with a response-combination language and
a server language, and thus we can also define classes of LDFMs in terms of the
languages that they use. In particular, we say that an LDFM M is an (LC ,LS)-
LDFM if the response-combination language of M is LC and the server language
of M is LS . Now, we can define our main notion of computability.

Definition 1. Let LC be a response-combination language and LS be a server
language. A class C of RDF queries is computable under (LC ,LS) if there exists
an (LC ,LS)-LDFM M such that every query q in C is computable under M .

Definition 1 is our main building block to compare different combinations of
client and server languages independent of the possible LDFMs that use these
languages. The following definition formalizes our main comparison notion.

Definition 2. Let L1 and L′
1 be response-combination languages, and L2 and

L′
2 be server languages. Then, (L′

1,L′
2) is at least as expressive as (L1,L2),

denoted by (L1,L2) �e (L′
1,L′

2), if every class of queries that is computable
under (L1,L2) is also computable under (L′

1,L′
2).

We use (L1,L2) ≡e (L′
1,L′

2) to denote that (L1,L2) and (L′
1,L′

2) are equally
expressive, that is, (L1,L2) �e (L′

1,L′
2) and (L′

1,L′
2) �e (L1,L2). As usual, we

write (L1,L2) ≺e (L′
1,L′

2) to denote that (L1,L2) �e (L′
1,L′

2) and (L′
1,L′

2) 	�e

(L1,L2).

Example 3. It is easy to show that (∅,Dump) ≺e (∅,Tpf). That is, whenever you
have a server that can only provide a Dump of its dataset and you do not have
any additional power in the client, then you can accomplish strictly less tasks
compared with the case in which you have access to a server that can answer
Tpf queries. In the next section we prove more such relationships (including less
trivial ones).

3 Expressiveness Lattice

In this section we show the relationships between different pairs of client and
server capabilities in terms of expressiveness. In particular, we establish a lat-
tice that provides a full picture of many combinations of the server languages

374 O. Hartig et al.

mentioned in Sect. 2.1 with almost every possible response-combination language
constructed by using some of the algebra operators in {��,∪, ��, π}. Figure 4 illus-
trates this expressiveness-related lattice. As we will show, some of the equiva-
lences and separations in this lattice do not necessarily follow from standard
expressiveness results in the query language literature. In particular, the lattice
highlights the expressive power of using the brTpf interface [7]. It should be
noticed that several other combinations of response-combination languages and
server languages might have been considered. We plan to cover more of them
as part of our future work. Before going into the results, we make the following
simple observation about the expressiveness of LDFMs.

Note 1. Let (L1,L2) and (L′
1,L′

2) be arbitrary pairs of response-combination/
server languages s.t. L1 ⊆ L′

1 and L2 ⊆ L′
2. Then, it is easy to prove that

(L1,L2) �e (L′
1,L′

2).

Fig. 4. Expressiveness lattice for LDFMs

3.1 The Expressiveness of Using the BRTPF Interface

We begin with a result that shows that brTpf in combination with join
and union in the client side is as expressive as server-side coreSparql with
{��,∪, ��, π} in the client.

Theorem 1. ({∪, ��},brTpf) ≡e ({��,∪, ��, π},coreSparql).

A Formal Framework for Comparing Linked Data Fragments 375

The result, that might seem surprising, follows from two facts: (1) an LDFM
can use unbounded computational power to issue server requests, and (2) a
brTpf server can accept arbitrary solutions mappings to be joined with triple
patterns in the server side. The proof is divided in several parts and exploits a
trick that is used in practice to avoid client-side joins when accessing a brTpf
interface. We illustrate the main idea with an example. Assume that one wants
to compute a SPARQL query P of the form (t1Optt2) over G where t1 and t2
are triple patterns. Since �P �G = �t1�G ���t2�G, one can easily evaluate P with a
({��,∪, ��, π},coreSparql)-LDFM by just evaluating t1 and t2 separately in the
server, and then using �� in the client to construct the final output. On the other
hand, one can use the following strategy to evaluate P with a ({∪, ��},brTpf)-
LDFM M . Recall that

�t1�G �� �t2�G = (�t1�G �� �t2�G) ∪ (�t1�G � �t2�G),

where �t1�G � �t2�G is the set of all mappings in �t1�G that are not compatible
with any mapping in �t2�G [2]. We can first evaluate t1 in the server to obtain
�t1�G as one of M ’s result containers, say D1. Next, M can use D1 to construct
the brTpf query (t2, �t1�G), which can be evaluated in the server and stored
in the next container D2. Notice that D2 now contains all mappings in �t2�G
that can be joined with some mapping in �t1�G. Now M can use its internal
computational power to produce the following set of queries: for every mapping
μ in D1 that is not compatible with any mapping in D2, M constructs the brTpf
query (t1, {μ}), sends it to the server, and stores the result in one of the result
containers, starting in container D3. Notice that M is essentially mimicking the
difference operator � using one mapping at a time. After all these requests,
M has all the mappings of the set �t1�G � �t2�G stored in its containers, every
mapping in a different container. Moreover, given that D1 �� D2 = �t1�G �� �t2�G,
M can generate the client query (D1 �� D2)∪D3∪· · ·∪DcM which will give exactly
�t1�G �� �t2�G. A similar strategy can be used to compute all other operators.

It is not difficult to prove that when having coreSparql for server requests,
the operators {��,∪, ��, π} on the client do not add any expressiveness. More-
over, from proving Theorem 1 it is easy to also obtain that ({∪, ��},brTpf) ≡e

({��,∪, ��, π},brTpf). Thus, we have that all the following four settings are
equivalent in expressiveness:

({∪, ��},brTpf) ≡e ({∪, ��, ��, π},brTpf)
≡e ({��,∪, ��, π},coreSparql) ≡e (∅,coreSparql).

These equivalences are shown at the top of the lattice in Fig. 4.
Theorem 1 has several practical implications. One way to read this result

is that whenever a brTpf interface is available, a machine having operators
{��,∪, ��, π} in the client has plenty of options to produce query execution plans
to answer user queries. In particular, for user queries needing �� or π, the machine
may decide if some of these operators are evaluated in the client or part of them
are evaluated in the server. What Theorem1 does not state is an estimation
of the cost of executing these different plans. In Sect. 5 we shed some light on

376 O. Hartig et al.

this issue, in particular, we study the additional cost payed when using different
server interfaces in terms of the number of requests sent to the server and the
size of the data transferred between server and client.

The following result shows that union in the client is essential to obtain
Theorem 1.

Theorem 2. ({��},brTpf) ≺e ({∪, ��},brTpf).

It should be noticed that this result does not directly follow from the fact that
∪ cannot be expressed using �� since, as we have shown, a brTpf interface is very
expressive when queried with unbounded computational power. Towards proving
Theorem 2, it is clear that ({��},brTpf) �e ({∪, ��},brTpf). Thus, to prove the
theorem it only remains to show that ({∪, ��},brTpf) 	�e ({��},brTpf). The
following lemma proves something that, by Note 1 above, is actually stronger.

Lemma 1. ({∪},Tpf) 	�e ({��, ��, π},brTpf).

Consider the coreSparql query q = ((?X, a, 2)Union (3, b, 4)). It is clear
that q is computable by a ({∪},Tpf)-LDFM. It can be proved that q is not
computable by a ({��, ��, π},brTpf)-LDFM.

The following result proves that join is also needed to obtain Theorem1.

Theorem 3. ({∪},brTpf) ≺e ({∪, ��},brTpf).

As for Theorem 2, we only need to prove that ({∪, ��},brTpf) 	�e

({∪},brTpf) which follows from the next, stronger result.

Lemma 2. ({��},Tpf) 	�e ({∪, π},brTpf).

The lemma follows from the fact that a ({��},Tpf)-LDFM can produce solu-
tion mappings with an unbounded number of variables in its domain while, given
the restrictions of the brTpf interface, every solution mapping in the output of
a ({∪, π},brTpf)-LDFM has at most three variables in its domain.

3.2 The Expressiveness of Using the TPF Interface

One interesting point is the comparison between Tpf and brTpf. The first
important question is whether Theorem 1 can be obtained by considering Tpf
instead of brTpf. Our next result provides a negative answer.

Theorem 4. ({��,∪, ��, π},Tpf) ≺e ({∪, ��},brTpf).

We have that ({��,∪, ��, π},Tpf) �e ({��,∪, ��, π},coreSparql) because
it holds that Tpf ⊆ coreSparql. By combining this with Theorem1 we
obtain that ({��,∪, ��, π},Tpf) �e ({∪, ��},brTpf). Thus, to prove Theorem 4
it remains to show that ({∪, ��},brTpf) 	�e ({��,∪, ��, π},Tpf). We prove some-
thing stronger:

Lemma 3. (∅,brTpf) 	�e ({��,∪, ��, π},Tpf).

A Formal Framework for Comparing Linked Data Fragments 377

It turns out that Filter is all that one needs to add to Tpf to make it
comparable with brTpf. In fact, in terms of expressive power of LDFMs, Tpf
with Filter and brTpf are equivalent regardless of the client language.

Proposition 1. (L,brTpf) ≡e (L,Tpf+Filter) holds for every response-
combination language L.1

Given Proposition 1, in every combination in the lattice of Fig. 4 we can
replace brTpf by Tpf+Filter and the relationships still hold.

The next result shows an equivalence concerning Tpf and Bgp.

Proposition 2. (∅,Bgp) ≡e ({��},Tpf) ≡e ({��},Bgp)

Our final result in this section is a set of incompatibilities for Tpf and brTpf
which follow from our previous results.

Corollary 1. The following relationships hold.

1. ({��,∪, ��, π},Tpf) and (∅,brTpf) are not comparable in terms of �e.
2. ({∪},Tpf) and ({��},brTpf) are not comparable in terms of �e.
3. ({��},Tpf) and ({∪},brTpf) are not comparable in terms of �e.

The lattice of the expressiveness of LDFMs shown in Fig. 4 is constructed by
composing all the results in this section.

4 Comparisons Based on Classical Complexity Classes

Besides expressiveness, another classical measure is the (computational) com-
plexity of query evaluation. In this section we present a simple analysis to provide
a comparison of LDFs settings in terms of the complexity of the query evalua-
tion problem for the server and response-combination languages. In particular,
we focus on the combined complexity that measures the complexity of problems
for which a query and a dataset are both assumed to be given as input [12]. We
begin by defining two new comparison notions.

Definition 3. We say that (L1,L2) is at most as server-power demanding as
(L′

1,L′
2), denoted by (L1,L2) �sp (L′

1,L′
2), if the combined complexity of the

evaluation problem for L2 is at most as high as the combined complexity of the
evaluation problem for L′

2. Similarly, (L1,L2) is at most as result-construction
demanding as (L′

1,L′
2), denoted by (L1,L2) �rc (L′

1,L′
2), if the combined com-

plexity of the evaluation problem for L1 is at most as high as the combined
complexity of the evaluation problem for L′

1.

1 This result and the next are given as propositions instead of theorems because they
are simple to prove with standard notions of logic (as detailed in the aforemen-
tioned appendix of this paper) and they do not add an important separation in the
expressiveness lattice (Fig. 4).

378 O. Hartig et al.

We write (L1,L2) ≡c (L′
1,L′

2) if (L1,L2) �c (L′
1,L′

2) and (L′
1,L′

2) �c

(L1,L2), for c ∈ {sp, rc}. The next result follows trivially from the results of
Pérez et al. [10] and Schmidt et al. [11] that show that for the And-fragment and
the Union-fragment of SPARQL, the evaluation problem is in PTime, respec-
tively, for the And-Union-fragment it is NP-complete, and for fragments con-
taining Opt it is PSpace-complete.

Corollary 2. For any server language LS, the following properties hold:

1. (∅,LS) ≡rc ({��},LS) ≡rc ({∪},LS)
2. (∅,LS) �rc ({��,∪},LS) �rc ({��},LS)
3. ({��},LS) ≡rc ({��, ��},LS) ≡rc ({��, ��,∪},LS) ≡rc ({��, ��,∪, π},LS)

Moreover, for any response-combination language LC , the following properties
hold:

4. (LC ,Bgp) ≡sp (LC ,brTpf) ≡sp (LC ,Tpf) ≡sp (LC ,Dump)
5. (LC ,Bgp) �sp (LC ,coreSparql)

Notice that the pairs of response-combination and server languages men-
tioned in the corollary can be organized into two additional lattices along the
lines of the expressiveness lattice in Fig. 4. That is, Properties 1–3 in Corollary 2
establish a result-construction demand lattice, and Properties 4 and 5 establish
a server-power demand lattice. However, both of these lattices consist of only a
single path from top to bottom.

5 Additional Complexity Measures

In the previous sections we provide a base for comparing different combinations
of client/server capabilities considering expressiveness and complexity. While
these comparisons are a necessary starting point, from a practical point of view
one would also want to compare the computational resources that have to be
payed when using one LDF interface or another. More specifically, assume that
you have two combinations of client and server capabilities that are equally
expressive, that is, (L1,L2) ≡e (L′

1,L′
2). Then, we know that every task that

can be completed in (L1,L2) can also be completed in (L′
1,L′

2). The question
however is: are we paying an additional cost when using one setting or the other?
Or more interestingly, is any of the two strictly better than the other in terms
of some of the resources needed to answer queries? In this section we show the
suitability of our proposed framework to also analyze this aspect of LDFs.

We begin this section with a definition that formalizes two important
resources used when consuming Linked Data Fragments, namely, the number
of requests sent to the server, and the total size of the data transferred from the
server to the client.

Definition 4. For an LDFM M , an RDF query q, and an RDF graph G, we
define the number of requests of M with input (q,G), denoted by rM (q,G), as

A Formal Framework for Comparing Linked Data Fragments 379

the final value of counter cM during the computation of M with input (q,G).
Similarly, the amount of data transferred by M with input (q,G), denoted by
tM (q,G), is defined as the value |D1| + |D2| + · · · + |DrM (q,G)|.

We can now define the request and transfer complexity of classes of RDF
queries.

Definition 5. Let f be a function from the natural numbers. A class C of
RDF queries has request complexity at most f under (L1,L2) if there exists
an (L1,L2)-LDFM M that computes every query q ∈ C such that for every q ∈ C
and RDF graph G it holds that rM (q,G) ≤ f(|q| + |G|). Similarly we say that
C has transfer complexity at most f under (L1,L2) if there exists an (L1,L2)-
LDFM M that computes every q ∈ C such that tM (q,G) ≤ f(|q| + |G|) for every
q ∈ C and RDF graph G.

We now have all the necessary to present our main notions to compare dif-
ferent classes of RDF queries in terms of the resources needed to compute them
with LDFMs.

Definition 6. Let L1,L′
1 be response-combination languages and L2,L′

2 be
server languages. Then, (L1,L2) is at most as request demanding as (L′

1,L′
2),

denoted by (L1,L2) �r (L′
1,L′

2), if the following condition holds: For every func-
tion f and every class C of RDF queries expressible in both (L1,L2) and (L′

1,L′
2),

if C has request complexity at most f under (L′
1,L′

2), then C has request com-
plexity at most f under (L1,L2). We similarly define the notions of being at
most as data-transfer demanding, and denote it using �t.

Regarding the notions in Definition 6 we make the following general observa-
tion.

Note 2. Let (L1,L2) and (L′
1,L′

2) be arbitrary pairs of response-combination/
server languages s.t. L1 ⊆ L′

1 and L2 ⊆ L′
2. Since (L1,L2) �e (L′

1,L′
2), any

(L′
1,L′

2)-LDFM that can be used to compute the class of RDF queries com-
putable under (L′

1,L′
2) can also be used to compute every RDF query that is com-

putable under (L1,L2). Therefore, it follows trivially that (L′
1,L′

2) �r (L1,L2)
and (L′

1,L′
2) �t (L1,L2).

We next show some (less trivial) results that provide more specific com-
parisons with respect to the above introduced notions. To this end, we write
(L1,L2) ≺c (L′

1,L′
2) to denote that (L1,L2) �c (L′

1,L′
2) and (L′

1,L′
2) 	�c

(L1,L2), for c ∈ {r, t}.
Recall that (∅,Bgp), ({��},Tpf), and ({��},Bgp) are all equivalent in terms

of expressive power. The next result proves formally that, in terms of the data
transferred, they can actually be separated.

Proposition 3. It holds that ({��},Bgp) ≺t ({��},Tpf). Moreover, ({��},Tpf)
and (∅,Bgp) are not comparable in terms of �t. Regarding the number of requests
it holds that ({��},Bgp) ≡r (∅,Bgp) ≺r ({��},Tpf).

380 O. Hartig et al.

To see why the �t incomparability result holds, consider the class C1 of
SPARQL queries of the form ((?X1, ?Y1, ?Z1) And (?X2, ?Y2, ?Z2)). It can be
shown that any (∅,Bgp)-LDFM M that computes C1 is such that tM (q,G),
as a function, is in Ω(|G|2). On the other hand there exists a ({��},Tpf)-
LDFM M ′ such that tM ′(q,G) is in O(|G|). This shows that (∅,Bgp) 	�t

({��},Tpf). Consider now the class C2 of SPARQL queries of the form
((a1, b1, c1) And · · · And (ak, bk, ck)). One can show that any ({��},Tpf)-
LDFM M that computes C2 is such that tM (q,G) is in Ω(|q|) in the worst case.
On the other hand, C2 can be computed with a (∅,Bgp)-LDFM that, in the worst
case, transfers a single mapping (the complete query result) thus showing that
({��},Tpf) 	�t (∅,Bgp). Class C2 can also be used to show that (∅,Bgp) ≺r

({��},Tpf). Our final result shows that even though ({∪, ��},brTpf) is very
expressive, one may need to pay an extra overhead in terms of transfer and
request complexity compared with a setting with a richer response-combination
language.

Theorem 5. The following strict relationships hold.

1. ({∪, ��, ��, π},brTpf) ≺t ({∪, ��},brTpf)
2. ({∪, ��, ��, π},brTpf) ≺r ({∪, ��},brTpf)

The first point of this last theorem can be intuitively read as follows: in terms
of bandwidth, the best possible query plans for an LDFM that access a brTpf
interface and then construct the output using operators in {∪, ��, ��, π}, are
strictly better than the best possible query plans that access a brTpf interface
and then construct the output using operators in {∪, ��}. The second point has
a similar interpretation regarding the best possible query plans in terms of the
number of requests sent to the server.

Although in this section we did not present a complete lattice as for the case
of expressiveness in Sect. 3, these results show the usefulness of our framework
to formally compare different options of Linked Data Fragments.

6 Concluding Remarks and Future Work

In this paper we have presented LDFMs, the first formalization to model LDF
scenarios. By proving formal results based on LDFMs we show the usefulness of
our model to analyze the fine-grain interplay between several metrics. We think
that our formalization is a first step towards a theory to compare different access
protocols for Semantic Web data. We next describe some possible directions for
future research regarding LDFMs, extensions to the model, and its usage in some
alternative scenarios.

In this paper we consider a specific set of client and server capabilities but
our framework is by no means tailored to them. In particular, it would be really
interesting to consider more expressive operators in the client languages and
also new LDF interfaces, and compare them with the ones presented in this
paper. One notable interface that is widely used in practice and that we plan

A Formal Framework for Comparing Linked Data Fragments 381

to integrate in our study is the URI-lookup interface to retrieve Linked Data
documents [4,5].

Besides the classical metrics (expressiveness and computational complexity),
in this paper we considered only the number of requests sent to the server and the
data transferred from server to client. It is easy to include other practical metrics
in our framework. One important practical metric might be the amount of data
transferred from the client to the server. In particular this metric might be very
important for the brTpf interface which requires sending solution mappings
from the client to the server. Notice that this metric can be formalized by simply
considering the space complexity on the request tape TR of an LDFM. Similarly,
if we consider the space complexity of the client query tape TC , then we can
restrict the size of the output query which makes sense as a restriction for clients
with local memory constraints.

Finally, our model and results can be used as a first step towards a foundation
for the theoretical study of Semantic Web query planning; more specifically, we
would like to compile into our model already proposed languages for querying
Linked Data, and to formally study what are the server interfaces and client
capabilities needed to execute queries expressed in these languages, considering
also the cost of compilation and execution according to our formal metrics. One
possible starting point would be to study languages designed for live queries on
the Web of Linked Data. For instance, we have recently proposed LDQL [8],
which is a navigational language designed to query Semantic Web data based
on the URI-lookup interface. Although we have presented a fairly complete for-
mal analysis of LDQL [8], the computational complexity considered was only a
classical analysis that disregards some important features of querying the Web
such as server communication, latency, etc. Our machine model plus the results
on comparisons of different LDFs can help to derive a more realistic complexity
analysis for languages such as LDQL. We plan to tackle this problem in our
future work.

Acknowledgements. Hartig’s work has been funded by the CENIIT program at
Linköping University (project no. 17.05). Pérez is supported by the Millennium Nucleus
Center for Semantic Web Research NC120004, and ENLACE-Fondecyt VID-UChile.

References

1. Abiteboul, S., Vianu, V.: Queries and computation on the web. Theor. Comput.
Sci. 239(2), 231–255 (2000)

2. Arenas, M., Gutierrez, C., Miranker, D.P., Pérez, J., Sequeda, J.: Querying seman-
tic data on the web. SIGMOD Rec. 41(4), 6–17 (2012)

3. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD
laundromat: a uniform way of publishing other people’s dirty data. In: Mika, P.,
et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 213–228. Springer, Cham (2014).
doi:10.1007/978-3-319-11964-9 14

4. Berners-Lee, T.: Design issues: linked data, July 2006
5. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant.

Web Inf. Syst. 5(3), 1–22 (2009)

http://dx.doi.org/10.1007/978-3-319-11964-9_14

382 O. Hartig et al.

6. Hartig, O.: SPARQL for a web of linked data: semantics and computabil-
ity. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 8–23. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30284-8 8

7. Hartig, O., Buil-Aranda, C.: Bindings-restricted triple pattern fragments. In:
Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Kühn, E., O’Sullivan, D.,
Ardagna, C.A. (eds.) OTM 2016. LNCS, vol. 10033, pp. 762–779. Springer, Cham
(2016). doi:10.1007/978-3-319-48472-3 48

8. Hartig, O., Pérez, J.: LDQL: a query language for the web of linked data. J. Web
Semant. 41, 9–29 (2016)

9. Mendelzon, A.O., Milo, T.: Formal models of web queries. Inf. Syst. 23(8), 615–637
(1998)

10. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

11. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: Proceedings of the 13th International Conference on Database Theory (ICDT)
(2010)

12. Vardi, M.Y.: The complexity of relational query languages. In: STOC (1982)
13. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D.,

Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-cost knowledge
graph interface for the web. J. Web Semant. 37–38, 184–206 (2016)

http://dx.doi.org/10.1007/978-3-642-30284-8_8
http://dx.doi.org/10.1007/978-3-642-30284-8_8
http://dx.doi.org/10.1007/978-3-319-48472-3_48

Language-Agnostic Relation Extraction
from Wikipedia Abstracts

Nicolas Heist and Heiko Paulheim(B)

Data and Web Science Group, University of Mannheim, Mannheim, Germany
heiko@informatik.uni-mannheim.de

Abstract. Large-scale knowledge graphs, such as DBpedia, Wikidata,
or YAGO, can be enhanced by relation extraction from text, using the
data in the knowledge graph as training data, i.e., using distant super-
vision. While most existing approaches use language-specific methods
(usually for English), we present a language-agnostic approach that
exploits background knowledge from the graph instead of language-
specific techniques and builds machine learning models only from
language-independent features. We demonstrate the extraction of rela-
tions from Wikipedia abstracts, using the twelve largest language edi-
tions of Wikipedia. From those, we can extract 1.6M new relations in
DBpedia at a level of precision of 95%, using a RandomForest classifier
trained only on language-independent features. Furthermore, we show
an exemplary geographical breakdown of the information extracted.

1 Introduction

Large-scale knowledge graphs, like DBpedia [16], Freebase [3], Wikidata [30],
or YAGO [17], are usually built using heuristic extraction methods, e.g., from
Wikipedia infoboxes, by exploiting crowd-sourcing processes, or both. These
approaches can help creating large-scale public cross-domain knowledge graphs,
but are prone both to errors as well as incompleteness. Therefore, over the last
years, various methods for refining those knowledge graphs have been developed
[22]. For filling missing relations (e.g., the missing birthplace of a person), relation
extraction methods are proposed. Those can be applied to fill in relations for enti-
ties derived from Wikipedia pages without or with only sparsely filled infoboxes.

Most methods for relation extraction work on text and thus usually have at
least one component which is explicitly specific for the language at hand (e.g.,
stemming, POS tagging, dependency parsing), like, e.g., [10,27,35], or implicitly
exploits some characteristics of that language [2]. Thus, adapting those methods
to work with texts in different natural languages is usually not a straight forward
process.

In this paper, we propose a language-agnostic approach. Instead of knowledge
about the language, we take background knowledge from the DBpedia knowl-
edge graph into account. With that, we try to discover certain patterns in how
Wikipedia abstracts are written. For example, in many cases, any genre men-
tioned in the abstract about a band is usually a genre of that band, the first
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 383–399, 2017.
DOI: 10.1007/978-3-319-68288-4 23

384 N. Heist and H. Paulheim

city mentioned in an abstract about a person is that person’s birthplace, and so
on. In that case, the linguistic assumptions that we make about a language at
hand are quite minimal. In fact, we only assume that for each language edition
of Wikipedia, there are certain ways to structure an abstract of a given type of
entity, in terms of what aspect is mentioned where (e.g., the birth place is the
first place mentioned when talking about a person). Thus, the approach can be
considered as language-independent (see [2] for an in-depth discussion).

The choice for Wikipedia abstracts as a corpus mitigates one of the common
sources of errors in the relation extraction process, i.e., the entity linking. Since
Wikipedia articles can be unambiguously related to an instance in a knowledge
base, and Wikipedia page links contained in Wikipedia abstracts are mostly free
from noise, the corpus at hand can be directly exploited for relation extraction
without the need for an upfront potentially noisy entity linking step.

By applying the exact same pipeline without any modifications to the
twelve largest languages of Wikipedia, which encompass languages from dif-
ferent language families, we demonstrate that such patterns can be extracted
from Wikipedia abstracts in arbitrary languages. We show that it is possible
to extract valuable information by combining the information extracted from
different languages.

The rest of this paper is structured as follows. In Sect. 2, we review related
work. We introduce our approach in Sect. 3, and discuss various experiments in
Sect. 4. We conclude with a summary and an outlook on future work.

2 Related Work

Various approaches have been proposed for relation extraction from text, in par-
ticular from Wikipedia. In this paper, we particularly deal with closed relation
extraction, i.e., extracting new instantiations for relations that are defined a pri-
ori (by considering the schema of the knowledge graph at hand, or the set of
relations contained therein).

Using the categorization introduced in [22], the approach proposed in this
paper is an external one, as it uses Wikipedia as an external resource in addition
to the knowledge graph itself. While internal approaches for relation prediction
in knowledge graphs exist as well, using, e.g., association rule mining, tensor fac-
torization, or graph embeddings, we restrict ourselves to comparing the proposed
approach to other external approaches.

Most of the approaches in the literature make more or less heavy use of
language-specific techniques. Distant supervision is proposed by [19] as a means
to relation extraction for Freebase from Wikipedia texts. The approach uses a
mixture of lexical and syntactic features, where the latter are highly language-
specific. A similar approach is proposed for DBpedia in [1]. Like the Freebase-
centric approach, it uses quite a few language-specific techniques, such as POS
tagging and lemmatization. While those two approaches use Wikipedia as a
corpus, [13] compare that corpus to a corpus of news texts, showing that the
usage of Wikipedia leads to higher quality results.

Language-Agnostic Relation Extraction from Wikipedia Abstracts 385

Nguyen et al. [20] introduce an approach for mining relations from Wikipedia
articles which exploits similarities of dependency trees for extracting new relation
instances. In [34], the similarity of dependency trees is also exploited for cluster-
ing pairs of concepts with similar dependency trees. The construction of those
dependency trees is highly language specific, and consequently, both approaches
are evaluated on the English Wikipedia only.

An approach closely related to the one discussed in this paper is
iPopulator [15], which uses Conditional Random Fields to extract patterns for
infobox values in Wikipedia abstracts. Similarly, Kylin [33] uses Conditional
Random Fields to extract relations from Wikipedia articles and general Web
pages. Similarly to the approach proposed in this paper, PORE [31] uses infor-
mation on neighboring entities in a sentence to train a support vector machine
classifier for the extraction of four different relations. The papers only report
results for English language texts.

Truly language-agnostic approaches are scarce. In [8], a multi-lingual app-
roach for open relation extraction is introduced, which uses Google translate
to produce English language translations of the corpus texts in a preprocessing
step, and hence exploits externalized linguistic knowledge. In the recent past,
some approaches based on deep learning have been proposed which are reported
to or would in theory also work on multi-lingual text [21,29,36,37]. They have
the advantages that (a) they can compensate for shortcomings in the entity
linking step when using arbitrary text and (b) that explicit linguistic feature
engineering is replaced by implicit feature construction in deep neural networks.
In contrast to those works, we work with a specific set of texts, i.e., Wikipedia
abstracts. Here, we can assume that the entity linking is mostly free from noise
(albeit not complete), and directly exploit knowledge from the knowledge graph
at hand, i.e., in our case, DBpedia.

In contrast to most of those works, the approach discussed in this paper
works on Wikipedia abstracts in arbitrary languages, which we demonstrate in
an evaluation using the twelve largest language editions of Wikipedia. While,
to the best of our knowledge, most of the approaches discussed above are only
evaluated on one or at maximum two languages, this is the first approach to be
evaluated on a larger variety of languages.

3 Approach

Our aim is to identify and exploit typical patterns in Wikipedia abstracts. As
a running example, we use the genre relation which may hold between a music
artist and a music genre. Figure 1 depicts this example with both an English and
a French Wikipedia abstract. As our aim is to mine relations for the canonical
DBpedia, extracted from the (largest) English language Wikipedia, we inspect
all links in the abstract which have a corresponding entity in the main DBpedia

386 N. Heist and H. Paulheim

knowledge base created from the English Wikipedia.1 For other languages, we
take one intermediate step via the interlanguage links in Wikipedia, which are
extracted as a part of DBpedia [16].

3.1 Overall Approach

For 395 relations that can hold between entities, the ontology underlying the
DBpedia knowledge graph2 defines an explicit domain and range, i.e., the types
of objects that are allowed in the subject and object position of this relation.3

Each Wikipedia page also maps to an entity in the DBpedia knowledge graph,
some of which are typed. We consider a pair of a Wikipedia page p0 and a
Wikipedia page p1 linked from the abstract of p0 as a candidate for a relation
R if the corresponding DBpedia entities e0 and e1 have types that are equal to
the domain and range of R. In that case, R(e0, e1) is considered a candidate
axiom to be included in the DBpedia knowledge graph. In the example in Fig. 1,
given that the genre relation holds between musical artists and genres, and the
involved entities are of the matching types, one candidate each is generated from
both the English and the French DBpedia.4

We expect that candidates contain a lot of false positives. For example, for
the birthplace relation holding between a person and a city, all cities linked from
the person’s web page would be considered candidates. However, cities may be
referred to for various different reasons in an abstract about a person (e.g., they
may be their death place, the city of their alma mater, etc.). Thus, we require
additional evidence to decide whether a candidate actually represents a valid
instantiation of a relation.

For taking that decision, we train a machine learning model. For each abstract
of a page for which a given relation is present in the knowledge base, we use the
partial completeness assumption [11] or local closed world assumption [7], i.e., we
consider the relation to be complete. Hence, all candidates for the relation cre-
ated from the abstract which are contained in the knowledge base are considered
as positive training examples, all those which are not contained are considered
as negative training examples. In the example in Fig. 1, Industrial Rock would
be considered a positive example for the relation genre, whereas the genre Rock,
if it were linked in the abstract, would be considered a negative example, since
it is not linked as a genre in the DBpedia knowledge graph.

1 For this work, we use the 2014 version of DBpedia, which was the most recent
release available at the time the experiments were conducted. This version is available
at http://oldwiki.dbpedia.org/Downloads2014. All statements made in this paper
about the size etc. of DBpedia correspond to that version.

2 http://dbpedia.org/services-resources/ontology.
3 Note that the underlying OWL ontology distinguishes object properties that hold

between entities, and datatype properties that hold between an entity and a literal
value. Here, we only regard the former case.

4 Prefixes used in this paper: dbr=http://dbpedia.org/, dbf=http://fr.dbpedia.org/,
dbo=http://dbpedia.org/ontology/.

http://oldwiki.dbpedia.org/Downloads2014
http://dbpedia.org/services-resources/ontology
http://dbpedia.org/
http://fr.dbpedia.org/
http://dbpedia.org/ontology/

Language-Agnostic Relation Extraction from Wikipedia Abstracts 387

Fig. 1. Approach illustrated with extraction from English (above) and French (below)
Wikipedia abstract

3.2 Feature Engineering

For training a classifier, both positive and negative examples need to be described
by features. Table 2 sums up the features used by the classifiers proposed in this
paper.

We use features related to the actual candidates found in the abstract (i.e.,
entities whose type matches the range of the relation at hand), i.e., the total
number of candidates in the abstract (F00) and the candidate’s sentence (F01),
the position of the candidate w.r.t. all other candidates in the abstract (F02)
and the candidate’s sentence (F03), as well as the position of the candidate’s
sentence in the abstract (F07). The same is done for all entities, be it candidates
or not (F04, F05, F06). Since all of those measures yield positive integers, they
are normalized to (0, 1] by using their inverse.

Further features taken into account are the existence of a back link from the
candidate’s page to the abstract’s page (F08), and the vector of all the candidate’s

388 N. Heist and H. Paulheim

Table 1. Example feature representation

Instance F00 F01 F02 F03 F04 F05 F06 F07 F08 dbo:MusicGenre dbo:Place dbo:Band . . . Correct

Industrial Metal 0.2 1.0 1.0 1.0 0.25 1.0 1.0 1.0 1.0 True False False . . . True

Alternative Rock 0.2 0.2 0.5 1.0 0.25 0.2 1.0 0.3 1.0 True False False . . . True

Ambient music 0.2 0.2 0.3 0.5 0.25 0.1 0.5 0.3 0.0 True False False . . . False

Electronica 0.2 0.2 0.25 0.25 0.3 0.1 0.3 0.3 0.0 True False False . . . False

Synthpop 0.2 0.2 0.2 0.25 0.25 0.1 0.25 0.3 0.0 True False False . . . True

Table 2. List of features used by the classifier

ID Name Range ID Name Range

F00 Number of candidates (0, 1] F05 Entity position (0, 1]

F01 Candidates in sentence (0, 1] F06 Entity position in sentence (0, 1]

F02 Candidate position (0, 1] F07 Sentence position (0, 1]

F03 Candidate position in sentence (0, 1] F08 Back link T/F

F04 Entities in sentence (0, 1] FXX Instance types T/F

types in the DBpedia ontology (FXX).5 Table 1 depicts the translated feature
table for the French Wikipedia abstract depicted in Fig. 1. In this example, there
are five candidates (i.e., entities of type dbo:MusicGenre), three of which are also
contained in the DBpedia knowledge graph (i.e., they serve as true positives).

For the creation of those features which are dependent on the types, the types
are taken from the canonical (i.e., English) DBpedia, using the interlanguage
links between the language specific chapters, as indicated in Fig. 1.

With the help of a feature vector representation, it is possible to learn fine-
grained classification models, such as The first three genres mentioned in the
first or second sentence of a band abstract are genres of that band.

3.3 Machine Learning Algorithms

Initially, we experimented with a set of five classification algorithms, i.e., Naive
Bayes, RIPPER [5], Random Forest (RF) [4], Neural Networks [14] and Support
Vector Machines (SVM) [6]. For all those classifiers, we used the implementation
in RapidMiner6, and, for the preliminary evaluation, all classifiers were used in
their standard setup.

For those five classifiers, we used samples of size 50,000 from the ten most fre-
quent relations in DBpedia, the corresponding English language abstracts, and
performed an experiment in ten-fold cross validation. The results are depicted in
Table 3. We can observe that the best results in terms of F-measure are achieved
by Random Forests, which has been selected as the classifier to use in the sub-
sequent experiments.
5 The subject’s types are not utilized. For DBpedia, they only exist if the subject has

an infobox, which would make the approach infeasible to use for long tail entities for
which the Wikipedia page does not come with an infobox.

6 http://www.rapidminer.com/.

http://www.rapidminer.com/

Language-Agnostic Relation Extraction from Wikipedia Abstracts 389

Table 3. Pre-study results on five machine learning algorithms

Relation Naive Bayes Rand.For. RIPPER Neural Net SVM

P R F P R F P R F P R F P R F

dbo:birthPlace .69 .65 .67 .69 .76 .72 .72 .73 .72 .61 .75 .67 .72 .74 .73

dbo:family .55 .93 .69 .87 .83 .85 .85 .83 .84 .77 .83 .80 .87 .83 .85

dbo:deathPlace .42 .30 .35 .51 .30 .38 .64 .18 .28 .61 .19 .29 .66 .20 .31

dbo:producer .35 .55 .43 .35 .14 .20 .47 .04 .07 .23 .10 .14 .48 .05 .09

dbo:writer .55 .61 .58 .62 .55 .58 .64 .54 .59 .52 .51 .51 .67 .53 .59

dbo:subsequentWork .11 .21 .14 .35 .10 .16 .42 .02 .04 .21 .07 .11 .61 .06 .11

dbo:previousWork .18 .43 .25 .39 .18 .25 .59 .05 .09 .57 .08 .14 .60 .10 .17

dbo:artist .94 .94 .94 .94 .95 .94 .95 .96 .95 .95 .86 .90 .95 .89 .92

dbo:nationality .76 .90 .82 .76 .92 .83 .77 .91 .83 .72 .81 .76 .77 .92 .84

dbo:formerTeam .79 .74 .76 .85 .88 .86 .85 .88 .86 .82 .77 .79 .85 .89 .87

Average .53 .63 .56 .63 .56 .58 .69 .51 .53 .60 .50 .51 .72 .52 .55

Furthermore, we compared the machine learning approach to four simple
baselines using the same setup:

Baseline 1. The first entity with a matching type is classified as a positive
relation, all others as negative.

Baseline 2. All entities with a matching type are classified as positive relations.
Baseline 3. The first entity with a matching ingoing edge is classified as a pos-

itive relation. For example, when trying to extract relations for dbo:birth-
Place, the first entity which already has one ingoing edge of type dbo:birth-
Place would be classified as positive.

Baseline 4. All entities with a matching ingoing edge are classified as positive
relations.

Table 4. Pre-study results on the four baselines

Relation Baseline 1 Baseline 2 Baseline 3 Baseline 4

P R F P R F P R F P R F

dbo:birthPlace .47 .99 .64 .46 1.00 .63 .49 .98 .66 .48 .99 .65

dbo:family .18 .85 .30 .17 1.00 .29 .87 .84 .86 .86 1.00 .92

dbo:deathPlace .28 .97 .43 .27 1.00 .43 .30 .93 .46 .30 .96 .46

dbo:producer .17 .93 .29 .15 1.00 .26 .33 .80 .47 .32 .87 .46

dbo:writer .41 .69 .52 .19 1.00 .32 .56 .59 .58 .45 .86 .59

dbo:subsequentWork .02 1.00 .04 .02 1.00 .04 .02 .19 .03 .02 .19 .03

dbo:previousWork .04 1.00 .08 .04 1.00 .08 .04 .20 .06 .03 .20 .06

dbo:artist .31 .99 .47 .27 1.00 .42 .57 .87 .69 .53 .87 .66

dbo:nationality .73 .96 .83 .64 1.00 .78 .74 .96 .84 .64 1.00 .78

dbo:formerTeam .35 .72 .47 .40 1.00 .57 .78 .70 .74 .81 .98 .89

Average .30 .91 .41 .26 1.00 .38 .47 .71 .54 .44 .79 .55

390 N. Heist and H. Paulheim

The results of the baseline evaluations are depicted in Table 4. We can observe
that in terms of F-measure, they are outperformed by RandomForest. Although
the margin seems small, the baseline approaches usually have a high recall, but
low precision. In fact, none of them reaches a precision above 0.5, which means
that by applying such approaches, at least half of the relations inserted into a
knowledge graph would be noise.

4 Experiments

We conducted different experiments to validate the approach. First, we analyzed
the performance of the relation extraction using a RandomForest classifier on
the English DBpedia only. Here, we follow a two-fold approach: for once, we
use a cross-validated silver standard evaluation, where we evaluate how well
existing relations can be predicted for instances already present in DBpedia.
Since such a silver-standard evaluation can introduce certain biases [22], we
additionally validate the findings on a subset of the extracted relations in a
manual retrospective evaluation.

In a second set of experiments, we analyze the extraction of relations on
the twelve largest language editions of Wikipedia, which at the same time are
those with more than 1M articles, i.e., English, German, Spanish, French, Italian,
Dutch, Polish, Russian, Cebuano, Swedish, Vietnamese, and Waray.7,8 Note that
this selection of languages does not only contain Indo-European, but also two
Austroasiatic and an Austronesian language.

In addition, we conduct further analyses. First, we investigate differences of
the relations extracted for different languages with respect to topic and locality.
For the latter, the hypothesis is that information extracted, e.g., for places from
German abstracts is about places in German speaking countries.

4.1 Pre-study on English Abstracts

In a first set of experiments, we analyzed the performance of our method on
English abstracts only. Since we aim at augmenting the DBpedia knowledge
graph at a reasonable level of precision, our aim was to learn models which
reach a precision of at least 95%, i.e., that add statements with no more than
5% noise to the knowledge graph. Out of the 395 relations under inspection, the
RandomForest classifier could learn models with a precision of 95% or higher for
99 relations. For the 99 models that RF could extract with a minimum precision
of 95%, the macro (micro) average recall and precision are 31.5% (30.6%) and
98.2% (95.7%), respectively.

7 According to http://wikistats.wmflabs.org/display.php?t=wp, as of December 2015.
8 The datasets of the extracted relations for all languages can be found online at

http://dws.informatik.uni-mannheim.de/en/research/language-agnostic-relation-
extraction-from-wikipedia-abstracts.

http://wikistats.wmflabs.org/display.php?t=wp
http://dws.informatik.uni-mannheim.de/en/research/language-agnostic-relation-extraction-from-wikipedia-abstracts
http://dws.informatik.uni-mannheim.de/en/research/language-agnostic-relation-extraction-from-wikipedia-abstracts

Language-Agnostic Relation Extraction from Wikipedia Abstracts 391

By applying the 99 models to all candidates, a total of 998,993 new relation
instances could be extracted, which corresponds to roughly 5% of all candidates.
Figure 2 depicts the 20 relations for which most instances are extracted.

Fig. 2. 20 most frequent relations extracted from English abstracts

For validating the precision and recall scores computed on the existing rela-
tion instances, we sampled each 200 newly generated from five relations (i.e.,
1,000 in total) and validated them manually. For the selection of entities, we
aimed at a wider coverage of common topics (geographic entities, people, books,
music works), as well as relations which can be validated fairly well without the
need of any specific domain knowledge. The results are depicted in Table 5. It
can be observed that the precision values obtained in cross-validation are rather
reliable (i.e., the deviation from the estimate is 3% on average), while the recall
values are less reliable (with a deviation of 9% on average). The first observa-
tion is crucial, as it allows to create new relations for the knowledge graph at
a reasonable level of precision, i.e., the amount of noise introduced is strictly
controlled.

Table 5. Results of the manual verification of precision and recall scores computed
on the existing relation instances. Re and Pe denotes the recall and precision of the
models computed on the existing relation instances, while Rm and Pm denotes those
verified by manual computation.

Relation Re Pe Rm Pm

dbo:musicalBand 96.2 95.1 87.9 96.7

dbo:author 68.2 95.2 53.4 91.9

dbo:department 64.5 99.5 53.5 93.7

dbo:sourceCountry 98.9 98.0 98.8 97.8

dbo:saint 41.2 100 53.25 95.5

392 N. Heist and H. Paulheim

4.2 Cross-Lingual Relation Extraction

In the next experiment, we used the RandomForests classifier to extract models
for relations for the top 12 languages, as depicted in Table 6. One model is trained
per relation and language.

Table 6. Size of the 12 largest language editions of Wikipedia, and percentage of
articles linked to English.

Language # Entities % links to English Language # Entities % links to English

English 4,192,414 100.00 Russian 1,277,074 42.61

Swedish 2,351,544 17.60 Waray 1,259,540 12.77

German 1,889,351 42.21 Italian 1,243,586 55.69

Dutch 1,848,249 32.98 Spanish 1,181,096 54.72

French 1,708,934 51.48 Polish 1,149,530 53.70

Cebuano 1,662,301 5.67 Vietnamese 1,141,845 28.68

As a first result, we look at the number of relations for which models can be
extracted at 95% precision. While it is possible to learn extraction models for 99
relations at that level of precision for English, that number almost doubles to 187
when using the top twelve languages, as depicted in Fig. 3. These results show
that it is possible to learn high precision models for relations in other languages
for which this is not possible in English.

Fig. 3. Number of relations (left) and statements (right) extracted at 95% precision in
the top 12 languages. The bars show the number of statements that could be extracted
for the given language, the line depicts the accumulated number of statements for the
top N languages.

When extracting new statements (i.e., instantiations of the relations) using
those models, our goal is to extract those statements in the canonical DBpedia
knowledge base, as depicted in Fig. 1. The number of extracted statements per
language, as well as cumulated statements, is depicted in Fig. 3.

Language-Agnostic Relation Extraction from Wikipedia Abstracts 393

At first glance, it is obvious that, although a decent number of models can be
learned for most languages, the number of statements extracted are on average
an order of magnitude smaller than the number of statements that are extracted
for English. However, the additional number of extracted relations is consider-
able: while for English only, there is roughly 1M relations, 1.6M relations can be
extracted from the top 12 languages, which is an increase of about 60% when
stepping from an English-only to a multi-lingual extraction. The graphs in Fig. 3
also shows that the results stabilize after using the seven largest language edi-
tions, i.e., we do not expect any significant benefits from adding more languages
with smaller Wikipedias to the setup.

As can be observed in Fig. 3, the number of extracted statements is partic-
ularly low for Russian and Cebuano. For the latter, the figure shows that only
a small number of high quality models can be learned, mostly due to the low
number of inter-language links to English, as depicted in Table 6. For the former,
the number of high quality models that can be learned is larger, but the models
are mostly unproductive, since they are learned for rather exotic relations. In
particular, for the top 5 relations in Fig. 2, no model is learned for Russian.

It is evident that the number of extracted statements is not proportional to
the relative size of the respective Wikipedia, as depicted in Table 6. For example,
although the Swedish Wikipedia is more than half the size of the English one,
the number of extracted statements from Swedish is by a factor of 28 lower than
those extracted from English. At first glance, this may be counter intuitive.

The reason for the number of statements extracted from languages other
than English is that we only generate candidates if both the article at hand and
the entity linked from that article’s abstract have a counterpart in the canonical
English DBpedia. However, as can be seen from Table 6, those links to counter-
parts are rather scarce. For the example of Swedish, the probability of an entity
being linked to the English Wikipedia is only 0.176. Thus, the probability for a
candidate that both the subject and object are linked to the English Wikipedia
is 0.176× 0.176 = 0.031. This is pretty exactly the ratio of statements extracted
from Swedish to statements extracted from English (0.036). In fact, the number
of extracted statements per language and the squared number of links between
the respective language edition and the English Wikipedia have a Pearson corre-
lation coefficient of 0.95. This shows that the low number of statements is mainly
an effect of missing inter-language links in Wikipedia, rather than a shortcoming
of the approach as such.9

4.3 Topical and Geographical Analysis by Language

To further analyze the extracted statements, we look at the topical and
geographical coverage for the additional statements (i.e., statements that are

9 If we were interested in extending the coverage of DBpedia not only w.r.t. relations
between existing entities, but also adding new entities (in particular: entities which
only exist in language editions of Wikipedia other than English), then the number
of statements would be larger. However, this was not in the focus of this work.

394 N. Heist and H. Paulheim

Fig. 4. Distribution of relations in the different language extractions

Fig. 5. Distribution of subject types in the different language extractions

not yet contained in DBpedia) that are extracted for the twelve languages at
hand. First, we depict the most frequent relations and subject classes for the
statements. The results are depicted in Figs. 4 and 5. It can be observed that
the majority of statements is related to geographical entities and their relations.
The Russian set is an exception, since most extracted relations are about musical
works, in contrast to geographic entities, as for the other languages. Furthermore,
the English set has the largest fraction of person related facts.

We assume that the coverage of Wikipedia in different languages is, to a
certain extent, biased towards places, persons, etc. from countries in which
the respective language is spoken.10 Thus, we expect that, e.g., for relations

10 See, e.g., http://geography.oii.ox.ac.uk/?page=geographic-intersections-of-
languages-in-wikipedia for evidence.

http://geography.oii.ox.ac.uk/?page=geographic-intersections-of-languages-in-wikipedia
http://geography.oii.ox.ac.uk/?page=geographic-intersections-of-languages-in-wikipedia

Language-Agnostic Relation Extraction from Wikipedia Abstracts 395

extracted about places, we will observe that the distribution of countries to
which entities are related differs for the various language editions.

To validate this hypothesis, we determine the country to which a statement
is related as follows: given a statement s in the form

s p o .

we determine the set of pairs Ps :=<r, c> of relations and countries that fulfill

s r c .
c a dbo:Country .

and

o r c .
c a dbo:Country .

For all statements S extracted from a language, we sum up the relative
number of relations of a country to each statement, i.e., we determine the weight
of a country C as

w(C) :=
|S|∑

s=1

| {<r, c> ∈ Ps|c = C} |
|Ps| (1)

The analysis was conducted using the RapidMiner Linked Open Data Exten-
sion [25].

Figure 6 depicts the distributions for the countries. We can observe that while
in most cases, facts about US related entities are the majority, only for Polish,
entities related to Poland are the most frequent. For Swedish, German, French,
Cebuano and Italian, the countries with the largest population speaking those
languages (i.e., Sweden, Germany, France, Philippines, and Italy, respectively),

Fig. 6. Distribution of locality in the different language extractions

396 N. Heist and H. Paulheim

are at the second position. For Spanish, Spain is at the second position, despite
Mexico and Colombia (rank 11 and 6, respectively) having a larger population.
For the other languages, a language-specific effect is not observable: for Dutch,
the Netherlands are at rank 8, for Vietnamese, Vietnam is at rank 34, for Waray,
the Philippines are at rank 7. For Russian, Russia is on rank 23, preceded by
Soviet Union (sic!, rank 15) and Belarus (rank 22).

The results show that despite the dominance of US-related entities, there is
a fairly large variety in the geographical coverage of the information extracted.
This supports the finding that adding information extracted from multiple
Wikipedia language editions helps broadening the coverage of entities.

5 Conclusion and Outlook

Adding new relations to existing knowledge graphs is an important task in adding
value to those knowledge graphs. In this paper, we have introduced an app-
roach that adds relations to DBpedia using abstracts in Wikipedia. Unlike other
works in that area, the approach presented in this paper uses background knowl-
edge from DBpedia, but does not rely on any language-specific techniques, such
as POS tagging, stemming, or dependency parsing. Thus, it can be applied to
Wikipedia abstracts in any language.

While we have worked with DBpedia only in this paper, the approach can be
applied to other cross-domain knowledge graphs, such as YAGO or Wikidata, as
well, since they also link to DBpedia. Furthermore, for a significant portion of
Semantic Web datasets, links to DBpedia exist as well [26], so that the approach
can be applied even to such domain-specific datasets.

The experimental results show that the approach can add a significant
amount of new relations to DBpedia. By extending the set of abstracts from
English to the most common languages, the coverage both of relations for which
high quality models can be learned, as well as of instantiation of those relations,
significantly increases.

Following the observation in [29] that multi-lingual training can improve the
performance for each single language, it might be interesting to apply models
also on languages on which they had not been learned. Assuming that certain
patterns exist in many languages (e.g., the first place being mentioned in an
article about a person being the person’s birth place), this may increase the
amount of data extracted.

In our experiments, we have only concentrated on relations between enti-
ties so far. However, a significant fraction of statements in DBpedia and other
knowledge graphs also have literals as objects. That said, it should be possible to
extend the framework to such statements as well. Although numbers, years, and
dates are usually not linked to other entities, they are quite easy to detect using,
e.g., regular expressions or specific taggers such as HeidelTime [28]. With such
a detection step in place, it would also be possible to learn rules for datatype
properties, such as: the first date in an abstract about a person is that person’s
birthdate, etc.

Language-Agnostic Relation Extraction from Wikipedia Abstracts 397

Furthermore, our focus so far has been on adding missing relations. A dif-
ferent, yet related problem is the detection of wrong relations [22–24]. Here, we
could use our approach to gather evidence for relations in different language
editions of Wikipedia. Relations for which there is little evidence could then be
discarded (similar to DeFacto [12]). While for adding knowledge, we have tuned
our models towards precision, such an approach, however, would require a tuning
towards recall. In addition, since there are also quite a few errors in numerical
literals in DBpedia [9,32], an extension such as the one described above could
also help detecting such issues.

So far, we have worked on one genre of text, i.e., abstracts of encyclopedic
articles. However, we are confident that this approach can be applied to other
genres of articles as well, as long as those follow typical structures. Examples
include, but are not limited to: extracting relations from movie, music, and
book reviews, from short biographies, or from product descriptions. All those
are texts that are not strictly structured, but expose certain patterns. While for
the Wikipedia abstracts covered in this paper, links to the DBpedia knowledge
graph are implicitly given, other text corpora would require entity linking using
tools such as DBpedia Spotlight [18].

In summary, we have shown that Wikipedia abstracts are a valuable source
of knowledge for extending knowledge graphs such as DBpedia. Those abstracts
expose patterns which can be captured by language-independent features, thus
allowing for the design of language-agnostic systems for relation extraction from
such abstracts.

References

1. Aprosio, A.P., Giuliano, C., Lavelli, A.: Extending the coverage of DBpedia prop-
erties using distant supervision over Wikipedia. In: NLP & DBpedia. CEUR Work-
shop Proceedings, vol. 1064 (2013)

2. Bender, E.M.: Linguistically näıve != language independent: why NLP needs lin-
guistic typology. In: EACL 2009 Workshop on the Interaction Between Linguistics
and Computational Linguistics: Virtuous, Vicious or Vacuous? pp. 26–32 (2009)

3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: 2008 ACM
SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM
(2008)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
http://dx.doi.org/10.1023/A:1010933404324

5. Cohen, W.W.: Fast effective rule induction. In: Machine Learning, Twelfth Inter-
national Conference on Machine Learning, Tahoe City, CA, USA, pp. 115–123,
9–12 July 1995

6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge
(2010)

7. Dong, X.L., Murphy, K., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 601–610 (2014)

http://dx.doi.org/10.1023/A:1010933404324

398 N. Heist and H. Paulheim

8. Faruqui, M., Kumar, S.: Multilingual open relation extraction using cross-lingual
projection. arXiv preprint arXiv:1503.06450 (2015)

9. Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors
in numerical linked data using cross-checked outlier detection. In: Mika, P., et al.
(eds.) ISWC 2014. LNCS, vol. 8796, pp. 357–372. Springer, Cham (2014). doi:10.
1007/978-3-319-11964-9 23

10. Fundel, K., Küner, R., Zimmer, R.: RelEx—relation extraction using dependency
parse trees. Bioinformatics 23(3), 365–371 (2007)

11. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: 22nd Inter-
national Conference on World Wide Web, pp. 413–422 (2013)

12. Gerber, D., Esteves, D., Lehmann, J., Bühmann, L., Usbeck, R., Ngomo, A.C.N.,
Speck, R.: DeFacto - temporal and multilingual deep fact validation. Web Semant.
Sci. Serv. Agents World Wide Web 35(2), 85–101 (2015)

13. Gerber, D., Ngomo, A.C.N.: Bootstrapping the linked data web. In: Workshop on
Web Scale Knowledge Extraction (2011)

14. Kubat, M.: Neural networks: a comprehensive foundation by Simon Haykin,
Macmillan, 1994. ISBN 0-02-352781-7. Knowl. Eng. Rev. 13(4) 409–412 (1999).
http://journals.cambridge.org/action/displayAbstract?aid=71037

15. Lange, D., Böhm, C., Naumann, F.: Extracting structured information from
Wikipedia articles to populate infoboxes. In: 19th ACM Conference on Information
and Knowledge Management (CIKM), pp. 1661–1664. ACM (2010)

16. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2),
167–195 (2013)

17. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from mul-
tilingual Wikipedias. In: Conference on Innovative Data Systems Research (2015)

18. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia spotlight: shed-
ding light on the web of documents. In: 7th International Conference on Semantic
Systems (2011)

19. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP, pp. 1003–1011. Association for Computational Linguistics (2009)

20. Nguyen, D.P., Matsuo, Y., Ishizuka, M.: Relation extraction from Wikipedia using
subtree mining. In: National Conference on Artificial Intelligence, vol. 22, p. 1414
(2007)

21. Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional
neural networks. In: Proceedings of NAACL-HLT, pp. 39–48 (2015)

22. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation
methods. Semant. Web 8, 489–508 (2017)

23. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical
distributions. Int. J. Semant. Web Inf. Syst. (IJSWIS) 10(2), 63–86 (2014)

24. Paulheim, H., Gangemi, A.: Serving DBpedia with DOLCE – more than just adding
a cherry on top. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 180–
196. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 11

25. Ristoski, P., Bizer, C., Paulheim, H.: Mining the web of linked data with rapid-
miner. Web Semant. Sci. Serv. Agents World Wide Web 35, 142–151 (2015)

http://arxiv.org/abs/1503.06450
http://dx.doi.org/10.1007/978-3-319-11964-9_23
http://dx.doi.org/10.1007/978-3-319-11964-9_23
http://journals.cambridge.org/action/displayAbstract?aid=71037
http://dx.doi.org/10.1007/978-3-319-25007-6_11

Language-Agnostic Relation Extraction from Wikipedia Abstracts 399

26. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 245–260. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 16

27. Schutz, A., Buitelaar, P.: RelExt : a tool for relation extraction from text in ontology
extension. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 593–606. Springer, Heidelberg (2005). doi:10.1007/
11574620 43

28. Strötgen, J., Gertz, M.: HeidelTime: high quality rule-based extraction and nor-
malization of temporal expressions. In: 5th International Workshop on Semantic
Evaluation, pp. 321–324 (2010)

29. Verga, P., Belanger, D., Strubell, E., Roth, B., McCallum, A.: Multilingual relation
extraction using compositional universal schema. arXiv preprint arXiv:1511.06396
(2015)

30. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Com-
mun. ACM 57(10), 78–85 (2014)

31. Wang, G., Yu, Y., Zhu, H.: PORE: positive-only relation extraction from Wikipedia
text. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 580–594.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 42

32. Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In:
Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.)
ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Cham (2014). doi:10.1007/
978-3-319-07443-6 34

33. Wu, F., Hoffmann, R., Weld, D.S.: Information extraction from Wikipedia: moving
down the long tail. In: 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 731–739. ACM (2008)

34. Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., Ishizuka, M.: Unsupervised relation
extraction by mining wikipedia texts using information from the web. In: Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP, ACL 2009, vol.
2, pp. 1021–1029. Association for Computational Linguistics (2009)

35. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J.
Mach. Learn. Res. 3, 1083–1106 (2003)

36. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction
via piecewise convolutional neural networks. In: 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Lisbon, Portugal, pp. 17–21
(2015)

37. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al.: Relation classification via
convolutional deep neural network. In: COLING, pp. 2335–2344 (2014)

http://dx.doi.org/10.1007/978-3-319-11964-9_16
http://dx.doi.org/10.1007/11574620_43
http://dx.doi.org/10.1007/11574620_43
http://arxiv.org/abs/1511.06396
http://dx.doi.org/10.1007/978-3-540-76298-0_42
http://dx.doi.org/10.1007/978-3-319-07443-6_34
http://dx.doi.org/10.1007/978-3-319-07443-6_34

Alignment Cubes: Towards Interactive Visual
Exploration and Evaluation of Multiple

Ontology Alignments

Valentina Ivanova1, Benjamin Bach2, Emmanuel Pietriga3,
and Patrick Lambrix4(B)

1 Swedish e-Science Research Centre and Linköping University, Linköping, Sweden
Valentina.Ivanova@liu.se

2 University of Edinburgh, Edinburgh, UK
3 INRIA, LRI (Univ Paris-Sud & CNRS), Université Paris-Saclay, Orsay, France

4 Department of Computer and Information Science,
Linköping University, 58183 Linköping, Sweden

patrick.lambrix@liu.se

Abstract. Ontology alignment is an area of active research where many
algorithms and approaches are being developed. Their performance is
usually evaluated by comparing the produced alignments to a reference
alignment in terms of precision, recall and F-measure. These measures,
however, only provide an overall assessment of the quality of the align-
ments, but do not reveal differences and commonalities between align-
ments at a finer-grained level such as, e.g., regions or individual map-
pings. Furthermore, reference alignments are often unavailable, which
makes the comparative exploration of alignments at different levels of
granularity even more important. Making such comparisons efficient calls
for a “human-in-the-loop” approach, best supported through interac-
tive visual representations of alignments. Our approach extends a recent
tool, Matrix Cubes, used for visualizing dense dynamic networks. We
first identify use cases for ontology alignment evaluation that can ben-
efit from interactive visualization, and then detail how our Alignment
Cubes support interactive exploration of multiple ontology alignments.
We demonstrate the usefulness of Alignment Cubes by describing visual
exploration scenarios, showing how Alignment Cubes support common
tasks identified in the use cases.

Keywords: Ontology alignment evaluation · Visual exploration · Mul-
tiple alignment comparison

1 Introduction

The need for automatic alignment of ontologies has sparked the development of a
growing number of tools and algorithms. A comprehensive literature review can
be found in [18]. It has also led to the creation of an annual event, the Ontology

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 400–417, 2017.
DOI: 10.1007/978-3-319-68288-4 24

Alignment Cubes 401

Alignment Evaluation Initiative (OAEI)1, where alignments computed by the
participating tools are compared against reference alignments (RA). In most
cases the quality of these alignments is measured in terms of precision, recall,
and F-measure. Precision is the ratio of correct suggested mappings over all
suggested mappings. Recall is the ratio of correct suggested mappings over all
correct mappings. F-measure is a harmonic mean between precision and recall.
These measures give a good overall assessment of the quality of alignments in
terms of the ratio of found mappings, missed mappings and wrongly suggested
mappings. However, they do not allow for comparing alignments of specific parts
of ontologies, or for comparing alignments to each other and to the RA at the
detailed level of concepts and relations. Without means to compare the tools and
algorithms at a detailed level, their strengths and weaknesses cannot be easily
revealed and understood.

Furthermore, RAs are often not available, as their development is time and
effort consuming and requires domain expertise. As a consequence, the quality of
alignments is difficult to measure. In the absence of RA, the evaluation of align-
ments requires the exploration and comparison of multiple alignments, which
involves expert users (analysts) performing tasks at different levels of granular-
ity [1,8,20]: determining regions with similar or different number of mappings
between the alignments, determining common or rarely found mappings, char-
acterizing mappings as correct or incorrect. However, there is currently little
support for performing these tasks in an interactive and flexible manner. Ana-
lysts are relying on custom scripts, which can be error-prone and require time
to develop and fine-tune.

This work presents the following contributions to the ontology alignment
field: (i) we identify several use cases that would benefit from comparative assess-
ment of several alignments at different level of detail; we discuss their shared
analytical tasks and identify features that would benefit from visual support.
(ii) To address these use cases and tasks, we propose an interactive visual envi-
ronment for the simultaneous comparative exploration and evaluation of multi-
ple alignments at different levels of granularity. While visualizing even a single
alignment is still a challenge due to the size and complexity of the ontologies,
we provide a compact way to visualize multiple alignments. Instead of depict-
ing all mappings together in a single representation, which would cause visual
clutter and information overload, we provide an interactive visualization that
supports multiple complementary views, and overview and detail techniques to
explore alignments at different levels of granularity. We interpret an alignment
as a bipartite graph (bi-graph), i.e., a network where links exist only between
nodes of different sets (ontologies), and draw from the literature in the field of
network visualization (e.g., [3,22]). We identify Matrix Cubes [2], a novel tech-
nique introduced for the interactive visual exploration of dynamic networks, as
a promising visual approach to serve as a foundation for our tool - Alignment
Cubes. Alignment Cubes significantly extend Matrix Cubes in order to make it
applicable to the visualization of multi-level ontology alignment networks in the
form of bi-graphs.

1 http://oaei.ontologymatching.org.

http://oaei.ontologymatching.org

402 V. Ivanova et al.

This article is structured as follows: Sect. 2 presents the use cases and their
shared tasks, and discusses existing approaches for visualizing multiple align-
ments. Section 3 describes Matrix Cubes, and Sect. 4 describes the Alignment
Cubes we derived from them. We explain how users interact with Alignment
Cubes using an example scenario in Sect. 5, discuss lessons learned and future
extensions in Sect. 6, and conclude in Sect. 7.

2 Ontology Alignment Evaluation

The interactive exploration and evaluation of several alignments is only rarely con-
sidered in the literature. In [1] several analytic tasks have been identified and sup-
ported through multiple connected views, while [15,19,20] focus more on the align-
ment computation than their presentation. We thus first identify several evalu-
ation use cases and discuss shared activities that could be efficiently supported
through interactive visualization in Subsect. 2.1. In Subsect. 2.2 we connect this
discussion with work about cognitive support for ontology mapping [9], require-
ments and evaluation of user interfaces in ontology alignment systems [7,12], and
review capabilities for simultaneous visualization of several alignments in existing
systems. In Subsect. 2.3, we study the visualization approaches taken in alignment
evaluation frameworks.

2.1 Evaluation Use Cases

The following use cases would benefit from users being able to simultaneously
explore and evaluate several alignments interactively:

(UC1) Selecting, combining and fine tuning alignment algorithms and
tools: OAEI editions, and [8,21] among others, have shown that match-
ers and tools do not necessarily find the same correct mappings, and may
compute different erroneous mappings too. Thus, selecting and combin-
ing matchers and tools requires examination of overlapping and divergent
mappings to understand the differences in the underlying algorithms. It
also includes assessing the impact of parameter changes on single simi-
larity values and parts of the alignments for fine-tuning.

(UC2) Matchers development: Developers alter their algorithms according
to some observations. Examining the outcome of such changes over other
parts of the alignment and comparing to previous versions at different
levels of granularity helps them assess the consequences of these changes.

(UC3) Ontology alignment evolution: Alignments are used for, e.g., data
integration, merging ontologies, and database annotation. Changes in the
alignments may influence the applications employing them. Understand-
ing how alignments differ will facilitate the assessment of the impact of
changes on their client applications [14,23].

(UC4) Validating and debugging of ontology alignments and RA: Ana-
lyzing several alignments at the same time may reveal parts with large

Alignment Cubes 403

variations in the number of mappings or similarity values, and help in
identifying potential errors and their sources during diagnosis. Develop-
ing and debugging RAs is a laborious and error-prone task. Recently,
several works have found problems in the OAEI Anatomy track’s RA
[8]. Manual mapping validation requires a detailed view of each map-
ping and its context [9]. Understanding consequences of user validations
and exploring what-if scenarios are also important [12].

(UC5) Collaborative ontology alignment: Collaborators need to under-
stand the current state of an alignment, where and why their peers have
introduced changes in comparison to previous revisions. This is espe-
cially needed when collaborative work happens over a long time period,
or in distributed teams.

These use cases share common analytic tasks at different granularity levels;
identifying parts of the alignment covered or not covered by all alignments, agree-
ment or disagreement between matchers, determining incorrect, missed or always
found mappings—which could be efficiently supported through interactive visu-
alizations. Without measures to provide well-defined quantitative outputs, and
with only high-level goals and questions, e.g., which threshold to choose and
why (UC1), which version of my algorithm is better and why (UC2), what has
been changed between two revisions and why (UC3, UC5), all of the use cases
above are exploratory in their nature. They aim to find relevant information and
answer questions not known in advance.

These are typical scenarios in which visual and interactive representations
can be of help. In a visual environment exploration activities are supported
by interactively varying parameters and thresholds to estimate the impact of
changes, changing visual encodings to highlight different aspects, and reordering
elements to facilitate trend and pattern discovery. Interactive exploration at
different granularity levels reveals regions of interest to guide further exploration
and help in identifying patterns in and among different regions of interest which
may reveal similarities and dissimilarities between the respective alignments.
These benefits directly apply to our case, where analysts are faced with the
problem of exploring and visualizing multiple alignments.

Our use cases UC1–UC5 involve numerous compare and contrast tasks to
select a threshold (UC1), an alignment to use (UC2 and UC4), for diagnosis
and to identify outliers (UC4), common trends and regions (UC1, UC2), and for
identifying changes (UC3, UC5). According to [1], diagnosis is a complex activity
which is composed of iterative sequences of exploration and comparison, analyses
of clusters of mappings, and comparative evaluation of matchers’ performance.

2.2 Existing Approaches

Two recent studies review exploratory features in the user interfaces of ontology
alignment systems [7,12]. Only one of the tools [5] (including its recent extensions
[1,17]) provides support for visualization and exploration of several alignments

404 V. Ivanova et al.

together after discussing the need for such in connection to analytic tasks identi-
fied in interviews with alignment experts. Navigation and exploration in ontologies
and just a single alignment have beenhighlighted in the context of discoveringmap-
pings and verification in [9], through the inspection dimension defined in [12], and
by the 7 information seeking tasks and visual analytics from [7]. Another desir-
able functionality identified by alignment experts in [1] is the clustering of map-
pings according to different statistics in order to analyze each cluster separately.
Several other works have also emphasized the importance of visually identifying
dense regions in single alignments: for planning manual validation and identifying
the most similar areas of the ontologies [9], as part of alignment inspection [12], and
grouping to help identifying patterns [7]. Small-world graphs were used to present
clusters in a single alignment at different granularity levels [16].

The exploration and comparison task functionality identified by experts in
[1], is supported through comparative views by showing juxtaposed matrices
computed by a combination of different matchers in the system. An additional
matrix highlights variations in computed mappings between the matchers. RAs
can be overlaid on top of each matcher’s matrix. This approach is similar to one
of the views in our approach using Matrix Cubes [2]—small multiples—but in
comparison to our work, it forgoes the structure of the ontologies which is shown
in another view. Similar to our approach, previous work [6,13] has presented the
structure of ontologies as indented trees on the sides of a matrix, but only focused
on a single alignment. One of them [6] provides support for reordering and depicts
several types of mappings as well as derived and asserted mappings. Recent work
[20] takes another approach to simultaneously visualizing several (externally-
generated) alignments, employing linked indented lists and color-coding to depict
the edges belonging to different alignments. The authors emphasize that with
their tool “[...] users can better compare and analyze alignments (i.e., parts
of the ontologies which are covered for most alignments and those which are
not, consensus between alignments, etc.)”. Although filtering by threshold and
mapping type is supported, the view quickly becomes cluttered as the size of
ontologies and the number of alignments involved grow.

2.3 Frameworks for Ontology Alignment Evaluation

A few ontology alignment evaluation frameworks, SEALS2, KitAMO [15] and
AMC [19], provide rich back-end infrastructures for configuring (to a differ-
ent extent), executing and storing the results from the execution of alignment
components (matchers, filters and combination algorithms). In SEALS, used in
OAEI, the alignments computed by the tools are compared to RA and eval-
uated in terms of precision, recall, F-measure, run time, coherence and num-
ber of requests to an oracle. The results are presented in sortable tables, after
analysis with custom scripts. In KitAMO [15], probably the earliest system, the
results are presented in the form of sortable tables containing either the mappings
with their similarity values computed by each component, or aggregated data

2 http://seals-project.eu—Semantic Evaluation At Large Scale.

http://seals-project.eu

Alignment Cubes 405

(number of correct, incorrect and inferred mappings) in comparison to another
component. In AMC [19], linked indented lists are used together with sortable
tables as well. It additionally introduces a cube view which presents a single
alignment where two of the dimensions depict the source and target ontologies,
and the third dimension shows similarity values as bars—taller bars representing
higher similarity values.

While all three frameworks provide rich back-end infrastructures for con-
figuring and executing alignment algorithms, the tabular views are too limited
to adequately address the simultaneous interactive comparison of several align-
ments and provide visual exploration at different granularity levels. The third
framework devotes more attention to the visual presentation of the results, but
it only depicts one alignment at a time. In comparison, our work focuses on the
user interface and allows users to visually explore multiple alignments together.
It can thus be seen as complementary to the back-end functionalities offered by
these frameworks.

3 Matrix Cubes and the Cubix Interface

Alignment Cubes are adapted from earlier work that introduced Matrix Cubes [2]
as an interactive visualization metaphor for the comparison of multiple time steps
in dynamic networks. Here, we briefly summarize Matrix Cubes and Cubix, the
interactive interface prototype used to manipulate and explore Matrix Cubes,
and refer readers to [2].

Dynamic networks are networks whose topology and attributes change over
time. The general idea of Matrix Cubes is to represent the different states (time
steps) of a dynamic network as adjacency matrices, one matrix showing the state
of the network at one given point in time. Each adjacency matrix is organized as
follows (Fig. 1-a): nodes are the row and column headers, and cells represent the
links between nodes. A cell at the intersection of a given row and column will
only be filled if there is a link between the two corresponding nodes. Attributes
of such links can be encoded visually inside the matrix cells’, using variables
such as, e.g., color hue or saturation, texture, and glyph size.

a
b
c
d

f
e

e fdcba
a b c d

fe

a
b
c
d

f
e

1 2 3 4

1 2 3
4

Nodes

Time

Concepts
Target Ontology

Alignments

C
on

ce
p

ts
So

ur
ce

 O
nt

ol
og

y

(a) (b) (c)

N
od

es

Fig. 1. From dynamic networks to Matrix Cubes and Alignment Cubes. (a) Adja-
cency matrices stacked to form a (b) 3-dimensional space-time cube (Matrix Cube).
(c) Translation of the concept of Matrix Cubes to ontology alignment.

406 V. Ivanova et al.

All adjacency matrices corresponding to the individual states of the net-
work over time are then stacked, forming a cube (Fig. 1-b). The resulting 3D
visualization acts mainly as a pivot and metaphor. Users manipulate the cube
interactively to derive multiple meaningful 2D projections of the cube or its con-
tent, better suited to their visual analysis tasks. Manipulations include slicing
the cube along different dimensions, rotating slices or the entire cube, juxta-
posing slices to obtain small-multiple views, playing with cells’ transparency to
enable detailed compare & contrast tasks between slices.

As shown in Fig. 1-b, Matrix Cubes hold the network’s nodes along two of
the cube’s three dimensions, the last dimension representing time, i.e., the dif-
ferent states of the network over time. As detailed below, instead of representing
time on the cube’s third dimension, our Alignment Cubes represent the differ-
ent alignments being compared thus opening analysis opportunities for other
dimensions than time.

An interactive visualization environment for Matrix Cubes, called Cubix, has
been developed in Java + OpenGL by the authors of [2]. Our prototype Alignment
Cube visualization tool is derived from the Cubix implementation. While Matrix
Cubes are the general visualization structure (i.e., the 3D cube consisting of matri-
ces) andCubix is the interactive interface, the termAlignmentCubes refers to both;
a specialization of Matrix Cubes and the name of our interface.

4 Alignment Cubes

This section details our extensions and adaptations of Matrix Cubes and
describes our tool, Alignment Cubes3, in connection to the discussion in Sect. 2.

4.1 From Matrix Cubes to Alignment Cubes

Two ontologies and their alignment can be seen as a bipartite network of map-
pings between individual concepts in the two ontologies. A matrix represents a
single alignment between two ontologies. The rows hold the concepts from one
ontology, the columns hold the concepts from the other ontology. Cells denote
existing mappings between concepts in the respective rows and columns. Stack-
ing several matrices, i.e., several alignments, creates an Alignment Cube.

The example in Fig. 2 shows two of the ontologies from the OAEI Conference
track, ekaw (columns, 77 concepts) and confOf (rows, 38 concepts), as well as
seven alignments (laid out along the depth dimension), i.e., the RA for 2016 and
alignments from AML and the LogMap-family of systems from 2011 to 2013. Each
alignment is color-coded to make it easy to visually differentiate the mappings, by
grouping the cells that belong to each of them using a pre-attentive variable. Posi-
tion is not sufficient to clearly identify which alignment a cell belongs to, as the
cube can be manipulated in many ways (rotation, slicing, etc.).
3 http://www.ida.liu.se/∼patla00/publications/ISWC17 provides supplemental mate-

rial: all figures from the paper in higher resolution, a screencast of the tool, and a
downloadable version of the tool itself.

http://www.ida.liu.se/~patla00/publications/ISWC17

Alignment Cubes 407

Fig. 2. Default view of Alignment Cubes in similarities mode. Rows and columns
of the cube represent ontology concepts, individual cells inside the cube represent
mapping relationships. Each alignment, corresponding to a slice in the third dimension,
is assigned a different color. Widgets (sliders, button groups, etc.) mentioned in the
text are referred to directly using their name. (Color figure online)

Concepts in ontologies often form a taxonomic hierarchy, but as Matrix Cubes
do not support hierarchical networks, we extended the original framework. With
Alignment Cubes, we represent the ontologies as indented lists with collapsible
rows and columns. Figure 2 depicts the first level in both ontologies. Concepts
that feature sub-concepts display the � symbol after the concept label (e.g.,
Event, present in both ontologies, features sub-concepts). Clicking on a concept
label expands the corresponding row or column. Expanded concepts then show
the > symbol, and sub-concepts are indented according to their level in the
hierarchy (Fig. 3-a). Concepts that have multiple parents appear under each
parent, i.e., potentially multiple times in the hierarchy.

4.2 Granularity Levels

As discussed in Sect. 2, we aim to support views at different levels of
granularity—from an overall view to regions based on the is-a hierarchy, and
down to single mappings. To do so we introduce alignment modes. In similari-
ties mode (Fig. 2), a filled cell represents an existing mapping between a pair of
concepts. In mappings mode (Figs. 3-a and 4), a filled cell indicates that there is
at least one existing mapping between a pair of concepts or their descendants.
The cell weight represents either the similarity value (in the former case), or the
number of mappings (in the latter case). Each mode is focused on performing one
of two tasks: to compare similarity values for a pair of concepts, and to identify

408 V. Ivanova et al.

)b()a(

Fig. 3. Views of Alignment Cubes with two different cell weight color encodings: (a)
after expanding the Events and Persons concepts in both ontologies and (b) after
filtering out several alignments.

regions in the alignments with few or many mappings. The latter task provides
a starting point for exploration and highlights regions of interest where many or
few mappings have been calculated. When a concept is expanded in mappings
mode, a cell is shown for both the concept itself and its sub-concepts. This forms
regions in the cube (as in Fig. 3-a) where smaller cells indicate mappings deeper
in the hierarchy.

4.3 Interactive Visual Exploration

The Alignment Cubes user interface provides a variety of interactions for visual
exploration, shown in Fig. 2: changing alignment modes (see above), cell color
and size encodings, switching between individual views, adapting cell trans-
parency, brushing and linking, as well as alignment slice reordering. The cubelet
widget (bottom left corner in Fig. 2) allows for a quick navigation between a set
of predefined views by clicking or dragging the mouse on its faces. For example,
cells can be filtered out by specifying minimum or maximum value thresholds
using a range slider. This also allows to simulate different thresholds and explore
what-if questions and cases. Entire alignments can be hidden. To support pat-
tern discovery, the order of alignments (slices) in the cube can be changed to
facilitate comparison. A specific order can be calculated based on measures of
precision, recall and F-measure between the ontologies, or based on alphanu-
meric label sorting (labels representing matcher, tool or alignment name). After
sorting by label, matchers from one family are displayed together next to each
other.

Alignment Cubes 409

4.4 Compare and Contrast

As with Matrix Cubes, Alignment Cubes provide several views onto the data,
resulting from manipulations of the 3D cube. The individual views are: (a) 3D
view, (b) 2D projection on 2 of the orthogonal cube faces, (c) side-by-side layout
(small-multiples view) of the cube’s slices (along 2 of the orthogonal dimensions).
The 3D cube provides an overview of the number of alignments, number, size,
and distribution of cells (mappings). It helps identify regions of interest and
thus drive the initial exploration phase, and can possibly yield some high-level
insights (Fig. 3-a). It allows for interactive rotation and zoom but suffers from
the typical drawbacks of 3D visualization, including occlusion and perspective
distortion. Projection views allow for a clutter-free aggregated view on all align-
ments by orthogonally overlapping cells (Fig. 6). Side-by-side views provide the
most detailed view onto the data by entirely decomposing the view and showing
each alignment in detail (Fig. 5). Individual views, together with the ability to
vary cell size, color, and translucency, allow for flexible multi-perspective explo-
ration of the entire data set.

Each of the two projections (alignment topology and concepts network) is
paired with its respective small-multiples view. Both projections/small-multiple
pairs allow for investigating the behavior of matchers—the alignment topology
pair focuses on the similarities and differences between the alignments as a whole,
while the concepts network pair allows for analyzing the behavior of matchers
for a particular concept.

5 Use Cases Support

This section revisits the tasks and use cases identified in Sect. 2 and demonstrates
how our tool supports interactive visual exploration and comparative evaluation
of multiple alignments in Subsect. 5.1. We further show that Alignment Cubes
satisfy requirements for ontology alignment evaluation systems in Subsect. 5.2.

5.1 Comparing Alignments, Systems and Support for Comparative
Evaluation

We demonstrate how the tasks discussed in Subsect. 2.1 can be performed with
our tool by conducting a walk-through scenario. As the evaluation of interactive
visualization tools is challenging [4], methods such as case studies and usage
scenario, are often employed [4,10] as they are more likely to provide insightful
observations than traditional controlled experiments. In this scenario we aim to
answer analytical questions including the following: Are the same regions covered
in all alignments? Do matchers agree or disagree? Are there consistently stable
and changing regions? Do similarity values differ? Are there missing and wrong
mappings? Could we obtain other insights? These analytical questions are shared
by all use cases. We focus on observations which would be problematic to obtain
without a visual representation of the alignments, as was the case in, e.g., [8].

410 V. Ivanova et al.

)b()a(

Fig. 4. 3D view in mappings mode: (a) initial view and (b) after reordering by name.

Dataset: We use the same two ontologies from the example in Sect. 4, but
this time with a different set of alignments. We downloaded the alignments for
the LogMap-family of systems between 2011 and 2015, and the RA for 2016.
During this period, LogMap contributed three different versions: LogMapLite
2012–2015, LogMapC 2014–2015, and LogMap 2011–2015. Matrices for the align-
ment (Figs. 5 and 6) appear sparse since the respective alignments are the final
alignments for the OAEI evaluation campaign, and thresholds have already been
applied to remove mappings with a low similarity value. Note that in the process
of matcher development, selection and fine tuning (see UC1 and UC2), the matri-
ces would often be denser since more potential mappings would be considered.
Alignment Cubes would scale to such higher-density matrices, as the technique
was designed for dense dynamic networks in the first place [2].

Exploration: Our exploration starts with the initial 3D cube view in mappings
mode (Fig. 4-a). The colors and sizes of cells show that most of the mappings
(large red cells) are concentrated around the two sets of concepts between Per-
son (4©) and Event (3©). In contrast, few mappings have been found between
Organization and confOf:Contribution-ekaw:Document. To see the subconcepts
of Person and Event, we expand these two concepts in both ontologies (Fig. 3-a).
After expanding these concepts, as the visualization is in mappings mode, the
cells that appear smaller and lighter (because of this particular color scheme)
indicate under which subconcepts the single mappings are located. We now col-
lapse these concepts and return to the view in Fig. 4-a. We see that all matchers
have computed similar numbers for the Event concept pair, as the size of cells
is more or less constant along the mapping dimension (cube depth).

However, somewhat larger differences in cell size can be observed along the
depth dimension (across alignments) for the Person concept pair, which indi-
cates a lower level of agreement across matching algorithms in this case. Hovering
the respective cells with the mouse reveals that numbers vary between 4 and 8.

Alignment Cubes 411

Apparently, only RA (the last, backmost slice) contains a mapping between con-
fOf:Topic & ekaw:Research Topic, meaning that we found a missing mapping: the
single cell not aligned with others (Fig. 4-a 1©).

For further exploration, we investigate different alignment orderings (by
interactively reordering alignment slices). Reorder-by-name (Fig. 4-b) clearly
separates the three versions of the LogMap-family systems and allows to compare
the performance for each version during the years. LogMap performs consistently
better in terms of number of mappings found between 2012 and 2015 than in
2011, as visually indicated by the larger and more saturated (red) cells. To see
if the same is true for similarity values, we switch to the similarities mode: if
both modes show a similar picture, the system likely has used the same combina-
tion of alignment algorithms. To focus only on the LogMap alignments, we filter
out all other alignments in Fig. 3-b, leaving the cube half-empty. The similarity
values computed by LogMap vary between the years (Fig. 3-b), but not for its
lightweight version, LogMapLite (not shown due to the filtering).

)b()a(

Fig. 5. Small-multiples views: (a) alignment topology (b) concept networks. Gray num-
bers have been added manually to the figure.

Focusing on the regions with many mappings, we expand the respective con-
cepts in both ontologies and switch to the small-multiples view that shows align-
ment topology (Fig. 5-a). In both modes the patterns for each of the versions
are clearly noticeable. The lightweight LogMapLite in all four years (matrices
2©– 5©) consistently finds fewer mappings than the versions of LogMap between
2012 and 2015 (matrices 8©–11©). LogMap 2011’s pattern (matrix 12©) is closer to
the LogMapLite alignments than to the rest of the LogMaps. We may conclude
that LogMapLite reuses LogMap 2011 algorithms and settings, and that there
were likely significant changes in algorithms or their settings between LogMap
2011 and the following LogMaps. Further evidence about this can be found

412 V. Ivanova et al.

in the small-multiples view that shows concept-networks (Fig. 5-b). Looking at
the Event matrix (2©), all LogMapLites and LogMap 2011 have computed an
incorrect mapping between confOf:Working Event & ekaw:Event, and behave
similarly in the ekaw:Conference Participant and ekaw:Paper Author matrices
(9©,10©). Additionally, when observing alignment matrices, we can easily see that
the following two mappings are missing from all LogMap-family alignments: con-
fOf:Scholar & ekaw:Student in the alignment topology small-multiples view (on
Fig. 5-a the labeled cell on matrix 1© does not exist in the other matrices) and
confOf:Working Event & ekaw:Scientific Event in the concept-networks small-
multiples view (matrix 3© on Fig. 5-b). We can also observe on Fig. 5-b two of
the missing mappings noticed before, confOf:Scholar & ekaw:Student (matrix
12©), and confOf:Topic & ekaw:Research Topic (matrix 13©).

(a) (b)

Fig. 6. Aggregated projections: (a) alignment topology and (b) concept networks.

Going back to the initial 3D cube view in mappings mode (Fig. 4-a), we make
another observation: the cell in the top-left corner seems larger than the other
cells aligned with it (Fig. 4-a 2©). We switch to the alignment topology view,
change the cell color encoding to a uniform color (gray) and decrease trans-
parency using the cell-opacity slider. In this aggregated view (Fig. 6-a), cells that
appear nested within each other (cells still have different sizes) indicate that the
different matchers have computed different values for the same pair of concepts
(Fig. 6-a). This is the case with the top-left corner cell we noticed earlier. There
are at least two nested cells between confOf:Contribution & ekaw:Document
(Fig. 6-a 1©).

We expand both the confOf:Contribution and ekaw:Document concepts, as
well as ekaw:Paper, which is a subconcept of ekaw:Document. We then switch
to the concept networks projection view in similarities mode (Fig. 6-b). We can

Alignment Cubes 413

now explore the matchers’ behavior (matchers have become columns in this
view) while hovering over the concepts from the ekaw ontology on the right
of the matrix. Observing the mappings in RA (the left-most column) around
confOf:Contribution, we can see that the mappings for confOf:Contribution (1©)
and confOf:Poster (2©) are only found in RA, and that there is no mapping
under confOf:Paper (3©) in RA (while it is found by all other matchers). To
better observe where these mappings are, we switch to the concept-networks
small-multiples view (not shown) and can see that the missing mappings are
confOf:Poster & ekaw:Poster Paper and confOf:Contribution & ekaw:Paper. The
wrong mapping is confOf:Paper & ekaw:Paper.

5.2 Ontology Alignment Evolution

We now describe how Alignment Cubes satisfy requirements for ontology align-
ment evolution systems (closely connected to UC3).

A five-steps process for ontology evolution was proposed in [23]. It can be
generalized to ontology alignment evolution. The first step of the process focuses
on the exploration of the ontologies. This is where an interactive visualization
tool is most needed. Requirements to support the first step have been identified
in [14]. In Table 1, we show an adaptation of these requirements for step 1,
targeted at the alignment evolution. The category indicates whether we deal
with inspection (I) or explanation (E).

Table 1. Functionality for alignment evolution systems.

Category Functionality

I F1 Show an alignment version

I, E F2 Show different alignments in evolution graph

I, E F3 Show changes/diff between alignments (with change types)

I F4 Show summary of changes

I F5 Show specialized view of changes

I F6 Show change history of a mapping / concept in mappings

I, E F7 Show provenance information

I F8 Show information about/context of concepts in mappings

I, E F9 Compare different alignment versions

I F10 Search and query alignment

I F11 Query old versions using terminology of new version

I, E F12 Discover trends

I, E F13 Discover volatile and stable regions

414 V. Ivanova et al.

Alignment Cubes address requirements F1–F9, F12–F13. It visualizes every
alignment (F2) as a separate, labeled (F1) matrix showing both ontologies on its
sides (F8). The cube, projections and small multiple views support visual identifi-
cation and comparison of alignment revisions (F9), trends (F12), volatile and sta-
ble regions (F13) and changes between alignments (F3). The latter allows for deriv-
ing a history of changes made to mappings (F6). The alignment topology projec-
tion can be particularly useful for showing a summary of changes (F4). Additional
matrices or small-multiples views can be introduced to show specialized views of
changes (F5) and provenance information (F7).

6 Discussion and Future Work

Validation of the Approach: We demonstrated some of the analytic tasks
that Alignment Cubes support by describing a scenario in Sect. 5.1. Making
such observations took only a couple of minutes with Alignment Cubes. We
could identify the common trends between 12 alignments, and found five map-
pings missing from all 11 alignments and one wrong mapping in all 11 alignments.
Furthermore, we found one incorrect mapping in five alignments (LogMap2011
and LogMapLite2012–2015). While we could likely have found missing and
incorrect mappings via other means, this was achieved here easily, and in a
very short time. The conclusions we draw come from integrating several obser-
vations, including all alignments after an exploration guided by the observed
regions. Some observations could be made in more than one view, which allowed
interpreting them in different contexts, and yielded additional opportunities to
observe them if we had missed them earlier.

In Sect. 5.2, we showed that Alignment Cubes address many of the require-
ments expressed about understanding the evolution of ontology alignments.
Alignment Cubes also support requirements in the inspection and partial expla-
nation dimensions from [12]: representing dense regions, ontologies, mappings
and mapping suggestions, filtering, and providing a starting point for explo-
ration. It also covers visual analytics and grouping aspects from [7]. It could
further support the analytic tasks identified in [1]—evaluation of matcher per-
formance, exploration and comparison, and diagnosis (which comprises iterations
of the other tasks).

User Evaluation: Matrix Cubes have been evaluated with domain experts in
Astronomy and Neurosciences, and have been found to be understandable after
some initial learning [2]. We have performed pilot tests with ontology align-
ment experts using the smallest task in the LargeBio track in the OAEI4 and
are currently planning more extensible usability tests with experts in ontology
alignment in order to identify further use cases and to inform the design and
development of future features.

Scalability: The ontologies in this paper contained less than 100 concepts, and
individual alignments had no more than 20 mappings. The tool was successfully
4 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2016/.

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2016/

Alignment Cubes 415

tested using the ontologies (3696 and 6488 concepts in each) and all 12 align-
ments from the smallest task in the LargeBio track in the OAEI. Alignment
Cubes have provided a compact overview for all of our examples, and should
remain relatively compact with a higher number of mappings. Interactively col-
lapsing and expanding concepts has proven useful to cope with the size of the
ontologies and the mappings. Due to the size and depth of the ontologies, the
small-multiples views required some pan and zoom on a regular workstation
monitor. This can be addressed by filtering, or to some extent by using a large
very-high-resolution display. Using larger display surfaces to show multiple views
simultaneously is one of the directions identified in [11].

Generalizability and Availability: Though we developed Alignment Cubes
for ontology alignment, our adaptations to the original Matrix Cubes are gen-
eralizable to any (un)directed bi-graph. Examples include networks connecting
authors to their publications, or documents to keywords, or proteins to certain
biological functions.

Future Features: Drawing from our experience with the tool so far, we have
identified several directions for future extensions. Immediate improvements to
consider include: adding visual support for different types of mappings (subsump-
tions, asserted, derived, etc.); exploring clustering and reordering algorithms to
further support trend and pattern discovery; further supporting comparisons
by visualizing the results of set operations (union, intersection, complement) as
matrices. As discussed in [7,12], providing explanations about why and how a
mapping has been computed supports decision making. We thus plan to explore
different ways to compactly present such information to users.

In the longer term, we are interested in investigating the integration of Align-
ment Cubes with the SEALS platform used in OAEI. This will also open the
stage for investigating advantages, drawbacks and methodological issues around
the two evaluation approaches: comparative visual exploration at a detailed level,
and overall assessment of the quality of alignments.

7 Conclusions

This work aims to take the evaluation of ontology alignments’ quality beyond
general measures such as precision, recall and F-measure. It identifies several
use cases and shared tasks where comparison and exploration of multiple align-
ments at a high level of detail is needed. As the number of approaches and
algorithms grows, capturing and analyzing their similarities and differences at
varying levels of granularity will facilitate the understanding of their features,
and provide additional means for alignment evaluation, hopefully contributing
to driving the field forward. We see the evaluation of ontology alignments as
an exploratory task, and discuss several activities that could be efficiently sup-
ported by an interactive tool—interactive visual exploration at different levels
of granularity to perform compare & contrast tasks. Drawing from the field of
data visualization, we significantly adapt and extend a technique for dynamic

416 V. Ivanova et al.

network visualization. Our approach, Alignment Cubes, enables the interactive
visual exploration of alignments and supports views at different levels of detail.
We show their usefulness for the purpose of exploration of multiple alignments
by describing a scenario where, in only a few minutes, we could identify several
missing and incorrect mappings. This initial experience with the tool is encour-
aging, and we strongly believe that alignment evaluation should consider other
means beyond precision, recall and F-measure, including visual exploration. We
hope to integrate this tool with the SEALS platform used in the OAEI cam-
paigns and evaluate its usefulness with developers and researchers involved and
participating in them.

Acknowledgements. This work has been supported by the Swedish e-Science
Research Centre (SeRC), the Swedish national graduate school in computer science
(CUGS) and the EU project VALCRI (FP7-IP-608142).

References

1. Aurisano, J., Nanavaty, A., Cruz, I.: Visual analytics for ontology matching using
multi-linked views. In: VOILA, pp. 25–36 (2015)

2. Bach, B., Pietriga, E., Fekete, J.-D.: Visualizing dynamic networks with matrix
cubes. In: CHI, pp. 877–886 (2014)

3. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The state of the art in visualizing
dynamic graphs. In: EuroVis STAR 2 (2014)

4. Carpendale, S.: Evaluating information visualizations. In: Kerren, A., Stasko, J.T.,
Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 19–
45. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70956-5 2

5. Cruz, I., Stroe, C., Palmonari, M.: Interactive user feedback in ontology matching
using signature vectors. In: ICDE, pp. 1321–1324 (2012)

6. Dang, T., Franz, N., Ludäscher, B., Forbes, A.G.: Provenancematrix: a visualiza-
tion tool for multi-taxonomy alignments. In: VOILA, pp. 13–24 (2015)

7. Dragisic, Z., Ivanova, V., Lambrix, P., Faria, D., Jiménez-Ruiz, E., Pesquita, C.:
User validation in ontology alignment. In: Groth, P., Simperl, E., Gray, A., Sabou,
M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981,
pp. 200–217. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 13

8. Dragisic, Z., Ivanova, V., Li, H., Lambrix, P.: Experiences from the anatomy track
in the ontology alignment evaluation initiative (2017, submitted)

9. Falconer, S.M., Storey, M.-A.: A cognitive support framework for ontology map-
ping. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 114–127.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 9

10. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T.: A systematic review
on the practice of evaluating visualization. IEEE TVCG 19(12), 2818–2827 (2013)

11. Ivanova, V.: Applications of large displays: advancing user support in large scale
ontology alignment. In: Doctoral Consortium @ ISWC 2016, pp. 50–57 (2016)

12. Ivanova, V., Lambrix, P., Åberg, J.: Requirements for and evaluation of user sup-
port for large-scale ontology alignment. In: Gandon, F., Sabou, M., Sack, H.,
d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS,
vol. 9088, pp. 3–20. Springer, Cham (2015). doi:10.1007/978-3-319-18818-8 1

13. El Jerroudi, Z., Ziegler, J.: iMERGE: interactive ontology merging. In: EKAW, pp.
52–56 (2008)

http://dx.doi.org/10.1007/978-3-540-70956-5_2
http://dx.doi.org/10.1007/978-3-319-46523-4_13
http://dx.doi.org/10.1007/978-3-540-76298-0_9
http://dx.doi.org/10.1007/978-3-319-18818-8_1

Alignment Cubes 417

14. Lambrix, P., Dragisic, Z., Ivanova, V., Anslow, C.: Visualization for ontology evo-
lution. In: VOILA, pp. 54–67 (2016)

15. Lambrix, P., Tan, H.: A tool for evaluating ontology alignment strategies. J. Data
Semant. VIII, 182–202 (2007)

16. Lanzenberger, M., Sampson, J., Rester, M.: Ontology visualization: tools and tech-
niques for visual representation of semi-structured meta-data. J. UCS 16(7), 1036–
1054 (2010)

17. Li, Y., Stroe, C., Cruz, I.F.: Interactive visualization of large ontology matching
results. In: VOILA, pp. 37–48 (2015)

18. Otero-Cerdeira, L., Rodŕıguez-Mart́ınez, F.J., Gómez-Rodŕıguez, A.: Ontology
matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)

19. Peukert, E., Eberius, J., Rahm, E.: AMC-a framework for modeling and comparing
matching systems as matching processes. In: ICDE, pp. 1304–1307 (2011)

20. Severo, B., Trojahn, C., Vieira, R.: A GUI for visualising and manipulating multiple
ontology alignments. In: ISWC (Posters & Demos), pp. 37–48 (2015)

21. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
J. Knowl. Data Eng. 25(1), 158–176 (2013)

22. Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.J.,
Fekete, J.D., Fellner, D.W.: Visual analysis of large graphs: state-of-the-art and
future research challenges. In: Computer Graphics Forum, vol. 30, pp. 1719–1749.
Wiley Online Library (2011)

23. Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E.,
Plexousakis, D., Sabou, M.: Ontology evolution: a process-centric survey. Knowl.
Eng. Rev. 30, 45–75 (2013)

Attributed Description Logics: Ontologies
for Knowledge Graphs

Markus Krötzsch(B) , Maximilian Marx(B) , Ana Ozaki(B) ,
and Veronika Thost(B)

Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, Germany
{markus.krotzsch,maximilian.marx,ana.ozaki,veronika.thost}@tu-dresden.de

Abstract. In modelling real-world knowledge, there often arises a need
to represent and reason with meta-knowledge. To equip description logics
(DLs) for dealing with such ontologies, we enrich DL concepts and roles
with finite sets of attribute–value pairs, called annotations, and allow
concept inclusions to express constraints on annotations. We show that
this may lead to increased complexity or even undecidability, and we
identify cases where this increased expressivity can be achieved without
incurring increased complexity of reasoning. In particular, we describe
a tractable fragment based on the lightweight description logic EL, and
we cover SROIQ, the DL underlying OWL 2 DL.

1 Introduction

Modern data management has re-discovered the power and flexibility of graph-
based representation formats, and so-called knowledge graphs are now used in
many practical applications, e.g., in companies such as Google or Facebook. The
shift towards graphs is motivated by the need for integrating knowledge from a
variety of heterogeneous sources into a common format.

Description logics (DLs) seem to be an excellent fit for this scenario, since
they can express complex schema information on graph-like models, while sup-
porting incomplete information via the open world assumption. Ontology-based
query answering has become an important research topic, with many recent
results and implementations, and the W3C OWL and SPARQL standards pro-
vide a basis for practical adoption. One would therefore expect to encounter DLs
in many applications of knowledge graphs.

However, this is not the case. While OWL is often used in RDF-based knowl-
edge graphs developed in academia, such as DBpedia [4] and Bio2RDF [3], it
has almost no impact on other applications of graph-structured data. This might
in part be due to a format mismatch. Like DLs, many knowledge graphs use
directed, labelled graph models, but unlike DLs they often add (sets of) anno-
tations to vertices and edges. For example, the fact that Liz Taylor married

M. Krötzsch—The author thanks the competent and friendly staff of trauma surgery
ward OUC-S2 at the University Hospital Carl Gustav Carus, Dresden, where some
of this research has been executed.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 418–435, 2017.
DOI: 10.1007/978-3-319-68288-4 25

http://orcid.org/0000-0002-9172-2601
http://orcid.org/0000-0003-1479-0341
http://orcid.org/0000-0002-3889-6207
http://orcid.org/0000-0003-4984-1532

Attributed Description Logics 419

Richard Burton can be described by an assertion spouse(taylor, burton), but in
practice we may also wish to record that they married in 1964 in Montreal, and
that the marriage ended in 1974. We may write this as follows:

spouse(taylor, burton)@[start : 1964, location : Montreal, end : 1974] (1)

Such annotated graph edges today are widespread in practice. Prominent rep-
resentatives include Property Graph, the data model used in many graph data-
bases [19], and Wikidata, the knowledge graph used by Wikipedia [24]. Looking
at Wikidata as one of the few freely accessible graphs outside academia, we
obtain several requirements:

– No single purpose. Annotations are used for many modelling tasks. Expected
cases such as validity time and provenance are important, but are by far not
the only uses, as (1) (taken from Wikidata) illustrates. Besides start, end, and
location, over 150 other attributes are used at least 1000 times as annotations
on Wikidata.

– Multi-graphs. It can be necessary to include the same assertion multiple times
with different annotations. For example, Wikidata in addition to (1) also
includes the assertion spouse(taylor, burton)@[start : 1975, end : 1976]. Such
multi-graphs are also supported by Property Graph, but not by logics with
functional annotations, such as semi-ring approaches [9,22] and aRDF [23].

– Multi-attribute annotations. Wikidata (but not Property Graph) further sup-
ports annotations where the same attribute has more than one value. Among
others, Wikidata includes, e.g., the assertion castMember(Sesame Street,
Frank Oz)@[role : Bert, role : Cookie Monster, role : Grover].

One can encode annotated (multi-)graphs as directed graphs, e.g., using reifi-
cation [8], but DLs cannot express much over such a model. For example, one
cannot say that the spouse relation is symmetric, where annotations are the same
in both directions [16]. Other traditional KR formalisms are similarly challenged
in this situation.

In a recent work, we have therefore proposed to develop logics that sup-
port sets of attribute–value annotations natively [16]. The according gener-
alisation of first-order logic, called multi-attribute predicate logic (MAPL), is
expressive enough to capture weak second-order logic, making reasoning non-
semi-decidable. For that reason, we have developed the Datalog-like MAPL rule
language (MARPL) as a decidable fragment.

In this paper, we explore the use of description logics as a basis for decidable,
and even tractable, fragments of MAPL. The resulting family of attributed DLs
allows statements such as spouse@X � spouse−@X to say that spouse is sym-
metric. We introduce set variables (X in the example) to refer to annotations.
We refer to variables to express constraints over annotations and to compare
attribute values between them. A challenge is to add functionality of this type
without giving up the nature of a DL.

420 M. Krötzsch et al.

Another challenge is that these extensions may greatly increase the complex-
ity of DLs. We show that reasoning becomes 2ExpTime-complete for attributed
ALCH, a prototypical DL; ExpTime-complete for attributed EL, a DL close to
OWL 2 EL; and N2ExpTime-complete for attributed SROIQ, the DL under-
lying OWL 2 DL. Slight extensions of our DLs even lead to undecidability. We
develop syntactic constraints to recover lower complexities, including PTime-
completeness for attributed EL.

For readability, some proofs are only sketched out in this paper or have been
omitted entirely. Full versions can be found in the technical report [14].

2 Attributed Description Logics

We introduce attributed description logics by defining the syntax and semantics
of attributed ALCH, denoted ALCH@+. This allows us to illustrate the cen-
tral ideas without having to deal with the full generality of SROIQ, which we
introduce in Sect. 6. We note that fact entailment can be polynomially reduced
in the DLs we study.

2.1 Syntax and Intuition

We first give the syntax and intuitive semantics of ALCH@+; the semantics will
be formalised thereafter.

Example 1. We start with a guiding example, which will be formally
explained when we define ALCH@+. Wikidata contains assertions of the form
educatedAt(a person, a university)@[start : 2005, end : 2009, degree : master]. This
motivates the following ALCH@+ axiom:

X : �degree : master� (∃educatedAt@X.University � MSc@[start : X.end]
)

(2)

The underlying DL axiom is ∃educatedAt.University � MSc, stating that anybody
educated at some university holds an M.Sc. Axiom (2) restricts this to educatedAt
assertions whose annotations X specify the degree to be a master, where X may
contain further attribute–value pairs. Indeed, if X specifies an end date for the
education, then this is used as a start for the entailed MSc assertion. Similarly,
we may express that a person that was educatedAt some institution (where the
degree attribute has some value) obtained a degree from this institution:

educatedAt@�degree : +� � obtainedDegreeFrom (3)

Attributed DLs are defined over the usual DL signature with sets of concept
names NC, role names NR, and individual names NI. In OWL terminology, con-
cepts correspond to classes, roles correspond to properties, and individual names
correspond to individuals. We consider an additional setNV of (set) variables. Fol-
lowing the definition of multi-attributed predicate logic (MAPL, [16]), we define

Attributed Description Logics 421

annotation sets as finite binary relations, understood as sets of attribute–value
pairs. In particular, attributes refer to domain elements and are syntactically
denoted by individual names. To describe annotation sets, we introduce specifiers.
The set S of specifiers contains the following expressions:

– set variables X ∈ NV;
– closed specifiers [a1 : v1, . . . , an : vn]; and
– open specifiers �a1 : v1, . . . , an : vn�,
where ai ∈ NI and vi is either +, an individual name in NI, or an expression of the
form X.c, with X a set variable in NV and c an individual name in NI. Intuitively,
closed specifiers define specific annotation sets whereas open specifiers merely pro-
vide lower bounds.Weuse+ for “one ormore” values,whileX.c refers to the (finite,
possibly empty) set of all values of attribute c in an annotation set X. A ground
specifier is a specifier that does not contain expressions of the form X.c.

Example 2. The open specifier �degree : master� in Example 1 describes all
annotation sets with at least the given attribute–value pair. The closed spec-
ifier [start : X.end] denotes the (unique) annotation set with start as the only
attribute, having exactly the values given for attribute end in X.

The set R of ALCH@+ role expressions contains all expressions r@S with r ∈ NR

and S ∈ S. The set C of ALCH@+ concept expressions is defined as follows

C ::= � | ⊥ |NC@S | ¬C |C 	 C |C
 C | ∃R.C | ∀R.C (4)

An ALCH@+ concept (or role) assertion is an expression A(a)@S (or
r(a, b)@S), with A ∈ NC (or r ∈ NR), a, b ∈ NI, and S ∈ S a specifier that
is not a set variable. An ALCH@+ concept inclusion is an expression of the
form

X1 :S1, . . . , Xn :Sn (C � D), (5)

where C,D ∈ C are ALCH@+ concept expressions, S1, . . . , Sn ∈ S are speci-
fiers, and X1, . . . , Xn ∈ NV are set variables occurring in C,D or in S1, . . . , Sn.
ALCH@+ role inclusions are defined analogously, but with role expressions
instead of the concept expressions. An ALCH@+ ontology is a set of ALCH@+
assertions, and role and concept inclusions.

To simplify notation, we omit the specifier �� (meaning “any annotation set”)
in role or concept expressions, as done for University in Example 1. In this sense,
any ALCH axiom is also an ALCH@+ axiom. Moreover, we omit prefixes of the
form X :��, which merely state that X might be any annotation set.

We follow the usual DL notation for referring to other attributed DLs, where
we add symbols to the DL name to indicate additional features, and remove
symbols to indicate restrictions. Thus, ALC@+ denotes ALCH@+ without role
hierarchies, and ALCH@ corresponds to the fragment of ALCH@+ that disallows
+ in specifiers.

422 M. Krötzsch et al.

2.2 Formal Semantics

As usual in DLs, an interpretation I = 〈ΔI , ·I〉 consists of a domain ΔI and an
interpretation function ·I . Individual names c ∈ NI are interpreted as elements
cI ∈ ΔI . Concepts and roles are interpreted as relations that here include anno-
tation sets:

– AI ⊆ ΔI × Pfin

(
ΔI × ΔI)

for a concept A ∈ NC, and
– rI ⊆ (ΔI × ΔI) × Pfin

(
ΔI × ΔI)

for a role r ∈ NR,

where Pfin

(
ΔI × ΔI)

denotes the set of all finite binary relations over ΔI .
Expressions with free set variables are interpreted using variable assignments
Z : NV → Pfin

(
ΔI × ΔI)

. For an interpretation I and a variable assignment Z,
we define the semantics of specifiers as follows:

XI,Z :={Z(X)},

[a : b]I,Z :={{〈aI , bI〉}},

[a : X.b]I,Z :={{〈aI , δ〉 | there is δ ∈ ΔI such that 〈bI , δ〉 ∈ Z(X)}},

[a : +]I,Z :={{〈aI , δ1〉, . . . , 〈aI , δ�〉} | � ≥ 1 and δi ∈ ΔI},

[a1 : v1, . . . , an : vn]I,Z :=
{⋃n

i=1 Ψi

∣∣Ψi ∈ [ai : vi]
I,Z
}

,

�a1 : v1, . . . , an : vn�I,Z :=
{
Ψ ∈ Pfin

(
ΔI × ΔI

) ∣∣Ψ ⊇ Φ

for some Φ ∈ [a1 : v1, . . . , an : vn]I,Z},

where X ∈ NV, a, ai, b ∈ NI, and vi is +, an element of NI, or of the form X.a.
We can now define the semantics of concept and role expressions:

A@SI,Z := {δ ∈ ΔI | 〈δ,Ψ〉 ∈ AI for some Ψ ∈ SI,Z} (6)

r@SI,Z := {〈δ1, δ2〉 ∈ ΔI × ΔI | 〈δ1, δ2,Ψ〉 ∈ rI for some Ψ ∈ SI,Z} (7)

Observe that we quantify existentially over admissible annotations here (“some
Ψ ∈ SI,Z”). However, variables and closed specifiers without + are interpreted
as singleton sets, so true existential quantification only occurs if S is an open
specifier or if it contains +. All other DL constructs can now be defined as usual,
e.g., (C 	 D)I,Z = CI,Z ∩ DI,Z , (∃r.C)I,Z = {δ | there is 〈δ, ε〉 ∈ rI,Z with ε ∈
CI,Z}, and (¬C)I,Z = ΔI \ CI,Z . Note that we do not include annotations on
�, i.e. �I,Z = ΔI , and similarly for ⊥I,Z = ∅.

Now I satisfies an ALCH@+ concept inclusion α of the form (5), written I |=
α, if for all variable assignments Z such that Z(Xi) ∈ SI,Z

i for all i ∈ {1, . . . , n},
we have CI,Z ⊆ DI,Z . Satisfaction of role inclusions is defined analogously.
Moreover, I satisfies an ALCH@+ concept assertion A(a)@S if 〈aI ,Ψ〉 ∈ AI for
some Ψ ∈ SI (the latter is well-defined since S contains no variables). I satisfies
an ontology if it satisfies all of its axioms. Based on this model theory, logical
entailment is defined as usual.

Attributed Description Logics 423

Example 3. Consider the concept inclusion α of Example 1 and the interpreta-
tion I over domain ΔI = {Mary, John,TUD, start, end, 2017, 2018,master, degree},
given by

MScI = {〈Mary, {〈start, 2016〉}〉, 〈John, {〈start, 2017〉}〉},

educatedAtI = {〈Mary,TUD, {〈degree,master〉, 〈end, 2016〉}〉,
〈John,TUD, {〈degree,master〉, 〈end, 2017〉}〉}, and

UniversityI = {〈TUD, {}〉}.

Then I |= α, i.e., I satisfies α.

3 Expressivity of Attributed Description Logics

In this section, we clarify some basic semantic properties of attributed DLs and
the general relation of attributed DLs to other logical formalisms. As a first
observation, we note that already ALC@+ is too expressive to be decidable:

Theorem 1. Satisfiability of attributed DLs with + is undecidable, even if the
DL only supports 	, and supports either only open specifiers or only closed spec-
ifiers.

Proof. We reduce from the query answering problem for existential rules, i.e.,
first-order formulae of the form

∀x.p1(x1
1, . . . , x

1
ar(p1)

) ∧ . . . ∧ pn(xn
1 , . . . , xn

ar(pn)
) → ∃y.p(z1, . . . , zar(q)), (8)

where the variables xi
j occur among the universally quantified variables, i.e.,

xi
j ∈ x, and variables zi might be universally or existentially quantified, i.e.,

zi ∈ x ∪ y. We require that each universally quantified variable occurs in some
atom in the premise of the rule (safety), and that each existentially quantified
variable occurs only once per rule. The latter is without loss of generality since
rules that violate this restriction can be split into two rules using an auxiliary
predicate. A fact is a formula of the form q(c1, . . . , car(q)) with constants ci.
Entailment of facts from given sets of facts and existential rules is known to be
undecidable [2,7].

To translate an existential rule of the form (8), we consider DL concept names
P(i) for each predicate symbol p(i), and individual names a1, . . . , a�, where � is
the maximal arity of any such predicate. For each universally quantified variable
x, let πx = 〈pi, k〉 be an (arbitrary but fixed) position at which x occurs, i.e., for
which x = xi

k. The rule can now be rewritten to the attributed DL axiom

X1 :S1, . . . , Xn :Sn (P1@X1 	 . . . 	 Pn@Xn � P@T) ,

where the specifiers are defined as Si = [aj : Xm.ak | 1 ≤ j ≤ ar(pi) and πxi
j

=
〈pm, k〉] and T = [aj : + | zj ∈ y] ∪ [aj : Xm.ak | zj ∈ x and πzj

= 〈pm, k〉]

424 M. Krötzsch et al.

(note that we slightly abuse | and ∪ here for a simpler presentation). For exam-
ple, the rule ∀xy.p1(x, y) ∧ p2(y, x) → ∃z.p(x, z) is translated into the concept
inclusion X1 : S1,X2 : S2 (P1@X1 	 P2@X2 � P@[a1 : X1.a1, a2 : +]) , where
S1 = [a1 : X1.a1, a2 : X2.a1] and S2 = [a1 : X2.a1, a2 : X1.a1]. Observe that the
specifier Si for Xi may contain assignments of the form aj : Xi.aj : by our seman-
tics, this merely states that aj may have zero or more values. Facts of the form
q(c1, . . . , cm) can be translated into assertions Q(b)@[a1 : c1, . . . , am : cm] for an
individual name b that is used in all such assertions.

Entailment of facts is preserved in this translation. Correctness is retained
if we replace all closed by open specifiers, since the translated ontology admits
a least model where all annotation sets are interpreted as the smallest possible
sets. 	

In Sects. 4 and 5, we present two approaches for overcoming the undecidabil-
ity of Theorem 1, namely to exclude + from attributed DLs, and to restrict the
use of expressions of the form X.a.

Example 4. It follows from Theorem 1 that ALC@+ ontologies may require mod-
els with annotation sets of unbounded size. To see this, consider the following
ontology:

A(b)@�c : c� (9)
A@X � ∃r.A@�c : +, p : X.c, p : X.p� (10)

A@X 	 A@�p : X.c� � ⊥ (11)

Axiom (9) defines an initial A member. Axiom (10) states that all A members
have an r successor that is in A, annotated with some value for c (“current”),
and values for p (“previous”) that include all of its predecessor’s c and p values.
Axiom (11) requires that no individual in A may have a set of p values that
include all of its c values. It is not hard to see that all models of this ontology
include an infinite r-chain with arbitrarily large (but finite) A-related annota-
tions sets.

It is interesting to discuss Theorem 1 in the context of our previous
work on multi-attributed predicate logic (MAPL), which generalises first-order
logic with annotation sets for arbitrary predicates. Indeed, our interpretations
for attributed DLs are a special case of multi-attributed relational structures
(MARS), though we do not make the unique name assumption here, since it is
not common for the DLs we consider. Otherwise, attributed DLs are fragments
of MAPL. Our notation X.a is new, but it can be simulated in MAPL, e.g., by
using function definitions [16].

MAPL is not semi-decidable, and we have proposed MAPL rules (MARPL)
as a decidable fragment. MARPL supports + without restrictions, and it includes
arbitrary predicate arities and more expressive specifiers (with some form of
negation). In contrast, attributed DLs add the ability to quantify existentially
over annotations, and therefore to derive partially specified annotation sets,
which is the main reason for Theorem 1. In general, attributed DLs are based on

Attributed Description Logics 425

the open world assumption, whereas MARPL could equivalently be interpreted
under a closed world, least model semantics. Nevertheless, even without + the
translation from the proof of Theorem 1 allows attributed DLs to capture rule
languages, as the following result shows. Here, by Datalog we mean first-order
Horn logic without existential quantifiers.

Theorem 2. Attributed DLs can capture Datalog in the sense that every set P
of Datalog rules and fact q(c1, . . . , cm) can be translated in linear time into an
attributed DL ontology KBP and assertion Q(b)@S, such that P |= q(c1, . . . , cm)
iff KBP |= Q(b)@S. This translation requires just 	, no +, and either only open
or only closed specifiers.

The ability to capture Datalog reminds us of nominal schemas, the exten-
sion of DLs with “variable nominals” [13,15]. Indeed, this extension can also be
captured in attributed DLs (we omit the details here). The converse is not true,
e.g., since nominal schemas cannot encode annotation sets on role assertions.
Role inclusion axioms such as spouse@X � spouse−@X are therefore impossi-
ble. Another related formalism is DL-LiteA, which supports (data) annotations
on domain elements and pairs of domain elements [5]. This extension of DLs
supports some forms of ternary relations. Nevertheless, the use case and com-
plexity properties of DL-LiteA are different from the logics we study here, and
it remains for future work to further explore attributed DL-Lite in more detail.

4 Reasoning in ALCH@

We first focus on ALCH@, for which we show reasoning to be decidable, albeit
at a higher complexity. For a first positive result, we consider ground ALCH@,
where ontologies do not contain any set variables. We show that we can translate
any ground ALCH@ ontology into an equisatisfiable ALCH ontology by intro-
ducing fresh names for annotated concept and role names. This renaming is one
of the key ingredients in obtaining decision procedures for attributed DLs.

Theorem 3. Satisfiability of ground ALCH@ ontologies is ExpTime-complete.

Proof. Hardness is immediate since ALCH@ generalises ALCH. For member-
ship, we reduce ALCH@ satisfiability to ALCH satisfiability. Given an ALCH@

ontology KB, let KB† denote the ALCH ontology that is obtained by replac-
ing each annotated concept name A@S with a fresh concept name AS , and
each annotated role name r@S with a fresh role name rS , respectively. We then
extend KB† by all axioms

AS � AT , where AS and AT occur in translated axioms of KB†, and (12)

rS � rT , where rS and rT occur in translated axioms of KB† (13)

such that T is an open specifier, and the set of attribute–value pairs a : b in
S is a superset of the set of attribute–value pairs in T . We show that KB is

426 M. Krötzsch et al.

satisfiable iff KB† is satisfiable. The claim then follows from the well-known
ExpTime-completeness of satisfiability checking in ALCH. Given an ALCH@

model I of KB, we directly obtain an ALCH interpretation J over ΔI by
undoing the renaming and applying I, i.e., by mapping AS ∈ NC to A@SI ,
rS ∈ NR to r@SI , and a ∈ NI to aI . Clearly, J |= KB†. Conversely, given an
ALCH model J of KB†, we construct an ALCH@-interpretation I over domain
ΔI = ΔJ ∪ {�}, where � is a fresh individual name, and define aI := aJ for all
a ∈ NI. For a ground closed specifier S = [a1 : b1, . . . , an : bn], we set ΨS := SI .
Similarly, for a ground open specifier S = �a1 : b1, . . . , an : bn�, we define ΨS :=
SI ∪ {〈�, �〉}. Furthermore, let AI := {〈a,ΨS〉 | a ∈ AJ

S for some specifier S}
and rI := {〈a, b,ΨS〉 | 〈a, b〉 ∈ rJ

S for some specifier S}. Then I |= KB,
where � ensures that axioms such as � � A@�a : b� 	 ¬A@[a : b] remain
satisfiable. 	

The other important technique for dealing with attributed DLs is grounding,
where we eliminate set variables from an ontology, thus transforming it into a
ground ontology. As illustrated by the next result, this grounding may lead to
an ontology of exponentially larger size, resulting in an increased complexity of
reasoning.

Theorem 4. Satisfiability of ALCH@ ontologies is in 2ExpTime.

Proof. Let KB be an ALCH@ ontology, and let NKB
I the set of individual names

occurring in KB, extended by one fresh individual name x. The grounding
ground(KB) of KB consists of all assertions in KB, together with grounded ver-
sions of inclusion axioms. Let I be an interpretation over domain ΔI = NKB

I

satisfying aI = a for all a ∈ NKB
I , and Z : NV → Pfin

(
ΔI × ΔI)

be a variable
assignment. Consider a concept inclusion α of the form X1 :S1, . . . , Xn :Sn (C �
D). We say that Z is compatible with α if Z(Xi) ∈ SI,Z

i for all 1 ≤ i ≤ n. In
this case, the Z-instance αZ of α is the concept inclusion C ′ � D′ obtained by

– replacing each variable Xi with [a : b | 〈a, b〉 ∈ Z(Xi)], and
– replacing every assignment a : Xi.b occurring in some specifier by all assign-

ments a : c such that 〈b, c〉 ∈ Z(Xi).

Then ground(KB) contains all Z-instances αZ for all concept inclusions α in KB
and all compatible variable assignments Z; and analogous axioms for role inclu-
sions. In general, there may be exponentially many different instances for each
terminological axiom in KB, thus ground(KB) is of exponential size. We conclude
the proof by showing that KB is satisfiable iff ground(KB) is satisfiable, the result
then follows from Theorem 3. By construction, we have KB |= ground(KB), i.e.,
any model of KB is also a model of ground(KB). Conversely, let I be a model of
ground(KB). Without loss of generality, assume that xI �= aI for all a ∈ NKB

I \{x}
(it suffices to add a fresh individual since x does not occur in KB). For an anno-
tation set Ψ ∈ Pfin

(
ΔI × ΔI)

, we define repx(Ψ) to be the annotation obtained
from Ψ by replacing any individual δ �∈ I(NKB

I) in Ψ by xI . We let ∼ be the
equivalence relation induced by repx(Ψ) = repx(Φ) and define an interpretation
J over domain ΔJ := ΔI , where AJ := {〈δ,Φ〉 | 〈δ,Ψ〉 ∈ AI and Ψ ∼ Φ} for

Attributed Description Logics 427

A ∈ NC, rJ := {〈δ, ε,Φ〉 | 〈δ, ε,Ψ〉 ∈ rI and Ψ ∼ Φ} for r ∈ NR, and aJ := aI

for all individual names a ∈ NI. It remains to show that J is indeed a model
of KB. Suppose for a contradiction that there is a concept inclusion α that is
not satisfied by J (the case for role inclusions is analogous). Then we have some
compatible variable assignment Z that leaves α unsatisfied. Let Zx be the vari-
able assignment X �→ repx(Z(X)) for all X ∈ NV. Clearly, Zx is also compatible
with α. But now we have CJ ,Z = CI,Zx for all ALCH@ concepts C, yielding
the contradiction I �|= αZx

. 	

We regain decidability for ALC@+ by disallowing expressions of the form X.a.

Theorem 5. Satisfiability of ALCH@+ ontologies without expressions of the
form X.a is in 2ExpTime.

Proof. We reduce satisfiability in ALCH@+ (without expressions of the form
X.a) to satisfiability in ALCH, similar to the proof of Theorem4. Consider an
ALCH@+ ontology KB that contains the individual names NKB

I , along with two
fresh individual names x and x+. The grounding proceeds as in the proof of
Theorem 4, except that for Z-instances αZ of concept inclusions α, we addition-
ally replace each assignment a : + occurring in some specifier by the assign-
ment a : x+. The exponentially large grounding again yields containment in
2ExpTime. From a model J of KB, we obtain a model I of ground(KB) by set-
ting ΔI := NKB

I , aI := aJ for a ∈ NI \ {x, x+}, xI := x, xI
+ := x+,

AI := {〈δ,Ψ ∪ Φ〉 | 〈δ,Ψ〉 ∈ AJ ,Φ ∈ P ({〈a, x+〉 | 〈a, b〉 ∈ Ψ})} for A ∈ NC, and
rI := {〈δ, ε,Ψ ∪ Φ〉 | 〈δ, ε,Ψ〉 ∈ AJ ,Φ ∈ P ({〈a, x+〉 | 〈a, b〉 ∈ Ψ})} for r ∈ NR.
Clearly, if J satisfies a concept inclusion in KB, then I satisfies a corresponding
concept inclusion in ground(KB). Similarly, any concept inclusion satisfied by I
must correspond to a concept inclusion satisfied by J since x+ does not occur in
KB. The converse direction follows immediately from the proof of Theorem4. 	

Both of these upper bounds are tight, as the next theorem shows:

Theorem 6. Checking satisfiability of ALC@ ontologies without expressions of
the form X.a is 2ExpTime-hard.

Proof (sketch). We reduce the word problem for exponentially space-bounded
alternating Turing machines (ATMs) [6] to the entailment problem for ALC@

ontologies. We construct the tree of all configurations reachable from the initial
configuration, encoding the transitions in the edges of the tree, i.e., each configu-
ration is represented by an individual. The tape cells are represented as concepts
carrying an annotation encoding the cell content and position (as a binary num-
ber). We mark the current head position with an additional concept, allowing
us to copy each non-head position of the tape to successors in the configura-
tion tree, while changing the tape cell at the head position and moving the head
depending on the transition from the preceding configuration. As acceptance of a
given configuration depends solely on the state and the successor configurations,
we can propagate acceptance backwards from the leaves of the configuration tree
to the initial configuration. 	

428 M. Krötzsch et al.

5 Tractable Reasoning in Attributed EL
In this section, we investigate ALC@ fragments based on the EL family of descrip-
tion logics. This family includes EL++, which forms the logical foundation of
the OWL 2 EL profile and is widely used in applications such as in SNOMED
CT [21], a clinical terminology with global scope. SNOMED CT also features
a compositional syntax [20], which has recently been augmented with attribute
sets allowing arbitrary concrete values. While concept expressions in either of
the syntaxes can be translated into the other, EL++ provides no such attributes
(i.e., concepts with attribute sets have to be represented by introducing new
concept names). We can not only capture these attributes using our attribute–
value sets, but also include them into the reasoning process. As a (simplified)
example, the concept of a 500 mg Paracetamol tablet could be annotated with

�strengthMagnitude : 500, tradeName : PANADOL�.

The basic logic is EL@, the fragment of ALC@ which uses only ∃, 	, �
and ⊥ in concept expressions. Unfortunately, Theorem 2 shows that EL@ is
ExpTime-complete, even with severe syntactic restrictions. To overcome this
source of complexity, we impose a bound on the number of set variables per
concept inclusion and exclude X.a:

Theorem 7. Let � ∈ N. Checking satisfiability of EL@ ontologies with at most �
variables per axiom, and without expressions of the form X.a is PTime-complete.

Proof. Hardness follows from the PTime-hardness of EL [1]. For membership, we
polynomially reduce EL@ satisfiability to ELH satisfiability. Indeed, the ground-
ing used in Theorem 4 can be restricted to annotation sets that are described
in (ground) specifiers that are found in the ontology, since no new sets can be
derived without X.a. The bounded number of variables then ensures that the
grounding remains polynomial. Since neither grounding nor renaming introduce
negation, the resulting ontology belongs to the ELH fragment of ALCH. 	

Observe that we can allow some uses of X.a, given that we obey certain restric-
tions:

Theorem 8. Let �, k ∈ N. Checking satisfiability of EL@ ontologies is PTime-
complete if all of the following conditions are satisfied:

(A) axioms contain at most � variables,
(B) any closed or open specifier contains at most k expressions of the form X.a,

and,
(C) if any specifier contains an assignment a : X.b, then it does not contain any

other assignment for attribute a.

Proof. As in the proof of Theorem 7, we can obtain a polynomial grounding,
but we may need to consider annotation sets that are not explicitly specified
in the original ontology. But, due to condition (C), as the set of values for

Attributed Description Logics 429

any attribute we only need to consider one of the polynomially many sets of
values given explicitly through ground assignments in specifiers. Considering
any combination of these value sets for any of the at most k attributes that use
X.a in assignments results in polynomially many annotation sets. 	

We now show that violating any of these conditions makes satisfiability
intractable.

Theorem 9. Let KB be an EL@ ontology and consider conditions (A)–(C) of
Theorem 8 with � = 1 and k = 2. Then deciding satisfiability of KB is

(1) ExpTime-hard if KB satisfies only conditions (B) and (C),
(2) ExpTime-hard if KB satisfies only conditions (A) and (C), and
(3) PSpace-hard if KB satisfies only conditions (A) and (B).

It is an open question whether the PSpace bound in the third case is tight.
Nevertheless, it implies intractability for this case. Finally, we show that also
EL@+ (without X.a) is intractable (recall that EL@+ with X.a is already unde-
cidable by Theorem 1).

Theorem 10. Checking satisfiability of EL@+ ontologies without expressions of
the form X.a is ExpTime-complete.

Proof. ExpTime-hardness follows from Theorem 9. From the proof of Theorem 5,
we obtain an exponentially large grounding, which, together with thePTime com-
plexity of ELH, yields the ExpTime upper bound. 	

6 Attributed OWL

In this section, we consider attributed DLs with further expressive features, so
that in particular we can cover all of the expressivity of the OWL 2 DL ontology
language [17]. The underlying DL is SROIQ@, which we introduce next by
slightly extending our earlier definition of ALCH@. The set R of SROIQ@ role
expressions contains all expressions r@S and r−@S with r ∈ NR and S ∈ S.
The set C of SROIQ@ concept expressions is defined as follows

C ::= � | ⊥ |NC@S | {NI} | ¬C |C 	 C |C
 C | ∃R.C | ∀R.C | �nR.C | �nR.C
(14)

The new features are nominals {c}, which denote concepts containing one indi-
vidual, and number restrictions �nR.C and �nR.C, which express concepts of
elements with at most/at least n ≥ 0 R-successors in C. Note that we do not
include annotations on nominals. This is no real restriction, since one can use
axioms such as {c} ≡ Ac@�� to introduce a concept name Ac that may hold
such annotations. This allows us to use the same notion of interpretation as for
ALCH@. Assertions, concept and role inclusions are defined as before, based on

430 M. Krötzsch et al.

these extended sets of expressions. In addition, SROIQ@ supports complex role
inclusion axioms of the form

X1 :S1, . . . , Xn :Sn (R1 ◦ . . . ◦ R� � T), (15)

where Ri, T ∈ R are SROIQ@ role expressions, S1, . . . , Sn ∈ S are specifiers,
and X1, . . . , Xn ∈ NV are set variables occurring among Ri, T, S1, . . . , Sn. A
SROIQ@ ontology is a set of SROIQ@ assertions, and role and concept inclu-
sions.

The semantics of these constructs and axioms is defined as usual [10], where
the interpretation of roles and concepts takes annotations into account as in
Sect. 2. For instance, we may express that any drug, such as a Paracetamol
tablet, that contains at most one active ingredient and a certain amount of some
such ingredient, such as 500 mg of Acetaminophen, has the same dose:

X :�� Drug 	 �1 hasActiveIngredient.� 	 ∃hasActiveIngredient@X.� �
Drug@�strengthMagnitude : X.strengthMagnitude�

To ensure decidability of reasoning, SROIQ imposes two additional restric-
tions on ontologies: simplicity and regularity [10]. We adopt them to SROIQ@

as follows.
Simplicity is defined as in SROIQ, ignoring the annotations. The set of non-

simple roles Nn
R ⊆ NR w.r.t. a SROIQ@ ontology is defined recursively: t ∈ Nn

R

if t occurs on the right of an axiom of form (15) and either (1) � > 1 or (2) some
non-simple role s ∈ Nn

R occurs on the left of the axiom. All other role names are
simple. We now require that only simple roles occur in R in number restrictions
�nR.C and �nR.C.

A SROIQ@ ontology is regular if there is a strict partial order ≺ on the set
N±

R = NR ∪ {r− | r ∈ NR}, such that

(1) for all R ∈ N±
R and s ∈ NR, we have s ≺ R iff s− ≺ R, and

(2) for all role inclusion axioms of form (15), the inclusion R1 ◦ . . . ◦ R� � T has
one of the following forms:

T@S ◦ T@S � T@S R1 ◦ . . . ◦ R�−1 ◦ T@S � T@S r−@S � r@S

R1 ◦ . . . ◦ R� � T@S T@S ◦ R2 ◦ . . . ◦ R� � T@S

where S ∈ S, T ∈ N±
R , r ∈ NR, and R1, . . . , R� ∈ R are of form

R1@S1, . . . , R�@S� such that Ri ≺ T for all i ∈ {1, . . . , �}.

Note that we adopt the usual conditions from SROIQ for (inverted) role names,
and further require that cases with the same role T on both sides use the same
specifier S. As for SROIQ, this condition can be verified in polynomial time by
computing a minimal relation ≺ that satisfies the conditions and checking if it
is a strict partial order.

For reasoning, the step from ALCH@ to SROIQ@ leads to several dif-
ficulties. First, nominals and cardinality restrictions may lead to the entail-
ment of equalities a ≈ b, which has consequences on annotation sets (e.g.,

Attributed Description Logics 431

A@�c : a� ≡ A@�c : b� in this case). For obtaining complexity upper bounds by
transformation to standard DLs as in Sect. 4, we need to axiomatise such rela-
tionships. Second, nominals may be used to restrict the overall size of the domain,
e.g., when stating � � {a}. Besides the entailment of further equalities, this also
changes the semantics of open specifiers (e.g., we obtain A@�a : a� � A@[a : a]
in this case). As before, this requires suitable axiomatisation in SROIQ. Either
of these two effects may require exponentially many auxiliary axioms, leading
to an N3ExpTime upper bound even for ground SROIQ@. However, we will
show an N2ExpTime upper bound as for SROIQ, which is tight.

Theorem 11. Satisfiability of ground SROIQ@ ontologies is in N2ExpTime.

To prove this theorem, we first translate ground SROIQ@ into an auxiliary
DL, called SROIQ≈, and then show how to reason in this DL by an exponential
reduction to C2, the two-variable fragment with counting [18], which yields the
desired N2ExpTime upper bound. The second part of the proof is split over
several lemmas.

SROIQ≈, in addition to the usual SROIQ axioms, supports concept
inclusions of the form a ≈ b ⇒ C � D and role inclusions of the form
a ≈ b ⇒ R1 ◦ . . . ◦ R� � T . An axiom a ≈ b ⇒ α is satisfied by interpreta-
tion I if either aI �= bI or I |= α.

The translation from a ground SROIQ@ ontology KB to a SROIQ≈ ontol-
ogy KB‡ now proceeds as for ground ALCH@, by replacing annotated concept
names A@S by new names AS , and likewise for roles. However, we now introduce
names AS ∈ NC and rS ∈ NR for all possible open and closed ground specifiers
over the set of individual names in KB, as opposed to only those occurring in
KB. We then add two families of axioms for capturing the aforementioned effects.
First, to handle individual equality, for each A ∈ NC and r ∈ NR, we add axioms
a ≈ b ⇒ AS � AT and a ≈ b ⇒ rS � rT for every pair S, T of ground specifiers
that are either both open or both closed, and where the sets of pairs in S and
T are the same when replacing each occurrence of a by b. Second, to handle
bounded domain size, we consider an individual name z not occurring in KB.
Entailments of the form z ≈ a will be used to detect the bounded domain case.
We can formalise this effect by axioms z ≈ a ⇒ � � ⊔

c∈NKB
I

{c}, where NKB
I is

the set of individual names occurring in KB for all a ∈ NKB
I . To handle specifiers

in this situation, we add axioms of the form

z ≈ a ⇒ AS �
⊔

T⊇cS

AT for all A ∈ NC in KB and a ∈ NKB
I (16)

where S is a ground open specifier and T ⊇c S holds whenever T is a ground
closed specifier that contains all attribute–value pairs in S. We would need a
similar axiom as (16) for roles, but this would require disjunctions of arbitrary
roles, which is not supported in SROIQ. However, since these axioms only are

432 M. Krötzsch et al.

necessary when all elements in the domain of interpretation are the interpretation
of some individual name in NKB

I , we can instead use concept inclusions as follows:

z ≈ a ⇒ {b} 	 ∃rS .{c} �
⊔

T⊇cS

∃rT .{c} for all r ∈ NR in KB and a, b, c ∈ NKB
I

(17)

where S and T are as above. Intuitively, this axiom states that any fact rS(b, c)
entails some fact of the form rT (b, c). Finally, as previously for ALCH@, we also
add all axioms of the form (12) and (13). This finishes our construction of KB‡.

Lemma 1. For any ground SROIQ@ ontology KB, the SROIQ≈ ontology
KB‡ is equisatisfiable and can be constructed in exponential time.

The proof is analogous to the proof of Theorem 3 with one exception: when
constructing models we do not introduce a fresh, unnamed domain element �,
but rather use zJ instead (which may or may not be named).

To complete the proof of Theorem 11, it remains to show that satisfiability
checking for the exponentially larger KB‡ can still be done in nondeterministic
double exponential time w.r.t. the size of KB. To this end, we can define sim-
plicity and regularity for SROIQ≈ as for SROIQ@, by ignoring the additional
≈-prefixes and disregarding any condition related to annotations. In particu-
lar, we obtain a strict partial order ≺, as before, and, since KB‡ only con-
tains role inclusions translated directly from those in KB, it also satisfies the
regularity restrictions. We define the ◦-depth of a regular SROIQ≈ ontology
KB≈ to be the maximal number k for which there is a chain of (inverted) roles
R1 ≺ R′

1 ≺ . . . ≺ Rk ≺ R′
k, such that KB≈ contains complex role inclusions with

Ri occurring as one of several roles on the left and R′
i on the right. Intuitively

speaking, the ◦-depth bounds the number of axioms with ◦ along paths of ≺.
Clearly, the ◦-depth of KB‡ is the same as for KB, in spite of the exponential
increase in the number of axioms.

Lemma 2. Checking satisfiability of a SROIQ≈ ontology KB≈ of size s and ◦-
depth d is possible in NTIME (2p(s·2q(d))), where p, q are some fixed polynomial
functions.

In particular, if an ontology is of size O(2n) but retains a ◦-depth in O(n),
then reasoning is still in N2ExpTime. To show this, we adapt the translation
from SROIQ to SHOIQ as given by Kazakov [12], which is based on repre-
senting the effects of complex role inclusion axioms using concept inclusions. As
a first step, one constructs, for any non-simple role expression R, a nondetermin-
istic finite automaton BR that describes the regular language of all sequences
of roles that entail R [10]. We modify the known construction for SROIQ≈ by
allowing transitions in this automaton to be labelled not just by role expressions
S, but also by conditional expressions a ≈ b ⇒ S. The idea is that these tran-
sitions are only available if the precondition holds. By a slight adaptation of a
similar observation of Horrocks and Sattler [11, Lemma 11], we obtain:

Attributed Description Logics 433

Lemma 3. For a SROIQ≈ ontology KB≈ and a role expression R, the size of
BR is bounded exponentially in the ◦-depth of KB≈.

Kazakov considers a normal form of axioms, which we can construct analo-
gously for SROIQ≈ [12, Table 1]. We can ensure that conditions a ≈ b occur in
concept inclusions only if they have the form a ≈ b ⇒ A � B with A,B ∈ NC.
The automaton B(R) is then used to replace every axiom of the form A � ∀R.B
(which never has ≈-conditions) by the following axioms:

A � AR
q q starting state of B(R) (18)

a ≈ b ⇒ AR
q1 � ∀S.AR

q2 q1
a≈b⇒S→ q2 a transition of B(R) (19)

AR
q � B q a final state of B(R) (20)

where the condition a ≈ b in axioms (19) can be omitted if it is not given. The
resulting SROIQ≈ ontology still contains axioms with preconditions a ≈ b,
but no more ◦. Every normalised SROIQ axiom α can be translated into a
C2 formula c2(α) as shown in [12, Table 1]. A SROIQ≈ axiom of the form
a ≈ b ⇒ α accordingly can be translated as (∃=1x.Aa(x)∧Ab(x)) → c2(α). This
completes the proof of Theorem 11.

We can lift this result to non-ground ontologies without increasing
complexity:

Theorem 12. Satisfiability of SROIQ@ ontologies is N2ExpTime-complete.

Proof. Hardness is immediate given the hardness of SROIQ. The proof of mem-
bership uses the same grounding approach as the proof of Theorem 4, which is
easily seen to be correct. This grounded ontology ground(KB) is exponentially
larger than the input KB, but the regularity conditions for SROIQ@ ensure that
it has the same (linearly bounded) ◦-depth. Moreover, while the transformation
used for axiomatising ground SROIQ@ ontologies is also exponential, it is poly-
nomial in the number of possible ground annotation sets; this number remains
single exponential w.r.t. the size of KB, even when considering ground(KB).
Therefore, we find that the auxiliary SROIQ≈ ontology ground(KB)‡ is still
only exponential w.r.t. KB while having a polynomial ◦-depth. The claimed
complexity therefore follows from Lemma 2. 	

7 Conclusion

Current graph-based knowledge representation formalisms suffer from an inabil-
ity to handle meta-data in the form of sets of attribute–value pairs. These limi-
tations show up even when dealing with purely abstract data and are orthogonal
to datatype support in the formalisms. We therefore believe that KR formalisms
must urgently take up the challenge of incorporating annotation structures into
their expressive repertoire.

Our family of attributed description logics represents a potential solution
in the context of DLs, and covers attributed SROIQ, the DL underlying

434 M. Krötzsch et al.

OWL 2 DL. In contrast to our recent findings on rule-based logics support-
ing similar annotations, attributed DLs often incur an increased reasoning com-
plexity due to the open-world nature of DLs. We have presented a grounding-
based decision procedure and identified the special cases of ground ontologies
and structural restrictions on axioms, for which this overhead can be avoided.
In particular, this ensures the tractability of attributed EL.

More work is now needed regarding practical reasoning algorithms in
attributed DLs. We believe that similar approaches to those used for reason-
ing with nominal schemas might be effective here. A related practical issue is
the syntactic integration of the new features in OWL. The existing annotation
mechanism of OWL 2 [17] can be used to store attribute-value sets, e.g., of asser-
tions, but is not general enough to capture our extended syntax for arbitrary
axioms. Finally, there are certainly many further expressive mechanisms related
to modelling with annotations that should be considered and investigated in
future studies of this new field.

Acknowledgements. This work is partly supported by the German Research Foun-
dation (DFG) in CRC 912 (HAEC) and in Emmy Noether grant KR 4381/1-1.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.,
Saffiotti, A. (eds.) Proceeding of 19th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005)

2. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even,
S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg
(1981). doi:10.1007/3-540-10843-2 7

3. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards
a mashup to build bioinformatics knowledge systems. J. of Biomed. Inf. 41(5), 706–
716 (2008)

4. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R.,
Hellmann, S.: DBpedia - A crystallization point for the Web of Data. J. Web
Semant. 7(3), 154–165 (2009)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.:
Linking data to ontologies: The description logic DL-LiteA. In: Proceedings of the
OWLED 2006 Workshop on OWL: Experiences and Directions, 10–11 November
2006, Athens, Georgia, USA (2006)

6. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

7. Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational dependen-
cies and their inference problem. In: Proceeding of the 13th Annual ACM Sympo-
sium on Theory of Computation (STOC 1981), pp. 342–354. ACM (1981)

8. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol.
8796, pp. 50–65. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 4

9. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, 11–13 June 2007, Beijing, China, pp. 31–40 (2007)

http://dx.doi.org/10.1007/3-540-10843-2_7
http://dx.doi.org/10.1007/978-3-319-11964-9_4

Attributed Description Logics 435

10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Proceeding of 10th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 57–67.
AAAI Press (2006)

11. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms.
Artif. Intell. 160(1), 79–104 (2004)

12. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Brewka, G., Lang,
J. (eds.) Proceeding of 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), pp. 274–284. AAAI Press (2008)

13. Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL:
Nominal schemas for integrating rules and ontologies. In: Proceeding of 20th Inter-
national Conference on World Wide Web (WWW 2011), pp. 645–654. ACM (2011)

14. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics:
Ontologies for knowledge graphs. Technical report, TU Dresden (2017). https://
iccl.inf.tu-dresden.de/web/AtDLs/en

15. Krötzsch, M., Rudolph, S.: Nominal schemas in description logics: Complexities
clarified. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Proceeding of 14th Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR 2014), pp. 308–317. AAAI Press (2014)

16. Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised
property graphs. In: Proceeding of 26th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2017). AAAI Press (2017, to appear) https://iccl.inf.
tu-dresden.de/web/MARS/en

17. OWL Working Group, W: OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation (27 October 2009). http://www.w3.org/TR/
owl2-overview/

18. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-
tifiers. J. Logic Lang. Inf. 14, 369–395 (2005)

19. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc.
Inf. Sci. Technol. 36(6), 35–41 (2010)

20. SNOMED CT: Compositional Grammar Specification and Guide
v2.02. IHTSDO (22 May 2015). http://doc.ihtsdo.org/download/doc
CompositionalGrammarSpecificationAndGuide Current-en-US INT 20150522.
pdf. Accessed 27 Jul 2017

21. Spackman, K.A., Campbell, K.E., Côté, R.A.: SNOMED RT: A reference termi-
nology for health care. In: Masys, D.R. (ed.) Proceeding 1997 AMIA Annual Fall
Symposium, pp. 640–644. Journal of the American Medical Informatics Associa-
tion, Symposium Supplement, Hanley & Belfus (1997)

22. Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for repre-
senting and reasoning with annotated semantic web data. In: Fox, M., Poole, D.
(eds.) Proceeding of 24th AAAI Conference on Artificial Intelligence (AAAI 2010).
AAAI Press (2010)

23. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Trans.
Comput. Logic 11(2), 10:1–10:41 (2010)

24. Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

https://iccl.inf.tu-dresden.de/web/AtDLs/en
https://iccl.inf.tu-dresden.de/web/AtDLs/en
https://iccl.inf.tu-dresden.de/web/MARS/en
https://iccl.inf.tu-dresden.de/web/MARS/en
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://doc.ihtsdo.org/download/doc_CompositionalGrammarSpecificationAndGuide_Current-en-US_INT_20150522.pdf
http://doc.ihtsdo.org/download/doc_CompositionalGrammarSpecificationAndGuide_Current-en-US_INT_20150522.pdf
http://doc.ihtsdo.org/download/doc_CompositionalGrammarSpecificationAndGuide_Current-en-US_INT_20150522.pdf

Reliable Granular References to Changing
Linked Data

Tobias Kuhn1(B), Egon Willighagen2, Chris Evelo2, Núria Queralt-Rosinach3,
Emilio Centeno4, and Laura I. Furlong4

1 Department of Computer Science,
Vrije Universiteit Amsterdam, Amsterdam, Netherlands

t.kuhn@vu.nl
2 Department of Bioinformatics, NUTRIM,

Maastricht University, Maastricht, Netherlands
3 Department of Integrative Structural and Computational Biology,

The Scripps Research Institute, La Jolla, USA
4 Research Group on Integrative Biomedical Informatics (GRIB),

Institut Hospital Del Mar D’Investigacions Mèdiques (IMIM),
Universitat Pompeu Fabra (UPF), Barcelona, Spain

Abstract. Nanopublications are a concept to represent Linked Data in
a granular and provenance-aware manner, which has been successfully
applied to a number of scientific datasets. We demonstrated in previous
work how we can establish reliable and verifiable identifiers for nanopub-
lications and sets thereof. Further adoption of these techniques, however,
was probably hindered by the fact that nanopublications can lead to an
explosion in the number of triples due to auxiliary information about the
structure of each nanopublication and repetitive provenance and meta-
data. We demonstrate here that this significant overhead disappears once
we take the version history of nanopublication datasets into account,
calculate incremental updates, and allow users to deal with the specific
subsets they need. We show that the total size and overhead of evolving
scientific datasets is reduced, and typical subsets that researchers use for
their analyses can be referenced and retrieved efficiently with optimized
precision, persistence, and reliability.

1 Introduction

Datasets in general and Linked Data resources in particular play an increasingly
important role in data-driven research, as exemplified by the datasets provided
by WikiPathways [20] and DisGeNET [32], and overarching initiatives such as
Bio2RDF [3]. Reproducibility and persistence have been ongoing concerns in this
regard, as dataset identification and access has often been brittle and unreliable.
Datasets based on Linked Data, as most types of datasets, are typically quite
dynamic and change over time [9,36], and capturing the data’s provenance [24]
is crucial for their proper interpretation and reuse. Moreover, as we will show,
scientific data analyses typically use relatively small subsets of Linked Data
resources, but we currently lack reliable methods to refer to such subsets.
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 436–451, 2017.
DOI: 10.1007/978-3-319-68288-4 26

Reliable Granular References to Changing Linked Data 437

Fig. 1. Average triple counts of existing nanopublication datasets.

In the context of the recent initiatives to promote FAIR data publishing
[41], Linked Data can contribute to the requirement of interoperability across
datasets. We argue that researchers should—in papers as well as the software
code for computational analyses—be able to exactly specify what dataset they
are using as input. Currently, the best researchers can do is to provide version
numbers and bibliographic references in papers, like “we used DisGeNET-RDF
version 4.0 [32]”, and to make the downloaded dataset explicit in the source code
of their computational analyses, like in the following line of a Unix script:

wget http://rdf.disgenet.org/download/v4.0.0/geneDiseaseAssociation.ttl.gz

Run analysis here

We can therefore identify the following two problems with the current practice
of dataset references: (1) Researchers can only specify at the dataset level which
data they use as input. They cannot reliably point to the exact subset that is
needed for a given analysis. And (2) researchers cannot reliably refer to specific
versions of evolving datasets; even with version numbers included, researchers
cannot be sure that others can later retrieve exactly the same dataset to replicate
the results. We argue that we can address both problems with an approach of
incremental dataset definitions based on the technologies of nanopublications
and trusty URIs.

Nanopublications [23] are tiny packages of Linked Data that come with prove-
nance and metadata attached [12]. In previous work, we showed how identifers
based on cryptographic hashes, called trusty URIs [18,19], can be used in com-
bination with nanopublications to make them (and their entire reference trees)
immutable and verifiable, two important properties for scientific data. In contrast
to other proposals for data citations [29], such a cryptography-empowered app-
roach can provide us with strong technical—rather than weaker organizational—
guarantees with respect to the integrity and original state of datasets.

Fine-grained and provenance-aware approaches like nanopublications, how-
ever, come at a cost. The internal structure of each nanopublication has to be
defined, and the provenance and metadata has to be repeated even if it is vir-
tually identical for a large number of them. This effect can be seen in Fig. 1 for
a number of existing dataset that use the nanopublication format: LIDDI [2],
neXtProt [6], GeneRIF-AIDA [15], three versions of DisGeNET [31], and two

438 T. Kuhn et al.

Table 1. Characteristics of existing nanopublication datasets.

Dataset Nanopublications Total triples Triples
outside of
head (t)

Decontextualized
triples (d)

Ratio d/t

LIDDI 98085 2051959 1659619 1364314 0.8221

neXtProt 4025981 156263513 140159589 76722914 0.5474

GeneRIF-
AIDA

156026 2340390 1716286 733208 0.4272

DisGeNET
v4.0.0.0

1414902 48106668 38202354 5390141 0.1411

DisGeNET
v3.0.0.0

1018735 34636990 27505845 3908268 0.1421

DisGeNET
v2.1.0.0

940034 31961156 25380918 3667767 0.1445

OpenBEL
20131211

74173 2186874 1890182 1308625 0.6923

OpenBEL
1.0

50707 1502574 1299746 903066 0.6948

versions of a dataset extracted from OpenBEL1. We see that the nanopublica-
tion format implies a significant overhead in terms of number of triples. The main
content of a nanopublication in the assertion graph account for just a minority
of the total triples. While the provenance and publication info graphs provide
additional context for the assertion triples, the head graph’s sole purpose is to
link to the other graphs and thereby to hold the nanopublication together.

While the provenance and publication information contents are by no means
useless and therefore not purely an overhead, they tend to be quite repetitive.
This is at least partly caused by the fact that most existing nanopublication
datasets are extracted from “non-nano” datasets that do not capture granular
metadata, and therefore no granular metadata is available for export. The over-
head is in any case significant for existing datasets, as shown in Table 1. Even
when disregarding the triples of the head graph, the numbers of triples is sig-
nificantly larger than what we get if we “decontextualize” the triples to attach
provenance and metadata only to the entire dataset and remove all duplicates. A
decontexualized dataset, for example, would state that a given publication was
the source of some entries in the dataset, but not refer to these exact entries, as
enforced with nanopublications. We will use this method of decontextualization
also below for our analyses. DisGeNET is an extreme example here, with the
number of decontextualized triples making up only 14% of the number of nanop-
ublication triples, caused by the repetition of triples across nanopublications.

This significant overhead that comes with the nanopublication technology
might have been a hindrance in its further adoption. We show here, however,
that nanopublications together with an approach to represent and construct

1 https://github.com/tkuhn/bel2nanopub.

https://github.com/tkuhn/bel2nanopub

Reliable Granular References to Changing Linked Data 439

incremental datasets and subsets thereof lead to a situation where the benefits
of the fine-grained nanopublication structure offset the costs, even for the most
extreme case of the DisGeNET dataset.

2 Background

Versioning and capturing the evolution of Linked Data has been a concern and
research area for many years. While the early work focused on capturing the
changes in ontologies [1,39], later work included approaches to combine RDF
versioning with web archiving [37], long-term observation of the dynamics of
Linked Data [13], and efficient archiving of dynamic Linked Data [9]. There
have also been a few approaches that deal with access and versions of subsets of
Linked Data resources [34,35].

Providing version indicators for datasets is considered common best prac-
tice2, but version numbers cannot guarantee that data providers do not violate
a dataset version’s immutability. To provide such kinds of strong technical guar-
antees, approaches inspired by the Git versioning system have been proposed
[11,38] that involve cryptographic hash values to enforce immutable versions.
Similar approaches to reliable incremental Linked Data versioning have been
developed by others [10,21], including applications to Big Data environments
[5]. Outside of the Linked Data world, approaches for cryptographically strong
data archiving have been proposed for decentralized systems like Bitcoin [22]
and BitTorrent [7].

In our own previous work, we showed how nanopublications with trusty URIs
can make data publishing verifiable and reliable, without depending on a central
server or trusted authority [16]. In the same work, we also proposed a method
to describe datasets as nanopublications themselves, thereby making references
to entire sets of nanopublications verifiable through recursive hashing.

While a number of approaches exist on each of (1) Linked Data versioning,
(2) cryptographically reliable dataset identifiers, and (3) references to subsets
of larger datasets, and while these aspects are covered by the data citation
recommendations of the Research Data Alliance [33], there are currently no
concrete solutions that combine them all. In other words, existing approaches
do not allow for cryptographically reliable references at high granularity in terms
of both, time (i.e. versions) and space (i.e. subsets). We will present and evaluate
such an approach below.

3 Approach

Our approach consists of the following three aspects: (1) We use the nanop-
ublication concept to model datasets and their versions, (2) provide a method
to create incremental datasets, and (3) connect these components to allow for
flexible and reliable references to subsets of data resources.

2 See e.g. [33] and https://www.w3.org/TR/dwbp/#dataVersioning.

https://www.w3.org/TR/dwbp/#dataVersioning

440 T. Kuhn et al.

Fig. 2. Schematic depiction of a dataset specified with nanopublication indexes (top),
the occurred content changes (middle), and their result as a new dataset version that
reuses as much as possible. The blue index shows a subset definition.

3.1 Incremental Datasets with Nanopublications

Figure 2 schematically depicts the gist of our approach. It is based on our previ-
ous proposal to define sets of nanopublications as nanopublications themselves
[17]. We call these set-defining nanopublications index nanopublications, as they
consist of direct and indirect links to the nanopublications they contain as ele-
ments. An index nanopublication can directly link to elements via links of the
type has element (these elements are marked with lowercase letters in Fig. 2),
but can also point to subsets in the form of other indexes via links of the type
has sub-index. Sub-indexes can be used, for example, to partition a dataset into
different parts each containing a particular type of data. Finally, for nanopub-
lication sets that are large but have no such partitioning, we need a method
to ensure that all these index nanopublications remain small, as this is a core
feature of the nanopublication concept. For that reason, we introduce relations
of the type appends to that allows for more nanopublications being added in a
new index, once an index is full. The size limit of a nanopublication index is set
to 1000 entries (either elements or sub-indexes). All these links are established
via the trusty URIs of the referred nanopublication, and thereby the whole ref-
erence tree can be cryptographically verified from just the URI of the top index
nanopublication [19]. We will come back below to the issue of how to retrieve
such sets of nanopublications.

Reliable Granular References to Changing Linked Data 441

Because of its granularity, this approach provides excellent opportunities to
reuse parts of a dataset for a new version in an incremental manner. In general,
there are three kinds of changes that can happen: A nanopublication can be
removed from a dataset (such as b in Fig. 2); a nanopublication can be added
(x); and a nanopublication can be changed and replaced by a new version (g
being replaced by g′). All remaining nanopublications remain unchanged and
can thereby be reused, i.e. linked from an index nanopublication belonging to
the new version of the dataset. Moreover, we might also be able to reuse some of
the nanopublication indexes, namely the ones representing subsets that didn’t
change. For both, content and index nanopublications, we can furthermore estab-
lish supersedes links to the respective previous versions, to allow users to navigate
back in time through the version history.

It is important to note that the previous version remains untouched: None of
the existing nanopublications are changed (trusty URIs in fact enforce this) and
by starting from the URI of the previous version and follow its links, the existence
of the new version is not even noticed. Turning this property around implies that
defining sets of nanopublications in this way does not require any control over the
contained elements. Everybody can define after the fact (i.e. after the release of
a dataset) arbitrary subsets by creating the appropriate index nanopublications.
These subsets are maximally flexible in the sense that they can reuse any possible
subset, be augmented with new nanopublications, and even combine subsets of
different datasets, as illustrated by the blue index nanopublication in Fig. 2. In
such a case, one has to publish the new index nanopublications to be able to
publicly refer to the specified subset, but no part of the content needs to be
republished, and its original state is easy to verify.

We base our implementation and evaluation on the specific technologies and
formats underlying Linked Data and nanopublications, but our general approach
is portable to any type of knowledge representation with declarative monotonic
semantics, which by their nature allow for subdividing representations into small
independent pieces.

3.2 From Snapshots to Incremental Datasets

To actually generate an incremental dataset for a nanopublication-based
resource, one has to ideally record all changes when they occur and build the
proper index structure accordingly. However, such a direct construction is often
non-trivial to integrate in existing data production pipelines, which is why first
producing a full new snapshot and then calculating an incremental update is
often more practical, in particular for smaller datasets. We therefore present
such an approach here and apply it in the evaluations described below.

To calculate incremental updates of nanopublications, we apply the two con-
cepts of fingerprints and topics. These two concepts establish identity relations
that are weaker than the one that is enforced by trusty URIs. With trusty URIs,
any tiny change in a nanopublication, such as a new timestamp, leads to a new
URI and therefore to a new nanopublication. In contrast to trusty URIs, neither

442 T. Kuhn et al.

fingerprints nor topics are visible to the users of the dataset, but are merely a
method to calculate incremental updates from dataset snapshots.

Fingerprints—like trusty URIs—correspond to a cryptographic hash value
that is based on the RDF content of nanopublication, but consider only a subset
of the triples and may apply preprocessing and normalization. In the simplest
case, a fingerprint ignores the content of the timestamp found in the publication
info graph. Other variants are possible, such as ignoring the entire publication
info graph, and this can be configured for a given dataset and the intended use of
its incremental versioning. The purpose of these fingerprints is to decide whether
a new nanopublication (i.e. a nanopublication that would get a new trusty URI)
is “new enough” to warrant an update, or whether a nanopublication from the
previous version of the dataset can be reused.

Topics are similar to fingerprints, but normally correspond to a URI instead
of a hash. A new nanopublication with an existing topic is included in the new
dataset version, but the new nanopublication will be marked as an update of the
old. The addition of supersedes-links as shown in Fig. 2 thereby provides users
a access to the version history on the level of individual nanopublications. By
default, the topic is calculated to be the URI that has the highest occurrence in
the subject position of the assertion triples, but this can be configured to match
the characteristics of a given dataset.

It is worth noting that the matching of fingerprints and topics comes at a
cost, in particular the cost of keeping a mapping table during the process. For
large datasets, it can therefore pay off to record changes as they happen, which
eliminates the need to reconstruct changes with fingerprints or topics.

3.3 Granular and Reliable Retrieval

So far we have only described our approach from a conceptual level assuming a
reliable method to follow links. The most straight-forward approach to actually
do this is the “follow your nose” principle3 of URI dereferencing, which however
is in general not reliable and can be very slow, depending on web servers a
user has no control over. This problem is particularly grave for large datasets
and those spanning multiple web domains. We also need to provide convenient
methods for users to make their own subset definitions publicly available.

We address these problems by applying and using the decentralized server
network that we demonstrated in previous work, based on nanopublications and
trusty URIs [17]. With this network, we do not have to assume that URIs are
efficiently resolvable, but we can instead rely on the redundancy of the network
and the verifiability of trusty URIs. This nanopublication network has grown in
the last months and years, consisting now of 15 server instances on 10 distinct
physical servers in 8 countries.4 Our approach relies on this server network to let
data producers publish incremental datasets, and to allow researchers to publish
index nanopublications to precisely specify the subsets of existing Linked Data
resources they are using for their analyses.
3 https://www.w3.org/wiki/FollowYourNose.
4 http://purl.org/nanopub/monitor.

https://www.w3.org/wiki/FollowYourNose
http://purl.org/nanopub/monitor

Reliable Granular References to Changing Linked Data 443

4 Implementation and Methods

We implemented our approach in a command line tool, and evaluated it with
two studies. We performed a technical study covering the publishing aspect to
find out about the overall data volume for changing datasets with our approach
and to compare it to idealized alternative approaches of decontextualized triples.
We then performed a second study to investigate how our approach performs on
typical subsets of datasets that are used in scientific studies.

4.1 Nanopublication Operation Tool: npop

Based on our existing nanopub-java library5 [14], we implemented a command
line tool that we call npop (standing for nanopublication operations). The fol-
lowing commands are relevant to the work presented here:

– count can be used to count nanopublications and their triples from a file or
stream. It is therefore like a wc command for nanopublications.

– filter reads nanopublications from a file or stream and filters them by given
URIs or literals. It is therefore like a grep command for nanopublications.

– extract retrieves triples from the different nanopublication graphs.
– reuse takes a dataset snapshot and its previous version, and generates an

incremental update from it. Nanopublications from the previous version with
a matching fingerprint are reused, and for those with a matching topic (but
not a matching fingerprint) a supersedes-link is introduced.

– ireuse does the same as reuse but for index nanopublications.
– fingerprint calculates the fingerprints for nanopublications following a spec-

ified configuration.
– topic calculates the topics according to a specified configuration.
– decontext produces decontextualized triples for given nanopublications, for

comparative studies such as the ones presented in this paper.

These commands, together with the commands from the underlying nanopub-
java library (such as get to retrieve nanopublications and publish to upload
them to the network), allowed us to perform the studies to be described below,
and they are available for other data producers to apply to their own datasets.

4.2 Evaluation on Data Publishing

The first evaluation was performed on WikiPathways, a community-curated open
database of biological pathways [20], with the aim to find out whether our app-
roach is beneficial on the data producer side. Recently, the RDF export of the
WikiPathways database was established [40], making the content of the database
much easier to integrate. This RDF export contains information from the original
WikiPathways and Reactome pathways [4,8]. Using a number of SPARQL CON-
STRUCT queries, three types of nanopublications are generated:6 interactions,
5 https://github.com/Nanopublication/nanopub-java.
6 https://github.com/wikipathways/nanopublications.

https://github.com/Nanopublication/nanopub-java
https://github.com/wikipathways/nanopublications

444 T. Kuhn et al.

complex participation, and pathway participation. Importantly, only nanopub-
lications are generated for statements if the fact is supported by a publication,
marked with a PubMed database identifier. Overall, the dataset currently con-
sists of a bit over 10 000 nanopublications.

For this evaluation, we retroactively generated nanopublication snapshots
from old data dumps, corresponding to 11 monthly builds between June 2016 to
May 2017 (January 2017 is missing). For these we built an incremental dataset
using the npop tool. We can then compare the size of the resulting cumulative
dataset, growing over 11 months, with the size of the nanopublication snapshots
as well as decontextualized versions thereof, to evaluate whether incremental
versioning can indeed offset the increased space needs of nanopublications.

This is not a very fair comparison, of course, because nanopublications come
with valuable context-dependent information on the one hand and because incre-
mental versioning could just as well be applied to decontextualized data on the
other. We will keep the first point in mind when interpreting the results, and
to address the second point we calculate an incremental version for the decon-
textualized case too. Three general approaches exist for versioning of arbitrary
RDF data [9,36]: independent copies, change-based approach, and timestamp-
based approach. Independent copies correspond to what we called dataset snap-
shots, i.e. non-incremental versions. The change-based approach keeps separate
lists of added and removed triples for each version after the first, whereas the
timestamp-based approach keeps all triples in the same collection but attaches
timestamps of their addition or removal. While the latter two have different
advantages and shortcomings, they lead to the same overall triple count (if we
require a triple to be duplicated to acquire more than one timestamp). As a fur-
ther point of comparison for our study, we therefore use this overall triple count
for an incremental decontextualized dataset according to the change-based or
timestamp-based approach.

4.3 Evaluation on Data Analyses

With the second evaluation we wanted to find out whether our approach is bene-
ficial on the consumer end. It was performed on DisGeNET [30], one of the most
comprehensive databases on human diseases and their genes that is publicly
available. DisGeNET is available in RDF [32] and nanopublication [31] formats.
There are currently three releases of the DisGeNET nanopublication dataset
(version 2.1 with 940 034 nanopublications, version 3.0 with 1 018 735 nanopub-
lications, and version 4.0 with 1 414 902 nanopublications), which correspond to
three most recent releases of the database. The releases differ mainly in data
content due to the incremental update of the database, the incorporation of new
data sources for the gene-disease associations, and the incorporation of new data
attributes.

To find out about the use of this dataset by researchers, we looked at the pub-
lications that cited one of the DisGeNET papers during 2017 (31 publications
as of 5 May 2017). We were interested in studies that included the DisGeNET
dataset or subsets thereof in their analyses, but closer inspection revealed that

Reliable Granular References to Changing Linked Data 445

six of these publications did not actually use the data (but only mentioned Dis-
GeNET as related work) and another five of them used the data but did not
include them in any analyses (e.g. describing a tool that imported the data). For
the remaining 20 publications, we manually determined whether the authors
used the whole dataset or specific subsets. If the study used a specific subset, we
looked for information about how this selection was performed (e.g. based on a
particular disease or a family of genes, or using a pre-defined value of some of
the DisGeNET data attributes as such as the DisGeNET score, among others).
Finally, we matched these subsets to the corresponding subsets of our incremen-
tal nanopublication-based dataset to find out what set of nanopublications they
would have used if they had followed our proposed approach.

From this empirical collection of used subsets, we can then investigate the
typical size of such database subsets used for scientific analyses. We can also
compare the size of these subsets to the decontextualized version of DisGeNET
to find out whether the overhead of nanopublications is actually still an over-
head once we look at specific subsets. We can reliably refer to such subsets
with nanopublications, but we have to refer to (and therefore handle) the entire
dataset for data based on regular (decontextualized) triples.

Finally, to measure the practicality of retrieving subsets from the server net-
work, we also measure the time it takes to do so for a typical subset. To put
that into perspective, we also measure the time needed to download the entire
dataset from the disgenet.org website.

5 Results

Table 2 gives an overview of the structure of the incremental dataset for
WikiPathways, showing the number of nanopublications for each release, the
number of reused nanopublications from the previous version (by fingerprint
matching), and the number of new nanopublications. The right-hand side of the
table shows how many of the new ones were updates of nanopublications from
the previous version (by topic matching). We see that the datasets underwent
fundamental changes in the first two months, with a majority of nanopublica-
tions being replaced. Afterwards, the changes are much less drastic, in the sense
that the majority of nanopublications are reused and often a majority of the
new ones can be linked to previous nanopublications of the same topic.

Figure 3 shows the gains from the incremental approach to nanopublication-
based versioning (light blue line). After the first two tumultuous months, the
gain in number of triples to the cumulative nanopublication-based snapshots
(dark blue line) quickly widens. In the end, we only need 23% (0.78M/3.38M)
of the triples to express the same version history. Comparing the two to our
main reference point—cumulative snapshots of decontextualized triples (dark
red line)—we see that the overhead of the nanopublication snapshots is in the
end 54% (1 – 1.55M/3.38M), meaning that we could drop 54% of the triples if
we weren’t interested in the fine-grained context. With the incremental nanop-
ublication datasets, however, this overhead turns into a “negative overhead” of

446 T. Kuhn et al.

Table 2. Overview of the incremental dataset generated for WikiPathways.

Version Nanopublications Reused (%) New (%) Update (%) Addition (%)

20160610 9018 0 (0.0) 9018 (100.0) 0 (0.0) 9018 (100.0)

20160710 10173 1405 (13.8) 8768 (86.2) 3 (0.0) 8765 (100.0)

20160810 10123 3836 (37.9) 6287 (62.1) 0 (0.0) 6287 (100.0)

20160910 10124 9838 (97.2) 286 (2.8) 0 (0.0) 286 (100.0)

20161010 10127 9620 (95.0) 507 (5.0) 16 (3.2) 491 (96.8)

20161110 13958 10041 (71.9) 3917 (28.1) 18 (0.5) 3899 (99.5)

20161210 13975 13794 (98.7) 181 (1.3) 152 (84.0) 29 (16.0)

20170210 14323 13743 (96.0) 580 (4.0) 176 (30.3) 404 (69.7)

20170310 14319 13938 (97.3) 381 (2.7) 230 (60.4) 151 (39.6)

20170410 14323 13972 (97.5) 351 (2.5) 317 (90.3) 34 (9.7)

20170510 14323 13980 (97.6) 343 (2.4) 340 (99.1) 3 (0.9)

Fig. 3. Overall size of the evolving WikiPathways version history (Color figure online).

98% (1 – 1.55M/0.78M), meaning that we needed 98% more triples if we were
to switch to decontextualized snapshots. We see that the overhead of nanopub-
lications has indeed turned into a gain.

As we noted above, this comparison is not perfectly fair on either side. Still
keeping in mind that decontextualized triples carry less information, we can com-
pare our incremental nanopublication-based approach to what could be ideally
achieved with a change-based or timestamp-based approach on decontextualized
triples (light red line). The overhead of our approach to this idealized setting is
41% (1 – 0.46M/0.78M). The fact that this is again an actual overhead is not
surprising, as it is always possible to handle less information more efficiently.
We will show below, however, that even this overhead is in fact turned into a
gain when we look at the side of data consumers and the typical subsets they
use.

Table 3 shows the result of the second empirical study on the subsets of
DisGeNET used and reported in scientific papers from 2017. Only three out of
the 20 papers used the entire dataset. The distribution of the subset sizes is also

Reliable Granular References to Changing Linked Data 447

Table 3. DisGeNET subsets used and reported in papers, sorted by ascending size.

nanopub- rel. size rel. size to
lication triple to full decontext.

DOI of paper count count dataset version

10.21873/cgp.20028 14 476 0.00001 0.00009
10.3892/ijmm.2017.2853 482 16388 0.00034 0.00304
10.1007/s12539-017-0213-z 533 18122 0.00038 0.00336
10.1038/srep46760 782 26588 0.00055 0.00493
10.1016/j.preteyeres.2017.02.001 1711 58174 0.00121 0.01079
10.1101/gr.210740.116 2014 68476 0.00142 0.01270
10.1186/s12920-017-0259-0 2158 73372 0.00153 0.01361
10.1016/j.jprot.2017.03.015 4859 165206 0.00343 0.03065
10.1016/j.neuron.2017.01.033 18098 615332 0.01279 0.11416 *
10.1021/acs.jcim.6b00725 21336 725424 0.01508 0.13458
10.1101/119099 31105 1057570 0.02198 0.19620
10.1002/jcb.25799 61198 2080732 0.04325 0.38603
10.3390/ncrna3020020 78742 2677228 0.05565 0.49669
10.1007/978-1-4939-6843-5 13 83771 2848214 0.05921 0.52841
10.1038/srep43632 101297 3444098 0.07159 0.63896
10.1016/j.dib.2017.04.001 196108 6667672 0.13860 1.23701
10.1186/s13148-017-0336-4 326472 11100048 0.23074 2.05932
10.1038/srep40154 1414902 48106668 1.00000 8.92494
10.1038/srep42638 1414902 48106668 1.00000 8.92494
10.1002/pmic.201700056 1414902 48106668 1.00000 8.92494

average: 258769 8798156 0.18289 1.63227
median: 26221 891497 0.01853 0.16539

average of proper subsets: 54746 1861360 0.03869 0.34533
median of proper subsets: 18098 615332 0.01279 0.11416

shown in Fig. 4 as a histogram. The two peaks indicate that researchers tend
to use a dataset either entirely or only a very small subset of it. For 40% of
the papers we studied (8 out of 20), less than 1% of the dataset was used. The
largest proper subset used consisted of just 23% of the data.

We can again compare these numbers to the idealized setting without nanop-
ublications where triples are decontextualized and where reliable identifiers only
exist at the dataset level. In comparison to such a decontextualized snapshot, 15
out of the 20 studied subsets have a lower triple count (green). For a typical sub-
set, the overhead of nanopublications in terms of number of triples is therefore
again turned into a gain (in addition to the gains with respect to precision, ver-
ifiability and fine-grained provenance and metadata). We should also remember
that DisGeNET is an extreme case in terms of triple overhead.

Finally, Fig. 5 shows the results for the retrieval times of a typical subset
(the subset with the median size value of the proper subsets, marked with *
in Table 3). We see that the retrieval via the server network takes about the
same time as downloading the whole dataset from disgenet.org (both roughly

448 T. Kuhn et al.

Fig. 4. Histogram of the subset sizes (in triples) in relation to the entire dataset.

Fig. 5. Download times for the full DisGeNET dataset (v4.0.0.0) and a typical subset
(marked with * in Table 3; n=10 in both cases; whiskers show +/– 1.5 IQR).

around 60 seconds). Instead of just downloading a single file, the subset retrieval
consists of requesting 18 098 individual nanopublications and verifying their con-
tent against their trusty URIs. Despite the resulting lower throughput in terms
of triples per second, we can efficiently retrieve the specific subset of data.

The code used for these studies and the resulting data can be found online.7

6 Discussion and Conclusions

Data providers and data consumers have to pay a price for granular and pre-
cise references to subsets of datasets, to make these references cryptographically
strong, and to verify the integrity of retrieved data. We showed, however, that
this price is offset by the benefits of incremental versioning and by being able to
refer to exactly the needed subset of a given dataset, on top of the gains from
cryptographically strong verifiability. Data providers should take into account
the gain in storage overhead and the benefits of reproducibility and verifiability—
and thus better FAIR publishing—of evolving datasets that our incremental
nanopublication approach provides. Also, it allows data publishers to reliably
check and record how their data evolves from version to version.

To come back to the examples of dataset references, we can now refer to our
datasets in papers with references that include the trusty URI of the nanop-
ublication index of the appropriate version and subset, such as the incremental
DisGeNET datasets [25–27] and the incremental WikiPathways dataset [28] we

7 See https://doi.org/10.6084/m9.figshare.5230639 and https://bitbucket.org/tkuhn/
nanodiff-exp/.

https://doi.org/10.6084/m9.figshare.5230639
https://bitbucket.org/tkuhn/nanodiff-exp/
https://bitbucket.org/tkuhn/nanodiff-exp/

Reliable Granular References to Changing Linked Data 449

cite in this paper. For integration in the code to perform computational analy-
ses, we can now use the np command provided by the nanopub-java library to
reliably download a precisely specified set of nanopublications:

np get -c -o data.trig

http://purl.org/np/RAxMyDRaM8RmKGNiEe7dQPRUTuz616iI-N2T-H3MPYmXk

Run analysis here

We now get cryptographic guarantees on the retrieved content, and we can rely
on an entire network of nanopublication servers and therefore do not depend on
the uptime of individual servers.

As future work, we will keep providing incremental updates for the nanopub-
lication datasets we presented here. We will also investigate how we can reduce
the overhead present in DisGeNET nanopublications for future releases. The
most obvious improvement is the reduction of the number of head triples from 7
to the mandatory minimum of 4. This alone will reduce the overall triple count
by 9%. Further improvements can probably be achieved—without substantial
negative side effects—by reducing the redundancy in the provenance and publi-
cation info graphs, and possibly also in the assertion graph.

To conclude, we demonstrated how our approach can contribute to the ver-
ifiability and granular accessibility of scientific Linked Data resources. As such,
we think that it can put many other Linked Data solutions that require precise
and reliable data publishing and consumption onto a solid technical basis.

Acknowledgments. We would like to thank Javier D. Fernández for valuable input
and discussions on RDF versioning. L.I. Furlong and E. Centeno received support from
ISCIII-FEDER (PI13/00082, CP10/00524, CPII16/00026), the EU H2020 Programme
2014-2020 under grant agreements no. 634143 (MedBioinformatics) and no. 676559
(Elixir-Excelerate).

References

1. Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge
bases. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
55–69. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70881-0 8

2. Banda, J.M., Kuhn, T., Shah, N.H., Dumontier, M.: Provenance-centered dataset
of drug-drug interactions. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol.
9367, pp. 293–300. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6 18

3. Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF:
towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inf.
41(5), 706–716 (2008)

4. Bohler, A., Wu, G., Kutmon, M., Pradhana, L.A., Coort, S.L., Hanspers, K., Haw,
R., Pico, A.R., Evelo, C.T.: Reactome from a WikiPathways perspective. PLoS
Comput. Biol. 12(5), e1004941 (2016)

5. Chard, K., D’Arcy, M., Heavner, B., Foster, I., Kesselman, C., Madduri, R.,
Rodriguez, A., Soiland-Reyes, S., Goble, C., Clark, K., et al.: I’ll take that to
go: Big data bags and minimal identifiers for exchange of large, complex datasets.
In: IEEE International Conference on Big Data, pages 319–328. IEEE (2016)

http://dx.doi.org/10.1007/978-3-540-70881-0_8
http://dx.doi.org/10.1007/978-3-319-25010-6_18

450 T. Kuhn et al.

6. Chichester, C., Karch, O., Gaudet, P., Lane, L., Mons, B., Bairoch, A.: Converting
nextprot into linked data and nanopublications. Semant. Web 6(2), 147–153 (2015)

7. Cohen, J.P., Lo, H.Z.: Academic torrents: A community-maintained distributed
repository. In: Proceedings of XSEDE 2014, p. 2. ACM (2014)

8. Fabregat, A., et al.: The reactome pathway knowledgebase. Nucleic Acids Res.
44(D1), D481–D487 (2016)

9. Fernández, J.D. Polleres, A., Umbrich, J.: Towards efficient archiving of dynamic
linked open data. In: DIACRON@ESWC, pp. 34–49 (2015)

10. Frommhold, M., Piris, R.N., Arndt, N., Tramp, S., Petersen, N., Martin, M.:
Towards versioning of arbitrary RDF data. In: Proceedings of the 12th Interna-
tional Conference on Semantic Systems, pp. 33–40. ACM (2016)

11. Graube, M. Hensel, S., Urbas, L.: R43ples: revisions for triples. In Proceedings of
the 1st Workshop on Linked Data Quality. Citeseer (2014)

12. Groth, P., Gibson, A., Velterop, J.: The anatomy of a nanopublication. Inf. Serv.
Use 30(1–2), 51–56 (2010)

13. Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked
data dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S.
(eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38288-8 15

14. Kuhn, T.: Nanopub-java: a java library for nanopublications. In: Proceedings of
the 5th Workshop on Linked Science (LISC 2015) (2015)

15. Kuhn, T., Barbano, P.E., Nagy, M.L., Krauthammer, M.: Broadening the scope of
nanopublications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph,
S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 487–501. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38288-8 33

16. Kuhn, T., Chichester, C., Krauthammer, M., Dumontier, M.: Publishing Without
publishers: a decentralized approach to dissemination, retrieval, and archiving of
data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 656–672.
Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 38

17. Kuhn, T., Chichester, C., Krauthammer, M., Queralt-Rosinach, N., Verborgh, R.,
Giannakopoulos, G., Ngomo, A.-C.N., Viglianti, R., Dumontier, M.: Decentralized
provenance-aware publishing with nanopublications. PeerJ Comput. Sci. 2, e78
(2016)

18. Kuhn, T., Dumontier, M.: Trusty URIs: verifiable, immutable, and permanent digi-
tal artifacts for linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M.,
Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 395–410. Springer,
Cham (2014). doi:10.1007/978-3-319-07443-6 27

19. Kuhn, T., Dumontier, M.: Making digital artifacts on the web verifiable and reli-
able. IEEE Trans. Knowl. Data Eng. 27(9), 2390–2400 (2015)

20. Kutmon, M., et al.: WikiPathways: capturing the full diversity of pathway knowl-
edge. Nucleic Acids Res. 44(D1), D488–D494 (2016)

21. Meinhardt, P., Knuth, M., Sack, H.: TailR: a platform for preserving history on
the web of data. In: Proceedings of the 11th International Conference on Semantic
Systems, pp. 57–64. ACM (2015)

22. Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing Bitcoin
work for data preservation. In: Proceedings of the IEEE Symposium on Security
and Privacy (SP), pp. 475–490. IEEE (2014)

23. Mons, B., et al.: The value of data. Nat. Genet. 43(4), 281–283 (2011)
24. Moreau, L., Groth, P.: Provenance: an introduction to prov. Synth. Lect. Semant.

Web Theor. Technol. 3(4), 1–129 (2013)

http://dx.doi.org/10.1007/978-3-642-38288-8_15
http://dx.doi.org/10.1007/978-3-642-38288-8_33
http://dx.doi.org/10.1007/978-3-319-25007-6_38
http://dx.doi.org/10.1007/978-3-319-07443-6_27

Reliable Granular References to Changing Linked Data 451

25. Nanopubs extracted from DisGeNET v2.1.0.0, incremental dataset. Nanop-
ublication index, 9 May 2017. http://purl.org/np/RADYX-ia TZYAw
eZD0-2oGGA7gnMxOnVj-Gh8wdJgAzI

26. Nanopubs extracted from DisGeNET v3.0.0.0, incremental
dataset. Nanopublication index, 9 May 2017. http://purl.org/np/
RAufQaKzv1pZlMhZo2eBuZtx9vuugLBJsrs4ZkvR53xzw

27. Nanopubs extracted from DisGeNET v4.0.0.0, incremental
dataset. Nanopublication index, 9 May 2017. http://purl.org/np/
RAu0PUrg-M8HxkOiYRXkTg7r9fgOIzFZNINj8q7ywNrdM

28. Nanopublications extracted from WikiPathways, incremental dataset,
20170510. Nanopublication index, 11 May 2017. http://purl.org/np/
RAKz0OQ3Dq8dDWqF7SIY4TgYcZRX4d2TnmLUEbOwnaGmQ

29. Task Group on Data Citation Standards and Practices.: Out of cite, out of mind:
The current state of practice, policy, and technology for the citation of data. In:
Data Sci. J. 12, pp. CIDCR1-CIDCR75 (2013)

30. Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons,
J., Centeno, E., Garćıa-Garćıa, J., Sanz, F., Furlong, L.I.: DisGeNET: a compre-
hensive platform integrating information on human disease-associated genes and
variants. Nucleic Acids Res. 45, D833–D839 (2016)

31. Queralt-Rosinach, N., Kuhn, T., Chichester, C., Dumontier, M., Sanz, F., Fur-
long, L.I.: Publishing DisGeNET as nanopublications. Semant. Web 7(5), 519–528
(2016)

32. Queralt-Rosinach, N., Piñero, J., Bravo, À., Sanz, F., Furlong, L.I.: DisGeNET-
RDF: harnessing the innovative power of the semantic web to explore the genetic
basis of diseases. Bioinformatics 32, 2236–2238 (2016)

33. Rauber, A., Asmi, A., van Uytvanck, D., Pröll, S.: Identification of reproducible
subsets for data citation, sharing and re-use. Bull. IEEE Tech. Comm. Digit. Libr.
12(1), 6–15 (2016)

34. Schandl, B.: Replication and versioning of partial RDF graphs. In: Aroyo, L., Anto-
niou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache,
T. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 31–45. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13486-9 3

35. Silvello, G.: A methodology for citing linked open data subsets. D-Lib Magazine,
21(1/2) (2015)

36. Tzitzikas, Y., Theoharis, Y., Andreou, D.: On storage policies for semantic web
repositories that support versioning. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 705–719. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-68234-9 51

37. Van de Sompel, H., Sanderson, R., Nelson, M.L., Balakireva, L.L., Shankar, H.,
Ainsworth, S.: An HTTP-based versioning mechanism for linked data (2010).
arXiv:1003.3661

38. Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., Van de
Walle, R.: R&Wbase: git for triples. In: LDOW (2013)

39. Volkel, M., Winkler, W., Sure, Y., Kruk, S.R., Synak, M.: Semversion: A versioning
system for RDF and ontologies. In: Proceedings of ESWC (2005)

40. Waagmeester, A., Kutmon, M., Riutta, A., Miller, R., Willighagen, E.L., Evelo,
C.T., Pico, A.R.: Using the semantic web for rapid integration of WikiPathways
with other biological online data resources. PLoS Comput. Biol. 12(6), e1004989
(2016)

41. Wilkinson, M.D., Dumontier, M., et al.: The FAIR guiding principles for scientific
data management and stewardship. Sci. data 3, 160018 (2016)

http://purl.org/np/RADYX-ia_TZYAw_eZD0-2oGGA7gnMxOnVj-Gh8wdJgAzI
http://purl.org/np/RADYX-ia_TZYAw_eZD0-2oGGA7gnMxOnVj-Gh8wdJgAzI
http://purl.org/np/RAufQaKzv1pZlMhZo2eBuZtx9vuugLBJsrs4ZkvR53xzw
http://purl.org/np/RAufQaKzv1pZlMhZo2eBuZtx9vuugLBJsrs4ZkvR53xzw
http://purl.org/np/RAu0PUrg-M8HxkOiYRXkTg7r9fgOIzFZNINj8q7ywNrdM
http://purl.org/np/RAu0PUrg-M8HxkOiYRXkTg7r9fgOIzFZNINj8q7ywNrdM
http://purl.org/np/RAKz0OQ3Dq8dDWqF7SIY4TgYcZRX4d2TnmLUEbOwnaGmQ
http://purl.org/np/RAKz0OQ3Dq8dDWqF7SIY4TgYcZRX4d2TnmLUEbOwnaGmQ
http://dx.doi.org/10.1007/978-3-642-13486-9_3
http://dx.doi.org/10.1007/978-3-540-68234-9_51
http://arxiv.org/abs/1003.3661

Cost-Driven Ontology-Based Data Access

Davide Lanti, Guohui Xiao(B), and Diego Calvanese

KRDB Research Centre for Knowledge and Data,
Free University of Bozen-Bolzano, Bolzano, Italy

{dlanti,xiao,calvanese}@inf.unibz.it

Abstract. SPARQL query answering in ontology-based data access
(OBDA) is carried out by translating into SQL queries over the data
source. Standard translation techniques try to transform the user query
into a union of conjunctive queries (UCQ), following the heuristic argu-
ment that UCQs can be efficiently evaluated by modern relational data-
base engines. In this work, we show that translating to UCQs is not
always the best choice, and that, under certain conditions on the inter-
play between the ontology, the mappings, and the statistics of the data,
alternative translations can be evaluated much more efficiently. To find
the best translation, we devise a cost model together with a novel car-
dinality estimation that takes into account all such OBDA components.
Our experiments confirm that (i) alternatives to the UCQ translation
might produce queries that are orders of magnitude more efficient, and
(ii) the cost model we propose is faithful to the actual query evaluation
cost, and hence is well suited to select the best translation.

1 Introduction

The paradigm of Ontology-based Data Access (OBDA) [17] presents to the end-
users a convenient virtual RDF graph [13] view of the data stored in a relational
database. Such RDF graph is realized by means of the TBox of an OWL2 QL
ontology [16] connected to the data source through declarative mappings [7].
SPARQL query answering [10] over the RDF graph is not carried out by actually
materialising the data according to the mappings, but rather by first rewriting
the user query with respect to the TBox, and then translating the rewritten
query into an SQL query over the data.

In state-of-the-art OBDA systems [5], such SQL translation is the result of
structural optimizations, which aim at obtaining a union of conjunctive queries
(UCQ). Such an approach is claimed to be effective because (i) joins are over
database values, rather than over URIs constructed by applying mapping defin-
itions; (ii) joins in UCQs are performed by directly accessing (usually, indexed)
database tables, rather than materialized and non-indexed intermediate views.
However, the requirement of generating UCQs comes at the cost of an exponen-
tial blow-up in the size of the user query.

A more subtle, sometimes critical issue, is that the UCQ structure accen-
tuates the problem of redundant data, which is particularly severe in OBDA

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 452–470, 2017.
DOI: 10.1007/978-3-319-68288-4 27

Cost-Driven Ontology-Based Data Access 453

where the focus is on retrieving all the answers implied by the data and the
TBox: each CQ in the UCQ can be seen as a different attempt of enriching the
set of retrieved answers, without any guarantee on whether the attempt will
be successful in retrieving new results. In fact, it was already observed in [2]
that generating UCQs is sometimes counter-beneficial (although that work was
focusing on a substantially different topic).

As for the rewriting step, Bursztyn et al. [3,4] have investigated a space of
alternatives to UCQ rewritings, by considering joins of UCQs (JUCQs), and
devised a cost-based algorithm to select the best alternative. However, the scope
of their work is limited to the simplified setting in which there are no mappings
and the extension of the predicates in the ontology is directly stored in the data-
base. Moreover, they use their algorithm in combination with traditional cost
models from the database literature of query evaluation costs, which, accord-
ing to their experiments, provide estimations close to the native ones of the
PostgreSQL database engine.

In this work we study the problem of alternative translations in the general
setting of OBDA, where the presence of mappings needs to be taken into account.
To do so, we first study the problem of translating JUCQ rewritings such as those
from [3], into SQL queries that preserve the JUCQ structure while maintaining
property (i) above, i.e., the ability of performing joins over database values,
rather than over constructed URIs. We also devise a cost model based on a
novel cardinality estimation, for estimating the cost of evaluating a translation
for a UCQ or JUCQ over the database. The novelty in our cardinality estimation
is that it exploits the interplay between the components of an OBDA instance,
namely ontology, mappings, and statistics of the data, so as to better estimate
the number of non-duplicate answers.

We carry out extensive and in-depth experiments based on a synthetic sce-
nario built on top of the Winsconsin Benchmark [8], a widely adopted benchmark
for databases, so as to understand the trade-off between a translation for UCQs
and JUCQs. In these experiments we observe that: (i) factors such as the number
of mapping assertions, also affected by the number of axioms in the ontology,
and the number of redundant answers are the main factors for deciding which
translation to choose; (ii) the cost model we propose is faithful to the actual
query evaluation cost, and hence is well suited to select the best alternative
translation of the user query; (iii) the cost model implemented by PostgreSQL
performs surprisingly poorly in the task of estimating the best translation, and
is significantly outperformed by our cost model. The main reason for this is that
PostgreSQL fails at recognizing when different translations are actually equiv-
alent, and may provide for them cardinality estimations that differ by several
orders of magnitude.

In addition, we carry out an evaluation on a real-world scenario based on
the NPD benchmark for OBDA [14]. Also in these experiments we confirm that
alternative translations to the UCQ one may be more efficient, and that the
same factors already identified in the Winsconsin experiments determine which
choice is best.

454 D. Lanti et al.

The rest of the paper is structured as follows. Section 2 introduces the relevant
technical notions underlying OBDA. Section 3 provides our characterization for
SQL translations of JUCQs. Section 4 presents our novel model for cardinality
estimation, and Sect. 5 the associated cost model. Section 6 provides the eval-
uation of the cost model on the Wisconsin and NPD Benchmarks. Section 7
concludes the paper. Due to space limitation, more details of the techniques,
proofs and experiments are provided in an online report [15]. The materials
to reproduce the experiments are available online (https://github.com/ontop/
ontop-examples/tree/master/iswc-2017-cost).

2 Preliminaries

In this work, we use the bold font to denote tuples (when convenient we might
treat tuples as sets). Given a tuple of function symbols f = (f1, . . . , fn) and of
variables x, we denote by f(x) a tuple of terms of the form (f1(x1), . . . , fn(xn)),
with xi ⊆ x, 1 ≤ i ≤ n. We assume some familiarity with basic notions from
probability calculus and statistics. We rely on the OBDA framework of [17],
which we formalize here through the notion of OBDA specification, which is a
triple S = (T ,M, Σ) where T is an ontology TBox, M is a set of mappings, and
Σ is the schema of a relational database.

We assume that ontologies are formulated in DL-LiteR [6], which is the DL
providing the formal foundations for OWL 2 QL, the W3C standard ontology
language for OBDA [16]. A DL-LiteR TBox T is a finite set of axioms of the
form C � D or P � R, where C, D are DL-LiteR concepts and P , R are
roles, following the DL-LiteR grammar. A DL-LiteR ABox A is a finite set of
assertions of the form A(a), P (a, b), where A is a concept name, P a role name,
and a, b individuals. We call the pair O = (T ,A) a DL-LiteR ontology.

We consider here first-order (FO) queries [1], and we use qD to denote the
evaluation of a query q over a database D. We use the notation qA also for the
evaluation of q over the ABox A, viewed as a database. For an ontology O,
we use cert(q,O) to denote the certain answers of q over O, which are defined
as the set of tuples a of individuals such that O |= q(a) (where |= denotes
the DL-LiteR entailment relation). We consider also various fragments of FO
queries, notably conjunctive queries (CQs), unions of CQs (UCQs), and joins
of UCQs (JUCQs) [1].

Mappings specify how to populate the concepts and roles of the ontology from
the data in the underlying relational database. A mapping m is an expression of
the form L(f(x)) �qm(x): the target part L(f(x)) of m is an atom over function
symbols1 f and variables x whose predicate name L is a concept or role name;
the source part qm(x) of m is a FO query with output variables2 x. We say that

1 For conciseness, we use here abstract function symbols in the mapping target. We
remind that in concrete mapping languages, such as R2RML [7], such function sym-
bols correspond to IRI templates used to generate object IRIs from database values.

2 In general, the output variables of the source query might be a superset of the
variables in the target, but for our purposes we can assume that they coincide.

https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost
https://github.com/ontop/ontop-examples/tree/master/iswc-2017-cost

Cost-Driven Ontology-Based Data Access 455

the signature sign(m) of m is the pair (L, f), and that m defines L. We also
define sign(M) = {sign(m) | m ∈ M}.

Following [9], we split each mapping m = L(f(x)) �qm(x) in M into two
parts by introducing an intermediate view name Vm for the FO query qm(x).
We obtain a low-level mapping of the form Vm(x) �qm(x), and a high-level
mapping of the form L(f(x)) �Vm(x). In the following, we abstract away the
low-level mapping parts, and we consider M as consisting directly of the high-
level mappings. In other words, we directly consider the intermediate view atoms
Vm as the source part, with the semantics V D

m = qD
m, for each database instance

D. We denote by ΣM the virtual schema consisting of the relation schemas
whose names are the intermediate view symbols Vm, with attributes given by
the answer variables of the corresponding source queries.

From now on we fix an OBDA specification S = (T ,M, Σ). Given a database
instance D for Σ, we call the pair (S,D) an OBDA instance. We call the set
of assertions A(M,D) =

{
L(f(a)) | L(f(x)) �V (x) ∈ M and a ∈ V (x)D}

the
virtual ABox exposed by D through M. Intuitively, such an ABox is obtained
by evaluating, for each (high level) mapping m, its source view V (x) over the
database D, and by using the returned tuples to instantiate the concept or role
L in the target part of m. The certain answers cert(q, (S,D)) to a query q over
an OBDA instance (S,D) are defined as cert(q, (T ,A(M,D))).

In the virtual approach to OBDA, such answers are computed without actu-
ally materializing A(M,D), by transforming the query q into a FO query qfo
formulated over the database schema Σ such that qD′

fo = cert(q, (S,D′)), for
every OBDA instance (S,D′). To define the query qfo , we introduce the follow-
ing notions:

– A query qr is a perfect rewriting of a query q′ with respect to a TBox T , if
cert(q′, (T ,A)) = qA

r for every ABox A [6].
– A query qt is an M-translation of a query q′, if qD

t = q′A(M,D) , for every
database D for Σ [17].

Notice that, by definition, all perfect rewritings (resp., translations) of q′ with
respect to T (resp., M) are equivalent. Consider now a perfect rewriting qT of
q with respect to T , and then a translation qT ,M of qT with respect to M. It is
possible to show that such a qT ,M satisfies the condition stated above for qfo .

Many different algorithms have been proposed for computing perfect rewrit-
ings of UCQs with respect to DL-LiteR TBoxes, see, e.g., [6,11]. As for the
translation, [17] proposes an algorithm that is based on non-recursive Data-
log [1], extended with function symbols in the head of rules, with the additional
restriction that such rules never produce nested terms. We consider Datalog
queries of the form (G,Π), where G is the answer atom, and Π is a set of
Datalog rules following the restriction above. We abbreviate a Datalog query
of the form (q(x), {q(x) ← B1, . . . , Bn}), corresponding to a CQ (possibly with
function symbols), as q(x) ← B1, . . . , Bn, and we also call it q.

Definition 1 (Unfolding of a UCQ [17]). Let q(x) ← L1(v1), . . . , Ln(vn)
be a CQ. Then, the unfolding unf (q,M) of q w.r.t. M is the Datalog query

456 D. Lanti et al.

(qunf (x),Π), where Π is a (up to variable renaming) minimal set of rules having
the following property:

If ((m1, . . . ,mn), σ) is a pair such that {m1, . . . ,mn} ⊆ M, and

• mi = Li(fi(xi)) �Vi(zi), for each 1 ≤ i ≤ n, and
• σ is a most general unifier for the set of pairs {(Li(vi), Li(fi(xi))) | 1 ≤ i ≤

n},

then the query qunf (σ(x)) ← V1(σ(z1)), . . . , Vn(σ(zn)) belongs to Π.
The unfolding of a UCQ q is the union of the unfoldings of each CQ in q.

It has been proved in [17] that, for a UCQ q, unf (q,M) is an M-translation.

3 Cover-Based Translation in OBDA

We first introduce some terminology from [3], that we use in our technical devel-
opment. Let q be a query consisting of atoms F = {L1, . . . , Ln}. A cover for q
is a collection C = {f1, . . . , fm} of non-empty subsets of F , called fragments,
such that (i)

⋃
fi∈C fi = F and (ii) no fragment is included into another one.

Given a cover C for a query q(x), the fragment query q|f (xf), for f ∈ C, is the
query whose body consists of the atoms in f and whose answer variables xf are
given by the answer variables x of q that appear in the atoms of f , union the
existential variables in f that are shared with another fragment f ′ ∈ C, with
f ′ �= f . Consider the query qC(x) ←

∧
f∈C qucq|f (xf), where qucq|f (xf), for each

f ∈ C, is a CQ-to-UCQ perfect rewriting of the query q|f w.r.t. T . Then qC

is a cover-based JUCQ perfect rewriting of q w.r.t. T and C, if it is a perfect
rewriting of q w.r.t. T .

Authors in [3] have shown that, in DL-LiteR, not every cover leads to a
cover-based perfect rewriting. Thus, they introduced the notion of safe covers,
which are covers that guarantee the existence of a cover-based perfect rewriting.

For the remaining part of the section, we fix a query q(x) and a (safe) cover
C for it, as well as its cover-based JUCQ perfect rewriting qC(x) ←

∧
f∈C qucq|f

w.r.t T and C. We introduce two different characterizations of unfoldings of
qC , which produce M-translations of q. The first characterization relies on the
intuition of joining the unfoldings of each fragment query in qC .

Definition 2 (Unfolding of a JUCQ 1). For each f ∈ C, let Auxf be an
auxiliary predicate for qucq|f (xf), and let Uf be a view symbol for the unfold-
ing unf (qucq|f (xf),M), for each f ∈ C. Consider the set of mappings Maux =
{Aux f (xf) �Uf (xf) | f ∈ C} associating the auxiliary predicates to the auxil-
iary view names. Then, we define the unfolding unf (qC ,M) of qC with respect
to M as unf (qauxC (x) ←

∧
f∈C Aux f (xf),Maux).

Theorem 1 (Translation 1). The query unf (qC ,M) is an M-translation for
qC .

Cost-Driven Ontology-Based Data Access 457

The above unfolding characterization for JUCQs corresponds to a translation
containing SQL joins over URIs resulting from the application of function sym-
bols to database values, rather than over (indexed) database values themselves
(see [15]). In general, such joins cannot be evaluated efficiently by RDBMSs [19].
We introduce a second, less trivial, unfolding characterization that guarantees
that joins are performed only over database values. For this we first need to
introduce a number of auxiliary notions and results.

Definition 3. Let (L, f) ∈ sign(M) be a signature in M. Then, the restric-
tion M|(L,f) of M w.r.t. the signature (L, f) is the set of mappings M|(L,f) =
{m ∈ M | m = L(f(v)) �V (v)}.

Definition 4 (Wrap). Let M|(L,f) = {L(f(vi)) �Vi(vi) | 1 ≤ i ≤ n} be the
restriction of M w.r.t. the signature (L, f), and f(v) be a tuple of terms over
fresh variables v. Then, the wrap of M|(L,f) is the (singleton) set of mappings
wrap(M|(L,f)) = {L(f(v)) �W (v)} where W is a fresh view name for the Dat-
alog query (W (v), {W (vi) ← Vi(vi) | 1 ≤ i ≤ n}).

The wrap of M is the set wrap(M) =
⋃

(L,f)∈sign(M) wrap(M|(L,f)) of map-
pings.

The wrap operation groups the mappings for a signature into a single map-
ping. We now introduce an operation that splits a mapping according to the
function symbols adopted on its source part.

Definition 5 (Split). Let m = L(x) �U(x) be a mapping where U is the
name for the query (U(x), {U(fi(xi)) ← Vi(xi) | 1 ≤ i ≤ n}). Then, the split of
m is the set split(m) = {L(fi(xi)) �Vi(xi) | 1 ≤ i ≤ n} of mappings. We denote
by split(M) the split of the set M of mappings.

Definition 6 (Unfolding of a JUCQ 2). Let qauxC be a query and Maux a set
of mappings as in Definition 2. Then, the optimized unfolding unfopt(qC(x),M)
of qC w.r.t. M is defined as unf (qauxC (x),wrap(split(Maux))).

Theorem 2 (Translation 2). The query unfopt(qC ,M) is an M-translation
for qC .

Observe that the optimized unfolding of a JUCQ is a union of JUCQs
(UJUCQ). Moreover, where each JUCQ produces answers built from a single
tuple of function symbols, if all the attributes are kept in the answer. The next
example, aimed at clarifying the notions introduced so far, illustrates these.

Example 1. Let q(x, y, z) ← P1(x, y), C(x), P2(x, z), and consider a cover
{f1, f2} generating fragment queries q|f1 = q(x, y) ← P1(x, y), C(x) and q|f2 =
q(x, z) ← P2(x, z). Consider the set of mappings

M =

⎧
⎨

⎩

P1(f(a), g(b)) �V1(a, b) P1(f(a), g(b)) �V2(a, b)
P1(h(a), i(b)) �V3(a, b) C(f(a)) �V4(a)
P2(f(a), k(b)) �V5(a, b) P2(f(a), h(b)) �V6(a, b)

⎫
⎬

⎭

458 D. Lanti et al.

Translation I. According to Definition 2, the JUCQ q(x, y, z) ←
q|f1(x, y), q|f2(x, z) can be rewritten as the auxiliary query qaux (x, y, z) =
Aux1(x, y),Aux 2(x, z) over mappings

Maux =
{

Aux 1(x, y) �U1(x, y) Aux2(x, z) �U2(x, z)
}

where U1 is a view name for unf (q|f1(x, y),M) = (U1(x, y),Π1), and
U2 is a view name for unf (q|f2(x, z),M) = (U2(x, z),Π2), such that

Π1 =

{
U1(f(a), g(b)) ← V1(a, b), V4(a)
U1(f(a), g(b)) ← V2(a, b), V4(a)

}
Π2 =

{
U2(f(a), k(b)) ← V5(a, b)
U2(f(a), h(b)) ← V6(a, b)

}

Translation II. By Definition 5, we compute the split of Maux :

split(Maux) =

{
Aux1(f(a), g(b)) �V1(a, b), V4(a) Aux2(f(a), k(b)) �V5(a, b)
Aux1(f(a), g(b)) �V2(a, b), V4(a) Aux2(f(a), h(b)) �V6(a, b)

}

By Definition 4, we compute the wrap of split(Maux):

wrap(split(Maux)) =

{
Aux1(f(a), g(b)) �W3(a, b) Aux2(f(a), k(b)) �W4(a, b)

Aux2(f(a), h(b)) �W5(a, b)

}

where W3(a, b), W4(a, b), W5(a, b) are Datalog queries whose programs are
respectively

Π3 =

{
W3(a, b) ← V1(a, b), V4(a)
W3(a, b) ← V2(a, b), V4(a)

} Π4 = {W4(a, b) ← V5(a, b)}
Π5 = {W5(a, b) ← V6(a, b)}

Finally, by Definition 6 we compute the optimized unfolding of qC w.r.t. M:

unfopt(qC(x, y, z), M) = unf (qaux (x, y, z),wrap(split(Maux))) = (qauxunf (x, y, z), Πunf)

where
Πunf =

{
qauxunf (f(a), g(b), k(b′)) ← W3(a, b), W4(a, b′)
qauxunf (f(a), g(b), h(b′)) ← W3(a, b), W5(a, b′)

}

Observe that unfopt(qC(x, y, z),M) is a UJUCQ. Moreover, each of the two
JUCQs in qauxunf contributes with answers built out of a specific tuple of function
symbols. �

4 Unfolding Cardinality Estimation

For convenience, in this section, we use relational algebra notation [1] for CQs.
To deal with multiple occurrences of the same predicate in a CQ, the corre-
sponding algebra expression would contain renaming operators. However, in our
cardinality estimations we need to understand when two attributes actually refer
to the same relation, and this information is lost in the presence of renaming.

Cost-Driven Ontology-Based Data Access 459

Instead of introducing renaming, we first explicitly replace multiple occurrences
of the same predicate name in the CQ by aliases (under the assumption that
aliases for the same predicate name are interpreted as the same relation). Specif-
ically, we use alias V[i] to represent the i-th occurrence of predicate name V in
the CQ. Then, when translating the aliased CQ to algebra, we use fully qualified
attribute names (i.e., each attribute name is prefixed with the (aliased) predicate
name). So, to reconstruct the relation name V to which an attribute V[i].x refers,
it suffices to remove the occurrence information [i] from the prefix V[i]. When the
actual occurrence of V is not relevant, we use V[·] to denote the alias.

Moreover, in the following, we consider only the restricted form of CQs, which
we call basic CQs, whose algebra expression is of the form

E = V 0
[·] ��θ1 V 1

[·] ��θ2 · · · ��θn V n
[·] ,

where, the V is denote predicate names, and for each i ∈ {1, . . . , n}, the join
condition θi is of the form V j

[·].x = V i
[·].y, for some j < i. Arbitrary CQs, allowing

for projections and arbitrary joins, are considered in the extended version of this
work [15].

Given a basic CQ E as above, we denote by E(m), for 1 ≤ m ≤ n, the sub-
expression of E up to the m-th join operator, namely E(m) = V 0

[·] ��θ1 V 1
[·] ��θ2

· · · ��θm
V m

[·] .
In the following, in addition to an OBDA specification, we also fix a database

instance D for Σ. We use V and W to denote relation names (with an associated
relation schema) in the virtual schema MΣ , whose associated relations consist of
(multi)sets of labeled tuples (see the named perspective in [1]). Given a relation S,
we denote by |S| the number of (distinct) tuples in S, by πL(S) the projection of
S over attributes L (under set-semantics), and by πL1(S1)� πL2(S2) intersection
of relations disregarding attribute names, i.e., πL1(S1) ∩ ρL2 �→L1(πL2(S2)). We
also use the classical notation P (α) to denote the probability that an event α
happens.

Background on Cardinality Estimation. We start by recalling some assump-
tions that are commonly made by models of cardinality estimation proposed
in the database literature (e.g., see [20]): (i) For each relation column C, val-
ues are uniformly distributed across C; intuitively, for a column C of integers,
P (C < v) = (v − min(C))/(max(C) − min(C)), for each value v ∈ C. (ii) There
is a uniform distribution across distinct values, i.e., P (C = v1) = P (C = v2), for
all values v1, v2 ∈ C. (iii) The distributions in different colums are independent,
i.e., P (C1 = v1|C2 = v2) = P (C1 = v1), for all values v1 ∈ C1 and v2 ∈ C2.
(iv) Columns in a join condition match “as much as possible”, i.e., given a join
V ��x=y W , it is assumed that |πx(V D)� πy(WD)| = min(|πx(V)|, |πy(W)|).

Given the assumptions, the cardinality of a join V ��x=y W is estimated [21]
as:

kD(V ��x=y W) · |V D|/distD(V,x) · |WD|/distD(W,y) (1)

where kD is an estimation of the number of distinct values satisfying the
join condition (i.e., kD estimates |πx(V D)� πy(WD)|, and distD(V,x) (resp.,
distD(W,y)) corresponds to the estimation of |πx(V D)| (resp., |πy(WD)|), both

460 D. Lanti et al.

calculated according to the aforementioned assumptions. Note that the fractions
such as |V D|

distD(V,x) estimate the number of tuples associated to each value that
satisfies the join condition.

Of the assumptions (i)–(iv) above, we maintain only (ii) and (iii) in our car-
dinality estimator, while we drop (i) and (iv) due to the additional information
given by the structure of the mappings. In the following, we will show how even
under these conditions we can use Formula (1), to estimate the cardinality of
conjunctive queries.

Basic CQ Cardinality Estimation. We first generalize Formula (1) to basic
CQs.

Cardinality Estimator. Given a basic CQ E′, fD(E′) estimates the number |E′D|
of distinct results in the evaluation of E′ over D. We define it as

fD(E ��V[p].x= W[q].y W[q]) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⌈
kD(V[p] ��V[p].x= W[q].y W[q]) · |V D| · |W D|

distD(V, V[p].x) · distD(W, W[q].y)

⌉

, if E = V

⌈
kD(E ��V[p].x= W[q].y W[q]) · fD(E) · |W D|

distD(E, V[p].x) · distD(W, V[p].y)

⌉

, otherwise.

(2)

Our cardinality estimator exploits assumptions (ii) and (iii) above, and relies
on our definitions of the facing values estimator kD and of the distinct values
estimator distD, which are based on additional statistics collected with the help
of the mappings, instead of being based on assumptions (i) and (iv), as in For-
mula (1).

Facing Values Estimator. Given a basic CQ E′ = E ��V[p].x=W[q].y W[q], the
estimation kD(E′) of the cardinality |πV.x(ED)� πW.y(WD)| is defined as

kD(E ��V[p].x=W[q].y W[q]) =

⎧
⎨

⎩

|πx(V D)�πy(W D)|, if E = V
⌈

|πx(V
D)�πy(W

D)| · distD(E, V[p].x)

distD(V, V[p].x)

⌉

, otherwise,
(3)

where |πx(V D)� πy(WD)| is assumed to be a statistic available after having ana-
lyzed the mappings together with the data instance. The fraction distD(E,V[p].x)

distD(V,V[p].x)

is a scaling factor relying on assumption (ii).

Distinct Values Estimator. Let Q be a set of qualified attributes, and
E be basic CQ. We define the set ea(E,Q) of equivalent attributes
of Q in E as

⋃
i>0 Ci, where (i) C1 := {Q} (ii) Cn+1 := Cn ∪

{Q′ | ∃Q′′ ∈ Cn s.t. Q′ = Q′′ or Q′′ = Q′ is a join condition in E}, n ≥ 1. Given
a basic CQ E and a set V[p].x of qualified attributes, the expression se(E, V[p].x)
denotes the longest sub-expression E(n) in E, for some n > 1, such that
E(n) = E(n−1)

��W[q].y=U[r].z U[r], for some relation name W , tuples of attributes
y and z such that U[r].z ∈ ea(E, V[p].x), if E(n) exists, and ⊥ otherwise. For

Cost-Driven Ontology-Based Data Access 461

E and V[p].x, the estimation distD(E, V[p].x) of the cardinality |πV[p].x(ED)| is
defined as

distD(E, V[p].x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|πx(V D)|, if E = V

min

{⌈

kD(E′) · fD(E)

fD(E′)

⌉

, kD(E′)
}

, if se(E, V[p].x) = E′ �= ⊥

min

{⌈

|πx(V
D)| · fD(E)

|V D|
⌉

, |πx(V
D)|
}

, otherwise.

(4)

where |πx(V D)| is assumed to be a statistic available after having analyzed the
mappings together with the data instance. Observe that the fractions fD(E)

fD(E′) and
fD(E)
|V D| are again scaling factors relying on assumption (ii). Also, distD(E, V.x)

must not increase when the number of joins in E increases, which explains the
use of min for the case where the number of distinct results in E increases with
the number of joins.

Fig. 1. Data instance D.

Example 2. Consider the data instance D from Fig. 1. Relevant statistics are:

– |TD
1 | = 5, |TD

2 | = |TD
3 | = 10

– |πa(TD
1)| = |πd(TD

2)| = 5, |πc(TD
2)| = |πf(TD

3)| = |πe(TD
3)| = 10,

– |πa(TD
1)� πc(TD

2)| = 3, |πd(TD
2)� πe(TD

3)| = 5, |πa(TD
1)� πf(TD

3)| = 1.

We calculate fD(E) for the basic CQ E = T1 ��T1.a=T2.c T2 ��T2.d=T3.e

T3 ��T1.a=T ′
3.f T ′

3, where T ′
3 is an alias (written in this way for notational con-

venience) for the table T3. To do so, we first need to calculate the estimations
fD(E(1)) and fD(E(2)).

fD(E(1)) = fD(T1 ��T1.a=T2.c T2) =

⌈
kD(T1 ��T1.a=T2.c T2) · |T D

1 | · |T D
2 |

distD(T1, a) · distD(T2, c)

⌉

=

⌈ |πa(T
D
1) � πc(T

D
2)| · |T D

1 | · |T D
2 |

|πa(T D
1)| · |πc(T D

2)|
⌉

= �(3 · 5 · 10)/(5 · 10)� = 3

fD(E(2)) = fD(E(1)
��T2.d=T3.e T3) =

⌈
kD(E(1)

��T2.d=T3.e T3) · fD(E(1)) · |T D
3 |

distD(E(1), T2.d) · distD(T3, e)

⌉

(5)

462 D. Lanti et al.

By Formula (4), distD(E(1), T2.d) in Formula (5) can be calculated as

distD(E(1), T2.d) = min
{⌈

|πd(TD
2)|

|TD
2 | · fD(E(1))

⌉
, |πd(TD

2)|
}

= min
{⌈

5
10

· 3
⌉

, 5
}

=
⌈

3
2

⌉
= 2

By Formula (3), kD(E(1)
��T2.d=T3.e T3) in Formula (5) can be calculated as

kD(E(1)
��T2.d=T3.e T3) =

⌈
kD(T2 ��T2.d=T3.e T3)

distD(T2,d)
· distD(E(1), T2.d)

⌉

=

⌈
|πd(T

D
2)�πe(T D

3)|
|πd(T

D
2)| · distD(E(1), T2.d)

⌉

=

⌈
5

5
· 2
⌉

= 2

By plugging the values for kD and distD in Formula (5), we obtain

fD(E(2)) = (2 · 3 · 10)/(2 · 10)� = 3

We are now ready to calculate the cardinality of E, which is given by the formula

fD(E) = fD(E(2)
��T1.a=T ′

3.f T ′
3) =

⌈
kD(E(2)

��T1.a=T ′
3.f T ′

3) · fD(E(2)) · |TD
3 |

distD(E(2), T1.a) · distD(T3, f)

⌉

(6)

By Formula (4), distD(E(2), T1.a) in Formula (6) can be computed as

distD(E(2), T1.a) = min

{⌈
kD(E(1))

fD(E(1))
· fD(E(2))

⌉

, kD(E(1))

}

= min

{⌈
3

3
· 3
⌉

, 3

}

= 3

Then, by Formula (3), kD(E(2)
��T1.a=T ′

3.f T ′
3) in Formula (6) can be computed

as

kD(E(2)
��T1.a=T ′

3.f T ′
3) =

⌈
kD(T1 ��T1.a=T ′

3.f T ′
3)

distD(T1, a)
· distD(E(2), T1.a)

⌉
=

⌈
3

5

⌉
= 1

By plugging the values for kD and distD in (6), we finally obtain

fD(E) = (1 · 3 · 10)/(3 · 10)� = 1

Observe that, in this example, our estimation is exact, that is, fD(E) = |ED|. �

Collecting the Necessary Statistics. The estimators introduced above
assume a number of statistics to be available. We now show how to compute
such statistics on a data instance by analyzing the mappings. Consider a set
of mappings M = {Li(fi(vi)) �Vi(vi) | 1 ≤ i ≤ n} and a data instance D. We
store the statistics:

Cost-Driven Ontology-Based Data Access 463

S1 |V D
i |, for each i ∈ {1, . . . , n};

S2 |πx(V D
i)|, if f(x) is a term in fi(vi), for some function symbol f and i ∈

{1, . . . , n};
S3 |πx(V D

i)� πy(V D
j)|, if f(x) is a term in fi(vi), and f(y) is a term in fj(vj),

for some function symbol f and i, j ∈ {1, . . . , n}, i �= j.

Statistics S1 and S2 are required by all three estimators that we have introduced,
and can be measured directly by evaluating source queries on D. Statistics S3

can be collected by first iterating over the function symbols in the mappings,
and then calculating the cardinalities for joins over pairs of source queries whose
corresponding mapping targets have a function symbol in common. It is easy to
check that Statistics S1–S3 suffice for our estimation, since all joins in a CQ are
between source queries, and moreover, every translation calculated according to
Definition 1 contains only joins between pairs of source queries considered by
Statistics S3.

Unfolding Cardinality Estimator. We now show how to estimate the car-
dinality of an unfolding by using the Formulas (2), (3), and (4) introduced for
cardinality estimation. The next theorem shows that such estimation can be cal-
culated by summing-up the estimated cardinalities for each CQ in the unfolding
of the input query, provided that (i) the unfolding is being calculated over wrap
mappings, and (ii) the query to unfold is a CQ.

Theorem 3. Consider a CQ q(x) ← L1(v1), . . . , Ln(vn) such that x =
⋃n

i=1 vi.
Then

|unf (q(x), M)D| =
∑

qu∈unf (q,wrap(M))

|qu(x)D|

The previous theorem states that the cardinality of the unfolding of a query
over a wrap mapping corresponds to the sum of the cardinalities of each CQ
in the unfolding, under the assumption that all the attributes are kept in the
answer. Intuitively, the proof [15] relies on the fact that, when wrap mappings are
used, each CQ in the unfolding returns answer variables built using a specific
combination of function names. Hence, to calculate the cardinality of a CQ
q, it suffices to collect statistics as described in the previous paragraph, but
over wrap(M) rather than M, and sum up the estimations for each CQ in
unf (q,wrap(M)).

The method above might overestimate the actual cardinality if the input
CQ contains non-answer variables. In [15] we show how to address this limita-
tion by storing, for each property in the mappings, the probability of having
duplicate answers if the projection operation is applied to one of the (two) argu-
ments of that property. Also, the method above assumes a CQ as input to the
unfolding, whereas a rewriting is in general a UCQ. This is usually not a criti-
cal aspect, especially in practical applications of OBDA. By using saturated (or
T-)mappings [18] MT in place of M, in fact, the rewriting of an input CQ q

464 D. Lanti et al.

almost always [12] coincides with q itself3. Hence, in most cases we can directly
use in Theorem 3 the input query q, if we use wrap(MT) instead of wrap(M).
A fully detailed example on how this is done is provided in [15].

5 Unfolding Cost Model

We are now ready to estimate the actual costs of evaluating UJUCQ and UCQ
unfoldings, by exploiting the cardinality estimations from the previous section.
Our cost model is based on traditional textbook-formulae for query cost estima-
tion [20]. We here provide the high-level view of the cost model, and leave the
details in [15].

Cost for the Unfolding of a UCQ. Recall from Sect. 3 that the unfolding
of a UCQ produces a UCQ translation qucq =

∨
i qcqi . We estimate the cost of

evaluating qucq as
c(qucq) =

∑
i c(qcqi) + cu(qucq)

where

– c(qcqi) is the cost of evaluating each qcqi in qucq ;
– cu(qucq) is the cost of removing duplicate results.

Cost for the Unfolding of a JUCQ. Recall from Sect. 3 that the optimized
unfolding of a JUCQ produces a UJUCQ. We estimate the cost of a single JUCQ
qjucq =

∧
i qucqi in the unfolding as

c(qjucq) =
∑

i c(qucqi) +
∑

i�=k cmat(q
ucq
i) + cmj (q

jucq) + cu(qjucq)

where

– c(qucqi) is the cost of evaluating each UCQ component qucqi ;
–

∑
i�=k cmat(q

ucq
i) is the cost of materializing the intermediate results from qucqi ,

where the k-th UCQ is assumed to be pipelined [20] and not materialized;
– cmj (qjucq) is the cost of a merge join over the materialized intermediate

results;
– cu(qjucq) is the cost of removing duplicate results.

The cost for a UJUCQ qujucq =
∨

i qjucq
i , if all the attributes are kept in the

answer, is simply the sum
∑

i c(qjucqi), since the results of all JUCQs are disjoint
(c.f., Sect. 3). Otherwise, we need to consider the cost of eliminating duplicate
results.

3 Always, if the CQ is interpreted as a SPARQL query and evaluated according to the
OWL 2 QL entailment regime, or if the CQ does not contain existentially quantified
variables.

Cost-Driven Ontology-Based Data Access 465

6 Experimental Results

In this section, we provide an empirical evaluation that compares unfoldings for
UCQs and (optimized) unfoldings for JUCQs, as well as the estimated costs and
the actual time needed to evaluate the unfoldings. We ran the experiments on
an HP Proliant server with 2 Intel Xeon X5690 Processors (each with 12 logical
cores at 3.47 GHz), 106 GB of RAM and five 1TB 15K RPM HDs. As RDBMS we
have used PostgreSQL 9.6. In the extended version [15] of this work we provide
the material to replicate our experiments.

Wisconsin Experiment. This experiment is based on the Wisconsin Bench-
mark [8], which allows for in-detail analyses w.r.t. parameters such as join selec-
tivities. We created several copies of the Wisconsin table, and populated each
of them with 1M rows. Our test is on 84 queries, instantiations of the following
template:
SELECT DISTINCT * WHERE {?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2; :JjMmRrProp3

?y3}

where j ∈ {5, 10, 15, 20} denotes the selectivity of the join between the first
property and each of the remaining two, expressed as a percentage of the number
of retrieved rows for each mapping defining the property (each mapping retrieves
200 k tuples); m ∈ {1, . . . , 6} denotes the number of mappings defining the prop-
erty (all such mappings have the same signature), and r ∈ {0, . . . ,m−1} denotes
the number of redundant mappings, that is, the number of mappings assertions
retrieving the same results of another mapping definining the property, minus
one.

For each query, we have tested a correspondent cover query of two fragments
f1, f2, where each fragment is an instantiation of the following templates:

f1: SELECT DISTINCT ?x ?y1 ?y2 WHERE { ?x :MmRrProp1 ?y1; :JjMmRrProp2 ?y2.
}

f2: SELECT DISTINCT ?x ?y3 WHERE { ?x a :MmRrProp1; ?x :JjMmRrProp3 ?y3. }

We have implemented our cost model in a Python script. For each SPARQL
query, we compute the estimation of the costs of both unfoldings for UCQs and
JUCQs, and evaluate these unfoldings over the PostgreSQL database with a
timeout of 20 min.

In Fig. 2, we present the cost estimation and the actual running time for each
query. We have the following observations:

– In this experiment, for the considered cover, JUCQs are generally faster than
UCQs. In fact, out of the 84 SPARQL queries, only one JUCQ was timed out,
while 16 UCQs were timed out. The mean running time of successful UCQs
and JUCQs are respectively 160 s and 350 s.

– In Fig. 2a, where the fitted lines are obtained by applying linear regression
over successful UCQ and JUCQ evaluations, we observe a strong linear cor-
relation between our estimated costs and real running times. Moreover, the
coefficients (b1 and b0) for UCQs and JUCQs are rather close. This empirically
shows that our cost model can estimate the real running time well.

466 D. Lanti et al.

Fig. 2. Cost estimations vs evaluation running times

– Fig. 2b shows that the PostgreSQL cost model assigns the same estimation to
many queries having different running times. Moreover, the linear regressions
for UCQs and JUCQs are rather different, which suggests that PostgreSQL
is not able to recognize when two translations are semantically equivalent.
Hence, PostgreSQL is not able to estimate the cost of these queries properly.

In Fig. 3, we visualize the performance gain of JUCQs compared with UCQs.
The four subgraphs correspond to four different join selectivities. Each subgraph
is a matrix in which each cell shows the value of the performance gain g =
1 − jucq time/ucq time. When g > 0, we apply the red color; otherwise framed-
blue. These graphs clearly show that when there is a large number of mappings
and there is high redundancy, we have better performance gains. When the
redundancy is low (0 or 1), and the number of mapping axioms is large, the join
selectivity plays an important role in the performance gain, as discussed in [3];
in other cases, the impacts are non-significant.

Fig. 3. Performance gain of JUCQ compared with UCQ

Cost-Driven Ontology-Based Data Access 467

Figures 4 and 5 report the cardinalities estimated by PostgreSQL divided
by the actual sizes of the query answers for all UCQ and JUCQ queries. For
UCQs, it shows that PostgreSQL normally underestimates the cardinalities, but
it overestimates them when the redundancies are high. As for JUCQS, Post-
greSQL always overestimates the cardinalities, ranging from 40 to 200 K times.
These numbers partially explain why PostgreSQL estimate the costs of both
UCQs and JUCQs so badly in Fig. 2b.

We obtained similar conclusions for a query with four atoms, and a cover of
three fragments. For more details, refer to the extended version [15] of this work.

Fig. 4. UCQs: (PostgreSQL estimated cardinality)/(real cardinality)

Fig. 5. JUCQs: (PostgreSQL estimated cardinality)/(real cardinality)

NPD Experiment. The goal of this experiment is to verify that cost-based
techniques can improve the performance of query answering over real-world
queries and instances. This test is carried on the original real-world instance
(as opposed to the scaled data instances) of the NPD benchmark [14] for OBDA
systems. We pick the three most challenging UCQ queries (namely q6, q11, q12,

468 D. Lanti et al.

Table 1. Evaluation over the NPD benchmark

SPARQL query Unfolding for UCQs Unfolding for JUCQs

Name # Triple patterns time (s) # CQs Time (s) # Frags # CQs

q6 7 2.18 48 1.20 2 14

q11 8 3.39 24 0.40 2 12

q12 10 6.67 48 0.47 2 14

q31 10 54.27 3840 1.58 2 327

and q31) from the query catalog, where q31 is a combination of queries q6 and q9,
created during this work, which retrieves information regarding wellbores (from
q6) and their related facilities (from q9).

In Table 1, we show the evaluation results over the NPD benchmark for UCQs
and JUCQs. The unfoldings for JUCQs are constructed using cover queries of
2 fragments, each guided by our cost model. We observe that the sizes of the
unfoldings for JUCQs, measured in number of CQs, are sensibly smaller than
the size of the unfoldings for UCQs. Finally, we observe that the unfoldings for
the JUCQ version of the considered queries improve the running times up to a
factor of 34.

7 Conclusion and Future Work

In this paper, we have studied the problem of finding efficient alternative trans-
lations of a user query in OBDA. Specifically, we introduced a translation for
JUCQ queries that preserves the JUCQ structure while maintaining the possi-
bility of performing joins over database values, rather than URIs constructed
by applying mappings definitions. We devised a cost model based on a novel
cardinality estimation, for estimating the cost of evaluating a translation for a
UCQ or JUCQ over the database. We compared different translations on both
a synthetic and fully customizable scenario based on the Wisconsin Benchmark
and on a real-world scenario from the NPD Benchmark. In these experiments we
have observed that (i) our approach based on JUCQ queries can produce trans-
lations that are orders of magnitude more efficient than traditional translations
into UCQs, and that (ii) the cost model we devised is faithful to the actual query
evaluation cost, and hence is well suited to select the best translation.

As future work, we plan to implement our techniques in the state-of-the-art
OBDA system Ontop and to integrate them with existing optimization strate-
gies. This will allow us to test our approach in more and diversified settings. We
also plan to explore alternatives beyond JUCQs. Finally, we plan to work on the
problem of relaxing the uniformity assumption made in our cost estimator, by
integrating our model with existing techniques based on histograms.

Cost-Driven Ontology-Based Data Access 469

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Pub-
lishing Co., Boston (1995)

2. Bienvenu, M., Ortiz, M., Simkus, M., Xiao, G.: Tractable queries for lightweight
description logics. In: Proceedings of IJCAI, IJCAI/AAAI (2013)

3. Bursztyn, D., Goasdoué, F., Manolescu, I.: Efficient query answering in DL-Lite
through FOL reformulation (extended abstract). In: Proceedings of DL, vol. 1350.
CEUR, CEUR-WS.org (2015). http://ceur-ws.org/Vol-1350/paper-15.pdf

4. Bursztyn, D., Goasdoué, F., Manolescu, I.: Reformulation-based query answer-
ing in RDF: alternatives and performance. PVLDB 8(12), 1888–1891 (2015).
http://www.vldb.org/pvldb/vol8/p1888-bursztyn.pdf

5. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D.,
Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL
queries over relational databases. Semant. Web J. 8(3), 471–487 (2017).
http://dx.doi.org/10.3233/SW-160217

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
JAR 39(3), 385–429 (2007)

7. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language.
W3C Recommendation, W3C, September 2012. http://www.w3.org/TR/r2rml/

8. DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: Gray, J.
(ed.) The Benchmark Handbook for Database and Transaction Systems, 2nd edn.
Morgan Kaufmann, San Mateo (1993)

9. Di Pinto, F., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi,
M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: Pro-
ceedings of EDBT, pp. 561–572. ACM Press and Addison Wesley (2013)

10. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation,
W3C, March 2013. http://www.w3.org/TR/sparql11-query

11. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 263–274. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31585-5 26

12. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proceedings of KR, pp. 275–285 (2012)

13. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): concepts and
abstract syntax. W3C Recommendation, W3C, February 2004. http://www.w3.
org/TR/rdf-concepts/

14. Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD benchmark: reality
check for OBDA systems. In: Proceedings of EDBT, pp. 617–628 (2015). http://
openproceedings.org/

15. Lanti, D., Xiao, G., Calvanese, D.: Cost-driven ontology-based data access
(extended version). CoRR abs/1707.06974 (2017). http://arxiv.org/abs/1707.
06974

16. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language Profiles, 2nd edn. W3C Recommendation, W3C, December
2012. http://www.w3.org/TR/owl2-profiles/

17. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Seman-
tics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-77688-8 5

http://ceur-ws.org/Vol-1350/paper-15.pdf
http://www.vldb.org/pvldb/vol8/p1888-bursztyn.pdf
http://dx.doi.org/10.3233/SW-160217
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/sparql11-query
http://dx.doi.org/10.1007/978-3-642-31585-5_26
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://openproceedings.org/
http://openproceedings.org/
http://arxiv.org/abs/1707.06974
http://arxiv.org/abs/1707.06974
http://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5

470 D. Lanti et al.

18. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-
Lite ontologies. In: Proceedings of KR, pp. 308–318 (2012)

19. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
J. Web Semant. 33, 141–169 (2015)

20. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn.
McGraw-Hill Book Company, Boston (2005)

21. Swami, A., Schiefer, K.B.: On the estimation of join result sizes. In: Jarke, M.,
Bubenko, J., Jeffery, K. (eds.) EDBT 1994. LNCS, vol. 779, pp. 287–300. Springer,
Heidelberg (1994). doi:10.1007/3-540-57818-8 58

http://dx.doi.org/10.1007/3-540-57818-8_58

The Odyssey Approach for Optimizing
Federated SPARQL Queries

Gabriela Montoya1(B), Hala Skaf-Molli2, and Katja Hose1

1 Aalborg University, Aalborg, Denmark
{gmontoya,khose}@cs.aau.dk

2 Nantes University, Nantes, France
hala.skaf@univ-nantes.fr

Abstract. Answering queries over a federation of SPARQL endpoints
requires combining data from more than one data source. Optimizing
queries in such scenarios is particularly challenging not only because
of (i) the large variety of possible query execution plans that correctly
answer the query but also because (ii) there is only limited access to
statistics about schema and instance data of remote sources. To over-
come these challenges, most federated query engines rely on heuristics to
reduce the space of possible query execution plans or on dynamic pro-
gramming strategies to produce optimal plans. Nevertheless, these plans
may still exhibit a high number of intermediate results or high execu-
tion times because of heuristics and inaccurate cost estimations. In this
paper, we present Odyssey , an approach that uses statistics that allow
for a more accurate cost estimation for federated queries and therefore
enables Odyssey to produce better query execution plans. Our experi-
mental results show that Odyssey produces query execution plans that
are better in terms of data transfer and execution time than state-of-the-
art optimizers. Our experiments using the FedBench benchmark show
execution time gains of at least 25 times on average.

1 Introduction

Federated SPARQL query engines [1,4,7,14,17] answer SPARQL queries over
a federation of SPARQL endpoints. Query optimization is a particularly com-
plex and challenging task in a federated setting. The query optimizer minimizes
processing and communication costs by selecting only relevant sources for a
query. It decomposes the query into subqueries, and produces a query execu-
tion plan with good join ordering and physical operators. With limited access
to statistics, however, most federated query engines rely on heuristics [1,17] to
reduce the huge space of possible plans or on dynamic programming (DP) [5,7]
to produce optimal plans. However, these plans may still exhibit a high number
of intermediate results or high execution times because of inadequate heuristics
or inaccurate estimations of cost functions [8].

In this paper, we propose Odyssey , a cost-based query optimization approach
for federations of SPARQL endpoints. Odyssey defines statistics for representing
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 471–489, 2017.
DOI: 10.1007/978-3-319-68288-4 28

472 G. Montoya et al.

entities inspired by [12] and statistics for representing links among datasets while
guaranteeing result completeness. In a federated setting, computing statistics
naturally requires access to more than one dataset. To reduce the overhead,
Odyssey uses entity synopsis to identify links among datasets. This comes at
the risk of losing some accuracy in the link identification but still guarantees
that no links will be missed during query optimization, i.e., there is a small risk
that more sources are queried than strictly necessary but the query result will
be complete.

Odyssey uses the computed statistics to estimate the sizes of intermediate
results and dynamic programming to produce an efficient query execution plan
with a low number of intermediate results. In summary, this paper makes the
following contributions:

• Concise statistics of adequate granularity representing entities and describing
links among datasets while guaranteeing result completeness.

• A lightweight technique to compute federated statistics in a federated setup
that relies on entity synopsis.

• A query optimization algorithm based on dynamic programming using our
statistics to find the best plan.

• Extensive evaluation using a well-accepted standard benchmark for federated
query processing [16], including comparison against a broad range of state-of-
the-art related work [5,7,15,17]. The results show Odyssey ’s superiority with
a speed-up of up to 126 times and a reduction of transferred data of up to
118 times on average.

This paper is organized as follows. Section 2 presents related work, Sect. 3
describes the Odyssey approach and its algorithms. Section 4 discusses our exper-
imental results. Finally, conclusions and future work are outlined in Sect. 5.

2 Related Work

Query optimization in state-of-the-art federated query engines, such as FedX [17]
and ANAPSID [1], relies on heuristics. For instance, FedX [17] integrates the
variable counting heuristic, where relative selectivity of triple patterns is heuris-
tically estimated according to the presence of constants and variables in the triple
patterns. These heuristics are lightweight but might not lead to the best query
execution plan [18]. To find an optimal plan, several approaches [5,7,14,19] rely
on dynamic programming. However, given the high number of alternative query
plans for SPARQL queries with many triple patterns, dynamic programming
is very expensive [8]. Another important factor of query optimization is source
selection. Several approaches [1,7,15,17,19] try to determine the relevance of
a source by sending ASK queries, which increases the costs for a single query
but might amortize in large federations for an overlapping query load. Another
technique is to estimate whether combining the data of multiple sources can
lead to any join results, e.g., by computing the intersection of the sources’ URI
authorities [15] or detailed statistics [10,13].

The Odyssey Approach for Optimizing Federated SPARQL Queries 473

Federated query optimization can also rely on cardinality estimations based
on statistics and used, for instance, to reduce sizes of intermediate results. Most
available statistics [3] use the Vocabulary of Interlinked Datasets voiD [2], which
describes statistics at dataset level (e.g., the number of triples), at the property
level (e.g., for each property, its number of different subjects), and at the class
level (e.g., the number of instances of each class). However, approaches based on
voiD [5,7,9] and other statistics, such as QTrees [10] and PARTrees [13], share
the drawback of missing the best query execution plans because of errors in
estimating cardinalities caused by relying on assumptions that often do not hold
for arbitrary RDF datasets [12], e.g., a uniform data distribution and that the
results of triple patterns are independent.

Characteristic sets (CS) [6,12] aim at solving this problem in centralized
systems by capturing statistics about sets of entities having the same set of
properties. This information can then be used to accurately estimate the car-
dinality and join ordering of star-shaped queries. Typically, any set of joined
triple patterns in a query can be divided into connected star-shaped subqueries.
Subqueries in combination with the predicate that links them, define a charac-
teristic pair (CP) [8,11]. Statistics about such CPs can then be used to estimate
the selectivity of two star-shaped subqueries. Such cardinality estimations can be
combined with dynamic programming on a reduced space of alternative query
plans. Whereas existing work on CSs and CPs were developed for centralized
environments, this paper proposes a solution generalizing these principles for
federated environments.

3 The Odyssey Approach

Inspired by the latest advances in statistics for centralized triple stores [8,11,12],
Odyssey uses statistics about individual datasets to derive detailed statistics for
optimizing federated queries. In the following, we first describe the foundations of
our statistics on individual datasets (Sect. 3.1) and then propose a novel method
for computing such statistics in a federated environment based on entity descrip-
tions (Sect. 3.2). As the detailed entity descriptions cause too much overhead in
a federated setup, we propose a method for reducing the sizes of the descriptions
(Sect. 3.3). Finally, we present the Odyssey approach for query optimization and
its main steps (Sect. 3.4): source selection, join ordering, and query decomposi-
tion.

3.1 Dataset Statistics on Individual Datasets

Star-Shaped Subqueries. To estimate the cardinality and costs of BGPs
sharing the same subject (or object), i.e., star-shaped subqueries, we exploit
the principle that entities sharing the same set of properties are simi-
lar. In this context, we refer to the set of an entity’s properties as its
characteristic set (CS) and use css(e) to denote the CS of entity e in

474 G. Montoya et al.

dataset s or cs(e) if s is clear from the context. For instance, in DBpe-
dia 3.5.1 cs(dbr:Gary Goetzman)=C1 = {dbo:birthDate, foaf:name, rdf:type,
dbo:activeYearsStartYear, rdfs:label, skos:subject}. In total, 260 entities share
this set of properties and therefore CS C1.

Listing 1.1. Statistics for CS C1

{ count : 260 ,
e lems :
{{ pred : dbo : b i r thDate , o c u r r e n c e s : 260 } ,
{ pred : f o a f : name , o c u r r e n c e s : 326 } ,
{ pred : r d f : type , o c u r r e n c e s : 1023 } ,
{ pred : dbo : a c t i v eYe a r s S t a r tY e a r , o c u r r e n c e s : 260 } ,
{ pred : r d f s : l a b e l , o c u r r e n c e s : 260 } ,
{ pred : sko s : s ub j e c t , o c u r r e n c e s : 1336 }}}

CSs can be computed by scanning once a dataset’s triples sorted by subject;
after all the entity properties have been scanned, the entity’s CS is identified.
For each CS C, we compute statistics, i.e., the number of entities sharing C
(count(C)) and the number of triples with predicate p occurring with these
entities (occurrences(p, C)). Listing 1.1 shows the statistics for the above men-
tioned example CS C1. Entities of C1 occur on average in 1 triple with property
dbo:birthDate and in 3.94 triples with property rdf:type.

For a star-shaped query, only CSs including all of the query’s properties are
relevant as entities that only satisfy a subset of these properties cannot contribute
to the answer.

Listing 1.2. Find persons that have been active
SELECT DISTINCT ? pe r son WHERE {

? pe r son dbo : b i r t hDa t e ? date . (tp1)
? pe r son dbo : a c t i v eY e a r s S t a r tY e a r ? sy . (tp2)
? pe r son f o a f : name ?name (tp3)

}

For star-shaped queries asking for the set of unique entities described by
some properties (query with DISTINCT modifier), the exact number of answers
can be determined precisely (no estimation). For example, the cardinality of
the query given in Listing 1.2 can be obtained by adding up the count(C) of
all CS s containing the properties dbo:birthDate, dbo:activeYearsStartYear, and
foaf:name. In DBpedia 3.5.1, there are 7,059 CSs that include these three prop-
erties, and the total number of entities with these CSs is 83,438. Formally, the
number of entities for a given set of properties P, cardinality(P), is computed
based on the CSs Cj that include all the properties in P as:

cardinality(P) =
∑

P⊆Cj

count(Cj) (1)

For queries without the DISTINCT modifier, we need to account for duplicates
by considering the number of triples with predicate pi ∈ P that an entity is
associated with on average:

estimatedCardinality(P) =
∑

P⊆Cj

(
count(Cj) ∗

∏

pi∈P

ocurrences(pi, Cj)
count(Cj)

)
(2)

The Odyssey Approach for Optimizing Federated SPARQL Queries 475

In DBpedia 3.5.1, as mentioned above, there are 7,059 CSs relevant for the query
in Listing 1.2 with 83,438 entities as answer. These 83,438 entities are described
by 109,830 triples with predicate foaf:name, 83,448 with predicate dbo:birthDate,
and 110,460 with predicate dbo:activeYearsStartYear. If the query is considered
without the DISTINCT modifier, i.e., considering duplicated results, we esti-
mate: 148,486 matching entities in the result, which is very close to the real
number (149,440).

Once the relevant CSs for a query have been identified, they can be used to
find the join order minimizing the sizes of intermediate results. For the query
in Listing 1.2, we start by estimating the cardinalities for each subquery with
two out of the three triple patterns using Formula 1: {tp1, tp2}: 98,281, {tp1,
tp3}: 209,731, and {tp2, tp3}: 127,712. The triple pattern not included in the
cheapest subquery ({tp1, tp2}) is executed last (tp3). We proceed recursively
with the cheapest subquery and determine the cardinalities for its subsets: {tp1}:
232,608 and {tp2}: 143,004. Again, the triple pattern not included in the cheapest
subquery (tp1) will be executed last of the currently considered set of triple
patterns. As a result, we will execute the join between tp2 and tp1 first and
afterwards compute the join with tp3. We also get the order in which the triple
patterns should be evaluated for the first join: first tp2 and then tp1.

Arbitrary Queries. To estimate the cardinality for queries with more
complex shapes, we need to consider the connections (links) between enti-
ties with different CSs. Entity dbr:Evan Almighty, for example, is linked
to dbr:Tom Shadyac via property dbo:director by triple (dbr:Evan Almighty,
dbo:director, dbr:Tom Shadyac).

The links between CSs via properties can formally be described by charac-
teristic pairs (CPs), they are defined as (css(e1), css(e2), p) for entities e1 and
e2 if (e1, p, e2) ∈ s. The statistics – count((Ci, Cj , p)) – capture the number
of links between a pair of CSs (Ci and Cj) using a particular property p. For
example, given the CSs of dbr:Evan Almighty and dbr:Tom Shadyac as C1 and
C2 the number of links via property dbo:director is given by: count((C1, C2,
dbo:director)).

Listing 1.3. Find movies and their directors
SELECT DISTINCT ? f i l m ? d i r e c t o r WHERE {

? f i l m dbo : runt ime ? runt ime . (tp1)
? f i l m dbo : d i r e c t o r ? d i r e c t o r . (tp2)
? f i l m dbo : budget ? budget . (tp3)
? d i r e c t o r dbo : b i r t hDa t e ? date . (tp4)
? d i r e c t o r dbo : a c t i v eY e a r s S t a r tY e a r ? sy . (tp5)
? d i r e c t o r f o a f : name ?name (tp6)

}

The number of unique results (pairs of entities with set of properties Pk and
Pl, query with DISTINCT modifier) can be exactly computed (not estimated)
using the formula:

cardinality((Pk, Pl, p)) =
∑

Pk⊆Ci∧Pl⊆Cj

count((Ci, Cj , p)) (3)

476 G. Montoya et al.

For the query in Listing 1.3 property dbo:director links several pairs of CSs rep-
resenting movies and actors. Hence, we need to compute Σf1∧f2 count((Ci, Cj ,
dbo:director)), where f1 is ({dbo:runtime, dbo:director, dbo:budget} ⊆ Ci) and
f2 is ({dbo:birthDate, dbo:activeYearsStartYear, foaf:name} ⊆ Cj); one of the
operands of this sum is count((C1, C2, dbo:director)) mentioned in the example
above. For this query, DBpedia 3.5.1 contains 1,509 CPs linking entities from
two CSs via property dbo:director.

If a query does not involve the DISTINCT modifier, result cardinality esti-
mation considers the property occurrences in the CSs:

estimatedCardinality((Pk, Pl, p)) =
∑

Pk⊆Ci∧Pl⊆Cj

(
count((Ci, Cj , p))

∗
∏

pk∈Pk−{p}

(ocurrences(pk, Ci)

count(Ci)

) ∗
∏

pl∈Pl

(ocurrences(pl, Cj)

count(Cj)

))

(4)
Assuming that the order of joins within star-shaped subqueries has already been
optimized based on the CSs as described above, we treat each star-shaped sub-
query as a single meta-node to reduce complexity. We estimate the cardinalities
of joins between the meta-nodes using the statistics on CPs and use dynamic
programming (DP) to determine the optimal join order that minimizes the sizes
of intermediate results. Although the presentation in this section focuses on
subject-subject joins, the same principle can be applied to other types of joins,
e.g., object-object.

3.2 Federated Statistics

In general, entities might occur in multiple datasets in a federation S. Hence, we
define a federated characteristic set (FCS) as follows: fcsS(e) =

⋃
s∈S css(e), S

might be omitted if clear from the context. However, triples describing the same
entity are typically part of a single dataset so that most CSs can be computed

Fig. 1. Federated computation of statistics

The Odyssey Approach for Optimizing Federated SPARQL Queries 477

over each dataset independently from the others1. The federated characteristic
pair (FCP) of entities e1 and e2 via property p in federation S is defined as
(fcsS(e1), fcsS(e2), p). For FCSs FCi and FCj and property p, we compute
statistics count(FCi), occurrences(p, FCi), and count((FCi, FCj , p)) as before
for CSs and CPs. For simplicity, the following sections focus on FCPs connecting
CSs instead of FCSs. The generalization using FCSs is straightforward.

Whereas single dataset statistics can be computed once and provided by
the sources in the same way they currently provide voiD statistics [2], FCSs
and FCPs require more effort and centralized knowledge about all entities in
the considered datasets. A naive way to compute FCSs and FCPs is evaluating
expensive SPARQL queries with FILTER expressions involving NOT EXISTS,
but this can take weeks for a dataset with thousands of CSs. It is much more
efficient if the sources directly share information about local subjects and objects
with the federated query engine: local subjectss(C) contains the IRIs of entities
with CS C for source s, while local objectss(p, C) contains the IRIs of entities
linked via predicate p to subjects with CS C. Such information can, for instance,
be obtained efficiently while computing CSs and CPs locally and then shared
with the federated query engine.

The federated query engine can then use this information to compute
FCSs and FCPs. Consider, for instance, the two datasets LMDB and DBpe-
dia in Fig. 1; based on the CSs (Fig. 1(a)), the sources compute entity descrip-
tions (local subjectsi and local objectsi in Fig. 1(b)). Entity film:28350 has
properties {movie:language, ..., owl:sameAs} =CLMDB,1. Hence, film:28350 ∈
local subjectsLMDB(CLMDB,1). There is a triple with dbr:Evan Almighty as
value of property owl:sameAs for an entity with CS CLMDB,1 (film:28350)
so dbr:Evan Almighty ∈ local objectsLMDB(owl:sameAs, CLMDB,1) (Fig. 1(b)).
The overlap between the set of entities local subjectsDBpedia(CDBpedia,1) and
local objectsLMDB(owl:sameAs, CLMDB,1) represent linked entities between
LMDB and DBpedia via property owl:sameAs. Hence, we obtain FCP
(CLMDB,1, CDBpedia,1, owl:sameAs) (Fig. 1(c)). count((CLMDB,1, CDBpedia,1,
owl:sameAs)) corresponds to the cardinality of the intersection between all the
local objectsDBpedia and local subjectsLMDB linked by property owl:sameAs.

Algorithm 1 describes in more detail how to compute FCPs only based on
the pre-computed statistics local objectsd1 and local subjectsd2 (newFunction(0)
returns a new function with default value 0). First, all common entities in
local objectsd1 and local subjectsd2 are identified in line 7. These common entities
represent links between CSs Cd1,i and Cd2,j via property p and are captured by
a FCP (lines 9–10).

Listing 1.4. Find LMDB movies that are also DBpedia movies
SELECT ? f i l m ?movie WHERE {
? f i l m dbo : budget ? budget .
? f i l m dbo : d i r e c t o r ? d i r e c t o r .
?movie owl : sameAs ? f i l m .
?movie lmdb : s e q u e l ? seq

}

1 FCSs describing entities across multiple datasets are very rare. In FedBench, for
instance, they affect less than 0.5% of all CSs.

478 G. Montoya et al.

Algorithm 1. Compute FCPs Algorithm
Input: local objectsd1 and local subjectsd2 for datasets d1 and d2
Output: A set of FCPs (FCPs) with links from d1 to d2; count(fcp) for each fcp in FCPs

1: function ComputeFCPs(local subjectsd2, local objectsd1)
2: FCPs ← { }
3: count ← newFunction(0)
4: for (p, Cd1,i) ∈ domain(local objectsd1) do
5: entities ← local objectsd1(p,Cd1,i)
6: for Cd2,j ∈ domain(local subjectsd2) do
7: entities ← entities

⋂
local subjectsd2(Cd2,j)

8: if entities �= ∅ then
9: FCPs ← FCPs

⋃ { (Cd1,i, Cd2,j , p) }
10: count((Cd1,i, Cd2,j , p)) ← count((Cd1,i, Cd2,j , p)) + cardinality(entities)
11: end if
12: end for
13: end for
14: return CPs, count
15: end function

FCPs can be used for cardinality estimation and join ordering using the
same principles as described in Sect. 3.1. Consider a federation consisting of
DBpedia (160,061 CSs) and LMDB (8,466 CSs) with 22,592 FCPs and query in
Listing 1.4. We can use Formula 4 with the FCPs connecting LMDB to DBpedia
via the owl:sameAs property to estimate the result cardinality: 171. This is close
to the real cardinality (293).

3.3 Reducing the Sizes of Entity Descriptions

As the entity descriptions (local subjectsd and local objectsd) introduced above
are often very expensive to compute, maintain, and exchange, we propose a
technique to reduce their sizes. We organize the entity descriptions in a tree
structure that summarizes the entities used as subject or object in any of the
dataset’s triples. Inspired by [10,13,15], we factorize common prefixes, trans-
form suffixes into integers, and summarize sets of integers in buckets, i.e., a set
synopsis consisting of minimum value (mn), maximum value (mx), [mn, mx],
number of elements, num, and their set of two least significant bytes (lsb). lsb(i)
is computed as i mod 216 and is included to improve the synopsis’ accuracy.

The tree structure is organized in three levels. The top level summarizes the
prefixes of entity IRIs occurring as subjects and objects in the dataset. Suffixes
are mapped to integers using a hash function, these integers are summarized in
the middle and bottom levels. The middle level includes buckets where parent
nodes subsume the synopsis of their children (containment relationship between
parent and child ranges and summation between parent and child num) and
aids in efficiently accessing the bottom level. The bottom level (leaves) stores
(in local subjects and local objects) only the integer’s lsb to reduce the storage
space while improving the synopsis’ accuracy.

In Fig. 2 we present a fragment of the reduced descriptions for LMDB.
The reduced descriptions include all the entities that are subject or object
in the dataset’s triples. In particular, it includes the entity with IRI http://
data.linkedmdb.org/resource/film/28350 (Fig. 2(c)). This IRI prefix identifies

http://data.linkedmdb.org/resource/film/28350
http://data.linkedmdb.org/resource/film/28350

The Odyssey Approach for Optimizing Federated SPARQL Queries 479

the subtree that summarizes the entity (light gray ellipses in Fig. 2(a)), while
the hash code of its suffix (resource/film/28350), 1093595742, is used to iden-
tify the leaf that includes its lsb (−3490), i.e., with 1093595742 between its
minimum and maximum values (gray rectangle in Fig. 2(b)). Its lsb is in
local subjects(CLMDB,1) and local objects(mol:link source, CLMDB,2) in the iden-
tified leaf (trapezium in Fig. 2(b)). This tree structure exhibits size reduction
and eases the computation of FCPs by allowing to discard large portions of the
descriptions contrary to descriptions in Fig. 1(b), where all the local subjects and
local objects need to be pair-wise tested for overlap.

Fig. 2. Reduced entity descriptions for LMDB in Fig. 1. The tree factorizes common
prefixes in the top level (in the ellipses) and summarizes the suffixes in the middle (in
the rectangles) and bottom (in the trapezium) levels

Computation costs are greatly reduced by pruning large portions of the tree
and comparing only a few pairs of leaves, the ones that have common prefixes
and overlapping representation of the suffixes. An important feature of these
summaries is that entities present in more than one dataset are always detected.

These trees are considerably lighter than the entity descriptions discussed
in Sect. 3.2, but they might reduce accuracy. For FedBench’s DBpedia 3.5.1
subset, a dataset with 43,126,772 triples that occupies 6.1 GB, the local subjects
and local objects occupy 1.37 GB and the tree occupies only 68 MB2. They have
compression ratios of 4.45 and 91.86, respectively. Regarding the quality, the
tree summary allows for computing all the FCSs and FCPs.

To reduce the resources used by the tree, we have reduced the number of
CSs as suggested in [8,12] to 10,000. Only the CSs that are shared by the largest
number of entities are kept, and the others are removed and merged into the
remaining CSs if possible. For instance, by selecting from the remaining CSs
2 Implementation based on Java’s HashSet and HashMap was used to measure their

sizes.

480 G. Montoya et al.

that include all the properties of the removed CS, the one with the smallest
number of properties and combining their count and ocurrences, or by splitting
the removed CS into two disjoint property sets that can be merged with other
CSs. This may reduce the accuracy of the query cardinality estimation, but it
allows to bound the resources used to store and access these statistics.

Entity summaries can be kept up-to-date in two ways. For datasets that are
rarely updated, the subtree representing the entities with the prefix affected by
the updates, e.g., Fig. 2(b) in our example, can be re-computed. For datasets that
are often updated, leaves should support removal of entities, this can easily be
done by storing the multiplicity of each least significant byte so they are removed
only if all the entities with that least significant byte have been removed from
the dataset.

3.4 Optimizing Federated Queries

Query optimization in Odyssey can logically be divided into the following steps:
(i) preprocessing and source selection, (ii) join ordering, and (iii) query decom-
position. Arbitrary queries can be handled incrementally by optimizing its sub-
queries. In the following, we address the optimization of queries with bound
predicates, Odyssey relies on existing optimizers to handle other queries.

Preprocessing and Source Selection. We first parse the query and identify
its star-shaped subqueries. Then, properties in each star-shaped subquery are
used to identify relevant CSs and sources. For example, the subquery composed
by tp3 and tp4 in Fig. 3(a) has relevant CSs that include both owl:sameAs and
movie:sequel. In the FedBench federation described in Table 1, these CSs are only
part of LMDB. Therefore, LMDB is the only relevant source for this subquery.
Afterwards, we use CPs/FCPs to identify relevant sources for the links between
the star-shaped subqueries.

Join Ordering. Once we have identified the set of relevant sources, we can
estimate cardinalities of subqueries and find the best join ordering. We first
optimize the order of joins and triple patterns within each star-shaped subquery

Fig. 3. Query QF and its optimized plan

The Odyssey Approach for Optimizing Federated SPARQL Queries 481

using CS statistics (count(C i) and occurrences(p,Ci)) as explained in Sect. 3.1.
Afterwards, as described in Sect. 3.1, each subquery is treated as a meta-node
and we estimate cardinalities of the joins between these meta-nodes using the
formulas presented in Sect. 3.1 to estimate subquery costs and apply DP. For
QF (Fig. 3(a)), three star-shaped subqueries are identified and treated as meta-
nodes to estimate the cardinalities of their joins (Fig. 4, left). Figure 4 (right)
shows the estimated cardinality and cost of the subqueries, solid arrows indicate
which smaller subqueries were combined by the DP algorithm to form larger
subqueries. As the number of subqueries is usually considerably lower than the
number of triple patterns, applying DP becomes affordable.

Fig. 4. Example query optimization

In our current implementation, the cost function is solely defined on the cardi-
nalities of intermediate results and how many results need to be transferred from
endpoints during execution. This favors query plans with selective subqueries.
For instance, the cost of the join between meta-nodes ?star1 and ?star2 (1,965)
includes the result size (417) and the sum of all transferred intermediate results
(1,548). This cost function assumes that all endpoints have the same character-
istics. We can easily extend this cost function by additional parameters that can
be fine-tuned to represent the characteristics of each endpoint individually, e.g.,
communication delays, response times, etc.

Query Decomposition. Finally, we optimize the SPARQL queries that are
actually sent to the endpoints and try to minimize their number. For instance,
we combine all triple patterns and logical subqueries to a particular endpoint
into a single SPARQL query to a particular endpoint whenever possible. For
instance, meta-nodes ?star2 and ?star3 in Fig. 4 are combined into one subquery
(Fig. 3(b)) and evaluated by the DBpedia endpoint.

482 G. Montoya et al.

Table 1. FedBench [16] dataset statistics: number of distinct triples (#DT), predi-
cates (#P), CSs (#CS), and CPs (#CP); computation time in seconds of Odyssey ,
HiBISCuS, and voiD statistics

Dataset #DT #P # CS #CP #FCP Odyssey HiBISCuS voiD

ChEBI 4,772,706 28 978 9,958 19,360 82.91 96.02 73.89

KEGG 1,090,830 21 67 239 13,822 30.15 95.23 12.84

Drugbank 517,023 119 3,419 12,589 103,070 1,299.9 76.4 6.98

DBpedia subset 42,855,253 1,063 10,000 1,069,431 6,583 2,739 770.48 1,465.36

Geonames 107,949,927 26 673 7,707 322,672 1,885.97 609.52 39,694.07

Jamendo 1,049,647 26 42 190 1,259 31.25 99.17 14.66

SWDF 103,595 118 547 6,713 17,557 7.27 69.21 2.03

LMDB 6,147,916 222 8,466 94,188 359,340 947.16 317.21 355.45

NYTimes 335,119 36 47 158 3.96 10.01 72.56 4.22

Federated 620.35

Total 7,654.27 2,205.8 41,629.5

4 Evaluation

In this section, we present the results of our experimental study that compares
our approach, Odyssey , with state-of-the-art federated query engines: HiBIS-
CuS (FedX-HiBISCuS, cold and warm cache) [15], SemaGrow [5], FedX (cold
and warm cache) [17], and SPLENDID [7]. Full implementations, statistics, and
results are available at https://github.com/gmontoya/federatedOptimizer.

Datasets and Queries: We use the real datasets and queries proposed in the
FedBench benchmark [16]. Queries are divided into three groups Linked Data
(LD1-LD11), Cross Domain (CD1-CD7), and Life Science (LS1-LS7). They have
2–7 triple patterns and star and hybrid shapes. They have between 1 and 9,054
answers. Basic statistics about the datasets are listed in Table 1. We ran each
query ten times and report the averages over the last nine runs. Standard devi-
ation is included as error bars on the plots.

Implementation: Odyssey is implemented in Java using the Jena library to
parse and transform queries into queries with SPARQL 1.1 service clauses. Our
implementation uses the FedX 3.1 framework with deactivated native optimiza-
tion to execute Odyssey ’s query plans.

Hardware Configuration: For our experiments we used virtual machines
(VMs). A VM using up to 4 GB of RAM to run the federated query engine
and nine VMs with 2 processors, 8 GB of RAM and CPU 2294.250 MHz to host
Virtuoso endpoints with the datasets described in Table 1 (one dataset and end-
point per VM).

Statistics Computation: As DBpedia has a very high number of CSs
(160,061), we reduced them to 10,000 by merging (as suggested in [8,12] and
explained in Sect. 3.3) without significant losses in the quality of estimations.
Details on creation times of statistics are listed in Table 1. Odyssey ’s statistics

https://github.com/gmontoya/federatedOptimizer

The Odyssey Approach for Optimizing Federated SPARQL Queries 483

Fig. 5. Optimization time in ms (OT, log scale). CD1 and LS2 have variable predicates
and Odyssey relies on FedX to find plan.

can be more expensive to compute for datasets with more than 3,419 CSs and
cheaper than HiBISCuS’s for datasets with less than 67 CSs. In total, Odyssey ’s
statistics are computed five times faster than voiD’s.

Evaluation Metrics: (i) Optimization time (OT): is the elapsed time since
the query is issued until the optimized query plan is produced, (ii) number of
selected sources (NSS): is the number of sources that have been selected to answer
a query, (iii) number of subqueries (NSQ): is the number of subqueries that are
included in the query plan, (iv) execution time (ET): is the time elapsed since the
evaluation of the query plan starts until the complete answer is produced (with
a timeout of 1,800 s), (v) number of transferred tuples (NTT): is the number
of tuples transferred from all the endpoints to the query engine during query
evaluation.

Result Completeness: All approaches produce the complete result set for
non-timed out queries, except SPLENDID for query LS7.

4.1 Experimental Results

Optimization Time. Figure 5 shows the optimization time (OT) for the stud-
ied approaches. Because of the detailed statistics and dynamic programming,
one might expect Odyssey to suffer from a considerable overhead in OT. As our
experimental results show, however, Odyssey ’s query planner is competitive to
most other approaches with a slight advantage for FedX-Warm as this system
has cached information about the query relevant sources. For instance, Odyssey
is up to 69 times faster (SemaGrow) than other approaches on average.

Number of Selected Sources. As Fig. 6 shows, Odyssey selects only a
small number of relevant sources; for instance, at least 1.81 times less (FedX-
Cold/Warm and SemaGrow) and up to 1.93 times less (HiBISCuS-Cold/Warm)

484 G. Montoya et al.

Fig. 6. Number of selected sources (NSS)

on average. For some queries, e.g., LS4, existing approaches already select the
optimal number of sources. For LD7, Odyssey selects a larger number of sources
than the optimum because our approach does not perform ASK queries during
execution to prune irrelevant sources. Sometimes Odyssey overestimates the set
of relevant sources – but on the other hand it never misses any relevant sources.
For LS1, most approaches select just one (100) source because there is only one
dataset that has triples with the predicate in the query.

Number of Subqueries. As Fig. 7 shows, Odyssey uses considerably fewer sub-
queries than other approaches, at least 2.62 times less (HiBISCuS-Cold/Warm)
and up to 3.41 times less (SPLENDID) on average. The fact that Odyssey
always produces the correct and complete answers confirms that Odyssey cor-
rectly identifies and exploits cases for which it is advantageous to combine sub-
queries. Odyssey ’s reduction of the number of relevant sources has a positive

Fig. 7. Number of subqueries (NSQ)

The Odyssey Approach for Optimizing Federated SPARQL Queries 485

Fig. 8. Execution time in ms (ET, log scale)

impact on the number of subqueries (NSQ), Odyssey ’s pruning of non-relevant
sources allows for combining triple patterns into subqueries without affecting
the result completeness. Some queries, like LD2, LD4, and LD9, include triple
patterns that can be evaluated by a unique endpoint of the federation and exist-
ing approaches already decompose the query into the optimal NSQ. Only for
LD7, FedX-Cold/Warm, SPLENDID, and SemaGrow decompose the query into
fewer subqueries than Odyssey , this is because they use ASK queries to assess
a source’s relevance. Odyssey could be enhanced with this strategy.

Execution Time. Some approaches failed to answer all queries before the time-
out (1,800s): SPLENDID (2 queries) and SemaGrow (4 queries). Even when
considering only those queries that completed before the timeout, Odyssey is
on average 126.26 times faster than SPLENDID and 28.30 times faster than
SemaGrow. Figure 8 shows the execution times (ET) for the studied approaches.
Odyssey is on average at least 25.46 times faster (FedX-Warm). Only for a few
queries Odyssey is (slightly) slower than other approaches, e.g., LS3. As for the
other metrics, Odyssey ’s ET can be improved if ASK queries were used during
query execution to further reduce the relevant sources similarly as it is done by
other approaches. For five of the queries, Odyssey is one of the fastest approaches
and for 11 queries, Odyssey is the fastest approach. Odyssey ’s achieved reduc-
tions on the NSS and NSQ have a positive impact on the ET; as fewer endpoints
are queried fewer times, Odyssey produces results faster than most approaches
in most cases.

Number of Transferred Tuples. Figure 9 shows the number of trans-
ferred tuples (NTT) for the studied approaches. Odyssey transfers fewer tuples
than other approaches. Even when considering only those queries that com-
pleted before the timeout, Odyssey transfers on average 1.15 times fewer tuples
faster than SemaGrow and 108.4 times fewer tuples than SPLENDID. For the

486 G. Montoya et al.

Fig. 9. Number of transferred tuples (NTT, log scale, 100 = 1)

approaches that completed all the queries, Odyssey transfers at least 117.55
fewer tuples (HiBISCuS-Cold/Warm) on average. Most approaches are compet-
itive in terms of NTT. The largest difference is observed for LS6, where Odyssey
clearly outperforms the other approaches transferring 500 times fewer tuples. In
contrast to other approaches, Odyssey not only reduces the number of requests
sent to the endpoints but also avoids non-selective subqueries, which significantly
reduces network traffic and the local query load at the endpoints.

4.2 Combining Odyssey with Existing Optimizers

We have also integrated Odyssey techniques directly into the FedX optimizer
and obtained:

– Odyssey-FedX-Cold, which relies on CSs and CPs to select sources and decom-
poses the query but uses FedX join ordering.

– FedX-Cold-Odyssey , which relies on the FedX optimizer for source selection
but uses Odyssey for query decomposition and join ordering.

Figure 10 compares the execution times (ET) of these two implementations with
Odyssey , FedX-Cold, and FedX-Warm. In most cases the combined approaches
are considerably faster than native FedX. In a few cases, however, their ET can
increase considerably. In these cases, queries include a highly selective subquery
with one triple pattern and using FedX’s heuristic to execute subqueries with
more than one triple pattern first leads to plans that are more expensive than
others. On average, the combined approaches are 26.86 and 3.99 times faster
than FedX-Cold.

For query LD7, Odyssey and FedX-Cold/Warm exhibit similar ETs whereas
FedX-Cold-Odyssey is considerably faster. For this query it happens that the
advantages of both Odyssey and FedX coincide, i.e., we can take advantage of
the good join ordering by Odyssey but also of the additional pruning based on
ASK queries by FedX.

The Odyssey Approach for Optimizing Federated SPARQL Queries 487

Fig. 10. Execution time in ms (ET, log scale) of query plans optimized using Odyssey
and FedX

Even if Odyssey ’s OT can be higher in comparison to existing approaches,
Odyssey produces better plans composed of fewer subqueries and fewer selected
sources per triple pattern without compromising result completeness. Benefits
of these features have been evidenced with significantly faster ETs and less
transferred data from endpoints to the federated query engine.

5 Conclusion

In this paper, we have presented Odyssey , an approach for optimizing feder-
ated SPARQL queries based on statistics. These statistics detail information
about the data provided by remote endpoints as well as the links between them.
This enables more accurate cost estimations, query optimization, and selection
of relevant sources. Our extensive experimental evaluation shows that Odyssey
produces query execution plans that are better in terms of data transfer and
execution time than state-of-the-art optimizers. In our future work, we plan to
further improve Odyssey by considering in which situations exactly it is worth-
while to use additional aspects of other optimizers, such as ASK queries and
associated statistics. Another interesting direction of future work is to further
reduce the computation time and sizes of the entity descriptions and provide
efficient strategies to update the descriptions and statistics.

Acknowledgments. This research was partially funded by the Danish Council for
Independent Research (DFF) under grant agreement no. DFF-4093-00301.

488 G. Montoya et al.

References

1. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 18–34. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25073-6 2

2. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets.
In: LDOW 2009 (2009)

3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC
2013. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41338-4 18

4. Basca, C., Bernstein, A.: Querying a messy web of data with avalanche. J. Web
Semant. 26, 1–28 (2014)

5. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: optimizing
federated SPARQL queries. In: SEMANTICS 2015, pp. 121–128 (2015)

6. Du, F., Chen, Y., Du, X.: Partitioned indexes for entity search over RDF knowledge
bases. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.)
DASFAA 2012. LNCS, vol. 7238, pp. 141–155. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29038-1 12

7. Görlitz, O., Staab, S.: SPLENDID: SPARQL endpoint federation exploiting VOID
descriptions. In: COLD 2011 (2011)

8. Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join order-
ing in SPARQL queries. In: EDBT 2014, pp. 439–450 (2014)

9. Hagedorn, S., Hose, K., Sattler, K., Umbrich, J.: Resource planning for SPARQL
query execution on data sharing platforms. In: COLD, pp. 49–60 (2014)

10. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: WWW 2010, pp. 411–420
(2010)

11. Meimaris, M., Papastefanatos, G., Mamoulis, N., Anagnostopoulos, I.: Extended
characteristic sets: graph indexing for SPARQL query optimization. In: ICDE 2017
(2017)

12. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation
for RDF queries with multiple joins. In: ICDE 2011, pp. 984–994 (2011)

13. Prasser, F., Kemper, A., Kuhn, K.A.: Efficient distributed query processing for
autonomous RDF databases. In: EDBT 2012, pp. 372–383 (2012)

14. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL.
In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC
2008. LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68234-9 39

15. Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: hypergraph-based source selec-
tion for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon,
F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp.
176–191. Springer, Cham (2014). doi:10.1007/978-3-319-07443-6 13

16. Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
a benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25073-6 37

http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-25073-6_2
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://dx.doi.org/10.1007/978-3-642-29038-1_12
http://dx.doi.org/10.1007/978-3-642-29038-1_12
http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-540-68234-9_39
http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-642-25073-6_37

The Odyssey Approach for Optimizing Federated SPARQL Queries 489

17. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: optimization
techniques for federated query processing on linked data. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC 2011. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25073-6 38

18. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–
604 (2008)

19. Wang, X., Tiropanis, T., Davis, H.C.: LHD: optimising linked data query process-
ing using parallelisation. In: LDOW (2013)

http://dx.doi.org/10.1007/978-3-642-25073-6_38
http://dx.doi.org/10.1007/978-3-642-25073-6_38

Automated Fine-Grained Trust Assessment
in Federated Knowledge Bases

Andreas Nolle1(B), Melisachew Wudage Chekol2, Christian Meilicke2,
German Nemirovski1, and Heiner Stuckenschmidt2

1 Albstadt-Sigmaringen University, Albstadt, Germany
{nolle,nemirovskij}@hs-albsig.de

2 Research Group Data and Web Science, University of Mannheim,
Mannheim, Germany

{mel,christian,heiner}@informatik.uni-mannheim.de

Abstract. The federation of different data sources gained increasing
attention due to the continuously growing amount of data. But the more
data are available from heterogeneous sources, the higher the risk is of
inconsistency. To tackle this challenge in federated knowledge bases we
propose a fully automated approach for computing trust values at differ-
ent levels of granularity. Gathering both the conflict graph and statistical
evidence generated by inconsistency detection and resolution, we create
a Markov network to facilitate the application of Gibbs sampling to com-
pute a probability for each conflicting assertion. Based on which, trust
values for each integrated data source and its respective signature ele-
ments are computed. We evaluate our approach on a large distributed
dataset from the domain of library science.

1 Introduction

The permanent growing amount of data published in the Linked Open Data
(LOD) cloud opens new challenges in data integration. Additionally the use of
different schema makes the task of federating several data sources a difficult
problem. The federation of various data sources implies typically the amalga-
mation of ambiguous and possibly conflicting information and often leads to
inconsistencies. The resolution of conflicts in federated large scale knowledge
bases (KBs) is studied in [17]. Their approach is based on the generation and
evaluation of federated clash queries, which are known to be complete for incon-
sistency detection in DL-LiteA KBs. They apply a majority voting scheme to
determine a partial repair. This approach does not aim at finding a global opti-
mal repair, but applies an efficient heuristic where each step in the algorithm
corresponds to a reasonable decision.

However, resolving conflicts by removing (or ignoring) a subset of the given
assertions may result in loss of information. An alternative approach is to deter-
mine the trustworthiness of individual assertions, data source specific signature

We refer the interested reader to an extended version of this paper available at
http://www.researchgate.net/publication/318722371.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 490–506, 2017.
DOI: 10.1007/978-3-319-68288-4 29

http://www.researchgate.net/publication/318722371

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 491

elements (concept, role, or attribute names) and data sources integrated in the
federated KB. Grandison and Sloman [8] define “trust as the belief in the com-
petence of an entity to act dependably, securely, and reliably within a specified
context”. In our work we are concerned with data sources and their competences
to provide reliably information with respect to a given assertion or with respect
to the set of all assertions that have the same predicate (signature element of the
TBox) in common. In that sense our definition of trust also builds on the notion
of context dependency, while we understand context as reference to a given fact
or reference to a predicate.1

We use the statistical evidence gathered by calculating a repair, as prior
knowledge for the calculation of trust values at different levels of granularity. In
particular, we consider the conflict graph, generated by clashing assertions, as a
Markov network that can be used to determine the probability for each conflict-
ing assertion via Gibbs sampling. With the aid of these probabilities, specific
trust values for signature elements and data sources can be computed to esti-
mate the probabilities of non-conflicting assertions. Consequently, our approach
requires neither a full trusted data source (as in [5]) nor any manual assignments
(or user interactions) and relies solely on the identified conflicts. Unlike other
approaches [7,12–14,20,22] that in principle rely on the determination of source
reliability, we additionally compute individual trust measures on the assertion
and signature level of each integrated data source. Our main contribution is a
fully automated approach of fine-grained trust assessment and consequently the
transformation of a conventional (federated) KB into a probabilistic one.

In Sect. 2 we briefly introduce some fundamental terms and definitions. After
introducing the generation of a conflict graph and its repair in Sect. 3 we propose
our approach for assessing fine-grained trust values in Sect. 4. Subsequently, we
present and discuss results of our experiments in Sect. 5. Before concluding in
Sect. 7, we discuss related work in Sect. 6.

2 Preliminaries

We briefly introduce the definition of federated DL-LiteA KBs, basic notions
related to inconsistency in description logic (DL) KBs, and Markov networks.

2.1 Federated DL-LiteA Knowledge Bases

DL-Lite is a family of languages in which checking KB satisfiability can be done
in PTime in the size of the TBox and query answering in AC0 in the size of
the ABox. We consider the subfamily DL-LiteA, which has been designed for
efficiently dealing with huge amounts of extensional information (ABox). We
refer the reader to [3,18] for a detailed discussion of the syntax and semantics.
In general, subsumption axioms in DL-LiteA can be normalized, i.e., each axiom
1 The measure of trust essentially indicates the probability of an assertion to be true.

While the term trust is used more on the data source level, probability is more often
used with respect to a specific assertion. We use both terms interchangeably.

492 A. Nolle et al.

comprise only one element on the left of the subsumption relation (�) and one
element on the right hand side.

The signature Σ (also known as alphabet or vocabulary) of a KB is a finite
set of concept, role and attribute names. Furthermore, for ABox assertions of
the form A(x), R(x, y) and U (x, v) we refer to the concept, role and attribute
names of assertions, i.e., A,R,U ∈ Σ, as signature elements. In the context of
federated KBs, where each integrated data source uses different terminologies
(signatures) that are linked by an intermediary (central) schema, we can define
a federated DL-LiteA KB as well as federated ABox assertions as follows.

Definition 1. A federated DL-LiteA knowledge base is a DL-LiteA knowledge
base K with K = 〈Tc ∪

⋃
i∈F

Ti,
⋃

i∈F
Ai〉 where Tc is a central TBox, each Ti is

a TBox and Ai is an ABox in data source i and F is a set of indices that refers
to the federated data sources. A federated ABox assertion is a pair 〈α, i〉 where
α denotes an ABox assertion stated in Ai.

For compact presentation we write T instead of Tc ∪
⋃

i∈F
Ti and A instead of⋃

i∈F
Ai. Besides, without loss of generality, in the remainder of this paper we

assume that there is only one central schema T which might be the union of
some data source specific schema and an intermediary one comprising mappings
between the data source specific vocabularies. Furthermore, we do not address
integration problems related to incoherency, i.e., we assume that T is coher-
ent. Note that there are other works that deal with debugging issues on the
terminological level, e.g., [9].

2.2 Inconsistency in Description Logics

In DL, an interpretation I that satisfies all assertions in T ∪A of KB K is called
a model. The set of all models for K is denoted by Mod(K). K is called satisfiable
or consistent, if Mod(K) �= ∅ [2,6]. Otherwise K is called inconsistent. K |= φ
denotes that K logically entails or satisfies a closed first-order logic sentence
(formula) φ, provided that φI is true for every I ∈ Mod(K). If a set F of closed
sentences is entailed by K, we can also write K |= F [19].

An explanation (or justification) for K |= φ is a subset K′ of K such that
K′ |= φ while K′′ � |= φ for all K′′ ⊂ K′ [10]. Consequently, an explanation can
be interpreted as a minimal reason that explains why φ follows from K. Given
an inconsistent KB K, an explanation for the inconsistency is called a minimal
inconsistent subset (MIS) and is denoted by the subset K′ of K such that K′ is
inconsistent while K′′ is consistent for all K′′ ⊂ K′. A subset R ⊆ K is called a
repair (or repair plan) of an inconsistent KB K, if K \ R is consistent.

Assuming that all of the terminological axioms are (semantically) correct,
we are only interested in the subset of a MIS that comprises only ABox asser-
tions. We refer to such a subset of a MIS as a MISA (minimal inconsistency
preserving sub-ABox). Please notice that in DL-LiteA each MISA comprise at
most two ABox assertions due to the normalized form of subsumption axioms
(see Sect. 2.1). As we will show in Sect. 4.2, the conflict graph obtained from the
MISAs can be represented as a Markov network.

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 493

2.3 Markov Networks

Graphical models are used to compactly describe a complex distribution over a
multi-dimensional space as a graph and provide a central framework to reason
on uncertain information. A Markov network or Markov random field is a prob-
abilistic model that represents the joint probability distribution over a set of
random variables X = (x1, x2, ..., xn) as an undirected graph [11]. Each variable
is represented by a node and a direct probabilistic interaction between two nodes
is represented by an edge. For each clique D comprising the set of nodes XD

there exists a real-valued weight wD and a feature fD mapping a possible state
xD of that clique to a real value. A clique of a graph is a set of nodes which are
fully connected. The joint distribution of a Markov network can be defined as a
log-linear model of the form

p(X = x) =
1
Z

exp
(∑

D

wDfD(xD)
)

, (1)

where x is a vector, comprising the state of the variables X and Z is a normal-
ization constant, called partition function. The Markov blanket Bx of a variable
(node) x is defined as the minimal set of variables (nodes) that renders x inde-
pendent from the rest of the graph, which is simply all neighboring nodes of x.
We consider binary discrete variables, hence, the state of a variable is its truth
value, i.e., either 1 or 0. The conditional probability of a variable x when its
Markov blanket Bx is in a state bx is given by:

p(x = x|Bx = bx) (2)

=

exp
(∑

fx∈Fx

wxfx(x = x, Bx = bx)
)

exp
(∑

fx∈Fx

wxfx(x = 0, Bx = bx)
)

+ exp
(∑

fx∈Fx

wxfx(x = 1, Bx = bx)
) ,

where bx is a vector that denotes the state of the Markov blanket Bx of node x,
Fx is the set of features in which x appears and the feature fx is a real value of
the state, given x and bx. In this paper we focus on binary features f(x) ∈ {0, 1}.
We will use formula (2) to compute the probabilities of conflicting assertions as
shown in Sect. 4.2.

3 Conflict Graph and Repair Generation

To illustrate how MISAs are used to generate a conflict graph, we introduce an
example that is used throughout the remainder of this paper. Let T be a central
schema that comprises the following axioms.

Book � Paper � Publication Paper � ¬Book
Proceedings � Book Publication � ¬SlideSet
∃isPartOf � Paper ∃isPartOf − � Proceedings

∃hasSlideSet � Paper ∃hasSlideSet− � SlideSet

494 A. Nolle et al.

And let A1, A2, and A3 denote three distributed data sources that contain
assertions shown in the following table.

A1 A2 A3

Paper(I1) (α1)

isPartOf (I1,C1) (α2)

Paper(I2) (α3)

Paper(I4) (α4)

isPartOf (C2, I5) (α5)

isPartOf (I6,C3) (α6)

Paper(I6) (α7)

Paper(I7) (α8)

Paper(I1) (β1)

Proceedings(I1) (β2)

isPartOf (C1, I1) (β3)

isPartOf (I4,C2) (β4)

Proceedings(C2) (β5)

isPartOf (I6,C3) (β6)

Proceedings(C3) (β7)

Paper(C4) (β8)

SlideSet(I1) (γ1)

SlideSet(I2) (γ2)

hasSlideSet(I3, I2) (γ3)

SlideSet(I4) (γ4)

hasSlideSet(C2, I4) (γ5)

Proceedings(C3) (γ6)

Proceedings(C4) (γ7)

hasSlideSet(I6,C4) (γ8)

For example, the assertion that I1 is a Paper (α1 in A1) and the assertion that I1
is a SlideSet (γ1 in A3) are obviously in contradiction due to the axiom Paper �
¬SlideSet originated from the axiom Publication � ¬SlideSet in T . In addition,
as the assertion Paper(I1) is also found in A2 (β1), it is also contradictory to
A3. Furthermore, we can entail this assertion in A1 from isPartOf (I1,C1) (α2)
and the axiom ∃isPartOf � Paper in T .

Note that our example can easily be extended to the case where the inte-
grated data sources use different terminologies that are linked by equivalence or
subsumption axioms by an intermediary schema. Relying on a previous work [17],
we can efficiently detect and resolve inconsistency in federated DL-LiteA KBs.
The complete set of conflicts respectively the corresponding MISAs is generated
by so-called federated clash queries. Hence, for the above KB, the complete set C
of identified conflicts (MISAs) is given by { {α1, β2}, {α1, β3}, {α1, γ1}, {α2, β2},
{α2, β3}, {α2, γ1}, {β1, β2}, {β1, β3}, {β1, γ1}, {β2, γ1}, {β3, γ1}, {α3, γ2},
{α3, γ3}, {α4, γ4}, {α4, γ5}, {α5, β4}, {α5, β5}, {α5, γ5}, {β4, γ4}, {β4, γ5},
{β5, γ5}, {β8, γ7}, {β8, γ8}, {γ7, γ8} }. The corresponding conflict graph com-
prising four independent subgraphs is shown in Fig. 1. Each federated assertion
is represented by a node and a contradiction between two assertions is repre-
sented by an edge.

4

β2

3

α1

3

α2

5

γ1

3

β1

4

β3

2

α3

1
γ2

1
γ3

2

γ4

3

α5

2

α4

3

β4

2

β5

4

γ5 2

β8

2
γ7

2
γ8

Fig. 1. Conflict graph

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 495

Majority Voting Approach. Once all logical conflicts have been collected, the
resolution of the identified contradictions is based on the assumption that the
more data sources are integrated, the higher is the probability that correct asser-
tions occur redundantly. Conversely, the probability that an assertion is incorrect
correlates with the number of contradictions in which the assertion is involved.
Based on this assumption, a majority voting scheme is applied on the asser-
tion cardinalities, which are given by the number of involved MISAs for each
assertion as illustrated in Fig. 1. MISAs comprising assertions with different
cardinalities are iteratively resolved by adding the assertion with higher car-
dinality to the repair. Note that MISAs with minimum cardinality are resolved
first, to reduce the impact (of wrong decisions) on subsequent decisions. Apply-
ing this heuristic to the conflict graph of our example will produce the repair
{β2, β3, γ1, α3, α5, β4, γ5}, depicted as dashed nodes.

Obviously, this heuristic may not resolve all logical conflicts, i.e., MISAs
whose assertions having the same cardinalities (like β8, γ7 and γ8). As a conse-
quence, the heuristic generates a unique but not a full nor a global optimal
repair. The application of this approach to a federated setting comprising four
LOD data sources has shown that 39.5% of the detected conflicts could be solved
with a precision up to 97% [17]. One possibility to get a full repair leading to a
consistent KB could be for example to choose a random repair for all remaining
contradictions. However, the resolution of conflicts implies the removal of all
assertions that are part of the repair. To avoid loss of information we will now use
the result of this approach to compute trust values respectively probabilities for
individual assertions as well as for each data source and its individual signature
elements.

4 Fine-Grained Trust Assessment

Since the evaluation of the approach for inconsistency resolution shows a high
precision, we use the gathered statistical evidence as a basis for a fine-grained
assessment of trust values at the level of assertions, signatures and data sources.

4.1 Signature Accuracy

We determine the signature accuracy2 for each signature element with respect
to a data source based on conflicting assertions and assertions that are ‘correct’.
Correct means in this case solely assertions whose individuals occur in a non-
conflicting assertion in at least one other integrated data source. The set of
conflicting assertions and correct assertions can be treated as an adequate sample
of all assertions that use the same signature element. Furthermore, conflicting
assertions can be defined into the following three subcategories:

– likely false assertions (assertions that are in the majority voting based repair),

2 We intentionally avoid here the terms ‘trust’ or ‘probability’ to prevent any confusion
with the calculated signature trusts later on.

496 A. Nolle et al.

– likely true assertions (conflicting assertions that would become conflict-free if
the repair is removed),

– always conflicting assertions (assertions that are part of unresolvable MISAs).

Accordingly, we can define the accuracy for an signature element σ ∈ Σ of a
specific data source i formally as follows:

Definition 2. Given a federated knowledge base K = 〈T ,
⋃

i∈F
Ai〉, the set X

of all conflicting assertions and the set C = {c1, ..., cn} of all conflicts (MISAs)
in K with c := {xk, xl}, k �= l and xk, xl ∈ X, a repair R computed by a
majority voting approach, and the set G of non-conflicting assertions comprising
individuals that occur in more than one data source (correct assertions). Let σ
be either a concept, a property or an attribute in the signature Σ of K, and
let Ψ ⊆

⋃
i∈F

Ai be a set of federated assertions, then sas(σ, Ψ, i) is defined as
the subset of assertions in Ψ that use σ and originate from Ai. The signature
accuracy acc of σ with respect to Ai is defined as

acc(σ, i) = 1 −
|sas(σ,R, i)| +

∑

x∈sas(σ,a∈c:c∈C;c∩ R=∅,i)

1
|c ∈ C : x ∈ c|

|sas(σ,X ∪ G, i)| , (3)

where x is an assertion in Ai that uses the signature element σ and is part of
a MISA not resolved by R. The accuracy of a signature is between 0 and 1,
i.e., 0 < acc(σ, i) < 1. Accuracy values that are outside of this range, i.e., for
acc(σ, i) = 0 and ar(σ, i) = 1, the accuracy is set to a fixed value: 0.001 and
0.999 respectively.

Informally, the accuracy for a signature element of a specific data source is
defined by ‘1− the ratio of incorrect assertions with respect to the total number
of conflicting assertions and correct assertions’. The numerator in formula (3) is
the number of incorrect assertions. It is given by the number of likely false asser-
tions (|sas(σ,R, i)|) and the probability of being true for each always conflicting
assertion, which in turn is given by 1 divided by the number of contradicting
assertions (number of involved conflicts).

Example 1. From the example of Sect. 3, the set of conflicting assertions com-
prises α1, α3 and α4 with respect to the signature element Paper in data source
A1, where only α3 is part of the repair. On the other hand, α7 is a correct
assertion because it is verified by β6 and not in conflict with any other asser-
tion. Further, α8 is neither a correct assertion nor part of any MISA. According
to Definition 2 the accuracy for signature element Paper in data source A1 is
given by acc(Paper , 1) = 1 − 1+0

4 = 0.75. The accuracy values for all signature
elements are shown below.

acc(Paper , 1) = 0.75

acc(isPartOf , 1) = 0.67

acc(Paper , 2) = 0.33

acc(Proceedings, 2) = 0.67

acc(isPartOf , 2) = 0.67

acc(SlideSet , 3) = 0.67

acc(hasSlideSet , 3) = 0.44

acc(Proceedings, 3) = 0.67

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 497

Based on the above definition, we can now use the calculated signature accuracy
for a specific signature element with respect to a data source, to compute precise
probabilities for conflicting assertions.

4.2 Assertion Trusts

We consider a conflict graph as a Markov network, where X = {x1, . . . , xm}
represents the set of all federated assertions that are involved in some conflict
and C = {c1, ..., cn} the set of all conflicts (edges) with c := {xk, xl}, k �= l. Since
the edges in the conflict graph are undirected, we have chosen Markov Network
as undirected graphical model. Each assertion x represents a binary random
variable x ∈ {0, 1}, i.e., either true (x = 1) or false (x = 0). For each assertion
x we have a feature fa ∈ F such that fa(x = 0) = 0 and fa(x = 1) = 1,
i.e., fa(x) = x. Moreover, in order to obtain a consistent possible world the
condition !(

∧
x∈c x) has to be satisfied for each conflict c ∈ C. A possible world

is an assignment of truth values to all the variables. Consequently, each such
condition is also treated as a feature fc ∈ F such that the Markov network
specifies a probability distribution over all possible worlds X .

Since each condition fc is a hard constraint that has to be satisfied in each
possible world x ∈ X , the corresponding weight is wc → ∞. If any constraint
is violated, the joint distribution (given by Eq. (1)) is limw→∞ p(X = x) = 0.
Further, if at least one variable bx ∈ Bx in the Markov blanket of x is true, the
conditional probability (given by Eq. (2)) of x is limw→∞ p(x = 0|Bx = bx) = 1
and limw→∞ p(x = 1|Bx = bx) = 0. This is because, the feature fx(x = 0, Bx =
bx) (resp. fx(x = 1, Bx = bx)) can only be true (resp. false) iff all its neighbors
bx ∈ Bx are false, i.e., bx = 0 (resp. true bx = 1).

In order to compute the marginal probability of an assertion that uses sig-
nature element σ with respect to a data source i, we make use of the calculated
signature accuracies. Hence we determine the weight wa of a feature fa for an
assertion x in Ai as the log odds between a world in which an assertion x of Ai

that uses σ is true and a world in which it is false, given by

wa = ln
(

acc(σ(x), i)
1 − acc(σ(x), i)

)

, (4)

where σ(x) is the signature element of assertion x.
The complexity of computing the marginal probabilities is time exponential

in the number of nodes. Thus, to perform approximate inference in Markov net-
works, Markov chain Monte Carlo (MCMC) particularly Gibbs sampling [11]
is one of the most commonly used methods. In Gibbs sampling each node is
sampled randomly in turn, given its Markov blanket using Eq. (2). An approx-
imation of the marginal probabilities, which is also called marginal inference,
can be done by simply counting over the samples. Flipping the state of a node
(e.g., changing its truth value from true to false) can be treated as a ‘transi-
tion’ between different worlds x ∈ X (possible worlds of X). Because of the
conditions fc ∈ F , a change of the state of an assertion x according to its con-
ditional probability is only performed, iff all its neighbors bx ∈ Bx are false, i.e.,

498 A. Nolle et al.

bx = 0 (denoted by Bx = 0 for short) and consequently the flip would not lead
to an inconsistent world. Otherwise the state of an assertion remains unchanged.
Given that Bx = 0, in Eq. (2) all constraint features fc in which x appears are
zero (fc = 0) and there remains one feature fa(x) whose value depends on the
state of x. As we have already computed a possible repair based on a majority
voting approach, we use it as a starting point for the Gibbs sampling. However,
as there is no guarantee that all conflicts are resolved, a repair for all remaining
contradictions is chosen randomly. Provided that we jump only between consis-
tent possible worlds, there remain solely two cases for the conditional probability
of node x, representing an assertion in Ai from which we have to sample:

1. if the current world contains x = 0 and Bx = 0, then the probability that x
is true in the next possible world is given by:

p(x = 1|Bx = 0) =
exp

(

ln
(acc(σ(x), i)

1 − acc(σ(x), i)

))

exp (0) + exp
(

ln
(acc(σ(x), i)

1 − acc(σ(x), i)

)) = acc(σ(x), i), (5)

2. if the current world contains x = 1 and Bx = 0, the probability that x is false
in the next possible world is given by:

p(x = 0|Bx = 0) = exp (0)

exp (0) + exp
(

ln
(acc(σ(x), i)

1 − acc(σ(x), i)

)) = 1 − acc(σ(x), i). (6)

Consequently, the calculated accuracy of a signature element σ is exactly the
conditional (prior) probability of an assertion x ∈ Ai comprising σ, given that
all neighbors (contradicting assertions) are false. Since we start with a consistent
world and ensure that an inconsistent world is never reached, the flipping of
states causes that in some circumstances too many assertions are false (part of
the repair), which is absolutely legitimate in terms of an acceptable repair. In
terms of performance optimization, the sampling is applied to each independent
subgraph of the conflict graph in parallel. After the sampling the approximate
marginal probability (trust) of each assertion x can be calculated according to
the following definition:

Definition 3. Given a federated knowledge base K = 〈T ,
⋃

i∈F
Ai〉, the set X of

all conflicting assertions in K, the set G of (non-conflicting) correct assertions
and the set M containing, for each conflicting assertion x ∈ X, the number of
Gibbs sampling states in which x = 1. Then, the assertion trust p(x) for each
federated assertion x in A of K is given by

p(x) =

⎧
⎪⎨

⎪⎩

1.0, x ∈ G,
Mx=1

N
, x ∈ X,

∅, otherwise,

(7)

where Mx=1 is the number of states in which x = 1, N is the number of samples
and ∅ denotes undefined.

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 499

Probabilities cannot be assessed for all assertions in A of K, i.e., for those asser-
tions that are not correct and are not involved in some MISAs. For such asser-
tions, we determine (in Sect. 4.3) trust values for different signature elements
with respect to a specific data source, called signature trusts.

Example 2. From the example in Sect. 3, α6, α7, β6, β7 and γ6 are correct asser-
tions and hence get a probability of 1.0. Using the accuracies of Example 1 and
calculating assertion trusts using Gibbs sampling with N = 10,000 as described
above, will result in the following assertion trusts:

p(α1) = 0.66

p(α2) = 0.58

p(α3) = 0.37

p(α4) = 0.48

p(α5) = 0.31

p(α6) = 1.0

p(α7) = 1.0

p(α8) = ∅

p(β1) = 0.58

p(β2) = 0.07

p(β3) = 0.03

p(β4) = 0.15

p(β5) = 0.41

p(β6) = 1.0

p(β7) = 1.0

p(β8) = 0.35

p(γ1) = 0.05

p(γ2) = 0.42

p(γ3) = 0.28

p(γ4) = 0.32

p(γ5) = 0.07

p(γ6) = 1.0

p(γ7) = 0.34

p(γ8) = 0.14

Only for assertion α8 no probability is assessed (∅), because it is not part of any
conflict nor is correct.

4.3 Signature Trusts

Based on the previously computed probabilities of assertions, we can now define
the trust for a signature element σ of a specific data source i as shown below.

Definition 4. Given a federated knowledge base K = 〈T ,
⋃

i∈F
Ai〉, the set X

of all conflicting assertions in K and the set G of correct assertions in K. Then,
the signature trust p(σ, i), for each signature element σ ∈ Ai of data source i in
K, is given by

p(σ, i) =

⎧
⎪⎨

⎪⎩

∑

a∈sas(σ,X∪G,i)

p(a)

|sas(σ,X ∪ G, i)| , sas(σ,X, i) �= ∅,

∅, otherwise.

(8)

Roughly, the signature trust with respect to a data source is defined by the aver-
age of all its assertion trusts. As a result we can now use the calculated signature
trusts as the probability of assertions for which no trust value is assessed.

Example 3. In order to calculate the trust value of the signature element Paper
in data source A1, we have to consider the probabilities of α1, α3, α4 and α7.
Following Definition 4, the signature trust of Paper is given by p(Paper , 1) =
0.66+0.37+0.48+1.0

4 = 0.63. Since for α8 no assertion trust was computed, the sig-
nature trust of Paper in data source A1 is used as its probability. The calculated
trusts for all signature elements with respect to the corresponding data sources
are shown below:

p(Paper , 1) = 0.63

p(isPartOf , 1) = 0.63

p(Paper , 2) = 0.47

p(Proceedings, 2) = 0.49

p(isPartOf , 2) = 0.39

p(SlideSet , 3) = 0.26

p(hasSlideSet , 3) = 0.16

p(Proceedings, 3) = 0.67

500 A. Nolle et al.

4.4 Data Source Trusts

Obviously, if there is no conflicting assertion that uses the signature element σ
in a specific data source i, the signature trust value for σ with respect to data
source i cannot be assessed. For this reason we in turn determine trust values
for each data source in K. Based on the definition of signature trusts, the trust
value for a specific data source can be formally defined as:

Definition 5. Given a federated knowledge base K = 〈T ,
⋃

i∈F
Ai〉, the signature

Σ of K and the complete set X of conflicting assertions in K. Then, the trust
value p(i) for data source i in K is given by

p(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

σ∈Σ:sas(σ,X,i)
=∅
p(σ, i) ∗ |sas(σ,Ai, i)|

∑

σ∈Σ:sas(σ,X,i)
=∅
|sas(σ,Ai, i)|

, if Ai ∩ X �= ∅,

∅, otherwise.

(9)

Roughly, the trust in data source i is given by the average of the weighted
sum of its signature trusts. Each signature trust is weighted by the number of
assertions that uses the corresponding signature element in data source i. As
there still might be some signature elements and consequently some assertions
without an assessed probability, the trust value of the respective data source is
used instead. Of course, if a data source contains no conflicting assertions the
trust value for this data source cannot be computed. In this case a default or
user-defined trust value could be used.

Example 4. With respect to the calculated signature trusts of Example 3
and using Definition 5, the data source trust for A1 is given by p(A1) =
0.63∗5+0.63∗3

8 = 0.63. The calculation of the data source trusts for A2 and A3

yields p(A2) = 0.45 and p(A3) = 0.33 respectively. If A1 would contain an addi-
tional assertion SlideSet(I8), the signature trust of SlideSet with respect to A1

and consequently the assertion trust for SlideSet(I8) would be the data source
trust p(A1) = 0.63.

5 Experimental Evaluation

In order to evaluate our approach we have used a large distributed LOD dataset
from the domain of library science, comprising four LOD data sources. Namely,
FacetedDBLP (A1), BibSonomy (A2), RKB Explorer ePrints Open Archives
(A3), and RKB Explorer DBLP (A4). Since the OWL 2 QL profile is based on
DL-Lite, we have used it as specification language of our central TBox that
includes the TBoxes of each data source. In order to ensure that the federated
TBox is coherent and to gain a higher overlapping of the data sources, we have
applied some small modifications of the data source specific TBoxes as well as
its datasets (ABoxes). For more detail, we refer the interested reader to [17].
The collection of the central TBox as well as the referenced TBoxes is available

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 501

online3. For legal reasons we are currently not able to publish the final dataset
of each integrated data source. Please contact us if you are interested in these
datasets. We run the implementation of our trust assessment approach on a
CentOS 6.7 virtual machine consisting of 6x Intel Xeon CPUs (à 4 cores @
2.50 GHz) and 128 GB of RAM.

Accuracy and Trust Computation. The federated KB contains 284,355,894 asser-
tions. The evaluation of 44,072 generated clash queries resulted in 18,146,950
MISAs4. The majority voting approach proposed in [17] could resolve 7,166,005
(39.5%) MISAs and generated a repair of 1,993,136 assertions. Note that the
number of resolved MISAs is significantly higher than the size of the repair and
indicates a high overlap of the MISAs. Based on this repair, the signature accu-
racy values are calculated using the formula in Definition 2. The distribution of
the resulting values are depicted in Fig. 2(a). As shown in the figure, there exist
one signature element with an accuracy <0.1 with respect to A1 and A3. We
had already observed that assertions involving the attribute volume are misused
in A1 and A3, i.e., volume attributes are in both data sources not used at the
level of collections like proceedings, journals or books, but on the level of articles
published in a collection. Hence, it is not surprising that we get a low signature
accuracy <0.1 for volume with respect to A1 and A3.

Fig. 2. Signature accuracy and trust values of assertions and signature elements.

Since the generated repair resolves only 39.5% of the conflicts, we choose ran-
domly a repair for all the remaining conflicts such that the starting point of the
Gibbs sampling represents a possible world. The application of our approach for
fine-grained trust assessment based on this repair and the calculated signature
accuracy values result in the data source trusts, distributions of assertion trusts
and signature trusts depicted in Fig. 2(b) and (c). In Fig. 2(c), if we consider
data source A4, we see that it contains two signature trusts >0.9 (for the signa-
ture elements article-of -journal and Journal); and one trust <0.1 (for signature
3 http://www.researchgate.net/publication/299852903.
4 Clashes of incorrect datatypes are not considered since its resolution is trivial.

http://www.researchgate.net/publication/299852903

502 A. Nolle et al.

element title). Due to the negligible number of assertions in A4 with a low trust,
the trust value of this data source is close to 1.0. Nevertheless, we cannot trust
A4 with respect to the signature element title.

Runtime and Convergence Performance. The runtime, with increasing samples
N (with a step size of 200) as well as the corresponding convergence of the trust
values, is shown in Fig. 3. After a burn-in period of 1,000 samples in which the
variables state may not exactly represent the desired distribution, the runtime
increases linearly with the number of samples. After sampling each node 10,000
times, the maximal deviation of a trust value compared to the previous sample is
0.019. Thus, the probabilities converge towards their true values as N increases.

0 2,000 4,000 6,000 8,000 10,000
0

50

100

150

200

N

ti
m

e
in

m
in

u
te

s

0 2,000 4,000 6,000 8,000 10,000
0

0.2

0.4

0.6

0.8

1

co
n
v
er

g
en

ce

Runtime

Convergence

Fig. 3. Runtime and convergence.

0 0.2 0.4 0.6 0.8 1

101

102

103

104

105

106

107

assertion trust

n
u
m

b
er

o
f
a
ss

er
ti

o
n
s

A1

A2

A3

A4

Fig. 4. Repair assertion trusts.

Comparison of Accuracy and Trust Measures. To give more insight into the
generated trusts, we have done further analysis. We inspect in ascending order
all conflicting assertions with low trust values. After removing all assertions with
a trust value ≤0.5 (overall 7,465,415 assertions) all MISAs are resolved and the
KB is consistent. Additionally, the distribution of assessed trusts for assertions
that are part of the majority voting repair is depicted in Fig. 4. Notice that
the y-axis is scaled logarithmically for presentation purposes. As shown in the
figure, solely 22,497 (1.13%) assertions of the repair have trust values ≥0.5. This
indicates that our approach performs very well (which is in line with the high
precision (97%) of the repair shown in [17]).

Comparing the calculated signature accuracy values with the assessed signa-
ture trusts shows that the prior probabilities comprise 20 signature elements with
a value ≤0.5 whereas the signature trusts have 30 elements. Table 1 shows the top
5 signature elements with a high deviation between the signature accuracy and
the signature trust. For example, if we look at the signature element Proceedings
of data source A1 and A2, it shows that most of the MISAs are not resolved by
the majority voting. Moreover, the signature elements of conflicting assertions
in resolved MISAs are in many cases different from the signature elements of
conflicting assertions in unresolved MISAs. Since the accuracy for signature ele-
ment Proceedings is less than the accuracy of conflicting signature elements in
unresolved MISAs, the resulting trust for assertions that use Proceedings is low.

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 503

Table 1. Top 5 of signature elements with high deviation

Data source σ ∈ Σ Signature accuracy Signature trust

A1 http://swrc.ontoware.org/ontology#Proceedings 0.761 0.029

A2 http://swrc.ontoware.org/ontology#Proceedings 0.578 0.178

A3 http://purl.org/ontology/bibo/EditedBook 0.591 0.224

A3 http://purl.org/ontology/bibo/Book 0.534 0.185

A3 http://purl.org/ontology/bibo/Website 0.500 0.163

Qualitative Analysis of Trust Values. To evaluate the quality of assessed asser-
tion trusts, we randomly selected 100 assertions from the repair with a trust
≥0.8, representing a set of assertions that are probably mistaken for being part
of the repair by the majority voting. Because of the already evaluated high pre-
cision of the repair, we omit the evaluation of assertions from the repair with
a low trust value. The selected subset of assertions is manually evaluated by a
domain expert. Since 81% of the assertions are annotated as correct, the evalua-
tion indicates a high precision of the assessed probabilities and substantiate that
the approach is reasonable. Besides, this precision score confirms that the cal-
culation of signature accuracy values used as prior probability is a valid premise
and enables a high precision of the assessed trust values.

6 Related Work

The notion of trust has been used in a heterogeneous way within the semantic
web community (surveyed in [1]). The referred works are often based on the
assumption that an external criteria is used to estimate trusts or that initial
trust estimations are already given. Contrary to that, our work is based on the
assumption that each data source and each assertion has the same level of trust
prior to the majority voting. Moreover, our method is based on the idea that we
have to readjust the initial assumption by analyzing and leveraging the logical
contradictions of given assertions. Note also, that we could extend our approach,
by starting with varying trust values based on an analysis of data provenance.

Beside addressing issues like the correction of mistakes that stem from the
knowledge extraction process or with the aggregation of different values, deal-
ing with contradictory assertions is one of the central tasks of knowledge fusion
[4]. Given an inconsistent KB, one possible approach is to resolve all conflicts
by eliminating at least one of the conflicting statements. However, conflict res-
olution often results in loss of information. Contrary to this, paraconsistent
(inconsistency-tolerant) logics are used for reasoning in KBs that contain con-
flicts. To represent and reason on uncertain (i.e., imprecise) knowledge, there
exist several approximation approaches. An overview of such approaches is for
example given in [15].

In addition to paraconsistent logics, one straightforward approach is to elimi-
nate conflicts by applying a majority voting scheme as shown in [17]. In order to
consider the quality of different data sources, truth discovery techniques are pro-
posed in [7,12,14,20,22]. A comprehensive survey on truth discovery is given by

http://swrc.ontoware.org/ontology#Proceedings
http://swrc.ontoware.org/ontology#Proceedings
http://purl.org/ontology/bibo/EditedBook
http://purl.org/ontology/bibo/Book
http://purl.org/ontology/bibo/Website

504 A. Nolle et al.

Li et al. [13]. The principle of truth discovery is to estimate the reliability of each
source, i.e., the more frequently true information is provided, the higher is the
trust in that source. Consequently, the information of a reliable source is consid-
ered as trustworthy. One shortcoming of (most of) these approaches is that they
do not asses the quality of a data source with respect to some specific information
or information type (signature element). As a consequence, all assertions of a data
source have the same probability, yet assertions with respect to a specific signa-
ture element whose trust differ widely from the data source trust are neglected. So
the trust calculation for an assertion on which the truth discovery is based upon
is computed by means of the assumed data source trust (top-down), whereas in
our approach the data source trust is determined by the signature trust and con-
sequently by the individual assertion trusts (bottom-up). Another approach pro-
posed by Ma et al. [16] considers the varying reliability of sources among different
topics by automatically assigning topics to a question and estimating the topic-
specific expertise of a source. Closer to our approach is the work proposed by Zhao
et al. [23], since they calculate probabilistic values on facts (assertions) by using a
Bayesian model and Gibbs sampling. Contrary to our approach, Zhao et al. base
their notion of conflicting facts on direct contradictions that origin from a closed-
world assumption instead of using a TBox that allows to find both explicit and
implicit conflicts while still preserving the assumption that non-stated facts do
not correspond to the claim of their negation.

In addition to the estimation of source reliability only by the accuracy of the
provided information, there exist methodologies and frameworks for assessing
data quality respectively its source by considering diverse quality dimensions
and metrics, e.g., accessibility, performance, reputation, timeliness and others.
Zaveri et al. [21] proposed a systematic review of such approaches that evaluate
the quality of LOD sources and provide under a common classification scheme
a comprehensive list of dimensions and metrics.

Our proposed approach is different from the approaches mentioned above
in two aspects. First, we exploit the composition of the conflict graph, which is
constructed based on a well-defined semantics, as well as the statistical evidence,
gathered by inconsistency resolution, to compute individual probabilities for con-
flicting assertions. Second, the intention is not to use the computed probabilities
for truth discovery but to enable the representation of uncertain knowledge and
thereby the application of probabilistic reasoning and paraconsistent logics as
well as the computation of the most probable consistent KB. To the best of our
knowledge there is currently no other approach in this direction.

7 Conclusion

In this paper we proposed an automated approach for fine-grained trust assess-
ment at different levels of granularity. In particular, by exploiting the statistical
evidence generated by inconsistency resolution via majority voting and consid-
ering the conflict graph as a Markov network, we facilitate the application of
Gibbs sampling to compute a probability for each conflicting assertion. Based

Automated Fine-Grained Trust Assessment in Federated Knowledge Bases 505

on which, specific trust values for signature elements and data sources are com-
puted to estimate the probabilities of non-conflicting assertions. We evaluated
our approach on a large distributed dataset and could measure a high precision
of the calculated probabilities.

Beside an evaluation against related truth discovery approaches, one further
aspect will be to examine whether and to what extent it is possible to improve the
calculated probabilities, by considering the entailment relation between several
assertions (according to the given TBox) within the Gibbs sampling.

References

1. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web.
Web Semant. Sci. Serv. Agents WWW 5(2), 58–71 (2007)

2. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

4. Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Murphy, K., Sun, S., Zhang, W.:
From data fusion to knowledge fusion. PVLDB 7(10), 881–892 (2014)

5. Dong, X.L., Gabrilovich, E., Murphy, K., Dang, V., Horn, W., Lugaresi, C., Sun, S.,
Zhang, W.: Knowledge-based trust: estimating the trustworthiness of web sources.
PVLDB 8(9), 938–949 (2015)

6. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies,
negations and changes in ontologies. In: AAAI 21, vol. 2, 1295–1300 (2006)

7. Galland, A., Abiteboul, S., Marian, A., Senellart, P.: Corroborating information
from disagreeing views. In: WSDM, pp. 131–140. ACM (2010)

8. Grandison, T., Sloman, M.: A survey of trust in internet applications. IEEE Com-
mun. Surv. Tutor. 3(4), 2–16 (2000)

9. Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S.: RaDON — repair and diag-
nosis in ontology networks. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol.
5554, pp. 863–867. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02121-3 71

10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825,
pp. 267–280. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 20

11. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

12. Li, X., Dong, X.L., Lyons, K., Meng, W., Srivastava, D.: Truth finding on the deep
web: is the problem solved? PVLDB 6(2), 97–108 (2012)

13. Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A survey on
truth discovery. SIGKDD Explor. Newsl. 17(2), 1–16 (2016)

14. Liu, W., Liu, J., Duan, H., Hu, W., Wei, B.: Exploiting source-object networks to
resolve object conflicts in linked data. In: Blomqvist, E., Maynard, D., Gangemi,
A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp.
53–67. Springer, Cham (2017). doi:10.1007/978-3-319-58068-5 4

15. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

http://dx.doi.org/10.1007/978-3-642-02121-3_71
http://dx.doi.org/10.1007/978-3-540-76298-0_20
http://dx.doi.org/10.1007/978-3-319-58068-5_4

506 A. Nolle et al.

16. Ma, F., Li, Y., Li, Q., Qiu, M., Gao, J., Zhi, S., Su, L., Zhao, B., Ji, H., Han,
J.: FaitCrowd: fine grained truth discovery for crowdsourced data aggregation. In:
ACM SIGKDD, pp. 745–754. ACM (2015)

17. Nolle, A., Meilicke, C., Chekol, M.W., Nemirovski, G., Stuckenschmidt, H.:
Schema-based debugging of federated data sources. In: ECAI, pp. 381–389 (2016)

18. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Seman-
tics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-77688-8 5

19. Rudolph, S.: Foundations of description logics. In: Polleres, A., d’Amato, C.,
Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23032-5 2

20. Yin, X., Han, J., Philip, S.Y.: Truth discovery with multiple conflicting information
providers on the web. IEEE TKDE 20(6), 796–808 (2008)

21. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)

22. Zhao, B., Han, J.: A probabilistic model for estimating real-valued truth from
conflicting sources. In: Proceedings of QDB (2012)

23. Zhao, B., Rubinstein, B., Gemmell, J., Han, J.: A bayesian approach to discovering
truth from conflicting sources for data integration. PVLDB 5(6), 550–561 (2012)

http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-642-23032-5_2

Completeness-Aware Rule Learning
from Knowledge Graphs

Thomas Pellissier Tanon1(B), Daria Stepanova1(B), Simon Razniewski2,
Paramita Mirza1, and Gerhard Weikum1

1 Max Planck Institute of Informatics, Saarbrücken, Germany
{tpelliss,dstepano,paramita,weikum}@mpi-inf.mpg.de

2 Free University of Bozen-Bolzano, Bolzano, Italy
razniewski@inf.unibz.it

Abstract. Knowledge graphs (KGs) are huge collections of primarily
encyclopedic facts. They are widely used in entity recognition, structured
search, question answering, and other important tasks. Rule mining is
commonly applied to discover patterns in KGs. However, unlike in tradi-
tional association rule mining, KGs provide a setting with a high degree
of incompleteness, which may result in the wrong estimation of the qual-
ity of mined rules, leading to erroneous beliefs such as all artists have
won an award, or hockey players do not have children.

In this paper we propose to use (in-)completeness meta-information
to better assess the quality of rules learned from incomplete KGs. We
introduce completeness-aware scoring functions for relational association
rules. Moreover, we show how one can obtain (in-)completeness meta-
data by learning rules about numerical patterns of KG edge counts.
Experimental evaluation both on real and synthetic datasets shows that
the proposed rule ranking approaches have remarkably higher accuracy
than the state-of-the-art methods in uncovering missing facts.

1 Introduction

Motivation. Advances in information extraction have led to general-purpose
knowledge graphs (KGs) containing billions of positive facts about the world
(e.g., [1–3,21]). KGs are widely applied in semantic web search, question answer-
ing, web extraction and many other tasks. Unfortunately, due to their wide scope,
KGs are generally incomplete. To account for the incompleteness, KGs typically
adopt the Open World Assumption (OWA) under which missing facts are treated
as unknown rather than false.

An important task over KGs is rule learning, which is relevant for a
variety of applications ranging from knowledge graph curation (completion,
error detection) [10,12,24] to data mining and semantic culturonomics. How-
ever, since such rules are learned from incomplete data, they might be erro-
neous and might make incorrect predictions on missing facts. E.g., r1 :
hasChild(X ,Y) ← worksAt(X,Z), educatedAt(Y,Z) could be mined from the
KG in Fig. 1, stating that workers of certain institutions often have children
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 507–525, 2017.
DOI: 10.1007/978-3-319-68288-4 30

508 T.P. Tanon et al.

john mary

alice bob carol

dave tuwien mpi

worksAt worksAt

educatedAt

hasChild hasChild
hasChild

hasFather

hasChild

hasFather

educatedAt

educatedAt
worksAt

hasFather

hasSibling

hasSibling

worksAt

educatedAt

hasSibling

Fig. 1. Example KG

among the people educated there, as this is frequently the case for popular scien-
tists. While r1 is clearly not universal and should be ranked lower than the rule
r2 : hasSibling(X ,Z) ← hasFather(X ,Y), hasChild(Y ,Z), standard rule mea-
sures like confidence (i.e., conditional probability of the rule’s head given its
body) incorrectly favor r1 over r2 for the given KG.

Recently, efforts have been put into detecting the concrete numbers of facts
of certain types that hold in the real world (e.g., “Einstein has 3 children”)
by exploiting Web extraction and crowd-sourcing methods [23,26]. Such meta-
data provides a lot of hints about the topology of KGs, and reveals parts that
should be especially targeted by rule learning methods. However, surprisingly,
despite its obvious importance, to date, no systematic way of making use of such
information in rule learning exists.

In this work we propose to exploit meta-data about the expected number of
edges in KGs to better assess the quality of learned rules. To further facilitate this
approach, we discuss a method for learning edge count information by extracting
rules like “If a person has more than 2 siblings, then his parents are likely to have
more than 3 children.”

State of the art and its limitations. In [12] a completeness-aware rule scoring
based on the partial completeness assumption (PCA) was introduced. The idea
of PCA is that whenever at least one object for a given subject and a predicate
is in a KG (e.g., “Eduard is Einstein’s child”), then all objects for that subject-
predicate pair (Einstein’s children) are assumed to be known. This assumption
was taken into account in rule scoring, and empirically it turned out to be indeed
valid in real-world KGs for some topics. However, it does not universally hold,
and treats cases inappropriately when edges in a graph are randomly missing.
Similarly, whether to count absence of contradiction as confirmation for default
rules was discussed in [8]. In [11] new completeness data was learned from a KG
by taking as ground truth completeness data obtained via crowd-sourcing. The
acquired statements were then used in a post-processing step of rule learning to
filter out predictions that violate these statements. However, this kind of filtering
does not have any impact on the quality of the mined rules and the incorrect
predictions for instances about which no completeness information exists.

Completeness-Aware Rule Learning from Knowledge Graphs 509

Contributions. This work presents the first proper investigation of how meta-
information about (in-)completeness, more specifically, about the number of
edges that should exist for a given subject-predicate pair in a KG, can be used
to improve rule learning. The salient contributions of our work are as follows:

1. We present an approach that accounts for meta-data about the number of
edges that should exist for given subject-predicate pairs in the ranking stage
of rule learning.

2. We discuss a method for the automated acquisition of approximate upper and
lower bounds on the number of edges that should exist in KGs.

3. We implement the proposed rule ranking measures and evaluate them both on
real-world and synthetic dataset, showing that they outperform existing mea-
sures both with respect to the quality of the mined rules and the predictions
they produce.1

2 Related Work

Rule learning. The problem of automatically learning patterns from KGs has
gained a lot of attention in the recent years. Some relevant works are [12,28],
which focus on learning Horn rules and either ignore completeness information,
or make use of completeness by filtering out predicted facts violating complete-
ness in a post-processing step. On the contrary we aim at injecting the statements
into the learning process.

In the context of inductive and abductive logic programming, learning rules
from incomplete interpretations given as a set of positive facts along with a
possibly incomplete set of negative ones was studied, e.g., in [18]. In contrast to
our approach, this work does not exploit knowledge about the number of missing
facts, and neither do the works on terminology induction, e.g., [27]. Learning
nonmonotonic rules in the presence of incompleteness was studied in hybrid
settings [16,20], where a background theory or a hypothesis can be represented
as a combination of an ontology and Horn or nonmonotonic rules. The main
point in these works is the assumption that there might be potentially missing
facts in a given dataset. However, it is not explicitly mentioned which parts of the
data are (in)complete like in our setting. Moreover, the emphasis of these works
is on the complex reasoning interaction between the components, while we are
more concerned with techniques for deriving rules with high predictive quality
from large KGs. Recent work by d’Amato et al. [4] shows how in the presence
of ontologies that allow to determine incorrect facts, rules can be ranked by
the ratio of correct versus incorrect predictions. In contrast to our scenario of
interest, in this work, the knowledge about exact numbers of missing KG facts
has not been exploited.

There are also a number of less relevant statistical approaches to complet-
ing knowledge graphs based on, e.g., low-dimensional embeddings [30] or tensor
factorization [29].
1 The extended version of this paper is available as a technical report at https://raw.

githubusercontent.com/Tpt/CARL/master/technical report.pdf.

https://raw.githubusercontent.com/Tpt/CARL/master/technical_report.pdf
https://raw.githubusercontent.com/Tpt/CARL/master/technical_report.pdf

510 T.P. Tanon et al.

Completeness information. The idea of bridging the open and closed world
assumption by using completeness information was first introduced in the data-
base world in [9,19], and later adapted to the Semantic Web in [5]. For describing
such settings, the common approach is to fix the complete parts (and assume
that the rest is potentially incomplete).

Recent work [11] has extended the rule mining system AMIE to mine rules
about completeness, that predict in which parts a knowledge graph may be
complete or incomplete. The focus of the work is on the learning of association
rules like “If someone has a date of birth but no place of birth, then the place
of birth is missing.” In contrast, we reason about the missing edges trying to
estimate the exact number (bounds on the number) of edges that should be
present in a KG. In [11] it has also been shown that completeness information
can be used to improve the accuracy of fact prediction, by pruning out in a post-
processing step those facts that are predicted in parts expected to be complete.
In the present paper, we take a more direct approach and inject completeness
information already into the rule acquisition phase, in order to also prune away
problematic rules, not only individual wrong predictions.

Our cardinality statements (e.g., John has 3 children) encode knowledge
about parts of a KG that are (un)known, and thus should have points of contact
with operators from epistemic logic; we leave the extended discussion on the
matter for future work.

3 Preliminaries

Knowledge graphs. Knowledge graphs (KG) represent interlinked collec-
tions of factual information, and they are often encoded using the RDF data
model [17]. The content of KGs is a set of 〈subject predicate object〉 triples,
e.g., 〈john hasChild alice〉. For encyclopedic knowledge graphs on the semantic
web, usually the open world assumption (OWA) is employed, i.e., these graphs
contain only a subset of the true information.

In the following we take the unique name assumption, and for simplicity,
write triples using binary predicates, like hasChild(john, alice). A signature of a
KG G is ΣG = 〈R, C〉, where R is the set of binary predicates and C is the set of
constants appearing in G. Following [5], we define the gap between the available
graph Ga and the ideal graph Gi, which contains all correct facts over R and C
that hold in the real world.

Definition 1 (Incomplete data source). An incomplete data source is a pair
G = (Ga,Gi) of two KGs, where Ga ⊆ Gi and ΣGa = ΣGi .

Note that the ideal graph Gi is an imaginary construct whose content is gen-
erally not known. What is known instead is to which extent the available graph
approximates/lacks information wrt. the ideal graph, e.g., “Einstein is miss-
ing 2 children and Feynman none”. We formalize this knowledge as cardinality
assertions in Sect. 4.

Completeness-Aware Rule Learning from Knowledge Graphs 511

Rule learning. Association rule learning concerns the discovery of frequent
patterns in a data set and the subsequent transformation of these patterns into
rules. Association rules in the relational format have been subject of intensive
research in ILP (see, e.g., [7] as the seminal work in this direction) and more
recently in the KG community (see [12] as the most prominent work). In the
following, we adapt basic notions in relational association rule mining to our
case of interest.

A conjunctive query Q over G is of the form Q(X) :- p1(X1), . . . , pm(Xm).
Its right-hand side (i.e., body) is a finite set of atomic formulas over ΣG , while the
left-hand side (i.e., head) is a tuple of variables occurring in the body. The answer
of Q on G is the set Q(G) = {ν(X) | ν is a function from variables to C and ∀i :
pi(ν(Xi)) ∈ G}. As in [7], the support of Q in G is the number of distinct tuples
in the answer of Q on G.

An association rule is of the form Q1 ⇒ Q2, such that Q1 and Q2 are both
conjunctive queries and Q1 ⊆ Q2, i.e., Q1(G′) ⊆ Q2(G′) for any possible KG G′.
In this work we exploit association rules for reasoning purposes, and thus (with
some abuse of notation) treat them as logical rules, i.e., for Q1 ⇒ Q2 we write
Q2\Q1 ← Q1, where Q2\Q1 refers to the set difference between Q2 and Q1 seen
as sets of atoms.

Classical scoring of association rules is based on rule support, body support
and confidence, which in [12] for a rule r : H ← B with H = h(X,Y) are
defined as:

supp(r) := #(x, y) : ∃Z : B ∧ h(x, y) (1)

supp(B) := #(x, y) : ∃Z : B (2)

conf (r) :=
supp(r)
supp(B)

(3)

where #α : A denotes the number of α that fulfill the condition A, and conf (r) ∈
[0, 1]. As in [12] we compute the support of the rule (body) w.r.t. to the head
variables.

Example 1. Consider the KG in Fig. 1 and the rules r1 and r2 mined from it:

– r1 : hasChild(X ,Y) ← worksAt(X,Z), educatedAt(Y,Z)
– r2 : hasSibling(X ,Z) ← hasFather(X ,Y), hasChild(Y ,Z)

The body and rule supports of r1 over the KG are supp(B) = 8 and
supp(r1) = 2 respectively. Hence, we have conf (r1) = 2

8 . Analogously,
conf (r2) = 1

6 . ��
Support and confidence were originally developed for scoring rules over com-

plete data. If data is missing, their interpretation is not straightforward and
they can be misleading. In [12], confidence under the Partial Completeness
Assumption (PCA) has been proposed as a measure, which guesses negative facts

512 T.P. Tanon et al.

by assuming that data is usually added to KGs in batches, i.e., if at least one
child of John is known then most probably all John’s children are present in the
KG. The PCA confidence is defined as

confpca(r) :=
supp(r)

#(x, y) : ∃Z : B ∧ ∃y′ : h(x, y′) ∈ Ga
(4)

Example 2. We obtain confpca(r1) = 2
4 . Indeed, since carol and dave are not

known to have any children in the KG, four existing body substitutions are
not counted in the denominator. Meanwhile, we have confpca(r2) = 1

6 , since all
people that are predicted to have siblings by r2 already have siblings in the
available graph. ��

Given a rule r and a KG G the application of r on G results in a rule-
based graph completion defined relying on the Answer Set semantics (see [13]
for details), which for positive programs coincides with the least model datalog
semantics.

Definition 2 (Rule-based KG completion). Let G be a KG over the sig-
nature ΣG = 〈R, C〉 and let r be a rule mined from G, i.e. a rule over ΣG. Then
the completion of G is a graph Gr constructed from the answer set of r ∪ G.

Example 3. We have Ga
r1 = G ∪ {hasChild(john, dave), hasChild(carol ,mary),

hasChild(dave, dave), hasChild(carol , carol), hasChild(dave, bob),
hasChild(mary , dave)}. ��

Note that Gi is the perfect completion of Ga, i.e., it is supposed to contain
all correct facts with entities and relations from ΣGa that hold in the current
state of the world. The goal of rule-based KG completion is to extract from Ga

a set of rules R such that ∪r∈RGa
r is as close to Gi as possible.

4 Completeness-Aware Rule Scoring

Scoring and ranking rules are core steps in association rule learning. A variety of
measures for ranking rules have been proposed, with prominent ones being confi-
dence, conviction and lift. The existing (in-)completeness-aware rule measure in
the KG context (the PCA confidence (4)) has two apparent shortcomings: First,
it only counts as counterexamples those pairs (x, y) for which at least one h(x, y′)
is in Ga for some y ′ and a rule’s head predicate h. Thus, it may incorrectly give
high scores to rules predicting facts for very incomplete relations, e.g., place of
baptism. Second, it is not suited for data in non-functional relations that is not
added in batches, such as awards, where the important ones are added instantly,
while others much slower or even possibly never.

Thus, in this work we focus on the improvements of rule scoring functions by
making use of the extra (in-)completeness meta-data. Before dwelling into the
details of our approach we discuss the formal representation of such meta-data.

Completeness-Aware Rule Learning from Knowledge Graphs 513

Cardinality statements. Overall, one can think of 6 different cardinality tem-
plates obtained by fixing subject, predicate or object in a triple and report the
number of respective facts that hold in Gi. E.g., for 〈john hasChild mary〉 we
can count (1) children of john; (2) edges from john to mary ; (3) incoming edges
to mary ; (4) facts with john as a subject; (5) facts over hasChild relation; (6)
facts with mary as an object.

In practice, numerical statements for templates (1) and (3) can be obtained
using web extraction techniques [23], from functional properties of relations or
from crowd-sourcing. For other templates things get trickier; one might be able
to learn them from the data or they could be defined by domain experts in topic-
specific KGs. We leave this issue for future work, and focus here only on tem-
plates (1) and (3), which could be rewritten as the instances of the template
(1) provided that inverse relations can be expressed in a KG. For instance,
#s : hasChild(s, john) = #o : hasParent(john, o) for the predicates hasChild
and hasParent , which are inverses of one another.

We represent the (in)completeness meta-data using cardinality statements
by reporting (the numerical restriction on) the absolute number of facts over
a certain relation in the ideal graph Gi. More specifically, we define the partial
function num that takes as input a predicate p and a constant s and outputs a
natural number corresponding to the number of facts in Gi over p with s as the
first argument:

num(p, s) := #o : p(s, o) ∈ Gi (5)

Naturally, the number of missing facts for a given p and s can be obtained as

miss(p, s) := num(p, s) − #o : p(s, o) ∈ Ga (6)

Example 4. Consider the KG in Fig. 1. and the following cardinality statements
for it:

– num(hasChild , john) = num(hasChild ,mary) = 3; num(hasChild , alice) = 1;
num(hasChild , carol) = num(hasChild , dave) = 0;

– num(hasSibling , bob) = 3; num(hasSibling , alice) = num(hasSibling , carol) =
num(hasSibling , dave) = 2.

We then have:

– miss(hasChild ,mary) = miss(hasChild , john) = miss(hasChild , alice) = 1;
miss(hasChild , carol) = miss(hasChild , dave) = 0;

– miss(hasSibling , bob) = miss(hasSibling , carol) = 2;
miss(hasSibling , alice) = miss(hasSibling , dave) = 1. ��
We are now ready to define the completeness-aware rule scoring problem.

Given a KG and a set of cardinality statements, completeness-aware rule scoring
aims to score rules not only by their predictive power on the known KG, but also
wrt. the number of wrongly predicted facts in complete areas and the number
of newly predicted facts in known incomplete areas.

514 T.P. Tanon et al.

In the following we discuss and compare three novel approachses for
completeness-aware rule scoring. These are (i) the completeness confidence, (ii)
completeness precision and recall, and (iii) directional metric. Henceforth, all
examples consider the KG in Fig. 1, rules from Example 1, and cardinality state-
ments described in Example 4.

4.1 Completeness Confidence

In this work we propose to explicitly rely on incompleteness information in deter-
mining whether to consider an instance as a counterexample for a rule at hand
or not.

To do that, we first define two indicators for a given rule r : h(X ,Y) ← B,
reflecting the number of new predictions made by r in incomplete (npi(r)) and,
respectively, complete (npc(r)) KG parts:

npi(r) :=
∑

x

min(#y : h(x, y) ∈ Ga
r \Ga,miss(h, x)) (7)

npc(r) :=
∑

x

max(#y : h(x, y) ∈ Ga
r \Ga − miss(h, x), 0) (8)

Note that summation is done exactly over those entities for which miss is
defined. Exploiting these additional indicators for r : h(X,Y) ← B we obtain
the following completeness-aware confidence:

confcomp(r) :=
supp(r)

supp(B) − npi(r)
(9)

Example 5. Obviously, the rule r2 should be preferred over r1 . For our novel
completeness confidence, we get confcomp(r1) = 2

6 and confcomp(r2) = 1
2 , result-

ing in the desired rule ordering, which is not achieved by existing measures (see
Examples 1 and 2). ��

Our completeness confidence generalizes both the standard and the PCA
confidence:

Proposition 1. For every KG G and rule r it holds that

(i) under the Closed World Assumption (CWA) confcomp(r) = conf (r);
(ii) under the Partial Completeness Assumption (PCA) confcomp(r) = confpca(r).

In other words, if the graph is known to be fully complete, i.e., for all p ∈
R, s ∈ C we have miss(p, s) = 0 , then confcomp is the same as the standard
confidence. Similarly, if miss(p, s) = 0 for such p, s pairs that at least one fact
p(s,) ∈ Ga exists and miss(p, s) = +∞ for the rest, then confcomp is the same
as the PCA confidence.

Completeness-Aware Rule Learning from Knowledge Graphs 515

4.2 Completeness Precision and Recall

Further developing the idea of scoring rules based on their predictions in com-
plete and incomplete KG parts, we propose to consider the notions of complete-
ness precision and recall2 for rules defined in the spirit of information retrieval.
Intuitively, rules having high precision are rules that predict few facts in com-
plete parts, while rules having high recall are rules that predict many facts in
incomplete ones. Rule scoring could then be based on any weighted combination
of these two metrics.

Formally, we define the precision and recall of a rule r : h(X ,Y) ← B as
follows:

precisioncomp(r) = 1 − npc(r)
supp(B)

(10)

recallcomp(r) =
npi(r)∑

s miss(h, s)
(11)

The recall measure is similar to classical support measures, but now expresses
how many facts on KG parts known to be incomplete, are generated by the rule
(the more the better). The precision measure, in turn, assesses how many of the
generated facts are definitely wrong, namely those in complete parts (the more
of these, the worse the rule). In fact, this is an upper bound on the precision, as
the other facts cannot be evaluated.

Example 6. It holds that npi(r1) = 2, npc(r1) = 4, while npi(r2) = 4,
npc(r2) = 1, resulting in precisioncomp(r1) = 0.5, recallcomp(r1) ≈ 0.67, and
precisioncomp(r2) ≈ 0.83, recallcomp(r2) ≈ 0.67, which lead to the expected rel-
ative rule ordering. ��

Limitations. While precision and recall are insightful when there are sufficiently
many predictions made in (in-)complete parts, they fail when the number of
(in-)completeness statements in comparison with the KG size is small. Consider,
for instance, a rule that predicts 1000 new facts over hasChild relation, out of which
2 are in complete, and 2 are in incomplete parts, and overall 1 million children are
missing. This would imply a precision of 99.8%, and a recall of 0.0002%, both of
which are not very informative.

Therefore, next we propose to look at the difference between expected num-
bers of predictions in complete and incomplete parts, or simply at their ratio.

4.3 Directional Bias

If rule mining does make use of completeness information, and both do
not exhibit any statistical bias, then intuitively the rule predictions and the
(in)complete areas should be statistically independent. On the other hand, corre-
lation between the two indicates that the rule-mining is (in)completeness-aware.
2 For brevity we skip the word “completeness” if clear from the context.

516 T.P. Tanon et al.

Example 7. Suppose in total a given KG stores 1 million humans, and we know
that 10,000 (1%) of these are missing some children (incompleteness informa-
tion), while we also know that 1000 of the persons are definitely complete for
children (0.1%). Let the set of rules mined from a KG predict 50,000 new
facts for the hasChild relation. Assuming independence between predictions and
(in)completeness statements, we would expect 1% out of 50,000, i.e., 500 facts
to be predicted in the incomplete areas and 0.1%, i.e., 50 in the complete KG
parts. If instead we find 1000 children predicted for people that are missing cor-
respondingly many children, and 10 for people that are not missing these, the
former deviates from the expected value by a factor of 2, and the latter by a
factor of 5.

Following the intuition from the above example, we propose to look at the extent
of the non-independence to quantify the (in)completeness-awareness of rule
mining. Let us consider predictions made by rules in a given KG, where E(#facts)
is the expected number of predictions and α = 0..1 is the weight given to com-
pleteness versus incompleteness. Then the directional coefficient of a rule r is
defined as follows:

direct coef (r) := α · E(npc(r))
npc(r)

+ (1 − α) · npi(r)
E(npi(r))

(12)

Unlike the other measures that range from 0 to 1, the directional coefficient
takes values between 0 and infinity, where 1 is the default. If the ratio between
the KG size and the size of the (in)complete parts is the same as the ratio
between the predictions in the (in)complete parts and their total number, i.e., if
the directional coefficient is 1, then the statements do not influence the rule at
all. The higher is the directional coefficient, the more “completeness-aware” the
rules are.

In practice, expected values might be difficult to compute, and statistical
independence is a strong assumption. An alternative that does not require knowl-
edge about expected values is to directly measure the proportion between pre-
dictions in complete and incomplete parts. We call this the directional metric,
which is computed as

direct metric(r) :=
npi(r) − npc(r)

2 · (npi(r) + npc(r))
+ 0.5 (13)

The metric is based on the same ideas as the directional coefficient, but does
not require knowledge about the expected number of predictions in complete/in-
complete KG parts. It is designed to range between 0 and 1 again, thus allowing
convenient weighting with other [0, 1] measures. The directional metric of a rule
that predicts the same number of facts in incomplete as in complete parts is 0.5,
a rule that predicts twice as many facts in incomplete parts has a value of 0.66,
and so on.

Since the real-world KGs are often highly incomplete, it might be reasonable
to put more weight on predictions in complete parts. This can be done by mul-
tiplying predictions made in complete parts by a certain factor. We propose to

Completeness-Aware Rule Learning from Knowledge Graphs 517

consider the combination of a weighted existing association rule measure, e.g.,
confidence or conviction and the directional metric, with the weighting factor
β = 0..1. Using confidence, we obtain

weighted dm(r) = β · conf (r) + (1 − β) · direct metric(r) (14)

Example 8. We get direct metric(r1) ≈ 0.33 and direct metric(r2) = 0.8. For
β = 0.5 and confidence from Example 1, weighted dm(r1) ≈ 0.29 and
weighted dm(r2) ≈ 0.48. ��

5 Acquisition of Numerical Statements

As we have shown, exploitation of numerical (in-)completeness statements is very
beneficial for rule quality assessment. A natural question is where to acquire
such statements from in real-world settings. Various works have shown that
numerical assertions can be frequently found on the Web [5], obtained via crowd-
sourcing [6], text mining [22] or completeness rule mining [11]. We believe that
mining numerical correlations concerning KG edges and then assembling them
into rules is a valuable and a modular approach to obtain further completeness
information, which we sketch in what follows.

We start with an available KG Ga and some statements of the form (5).
Step 1. For every cardinality num(p, s) = k, we create the facts p≤k(s) and
p≥k(s). For the pairs p ∈ R, s ∈ C with no available cardinality statements
we construct the facts p≥#o:p(s,o)∈Ga(s), encoding that outgoing p-edges from s
might be missing in Ga, as the graph is believed to be incomplete by default.
Here, pcard with card ∈ {≤ ,≥ } are fresh unary predicates not present in ΣGa ,
which describe (bounds on) the number of outgoing p-edges for a given constant.
We store all constructed facts over pcard in S.

We then complete the domain of each pcard predicate as follows. For every
p≤k(s) ∈ S, if p≤k′(s′) ∈ S for some s′ ∈ C and k′ > k, we construct the
rule p≤k′(X) ← p≤k(X). Similarly, for every p≥k(s) ∈ S, if p≥k′(s′) ∈ S where
k′ < k, we create p≥k′(X) ← p≥k(X). The constructed rules are then applied
to the facts in S to obtain an extended set Gcard of facts over pcard . The latter
step is crucial when using a rule mining system that is not doing arithmetic
inferences (like x > 4 implies x > 3).
Step 2. We then use such a standard rule learning system, AMIE [12], on
Ga ∪ Gcard to mine rules like:

(1) pcard (X) ← p′
card (X)

(2) pcard (X) ← p′
card (X), p′′

card (X)
(3) pcard (X) ← p′

card (X), r(X ,Y)
(4) pcard (X) ← p′

card (X), r(X ,Y), p′′
card (Y)

(5) pcard (X) ← r(X ,Y), p′′
card (Y)

518 T.P. Tanon et al.

We rank the obtained rules based on confidence and select the top ones into
the set R.
Step 3. Finally, in the last step we use the obtained ruleset R to derive fur-
ther numerical statements together with weights assigned to them. For that we
compute G′ =

⋃
r∈R{Gcard ∪ Ga}r. The weights of the statements are inherited

from the rules that derived them. We then employ two simple heuristics: (i)
Given multiple rules predicting the same fact, the highest weight for it is kept.
We then post-process predictions made by different rules for the same subject-
predicate pair as follows. (ii) If p≤k(s), p≥k′(s) ∈ G′ for k′ > k, we remove from
G′ predictions with the lowest weight thus resolving the conflict on the numerical
bounds.

From the obtained graph we reconstruct cardinality statements as follows.

– Given p≤k(s), p≥k (s) ∈ G′ with weights w and w′ we create a cardinality
statement num(p, s) = k with the weight min(w,w′).

– If p≤k(s), p≥k′(s) ∈ G′ for k′ < k, then we set k′ ≤ num(p, s) ≤ k.
– Among two facts p≤k(s), p≤k′(s) (resp. p≥k(s), p≥k′(s)) with k < k′ (resp.

k > k′) the first ones are kept and represented similar to 5.

Regular facts in G′ are similarly translated into their numerical representa-
tions.

Example 9. Consider the KG in Fig. 1 and the following cardinality statements
for it: num(hasChild , john) = num(hasSibling , bob) = 3. Among others, Gcard

contains the facts: hasChild≥3 (john), hasSibling≥3 (bob), hasChild≥2 (mary),
hasChild≥2(john), hasSibling≥2 (bob), hasSibling≥1 (dave), and hasSibling≥1

(alice). On the graph Ga ∪ Gcard , the confidence of hasSibling≥2(X)←
hasFather(X,Y), hasChild≥3(Y) is 1

3 and 1 for hasSibling≥1(X)← hasFather
(X,Y), hasChild≥3(Y). ��

Ideally, provided that sufficiently many similar numerical correlations about
edge numbers are extracted, one can induce more general hypothesis involving
arithmetic functions like the number of person’s siblings is bounded by the num-
ber of his parents’ children plus 1 or the sum of person’s brothers and sisters
equals the number of his siblings. We leave these more complex generalizations
for future work. Similarly, the employed heuristics provide potential for more
advanced voting/weighting schemes and inconsistency resolution in the case of
conflicting cardinality assertions.

6 Evaluation

6.1 Completeness-Aware Rule Learning

We have implemented our completeness-aware rule learning approach into
a C++ system prototype CARL3, following a standard relational learning
3 The source code and all the data are available at https://github.com/Tpt/CARL.

https://github.com/Tpt/CARL

Completeness-Aware Rule Learning from Knowledge Graphs 519

algorithm implementation such as [14]. While our general methodology can be
applied to mining rules of arbitrary form, in the evaluation we focus only on
rules of the form

r(X,Z) ← p(X,Y), q(Y,Z) (15)

We aim at comparing the predictive quality of the top k rules mined by our
completeness-aware approach with the ones learned by standard rule learning
methods: (1) AMIE [12] (PCA confidence) and (2) WarmeR [14] (standard con-
fidence).

Dataset. We used two datasets for the evaluation: (i) WikidataPeople, which is
a dataset we have created from the Wikidata knowledge graph, containing 2.4M
facts over 9 predicates4 about biographical information and family relationships
of people; and (ii) LUBM, which is a synthetic dataset describing the structure
of a university [15].

For the WikidataPeople dataset, the approximation of the ideal KG
(Gi) is obtained by exploiting available information about inverse rela-
tions (e.g., hasParent is the inverse of hasChild), functional relations (e.g.,
hasFather , hasMother) as well as manually hand-crafted solid rules from the
family domain like5

hasSibling(X ,Y) ← hasParent(X ,Z), hasParent(Y ,Z),X �= Y .

From WikidataPeople Gi containing 5M facts, we acquired cardinality state-
ments by exploiting properties of functional relations, e.g., hasBirthPlace,
hasFather , hasMother must be uniquely defined, and everybody with a
hasDeathDate has a hasDeathPlace. For the other relations, the PCA [12] is
used. This resulted in 10M cardinality statements.

LUBM Gi, with 1.2M facts, was constructed by running the LUBM data gen-
erator for 10 universities, removing all rdf:type triples and introducing inverse
predicates. 464K cardinality statements were obtained by counting the number
of existing objects for each subject-predicate pair, i.e., assuming the PCA on the
whole dataset.

Experimental setup. To assess the effect of our proposed measures, we first
construct versions of the available KG (Ga) by removing parts of the data from
Gi and introducing a synthetic bias in the data (i.e., leaving many facts in Ga

for some relations and few for others). The synthetic bias is needed to simulate
our scenario of interest, where some parts of Ga are very incomplete while others
are fairly complete, which is indeed the case in real world KGs. In Wikidata, for
instance, only for 3% of non-living people sibling information is reported, while
children data is known for 4%.

We proceed in two steps: First, we define a global ratio, which deter-
mines a uniform percentage of data retained in the available graph. To fur-
ther refine this, we then factor a predicate ratio individually for each predicate.
4 hasFather , hasMother , hasStepParent , hasSibling , hasSpouse, hasChild ,

hasBirthP lace, hasDeathPlace, and hasNationality .
5 See https://github.com/Tpt/CARL/tree/master/eval/wikidata for details.

https://github.com/Tpt/CARL/tree/master/eval/wikidata

520 T.P. Tanon et al.

For the WikidataPeople KG, this ratio is chosen as (i) 0.8 for hasFather and
hasMother ; (ii) 0.5 for hasSpouse, hasStepParent , hasBirthPlace, hasDeathPlace
and hasNationality ; (iii) 0.2 for hasChild ; and (iv) 0.1 for hasSibling . For the
LUBM dataset, the predicate ratio is uniformly defined as 1 for regular predi-
cates and 0.5 for inverse predicates.

For a given predicate, the final ratio of facts in Ga retained from those in Gi

is then computed as min(1, 2 ∗ k ∗n), where k is the predicate ratio and n is the
global ratio.

The assessment of the rules learned from different versions of the available
KG is performed by comparing rule predictions with the approximation of Gi.
More specifically, every learned rule is assigned a quality score, defined as the
ratio of the number of predictions made by the rule in Gi \ Ga over the number
of all predictions outside Ga.

quality score(r) =
|Ga

r ∩ Gi \ Ga|
|Ga

r \ Ga| (16)

This scoring naturally allows us to control the percentage of rule predictions
that hit our approximation of Gi, similar to standard recall estimation in machine
learning.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1K

2K

3K

4K

5K

6K

Ratio of the available KG

A
ve
ra
ge

su
pp

or
t

10

20

30

40

50

N
um

be
r
of

ke
pt

ru
le
s

#Rules (WikidataPeople)
#Rules (LUBM)
Avg. support (WikidataPeople)
Avg. support (LUBM)

Fig. 2. Number of kept rules (#Rules) and their average support for WikidataPeople
and LUBM datasets

Results. From every version of the available KG we have mined rules of the
form (15) and kept only rules r with conf (r) ≥ 0.001 and supp(r) ≥ 10, whose
head coverage6 is greater than 0.001. Figure 2 shows the number of kept rules
and their average support (1) for each global ratio used for generating Ga.

6 Head coverage is the ratio of the number of predicted facts that are in Ga over the
number of facts matching the rule head.

Completeness-Aware Rule Learning from Knowledge Graphs 521

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio of the available KG

Pe
ar
so
n
co
rr
el
at
io
n

WikidataPeople

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ratio of the available KG

LUBM

Standard confidence Completeness precision Directional metric
PCA confidence Completeness recall Weighted directional metric
Completeness confidence

Fig. 3. Evaluation results for WikidataPeople and LUBM datasets

Evaluation results for WikidataPeople and LUBM datasets are in Fig. 3. The
horizontal axis displays the global ratio used for generating Ga. We compared
different rule ranking methods as previously discussed, including standard con-
fidence (3), PCA confidence (4), completeness confidence (9), completeness pre-
cision (10), completeness recall (11), directional metric (13) and weighted direc-
tional metric (β = 0.5) (14). The Pearson correlation factor7 (vertical axis)
between each ranking measure and the rules quality score (16) is used to evalu-
ate the measures’ effectiveness. We measured the Pearson correlation, as apart
from the ranking order (captured by, e.g., the Spearman’s rank correlation), the
absolute values of the measures are also insightful for our setting.

Since facts are randomly missing in the considered versions of Ga, the PCA
confidence performs worse than the standard confidence for given datasets,
while our completeness confidence significantly outperforms both (see Table 1
for examples).

Table 1. Example of rules mined from WikidataPeople with global ratio of 0.5

Rule r conf (r) confpca(r) confcomp(r)dir metric(r)

hasSibling(X, Z) ← hasSibling(X, Y),
hasSibling(Y, Z)

0.10 0.10 0.89 0.98

hasStepParent(X, Z) ← hasMother(X, Y),
hasSpouse(Y, Z)

0.0015 0.48 0.0015 0.38

7 The Pearson correlation factor between two variables X and Y is defined by ρX,Y =
cov(X,Y)

σXσY
with cov being the covariance and σ the standard deviation.

522 T.P. Tanon et al.

For the WikidataPeople KG, directional metric, weighted directional metric
and completeness confidence show the best results, followed by completeness pre-
cision. For the LUBM KG, the completeness confidence outperforms the rest of
the measures, followed by the standard confidence and the weighted directional
metric. Correlation for completeness recall in the LUBM dataset behaved erratic
and was slightly negative, thus is not displayed at all. We conjecture that com-
pleteness recall might be unsuited in certain settings, because it may reward rules
that predict many facts, irrespective of whether these facts are true or false. It
is noteworthy that the standard confidence performs considerably better on the
LUBM KG with correlation factor higher than 0.9 than on the WikidataPeople
KG. Still, completeness confidence shows better results, reaching a nearly per-
fect correlation of 0.99. We hypothesize that this is due to the bias between the
different predicates of the LUBM KG being less strong than in the Wikidata-
People KG, where some predicates are missing a lot of facts, while others just a
few. Completeness precision, directional metric and weighted directional metric
outperform PCA confidence for most settings on the WikidataPeople KG.

6.2 Automated Acquisition of Cardinality Statements

To evaluate our method for automated acquisition of cardinality statements from
a KG we reused the WikidataPeople dataset–without completing the data.

Dataset. We have collected around 282K cardinality statements from various
sources:

– Wikidata schema, i.e., hasFather , hasMother , hasBirthPlace, and
hasDeathPlace are functional properties and, thus, should have at most one
value.

– The 7.5K values of the Wikidata predicate numberOfChildren;
– 663 novalue statements from Wikidata;
– 86K cardinality statements from [23] for the hasChild predicate of Wikidata;
– 182K cardinality statements are extracted from human-curated and complete

Freebase facts (1.6M). The mapping to Wikidata has been done using tools
from [25].

Experimental setup. We set aside random 20% of the cardinality statements
as validation set, while the rest were incorporated into the WikidataPeople KG,
as explained in Sect. 5. We then ran our rule learning algorithm to mine cardi-
nality rules. Rules with support less than 200 or confidence smaller than 0.01
were pruned out. Examples of mined rules along with their standard confidences
include

– hasSibling≥3(x) ← hasSibling(x, y), hasSibling≥4(y): 0.97
– hasChild≥3(x) ← hasFather(y, x), hasSibling(y)≥4(y): 0.90.

The learned rules were then applied to the enriched WikidataPeople KG to
retrieve new exact cardinalities num(p, s) by only keeping (p, s) pairs where the

Completeness-Aware Rule Learning from Knowledge Graphs 523

higher and lower bounds matched. The minimum of the standard confidence of
the best rules used to get the upper and lower bounds were assigned as the final
confidence of each num(p, s).

0 0.2 0.4 0.6 0.8 1

5M

10M

·107

Minimal confidence

G
en
er
at
ed

n
u
m

(p
,s

)

0

0.25

0.5

0.75

1

Sc
or
es

incomplete stmts.
complete stmts.
Precision
Recall

Fig. 4. Number of (in-)complete statements for generated cardinalities num(p, s), and
quality of predicted cardinalities.

Results. We aim to evaluate whether we can accurately recover the cardinality
statements in the validation set–as the gold standard–by utilizing the learned
cardinality rules. For different minimal confidence thresholds, the quality of the
predicted cardinalities is measured with standard precision and recall, which is
presented in Fig. 4. We get a nearly perfect precision and a fair recall (around
40%) for the generated cardinalities, which amount to 7.5M-10M depending on
the threshold. Around one third of num(p, s) statements indicate completeness
of the KG for given (p, s) pairs. If we remove the schema information from
the KG, we get lower precision (around 70%) and recall (around 1%) before a
minimal confidence of 0.6, and similar values after.

7 Conclusion and Future Work

We have defined the problem of learning rules from incomplete KGs enriched
with the exact numbers of missing edges of certain types, and proposed three
novel rule ranking measures that effectively make use of the meta-knowledge
about complete and incomplete KG parts: completeness confidence, precision/re-
call and the (weighted) directional metric. Our measures have been injected in
the rule learning prototype CARL and evaluated on real-world and synthetic
KGs, demonstrating significant improvements both w.r.t. the quality of mined
rules and predictions they produce. Moreover, we have proposed a method for
acquiring cardinality meta-data about edge counts from KGs.

For future work, we plan to encode the cardinality information into back-
ground knowledge, e.g., using qualified role restrictions in OWL ontologies and
exploit it to get rid of faulty rules that introduce inconsistencies. Another inter-
esting further direction is to learn general correlations about edge counts that
include mathematical functions, e.g., the number of siblings should be equal to
the sum of the number of sisters and brothers.

524 T.P. Tanon et al.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76298-0 52

2. Bollacker, K.D., Cook, R.P., Tufts, P.: Freebase: a shared database of structured
general human knowledge. In: AAAI, pp. 1962–1963 (2007)

3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell,
T.M.: Toward an architecture for never-ending language learning. In: AAAI, pp.
2302–2310 (2010)

4. d’Amato, C., Staab, S., Tettamanzi, A.G., Minh, T.D., Gandon, F.: Ontology
enrichment by discovering multi-relational association rules from ontological knowl-
edge bases. In: SAC, pp. 333–338 (2016)

5. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about
RDF data sources and their use for query answering. In: Alani, H., et al. (eds.)
ISWC 2013. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41335-3 5

6. Darari, F., Razniewski, S., Prasojo, R.E., Nutt, W.: Enabling fine-grained RDF
data completeness assessment. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C.
(eds.) ICWE 2016. LNCS, vol. 9671, pp. 170–187. Springer, Cham (2016). doi:10.
1007/978-3-319-38791-8 10

7. Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In:
Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer,
Heidelberg (1997). doi:10.1007/3540635149 40

8. Doppa, J.R., Sorower, S., NasrEsfahani, M., Orr, J.W., Dietterich, T.G., Fern,
X., Tadepalli, P., Irvine, J.: Learning rules from incomplete examples via implicit
mention models. In: ACML, pp. 197–212 (2011)

9. Etzioni, O., Golden, K., Weld, D.S.: Sound and efficient closed-world reasoning for
planning. AI 89(1–2), 113–148 (1997)

10. Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule
learning from knowledge graphs. In: Groth, P., Simperl, E., Gray, A., Sabou, M.,
Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp.
234–251. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 15

11. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting complete-
ness in knowledge bases. In: WSDM, pp. 375–383 (2017)

12. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB 24, 707–730 (2015)

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP/SLP, pp. 1070–1080 (1988)

14. Goethals, B., Van den Bussche, J.: Relational association rules: getting Warmer.
In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Dis-
covery. LNCS, vol. 2447, pp. 125–139. Springer, Heidelberg (2002). doi:10.1007/
3-540-45728-3 10

15. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for owl knowledge base systems.
Web Semant. Sci. Serv. World Wide Web 3(2–3), 158–182 (2011)

16. Józefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining
frequent patterns from knowledge bases in description logics with rules. TPLP
10(3), 251–289 (2010)

http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-642-41335-3_5
http://dx.doi.org/10.1007/978-3-642-41335-3_5
http://dx.doi.org/10.1007/978-3-319-38791-8_10
http://dx.doi.org/10.1007/978-3-319-38791-8_10
http://dx.doi.org/10.1007/3540635149_40
http://dx.doi.org/10.1007/978-3-319-46523-4_15
http://dx.doi.org/10.1007/3-540-45728-3_10
http://dx.doi.org/10.1007/3-540-45728-3_10

Completeness-Aware Rule Learning from Knowledge Graphs 525

17. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax
specification (1999)

18. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In:
Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 311–325. Springer,
Cham (2014). doi:10.1007/978-3-319-11558-0 22

19. Levy, A.Y.: Obtaining complete answers from incomplete databases. VLDB 96,
402–412 (1996)

20. Lisi, F.A.: Inductive logic programming in databases: from Datalog to DL+log.
TPLP 10(3), 331–359 (2010)

21. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from mul-
tilingual Wikipedias. In: CIDR (2015)

22. Mirza, P., Razniewski, S., Darari, F., Weikum, G.: Cardinal virtues: extracting
relation cardinalities from text. ACL (2017)

23. Mirza, P., Razniewski, S., Nutt, W.: Expanding Wikidata’s parenthood information
by 178%, or how to mine relation cardinality information. In: ISWC 2016 Posters
& Demos (2016)

24. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation
methods. Semant. Web 8(3), 489–508 (2017)

25. Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From
Freebase to Wikidata: the great migration. In: Proceedings of WWW, pp. 1419–
1428 (2016)

26. Prasojo, R.E., Darari, F., Razniewski, S., Nutt, W.: Managing and consuming
completeness information for Wikidata using COOL-WD. In: COLD@ISWC (2016)

27. Sazonau, V., Sattler, U., Brown, G.: General terminology induction in OWL. In:
ISWC, pp. 533–550 (2015)

28. Wang, Z., Li, J.: RDF2Rules: learning rules from RDF knowledge bases by mining
frequent predicate cycles. CoRR abs/1512.07734 (2015)

29. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO: scalable machine learning
for linked data. In: WWW, pp. 271–280 (2012)

30. Wang, Z., et al.: Knowledge graph embedding by translating on hyperplanes. In:
AAAI, pp. 1112–1119 (2014)

http://dx.doi.org/10.1007/978-3-319-11558-0_22

Entity Comparison in RDF Graphs

Alina Petrova(B), Evgeny Sherkhonov, Bernardo Cuenca Grau,
and Ian Horrocks

University of Oxford, Oxford, UK
alina.petrova@cs.ox.ac.uk

Abstract. In many applications, there is an increasing need for the new
types of RDF data analysis that are not covered by standard reasoning
tasks such as SPARQL query answering. One such important analysis
task is entity comparison, i.e., determining what are similarities and dif-
ferences between two given entities in an RDF graph. For instance, in
an RDF graph about drugs, we may want to compare Metamizole and
Ibuprofen and automatically find out that they are similar in that they
are both analgesics but, in contrast to Metamizole, Ibuprofen also has
a considerable anti-inflammatory effect. Entity comparison is a widely
used functionality available in many information systems, such as uni-
versities or product comparison websites. However, comparison is typi-
cally domain-specific and depends on a fixed set of aspects to compare.
In this paper, we propose a formal framework for domain-independent
entity comparison over RDF graphs. We model similarities and differ-
ences between entities as SPARQL queries satisfying certain additional
properties, and propose algorithms for computing them.

1 Introduction

The Resource Description Framework (RDF) is the standard format for repre-
senting and integrating information on the Web. The canonical reasoning task
over RDF data exploited in applications is query answering, where SPARQL is
the standard query language developed for that purpose [10]. There is, however,
an increasing need in many applications for non-standard analysis tasks that
do not directly correspond to SPARQL query answering. One such important
task is entity comparison—that is, to determine what are the similarities and
differences between the information about two given entities in an RDF graph.

Let us consider two example use cases. In the first one, a startup company
is developing a toolkit for analysing widely-used biomedical RDF repositories,
such as Bio2RDF [5]. The tool being developed should provide a drug comparison
functionality; in particular, when given two drugs described in an RDF graph
from the repository, such as Ibuprofen and Metamizole, the tool should be able
to automatically report that “both drugs are analgesics and can reduce fever;

Work supported by the Royal Society under a University Research Fellowship and
the EPSRC under an IAA award and the projects DBOnto, MaSI3, ED3, and
VADA(EP/M025268/1).

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 526–541, 2017.
DOI: 10.1007/978-3-319-68288-4 31

Entity Comparison in RDF Graphs 527

however, Metamizole can also act as a spasm reliever, whereas Ibuprofen has an
anti-inflammatory function”. The second use case concerns the development of
an analysis tool on top of IMDB data; such tool should allow users to compare
arbitrary aspects of movie-making, such as directors, producers, actors and so on.
For example, when comparing Quentin Tarantino to Martin Scorsese, the tool
should report that they are similar in that they are both male directors who
won both an Oscar and a Golden Globe and who have also acted in their own
movies; in turn, they are different in that Tarantino won the Palme d’Or at the
Cannes Film Festival, while Scorsese won an Emmy award, to which Tarantino
was only nominated.

Entity comparison is conventionally seen in the Information Retrieval com-
munity as a type of exploratory search [15,22]. It is an important task which
is implemented in a wide range of tools and web portals, in domains as diverse
as hotels,1 cars,2 universities,3 or online shopping4. Existing entity comparison
tools typically perform a side-by-side comparison of items based on a fixed (often
hard-coded) template of features to compare (e.g., price, location, rating, and so
on in the case of hotels). Relying on a fixed set of features is a reasonable solution
for tabular, domain specific data whose structure is relatively rigid and stable.
It is even appropriate in the context of graph data, provided that a limited set of
relevant features can be specified beforehand; for instance, Facebook Friendship
pages allow for the comparison of two Facebook users by displaying their shared
information based on a limited set of features specific to social networks (e.g.,
“likes”, mutual friends, relationship status).

A more flexible approach to entity comparison is, however, needed in the
context of Linked Data, where loosely structured RDF graphs (often describing
overlapping domains) are merged and updated. Up to now, such approaches
have mainly been based on the structure of the graph, e.g., finding a path that
connects the two entities (see Sect. 7 for a discussion of related work). In this
paper we propose a novel approach based on the semantics of the graph.

In Sect. 3 we propose a logical framework for our approach, where similarities
and differences between entities are formalised as conjunctive SPARQL queries.
Specifically, a similarity query (resp. a difference query) for given entities in
an RDF graph is a query having both entities as answers (resp. having one
entity as answer but not the other). In the case of similarity queries, we are
interested in the most specific ones, e.g., knowing that Tarantino and Scorsese
are both American-born film directors is more informative than reporting only
that they are both film directors. In turn, in the case of difference queries we
are interested in the most general ones, e.g., knowing that Brad Pitt is an actor,
whereas George Lucas is a producer is more informative than knowing that the
former is an American actor while the latter is an American producer, since
being American is irrelevant to differentiating them.

1 http://www.flightnetwork.com/pages/hotel-comparison-tool/.
2 http://www.cars.com/go/compare/modelCompare.jsp.
3 http://colleges.startclass.com/.
4 http://www.intel.co.uk/content/www/uk/en/products/compare-products.html.

http://www.flightnetwork.com/pages/hotel-comparison-tool/
http://www.cars.com/go/compare/modelCompare.jsp
http://colleges.startclass.com/
http://www.intel.co.uk/content/www/uk/en/products/compare-products.html

528 A. Petrova et al.

In Sect. 4, we focus on similarities, and propose a polynomial-time algorithm
for computing a most specific similarity query. As a by-product of the properties
of our algorithm, we are also able to show that most specific similarity queries for
two given entities in an RDF graph are unique modulo equivalence. The problem
we consider in this section is strongly related to the Query Reverse Engineering
problem in RDF [2], as well as to that of computing Least Common Subsumers
in Description Logic ontologies [3].

In Sect. 5, we focus on difference queries. We first argue that this is a hard
problem; specifically, we argue that simply checking existence of a difference
query for two given entities in a graph is coNP-complete. We then propose
an exponential-time algorithm for computing a most general difference query,
should one exist.

Finally, we describe a prototype implementation of the algorithm for com-
puting a most specific similarity query and present a proof of concept case study
using the data from Wikipedia infoboxes.

2 Preliminaries

We follow [16] in the definition of RDF graphs and triple patterns. Let U, L
and B be pairwise disjoint, countably infinite sets of URIs, literals and blank
nodes, respectively. An RDF triple (or simply a triple) is a tuple (s, p, o) ∈
(U∪B)×U× (U∪L∪B). In such a triple, s is the subject, p the predicate and
o the object. An RDF graph G is a finite set of triples. Any URI or literal from
G is called an entity.

Let V be a countably infinite set of variables disjoint from U and L. A term
is an element from U∪L∪V. The basic building block of our queries is a triple
pattern, which is an element from (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V). A basic
graph pattern is a non-empty finite set P of triple patterns. For any basic graph
pattern P , we denote with term(P) and var(P) the sets of terms and variables
occurring in P , respectively.

We define a query Q as a pair (X̄, P), where P is a basic graph pattern
and X̄ ⊆ var(P) is the set of answer variables of Q. Such queries capture the
fragment of SPARQL queries of the form SELECT ?X̄ WHERE P , with P a
basic graph pattern. We define term(Q) = term(P) and var(Q) = var(P). We
say that Q is monadic if its set of answer variables is a singleton. A basic graph
pattern P is connected if for every t, t′ ∈ term(P) there is a sequence of triple
patterns tp1, . . . , tpn in P such that t ∈ term(tp1), t′ ∈ term(tpn) and term(tpi)∩
term(tpi+1) �= ∅, for 1 ≤ i < n. Query Q = (X̄, P) is connected if so is P . For
brevity, in examples we will write a query Q = (X̄, P) simply as P and adopt
the convention that X(i) represent answer variables, whereas Y(j) represent the
remaining variables.

We next recapitulate the semantics of queries. A valuation over variables X̄
is a mapping ν from X̄ to U ∪ L ∪ B. For ν a valuation over X̄ and Ȳ ⊆ X̄, let
ν|Ȳ be the restriction of ν to Ȳ . Valuations are applied to triple patterns and
basic graph patterns in the obvious way. Let Q = (X̄, P) be a query, let G be

Entity Comparison in RDF Graphs 529

an RDF graph, and ν a valuation over X̄. Then, G satisfies Q under ν, denoted
G, ν |= Q if ν = μ|X̄ for some valuation μ over var(Q) satisfying μ(P) ⊆ G. The
semantics [Q]G of a query Q = (X̄, P) over G is

[Q]G = {ν(X̄) | G, ν |= Q and ν is a valuation over X̄}.

Let G be an RDF graph. The canonical graph pattern of G is the set Can(G)
of triple patterns (Xs,Xp,Xo) for each triple (s, p, o) in G, where Xs, Xp and
Xo are variables uniquely assigned to s, p and o in G. A canonical query of G is
any query of the form (X̄,Can(G)).

Let Q1 = (X̄1, P1) and Q2 = (X̄2, P2) be queries. We say that Q1 is sub-
sumed by Q2, denoted as Q1 ⊆ Q2, if [Q1]G ⊆ [Q2]G for every RDF graph
G. The subsumption relation between two queries with equal number of answer
variables can be characterised by existence of a homomorphism—a mapping
h : term(Q2) → term(Q1) that is the identity on URIs, literals and answer
variables and satisfying (h(ts), h(tp), h(to)) ∈ P1 whenever (ts, tp, to) ∈ P2 and
h(X̄2) = X̄1. It is well-known that Q1 ⊆ Q2 if and only if there exists a homo-
morphism from Q2 to Q1. Subsumption allows us to compare queries relative
to their specificity. We say that Q1 is more specific than Q2 if Q1 ⊆ Q2; it is
strictly more specific, denoted as Q1 ⊂ Q2, if Q1 ⊆ Q2 and Q2 �⊆ Q1. Finally,
Q1 and Q2 are equivalent, denoted Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.

3 A Framework for Entity Comparison

In this section, we present our formalisation of entity comparison. As a run-
ning example, consider a small subset Gmov of the YAGO graph [18] about
the movie industry depicted in Fig. 1. In our example, we would like to compare
Quentin Tarantino and Martin Scorsese. By inspecting Gmov we can observe, for
instance, that Tarantino and Scorsese are similar in that both of them are male,
they both won an Academy Award and a Golden Globe Award, and they both
acted in some of their own movies. In turn, they are different in that Tarantino
directed Reservoir Dogs, whereas Scorsese directed Taxi Driver ; furthermore,
unlike Scorsese, Tarantino also won the Palme d’Or at the Cannes Film Festival,
while Scorsese won an Emmy award, to which Tarantino was only nominated.

How can we formalise and automatically identify such similarities and dif-
ferences? There has been significant recent work in the literature on discovering
relationships between entities in an RDF graph [7,11,14]. Existing approaches
describe such relationships by means of explicit paths in the graph, which are
then grouped and ranked. Using such an approach, we could view a similar-
ity between entities as paths originating in those entities and converging into
the same node; for instance, we could justify as a similarity the fact that both
Tarantino and Scorsese are male by two paths leading to the node for male and
starting from the nodes for Scorsese and Tarantino, respectively. In turn, we
could justify a difference through the absence of such paths; for instance, the
node for Emmy Award is reachable from the node for Scorsese but not from that
for Tarantino. An important limitation of existing approaches, however, is that

530 A. Petrova et al.

maleQ Tarantino M Scorsese

Palme d′Or Emmy Award

Golden Globe Award

Academy Award

I Rossellini

Reservoir Dogs Taxi DriverH Keitel

hasGender hasGender

wonPrize wonPrize

wonPrize
wonPrize

wonPrize wonPrize

marriedTo

directedactedIn directed actedIn

actedIn actedIn

Fig. 1. An example RDF graph Gmov.

they cannot capture comparison at a higher level of abstraction; for instance,
we cannot justify by means of explicit converging paths in a graph the fact that
both Scorsese and Tarantino participated in a film as both actors and directors,
where the specific names of those films are irrelevant.

In our framework we propose to capture similarities and differences using
queries rather than explicit paths, where the presence of variables allows us to
represent information at a higher level of abstraction. We start by formalising
similarities. Given two entities in a graph, we view a similarity as a query having
both entities as answers.

Definition 1 (Similarity query). A similarity query for entities a and b in
an RDF graph G is a monadic connected query Q satisfying {a, b} ⊆ [Q]G.

For instance, the following queries Q1–Q3 are similarity queries for Tarantino
and Scorsese in our example graph Gmov:

Q1(X) = {(X,wonPrize,Academy Award)};
Q2(X) = {(X, hasGender ,male), (X,wonPrize,Academy Award)};
Q3(X) = {(X, directed , Y), (X, actedIn, Y), (H Keitel , actedIn, Y)}.

These similarity queries can be interpreted as follows: Q1 says that both Scorsese
and Tarantino received an Academy award, whereas Q2 additionally states that
they are both male; in turn, Q3 states that they are both directors who acted
in their own movies, in which Harvey Keitel was also part of the cast.

We next formalise the notion of a difference. Intuitively, given two entities in
an RDF graph, a difference is a query having one of the entities as answer, but
not the other. Furthermore, we are specially interested in differences that are
relevant to an identified similarity, in the sense that they distinguish the entities
based on an aspect that they have in common.

Definition 2 (Difference query). Let a and b be entities in an RDF graph G.
A difference query for a relative to b is a monadic connected query Q satisfying
a ∈ [Q]G and b �∈ [Q]G.

Entity Comparison in RDF Graphs 531

Additionally, let Q′ be a similarity query for a and b in G. Then, we say that
Q is a difference query modulo Q′ if Q is a difference query for a relative to b
and it holds that Q ⊆ Q′.

For instance, the following query Q4(X) is a difference query for Scorsese
relative to Tarantino and modulo the similarity query Q1(X) given before.

Q4(X) = {(X,wonPrize,Academy Award), (X,wonPrize,Emmy Award)}.

In turn, the following query is also a difference query for Scorsese relative to
Tarantino, but it does not relate to any (non-trivial) similarity between them.

Q5(X) = {(X,marriedTo, Y)}.

As we can see from the aforementioned examples, there may be multiple (even
infinitely many) similarity and difference queries for a given pair of entities. Some
of them are, however, more informative than others. In the case of similarity
queries, it is natural to expect more specific queries to be more informative; for
instance, it is natural to prefer our example query Q2 over Q1 since it better
differentiates Tarantino and Scorsese from other directors, by ruling out those
who won an Emmy but are female. In contrast, in the case of difference queries it
is natural to favour more general queries over more specific ones; for instance, Q5

is more informative that the following query Q6 since it conveys the information
that Scorsese is married, but Tarantino is not (or at least not known to be).

Q6(X) = {(X,marriedTo, I Rossellini)}.

We now define these notions formally.

Definition 3. Query Q is a most specific similarity query (MSSQ) for a and b
in G if Q is a similarity query for a and b in G, and there is no similarity query
Q′ for a and b in G such that Q′ ⊂ Q.

Query Q is a most general difference query (MGDQ) for a relative to b in
G if Q is a difference query for a relative to b in G, and there is no difference
query Q′ for a relative for b in G such that Q ⊂ Q′. This definition extends to
the notion of difference query modulo a similarity query in the obvious way.

Intuitively, given two similarity queries Q and Q′ for the same pair of entities,
their conjunction is also a similarity query that is more specific than both of
them. We will show in the following section that MSSQs for given entities and
graph are unique modulo equivalence over the given input graph. As an example,
consider the following query, which combines Q2 and Q3; it can be checked that
it is a MSSQ for Scorsese and Tarantino in Gmov:

Q7(X) = {(X, hasGender ,male), (X,wonPrize,Academy Award),
(X,wonPrize,Golden Globe Award), (X, actedIn, Y),
(X, directed , Y), (H Keitel , actedIn, Y)}.

532 A. Petrova et al.

Indeed, query Q8 = Q7 ∪ {(X, actedIn, Z)} is also a MSSQ but it is equivalent
to Q7. In turn, both query Q5 and the following query Q9 are both MGDQs for
Scorsese relative to Tarantino:

Q9(X) = {(X,Y,Emmy Award)}.

Furthermore, they are incomparable with respect to subsumption and hence, in
contrast to MSSQs, we cannot formulate a uniqueness result for MGDQs.

4 Computing a Most Specific Similarity Query

In this section, we tackle the problem of computing a most specific similarity
query. In particular, we present a polynomial time algorithm and then show, as
a byproduct of the correctness proof, that MSSQs are unique up to equivalence.

Our algorithm relies on the notion of the (tensor) product graph, which is
commonly exploited in Graph Theory and in Databases (under the name of
direct product [19]). Given graphs G1 and G2, the product G1 ⊗ G2 is a graph
whose vertex set is the cartesian product of the vertices of G1 and G2, and where
two vertices in the product graph are connected by an edge if and only if their
component elements are also related by an edge in the original graph. We next
adapt the standard notion of product to RDF graphs. Intuitively, given entities
a, b and graph G, the connected subgraph of the product G ⊗ G of G with itself
represents the “largest common pattern” in the neighbourhoods of a and b.

Definition 4 (Product graph). Let t1 = (s1, p1, o1) and t2 = (s2, p2, o2) be
triples. The product of t1 and t2, denoted as t1 ⊗ t2, is the triple

(〈s1, s2〉, 〈p1, p2〉, 〈o1, o2〉).

The product graph G1 ⊗ G2 of RDF graphs G1 and G2 is the set

{t1 ⊗ t2 | t1 ∈ G1 and t2 ∈ G2}.

For instance, the self-product Gmov ⊗ Gmov of our example graph Gmov

contains triples such as the following:5

(〈Q Tarantino,M Scorsese〉,
〈wonPrize,wonPrize〉,

〈Palme d ′Or ,Emmy Award〉)

which is the product of triples (Q Tarantino,wonPrize,Palme d ′Or)
and (M Scorsese,wonPrize,Emmy Award).

5 Note that the product graph is strictly speaking not an RDF graph, but this is a
technicality that is not important for our purposes.

Entity Comparison in RDF Graphs 533

Algorithm 1. Compute-MSSQ

Input: an RDF graph G and two entities a and b from G.
Output: a MSSQ for a and b.

1 Compute G ⊗ G;
2 if 〈a, b〉 does not occur in a triple in G ⊗ G then
3 return fail;

4 Let G′ be the connected component in G ⊗ G that contains 〈a, b〉;
5 Construct the canonical query Q of G′ with the answer variable X〈a,b〉;
6 Replace each variable X〈c,c〉 in Q with c;
7 return Q.

We are now ready to describe our algorithm (see Algorithm 1). Given a, b
and G as input, the first step is to compute the product graph G ⊗ G and check
whether 〈a, b〉 occurs in a triple; if it doesn’t then the algorithm fails and we can
conclude that there is no query having both a and b as answers. If 〈a, b〉 occurs
in the product graph, then the algorithm computes the connected component
G′ in which it occurs. Given G′, we are interested in its canonical query having
as answer variable the variable X〈a,b〉 corresponding to 〈a, b〉 in Can(G′). The
result of this step is already a similarity query. In the last step, the algorithm
grounds all variables X〈c,c〉 corresponding to nodes 〈c, c〉 to c itself; this step is
essential to ensure that the output similarity query is a most specific one.

Correctness of the algorithm follows from the following lemma.

Lemma 1. Algorithm Compute-MSSQ satisfies the following properties on
input a, b and G:

1. It fails if and only if there is no similarity query for a and b in G.
2. The output query Q is a similarity query for a and b in G such that any

similarity query Q′ for a, b and G is homomorphically embeddable into Q.

Proof. 1. It is easy to see that a similarity query for a and b exists if and only if
a and b appear as subjects, properties, or objects at the same time in G. This is
equivalent to the fact that 〈a, b〉 appears in a triple in G⊗G. Compute-MSSQ
returns “fail” iff the latter is not the case.

2. We first show that {a, b} ⊆ [Q]G. Define two valuations over var(Q),
ν1 and ν2, as follows: for every variable X〈c,c′〉 in Q, ν1(X〈c,c′〉) = c, and
ν2(X〈c,c′〉) = c′. We now show that G satisfies Q under both ν1 and ν2. Let
(X〈s1,s2〉,X〈p1,p2〉,X〈o1,o2〉) be in Q, then it follows by definition of Q that
(〈s1, s2〉, 〈p1, p2〉, 〈o1, o2〉) ∈ G′. Then by construction of G′ we know that both
(s1, p1, o1) and (s2, p2, o2) ∈ G. We then obtain that by definition of ν1 and ν2:
(νi(X〈s1,s2〉), νi(X〈p1,p2〉), νi(X〈o1,o2〉))) ∈ G, for i = 1, 2. Hence, ν1 and ν2 are
satisfying for Q in G. We have ν1(X〈a,b〉) = a and ν2(X〈a,b〉) = b. Therefore,
{a, b} ⊆ [Q]G.

Let Q′(X) be an arbitrary similarity query for a and b. There are two sat-
isfying valuations ν1 and ν2 over var(Q′) for Q′ in G that map X to a and b

534 A. Petrova et al.

respectively. We define ν(Y) = 〈ν1(Y), ν2(Y)〉 for Y a variable and ν(e) = 〈e, e〉
for e an entity. Since Q′ is connected and ν(X) = 〈a, b〉, the image of Q′ under
ν is a connected subgraph in G ⊗ G and thus is contained in G′. Since G′ and
Q are isomorphic, ν can be considered as a homomorphism from Q′ to Q. ��

Clearly, our algorithm works in polynomial time; in particular the size of the
product graph G⊗G is cubic in the size of G. Hence, using the previous Lemma
we conclude the following.

Theorem 1. Compute-MSSQ is a polynomial time algorithm that returns a
MSSQ for its input if one exists, and “fail” otherwise.

Finally, note that the second statement in Lemma 1 ensures that the return
query is, in fact, more specific than any other similarity query. Thus, it also
follows from the lemma that MSSQs are unique up to equivalence.

Corollary 1. If Q and Q′ are MSSQs for a and b in RDF graph G, then Q ≡ Q′.

We conclude by observing that the algorithm Compute-MSSQ will com-
pute, on our running example, a query that is significantly larger than (yet
equivalent to) Q7 in the previous section. Indeed, Q7 is a core query in the sense
that it cannot be further minimised while preserving equivalence.

5 Computing Most General Difference Queries

We now turn our attention to MGDQs. As already pointed out, MGDQs are not
unique modulo equivalence and hence we focus on providing an algorithm that
computes one of them.

In contrast to the case of computing MSSQs, we will not be able to provide a
polynomial-time algorithm. In fact, we show that the associated decision prob-
lem of checking whether a MGDQ exists is coNP-complete. This result stems
from a characterisation of existence of MGDQs in terms of (non-)existence of
homomorphisms.

In what follows we fix arbitrary entities a and b in an arbitrary RDF graph
G. We denote with Qb to be the query (Xb,Can(G)) and Qa to be the query
(Xa, PXa

) with PXa
the connected component of Can(G) containing Xa.

Lemma 2. A difference query for a relative to b in G exists if and only if there
is no homomorphism from Qa to Qb.

Proof. (⇐). The following properties hold for Qa. It is (1) connected and (2)
a ∈ [Qa]G. Moreover, since there is no homomorphism from Qa to Qb, it holds
that (3) b �∈ [Qa]G. Indeed, otherwise a satisfying valuation ν for Qa over var(Qa)
with ν(Xa) = b can be seen as a homomorphism from Qa to Qb, as Can(G) and
G are isomorphic. Thus, Qa is a difference query for a relative to b in G.

(⇒). Let Q(X) be a difference query for a relative to b in G. It implies there
is a satisfying valuation ν over var(Q) for Q in G which can be regarded as

Entity Comparison in RDF Graphs 535

a homomorphism from Q to Qa (since Q is connected) with ν(X) = Xa. For
the sake of contradiction, suppose there is a homomorphism h from Qa to Qb.
This homomorphism can be regarded as a satisfying valuation for Qa in G with
h(Xa) = b. Hence, the mapping h ◦ ν is a satisfying valuation for Q(X) in G
with h ◦ ν(X) = b which implies b ∈ [Q]G, a contradiction with the fact that Q
is a difference query for a relative to b in G. ��

Since homomorphism checking is a well-known NP-complete problem, the
following result follows.

Theorem 2. The problem of checking whether a difference query for a relative
to b in G exists is coNP-complete.

Proof. It is known that checking existence of a homomorphism is in NP.
Together with Lemma 2 it implies that existence of a difference query can be
checked in coNP. We show the lower bound by reducing from the homomor-
phism problem for graphs to the complement of our problem. Let G1 = (V1, E1)
and G2 = (V2, E2) be graphs which we can assume to be disjoint. We then
construct an RDF graph G over the set of URIs V1 ∪ V2 ∪ {a, b, e, e′}, where
{a, b, e, e′} ∩ Vi = ∅, i = 1, 2, as the following set:

G = {(u, e, v) | 〈u, v〉 ∈ E1 ∪ E2} ∪ {(a, e′, u) | u ∈ V1} ∪ {(b, e′, v) | v ∈ V2}.

It is straightforward to show that there exists a homomorphism from G1 to G2 if
and only there is a homomorphism from Qa to Qb (note that this homomorphism
must map Xa to Xb). Lemma 2 implies that this is equivalent to non-existence
of a difference query for a relative to b in G. ��

In light of this result, there is no hope for a polynomial time algorithm for
computing a MGDQ unless PTime = NP. Therefore, we present a naive, non-
deterministic algorithm Compute-MGDQ for acyclic graphs. In the first step,
the algorithm computes Qa (feasible in polynomial time). Then, it checks (using
the oracle as per Lemma 2) whether Qa is already a difference query. If it is not,
then none can exist. If it is, then it may not be a most general one. Hence, the
algorithm tries to make it more general by relaxing the query while checking
(again using the oracle as per Lemma 2) whether the result is still a difference
query. Correctness is established in the following theorem.

Theorem 3. Algorithm Comptute-MGDQ returns a MGDQ if one exists,
and “fail” otherwise.

Proof. The algorithm fails if and only if there is a homomorphism from Qa to
Qb. By Lemma 2 this is equivalent to the fact that no (most general) difference
query for a relative to b exists.

Let Q be the output of Comptute-MGDQ different from “fail”. The for-
loop on Line 5 tries to greedily relax the query. Namely, for each variable Y
we introduce a set of fresh variables Yi that replace Y in Q (thus relaxing it)
as long as the result is still a difference query for a relative to b. Note that

536 A. Petrova et al.

Algorithm 2. Compute-MGDQ

Input: an RDF graph G and two entities a and b from G.
Output: a MGDQ for a and b.

1 Compute Qa = (Xa, PXa);
2 if there exists a homomorphism from Qa to Qb then
3 return fail;

4 Let Q = Qa;
5 foreach variable Y �= Xa in Q do
6 Let Occ be the set of all occurrences of Y in Q;

7 Guess a number 1 < N ≤ |Occ| and a partition Occ = ∪N
i=1Occi with each

Occi �= ∅;
8 Let Yi, i = 1, . . . , N, be a fresh variable for each Occi;
9 In Q, replace each occurrence of Y that is in Occi by Yi;

10 Let Q′ be the connected component of Xa in Q;
11 if there is no homomorphism from Q′ to Qb then
12 Update Q := Q′;

13 return Q.

for each intermediate query Q′ it holds a ∈ [Q′]G since the result of Line 9 is
homomorphically embeddable into the original query. Therefore, we have a ∈
[Q]G. The if-condition ensures that b �∈ [Q]G as per Lemma 2. Therefore, Q is a
difference query for a relative to b.

Suppose there is a difference query Q′′ for a relative to b that is strictly more
general than Q. This means there is a homomorphism h from Q′′ to Q but not
vice versa. If h is injective, then there is a triple pattern in Q that is not in
the image of Q′′ under h but connected to it. But then the commands in the
for-loop are applicable to a variable Y that connects the image of Q′′ and the
triple pattern (with the following partition: the occurrence of Y replaced with
Y1 and the occurrence of Y in the triple pattern with Y2), a contradiction. Now
suppose h is not injective. Then let {Z1, . . . , Zn} be variables in Q′′ that are
mapped by h to the same variable Y in Q. We claim that the for-loop in Line 5
is applicable to Y with {Z1, . . . , Zn} defining a partition, a contradiction. ��

6 Case Study

We have implemented a prototype system in Java that implements our
Algorithm 1 for computing MSSQs. As a proof of concept, we have run the algo-
rithm on a fragment of DBpedia [13] that captures the information correspond-
ing to Wikipedia infoboxes—tables with a fixed structure used in Wikipedia to
present the key information about an entity in a concise and structured way.6

Infoboxes are located on the right-hand-side of Wikipedia pages that correspond
to certain categories, such as people, organisations or geographical locations.

6 https://en.wikipedia.org/wiki/Help:Infobox.

https://en.wikipedia.org/wiki/Help:Infobox

Entity Comparison in RDF Graphs 537

Entity comparison in Wikipedia could be implemented by comparing their
infoboxes directly; such a tool would provide analogous functionality to that
in existing comparison tools in Web portals, in the sense that the features to
compare would be considered fixed. Figure 2 displays side by side the infoboxes
corresponding to Brad Pitt and Tom Cruise, which are both fairly detailed. We
can observe similarities such as their occupations and country of birth, or the
fact that they have both been married and have children.

Fig. 2. Wikipedia infoboxes for actors Brad Pitt (left) and Tom Cruise (right).

We tried our algorithm for Brad Pitt and Tom Cruise and the aforemen-
tioned fragment of DBpedia. We observed that the computed MSSQ provides
much richer information than what can be obtained by direct inspection of the
infoboxes. Since the resulting MSSQ is rather large, we concentrate on its sub-
queries of special interest. First, we notice that we generated all the aforemen-
tioned similarities that could be obtained by manual inspection of the infoboxes.
In particular, we found that both Brad Pitt and Tom Cruise are:

– both actors and producers, as witnessed by the subquery

{(X, occupation,Actor), (X, occupation,Producer)};

– were born in the U.S., as witnessed by

{(X, birth place, Y1), (Y1, country ,United States)};

– were married, have kids and relatives, as witnessed by

{(X, children, Y2), (X, spouse, Y3), (X, relatives , Y4)}.

538 A. Petrova et al.

However, the computed MSSQ also contains plenty of additional useful infor-
mation. For instance, both Pitt and Cruise:

– were married to U.S. actresses, as witnessed by

{(X, spouse, Y3), (Y3,nationality ,United States), (Y3, occupation,Actress)};

– were born in cities that are both the administrative centers and largest cities
of their respective counties:

{(X, birth place, Y1), (Y1, county , Y5),
(Y5, largest city , Y1), (Y5, seat , Y1), (Y1, settlement type,City)};

– were married to actresses who were also married to musicians:

{(X, spouse, Y3), (Y3, occupation,Actress),
(Y3, spouse, Y6), (Y6, occupation,Musician)};

To sum up, even using only DBpedia data capturing Wikipedia infoboxes,
we are able to significantly enhance the explicit contents of fairly comprehensive
infoboxes and exploit the graph nature of the data to discover “deeper-level”
similarities between the entities of interest. We envision that our approach could
even be more useful if the whole of DBpedia had been considered, especially in
the case where the infoboxes corresponding to the entities of interest are rather
minimalistic and hence do not provide sufficiently many features to compare.

7 Related Work

There is a growing interest in techniques for discovering and explaining relation-
ships between entities in an RDF graph [7,11,14]. These approaches are based on
computing paths in the input graph connecting the input entities. Such paths
are first computed via standard graph traversal algorithms, and then ranked
according to certain structural and/or statistical measures [7]. We note that the
problem of finding connections between entities is orthogonal to that of comput-
ing similarities and differences between them. Furthermore, as already argued,
the natural adaptations of such techniques to our setting do not allow for entity
comparison at a sufficiently high level of abstraction.

Computation of both similarity and difference queries can be seen as an
instance of the more general problem of Query Reverse Engineering (QRE) in
databases. An input to QRE is a database instance, a set of positive examples
(i.e., elements that must be in the query result) and also in some cases a set of
negative examples (i.e., elements that must not be included in the query result).
The QRE problem for a query language L is to decide whether an L-query exists
whose answers satisfy the given constraints imposed by positive and negative
examples over the input database instance. This problem has been studied for
regular languages over strings [1], queries over relational databases [20,21,23,25],

Entity Comparison in RDF Graphs 539

XML queries [9,17], graph database queries [6] and SPARQL queries over RDF
graphs [2]. QRE is known to be coNExpTime-complete for conjunctive queries
over relational databases [4,19]. When applied to our setting, this result implies
coNExpTime-completeness of the following problem: given an RDF graph, and
sets of entities A and B in G, does there exist a difference query for A relative
to B in G, where the definition of a difference query is extended to sets of
entities in the obvious way. QRE for RDF graphs was first studied in [2], where
the complexity analysis of different variations of the problem is provided for
SPARQL queries allowing for the AND, FILTER and OPT operators.

Computing MSSQs is also related to (a variant of) the problem of computing
the Least Common Subsumer between concepts in Description Logics (DLs) [3].
Specifically, given entities a and b, we could cast our problem as that of finding
the least (i.e., most specific modulo subsumption) DL concept that contains
both a and b as instances. An important difference with our setting is that DL
concepts in logics such as EL and ALC can only capture conjunctive queries that
are both constant-free and tree-shaped. In this sense, our query language is more
expressive, as it allows for arbitrarily-shaped connected CQs. The additional
expressivity turns out to be critical: while a least DL concept may not exist
(e.g., if the input graph has cycles then the least concept could be infinite), our
algorithm in Sect. 4 ensures that a MSSQ is always finite and can be computed
in polynomial time.

Finally, it is worth mentioning that there has been a lot of work on similarity
measures for computing a numeric score that estimates how similar two entities
in a graph are [8,12,24]; this has applications, for instance, in discovering entities
that are similar to a given one (i.e., those with the highest similarity score).
Please note that we are considering a very different problem since our focus is
on describing similarities and differences in a declarative way.

8 Conclusion and Future Work

We have investigated the problem of entity comparison over RDF graphs and
proposed a logical framework that models comparison through similarity and
difference queries. In particular, we have studied most specific similarity queries
(MSSQs) and most general difference queries (MGDQs) as the most informative
such queries. We have shown that, for a given graph and a pair of entities, there
always exists a unique MSSQ modulo equivalence, which can be computed in
polynomial time. In contrast, computing MGDQs is a harder problem; indeed,
the underpinning decision problem is coNP-hard. Finally, we have discussed an
initial implementation of the algorithm that computes a MSSQ.

An immediate step of future research would be to extend the prototype
implementation of the framework into a comprehensive entity comparison tool
that would account for both similarity and difference queries. This would imply,
firstly, creating practical algorithms for computing MGDQs, possibly of bounded
size. As for MSSQs, a practical implementation of the tool would effectively
address the problem of large-sized MSSQs and how they can be presented

540 A. Petrova et al.

to a user in an easy-to-read manner. One possible solution would be to split
the output MSSQs into comprehensible subqueries (similar to the ones pre-
sented in Sect. 6); another solution would involve partially verbalizing MSSQs
into natural language explanations. For example, a query {(X, livesIn,London),
(X, friendsWith, Y), (Y,worksAt ,Oracle)} could be transformed into a natural
language explanation “Both input entities live in London and are friends with
someone who works at Oracle”. In addition, an interesting problem would be to
consider more expressive query languages, in particular conjunctive queries with
inequalities and numeric comparisons. As the example infoboxes from Sect. 6 sug-
gests, such extensions to the query language would allow for similarity queries
such as “Both Brad Pitt and Tom Cruise have at least 3 children”. Lastly, our
approach to entity comparison should be thoroughly evaluated.

References

1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
2. Arenas, M., Diaz, G.I., Kostylev, E.V.: Reverse engineering SPARQL queries. In:

Proceedings of the 25th International Conference on World Wide Web, pp. 239–
249. International World Wide Web Conferences Steering Committee (2016)

3. Baader, F., Turhan, A.-Y.: On the problem of computing small representations
of least common subsumers. In: Jarke, M., Lakemeyer, G., Koehler, J. (eds.)
KI 2002. LNCS, vol. 2479, pp. 99–113. Springer, Heidelberg (2002). doi:10.1007/
3-540-45751-8 7

4. Barcelo, P., Romero, M.: The complexity of reverse engineering problems for con-
junctive queries. In: Proceedings of the 20th International Conference on Database
Theory. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (to appear, 2017)

5. Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF:
towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inf.
41(5), 706–716 (2008)

6. Bonifati, A., Ciucanu, R., Lemay, A.: Learning path queries on graph databases. In:
18th International Conference on Extending Database Technology (EDBT) (2015)

7. Cheng, G., Zhang, Y., Qu, Y.: Explass: exploring associations between entities via
top-K ontological patterns and facets. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8797, pp. 422–437. Springer, Cham (2014). doi:10.1007/978-3-319-11915-1 27

8. Choi, S.-S., Cha, S.-H., Tappert, C.C.: A survey of binary similarity and distance
measures. J. Syst. Cybern. Inf. 8(1), 43–48 (2010)

9. Cohen, S., Weiss, Y.Y.: Learning tree patterns from example graphs. In: LIPIcs-
Leibniz International Proceedings in Informatics, vol. 31. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2015)

10. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C proposed recommen-
dation, 21 March 2013. World Wide Web Consortium (2013). https://www.w3.
org/TR/sparql11-query/. Accessed 1 October 2016

11. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:
revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y.,
Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol.
5887, pp. 182–187. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10543-2 21

12. Huang, A.: Similarity measures for text document clustering. In: Proceedings of
the Sixth New Zealand Computer Science Research Student Conference (NZC-
SRSC2008), Christchurch, New Zealand, pp. 49–56 (2008)

http://dx.doi.org/10.1007/3-540-45751-8_7
http://dx.doi.org/10.1007/3-540-45751-8_7
http://dx.doi.org/10.1007/978-3-319-11915-1_27
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1007/978-3-642-10543-2_21

Entity Comparison in RDF Graphs 541

13. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6,
167–195 (2014)

14. Lehmann, J., Schüppel, J., Auer, S.: Discovering unknown connections-the dbpedia
relationship finder. CSSW 113, 99–110 (2007)

15. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41–46 (2006)

16. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. (TODS) 34(3), 16 (2009)

17. Staworko, S., Wieczorek, P.: Learning twig and path queries. In: Proceedings of
the 15th International Conference on Database Theory, pp. 140–154. ACM (2012)

18. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from Wikipedia
and Wordnet. Web Semant. Sci. Serv. Agents World Wide Web 6(3), 203–217
(2008)

19. ten Cate, B., Dalmau, V.: The product homomorphism problem and applications.
In: 18th International Conference on Database Theory (ICDT 2015), pp. 161–176
(2015)

20. Tran, Q.T., Chan, C.-Y., Parthasarathy, S.: Query by output. In: Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data, pp.
535–548. ACM (2009)

21. Tran, Q.T., Chan, C.-Y., Parthasarathy, S.: Query reverse engineering. VLDB J.
23(5), 721–746 (2014)

22. White, R.W., Roth, R.A.: Exploratory search: beyond the query-response para-
digm. Synth. Lect. Inf. Concepts Retr. Serv. 1, 1–98 (2009)

23. Zhang, M., Elmeleegy, H., Procopiuc, C.M., Srivastava, D.: Reverse engineering
complex join queries. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 809–820. ACM (2013)

24. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural similarity mea-
sure over information networks. In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, pp. 553–562. ACM (2009)

25. Zloof, M.M.: Query-by-example: a data base language. IBM Syst. J. 16(4), 324–343
(1977)

Provenance Information in a Collaborative
Knowledge Graph: An Evaluation of Wikidata

External References

Alessandro Piscopo(B), Lucie-Aimée Kaffee, Chris Phethean,
and Elena Simperl

University of Southampton, Southampton, UK
{A.Piscopo,Kaffee,C.J.Phethean,E.Simperl}@soton.ac.uk

Abstract. Wikidata is a collaboratively-edited knowledge graph; it
expresses knowledge in the form of subject-property-value triples, which
can be enhanced with references to add provenance information. Under-
standing the quality of Wikidata is key to its widespread adoption as a
knowledge resource. We analyse one aspect of Wikidata quality, prove-
nance, in terms of relevance and authoritativeness of its external refer-
ences. We follow a two-staged approach. First, we perform a crowdsourced
evaluation of references. Second, we use the judgements collected in the
first stage to train a machine learning model to predict reference quality
on a large-scale. The features chosen for the models were related to refer-
ence editing and the semantics of the triples they referred to. 61% of the
references evaluated were relevant and authoritative. Bad references were
often links that changed and either stopped working or pointed to other
pages. The machine learning models outperformed the baseline and were
able to accurately predict non-relevant and non-authoritative references.
Further work should focus on implementing our approach in Wikidata to
help editors find bad references.

Keywords: Wikidata · Provenance · Collaborative knowledge graph

1 Introduction

Wikidata is a collaborative knowledge graph started in 2012 by the Wikimedia
foundation. It supplies data to other Wikimedia projects (including Wikipedia),
as well as anyone else who wants to use it, under a public license. Wikidata
already has a broad coverage, with data covering more than 24M abstract and
concrete entities, gathered by a user pool of around 17, 000 monthly active users.
This data has already been encoded in RDF and connected to the Linked Data
Web [7]. All these features have drawn the attention of researchers and prac-
titioners alike. Following its elder sister Wikipedia, Wikidata requires all infor-
mation to be verifiable, but goes a step further. It is a secondary database and
as such its aim is not to state facts about the world, but to report claims from
primary sources [26]. Each claim must be supported by a source and linked to it.
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 542–558, 2017.
DOI: 10.1007/978-3-319-68288-4 32

Provenance Information in a Collaborative Knowledge Graph 543

While most work around Wikidata focuses on the quality of its triples [4] or
analyses its community dynamics [20], to the best of our knowledge no stud-
ies have investigated provenance quality. Little is known about the quality of
the sources included to support claims, although this is a key issue for Wiki-
data. Provenance facilitates the reuse of data by improving error-detection and
decision-processes based on the information source [16]. The lack of provenance
information or the use of poor sources may affect its trustworthiness and hin-
der the reuse of its data for business and other purposes [12]. Additionally, the
availability of provenance information can increase trust in the project, as noted
in Wikipedia [17]. On a practical side, a method to detect bad external sources
would support editors in maintaining Wikidata knowledge graph.

This paper proposes an approach to analyse quality of provenance informa-
tion in Wikidata. We define quality in terms of relevance and authoritativeness
of the external sources used in Wikidata references. To assess these, we use
two complementary methods: microtask crowdsourcing and machine learning.
Crowdsourcing is used to collect judgements about relevance and authorita-
tiveness of sources. These judgements are successively utilised to train machine
learning models to predict problematic references on a large-scale.

2 Background and Related Work

Wikidata consists of items—representing concrete (such as the Colosseum)
or abstract things (e.g. humans)—and properties which express relationships
between items or between items and values. Items and properties are identi-
fied by URIs, starting respectively with ‘Q’ or ‘P’. Relationships are encoded
via claims, which can be enriched by adding qualifiers (to provide contextual
information) and/or references to form a statement. Statements are maintained
by the Wikidata community. Beyond human editors, who can be registered or
contribute anonymously, pieces of software called bots carry out a broad range
of tasks, adding and maintaining content. Whereas human editors are the main
contributors to the conceptual structure of Wikidata [18], bots perform more
when it comes to adding and modifying content and can often add large batches
of statements in one go [24]. No study has examined yet the differences between
bot and human contributions in Wikidata in terms of quality. This would be rel-
evant, considering the difference between the contribution patterns of these two
user types. Bots author the majority of revisions in Wikidata and the sources on
which their edits are based belong to a predetermined set of domains, thus they
focus on fewer types of statements compared to human editors. We analysed
external reference quality on Wikidata overall and separately by bot or human
editor to provide insights into the outcome of the work of each user type.

2.1 Provenance in Wikidata

Provenance information may be either recorded at the moment of data cre-
ation (eager approach) or computed upon request (lazy approach) [11]. Wiki-
data adopts the former approach and editors are asked to add sources to the

544 A. Piscopo et al.

statements that they create. Provenance in Wikidata can be added by enriching
claims with references. Most types of statements require a reference, otherwise
they are deemed unverified and should be removed [28]. However, community-
generated policies define some statement types that are exempt from this rule,
such as undisputed claims (e.g. Earth, instance of, planet) [27]. The sources used
as references can either be internal (an item already in Wikidata), or external,
i.e. linking to a URL [27]. Statements that are not exempt must be verifiable by
consulting a referenceable primary source. This must be accessible ‘by at least
some’ Wikidata contributors to confirm the source firsthand [28]. A good refer-
ence must also be relevant—it must provide evidence for the claim it is linked
to. Additionally, good references must be authoritative or ‘deemed trustwor-
thy, up-to-date, and free of bias for supporting a particular statement’ [28].

2.2 Authoritativeness in Wikidata

Wikidata defines authoritative sources by describing suitable types of publisher
and author. This is also the approach of Wikipedia, whose policy Wikidata redi-
rects to. Specifically, the term ‘source’ has three meanings in Wikipedia [29]:
the type of work itself, the author of the work, and the publisher of the work.
Wikidata’s policy specifies types of sources that are authoritative: books; aca-
demic, scientific and industry publications; policy and legislation documents;
news and media sources. These must have a corresponding entity in Wikidata,
linked to claims through property P248 (stated in). Databases and web pages
may also be authoritative. Databases require a corresponding property already
defined in the knowledge graph, pointing to an entry in the database. Author-
itativeness of web pages, referenced through property P854 (reference URL),
depends on their author and publisher type. Authors may be individuals (one
or more identifiable persons), organisations, or collective (a number of individu-
als who often utilise a username and whose contribution is voluntary). Sources
whose author is unknown should be avoided, as well as user-generated sources,
e.g. forums or social review sites. Regarding publishers, sources with no editorial
oversight and relying on rumours and personal opinions are not generally consid-
ered authoritative. Authoritative publishers are government agencies, companies
and organisations, and academic institutions [28]. Self-published sources are gen-
erally not accepted, nor are websites with promotional purposes or those affected
by political, financial, or religious bias. Wikipedia pages are not good references
because they are not primary sources and are collectively created. Table 1 shows
publisher types. Combinations of author and publisher types are in Table 2.

2.3 Evaluating Provenance

Literature about authoritativeness on the Web can be roughly divided into two
approaches. The first uses automated methods to analyse the hyperlinked struc-
ture of the Web to generate link-based metrics to gauge the authoritativeness
of pages. As an example, in [15] authority measures are generated using inter-
links within sub-graphs of the Web. A similar approach is followed by works

Provenance Information in a Collaborative Knowledge Graph 545

Table 1. Types of publisher in the classification used. On the right column, sub-types
or, when these are missing, definitions of higher-level types.

Academic and scientific
organisations

Academic and research institutions (e.g. universities and
research centres, but not museums and libraries);
Academic publishers;
Other academic organisations

Companies or
organisations

Vendors and e-commerce companies;
Political or religious organisations;
Cultural institutions;
Other types of company

Government agencies Any governmental institution, national or supranational

News and media outlets Traditional news and media (e.g. news agencies, broad-
casters);
Non-traditional news and media (e.g. online magazines,
platforms to collaboratively create news)

Self-published sources Any sources that does not belong to any
organisation/company, maintained by authors
themselves

Table 2. Authoritativeness of sources (ticks indicate authoritative)

Publisher Author

Individual Organisation Collective

Academic and research institution ✓ ✓ ✗

Academic publisher ✓ ✓ ✗

Other academic ✓ ✓ ✗

Government agency ✓ ✓ ✗

Vendor or e-commerce company ✗ ✗ ✗

Political or religious organisation ✗ ✗ ✗

Cultural institution ✓ ✓ ✗

Other type of company ✓ ✓ ✗

Traditional news and media ✓ ✓ ✗

Non-traditional news and media ✓ ✗ ✗

Self-published source ✗ ✗ ✗

that investigate automatic source retrieval. DeFacto [16] uses machine learning
and NLP to produce scores about the likelihood of a web page to contain spe-
cific pieces of information and about its trustworthiness. Fetahu et al. also apply
machine learning to assess web pages and find sources that are authoritative and
relevant for statements within Wikipedia articles [8]. Other methods focus on
evaluating provenance through similarity and distance metrics computed across

546 A. Piscopo et al.

different databases [5]. These models did not apply to Wikidata as this quan-
titative approach differs from the focus on principles such as type, author, and
publisher that Wikidata follows. Furthermore, Wikidata external sources have
diverse formats including web pages, PDFs, or csv files, which may be problem-
atic to evaluate for completely automated systems such as [8] or [16]. DeFacto’s
measure of trustworthiness would need extensive testing in order to understand
how it matches the definition of authoritativeness used by Wikidata.

The second group of approaches, followed by Wikidata, manually identifies
principles to define credible and authoritative web sources. A small sample of
Wikipedia citations have been evaluated by analysing their author, publisher,
and document types in [9]. Crowdsourcing has been used to evaluate page rele-
vance with faster completion times compared to expert-run experiments or online
surveys, and low cost, whilst yielding high quality results [2].

3 Methods

We developed an approach that evaluates Wikidata references in terms of rele-
vance and authoritativeness. We aimed to carry out a large-scale scale evaluation
of Wikidata provenance, and adopted a two-staged approach relying on two com-
plementary methods: microtask crowdsourcing and machine learning. Because
of the advantages outlined above, we performed a crowdsourced evaluation of
references, which was used to train a machine learning model to predict their
quality. Machine learning can be easily applied on a large-scale and is virtually
costless. We evaluated only external references, which were 6% of the total. In
our analysis, we distinguished between bots and people because of their different
roles in maintaining the knowledge graph. We posed these research questions:

RQ1 To what extent are Wikidata external references relevant?
RQ2 To what extent are Wikidata external reference authoritative?
RQ3 To what extent can non-relevant and non-authoritative references be pre-

dicted in Wikidata?

3.1 Source Evaluation

We designed three crowdsourcing tasks to assess reference quality, which were
carried out on CrowdFlower1. All tasks included one type of microtask, except
one, which included two. In order to increase the clarity of microtasks, we refined
their design by launching test runs of small samples (between 50–100) of refer-
ences to be evaluated. User behaviour (number of missed questions and comple-
tion time) was observed to understand microtask clarity.

Relevance. The first task (T1) was designed to assess relevance by asking users
to find the pieces of information composing a statement within its source. Each
microtask in T1 evaluated a reference, i.e. a statement with its attached source.

1 https://www.crowdflower.com/.

https://www.crowdflower.com/

Provenance Information in a Collaborative Knowledge Graph 547

In order to decrease the cognitive burden on workers, we structured microtasks
along three questions, one for each element of a statement (subject, property,
object). For each of these, we asked whether the source provided information
about it. Users were prompted the successive questions only if they responded
positively to the prior one (we asked about the property of a statement only if
evidence about its subject was found in the source). English labels were shown for
each statement’s part, instead of their URIs. In the case of pages not working or
requiring a log in, or for pages not in English, users could select the appropriate
responses. Figure 1 illustrates an example of T1 microtask.

Fig. 1. A HIT from T1

Authoritativeness. A similar concept to authoritativeness—credibility—is
consistently assessed under a positive bias by web users [13]. Hence, instead of
directly questioning users about the authoritativeness of a source, which would
have likely given overly subjective responses, we tested whether sources matched
the types specified by Wikidata policy and asked the crowd to classify them, sim-
ilar to the approach followed for Wikipedia in [9].

Author type was assessed in T2. Microtasks in T2 asked users to indicate the
most appropriate author type for a source. Users were shown only the source,
rather than the whole reference. Therefore, T2 included only unique web pages.

Task 3 (T3) evaluated publisher type. We assumed that pages belonging
to the same domain had the same publisher. Hence, we collected judgements
for unique domains, rather than for each single reference. T3.A included only
higher-level types of publisher: academic and scientific organisations, companies
and organisations, government institutions, news and media, and self-published
sources. It consisted of a multiple choice question to select the most appropriate
type of publisher. T3.B collected judgements related to the sub-types in Table 1.
In T3.B users were asked whether the publisher type obtained from the previous
task was appropriate for the source, in order to test contributors’ performance
and verify the results of T3.A. If users answered positively, they were asked to
classify the sub-type of the source publisher. User pools of T3.A and T3.B were

548 A. Piscopo et al.

independent from each other. Responses for pages not working or requiring log
in, or pages not in English were included in T2, T3.A, and T3.B.

Quality Assurance. Crowdsourcing is vulnerable to users who perform poorly
due to lack of skills, malicious behaviour, or distraction [6]. We adopted various
strategies to tackle this issue. We added gold standard questions to tasks and
excluded workers whose performance fell under a certain threshold, which we set
to 80% in all tasks. Tasks were structured in pages, each containing a number of
microtasks varying according to the task. Workers were first required to pass a
test consisting of a page of test questions with an accuracy above or equal to the
threshold set. Additionally, a test question was included in each page of work.
Users had to keep an accuracy above the minimum threshold throughout their
contribution. We followed previous research regarding the experimental design of
workers’ qualification, granularity of task, and monetary rewards (see Table 3).
Based on observations collected during test runs of the tasks, we accepted only
workers with a previous accuracy rate of 85%—the highest allowed by Crowd-
Flower2—to select highly performing users [6]. Payments per microtask were
determined according to [23]. Correct answers were selected by majority vot-
ing over five assignments per microtask, following [1]. Information on how to
complete the task and links to clarifying examples3 were available on each page.

Table 3. Crowdsourcing experiment design

T1 T2 T3.A T3.B

Worker qualification ≥85% ≥85% ≥85% ≥85%

Granularity (microtasks per page) 10 8 8 8

Monetary reward (per microtasks) $0.08 $0.06 $0.05 $0.05

Assignments 5 5 5 5

Min. worker accuracy 80% 80% 80% 80%

3.2 Automatic Evaluation Model

We used a machine learning classifier to identify not relevant or not authorita-
tive sources. We trained a supervised algorithm for each outcome variable, using
the labels obtained through the crowdsourcing experiment. Both relevance and
authoritativeness models included features concerning the source itself and the
semantics and editing activity of the statement it referred to. We assumed more
frequently used sources are more likely to be checked by several users and there-
fore to be trusted. Regarding statement semantics, the rationale was that if a
2 http://crowdflowercommunity.tumblr.com/post/108559336035/new-performance-

level-badge-requirements.
3 Examples were provided for T2, T3.A, and T3.B: https://wdref-author-evaluation.

000webhostapp.com/, https://wdref-evaluation.000webhostapp.com/.

http://crowdflowercommunity.tumblr.com/post/108559336035/new-performance-level-badge-requirements
http://crowdflowercommunity.tumblr.com/post/108559336035/new-performance-level-badge-requirements
https://wdref-author-evaluation.000webhostapp.com/
https://wdref-author-evaluation.000webhostapp.com/
https://wdref-evaluation.000webhostapp.com/

Provenance Information in a Collaborative Knowledge Graph 549

reference is good for a statement, it might be good for similar statements as well.
Activity metrics were added as users with a larger number of edits may be more
trustworthy, according to previous findings [21]. We included the same features
in both models, as they could contribute to various extents to their accuracy.

URL reference uses. Number of times a URL has been used as a reference.
Domain reference uses. Number of times a domain has been used.
Source HTTP code. HTTP response code given by the source link.
Statement property. The property used in the statement.
Statement item. The item subject of the statement, represented as a vector

of its structured components, i.e. labels and aliases were excluded.
Statement object. The object of the statement represented as a vector.
Subject parent class. Item parent class, i.e. object of property P279 (subclass

of) or P31 (instance of).
Property parent class. Property parent class, i.e. object of P279 or P31.
Object parent class. Item parent class, i.e. object of P279 or P31.
Author type. Anonymous, bot, or registered human.
Author activity. Total number of revisions carried out by the reference creator,

prior to adding it.
Author activity concerning references. Proportion between number of ref-

erence edits and total number of edits carried out by the author of the refer-
ence. Editors who are more active on references are more likely to add good
sources.

We tested three different algorithms that previously performed well for dif-
ferent tasks, Naive Bayes, SVM, and Random Forests. Models were trained using
the python library scikit-learn [19].

4 Evaluation

4.1 Data

Wikidata Corpus. We used the complete edit history of Wikidata updated
to the 1st October 2016. We extracted all statements containing external refer-
ences, excluding those pointing to a Wikimedia link and those not requiring any
reference, according to Wikidata policy [27]. This gave 1, 629, 102 references, of
which 1, 449, 295 pointed to two domains (uniprot.org and ebi.ac.uk). Around
98% of these were added by one bot and each of their domains was successively
assigned a database property, therefore we removed them from the sample. Only
references in English were selected; we dropped all references whose source did
not have an international top-level domain or one from an English-speaking
country4. 83, 215 references remained, from which we extracted 2586 (99% con-
fidence level, 2.5% margin of error; further details in Table 4). We wanted our

4 We kept the following top-level domains: tv, au, gov, com, net, org, info, edu, uk,
mt, eu, ca, mil, wales, nz, ph, euweb, ie, id, info, ac, za, int, london, museum.

http://www.uniprot.org
http://www.ebi.ac.uk

550 A. Piscopo et al.

Table 4. Sample characteristics. Humans include registered and anonymous users.

Total Total Total Total Total Total Avg. domains Avg. edits
instances items statements properties URLs domains per property per reference

All 2586 2372 2583 182 1674 345 3 1.03

Added by bots 1175 1108 1, 175 30 486 38 3 1

Added by humans 1411 1269 1408 173 1189 325 2.7 1.2

sample to reflect the different subject-object relations supported by references.
Therefore, the sample was drawn in order to reflect the proportion of property
uses from the larger dataset. We automatically tested the validity of each link by
querying its HTTP code with the python library requests. Pages that returned
a 404 code or timed out were flagged as not working and not submitted to the
crowd. One link5, used in several references (512, 19.8%), redirected to another
page which did not contain the data initially hosted by the link and was judged
as not relevant. Two more links6 (282 uses, 11% of the total) pointed to csv
files that were automatically checked. Both links were classified as relevant and
not submitted to the crowd. Other pages belonged to research projects which
explicitly stated their authors. We labelled their author type as ‘individual’ and
did not submit them for evaluation. After this filtering, the datasets submitted
to the crowd included 1701 references (T1), 1178 unique URLs (T2), and 335
unique domains (T3.A and T3.B)7.

Crowdsourcing Gold Standard. Two of the researchers independently cre-
ated the gold standard for each task, manually labelling random samples of each
of the datasets submitted to the crowd. The size of the annotated samples were
determined to ensure that workers would not respond twice to the same question
(sample size: T1:333; T2:116; T3.A and T3.B:67). Inter-rater agreement of gold
standard questions (using Cohen’s kappa) was between moderate and substan-
tial for the four tasks: T1:0.447; T2:0.802; T3.A:0.587; T3.B:0.545. Divergent
judgements were settled by mutual agreement. Furthermore, sources assessed in
T1 had varying levels of difficulty. In some the information sought could be eas-
ily found, whereas others were very technical or contained long text. To better
assess the crowd’s performance, we labelled each reference in T1 gold standard
as ‘easy’ or ‘hard’. We found 239 easy and 94 hard references.

Machine Learning Data. We aimed to build binary classifiers to pre-
dict relevance and authoritative of sources. Hence, we converted the judge-
ments collected into binary labels for each of these two outcome variables,
5 http://www.census.gov/popest/data/counties/totals/2013/files/CO-EST2013-

Alldata.csv.
6 https://figshare.com/articles/GRID release 2015 12 14/2010108, https://figshare.

com/articles/GRID release 2016-05-31/3409414.
7 Data and code available at https://github.com/Aliossandro/WD references

analysis.

http://www.census.gov/popest/data/counties/totals/2013/files/CO-EST2013-Alldata.csv
http://www.census.gov/popest/data/counties/totals/2013/files/CO-EST2013-Alldata.csv
https://figshare.com/articles/GRID_release_2015_12_14/2010108
https://figshare.com/articles/GRID_release_2016-05-31/3409414
https://figshare.com/articles/GRID_release_2016-05-31/3409414
https://github.com/Aliossandro/WD_references_analysis
https://github.com/Aliossandro/WD_references_analysis

Provenance Information in a Collaborative Knowledge Graph 551

i.e. relevant vs. non-relevant and authoritative vs. non-authoritative. We fol-
lowed Wikidata and Wikipedia verifiability policies to identify the combinations
of author and publisher types corresponding to authoritative sources (Table 2).
Wikidata contemplates exceptions for sources generally considered as ‘bad’, e.g.
self-published sources are acceptable in references regarding their author. For the
purpose of analysis, we classified these types of sources as always not authorita-
tive. We deemed not relevant, nor authoritative, sources with non-working links
or that required log in as these were not accessible. We also excluded all refer-
ences classified as not in English by crowdworkers. After this filtering, the dataset
used to train the models had 2550 instances (1781 relevant vs. 769 non-relevant;
1610 authoritative vs. 940 non-authoritative).

4.2 Metrics

Crowdsourcing Experiment. CrowdFlower provides a full report for each
task, which includes every response, plus several details about workers, e.g. id,
country, and their previous accuracy rate. We extracted from this data the met-
rics we used to evaluate the performance of crowdworkers. For each task, we
measured the percentage of correct answers to test questions, inter-rater agree-
ment (measured as Fleiss’ kappa [1]), and completion time.

Predictive Models. We evaluated the performance of the predictive models
by comparing them to a baseline. For the relevance model, the baseline was gen-
erated by matching English labels of subject and object of a statement in the
source text. A match of both would correspond to a relevant source. In case of
labels composed of several words, if any of them were found in a page, we consid-
ered that a match. For authoritativeness, a blacklist of deprecated domains has
been compiled within the primary sources tool project [25]. This list is currently
used to exclude non-authoritative sources, thus we judged it as a meaningful
term of comparison for an approach assessing reference authoritativeness. We
deemed not authoritative all sources whose domain was not included in this
blacklist.

4.3 Crowdsourcing Experiment Evaluation

The accuracy of trusted workers, i.e. contributors whose accuracy did not drop
under 80%, was higher than that threshold (around 90%) and their responses had
Fleiss’ kappa between 0.335 and 0.534, indicating fair to moderate agreement.
These figures suggest that judgements collected had good quality (see Table 5).

More than half of participants who worked on T1 were discarded due to a
low accuracy rate. However, this was the task with the highest rate of microtasks
completed per hour (37), i.e. the average number of microtasks successfully com-
pleted by the minimum number of workers (5) per hour. Furthermore, workers’
accuracy was high on both easy (91.5%) and hard (89.7%) references.

552 A. Piscopo et al.

Table 5. Task statistics (includes test questions)

Task Microtasks Total Trusted Total Trusted Trusted workers Fleiss’ Time Cost
judgements judgements workers workers accuracy k

T1 1701 13, 330 9671 457 218 0.335 87.4% 45 h $858

T2 1178 14, 340 9170 749 322 0.534 80.9% 90 h $500

T3.A 345 4325 1950 322 60 0.435 76.9% 81 h $116

T3.B 345 3622 2555 239 116 0.391 68.2% 24 h $119

T2 took longer to complete (90 h), although not by microtasks/hour (13).
The accuracy rate of all contributors to T2 was lower than T1 (72% vs. 75%).
Task 3.A appeared to be the most difficult. The accuracy of its overall user
pool (including trusted and non-trusted workers) was the lowest, with 66% of
correct responses to test questions. Consequently, a high number of contributors
were expelled from the task, leading to very long completion times. However,
responses to T3.A had a moderate inter-rater agreement (0.435). 94.8% of the
responses were confirmed by the first question of T3.B.

4.4 Relevance Evaluation

The ensuing sections report the findings of the reference evaluation. The results
presented include both references assessed through crowdsourcing and those pre-
viously evaluated by the researchers (see Sect. 4.1).

The majority (67.2%) of sources evaluated in T1 were relevant (see Table 6)
(RQ1). Non-relevant sources (23.8%) primarily did not support the subject of
the statements (20.9% of the total). 7.5% of the pages assessed were not work-
ing. Only 1.5% of sources were found to not be in English, meaning that the
approach followed to select only English-language pages worked well. Registered
and anonymous human users were counted together, as the number of references
added by anonymous users in our sample was not sufficient to draw sound con-
clusions. Overall, human editors added more relevant references than bots (90%
vs. 43.8%). Evaluation results by type of user are shown in Table 6.

Table 6. Percentage of relevant sources by type of user

Humans Bots All Users

Relevant 90 30.3 67.1

Not relevant 3.1 58.5 23.9

Page not working 4.9 11.1 7.5

Page not in English 2 0.1 1.5

Provenance Information in a Collaborative Knowledge Graph 553

4.5 Authoritativeness Evaluation

Concerning publisher type, the majority of references pointed to sources pub-
lished by government agencies (37.5%). Academic institutions were the second
most common type (around 24%). This changes if we look at the occurrences
of unique web domains. In this case, government agencies slip to 5.8%, whereas
‘other companies or organisations’ become the most used sources with 19.9%.
Regarding editor types, governments were still the most common among both
bots and humans. However, the situation differs depending on whether all refer-
ences are considered or unique domains. This is common to other publisher types
and affects especially bot-added sources. Table 7 shows percentages of publisher
type by user type, for all references and unique domains.

Table 7. Percentage of sources by type of publisher

Sources Unique domains

Humans Bots All users Humans Bots All users

Governmental agencies 32.7 44.4 37.5 34.2 1.5 5.8

Other companies &
organisations

15.3 12.6 14.4 17.6 27 19.9

Academic & research
institutions

13 12.6 12.4 15.3 28.2 7.8

Other academic
organisations

10.3 12.6 11.2 0.4 1.2 1.2

Cultural institutions 7.7 11.9 15 8.6 28.8 15

Vendors & e-commerce
companies

7.3 1.8 5.4 8.6 1 15.9

Non-traditional news &
media

3.7 1.2 2.5 4.3 2.9 10.1

Self-published 3 0.2 1.6 2.5 0.1 5.4

Traditional news & media 2 0 1.1 2.4 0 5.2

Political or religious
institutions

0.9 4.6 1.2 0.9 4.6 1.7

Academic publishers 0.4 0 0.2 0.5 0 1.1

Others 0.1 0 0.1 0.1 0 0.3

Organisation staff were by far the most common author type (78%) overall,
and both among bot- and human-added references (see Table 8). Sources created
by identifiable individuals followed (7.9%) and appear to be reused less often than
those authored by organisation (12.5% of unique URLs). Collectively-authored
sources represented only 2.9% of our sample. Whereas these were only 0.2% of
bot-added pages, they were 5.3% of those created by human users. Finally, apply-
ing the criteria in Table 2, 63.7% of the references were classified as authoritative
(RQ2). We summarised results about reference quality in Table 9.

554 A. Piscopo et al.

Table 8. Percentage of sources by type of author

Sources Unique domains

Humans Bots All users Humans Bots All users

Organisation 75.7 81.4 78.2 72.4 50.5 65.8

Individual 10.8 4.5 7.9 11.8 13.1 12.5

Collective 5.3 0.2 2.9 6.1 0.6 4.5

Page not working 3.9 0.2 2.1 4.9 0.6 3.7

Page not in English 4.3 13.7 3.7 4.9 35.2 13.4

Table 9. Percentage of sources by relevance and authoritativeness

Humans Bots All users

Relevant & authoritative 78.2 41.1 60.8

Relevant & not authoritative 14 2.5 9

Not relevant & authoritative 3.7 2.3 0.7

Not relevant & not authoritative 4.1 55.7 27.8

4.6 Quality Prediction Models

The trained models were binary classifiers aiming to predict non-relevant and
non-authoritative references. We used stratified 10-folds cross-validation to esti-
mate the algorithms’ performance. Stratified cross-validation ensures outcome
classes have the same distribution in the subsets selected in each fold and
improves the comparability of different algorithms [10]. The F1 measure was
computed on true and false positive over all folds, providing a more unbiased
estimate compared to other methods [10]. We used Matthews correlation coeffi-
cient (MCC) to estimate the level of agreement between predicted and observed
labels. MCC has values between −1 and +1, with higher values indicating better
agreement [3]. Class unbalance was addressed by adjusting prediction weights in
SVM and Random Forest [19]. Further details about implementation and hyper-
parameters of the models are provided in the above cited GitHub repository.

The relevance baseline was good at predicting non-relevant sources (F1 =
0.84, MCC = 0.68), although it was outperformed by all models. Random Forest
provided the best scores. The authoritativeness baseline gave worse results
(F1 = 0.53, MCC= 0.15). All trained models outperformed the baseline, with
Random Forest yielding the highest F1 (0.89) and MCC (0.83). Results for both
models are shown in Table 10.

Provenance Information in a Collaborative Knowledge Graph 555

Table 10. Performance of prediction models for relevance and authoritativeness

P R F1 AUC-PR MCC

Relevance Baseline 0.88 0.83 0.84 0.81 0.68

Naive Bayes 0.94 0.94 0.90 0.92 0.86

Random Forest 0.95 0.95 0.92 0.94 0.89

SVM 0.94 0.94 0.91 0.94 0.87

Authoritativeness Baseline 0.71 0.65 0.53 0.62 0.16

Naive Bayes 0.90 0.90 0.86 0.88 0.78

Random Forest 0.93 0.92 0.89 0.93 0.83

SVM 0.90 0.90 0.89 0.90 0.79

5 Discussion

The crowdsourced experiment provided accurate results, as shown by the level
of agreement between workers and the percentage of correct responses to test
questions. Task completion times differed greatly, probably due to the task type.
T1 asked users to find a piece of information within a web page and seemed to be
straightforward. Conversely, the classification tasks T3.A and T3.B were harder.
This may be due to the classification system used appearing unclear for workers,
or clashing with their prior knowledge, leading to erroneous responses, similar to
what has been noted before in taxonomy creation tasks [14]. Nevertheless, the
judgements collected in T3.B largely confirmed T3.A.

The majority of references examined included relevant sources, although
those added by humans and bots diverged considerably. This (see Table 6) may
have been caused by a link to a US census dataset that was redirected to another
page, which did not contain relevant data anymore. We believe this is not an iso-
lated case. Bots add large numbers of statements in batch, including references.
References pointing to invalid URLs may become outdated or invalid. Continu-
ous control from the community is required—the eyeballs required to make all
bugs shallow [22]—or a method to automatically check sources.

Government agencies are the most common publisher type, both among
human- and bot-added references. Sources are generally authored by organisation
staff and not by individuals. Two classes of publisher showed large differences
between percentage of references and percentage of unique domains (Table 7).
In both categories, the skewness is likely to be determined by the massive auto-
matic generation of statements by bots. This led us to hypothesise that typical
bot editing patterns may result in a lower degree of diversity of source types. The
data confirmed this: in spite of similar numbers of references by bots and humans
(46.3% vs 53.6%), bots used 36 web domains, compared to 295 by humans. This
analysis should increase awareness about the current limitations of using bots to
add references, and in turn help design bots that follow a more nuanced approach
to reference selection.

556 A. Piscopo et al.

The distribution of author and publisher types for references did not match
Wikipedia [9], despite the partial overlap of the two communities [20]. Almost no
news sources are used as sources in Wikidata, compared to the online encyclo-
pedia. Whereas Wikidata recommends primary sources as references, Wikipedia
asks editors to use secondary sources and officially disapproves of primary ones,
in line with the rule that the encyclopedia cannot contain original research.

Sources are generally split between ‘good’ and ‘bad’ (Table 9). Few references
are relevant but not authoritative; even fewer are not relevant but authoritative.
Accessibility was required, therefore several were classified as neither relevant nor
authoritative because they were not working or required to log in. Some pages
redirected to a new one, which often was not relevant. These were possibly valid
at the time of addition, but subsequently changed. A frequent check of URL
validity may be effective to spot those that have become bad.

The predictive models for relevance and authoritativeness performed well,
which may support our intuition that sources from a website that are good for
a type of statement, i.e. using a determined property with defined domain and
range, are likely to be good for similar statements. Another explanation may
regard the characteristics of references in Wikidata. From a total of around
2000 properties, only about 200 have references. Sources from the same web
domain tend to have the same level of quality. On the other hand, the number
of domains per property is low. As a consequence, the algorithm may find ‘easy’
to assess combination of properties and domains. If the number of properties
with references and the diversity of web domains used will increase, further
research should evaluate how this affects the performance of predictive models
of reference quality. It should also seek to understand how to adapt these models
to be implemented in Wikidata, to help editors find bad references.

6 Conclusions and Future Work

The contribution of this paper is twofold. First, this is the first study to evaluate
provenance quality in Wikidata. Second, we tested a two-staged approach to
evaluate Wikidata references, combining microtask crowdsourcing and machine
learning. Crowdsourcing provided accurate evaluation of external references,
which were mostly relevant and authoritative. A continuous check by users may
be needed to address the issue of links becoming non-valid. Models to predict
non-relevant or non-authoritative references may also be useful. With respect to
that, our results were encouraging. Our models outperformed the baseline, which
motivates towards further work to integrate them in Wikidata. Future work
should validate whether our results hold true for non-English sources. Besides
using outgoing links, Wikidata expresses provenance by means of internal con-
nections, which were not examined in this study. These are a substantial part of
Wikidata references and should be examined in the future, in order to achieve a
comprehensive evaluation of provenance quality in Wikidata.

Acknowledgement. This project is supported by funding received from the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Sk�lodowska-Curie grant agreement No. 642795 (WDAqua ITN).

Provenance Information in a Collaborative Knowledge Graph 557

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.:
Crowdsourcing linked data quality assessment. In: Alani, H., et al. (eds.) ISWC
2013. LNCS, vol. 8219, pp. 260–276. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41338-4 17

2. Alonso, O., Rose, D.E., Stewart, B.: Crowdsourcing for relevance evaluation. SIGIR
Forum 42(2), 9–15 (2008)

3. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics
16(5), 412–424 (2000)

4. Brasileiro, F., Almeida, J.P.A., de Carvalho, V.A., Guizzardi, G.: Applying a multi-
level modeling theory to assess taxonomic hierarchies in Wikidata. In: Proceedings
of the 25th International Conference on World Wide Web, WWW 2016, Montreal,
Canada, 11–15 April 2016, Companion Volume, pp. 975–980 (2016)

5. Dai, C., Lin, D., Bertino, E., Kantarcioglu, M.: An approach to evaluate data
trustworthiness based on data provenance. In: Jonker, W., Petković, M. (eds.)
SDM 2008. LNCS, vol. 5159, pp. 82–98. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85259-9 6

6. Eickhoff, C., de Vries, A.P.: Increasing cheat robustness of crowdsourcing tasks.
Inf. Retr. 16(2), 121–137 (2013)

7. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
Wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol.
8796, pp. 50–65. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 4

8. Fetahu, B., Markert, K., Nejdl, W., Anand, A.: Finding news citations for
Wikipedia. In: Proceedings of the 25th ACM International on Conference on Infor-
mation and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, 24–28
October 2016, pp. 337–346. ACM (2016)

9. Ford, H., Sen, S., Musicant, D.R., Miller, N.: Getting to the source: where does
Wikipedia get its information from? In: Proceedings of the 9th International Sym-
posium on Open Collaboration, Hong Kong, China, 05–07 August 2013, pp. 9:1–
9:10 (2013)

10. Forman, G., Scholz, M.: Apples-to-apples in cross-validation studies: pitfalls in
classifier performance measurement. SIGKDD Explor. 12(1), 49–57 (2010)

11. Hartig, O.: Provenance information in the web of data. In: Proceedings of the
WWW 2009 Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain,
20 April 2009. CEUR Workshop Proceedings, vol. 538. CEUR-WS.org (2009)

12. Hartig, O., Zhao, J.: Using web data provenance for quality assessment. In: Pro-
ceedings of the First International Workshop on the Role of Semantic Web in
Provenance Management (SWPM 2009), Collocated with the 8th International
Semantic Web Conference (ISWC-2009), Washington DC, USA, 25 October 2009.
CEUR Workshop Proceedings, vol. 526. CEUR-WS.org (2009)

13. Kakol, M., Jankowski-Lorek, M., Abramczuk, K., Wierzbicki, A., Catasta, M.: On
the subjectivity and bias of web content credibility evaluations. In: 22nd Interna-
tional World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil, 13–17
May 2013, Companion Volume, pp. 1131–1136. International World Wide Web
Conferences Steering Committee/ACM (2013)

14. Karampinas, D., Triantafillou, P.: Crowdsourcing taxonomies. In: Simperl, E.,
Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol.
7295, pp. 545–559. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30284-8 43

http://dx.doi.org/10.1007/978-3-642-41338-4_17
http://dx.doi.org/10.1007/978-3-642-41338-4_17
http://dx.doi.org/10.1007/978-3-540-85259-9_6
http://dx.doi.org/10.1007/978-3-540-85259-9_6
http://dx.doi.org/10.1007/978-3-319-11964-9_4
http://dx.doi.org/10.1007/978-3-642-30284-8_43

558 A. Piscopo et al.

15. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
46(5), 604–632 (1999)

16. Lehmann, J., Gerber, D., Morsey, M., Ngonga Ngomo, A.-C.: DeFacto - deep fact
validation. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp.
312–327. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1 20

17. Lucassen, T., Schraagen, J.M.: Trust in Wikipedia: how users trust information
from an unknown source. In: Proceedings of the 4th ACM Workshop on Infor-
mation Credibility on the Web, WICOW 2010, Raleigh, North Carolina, USA, 27
April 2010, pp. 19–26. ACM (2010)

18. Müller-Birn, C., Karran, B., Lehmann, J., Luczak-Rösch, M.: Peer-production sys-
tem or collaborative ontology engineering effort: what is Wikidata? In: Proceedings
of the 11th International Symposium on Open Collaboration, San Francisco, CA,
USA, 19–21 August 2015, pp. 20:1–20:10. ACM (2015)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

20. Piscopo, A., Phethean, C., Simperl, E.: Wikidatians are born: paths to full partici-
pation in a collaborative structured knowledge base. In: 50th Hawaii International
Conference on System Sciences, HICSS 2017, Hilton Waikoloa Village, Hawaii,
USA, 4–7 January 2017. AIS Electronic Library (AISeL) (2017)

21. Potthast, M., Stein, B., Gerling, R.: Automatic vandalism detection in Wikipedia.
In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.)
ECIR 2008. LNCS, vol. 4956, pp. 663–668. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78646-7 75

22. Raymond, E.S.: The Cathedral and the Bazaar - Musings on Linux and Open
Source by an Accidental Revoltionary, Rev. edn. O’Reilly, Sebastopol (2001)

23. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast - but is it good?
Evaluating non-expert annotations for natural language tasks. In: 2008 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2008, Proceedings
of the Conference, 25–27 October 2008, Honolulu, Hawaii, USA, A Meeting of
SIGDAT, A Special Interest Group of the ACL. pp. 254–263. ACL (2008)

24. Steiner, T.: Bots vs. Wikipedians, Anons vs. Logged-Ins (Redux): a global study of
edit activity on Wikipedia and Wikidata. In: Proceedings of the International Sym-
posium on Open Collaboration, OpenSym 2014, Berlin, Germany, 27–29 August
2014, pp. 25:1–25:7. ACM (2014)

25. Tanon, T.P., Vrandecic, D., Schaffert, S., Steiner, T., Pintscher, L.: From freebase
to Wikidata: the great migration. In: Proceedings of the 25th International Con-
ference on World Wide Web, WWW 2016, Montreal, Canada, 11–15 April 2016,
pp. 1419–1428 (2016)

26. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Com-
mun. ACM 57(10), 78–85 (2014)

27. Wikidata: Wikidata: Sources – Wikidata, the free knowledge base (2017). https://
www.wikidata.org/wiki/Help:Sources. Accessed 09 Apr 2017

28. Wikidata: Wikidata: Verifiability – Wikidata, the free knowledge base (2017).
https://www.wikidata.org/wiki/Wikidata:Verifiability. Accessed 07 Apr 2017

29. Wikipedia: Wikipedia: Verifiability – Wikipedia, the free encyclopedia (2017).
https://en.wikipedia.org/wiki/Wikipedia:Verifiability. Accessed 07 Apr 2017

http://dx.doi.org/10.1007/978-3-642-35176-1_20
http://dx.doi.org/10.1007/978-3-540-78646-7_75
http://dx.doi.org/10.1007/978-3-540-78646-7_75
https://www.wikidata.org/wiki/Help:Sources
https://www.wikidata.org/wiki/Help:Sources
https://www.wikidata.org/wiki/Wikidata:Verifiability
https://en.wikipedia.org/wiki/Wikipedia:Verifiability

Strider: A Hybrid Adaptive Distributed RDF
Stream Processing Engine

Xiangnan Ren1,2 and Olivier Curé2(B)

1 ATOS, 80 Quai Voltaire, 95870 Bezons, France
xiang-nan.ren@atos.net

2 LIGM (UMR 8049), CNRS, UPEM, 77454 Marne-la-valleé, France
olivier.cure@u-pem.fr

Abstract. Real-time processing of data streams emanating from sen-
sors is becoming a common task in Internet of Things scenarios. The
key implementation goal consists in efficiently handling massive incoming
data streams and supporting advanced data analytics services like anom-
aly detection. In an on-going, industrial project, a 24/7 available stream
processing engine usually faces dynamically changing data and workload
characteristics. These changes impact the engine’s performance and reli-
ability. We propose Strider, a hybrid adaptive distributed RDF Stream
Processing engine that optimizes logical query plan according to the
state of data streams. Strider has been designed to guarantee important
industrial properties such as scalability, high availability, fault tolerance,
high throughput and acceptable latency. These guarantees are obtained
by designing the engine’s architecture with state-of-the-art Apache com-
ponents such as Spark and Kafka. We highlight the efficiency (e.g., on
a single machine machine, up to 60x gain on throughput compared to
state-of-the-art systems, a throughput of 3.1 million triples/second on a
9 machines cluster, a major breakthrough in this system’s category) of
Strider on real-world and synthetic data sets.

Keywords: RDF stream processing · SPARQL · Adaptive query
processing · Distributed computing · Apache spark

1 Introduction

With the growing use of Semantic Web Technology in Internet of Things (IoT)
contexts, e.g., for data integration and reasoning purposes, the requirement for
almost real-time platforms that can efficiently adapt to large scale data streams,
i.e., continuous SPARQL query processing, is gaining more and more attention.
In the context of the FUI (Fonds Unique Interministeriel) Waves project1, we
are processing data streams emanated from sensors distributed over the drinking
water distribution network of a resource management international company. For
France alone, this company distributes water to over 12 million clients through

1 http://www.waves-rsp.org/.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 559–576, 2017.
DOI: 10.1007/978-3-319-68288-4 33

http://www.waves-rsp.org/

560 X. Ren and O. Curé

a network of more than 100.000 km equipped with thousands (and growing) of
sensors. Obviously, our RDF Stream Processing (RSP) engine should satisfy
some common industrial features, e.g., high throughput, high availability, low
latency, scalability and fault tolerance.

Querying over RDF data streams can be quite challenging. Due to fast gener-
ation rates and schema free natures of RDF data streams, a continuous SPARQL
query usually involves intensive join tasks which may rapidly become a perfor-
mance bottleneck. Existing centralized RSP systems like C-SPARQL [4], CQELS
[13] and ETALIS [3] are not capable of handling massive incoming data streams,
as they do not benefit from task parallelism and the scalability of a computing
cluster. Besides, most streaming systems are operating 24/7 with patterns, i.e.,
stream graph structures, that may change overtime (in terms of graph shapes
and sizes). This can potentially have a performance impact on query processing
since in most available distributed RDF streaming systems, e.g., CQELSCloud
[17] and Katts [9], the logical query plan is determined at compile time. Such
a behavior can hardly promise long-term efficiency and reliability, since there is
no single query plan that is always optimal for a given query.

A general approach for large scale data stream processing is performed over
a distributed setting. Such systems are better designed and operated upon when
implemented on top of robust, state-of-the-art engines, e.g., Kafka [10] and
Spark [26,27]. Moreover, the system has to adapt to unpredictable input data
streams and to dynamically updated execution plans while ensuring optimal
performance. A time-driven/batch-driven [5] approach could be a solution for
adaptive streaming query. In that context, it becomes possible to reconstruct
the logical plan for each query execution. Furthermore, compared to data-driven
systems [5], time-driven/batch-driven provides a more coarse operation granu-
larity. Although this mechanism inevitably causes higher query latency, it also
brings high system throughput, inexpensive cost and low latency to achieve fault
tolerance and system adaptivity [27].

Our system, Strider, possesses the aforementioned characteristics. In this
paper, we present three main contributions concerning this system: (1) the design
and implementation of a production-ready RSP engine for large scale RDF data
streams processing which is based on the state-of-the-art distributed computing
frameworks (i.e., Spark and Kafka). (2) Strider integrates two forms of adap-
tation. In the first one, for each execution of a continuous query, the system
decides, based on incoming stream volumes, to use either a query compile-time
(rule-based) or query run-time (cost-based) optimization approach. The sec-
ond one concerns the run-time approach and decides when the query plan is
optimized (either at the previous query window or at the current one). (3) an
evaluation of Strider over real-world and synthetic data sets.

2 Background Knowledge

Strider follows a classical streaming system approach with a messaging compo-
nent for data flow management and a computing core for real-time data analytics.

Strider: A Hybrid Adaptive Distributed RDF Stream 561

In this section, we present and motivate the use of Spark Streaming and Kafka as
these two components. Then, we consider streaming models and adaptive query
processing.

Kafka and Spark Streaming. Kafka is a distributed message queue which
aims to provide a unified, high-throughput, low-latency real-time data manage-
ment. Intuitively, producers emit messages which are categorized into adequate
topics. The messages are partitioned among a cluster to support parallelism of
upstream/downstream operations. Kafka uses offsets to uniquely identify the
location of each message within the partition.

Spark is a MapReduce-like cluster-computing framework that proposes a par-
allelized fault tolerant collection of elements called Resilient Distributed Dataset
(RDD) [26]. An RDD is divided into multiple partitions across different cluster
nodes such that operations can be performed in parallel. Spark enables parallel
computations on unreliable machines and automatically handles locality-aware
scheduling, fault-tolerant and load balancing tasks. Spark Streaming extends
RDD to Discretized Stream (DStream) [27] and thus enables to support near real-
time data processing by creating micro-batches of duration T . DStream represents
a sequence of RDDs where each RDD is assigned a timestamp. Similar to Spark,
Spark Streaming describes the computing logics as a template of RDD Directed
Acyclic Graph (DAG). Each batch generates an instance according to this tem-
plate for later job execution. The micro-batch execution model provides Spark
Streaming second/sub-second latency and high throughput. To achieve continu-
ous SPARQL query processing on Spark Streaming, we bind the SPARQL oper-
ators to the corresponding Spark SQL relational operators. Moreover, the data
processing is based on DataFrame (DF), an API abstraction derived from RDD.

Streaming Models. At the physical level, a computation model for stream
processing has two principle classes: Bulk Synchronous Parallel (BSP) and
Record-at-a-time [25]. From a logical level perspective, a streaming model uses
the concept of a Tick to drive the system in taking actions over input streams.
[5] defines a Tick in three ways: data-driven (DD), time-driven (TD) and batch-
driven (BD). In general, the physical BSP is associated to the TD and/or BD
models, e.g., Spark Streaming [27] and Google DataFlow with FlumeJava [1]
adopt this approach by creating a micro-batch of a certain duration T . That
is data are cumulated and processed through the entire DAG within each
batch. The record-at-a-time model is usually associated to the logical DD model
(although TD and BD are possible) and prominent examples are Flink [6] and
Storm [23]. The record-at-a-time/DD model provides lower latency than BSP/T-
D/BD model for typical computation. On the other hand, the record-at-a-time
model requires state maintenance for all operators with record-level granularity.
This behavior obstructs system throughput and brings much higher latencies
when recovering after a system failure [25]. For complex tasks involving lots of
aggregations and iterations, the record-at-a-time model could be less efficient,
since it introduces an overhead for the launch of frequent tasks. Given these
properties and the fact that in [7], the authors emphasize that latencies in the

562 X. Ren and O. Curé

order of few seconds is enough for most extreme use cases at Facebook, we have
decided to use Spark Streaming.

Adaptive Query Processing (AQP) is recognized as a complex task, espe-
cially in the streaming context [8]. Moreover, AQP for continuous SPARQL
query needs to cope with some cross-field challenges such as SPARQL query
optimization, stream processing, etc.. Due to structure unpredictability, schema-
free and real-time features of RDF data streams, conventional optimizations for
static RDF data processing through data pre-processing, e.g., triple indexing
and statistic summarizing, become impractical. However, the perspectives from
[16,21] show that most parts of RDF graphs have tabular structure, especially
in the IoT domain. This opens up several perspectives concerning selectivity/-
cardinality estimation and the possibility to use Dynamic Programming (DP)
approaches. Inspired by [11,14,22,24,25], we propose a novel AQP optimizer for
RDF stream processing.

3 Strider Overview

In this section, we first present a Strider query example, then we provide a
system’s overview, detail the data flow and query optimization components.

3.1 Continuous Query Example

Listing 1.1 introduces a running scenario that we will use throughout this paper.
The example corresponds to a use case encountered in the Waves project,
i.e., query Q8 continuously processes the messages of various types of sensor
observations.

We introduce new lexical rules for continuous SPARQL queries which are tai-
lored to a micro-batch approach.The STREAMING keyword initializes the appli-
cation context of Spark Streaming and the windowing operator. More precisely,
WINDOW and SLIDE respectively indicate the size and sliding parameter of a
time-based window. The novelty comes from the BATCH clause which specifies
the micro-batch interval of discretized stream for Spark Streaming. Here, a slid-
ing window consists of one or multiple micro-batches.

STREAMING { WINDOW [10\,s] SLIDE [10\,s] BATCH [5\,s] }
REGISTER { QUERYID [Q8] SPARQL [

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn/>
prefix cuahsi: <http://www.cuahsi.org/waterML/>
SELECT ?s ?o1 ?o2 ?o3
WHERE { ?s ssn:hasValue ?o1 (tp1); ssn:hasValue ?o2 (tp2);

ssn:hasValue ?o3 (tp3).
?o1 rdf:type cuahsi:flow (tp4).
?o2 rdf:type cuahsi:temperature (tp5).
?o3 rdf:type cuahsi:chlorine (tp6). }] }

Listing 1.1. Strider’s query example (Q8)

Strider: A Hybrid Adaptive Distributed RDF Stream 563

The REGISTER clause is used to register standard SPARQL queries. Each
query is identified by an identifier. The system allows to register several queries
simultaneously in a thread pool. By sharing the same application context and
cluster resources, Strider launches all registered continuous SPARQL queries
asynchronously by different threads.

3.2 Architecture

Strider contains two principle modules: (1) data flow management. In order to
ensure high throughput, fault-tolerance, and easy-to-use features, Strider uses
Apache Kafka to manage input data flow. The incoming RDF streams are cate-
gorized into different message topics, which practically represent different types
of RDF events. (2) Computing core. Strider core is based on the Spark program-
ming framework. Spark Streaming receives, maintains messages emitted from
Kafka in parallel, and generates data processing pipeline.

Figure 1 gives a high-level overview of the system’s architecture. The upper
part of the figure provides details on the application’s data flow management.
In a nutshell, data sources (IoT sensors) are sending messages to a publish-
subscribe layer. This layer emits messages for the streaming layer which exe-
cutes registered queries. The sensor’s metadata are converted into RDF events
for data integration purposes. We use Kafka to design the system’s data flow
management. Kafka is connected to Spark Streaming using a Direct Approach2

Fig. 1. Strider architecture

2 https://spark.apache.org/docs/latest/streaming-kafka-integration.html.

https://spark.apache.org/docs/latest/streaming-kafka-integration.html

564 X. Ren and O. Curé

to guarantee exactly-once semantics and parallel data feeding. The input RDF
event streams are then continuously transformed to DataFrames.

The lower part of Fig. 1 presents components related to the implementation
of the computing core. The Request layer registers continuous queries. Currently,
we consider that the input queries are independent, thus a multi-query optimiza-
tion approach (e.g., sub-query sharing) is not in the scope of the current state
of Strider. These queries are later sent to the Parsing layer to compute a first
version of a query plan. These new plans are pushed to the Optimization layer
which consists of four collaborating sub-components: static and adaptive opti-
mizations as well as a trigger mechanism and a Decision Maker for adaptation
strategy. Finally, the Query Processing layer sets the query execution off right
after the optimized logical plan takes place.

4 Strider’s Continuous SPARQL Processing

In this section, we detail the components of the Strider’s optimizer layer. Two
optimization components are proposed, i.e., static and adaptive, which are
respectively based on heuristic rules and (stream-based) statistics. The trigger
layer decides whether the query processing adopts a static or an adaptive app-
roach. Two strategies are proposed for AQP: backward (B-AQP) and forward
(F-AQP). They mainly differ on when, i.e., at the previous or current window,
the query plan is computed.

4.1 Query Processing Outline and Trigger Layer

Intuitively, Strider’s optimizers search for the optimal join ordering of triple pat-
terns based on collected statistics. Both static (query compile-time) and adap-
tive (query run-time) optimizations are processed using a graph GU = (V,E),
denoted Undirected Connected Graph (UCG) [22] where vertices represent triple
patterns and edges symbolize joins between triple patterns. Naturally, for a given
query q and its query graph GQ(q), GU (q) ⊆ GQ(q). A UCG showcases the struc-
ture of a BGP and the join possibilities among its triple patterns. That query
representation is considered to be more expressive [14] than the classical RDF
query graph. The weight of UCG’s vertices and edges correspond to the selec-
tivity of triple patterns and joins, respectively. Once the weights of an UCG are
initialized, the query planner automatically generates an optimal logical plan and
triggers a query execution. For the sake of a better explanation, the windowing
operator involved in this section is considered as a tumbling window.

Strider’s static optimization retains the philosophy of [24]. Basically, static
optimization implies a heuristics-based query optimization. It ignores data sta-
tistics and leads to a static query planner. In this case, unpredictable changes
in data stream structures may incur a bad query plan. The static optimization
layer aims at giving a basic performance guarantee. The predefined heuristic
rules set empirically assign the weights for UCG vertices and edges. Next, the
query planner determines the shortest traversal path in the current UCG and

Strider: A Hybrid Adaptive Distributed RDF Stream 565

generates the logical plan for query execution. The obtained logical plan rep-
resents the query execution pipeline which is permanently kept by the system.
More details about UCG creation and query logical plan generation are given in
Sect. 4.2.

The Trigger layer supports the transition between the stages of static opti-
mization and adaptive optimization. In a nutshell, that layer is dedicated to
notify the system whether it is necessary to proceed with an adaptive optimiza-
tion. Our adaptation strategy requires collecting statistical information and gen-
erating an execution logical plan. The overhead coming with such actions is not
negligible in a distributed environment. The Strider prototype provides a set
of straightforward trigger rules, i.e., the adaptive algebra optimization is trig-
gered by a configurable workload threshold. The threshold refers to two factors:
(1) the input number of RDF events/triples; (2) the fraction of the estimated
input data size and the allocated executors’ heap memory.

4.2 Run-Time Query Plan Generation

Here, we first briefly introduce how we collect stream statistics and construct
query plan. Then, we give an insight into the AQP optimization, which is essen-
tially a cardinality-based optimization.

Unlike systems based on greedy and left-deep tree generation, e.g., [13,22],
Strider makes a full usage of CPU computing resources and benefits from parallel
hardware settings. It thus creates query logical plans in the form of general
(bushy) directed trees. Hence, the nodes with the same height in a query plan
pn can be asynchronously computed in a non-blocking way (in the case where
computing resources are allowed). Coming back to our Listing 1.1 example, Fig. 2
refines the procedure of query processing (F-AQP) at wn, n ∈ N . If wn contains
multiple RDDs (micro-batches), the system performs the union all RDDs and
generates a new combined RDD. Note that the union operator has a very low-
cost in Spark. Afterward, the impending query plan optimization follows three
steps: (a) UCG (weight) initialization; (b) UCG path cover finding; (c) query
plan generation.

UCG weight initialization is briefly described in Algorithm 1 and Fig. 3 (step
(a), step (b)). Since triple patterns are located at the bottom of a query tree,
the query evaluation is performed in a bottom-up fashion and starts with the
selection of triple patterns σ(tpi), 1 ≤ i ≤ I (with I the number of triple patterns
in the query’s BGP). The system computes σ(tpi) asynchronously for each i and
temporally caches the corresponding results (Rσ(tpi)) in memory. Card(tpi),
i.e., the cardinality of Rσ(tpi), is computed by a Spark count action. Thence, we
can directly assign the weight of vertices in GU (Q). Note that the estimation of
Card(tpi) is exact.

Once all vertices are set up, the system predicts the weight of edges (i.e.,
joined patterns) in GU (q). We categorize two types of joins (edges): (i) star
join, includes two sub-types, i.e., star join without bounded object and star
join with bounded object; (ii) non-star join. To estimate the cardinality of join

566 X. Ren and O. Curé

Fig. 2. Dynamic query plan generation for Q8

patterns, we make a trade-off between accuracy and complexity. The main idea
is inspired by a research conducted in [11,14,22]. However, we infer the weight
of an edge from its connected vertices, i.e., no data pre-processing is required.
The algorithm begins by iteratively traversing GU (q) and identifies each vertex
v ∈ V and each edge e ∈ E. Then we can decompose GU (q) into the disjoint
star-shaped joins and their interconnected chains (Fig. 3, step (b)). The weight
of an edge in a star join shape is estimated by the function getStarJoinWeight.
The function first estimates the upper bound of each star join output cardinality
(e.g., , Card(tp1 �� tp2 �� tp3)), then assigns the weight edge by edge. Every time
the weight of the current edge e is assigned, we mark e as visited. This process
repeats until no more star join can be found. Then, the weight of unvisited non-
star join shapes is estimated by the function getNonStarJoinWeight. It lookups
the two vertices of the current edge, and chooses the one with smaller weight to
estimate the edge cardinality. The previous processes are repeated until all the
edges have been visited in GU (q).

UCG path cover finding and Query plan generation. Figure 3 step (c)
introduces path cover finding and query plan generation. The system starts by
finding the path cover in GU (q) right after GU (q) is prepared. Intuitively, we
search the undirected path cover which links all the vertices of GU (q) with a
minimum total edge weight. The path searching is achieved by applying Floyd-
Warshall algorithm iteratively. The extracted path Card(GU (q)) ⊆ GU (q), is
regarded as the candidate for the logical plan generation. Finally, we construct
pn, the logical plan of GU (q) at wn, in a top-down manner (Fig. 3, step (c)).
Note that path finding and plan generation are both computed on the driver
node and are not expensive operations (around 2–4 ms in our case).

Strider: A Hybrid Adaptive Distributed RDF Stream 567

Fig. 3. Initialized UCG weight, find path cover and generate query plan

Algorithm 1. UCG weight initialization
Input: query q, GU (q) = (V, E) ⊆ GQ(q), current buffered window wn

Output: GU (q) with weight-assigned
1 while ∃v unvisited ∈ V do
2 mark v as visited, Rσ(v) ← compute (v) ;
3 buffer (v, Rσ(v)) ∧ v.weight ← Card(v) ;

4 while ∃e unvisited ∈ E do
5 mark e as visited ;
6 if (∃ star join SJ) ∧e ∩ SJ �= ∅ then
7 locate each SJ ∈ GU (q)
8 foreach ∀eS ∈ SJ do
9 mark eS as visited ;

10 eS .weight ← getStarJoinWeight(SJ , eS .vertices) ;

11 else e.weight ← getNonStarJoinWeight(SJ);

4.3 B-AQP and F-AQP

We propose a dual AQP strategy, namely, backward (B-AQP) and forward
(F-AQP). B/F-AQP depict two philosophies for AQP, Fig. 4 roughly illustrates
how B/F-AQP switching is decided at run-time, i.e., this is the responsibility of
the Decision Maker component. Generally, B-AQP and F-AQP are using similar
techniques for query plan generation. Compared to F-AQP, B-AQP delays the
process for query plan generation.

Our B-AQP strategy is inspired by [25]’s pre-scheduling. Backward implies
gathering, feeding back the statistics to the optimizer on the current window,
then the optimizer constructs the query plan for the next window. That is the
system computes the query plan pn+1 of a window wn+1 through the statistics of
a previous window wn. Strider possesses a time-driven execution mechanism, the
query execution is triggered periodically with a fixed update frequency s (i.e.,
sliding window size). Between two consecutive windows wn and wn+1, there
is a computing barrier to reconstruct the query plan for wn+1 based on the
collected statistics from a previous window wn. Suppose the query execution of
wn consumes a time tn (e.g., in seconds), then for all tn < s, the idle duration

568 X. Ren and O. Curé

δn = s− tn allows to re-optimize the query plan. But δn should be larger than a
configurable threshold Θ. For δn < Θ, the system may not have enough time to
(i) collect the statistic information of wn and (ii) to construct a query plan for
wn+1. This potentially expresses a change of incoming steams and a degradation
of query execution performance. Hence, the system decides to switch to the
F-AQP approach.

Fig. 4. Decision maker of adaptation strategy

F-AQP applies a DP strategy to find the optimal logical query plan for the
current window wn. The main purpose of F-AQP is to adjust the system state
as soon as possible. The engine executes a query, collects statistics and com-
putes the logical query plan simultaneously. Here, the statistics are obtained by
counting intermediate query results, which causes data shuffling and DAG inter-
ruption, i.e., the system has to temporally cut the query execution pipeline. In
Spark, such suspending operation is called an action, which immediately triggers
a job submission in Spark application. However, a frequent job submission may
bring some side effects. The rationale is, for a master-slave based distributed
computing framework (e.g., Spark, Storm) uses a master node (i.e., driver) to
schedule jobs. The driver locally computes and optimizes each submitted DAG
and returns the control messages to each worker node for parallel processing.
Although the “count”action itself is not expensive, the induced side effects (e.g.,
driver job-scheduling/submission, communication of control message between
driver and workers) will potentially impact the system’s stability. For instance,
based on our experience, F-AQP’s frequent job submission and intermediate
data persistence/unpersistence put a great pressure on the JVM’s Garbage Col-
lector (GC), e.g., untypical GC pauses are observed from time to time in our
experiment.

Decision Maker. Through experimentations of different Strider configurations,
we understood the complementarity of both the B-AQP and F-AQP approaches.
Real performance gains can be obtained by switching from one approach to
another. This is mainly due to their properties which are summarized in Table 1.

We designed a decision maker to automatically select the most adapted strat-
egy for each query execution. The decision maker takes into account two para-
meters: a configurable switching threshold Θ ∈]0, 1[; γn = tn

s , the fraction of

Strider: A Hybrid Adaptive Distributed RDF Stream 569

Table 1. B/F-AQP summarization

Strategy Advantage Drawback

B-AQP No dynamic programming
overhead

Approximate query plan generation
through previously-collected statistics

F-AQP Query plan generation through
real-time collected statistics

Overhead for dynamic programming,
side-effects caused by pipeline
interruption

query execution time t over windowing update frequency s. For the query exe-
cution at wn, if γn < Θ, the system updates the query plan from pn to pn+1 for
the next execution. Otherwise, the system recomputes pn+1 by DP at wn+1 (see
Algorithm 2). We empirically set Θ = 0.7 by default.

Algorithm 2. B-AQP and F-AQP Switching in Decision Maker
Input: query q, switching threshold Θ, sliding window W = {wn}n∈N ,

update frequency s of W
1 foreach wn ∈ W do
2 tn ← getRuntime { execute (q) } // executionTime ;
3 λn ← getAdaptiveStrategy (Θ,tn,s) // adaptiveStrategy;
4 if λn == Backward then
5 update query plan pn of q at wn

6 pn+1 ← update (pn);

7 if λn == Forward then Recompute pn+1 at wn+1;

The decision maker plays a key role for maintaining the stability of the sys-
tem’s performance. Our experiment (Sect. 5.3) shows that, the combination of
F/B-AQP through decision maker is able to prevent the sudden performance
declining during a long running time.

5 Evaluation

5.1 Implementation Details

Strider is written in Scala, the code source can be found here3. To enable
SPARQL query processing on Spark, Strider parses a query with Jena ARQ
and obtains a query algebra tree in the Parsing layer. The system reconstructs
the algebra tree into a new Abstract Syntax Tree (AST) based on the Visitor
model. Basically, the AST represents the logical plan of a query execution. Once
the AST is created, it is pushed into the algebra Optimization layer. By travers-
ing the AST, we bind the SPARQL operators to the corresponding Spark SQL
relational operators for query evaluation.
3 https://github.com/renxiangnan/strider.

https://github.com/renxiangnan/strider

570 X. Ren and O. Curé

5.2 Experimental Setup

We test and deploy our engine on Amazon EC2/EMR cluster of 9 computing
nodes and Yarn resource management. The system holds 3 nodes of m4.xlarge
for data flow management (i.e., Kafka broker and Zookeeper [12]). Each node has
4 CPU virtual cores of 2.4 GHz Intel Xeon E5-2676, 16 GB RAM and 750 MB/s
bandwidth. We use Apache Spark 2.0.2, Scala 2.11.7 and Java 8 as baselines
for our evaluation. The Spark (Streaming) cluster is configured with 6 nodes
(1 master, 5 workers) of type c4.xlarge. Each one has 4 CPU virtual cores of
2.9 GHz Intel Xeon E5-2666, 7.5 GB RAM and 750 MB/s. The experiments of
Strider on local mode, C-SPARQL and CQELS are all performed on a single
instance of type c4.xlarge.

Datasets and Queries. We evaluated our system using two datasets that are
built around real world streaming use cases: SRBench [28] and Waves. SRBench,
one of the first available RSP benchmarks, comes with 17 queries on LinkedSen-
sorData. The datasets consists of weather observations about hurricanes and
blizzards in the United States (from 2001 to 2009). Another dataset consid-
ered in our evaluation comes from aforementioned project Waves. The dataset
describes different water measurements captured by sensors. Values of flow,
water pressure and chlorine levels are examples of these measurements. The
value annotation uses three popular ontologies: SSN, CUAHSI-HIS and QUDT.
Each sensor observes and records at least one physical phenomenon or a chem-
ical property, and thus generates RDF data stream through Kafka producer.
Our micro-benchmark contains 9 queries, denoted from Q1 to Q9

4. The road
map of our evaluation is designed as follow: (1) injection of structurally stable
stream for experiment of Q1 to Q6. Q1 to Q3 are tested by SRBench datasets.
Here, a comparison between Strider and the state of the art RSP systems e.g.,
C-SPARQL and CQELS are also provided. Then we perform Q4 to Q6 based
on Waves dataset. (2) Injection of structurally unstable stream. We generate
RDF streams by varying the proportion of different types of Kafka messages
(i.e., sensor observations). For this part of the evaluation, queries Q7 to Q9 are
considered.

Performance criteria. In accordance with Benchmarking Streaming Computa-
tion Engines at Yahoo! 5, we choose the system throughput and query latency as
two primary performance metrics. Throughput indicates how many data can
be processed in a unit of time. Throughput is denoted as “triples per sec-
ond” in our case. Latency means how long does the RSP engine consumes
between the arrival of an input and the generation of its output. The reason
why we abandoned existing RSP performance benchmarking systems [2,18] is
that, none of them is tailored for massive data stream. This limitation is con-
trary to our original intention of using distributed stream processing frame-
work to cope with massive RDF stream. We did not record the latency of
4 Check the wiki of our github page for more details of the queries and datasets.
5 https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-

computation-engines-at.

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

Strider: A Hybrid Adaptive Distributed RDF Stream 571

C-SPARQL, CQELS and Strider in local mode for two reasons: (1) given the
scalability limitation of C-SPARQL, we have to control input stream rate within
a low level to ensure the engine can run normally [18]. (2) due to its design,
based on a so-called eager execution mechanism and DStream R2S operator,
the measure of latencies in CQELS is unfeasible [18]. Moreover, given reasons
provided in Sect. 4.3, we have not done any comparisons of B/F-AQP versus
F-AQP approaches.

Performance tuning on Spark is quite difficult. Inappropriate cluster config-
uration may seriously hinder engine performance. So far we can only empir-
ically configure Spark cluster and tune the cluster settings step by step. We
briefly list some important performance settings based on our experience. First
of all, we apply some basic optimization techniques. e.g., using Kryo serializer
to reduce the time for task/data serialization. Besides, we generally considered
adjustments of Spark configuration along three control factors to achieve better
performance. The first factor is the size of micro-batch intervals. Smaller batch
sizes can better meet real-time requirements. However, it also brings frequent job
submissions and job scheduling. The performance of a BSP system like Spark is
sensitive to the chosen size of batch intervals. The second factor is GC tuning.
Set appropriately, the GC strategy (e.g., using Concurrent Mark-Sweep) and
storage/shuffle fraction may efficiently reduce GC pressure. The third factor is
the parallelism level. This includes the partition number of Kafka messages, the
partition number of RDD for shuffling, and the upper/lower bound for concur-
rent job submissions, etc.

5.3 Evaluation Results and Discussions

Figures 5 and 6 respectively summarize the RSP engines throughput and latency.
Note that CQELS gives a parsing error for Q5. This is due, at least for the
version that we have evaluated, to the lack of support for the UNION operator
in the source code. In view of the centralized designs of C-SPARQL and CQELS,
a direct performance comparison to Strider with distributed hardware settings
seems unfair. So we also evaluated Strider in local mode, i.e., running the system
on a single machine (although it should not be its forte, Strider still gets an
advantage from the multi-core processor). Based on this preliminary evaluation,
we try to give an intuitive impression and reveal our findings about these three
RSP systems.

In Fig. 5, we observe that Strider generally achieves million/sub-million-level
throughput under our test suite. Note that both Q1 and Q4 have only one
join, i.e., optimization is not needed. Most tested queries scale well in Strider.
Adaptive optimization generates query plans based on the workload statistics.
In total, it provides a more efficient query plan than static optimization. But the
gain of AQP for the simple queries that have less join tasks (e.g., Q1, Q5) becomes
insubstantial. We also found out that, even if Strider runs on a single machine,
it still provides up to 60x gain on throughput compared to C-SPARQL and
CQELS. Figure 6 shows Strider attains a second/sub-second delay. Obviously,

572 X. Ren and O. Curé

Fig. 5. RSP engine throughput (triples/second). D/L-S: Distributed/Local mode
Static Optimization. D/L-A: Distributed/Local mode Adaptive Optimization. SR:
Queries for SRBench dataset. W: Queries for Waves dataset.

for queries with 2 triple patterns in the query’s BGP, we can observe the same
latency between static and adaptive optimizations, Q1 and Q4. Query Q2 is the
only query where the latency of the adaptive approach is higher than the static
one. This is due to the very simple structure of the BGP (2 joins in the BGP).
In this situation, the overhead of DP covers the gain from AQP. For all other
queries, the static latency is higher than the adaptive one. This is justified by
more complex BGP structures (more than 5 triple patterns per BGP) or some
union of BGPs.

Fig. 6. Query latency (milliseconds) for strider (in distributed mode)

On the contrary, the average throughput of C-SPARQL and CQELS is main-
tained in the range of 6.000 and 50.000 triples/second. The centralized designs
of C-SPARQL and CQELS limit the scalability of the systems. Beyond the
implementation of query processing, the reliability of data flow management on
C-SPARQL and CQELS could also cause negative impact on system robustness.
Due to the lack of some important features for streaming system (e.g., back
pressure, checkpoint and failure recovery) once input stream rate reaches to cer-
tain scale, C-SPARQL and CQELS start behaving abnormally, e.g., data loss,
exponential increasing latency or query process interruption [18,19]. Moreover,
we have also observed that CQELS’ performance is insensitive to the changing

Strider: A Hybrid Adaptive Distributed RDF Stream 573

of computing resources. We tested CQELS on different EC2 instance types, i.e.,
with 2, 4 and 8 cores, and the results evaluation variations were negligible.

(a) (b)

Fig. 7. Record of throughput on strider. (a)-throughput for q7; (b)-throughput for q8.

Figures 7 and 8 concern the monitoring of Strider’s throughput for Q7 to Q9.
We recorded the changes of throughput over a continuous period of time (one
hour). The source stream produces the messages with different types of sensor
observations. The stream is generated by mixing temperature, flow and chlorine-
level measurement with random proportions. The red and blue curves denote
query with respectively static and adaptive logical plan optimization. For Q7 and
Q8 (Fig. 7), except when some serious throughput drops have been observed in
Fig. 7b, static and adaptive planners return a close throughput trend. For a more
complex query Q9 (Fig. 8), which contains 9 triple patterns and 8 join operators.
Altering logical plans on Q9 causes significant impact on engine performance. Con-
sequently, our adaptive strategy is capable to handle the structurally unstable
RDF stream. Thus the engine can avoid a sharp performance degradation.

Fig. 8. Throughput for q9 on strider.

Through this experiment,
we identified some shortcomings
in Strider that will be addressed
in future work: (1) the data
preparation on Spark Streaming
is relatively expensive. It costs
around 0.8 to 1 s to initialize
before triggering the query exe-
cution in our experiment. (2)
Strider has a more substantial
throughput decreasing with an
increasing number of join tasks.
In order to alleviate this effect,
the possible solution is enlarg-

ing the cluster scale or choosing a more powerful driver node. (3) Strider does
not support well high concurrent requests, although this is not at the moment
one of our system design goals. E.g., some use cases demand to process a big

574 X. Ren and O. Curé

amount of concurrent queries. Even through Strider allows to perform multiple
queries asynchronously, it could be less efficient.

6 Related Work

In the recent years, a variety of RSP systems have been proposed which can be
divided into two categories: centralized and distributed.

Centralized RSP engines. For the last few years, some contributions have been
done to satisfy the basic needs of RDF stream processing. RSP engines like
C-SPARQL, CQELS, ETALIS, etc., are developed to run on a single machine.
None of them targets the scenario that involves massive incoming data stream.

Distributed RSP engines. CQELS-Cloud [17] is the first RSP system which mainly
focuses on the engine elasticity and scalability. The whole system is based on
Apache Storm. Firstly, CQELS-Cloud compresses the incoming RDF streams by
dictionary encoding in order to reduce the data size and the communication in the
computing cluster. The query logical plan is mapped to a Storm topology, and the
evaluation is done through a series of SPARQL operators located on the vertex of
the topology. Then, to overcome the performance bottlenecks on join tasks, the
authors propose a parallel multiway join based on probing sequence. From the
aspect of implementation, CQELS-Cloud is designed as the streaming service for
high concurrent requests. The capability of CQELS-Cloud to cope with massive
incoming RDF data streams is still missing. Furthermore, to the best of our knowl-
edge, CQELS-Cloud is not open source, customized queries and data feeding are
not feasible. Katts is another RSP engine based on Storm. The implementation of
Katts [9] is relatively primitive, it is more or less a platform for algorithm testing
but not an RSP engine. The main goal of Katts is designed to verify the efficiency
of graph partitioning algorithm for cluster communication reduction.

Although the SPARQL query optimization techniques have been well devel-
oped recently, CQELS is still the only system which considers query optimiza-
tion to process RDF data stream. However, the greedy-like left-deep plan leads
to sequential query evaluation, which makes CQELS benefit from few addi-
tional computing resources. The conventional SPARQL optimization for static
data processing can be hardly applied in a streaming context. Recent efforts
[14,15,20,22] possess long data preprocessing stage before launching the query
execution. The proposed solutions do not meet real-time or near real-time use
cases. The heuristic-based query optimization in [24] totally ignores data statis-
tics and thus does not promise the optimal execution plan for 24× 7 running
streaming service.

7 Conclusion and Future Work

In this paper, we present Strider, a distributed RDF batch stream processing
engine for large scale data stream. It is built on top of Spark Streaming and
Kafka to support continuous SPARQL query evaluation and thus possesses the
characteristics of a production-ready RSP. Strider comes with a set of hybrid

Strider: A Hybrid Adaptive Distributed RDF Stream 575

AQP strategies: i.e., static heuristic rule-based optimization, forward and back-
ward adaptive query processing. We insert the trigger into the optimizer to
attain the automatic strategy switching at query runtime. Moreover, with its
micro-batch approach, Strider fills a gap in the current state of RSP ecosystem
which solely focuses on record-at-a-time. Through our micro-benchmark based
on real-word datasets, Strider provides a million/sub-million-level throughput
and second/sub-second latency, a major breakthrough in distributed RSPs. And
we also demonstrate the system reliability which is capable to handle the struc-
turally instable RDF streams.

There is still room for improving the system’s implementation. As future
work, we aim to add stream reasoning capacities and the ability of combining
static data.

References

1. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma,
R.J., Lax, R., McVeety, S., Mills, D., Perry, F., Schmidt, E., Whittle, S.: The
dataflow model: A practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. PVLDB 8, 1792–1803
(2015)

2. Ali, M.I., Gao, F., Mileo, A.: CityBench: A configurable benchmark to eval-
uate RSP engines using smart city datasets. In: Arenas, M., et al. (eds.)
ISWC 2015. LNCS, vol. 9367, pp. 374–389. Springer, Cham (2015). doi:10.1007/
978-3-319-25010-6 25

3. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in ETALIS. Semant. web 3, 397–407 (2012)

4. Barbieri, D.F., et al.: C-SPARQL: SPARQL for continuous querying. In: WWW
(2009)

5. Botan, I., Derakhshan, R., Dindar, N., Haas, L., Miller, R.J., Tatbul, N.: Secret:
A model for analysis of the execution semantics of stream processing systems.
PVLDB 3, 232–243 (2010)

6. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flinkTM: Stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38, 28–38 (2015)

7. Chen, G.J., Wiener, J.L., Iyer, S., Jaiswal, A., Lei, R., Simha, N., Wang, W.,
Wilfong, K., Williamson, T., Yilmaz, S.: Realtime data processing at facebook. In:
SIGMOD (2016)

8. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Found. Trends
Databases 1, 1–140 (2007)

9. Fischer, L., et al.: Scalable linked data stream processing via network-aware work-
load scheduling. In: SSWS@ISWC (2013)

10. Goodhope, K., Koshy, J., Kreps, J., Narkhede, N., Park, R., Rao, J., Ye, V.Y.:
Building linkedin’s real-time activity data pipeline. IEEE Data Eng. Bull. 35,
33–45 (2012)

11. Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join order-
ing in SPARQL queries. EDBT 14, 439–450 (2014)

12. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination
for internet-scale systems. In: USENIX (2010)

http://dx.doi.org/10.1007/978-3-319-25010-6_25
http://dx.doi.org/10.1007/978-3-319-25010-6_25

576 X. Ren and O. Curé

13. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data.
In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25073-6 24

14. Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation
for RDF queries with multiple joins. In: ICDE (2011)

15. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In:
SIGMOD (2009)

16. Pham, M.-D., Boncz, P.: Exploiting emergent schemas to make rdf systems more
efficient. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F.,
Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 463–479. Springer, Cham
(2016). doi:10.1007/978-3-319-46523-4 28

17. Le-Phuoc, D., Nguyen Mau Quoc, H., Le Van, C., Hauswirth, M.: Elastic and
scalable processing of linked stream data in the cloud. In: Alani, H., et al. (eds.)
ISWC 2013. LNCS, vol. 8218, pp. 280–297. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41335-3 18

18. Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: facts and figures. In: Cudré-Mauroux, P., et al.
(eds.) ISWC 2012. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35173-0 20

19. Ren, X., Khrouf, H., Kazi-Aoul, Z., Chabchoub, Y., Curé, O.: On measuring per-
formances of C-SPARQL and CQELS. In: SWIT@ISWC (2016)

20. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with sparql on spark. PVLDB 9, 804–815 (2016)

21. Siow, E., Tiropanis, T., Hall, W.: SPARQL-to-SQL on internet of things databases
and streams. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue,
F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 515–531. Springer,
Cham (2016). doi:10.1007/978-3-319-46523-4 31

22. Stocker, M., Seaborne, A., Bernstein, V., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: WWW (2008)

23. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D.:
Storm@twitter. In: SIGMOD (2014)

24. Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., Christophides, V., Boncz, P.:
Heuristics-based query optimisation for SPARQL. In: EDBT (2012)

25. Venkataraman, S., Panda, A., Ousterhout, K., Ghodsi, A., Franklin, M.J., Recht,
B., Stoica, I.: Drizzle: Fast and adaptable stream processing at scale. In: Spark
Summit (2016)

26. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI (2012)

27. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
Fault-tolerant streaming computation at scale. In: SOSP (2013)

28. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: A stream-
ing RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC
2012. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35176-1 40

http://dx.doi.org/10.1007/978-3-642-25073-6_24
http://dx.doi.org/10.1007/978-3-319-46523-4_28
http://dx.doi.org/10.1007/978-3-642-41335-3_18
http://dx.doi.org/10.1007/978-3-642-41335-3_18
http://dx.doi.org/10.1007/978-3-642-35173-0_20
http://dx.doi.org/10.1007/978-3-319-46523-4_31
http://dx.doi.org/10.1007/978-3-642-35176-1_40
http://dx.doi.org/10.1007/978-3-642-35176-1_40

Mining Hypotheses from Data in OWL:
Advanced Evaluation and Complete

Construction

Viachaslau Sazonau(B) and Uli Sattler

The University of Manchester, Oxford Road, Manchester M13 9PL, UK
{sazonauv,sattler}@cs.manchester.ac.uk

Abstract. Automated acquisition (learning) of ontologies from data has
attracted research interest because it can complement manual, expensive
construction of ontologies. We investigate the problem of General Termi-
nology Induction in OWL, i.e. acquiring general, expressive TBox axioms
(hypotheses) from an ABox (data). We define novel measures designed to
rigorously evaluate the quality of hypotheses while respecting the stan-
dard semantics of OWL. We propose an informed, data-driven algorithm
that constructs class expressions for hypotheses in OWL and guarantees
completeness. We empirically evaluate the quality measures on two cor-
pora of ontologies and run a case study with a domain expert to gain
insight into applicability of the measures and acquired hypotheses. The
results show that the measures capture different quality aspects and not
only correct hypotheses can be interesting.

1 Introduction

In computer science, an ontology is a machine-processable representation of
knowledge about some domain. Ontologies are encoded in ontology languages,
such as the expressive Web Ontology Language [11] (OWL) based on Descrip-
tion Logics [3] (DLs). An ontology is a set of logical statements, called axioms.
Axioms can be universal statements or specific facts. The set of universal state-
ments of an ontology is called the TBox and represents schema-level conceptual
relationships, or terminology. The set of facts of an ontology is called the ABox
and represents instance-level class and property assertions, or data. Besides sim-
ple “SubClassOf” relationships and class definitions, OWL allows for encoding
complex TBox axioms such as general class inclusions (GCIs) where complex
class expressions occur on both sides, e.g. ∃hasChild.� � Mother � Father
states that “having a child implies being a mother or father”.

Since manual engineering of TBoxes is a difficult, time-consuming task, auto-
mated acquisition of them from data has attracted research attention. In this
paper, we investigate learning expressive TBox axioms (hypotheses) from a given
ABox (data). Our contributions are as follows:

– definitions of novel quality measures that can rigorously evaluate expressive
GCIs in OWL respecting its semantics;

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 577–593, 2017.
DOI: 10.1007/978-3-319-68288-4 34

578 V. Sazonau and U. Sattler

– an informed, bottom-up algorithm that efficiently constructs complex class
expressions (and thus GCIs) in OWL and guarantees completeness;

– an empirical analysis of the relationships between the quality measures via
mutual correlations;

– the design and execution of a case study which confirms the ability of our
approach to generate three different kinds of interesting hypotheses and gains
insight into relationships of the measures with hypothesis validity and inter-
estingness.

2 Preliminaries

We assume the reader to be familiar with DLs [3] and OWL [11]. We denote an
ontology as O := T ∪ A, where T and A are its TBox and ABox, respectively.
An axiom is denoted as α or η. A general class inclusion (GCI) is an axiom of the
form C � D, where C and D are (possibly complex) class expressions, and cor-
responds to a “SubClassOf” axiom in OWL. An object property inclusion (OPI)
is an axiom of the form R � S, where R and S are (possibly complex) object
property expressions, and corresponds to a “SubObjectPropertyOf” axiom in
OWL. A hypothesis is a TBox axiom (GCI or OPI). An ABox axiom, called
fact, is an assertion of the form C(a) or R(a, b), where C is a class expression, R
an object property, a, b individuals. The set of all terms occurring in an ontology
O is called the signature of O and denoted as ˜O (˜T is the signature of T). We
denote the set of all individuals occurring in O as in(O). We use |= to denote
the usual entailment relation and ≡ to denote logical equivalence. The func-
tion �(C) returns the usual syntactic length [3,13] of a class expression C, e.g.
�(∃R.A � ∀R.(¬B � ∃S.B)) = 9; �(C � D) = �(C) + �(D); �(O) =

∑

α∈O �(α).

3 Related Work

There are different approaches to acquiring TBox axioms from data. The com-
mon approach is Class Description Learning [5,7,14–16,18] (CDL) which aims at
inducing a description (class expression) C of a given class name A using a set of
positive and negative training examples. Statistical Schema Induction [22] uses
Association Rules Mining (ARM) to generate and evaluate candidate axioms
using off-the-shelf quality measures [10]. BelNet [23] learns a Bayesian Network
from data and uses its structure to generate the corresponding TBox. In con-
trast to CDL, the last two approaches are not restricted to learning only class
descriptions and can generate GCIs with complex class expressions on both
sides. However, they require specifying shapes of generated axioms and have so
far been considerably limited in expressivity, i.e. richness of knowledge that gen-
erated axioms are able to capture. Moreover, they tend to view a given ABox
(data) under the Closed Word Assumption (CWA) or some form of it [9]. This
is unnatural for the standard semantics of OWL allowing for the Open World
Assumption (OWA), i.e. incomplete information. In addition, the approaches
usually ignore the given TBox while generating candidate axioms.

Mining Hypotheses from Data in OWL 579

Like ARM-based approaches, we focus on learning GCIs rather than class
expressions. The rationale is that the former can express arbitrary implications,
e.g. “people who pay dog tax also buy dog food”, while the latter cannot since it
captures commonalities in the given group of individuals (as positive or negative
examples), e.g. “people who pay dog tax”. Thus, the goals of learning GCIs
and learning class expressions are rather different. To draw further similarities
between our approach and ARM, we can view an individual as a transaction
that contains class expressions as its items. A class expression is included in the
transaction if and only if the individual is an instance of that class expression.
However, in contrast to items in ARM, class expressions can be logically related
to each other (in light of the TBox) and it can be unknown whether a class
expression is in the transaction or not because of the OWA. In addition, unlike
items in ARM, class expressions are not usually known in advance and naive
generation of them is infeasible in all but trivial cases.

4 Advanced Evaluation of Hypotheses

A candidate axiom, or hypothesis, can be evaluated by different quality criteria.
One can use the usual axiom length and depth [3,4,13] to evaluate readability.
As we suggested in [20], logical quality can be evaluated by consistency, infor-
mativeness, and logical strength (weakness): an axiom α is called consistent with
an ontology O if O ∪ {α} is consistent; α is called informative for a TBox T if
T
|= α; α is said to be weaker than another axiom α′ if α′ |= α and α
|= α′.
Statistical quality can be evaluated by fitness and braveness [20]. Intuitively,
fitness counts the number of facts entailed by a hypothesis and braveness counts
the number of “guesses” of a hypothesis.

Definition 1 (fitness, braveness). Let O := T ∪ A be an ontology, C a set
of class expressions with their negations included, α a GCI consistent with O.
Then, the fitness and braveness of α are defined as follows:

fit(α,O, C) := dlen(π(O, C), T) − dlen(π(O, C), T ∪ {α})
bra(α,O, C) := dlen(ψ(α,O, C), O)

where π(O, C) := {C(a) | O |= C(a), C ∈ C, a ∈ in(O)},1 ψ(α,O, C) :=
π(O ∪ {α}, C) \ π(O, C), dlen(B,O) := min{�(B′) | B′ ∪ O ≡ B ∪ O}.

4.1 New Logical Measures

To capture further aspects of logical quality, we propose new logical measures:
dissimilarity and complexity. These are numeric logical measures (compare to
consistency, informativeness, and logical strength mentioned above).

Dissimilarity. Given a GCI C � D, one can measure how “dissimilar” C and D
are with respect to the TBox. Intuitively, the more dissimilar they are, the more
1 It is the result of retrieving instances of every C ∈ C.

580 V. Sazonau and U. Sattler

“surprising” the axiom is for the TBox. We adapt the class similarity measure
from [2].

Definition 2 (Dissimilarity). Let O := T ∪A be an ontology, C a set of class
expressions, subs(C, C, T) := {C ′ ∈ C∪{C} | T |= C � C ′}. The dissimilarity
of α := C � D is defined as follows:

dsim(α, C, T) := 1 − |subs(C, C, T) ∩ subs(D, C, T)|
|subs(C, C, T) ∪ subs(D, C, T)| .

Informally, given a TBox T , the dissimilarity of a GCI C � D measures how
many common subsumers the class expressions C and D have in a set C of class
expressions.

Example 1. Consider the following TBox:

T := {C1 � B1, B1 � A1, A1 � A,

C2 � B2, B2 � A2, A2 � A}.

Given C := ˜T (all classes of T), the dissimilarity of α1 := C1 � C2 is higher
than the one of α2 := A1 � C2:

dsim(α1, C, T) = 1 − |{A}|
|{A,A1, B1, C1, A2, B2, C2}| =

6
7

dsim(α2, C, T) = 1 − |{A}|
|{A,A1, A2, B2, C2}| =

4
5

The dissimilarity of an OPI is defined analogously and omitted for the sake of
brevity. The minimal (maximal) value of dissimilarity implies that all subsumers
are the same (different). Dissimilarity is a symmetric measure, i.e.

dsim(C � D, C, T) = dsim(D � C, C, T).

Complexity. Given an axiom α, we can compare the complexity of the new
theory T ∪ {α} with the complexity of the old theory T by quantifying how
many new entailments the new theory has. As the set of new entailments is
infinite in general, we only consider a finite subset of them.

Definition 3 (Complexity). Let O := T ∪ A be an ontology, C a set of
class expressions. The complexity of α := C � D is defined as follows:
com(α, C, T) := |{η | T ∪ {α} |= η, T
|= η, η = C1 � C2, C1, C2 ∈ C}|.

Thus, we only count new entailments that are subsumptions between class
expressions from a fixed set C. The complexity of an OPI is defined analogously
and omitted for the sake of brevity. In contrast to dissimilarity, complexity is
asymmetric. They are rather independent measures, see Example 2.

Mining Hypotheses from Data in OWL 581

Example 2. Let us calculate the complexity of the axioms α1 and α2 from
Example 1:

com(α1, C, T) = |{C1 � C2, C1 � B2, C1 � A2}| = 3,

com(α2, C, T) = |{C1 � C2, C1 � B2, C1 � A2,

B1 � C2, B1 � B2, B1 � A2,

A1 � C2, A1 � B2, A1 � A2}| = 9.

Thus, α1 has lower complexity than α2 but higher dissimilarity. In addition,
consider the axiom α3 := B1 � C2 � A1: com(α3, C, T) = 0 since T |= α3 but

dsim(α3, C, T) = 1 − |{A,A1}|
|{A,B1, A1, C2, B2, A2}| =

2
3
.

4.2 New Statistical Measures

We propose new statistical measures that capture further aspects of statistical
quality while respecting the standard semantics of OWL and given TBox. They
are based on counting instances of certain kinds.

Definition 4 (Instance function). Let O be an ontology; C̊ ∈ {C, ?C}, where
C is a class expression. The instance function is defined as follows:

inst(C̊,O) :=
{

{a ∈ in(O) | O |= C(a)} if C̊ = C

{a ∈ in(O) | O
|= C(a) ∧ O
|= ¬C(a)} if C̊ = ?C

Basic Measures. Let us consider a GCI C � D. The axiom states that all
instances of C are also instances of D. Given an ontology O := T ∪ A, we can
check how well the data in A supports this statement taking the background
knowledge in T into account.

Definition 5 (Basic measures). Given an ontology O, the basic coverage,
support, contradiction, assumption of α := C � D are defined, respectively, as
follows:

bcov(α,O) := |inst(C, O)| bsup(α,O) := |inst(C � D, O)|
bcnt(α,O) := |inst(C � ¬D, O)| basm(α,O) := |inst(C, O) ∩ inst(?D, O)|

Support is presumably a positive measure, i.e. higher values indicate better
quality, while contradiction and assumption are presumably negative ones, i.e.
lower values indicate better quality. Coverage is neither positive nor negative
as it is the sum of support, contradiction, and assumption. Support is a sym-
metric measure, while others are not. The basic measures respect the OWA via
distinguishing assumption and contradiction.

582 V. Sazonau and U. Sattler

Example 3. Consider the ontology O := T ∪ A that models family relations,
where the TBox T and ABox A are as follows (hc, mt stand for hasChild,
marriedTo).

T = {Father � Man, Mother � Woman, Man � ¬Woman, mt � mt−},

A = {Man(Arthur), Father(Chris), Father(James), Woman(Charlotte),
Woman(Margaret), Mother(Penelope), Mother(V ictoria),
hc(James,Charlotte), hc(V ictoria, Charlotte), hc(Chris, V ictoria),
hc(Penelope, V ictoria), hc(Chris,Arthur), hc(Penelope,Arthur),
mt(Chris, Penelope), mt(James, V ictoria), mt(Arthur,Margaret)}.

Consider the following axioms:

α1 := ∃mt.� � Mother, α2 := ∃hc.� � Mother.

Their basic measures are calculated as follows:

bsup(α1,O) = 2 bcnt(α1,O) = 3 basm(α1,O) = 1 bcov(α1,O) = 6
bsup(α2,O) = 2 bcnt(α2,O) = 2 basm(α2,O) = 0 bcov(α2,O) = 4

Thus, α2 is better than α1 because its support is the same but its contradiction
and assumption are lower.

The basic measures can be defined for an OPI R � S in the same way as for a
GCI C � D. The only difference is that, instead of returning instances of a class
expression C, the instance function would return instances of an object property
expression R, i.e. individual pairs (a, b) which are entailed to be connected by R.
Please note that assumption resembles braveness [20] but counts “guesses” of a
hypothesis in a more straightforward way since it depends only on a hypothesis
and ontology.

Main Measures. The basic measures only consider the “forward” direction
of a GCI C � D. According to the semantics of OWL, C � D has also the
“backward” direction. Formally, C � D ≡ ¬D � ¬C which is called the law
of contraposition, where ¬D � ¬C is called the contrapositive of C � D. Thus,
C � D not only implies that all instances of C are instances of D but also implies
that all instances of ¬D are instances of ¬C. We refine the basic measures using
a syntactic trick to “merge” a GCI and its contrapositive into a single GCI.

Definition 6 (Main Measures). Let O be an ontology, α := C � D, and
α := C �¬D � ¬C �D. The main coverage, support, contradiction, assumption
of α are defined, respectively, as follows:

cov(α,O) := bcov(α,O) sup(α,O) := bsup(α,O)
cnt(α,O) := bcnt(α,O) asm(α,O) := basm(α,O)

Mining Hypotheses from Data in OWL 583

In comparison to the basic measures, see Definition 5, their respective
main measures additionally count individuals relevant for the contrapositive.
Example 4 shows how a main measure can differ from its basic measure.

Example 4. In Example 3, we evaluate α2 := ∃hc.� � Mother via the basic mea-
sures. Its basic assumption is basm(α2,O) = 0, i.e. α2 makes no “guesses”. How-
ever, its main assumption is asm(α2,O) = 1. Indeed, as Arthur is an instance
of ¬Mother, the axiom α2 assumes that Arthur has no children, i.e. he is an
instance of ¬(∃hc.�).

In contrast to the basic measures, the main measures always return the same
values for an axiom and its contrapositive. Thus, they respect the semantics of
OWL better than the basic measures. The main measures of an axiom can be
represented via the basic measures of that axiom and its contrapositive. These
properties are stated by Lemma 1.

Lemma 1. Let O be an ontology, α := C � D, and α′ := ¬D � ¬C. Then

cov(α,O) = cov(α′,O) = bcov(α,O) + bcov(α′,O) − bcnt(α,O)
sup(α,O) = sup(α′,O) = bsup(α,O) + bsup(α′,O)
cnt(α,O) = cnt(α′,O) = bcnt(α,O) = bcnt(α′,O)

asm(α,O) = asm(α′,O) = basm(α,O) + basm(α′,O)

Proof. Follows from Definitions 4, 5, and 6, see [19] for details.

Clearly, the basic and main measures coincide if ¬C and ¬D have no instances
in O, e.g. C and D are EL class expressions and O is in EL. Example 5 illustrates
how evaluating a disjointness axiom under the OWA differs from evaluating it
under the CWA which is commonly made for learning disjointness axioms, see
e.g. [8].

Example 5. Consider the ontology

O := {A(a1), . . . , A(am), B(b1), . . . , B(bn)}.

Under the CWA, the absence of information in O is treated as negation:

O¬ := O ∪ {¬B(a1), . . . ,¬B(am), ¬A(b1), . . . ,¬A(bn)}.

Consider the disjointness axiom α := A � ¬B. Under the CWA, it is assumed,
perhaps wrongly, to be of high quality: sup(α,O¬) = m+n, asm(α,O¬) = 0. In
contrast, under the OWA, its evaluation better reflects the state of knowledge
in O: sup(α,O) = 0, asm(α,O) = m + n.

Composite Measures. As an axiom C � D in OWL is similar to an associ-
ation rule X ⇒ Y in ARM, rule measures [10] can be adapted to OWL. The
challenge is to respect the OWA, i.e. consider that there is ?C, see Definition 4,
in addition to C and ¬C. Given a rule measure f(X,Y), we suggest to translate

584 V. Sazonau and U. Sattler

it as follows. First, substitute each positive occurrence of a variable X (Y) in
f(X,Y) with a class expression C (D). If neither X nor Y occurs negatively
in f(X,Y), then the translation is finished and results in the axiom measure
f(C,D). Otherwise, obtain two axiom measures as follows: substitute each neg-
ative occurrence ¬X (¬Y) in f(X,Y) with ¬C (¬D), resulting in f¬(C,D), and
with ?C (?D), resulting in f?(C,D). Following this procedure, we translate the
standard rule measures: confidence, lift, and conviction.

Definition 7 (Composite basic measures). Let O be an ontology; C̊ ∈
{C, ?C}, where C is a class expression;

PO(C̊1, . . . , C̊k) :=
1

|in(O)| |
k

⋂

i=1

inst(C̊i,O)|.

The basic confidence, lift, negated and assumed conviction of α := C � D are
defined, respectively, as follows:

bconf(α,O) :=
PO(C,D)
PO(C)

blift(α,O) :=
PO(C,D)

PO(C) · PO(D)

bconv¬(α,O) :=
PO(C) · PO(¬D)

PO(C,¬D)
bconv?(α,O) :=

PO(C) · PO(?D)
PO(C, ?D)

The OWA is taken into consideration via distinguishing negated and assumed
conviction. The composite basic measures can be rewritten using the basic cov-
erage, support, contradiction, and assumption, see [19] for details.

Example 6. We calculate the composite basic measures of the axioms α1 and
α2 in Example 3. We first calculate the required probabilities (M stands for
Mother): PO(M) = 2

7 , PO(¬M) = 3
7 , PO(?M) = 2

7 . Then, we use them along
with the basic measures calculated in Example 3:
bconf(α1,O) = 2

6 = 1
3 , blift(α1,O) = 2

6· 27
= 7

6 , bconv¬(α1,O) = 6· 37
3

= 6
7 , bconv?(α1,O) = 6· 27

1 = 12
7 ; bconf(α2,O) = 2

4 = 1
2 , blift(α2,O) = 2

4· 27
= 7

4 , bconv¬(α2,O) = 4· 37
2 = 6

7 , bconv?(α2,O) = 4· 27
0 = ∞.

The composite basic measures can be refined to treat GCIs according to the
standard semantics of OWL, i.e. as being equivalent to their contrapositives.

Definition 8 (Composite main measures). Let O be an ontology, α := C �
D, and α := C �¬D � ¬C �D. The main confidence, lift, negated and assumed
conviction of α are defined, respectively, as follows:

conf(α,O) := bconf(α,O) lift(α,O) := blift(α,O)

conv¬(α,O) := bconv¬(α,O) conv?(α,O) := bconv?(α,O)

A lemma analogous to Lemma 1 holds for the composite main measures, i.e.
they treat a GCI as being equivalent to its contrapositive and can be rewritten
using the main measures and hence the basic measures [19].

Mining Hypotheses from Data in OWL 585

5 Complete Construction of Hypotheses

We reduce the problem of constructing hypotheses to the problem of construct-
ing class (and property) expressions. Indeed, given a set C of class expressions
of interest, we can generate all possible GCIs using class expressions from C as
a left-hand side or right-hand side, i.e. {C � D | C,D ∈ C}. Thus, the number
of generated GCIs is quadratic in the size of C. As we suggested in [20], class
expressions C can be generated from some “seed” signature Σ using certain
construction rules (templates), e.g. all pairwise conjunctions, simple existential
restrictions, etc. However, it is generally hard to know which templates are likely
to produce useful class expressions. Moreover, a brute-force procedure that gen-
erates all class expressions is doomed even for inexpressive DLs, e.g. EL. For
example, given n class and m object property names, a number of all EL class
expressions of length up to 5 grows as fast as O(n3 + n2 · m2 + n · m4).

We propose an informed, bottom-up algorithm that constructs all class
expressions C of length up to �max in a given DL that have at least smin

instances, i.e. sufficient evidence in data. Importantly, the algorithm avoids con-
sidering all other class expressions that are numerous, e.g. all class expressions
without instances (and many others). We integrate two ideas in one algorithm:
enumerating class expressions via a refinement operator [7,14,16] and pruning
unpromising (insufficiently supported by data) class expressions from the search
a priori. A downward refinement operator2 ρ for DL specifies a set ρ(C) of
specialisations of a class expression C in that DL. Refinement operators nor-
mally use the classic subsumption � as an ordering on class expressions. Thus,
C ′ ∈ ρ(C) implies C ′ � C.3

Example 7. Given the terms M , W , hc (standing for Man, Woman, hasChild)
from Example 3, the refinement operator ρ can be used to traverse the space of
EL class expressions as follows:

ρ(�) = {M, W, ∃hc.�}
ρ(M) = {M � M, M � W, M � ∃hc.�}

ρ(W) = {W � M, W � W, W � ∃hc.�}
ρ(∃hc.�) = {∃hc.M,∃hc.W,∃hc.∃hc.�,∃hc.� � M,∃hc.� � W,∃hc.� � ∃hc.�}
. . .

The mechanics of refinement operators allows for pruning unpromising class
expressions from the search without even generating them (and hence without
checking their instances). Indeed, a specialisation of a class expression cannot
have more instances than the class expression itself has, see Lemma 2.

Lemma 2 (Anti-monotone property of specialisations). Let O be an
ontology, C a class expression, ρ a (downward) refinement operator. Then,
C ′ ∈ ρ(C) implies |inst(C ′,O)| ≤ |inst(C,O)|.
2 It is sufficient to consider only downward refinement operators.
3 The statement C′ � C is the abbreviation of ∅ |= C′ � C.

586 V. Sazonau and U. Sattler

Lemma 2 implies that if C has an insufficient number of instances, then so
do all its further specialisations. It is essentially the anti-monotone property of
itemsets used in the Apriori algorithm [1] which we have defined for OWL class
expressions. Due to this similarity, we call our algorithm of constructing class
expressions DL-Apriori, see Algorithm 1.

Algorithm 1. DL-Apriori (O, Σ,DL, �max, smin)
1: inputs
2: O := T ∪ A: an ontology
3: Σ: a finite set of terms such that � ∈ Σ
4: DL: a DL for class expressions
5: �max: a maximal length of a class expression such that 1 ≤ �max < ∞
6: smin: a minimal instance threshold (support) such that 0 < smin ≤ |in(O)|
7: outputs
8: C: the set of all class expressions satisfying the input constraints
9: do

10: C ← ∅ % initialise the final set of class expressions
11: D ← {�} % initialise the set of class expressions yet to be specialised
12: ρ ← getOperator(DL, Σ, �max, T) % initialise a refinement operator ρ
13: while D
= ∅ do
14: C ← pick(D) % pick a class expression C to be specialised
15: D ← D\{C} % remove C from D

16: C ← C ∪ {C} % add C to C

17: C
′ ← specialise(C, ρ) % specialise C using ρ

18: DC ← {D ∈ urc(C′) | �D′ ∈ C ∪ D : D′ ≡ D} % discard syntactic variations

19: D ← D ∪ {D ∈ DC | |inst(D, O)| ≥ smin} % add suitable specialisations
20: end while
21: return C

DL-Apriori operates as follows. First, we initialise the refinement operator
ρ (see Line 12) with the given logic DL, signature Σ, maximal length �max, and
TBox T such that it only constructs specialisations satisfying the constraints
and takes T into consideration, e.g. its class hierarchy. The construction starts
from �, see also Example 7. The operator repeatedly specialises every expression
picked from the set D of candidates and adds its suitable specialisations to D

(see Line 14 – 19). A specialisation is suitable if it is not a syntactic variation
of an already constructed one (see Line 18 where the function urc(C′) returns
unique representatives of logically equivalent class expressions in a set C

′) and
satisfies the minimal support smin (see Line 19). Once the set D is empty, the
algorithm terminates. Intuitively, smin acts as a “noise threshold” that prunes
expressions with insufficient evidence and therefore should be sufficiently small
to avoid missing useful expressions.

Given DL ≤ SROI, DL-Apriori always terminates, guarantees to return
all class expressions modulo equivalence satisfying the input constraints, i.e. it is
complete, and only expressions satisfying the constraints, i.e. it is correct, see [19]

Mining Hypotheses from Data in OWL 587

for details. Completeness of DL-Apriori ensures that no class expression (and
thus no GCI) satisfying the input constraints is missed, i.e. all suitable class
expressions (modulo equivalence) are returned. Of course, one should specify
input constraints cautiously (which is rather easy to do) to avoid missing useful
class expressions.

Correctness, completeness, and termination of DL-Apriori can be proved for
DLs with number restrictions ≥ k.C and ≤ k.C, e.g. SROIQ. This would require
either making the function �(C) (the length of a class expression C) dependent
on k or introducing the parameter kmax which bounds k. Both ways regain the
properties of DL-Apriori for SROIQ but complicate the presentation.

6 Empirical Evaluation

We have implemented all presented techniques in a system called DL-Miner (see
the source code4 and demo interface5), as it is aimed at mining, i.e. constructing
and evaluating, axioms in DLs and OWL, see [19]. We use Java (version 8.91),
the OWL API [12] (version 3.5.0), and Pellet [21] (version 2.3.1) as a reasoner.
All experiments are executed on the following machine: Linux Ubuntu 14.04.2
LTS (64 bit), Intel Core i5-3470 3.20 GHz, 8 GB RAM.

6.1 Mutual Correlations of Hypothesis Quality Measures

It is worthwhile to investigate whether the quality measures indeed capture
different aspects of hypothesis quality. This can be clarified by examining their
mutual correlations. We investigate the following research question:

RQ. Do related measures strongly correlate? Do unrelated measures not
correlate?

The experimental data consists of two corpora of ontologies. The first cor-
pus, called handpicked, consists of 16 ontologies hand-picked from related work,
e.g. from [7,15]. The second corpus, called principled, comprises all BioPortal6

ontologies taken from [17] which contain some data (at least 100 individuals and
100 facts). It consists of 21 ontologies. In the handpicked and principled corpus,
9 and 14 ontologies, respectively, are at least as expressive as ALC. With regard
to the size, 3 and 0 ontologies, respectively, contain less than 100 individuals; 8
and 9 ontologies contain from 100 to 1000 individuals; 5 and 12 ontologies con-
tain more than 1000 individuals. Both corpora are made publicly available [19].
We run the experiment on each corpus independently.

For each ontology O, we run DL-Apriori, see Algorithm 1, with DL := ALC,
�max := 4, smin := 10. Since ˜O can contain many irrelevant terms, the seed sig-
nature is selected using the modular structure of the ontology as follows [20]:

4 https://github.com/slava-sazonau/dlminer.
5 http://www.dlminer.io.
6 http://bioportal.bioontology.org.

https://github.com/slava-sazonau/dlminer
http://www.dlminer.io
http://bioportal.bioontology.org

588 V. Sazonau and U. Sattler

Σ := crn(M)∪{�}, where M := ⊥-module(O, crn(A)) [6] and crn(O) returns
the set of all class and property names occurring in O. Then, we generate all
possible GCIs (which can thus have length up to 8) from the constructed class
expressions and OPIs with inverse properties and property chains. Using the
proposed quality measures and measures from [20], we evaluate 500 randomly
selected hypotheses per ontology. Then, we compute mutual correlations of the
quality measures across all hypotheses in a corpus. We present the results, see
Fig. 1, in the form of a correlation matrix, which is a symmetric matrix of (Pear-
son’s) correlation coefficients. For each correlation, we additionally run a statis-
tical significance test with significance level 0.05.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

B
S

U
P

P

B
A

S
S

U
M

B
C

O
N

F

B
LI

FT

B
C

O
N

V
N

B
C

O
N

V
Q

S
U

P
P

A
S

S
U

M

C
O

N
F

LI
FT

C
O

N
V

N

C
O

N
V

Q

C
O

N
TR

FI
TN

B
R

AV

C
O

M
P

L

D
IS

S
IM

LE
N

G
TH

D
E

P
TH

BSUPP

BASSUM

BCONF

BLIFT

BCONVN

BCONVQ

SUPP

ASSUM

CONF

LIFT

CONVN

CONVQ

CONTR

FITN

BRAV

COMPL

DISSIM

LENGTH

DEPTH

(a) Handpicked corpus

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

B
S

U
P

P

B
A

S
S

U
M

B
C

O
N

F

B
LI

FT

B
C

O
N

V
N

B
C

O
N

V
Q

S
U

P
P

A
S

S
U

M

C
O

N
F

LI
FT

C
O

N
V

N

C
O

N
V

Q

C
O

N
TR

FI
TN

B
R

AV

C
O

M
P

L

D
IS

S
IM

LE
N

G
TH

D
E

P
TH

BSUPP

BASSUM

BCONF

BLIFT

BCONVN

BCONVQ

SUPP

ASSUM

CONF

LIFT

CONVN

CONVQ

CONTR

FITN

BRAV

COMPL

DISSIM

LENGTH

DEPTH

(b) Principled corpus

Fig. 1. Mutual correlations of quality measures for handpicked (a) and principled (b)
corpus: positive correlations are in blue, negative correlations are in red, crosses mark
statistically insignificant correlations (significance level 0.05). The abbreviations are
as follows: (B)SUPP – (basic) support, (B)ASSUM – (basic) assumption, (B)CONF –
(basic) confidence, (B)LIFT – (basic) lift, (B)CONVN – (basic) negated conviction,
(B)CONVQ – (basic) assumed conviction, CONTR – contradiction, FITN – fitness,
BRAV – braveness, COMPL – complexity, DISSIM – dissimilarity. (Color figure online)

First, we note that all main measures, except negated conviction for the
principled corpus, strongly and positively correlate with their basic counterparts
(please notice lines of dark blue squares parallel to the main diagonal in Fig. 1).
This result is expected because the basic measures are approximations of the
respective main measures. All the differences are due to the presence of negative
information in the ontologies. Another strong and positive correlation occurs
between assumption and braveness which is also expected since these measures
count (though differently) “guesses” of a hypothesis. Among other observations
are the positive correlations between conviction and confidence, particularly in
the principled corpus, that capture similar aspects of quality. Interestingly, lift
positively correlates with length and depth, i.e. longer hypotheses are likely to
be of higher quality as measured by lift. Thus, we can answer RQ as follows:

Mining Hypotheses from Data in OWL 589

related measures do correlate significantly, while unrelated measures mostly do
not. In other words, the measures do capture different aspects of quality.

In addition, we have examined the acquired hypotheses by eyeballing them.
Table 1 shows some high-quality hypotheses (please notice two property chains).

Table 1. Examples of acquired hypotheses

∃hasBond.� � ∃hasAtom.�
AssociateProfessor � ∃teaches.TeachingCourse

Patient � ∃hasShape.Irregular � ∃hasDensity.Illdefined

∀siblingof.Human � Human

OKRunningLoan � ∃hasLoanStatusV alue.(¬ProblemStatus)

married ◦ hasChild � hasChild

Movie � ∃cast.Actor

BetaSugar � ∃hasRingForm.� � Pyranose

clinicallySimilar ◦ hasSeverity � hasSeverity

P lanetaryLayer � ∃hasAstronomicalBody.�

6.2 A Case Study

In order to receive human feedback, we run a preliminary case study with one
domain expert. The subject of the study is the ontology,7 in the following called
ntds, created using data from the US National Transgender Discrimination Sur-
vey8 and curated by the domain expert. The ontology is in SROIQ and contains
169,058 individuals. We investigate the following research questions:

RQ1. What kinds of interesting hypotheses (if any) can we mine for the
domain expert?
RQ2. Which measures (if any) are indicators of interestingness of a
hypothesis?

To answer the research questions, we ask the domain expert to judge a
hypothesis by validity and interestingness (which are different notions):

– Validity shows whether a hypothesis captures a general truth about the
domain and can be perceived as an axiom to be added to the ontology.

– Interestingness shows how interesting a hypothesis is for a domain expert,
i.e. evaluates her curiosity and attention that she pays to a hypothesis.

The domain expert assesses validity of a hypothesis by choosing one of the
following three options: “correct”, “wrong”, “don’t know”. Interestingness of a
hypothesis is rated on the linear scale from 0 (lowest) to 4 (highest). We collect
7 The ontology is not public yet.
8 http://www.ustranssurvey.org/.

http://www.ustranssurvey.org/

590 V. Sazonau and U. Sattler

feedback using an online survey. To make a survey, we generate hypotheses as
above. Since purely random sampling is likely to result in few (or no) promising
hypotheses, we randomly select 30 hypotheses whose confidence exceeds 0.9 and
30 from all the rest to ensure variability of hypothesis quality in the survey which
thus consists of 60 hypotheses.

The survey was completed by one domain expert. In the feedback that we
received, the domain expert expressed interest in reviewing additional hypotheses
and gave us focus terms, i.e. class and property names of a certain topic. We
ran another survey of 60 hypotheses made analogously but using only the focus
terms instead of the (almost) entire signature. The survey was completed by the
same domain expert. Thus, 120 hypotheses were judged in total. In the following,
we refer to the initial, unfocused survey as Survey 1 and the follow-up, focused
survey as Survey 2, see Table 2.

Table 2. Assessment of hypotheses acquired for ntds (“-” denotes zero)

Validity Interestingness

0 1 2 3 4

Survey 1 (unfocused) Wrong 6 11 30 - -

Don’t know - 1 - 2 4

Correct - - - 6 -

Survey 2 (focused) Wrong 1 - 1 - 5

Don’t know - - - - 49

Correct - - - - 4

According to Table 2, in Survey 1, unknown and correct hypotheses are rated
to be much more interesting than wrong ones: all of them, except one, have high
values of interestingness. Amongst those, unknown hypotheses are marked to
be the most interesting and, according to the expert’s response, require further
analysis. The results of Survey 2 are much different from the results of Survey 1.
All hypotheses, except two, are marked by the highest value of interestingness,
including wrong ones. Moreover, the domain expert informed us in her response
that one of the wrong hypotheses not only indicated data bias but revealed an
error in the ontology.

Thus, a mined hypothesis can be interesting regardless of its validity. More
specifically, there are three kinds of interesting hypotheses: a correct hypoth-
esis reflects known domain knowledge which is not yet captured in the ontol-
ogy (enriches the TBox); an unknown hypothesis captures possibly true but
yet unknown domain knowledge worthy of further enquiry; a wrong hypothesis
indicates a modelling error or data bias. This answers RQ1 and confirms our
observations made in [20].

We now turn our attention to RQ2, i.e. compare measures with expert’s
judgements. Figure 2 shows correlations between the quality measures and

Mining Hypotheses from Data in OWL 591

expert’s judgements. Dissimilarity, confidence, length, and depth are the
strongest positive indicators of validity, see Fig. 2a. Lift turns from a non-
indicator in Survey 1 to a positive indicator in Survey 2. The strongest negative
indicators of validity are complexity, support, and assumption. The result that
support is a negative indicator is rather unexpected, considering its definition.
A possible explanation is that hypotheses with more evidence seem to be easier
to reject for the domain expert because “counterexamples” are easier to recall.

−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

LE
N

G
TH

D
IS

SI
M

D
EP

TH

BC
O

N
F

C
O

N
F

BC
O

N
VQ

C
O

N
VQ

BL
IF

T

LI
FT

BC
O

N
VN

C
O

N
VN

C
O

N
TR

FI
TN

BR
AV

BA
SS

U
M

AS
SU

M

BS
U

PP

SU
PP

C
O

M
PL

C
or

re
la

tio
n

co
ef

fic
ie

nt

Survey 1

Survey 2

(a) Validity

−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

LE
N

G
TH

D
EP

TH

BC
O

N
F

C
O

N
F

D
IS

SI
M

BL
IF

T

LI
FT

BC
O

N
VQ

C
O

N
VQ

BC
O

N
VN

C
O

N
VN

C
O

N
TR

FI
TN

BR
AV

BS
U

PP

SU
PP

BA
SS

U
M

AS
SU

M

C
O

M
PL

C
or

re
la

tio
n

co
ef

fic
ie

nt

Survey 1

Survey 2

(b) Interestingness

Fig. 2. Correlations (in descending order) between hypothesis quality measures (abbre-
viated as in Fig. 1) and expert’s judgements: validity (a) and interestingness (b).

As Fig. 2b shows, confidence is a positive indicator of interestingness in Sur-
vey 1. However, it is not in Survey 2: length, depth, dissimilarity, and lift have
significantly stronger positive correlations. Thus, lift and dissimilarity turn from
non-indicators of interestingness in Survey 1 to its positive indicators in Survey
2. Moreover, length and depth become strong positive indicators of interesting-
ness showing that longer hypotheses are likely to be more interesting. This is not
surprising because longer hypotheses are capable of capturing phenomena that
shorter ones cannot capture, i.e. they are more powerful. Of course, a hypothesis
can be “too long” for a domain expert to perceive. As for validity, the strongest
negative indicators of interestingness are complexity, assumption, and support.
Support appears to be a negative indicator of interestingness because hypotheses
with high support are likely to be familiar to the expert since they reflect easily
seen patterns in the data. Overall, the results in Fig. 2 show that there is no
single best indicator of hypothesis quality. This further supports our view that
we need to consider multiple quality measures to identify promising hypotheses.

7 Future Work

The defined quality measures do not form the “complete list” of hypothesis qual-
ity measures. Clearly, there are other possible measures. In particular, additional

592 V. Sazonau and U. Sattler

rule measures can be adapted to OWL, e.g. cosine, Gini index, J-measure [10].
Such adaptation can respect the standard OWL semantics and its OWA using
the procedure of translating rule measures into axiom measures presented in this
paper.

Our implementation, DL-Miner, currently supports constructing GCIs for
ALC (as well as complex property hierarchies and inverses). It relies on the avail-
ability of suitable refinement operators that are currently proposed for ALC [16].
In order to construct class expressions beyond ALC while preserving complete-
ness, we need to design suitable refinement operators for more expressive DLs,
e.g. SROIQ(D) [11].

Besides sequentially examining acquired hypotheses, a domain expert can
potentially use them for interactive ontology completion and debugging. More
specifically, approved hypotheses can be added to the ontology which is then
used to mine new hypotheses and the step is repeated. Within such an iter-
ative process, modelling errors can be identified using wrong hypotheses and
then repaired. After that, a user can continue completing the ontology until it
is sufficiently enriched or new errors are found. This scenario and additional
investigations of the quality measures are subjects of further case studies.

Acknowledgements. We thank Amanda Hicks (the University of Florida) for par-
ticipating in our case study and giving us valuable feedback and Michael Rutherford
(the University of Arkansas for Medical Sciences) for translating data into OWL.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB 1994), pp. 487–499. Morgan Kaufmann, Santiago de Chile,
September 1994

2. Alsubait, T., Parsia, B., Sattler, U.: Measuring similarity in ontologies: a new
family of measures. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E.
(eds.) EKAW 2014. LNCS, vol. 8876, pp. 13–25. Springer, Cham (2014). doi:10.
1007/978-3-319-13704-9 2

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications, 2nd
edn. Cambridge University Press, New York (2010)

4. Baader, F., Sertkaya, B., Turhan, A.: Computing the least common subsumer w.r.t.
a background terminology. J. Appl. Logic 5(3), 392–420 (2007)

5. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: theoretical and
experimental results. In: Proceedings of the 4th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 1994), pp. 121–133. Morgan
Kaufmann, Bonn, May 1994

6. Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D.:
Empirical study of logic-based modules: cheap is cheerful. In: Alani, H., Kagal, L.,
Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C.,
Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 84–100. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41335-3 6

http://dx.doi.org/10.1007/978-3-319-13704-9_2
http://dx.doi.org/10.1007/978-3-319-13704-9_2
http://dx.doi.org/10.1007/978-3-642-41335-3_6

Mining Hypotheses from Data in OWL 593

7. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description
logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS, vol. 5194, pp. 107–121.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85928-4 12

8. Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meers-
man, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C.,
Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M.
(eds.) OTM 2011. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25106-1 20

9. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: Proceedings
of the 22nd International World Wide Web Conference (WWW 2013), pp. 413–
422. International World Wide Web Conferences Steering Committee/ACM, Rio
de Janeiro (2013)

10. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM
Comput. Surv. 38(3), 9 (2006)

11. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

12. Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

13. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In:
Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan,
K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-88564-1 21

14. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for
concept learning in the semantic web. Appl. Intell. 26(2), 139–159 (2007)

15. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for
ontology engineering. J. Web Semant. 9(1), 71–81 (2011)

16. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Mach. Learn. 78(1–2), 203–250 (2010)

17. Matentzoglu, N., Parsia, B.: BioPortal Snapshot 27.01.2015, February 2015.
https://doi.org/10.5281/zenodo.15667

18. Ratcliffe, D., Taylor, K.: Closed-world concept induction for learning in OWL
knowledge bases. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.)
EKAW 2014. LNCS, vol. 8876, pp. 429–440. Springer, Cham (2014). doi:10.1007/
978-3-319-13704-9 33

19. Sazonau, V.: General Terminology Induction in Description Logics. Technical
report, The University of Manchester (2017). https://doi.org/10.5281/zenodo.
579593

20. Sazonau, V., Sattler, U., Brown, G.: General terminology induction in OWL.
In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srini-
vas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 533–550. Springer, Cham (2015). doi:10.1007/
978-3-319-25007-6 31

21. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

22. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21034-1 9

23. Zhu, M., Gao, Z., Pan, J.Z., Zhao, Y., Xu, Y., Quan, Z.: TBox learning from
incomplete data by inference in BelNet+. Knowl. Based Syst. 75, 30–40 (2015)

http://dx.doi.org/10.1007/978-3-540-85928-4_12
http://dx.doi.org/10.1007/978-3-642-25106-1_20
http://dx.doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.5281/zenodo.15667
http://dx.doi.org/10.1007/978-3-319-13704-9_33
http://dx.doi.org/10.1007/978-3-319-13704-9_33
https://doi.org/10.5281/zenodo.579593
https://doi.org/10.5281/zenodo.579593
http://dx.doi.org/10.1007/978-3-319-25007-6_31
http://dx.doi.org/10.1007/978-3-319-25007-6_31
http://dx.doi.org/10.1007/978-3-642-21034-1_9
http://dx.doi.org/10.1007/978-3-642-21034-1_9

Semantic Faceted Search with Aggregation
and Recursion

Evgeny Sherkhonov(B), Bernardo Cuenca Grau, Evgeny Kharlamov,
and Egor V. Kostylev

University of Oxford, Oxford, UK
{evgeny.sherkhonov,bernardo.cuenca.grau,evgeny.kharlamov,

egor.kostylev}@cs.ox.ac.uk

Abstract. Faceted search is the de facto approach for exploration of
data in e-commerce: it allows users to construct queries in an intuitive
way without a prior knowledge of formal query languages. This approach
has been recently adapted to the context of RDF. Existing faceted search
systems however do not allow users to construct queries with aggrega-
tion and recursion which poses limitations in practice. In this work we
extend faceted search over RDF with these functionalities and study the
corresponding query language. In particular, we investigate complexity
of the query answering and query containment problems.

1 Introduction

Faceted search is a prominent search and data exploration paradigm in Web
applications, where users can progressively narrow down the search results by
applying filters, called facets [28]. Faceted search has also been proposed in the
Semantic Web context as a suitable paradigm for exploring and querying RDF
graphs, and a number of RDF-based faceted search systems have been developed
in recent years [1,4,8,12,14–17,20,25].

The theoretical underpinnings of faceted search in the Semantic Web context
were first studied in [10,23,30] and more recently in [1], where the authors iden-
tified a class of first-order faceted queries providing a balance between expres-
sivity of the query language and complexity of query answering. On the one
hand, faceted queries naturally capture the core functionality of faceted query
interfaces as implemented in existing systems; on the other hand, in contrast to
arbitrary first-order queries, their restrictions ensure that they can be answered
in polynomial time in the combined size of the input RDF graph and query [1].

Faceted queries as defined in [1], however, do not capture some of the func-
tionality needed for applications. We discuss this missing functionality on an
example of a marketing company recording different kinds of information about
products using an RDF graph. In enterprise data management such graphs

Work supported by the Royal Society under a University Research Fellowship and
the EPSRC under an IAA award and the projects DBOnto, MaSI3, ED3, and
VADA(EP/M025268/1).

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 594–610, 2017.
DOI: 10.1007/978-3-319-68288-4 35

Semantic Faceted Search with Aggregation and Recursion 595

:Samsung S8

800 900

:Exynos

290 270

:Samsung :Suwon :South Korea

:AsiaSmartphone Processor Company

:HP Elite X3

730

:Snapdragon

300280

:Qualcomm :San Diego :USA

:North America

type

type

type

type

type

type

price price

hasPart producedBy withHQ inCountry

inContinent

price price

price

hasPart producedBy

priceprice

withHQ inCountry

inContinent

Fig. 1. Example RDF graph about products

are often the result of data integration, where data from disparate sources are
exported into RDF for sharing and analysis purposes. An excerpt of our example
graph is shown in Fig. 1. The graph describes mobile phones such as “Samsung
S8” by providing information such as their price as advertised by different sell-
ers, their parts (e.g., processors), or the country where phones and their parts
were produced. The expert users working for the company would want to exploit
faceted search to enable sophisticated searches such as the following ones:

(S1) find smartphones with price between £500 and £900;
(S2) find companies producing at least ten different models of smartphones; or
(S3) find smartphones with processors produced by North American companies.

To capture search (S1), a faceted search system should support numeric value
ranges; in particular, this requires the underpinning query language to allow
for comparisons between variables and numbers. Search (S2) requires a form of
aggregation since it involves counting the number of smartphone models pro-
duced by each company. Search (S3) is rather cumbersome to perform in a
typical RDF faceted search system, where facets are generated by “following”
the explicit links in the input graph. In particular, one would typically search for
smartphones first, then select the relevant processor (note the direct link between
phones and processors via the hasPart relation), then select relevant cities and
subsequently countries, until eventually reaching the selection for continents.
Furthermore, by the time users are asked to select processors or even cities, they
are unlikely to know whether these are related at all to North America. Thus,
in many applications it is useful for faceted interfaces to provide “shortcuts”
that would allow, for instance, a selection for continent without the need for
first selecting processors, cities, or countries. Supporting such shortcuts requires
a form of reachability (i.e., recursion) in the underpinning query language.

596 E. Sherkhonov et al.

In this paper, we propose an extension of the faceted query language intro-
duced in [1] with numeric comparisons, aggregation and recursion. Similarly
to faceted queries, our extended query language strikes a nice balance between
expressive power and computational properties. On the one hand, it is expressive
enough to capture the typical searches that we have encountered in practical use
cases provided by our industrial partners. On the other hand, we show that query
answering remains tractable in the size of both the input graph and the query
despite the additional expressivity. In addition to query answering, we also study
the query containment and equivalence problems for (extended) faceted queries—
the fundamental problems underpinning static analysis and query optimisation—
which were not considered in prior work. We show that these problems are both
coNP-complete for our extended language, where the coNP lower bound holds
already for core faceted queries without comparisons, aggregation or reachability.
This is in contrast to unrestricted positive existential queries in first-order logic
for which the problems are known to be Πp

2 -complete and thus in the second level
of the polynomial hierarchy. Furthermore, we propose a practical fragment of our
extended query language for which the problems become tractable. Finally, we
have extended the faceted search system SemFacet1 to support numeric value
ranges and aggregation, and we are currently working on extending the system
to further support the aforementioned reachability features.

2 Preliminaries

We assume a vocabulary consisting of pairwise disjoint countably infinite sets
of individuals I, numeric literals NL (which we assume to correspond to the
rational numbers), classes C—that is, unary predicates that range over I, object
properties OP—that is, binary predicates with both arguments ranging over I,
and datatype properties DP—that is, binary predicates with the first argument
ranging over I and the second over NL. We also consider a countably infinite
set V of variables, which is pairwise disjoint with all the aforementioned sets.

A fact is an expression of the form A(c) with A ∈ C and c ∈ I, P (c1, c2)
with P ∈ OP and c1, c2 ∈ I, or D(c, n) with D ∈ DP, c ∈ I and n ∈ NL. In the
context of this paper, we define an RDF graph as a finite set of facts. The active
domain ADom(G) of an RDF graph G is the set of all its individuals and numeric
literals. Note that our formalisation captures RDF datasets corresponding to sets
of OWL 2 DL assertions—that is, the datasets that can be seamlessly used in
conjunction with OWL 2 DL ontologies.

A relational atom is an expression of the form A(x) with A ∈ C and x ∈ V or
R(x1, x2) with R ∈ OP∪DP and x1, x2 ∈ V. An equality atom is an expression
of the form x = a, where x ∈ V and a ∈ I ∪ NL.

A positive existential query Q(x̄) is a first-order logic formula with free vari-
ables x̄, denoted fvar(Q), built from relational and equality atoms using disjunc-
tion ∨, conjunction ∧, and existential quantification ∃. We assume all positive
existential queries to be rectified—that is, without different quantifications of
1 https://www.cs.ox.ac.uk/isg/tools/SemFacet/.

https://www.cs.ox.ac.uk/isg/tools/SemFacet/

Semantic Faceted Search with Aggregation and Recursion 597

the same variable, and denote PEQ the set of all such queries. A positive exis-
tential query is a conjunctive query if it is ∨-free. We denote CQ the set of all
conjunctive queries. A query Q is monadic if it has exactly one free variable.

We next define the semantics of PEQ. Let G be an RDF graph. A valuation
over variables x̄ is a mapping ν : x̄ → ADom(G). For ν a valuation over x̄ and
variables ȳ ⊆ x̄, we denote ν|ȳ the restriction of ν to ȳ. Let Q ∈ PEQ, and ν be
a valuation over fvar(Q). Then, G satisfies Q under ν, denoted G, ν |= Q, if

– Q is an atom R(x̄) and R(ν(x̄)) ∈ G;
– Q is an atom x = a and ν(x) = a;
– Q = Q1 ∧ Q2, G, ν|fvar(Q1) |= Q1, and G, ν|fvar(Q2) |= Q2;
– Q = Q1 ∨ Q2 and either G, ν|fvar(Q1) |= Q1 or G, ν|fvar(Q2) |= Q2; or
– Q = ∃y.Q′ and G, ν ∪ {y 	→ c} |= Q′ for some c ∈ I ∪ NL.

The semantics [Q]G of a query Q(x̄) (in PEQ or its extension) over an RDF
graph G is the following set of tuples of elements in I ∪ NL:

{ν(x̄) | G, ν |= Q and ν is a valuation over x̄}.

The query answering problem is to compute [Q]G given Q and G.
A query Q is contained in a query Q′, written Q ⊆ Q′ if [Q]G ⊆ [Q′]G holds

for every RDF graph G. They are equivalent, written Q ≡ Q′, if [Q]G = [Q′]G for
every G. The query containment problem is to determine, given queries Q and
Q′ as input, whether Q ⊆ Q′. The query equivalence problem is to determine
whether Q ≡ Q′. Note that these problems are easily reducible to each other for
all query languages considered in this paper: Q ≡ Q′ if and only if Q ⊆ Q′ and
Q′ ⊆ Q, while Q ⊆ Q′ if and only if Q ∧ Q′ ≡ Q.

When talking about complexity of algorithms, we assume the usual binary
representation of graphs and queries; in particular, rational numbers are repre-
sented by pairs of an integer and a positive integer in binary, one for the numer-
ator and the other for the denominator. This representation size of a graph G
should be distinguished from the number of facts in G, which is denoted as |G|.

3 Faceted Queries

In this section, we recapitulate the language of faceted queries as proposed in
[1] and justify its main features using the example faceted interface on the left-
hand-side of Fig. 2.2 Our treatment is by no means comprehensive, and we refer
the interested reader to the aforementioned papers for additional details.

The front-end of a typical RDF faceted search system provides (1) a search
text box, where users can enter keywords; (2) a faceted interface, which con-
tains facets and their possible values; and (3) a results pane, where the search
results are provided. The keywords entered in the search box are used, on the
one hand, to obtain an initial set of results (using standard information-retrieval

2 The figure is based on the front-end of the SemFacet system.

598 E. Sherkhonov et al.

Fig. 2. Example faceted query interfaces over RDF data

techniques) and, on the other hand, to construct an initial faceted interface with-
out selected values, which constitutes the starting point for faceted navigation.
The set of values selected by users in the faceted interface are compiled into a
query, which is then issued to a triple store holding the input RDF graph. The
answers to the query are finally depicted in the results pane.

The basic element of a faceted interface is a facet, which consists of a facet
name and a set of values (see Fig. 2). The special type facet is used to select
the categories (classes) to which the results must belong. Facets can be con-
junctive or disjunctive, depending on whether the selection of different values
is interpreted disjunctively or conjunctively. For instance, the facet withHQ,
which indicates the headquarters of companies, is disjunctive in the sense that
selecting both Suwon and San Diego as values would result in a query asking
for companies with headquarters in either of the aforementioned cities. In con-
trast to conventional faceted search systems, where the underpinning data has a
simple “flat” structure, systems based on RDF must be able to search through
complex graph data, and as a result facet nesting becomes an important feature.
For instance, the producedBy facet in Fig. 2 (left) is nested under the hasPart
facet, which indicates that the values of the facet refer to the companies that
produce phone parts, rather than those producing phones themselves.

The queries obtained as a result of compiling user value selections in a faceted
interface are referred to as faceted queries. We next discuss the intuition behind
such compilation; a formal treatment can be found in [1].

Selections in the special facet type are interpreted as conjunctions (or disjunc-
tions) of unary relational atoms over the same variable. Selections on any other
facet yield either a binary relational atom whose second argument is existentially
quantified (if the special value Any is selected), or in a conjunction (disjunction)
of binary relational atoms having as second argument a constant or a variable

Semantic Faceted Search with Aggregation and Recursion 599

belonging to a unary relational atom. Facet nesting involves a “shift” of vari-
able from the parent facet to the nested facet as well as to the introduction of
fresh existentially quantified variables. As a result, faceted queries can be seen
as positive existential queries satisfying the following restrictions:

(R1) they are monadic since query answers displayed in a system’s results pane
are individual objects, rather than tuples of objects;

(R2) they are tree-shaped since existentially quantified variables introduced by
facet nesting are always fresh; and

(R3) all disjuncts of a disjunctive (sub-)query are also monadic, with the same
free variable shared across all their disjuncts.

For instance, the user selections on the left-hand side of Fig. 2 are compiled
into the following faceted query Qex

1 (x) asking for smartphones whose processor
is produced by any company with headquarters in either Suwon or San Diego:

Smartphone(x) ∧ ∃y. (hasPart(x, y) ∧ Processor(y) ∧
(∃z1. (producedBy(y, z1) ∧ ∃w1.withHQ(z1, w1) ∧ (w1 = :Suwon)) ∨

(∃z2. (producedBy(y, z2) ∧ ∃w2.withHQ(z2, w2) ∧ (w2 = :San Diego)))). (1)

Note that query Qex
1 has a single free variable x and hence satisfies restric-

tion (R1). Furthermore, it has no cyclic dependencies between its variables and
hence satisfies restriction (R2). Finally, the disjuncts in the only disjunctive sub-
query of Qex

1 share their only free variable y, and hence the query satisfies (R3).
Restrictions (R1)–(R3) are formalised in the following definitions.

Definition 1. The graph of Q ∈ PEQ is the directed labeled graph such that

– its nodes are the variables mentioned in Q;
– its edges are the pairs (x1, x2) with relational atoms P (x1, x2) in Q; and
– the label of (x1, x2) is the set of all properties P with P (x1, x2) in Q.

A monadic query Q(x) ∈ PEQ is tree-shaped if its graph is a directed tree rooted
at x and the label of each edge is a singleton.

Definition 2. A (core) faceted query Q is a monadic, tree-shaped query in PEQ
satisfying the following additional property: if Q1 ∨ Q2 is a sub-query of Q, then
fvar(Q1) = fvar(Q2) = {x} for some variable x. We denote with FQ and CFQ
the classes of all faceted queries and all conjunctive faceted queries, respectively.

The restrictions in this definition are sufficient for an existence of a
polynomial-time query answering algorithm [1].

4 Extended Faceted Queries

In this section, we present our extension of core faceted queries. We consider
as a running example the faceted interface depicted on the right-hand-side of
Fig. 2. Intuitively, the user selections in the figure represent a search for all

600 E. Sherkhonov et al.

smartphones with maximum price amongst all sellers comprised between £500
and £900, and whose processor has been manufactured by a North American
company. The interface on the right-hand side of the figure extends that on the
left-hand side with two additional elements:

– an aggregate facet consisting of a selection for an aggregate and a numeric
range slider, and which establishes the relevant restriction on the maximum
smartphone price;

– a special facet with a search box which allows users to search for “reachable”
facets, thus providing a shortcut for the relevant continent selection.

To capture such new elements, we extend the query language in Sect. 4 with
three new types of atoms, namely (i) comparison atoms, extending equality
atoms and capture numeric comparisons between a variable and a numeric lit-
eral; (ii) aggregate atoms, capturing aggregation; and (iii) reachability atoms,
representing a limited form of recursion sufficient to capture the shortcuts.

We start by defining comparison atoms and their semantics.

Definition 3. A comparison atom is an expression of the form x op a, where
x ∈ V, op ∈ {=,≤,≥, <,>}, and a ∈ I ∪ NL if op is = and a ∈ NL otherwise.
An RDF graph G satisfies a comparison atom x op a under a valuation ν over
x, written G, ν |= x op a, if and only if ν(x) op a holds under the conventional
built-in meaning of comparison predicates (assuming that ν(x) op a is false if
ν(x) /∈ NL and op is not =).

Note that each equality atom is a comparison atom by definition.
For instance, the following query uses comparison atoms to ask for all smart-

phones with price range between £500 and £900:

Qex
2 (x) = Smartphone(x) ∧ ∃y. (price(x, y) ∧ (y ≥ 500) ∧ (y ≤ 900)).

Aggregate atoms in our language provide a restricted form of aggregation over
what is available in standard query languages such as SPARQL 1.1 [13,18]. An
important restriction is that the value computed by the corresponding aggregate
function is immediately compared to a constant and thus the atom is evaluated
to either true or false in any given graph and valuation. This is in contrast
to SPARQL 1.1, where the value computed by an aggregate function can be
assigned to a variable which can then occur in other parts of the query. Another
restriction is that grouping is always performed over the first argument of an
object or datatype property and, as a result, the collection of values over which
the aggregate function is evaluated cannot contain duplicates and thus can be
seen as a set rather than a multiset.

Definition 4. An aggregate function is a function f : 2I∪NL → NL∪ {undef},
where undef is a special symbol. We concentrate on several specific aggregate
functions, defined as follows, for S ⊆ I ∪ NL:

Semantic Faceted Search with Aggregation and Recursion 601

– count(S) is the cardinality of S;
– min(S) is the minimum in S if S ⊆ NL and S = ∅, and it is undef otherwise;
– max(S) is the maximum in S if S ⊆ NL and S = ∅, and undef otherwise;
– sum(S) is the sum of literals in S if S ⊆ NL, and it is undef otherwise;
– avg(S) is sum(S)/count(S) if sum(S) = undef and count(S) /∈ {0, undef},

and it is undef otherwise.

An aggregate atom is an expression of the form Agg(x,R, f)opn, where f is one
of the aforementioned aggregate functions, R is a property that is datatype if
f = count, x is a variable, op ∈ {=,≤,≥, <,>}, and n ∈ NL. An RDF graph G
satisfies an aggregate atom Agg(x,R, f) op n under a valuation ν over x, written
G, ν |= Agg(x,R, f) op n, if and only if f({a | R(ν(x), a) ∈ G}) op n (assuming
that all comparison operators return false if the first argument is undef).

For instance, the following query relies on aggregate atoms to ask for smart-
phones with average price across all sellers greater than £500:

Qex
3 (x) = Smartphone(x) ∧ (Agg(x, price, avg) ≥ 500).

We next define reachability atoms, capturing the shortcuts in navigation.

Definition 5. A reachability atom is an expression of the form Next(x1, x2) or
Next+(x1, x2) with x1, x2 ∈ V. An RDF graph G satisfies a reachability atom α
under a valuation ν, denoted G, ν |= α, if

– α = Next(x1, x2) and there is a property R such that G, ν |= R(x1, x2); or
– α = Next+(x1, x2) and there exist a1, . . . , an, n ≥ 1, in I ∪ NL such that

ν(x1) = a1, ν(x2) = an, and, for each i = 1, . . . , n − 1, there is a property Ri

such that Ri(ai, ai+1) ∈ G.

Our example search on the right-hand side of Fig. 2 can be captured by the
following faceted query Qex

4 (x), involving aggregate and reachability atoms:

Smartphone(x) ∧ (Agg(x, price,max) ≥ 500) ∧ (Agg(x, price,max) ≤ 900)
∧ ∃y. (hasPart(x, y) ∧ Processor(y) ∧ ∃z.(producedBy(y, z)

∧ ∃v. Next+(z, v) ∧ ∃u. inContinent(v, u) ∧ (u = :North America))).

The languages of positive existential queries and faceted queries are extended
in the obvious way by allowing for the new types of atoms (i.e., comparison,
aggregate and reachability) in addition to relational atoms.

Definition 6. Extended positive existential queries are defined in the same
way as positive existential queries, except that they allow for not only rela-
tional and equality, but also (arbitrary) comparison, aggregate, and reachabil-
ity atoms as building blocks. Extended faceted queries are also defined in the
same way as core faceted queries; in this case, the graph of the query takes
into account binary relational atoms and reachability atoms (but not compar-
ison or aggregate ones). We denote with L[O], for L ∈ {PEQ,CQ,FQ,CFQ}
and O ⊆ {Comp,Agg,Next,Next+} the language obtained by extending L with
atoms specified in O as follows: comparison if Comp ∈ O, aggregate if Agg ∈ O,
Next if Next ∈ O, and Next+ if Next+ ∈ O.

602 E. Sherkhonov et al.

It is known that core faceted queries are expressible in the standard RDF
query language SPARQL [1]. Similarly, extended faceted queries allow for a
direct translation to the current version of this language, SPARQL 1.1 [13,18].
In particular, it has aggregation functionality, which captures aggregate atoms
in faceted queries, and property paths, which capture reachability atoms.

5 Answering Extended Faceted Queries

In [1] it was shown that core faceted queries (i.e., faceted queries without com-
parison, aggregate, and reachability atoms) can be answered in polynomial time.
This is in contrast to unrestricted positive existential (or even conjunctive)
queries, where evaluation problem is well-known to be NP-complete.

Tractability of core faceted query answering relies on two key observations [1].
First, answering monadic tree-shaped conjunctive queries is a well-known tract-
able problem; thus, the only possible source of intractability is the presence of
disjunction. Second, disjunctive subqueries in a faceted query can be answered
in a bottom-up fashion: to compute the answers to Q1(x) ∨ Q2(x) it suffices to
answer Q1(x) and Q2(x) independently and “store” the answers as new unary
relational facts in the input RDF graph using a fresh class CQ1∨Q2 uniquely
associated to Q1(x) ∨ Q2(x). The polynomial time algorithm in [1] stems from
a direct application of these observations, and relies on an oracle for answering
monadic tree-shaped conjunctive queries.

In this section, we study the problem of answering extended faceted queries
over RDF graphs. Specifically, we propose a polynomial time query answering
algorithm that generalises that in [1] to account for the additional features of
the query language. We proceed in the following two steps.

1. In the first step we show that comparison and aggregate atoms can be
encoded away by a polynomial time rewriting of the input query and RDF
graph; the correctness of this rewriting is independent from the special prop-
erties of faceted queries, and thus it equivalently transforms any query in
PEQ[Comp,Agg,Next,Next+] into PEQ[Next,Next+].

2. In the second step we show that, analogously to core faceted queries, any
query in FQ[Next,Next+] can be efficiently answered in a bottom-up fash-
ion while “storing” the results of disjunctive subqueries in the RDF graph.
In contrast to the algorithm in [1], which relies on an oracle for answering
monadic tree-shaped conjunctive queries, our extended algorithm relies on
the existence of a polynomial time procedure for answering a special type of
conjunctive regular path queries (CRPQs) [2].

In the intermediate steps of the algorithms in this and the following sec-
tions we operate with graphs and queries that allow for generalised predicates:
a heterogeneous class is a unary predicate that ranges over I ∪ NL, and a het-
erogeneous property is a binary predicate with the first argument ranging over I
and the second over I ∪ NL. For brevity, we assume that such graphs are RDF
graphs and such queries belong to the corresponding languages (e.g., FQ).

Semantic Faceted Search with Aggregation and Recursion 603

For the first step, consider a query Q(x) in PEQ[Comp,Agg,Next,Next+]
and an RDF graph G. For every comparison or aggregate atom α in Q, we intro-
duce a fresh heterogeneous class Cα. Let Q̃ be the query in PEQ[Next,Next+]
obtained from Q by replacing each comparison or aggregate atom α with the free
variable x by Cα(x). Note that if Q is in FQ[Comp,Agg,Next,Next+], then Q̃
is in FQ[Next,Next+]. Let also G̃ be the union of G and the following graphs:

{Cx op a(a′) | x op a is atom in Q, a′ ∈ ADom(G), and a′ op a},
{CAgg(x,R,f) opn(a) | Agg(x,R, f) op n is atom in Q, a ∈ ADom(G), and

G, {x 	→ a} |= Agg(x,R, f) op n}.

The following lemma establishes the correctness of the transformation.

Lemma 1. Given a query Q in PEQ[Comp,Agg,Next,Next+] and an RDF
graph G, query Q̃ and RDF graph G̃ can be computed in polynomial time in the
sizes of binary representations of Q and G. Moreover, [Q]G = [Q̃]G̃.

Note that, in particular, the number N of atoms in Q̃ is the same as in Q,
and |G̃| ≤ |G| + N · |ADom(G)|.

Having Lemma 1 at hand, it is enough to define a polynomial-time proce-
dure for answering queries in FQ[Next,Next+], which we do in the second step.
To this end, we first note that tree-shaped queries in CQ[Next,Next+] can be
directly translated into strongly acyclic CRPQs, which can be answered in linear
time both in the size of the query and the RDF graph [2].

Lemma 2. Computing [Q]G for a monadic tree-shaped query Q in the class
CQ[Next,Next+] and a generalised RDF graph G can be done in O(n · m),
where n and m are the sizes of binary representations of Q and G, respectively.

We next present Algorithm 1, which computes [Q]G for a query Q(x) ∈
FQ[Comp,Agg,Next,Next+] and an RDF graph G. First, the algorithm elimi-
nates comparison and aggregation atoms on the basis of Lemma 1. Then, analo-
gously to the algorithm in [1], it iterates, in a bottom-up manner, over all disjunc-
tive subqueries of Q: each disjunctive-free subquery is dealt with using the pro-
cedure Answer-saCRPQ for answering strongly acyclic CRPQs on the basis of
Lemma 2, while the disjunctive subquery is replaced with the atom CQ1∨Q2(x) in
Q (for CQ1∨Q2 a fresh heterogeneous class), and the graph is extended by atoms
CQ1∨Q2(a) for all a returned by the call to Answer-saCRPQ. The correctness
of Algorithm 1 leads to our main result in this section.

Theorem 1. Query answering in FQ[Comp,Agg,Next,Next+] can be solved
in polynomial time.

6 Query Containment and Equivalence

In this section we consider the containment and equivalence problems for faceted
queries. These are fundamental problems for static analysis and query optimisa-
tion and, to the best of our knowledge, have not been considered in prior work
on faceted search in the Semantic Web context.

604 E. Sherkhonov et al.

Algorithm 1. Answer-FQ[Comp,Agg,Next,Next+]
INPUT : Q a query in FQ[Comp,Agg,Next,Next+], G an RDF graph
OUTPUT: [Q]G

1 Q := Q̃ and G := G̃
2 while Q has a disjunctive subquery do
3 pick a subquery Q1(x) ∨ Q2(x) in Q with Q1 and Q2 disjunction-free
4 for each 1 ≤ i ≤ 2 do
5 Ansi := Answer-saCRPQ(Qi, G)
6 replace Q1(x) ∨ Q2(x) in Q with CQ1∨Q2(x) for heterogeneous class CQ1∨Q2

7 G := G ∪ {CQ1∨Q2(a) | a ∈ Ans1 ∪ Ans2}
8 return Answer-saCRPQ(Q,G)

We concentrate on containment: as argued in Sect. 2, containment and equiv-
alence are polynomially inter-reducible. We start by showing that contain-
ment is coNP-complete for FQ[Comp,Agg,Next,Next+], and the hardness
holds even for FQ and for CFQ[Next,Next+]. Then, we establish tractability
of containment for practically important subclasses of faceted queries, namely
CFQ[Comp,Agg,Next] and CFQ[Comp,Agg,Next+]. Finally, we show that the
requirement on disjunction in the definition of faceted queries has a significant
impact on complexity: containment of monadic tree-shaped PEQ (without any
additional restriction on disjunctive subformulas) is Πp

2 -complete, and hence as
hard as containment for unrestricted PEQ.

First we show a coNP upper bound for FQ[Comp,Agg,Next,Next+]. We
start with several definitions.

Let Q and Q′ be FQ[Comp,Agg,Next,Next+] queries, and let N and N+

be fresh heterogeneous properties. We first show how to eliminate reachability
atoms and fractional numbers from Q and Q′. Consider all the numeric literals
a1, . . . , an in the comparison and aggregate atoms of Q and Q′ except aggregate
atoms over count, as well as integers b1, . . . , bn that are numerators of rational
numbers obtained from a1, . . . , an by bringing them to the smallest common
denominator. Denote Q̃ and Q̃′ the queries in FQ[Comp,Agg] obtained from Q
and Q′, respectively, by replacing

1. each ai in comparison and non-count aggregate atoms by bi; and
2. each atom Next(x1, x2) by N(x1, x2) and each Next+(x1, x2) by N+(x1, x2).

The size of binary representation of Q̃ and Q̃′ is polynomial in the size of Q and
Q′, and Q̃ and Q̃′ can be constructed efficiently, in polynomial time. As we will
see later, containment of Q in Q′ can be reduced to containment of Q̃ in Q̃′.

A generalised RDF graph G is a set of facts enriched, for each constant c ∈ I,

– by a non-negative integer Val(c,R, count) for each R ∈ OP ∪ DP, and
– by rational numbers Val(c,D, f) for all f ∈ {min,max, sum} and all D ∈ DP.

Graph G is realisable if there is an RDF graph G′ such that all facts of G are
also in G′, and f({a | R(c, a) ∈ G′}) = Val(c,R, f) for all Val(c,R, f) in G.

Semantic Faceted Search with Aggregation and Recursion 605

The semantics [Q]G of a query Q(x̄) over a generalised RDF graph G is defined
in the same way as over a usual one, except that, when evaluating aggregate atoms,
aggregation values are not computed on the facts, but taken from the correspond-
ing Val(c,R, f) (assuming Val(c,R, avg) = Val(c,R, sum)/Val(c,R, count) for uni-
formity).

Intuitively, the generalised RDF graph G represents (a part of) the usual RDF
graph G′ witnessing its realisability: numbers Val(c,R, f) describe the values of
aggregates f for c and R in G′ in a concise way. Note, however, that the size of a
binary representation of G may be exponentially smaller than that of G′, because
for some constants c and properties R graph G may store only the number of
R-successors of c in binary instead of listing them one by one (of course, some
parts of G′ may also be not represented in G at all). If fact, as we will see soon, in
search for a witness for non-containment, we can restrict ourselves to generalised
graphs with polynomially-sized binary representation, while the corresponding
witnessing usual graph may be necessarily exponential. But before formalising
this, we show how to modify the graph to deal correctly with reachability.

A generalised RDF graph G is reachability-closed if

– N(a1, a2) ∈ G if and only if R(a1, a2) ∈ G for some R ∈ {N,N+}; and
– N+(a1, a2) ∈ G if and only if there is a directed path from a1 to a2 in G via

properties different from N and N+.

Lemma 3. Given queries Q and Q′ in FQ[Comp,Agg,Next,Next+], Q ⊆ Q′

if and only if there exists a realisable generalised reachability-closed RDF graph
G′ with binary representation of polynomial size in the sizes of representations
of Q and Q′ such that [Q̃]G′ ⊆ [Q̃′]G′ .

The final key observation is that Theorem 1, which ensures that the query
evaluation is feasible, applies to generalised graphs with minor modifications of
justifying Algorithm1, while realisability can also be easily checked.

Lemma 4. Containment is in coNP for FQ[Comp,Agg,Next,Next+].

We now move on to the coNP lower bound which, as we show next, holds
already for rather restricted languages.

Lemma 5. Containment is coNP-hard for both FQ and CFQ[Next,Next+].

Proof (Sketch). We start with a reduction of 3SAT to the complement of the
containment for FQ. Let ϕ be a propositional formula in 3CNF over m variables
ui, i = 1, . . . ,m, with n clauses γj = �1j ∨ �2j ∨ �3j , j = 1, . . . , n. For each i =
1, . . . ,m, let Ti and Fi be classes, and, for each j = 1, . . . , n, let Qj(x) = V 1

j (x)∨
V 2

j (x) ∨ V 3
j (x), where V k

j , for k = 1, 2, 3, is Ti if �k
j = ui and Fi if �k

j = ¬ui.
Consider the following queries in FQ:

Q(x) =
m∧

i=1

(
Ti(x) ∨ Fi(x)

) ∧
n∧

j=1

Qj(x) and Q′(x) =
m∨

i=1

(Ti(x) ∧ Fi(x)).

606 E. Sherkhonov et al.

Intuitively, Q encodes the fact that for every i = 1, . . . , m either ui or ¬ui

must be true and that every clause γj , 1 ≤ j ≤ n, must be true as well. Negation
of Q′ encodes the fact that ui and ¬ui cannot be true at the same time. We
claim that ϕ is satisfiable if and only if Q ⊆ Q′.

The coNP-hardness for CFQ[Next,Next+] can be proved in a similar way
as the hardness of containment of tree patterns over trees in [22]. ��

Lemmas 4 and 5 give us the following theorem.

Theorem 2. Containment is coNP-complete for any query language between
FQ and FQ[Comp,Agg,Next,Next+] as well as for any query language between
CFQ[Next,Next+] and FQ[Comp,Agg,Next,Next+].

This theorem leaves open the question what faceted queries have tractable
containment. Next we show that it is true for conjunctive faceted queries that
use either only Next or only Next+. We start with some definitions.

Consider a query Q in CFQ[Comp,Agg,Next] or in CFQ[Comp,Agg,Next+].
A variable x in Q is domain-inconsistent if Q has an atom of the form C(x) with
C ∈ C, R(x, y) with R ∈ OP ∪ DP ∪ {Next, Next+}, P (x′, x) with P ∈ OP,
x op a with a ∈ I, or Agg(x,R, f) op n, as well as an atom of the form D(x′, x)
with D ∈ DP or x op n with n ∈ NL. Intuitively, domain-consistency ensures
that no variable is required to match both a constant and a numeric literal.

For each variable x in Q, let ΣComp(x,Q) be the set of all comparison atoms
in Q where x appears. Then, for any variables x and y, denote x ∼Q y the
fact that ΣComp(x,Q) and ΣComp(y,Q) imply x = y. Finally, for each x and
property R, let ΣAgg(x,R,Q) be the set of constraints

{xf op n | Agg(y,R, f) op n is an aggregate atom in Q and x ∼Q y}
∪ {xmin ≤ xavg, xavg ≤ xmax, xcount × xavg = xsum},

where, for each aggregate function f, xf is a fresh variable. Query Q is consistent
if ΣComp(x,Q) has a solution for any x in Q, ΣAgg(x,R,Q) has a solution for
any x and any R ∈ OP ∪ DP, and Q has no domain-inconsistent variable.

Given queries Q(x) and Q′(x) both either in CFQ[Comp,Agg,Next] or in
CFQ[Comp,Agg,Next+], a homomorphism from Q′ to Q is a mapping h from
variables of Q′ to variables of Q such that h(x) = x and, for every relational
atom R(x′

1, . . . , x
′
n) ∈ Q′, there exists R(x1, . . . , xn) ∈ Q with h(x′

i) ∼Q xi

for every i. Homomorphism h is comparison-preserving if ΣComp(h(x′), Q)
implies ΣComp(x′, Q′) for any variable x′ of Q′. It is aggregation-preserving if
ΣAgg(h(x′), R,Q) implies ΣAgg(x′, R,Q′) for any variable x′ of Q′ and any R. It
is Next-preserving if, for every atom Next(x′

1, x
′
2) in Q′, there is R(x1, x2) ∈ Q

with R ∈ OP ∪ DP ∪ {Next}, h(x′
1) ∼Q x1, and h(x′

2) ∼Q x2. It is Next+-
preserving if for every Next+(x′

1, x
′
2) in Q′ there are R1(y1, z1), . . . , Rn(yn, zn),

n ≥ 1, in Q with all Ri ∈ OP ∪ DP ∪ {Next+}, such that h(x′
1) ∼Q y1,

h(x′
2) ∼Q zn, and zi ∼Q yi+1 for each i = 1, . . . , n − 1.

Proposition 1. Let Q and Q′ be queries in CFQ[Comp,Agg,N], where N ∈
{Next,Next+}. Then, Q ⊆ Q′ if and only if either Q is not consistent or there
is a comparison-, aggregation- and N -preserving homomorphism from Q′ to Q.

Semantic Faceted Search with Aggregation and Recursion 607

Checking for existence of a comparison-, aggregation- and N -preserving
homomorphism for tree-shaped queries can be done in polynomial time using
standard techniques for tree homomorphisms (see, e.g., [22]), while checking for
consistency is straightforward. So, we have the following theorem.

Theorem 3. The containment problem both for CFQ[Comp,Agg,Next] and for
CFQ[Comp,Agg,Next+] is in PTime.

We conclude by showing that the requirement on disjunction in the definition
of faceted queries makes a difference, and containment for monadic tree-shaped
PEQ is Πp

2 -complete. The following theorem can be proved by a reduction of
∀∃3SAT; the matching upper complexity bound is inherited from arbitrary PEQ.

Theorem 4. Containment is Πp
2 -hard for monadic tree-shaped PEQ.

7 Related Work

To the best of our knowledge, there is no theoretical study on extensions of
faceted search with numeric value ranges, aggregation, and reachability. On the
system side, we are not aware of any RDF-based faceted search system that cur-
rently supports aggregation (see [29] for a comprehensive survey). Aggregation
in faceted search has so far been considered only in the context of conventional
data models [3,7], which are not graph-based; in that setting, the focus was
on improved indexing schemes to optimise interface computation and update.
A limited form of recursion is supported by the /facet system [15], where the
transitive closure of transitive properties is precomputed and explicitly stored in
the RDF graph. Finally, numeric value ranges have been implemented in several
systems [12,27] and their implementation is similar to ours in SemFacet.

Query containment is a classical problem in database theory. Containment of
acyclic conjunctive queries is tractable [11,31] which implies tractability of core
conjunctive faceted queries that are tree-shaped and thus acyclic. Containment
for (unions of) conjunctive queries is NP-complete [5]. It is also known that
containment is Πp

2 -complete for PEQ [24], while our results show that hardness
already holds for tree-shaped PEQ.

For CQ it is known that adding comparison atoms changes complexity of con-
tainment from NP-complete to Πp

2 -complete [9,19,21] and the known proofs of
the lower bound either rely on ternary relations, or they exploit atoms that com-
pare two variables. Our results show that adding comparison atoms of the form
x op a (for a a constant) does not increase the complexity of containment, which
remains in coNP. Moreover, containment for tree-shaped conjunctive queries
with comparison atoms of the form x op a is tractable [26], and thus the con-
tainment is also tractable for core conjunctive faceted queries with comparisons.

When aggregates are added to CQ or PEQ, the complexity of containment
becomes dependent on the supported aggregate functions [6]. Notably, most
complexity upper bounds in the literature are formulated for queries containing
a specific aggregate function only. In contrast, in this paper we allow for arbitrary

608 E. Sherkhonov et al.

combinations of aggregate functions in queries, while at the same time restricting
other aspects of aggregation as discussed in Sect. 4.

A number of languages with recursive navigational features have been con-
sidered in the context of graph databases, including regular path queries (RPQs)
and conjunctive regular path queries (CRPQs). These languages are very expres-
sive and, as a result, containment becomes computationally expensive: it is
ExpSpace-complete for CRPQs, where the lower bound already holds for acyclic
CRPQs [2]. In contrast, the form of recursion provided by our query language is
rather limited, and does not result in a complexity jump when added to faceted
queries. Conjunctive faceted queries also resemble XML tree patterns, where the
descendant axis in tree patterns is akin to our reachability atoms interpreted
over XML trees. Containment of tree patterns is coNP-complete [22], and we
used a similar idea to establish a coNP lower bound for conjunctive faceted
queries with reachability atoms.

8 Conclusion and Future Work

In this paper we have extended existing faceted query languages with new fea-
tures important in applications. We have shown that, despite the additional
expressivity, query answering remains tractable in the combined size of the input
query and RDF graph. We have also studied the query containment problem and
established complexity bounds for a number of practically relevant fragments of
our query language. From a practical point of view, we have extended the faceted
search system SemFacet to support numeric value ranges and aggregation, and
are currently working on extending it to also support reachability.

We see many directions for future work. From a theoretical perspective, we
are planning to study extensions of faceted queries with additional features sug-
gested by practical use cases, and in particular with a form of negation. Further-
more, we are also planning to study the computational properties of extended
faceted queries in the presence of an ontology. From a practical perspective, we
are working closely with our collaborators at EDF Energy on the development of
a Semantic Search tool combining SemFacet and their in-house visualisation tool
SemVue. The initial results of this collaboration have been very encouraging.

References

1. Arenas, M., Cuenca Grau, B., Kharlamov, E., Marciuška, Š., Zheleznyakov, D.:
Faceted search over RDF-based knowledge graphs. J. Web Semant. 37, 55–74
(2016)

2. Barceló, P.: Querying graph databases. In: Proceedings of PODS (2013)
3. Ben-Yitzhak, O., Golbandi, N., Har’El, N., Lempel, R., Neumann, A.,

Ofek-Koifman, S., Sheinwald, D., Shekita, E., Sznajder, B., Yogev, S.: Beyond
basic faceted search. In: Proceedings of WSDM (2008)

4. Berners-Lee, T., Hollenbach, J., Lu, K., Presbrey, J., Prudhommeaux, E., Schraefel,
M.C.: Tabulator redux: browsing and writing linked data. In: LDOW (2008)

Semantic Faceted Search with Aggregation and Recursion 609

5. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theor.
Comput. Sci. 239(2), 211–229 (2000)

6. Cohen, S.: Containment of aggregate queries. SIGMOD Rec. 34(1), 77–85 (2005)
7. Dash, D., Rao, J., Megiddo, N., Ailamaki, A., Lohman, G.: Dynamic faceted search

for discovery-driven analysis. In: Proceedings of CIKM (2008)
8. Fafalios, P., Tzitzikas, Y.: X-ENS: semantic enrichment of Web search results at

real-time. In: Proceedings of SIGIR (2013)
9. Farré, C., Nutt, W., Teniente, E., Urṕı, T.: Containment of conjunctive queries

over databases with null values. In: Proceedings of ICDT (2007)
10. Ferré, S., Hermann, A.: Semantic search: reconciling expressive querying and

exploratory search. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 177–192.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6 12

11. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.
J. ACM 48(3), 431–498 (2001)

12. Hahn, R., Bizer, C., Sahnwaldt, C., Herta, C., Robinson, S., Bürgle, M., Düwiger,
H., Scheel, U.: Faceted Wikipedia search. In: Proceedings of BIS (2010)

13. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013

14. Heim, P., Ziegler, J., Lohmann, S.: gFacet: a browser for the Web of Data. In:
Proceedings of IMC-SSW (2008)

15. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: a browser for hetero-
geneous semantic web repositories. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 272–285. Springer, Heidelberg (2006). doi:10.1007/11926078 20

16. Huynh, D., Mazzocchi, S., Karger, D.R.: Piggy bank: experience the semantic web
inside your web browser. J. Web Sem. 5(1), 16–27 (2007)

17. Huynh, D.F., Karger, D.R.: Parallax and companion: set-based browsing for the
Data Web (2013). www.davidhuynh.net

18. Kaminski, M., Kostylev, E.V., Cuenca Grau, B.: Semantics and expressive power
of subqueries and aggregates in SPARQL 1.1. In: Proceedings of WWW (2016)

19. Klug, A.C.: On conjunctive queries containing inequalities. J. ACM 35(1), 146–160
(1988)

20. Kobilarov, G., Dickinson, I.: Humboldt: exploring linked data. In: LDOW (2008)
21. van der Meyden, R.: The complexity of querying indefinite data about linearly

ordered domains. J. Comput. Syst. Sci. 54(1), 113–135 (1997)
22. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.

of the ACM 51(1), 2–45 (2004)
23. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In:

Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer, Heidelberg
(2006). doi:10.1007/11926078 40

24. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the
union and difference operators. J. ACM 27(4), 633–655 (1980)

25. Schraefel, M.C., Smith, D.A., Owens, A., Russell, A., Harris, C., Wilson, M.L.:
The evolving mSpace platform: leveraging the Semantic Web on the trail of the
Memex. In: Proceedings of Hypertext (2005)

26. Sherkhonov, E., Marx, M.: Containment of acyclic conjunctive queries with negated
atoms or arithmetic comparisons. Inf. Process. Lett. 120, 30–39 (2017)

http://dx.doi.org/10.1007/978-3-642-25073-6_12
http://dx.doi.org/10.1007/11926078_20
www.davidhuynh.net
http://dx.doi.org/10.1007/11926078_40

610 E. Sherkhonov et al.

27. Soylu, A., Giese, M., Schlatte, R., Jiménez-Ruiz, E., Kharlamov, E., Özçep,
Ö.L., Neuenstadt, C., Brandt, S.: Querying industrial stream-temporal data: an
ontology-based visual approach. J. AISE 9(1), 77–95 (2017)

28. Tunkelang, D.: Faceted Search. Synthesis Lectures on Information Concepts,
Retrieval, and Services. Morgan & Claypool Publishers, Burlington (2009)

29. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets:
a survey. J. Intell. Inf. Syst. 48, 329–364 (2017)

30. Wagner, A., Ladwig, G., Tran, T.: Browsing-oriented semantic faceted search. In:
Proceedings of DEXA (2011)

31. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proceedings of VLDB
(1981)

Investigating Learnability, User Performance,
and Preferences of the Path Query Language

SemwidgQL Compared to SPARQL

Timo Stegemann(B) and Jürgen Ziegler

University of Duisburg-Essen, Duisburg, Germany
timo.stegemann@uni-due.de

http://interactivesystems.info

Abstract. In this paper, we present an empirical comparison of user
performance and perceived usability for Sparql versus SemwidgQL, a
path-oriented Rdf query language. We developed SemwidgQL to facili-
tate the formulation of Rdf queries and to enable non-specialist devel-
opers and web authors to integrate Linked Data and other semantic data
sources into standard web applications. We performed a user study in
which participants wrote a set of queries in both languages. We mea-
sured both objective performance as well as subjective responses to a
set of questionnaire items. Results indicate that SemwidgQL is easier to
learn, more efficient, and preferred by learners. To assess the applicability
of SemwidgQL in real applications, we analyzed its expressiveness based
on a large corpus of observed Sparql queries, showing that the language
covers more than 90% of the typical queries performed on Linked Data.

1 Introduction

The wealth of Linked Data published on the open Web [15] offers a wide range
of opportunities that are to date still underexploited in practical applications.
Integrating Linked Data from different sources into standard web sites, blogs or
other web applications would enable web authors and developers to reuse the vast
amount of information already available and create additional value by enriching
their content or by syndicating different data sources. However, a more wide-
spread use of textual and multimedia resources from Linked Data and, even more
so, of time-dependent data from the Internet of Things is currently significantly
hindered by their complexity. It thus seems important to lower the threshold for
users such as web developers or even normal web authors by providing techniques
for using Linked Data without requiring complicated technical installations or
the knowledge of powerful yet complex query languages such as Sparql.

To alleviate the problems involved in using linked data, we have developed
a JavaScript-based environment, that facilitates the integration of Linked Data
in web pages. A main component of this environment is the path query lan-
guage SemwidgQL that is intended to be significantly easier to use than stan-
dard Sparql. A first overview of the SemwidgJS environment was presented
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 611–627, 2017.
DOI: 10.1007/978-3-319-68288-4 36

612 T. Stegemann and J. Ziegler

in [16]. In this current paper, we focus on the path query language developed and
provide a description of its novel extensions. We further present a comprehen-
sive empirical user study comparing Sparql and SemwidgQL. The goal of this
study is to explore SemwidgQL’s effectiveness, efficiency, learnability for users,
and user preference in comparison to Sparql. The study supports our claim
that SemwidgQL is easier to learn, more efficient, and preferred by the learners.
To investigate how well SemwidgQL covers the range of Sparql queries used
in practice, we further analyzed several hundred thousand log entries of pub-
lic Sparql endpoints. Results indicate that SemwidgQL can cover most of the
requests that are currently made with Sparql.

2 Related Work

Several approaches to support querying, exploring and displaying Linked Open
Data have been described in literature so far. Many of these approaches are
specialized on browsing (e.g. [2,7]) and visualizing queried data values or sub
graphs (e.g. [8]) respectively, which is generating revealing insights but can only
be reused on other websites with large effort.

Fsl [11] and LDPath [14] are path query languages for Rdf data inspired by
XPath for Xml. LDPath is part of the Apache Marmotta platform for Linked
Data. One drawback of these languages is that they can only return single result
lists but not lists of results sets, which is necessary when querying a set of
different properties at once. Requesting coherent values from different properties
require distinct queries that request each property separately. Therefore, it is
not provided that these values stay connected, since the respective order can
be different, or values can be added to or removed from the data set between
requests. Rules for a translation into Sparql do not exist for these languages and
therefore they require direct access to the data or a special interface on the server
side. Language extensions for Sparql such as C-Sparql [1] and SparqlStream
[5] facilitate the usage of queries over streams of Rdf data. Time windows that
restrict the queried data to a period of time can be specified in a special From
Stream statement.

The performance of users for different query languages has already been eval-
uated in pre-Sql times [12]. However, since the effort is very high, user stud-
ies that compare different query languages are rarely conducted. Participants
require an extensive introduction to be able to use a query language at a satis-
fying level. Mostly this happens in the context of a lecture. We are not aware of
any user study that compares the participants’ performance with Sparql and
another query language of the Linked Data area.

3 SemwidgQL

SemwidgQL is a path query language that transcompiles to Sparql. In con-
trast to queries formulated in other Linked Data path query languages, such as
LDPath [14] or Fsl [11], SemwidgQL can therefore be used to query any public

Investigating Learnability, User Performance, and Preferences 613

Sparql endpoint without further special requirements. Unlike these languages,
SemwidgQL is also capable of querying sets of different properties at once, by
adding all properties of interest to the Select statement of its Sparql transla-
tion. Ultimately, SemwidgQL aims to combine the benefits of Sparql (such as
its prevalence in the Linked Open Data area or its ability of returning lists of
result sets) with the simplicity of path query languages.

In the following section, we give an overview of SemwidgQL’s core fea-
tures that have been described in more detail in a previous publication [16].
SemwidgQL has been significantly extended since then and we present fur-
ther features that were added to facilitate among others the querying of time-
sequential data, such as sensor data, and give experienced users more control
over the generated Sparql queries via filters and pseudo-filters. Specifications
of time windows are comparable to the approaches of Sparql streaming exten-
sions. In contrast to these extensions, SemwidgQL is compatible with regular
Sparql endpoints and requires no additional execution environment.

3.1 Core Features

As a path query language, SemwidgQL traverses Rdf graphs. The traversal is
indicated by the dot notation, which is reminiscent of the well-known syntax used
in object-oriented programming. Figure 1 shows the simplified basic structure of
a SemwidgQL query. Usually a query starts with a resource followed by one or
more properties. To further filter the result set, properties can be restricted.
Filters are enclosed in parentheses and are appended the property they restrict.
The left-hand side of a filter expression is typically a property (or a property
path) that refers to the property to restrict outside of the parentheses. The
right-hand side specifies a filter value that can be a literal, Iri, or even a nested
query. Between them stands a relational operator. Several filter expressions can

Fig. 1. Basic structure of a SemwidgQL query.

Table 1. Basic SemwidgQL queries and their meanings.

SemwidgQL query Technique Meaning

dbr:Vienna.rdfs:comment Path Expression Textual description of
Vienna

dbr:Vienna.^dbo:capital Inverse Property Country, where Vienna
is the capital

dbr:Vienna.^dbo:birthPlace

↪→ (rdf:type = dbo:SoccerPlayer)

Filter Soccer players, who
were born in Vienna

614 T. Stegemann and J. Ziegler

be combined by logical operators. Furthermore, SemwidgQL allows wildcard
selectors, inverse property selections, and multiple property selections. Table 1
shows some exemplary SemwidgQL queries.

3.2 Advanced Features

In addition to SemwidgQL’s core features, we have implemented several filter and
pseudo-filter keywords that, among others, simplify restricting language of string
literals or allow aggregation of results. Also, they facilitate querying of time-
sequential data with flexibly specified sampling intervals. Filter and pseudo-filter
keyword expressions can be combined with normal SemwidgQL filter expressions
and with each other as well. While filter expressions in SemwidgQL result in filter
expressions in Sparql, pseudo-filter expressions can have an impact on different
parts of the translated query. An overview of these expressions is given below.

Filter Expressions

@lang: With this keyword the language of the property can be filtered by
the given language code.
@self: This keyword refers to the property to restrict itself. Instead of fil-
tering a property that is related to the property to restrict, it can be filtered
directly.
@timestart/@timeend: These keywords allow the filtering of values after,
before, or (when combined) between two points of time. The right-hand side
of the expression can be an absolute date or a relative point in time, depending
on the time of the query execution. The expression is parsed as an equation,
whose first part is a timestamp or the term now followed by the amount of
time that has to be added or subtracted. This can be expressed in seconds,
minutes, hours, day, weeks, or a combination of these (e.g. now - 1 h 5 min).
@type: This keyword is equivalent to the property rdf:type.

Pseudo-Filter Expressions

@aggregate: This keyword allows to apply an aggregate function to the vari-
able of the property within the Select statement. Allowed values are Count,
Sum, Min, Max, Avg, and Sample.
@hide: If set to true, the variable of the property will not be part of the
Select statement.
@optional: If set to true, the triple pattern, in which the property is created,
will be enclosed in an Optional statement.
@predicate: Typically, the predicate of a triple pattern is not part of the
Select statement. If set to true, the predicate of the triple pattern, in which
the property is created, will be added to the Select statement.
@timeinterval: This keyword is used to group and aggregate time-sequential
values. On the right-hand side of the expression, a sampling interval can be

Investigating Learnability, User Performance, and Preferences 615

defined. All returned values within this interval will be aggregated. By default,
the Sample aggregate function will be applied to all variables, but different
functions can be specified by the @aggregate keyword. Similar to @timestart
and @timeend, the length of the interval can be expressed in seconds, minutes,
hours, day, weeks, or a combination of these.

*(ip:sensor = ir:TH_LF285 && ip:type = 'Temperature').[ip:value(@aggregate = 'AVG'),
ip:measuredAt(@timeinterval = '60 min' && @timestart = 'now - 7 days' && @aggregate = 'MIN')]

⇓
SELECT DISTINCT SAMPLE(?wildcard) AS ?wildcard

AVG(?value) AS ?value MIN(?measuredAt) AS ?measuredAt
WHERE {

?wildcard ip:value ?value .
?wildcard ip:measuredAt ?measuredAt .
?wildcard ip:sensor ?sensor .
?wildcard ip:type ?type .
FILTER (

?sensor = ir:TH_LF285_01 && STR(?type) = "Temperature"
)
FILTER (

xsd:dateTime(?measuredAt) >= now() - 604800
)
BIND(FLOOR((xsd:dateTime(?measuredAt) -

xsd:dateTime("1970-01-01T00:00:00")) / (3600)
) AS ?measuredAt_timeinterval)

}
GROUP BY ?measuredAt_timeinterval
ORDER BY DESC(?measuredAt_timeinterval)

Fig. 2. A SemwidgQL query and the corresponding Sparql query that requests the
average temperature measurements that were made by a specific sensor during the last
week, aggregated on an hourly base.

A SemwidgQL query and its rather complex translation into Sparql is
shown in Fig. 2. The query contains normal SemwidgQL filter expressions com-
bined with previously presented filter and pseudo-filter keyword expressions. It
requests the average temperature measurements that were made by a specific
sensor (located in our office) during the last week, aggregated on an hourly base.

4 Empirical User Study

We conducted an empirical user study comparing Sparql and SemwidgQL.
SemwidgQL was developed to be effective, efficient, and easy to learn by non-
expert users. The goal of our study is to explore whether SemwidgQL can fulfill
these requirements in comparison to Sparql. In addition we want to investigate
the users’ satisfaction. At the beginning of this section, we will describe the
design of the study and its procedure. Afterwards, we will present the results.
In conclusion, we interpret and discuss these results.

616 T. Stegemann and J. Ziegler

4.1 Method

Design: We conducted an empirical user study with a mixed methods design
and repeated measures, combining objective performance measures and a subjec-
tive questionnaire. For the performance measure, participants had to complete
several query interpretation and formulation tasks. Effectiveness was measured
by the number of correct answers of all query tasks.

Efficiency was measured by the participants’ performance measures for the
query formulation tasks. We investigated these tasks regarding nine dependent
variables, i.e. (a) number of keystrokes (number of keystrokes made by a partic-
ipant, including deletion and substitution of characters), (b) number of correc-
tions (number of correcting keystrokes made by a participant, such as backspace,
delete, replacing several selected characters etc.), (c) number of conjunct correc-
tions (a coherent sequence of correcting keystrokes forms a conjunct correction,
e.g. multiple backspaces in succession; typing of a character ends a conjunct
correction), (d) number of pauses (number of pauses taken by a participant; a
pause starts after two seconds without a keystroke; a pause might be an indica-
tor for that a participant requires some time to think about further actions that
are required to solve the task), (e) time of pauses (accumulated time of pauses
in seconds taken by a participant during a task; operationalizes thinking time),
(f) time on task (processing time of a task in seconds), (g) number of requests
(number of requests a participant made to the Sparql endpoint), (h) fraction
of erroneous requests (fraction of requests that could not be executed due to
parser errors etc.), (i) display time of solutions (time in seconds that a partic-
ipant inspected the sample solution; a high display time might be an indicator
that participants are uncertain about their solutions and therefore compare their
own and the model solution more thoroughly).

Learnability was evaluated by comparing the results of the query formulation
tasks from the initial and repeated measures regarding the above listed variables.

User preferences were measured through the answers from the questionnaire.
The questionnaire asked to rate six characteristics of Sparql and SemwidgQL
on the basis of an equidistant five-point numerical rating scale. The minimum
value always had a negative and the maximum value always had a positive
connotation. These items were related to the subjective assessment of Sparql’s
and SemwidgQL’s learnability, intuitiveness, logical structure, comprehensibility,
writing effort, and sophistication. Also, the participants were explicitly asked for
their personally preferred language and a brief explanation for their decision.

Participants: The study was attended by seven students (one female), all
enrolled on master courses in computer science at our University. The age of the
participants was between 23 and 28 years (M = 25.57;SD = 2.07). Three partic-
ipants had already gathered previous experience in Linked Data and Semantic
Web from different courses, and one student had already worked with Rdf and
Sparql as part of his bachelor thesis.

Investigating Learnability, User Performance, and Preferences 617

Procedure: The user study took place in the context of the introductory session
of a seminar on “Semantic Web Technologies and Applications” for graduate
students in the field of computer science. At the beginning of the seminar, the
participants were handed a three-page handout1, which contained an overview of
relevant Sparql and SemwidgQL commands, as well as a small Rdf graph that
was used for all examples and tasks of the presentation and evaluation. The graph
contained, among other things, some information about cities in the region,
such as label, population, districts, class, but also temperature measurements
of sensors. The data were chosen in such a way that the participants could
compensate for misunderstandings through their personal context knowledge.

The introductory session consisted of a three-hour lecture which was divided
into three one-hour sections. In the first section, the participants were taught
the basic ideas, techniques and formats on which Linked Data and the Semantic
Web are built. In the second section, the participants were given an introduction
to Sparql and in the third section an introduction to SemwidgQL. As far as
it was possible, the procedure corresponded to the procedure of the previous
section. Care was taken to explain both languages to a similar extent and it was
ensured that the participants understood both languages at a comparable level.

Afterwards, the participants had to complete a set of twelve query tasks. In
the first three tasks, they had to interpret predefined Sparql and SemwidgQL
queries. In the following nine tasks, they had to query predetermined informa-
tion using Sparql and SemwidgQL. Each task had to be processed with both
languages. Namespace definitions were predefined for both languages. The order
of the query languages changed at each task. At any time, participants could
query the Sparql endpoint and validate their queries and results. They could
quit tasks at any time and move on to the next one. No time limit was set for
solving a task. After each task, a model solution was presented.

Subsequently, the participants filled out a questionnaire in which they should
specify socio-demographic information and previous experiences with Semantic
Web and Linked Data techniques. Then they evaluated Sparql and SemwidgQL
regarding the above mentioned characteristics. One week after the introductory
session, the study was repeated.

Data Collection: The data of the interpretation and formulation of queries
were automatically collected via the specially prepared website on which the
participants had to solve their tasks. Each keystroke was recorded and stored
together with a time stamp in a central database. It was also recorded when the
Sparql endpoint was queried and it was recorded whether the query was valid
or contained errors. The time stamps, at which the participants started or ended
a task, the model solution was displayed, and a task was marked as successfully
completed or marked as canceled by the participants, were recorded as well. The
questionnaire data were collected via the online survey portal SoSci Survey2.

1 Handouts and tasks: https://semwidg.org/files/share/iswc2017 appendix.pdf.
2 https://www.soscisurvey.de/.

https://semwidg.org/files/share/iswc2017_appendix.pdf
https://www.soscisurvey.de/

618 T. Stegemann and J. Ziegler

4.2 Results

Correctness of Answers: Answers were divided into three categories. Correct
answers, answers with minor errors, and incorrect answers. Answers with minor
errors are syntactically correct and close to the model solutions, but can contain
minor inaccuracies, such as queries that contain a triple pattern for request-
ing a desired property but do not contain the corresponding variable in the
Select statement. Incorrect answers are syntactically incorrect, do not fulfill
the requirements given in the task description, or the task was aborted by the
user.

In total, we evaluated results of 147 tasks per language. From these results 21
belong to the query interpretation tasks and 126 belong to the query formulation
tasks. The participants performed slightly better, when interpreting SemwidgQL
queries compared to interpreting Sparql tasks. Regarding SemwidgQL, 86% of
the tasks were solved correctly, 14% of the solutions had minor errors. Regarding
Sparql, 76% of the tasks were solved correctly, and 24% of the solutions had
minor errors. There were no incorrect answers in terms of the query interpreta-
tion tasks. With regard to the query formulation tasks, the participants achieved
almost equally good results with both languages. Regarding Sparql, 90% of the
tasks were solved correctly, 6% of the solutions contained minor errors and 4%
were incorrect. Regarding SemwidgQL, 89% of the tasks were solved correctly,
7% of the solutions contained minor errors and 4% were incorrect.

Query Formulation Tasks: In the following subsections, we will describe the
results of the nine query formulation tasks (tasks 4–12), the participants had
to solve during the evaluation. For each of the following statistical tests, we
compared the participants’ performance regarding the nine dependent variables
listed in the study design subsection. For the subsequent tests, we restrict the
examined data to pairs of correct answers or answers with minor errors, since
data from incorrect or canceled solution would doubtlessly distort the results.

Analysis of Mean Performance: We compared the participants’ perfor-
mance regarding the above-mentioned dependent variables by calculating mul-
tiple dependent t-tests for paired samples. The further described results are
presented in detail in Table 2. SemwidgQL’s values regarding six of all nine
dependent variables were significantly better compared to Sparql. The number
of conjunct corrections (c) was descriptively better regarding SemwidgQL com-
pared to Sparql. However, this difference is not statistically significant. The
number of requests (g) and the fraction of erroneous requests (h) were better
in Sparql compared to SemwidgQL. These differences are also not statistically
significant.

Analysis of Learning Effects: We evaluated, how the participants perfor-
mance changed between the first and second pass of the user study. We also
compared the differences between Sparql and SemwidgQL during these two

Investigating Learnability, User Performance, and Preferences 619

Table 2. Differences between Sparql and SemwidgQL.

Sparql SemwidgQL t-test

M SD M SD t(124) p

(a) number of keystrokes 136.32 58.90 74.56 55.02 14.33 <.001 ***

(b) number of corrections 15.10 16.49 12.15 16.10 2.04 .044 *

(c) number of conjunct corrections 6.02 5.27 5.10 6.63 1.72 .088

(d) number of pauses 11.06 7.95 7.57 7.36 5.82 <.001 ***

(e) time of pauses (s) 99.82 122.89 67.84 73.91 2.99 .003 **

(f) time on task (s) 152.26 117.81 109.44 89.85 4.60 <.001 ***

(g) number of requests 3.54 4.51 4.26 5.78 −1.45 .150

(h) fraction of erroneous requests 0.19 0.27 0.21 0.27 −0.56 .578

(i) display time of solutions (s) 7.56 10.75 4.67 4.60 2.83 .005 **

*p < .05, **p < .01, ***p < .001

passes. Again, we calculated multiple dependent t-tests for paired samples. Dif-
ferences between Sparql and SemwidgQL at each pass are presented in Table 3
and Fig. 3. Differences between the first and second pass for each language are
shown in Table 4 and Fig. 3, in combination with the results of the previous tests.

In the first pass, results in terms of SemwidgQL were significantly better
regarding four of the nine dependent variables compared to Sparql, and descrip-
tively but not significantly better regarding two further dependent variables.
The participants never performed significantly better with Sparql. In the sec-
ond pass, results regarding SemwidgQL became significantly better at all but
one dependent variable compared to the first pass. Results regarding Sparql
became significantly better regarding four dependent variables. All other results
became descriptively but not significantly better. In comparison to Sparql,
participants performed significantly better with SemwidgQL regarding five of all
nine dependent variables. Again, the participants never performed significantly
better with Sparql.

Complexity-Dependent Analysis: We compared the performance of the par-
ticipants for Sparql and SemwidgQL regarding a task’s complexity. We assume
that complexity of a task is a predictor for the measured responses. For this
purpose, we conducted several linear regression analyses for the previously men-
tioned dependent variables and the complexity of a task as predictor variable.

In various works to determine the difficulty of Sparql (e.g. [10]) or other
(database) queries (e.g. [3,9]) Halstead’s complexity measure [6] has been used.
This measure is based on the number of distinct operators and operands as well
as the total number of operands of a query or piece of source code. Halstead’s
complexity measure tends to produce comparatively high values when Sparql
queries contain filter expressions because the number of operators increases
noticeably. Thus, it seems to overrate the influence of filter expressions on
complexity. Because of this limitation, we developed an alternative complexity

620 T. Stegemann and J. Ziegler

Table 3. Differences between Sparql and SemwidgQL per pass.

Sparql SemwidgQL t-test

Pass M SD M SD t(56) p

(a) number of keystrokes 1 143.74 71.14 83.65 66.78 2.54 .014 *

2 126.33 44.41 63.39 38.50 2.68 .010 **

(b) number of corrections 1 17.14 20.00 15.95 20.55 1.96 .056

2 12.28 11.28 7.74 8.81 3.40 .001 **

(c) number of conjunct corrections 1 6.09 6.05 6.44 8.82 0.71 .483

2 5.60 3.65 3.61 3.33 2.90 .005 **

(d) number of pauses 1 12.49 9.52 9.21 8.89 3.57 <.001 ***

2 8.79 4.87 5.54 5.03 4.00 <.001 ***

(e) time of pauses (s) 1 102.98 120.26 79.85 84.21 1.03 .309

2 80.88 115.70 49.39 50.57 3.58 <.001 ***

(f) time on task (s) 1 166.33 140.71 125.51 103.54 2.84 .006 **

2 118.67 53.56 85.65 61.55 3.85 <.001 ***

(g) number of requests 1 3.82 5.25 4.77 6.53 1.42 .161

2 2.89 2.66 3.11 3.18 2.53 .014 *

(h) fraction of erroneous requests 1 0.21 0.27 0.27 0.28 0.90 .374

2 0.17 0.26 0.12 0.22 3.77 <.001 ***

(i) display time of solutions (s) 1 10.40 14.60 4.58 4.63 3.33 .002 **

2 4.04 3.20 4.40 4.50 0.30 .765

*p < .05, **p < .01, ***p < .001

Table 4. Differences between first and second pass per language.

1st pass 2nd pass t-test

Langa M SD M SD t(56) p

(a) number of keystrokes A 143.74 71.14 126.33 44.41 2.54 <.001 ***

B 83.65 66.78 63.39 38.50 2.68 <.001 ***

(b) number of corrections A 17.14 20.00 12.28 11.28 1.96 .641

B 15.95 20.55 7.74 8.81 3.40 .004 **

(c) number of conjunct corrections A 6.09 6.05 6.44 3.65 0.71 .717

B 6.44 8.82 3.61 3.33 2.90 <.001 ***

(d) number of pauses A 12.49 9.52 8.79 4.87 3.57 .003 **

B 9.21 8.89 5.54 5.03 4.00 <.001 ***

(e) time of pauses (s) A 102.98 120.26 80.88 115.70 1.03 .109

B 79.85 84.21 49.39 50.57 3.58 .051

(f) time on task (s) A 166.33 140.71 118.67 53.56 2.84 .012 *

B 125.51 103.54 85.65 61.55 3.85 <.001 ***

(g) number of requests A 3.82 5.25 2.89 2.66 1.42 .264

B 4.77 6.53 3.11 3.18 2.53 .650

(h) fraction of erroneous requests A 0.21 0.27 0.17 0.26 0.90 .223

B 0.27 0.28 0.12 0.22 3.77 .266

(i) display time of solutions (s) A 10.40 14.60 4.04 3.20 3.33 .005 **

B 4.58 4.63 4.40 4.50 0.30 .613
aA: Sparql, B: SemwidgQL

*p < .05, **p < .01, ***p < .001

Investigating Learnability, User Performance, and Preferences 621

0

20

40

60

80

100

120

140

160

1st pass 2nd pass
0

3

6

9

12

15

18

1st pass 2nd pass
0

1

2

3

4

5

6

7

1st pass 2nd pass

0

2

4

6

8

10

12

14

1st pass 2nd pass
0

20

40

60

80

100

120

1st pass 2nd pass
0

30

60

90

120

150

180

1st pass 2nd pass

0

1

2

3

4

5

1st pass 2nd pass
.00

.05

.10

.15

.20

.25

.30

1st pass 2nd pass
0

2

4

6

8

10

12

1st pass 2nd pass

SPARQL SemwidgQL

a) b) c)

d) e)

h) i)

f)

g)

(*: p < .05, **: p < .01, ***: p < .001)

nu
m

be
r

of
 k

ey
st

ro
ke

s

nu
m

be
r

of
 c

or
re

ct
io

ns

nu
m

be
r

of
 c

on
ju

nc
t c

or
re

ct
io

ns

nu
m

be
r

of
 p

au
se

s
nu

m
be

r
of

 r
eq

ue
st

s

fr
ac

tio
n

of
 e

rr
on

eo
us

 r
eq

ue
st

s

di
sp

la
y

tim
e

of
 s

ol
ut

io
ns

 (
s)

tim
e

of
 p

au
se

s
(s

)

tim
e

on
 ta

sk
 (

s)

*** ***

**

*

**

** ***

**

*

*** ** **

Fig. 3. Differences between Sparql and SemwidgQL per pass, and differences between
first and second pass per language.

measure, which is based on the number of nodes of a query in Sparql Syn-
tax Expressions (Sse) notation3. Later on, we show that the empirical data are
better represented by the alternative Sse based complexity measure.

To calculate the Sse based complexity measure, we summed up the number
of nodes of the Sse syntax tree, but combined all nodes which were required
for matching the language in a filter expression into one. Since the participants
were taught this filter as a fixed expression in both languages, we assumed that
writing this expression requires no additional mental effort than a normal filter
expression. Also, we did not count the first projection node (i.e. Select), which
occurs in all Select queries. Table 5 shows the complexity values of the Sparql
sample solutions of each task in comparison, calculated according to Halstead’s
D as well as the Sse based complexity c. D and c values of tasks without filter

3 https://jena.apache.org/documentation/notes/sse.html.

https://jena.apache.org/documentation/notes/sse.html

622 T. Stegemann and J. Ziegler

Table 5. Comparison of complexity of Sparql sample solutions.

Task

4 5 6 7 8 9 10 11 12

Halstead D 2.67 4.00 3.50 8.25 3.60 7.71 3.75 8.40 9.10

Sse based complexity c 2 3 3 4 3 6 3 5 8

expressions (4, 5, 6, 8, 10) are very similar, while D values of tasks with filter
expressions (7, 9, 11, 12) are noticeably higher than c values. We argue that this
method is much closer aligned to the mental processes a user has to perform
when solving a task than Halstead’s method. We calculated the regression lines
for all response variables with each D and c as predictors and Sparql as query
language. Based on the yielded coefficient of determination R2, we calculated
a Wilcoxon Signed-Rank Test that supports our statement and indicates that
the median for c, Mdn = .86, was significantly better than the median for D,
Mdn = .56 (z = −2.35, p = .016).

The results of the linear regression analyses with c as predictor variable for
all response variables with Sparql and SemwidgQL are presented in Table 6
and Fig. 4. Since we did not want to compare the theoretical complexity of
Sparql and SemwidgQL but their practical performance at tasks with different
complexities, we chose the complexity value of the Sparql sample solution query

Table 6. Linear regression analyses with Sse based complexity as predictor.

Langa F (1, 7) p R2 f fi(c)b

(a) number of keystrokes A 92.43 <.001 .93 3.63 23.90c + 41.98

B 64.04 <.001 .90 3.02 21.32c − 9.57

(b) number of corrections A 36.93 .001 .84 2.30 4.00c − 1.30

B 24.22 .002 .78 1.86 4.33c − 4.95

(c) number of conjunct corrections A 42.98 <.001 .86 2.48 1.67c − 0.77

B 25.06 .002 .78 1.89 1.82c − 2.13

(d) number of pauses A 156.63 <.001 .96 4.73 3.08c − 0.72

B 81.27 <.001 .92 3.41 3.24c − 5.02

(e) time of pauses (s) A 34.19 .001 .83 2.21 39.51c − 50.15

B 60.02 <.001 .90 2.93 36.70c − 71.90

(f) time on task (s) A 92.33 <.001 .93 3.63 46.19c − 31.83

B 57.90 <.001 .89 2.88 40.24c − 47.17

(g) number of requests A 18.27 .004 .72 1.62 2.54c − 5.95

B 59.15 <.001 .89 2.91 2.18c − 3.41

(h) fraction of erroneous requests A 2.05 .195 .23 0.54 0.05c + 0.07

B 0.52 .494 .07 0.27 0.02c + 0.23

(i) display time of solutions (s) A 19.27 .003 .73 1.66 2.27c − 1.64

B 7.41 .030 .51 1.03 1.33c − 0.53
aA: Sparql, B: SemwidgQL
bLinear regression equation, i: measured response, c: complexity

Investigating Learnability, User Performance, and Preferences 623

R²=.93

R²=.90

0

50

100

150

200

250

2 3 4 5 6 7 8

nu
m

be
r

of
 k

ey
st

ro
ke

s

R²=.84

R²=.78

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

nu
m

be
r

of
 c

or
re

ct
io

ns

R²=.86
R²=.78

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8

nu
m

be
r

of
 c

on
ju

nc
t c

or
re

ct
io

ns

SPARQL SemwidgQL

R²=.96

R²=.92

0

5

10

15

20

25

30

2 3 4 5 6 7 8

nu
m

be
r

of
 p

au
se

s

R²=.83

R²=.90

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8

tim
e

of
 p

au
se

s
(s

)

R²=.93

R²=.89

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8

tim
e

on
 ta

sk
 (

s)
R²=.72

R²=.89

0

5

10

15

20

2 3 4 5 6 7 8

nu
m

be
r

of
 r

eq
ue

st
s

R²=.23

R²=.07

.00

.10

.20

.30

.40

.50

.60

.70

.80

2 3 4 5 6 7 8

fr
ac

tio
n

of
 e

rr
on

eo
us

 r
eq

ue
st

s

R²=.73

R²=.51

0

5

10

15

20

25

2 3 4 5 6 7 8

di
sp

la
y

tim
e

of
 s

ol
ut

io
ns

 (
s)

a) b) c)

d) e) f)

g) h) i)

Fig. 4. Linear regression analyses with task complexity as predictor.

as complexity value for the corresponding tasks. Results indicate that there is
a significant association between complexity c and all response variables except
for fraction of erroneous requests (h). The corresponding regression equations
have very high R2 values (one third of them ≥ .90) and the effect sizes f are
also high, according to Cohen [4].

The regression lines for the values of SemwidgQL in the examined range
of c are in all cases, except number of requests (g) and fraction of erroneous
requests (h), below the regression lines for the values of Sparql. In four of
these seven cases, the slopes of the SemwidgQL lines are less steep than the
slopes of the Sparql lines, suggesting that SemwidgQL will perform better then
Sparql at more complex tasks. In the remaining three cases, the lines intersect
at complexity values above the investigated range.

Subjective Evaluation by the Participants: In the following subsection, we
will present the results of the questionnaire, the participants completed after the
query tasks. We calculated multiple Wilcoxon Signed-Rank Tests to compare the
participants’ subjective ratings for Sparql and SemwidgQL. Writing effort was

624 T. Stegemann and J. Ziegler

rated significantly better regarding SemwidgQL, Mdn = 4, compared to Sparql,
Mdn = 2 (z = −3.03, p = .001). Sophistication was also rated significantly better
regarding SemwidgQL, Mdn = 4, compared to Sparql, Mdn = 2 (z = −3.23,
p < .001). There were no significant differences regarding the subjective ratings
of learnability, intuitiveness, logical structure, and comprehensibility (see Fig. 5).
When asked for advantages of SemwidgQL over Sparql, the participants named
nine unique characteristics with 30 occurrences in total. Particularly the shortness
of queries and the similarity to object orientated programming languages were
frequently mentioned. The participants only named three unique advantages of
Sparql over SemwidgQL with 5 occurrences in total (see Fig. 6). In 79% of the

0% 20% 40% 60% 80% 100%

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

SPARQL
SemwidgQL

le
ar

n-
ab

ili
ty

in
tu

iti
ve

-
ne

ss
lo

gi
ca

l
st

ru
ct

ur
e

co
m

pr
e-

he
ns

ib
ili

ty
w

ri
tin

g
ef

fo
rt

so
ph

is
ti-

ca
tio

n

mean values1 2 3 4 5numerical rating (1 = negative, 5 = positive):

**

1 2 3 4 5

95% CI

(*
: p

 <
 .0

5,
 **

: p
 <

 .0
1,

 **
*:

p
<

 .0
01

)

4.07
4.00

3.50
4.07

4.21
4.50

4.07
3.86

2.43
4.29

2.29
4.07

Fig. 5. Subjective evaluation of Sparql and SemwidgQL.

0 1 2

more intuitive

completeness

similar to SQL

SPARQL

0 1 2 3 4 5 6 7 8 9 10

path query language

increased readability

quick detection of errors

more logical

more intuitive

easier to learn

easier to write

similar to OOP languages

short queries

SemwidgQL

Fig. 6. Cumulative numbers of stated advantages of Sparql and SemwidgQL.

Investigating Learnability, User Performance, and Preferences 625

answers SemwidgQL was named as the preferred query language. Accordingly,
Sparql was only preferred in 21% of the answers.

4.3 Discussion

The user study showed that the participants performed significantly better with
SemwidgQL regarding most of the evaluated dependent variables compared to
Sparql. Especially the time on task, the number of corrections, and the number
and time of pauses that the participants took to think about the correct solution
of the task indicate that SemwidgQL is easier to use than Sparql.

After the introductory session, the participants achieved better results with
SemwidgQL than with Sparql regarding most of the evaluated dependent vari-
ables. They improved significantly in the second pass in all but one area with
SemwidgQL. Most of the improvements with Sparql were not significant. The
participants had already performed better in the first pass with SemwidgQL, and
had improved even more in the second pass compared to Sparql. The results
suggest that SemwidgQL is easier to learn.

The reason for the better results with SemwidgQL was not that some already
simple tasks were made even easier. The linear regression analyses indicate that
the good results with SemwidgQL were achieved at all evaluated complexity
levels. Some regression lines predict that even more complex tasks than that
we have evaluated can be solved better with SemwidgQL. However, it should
also be noted that some regression lines indicate that users will perform worse
with SemwidgQL at tasks with higher complexity levels than evaluated. Since
continuously written SemwidgQL queries can become very unwieldy at a certain
length, this is to be expected.

The good results of the objective measures are supported by the participants’
subjective evaluation, the number of mentioned advantages and, of course, the
explicit personal preference for SemwidgQL of 79%.

5 Evaluation of SemwidgQL’s Expressiveness

To investigate how well SemwidgQL covers the range of Sparql queries used in
practice we analyzed to what extent our language is able to express the queries
that occur in the Linked Sparql Queries Dataset (Lsq), collected by Saleem
et al. [13]. We extracted 636,876 unique Select queries with 1,526,804 execu-
tions and then transformed them into a parameterized form. We mapped all
Iris, variables, literals and language tags of each query to a generic format (e.g.
SELECT ?v2 WHERE {<i1> ?v1 ?v2}), and replaced all wildcards in Select
statements with the corresponding list of variables from the Where statement
and harmonized language filter expressions. Completely identically parameter-
ized queries were merged automatically. We were able to manually merge further
pattern that were not syntactically but semantically identical (e.g. queries with
the same triple patterns in their Where clauses, but in different order, or queries
with and without the Distinct keyword, where the Distinct keyword is not

626 T. Stegemann and J. Ziegler

able to reduce the result set). Finally, we obtained 1619 unique query patterns
where the first 120 patterns of the most frequently executed queries represent
99% of the Select queries executed overall in the Lsq dataset.

Based on these 120 query patterns, we evaluated how well SemwidgQL covers
the range of Sparql queries used in practice. From these patterns 66, represent-
ing 91% of the overall executed queries, can be directly expressed in SemwidgQL
without any limitations. In contrast, 15 of these patterns, representing only 2%
of the overall executed queries, can not be expressed. These patterns contain
Group By expressions or function calls, such as bound or isLiteral, which are
not implemented in SemwidgQL. The remaining 39 patterns, representing 6%
of the queries executed overall, make use of Union graph patterns. SemwidgQL
does not provide an equivalent for these constructs. Nevertheless, some of these
patterns can be expressed without Union but with Filter expressions. Addi-
tionally, SemwidgQL allows the declaration of multiple queries in a single state-
ment. These queries are translated into separate Sparql queries. Combining
their results is up to the processing program.

We calculated the Sse based complexity measure for the 120 most frequently
used query patterns. Most of the requests made (89%) have a c value below or
equal to 8 and thus lay in the evaluated range of our user study. One third of
them have a c value of 2 or 3. Few query patterns have c values above 20 (up to
58). However, these patterns only represent less than 3% of the requests made.

6 Conclusion

We have presented SemwidgQL, a path query language for Rdf data that
transcompiles to Sparql. Our empirical user study indicates that SemwidgQL is
easier to learn, more efficient, and preferred by the learners compared to Sparql.
An additional evaluation of the Lsq dataset indicates that SemwidgQL, despite
its limited expressiveness, is capable of querying most of the data that is cur-
rently queried with Sparql. Also, the queries we used in the user study have
a comparable complexity to queries that are used in practice. SemwidgQL is
not intended as a replacement for Sparql but rather as a more light-weight
language that lowers the entry barriers to the Semantic Web and Linked Data
area. Results indicate that SemwidgQL is suitable for this purpose.

References

1. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment
for C-SPARQL queries. In: Proceedings of the 13th International Conference on
Extending Database Technology, EDBT 2010, pp. 441–452. ACM, New York (2010)

2. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J.,
Lerer, A., Sheets, D.: Tabulator: exploring and analyzing linked data on the seman-
tic web. In: Proceedings of the 3rd International Semantic Web User Interaction
Workshop (2006)

3. Casterella, G.I., Vijayasarathy, L.: An experimental investigation of complexity in
database query formulation tasks. J. Inf. Syst. Educ. 24(3), 211 (2013)

Investigating Learnability, User Performance, and Preferences 627

4. Cohen, J.: A power primer. Psychol. Bull. 112(1), 155 (1992)
5. Corcho, O., Calbimonte, J.P., Jeung, H., Aberer, K.: Enabling query technologies

for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)
6. Halstead, M.H.: Elements of Software Science, vol. 7. Elsevier, New York (1977)
7. Harth, A.: VisiNav: a system for visual search and navigation on web data. Web

Semant. Sci. Serv. Agents World Wide Web 8(4), 348–354 (2010)
8. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder:

revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y.,
Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol.
5887, pp. 182–187. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10543-2 21

9. Lassila, M., Junkkari, M., Kekäläinen, J.: Comparison of two XML query languages
from the perspective of learners. J. Inf. Sci. 41(5), 584–595 (2015)

10. Leinberger, M., Scheglmann, S., Lämmel, R., Staab, S., Thimm, M., Viegas, E.:
Semantic web application development with LITEQ. In: Mika, P., et al. (eds.)
ISWC 2014. LNCS, vol. 8797, pp. 212–227. Springer, Cham (2014). doi:10.1007/
978-3-319-11915-1 14

11. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: a browser-independent pre-
sentation vocabulary for RDF. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol.
4273, pp. 158–171. Springer, Heidelberg (2006). doi:10.1007/11926078 12

12. Reisner, P., Boyce, R.F., Chamberlin, D.D.: Human factors evaluation of two data
base query languages: square and sequel. In: Proceedings of the National Computer
Conference and Exposition, AFIPS 1975, pp. 447–452. ACM, New York, 19–22 May
1975

13. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked
SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol.
9367, pp. 261–269. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6 15

14. Schaffert, S., Bauer, C., Kurz, T., Dorschel, F., Glachs, D., Fernandez, M.: The
linked media framework: Integrating and interlinking enterprise media content and
data. In: Proceedings of the 8th International Conference on Semantic Systems,
pp. 25–32. I-SEMANTICS 2012. ACM, New York (2012)

15. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,
vol. 8796, pp. 245–260. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 16

16. Stegemann, T., Ziegler, J.: SemwidgJS: a semantic widget library for the rapid
development of user interfaces for linked open data. In: Plödereder, E., Grunske,
L., Schneider, E., Ull, D. (eds.) 44. Jahrestagung der Gesellschaft für Informatik
GI, Informatik 2014. LNI, vol. 232, pp. 479–490 (2014)

http://dx.doi.org/10.1007/978-3-642-10543-2_21
http://dx.doi.org/10.1007/978-3-319-11915-1_14
http://dx.doi.org/10.1007/978-3-319-11915-1_14
http://dx.doi.org/10.1007/11926078_12
http://dx.doi.org/10.1007/978-3-319-25010-6_15
http://dx.doi.org/10.1007/978-3-319-11964-9_16

Cross-Lingual Entity Alignment via Joint
Attribute-Preserving Embedding

Zequn Sun1, Wei Hu1(B), and Chengkai Li2

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

zqsun.nju@gmail.com, whu@nju.edu.cn
2 Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX, USA

cli@uta.edu

Abstract. Entity alignment is the task of finding entities in two knowl-
edge bases (KBs) that represent the same real-world object. When fac-
ing KBs in different natural languages, conventional cross-lingual entity
alignment methods rely on machine translation to eliminate the lan-
guage barriers. These approaches often suffer from the uneven quality
of translations between languages. While recent embedding-based tech-
niques encode entities and relationships in KBs and do not need machine
translation for cross-lingual entity alignment, a significant number of
attributes remain largely unexplored. In this paper, we propose a joint
attribute-preserving embedding model for cross-lingual entity alignment.
It jointly embeds the structures of two KBs into a unified vector space
and further refines it by leveraging attribute correlations in the KBs.
Our experimental results on real-world datasets show that this approach
significantly outperforms the state-of-the-art embedding approaches for
cross-lingual entity alignment and could be complemented with methods
based on machine translation.

Keywords: Cross-lingual entity alignment · Knowledge base embed-
ding · Joint attribute-preserving embedding

1 Introduction

In the past few years, knowledge bases (KBs) have been successfully used in lots of
AI-related areas such as Semantic Web, question answering and Web mining. Vari-
ous KBs cover a broad range of domains and store rich, structured real-world facts.
In a KB, each fact is stated in a triple of the form (entity, property, value), in which
value can be either a literal or an entity. The sets of entities, properties, literals and
triples are denoted by E,P,L and T , respectively. Blank nodes are ignored for sim-
plicity. There are two types of properties—relationships (R) and attributes (A)—
and correspondingly two types of triples, namely relationship triples and attribute
triples. A relationship triple tr ∈ E×R×E describes the relationship between two

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 628–644, 2017.
DOI: 10.1007/978-3-319-68288-4_37

Cross-Lingual Entity Alignment 629

entities, e.g. (Texas, hasCapital, Austin), while an attribute triple tr ∈ E×A×L
gives a literal attribute value to an entity, e.g. (Texas, areaTotal,“696241.0”).

As widely noted, KBs often suffer from two problems: (i) Low coverage. Dif-
ferent KBs are constructed by different parties using different data sources. They
contain complementary facts, which makes it imperative to integrate multiple
KBs. (ii) Multi-linguality gap. To support multi-lingual applications, a growing
number of multi-lingual KBs and language-specific KBs have been built. This
makes it both necessary and beneficial to integrate cross-lingual KBs.

Entity alignment is the task of finding entities in two KBs that refer to
the same real-world object. It plays a vital role in automatically integrating
multiple KBs. This paper focuses on cross-lingual entity alignment. It can help
construct a coherent KB and deal with different expressions of knowledge across
diverse natural languages. Conventional cross-lingual entity alignment methods
rely on machine translation, of which the accuracy is still far from perfect. Spohr
et al. [21] argued that the quality of alignment in cross-lingual scenarios heavily
depends on the quality of translations between multiple languages.

Following the popular translation-based embedding models [1,15,22], a few
studies leveraged KB embeddings for entity alignment and achieved promising
results [5,11]. Embedding techniques learn low-dimensional vector representa-
tions (i.e., embeddings) of entities and encode various semantics (e.g. types)
into them. Focusing on KB structures, the embedding-based methods provide
an alternative for cross-lingual entity alignment without considering their nat-
ural language labels.

There remain several challenges in applying embedding methods to cross-
lingual entity alignment. First, to the best of our knowledge, most existing KB
embedding models learn embeddings based solely on relationship triples. How-
ever, we observe that attribute triples account for a significant portion of KBs.
For example, we count triples of infobox facts from English DBpedia (2016-04),1

and find 58,181,947 attribute triples, which are three times as many as rela-
tionship triples (the number is 18,598,409). Facing the task of entity alignment,
attribute triples can provide additional information to embed entities, but how
to incorporate them into cross-lingual embedding models remains largely unex-
plored. Second, thanks to the Linking Open Data initiative, there exist some
aligned entities and properties between KBs, which can serve as bridge between
them. However, as discovered in [5], the existing alignment between cross-lingual
KBs usually accounts for a small proportion. So how to make the best use of it
is crucial for embedding cross-lingual KBs.

To deal with the above challenges, we introduce a joint attribute-preserving
embedding model for cross-lingual entity alignment. It employs two modules,
namely structure embedding (SE) and attribute embedding (AE), to learn
embeddings based on two facets of knowledge (relationship triples and attribute
triples) in two KBs, respectively. SE focuses on modeling relationship structures
of two KBs and leverages existing alignment given beforehand as bridge to over-
lap their structures. AE captures the correlations of attributes (i.e. whether these

1 http://wiki.dbpedia.org/downloads-2016-04.

http://wiki.dbpedia.org/downloads-2016-04

630 Z. Sun et al.

attributes are commonly used together to describe an entity) and clusters entities
based on attribute correlations. Finally, it combines SE and AE to jointly embed
all the entities in the two KBs into a unified vector space Rd, where d denotes the
dimension of the vectors. The aim of our approach is to find latent cross-lingual
target entities (i.e. truly-aligned entities that we want to discover) for a source
entity by searching its nearest neighbors in R

d. We expect the embeddings of
latent aligned cross-lingual entities to be close to each other.

In summary, the main contributions of this paper are as follows:

– We propose an embedding-based approach to cross-lingual entity alignment,
which does not depend on machine translation between cross-lingual KBs.

– We jointly embed the relationship triples of two KBs with structure embed-
ding and further refine the embeddings by leveraging attribute triples of KBs
with attribute embedding. To the best of our knowledge, there is no prior work
learning embeddings of cross-lingual KBs while preserving their attribute
information.

– We evaluated our approach on real-world cross-lingual datasets from DBpe-
dia. The experimental results show that our approach largely outperformed
two state-of-the-art embedding-based methods for cross-lingual entity align-
ment. Moreover, it could be complemented with conventional methods based
on machine translation.

The rest of this paper is organized as follows. We discuss the related work
on KB embedding and cross-lingual KB alignment in Sect. 2. We describe our
approach in detail in Sect. 3, and report experimental results in Sect. 4. Finally,
we conclude this paper with future work in Sect. 5.

2 Related Work

We divide the related work into two subfields: KB embedding and cross-lingual
KB alignment. We discuss them in the rest of this section.

2.1 KB Embedding

In recent years, significant efforts have been made towards learning embeddings
of KBs. TransE [1], the pioneer of translation-based methods, interprets a rela-
tionship vector as the translation from the head entity vector to its tail entity
vector. In other words, if a relationship triple (h, r, t) holds, h+r ≈ t is expected.
TransE has shown its great capability of modeling 1-to-1 relations and achieved
promising results for KB completion. To further improve TransE, later work
including TransH [22] and TransR [15] was proposed. Additionally, there exist a
few non-translation-based approaches to KB embedding [2,18,20].

Besides, several studies take advantage of knowledge in KBs to improve
embeddings. Krompaß et al. [13] added type constraints to KB embedding mod-
els and enhanced their performance on link prediction. KR-EAR [14] embeds
attributes additionally by modeling attribute correlations and obtains good

Cross-Lingual Entity Alignment 631

results on predicting entities, relationships and attributes. But it only learns
attribute embeddings in a single KB, which hinders its application to cross-
lingual cases. Besides, KR-EAR focuses on the attributes whose values are from
a small set of entries, e.g. values of “gender” are {Female, Male}. It may fail to
model attributes whose values are very sparse and heterogeneous, e.g. “name”,
“label” and “coordinate”. RDF2Vec [19] uses local information of KB structures
to generate sequences of entities and employs language modeling approaches to
learn entity embeddings for machine learning tasks. For cross-lingual tasks, [12]
extends NTNKBC [4] for cross-lingual KB completion. [7] uses a neural network
approach that translates English KBs into Chinese to expand Chinese KBs.

2.2 Cross-Lingual KB Alignment

Existing work on cross-lingual KB alignment generally falls into two categories:
cross-lingual ontology matching and cross-lingual entity alignment. For cross-
lingual ontology matching, Fu et al. [8,9] presented a generic framework, which
utilizes machine translation tools to translate labels to the same language and
uses monolingual ontology matching methods to find mappings. Spohr et al. [21]
leveraged translation-based label similarities and ontology structures as features
for learning cross-lingual mapping functions by machine learning techniques (e.g.
SVM). In all these works, machine translation is an integral component.

For cross-lingual entity alignment, MTransE [5] incorporates TransE to
encode KB structures into language-specific vector spaces and designs five align-
ment models to learn translation between KBs in different languages with seed
alignment. JE [11] utilizes TransE to embed different KBs into a unified space
with the aim that each seed alignment has similar embeddings, which is exten-
sible to the cross-lingual scenario. Wang et al. [23] proposed a graph model,
which only leverages language-independent features (e.g. out-/inlinks) to find
cross-lingual links between Wiki knowledge bases. Gentile et al. [10] exploited
embedding-based methods for aligning entities in Web tables. Different from
them, our approach jointly embeds two KBs together and leverages attribute
embedding for improvement.

3 Cross-Lingual Entity Alignment via KB Embedding

In this section, we first introduce notations and the general framework of our
joint attribute-preserving embedding model. Then, we elaborate on the technical
details of the model and discuss several key design issues.

We use lower-case bold-face letters to denote the vector representations of
the corresponding terms, e.g., (h, r, t) denotes the vector representation of triple
(h, r, t). We use capital bold-face letters to denote matrices, and we use super-
scripts to denote different KBs. For example, E(1) denotes the representation
matrix for entities in KB1 in which each row is an entity vector e(1).

632 Z. Sun et al.

3.1 Overview

The framework of our joint attribute-preserving embedding model is depicted in
Fig. 1. Given two KBs, denoted by KB1 and KB2, in different natural languages
and some pre-aligned entity or property pairs (called seed alignment, denoted by
superscript (1,2)), our model learns the vector representations of KB1 and KB2

and expects the latent aligned entities to be embedded closely.

Fig. 1. Framework of the joint attribute-preserving embedding model

Following TransE [1], we interpret a relationship as the translation from the
head entity to the tail entity, to characterize the structure information of KBs.
We let each pair in the seed alignment share the same representation to serve as
bridge between KB1 and KB2 to build an overlay relationship graph, and learn
representations of all the entities jointly under a unified vector space via structure
embedding (SE). The intuition is that two alignable KBs are likely to have a
number of aligned triples, e.g. (Washington, capitalOf,America) in English and
its correspondence (Washington, capitaleDes, États-Unis) in French. Based on
this, SE aims at learning approximate representations for the latent aligned
triples between the two KBs.

However, SE only constrains that the learned representations must be com-
patible within each relationship triple, which causes the disorganized distribu-
tion of some entities due to the sparsity of their relationship triples. To allevi-
ate this incoherent distribution, we leverage attribute triples for helping embed
entities based on the observation that the latent aligned entities usually have
a high degree of similarity in attribute values. Technically, we overlook specific
attribute values by reason of their complexity, heterogeneity and cross-linguality.
Instead, we abstract attribute values to their range types, e.g. (Tom, age, “12′′)
to (Tom, age, Integer), where Integer is the abstract range type of value “12”.
Then, we carry out attribute embedding (AE) on abstract attribute triples to
capture the correlations of cross-lingual and mono-lingual attributes, and calcu-
late the similarities of entities based on them. Finally, the attribute similarity
constraints are combined with SE to refine representations by clustering enti-
ties with high attribute correlations. In this way, our joint model preserves both
relationship and attribute information of the two KBs.

Cross-Lingual Entity Alignment 633

With entities represented as vectors in a unified embedding space, the align-
ment of latent cross-lingual target entities for a source entity can be conducted
by searching the nearest cross-lingual neighbors in this space.

3.2 Structure Embedding

The aim of SE is to model the geometric structures of two KBs and learn approx-
imate representations for latent aligned triples. Formally, given a relationship
triple tr = (h, r, t), we expect h + r = t. To measure the plausibility of tr, we
define the score function f(tr) = ‖h + r − t‖22. We prefer a lower value of f(tr)
and want to minimize it for each relationship triple.

Figure 2 gives an example about how SE models the geometric structures of
two KBs with seed alignment. In Phase (1), we initialize all the vectors randomly
and let each pair in seed alignment overlap to build the overlay relationship
graph. In order to show the triples intuitively in the figure, we regard an entity
as a point in the vector space and move relationship vectors to start from their
head entities. Note that, currently, entities and relationships distribute randomly.
In Phase (2), we minimize scores of triples and let vector representations com-
patible within each relationship triple. For example, the relationship capitalOf
would tend to be close to capitaleDes because they share the same head entity
and tail entity. In the meantime, the entity America and its correspondence
États-Unis would move closely to each other due to their common head entity
and approximate relationships. Therefore, SE is a dynamic spreading process.
The ideal state after training is shown as Phase (3). We can see that the latent
aligned entities America and États-Unis lie together.

Fig. 2. An example of structure embedding

Furthermore, we detect that negative triples (a.k.a. corrupted triples), which
have been widely used in translation-based embedding models [1,15,22], are
also valuable to SE. Considering that another English entity China and its
latent aligned French one Chine happen to lie closely to America, SE may take
the Chine as a candidate for America by mistake due to their short distance.
Negative triples would help reduce the occurrence of this coincidence. If we
generate a negative triple tr′ = (Washington, capitalOf,China) and learn a
high score for tr′, China would keep a distance away from America. As we
enforce the length of any embedding vector to 1, the score function f has a

634 Z. Sun et al.

constant maximum. Thus, we would like to minimize −f(tr′) to learn a high
score for tr′.

In summary, we prefer lower scores for existing triples (positives) and higher
scores for negatives, which leads to minimize the following objective function:

OSE =
∑

tr∈T

∑

tr′∈T ′
tr

(
f(tr) − αf(tr′)

)
, (1)

where T denotes the set of all positive triples and T ′
tr denotes the associated

negative triples for tr generated by replacing either its head or tail by a random
entity (but not both at the same time). α is a ratio hyper-parameter that weights
positive and negative triples and its range is [0, 1]. It is important to remember
that each pair in the seed alignment share the same embedding during training,
in order to bridge two KBs.

3.3 Attribute Embedding and Entity Similarity Calculation

Attribute Embedding. We call a set of attributes correlated if they are com-
monly used together to describe an entity. For example, attributes longitude,
latitude and place name are correlated because they are widely used together
to describe a place. Moreover, we want to assign a higher correlation to the
pair of longitude and latitude because they have the same range type. We use
seed entity pairs to establish correlations between cross-lingual attributes. Given
an aligned entity pair (e(1), e(2)), we regard the attributes of e(1) as correlated
ones for each attribute of e(2), and vice versa. We expect attributes with high
correlations to be embedded closely.

To capture the correlations of attributes, AE borrows the idea from Skip-
gram [16], a very popular model that learns word embeddings by predicting the
context of a word given the word itself. Similarly, given an attribute, AE wants to
predict its correlated attributes. In order to leverage the range type information,
AE minimizes the following objective function:

OAE = −
∑

(a,c)∈H

wa,c · log p(c|a), (2)

where H denotes the set of positive (a, c) pairs, i.e., c is actually a correlated
attribute of a, and the term p(c|a) denotes the probability. To prevent all the
vectors from having the same value, we adopt the negative sampling approach
[17] to efficiently parameterize Eq. (2), and log p(c|a) is replaced with the term
as follows:

log σ(a · c) +
∑

(a,c′)∈H′
a

log σ(−a · c′), (3)

where σ(x) = 1
1+e−x . H ′

a is the set of negative pairs for attribute a generated
according to a log-uniform base distribution, assuming that they are all incorrect.

We set wa,c = 1 if a and c have different range types, otherwise wa,c = 2 to
increase their probability of tending to be similar. In this paper, we distinguish
four kinds of abstract range types, i.e., Integer, Double,Datetime and String
(as default). Note that it is easy to extend to more types.

Cross-Lingual Entity Alignment 635

Entity Similarity Calculation. Given attribute embeddings, we take the rep-
resentation of an entity to be the normalized average of its attribute vectors, i.e.,
e = [

∑
a∈Ae

a]
1
, where Ae is the set of attributes of e and [.]1 denotes the nor-

malized vector. We have two matrices of vector representations for entities in
two KBs, E(1)

AE ∈ R
n(1)
e ×d for KB1 and E(2)

AE ∈ R
n(2)
e ×d for KB2, where each

row is an entity vector, and n
(1)
e , n

(2)
e are the numbers of entities in KB1,KB2,

respectively.
We use the cosine distance to measure the similarities between entities. For

two entities e, e′, we have sim(e, e′) = cos(e, e′) = e·e′
||e||||e′|| = e · e′, as the length

of any embedding vector is enforced to 1. The cross-KB similarity matrix S(1,2) ∈
R

n(1)
e ×n(2)

e between KB1 and KB2, as well as the inner similarity matrices S(1) ∈
R

n(1)
e ×n(1)

e for KB1 and S(2) ∈ R
n(2)
e ×n(2)

e for KB2, are defined as follows:

S(1,2) = E(1)
AEE

(2)�
AE , S(1) = E(1)

AEE
(1)�
AE , S(2) = E(2)

AEE
(2)�
AE . (4)

A similarity matrix S holds the cosine similarities among entities and Si,j

is the similarity between the i-th entity in one KB and the j-th entity in the
same or the other KB. We discard lower values of S because a low similarity of
two entities indicates that they are likely to be different. So, we set the entry
Si,j = 0 if Si,j < τ , where τ is a threshold and can be set based on the average
similarity of seed entity pairs. In this paper, we fix τ = 0.95 for inner similarity
matrices and 0.9 for cross-KB similarity matrix, to achieve high accuracy.

3.4 Joint Attribute-Preserving Embedding

We want similar entities across KBs to be clustered to refine their vector repre-
sentations. Inspired by [25], we use the matrices of pairwise similarities between
entities as supervised information and minimize the following objective function:

OS = ‖E(1)
SE − S(1,2)E(2)

SE‖2F
+β(‖E(1)

SE − S(1)E(1)
SE‖2F + ‖E(2)

SE − S(2)E(2)
SE‖2F), (5)

where β is a hyper-parameter that balances similarities between KBs and their
inner similarities. ESE ∈ R

ne×d denotes the matrix of entity vectors for one
KB in SE with each row an entity vector. S(1,2)E(2)

SE calculates latent vectors of
entities in KB1 by accumulating vectors of entities in KB2 based on their sim-

ilarities. By minimizing ‖E(1)
SE − S(1,2)E(2)

SE‖2F , we expect similar entities across
KBs to be embedded closely. The two inner similarity matrices work in the same
way.

To preserve both the structure and attribute information of two KBs, we
jointly minimize the following objective function:

Ojoint = OSE + δOS , (6)

where δ is a hyper-parameter weighting OS .

636 Z. Sun et al.

3.5 Discussions

We discuss and analyze our joint attribute-preserving embedding model in the
following aspects:

Objective Function for Structure Embedding. SE is translation-based
embedding model but its objective function (see Eq. (1)) does not follow the
margin-based ranking loss function below, which is used by many previous KB
embedding models [1]:

O =
∑

tr∈T

∑

tr′∈T ′
tr

max[γ + f(tr) − f(tr′), 0]. (7)

Equation (7) aims at distinguishing positive and negative triples, and expects
that their scores can be separated by a large margin. However, for the cross-
lingual entity alignment task, in addition to the large margin between their
scores, we also want to assign lower scores to positive triples and higher scores
to negative triples. Therefore, we choose Eq. (1) instead of Eq. (7).

In contrast, JE [11] uses the margin-based ranking loss from TransE [1], while
MTransE [5] does not have this as it does not use negative triples. However, as
explained in Sect. 3.2, we argue that negative triples are effective in distinguish-
ing the relations between entities. Our experimental results reported in Sect. 4.4
also demonstrate the effectiveness of negative triples.

Training. We initialize parameters such as vectors of entities, relations and
attributes randomly based on a truncated normal distribution, and then opti-
mize Eqs. (2) and (6) with a gradient descent optimization algorithm called
AdaGrad [6]. Instead of directly optimizing Ojoint, our training process involves
two optimizers to minimize OSE and δOS independently. At each epoch, the two
optimizers are executed alternately. When minimizing OSE , f(tr) and −αf(tr′)
can also be optimized alternately.

The length of any embedding vector is enforced to 1 for the following reasons:
(i) this constraint prevents the training process from trivially minimizing the
objective function by increasing the embedding norms and shaping the embed-
dings, (ii) it limits the randomness of entity and relationship distribution in the
training process, and (iii) it fixes the mismatch between the inner product in
Eq. (3) and the cosine similarity to measure embeddings [24].

Our model is also scalable in training. The structure embedding belongs to
the translation-based embedding models, which have already been proved to be
capable of learning embeddings at large scale [1]. We use sparse representations
for matrices in Eq. (5) for saving memory. Additionally, the memory cost to
compute Eq. (4) can be reduced using a divide-and-conquer strategy.

Parameter Complexity. The parameter complexity of our joint model is
O

(
d(ne + nr + na)

)
, where ne, nr, na are the numbers of entities, relationships

Cross-Lingual Entity Alignment 637

and attributes, respectively. d is the dimension of the embeddings. Considering
that nr, na � ne in practice and the seed alignment share vectors in training,
the complexity of the model is roughly linear to the number of total entities.

Searching Latent Aligned Entities. Because the length of each vector always
equals 1, the cosine distance between entities of the two KBs can be calculated
as D = E(1)

SEE
(2)�
SE . Thus, the nearest entities can be obtained by simply sorting

each row of D in descending order. For each source entity, we expect the rank
of its truly-aligned target entity to be the first few.

4 Evaluation

In this section, we report our experiments and results on real-world cross-lingual
datasets. We developed our approach, called JAPE, using TensorFlow2—a very
popular open-source software library for numerical computation. Our experi-
ments were conducted on a personal workstation with an Intel Xeon E3 3.3 GHz
CPU and 128 GB memory. The datasets, source code and experimental results
are accessible at this website3.

4.1 Datasets

We selected DBpedia (2016-04) to build three cross-lingual datasets. DBpedia is
a large-scale multi-lingual KB including inter-language links (ILLs) from entities
of English version to those in other languages. In our experiments, we extracted
15 thousand ILLs with popular entities from English to Chinese, Japanese and
French respectively, and considered them as our reference alignment (i.e., gold
standards). Our strategy to extract datasets is that we randomly selected an
ILL pair s.t. the involved entities have at least 4 relationship triples and then
extracted relationship and attribute infobox triples for selected entities. The
statistics of the three datasets are listed in Table 1, which indicate that the
number of involved entities in each language is much larger than 15 thousand,
and attribute triples contribute to a significant portion of the datasets.

4.2 Comparative Approaches

As aforementioned, JE [11] and MTransE [5] are two representative embedding-
based methods for entity alignment. In our experiments, we used our best effort
to implement the two models as they do not release any source code or software
currently. We conducted them on the above datasets as comparative approaches.
Specifically, MTransE has five variants in its alignment model, where the fourth
performs best according to the experiments of its authors. Thus, we chose this
variant to represent MTransE. We followed the implementation details reported
2 https://www.tensorflow.org/.
3 https://github.com/nju-websoft/JAPE.

https://www.tensorflow.org/
https://github.com/nju-websoft/JAPE

638 Z. Sun et al.

Table 1. Statistics of the datasets

Datasets Entities Relationships Attributes Rel. triples Attr. triples

DBP15KZH-EN Chinese 66,469 2,830 8,113 153,929 379,684

English 98,125 2,317 7,173 237,674 567,755

DBP15KJA-EN Japanese 65,744 2,043 5,882 164,373 354,619

English 95,680 2,096 6,066 233,319 497,230

DBP15KFR-EN French 66,858 1,379 4,547 192,191 528,665

English 105,889 2,209 6,422 278,590 576,543

in [5,11] and complemented other unreported details with careful consideration.
For example, we added a strong orthogonality constraint for the linear trans-
formation matrix in MTransE to ensure the invertibility, because we found it
leads to better results. For JAPE, we tuned various parameter values and set
d = 75, α = 0.1, β = 0.05, δ = 0.05 for the best performance. The learning rates
of SE and AE were empirically set to 0.01 and 0.1, respectively.

4.3 Evaluation Metrics

Following the conventions [1,5,11], we used Hits@k and Mean to assess the per-
formance of the three approaches. Hits@k measures the proportion of correctly
aligned entities ranked in the top k, while Mean calculates the mean of these
ranks. A higher Hits@k and a lower Mean indicate better performance. It is a
phenomenon worth noting that the optimal Hits@k and Mean usually do not
come at the same epoch in all the three approaches. For fair comparison, we
did not fix the number of epochs but used early stopping to avoid overtraining.
The training process is stopped as long as the change ratio of Mean is less than
0.0005. Besides, the training of AE on each dataset takes 100 epochs.

4.4 Experimental Results

Results on DBP15K. We used a certain proportion of the gold standards as
seed alignment while left the remaining as testing data, i.e., the latent aligned
entities to discover. We tested the proportion from 10% to 50% with step 10%,
and Table 2 lists the results using 30% of the gold standards. The variation of
Hits@k with different proportions will be shown shortly. For relationships and
attributes, we simply extracted the property pairs with exactly the same labels,
which only account for a small portion of the seed alignment.

Table 2 indicates that JAPE largely outperformed JE and MTransE, since it
captures both structure and attribute information of KBs. For JE, it employs
TransE as its basic model, which is not suitable to be directly applied to entity
alignment as discussed in Sect. 3.5. Besides, JE does not give a mandatory con-
straint on the length of vectors. Instead, it only minimizes ‖v‖22 − 1 to restrain
vector length and brings adverse effect. For MTransE, it models the structures

Cross-Lingual Entity Alignment 639

Table 2. Result comparison and ablation study

DBP15KZH-EN ZH → EN EN → ZH

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean

JE 21.27 42.77 56.74 766 19.52 39.36 53.25 841

MTransE 30.83 61.41 79.12 154 24.78 52.42 70.45 208

JAPE SE w/o neg 38.34 68.86 84.07 103 31.66 59.37 76.33 147

SE 39.78 72.35 87.12 84 32.29 62.79 80.55 109

SE + AE 41.18 74.46 88.90 64 40.15 71.05 86.18 73

DBP15KJA-EN JA → EN EN → JA

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean

JE 18.92 39.97 54.24 832 17.80 38.44 52.48 864

MTransE 27.86 57.45 75.94 159 23.72 49.92 67.93 220

JAPE SE w/o neg 33.10 63.90 80.80 114 29.71 56.28 73.84 156

SE 34.27 66.39 83.61 104 31.40 60.80 78.51 127

SE + AE 36.25 68.50 85.35 99 38.37 67.27 82.65 113

DBP15KFR-EN FR → EN EN → FR

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean

JE 15.38 38.84 56.50 574 14.61 37.25 54.01 628

MTransE 24.41 55.55 74.41 139 21.26 50.60 69.93 156

JAPE SE w/o neg 29.55 62.18 79.36 123 25.40 56.55 74.96 133

SE 29.63 64.55 81.90 95 26.55 60.30 78.71 107

SE + AE 32.39 66.68 83.19 92 32.97 65.91 82.38 97

of KBs in different vector spaces, and information loss happens when learning
the translation between vector spaces.

Additionally, we divided JAPE into three variants for ablation study, and the
results are shown in Table 2 as well. We found that involving negative triples in
structure embedding reduces the random distribution of entities, and involving
attribute embedding as constraint further refines the distribution of entities. The
two improvements demonstrate that systematic distribution of entities makes for
the cross-lingual entity alignment task.

It is worth noting that the alignment direction (e.g. ZH → EN vs. EN → ZH)
also causes performance difference. As shown in Table 1, the relationship triples
in a non-English KB are much sparser than those in an English KB, so that
the approaches based on the relationship triples cannot learn good representa-
tions to model the structures of non-English KBs, as restraints for entities are
relatively insufficient. When performing alignment from an English KB to a non-
English KB, we search for the nearest non-English entity as the aligned one to
an English entity, the sparsity of the non-English KB leads to the disorganized
distribution of its entities, which brings negative effects on the task. However,
it is comforting to see that the performance difference becomes narrower when
involving attribute embedding, because the attribute triples provide additional
information to embed entities, especially for sparse KBs.

Figure 3 provides the visualization of sample results for entity alignment and
attribute correlations. We projected the embeddings of aligned entity pairs and

640 Z. Sun et al.

Fig. 3. Visualization of results on DBP15KZH-EN

involved attribute embeddings to two dimensions using PCA. The left part indi-
cates that universities, countries, cities and cellphones were divided widely while
aligned entities from Chinese to English were laid closely, which met our expec-
tation of JAPE. The right part shows our attribute embedding clustered three
groups of monolingual attributes (about cellphones, cities and universities) and
one group of cross-lingual ones (about countries).

Sensitivity to Proportion of Seed Alignment. Figure 4 illustrates the
change of Hits@k with varied proportion of seed alignment. In accordance with
our expectation, the results on all the datasets become better with the increase
of the proportion, because more seed alignment can provide more information to
overlay the two KBs. It can be seen that, when using half of the gold standards
as seed alignment, JAPE performed encouragingly, e.g. Hits@1 and Hits@10
on DBP15KZH-EN are 53.27% and 82.91%, respectively. Moreover, even with a
very small proportion of seed alignment like 10%, JAPE still achieved promising
results, e.g. Hits@10 on DBP15KZH-EN reaches 55.04% and on DBP15KJA-EN

reaches 44.69%. Therefore, it is feasible to deploy JAPE to various entity align-
ment tasks, even with limited seed alignment.

Combination with Machine Translation. Since machine translation is often
used in cross-lingual ontology matching [9,21], we designed a machine translation
based approach that employs Google Translate to translate the labels of entities
in one KB and computes similarities between the translations and the labels
of entities in the other KB. For similarity measurement, we chose Levenshtein
distance because of its popularity in ontology matching [3].

We chose DBP15KZH-EN and DBP15KJA-EN, which have big barriers in lin-
guistics. As depicted in Table 3, machine translation achieves satisfying results,

Cross-Lingual Entity Alignment 641

Fig. 4. Hits@k w.r.t. proportion of seed alignment

especially for Hits@1, and we think that it is due to the high accuracy of Google
Translate. However, the gap between machine translation and JAPE becomes
smaller for Hits@10 and Hits@50. The reason is as follows. When Google mis-
understands the meaning of labels (e.g. polysemy), the top-ranked entities are
all very likely to be wrong. On the contrary, JAPE relies on the structure infor-
mation of KBs, so the correct entities often appear slightly behind. Besides, we
found that translating from Chinese (or Japanese) to English is more accurate
than the reverse direction.

To further investigate the possibility of combination, for each latent aligned
entities, we considered the lower rank of the two results as the combined rank.
It is surprising to find that the combined results are significantly better, which
reveals the mutual complementarity between JAPE and machine translation. We
believe that, when aligning entities between cross-lingual KBs where the quality
of machine translation is difficult to guarantee, or many entities lack meaningful
labels, JAPE can be a practical alternative.

Table 3. Combination of machine translation and JAPE

DBP15KZH-EN ZH → EN EN → ZH

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean

Machine translation 55.76 67.61 74.30 820 40.38 54.27 62.27 1,551

JAPE 41.18 74.46 88.90 64 40.15 71.05 86.18 73

Combination 73.09 90.43 96.61 11 62.70 85.21 94.25 26

DBP15KJA-EN JA → EN EN → JA

Hits@1 Hits@10 Hits@50 Mean Hits@1 Hits@10 Hits@50 Mean

Machine translation 74.64 84.57 89.13 333 61.98 72.07 77.22 1,095

JAPE 36.25 68.50 85.35 99 38.37 67.27 82.65 113

Combination 82.84 94.65 98.31 9 75.94 90.70 96.04 25

642 Z. Sun et al.

Results at Larger Scale. To test the scalability of JAPE, we built three larger
datasets by choosing 100 thousand ILLs between English and Chinese, Japanese
and French in the same way as DBP15K. The threshold of relationship triples to
select ILLs was set to 2. Each dataset contains several hundred thousand entities
and several million triples. We set d = 100, β = 0.1 and keep other parameters
the same as DBP15K. For JE, the training takes 2000 epochs as reported in its
paper. The results on DBP100K are listed in Table 4. Due to lack of space, only
Hits@10 is reported. We found that similar results and conclusions stand for
DBP100K compared with DBP15K, which indicate the scalability and stability
of JAPE.

Table 4. Hits@10 comparison on DBP100K

DBP100K ZH → EN EN → ZH JA → EN EN → JA FR → EN EN → FR

JE 16.95 16.63 21.17 20.98 22.98 22.63

MTransE 34.31 29.18 33.93 27.22 44.84 39.19

JAPE 41.75 40.13 42.00 39.30 53.64 50.51

Furthermore, the performance of all the methods decreases to some extent on
DBP100K. We think that the reasons are twofold: (i) DBP100K contains quite
a few “sparse” entities involved in a very limited number of triples, which affect
embedding the structure information of KBs; and (ii) as the number of latent
aligned entities in DBP100K are several times larger than DBP15K, the TransE-
based models suffer from the increased occurrence of multi-mapping relations as
explained in [22]. Nevertheless, JAPE still outperformed JE and MTransE.

5 Conclusion and Future Work

In this paper, we introduced a joint attribute-preserving embedding model for
cross-lingual entity alignment. We proposed structure embedding and attribute
embedding to represent the relationship structures and attribute correlations of
KBs and learn approximate embeddings for latent aligned entities. Our experi-
ments on real-world datasets demonstrated that our approach achieved superior
results than two state-of-the-art embedding approaches and could be comple-
mented with conventional methods based on machine translation.

In future work, we look forward to improving our approach in several aspects.
First, the structure embedding suffered from multi-mapping relations, thus we
plan to extend it with cross-lingual hyperplane projection. Second, our attribute
embedding discarded attribute values due to their diversity and cross-linguality,
which we want to use cross-lingual word embedding techniques to incorporate.
Third, we would like to evaluate our approach on more heterogeneous KBs devel-
oped by different parties, such as between DBpedia and Wikidata.

Cross-Lingual Entity Alignment 643

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (Nos. 61370019, 61572247 and 61321491).

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

2. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: AAAI, pp. 301–306 (2011)

3. Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In:
Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 294–309. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-41338-4 19

4. Chen, D., Socher, R., Manning, C.D., Ng, A.Y.: Learning new facts from knowl-
edge bases with neural tensor networks and semantic word vectors (2013).
arXiv:1301.3618

5. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multi-lingual knowledge graph embed-
dings for cross-lingual knowledge alignment. In: IJCAI (2017)

6. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)

7. Feng, X., Tang, D., Qin, B., Liu, T.: English-Chinese knowledge base translation
with neural network. In: COLING, pp. 2935–2944 (2016)

8. Fu, B., Brennan, R., O’Sullivan, D.: Cross-lingual ontology mapping - an inves-
tigation of the impact of machine translation. In: Gómez-Pérez, A., et al. (eds.)
ASWC, pp. 1–15 (2009)

9. Fu, B., Brennan, R., O’Sullivan, D.: Cross-lingual ontology mapping and its use
on the multilingual semantic web. In: WWW Workshop on Multilingual Semantic
Web, pp. 13–20 (2010)

10. Gentile, A.L., Ristoski, P., Eckel, S., Ritze, D., Paulheim, H.: Entity matching on
web tables : a table embeddings approach for blocking. In: EDBT, pp. 510–513
(2017)

11. Hao, Y., Zhang, Y., He, S., Liu, K., Zhao, J.: A joint embedding method for entity
alignment of knowledge bases. In: Chen, H., Ji, H., Sun, L., Wang, H., Qian, T.,
Ruan, T. (eds.) CCKS 2016. CCIS, vol. 650, pp. 3–14. Springer, Singapore (2016).
doi:10.1007/978-981-10-3168-7 1

12. Klein, P., Ponzetto, S.P., Glavaš, G.: Improving neural knowledge base completion
with cross-lingual projections. In: EACL, pp. 516–522 (2017)

13. Krompaß, D., Baier, S., Tresp, V.: Type-Constrained Representation Learning in
Knowledge Graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp.
640–655. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 37

14. Lin, Y., Liu, Z., Sun, M.: Knowledge representation learning with entities,
attributes and relations. In: IJCAI, pp. 2866–2872 (2016)

15. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space (2013). arXiv:1301.3781

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

18. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: ICML, pp. 809–816 (2011)

http://dx.doi.org/10.1007/978-3-642-41338-4_19
http://arxiv.org/abs/1301.3618
http://dx.doi.org/10.1007/978-981-10-3168-7_1
http://dx.doi.org/10.1007/978-3-319-25007-6_37
http://arxiv.org/abs/1301.3781

644 Z. Sun et al.

19. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F.,
Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016).
doi:10.1007/978-3-319-46523-4 30

20. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor
networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)

21. Spohr, D., Hollink, L., Cimiano, P.: A machine learning approach to multilingual
and cross-lingual ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor,
J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol.
7031, pp. 665–680. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6 42

22. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

23. Wang, Z., Li, J., Wang, Z., Tang, J.: Cross-lingual knowledge linking across wiki
knowledge bases. In: WWW, pp. 459–468 (2012)

24. Xing, C., Wang, D., Liu, C., Lin, Y.: Normalized word embedding and orthogonal
transform for bilingual word translation. In: HLT-NAACL, pp. 1006–1011 (2015)

25. Zou, W.Y., Socher, R., Cer, D.M., Manning, C.D.: Bilingual word embeddings for
phrase-based machine translation. In: EMNLP, pp. 1393–1398 (2013)

http://dx.doi.org/10.1007/978-3-319-46523-4_30
http://dx.doi.org/10.1007/978-3-642-25073-6_42

Blockchain Enabled Privacy Audit Logs

Andrew Sutton(B) and Reza Samavi

Department of Computing and Software, McMaster University,
1280 Main St. West, Hamilton, ON L8S 4K1, Canada

{suttonad,samavir}@mcmaster.ca

Abstract. Privacy audit logs are used to capture the actions of partic-
ipants in a data sharing environment in order for auditors to check com-
pliance with privacy policies. However, collusion may occur between the
auditors and participants to obfuscate actions that should be recorded
in the audit logs. In this paper, we propose a Linked Data based method
of utilizing blockchain technology to create tamper-proof audit logs that
provide proof of log manipulation and non-repudiation. We also provide
experimental validation of the scalability of our solution using an existing
Linked Data privacy audit log model.

Keywords: Blockchain · Privacy audit log · RDF signatures · Bitcoin ·
Tamper-proof · Linked Data · Semantic Web · DSA · Privacy

1 Introduction

Protecting the privacy of individuals who contribute their data to a collabora-
tive service or research environment is becoming more challenging. This becomes
apparent as an individual’s personal information is passed between different
organizations that might operate under different jurisdictions and governing
bodies. Data sharing agreements (DSA) are legally binding documents estab-
lished between organizations that detail the policies and conditions related to
the sharing of personal data [1]. The scenario in Fig. 1 demonstrates a collabora-
tive research environment where the research teams must comply with the DSAs
and are monitored for their compliance through the use of privacy audit logs.
Auditors are responsible for checking compliance with the DSA by examining
the privacy logs generated by the research teams [2].

In the scenario in Fig. 1, there is a problem in the trust placed in an auditor
and the audit log itself. If the auditor works for the organization that they are
auditing then the quality of the audit depends on influencing factors between
the organization and the auditor [3]. Collusion can occur between individuals in
the organization, such as researchers in the research teams, and the auditor to
obfuscate or modify the integrity of the generated logs. The resulting degraded
trust placed in the auditing process is a problem that needs to be solved in order
to prove that organizations are responsible for privacy breaches resulting from
non-compliant actions or to prove that they are compliant with the policies.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 645–660, 2017.
DOI: 10.1007/978-3-319-68288-4 38

646 A. Sutton and R. Samavi

Fig. 1. Example privacy auditing scenario in a data sharing environment [5]

In order to combat the potential modification of the logs due to collusion, a
mechanism to provide tamper-proof audit logs is needed [3,4].

In this paper, we propose a Linked Data-based [6] model for creating tamper-
proof privacy audit logs and provide a mechanism for log integrity and authen-
ticity verification that auditors can execute in conjunction with performing com-
pliance checking queries. The Linked Data-based L2TAP (Linked Data Log to
Transparency, Accountability, and Privacy) audit log framework [5] is used as
the underlying log framework. We leverage theories and technologies stemming
from blockchain technology [3,4,7–9], Linked Data graph signatures [10–13],
and Linked Data graph digest computation [12,14] to create non-repudiable log
events and utilize the distributed and immutable properties of blockchain tech-
nology to make the audit logs tamper-proof. We experimentally verify that the
log integrity verification process scales linearly.

The structure of the paper and the contributions of our work are as follows.
Section 2 presents how privacy audit logs are generated and the design require-
ments of our model. Our solution to generate tamper-proof privacy audit logs is
described in Sect. 3. Section 4 presents a SPARQL-based solution to perform log
integrity verification. In Sect. 5, the results of an experiment to validate the scal-
ability of our method is given. Section 6 provides an investigation of the related
work. Concluding remarks are discussed in Sect. 7.

2 Characteristics of Tamper-Proof Privacy Logs

Privacy auditing addresses three characteristics of information accountability:
validation, attribution, and evidence [15,16]. Validation verifies a posteriori if a
participant has performed the tasks as expected, whereas attribution and evi-
dence deal with finding the responsible participants for non-compliant actions
and producing supporting evidence, respectively [15,16]. To address these char-
acteristics, privacy audit logs need to capture events with deontic modalities,
such as capturing privacy policies, purpose of data usage, obligations of parties,
and data access activities. A privacy audit log generation process is depicted in
Fig. 2a. The process is composed of a logger producing log events of promised
and performed privacy acts and storing them in an audit log accessible to audi-
tors. The logger generates multiple privacy log events (e1 to en) over time (e.g.,
expressing privacy policies, requesting access and access activities). An auditor

Blockchain Enabled Privacy Audit Logs 647

(a) Privacy audit log generation pro-
cess

(b) Tamper-proof log generation process

Fig. 2. Privacy audit log generation comparison

can then perform compliance queries against the audit log to determine if the
performed acts are in compliance with the polices in the governing DSA (e.g.,
the scenario in Fig. 1) [5].

There are a number of proposals on logs for supporting privacy auditing
[18–20]. In this research, we utilize the L2TAP privacy audit log because it pro-
vides an infrastructure to capture all relevant privacy events andprovides SPARQL
solutions for major privacy processes such as obligation derivation and compliance
checking [5]. The L2TAP model follows the principles of Linked Data to publish the
logs. By leveraging a Linked Data infrastructure and expressing the contents of the
logs using dereferenceable URIs, the L2TAP audit log supports extensibility and
flexibility in a web-scale environment [5]. In this research we extend the L2TAP
ontology to support non-repudiation and log event integrity.

2.1 Tamper-Proof Privacy Audit Log Desiderata

An event in a privacy audit log needs to be non-repudiable so that the per-
formed act cannot be denied and the authenticity of the event can be provably
demonstrated. For example, in the scenario in Fig. 1, if an auditor determines
that the researchers have performed non-compliant actions, there is no provable
method of holding the researchers accountable for their performed acts. Further-
more, after being logged, log events should not be altered by any participant,
including the logger and auditor. If the researchers and auditors act in collusion
to hide non-compliant acts in the log to avoid consequential actions, the result-
ing log does not represent the true events. Without a mechanism to provably
demonstrate that the integrity of the log is intact, there will be a significant lack
of confidence in the auditing process [3,4]. The privacy audit log should enable
the logger to digitally sign an event to support non-repudiation. The log should
also offer a mechanism to preserve the integrity of log events (e.g., hashing or
encryption). Verifying the signature of an event will prove the authenticity of

648 A. Sutton and R. Samavi

the event logger. The ability to verify the integrity of the log events will result in
a genuine audit of the participant’s actions, since the performed actions (events)
in the log are proven to be authentic.

Figure 2b depicts the additional steps required in the privacy audit log gen-
eration process to support event non-repudiation and integrity. The log is gener-
ated by the logger, but an additional entity, the integrity preserver, is required.
After a log event is generated, the event must be signed by the logger to sup-
port provable accountability. Integrity proof digests (i.e. cryptographic hashes)
of the log events should be generated and stored by the integrity preserver as
the immutable record of the integrity proof. These records can then be retrieved
to enhance the process of compliance checking with log integrity verification.

Besides the functionality described above, the tamper-proof privacy audit log
should preserve the extensibility, flexibility and scalability of the underlying log-
ging framework (i.e. L2TAP). We achieve flexibility through the Linked Data and
SPARQL based solution for the log verification. The extensibility is addressed by
a limited extension of the L2TAP ontology and using other external ontologies
through the modular structure of L2TAP. As demonstrated in [5], the L2TAP
privacy audit log is scalable. The additional verification processes introduced in
this paper to make the log tamper-proof should preserve the scalability.

3 Blockchain Enabled Privacy Audit Logs

In situations where a central authority has control over information resources,
the trust placed in that authority to maintain correct and accurate information
is reduced because there is no provable mechanism for external entities to ver-
ify the state of the resources. Blockchain technology solves the trust problem
by maintaining records and transactions of information resources through a dis-
tributed network, rather than a central authority [21,22]. The use of blockchain
technology to create an immutable record of transactions is analogous to the
auditing problem we are trying to solve; the need for the immutable storage
of information that is not governed by a central authority. In this section, we
present how our blockchain enabled privacy audit log model works. We start
with a brief background on the blockchain technology leveraged by our model,
the Bitcoin blockchain, in Sect. 3.1. We describe the architecture of our model
in Sect. 3.2. Sections 3.3 and 3.4 present the signature graph and block graph
generation components of our model, respectively.

3.1 Bitcoin Blockchain

The Bitcoin system [23] is a cryptocurrency scheme based on a decentralized and
distributed consensus network. Transactions propagate through the Bitcoin peer-
to-peer network in order to be verified and stored in a blockchain. A blockchain
is a decentralized database comprised of a continuously increasing amount of
records, or blocks, that represents an immutable digital ledger of transactions [7].

Blockchain Enabled Privacy Audit Logs 649

Distributed ledgers allow for a shared method of record keeping where each partici-
pant has a copy of the ledger, meaning that each node on the network will have to be
in collusion to modify the records in the blockchain. Each block in the blockchain is
composed of a header containing a hash of the previous block in the chain (forming
a chain of blocks) and a payload of transactions.

Transactions are written to the blockchain through data structures that con-
tain an input(s) and output(s). Monetary value is transferred between the trans-
action input and output, where the input defines where the value is coming
from and the output defines the destination. The Bitcoin blockchain allows a
small amount of data to be stored in a transaction output using a special trans-
action opcode that makes the transaction provably non-spendable [8]. Using
the OP RETURN opcode available through Bitcoin’s transaction scripting lan-
guage1 allows up to 80 bytes of additional storage to a transaction output [24].
Changes to the state of the blockchain are achieved through a consensus mech-
anism called Proof of Work. Transactions are propagated through the Bitcoin
network and specialized nodes, called miners, validate the transactions. These
miners generate new blocks on the blockchain by solving a hard cryptographic
problem and the other nodes on the network verify and mutually agree that the
solution is correct. As more transactions and blocks are generated, the difficulty
of the cryptographic problem rises, which makes the tampering of data written in
the blocks very difficult. A blockchain explorer application programming inter-
face (API) is required to query transaction information on the Bitcoin network.
A blockchain explorer is a web application that acts as a Bitcoin search engine,
allowing users to query the transactions and blocks on the blockchain [24]. We
utilize this queryable special transaction to store an integrity proof of privacy
audit logs on the Bitcoin blockchain.

3.2 Architectural Components

A blockchain is well suited to fill the role of the integrity preserver in the tamper-
proof log generation process in Fig. 2b. We use the capabilities provided by the
Bitcoin blockchain to store an immutable record of the log integrity proofs.
The logger generates privacy log events and signs these events. After producing
integrity proofs of the signed events, each of the proofs will be written to the
Bitcoin blockchain through a series of transactions. The immutable record of the
integrity proofs on the blockchain will be retrieved using a blockchain explorer.
The components for signing log events and creating Bitcoin transactions are
signature graph generation and block graph generation illustrated in Fig. 3 and
described below.

The signature graph generation component is responsible for capturing the
missing non-repudiation property of the L2TAP audit log framework. An L2TAP
audit log is composed of various privacy events such as data access requests and
responses. The log events consist of a header that captures the provenance of an
event and a body containing information about the event, such as what data is

1 https://en.bitcoin.it/wiki/Script.

https://en.bitcoin.it/wiki/Script

650 A. Sutton and R. Samavi

Fig. 3. The architecture of the model

being accessed by whom. URIs are used to identify a set of statements in the
header and body to form RDF named graphs stored in a quad store [25]. We
generate a new named graph, called the signature graph, that contains asser-
tions about the event’s signature. The event that will be signed is pulled from
the quad store and signed by the logger (flow 1). There needs to be a public
key infrastructure (PKI) with certificate authorities (CA) in place where the
logger has a generated key pair used for digital signatures (flow 2). The com-
puted signature and signature graph will be passed to the block graph generation
component to be part of the integrity proof digest computation (flow 3).

The block graph generation component conducts transactions on the Bitcoin
network to write the integrity proof digest to the blockchain. The logger uses a
Bitcoin client to create a transaction containing the integrity proof digest (flow
4). After the transaction is written to the blockchain, the transaction data is
queried through a RESTful request [26] to a blockchain explorer API (flow 5).
The queried data is parsed to an RDF named graph, called the block graph. The
block graph contains the integrity proof digest and information identifying the
block containing the transaction on the blockchain. After the block graph has
been generated, it is stored in a quad store in order for an auditor to perform log
event integrity and signature verification queries (flows 6 and 7, respectively).
Generating a block graph reduces the burden on the auditor when performing log
integrity verification since all of the event integrity proofs are stored in a quad
store. Without the block graphs, the auditor would have to search the entire
Bitcoin blockchain for the integrity proof digests. Since the Bitcoin blockchain
is a public ledger, there are many transactions unrelated to the auditor’s search,
which would make this method of searching inefficient. An alternative approach
is to use a full Bitcoin client to download the entire blockchain, however in
this case the required network bandwidth and local computing power are major
limitations.

The signature graph and block graph generation components require two
ontology modules to be added to the modular structure of the L2TAP ontol-
ogy. The Signing Framework signature ontology [13] expresses all of the neces-
sary algorithms and methods required for verifying a signature. The BLONDiE
[27,28] ontology semantically represents the Bitcoin blockchain. We also need
to extend the L2TAP ontology to capture the signature graph and the signed
log event. The new hasSignedGraph property in the L2TAP-participant module

Blockchain Enabled Privacy Audit Logs 651

links the signature graph and signed event graph. An L2TAP log event body is
dereferenced in the corresponding event header through the L2TAP eventData
property. The signature graph just needs to reference the event header since
there is an assertion between the body and header that the two graphs belong
to the same event. The existing structure of L2TAP allows other components
of the tamper-proof auditing to be asserted when a new log is initiated. For
example, if a log uses Symantec2 as the CA this can be included as a triple in
the body of the log initialization event. The extended ontology is available on
the tamper-proof audit log section of the L2TAP ontology website3.

3.3 Signature Graph Generation

The process that the logger of an event has to take to compute a signature and
generate a signature graph is formalized in Algorithm1. The input parameters
are the log event i header RDF graph, hgi, body, bgi, and the logger’s private
key, sk. Our algorithm follows the process of signing graph data in [11], which
includes: canonicalization, serialization, hash, signature, and assembly [10,11].
We can omit the canonicalization and serialization steps as we can assume our
graphs are in canonicalized form and are serialized in the TriG syntax [29].

Data: Event header graph: hgi, event body graph: bgi, private key: sk
Result: Signature graph: sgi

1 Triples ← (extractTriples(hgi) ∪ extractTriples(bgi)) ;

2 Hash ←
|Triples|∏

j=1

h(tj ∈ Triples)mod(p) ;

3 Sig ← Sign(Hash, sk) ;
4 sgi ← assembly(Sig) ;
5 return sgi

Algorithm 1. Signature graph generation algorithm

The first step in Algorithm 1 is to compute the hash of the input event header,
hgi, and body, bgi. We use incremental cryptography and the graph digest algo-
rithm [14] to compute the digest of hgi and bgi. Since the ordering of triples in
the RDF graph is undefined, the graph digest computation involves segment-
ing the input into pieces, using a hash function on each piece, and combining
the results [14]. In line 1 we extract the triples from hgi and bgi into the set
of triples, Triples, so that incremental cryptography can be performed on each
triple. In line 2, a set hash over all of the triples in Triples is computed using
a cryptographically secure hash function (e.g., SHA-256) to produce a hash of
each triple [14]. This triple hash is reduced using the modulo operation by a suf-
ficiently large prime number, p (the level of security depends on the size of the
prime number [14]). Each of the triple hashes are multiplied together, producing
the Hash value in line 2 as the resulting header and body graph digest. After
constructing the graph digest, the logger generates a signature, Sig, by signing
the digest using the Elliptic Curve Digital Signature Algorithm (ECDSA) in

2 https://www.symantec.com.
3 http://l2tap.org.

https://www.symantec.com
http://l2tap.org

652 A. Sutton and R. Samavi

line 3. ECDSA uses smaller keys to achieve the same level of security as other
algorithms (such as RSA), resulting in a faster signing algorithm. In the final
step we generate the triples of the signature graph as a new named graph using
the assembly function. The triples in this graph contain the signature value and
algorithms for verifying the signature [11].

Listing 1.1 illustrates an example signature graph generated using Algorithm1.
Analogous to work presented in [10], we also use the Signing Framework signature
ontology [13]. Lines 5–8 in this listing contain the signature triples. Line 6 con-
tains the WebID [30] where the signer’s public key can be acquired [10]. The log
event signature, Sig, is identified in line 7. Line 8 references the log event header
that is signed. The signature graph also contains triples describing the algorithms
required to verify the signature (omitted here).

1 @prefix sig: <http://icp.it-risk.iwvi.uni-koblenz.de/ontologies/signature.owl#> .
2 @prefix l2tapp: <http://purl.org/l2tapp#> .
3 _:log-sig-1 {
4 # triples omitted describing graph signing methods
5 _:log-sig-1 a sig:Signature ;
6 sig:hasVerificationCertificate <signer/WebID/URI> ;
7 sig:hasSignatureValue "MEUCIQC44Qy2O8Mx..."^^xsd:string ;
8 l2tapp:hasSignedGraph _:log_h1 . }

Listing 1.1. Signature graph

3.4 Block Graph Generation

Algorithm 2 inputs an event’s signature (sgi), header (hgi) and body (bgi) graphs
to compute and write an integrity proof digest to the Bitcoin blockchain and
generate a block graph. Analogous to Algorithm1, the triples are extracted from
the input graphs into the set of triples, Triples (line 1), so that incremental
cryptography can be used to compute the integrity proof digest, H (line 2).

Data: Signature graph: sgi, event header graph: hgi, event body graph: bgi
Result: Block graph: BlockGraphi

1 Triples ← (extractTriples(sgi) ∪ extractTriples(hgi) ∪ extractTriples(bgi)) ;

2 H ←
|Triples|∏

j=1

h(tj ∈ Triples)mod(p) ;

3 Write H to Bitcoin blockchain (using Bitcoin client) ;
4 md ← query block metadata (using blockchain API) ;
5 BlockGraphi ← assembly(md, H) ;
6 return BlockGraphi

Algorithm 2. Block graph generation algorithm

The next step is to create a Bitcoin transaction using a Bitcoin client4

to write the integrity proof to the Bitcoin blockchain (line 3). An audit log
requires one transaction per event. The Bitcoin client validates transactions
by executing a script written in Bitcoin’s transaction scripting language. The
language provides the scriptPubKey output and the scriptSig input scripts5 to

4 https://blockchain.info/wallet/#/.
5 https://en.bitcoin.it/wiki/Script#Provably Unspendable.2FPrunable Outputs.

https://blockchain.info/wallet/#/
https://en.bitcoin.it/wiki/Script#Provably_Unspendable.2FPrunable_Outputs

Blockchain Enabled Privacy Audit Logs 653

validate transactions. A transaction in our model contains the OP RETURN
opcode in the scriptPubKey output (scriptPubKey = OP RETURN + H)
and the logger’s signature and public key in the scriptSig input (scriptSig =
signature+ publicKey). We store the integrity proof digest in the 80-byte data
segment of the OP RETURN transaction output. The transaction is propagated
through the Bitcoin network for verification.

After the transaction containing the integrity proof digest has been stored
on the Bitcoin blockchain, two queries are performed to retrieve the meta-
data of the transaction using the Bitcoin blockchain data API6 provided by
the blockchain.info blockchain explorer (line 4). The first query is an HTTP
GET request to https://blockchain.info/rawaddr/$bitcoin address, where $bit-
coin address is the logger’s Bitcoin address used to create the transaction. JSON
data is returned containing an array of transactions made from the specified
Bitcoin address. The JSON data is parsed to find the block height of the block
containing the integrity proof digest transaction. The block height is the num-
ber of blocks between the first block in the Bitcoin blockchain and the cur-
rent block. The block height can be found in the transaction array using the
transaction’s scriptSig value. The second query is an HTTP GET request to
https://blockchain.info/block-height/$block height?format=json, where $block
height is the retrieved block height. This query returns the block metadata
needed to assemble the block graph, such as the hash of the previous block and
timestamp. This information is necessary to build a complete representation of
the block and allow for the block graph data to be easily verified.

The final step in the algorithm is to use the assembly function to create a
new named graph, called the block graph, that describes the metadata about
the block containing the integrity proof digest transaction. Listing 1.2 illustrates
an example of a block graph output by Algorithm2, serialized in TriG. We use
the BLONDiE [27] ontology to generate the triples in this listing. The object
of each triple is populated with the values extracted from the blockchain.info
queries. Lines 5–9 describe the integrity proof transaction. The scriptSig value
is captured in Line 8 and the hash of the transaction in line 7. Line 9 holds
the integrity proof digest of the event and signature graphs (in hexadecimal).
This value is what an auditor will be querying when conducting log integrity
verification. Additional triples that describe the block header and payload are
omitted to save space.

1 @prefix blo: <http://www.semanticblockchain.com/Blondie.owl#> .
2 _:exlog-block-1 {
3 _:exlog-block-1 a blo:BitcoinBlock ;
4 # triples omitted describing block header and payload
5 blo:BitcoinTransaction blo:hasBitcoinTransactionInput blo:BitcoinTransactionInput ;
6 blo:hasBitcoinTransactionOutput blo:BitcoinTransactionOutput .
7 blo:BitcoinTransactionInput blo:hashBitcoinTransactionInput "1a2...3fc"^^xsd:string ;
8 blo:scriptSignBitcoinTransactionInput "4730440...41d6e6"^^xsd:string .
9 blo:BitcoinTransactionOutput blo:scriptPubkeyBitcoinTransactionOutput "6a2848...e46e65"^^

xsd:string . }

Listing 1.2. Block graph

6 https://blockchain.info/api/blockchain api.

https://blockchain.info/rawaddr/$bitcoin_address
https://blockchain.info/block-height/$block_height?format=json
https://blockchain.info/api/blockchain_api

654 A. Sutton and R. Samavi

4 Log Integrity Verification

The goal of an auditor in a privacy auditing scenario is to check the compliance
of participants’ actions with respect to the privacy policies. The authors in [5]
described a SPARQL-based solution for compliance checking; i.e. answering the
question of, for a given access request and its associated access activities, have
the data holders followed the access policies? This section describes our extended
SPARQL-based solution to enhance the compliance checking queries described
in [5] to include the integrity and authenticity verification of log events.

For a given L2TAP log, the process of verifying the log integrity and authen-
ticity and compliance checking can be performed in a sequence; i.e. for all events
in the log, first ensure the integrity and authenticity of all events and then
execute the compliance queries for the interested access request. However, in
practice this approach is not desirable as for a fast growing log, verifying the
entire log for each audit query is very expensive (see our experiment in Sect. 5).
Alternatively, we can devise an algorithm that verifies the integrity and authen-
ticity of a small subset of the event graphs for a given access request. The L2TAP
ontology provides compliance checking of a subset of events through SPARQL
queries [2], which the following algorithm can leverage to reduce the runtime.

Data: Event header graph: hgi, event body graph: bgi, signature graph: sgi
Result: Boolean verification value: vi

1 Triples ← (extractTriples(hgi) ∪ extractTriples(bgi) ∪ extractTriples(sgi)) ;

2 H ←
|Triples|∏

j=1

h(tj ∈ Triples)mod(p) ;

3 URI ← Query block graphs for H (Listing 1.3) ;
4 if URI �= ∅ then
5 vi ← verifySignature(sgi, hgi, bgi) ;
6 else
7 vi ← false ;
8 end
9 return vi

Algorithm 3. Verification algorithm

Algorithm 3 formalizes the steps an auditor takes to verify the integrity of
a log event and the event signature prior to checking compliance. The input
parameters are the event header (hgi), body (bgi), and signature (sgi) graphs,
for an event i in the subset of events related to an access request. Assuming
a cryptographically secure hash function is used to recompute the digest, any
modification of the graphs will result in a different digest. If the search of the
block graphs is successful and the computed digest is found, then the log event
must have remained unmodified [3]. Therefore, the first step in the algorithm
is to recompute the integrity proof digest of the log event. We originally used
incremental cryptography to calculate the integrity proof digest, so the same
method must be used again for computing consistent digests. In lines 1 and
2, we first extract the triples of the input graphs and compute the integrity
proof digest, H, similar to what we described in Sect. 3.4. The SPARQL query

Blockchain Enabled Privacy Audit Logs 655

in Listing 1.3 is executed against the block graphs to find a matching digest
in the scriptPubkeyBitcoinTransactionOutput relation (line 3). This query
is parameterized with the integrity proof digest, H (@integrityProofDigest).
If the query returns the URI of a block graph containing the integrity proof
digest, we proceed to verify the signature in the signature graph (lines 4 and 5).
Otherwise, if no matching value is found in the block graphs, we conclude that
the integrity of the log event has been compromised.

1 PREFIX blo: <http://www.semanticblockchain.com/Blondie.owl#> .
2 SELECT ?g WHERE {
3 GRAPH ?g { ?s blo:scriptPubkeyBitcoinTransactionOutput @integrityProofDigest }}

Listing 1.3. SPARQL query for integrity verification

The signature graph of the event can be found through the hasSignedGraph
property. The algorithms used to verify the signature are extracted from the
signature graph triples containing the hashing (i.e. SHA-256) and signing algo-
rithms (i.e. ECDSA). The public key of the logger is retrieved by following the
WebID URL in the hasVerificationCertificate property of the signature
graph. If the signature verification process in line 5 fails, the algorithm returns
false. In the case of no matching integrity proof digest or signature verification
failure, the auditor will know which event has been modified and who the logger
of the event is. However, the auditor will not know what the modification is,
only that a modification has occurred. Therefore, proof of malicious interference
would need further investigation.

Despite the process in this section supporting the confidentiality, authen-
ticity and integrity of a privacy log, the approach is susceptible to an internal
attack to subvert the verification process. However, to be successful, an attacker
would have to generate and sign a fake log event, store the event in the quad
store, calculate an integrity proof, store the proof on the blockchain, and finally
generate a block graph pointing to the fake integrity proof block.

5 Experimental Evaluation

This section presents a scalability evaluation of our blockchain enabled privacy
audit log model from the perspective of an auditor. In the experiment, we ran
our integrity checking algorithm on increasingly sized L2TAP privacy audit logs.
Section 5.1 describes the synthetic audit log used in the experiment. In Sect. 5.2,
we illustrate the details of the test environment. The results of the experiment
are discussed in Sect. 5.3.

5.1 Dataset

To simulate the process of an auditor checking the integrity of an audit log,
we generated synthetic L2TAP logs7. A basic log consists of eight events: log

7 Datasets are available in the figshare repository: https://doi.org/10.6084/m9.figshare.5234770.

https://doi.org/10.6084/m9.figshare.5234770

656 A. Sutton and R. Samavi

initialization, participants registration, privacy preferences and policies, access
request, access response, obligation acceptance, performed obligation, and actual
access. The actual contents of these events can be found in [5]. To create a
larger audit log, we repeatedly generate the access request events. Our largest
synthetic log, composed of 9998 events, contains a total of 989,589 triples: 84
triples from the first three events of log initialization, participants registration,
and privacy preferences and policies, and 989,505 triples generated from 9995
additional access request events where each access request leads to the generation
of the five remaining events with a total of 99 triples.

The signature and block graph for each event needs to be generated for the
auditor to perform the integrity verification procedure. A log containing 9998
events would generate the same number of signature graphs, block graphs, and
Bitcoin transactions. In this case, the total size of the dataset that the auditor
would need to process is 39,992 graphs. The initial state of the experiment is an
audit log containing n events (composed of 2n header and body graphs) with n
generated signature graphs and n generated block graphs. All of these graphs
(4n) would be stored on a server in a quad store prior to measuring the scalability
of the integrity verification solution. Figure 4 illustrates the log sizes used for the
experiment, which range from a log containing 98 events to 9998 events.

5.2 Test Environment

The experiment was run by executing the SPARQL queries on a Virtuoso [31]
server and quad store deployed on a Red Hat Enterprise Linux Server release
7.3 (Maipo) with two CPUs (both 2 GHz Intel Xeon) and 8 GB of memory. The
RDF graph processing and hash computations in Algorithm3 were run on a
MacBook Pro with a 2.9 GHz Intel Core i7 processor and 8 GB of memory.
The Java method used to measure the elapsed execution time of the experi-
ment is System.nanoTime(). The execution time is measuring the time differ-
ence between sending the queries to the quad store on the server over HTTP and
verifying the integrity proof digest and the signature. The recorded time does
not take into account the time to generate the signature and block graphs (these
were pre-computed before the experiment) or the time needed to write the data
to the Bitcoin blockchain. To account for variability in the testing environment,
each reported elapsed time is the average of five independent executions.

5.3 Experimental Results

In practice, an auditor would operate on a subset of events in the log based on
the results from compliance queries for a given access request. We have opted to
demonstrate a worst-case scenario by verifying the integrity and authenticity
of an entire log rather than a subset of the events. This will also demonstrate
the execution time of large subsets of events that are the size of the entire logs
we conducted the experiment on.

The experiment consisted of retrieving all of the log events and their corre-
sponding signature graphs from a quad store deployed on the server. Each set

Blockchain Enabled Privacy Audit Logs 657

0 2 4 6 8 10
0

500

1,000

1,500

2,000

of Events (in thousands)

T
im

e
[s

]
Integrity Proof

Signature

Overall
of Events

of
Graphs for
Hashing

Execution
Time (s)

98 294 23.19

1998 5994 432.15

3998 11994 851.28

5998 17994 1311.51

7998 23994 1743.78

9998 29994 2191.06

Fig. 4. Elapsed execution times for integrity and signature verification

of graphs were input to Algorithm3, which computes the integrity proof digest
and executes the query in Listing 1.3 to determine if the integrity proof could
be found in a block graph in the quad store. This procedure was executed on an
audit log that contained a number of events ranging from 98 to 9998, as shown
in Fig. 4. Figure 4 also illustrates the number of graphs that were input to the
integrity proof digest computation in line 2 of Algorithm3. A log consisting of
9998 events requires 29,994 (9998 header, 9998 body, 9998 signature graphs)
graph digest calculations. A log of this size will generate 9998 block graphs as
well, which will need to be searched for the integrity proof.

The elapsed execution time is plotted in Fig. 4. The graph illustrates the
execution time of verifying the signature, computing and verifying the integrity
of the events, and the overall process. The experiment validates the linear time
growth for the entire integrity checking procedure. It can be seen that an increase
of about 2000 events results in an increase of approximately 7 min to the integrity
verification procedure. The reported results can be extrapolated to predict that
a log containing an extreme case of one million events will take approximately 48
hours to perform an integrity check. This time is relatively small considering the
vast amount of triples that would need to be processed from the event header
and body, signature and block graphs (>100 million triples). The results of the
experiment validate the scalability of our blockchain solution and demonstrates
that the solution can perform efficiently at the task of verifying the integrity and
signature of the audit log events.

6 Related Work

There are a number of proposals that provide a mechanism for verifying the
integrity of an audit log [17,32]. Butin et al. [19] address the issues of log design
for accountability, such as determining what the log should include so auditors
can perform meaningful a posteriori compliance analysis. Tong et al. [20] propose
a method of providing role-based access control auditability in audit logs to
prevent the misuse of data. These solutions only address the integrity of privacy

658 A. Sutton and R. Samavi

audit logs and miss the non-repudiation aspect. There is a need for a practical
solution for supporting the non-repudiation and integrity of the logs.

Kleedorfer et al. [10] propose a Linked Data based messaging system that
verifies conversations using digital signatures. The RDF graph messages are
signed and a signature graph is produced, which can be iteratively signed as
the messages pass between recipients. Kasten et al. [11] provide a framework for
computing RDF graph signatures. This framework supports signing graph data
at different levels of granularity, multiple graph signatures, and iterative graph
signatures [11]. Kasten [12] discusses how the confidentiality, integrity, and avail-
ability of Semantic Web data can be achieved through approaches of Semantic
Web encryption and signatures.

Use of blockchain technology in the auditing of financial transactions have
been investigated [3] after the repercussions of the Enron Scandal in 2001, where
auditor fraud was the source of public distrust [4]. Anderson [3] proposes a
method of verifying the integrity of files using a blockchain. Similar to our app-
roach, Cucurull et al. [8] present a method for enhancing the security of logs by
utilizing the Bitcoin blockchain. Our approach differs by providing a model to
create tamper-proof logs in a highly scalable Linked Data environment.

7 Conclusions

In this paper we presented a method for utilizing blockchain technology to provide
tamper-proof privacy audit logs. The provided solution applies to Linked Data
based privacy audit logs, in which lacked a mechanism to preserve log integrity.
SPARQL queries and graph generation algorithms are presented that a log gen-
erator can perform to write log events to a blockchain and auditors can perform
to verify the integrity of log events. The model can be used by loggers to gener-
ate tamper-proof privacy audit logs whereas the integrity queries can be used by
external auditors to check if the logs have been modified for nefarious purposes.
The paper includes an experimental evaluation that demonstrates the scalabil-
ity of the audit log integrity verification procedure. Based on our experimental
results, the solution scales linearly with increasingly sized privacy audit logs.

There are a number of directions for future work. First, we acknowledge
Bitcoin’s limitations in terms of cost, speed, and scalability [33]. We utilized
Bitcoin since it provides an established storage mechanism suitable for integrity
proofs and to demonstrate the feasibility of our solution applied to Linked
Data. For an optimized implementation, other blockchain technologies, such as
Ethereum [34], should be compared in terms of transaction fee, scalability, and
smart contract and private ledger support. Second, a log containing thousands
of events will require thousands of transactions and occupy a large space on
the blockchain. Using Merkle trees [8,35] can reduce the storage and transac-
tion requirements by writing the root of the tree (composed of multiple integrity
proofs) to the blockchain. However, this will increase the work for an auditor
to verify the log integrity since more hash value computations are required to
reconstruct the hash tree. Formalizing the trade-offs between hash trees and the
verification effort is an interesting optimization problem to investigate.

Blockchain Enabled Privacy Audit Logs 659

Acknowledgments. Financial support from NSERC and SOSCIP are greatly
acknowledged.

References

1. Swarup, V., Seligman, L., Rosenthal, A.: A data sharing agreement framework. In:
Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 22–36. Springer,
Heidelberg (2006). doi:10.1007/11961635 2

2. Samavi, R., Consens, M.P.: L2TAP+SCIP: an audit-based privacy framework
leveraging Linked Data. In: 8th International Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing, CollaborateCom 2012, pp. 719–
726. IEEE (2012)

3. Anderson, N.: Blockchain Technology: A Game-Changer in Accounting? Deloitte
(2016)

4. Spoke, M.: How blockchain tech will change auditing for good. CoinDesk
(2015). http://www.coindesk.com/blockchains-and-the-future-of-audit/. Accessed
Feb 2017

5. Samavi, R., Consens, M.P.: Publishing L2TAP logs to facilitate transparency and
accountability. In: Proceedings of the Workshop on Linked Data on the Web Co-
located with the 23rd International World Wide Web Conference (WWW), Seoul,
Korea, vol. 1184. CEUR-WS (2014)

6. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology, 1st edn., vol. 1,
pp. 1–136. Morgan & Claypool, San Rafael (2011)

7. Pilkington, M.: Blockchain Technology: Principles and Applications. Research
Handbook on Digital Transformations. Edward Elgar, Northampton (2016)

8. Cucurull, J., Puiggaĺı, J.: Distributed immutabilization of secure logs. In: Barthe,
G., Markatos, E., Samarati, P. (eds.) STM 2016. LNCS, vol. 9871, pp. 122–137.
Springer, Cham (2016). doi:10.1007/978-3-319-46598-2 9

9. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer,
Heidelberg (1991). doi:10.1007/3-540-38424-3 32

10. Kleedorfer, F., Panchenko, Y., Busch, C.M., Huemer, C.: Verifiability and trace-
ability in a linked data based messaging system. In: Proceedings of the 12th Inter-
national Conference on Semantic Systems, SEMANTiCS 2016, pp. 97–100. ACM,
Leipzig (2016)

11. Kasten, A., Scherp, A., Schauß, P.: A framework for iterative signing of graph
data on the web. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab,
S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 146–160. Springer, Cham
(2014). doi:10.1007/978-3-319-07443-6 11

12. Kasten, A.: Secure semantic web data management: confidentiality, integrity, and
compliant availability in open and distributed networks. Doctoral Dissertation,
Universität Koblenz-Landau, Germany (2016)

13. Kasten, A.: A software framework for iterative signing of graph data. GitHub repos-
itory (2016). https://github.com/akasten/signingframework. Accessed Jan 2017

14. Sayers, C., Karp, A.H.: Computing the digest of an RDF graph. Technical report,
Mobile and Media Systems Laboratory, HP Laboratories, HPL-2003-235, Palo
Alto, USA (2004)

15. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Suss-
man, G.J.: Information accountability. Commun. ACM 51, 82–87 (2008)

http://dx.doi.org/10.1007/11961635_2
http://www.coindesk.com/blockchains-and-the-future-of-audit/
http://dx.doi.org/10.1007/978-3-319-46598-2_9
http://dx.doi.org/10.1007/3-540-38424-3_32
http://dx.doi.org/10.1007/978-3-319-07443-6_11
https://github.com/akasten/signingframework

660 A. Sutton and R. Samavi

16. Castelluccia, C., Druschel, P., Hübner, S., Pasic, A., Preneel, B., Tschofenig,
H.: Privacy, Accountability and Trust - Challenges and Opportunities. Technical
report, ENISA (2011)

17. Accorsi, R.: Log data as digital evidence: what secure logging protocols have to
offer?. In: Proceeding of 33rd Annual IEEE International Computer Software and
Applications Conference, vol. 2, pp. 398–403. IEEE (2009)

18. Agrawal, R., Evfimievski, A., Kiernan, J., Velu, R.: Auditing disclosure by rele-
vance ranking. In: Proceedings of the 2007 ACM SIGMOD International Confer-
ence on Management of Data, pp. 79–90 (2007)

19. Butin, D., Chicote, M., Le Metayer, D.: Log design for accountability. In: Security
and Privacy Workshops (SPW), pp. 1–7. IEEE (2013)

20. Tong, Y., Sun, J., Chow, S.S.M., Li, P.: Cloud-assisted mobile-access of health
data with privacy and auditability. IEEE J. Biomed. Health Inform. 18, 419–429
(2014). IEEE

21. Kehoe, L., Dalton, D., Leonowicz, C., Jankovich, T.: Blockchain Disrupting the
Financial Services Industry? Deloitte (2015)

22. Libert, B., Beck, M., Wind, J.: How blockchain technology will dis-
rupt financial services firms. Knowledge@Wharton, Wharton Univer-
sity of Pennsylvania (2016). http://knowledge.wharton.upenn.edu/article/
blockchain-technology-will-disrupt-financial-services-firms/. Accessed May 2017

23. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
24. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

O’Reilly Media Inc., Sebastopol (2014)
25. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. In: Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 3, pp. 247–267 (2005)
26. A. Rodriguez, ”Restful web services: The basics”, IBM developerWorks, 2008
27. English, M., Auer, S., Domingue, J.: Block chain technologies & the semantic

web: a framework for symbiotic development. In: Computer Science Conference
for University of Bonn Students, Germany, pp. 47–61 (2016)

28. Ugarte R, H.E.: BLONDiE - blockchain ontology with dynamic extensibility.
GitHub repository (2016). https://github.com/hedugaro/Blondie. Accessed Feb
2017

29. Bizer, C., Cyganiak, R.: TriG: RDF dataset language. W3C (2013). http://www.
w3.org/TR/trig/. Accessed May 2017

30. Sambra, A., Story, H., Berners-Lee, T.: WebId 1.0: web identity and discovery
(2014). https://www.w3.org/2005/Incubator/webid/spec/identity/. Accessed Mar
2017

31. Virtuoso Universal Server, OpenLink Software. https://virtuoso.openlinksw.com.
Accessed Feb 2017

32. Stathopoulos, V., Kotzanikolaou, P., Magkos, E.: Secure log management for pri-
vacy assurance in electronic communications. Comput. Secur. 27, 298–308 (2008)

33. Manu, S.: Building better blockchains. In: Linked Data in Distributed Ledgers
Workshop Keynote, WWW 2017 (2017)

34. Buterin, V.: Ethereum white paper. GitHub repository (2013). https://github.
com/ethereum/wiki/wiki/White-Paper. Accessed July 2017

35. Merkle, R.C.: Protocols for public key cryptosystems. In: 1980 IEEE Symposium
on Security and Privacy, pp. 122–133. IEEE (1980)

http://knowledge.wharton.upenn.edu/article/blockchain-technology-will-disrupt-financial-services-firms/
http://knowledge.wharton.upenn.edu/article/blockchain-technology-will-disrupt-financial-services-firms/
https://github.com/hedugaro/Blondie
http://www.w3.org/TR/trig/
http://www.w3.org/TR/trig/
https://www.w3.org/2005/Incubator/webid/spec/identity/
https://virtuoso.openlinksw.com
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper

VICKEY: Mining Conditional Keys
on Knowledge Bases

Danai Symeonidou1(B), Luis Galárraga2, Nathalie Pernelle3, Fatiha Säıs3,
and Fabian Suchanek4

1 INRA, Montpellier, France
danai.symeonidou@inra.fr

2 Aalborg University, Aalborg, Denmark
3 LRI, Orsay, France

4 Télécom ParisTech, Paris, France

Abstract. A conditional key is a key constraint that is valid in only a
part of the data. In this paper, we show how such keys can be mined
automatically on large knowledge bases (KBs). For this, we combine
techniques from key mining with techniques from rule mining. We show
that our method can scale to KBs of millions of facts. We also show that
the conditional keys we mine can improve the quality of entity linking
by up to 47% points.

1 Introduction

Recent years have seen the rise of large knowledge bases (KBs), such as
YAGO [26], Wikidata [29], and DBpedia [18] on the academic side, and the
Google Knowledge Graph [7] or Microsoft’s Satori graph on the commercial
side. These KBs contain millions of entities (such as people, places, or organiza-
tions), and millions of facts about them. This knowledge is typically expressed
in RDF [19], i.e., as triples of the form 〈Einstein,won,NobelPrize〉. A key con-
straint on such data specifies that no two distinct entities can share a certain
set of properties (e.g., no two people share given name, family name, and birth-
date). Key constraints are used for applications such as knowledge base fusion [8],
knowledge base enrichment [22] and data linking [1,9,23].

It is impractical to specify keys manually for large KBs (with mil-
lions of triples and hundreds or thousands of properties). Therefore, several
approaches [4,21,25,27] have been developed to automatically discover keys from
RDF data. However, these works have also shown that for several datasets, there
are no or only few keys that are valid in the entire dataset. This is the reason
why we aim to mine conditional keys in this paper, i.e., keys that are valid in
only a part of the data.

A conditional key is an axiom saying that under particular conditions, no
two distinct entities can have the same values on a particular set of properties.
For example, we can say that at a German university, no two professors can
advise the same doctoral student. The situation might be different at a French or

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 661–677, 2017.
DOI: 10.1007/978-3-319-68288-4 39

662 D. Symeonidou et al.

American university – hence the key is “conditional” to German universities. In
this paper, we distinguish conditional keys from classical keys, which hold for an
atomic class (or for every tuple of a table in a relational database). Conditional
keys can express constraints on entities and are strictly more expressive than
classical keys. Therefore, they can be more productive in tasks such as entity
linking – as we show in our experiments. Apart from this, conditional keys carry
knowledge in themselves. For example, it is interesting to know that France
allows several advisors, while Germany does not.

Mining conditional keys automatically from the data is a challenging
endeavor, for several reasons. First, the KBs we consider here contain only binary
relations, which means that keys usually do not live in a single table, but can
be a join of up to a dozen relations. Second, KBs are usually incomplete [12].
If a student at a German university has only one advisor in the KB, she could
still have several in real life. Thus, any approach that automatically mines con-
ditional keys risks being misled. Finally, the challenge is to scale: Today’s KBs
contain millions of statements. This means that there are billions of possible
conditions and property combinations that could define a conditional key. In the
example, professors could be distinguished by their doctoral students, but also
by their given and family name or by their discipline and birthdate. These keys
could hold only for German professors, only for Danish ones, only for professors
at a certain university in Mexico, or only for professors born in a certain city in
Iowa. This huge search space is one of the main reasons why there is today no
approach that could mine conditional keys on KBs.

Our proposal is to combine key mining techniques [27] with techniques from
rule mining [13]. More precisely, VICKEY discovers first the set of maximal
non-keys from which the conditional keys can be computed. Thus, the search
space can be significantly reduced while avoiding to scan all the data. Secondly,
VICKEY applies a breadth-first strategy to discover frequent candidate condi-
tional keys and efficiently check their validity. More precisely, our contributions
are as follows:

– We develop an algorithm that can mine conditional keys efficiently.
– We show that our method scales gracefully to KBs of millions of facts.
– We show that the use of our conditional keys improves the F1 measure of KB

linking by up to 47% points over the use of classical keys.

The rest of this paper is structured as follows. We discuss related work in
Sect. 2, and introduce preliminaries in Sect. 3. In Sect. 4 we present our app-
roach. Section 5 showcases our experiments, before Sect. 6 concludes.

2 Related Work

Relational Databases. Two types of key discovery approaches have been pro-
posed for relational databases [16,24]: data-driven [24], where keys are discovered
from the tuples in a table, and schema-based [16], where property combinations
of a certain size are generated and then checked on the tuples. Such approaches

VICKEY: Mining Conditional Keys on Knowledge Bases 663

cannot be applied directly to KBs, because they are geared towards relations
that contain one single value for each subject. In KBs, in contrast, a relation
can contain several objects for the same subject.

Knowledge Bases. Approaches for KBs [3,4,21,25,27] can be roughly clas-
sified into two groups, depending on how they deal with multivalued proper-
ties [2]: The forall-key approaches [4,25] discover keys that fire when two entities
share all values for each property. In [4], the authors have developed a level-wise
schema-based approach based on TANE [17], to discover pseudo-keys (keys with
exceptions). Rocker [25] is a refinement-operator-based approach that efficiently
discovers pseudo-keys using a top-down strategy guided by a discriminability
score function designed for forall-keys. The some-key approaches [3,21,27], on
the other hand, discover keys that fire as soon as two entities share at least one
value for each property. Some-keys can be particularly useful under the Open
World Assumption (OWA), where the KB may not contain all relevant facts.
Thus, it is for example sufficient that two researchers share their last name,
their first name, and one of their publications in order for them to be linked –
even if the KB does not know all of their publications. [3] discovers discriminative
combinations of corresponding properties that can be used to link two datasets
with different schemas. KD2R [21] extends the relational data-driven approach
of [24] in order to exploit ontology axioms (such as the subsumption relation) and
considers multivalued properties. SAKey [27] introduces additional filtering and
pruning techniques to discover efficiently some-keys with exceptions. To avoid
scanning the entire dataset, both KD2R and SAKey discover first the maximal
non-keys and then derive the keys from this set. Yet, none of these approaches
is able to mine the conditional keys that we aim at in this paper.

Conditional Functional Dependency Mining. A conditional functional
dependency (CFD) expresses a functional dependency between two sets of
attributes that holds on a subset of tuples [6]. For example, a CFD could state
that when two customers are based in the UK, the zipcode uniquely determines
the city. A conditional key is a particular type of CFD, where the second set
of attributes is a unique identifier for a record in the database. CFD discovery
has been addressed in [6,10,15]. The work of [6] uses a breadth-first strategy
inspired by the schema-based approach TANE [17]. FastCFD [10] finds a canon-
ical cover of all minimal CFDs that satisfy a given support using a depth-first
strategy. Compared to [6] (which works well when the number of tuples is large),
FastCFD [10] is efficient when the number of attributes is large. Nevertheless,
none of these approaches is able to discover conditional keys in KBs, because
they cannot efficiently deal with multivalued properties and would require a
post-processing to mine conditional keys from the obtained CFDs.

Rule Mining. Finally, one possibility to find conditional keys would be to use
rule mining approaches. AMIE [13], e.g., can learn logical rules with up to 4 atoms
on KBs that contain millions of facts. However, even relatively simple conditional
keys can easily contain five or more atoms. This leads to an exponential increase of
the search space that such rule mining approaches cannot handle – as we show in

664 D. Symeonidou et al.

our experiments. In [5], the authors propose a more efficient rule mining approach
that implements a series of parallelization and pruning techniques. However, it
focuses only on Horn rules with ungrounded atoms. Thus, it cannot be applied
for conditional key discovery. In [11], the authors propose to apply, first, a rule
mining tool like [5,13] and then refine the obtained rules by adding negated atoms.
However, the result are rules with negations, not conditional keys. In this paper,
we propose a method called VICKEY, which we believe is the first approach to
mine conditional keys efficiently on large KBs.

3 Preliminaries

Knowledge Bases. The knowledge bases that we consider here [18,26,29] use a
set I of instances (such as a researcher identified as r1), a set L of literals, a set P
of properties (such as nationality), and a set C of class names (such as country). A
fact is a triple of a subject s ∈ C ∪I, a property p ∈ P, and an object o ∈ C ∪I ∪L,
which we write as p(s, o). Every instance is typically associated to one or more
classes by the type property, and these classes can be arranged in a hierarchy by
the subclassOf property. A set of such facts constitutes a knowledge base (KB)1.
Given a KB K, a dataset D for a class c of K is the set of all facts that have as subject
an instance of c or of a subclass of c. Table 1 shows an example dataset2 about
researchers r1, ..., r7, each having the properties firstName, lastName, gender, lab,
and nationality – with one or more objects for each property. When D is given, we
write p(x, y) to mean p(x, y) ∈ D.

Keys. In our setting, a key is defined as follows [21,27].

Table 1. Example dataset

FirstName LastName Gender Lab Nationality

r1 Claude Dupont Female Paris-Sud France

r2 Claude Dupont Male Paris-Sud Belgium

r3 Juan Rodŕıguez Male INRA Spain, Italy

r4 Juan Salvez Male INRA Spain

r5 Anna Georgiou Female INRA Greece, France

r6 Pavlos Markou Male Paris-Sud Greece

r7 Marie Legendre Female INRA France

1 The KBs considered in this work do not contain blank nodes.
2 For readability, the table does not distinguish literals and instances.

VICKEY: Mining Conditional Keys on Knowledge Bases 665

Definition 1 (Key). A key in a dataset D is a set of properties p1, . . . , pn of D
such that:

∀x, y, u1, . . . , un

(∧
i=1...n

pi(x, ui) ∧ pi(y, ui) ⇒ x = y

)

In our example, the property set {lastName, gender} is a key while {lab, national-
ity} is not a key, because r3 and r4 are both Spanish. Note that {lab, nationality}
is a forall-key since no two people share the lab and the entire set of nationalities.

Definition 2 (Maximal non-key). A maximal non-key for a dataset D is a set
of properties P of D such that P is not a key, and the addition of any other property
makes P a key.

In our example, {firstName, lastName, lab} is a maximal non-key, because adding
any other property makes the set a key.

KeyDiscovery.To discover the keys of a dataset automatically, a naive algorithm
wouldhave to compare all subjects of thedataset to all other subjects –which is pro-
hibitively expensive. To avoid this complexity, the SAKey algorithm [27] first finds
maximal non-keys. This is more efficient, because to verify that a set of properties
is a non-key, it suffices to find two subjects that share values for these properties.
SAKey starts with property combinations that contain only a single property, and
incrementally adds more and more properties until it arrives at maximal non-keys.
When it has found all non-keys, all other property combinations must be keys –
which is what SAKey outputs.

Conditional Keys. Our example in Table 1 shows two researchers with the last
name Dupont. Therefore the property lastName is not a key. The combination
{firstName, lastName} is not a key either, because there are two researchers with
the same first and last names. However, when we restrict our set of researchers to
those working at INRA, the property lastName identifies researchers uniquely. In
contrast, this is not true for the researchers in Paris-Sud. Thus, {lastName, lab} is
not a key in general. We say that lastName is a conditional key for people working
at INRA. In this work, we chose to focus on conditions that can be expressed using
constraints on property values. More formally, a condition is a pair composed of
a property p and an object o, written p = o (e.g., lab = INRA). A condition cd
with property p and object o holds for a subject x, written cd(x), if p(x, o). In the
example, the condition lab = INRA holds for r3, r4, r5 and r7.

Definition 3 (Conditional key). A conditional key for a dataset D is a non-
empty set of conditions {cd1, ..., cdn} and a non-empty set of properties {p1, ..., pm}
of D (disjoint from the properties in the conditions), such that:

∀x, y, u1, . . . , um

(∧
i=1..n

(cdi(x) ∧ cdi(y)) ∧
∧

i=1..m

(pi(x, ui) ∧ pi(y, ui)) ⇒ x = y

)

666 D. Symeonidou et al.

Definition 4 (Minimal conditional key). A conditional key with conditions
CD and properties P is minimal, if the removal of a condition in CD, the removal
of a property from P , or the transfer of a property p from CD to P (with the corre-
sponding removal of the condition), all result in something that is neither a condi-
tional key nor a key.

In our example, lastName is a conditional key with condition nationality =
Spanish ∧ lab = INRA, but this conditional key is not minimal, because there
exists a simpler version of the key with fewer conditions, namely nationality =
Spanish. In the same vein, {lastName} with the condition gender=male is not a
minimal conditional key, because {lastName, gender} is a key.

The support of a conditional key with properties {p1, ..., pm} and conditions
{cd1, ..., cdn} is the number of subjects x such that

∧
i=1..m ∃ui : pi(x, ui) and∧

i=1..n cdi(x). A proportional version of the support, which we call the coverage,
measures the ratio of subjects in the dataset identified by the conditional key. In
our example, the support of the key {lastName} under the condition lab= INRA
is 4, and the coverage is 4

7 , since there are 7 subjects.

Keys in OWL. Conditional keys can be defined in the ontology language
OWL2 [20]. OWL2 allows defining keys not just on atomic classes (such as
researcher), but also on more complex class expressions. We can define, e.g., the
class “Researchers who work at INRA” as c = Researcher
 ∃lab.{INRA}. Then,
{lastName} is a key on the dataset of c according to Definition 1.

4 Mining Conditional Keys

We now present our approach to automatically discover conditional keys on a
dataset. To learn conditional keys under the Open World Assumption, we assume
that all instances in a dataset refer to distinct real world objects, and that all
unknown values are different from the existing ones in the dataset [7,13,14,21,27].
The discovery of simple keys alone already requires checking a large number of
property combinations (of which there are 2|P| in total, where P is the set of prop-
erties). Discovering conditional keys is even more complex, since the search space
is in the order of O(|V||P|), where V is the set of objects in the dataset. Our algo-
rithm can discover conditional keys efficiently in spite of this large search space.
Our method takes as input a dataset D and a threshold θ for the minimal support
of the discovered keys. We proceed in three phases:

(1) Discovery of non-keys: Instead of exploring the whole set of combinations of
properties, we focus our search on those combinations that are not keys.

(2) Generation of Conditional Key Graphs: We use the non-keys to generate can-
didate keys, which we store in conditional key graphs.

(3) Mining ofConditionalKeyGraphs: The conditional key graphs are thenmined
for minimal conditional keys.

VICKEY: Mining Conditional Keys on Knowledge Bases 667

4.1 Discovery of Non-keys

The naive method to mine conditional keys explores all possible combinations
of properties and conditions in the input KB and verifies whether they fulfill
Definition 3. Such an approach is infeasible on large datasets. Our main idea (the
key insight, so to speak) is the following (see [28] for more details):

Observation 1 (ConditionalKeys andNon-Keys). Given aminimal condi-
tional key for a dataset D with properties P and conditions {p1 = o1, ..., pn = on},
the set of properties P ∪ {p1, ..., pn} must be a non-key for D.

This follows from Definition 4. In our example from Table 1, {firstName} is a min-
imal conditional key with condition gender=Female, and {gender, firstName}
is a non-key. Thus, if we want to mine the complete set of minimal conditional
keys, it suffices to consider only the property combinations given by non-keys.
Since maximal non-keys are super-sets of all other non-keys (Definition 2), it is
sufficient to explore only property combinations given by maximal non-keys. The
maximal non-keys in the input dataset can be mined efficiently with the SAKey
algorithm [27] (Sect. 3). Thus, we concentrate in the following on mining the con-
ditional keys from these maximal non-keys. As a running example, consider again
the dataset in Table 1. It contains two maximal non-keys: {firstName, lastName,
lab} and {firstName, gender, lab, nationality}.

4.2 Generation of Conditional Key Graphs

Our method for discovering conditional keys from non-keys relies on a modifi-
able data structure that we call a conditional key graph. Such a graph is a tuple
〈P k, P c, cond , G〉 with the following components:

– P k and P c are disjoint sets of properties, called key properties and condition
properties, respectively.

– cond is a set of conditions on P c.
– G is a directed graph. Each node v is associated to a set v.p ⊆ P k and to a

boolean flag v.explore set by default to true. There is a directed edge from u to
v if u.p ⊂ v.p and |u.p| = |v.p| − 1.

Fig. 1. Example of a conditional key graph with P k = {firstName, lab, nationality},
P c = {gender}, cond = {gender = Female}.

668 D. Symeonidou et al.

We construct the initial conditional key graphs with Algorithm1. This algorithm
takes as input the dataset, the support threshold θ, and the non-keys discovered
in Sect. 4.1. We first construct all possible conditions p = a that combine a prop-
erty p from the non-keys with an instance or literal a from the dataset (Lines 2–3).
Conditions with support less than θ are not considered (Line 4). We then look at
all non-keys N in which p appears (Line 5). The conditional key graph for the con-
dition p = a will contain as nodes all subsets of N \ {p} (Line 6) except the empty
set (Line 7). As an example, let us consider again the dataset of Table 1 and its
two maximal non-keys {firstName, lastName, lab} and {firstName, gender, lab,
nationality}. Figure 1 depicts the conditional key graph associated to the condi-
tion gender = Female constructed by Algorithm 1.

Lemma 1 (Graph Construction). If Algorithm1 is given a dataset D, a com-
plete set of maximal non-keys N for D and a support threshold θ, then for each con-
ditional key of D with a single condition and with at least support θ, there is a graph
in the output that contains the key condition and a node with the key properties.

Lemma 1 follows from the fact that Algorithm 1(a) iterates over all conditions
p = o with a least support θ and (b) considers all the possible subsets of prop-
erties 2N\{p} with N ∈ N (except for ∅). From Observation 1 we recall that for
any conditional key with properties P and condition p = o, the set of properties
P ∪{p} must be a non-key. Thus, from the completeness of our set of maximal non-
keys, it follows that our graph contains in its nodes all possible keys with support
higher than θ for a given condition p = o.

Algorithm 1. ConstructGraphs
Input: dataset D, min. support θ, set of non-keys N
Output: set of conditional key graphs G

1 G ← ∅
2 for p ∈ ⋃N∈N N do
3 for a ∈ I ∪ L such that ∃x : p(x, a) ∈ D do
4 if number of x with p(x, a) is at least θ then
5 V ← ∅
6 for N ∈ N where p ∈ N do V ← V ∪ 2N\{p}

7 V ← V \ ∅
8 for v ∈ V do v.explore = true
9 E ← {u, v ∈ V : u.p ⊂ v.p ∧ |u.p| = |v.p| − 1}

10 P k =
⋃

v∈V v.p
11 P c = {p}
12 cond = {p = a}
13 G ← G ∪ {〈P k, P c, cond, (V, E)〉}

14 return G

4.3 Mining of Conditional Key Graphs

Mining conditional keys. We mine the conditional key graphs for keys with
Algorithm 2. It takes as input a dataset, a support threshold, and the set of

VICKEY: Mining Conditional Keys on Knowledge Bases 669

conditional key graphs constructed in the previous phase. All these conditional
key graphs have conditions of size 1 (see Algorithm 1). The algorithm proceeds in
batches, looking first at the graphs with condition size 1, then size 2, etc. (Lines
2–3). For each batch, it mines the conditional keys (Line 6). The graphs in one
batch are then post-processed (Line 7) to give rise to new graphs with conditions
of larger size. The algorithm iterates until all sizes are processed (Line 4).

Algorithm 2. ConditionalKeyDiscovery
Input: dataset D, minimum support θ, set of conditional key graphs G
Output: set of minimal conditional keys CKs

1 CKs ← ∅
2 for size = 1 to ∞ do
3 G′ ← {g ∈ G : |g.cond | = size}
4 if G′ = ∅ then return CKs

5 for 〈P k, P c, cond , G〉 ∈ G′ do
6 CKs ← CKs ∪ MineGraph(D, θ, 〈P k, P c, cond , G〉,CKs)

7 G ← newConditions(size, G, θ, D)

Mining a conditional key graph. Let us now discuss how one conditional
key graph can be mined for keys (Line 7 in Algorithm2). This task is done by
Algorithm 3. This algorithm takes as input a dataset, the support threshold, a con-
ditional key graph, and the set of conditional keys found so far. The algorithm pro-
ceeds in levels, looking first at the nodes that contain one property, then two prop-
erties, etc. For each level, we consider every node cand . If the node is still marked
for exploration (Line 3), we construct a candidate conditional key, with the input
conditions as condition part, and the properties in cand .p as the key part (Line 4).
We then verify if the candidate key (a) meets the definition of a conditional key
and (b) is minimal with respect to the other keys that have already been mined
(Lines 5–6). If that is the case, the conditional key is added to the output (Line 7).
If the key is a minimal key, then any extension of the key with more properties in
the key part must be non-minimal and can safely be abandoned. Likewise, if the
support of the candidate key is below the given threshold, so are its refinements.
In both cases, we can prune the node and all descendants (Lines 8–11).

As an example, let us consider again the data from Table 1, with the condition
gender =Female and the maximal non-key {firstName, gender, lab, nationality}.
The corresponding conditional key graph after scanning the first level is shown
in Fig. 2(a). Nodes with the explore flag set to false are greyed out. At the end of
this step, only the property firstName is discovered as a key, since first names are
unique among female researchers. It follows that nodes containing this property in
the next levels of the graph define non-minimal keys. They are therefore discarded
for further exploration (the explore flag is set to false). The search for conditional
keys is then applied to the nodes on levels 2 and 3, for which the explore flag is still
true.

670 D. Symeonidou et al.

Fig. 2. (a) Keys of size 1 explored for the condition gender = Female. (b) Example of
a merged graph with condition {gender = Female, lab = INRA}

Algorithm 3. MineGraph
Input: dataset D, minimum support θ,
conditional key graph 〈P k, P c, cond , G = (V, E)〉,
set of conditional keys found so far CKs
Output: modified CKs

1 for level = 1 to maxv∈V |v.p| do
2 for cand ∈ V where |cand.p| = level do
3 if cand .explore then
4 ck ← 〈cond , cand .p〉
5 isMinimal ← ck is a minimal key w.r.t CKs
6 if isMinimal ∧ support(ck, D) ≥ θ then
7 CKs = CKs ∪ {ck}
8 if isMinimal ∨ support(ck, D) < θ then
9 cand.explore ← false

10 for child ∈ descendants(cand, G) do
11 child .explore ← false

12 return CKs

Lemma 2 (GraphMining).Given a conditional key graph 〈P k, P c, cond , G〉 for
a dataset D and a threshold θ, Algorithm3 will ensure that the result set CKs con-
tains all minimal conditional keys for the condition set cond whose key properties
are given by one of the nodes in G, and whose support is at least θ.

This lemma holds because Algorithm 3 traverses all nodes in the conditional key
graph, and checks each of them for being a conditional key. It excludes only (a)
those nodes whose ancestors already had a support smaller than θ, in which case
the node itself must also have a support smaller than θ, and (b) the nodes that lead
to non-minimal keys.

Merging conditions. Let us now look at the process of generating more complex
conditions (Line 8 in Algorithm2). This work is done by Algorithm4. It takes as
input a set of conditional key graphs, a support threshold, a dataset, and a size
parameter. It looks at all conditional key graphs that have a condition set of the
given size (Lines 2–3). For each of them, it constructs a clone (Line 4). It then

VICKEY: Mining Conditional Keys on Knowledge Bases 671

adds one more condition to the condition set of the clone. This new condition con-
sists of a property and a constant (Sect. 3). The property is taken from a node of
size 1 having its explore flag still set to true (Lines 5–6). The constant is taken
from the constants that appear with that property in the conditional key graphs
of size 1 (Line 9). If the new combined condition has a support that is large enough
(Line 10), the conditional key graph of the singleton condition is merged with the
clone and added to the output set.

Algorithm 4. newConditions
Input: size of condition set size
set of conditional key graphs G
support threshold θ, dataset D
Output: modified set of conditional key graphs G

1 G1 ← {g ∈ G : |g .cond | = 1}
2 Gsize ← {g ∈ G : |g .cond | = size}
3 for g ∈ Gsize do
4 g ← clone(g)
5 for v ∈ g.V where |g.V.p| = 1 do
6 if v.explore then
7 v.explore ← false
8 for v′ ∈ g.descendants(v) do v′.explore ← false
9 for g1 ∈ G1 where g1.P

c = v.p do
10 if support(g.cond ∧ g1 .cond , D) ≥ θ then G ← G ∪ merge(g, g1)

11 return G

Themerge operation between two conditional key graphs 〈P k
1 , P c

1 , cond1, (V1, E1)〉
and 〈P k

2 , P c
2 , cond2, (V2, E2)〉 with P c

1 ∩P c
2 = ∅, produces a new conditional graph

〈P k, P c, cond , (V,E)〉 with:

– P k = P k
1 ∩ P k

2 and P c = P c
1 ∪ P c

2 .
– cond = cond1 ∪ cond2

– V = {〈v.p, v.explore〉 : ∃v1 ∈ V1, v2 ∈ V2 : v1.p = v2.p = v.p ∧ v.explore =
(v1.explore ∧ v2.explore)}

– E = {u, v ∈ V : u.p ⊂ v.p ∧ |u.p| = |v.p| − 1}
As an example, Fig. 2(b) shows the conditional graph with the set of conditions
{gender = Female, lab = INRA} produced by Algorithm4 from the conditional
graphs with conditions gender = Female and lab = INRA. This graph is a clone of
the graph with the condition gender = Female. A node is marked to be explored
only if it was marked to be explored in both of the original graphs.

Lemma 3 (NewConditions).Given a datasetD, a set of conditional key graphs
G, a size parameter size, and a threshold θ, Algorithm4 produces all conditional key
graphs that contain condition sets of size size+1. Each of those graphs contains all
the conditional keys for the given condition.

We can prove Lemma 3 by induction. For size = 0, Lemma 1 guarantees
that Algorithm 4 starts with all conditional key graphs for conditions of size 1.

672 D. Symeonidou et al.

For size > 0, we need to show that (a) Algorithm 4 generates all conditional key
graphs of size size+1 and (b) each of these graphs contains all minimal conditional
keys for their condition.

We start by showing (b), that is, the merge operation between two conditional
key graphs G1 = 〈P k

1 , P c
1 , cond1, (V1, E1)〉 and G2 = 〈P k

2 , P c
2 , cond2, (V2, E2)〉

does not skip any minimal conditional key for the new condition. There are only
two ways a node can be excluded from exploration in the merge operation: (1) the
node is explicitly marked for non-exploration and (2) the node does not occur in
one of the conditional key graphs. Case (1) occurs when the corresponding nodes
are below the support threshold θ or they define non-minimal keys. In Case (2),
the claim follows from the fact that if a node v is not contained in one of the graphs
(e.g., v �∈ V1), then v.p ∪ P c

1 must be a key, i.e., it is not contained in any maximal
non-key. This rationale applies analogously if v �∈ V2.

To show (a) we need to prove that our conditions are complete and correct. To
show completeness we observe that Algorithm 4 builds conditions with |cond | =
size+1 based on the complete set of conditions with |cond | = size and |cond | = 1.
From the monotonicity of support, it follows that all conditions with |cond| =
size+1 with support greater than θ can be computed from these sets. To show cor-
rectness we note that for each graph with condition cond = {p1 = o1, . . . , psize =
osize} and key properties P k, Algorithm 4 will merge the graph with all condi-
tions of the form psize = osize where psize ∈ P k (conditions of size 1, Line 5).
This will produce graphs with conditions of the form {p1 = o1, . . . , psize− 1 =
osize− 1, psize = osize} with key part P k \ {psize} with support greater than θ. (a)
follows from Observation 1, since we have just transferred a property from the key
part to the condition part.

Theorem 1 (Conditional Key Discovery). Given a dataset D, a set of con-
ditional key graphs G, and a threshold θ, Algorithm2 produces all conditional keys
whose properties are a subset of the properties of any node in any graph in G, whose
conditions are built from conditions or properties in G, and whose support is at
least θ.

This theorem follows from the fact that Algorithm2 calls Algorithm 3 for all
sizes between 1 and the maximal number of property combinations. Lemma 2
makes sure that all possible graphs are generated. Lemma 3 ensures that all
possible combinations of conditions are treated.

Corollary 1 (Conditional Key Mining). Our method for conditional key
mining is complete and correct.

The correctness follows from the fact that Algorithm 3 adds a new key if and
only if it is a key (Line 5). The completeness follows from Observation 1 and
Theorem 1.

4.4 Implementation

Our method, VICKEY, is implemented in Java 7. The conditional key graphs
have large condition sets and large associated graphs. Therefore, we do not

VICKEY: Mining Conditional Keys on Knowledge Bases 673

store the graphs in memory, but rather generate them on the fly when they are
accessed [28]. Furthermore, we parallelize the algorithm: the set of input non-keys
is split into batches containing up to 50 (potentially non-distinct) properties.
The batches are then scheduled to threads in the system, each one running
Algorithms 1 and 2. This may lead to mining the same non-key multiple times,
and therefore we perform a de-duplication before reporting the final results.

5 Experiments

We evaluate VICKEY in two series of experiments. First, we show the abil-
ity of VICKEY to discover conditional keys in large datasets with millions of
triples. We compare the runtime of VICKEY to a generic rule mining approach,
AMIE [13]. Then, we evaluate the utility of conditional keys for the task of data
linking. We compare the conditional keys mined by VICKEY to the classical
keys mined by SAKey [27].

5.1 Runtime Experiments

Setting. To evaluate the performance of VICKEY and AMIE [13], we
adapt AMIE to mine rules of the form: Pc ∧ Pk ⇒ x = y. Here, Pc =∧

1..n pci(x,Ai) ∧ pci(y,Ai) corresponds to the condition part of a key expression,
and Pk =

∧
1..m pki(x, ui) ∧ pki(y, ui) represents the key part. Both AMIE and

VICKEY take as input a set of maximal non-keys. These non-keys are obtained
from the input dataset using SAKey [27]. Like VICKEY, our adapted variant of
AMIE uses the non-keys to restrict the search space by pruning the combinations
of properties that do not occur in the non-keys. Unlike VICKEY, AMIE searches
exhaustively for all rules that define conditional keys in the input dataset, regard-
less of their minimality. AMIE therefore requires a post-processing phase where
all non-minimal conditional keys are removed. Both AMIE and VICKEY are run
with a coverage threshold of 1%. We set the confidence threshold of AMIE to
100%, so that VICKEY and the modified AMIE mine exactly the same set of con-
ditional keys. As datasets, we have used nine classes from DBpedia [18], covering
different domains such as people, organizations, and locations. All experiments
are run on a server with an AMD Opteron 6376 Processor (2.40 GHz), 8 cores,
and 128 GB of RAM under Ubuntu Server 16.04.

Results. Our results are shown in Table 2. The first three columns show some
statistics about the testing datasets, followed by the number of discovered non-
keys (NKs), the runtimes of both VICKEY and AMIE and finally the number
of obtained conditional keys (CKs). We observe that a generic rule mining solu-
tion cannot handle some of the input datasets in less than 1 day. VICKEY, in
contrast, runs on the smaller datasets Actor, Mountain, Museum and Scientist
in less than 1 h. This is because VICKEY’s strategy prunes the search space
much more effectively by avoiding candidate CKs that are not minimal. Other
classes, such as University and Organization, are more challenging because they
have many long non-keys (up to 15 properties). The longer the non-keys, the

674 D. Symeonidou et al.

Table 2. VICKEY vs AMIE on DBpedia

Class Triples Inst. #Pro#NKsVICKEYAMIE #CKs

Actor 57.2k 5.8k 71 137 4.52m 12.58 h 311

Album 786.1k 85.3k 39 68 1.53 h 3.90 h 304

Book 258.4k 30.0k 51 95 11.84 h > 1 d 419

Film 832.1k 82.6k 74 132 1.37 h 3.64 h 185

Mount. 127.8k 16.4k 58 47 2.86m 23.57m 257

Museum 12.9k 1.9k 65 17 1.46 s 6.45 s 58

Organiz. 1.82M 178.7k 553 3221 26.32 h > 36 h 28

Scientist 258.5k 19.7k 73 309 27.67m > 1 d 582

Univ. 85.8k 8.7k 89 140 14.45 h > 1 d 941

Table 3. Linked classes stats

Class #Pro #Ks #NKs #CKs

Actor 16 93 22 748

Album 5 1 2 5864

Book 7 5 2 538

Film 9 14 13 26750

Mount 5 3 2 775

Museum 7 14 5 80

Organiz. 17 149 3 9737

Scientist 10 22 8 407

Univ. 9 5 5 449

larger the number of property combinations in the search space. For example, for
the class Album, AMIE explores more than 12.3k rules (including intermediate
rules), where 6.4k rules correspond to potential conditional keys. In contrast,
VICKEY explores only 4.1k candidates. This shows that VICKEY’s strategy
indeed prunes the search space much more effectively. It can mine conditional
keys on hundreds of thousands of facts in a matter of minutes.

5.2 Extrinsic Evaluation

Setting. One of the primary application areas of keys is the discovery of equiv-
alent entities across two KBs: If some combination of properties is a key, and if
an entity in one KB shares values of these properties with an entity in the other
KB, then the two entities must be the same. In this section we investigate the
performance of conditional keys with respect to classical keys for this task. We
emphasize that entity linking is not the primary goal of this paper. Instead, we
want to show the potential of conditional keys, introduced in this paper, over
classical keys introduced by other approaches such as SAKey [27]. Entity linking
is only an example setting to this end.

As KBs, we chose DBpedia [18] and YAGO [26], because there is a gold stan-
dard available for the entity links on the YAGO Web page. We have used the same
set of classes as for the runtime experiments. As this type of entity linking assumes
that the properties have been aligned, we mapped the properties of these classes
manually, and rewrote the properties of YAGO using its DBpedia counterparts.
We ran SAKey [27] and VICKEY on DBpedia to find standard and conditional
keys, respectively. Table 3 shows the number of common properties, the number
of keys (Ks), non-keys (NKs) and conditional keys (CKs) in each DBpedia class.
Among others, VICKEY finds thatmotto is a key for universities in Italy and some
other countries – but not in all countries; and that the name is a key for organiza-
tions in certain places – but not all places. To link the datasets, we use a simple
algorithm [27]: For each key, we iterate over the entities in DBpedia that have the
key properties. If there is an entity in YAGO that shares at least one value for every
of these properties, we link the two. For conditional keys, we also check whether the
conditions of the key are fulfilled in both datasets.

VICKEY: Mining Conditional Keys on Knowledge Bases 675

Table 4. Linking results with classical keys (Ks), conditional keys (CKs), and both.

Class Recall Precision F1
Actor Ks [27] 0.27 0.99 0.43

�CKs 0.57 0.99 0.73 × 1.75
Ks+CKs 0.60 0.99 0.75

Album Ks [27] 0.00 1 0.00

�CKs 0.15 0.99 0.26 × 869
Ks+CKs 0.15 0.99 0.26

Book Ks [27] 0.03 1 0.06

�CKs 0.11 0.99 0.20 × 3.48
Ks+CKs 0.13 0.99 0.23

Film Ks [27] 0.04 0.99 0.08

�CKs 0.38 0.96 0.54 × 7.1
Ks+CKs 0.39 0.98 0.55

Mountain Ks [27] 0.00 1 0.00

�CKs 0.28 0.99 0.44 × 101
Ks+CKs 0.29 0.99 0.45

Museum Ks [27] 0.12 1 0.21

�CKs 0.25 1 0.40 × 2.19
Ks+CKs 0.31 1 0.47

Organization Ks [27] 0.01 1 0.02

�CKs 0.14 0.98 0.24 × 11
Ks+CKs 0.14 0.99 0.24

Scientist Ks [27] 0.05 0.98 0.11

�CKs 0.16 0.99 0.28 × 2.96
Ks+CKs 0.19 0.99 0.32

University Ks [27] 0.09 0.99 0.16

�CKs 0.22 0.99 0.36 × 2.44
Ks+CKs 0.25 0.99 0.40

Results. Table 4 shows the precision, recall and F1 measure of the entity linking
task using (a) classical keys mined by SAKey [27], (b) conditional keys alone and
(c) both types of keys (VICKEY). We first observe that the precision is always
over 98%. Conversely, the recall is low in some cases. This happens mainly due
to our simple linking method, which uses a strict string equality when comparing
the values of properties, and also due to the incompleteness of the data in both
YAGO and DBpedia. However, even with this simple method, the use of condi-
tional keys can lead to a significant increase in recall – with a negligible impact
on precision. For example, for the class Film, recall increases from 4% to 38%
when conditional keys are considered. Furthermore, when combining classic keys
and conditional keys, the recall improves further. Overall, we observe an average
increase of 21% points in recall, and of 29 points in F1 when both standard keys
and conditional keys are used to link the data. The average drop in precision is
only 0.5% points. This shows that conditional keys can significantly increase the
performance of entity linking.

6 Conclusion

We have presented VICKEY, an approach to mine conditional keys on knowledge
bases. Our approach overcomes the complexity of the search space by restricting
it to the non-keys found by SAKey [27], and by pruning it smartly. This allows
VICKEY to mine minimal conditional keys in datasets of up to 1.8M triples.

676 D. Symeonidou et al.

In an extrinsic evaluation, we have shown that conditional keys can increase
the recall of entity linking by up to 34% points. As future work we plan to
extend VICKEY by exploiting ontological classes and axioms, to discover more
expressive conditional keys. The VICKEY system, as well as the datasets and
evaluations, are available at https://github.com/lgalarra/vickey.

Acknowledgments. This research was supported by the grants ANR-11-LABEX-
0045-DIGICOSME and ANR-16-CE23-0007-01 (“DICOS”), by the Chair “Machine
Learning for Big Data” of Télécom ParisTech, and by the AGINFRA+ project (Grant
Agreement no. 731001).

References

1. Al-Bakri, M., Atencia, M., David, J., Lalande, S., Rousset, M.-C.: Uncertainty-
sensitive reasoning for inferring sameAs facts in linked data. In: ECAI (2016)

2. Atencia, M., Chein, M., Croitoru, M., David, J., Leclère, M., Pernelle, N., Säıs,
F., Scharffe, F., Symeonidou, D.: Defining key semantics for the RDF datasets:
experiments and evaluations. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.)
ICCS 2014. LNCS, vol. 8577, pp. 65–78. Springer, Cham (2014). doi:10.1007/
978-3-319-08389-6 7

3. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey
extraction. In: ECAI, Czech Republic (2014)

4. Atencia, M., David, J., Scharffe, F.: Keys and pseudo-keys detection for web
datasets cleansing and interlinking. In: ten Teije, A., Völker, J., Handschuh, S.,
Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez,
N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 144–153. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33876-2 14

5. Chen, Y., Goldberg, S.L., Wang, D.Z., Johri, S.S.: Ontological pathfinding. In:
SIGMOD (2016)

6. Chiang, F., Miller, R.J.: Discovering data quality rules. In: VLDB (2008)
7. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,

T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: KDD (2014)

8. Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Murphy, K., Sun, S., Zhang, W.:
From data fusion to knowledge fusion, In: VLDB (2014)

9. Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. In: VLDB (2015)
10. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-

dencies. IEEE Trans. Knowl. Data Eng. 23, 683–698 (2011)
11. Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule

learning from knowledge graphs. In: Groth, P., Simperl, E., Gray, A., Sabou, M.,
Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp.
234–251. Springer, Cham (2016). doi:10.1007/978-3-319-46523-4 15

12. Galarraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting complete-
ness in knowledge bases. In: WSDM (2017)

13. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule min-
ing under incomplete evidence in ontological knowledge bases. In: WWW (2013)

14. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

https://github.com/lgalarra/vickey
http://dx.doi.org/10.1007/978-3-319-08389-6_7
http://dx.doi.org/10.1007/978-3-319-08389-6_7
http://dx.doi.org/10.1007/978-3-642-33876-2_14
http://dx.doi.org/10.1007/978-3-319-46523-4_15

VICKEY: Mining Conditional Keys on Knowledge Bases 677

15. Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal
tableaux for conditional functional dependencies. VLDB 1, 376–390 (2008)

16. Heise, A., Quiane-Ruiz, J.-A., Abedjan, Z., Jentzsch, A., Naumann, F.: Scalable
discovery of unique column combinations. In: VLDB (2013)

17. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: an efficient algorithm
for discovering functional and approximate dependencies. Comput. J. 42(2), 100–
111 (1999)

18. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6(2),
167–195 (2015)

19. Manola, F., Miller, E.: RDF primer. W3C recommendation. W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

20. Patel-Schneider, P., Parsia, B., Rudolph, S., Krötzsch, M., Hitzler, P.: OWL 2 web
ontology language primer. W3C recommendation. W3C, October 2009. http://
www.w3.org/TR/2009/REC-owl2-primer-20091027/

21. Pernelle, N., Säıs, F., Symeonidou, D.: An automatic key discovery approach for
data linking. J. Web Semant. 23, 16–30 (2013)

22. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.:
Active knowledge: dynamically enriching RDF knowledge bases by web services.
In: SIGMOD (2010)

23. Säıs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method
for data reconciliation. J. Data Semant. 12, 69–94 (2009)

24. Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: GORDIAN: efficient and scalable
discovery of composite keys. In: VLDB (2006)

25. Soru, T., Marx, E., Ngonga Ngomo, A.-C.: ROCKER: a refinement operator for
key discovery. In: WWW (2015)

26. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW (2007)

27. Symeonidou, D., Armant, V., Pernelle, N., Säıs, F.: SAKey: scalable almost key
discovery in RDF data. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp.
33–49. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 3

28. Symeonidou, D., Galarrága, L., Pernelle, N., Säıs, F., Suchanek, F.: VICKEY:
mining conditional keys on RDF datasets. Technical report (2017). https://doi.
org/10.5281/zenodo.835647

29. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://dx.doi.org/10.1007/978-3-319-11964-9_3
https://doi.org/10.5281/zenodo.835647
https://doi.org/10.5281/zenodo.835647

Ontolex JeuxDeMots and Its Alignment
to the Linguistic Linked Open Data Cloud

Andon Tchechmedjiev(B), Théophile Mandon, Mathieu Lafourcade,
Anne Laurent, and Konstantin Todorov

University of Montpellier / LIRMM, Montpellier, France
{andon.tchechmedjiev,theophile.mandon,mathieu.lafourcade,

anne.laurent,konstantin.todorov}@lirmm.fr

Abstract. JeuxDeMots (JdM) is a rich collaborative lexical network
in French, built on a crowdsourcing principle as a game with a pur-
pose, represented in an ad-hoc tabular format. In the interest of reuse
and interoperability, we propose a conversion algorithm for JdM follow-
ing the Ontolex model, along with a word sense alignment algorithm,
called JdMBabelizer, that anchors JdM sense-refinements to synsets in
the lemon edition of BabelNet and thus to the Linguistic Linked Open
Data cloud. Our alignment algorithm exploits the richness of JdM in
terms of weighted semantic-lexical relations—particularly the inhibition
relation between senses—that are specific to JdM. We produce a refer-
ence alignment dataset for JdM and BabelNet that we use to evaluate
the quality of our algorithm and that we make available to the commu-
nity. The obtained results are comparable to those of state of the art
approaches.

Keywords: LLOD · Lexical resources · Lexical data linking · Ontolex ·
JdM

1 Introduction

The availability of large lexical-semantic resources (LSRs) is of central impor-
tance for a variety of natural language processing and semantic web applications.
The lack of interoperability between these resources, as well as their limited
coverage—most world languages are under-resourced to date—have been a sig-
nificant hindrance to progress in the field.

JeuxDeMots (JdM) [1] is a collaborative lexical network of French terms built
on a crowdsourcing principle as a game with a purpose (GWAP). JdM is very
successful and has currently produced a network of over 1 million terms, more
than 75 million relations of around 100 types, and around 70, 000 word senses for
polysemous entries. Beyond its importance for French, JdM is a generic platform
that can be adapted to other languages that critically require the production of
LSRs. It is, therefore, an effective answer to the knowledge acquisition bottle-
neck.

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 678–693, 2017.
DOI: 10.1007/978-3-319-68288-4 40

Ontolex JeuxDeMots and Its Alignment 679

However, JdM uses an ad-hoc tabulated data format, with a custom repre-
sentation formalism that is different from typical (lexical architecture as opposed
to cognitive architecture) LSRs. Therefore, using JdM in conjunction with other
resources is non-trivial and both JdM and its applications would benefit from
being made interoperable.

With the advent of semantic web technologies, the Linguistic Linked Open
Data (LLOD) [2], based on the lemon and Ontolex ontologies, is becoming a
de facto standard for the access, interoperability and interlinking of language
resources. Major state of the art LSRs such as BabelNet [3], Uby [4], many
WordNets and DBnary [5] now exist as lemon/Ontolex1 together with numerous
alignments to other LSR datasets from the LLOD cloud.2

In light of the above, we address the problem of converting the JdM model
to Ontolex and aligning it to the LLOD cloud. We use the core Ontolex model to
represent entries and sense refinements (word senses), and the vartrans module
of Ontolex to represent lexical and sense relations, to which we add a custom
weight property. Given that JdM senses do not possess definitions (only word
associations), linking JdM to another resource from the LLOD that is rich in
definitions, would allow us to project the definitions back to JdM so as to enrich
the network. We chose BabelNet as a target for the alignment as there already
exist alignments between JdM and BabelNet at the lexical entry level. Addi-
tionally, BabelNet is one of largest resources on the LLOD cloud, possessing rich
sense definitions. Given the structures of JdM and BabelNet, we developed a
Word Sense Alignment (WSA) algorithm that we called JdMBabelizer, using a
threshold decision criterion based on a weighted Lesk overlap similarity, where
the weights of JdM relations and the normalized relative word frequencies of
BabelNet definitions are taken into account. The proposed method is generic
and language agnostic. Beyond its application to the data of the French lexical
network, it can be seamlessly applied to editions of JdM in any other language.
Thus, we enable the production of LLOD resources for languages such as Khmer,
Thäı, Bangali, and Comorian, for which the JdM GWAP model has already been
used.3

For the purpose of evaluating the JdMBabelizer algorithm, we construct a
custom reference dataset by adding an innovate feature: we propose a crowd-
sourced gamified dataset creation, which considerably lowers the annotation
burden. We make this benchmark dataset available to the community.

In the remainder of the paper, we first present JdM in detail followed by
a related work review pertaining to the conversion of LSRs to lemon/Ontolex
and to WSA techniques in the context of linking resources in the LLOD. Subse-
quently, we present the extended JdM/Ontolex model and the conversion algo-
rithm, followed by a presentation of the WSA techniques applied. Before con-
cluding, we evaluate the alignment with the help of our benchmark dataset.

1 An exhaustive list of lemon resources: https://datahub.io/dataset?tags=lemon.
2 http://linguistic-lod.org/llod-cloud.
3 http://jeuxdemots.liglab.fr.

https://datahub.io/dataset?tags=lemon
http://linguistic-lod.org/llod-cloud
http://jeuxdemots.liglab.fr

680 A. Tchechmedjiev et al.

2 JeuxDeMots: A Lexical Network

JeuxDeMots4 (Eng., word plays) is a large lexical-semantic network, composed
of terms (nodes) and typed, weighted and possibly annotated relations [1]. It
contains term refinements (acceptations or word-senses), organized hierarchically
(senses can have sub-senses). By May 15, 2017, it consists of roughly 75, 799, 080
relations between 1, 058, 530 nodes. Around 26, 000 polysemous terms are refined
into 71, 276 word senses (or related usages for some domains). More than 800, 000
relations have negative weights and can be used as inhibitory relations. JdM
contains links to DBnary and BabelNet at the word-level (words with the same
canonical form). However, few alignments exist at the sense-level, although a
dedicated tool allows the JdM players to refine word-level alignments.

2.1 Construction of JdM

JdM is a two player GWAP, allowing to earn and collect words. It has the
following driving mechanics. (1.) The system (S) or a challenger (C) picks a
term (T) that is offered to a player (A) along with a particular relation (R) from
a manually curated list of relations (synonymy, antonymy, etc.) The system only
chooses from existing terms, while challengers can offer new ones. (2.) Player
A has a limited amount of time to enter terms which, to her/his mind, are
related to T via R. The term T, along with the same set of instructions, will be
later given to another player, say B, with an identical protocol for consolidation.
The two players score points for words they both choose. The more “original”
the proposition given by both players, the higher the reward. (3.) For a term
offered to the players, answers in common from both A and B are inserted to the
database (if the contributed terms are new, the term and a new relation instance
are created with a weight of 1, otherwise the existing weights are incremented).
Answers given by only one of the players are not considered, which reduces noise.

The network is constructed by connecting terms by typed and weighted rela-
tions, validated by pairs of players. Several other games complement the main
JdM game.5 Their purpose is to cross validate information collected in the main
game, or to accelerate the relation harvesting for specific relation types.

2.2 Relations

An instance of each JdM relation links two particular nodes and has an associated
weight. Relations can link nodes of any type. Even word-senses are defined as
regular nodes that are linked to their corresponding entry by a particular type
of refinement relation. Some lexical functions such as Magn and antiMagn6 are
represented as associative relations as well as predicative relations and can be

4 http://www.jeuxdemots.org.
5 http://imaginat.name/JDM/Page Liens JDMv1.html.
6 Magn. for Magnification and antiMagn. the inverse relation: e.g. Magn(big)=huge,

Magn(smoker)=heavy smoker, antiMagn(big)=small.

http://www.jeuxdemots.org
http://imaginat.name/JDM/Page_Liens_JDMv1.html

Ontolex JeuxDeMots and Its Alignment 681

in a sense equated to semantic frames. Although they represent the same type
of information, they are encoded following the principles of the Meaning Text
Theory (MTT) by Mel’čuk [6], rather than the semantic frame formalism (a
conversion is non-trivial). The relations are not bound to grammatical categories
(part of speech tags): grammatical categories are represented as separate nodes
and linked to term (lexeme) nodes. The relations of JdM fall into one of the
following categories.

– Lexical relations: synonymy, antonymy, expression, lexical family. This type of
relations is about vocabulary and lexicalization.

– Ontological relations: hyperonymy, hyponymy, meronymy, holonymy, mat-
ter/substance, instances (named entities), typical location, characteristics
and relevant properties, etc. These relations concern knowledge about world
objects.

– Associative relations: free associations of feelings, meanings, similar objects,
intensity (Magn and antiMagn). These relations are rather about subjective
and global knowledge; some of them can be considered as phrasal associations.

– Predicative relations: typical agent, patient, instrument, or location of the
action, typical manner, cause, or consequence. These relations are associated
to a verb (or action noun) and to the values of its arguments (in a very wide
sense).

Refinements. Word senses (or acceptations) of a given term node T (equiv-
alent to a lexical entry) are represented as T>gloss1, T>gloss2, ..., T>glossn
nodes linked to the term node through refine(ment) relations. Glosses (follow-
ing the lexicographical definition of gloss) are textual annotations that evoke
the meaning of term T. For example, consider the French term frégate (Eng.,
frigate). A frigate can be a ship or a bird (both English and French have the
same ambiguity), and as a ship it can either be ancient (with sails) or modern
(with missiles) (cf. upper part of Fig. 1 for an exmaple). Word refinements are
structured, which, contrarily to a flat set of word meanings, has advantages for
lexical disambiguation. Monosemous words do not have refinements as the term
itself represents its only sense and requires no clarification.

Free Associations. The most common relation in the network, accounting for
over 26% of all relations, is the free association relation (assoc), which for a
given node provides cognitively related terms (mental associations). We make
use of this relation to align JdM to other resources, as the terms related to a
refinement through assoc form a sort of synset of words that allow humans
to discriminate that particular meaning of the word and can thus be used as a
substitution for definitions when overlap-based similarity measures are applied.

Inhibitory Relations. An inhibitory relation discriminates a specific refine-
ment RE of a top-level term E (equivalent to a lexeme/lexical entry) from
another term T. Such a relation models the fact that if the term T negatively
related to the RE sense of E, appears in the same context as E (e.g. same sen-
tence), then RE is probably not the right sense for E in this context (relations

682 A. Tchechmedjiev et al.

of this type are extremely useful for Word Sense Disambiguation). Generally
speaking, any relation between the refinement of a term and another term with
a negative weight is inhibitory proportionally to its weight. However, there is
also an explicit inhib relation type, which indicates that the presence of the
related term T formally implies (with absolute certainty) that E cannot be in
its RE sense in that particular context. inhib relations are computed auto-
matically through the application of the following rule: ∀E ∃T,RE,1, RE,2 :
refine(E,RE,1) ∧ refine(E,RE,2) ∧ assoc(RE,1, T) ∧� assoc(RE,2, T) ⇒
inhib(T,RE,2). If the entry term E has at least two refinements, RE,1 and RE,2,
and if the first refinement is associated to a term T but not the second one, then
T inhibits the second refinement.

3 Related Work

Since the very early years of the web data field, rich LSRs have been called upon
to provide robust semantic similarity measures [7], to assist ontology matching
and link discovery across highly heterogeneous and multilingual datasets [8,9],
or to facilitate automatic question answering on large RDF graphs [10]. A crucial
requirement to enable these applicatons is that these resources are interoperable.
In this section, we focus on the conversion of LSRs to RDF Ontolex and their
interlinking on the web of data.

3.1 The Ontolex Model

Ontolex has emerged as a standard for representing lexical data on the web. It
builds around the core model of its predecessor lemon, introduced by McCrae,
Aguado-de-Cea, Buitelaar, et al. [11] to represent LSRs and their alignments
with ontologies (OWL) and terminologies (SKOS), inspired by the LMF ISO-
24613:2008 standard [12]. Ontolex adds modules for the representation of vari-
ous linguistic phenomena and features (Syntax and Semantics, Decomposition,
Variation and Translation, Linguistic Metadata, Linguistic Description, Lexical
Networks).

For the representation of the JdM data, we are concerned with the use
of the core model together with the Variational Translation (vartrans) mod-
ule.7 The main classes of the Ontolex core model include LexicalEntry and
LexicalSense, the former representing the entry point into the resource (lemma-
tized words, affixes or multi-word expressions) and the latter representing word
senses or semantic refinements associated to lexical entries. The LexicalConcept
class allows to represent concepts lexicalised by a set of lexical senses and is a sub-
class of skos:Concept. The synsets in cognitive architecture LSRs (WordNet and
derivatives, including BabelNet) would typically be represented by lexical con-
cepts in Ontolex. The core model does not include the notion of lexical-semantic
relations and we have to turn to the vartrans module to represent relations from

7 https://www.w3.org/community/ontolex/wiki/Final Model Specification.

https://www.w3.org/community/ontolex/wiki/Final_Model_Specification

Ontolex JeuxDeMots and Its Alignment 683

resources such as BabelNet or JdM, through the reified SenseRelation class.
Although SenseRelation does not have a weight data property, it is trivial to
add one for the purpose of modeling the weights in JDM, for example.

Ontolex uses the Form class to describe the forms and representations of a
LexicalEntry. Each lexical entry should have a canonical form, which is the
lemmatisation of the term, and possibly other forms if any exist (e.g. morpho-
logical variants). Each form has a written representation datatype property that
contains the terms. The linguistic meta-data module of Ontolex allows to encode
useful information pertaining to lexical datasets, such as the language of lexical
elements. The decomposition of multi-word expressions with relation to atomic
lexical entries can be represented using the Decomposition module.

3.2 Converting Lexical Resources to Ontolex

Multiple LSRs built by professional linguists from scratch or by extending
already exiting web resources have been successfully represented using lemon
and its successor Ontolex, including Panlex [13], Parole [14], UBY [15], Eurosen-
timent [16] and Framebase [17]. In what follows, we focus on the main LSRs
used in the web data field.

The well-known lexical database WordNet is composed of groups of quasi-
synonyms called synsets with lexical relations linking synsets or words together.
However, since the lemon model does not allow to represent synsets, in the lemon
version of WordNet they have been represented as subclasses of skos:Concept
linked to senses with the lemon:reference property [18]. Relations have been
represented in the same way as in lemonUBY. Note that Ontolex now offers
lexical concepts to represent synsets, while the vartrans module allows to describe
relations directly (without using external vocabularies).

BabelNet [3], another well-established multilingual LSR, combines WordNet
with Wikipedia (exploiting the multilingual information) and other resources
(OmegaWiki, OpenMultilingualWordNet, etc.). Definitions in all languages are
enriched through a machine translation of English definitions. The conversion of
BabelNet to lemon [19] follows the same principle as that of WordNet, using the
lemon vocabulary where possible along with other ontologies (lime, lexvo). The
only custom class that had to be created in the conversion process is BabelGloss,
representing the glosses bound to synsets.

Note that, unlike WordNet or BabelNet, JdM is created in a collaborative
manner. Therefore, we pay close attention to DBnary [5], a LSR first modeled
in lemon with custom properties, as it is also based on a collaborative resource
(Wiktionary). We adopt a similar approach in the conversion of JdM to Ontolex
and its alignment to the LLOD.

3.3 Word Sense Alignment Techniques for the LLOD Cloud

Although the LLOD cloud contains datasets represented as RDF graphs using
the Ontolex ontology, aligning these resources is a substantially different prob-
lem as compared to standard data linking tasks on the larger LOD cloud. The

684 A. Tchechmedjiev et al.

problem we face here is that of aligning LSRs at the word sense level, known as
Word Sense Alignment. Most linked resources in the LLOD cloud are aligned
using techniques that are not specific to the LOD representation of the data,
but to the pair of resources being aligned: there are no LOD specific algorithms
for WSA.

WSA techniques use similarity between senses as a proxy for semantic equiv-
alence across resources. The decision of whether to align two senses usually
depends on an empirically determined threshold [20]. There are three main types
of similarity computation approaches: lexical, structural, and hybrid. The field
being vast, we only give several recent examples of applications relevant to this
work. We refer the interested reader to [21].

Lexical similarity techniques exploit textual descriptions of lexical semantic
elements (e.g. glosses or definitions) in LSRs. This is the most popular approach
to WSA, as there are often definitions or some form of textual descriptions of
senses in traditional LSRs (dictionaries). In recent applications, lexical simi-
larity techniques have been applied (non exhaustively) to align the following
resources (we provide the measures used and their performances in terms of pre-
cision (P), recall (R), F-score (F1) and accuracy(A) in brackets): Wiktionary and
OmegaWiki (Personalized Page Rank (PPR) + Cosine (Cos) similarity, P 0.68,
R 0.65, F1 0.66, A 0.78) [22]; WordNet and Wiktionary (PPR + Cos, P 0.67, R
0.64, F 0.66, A 0.91) [20]; GermaNet with Wiktionary (Lesk overlap measure, F1
0.84, A 0.91) [23]. Among the above-mentioned alignments, the most relevant to
the present work is that of [23], as the authors apply an overlap-based measure
using definitions. Moreover, one of their goals is to provide definitions to Ger-
maNet from Wiktionary based on a projection through the alignments. Although
the resources do not directly use lexical-semantic relations, these relations are
present on Wiktionary pages and used to obtain extended textual representations
for Wiktionary senses.

Structural similarity approaches exploit the topography of the graphs of the
resources to determine whether two items should be aligned, by using clas-
sical graph search approaches and combinatorial graph metrics (path length,
degrees, cycles, etc.). SSI-Dijkstra+ [24] has been applied to align WordNet and
FrameNet (P 0.79, R 0.74, F1 0.75), while Dijkstra-WSA [22] — to align Word-
Net with Wikipedia (P 0.75, R 0.87, F1 0.81, A 0.95), as well as WordNet with
Wiktionary (P 0.68, R 0.71, F1 0.69, A 0.92).

From a more general point of view, lexical and structural approaches can be
combined in a hybrid similarity framework, by producing semantic signatures
that include both definition-based and structural semantic information, normal-
ized to live in the same space. This is the approach used to build resources such
as BabelNet [3] or OpenMultilingualWordnet [25], formalized in an unified man-
ner by [26]. The framework remains the same for any resource pair and only the
construction of the semantic signatures differs. Our extended overlap measure
also enters in this category, as we create weighted bags of words (signatures)
that contain words from definitions in BabelNet, related terms in JdM and the
weights on relations from both resources.

Ontolex JeuxDeMots and Its Alignment 685

The evaluation of the alignment of resources is tricky, because the reference
data must be specific to each pair. Additionally, parameters that work for one
pair, rarely generalize well to others. The standard approach in the domain is
to either use an existing dataset to realign resources that are already aligned, or
manually produce an evaluation dataset from a sample of representative entries.
We follow the latter approach, producing benchmark data in a novel crowd-
sourced game-based manner.

4 Producing Ontolex JeuxDeMots

Let us describe the conversion of the JdM tabulated (relational) model to
Ontolex.

Core Model. The main elements in the core Ontolex model are lexical entries
and lexical senses. We first identify corresponding elements in JdM. All nodes
that are sources of a refine relation became lexical entries8 and all nodes that
are its targets became lexical senses.9 We link corresponding lexical senses to
their lexical entries and create ontolex:Form instances as needed to represent
the canonical forms of the lexical entries.10 A custom jdm:id datatype property
contains the original JdM node id. Note that the hierarchical sense distinctions
of JdM cannot be directly represented in Ontolex. We, therefore, do not repre-
sent sub-senses in the Ontolex model, only keeping the first level (cf. Figure 1).
For each lexical sense we create a lexical concept with a lexinfo:gloss prop-
erty that contains the gloss from the JdM refinement/sense node (it will be
enriched with skos:definition in future work). For each assoc relation leaving
from JdM refinement/sense nodes, the lexical concept that corresponds to that
sense node is linked to the lexical entries of the corresponding words though the

Fig. 1. An example of the conversion of term nodes and refinements to the Ontolex
core model for the term frigate. Only first level senses are kept.

8 URI scheme jdm:le term, where term is the canonical form of the term node.
9 URI scheme jdm:ls term gloss, where gloss is the gloss of the refinement node.

10 URI scheme jdm:cf term, where term is the canonical form of the term node.

686 A. Tchechmedjiev et al.

ontolex:evokes/ontolex:isEvokedBy property. In JdM, parts of speech are
represented as POS nodes linked to terms. We retrieve the POS nodes for each
lexical entry and add the lexinfo:partOfSpeech property.

Relations and Vartrans. What remains to be modeled are the numer-
ous specific relations found in JdM, from which we exclude relations encod-
ing structural information, used in the previous section. For that task,
we turn to the vartrans module of Ontolex. Each relation is represented
as a sublcass of ontolex:LexicalRelation and/or ontolex:SenseRelation
as there are relations at both levels.11 Where possible, we also made the
relations sub-classes of existing relations in DBnary or in SKOS (OWL
allows multiple inheritance). We added a custom jdm:weight datatype prop-
erty to relation instances to represent jdm:weights.12 The assoc rela-
tions are represented by ontolex:evokes and ontolex:isEvokedBy but also
have weights, which cannot be represented by ontolex:LexicalRelation
nor by ontolex:SenseRelation. We reify the ontolex:evokes/isEvokedBy
as a sub-class of ontolex:LexicoSemanticRelation directly, as the source
and targets can be LexicalSense/LexicalEntry or the reverse. We also
represent weights by the jdm:weight relation. Figure 2 illustrates how a lexi-
cal relation is represented in the original JdM data and in its Ontolex version.
We make the converted JdM data available.13

Fig. 2. Example of an association between cat and mouse in JdM (left) and its equiv-
alent in Ontolex JdM (right).

5 Linking Ontolex JdM to the LLOD Cloud

We aim at producing alignments of JdM to other lexical or ontological resources
published on the LLOD cloud at the level of lexical senses. JdM has no def-
initions, but the glosses provide some information as do the numerous assoc
links that evoke the lexical senses. We can thus produce textual descriptions
that capture the semantics of the lexical senses that can be used for WSA.
11 URI scheme: jdm:lr relname or jdm:sr relname.
12 URI scheme of relation instances: lri sourcenodeid targetnodeid or

sri sourcenodeid targetnodeid.
13 https://tinyurl.com/jdmbabelnetbench.

https://tinyurl.com/jdmbabelnetbench

Ontolex JeuxDeMots and Its Alignment 687

Algorithm 1. JdMBabelizer: the JdM/BabelNet alignment algorithm
function JdMBabelizer(jdmLE, bnLE, inhib={None/Vt/Wgt}, θ)

2: alignedPairs ← ∅
for all jdmS ∈ Senses(jdmLE) do

4: for all bnS ∈ Senses(bnLE) do
bnSig ← ∅

6: AddToSig(bnSig, Words{Def(bnS)}, w = 1.5)
AddToSig(bnSig, Lemma{Senses(Synset(bnS))}w = 2.0)

8: AddToSig(bnSig, BibTaxonomy(bnS), updtW = 1.5)
AddToSig(bnSig, Words{Examples{bnS}}, w = 0.75)

10: jdmSig ← ∅
for all evokedLe ∈ EvokedBy(jdmS) do

12: AddToSig(jdmSig, {WrRep(evokeLe)},
w = rWeight(jdmS, evokedLe))

14: end for
� Weight-based inhibition strategy

16: if inhib = Wgt then
for all inhibLe ∈ Inhib(jdmS) do

18: � Adding term to signature with the largest negative weight
AddToSig(jdmSig, {CanWrRep(inhibLe)}, w = −1000)

20: end for
end if

22: � If there isn’t an inhibition while in veto mode, we continue
� Otherwise, we veto this pair of senses

24: if inhib �= V t ∨ �t ∈ bnSig ∩ jdmSig : WrRep(Inhib(jdmS) = t) then
score ← 0

26: for all ∀bnSigEl, jdmSigEl ∈ words(jdmSig) ∪ words(bnSig) do
score ← score + weight(bnSigEl) × weight(jdmSigEl)

28: end for
if score > θ then

30: CreateAlignement(jdmS, bnS)
end if

32: end if
end for

34: end for
end function

JdM already contains alignments at the lexical entry level to other LSRs
(DBpedia, DBnary, BabelNet) and to certain medical ontologies (Radlex,
UMLS) through ad-hoc approaches and in ad-hoc formats that are not inter-
operable with the LLOD cloud. We may thus reuse the alignments as a starting
point to align the resources at the lexical sense level through explicit RDF state-
ments so as to include JdM in the LLOD cloud.

As a first step, we endeavour to align JdM to BabelNet, as BabelNet has rich
definitions in several languages, that we could project back unto JdM through

688 A. Tchechmedjiev et al.

the alignment. We start off at entry level alignments and then compare all
(BabelSense, JdM LexicalSense) pairs to find the ones that are most likely to
be equivalent. Algorithm 1, named JdMBabelizer, details the process, roughly
following the approach formulated by Pilehvar and Navigli [26].

For each of the pairs, we create a weighted bag-of-words semantic signature
for the BabelNet sense and another for the JdM sense. For the BabelNet sense,
we build the signature from the words of the definition, the lemmas of the other
senses corresponding to the synset of the sense, the category names from the
the Wikipedia Bitaxonomy [27] and the words from the examples. We keep only
unique words and increment the weight associated to each word (+1.5 if the
word comes from a definition, +2.0 if the word comes from the lemmas of the
synset senses, +1.5 for BibTaxonomy categories and +0.75 for words from the
examples) by using the AddToSig function that takes the existing signature, a
set of words to add and an update weight (lines 6 to 9). AddToSig filters stop
words and lemmatizes the words to add before their addition.

We create the signature for JdM by taking all the canonical written repre-
sentations of lexical entries that evoke the sense (initially, the assoc relation),
where the weights of each word correspond to the normalized relation weight (a
value between − 1000 and 1000). We reuse the same AddToSig function (10–14).
In the case of the weight-based inhibition strategy, we add each word stemming
from an inhibition relation to the signature with the highest negative weight
(−1000, lines 15–20).

If we are in a veto inhibition mode and if there is an inhibition relation that
points to a lexical entry that has a written representation matching words from
the BabelNet signature, we immediately discard the current pair of senses (line
24). Otherwise, we move on to the score computation: for each overlapping word
between the BabelNet signature and the JdM signature, we increment the score
by the multiplication of the weight for the word from the BabelNet signature and
the weight for the word from the JdM signature (lines 25–28). This is a weighted
Lesk overlap similarity measure [28]. If the score is higher than the threshold, we
create the alignment by adding a triple to the RDF model (lines 29–32).

6 Evaluation of the Linking Algorithm

The current section presents an evaluation of our linking approach. We start by
describing our benchmark data before presenting and analyzing our results.

6.1 Benchmark Construction

Due to the specificity of JdM, it is difficult to use off-the-shelf benchmark data to
evaluate our linking algorithm. Therefore, we manually create our own bench-
mark (as is customary in the field), containing valid links between JdM and
BabelNet. To this end, we created a new game within a crowdsourcing para-
digm. For two corresponding entries in JdM and BabelNet (same lemmas), the
game shows to the player all of the BabelNet senses and for each of them a list of

Ontolex JeuxDeMots and Its Alignment 689

possible sense refinements from JdM (word senses). The player can click on each
of the JdM refinements to mark the correspondence as true, false or undefined.14

Since JdM, contrarily to BabelNet, has case sensitive entries, it is useful to
be able to say that a given synset does not match the JdM entry. For that pur-
pose, all synsets containing, e.g., “jade” will be returned for both “Jade” (with
one sense being the first name), and “jade” (one sense of this being the gem).
Approximately half of the benchmark dataset contains inhibition relations. We
prioritize words with many senses and many matching BabelNet synsets (com-
mon words like “cat”). Since there are approximatively 25,000 polysemous words
in JdM, we included the hardest cases in order to have an overview of the worst-
case alignment scenarios. We also picked nouns with few outgoing relations, like
the French “religieuse”, which can both be a religious person and a kind of
a pastry, to analyse the impact of a lack of information on the the alignment
results.The resulting dataset contains 574 links between nouns, accounting for
approximately 2.5% of all possible links. It is used for all of our experiments and
made freely available.15

6.2 Experimental Protocol

We start by selecting all noun nodes in JdM that are not refinements and that
have at least two distinct semantic refinements (senses). Then, we compare and
decide whether to align the semantic refinements of each of these terms to all
of the BabelNet senses of nouns that have the same written representation16,
through the application of the JDMBabelizer algorithm. Subsequently, we eval-
uate the results against our benchmark data.

We ran Algorithm 1 for the entire JdM on a Hitachi HTS547575A9E384 lap-
top, with 8G RAM and an i5-2450m 2.50 GHz processor. The final alignments,
as well as both JdM and BabelNet Lucene indexes were stored on a mechanical
hard-drive. There are 19782 polysemous nouns in JdM with a total of 51657
senses that we compare to 58816 tentative equivalent BabelSynsets. The entire
alignment process took 4927597ms to run (approximately 1h21min). The solu-
tion space for the alignment is the union of Cartesian products of lexical senses
for each pair of aligned lexical entries.

6.3 Results and Discussion

Threshold tuning. We start by estimating the optimal value of the cutoff
threshold. We show the results for several threshold values in Table 1. Two sce-
narios stem from this experiment: (s1) favoring recall, with a corresponding
threshold of 500 and (s2) favoring precision, with a threshold of 1,000. Although
we give more importance to (s2) (ensuring that the established links are mostly

14 A link to the game with an example of the word “chat” (Fr., cat): http://www.
jeuxdemots.org/aki fech babelnet distrib.php?term=chat.

15 https://tinyurl.com/jdmbabelnetbench.
16 We used the BabelNet API http://babelnet.org/guide.

http://www.jeuxdemots.org/aki_fech_babelnet_distrib.php?term=chat
http://www.jeuxdemots.org/aki_fech_babelnet_distrib.php?term=chat
https://tinyurl.com/jdmbabelnetbench
http://babelnet.org/guide

690 A. Tchechmedjiev et al.

Table 1. Threshold variation.

Threshold Precision Recall Accuracy

500 66% 80% 93%

750 68% 65% 93%

1,000 74% 51% 93%

1,250 74% 47% 91%

correct), we analyze both cases in detail below with regard to the effects of
inhibition.

Impact of inhibition. The results of our experiments on both scenarios by
using inhibitions as negative weights, using inhibition as a veto (if an inhibited
word is found, the link is immediately discarded) and not using inhibition are
shown in Table 2 in terms of Precision (TP

TP+FP), Recall (TP
TP+FN), F-measure

(harmonic mean of P and R) and Accuracy (TP+TN
TP+FP+TN+FN). With a threshold

of 500 (s1), we achieve an uninhibited Precision of 65% with a recall at 80% and
a F-measure of 72%, which translates into an accuracy of 93%. With a threshold
of 1,000 (s2), we achieve an uninhibited Precision of 73% with a recall at 52%
and a F-measure of 60%, which translates into an accuracy of 92%. When we
take inhibition into account as negative weights, we increase precision by 1%,
while the other measures remain the same in both (s1) and (s2). When we take
inhibition into account as a veto, we increase precision by 2% but decrease recall
by 2% in (s2) and by 4% in (s1). For (s1), the F-measure decreases by 1% with
no impact on accuracy, while in (s2) the F-measure remains unchanged, but the
accuracy increases by 1%. All-in-all, the impact of inhibition appears to be much
less significant than what we anticipated. However, in the interest of producing
the most reliable alignment between JdM and BabelNet (at the price of lower
recall), we identify the best configuration to be (s2) with a veto inhibition.

Table 2. Results of aligning JdM to BabelNet with and without using the inhibition
relation and by using it as a veto.

Dataset Threshold/Scenario Precision Recall F-measure Accuracy

NoInhib 500 / (s1) 65% 80% 72% 93%

Inhib 500 / (s1) 66% 80% 72% 93%

InhibVeto 500 / (s1) 67% 76% 71% 93%

NoInhib 1000 / (s2) 73% 51% 60% 92%

Inhib 1000 / (s2) 74% 51% 60% 93%

InhibVeto 1000 / (s2) 76% 49% 60% 93%

Error analysis. In order to better understand our results, we studied the false
negatives and false positives produced by our algorithm. As expected, many false

Ontolex JeuxDeMots and Its Alignment 691

negatives are due to lack of information in JdM. For instance, one of the senses
of the French word “baguette” is a rod used to push ammo for old firearms. The
JdM entry contains only three outgoing relations, two of them being “military”
and “history”, while the BabelNet synset does not mention neither of these.
Since JdM is constantly evolving thanks to the permanent contributions of its
players, we can hope that this missing information will be filled in the future.

The participative nature of JdM has also its downsides. Certain false neg-
atives are due to the fact that the BabelNet synsets tend to contain academic
definitions, while the terms linked through the JdM associations are rather com-
mon or colloquial.

Another source of false positives lies in the fact that some synsets do not have
French definitions and use English ones instead. Since JdM is only in French,
we want the projected definitions to be in French, too. For that reason, we
systematically discard links to definitions in other languages. However some of
these links are still established by our algorithm, because certain words have
the same written representation in both languages. For example, the English
definition of “devil” contains “cruel” and “demon”, both valid French words
and present in the JdM relations.

Among the remaining false positives, we frequently encounter senses that are
close but still distinct. For example, “copper” can be used to describe the metal,
or the color. Since the color is called that way because it is the color of the
metal, these senses are tightly related and mislead the similarity judgment. This
problem could be resolved by using more specialized relations in both BabelNet
and JdM, like the is a relation.

Comparison to state of the art. Comparing WSA results directly to the state
of the art is generally difficult, because each time a specific pair of resources are
aligned, having specific properties and evaluated on different reference datasets.
This difficulty is amplified in our case by the lack of definitions in JdM. Nonethe-
less, we note that the best results obtained for scenarios (s1) and (s2), respec-
tively, outperform the average of the WSA approaches. In scenario (s2), we
obtain significantly higher precision values than most established approaches.
The benefits of using the inhibition relation become clear as it adds a combina-
torial pruning constraint that improves precision, although it decreases recall.
In turn, this explains why the impact of inhibition is marginal in scenario (s1).

7 Conclusion

This paper deals with the addition of JdM, a French lexical resource, to the
linguistic web of data. We introduce a conversion scheme of JdM to RDF allowing
to model weighted relations by using Ontolex along with an approach to link
JdM to BabelNet and thus to the LLOD. These links can be used for automatic
translation, or to help enrich BabelNet using the JdM data and vice versa,
enabling the interoperability of the two resources. By adding JdM to the LLOD,
we also contribute to the enrichment of non-English linguistic resources on the
web. We construct a benchmark dataset in the form of a reference alignment

692 A. Tchechmedjiev et al.

between JdM and BabelNet on the basis of a crowdsourced game. We use this
data for evaluating our approach and we share it along with all produced data
and algorithms.

References

1. Lafourcade, M.: Making people play for lexical acquisition with the jeuxdemots pro-
totype. In: SNLP2007: 7th International Symposium on Natural Language Process-
ing, p. 7 (2007)

2. Chiarcos, C., Hellmann, S., Nordhoff, S.: Towards a linguistic linked open data
cloud: the open linguistics working group. TAL 52(3), 245–275 (2011)

3. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

4. Eckle-Kohler, J., McCrae, J.P., Chiarcos, C.: LemonUBY a large, interlinked,
syntactically-rich lexical resource for ontologies. Semant. Web 6(4), 371–378 (2015)

5. Sérasset, G.: Dbnary: Wiktionary as a lemon-based multilingual lexical resource in
rdf. Semant. Web 6(4), 355–361 (2015)

6. Mel’čuk, I.: Lexical functions: a tool for the description of lexical relations in a
lexicon. In: Wanner, L., Benjamins, J., (eds.) Lexical functions in lexicography
and natural language processing, pp. 37–102 (1996)

7. Hulpuş, I., Prangnawarat, N., Hayes, C.: Path-based semantic relatedness on linked
data and its use to word and entity disambiguation. In: Arenas, M., et al. (eds.)
ISWC 2015. LNCS, vol. 9366, pp. 442–457. Springer, Cham (2015). doi:10.1007/
978-3-319-25007-6 26

8. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

9. Tigrine, A.N., Bellahsene, Z., Todorov, K.: Light-weight cross-lingual ontology
matching with LYAM++. In: Debruyne, C., et al. (eds.) On the Move to Mean-
ingful Internet Systems: OTM 2015 Conferences. LNCS, vol. 9415, pp. 527–544.
Springer, Cham (2015). doi:10.1007/978-3-319-26148-5 36

10. Unger, C., Freitas, A., Cimiano, P.: An introduction to question answering over
linked data. In: Koubarakis, M., Stamou, G., Stoilos, G., Horrocks, I., Kolaitis, P.,
Lausen, G., Weikum, G. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 100–140.
Springer, Cham (2014). doi:10.1007/978-3-319-10587-1 2

11. McCrae, J., Aguado-de-Cea, G., Buitelaar, P., Cimiano, P., Declerck, T., Góomez-
Pérez, A., Gracia, J., Hollink, L., Montiel-Ponsoda, E., Spohr, D., Wunner, T.:
Interchanging lexical resources on the semantic web. Lang. Resour. Eval. 46(4),
701–719 (2012). doi:10.1007/s10579-012-9182-3. ISSN: 1574-0218

12. Francopoulo, G., Bel, N., George, M., Calzolari, N., Monachini, M., Pet, M.,
Soria, C.: Lexical markup framework (LMF) for NLP multilingual resources. In:
Workshop on Multilingual Language Resources and Interoperability, pp. 1–8. ACL
(2006)

13. Westphal, P., Stadler, C., Pool, J.: Countering language attrition with panlex and
the web of data. Semant. Web 6(4), 347–353 (2015)

14. Villegas, M., Bel, N.: Parole/simple lemon ontology and lexicons. Semant. Web
6(4), 363–369 (2015)

http://dx.doi.org/10.1007/978-3-319-25007-6_26
http://dx.doi.org/10.1007/978-3-319-25007-6_26
http://dx.doi.org/10.1007/978-3-319-26148-5_36
http://dx.doi.org/10.1007/978-3-319-10587-1_2
http://dx.doi.org/10.1007/s10579-012-9182-3

Ontolex JeuxDeMots and Its Alignment 693

15. Gurevych, I., Eckle-Kohler, J., Hartmann, S., Matuschek, M., Meyer, C.M., Wirth,
C.: UBY—a large-scale unified lexical-semantic resource based on lmf. In: 13th
Conference of the European Chapter of the Association for Computational Lin-
guistics, pp. 580–590. Association for Computational Linguistics (2012)

16. Buitelaar, P., Arcan, M., Iglesias Fernandez, C.A., Sánchez Rada, J.F., Strappar-
ava, C.: Linguistic linked data for sentiment analysis. In: 2nd Workshop on Linked
Data in Linguistics: Representing and linking lexicons, terminologies and other
language data, Telecomunicacion (2013)

17. Rouces, J., de Melo, G., Hose, K.: FrameBase: representing N-ary relations
using semantic frames. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-
Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 505–521.
Springer, Cham (2015). doi:10.1007/978-3-319-18818-8 31

18. McCrae, J., Fellbaum, C., Cimiano, P.: Publishing and linking wordnet using lemon
and rdf. In: 3rd Workshop on Linked Data in Linguistics (2014)

19. Ehrmann, M., Cecconi, F., Vannella, D., McCrae, J.P., Cimiano, P., Navigli, R.:
Representing multilingual data as linked data: the case of babelnet 2.0. In: LREC,
pp. 401–408 (2014)

20. Meyer C.M., Gurevych, I.: What psycholinguists know about chemistry: Aligning
wiktionary and wordnet for increased domain coverage. In: 5th International Joint
Conference on Natural Language Processing, pp. 883–892. Asian Federation of
Natural Language Processing (2011)

21. Gurevych, I., Eckle-Kohler, J., Matuschek, M.: Linked Lexical Knowledge Bases:
Foundations and Applications. Morgan & Claypool, San Rafael (2016)

22. Matuschek, M.: Word sense alignment of lexical resources. PhD thesis, Technische
Universitat Darmstadt (2015)

23. Henrich, V., Hinrichs, E., Vodolazova, T.: Aligning GermaNet senses with wik-
tionary sense definitions. In: Vetulani, Z., Mariani, J. (eds.) LTC 2011. LNCS, vol.
8387, pp. 329–342. Springer, Cham (2014). doi:10.1007/978-3-319-08958-4 27

24. Laparra, E., Rigau, G., Cuadros, M.: Exploring the integration of wordnet and
framenet. In: 5th Global WordNet Conference (2010)

25. Bond, F., Foster R.: Linking and extending an open multilingual wordnet. In: 51st
Annual Meeting of the Association for Computational Linguistics, pp. 1352–1362.
ACL (2013)

26. Pilehvar, M.T., Navigli, R.: A robust approach to aligning heterogeneous lexical
resources. In: 52nd Annual Meeting of the Association for Computational Linguis-
tics, pp. 468–478. ACL (2014)

27. Flati, T., Vannella, D., Pasini, T., Navigli, R.: Multiwibi: the multilingual wikipedia
bitaxonomy project. Artif. Intell. 241, 66–102 (2016)

28. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries:
how to tell a pine cone from an ice cream cone. In: 5th Annual International
Conference on Systems Documentation, pp. 24–26 (1986)

http://dx.doi.org/10.1007/978-3-319-18818-8_31
http://dx.doi.org/10.1007/978-3-319-08958-4_27

Towards Holistic Concept Representations:
Embedding Relational Knowledge, Visual

Attributes, and Distributional Word Semantics

Steffen Thoma(B), Achim Rettinger, and Fabian Both

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{steffen.thoma,rettinger}@kit.edu, fabian.both@student.kit.edu

Abstract. Knowledge Graphs (KGs) effectively capture explicit rela-
tional knowledge about individual entities. However, visual attributes of
those entities, like their shape and color and pragmatic aspects concern-
ing their usage in natural language are not covered. Recent approaches
encode such knowledge by learning latent representations (‘embeddings’)
separately: In computer vision, visual object features are learned from
large image collections and in computational linguistics, word embed-
dings are extracted from huge text corpora which capture their distri-
butional semantics. We investigate the potential of complementing the
relational knowledge captured in KG embeddings with knowledge from
text documents and images by learning a shared latent representation
that integrates information across those modalities. Our empirical results
show that a joined concept representation provides measurable benefits
for (i) semantic similarity benchmarks, since it shows a higher correlation
with the human notion of similarity than uni- or bi-modal representa-
tions, and (ii) entity-type prediction tasks, since it clearly outperforms
plain KG embeddings. These findings encourage further research towards
capturing types of knowledge that go beyond today’s KGs.

Keywords: Knowledge fusion · Multimodality · Entity embeddings ·
Visual features · Distributional semantics · Entity-type prediction

1 Introduction

In recent years, several large, cross-domain, and openly available knowledge
graphs (KGs) have been created. They offer an impressively large collection of
cross-domain, general knowledge about the world, specifically instantiated rela-
tions between individual entities (statements). However, there is a lack of other
types of information like visual object features or distributional semantics about
the usage of those entities in the context of textual descriptions of real-world
events.

Consider for instance the entity ‘baseball’ as depicted in Fig. 1: Images of
baseballs provide basic visual information about the shape and color, something
that is not present in KGs. While it is theoretically possible to make such infor-
mation explicit with a graph-based formalism, it is not the obvious choice, since
c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 694–710, 2017.
DOI: 10.1007/978-3-319-68288-4 41

Towards Holistic Concept Representations 695

Fig. 1. Approach for extracting a shared cross-modal concept space from image, text
and knowledge graph (aligned on word-level).

the detailed formal modelling of a shape or texture is far less efficient than
capturing this with an unstructured representation like an image.

Similarly, text documents contain another type of essential information that
is not available in KGs. Texts that mention ‘baseball’ typically comment or
analyze baseball games and players. Since there is a huge number of examples
on the actual usage of terms in text, this provides distributional context which
is not available via the graph-neighborhood of the entity ‘baseball’ in a KG.
KGs contain rather stable relations between individual entities, like attributes
of baseball teams, their locations, equipment and abstract categorizations such
as a ‘Bat and Ball Game’.

It seems obvious that the three modalities (KGs, Text, Images) contribute dif-
ferent types of complementing information. Considering recent results in extrac-
tion of visual and textual content, that indicate an advantage of exploiting both
modalities simultaneously to represent concepts [18], there also seems to be
potential for tri-modal embeddings of textual context, visual information and
relational knowledge of KG concepts.

This work investigates the influence of additional modalities on concept repre-
sentations by means of a tri-modal embedding space that fuses information from
text documents and image collections with knowledge graphs. When evaluating
the resulting latent concept representation on standard similarity benchmarks,
it indeed shows a higher correlation with the human notion of concept simi-
larity than uni- (e.g., KG only) or bi-modal representations. Also, KG embed-
dings fused with embeddings trained on visual and textual documents clearly

696 S. Thoma et al.

outperform their uni-modal counterparts on KG completion tasks like entity-
type prediction.

This convincingly demonstrates the great potential of joining latent knowl-
edge representations constructed from multiple modalities, as detailed in the
following sections. First, we discuss related work (Sect. 2), introduce existing uni-
modal embeddings (Sect. 3), before explaining how they are aligned (Sect. 4) and
fused (Sect. 5). We demonstrate its potential on similarity benchmarks (Sect. 6.1)
and analyze its fusion effects (Sect. 6.2). In Sect. 6.3, we look into entity segmen-
tation and assess entity-type prediction in Sect. 6.4, before we summarize our
findings (Sect. 6.5) and conclude (Sect. 7).

2 Related Work on Fusion of Learned Representations

Recently, several researchers have tried to transfer learned knowledge from one
task to another or to combine different approaches. In image classification, it is
important that also new images can be classified so that visual representations
from one image classification task can be transferred to another with differ-
ent classes. To this end, Oquab et al. [27] learn and transfer mid-level image
representations of CNNs. Kiela and Bottou [18] test the combination of visual
and textual representations via vector stacking which is similar to [33] which
uses a stacked auto-encoder to combine visual and textual input. In contrast
to our approach they only evaluate simple vector stacking and neither evaluate
more sophisticated combination techniques nor the incorporation of structured
resources like KGs.

In contrast, Goikoetxea et al. [11] use textual information from a text corpus
and WordNet. For this purpose, WordNet is transferred to text by performing
random walks on the synset hierarchy and hereby storing the traversal path to
text [12]. But, they neither use visual representations nor do they work with the
information of an expressive KG directly. The transformation of a traversal path
to text might lose characteristics of the underlying graph structure which is why
we used latent vector representations from an explicit KG model, learned on a
complete KG. Furthermore, they only combine vectors of equal size to circumvent
the dimensionality bias while we introduce an appropriate normalization and
weighting scheme.

Our approach also goes beyond current retrofitting ideas like [9]. They adjust
learned word embeddings by incorporating information from lexical databases.
Firstly, we do not slightly adapt one representation but learn a completely new
combined representation. Secondly, we use much more information from a large
expressive KG (DBpedia) instead of a smaller lexical database. Lastly, we also
use visual information.

The closest work to our word-level alignment to concept space is [30]1. They
used autoencoders with rank 4 weight tensors to create vector representations

1 Please note, that they did not consider any combinations with visual or KG embed-
dings.

Towards Holistic Concept Representations 697

for synsets and lexemes in WordNet for which there was no learned vector repre-
sentation before. They achieve this by treating a word and a synset as the sum
of its lexemes.

The closest work to our approach are [6,14]. Hill et al. [14] add explicit image
tag information into the textual representation by adding the image tags into the
training data. By placing the tags next to the words, they include the connection
between word and its explicit visual features (tags). Then again, [6] concatenate
and fuse latent ’visual words’ and textual representations with singular value
decomposition (SVD). Their results on bi-modal experiments indicate that multi-
modal information is useful and can be harnessed. In addition to [6], we also
consider relational knowledge from a KG, test further combination methods and
evaluate on different tasks.

3 Uni-Modal Vector Representations

Latent vector representations of various types have become quite popular in
recent years. The most common ones are latent textual representations, which are
also referred to as word embeddings, distributional word semantics or distributed
word representations. Created with unsupervised methods, they only rely on a
huge text corpus as input. The information of co-occurrences with other words is
encoded in a dense vector representation and by calculating the cosine similarity
between two representations, a similarity score between two words is obtained.
Examples for such textual representations are [2], SENNA [7], hierarchical log-
bilinear models [24], word2vec [21–23], and GloVe [28]. Word embeddings are
able to capture the distributional knowledge of how words are used across huge
document collections.

Similarly, images can be encoded in a latent vector space. For image repre-
sentations, deep convolutional neural networks (CNNs) have shown promising
results in recent years. Deep CNNs transfer an image into a low dimensional
vector space representation e.g. for image classification by applying a softmax
function. The latent vector representation for images correspond to layers in the
deep CNN before applying the softmax. For image classification with CNNs,
Inception-V3 [34] which is used in TensorFlow [1] has shown good results on the
ImageNet classification task [31]. Image embeddings are able to capture abstract
visual attributes of objects, like their abstract shape.

The term ‘Knowledge Graph’ was revived by Google in 2012 and is since
then used for any graph-based knowledge base, the most popular examples being
DBpedia, Wikidata, and YAGO (see [8] for a survey). Similarly, knowledge graph
embeddings can be learned on those graphs consisting of entities and typed pred-
icates between entities and abstract concepts. These entities and predicates can
be encoded in a low dimensional vector space, facilitating the computation of
probabilities for relations within the knowledge graph which can be used for
link prediction tasks [29]. Examples for learning latent vector representations
of knowledge graphs are SE [5], RESCAL [26], LFM [17], TransE [4], SME [3],
HolE [25], ComplEx [35], and the SUNS framework [16]. KG embeddings are

698 S. Thoma et al.

obtained by collective learning which is able to capture the relational structure
of related entities in a KG.

4 Tri-Modal Concatenated Concept Space

The aim of this paper is to assess the potential of integrating distributional,
visual, and relational knowledge into one representation. For obtaining such a
consolidated tri-modal space, an embedding across all modalities is needed. Most
existing bi-modal approaches rely on manually aligned document collections.
Thus, an explicit reference (i.e., DBpedia URI) to the mentioned or depicted
concept cannot be established, since a whole document is embedded and no
individual concepts. This is not suitable for our investigations, since we want
to assess how representations of single concepts can benefit from multi-modal
embeddings. Instead, we build on pre-trained uni-modal representations (KG
entities, words and visual objects) and align them across modalities.

We chose the most established approaches from their respective fields2: For
textual embeddings we picked the word2vec model and Inception-V3 for visual
embeddings. For knowledge graph embeddings, we trained representations using
the TransE model [19]. To establish which embeddings represent the same con-
cept in the different modalities we align them on a word-level:

Matching of Word Embeddings: We identified the intersection of word2vec
embeddings that are represented by all modalities.

Concept Mapping of KG Embeddings: The latent vectors of TransE are
representing concepts in the DBpedia graph. Each concept is uniquely address-
able through a DBpedia URI and several labels (surface forms) are provided.
We use the most commonly used label for referring to the concept.

WordNet Mapping of Visual Objects: For visual representations, we use the
images from ImageNet 1k [31] which consists of 1000 categories. Each category
has a set of at least 1300 images for the respective concept and is linked to synsets
in WordNet. By combining all image representations for a given synset, we obtain
a visual representation for the synset. Alike to [18] we combine the image repre-
sentations by taking the max-value for each vector index as this yielded better
results compared to mean values. Additionally, we build more abstract synset
representations by utilizing the WordNet hierarchy, e.g. an embedding of ‘instru-
ment’ can be created by combining embeddings of ‘violin’, ’harp’, etc. We build
hierarchical subtrees in WordNet for each missing synset in ImageNet 1k. All
synset representations in such a subtree with a visual representation from Ima-
geNet 1k are then combined with a feature-wise max operator to form an abstract
synset representation. In total, we abstract 396 additional synset representations.

2 Please note, that any other embedding approach (see Sect. 3), could be plugged
into our approach. We are not aiming to compete on uni-modal benchmarks but
investigate the impact of additional modalities regardless of the original embedding
approach.

Towards Holistic Concept Representations 699

The alignment of the synset representations to a shared set of concepts are per-
formed with the WordNet lexemes which are assigned to at least one synset in
WordNet. In the end, we extract 2574 lexeme representations by averaging the
synset representations related to a given lexeme.

The intersection of Inception-V3 with word2vec and TransE embeddings
leads to an aligned tri-modal concept space containing 1538 concepts. For each
shared concept, the representations from all modalities are concatenated so that
fusion techniques for the resulting concept space TriM1538 can be applied next
(see Fig. 1).

5 Shared Cross-Modal Concept Space

For fusing distributional, visual, and relational knowledge from the respective
modalities, we used several methods which are described in the following para-
graphs. Apart from simple concatenation we build on methods like SVD and
PCA by proposing a normalization (N) and weighting (W) scheme for embed-
dings from multiple modalities. Our tri-modal concept space of 1538 different
concepts is represented in three matrices: text T , knowledge graph G, and visual
V . For combination techniques, we use the whole information of all three modal-
ities and define matrix M ∈ R

(t+ g+ v)× 1538 as the vertically stacked matrices
of T , G, and V . The dimensionality of these three matrices varies drastically:
Visual representations tend to have more than 1000 dimensions while knowledge
graph representations typically have around 50 to 100 dimensions. Thus, the
representations with higher dimensionalities tend to dominate the combination
techniques. Furthermore, the value range of features can differ depending on the
underlying training objective and method. To address these problems we propose
pre-processing steps, comprising normalization (N) of each column vector of T ,
G, and V to unit length as well as weighting (W) of the normalized matrices
with weights wT , wG, and wV before stacking. Thus, we can take into account
that certain representations are more informative and condensed than others.

AVG: The averaging method uses the cosine similarity of all three modalities
which are calculated separately. By averaging these three values, we get a
combined similarity measure which is also robust with respect to different
vector dimensionalities.

CONC: The similarity for the concatenated vectors of the single representations
can be calculated with the cosine similarity. The similarities of the following
techniques are also calculated with cosine similarity.

SVD: Singular value decomposition factorizes the input matrix M into three
matrices such that M = UΣV T . U and V are unitary matrices and Σ is a
diagonal matrix with the singular values of M in descending order on its diag-
onal. By taking the first k columns of U and the k biggest singular values of
Σ, we get a new combined k-dimensional representation: M ← Mk = UkΣk.

700 S. Thoma et al.

PCA: Principal Component Analysis uses an orthogonal transformation to con-
vert the correlated variables into linearly uncorrelated variables. Fixing the
number of uncorrelated principal components results in a projection into a
lower dimensional vector space. By taking the principal components with the
highest variance, we create a representation with the most distinctive fea-
tures. We also tested canonical correlation analysis (CCA) but in our tests
PCA always performed superior which is consistent with [11]. Thus, we omit-
ted further attempts based on CCA.

AUTO: Autoencoders are neural networks for learning efficient encodings (rep-
resentations). Autoencoders consist of an encode and a decode function for
transforming an input vector to a lower dimensional encoding which can be
decoded again. The neural network variables are learned by reducing the
reconstruction error between the encoded and subsequently decoded columns
of M compared to its original column.

6 Experiments

To investigate if our joint embedding approach is able to integrate distributional,
visual, and relational knowledge from the respective modalities and ultimately
if common tasks benefit from that, we conducted qualitative and quantitative
empirical tests. In our assessments, we use pre-trained representations for text
and images as well as trained knowledge graph representations. For the tex-
tual representation we use word2vec3. Its vectors have 300 dimensions and were
trained on the Google News corpus containing about 100 billion words. For
visual representations, the Inception-V3 model4, pre-trained on the ImageNet
1k classification task, was applied to compute representations with 2048 dimen-
sions. Knowledge graph representations were obtained with the TransE model
[4] which we trained by running TransE on DBpedia. We trained TransE with
a local closed word assumption for type constraints, rank = 50, gamma = 0.3,
learningrate-embeddings = 0.2 and learningrate-parameters = 0.5 on the latest
DBpedia dump (April 2016). We made all used embeddings available online5.

6.1 Word Similarity

For evaluating whether a joint embedding captures the human notion of sim-
ilarity better than uni-modal embeddings, we utilize various word similarity
datasets. These datasets were created by several persons that rated the similar-
ity of word pairs like ‘cheetah - lion’. Since TriM1538 does not cover all words in

3 https://code.google.com/archive/p/word2vec/.
4 http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.

tar.gz.
5 https://people.aifb.kit.edu/sto/TriM1538.

https://code.google.com/archive/p/word2vec/
http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz
http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz
https://people.aifb.kit.edu/sto/TriM1538

Towards Holistic Concept Representations 701

Table 1. Spearman’s rank correlation on subsets and complete datasets for word2vec.

MEN WS-353 SimLex-999 MTurk-771 weighted ∅

Complete data 0.762 0.700 0.442 0.671 0.682

Subset 0.740 0.694 0.441 0.608 0.672

the evaluation datasets6, we evaluate on the covered subsets and provide them
online (See Footnote 5). To ensure that the subsets used for evaluation are not
easier to align we compared the word2vec performance to the full set. Table 1
shows the performance of word2vec on the respective datasets MEN [6], WS-353
[10], SimLex-999 [15], and MTurk-771 [13]. We also report the average perfor-
mance over all evaluation datasets, weighted by their respective size. Table 1
confirms that similarities in the subsets are equally hard to predict.

In Table 2, the Spearman’s rank correlation on all subsets for raw stacking,
normalization (N) and weighting (W) is reported. Normalized representations
allow for a fixed combination ratio, resembling an equal weight of information
from all modalities. We conducted experiments with different dimension para-
meters for SVD, PCA, and AUTO. Our results indicate that 100 dimensions are
sufficient to encode the information for the word similarity task. In case of simple
stacking (second block in Table 2), none of the combination methods is signifi-
cantly better than the uni-modal text representation on the MEN, MTurk-771,
and WS-353 subset. Also, combination methods with normalization (N) are not
significantly and consistently outperforming the textual representation.

To investigate if modalities are equally informative or provide complemen-
tary information we use weighting (W) of representations after normalization in
order to quantify the impact of different proportions of information induced by
each representation. With grid search and a step size of 0.05 we investigated the
modality composition on the weighted average of all evaluation sets. The optimal
weights for (wT , wG, wV) are: AVG (0.15, 0.05, 0.8), CONC (0.25, 0.15, 0.6),
SVD (0.3, 0.05, 0.65), and PCA (0.25, 0.05, 0.7)7. While some of the weighting
schemes only include small proportions of the KG representations, the extracted
complementary information from KGs still improves the performance in every
approach significantly. In Fig. 2, you can see the weighted average of Spearman’s
rank correlation scores for different weightings between normalized visual, tex-
tual, and KG representations. It clearly shows that the combination of the three
fused and weighted modalities produces better results than any single modal-
ity8. Weighted combination methods substantially outperform uni- and bi-modal
embeddings while best results are obtained with SVD and PCA. Applying the
dimension reduction methods SVD and PCA (100 dimensions) only on the initial

6 Naturally, the limiting factors are verbs, abstract words, and named entities (e.g.
persons) for which no visual representation is available.

7 Due to high computational costs we omitted the autoencoder.
8 Otherwise the optimum (depicted with a black cross) would be in a corner (uni-

modal) or edge (bi-modal) of the triangle.

702 S. Thoma et al.

Table 2. Spearman’s rank correlation on subsets of evaluation datasets.

MEN WS-353 SimLex-999 MTurk-771 Weighted ∅

Visual 0.619 0.526 0.522 0.308 0.546

Textual 0.740 0.707 0.423 0.594 0.669

KG 0.452 0.433 0.284 0.097 0.369

AVG 0.738 0.595 0.460 0.485 0.643

CONC 0.620 0.520 0.518 0.317 0.546

SVD 0.739 0.646 0.591 0.352 0.646

PCA 0.710 0.595 0.663 0.354 0.634

AUTO 0.456 0.672 0.485 0.294 0.456

AVG-N 0.738 0.595 0.460 0.485 0.643

CONC-N 0.738 0.595 0.460 0.485 0.643

SVD-N 0.724 0.555 0.422 0.440 0.618

PCA-N 0.769 0.601 0.452 0.558 0.673

AUTO-N 0.742 0.607 0.473 0.527 0.655

AVG-W 0.795 0.726 0.592 0.577 0.724

CONC-W 0.795 0.726 0.598 0.574 0.724

SVD-W 0.826 0.722 0.633 0.667 0.762

PCA-W 0.831 0.758 0.688 0.567 0.760

uni-modal embeddings did show improvements for the visual embeddings to an
averaged Spearman’s rank of 0.619 (SVD) and 0.639 (PCA) (weighted average).
For comparison, the best reported result for uni-modal models on SimLex-999
is [32] with Spearman’s rank correlation of 0.563. The bi-modal approach [6]
reported Spearman’s rank correlations of 0.78 on MEN and 0.75 on WS-353 while
their model covered 252 word pairs of WS-353. Please note, our results on subsets
of MEN, WS-353, SimLex-999, and MTurk-771 are competitive but not directly
comparable to the numbers reported by state-of-the-art uni-modal approaches
as they are evaluated on the complete datasets and ours cannot. However, since
this paper is about relative performance gains through additional modalities we
do not compete with, but are complementary to the state-of-the-art uni- and
bi-modal approaches.

For combinations via AVG and CONC as shown in Fig. 2a and b, we observe
similar behavior on all evaluation datasets in terms of optimal weights. SVD and
PCA exploit information from KG representations with very low weight, but the
combined representation of all three modalities is significantly better than a
combination of only two modalities. The best bi-modal combinations were AVG
(0.15, 0, 0.85) with 0.709, CONC (0.3, 0, 0.7) with 0.709, PCA (0.3, 0, 0.7) with
0.749, and SVD (0.3, 0, 0.7) with 0.759 Spearman’s rank correlation (weighted
average).

Towards Holistic Concept Representations 703

(a) AVG (b) CONC (c) SVD 100 dim (d) PCA 100 dim

Fig. 2. Averaged plots over all evaluation datasets for weighting with normalization.
The colorbar indicates Spearman’s rank correlation and the black cross marks the
optimum.

The key finding is, that optimal weights always include all three modalities,
so indeed make use of visual, distributional, and relational knowledge. Further
experiments with different TransE model parameterizations revealed that this
finding is not depending on a specifically trained TransE embedding, but can
be attributed to information extracted from the knowledge graph. Thus, we
can improve concept representations from other modalities with complementary
information encoded in Inception-V3, word2vec, and TransE embeddings.

6.2 Noise Induced Errors Vs. Complementary Information Gain

In a further step, we investigated the fusion effects in more detail. Every mean-
ingful representation encodes useful information which is defined by the model’s
learning objective. Before combining models for a certain task, one has to ver-
ify that the model encodes information for that specific task. Also, the repre-
sentation quality for a certain task might vary greatly. While complementary
information of various models and modalities can lead to an improvement when
combined, a weak model for the specific task might induce noise. Adding a model
to a combined representation is only beneficial if the gain through complemen-
tary information is greater than the information loss induced by noise.

(a) No complementary in-
formation between noisy
word2vec (w=0) and noise-
free word2vec (w=1).

(b) Complementary informa-
tion between visual (w=0)
and noisy word2vec (w=1)
representations.

(c) Superposition of both ef-
fects, visual (w=0) and noise-
free word2vec (w=1).

Fig. 3. Concatenation effects

704 S. Thoma et al.

To illustrate these two effects, we evaluate representations with noisy models
on the MEN dataset. To isolate effects of noise induced errors, we combine two
textual representations after normalization and compute Spearman’s rank cor-
relations. Pre-trained word2vec representations served as the first high quality
model. A second textual representation was generated by artificially adding noise
to the word2vec model. For that reason, we added 100 dimensions with uniformly
distributed random values and tuned representation quality by scaling the dis-
tribution interval. Following this procedure, we can observe the fusion effects
between two concatenated representations with no complementary information
in Fig. 3a.

For showing the information gain of complementary information in Fig. 3b,
we combine Inception-V3 representations (w = 0) with another noisy word2vec
version (w = 1). Following the procedure above, we added noise to the word2vec
representations and scaled the distribution interval until performance was similar
to Inception-V3. One can observe the performance peak close to a weighting ratio
of 1:1 between visual and textual representations which indicates that the visual
and textual embeddings indeed hold complementary information.

In Fig. 3c one can observe the superposition of both effects during concate-
nation. While the visual model performs worse than the textual model on its
own, the information gain through complementary information is larger than the
information loss due to noise. Understanding the exact position of the maximum
requires further research. Overall, combining two representations via concatena-
tion improves results, if the performance gap between both models is not too
large and both models encode complementary information (which is the case in
our experiments).

6.3 Entity Segmentation

Besides showing that a joint concept embedding comes closer to the human
notion of similarity, we can also demonstrate improvements in semantic entity
segmentation. In Fig. 4, we exemplarily show that the TriM1538 space is better
suited for segmenting entities when compared to the textual, visual, and KG
embedding space. Entities represented with red crosses are land vehicles and
various birds are plotted with blue plus symbols. We computed the first two
principal components of all three modalities and of TriM1538. For TriM1538 we
used normalization with weighted concatenation and the respective weights are
taken from our previous experiments on the evaluation datasets: (wT , wG, wV)
= (0.25, 0.15, 0.6). In order to compare the first two principal components of
different embeddings, we normalize the PCA-vectors for each embedding to unit
length. This is important since we are interested in a relative separation while
the variance explained by the first two components might vary greatly between
different representations.

All three single representations show the ability to separate the DBpedia
categories birds from land vehicles. In the textual domain, clustering of land
vehicles is clearly observable and birds are separated but do not show an equally

Towards Holistic Concept Representations 705

(a) Textual (b) Visual (c) KG (d) CONC

Fig. 4. Segmentation results for birds (blue ‘+’) and land vehicles (red ‘×’). (Color
figure online)

condensed cluster. Visually, birds are clustered relatively close together, but
vehicles are mixed into the cluster.

Similarly to text, the KG separates birds and land vehicles almost perfectly,
but does not create clean clusters. When combined in TriM1538, clustering and
separation is better than in all others modalities. Apparently, exploiting dis-
tributional, visual and relational knowledge results in a clearer semantic entity
segmentation.

6.4 Entity-Type Prediction

Finally, we show that established KG tasks can also benefit from embedding dis-
tributional semantic and visual attributes into relational knowledge. Entity-type
prediction is such a common KG completion task, similar to link prediction [20].

In order to test our TriM1538 embeddings in the context of entity-type
prediction, we use the following experimental setup: for a given KG entity e ∈ E
and the set of available categories C, we predict to which of the categories
c ∈ C the entity belongs (e.g. http://dbpedia.org/page/Category:Mammals).
We define the subgraph of DBpedia that contains entities covered by TriM1538
and their relations as the TriM-KG and denote the complete set of KG entities as
E∗ = C ∪ E. Overall, TriM-KG contains 3220 triples and 1955 entities of which
634 are categories and 1321 entities with multi-modal information. Embeddings
trained on TriM-KG are named locally trained embeddings, while embeddings
trained on the whole KG are referred to as globally trained. In the following, we
refer to entity, predicate and category vector embeddings with e, p and c.

We utilize the standard link prediction procedure of TransE as a baseline:
For an entity e of interest, we train TransE on TriM-KG and exclude all triples
connecting that entity to its category in C. The training parameters are the
same as for the globally trained TransE except for a reduced rank in order to
circumvent overfitting. The translation operation of TransE is then defined as
the vector operation:

sim(e, p, c) = ‖c − (e + p)‖2 (1)

Similar to [19], we compute sim(e, p, c) for all possible c ∈ C and get the rank
of the true triples by ignoring all other true triples to prevent distortion (since

http://dbpedia.org/page/Category:Mammals

706 S. Thoma et al.

an entity might be correctly related to multiple categories). As the similarity
measure we use the L2-norm within TransE and report mean ranks as well as the
ratio of hits in the top 10 (hits@10). As an additional benchmark, we compare the
locally trained TransE embeddings with the global TransE embeddings, for which
the entity-category relations (which have to be predicted) were present during
training. Finally, we report results for locally trained RESCAL embeddings with
the same setup as for local TransE training (for details see [19]).

Category memberships of the multi-modal entities can also be directly com-
puted with multi-modal embeddings of TriM1538. For this, we construct cate-
gory embeddings from entity embeddings related to that category: For a given
category, we compute its embedding with 1

N · ∑N
i=1 ei for all N multi-modal

embeddings ei related to category c. Please note, for predicting category mem-
berships of an entity, that specific entity is not considered as being related to
any category during the category construction process. Thus, we obtain different
category embeddings for each related entity. In TriM-KG, all considered cate-
gories have connections to at least two different multi-modal entities to ensure
the construction of the category embedding. We name this procedure hierarchic
construction (HC) and use d = ‖e − c‖2 as the similarity measure.

Finally, we combine the entity-type prediction schemes from above. Since
TransE performs superior to RESCAL (see Table 3), we introduce an enrich-
ment procedure for TransE, which could similarly be adapted to RESCAL. We
concatenate locally trained TransE representations eloc with TriM1538 entities
etri after normalizing the respective embeddings to unit length. Similarly, we
concatenate TransE category representations with embeddings obtained by HC.
With these extended embeddings eext = (eloc, etri), cext = (cloc, ctri) we refor-
mulate Eqs. 1 to 2:

sim(eext, p, cext) = ‖(cloc, ctri) − (eloc + p, etri)‖2 (2)

For the fusion techniques, the modality weights have to be optimized. To
this end, we create training and test sets with a 0.5:0.5 split of our data and
optimize on the training set. This resulted in (wT , wG, wV): PCA (0.2, 0.4,
0.4), SVD (0.45, 0.55, 0), and CONC (0.4, 0.6, 0) for Trans Eloc+ HC and
PCA (0.2, 0.55, 0.25), SVD (0.4, 0.6, 0), and CONC (0.4, 0.6, 0) for HC. As
we have discussed in Sect. 6.2, weighting is task and model dependent which
implies that the usefulness of the different types of knowledge from the respective
modalities varies across different tasks. Further, the performance of a model,
which is enriched with multi-modal information, greatly impacts the optimal
modality composition. Thus, adapting the modality composition for new tasks
is necessary.

Results for all methods are shown in Table 3. Consistent with observations
in [19], the TransE-based baseline performs better than RESCAL. Interestingly,
the globally trained TransE embeddings perform worse than the locally trained
TransE, although the links to be predicted were present during its training and it
has more information available. However, this is not surprising when comparing
the size of the concept space of DBpedia (7 · 106 concepts) with TriM-KG (1955
concepts).

Towards Holistic Concept Representations 707

Table 3. Results for type predictions with multi-modal embeddings on the right side.
Results for TransEloc enriched with multi-modal embeddings on the left side. TransE,
RESCAL, and Random at the bottom are baseline predictors without any multi-modal
information or enhanced construction scheme.

TransEloc + HC Hierarchic Construction

Train Test Train Test

Mean rank hits@10 mean rank hits@10 Mean rank hits@10 Mean rank hits@10

PCA 10.401 0.828 10.251 0.824 12.274 0.863 14.680 0.869

SVD 14.310 0.749 14.637 0.716 17.424 0.762 19.420 0.762

CONC 14.086 0.765 13.696 0.742 17.254 0.807 19.595 0.806

Word 14.297 0.763 14.215 0.741 24.157 0.784 28.107 0.764

Visual 32.982 0.475 33.477 0.462 96.805 0.581 96.763 0.575

KG 15.609 0.744 14.009 0.730 33.129 0.671 30.732 0.699

Baselines

TransEloc 35.641 0.442 36.408 0.422

TransEglob 58.493 0.382 57.075 0.392

RESCALloc 116.640 0.286 115.275 0.261

Random 317.000 0.016 317.000 0.016

The HC method even yields good results for entity type-predictions with
uni-modal embeddings as shown in Table 3. Visual attributes alone are obvi-
ously not suited for predictions of type relations within the KG. Consistent with
our observations in the word similarity task, embeddings from different modal-
ities incorporate complementary information which can be exploited. With our
modality fusion techniques, we achieve substantially superior results compared
to uni-modal embeddings. Further, PCA is the best suited method for incorpo-
rating the sparse and rather noisy visual information in this setup and shows a
significant performance boost compared to CONC and SVD.

Combining TransEloc with HC improves the mean rank even further. Uti-
lizing uni- and multi-modal information enhances the predictions while PCA
dominates all other methods. Compared to the standard TransE predictions, we
improve the mean rank by 255% with multi-modal enrichment via HC.

6.5 Key Findings

– All our empirical evidence suggests that each modality encodes complement-
ing information that is conceptually different: text provides distributional,
images visual and KGs relational knowledge. Information encoded in the
structure of embeddings can be useful for vastly different tasks and train-
ing objectives, even in other domains, as long as concepts can be aligned.

– Complementing information can be embedded in a joint representation which
is closer to the human notion of similarity (see Sect. 6.1), as well as the human
intuition in entity segmentation tasks (see Sect. 6.3).

– When enriching KG embeddings with distributional and visual knowledge
from text and images, the performance of entity-type predictions is consid-
erably improved (see Sect. 6.4). This indicates that those types of knowledge

708 S. Thoma et al.

are missing in today’s KGs and KGs would greatly benefit if this could be
integrated.

– The weighting of the influence for each modality before joining them across
modalities is crucial and task dependent since the type of knowledge needed
for each task varies. For improved performance, the positive effects created by
the complementarity of information has to outweigh negative effects induced
by noise in the original embeddings (see Sect. 6.2).

7 Conclusion and Future Work

The intention of this research was to find out if essential types of information, like
distributional and visual knowledge, are not sufficiently represented in today’s
KGs (here DBpedia). This was investigated by embedding knowledge from text
corpora, image collection and KG entities into a joint concept space. Compar-
ing the performance of the joint cross-modal representation to uni-modal rep-
resentations on various benchmark tasks allowed a quantitative and qualitative
assessment. Our proposed two-step approach starts with pre-trained uni-modal
concept representations created with established embedding methods from com-
puter vision, natural language processing and semantic technologies. Next, the
obtained concept embeddings were aligned across the three modalities, normal-
ization and weighting schemes were devised, before the embeddings were fused
into one shared space. Our novel cross-modal concept representation was evalu-
ated in four sets of experiments by comparing it to uni-modal representations.

The main finding of this work is that the fused tri-modal embeddings reliably
outperform uni- and bi-modal embeddings. This indicates that complementing
information is available in the three investigated content representations and that
the types of knowledge represented in text and images is conceptually different
(distributional and visual) to the knowledge represented in KGs (relational).
On the one hand, the performance gains were observed in tasks that optimize
for the human notion of semantic similarity. It appears that the more modali-
ties are considered the closer the knowledge representations come to a human-
like perception. On the other hand, we investigated type-prediction in KGs and
outperformed existing uni-modal methods by 255%. Again, the shared concept
representation performed best when information from all three modalities was
included.

Our findings raise fundamental questions and open up a large number of
future research directions. First and foremost, it became obvious that knowl-
edge graphs, and likely any knowledge representation that aims to provide a
holistic view on entities and concepts, would benefit from integrating distrib-
utional and visual knowledge. Fusing embeddings from multiple modalities is
an initial step to achieve that. Our approach is currently limited to the con-
cept intersection of all modalities. While we do not need aligned training data,
the obtained multi-modal concept space is relatively small. The most pressing
issue for future work is to find ways to scale to a larger number of entities e.g.
by including visual representations of tagged images, and to include relations.

Towards Holistic Concept Representations 709

Investigating approaches which harness multi-modal information for concepts
outside of this intersection is also part of our future research. Beyond knowledge
representation and representation learning research, findings in this area would
impact numerous cross-disciplinary fields like sensory neuroscience, philosophy
of perception, and multimodality research.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., et al.: TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems. arXiv preprint arXiv:1603.04467 (2016)

2. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

3. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

4. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS 26, pp. 2787–2795 (2013)

5. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: AAAI 2011, pp. 301–306 (2011)

6. Bruni, E., Tran, N., Baroni, M.: Multimodal distributional semantics. J. Artif.
Intell. Res. (JAIR) 49, 1–47 (2014)

7. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: ICML 2008, pp. 160–167 (2008)

8. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked Data Quality of
DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web J. (2017, to be
published)

9. Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E.H., Smith, N.A.: Retro-
fitting word vectors to semantic lexicons. In: NAACL HLT 2015, pp. 1606–1615
(2015)

10. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: the concept revisited. In: WWW 2001, pp.
406–414 (2001)

11. Goikoetxea, J., Agirre, E., Soroa, A.: Single or multiple? combining word rep-
resentations independently learned from text and WordNet. In: AAAI 2016, pp.
2608–2614 (2016)

12. Goikoetxea, J., Soroa, A., Agirre, E.: Random walks and neural network language
models on knowledge bases. In: NAACL HLT 2015, pp. 1434–1439 (2015)

13. Halawi, G., Dror, G., Gabrilovich, E., Koren, Y.: Large-scale learning of word
relatedness with Constraints. In: ACM SIGKDD 2012, pp. 1406–1414 (2012)

14. Hill, F., Korhonen, A.: Learning abstract concept embeddings from multi-modal
data: since you probably can’t see what i mean. In: EMNLP 2014, pp. 255–265
(2014)

15. Hill, F., Reichart, R., Korhonen, A.: SimLex-999: evaluating semantic models with
(genuine) similarity estimation. Comput. Linguist. 41(4), 665–695 (2015)

16. Huang, Y., Tresp, V., Nickel, M., Rettinger, A., Kriegel, H.: A scalable approach
for statistical learning in semantic graphs. Semant. Web 5(1), 5–22 (2014)

17. Jenatton, R., Roux, N.L., Bordes, A., Obozinski, G.: A latent factor model for
highly multi-relational data. In: NIPS 25, pp. 3176–3184 (2012)

http://arxiv.org/abs/1603.04467

710 S. Thoma et al.

18. Kiela, D., Bottou, L.: Learning image embeddings using convolutional neural net-
works for improved multi-modal semantics. In: EMNLP 2014, pp. 36–45 (2014)

19. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in
knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp.
640–655. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 37

20. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI 2015, pp. 2181–2187 (2015)

21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Rep-
resentations in Vector Space. arXiv preprint arXiv:1301.3781 (2013)

22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: NIPS 26, pp.
3111–3119 (2013)

23. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word
representations. In: NAACL HLT 2013, pp. 746–751 (2013)

24. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In:
NIPS 21, pp. 1081–1088 (2008)

25. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge
graphs. In: AAAI 2016, pp. 1955–1961 (2016)

26. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: ICML 2011, pp. 809–816 (2011)

27. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: CVPR 2014, pp.
1717–1724 (2014)

28. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP 2014, pp. 1532–1543 (2014)

29. Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., Fanizzi, N.: Mining the semantic
web - statistical learning for next generation knowledge bases. Data Min. Knowl.
Discov. 24(3), 613–662 (2012)

30. Rothe, S., Schütze, H.: AutoExtend: extending word embeddings to embeddings
for synsets and lexemes. In: ACL 2015, pp. 1793–1803 (2015)

31. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: ImageNet large
scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

32. Schwartz, R., Reichart, R., Rappoport, A.: Symmetric pattern based word embed-
dings for improved word similarity prediction. In: CoNLL 2015, pp. 258–267 (2015)

33. Silberer, C., Lapata, M.: Learning grounded meaning representations with autoen-
coders. In: ACL 2014, pp. 721–732 (2014)

34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR 2016, pp. 2818–2826 (2016)

35. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML 2016, vol. 48, pp. 2071–2080 (2016)

http://dx.doi.org/10.1007/978-3-319-25007-6_37
http://arxiv.org/abs/1301.3781

An Extension of SPARQL for Expressing
Qualitative Preferences

Antonis Troumpoukis1,2(B), Stasinos Konstantopoulos1,
and Angelos Charalambidis1

1 Institute and Informatics and Telecommunications, NCSR ‘Demokritos’,
Aghia Paraskevi 15310, Athens, Greece

{antru,konstant,acharal}@iit.demokritos.gr
2 Department of Informatics and Telecommunications,

University of Athens, Athens, Greece

Abstract. In this paper we present SPREFQL, an extension of the
SPARQL language that allows appending a "PREFER" clause that
expresses ‘soft’ preferences over the query results obtained by the main
body of the query. The extension does not add expressivity and any
SPREFQL query can be transformed to an equivalent standard SPARQL
query. However, clearly separating preferences from the ‘hard’ patterns
and filters in the "WHERE" clause gives queries where the intention of the
client is more cleanly expressed, an advantage for both human readabil-
ity and machine optimization. In the paper we formally define the syntax
and the semantics of the extension and we also provide empirical evidence
that optimizations specific to SPREFQL improve run-time efficiency by
comparison to the usually applied optimizations on the equivalent stan-
dard SPARQL query.

Keywords: SPARQL query processing · Expressing preferences · Query
execution optimization

1 Introduction

Preferences can be used in situations where, while looking for the best solu-
tion with respect to a set of criteria, we find out that too strict criteria might
not return any solutions, but relaxing them returns too many solutions to sift
through. The integration of preferences allows to view some constraints as soft
constraints that can be violated in the former case and return less-preferred
results, but will be enforced in the latter case to only return more-preferred
results.

Preferences have been explored in Artificial Intelligence [8], Database Sys-
tems [21], Programming Languages [7], and, more recently, enjoy a growing
interest in the area of the Semantic Web [17]. In the Semantic Web context,
preferences allow users to sift through data of varying trustworthiness, qual-
ity, and relevance from a specific end user’s point of view [22]. As argued by

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 711–727, 2017.
DOI: 10.1007/978-3-319-68288-4 42

712 A. Troumpoukis et al.

Siberski et al. [20], the motivating example in the beginning of the seminal
Semantic Web article [2] can be interpreted as a preference search.

Strictly speaking, preferences are not more expressive than standard
SPARQL. Their most prominent feature, returning less-preferred binding sets in
the absence of more-preferred ones, can be simulated with "NOT EXISTS" and, in
general, with the syntax already offered by SPARQL. However, clearly separat-
ing preferences from the ‘hard’ patterns and filters in the "WHERE" clause gives us
queries where the intention of the author is cleanly expressed and not obscured.
This has advantages in both human readability and machine optimization.

In this paper, we first give a background on the treatment of preferences in
databases (Sect. 2) and proceed to present our proposed SPREFQL syntax and
semantics (Sect. 3). We then present our SPREFQL query processor implemen-
tations and our benchmarks on them (Sect. 4). These empirical results are used
to support our claim above that optimizing directly at the SPREFQL syntax
is more efficient than rewriting into standard SPARQL and passing the latter
to an optimizing SPARQL query processor. We then present some related work
on the Semantic Web and compare it with our approach (Sect. 5). We close the
paper with conclusions and future research directions (Sect. 6).

2 Background

Preference representation formalisms are either quantitative, where preferences
are represented by a preference value function [1,13], or qualitative, where pref-
erences are expressed by directly defining a binary preference relation between
objects [5,11]. In the example below:

Example 1. Show me Sci-fi movies, assuming I prefer longer movies.

there is a hard constraint for SciFi movies and a preference towards longer
movies. Such a constraint can be represented both as a quantitative function of
the movies’ runtime and as a qualitative relation that compares movies’ runtimes.
With this example, however:

Example 2. Show me Sci-fi movies, assuming I prefer original movies to their
sequels.

it becomes apparent that there are cases where not all objects are directly com-
parable, and therefore the total ordering implied by the preference value function
cannot always be defined. In fact, Chomicki [5] argues that the qualitative app-
roach is strictly more general than the quantitative approach, as not all prefer-
ence relations can be expressed using a preference value function. In Chomicki’s
framework, preference relations are defined using first-order formulas:

Definition 1. Given a relation schema R(A1, . . . , An) such that Ui, 1 ≤ i ≤ n,
is the domain of the attribute Ai, a relation � is a preference relation over R if
it is a subset of (U1 × · · · × Un) × (U1 × · · · × Un). A result tuple t1 is said to be
dominated by t2, if t2 � t1.

An Extension of SPARQL for Expressing Qualitative Preferences 713

This general preference relation is restricted into intrinsic preference formulas
that do not rely on external information to compare two objects:

Definition 2. Let t1, t2 denote tuples of a given database relation. A preference
formula P (t1, t2) is a first-order formula defining a preference relation �P in
the standard sense, namely, t1 �P t2 iff P (t1, t2) holds. An intrinsic preference
formula is a preference formula that uses only built-in predicates (i.e. equality,
inequality, arithmetic comparison operations, and so on).

Table 1. A sample movies relation.

ID Title Genre Duration Sequel

m1 Star Wars Ep.IV: A New Hope Sci-fi 121 m2

m2 Star Wars Ep.V: The Empire Strikes Back Sci-fi 124 m3

m3 Star Wars Ep.VI: Return of the Jedi Sci-fi 130

m4 Die Hard Action 131 m5

m5 Die Hard with a Vengeance Action 128

Example 3. Consider the movie(ID,Title,Genre,Duration) relation shown in
Table 1. Suppose that we have the following preference: ‘I prefer one movie tuple
over another iff their genre is the same and the first one runs longer’. The
preference relation �P implied by the previous sentence can be defined using
formula P :

(i, t, g, d) �P (i′, t′, g′, d′) ≡ (g = g′) ∧ (d > d′).

Therefore, we prefer movie m3 to m2, movie m2 to m1, m3 to m1 and movie
m4 to m5. Both conjuncts must be satisfied for the preference relation to hold,
so there is no preference relation between movies from different genres regardless
of their runtime.

A new relational algebra operator is introduced, called winnow. This operator
takes two parameters, a database relation and a preference formula and selects
from its argument relation the most preferred tuples according to the given
preference relation.

Preference relations can be composed in order to form more complex ones.
Since preference relations are defined through preference formulas, in order to
combine two such relations one must combine their corresponding formulas.
Given two preference relations �P ,�Q, the most common composition opera-
tions are the following:

– Boolean: (e.g. intersection) t1 �P ∧Q t2 ≡ (t1 �P t2) ∧ (t1 �Q t2),
– Pareto: t1 �P ⊗Q t2 ≡ ((t1 �P t2) ∧ (t2 ��Q t1)) ∨ ((t1 �Q t2) ∧ (t2 ��P t1)),
– Prioritized: t1 �P �Q t2 ≡ (t1 �P t2) ∨ ((t1 ∼P t2) ∧ (t1 �Q t2)),

where t1 ��P t2 ≡ ¬(t1 �P t2) and t1 ∼P t2 ≡ (t1 ��P t2) ∧ (t2 ��P t1).
In order to select the ‘best’ tuples from a given relation r based on a prefer-

ence formula P , the winnow operator is introduced:

714 A. Troumpoukis et al.

Definition 3. Let r be a relation and let P be a preference formula defining a
preference relation �P . The winnow operator is defined as

wP (r) = {t ∈ r : ¬∃t′ ∈ r such that t′ �P t}.

Example 4. Given the relation movie in Table 1 and the preference formula C
of Example 3, the result of the wP (movie) operation is the movies with IDs m3

and m4. m1 and m2 are not included in the result because they are less preferred
than m3 and m5 because it is less preferred than m4. Since there is no preference
relation between m3 and m4, they are both included in the result.

Although winnow can be expressed using standard relational algebra oper-
ators [5], there also exist algorithms that directly compute the result of the
winnow operator wP (R). The most prominent such algorithms are the Nested
Loops (NL) algorithm and the Blocked Nested Loops (BNL) algorithm. In NL,
each tuple of R is compared with all tuples in R, therefore the complexity of NL
is quadratic in the size of R. In BNL, a fixed amount of main memory (a window)
is used, in order to keep a set of incomparable tuples, which at the end of the
algorithm will become the dominating tuples of R. Even though the asymptotic
time complexity of BNL is also quadratic, in practice BNL performs better than
NL. Especially in the case that the result set of winnow fits into the window,
the algorithm operates in one or two iterations (i.e. linear time to the size of
R) [3]. Regarding the correctness of the result of each algorithm, NL produces
the correct result for every preference relation (even in unintuitive cases such as
preference relations in which a tuple is preferred to itself). On the other hand,
BNL produces the correct result only if the preference relation � is a strict
partial order [5], that is to say iff the relation is (1) irreflexive ¬(x � x) (2)
transitive (x � y)∧ (x � z) ⇒ (x � z) and (3) asymmetric (x � y) ⇒ ¬(y � x).

Example 5. Let us assume the relation movie in Table 1 and the following pref-
erence formula C ′:

‘I prefer one movie tuple over another iff their genre is the same and the
first one has the second as sequel.’

In this case, BNL is not guaranteed to produce the correct result because m1

‘sequel’ m2 and m2 ‘sequel’ m3, but m1 ‘sequel’ m3 is not asserted, making the
‘sequel’ property (and thus the whole preference relation) not transitive. The
result of the BNL algorithm depends on the order in which pairs are tested: if
m2 is compared to m1 before being compared to m3, the first comparison will
remove m2 from the window making m1 and m3 incomparable and the result is
{m1,m3,m4}; if m2 is compared to m3 before being compared to m1, then both
m3 and m2 will be removed and the result is {m1,m4}.

3 The SPREFQL Language

In this section we introduce SPREFQL, which is an extension of SPARQL that
supports the expression of qualitative preferences. User preferences are expressed

An Extension of SPARQL for Expressing Qualitative Preferences 715

as a new solution modifier which eliminates the solutions that are dominated
by (i.e., are less preferred than) another solution. This modifier is similar to a
preference formula in Chomicki’s framework discussed above. In this section we
present the syntax and the semantics of SPREFQL, discuss its expressive power,
and we will give some examples of SPREFQL queries.

3.1 Syntax

We assume as a basis the EBNF grammar that defines SPARQL syntax [10,
Sect. 19.8] and we extend it by changing the definition of the 〈SolutionModifier〉
non-terminal (Rule 18). The new definition adds a 〈PreferClause〉 non-terminal
between the 〈HavingClause〉 and the 〈OrderClause〉 non-terminals. The rationale
for this positioning is that:

– The prefer clause should be after the group-by/having clauses, as it would
make sense to use in the former the aggregates computed by the latter.

– The prefer clause should be before the limit/offset clauses, as it would be
counter-intuitive to miss preferred solutions because they have been limited
out, so the limit should apply to the preferred solutions.

– The prefer clause could equivalently be either before or after the order-by
clause, but there is no reason to sort solutions that are going to be discarded
afterwards. Naturally an optimizer could also re-order these computations,
but there is no reason why the default execution plan should not put these
in the more efficient order already. A further advantage of placing the prefer
clause before the order-by clause is that this avoids requiring from compliant
SPREFQL implementations that they maintain the order of the result set.

Fig. 1. The SPREFQL grammar.

716 A. Troumpoukis et al.

Figure 1 gives the EBNF rules that define 〈PreferClause〉 and also re-
define 〈SolutionModifier〉. All non-terminals that are not defined in this
table are defined by standard SPARQL syntax: 〈GroupClause〉 (Rule 19),
〈HavingClause〉 (Rule 21), 〈OrderClause〉 (Rule 23), 〈LimitOffsetClauses〉
(Rule 25). 〈Constraint〉 (Rule 69), and 〈Var〉 (Rule 108). Note, in particular,
how basic preferences are a conjunction of the standard SPARQL 〈Constraint〉
used in the definitions of "HAVING" and "FILTER" clauses. This means that
preferences are expressed using the familiar syntax of SPARQL constraints.

In the remainder, we shall call query base B(Q) the standard SPARQL query
that is derived from a SPREFQL query Q by removing the "PREFER" clause. We
shall also call full result set the result set of B(Q) and preferred result set the
result set of Q. We continue with a simple example in SPREFQL.

Example 6. Suppose that we want to query an RDF database with movies and
we have the following preference:

‘I prefer one movie to another iff their genre are the same and the first one
runs longer.’

The size of the preferred result set is equal to the number of the available
genres in the dataset (since two films with different genre are incomparable).
For each genre, the selected film must be the one with the longest runtime. The
corresponding SPREFQL query is listed in Listing 1.

To express preference of one binding set over another, we first use the
"PREFER" clause to assign variable names to the bindings in the two binding
sets, so that the two binding sets can be distinguished from each other. We then
use the "IF" clause to express the conditions that make the first binding set
dominate the second one. In the query in Listing 1, for example, there are three
bindings in each result, (?title ?genre ?runtime). In order to compare two
binding sets, the "PREFER" clause assigns the bindings in the first result to the
variables (?title1 ?genre1 ?runtime1) and the bindings in the second result
to the variables (?title2 ?genre2 ?runtime2). These new variable names are
then used in the "IF" clause to specify when the first result dominates the sec-
ond result. Notice that any name can be used for the variables in the "PREFER"
clause, and what maps them to the variables in the "SELECT" clause is the
order of appearance. For example, in this query, variables ?title1, ?title2
correspond to variable ?title, the variables ?genre1, ?genre2 correspond to
variable ?genre and so on. Note also that the names in the "PREFER" clause
need to be distinct from each other, but they do not need to be distinct from
the names in the "SELECT" clause. In this manner, the style shown in Listing 2
is also possible, if the query author prefers it.

Given the above, we define well-formed SPREFQL queries as follows:

Definition 4. Let Q = SELECT L WHERE P1 PREFER L1 TO L2 IF P2 be a
SPREFQL query produced by the grammar of Fig. 1. Then, Q is well-formed iff
|L| = |L1| = |L2| and all variables of L1, L2 are distinct.

An Extension of SPARQL for Expressing Qualitative Preferences 717

Listing 1. ‘I prefer one movie over another iff their genre is the same and the duration
of the first is longer’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :title ?title. ?s :genre ?genre. ?s :runtime ?runtime.

}

PREFER (?title1 ?genre1 ?runtime1) TO (?title2 ?genre2 ?runtime2)

IF (?genre1 = ?genre2 && ?runtime1 > ?runtime2)

Listing 2. ‘I prefer one movie over another iff their genre is the same and the duration
of the first is longer’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :title ?title. ?s :genre ?genre. ?s :runtime ?runtime.

}

PREFER (?t ?genre ?runtime) TO (?otherT ?otherGenre ?otherRuntime)

IF (?genre = ?otherGenre && ?runtime > ?otherRuntime)

Listing 3. ‘Given two action movies, I prefer the longest one and more recent one with
equal importance’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :genre :action.

?s :title ?title. ?s :runtime ?runtime. ?s :year ?year.

}

PREFER (?title1 ?runtime1 ?year1) TO (?title2 ?runtime2 ?year2)

IF (?runtime1 > ?runtime2) AND (?year1 > ?year2)

Listing 4. ‘Given two action movies, I prefer the one that runs between 115 and
125min. If they are the same to me according to this criterion, I prefer the ones that
they are after 2005’.

SELECT ?title ?genre ?runtime WHERE {

?s a :film. ?s :genre :action.

?s :title ?title. ?s :runtime ?runtime. ?s :year ?year.

}

PREFER (?title1 ?run1 ?year1) TO (?title2 ?run2 ?year2)

IF (?run1 >= 115 && ?run1 <= 125 && (?run2 < 115 || ?run2 > 125))

PRIOR TO (?year1 >= 2005 && ?year2 < 2005)

Listing 5. ‘I want to watch a movie with “Mad Max” in the title, and I prefer original
movies to their sequels’.

SELECT ?film ?title WHERE {

?film a :film . ?film :title ?title. FILTER regex(?title,"Mad�Max").

}

PREFER (?film1 ?title1) TO (?film2 ?title2)

IF EXISTS { ?film1 :sequel ?film2 }

718 A. Troumpoukis et al.

Listing 6. Rewrite of the "PREFER" clause in Listing 3 without using the "AND" com-
binator.

PREFER (?title1 ?runtime1 ?year1) TO (?title2 ?runtime2 ?year2)

IF (((?runtime1 > ?runtime2) && !(?year2 > ?year1))

|| ((?year1 > ?year2) && !(?runtime2 > ?runtime1)))

Listing 7. Rewrite of the "PREFER" clause in Listing 4 without using the "PRIOR TO"

combinator.

PREFER (?title1 ?run1 ?year1) TO (?title2 ?run2 ?year2)

IF ((?run1 >= 115 && ?run1 <= 125 && (?run2 < 115 || ?run2 > 125))

||

(!(?run1 >= 115 && ?run1 <= 125 && (?run2 < 115 || ?run2 > 125)) &&

!(?run2 >= 115 && ?run2 <= 125 && (?run1 < 115 || ?run1 > 125)) &&

(?year1 >= 2005 && ?year2 < 2005)

))

In Sect. 2 we presented some ways so that two preference relations can be com-
bined into one more complex one. As in the framework of Chomicki, we can also
use boolean operators to combine the individual boolean expressions (boolean
composition). Besides logical operators, we offer the following two preference
combinators for combining preference relations:

– Pareto composition: the "AND" combinator composes a relation from two pref-
erence relations that are of equal importance (cf. Listing 3). We follow pre-
vious work [12,20] in using "AND" for the Pareto combinator, noting that it
should not be confused with the logical conjunction operator.

– Prioritized composition: the "PRIOR TO" combinator composes a preference
relation where the less-important right-hand side argument is only applied if
the more-important left-hand side argument does not impose any preference
between two object (cf. Listing 4).

These combinations can be expressed within a simple constraint with the
elaborate use of boolean operators. But this ‘syntactic sugar’ makes useful
expressions a lot more readable. Compare, for example, the queries in Listings 3
and 4 with their equivalent queries without using the "AND" and "PRIOR TO"
combinators, in Listings 6 and 7 respectively.

Since a basic simple preference is a Constraint, anything that can appear
as a parameter in a SPARQL "FILTER" clause can be used as a simple basic
user preference, and has the same meaning as in SPARQL "FILTER" clauses.
This could be also an "EXISTS" expression, as it is shown in Listing 5. These
type of preference relations are known as extrinsic preferences [5], and are not
supported by Chomicki’s framework. A preference relation is extrinsic if the
decision of whether an element is preferred over another depends not only on
the values of the elements themselves, but also on external factors (such as the
the :sequel predicate in our example).

An Extension of SPARQL for Expressing Qualitative Preferences 719

3.2 Semantics

In this section we will define the semantics of SPREFQL. Our semantics extend
the standard semantics of SPARQL [10]. We assume basic familiarity of the
semantics of SPARQL, but we will present some basic terminology when needed.

We denote by T the set of all RDF terms and by V the set of all variables.
A mapping μ is a partial function μ : V → T. The domain of a mapping μ,
denoted as dom(μ) is the subset of V where μ is defined. It is straightforward
to see that mappings express variable bindings and that given a mapping μ it is
always possible to construct a "VALUES" clause that expresses the same bindings
as μ does.

Example 7. Let μ = {(g, "Sci-fi"), (r, 121)} Then μ expresses the same binding
of variable "?g" as the clause "VALUES (?g ?r) { "Sci-fi"121 }".

Following Pérez et al. [16] we denote by [[·]]D the evaluation of a SPARQL
query over a dataset D. If a query Q is a SELECT query, then [[Q]]D is a set of
mappings, which are the solutions that satisfy Q over D. If Q is an ASK query,
then [[Q]]D is equal to true if there exists any solution for Q in D, otherwise it is
equal to false.

We will now continue with the semantics of the preference solution modifier.
Firstly though, we have to include some preliminary definitions:

Definition 5. Let L = (l1, . . . , ln), B = (b1, . . . , bn) be two variable lists and μ
be a mapping s.t. dom(μ) = B, where B is the set of all variables of B. Then, we
denote by RenameB→L(μ) a mapping that is created from μ by renaming variable
bi to li, for all i = 1, . . . , n.

Definition 6. Let L,L′, B be three variable lists, s.t. |L| = |L′| = |B| and all
variables that appear in L,L′ are distinct. Also, let μ, μ′ be two mappings s.t.
dom(μ) = dom(μ′) = B, where B is the set of all variables of B. Then, we denote
by ConstructMappingB→L,B→L′(μ, μ′) a mapping such that

ConstructMappingB→L,B→L′(μ, μ′) = RenameB→L(μ) ∪ RenameB→L′(μ′).

Definition 7. Let C be a SPARQL Constraint and μ be a mapping. Then, we
denote by ConstructQuery(C, μ) a query of the form "ASK { FILTER C S }"
where s is the SPARQL ValuesClause that corresponds to the mapping μ. Note:
SPARQL Constraint and SPARQL ValuesClause as defined in the SPARQL
specification [10].

Example 8. Let μ = {(g, "Sci-fi"), (r, 121)}, μ′ = {(g, "Sci-fi"), (r, 124)},
B = (g, r), L = (g1, r1), L′ = (g2, r2) and C = "(g1 = g2 && r1 > r2)".
Then,

ConstructMappingB→L,B→L′(μ, μ′) = μ∗ =
{

(g1, "Sci-fi"), (r1, 121),
(g2, "Sci-fi"), (r2, 124)

}

720 A. Troumpoukis et al.

ConstructQuery(C, μ∗) =
"ASK { FILTER (?g1 = ?g2 && ?r1 > ?r2)

VALUES (?g1 ?r1 ?g2 ?r2)

{ ("Sci-fi"121"Sci-fi"124) } }"

As stated earlier, our preference solution modifier expresses a preference rela-
tion between the results of the query base, therefore the meaning of the "PREFER"
clause is actually a binary predicate p such that p(μ, μ′) holds if μ is preferred
over μ′. Hence, below, the evaluation [[·]]D of a "PREFER" clause takes two map-
pings as input. Recall that except from a simple Constraint , a preference relation
can be expressed using the Pareto and Prioritized preference compositors.1

Definition 8. Let D be a dataset. Also, let C be a constraint and L,L′, B be
three variable lists, s.t. |L| = |L′| = |B| and all variables that appear in L,L′ are
distinct. Also, let μ, μ′ be two mappings s.t. dom(μ) = dom(μ′) = B, where B is
the set of all variables of B. Then,

[[PREFER L TO L′ IF C]]D,B = {(μ, μ′) : [[ConstructQuery(C, μ∗)]]D = true,

μ∗ = ConstructMappingB→L,B→L′(μ, μ′)
}

Composite clauses using the "PRIOR TO" and "AND" combinators are defined as
follows:

1. [[PREFER L TO L′ IF P PRIOR TO Q]]D,B = [[P]]D,B � [[Q]]D,B,
2. [[PREFER L TO L′ IF P AND Q]]D,B = [[P]]D,B ⊗ [[Q]]D,B,

where P = PREFER L TO L′ IF P , Q = PREFER L TO L′ IF Q, C is a constraint
expression and P,Q non-terminal symbols.

Notice that in Example 8, [[PREFER L TO L′ IF C]]D(μ, μ′) = true for every
dataset D, or in other words the evaluation of the corresponding preference
predicate is independent from the dataset D. This is the case for all constraint
expressions that use only built-ins. The reason why we use the construction of
this ASK query, is in the case of preferences that are defined with the use of
an EXISTS expression (see for example Listing 5). In that example, in order to
check whether a mapping is preferred from another, one has to check the dataset
D for the existence of the corresponding :sequel triple.

Having defined the meaning of preference relations, we can proceed to define
how the preference solution modifier uses a preference relation to reduce the full
result set of the query base into the preferred result set. For this, we refer to the
winnow operator wP ([[Q]]D) which outputs the preferred result set when given
the preference relation P and the full result set [[Q]]D (cf. Definition 3).

Definition 9. Let Q be a SELECT query. Then, we denote by ProjVarList(Q)
the projection list in the same order that it appears in the SELECT clause.
1 We use a slightly different notation in the following definitions from the definitions in

Sect. 2. Instead of writing [[μ �C μ′]]D,B we write [[C]]D,B(μ, μ′) = true. In addition,
the operators � and ⊗ correspond to the Prioritized and Pareto compositions.

An Extension of SPARQL for Expressing Qualitative Preferences 721

Definition 10. Let D be a dataset, Q be a SELECT query and L,L′ be two
variable lists such that |ProjVarList(Q)| = |L| = |L′| and all variables that appear
in L,L′ are distinct. Then,

[[Q PREFER L TO L′ IF C]]D = w[[PREFER L TO L′ IF C]]D,B
([[Q]]D),

where B = ProjVarList(Q) and C be a non terminal symbol.

3.3 Expressive Power of SPREFQL

Winnow can be expressed using standard relational algebra operators [5]. There-
fore, a SPREFQL query, which is essentially a SPARQL 1.1 query extended with
a winnow operation, can be also expressed using standard SPARQL 1.1, using a
"NOT EXISTS" query rewriting. Given a SPREFQL query of the form

SELECT L WHERE { P } PREFER L1 TO L2 IF C

the preferred result set consists of the result mappings of the query base that
are the most preferred ones, or equivalently all mappings in the full result set
such that there does not exist any mapping that is more preferred. This fact can
be expressed using a standard SPARQL query of the following form

SELECT L WHERE { P FILTER NOT EXISTS { P{L/L1} FILTER C{L2/L} } }
where P{L/L1} is created by P by replacing all variable names of P that appear in
L with its corresponding variable in L1, and C{L2/L} is created by C by replacing
all variable names of C that appear in L2 with its L. The remaining variables
on the new constructions are replaced with fresh variables. If C is a Pareto or
a Prioritized composition, we first apply the rewritings into their corresponding
simple preferences (ref. Sect. 2, Listings 6 and 7). For example, the corresponding
rewriting of Listing 1 is illustrated in Listing 8.

Comparing the two queries, we observe that the SPREFQL query is smaller
(it contains half the number of triple patterns), and it separates the definition
of preferences from the hard constraints. This separation alleviates the need
for the query author to include in the query body the actual operation that
performs the selection of the best solutions, and to express the desired definition
of preferences is more clearly. Apart from the advantages in human readability,
there exist advantages in machine optimization as well. It would be difficult for
a general purpose SPARQL optimizer to find out that in the query in Listing 8
actually implements an operation that resembles a self-join and the result can
be computed even in a single pass (as in BNL algorithm).

4 Experiments

4.1 Implementation and Experimental Setup

This section experimentally validates the idea that optimizations specific to
SPREFQL (such as efficient implementations of the winnow operator) can

722 A. Troumpoukis et al.

improve the overall query performance in comparison to the equivalent stan-
dard SPARQL query and its standard optimizations. As a proof of concept, we
provide an open source prototype implementation of SPREFQL.2 Our imple-
mentation is developed in Java within the RDF4J framework,3 and it includes
two implementations of the winnow operator (i.e. using NL and BNL algorithms)
and a query rewriter which transforms a SPREFQL query into the equivalent
SPARQL query, using the "NOT EXISTS" transformation. Our evaluator has the
ability to operate over a simple memory store using the standard RDF4J evalu-
ation mechanism, or over a remote SPARQL endpoint, in which the query base
is executed.

In this experiment we are performing SPREFQL queries on the LinkedMDB
database.4 Our query set contains 7 queries. The queries are: Q1: Listing 1, Q2:
Listing 3, Q3: Listing 4, Q4: Listing 3 without genre restriction, Q5: Listing 4
without genre restriction, Q6: Listing 5 and Q7: Listing 5 without the FILTER,
but for all movies that feature the character ‘James Bond’, instead.5 Firstly,
we issue the query bases for each SPREFQL query directly on the SPARQL
endpoint, and then we evaluate all SPREFQL queries, using (i) the NL algorithm,
(ii) the query rewriting method and (iii) the BNL algorithm. The window size for
the BNL algorithm was set large enough to contain all results, since we know that
BNL behaves better if the preferred result set fits entirely in the window. The
experiment was performed on a Linux machine (Ubuntu 14.04 LTS) with a 4-core
Intel(R) Xeon(R) CPU E31220 at 3.10 GHz and 30 GB RAM. The LinkedMDB
dataset was loaded into a locally deployed Virtuoso SPARQL endpoint.6

Listing 8. Rewriting of Listing 1 into standard SPARQL.

SELECT ?title ?genre ?runtime

WHERE {

?s a :film. ?s :title ?title. ?s :genre ?genre.

?s :runtime ?runtime.

FILTER NOT EXISTS {

?s_tmp a :film. ?s_tmp :title ?title1. ?s_tmp :genre ?genre1.

?s_tmp :runtime ?runtime1.

FILTER (?genre1 = ?genre && ?runtime1 > ?runtime) }

}

2 cf. https://bitbucket.org/dataengineering/sprefql.
3 cf. http://rdf4j.org.
4 cf. http://www.linkedmdb.org.
5 These listings are edited in the paper for conciseness. The exact queries used in the

experiment can be found at our code repository, cf. Footnote 4.
6 Community edition Version 7.1, cf. http://virtuoso.openlinksw.com.

https://bitbucket.org/dataengineering/sprefql
http://rdf4j.org
http://www.linkedmdb.org
http://virtuoso.openlinksw.com

An Extension of SPARQL for Expressing Qualitative Preferences 723

4.2 Results

Table 2 gives the experimental results. We observe that NL has the worst query
execution times, and its performance is quadratic in the execution time of the
query base. On the first 6 queries, BNL performs better than rewriting. Since
BNL was configured so that to perform at its best, the query execution time
of BNL is in most cases almost equal to that of the query base. The difference
between the execution times of BNL and the query base in Q4 and Q5, can
be explained due to the fact that the full result set is larger and BNL has to
make more comparisons to calculate the preferred result. The rewrite method in
those cases performs much worse than BNL (but much better than NL). In Q7
though, where an extrinsic preference is expressed, we have a different situation.
The comparisons that BNL has to make are not that many (they are at most
23 · 22), but here BNL has to consider the database each time in order to decide
whether one solution is preferred over another. So, BNL issues a heavy load of
ASK queries to the endpoint, and therefore rewriting outperforms BNL in Q7.
This also explains why BNL has a comparable execution time for Q7 and Q1,
although Q1 fetches and considers orders of magnitude more results than Q7.
As Q6 also expresses an extrinsic preference, we would expect query rewriting to
outperform BNL, but the base result set is very small and the cost to prepare the
rewrite is not recuperated. Overall, in our experiments BNL performed better in
intrinsic preferences while rewriting performed better in extrinsic preferences.

In the last two queries, we observe that the number of the results that BNL
returns is greater than the expected result. This happens because here the pref-
erence relation (which is the same for Q6 and Q7) is not a transitive relation
(the :sequel is not a transitive predicate). This is a known issue of BNL, since
BNL returns the correct number of results only on preference relations that
impose a strict partial order (cf. Sect. 2). Therefore, in terms of the correctness
of the result, rewriting is better than BNL for non strict partial order intrinsic
preferences (in extrinsic preferences, rewriting is preferred anyway due to time
performance). Checking whether an intrinsic preference expression corresponds
to a strict partial order relation is not computationally challenging, as it depends
only the size of the expression itself [5, Sect. 3.1]. In extrinsic expressions, tran-
sitivity needs to be confirmed extensionally by issuing "ASK" queries.

Regarding the memory footprint of the BNL algorithm, since BNL only main-
tains the current set of undominated results it is expected to require consider-
ably less space than the base result set. In most cases, the maximum number of
results maintained in memory will be close to the final number of results. In our
experiments, only Q2 and Q4 required a slight amount of extra space, which can
happen when many results that do not dominate each other are received before
a result that dominates them.

724 A. Troumpoukis et al.

Table 2. Number of returned results and query execution time (in milliseconds) for
NL, query rewriting, and BNL. For BNL, the number of binding sets that need to be
maintained in memory is also given, and the total number of bindings in these sets.

Query base NL Rewrite BNL

Exec. Num. Exec. Num. Exec. Num. Exec. Num. Num. Num.

Time Res. Time Res. Time Res. Time Bindsets Bindings Res.

Q1 556 6,955 1,613,515 36 4,750 36 812 36 108 36

Q2 52 390 9,124 5 188 5 65 6 18 5

Q3 52 390 10,530 8 254 8 91 8 24 8

Q4 872 9,612 3,272,789 8 197,044 8 1,238 9 27 8

Q5 872 9,612 3,452,048 108 193,338 108 2,370 108 324 108

Q6 135 4 794 1 296 1 170 2 4 2

Q7 85 23 1,276 2 93 2 820 8 16 8

5 Related Work

In the Semantic Web literature there have been proposed SPARQL extensions
that feature the expression of preferences [17], typically transferring ideas and
results from relational database frameworks much like the work presented here.

When it comes to quantitative preferences, prominent examples include the
extensions proposed by Cheng et al. [4] and Magliacane et al. [15]. Closer to
our work, influential databases research on qualitative preferences includes the
work of Kießling [11,12]. This was used by Siberski et al. [20] to propose a
SPARQL extension using a "PREFERRING" solution modifier. Contrary to our
approach, these preferences are expressed using unary preference constructors.
These constructors are of two types: boolean preferences where the preferred
elements fulfill a specific boolean condition while the non-preferred do not; and
scoring preferences, denoted with a "HIGHEST" or "LOWEST" keyword, where the
preferred elements have a higher (or lower) value from the non preferred ones.
Simple preferences expressed with these constructors can be further combined
using Pareto and prioritized composition operators. Gueroussova et al. [9] further
extended this language with an "IF-THEN-ELSE" clause which allows expressing
conditional preferences that apply only if a condition holds. Conditional prefer-
ences allow several other ‘syntactic sugar’ preference constructors to be defined,
such as "AROUND" and "BETWEEN".

By comparison, the work presented here is (to the best of our knowledge)
the first one to transfer to the Semantic Web the more general framework by
Chomicki [5], allowing the expression of extrinsic preferences. Each of the basic
preference constructors (boolean, scoring and conditional preferences) as well
as the compositions in the approaches by Siberski et al. [20] and Gueroussova
et al. [9] can be transformed in SPREFQL. For example, a query of the form

SELECT ?s ?o WHERE {?s :p ?o} PREFERRING HIGHEST(?o)

An Extension of SPARQL for Expressing Qualitative Preferences 725

can be transformed into SPREFQL:

SELECT ?s ?o WHERE {?s :p ?o} PREFER (?s1 ?o1) TO (?s2 ?o2) IF (?o1>?o2)

Since in SPREFQL the preference relation is expressed using a binary formula,
the reverse translation is not always possible (for example in Listings 1 and 5).

6 Conclusions and Future Work

In this paper we propose SPREFQL, an extension of SPARQL that allows
the query author to specify a preference that modifies the query solutions.
Although a SPREFQL query can be transformed into standard SPARQL, stan-
dard SPARQL query processing misses opportunities to optimize execution by
avoiding the exhaustive comparison of all solution pairs. Our experiments demon-
strate that when the BNL algorithm is applicable, even for relatively small result
sets of under 10k tuples its execution can be two orders of magnitude faster than
that of state-of-art SPARQL query processors.

Our first future work direction will be to evaluate the mean gain that can be
achieved on realistic workflows. We plan to achieve this by identifying potential
test cases where the SPREFQL extensions can be used, so that we can estimate
how often the BNL optimization is applicable. This will also help us further
develop the language, identifying additional ‘syntactic sugar’ constructs that
can hint at optimizations targeting intransitive relations that fall outside the
scope of BNL. Further extensions could allow the client to refer to preferences
and preference-related metadata within the knowledge base itself [14,18,19].

A more ambitious future extension is to allow the client application to not
only request the most preferred results, but to also be able to request all results
ordered in different ‘layers’ of preference. This is a more general solution than
any quantitative preference ranking system, as it handles the full generality of
partially ordered preferences. We plan to base this on graph-theoretic work in
sequencing and scheduling, such as the Coffman-Graham algorithm [6] which
is widely used to visualize graphs as layers panning out of a central vertex. By
representing arbitrary (including partial-order) preference relations as a directed
graph, we can use similar layering approaches to order results in such a way that
no dominated tuple is returned before any of the tuples that dominate it.

Acknowledgements. The work described here has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement
No. 644564. For more details, please visit https://www.big-data-europe.eu.

References

1. Agrawal, R., Wimmers, E.L.: A framework for expressing and combining prefer-
ences. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, USA, pp. 297–306, 16–18 May 2000

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37
(2001)

https://www.big-data-europe.eu

726 A. Troumpoukis et al.

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of
the 17th International Conference on Data Engineering (ICDE 2001), Heidelberg,
Germany, pp. 421–430, 2–6 April 2001

4. Cheng, J., Ma, Z.M., Yan, L.: f-SPARQL: a flexible extension of SPARQL. In:
Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol.
6261, pp. 487–494. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15364-8
41

5. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst.
28(4), 427–466 (2003)

6. Coffman, E.G.J., Graham, R.L.: Optimal scheduling for two-processor systems.
Acta Informatica 1, 200–213 (1972). doi:10.1007/bf00288685

7. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and survey of
preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2),
308–334 (2004)

8. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview.
Artif. Intell. 175(7–8), 1037–1052 (2011)

9. Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative and quan-
titative preferences. In: Proceedings of the 2nd International Workshop on Ordering
and Reasoning (OrdRing 2013), at ISWC 2013, Sydney, Australia. CEUR Work-
shop Proceedings, vol. 1059, 22 October 2013

10. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Recommendation, W3C,
March 2013. https://www.w3.org/TR/sparql11-query

11. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of
28th International Conference on Very Large Data Bases (VLDB 2002), Hong
Kong, China, pp. 311–322, 20–23 August 2002

12. Kießling, W., Köstler, G.: Preference SQL - design, implementation, experiences.
In: Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB 2002), Hong Kong, China, pp. 990–1001, 20–23 August 2002

13. Koutrika, G., Ioannidis, Y.E.: Personalization of queries in database systems. In:
Proceedings of the 20th International Conference on Data Engineering (ICDE
2004), Boston, MA, USA, pp. 597–608, 30 March–2 April 2004

14. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Preference-based query answering in
Datalog+/− ontologies. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI 2013), Beijing, China, pp. 1017–1023, 3–9 August
2013

15. Magliacane, S., Bozzon, A., Della Valle, E.: Efficient execution of top-K SPARQL
queries. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,
Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist,
E. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 344–360. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35176-1 22

16. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL.
ACM Trans. Database Syst. 34(3), 16:1–16:45 (2009). http://doi.acm.org/10.1145/
1567274.1567278

17. Pivert, O., Slama, O., Thion, V.: SPARQL extensions with preferences: a survey.
In: Ossowski, S. (ed.) Proceedings of the 31st Annual ACM Symposium on Applied
Computing, Pisa, Italy, pp. 1015–1020. ACM, 4–8 April 2016

18. Polo, L., Mı́nguez, I., Berrueta, D., Ruiz, C., Gómez-Pérez, J.M.:
User preferences in the web of data. Semant. Web 5(1), 67–75 (2014).
http://dx.doi.org/10.3233/SW-2012-0080

http://dx.doi.org/10.1007/978-3-642-15364-8_41
http://dx.doi.org/10.1007/978-3-642-15364-8_41
http://dx.doi.org/10.1007/bf00288685
https://www.w3.org/TR/sparql11-query
http://dx.doi.org/10.1007/978-3-642-35176-1_22
http://doi.acm.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278
http://dx.doi.org/10.3233/SW-2012-0080

An Extension of SPARQL for Expressing Qualitative Preferences 727

19. Rosati, J., Noia, T., Lukasiewicz, T., Leone, R., Maurino, A.: Preference queries
with ceteris paribus semantics for linked data. In: Debruyne, C., Panetto,
H., Meersman, R., Dillon, T., Weichhart, G., An, Y., Ardagna, C.A. (eds.)
OTM 2015. LNCS, vol. 9415, pp. 423–442. Springer, Cham (2015). doi:10.1007/
978-3-319-26148-5 28

20. Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences.
In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Hei-
delberg (2006). doi:10.1007/11926078 44

21. Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition
and application of preferences in database systems. ACM Trans. Database Syst.
36(3), 19:1–19:45 (2011)

22. Valle, E.D., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.: Order
matters! Harnessing a world of orderings for reasoning over massive data. Semant.
Web 4(2), 219–231 (2013)

http://dx.doi.org/10.1007/978-3-319-26148-5_28
http://dx.doi.org/10.1007/978-3-319-26148-5_28
http://dx.doi.org/10.1007/11926078_44

Encoding Category Correlations
into Bilingual Topic Modeling

for Cross-Lingual Taxonomy Alignment

Tianxing Wu1(B), Lei Zhang2, Guilin Qi1, Xuan Cui1, and Kang Xu1

1 School of Computer Science and Engineering, Southeast University, Nanjing, China
{wutianxing,gqi,xcui,kxu}@seu.edu.cn

2 Institute AIFB, Karlsruhe Institue of Technology, Karlsruhe, Germany
l.zhang@kit.edu

Abstract. Cross-lingual taxonomy alignment (CLTA) refers to map-
ping each category in the source taxonomy of one language onto a ranked
list of most relevant categories in the target taxonomy of another lan-
guage. Recently, vector similarities depending on bilingual topic models
have achieved the state-of-the-art performance on CLTA. However, these
models only model the textual context of categories, but ignore explicit
category correlations, such as correlations between the categories and
their co-occurring words in text or correlations among the categories of
ancestor-descendant relationships in a taxonomy. In this paper, we pro-
pose a unified solution to encode category correlations into bilingual topic
modeling for CLTA, which brings two novel category correlation based
bilingual topic models, called CC-BiLDA and CC-BiBTM. Experi-
ments on two real-world datasets show our proposed models significantly
outperform the state-of-the-art baselines on CLTA (at least +10.9% in
each evaluation metric).

1 Introduction

Over past decades, with the dramatic growth of multilingual knowledge on the
Web, aligning knowledge of different languages becomes an important way of
realizing globalization of information. Taxonomies are a kind of significant knowl-
edge, which often refers to category hierarchies used for organizing and classi-
fying multilingual big data, and are prevalent on the Web, such as Web site
directories (e.g., Dmoz.org) and product catalogues (e.g., eBay product tax-
onomy). Due to the different grounded languages and intentions of usage, even
cross-lingual taxonomies of the same genre are highly heterogenous in linguistics,
structure and contents. Hence, to facilitate knowledge sharing across languages,
cross-lingual taxonomy alignment (CLTA), which maps each category in the
source taxonomy of one language onto a ranked list of most relevant categories
in the target taxonomy of another language, is a critical task to solve.

Previous work [2,10,15] on CLTA relies on string similarities based on a trans-
lation tool and domain-specific information, such as book instances and financial

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 728–744, 2017.
DOI: 10.1007/978-3-319-68288-4 43

http://Dmoz.org

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 729

calculation items. There are two limitations: 1) string similarities suffer from the
vocabulary mismatch problem, i.e., translated texts might be semantically sim-
ilar even though the specific terms used differ substantially; 2) domain-specific
information is often unavailable when aligning cross-lingual and cross-domain
taxonomies (e.g., Web site directories and product catalogues).

To overcome these two limitations, our previous work [18] on CLTA intro-
duces a vector similarity based approach relying on bilingual topic models with-
out using any domain-specific information and has achieved the state-of-the-art
performance. However, the problem is that these bilingual topic models directly
model textual context of categories without considering explicit category cor-
relations. The first category correlation is co-occurrence correlation, which
exists between the categories and their co-occurring words in text. Some studies
such as [9,13] have shown that simultaneously modeling co-occurred metadata
(e.g., tags and authors) and text can learn higher-quality topic vectors for many
applications. Another important category correlation is structural correla-
tion, which means the associations among categories of ancestor-descendant
relationships in a taxonomy. The idea of using this kind of correlation is intu-
itive, that is, if two categories from different taxonomies have similar ancestors
or descendants, they may be of high relevance. Thus, we argue that if the above
two kinds of category correlations are directly neglected, the topic vector of each
category generated by existing bilingual topic models is insufficient to CLTA.

In this paper, we aim to exploit the benefits from both vector similarities and
explicit category correlations to deal with the problem of CLTA. Therefore, we
try to encode co-occurrence correlations and structural correlations into bilingual
topic modeling, which poses two challenges:

– How to capture both co-occurrence correlations and structural cor-
relations?

– How to integrate such explicit category correlations into bilingual
topic modeling?

To solve these challenges, we propose a unified solution to encode category
correlations into existing bilingual topic models, i.e., Bilingual Latent Dirich-
let Allocation (BiLDA) [17] and Bilingual Biterm Topic Model (BiBTM) [18].
Before applying our solution, we use the same way in [18] to acquire textual
context of categories by querying each category with a search engine and con-
structing paired bilingual documents with a translation tool, which results in a
corpus of paired bilingual documents containing all categories. Here, a modeling
object is defined as a pair of bilingual documents composed of a set of words in
BiLDA or a biterm constructed by two distinct words from a pair of bilingual
documents in BiBTM. Our solution is to (1) transform the co-occurrence cor-
relations and structural correlations into a prior category distribution of each
modeling object, and (2) integrate all prior category distributions into bilingual
topic modeling by designing general steps of generating a word in each modeling
object. After applying our solution to BiLDA and BiBTM, we obtain two new
category correlation based bilingual topic models, called CC-BiLDA and CC-
BiBTM. With the topic vector of each category learned by these two models,

730 T. Wu et al.

we compute vector similarities between the categories of different languages for
CLTA.

In summary, the main contributions of this paper are as follows:

– We propose a unified solution to encode category correlations into bilingual
topic modeling for CLTA, which leverages the benefits from both vector simi-
larities and explicit category correlations.

– We design two new category correlation based bilingual topic models, CC-
BiLDA and CC-BiBTM, by extending BiLDA and BiBTM with our solution.
To the best of our knowledge, they are the first work on bilingual topic mod-
eling that simultaneously models bilingual text and its co-occurring categories
to learn the vector representation for each category.

– We conduct experiments on two real-world datasets and the results show the
effectiveness of our bilingual topic modes for CLTA, when compared with
several state-of-the-art baselines (at least +10.9% in each evaluation metric).

The rest of this paper is organized as follows. Section 2 introduces the back-
ground of this work. Section 3 presents the details of two new bilingual topic mod-
els by applying our proposed solution. Section 4 gives the experimental results.
Section 5 outlines some related work and we conclude in the last section.

2 Preliminaries

In this section, we firstly provide an overview of cross-lingual taxonomy align-
ment (CLTA) and then discuss the existing bilingual topic models.

2.1 Cross-Lingual Taxonomy Alignment

The wide variety of Web taxonomies from different domains and languages are
usually organized in a tree or a directed acyclic graph with categories as nodes.
Given two independently created taxonomies of different languages, CLTA aims
to map each category in the source taxonomy of one language to the most rele-
vant category in the target taxonomy of another language. The key to CLTA is
to measure the relevance between each category in the source taxonomy and its
candidate matched categories in the target taxonomy.

Since categories usually do not have textual information to describe them-
selves, some strategies can be used for getting the textual context of categories
in different languages, e.g., by utilizing Wikipedia as an intermediate source and
following the interwiki links from one language to another [2] or by querying each
category using a search engine and constructing paired bilingual documents by
a translation tool [18]. To measure the relevance between categories for CLTA,
bilingual topic models, such as BiLDA [17] and BiBTM [18], have been intro-
duced to learn the vector representations of categories from their textual context,
which will be discussed in Sect. 2.2. After obtaining the topic distribution of each
category, the relevance score between one category in the source taxonomy and
another one in the target taxonomy can be computed based on the topic vectors
of categories in the same topic space.

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 731

2.2 Bilingual Topic Modeling

BiLDA and BiBTM are two existing bilingual topic models and a main difference
between them is their modeling objects. BiLDA models paired bilingual docu-
ments, each of which is a pair of documents of similar contents but in different
languages, such as two Wikipedia articles in different languages interlinked by
Wikipedia’s language links or a document in one language and its translated
version in another language. The generation of a word in a pair of bilingual doc-
uments is defined by firstly drawing a topic from a topic distribution of this pair
of bilingual documents, and then drawing a word from the topic-word distribu-
tion of some language.

BiBTM was proposed to model paired bilingual short documents because
BiLDA suffers from the data sparsity problem [6] when documents are short.
The modeling objects in BiBTM are biterms, which are unordered word-pairs
occurring in a pair of bilingual documents. Any two distinct words in a pair of
bilingual documents compose a biterm. For example, given a pair of bilingual
documents (ds, dt), in which ds and dt respectively consist of n distinct words
of language s and m distinct words of language t, totally C2

n + C2
m + m × n

biterms will be generated, where C2
m and C2

n represent the binomial coefficients.
To generate a word in each biterm, BiBTM first draws a topic from a global
topic distribution of all biterms, and then draws a word from the topic-word
distribution of some language.

3 Models

In this section, we first present an overview of our unified solution to encode
category correlations into bilingual topic modeling for CLTA, and then discuss
the details of two novel category correlation based bilingual topic models CC-
BiLDA and CC-BiBTM resulting from the proposed solution.

3.1 Overview

To perform CLTA, we first learn the vector representations of all categories in
the two given taxonomies of different languages using bilingual topic models,
where each category can be represented as a topic vector. Then we compute
the relevance between each category in the source taxonomy and its candidate
matched categories in the target taxonomy using the cosine similarity between
the vectors in the same topic space. Since the training of topic models needs large-
scale corpus, we apply the same strategy used in [18] to query each category
with a search engine to acquire its textual context (i.e., returned snippets).
After translating each snippet into another language with a translation tool,
each category corresponds to a set of paired bilingual documents and each pair
contains at least the given category (maybe more categories) in text. This results
in a corpus of paired bilingual documents containing all categories.

Based on the corpus, the previous work [18] first learns the word distribution
in BiLDA or the biterm distribution in BiBTM for each topic, and then perform

732 T. Wu et al.

an additional step of topic inference to derive the topic vector for each category.
In contrast, we explicitly model each category such that it allows further encod-
ing various category correlations into bilingual topic modeling. In this work, we
mainly consider two types of correlations: (1) co-occurrence correlations between
the categories and their co-occurring words in text; (2) structural correlations
among the categories of ancestor-descendant relationships in a taxonomy.

To capture co-occurrence correlations, we denote each modeling object (i.e.,
a pair of bilingual documents in BiLDA or a biterm in BiBTM) as a mixture
of categories when the words in the modeling object co-occur with these cate-
gories in paired bilingual documents. Such a mixture serves as a prior category
distribution of each modeling object. Concerning structural correlations among
categories, we leverage information content [14] and path length in the taxonomic
structure to improve the prior category distribution (the details of computing
the prior category distribution of each modeling object are given in Sect. 3.3).

With both co-occurrence correlations and structural correlations encoded in
the prior category distribution of each modeling object, we then integrate them
into bilingual topic modeling. Since we need to utilize the low-dimensional topic
vector of each category for CLTA, connections between explicit categories and
latent topics have been built by supposing there exists a probability distribu-
tion over topics for each category, i.e., each category is treated as a mixture of
topics. Similar to existing methods, for each language, we represent each topic
with a mixture of words in that language. Therefore, we design general steps of
generating a word in each modeling object as follows:

(1) Drawing a category from the prior category distribution of a modeling object;
(2) Drawing a topic from the category-topic distribution;
(3) Drawing a word from the topic-word distribution of some language.

With the above solution, we obtain two novel category correlation based
bilingual topic models, CC-BiLDA and CC-BiBTM, which will be discussed in
detail in the following sections.

3.2 Generative Processes

Firstly, we introduce some notations and the generative processes of CC-BiLDA
and CC-BiBTM.

Given a corpus O, suppose it contains |D| pairs of bilingual documents,
|B| biterms and C explicit categories from two taxonomies to be aligned,
which are of different languages. All paired bilingual documents are denoted by
D = {dj}|D|

j=1 = {(dsj , d
t
j)}|D|

j=1, where dj represents a pair of bilingual documents
composed of document dsj of length Ls

j in language s and document dtj of length
Lt
j in language t, and a word in position p of dsj (or dtj) is denoted by ws

j,p (or wt
j,p).

All biterms are denoted by B = Bs ∪Bst ∪Bt = {bsi}|Bs|
i=1 ∪ {bsti }|Bst|

i=1 ∪ {bti}|Bt|
i=1 ,

where bsi = (ws
i,1, w

s
i,2) contains two words in language s, bsti = (ws

i,1, w
t
i,2) con-

tains two words in different languages s and t, bti = (wt
i,1, w

t
i,2) contains two

words in language t.

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 733

Algorithm 1. Generative Process of CC-BiLDA

initialize: (1) set the number of topics K;
(2) set values for Dirichlet priors α and β;

foreach topic k ∈ [1, K] do
sample: ϕs

k, ϕt
k ∼ Dirichlet(β);

foreach category c ∈ [1, C] do
sample: θc ∼ Dirichlet(α);

foreach pair of bilingual documents dj = (ds
j , d

t
j) do

given the prior category distribution πj ,
foreach word position p ∈ ds

j do
sample: xs

j,p ∼ Multinomial(πj);
sample: zs

j,p ∼ Multinomial(θxs
j,p

);

sample: ws
j,p ∼ Multinomial(ϕs

zsj,p
);

foreach word position p ∈ dt
j do

sample: xt
j,p ∼ Multinomial(πj);

sample: zt
j,p ∼ Multinomial(θxt

j,p
);

sample: wt
j,p ∼ Multinomial(ϕt

ztj,p
);

Like BiLDA and BiBTM, the modeling objects in CC-BiLDA and those in CC-
BiBTM are respectively paired bilingual documents and biterms. Since we define
each modeling object as a mixture of categories, a pair of bilingual documents
dj is represented with a C-dimensional multinomial distribution πj = {πj,c}Cc=1

and a biterm bi is represented with a C-dimensional multinomial distribution
πi = {πi,c}Cc=1, also expressed as πs

i , πst
i and πt

i to distinguish three kinds of
biterms. πj and πi serve as the prior category distributions of each pair of bilin-
gual documents dj in CC-BiLDA and each biterm bi in CC-BiBTM, respectively.
Let x ∈ [1, C] be the category indicator variable, which is denoted by xs, xst

and xt respectively for biterms (or words in paired bilingual documents) in lan-
guage s, biterms composed of two words in different languages s and t, and biterms
(or words in paired bilingual documents) in language t. Similarly, the topic indi-
cator variable z ∈ [1,K] is denoted by zs, zst and zt. Then, each category is
expressed over K latent topics, which are also expressed over W s and W t dis-
tinct words of language s and language t, respectively. We use a K-dimensional
multinomial distribution θc = {θc,k}Kk=1 to describe the topics of each category c.
Regarding the word distributions of languages s and t for topic k, they are respec-
tively represented by a W s-dimensional multinomial distribution ϕs

k with entry
ϕs
k,ws = P (ws|z = k) and a W t-dimensional multinomial distribution ϕt

k with
entry ϕt

k,wt = P (wt|z = k). Following the convention of bilingual topic modeling,
the hyperparameters α and β are the symmetric Dirichlet priors.

With the summarized general steps of generating a word in each model-
ing object (introduced in Sect. 3.1), the generative processes of CC-BiLDA and
CC-BiBTM are respectively given in Algorithms 1 and 2, and their graphical
representations are shown in Fig. 1.

734 T. Wu et al.

(a) CC-BiLDA (b) CC-BiBTM

Fig. 1. Graphical representations of our models

Algorithm 2. Generative Process of CC-BiBTM

initialize: (1) set the number of topics K;
(2) set values for Dirichlet priors α and β;

foreach topic k ∈ [1, K] do
sample: ϕs

k, ϕt
k ∼ Dirichlet(β);

foreach category c ∈ [1, C] do
sample: θc ∼ Dirichlet(α);

foreach biterm bsi ∈ Bs do
given the prior category distribution πs

i ,
sample: xs

i ∼ Multinomial(πs
i), zs

i ∼ Multinomial(θxs
i
);

sample: ws
i,1, ws

i,2 ∼ Multinomial(ϕs
zsi

);

foreach biterm bsti ∈ Bst do
given the prior category distribution πst

i ,
sample: xst

i ∼ Multinomial(πst
i), zst

i ∼ Multinomial(θxst
i

);

sample: ws
i,1 ∼ Multinomial(ϕs

zsti
), wt

i,2 ∼ Multinomial(ϕt
zsti

);

foreach biterm bti ∈ Bt do
given the prior category distribution πt

i,
sample: xt

i ∼ Multinomial(πt
i), zt

i ∼ Multinomial(θxt
i
);

sample: wt
i,1, wt

i,2 ∼ Multinomial(ϕt
zti

);

3.3 Computing Prior Category Distribution

Now we present our method to compute the prior category distribution π of each
modeling object by leveraging different category correlations. With the strategy
resulting in the corpus of paired bilingual documents as introduced in Sect. 3.1,

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 735

each category from a taxonomy occurs in a set of paired bilingual documents.
In other words, each modeling object corresponds to one or more categories,
which are defined as the co-occurring categories of the modeling object. The
category distribution over each modeling object reflects the co-occurrence corre-
lation between all words in the modeling object and its co-occurring categories.
Here, we simply assume that each co-occurring category of a modeling object has
the same probability to be sampled. Given the jth modeling object R and the set
of its co-occurring categories, denoted by CC(R), the prior category probability
πCC
j,c of each category c ∈ [1, C] for R based on the co-occurrence correlation is

computed as

πCC
j,c =

{
1

|CC(R)| , if c ∈ CC(R)

0, otherwise
(1)

where |CC(R)| is the number of categories in CC(R).
Besides the co-occurrence correlation between words and categories, we intro-

duce two kinds of structural correlations among the categories of ancestor-
descendant relationships in a taxonomy. The first structural correlation is based
on information content [14]. The intuition is that co-occurring categories of a
modeling object should have different importance since they may convey dif-
ferent amounts of information in a taxonomic structure. Similar to [12,14], we
argue that the more abstract a category (i.e., more closer to the root of a tax-
onomy), the lower its information content, or there would be no need to further
differentiate it with descendant categories. Thus, more specific co-occurring cate-
gories with more information content are more important for a modeling object.
For jth modeling object R, we calculate the category probability πj,c of each
category c by incorporating the intrinsic information content (IIC) measure [14]
based on the set of descendants of c in the taxonomy T , denoted by DES(c), as

πj,c = IIC(c) · πCC
j,c (2)

IIC(c) = 1 − log (|DES(c)| + 1)

log NT
(3)

where |DES(c)| is the number of categories in DES(c) and NT is the number
of all categories in T . An imaginary root is created for each given taxonomy so
as to avoid 0 IIC values of actual categories. We then normalize

∑
c πj,c = 1.

The second structural correlation is based on path length. We find that the
ancestors (in a taxonomy) of co-occurring categories for each modeling object
might be also relevant to it. For example, if a pair of bilingual documents has
category “Computer Vision”, its ancestor categories such as “Artificial Intelli-
gence” are also relevant to this pair of bilingual documents. Hence, we treat the
ancestors of co-occurring categories similarly w.r.t. a modeling object and also
assign prior probabilities to them. Given the jth modeling object R, the intuition
is that the greater distance in the taxonomy between a co-occurring category
cc and its ancestor ca, the lower probability of ca being a relevant category of
R. Based on that, we use the shortest path length SPL(cc, ca, T) (counted by

736 T. Wu et al.

Algorithm 3. Prior Category Distribution Updating

Input: the jth modeling object R, its category distribution πj , and the set of
co-occurring categories CC(R)

Output: updated πj

Sort all categories c1, · · · , c|CC(R)| in CC(R) as c′
1, · · · , c′

|CC(R)| in descending
order according to πj ;
for i = 1, · · · , |CC(R)| do

foreach ancestor ca of c′
i do

if PP (c′
i, ca) > πj,ca then

πj,ca = PP (c′
i, ca)

Normalize
∑

c πj,c = 1

edge numbers in the taxonomy T) between cc and ca to measure the propagation
probability (PP) from cc to ca as

PP (cc, ca) = πj,cc · 1

SPL(cc, ca, T) + 1
(4)

where πj,cc is the prior category probability of cc for the jth modeling object.
As shown in Fig. 2, since an ancestor category 1 can get different propagation
probabilities (propagated from category 2, 4, 6), we decide to pick the highest
one propagated from all co-occurring categories, and if this propagation proba-
bility is higher than the current prior category probability of category 1, we will
make a replacement. However, a co-occurring category 2 also gets a propagation
probability (from category 4), which may be used to replace the current prior
category probability of category 2 with a higher value, thereby may lead to the
change of the highest propagation probability and prior category probability for
category 1. To ensure each ancestor category can get the highest prior category
probability, we first sort co-occurring categories by their current prior category
probabilities in descending order, then compute all propagation probabilities and
update the prior category probability for each ancestor of each co-occurring cat-
egory in order. The details are given in Algorithm3, which is used to update the
prior category distribution of each modeling object.

Fig. 2. An example of category locations in a taxonomy

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 737

3.4 Parameters Estimation

Since the coupled parameters θc, ϕs
k and ϕt

k in CC-BiLDA (or CC-BiBTM)
are intractable to exactly solve, we follow BiLDA [17] and BiBTM [18] to utilize
Gibbs Sampling [5] to perform approximate inference. Gibbs Sampling estimates
the parameters with the samples drawn from the posterior distributions of latent
variables sequentially, which are conditioned on the current values of all other
variables and data. Here, we jointly sample latent variables x and z. Due to space
limit, we only show the derived Gibbs Sampling formulas for CC-BiLDA and CC-
BiBTM. For CC-BiLDA, given jth pair of bilingual documents dj = (dsj , d

t
j) in

corpus O, we sample the category c and topic k for the word in position p of
document dsj in language s (or document dtj in language t) as follows:

P (xs
j,p = c, zs

j,p = k|x¬(j,s,p), z¬(j,s,p),O) ∝

πj,c · (n¬(j,s,p),k|c + α)

(n¬(j,s,p),·|c + Kα)
·

(n¬(j,s,p),ws
j,p|k + β)

(n¬(j,s,p),·s|k + W sβ)

(5)

P (xt
j,p = c, zt

j,p = k|x¬(j,t,p), z¬(j,t,p),O) ∝

πj,c · (n¬(j,t,p),k|c + α)

(n¬(j,t,p),·|c + Kα)
·

(n¬(j,t,p),wt
j,p|k + β)

(n¬(j,t,p),·t|k + W tβ)

(6)

In Eq. (5), xs
j,p and zsj,p are respectively the category assignment and topic

assignment for word ws
j,p in the current position. For all words in the cor-

pus except the word in position p of document dsj , x¬(j,s,p) is their category
assignments and z¬(j,s,p) is the topic assignments. πj,c means the prior proba-
bility of the pair of bilingual documents dj assigned to category c. Also after
excluding the word in position p of document dsj , n¬(j,s,p),k|c is the number of
words jointly assigned to category c and topic k, n¬(j,s,p),·|c =

∑
k n¬(j,s,p),k|c,

n¬(j,s,p),ws
j,p|k denotes the number of times for word ws

j,p assigned to topic k and
n¬(j,s,p),·s|k =

∑
ws n¬(j,s,p),ws|k. In Eq. (6), all symbols have the same meaning

as those in Eq. (5) after replacing language s with t.
With respect to CC-BiBTM, the Gibbs Sampling formulas for biterms bsi ∈

Bs, bsti ∈ Bst and bti ∈ Bt are as follows:

P (xs
i = c, zs

i = k|x¬bsi
, z¬bsi

,O) ∝ πs
i,c · (n¬bsi ,k|c + α)

(n¬bsi ,·|c + Kα)
·

(n¬bsi ,w
s
i,1|k + β)(n¬bsi ,w

s
i,2|k + β)

(n¬bsi ,·s|k + W sβ)(n¬bsi ,·s|k + 1 + W sβ)

(7)

P (xst
i = c, zst

i = k|x¬bsti
, z¬bsti

,O) ∝ πst
i,c ·

(n¬bsti ,k|c + α)

(n¬bsti ,·|c + Kα)
·

(n¬bsti ,ws
i,1|k + β)(n¬bsti ,wt

i,2|k + β)

(n¬bsti ,·s|k + W sβ)(n¬bsti ,·t|k + W tβ)

(8)

738 T. Wu et al.

P (xt
i = c, zt

i = k|x¬bti
, z¬bti

,O) ∝ πt
i,c ·

(n¬bti,k|c + α)

(n¬bti,·|c + Kα)
·

(n¬bti,w
t
i,1|k + β)(n¬bti,w

t
i,2|k + β)

(n¬bti,·t|k + W tβ)(n¬bti,·t|k + 1 + W tβ)

(9)

where x and z are respectively current category assignment and topic assignment
for the given biterm. For all biterms except biterm b, x¬b is their category assign-
ments and z¬b denotes the topic assignments. πi,c represents the prior category
probability of ith biterm bsi ∈ Bs or bsti ∈ Bst or bti ∈ Bt assigned to category c.
Under the condition of excluding biterm b, n¬b,k|c is the number of biterms jointly
assigned to category c and topic k, n¬b,·|c =

∑
k n¬b,k|c, n¬b,ws|k is the number

of times word ws of language s assigned to topic k, n¬b,·s|k =
∑

ws n¬b,ws|k,
n¬b,wt|k is the number of times word wt of language t assigned to topic k, and
n¬b,·t|k =

∑
wt n¬b,wt|k.

After a sufficient number of sampling iterations, we can estimate the para-
meters in CC-BiLDA and CC-BiBTM. Instead of computing all parameters like
ϕs

k and ϕt
k, our solution to CLTA only needs θc, which is given as follows:

θc,k =
α + nk|c
Kα + nc

(10)

where nc is the number of words (or biterms) assigned to category c in CC-
BiLDA (or CC-BiBTM), nk|c is the number of words (or biterms) simultaneously
assigned to category c and topic k in CC-BiLDA (or CC-BiBTM).

With the topic distribution θc obtained in CC-BiLDA and CC-BiBTM, we
can represent categories from two taxonomies of different languages in the same
topic space. The relevance score between each category in the source taxonomy
and its candidate matched categories (identified with the same method in [18])
in the target taxonomy is computed as the cosine similarity between the topic
vectors directly derived from θc.

4 Experiments

In this section, we evaluate CC-BiLDA and CC-BiBTM on two real-world
datasets for CLTA. The source codes of these two models are publicly
available1.

4.1 Experiment Settings

(a) Datasets. We validated our models to CLTA on two public datasets2 (also
used in [18]), each of which consists of two cross-domain taxonomies of different
languages and a set of labeled cross-lingual alignments. The taxonomies in one
dataset are two product catalogues respectively extracted from JD.com (one of

1 https://github.com/143230/CLTA.
2 https://github.com/jxls080511/080424.

http://JD.com
https://github.com/143230/CLTA
https://github.com/jxls080511/080424

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 739

Table 1. Details of each taxonomy in each dataset

Taxonomy JD.com eBay.com Chinese Dmoz.org Yahoo! Directory

#category 7,741 7,782 2,084 2,353

#paired doc 67,594 72,979 19,277 21,467

#Chinese word 24,483 18,190 11,064 8,581

#English word 15,489 14,729 8,806 8,100

the largest Chinese B2C online retailers) and eBay.com, and those in another
dataset are two Web site directories: Chinese Dmoz.org (the largest Chinese
Web site directory) and Yahoo! Directory. We got a corpus of paired bilingual
documents for each dataset with the strategy in [18], and processed them by word
segmentation, stop words removal, stemming, etc. The details of each taxonomy
and its extracted corpus of paired bilingual documents are given in Table 1.

(b) Baselines. We compared our models (i.e., CC-BiLDA and CC-BiBTM)
with three kinds of baselines, which are existing bilingual topic models, vari-
ants of our models and cross-lingual ontology matching systems. Note that the
hyperparameters α and β of all topic models are respectively set to 50/K (K is
number of topics) and 0.1 according to [18]. All experiments were carried out on
a Linux server with Intel Xeon E5-2630 v4 2.20 GHz CPU and 256 GB memory.

– Existing Bilingual Topic Models: They are BiLDA and BiBTM intro-
duced in Sect. 2.2. To our knowledge, these two models are the state-of-the-
art baselines for CLTA. In BiLDA and BiBTM, we respectively set the topic
number K to 80 and 120 based on [18].

– Variants of Our Models: The full version of CC-BiLDA and that of CC-
BiBTM apply three category correlations to category distribution computa-
tion. A kind of variants (denoted as CC-BiLDA (a) and CC-BiBTM (a)) of
our models only utilize co-occurrence correlations. Another kind of variants
(denoted as CC-BiLDA (b) and CC-BiBTM (b)) use information content
based structural correlations besides co-occurrence correlations.

– Cross-Lingual Ontology Matching Systems: Although CLTA and cross-
lingual ontology matching are different tasks, we can treat the taxonomies as
a special kind of ontologies without formally defined properties, instances,
axioms, etc. Thus, we took two state-of-the-art cross-lingual ontology match-
ing systems (i.e., AML [4] and LogMap [7]) as the baselines.

(c) Evaluation Metrics. Similar to the work [2,10,15,18], we used MRR
(Mean Reciprocal Rank) [3] and P@1 (precision for the top 1 ranking result) as
the evaluation metrics because CLTA is seen as a ranking problem.

http://JD.com
http://eBay.com
http://Dmoz.org
http://eBay.com
http://Dmoz.org

740 T. Wu et al.

4.2 Parameter Tuning

Since different number of topics may lead to different performance in CLTA, we
conducted an analysis by varying the number of topics K in our models and their
variants. Figure 3 gives the alignment performance of CC-BiBTM, CC-BiLDA
and their corresponding variants on each dataset when using different number
of topics K. For CC-BiBTM and its variants, MRR or P@1 values reach the
peak when K is from 100 to 120 on each dataset (in Fig. 3(a) and (c)), so K was
set to 100 in these models for efficient training. For CC-BiLDA and its variants,
most of their MRR and P@1 values are the highest when K = 80 (in Fig. 3(b)
and (d)), so K was empirically set to 80 in these models.

(a) performance of CC-BiBTM and its
variants on product catalogues

(b) performance of CC-BiLDA and its
variants on product catalogues

(c) performance of CC-BiBTM and its
variants on Web site directories

(d) performance of CC-BiLDA and its
variants on Web site directories

Fig. 3. Alignment performance vs. number of topics K

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 741

4.3 Result Analysis

For each dataset, we trained all topic models with 500 iterations of Gibbs Sam-
pling to converge. Table 2 gives the overall results of our proposed models and
the baselines, and we can see that:

Table 2. Overall results

Approach Product catalogues Web site directories

MRR P@1 MRR P@1

AML 0.102 0.100 0.314 0.270

LogMap 0.105 0.100 0.265 0.250

BiLDA 0.553 0.390 0.679 0.480

CC-BiLDA (a) 0.667 0.480 0.721 0.520

CC-BiLDA (b) 0.706 0.540 0.763 0.580

CC-BiLDA 0.720 0.550 0.815 0.650

BiBTM 0.597 0.440 0.719 0.520

CC-BiBTM (a) 0.685 0.480 0.748 0.560

CC-BiBTM (b) 0.721 0.530 0.771 0.590

CC-BiBTM 0.727 0.550 0.828 0.680

– Our models CC-BiBTM and CC-BiLDA outperform all baselines, especially
CC-BiBTM significantly improves the CLTA performance of the state-of-
the-art baseline BiBTM (at least +10.9% in each evaluation metric). This
reflects the value of our solution for encoding correlations into bilingual topic
modeling, and the remarkable effects of category correlations on CLTA.

– Cross-lingual ontology matching systems have rather poor performance.
Although they are not well tuned for the task of CLTA, it still shows that
they cannot work well in real-world CLTA without internal features such as
properties, instances and axioms available in ontologies.

– The performance of CLTA improves each time when we encoded one more
kind of the proposed category correlations into bilingual topic modeling. It
means that the co-occurrence correlations, structural correlations based on
information content and those based on path length are all useful to CLTA.

– The performance of CC-BiLDA is close to that of CC-BiBTM. It reveals that
although the training corpus are actually paired bilingual short documents,
the data sparsity problem suffered by BiLDA has been greatly alleviated via
the semantic information of category correlations.

Since the proposed models CC-BiLDA and CC-BiBTM have the best perfor-
mance on MRR and P@1, we further compared their efficiency of model training
by the average running time (per iteration) of CC-BiLDA and CC-BiBTM on

742 T. Wu et al.

Table 3. Efficiency comparison of CC-BiLDA and CC-BiBTM

Model Running time (seconds) per iteration Time complexity per iteration

Product catalogues Web site directories

CC-BiLDA 15.90 10.14 O(K1|D|LDCD)

CC-BiBTM 453.31 251.39 O(K2|B|CB)

the given datasets in Table 3. We can find that the running time of CC-BiBTM is
about 25 times and 29 times of CC-BiLDA on Web site directories and product
catalogues, respectively. The time complexity (per iteration) of each model is
also shown in Table 3, where the topic number K1 = 80 and K2 = 100 according
to Sect. 4.2; |D| is the number of paired bilingual documents, each of which aver-
agely contains LD words and CD co-occurring categories; and |B| is the number
of biterms, each of which averagely has CB co-occurring categories. Suppose each
document in each pair of bilingual documents averagely has l words (l ≥ 2), i.e.,
LD ≈ 2l, so |B| ≈ |D| · (2 · l(l−1)

2 + l
2
). A biterm may have the co-occurring

categories of more than one pair of bilingual documents, so CB

CD
≥ 1. Since we

have K2|B|CB

K1|D|LDCD
≈ 5

4 · CB

CD
· (l − 1

2), the time complexity of CC-BiBTM is much
higher than that of CC-BiLDA. However, with the strategy in [18], the bilingual
documents used for CLTA were actually extracted from the snippets (i.e., short
documents) returned by a search engine, so the number of words in each docu-
ment is small (e.g., l = 10.21 for product catalogues and l = 9.73 for Web site
directories), and the running time of CC-BiBTM is still acceptable.

To sum up, for CLTA, if users have a high demand on accuracy and do not
care about the efficiency, we suggest to use CC-BiBTM. If users care more about
the efficiency and can accept a little lower accuracy, we recommend CC-BiLDA.

5 Related Work

5.1 Cross-Lingual Schema Matching

The problem of cross-lingual schema matching has been mainly studied in the
area of ontology matching and taxonomy alignment. Some approaches or sys-
tems [4,7,16] for cross-lingual ontology matching mainly use the features based
on string similarities after translation. The performance is often unsatisfactory
due to the problems of vocabulary mismatch and improper translations. Differ-
ent to ontologies, taxonomies do not always have logically rigorous structures
with formally defined properties, instances and axioms to help solve matching
tasks. Thus, several approaches have been especially designed to CLTA. Some
of them [2,10,15] focus on aligning domain-specific taxonomies using string sim-
ilarities based on a translation tool and domain-specific information. The most
relevant work [18] also tries to align cross-lingual and cross-domain taxonomies
with bilingual topic models. We improved this work by encoding different explicit
category correlations into bilingual topic modeling for CLTA.

Encoding Category Correlations into Bilingual Topic Modeling for CLTA 743

5.2 Metadata Topic Models

Topic models such as Latent Dirichlet Allocation (LDA) [1] and its numerous
variants are well studied generative models for analysing latent semantic top-
ics in text. Besides bilingual topic models BiLDA and BiBTM, metadata topic
models are also related to our work. To simultaneously model the text and its
metadata (e.g., authors and tags), a set of metadata topic models have been
proposed including Author Topic Model [13], labeled-LDA [11], Tag-Weighted
Topic Model [9], Tag-Weighted Dirichlet Allocation [8], etc. They denote each
metadata as a mixture of topics or words, but cannot be applied to cross-lingual
text mining. Our models CC-BiLDA and CC-BiBTM are the first work of cross-
lingual metadata topic models, which already show the superiority in CLTA.

6 Conclusions and Future Work

In this paper, we proposed a unified solution to encode category correlations
into bilingual topic modeling for CLTA. Our solution captures different category
correlations with a prior category distribution of each modeling object, and
integrates such distributions into bilingual topic modeling. This brings two novel
category correlation based bilingual topic models CC-BiLDA and CC-BiBTM,
which significantly outperform the state-of-the-art baselines on CLTA. In the
future, we will apply our models to CLTA in knowledge graphs, to benefit cross-
lingual knowledge graph fusion and cross-lingual semantic search.

Acknowledgements. This work is supported in part by the National Natural Sci-
ence Foundation of China (Grant No. 61672153), the 863 Program (Grant No.
2015AA015406), the Fundamental Research Funds for the Central Universities and
the Research Innovation Program for College Graduates of Jiangsu Province (Grant
No. KYLX16 0295).

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Boldyrev, N., Spaniol, M., Weikum, G.: ACROSS: a framework for multi-cultural
interlinking of web taxonomies. In: WebSci, pp. 127–136 (2016)

3. Craswell, N.: Mean reciprocal rank. In: Liu, L., Tamer Özsu, M. (eds.) Encyclopedia
of Database Systems, pp. 1703–1703. Springer, New York (2009). doi:10.1007/
978-0-387-39940-9 488

4. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The
AgreementMakerLight ontology matching system. In: Meersman, R., Panetto, H.,
Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P., Dou, D. (eds.) OTM
2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41030-7 38

5. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741
(1984)

http://dx.doi.org/10.1007/978-0-387-39940-9_488
http://dx.doi.org/10.1007/978-0-387-39940-9_488
http://dx.doi.org/10.1007/978-3-642-41030-7_38
http://dx.doi.org/10.1007/978-3-642-41030-7_38

744 T. Wu et al.

6. Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: SOMA,
pp. 80–88 (2010)

7. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology
matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25073-6 18

8. Li, S., Huang, G., Tan, R., Pan, R.: Tag-weighted Dirichlet allocation. In: ICDM,
pp. 438–447 (2013)

9. Li, S., Li, J., Pan, R.: Tag-weighted topic model for mining semi-structured docu-
ments. In: IJCAI, pp. 2855–2861 (2013)

10. Prytkova, N., Weikum, G., Spaniol, M.: Aligning multi-cultural knowledge tax-
onomies by combinatorial optimization. In: WWW, pp. 93–94 (2015)

11. Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: a supervised
topic model for credit attribution in multi-labeled corpora. In: EMNLP, pp. 248–
256 (2009)

12. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: IJCAI, pp. 448–453 (1995)

13. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for
authors and documents. In: UAI, pp. 487–494 (2004)

14. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic
similarity in WordNet. In: ECAI, pp. 1089–1090 (2004)

15. Spohr, D., Hollink, L., Cimiano, P.: A machine learning approach to multilingual
and cross-lingual ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor,
J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol.
7031, pp. 665–680. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6 42

16. Trojahn, C., Fu, B., Zamazal, O., Ritze, D.: State-of-the-art in multilingual and
cross-lingual ontology matching. In: Buitelaar, P., Cimiano, P. (eds.) Towards the
Multilingual Semantic Web, pp. 119–135. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43585-4

17. Vulić, I., De Smet, W., Tang, J., Moens, M.F.: Probabilistic topic modeling in
multilingual settings: an overview of its methodology and applications. Inf. Process.
Manag. 51(1), 111–147 (2015)

18. Wu, T., Qi, G., Wang, H., Xu, K., Cui, X.: Cross-lingual taxonomy alignment with
bilingual biterm topic model. In: AAAI, pp. 287–293 (2016)

http://dx.doi.org/10.1007/978-3-642-25073-6_18
http://dx.doi.org/10.1007/978-3-642-25073-6_42
http://dx.doi.org/10.1007/978-3-662-43585-4
http://dx.doi.org/10.1007/978-3-662-43585-4

Cross-Lingual Infobox Alignment in Wikipedia
Using Entity-Attribute Factor Graph

Yan Zhang, Thomas Paradis, Lei Hou, Juanzi Li(B), Jing Zhang,
and Haitao Zheng

Knowledge Engineering Group, Tsinghua University, Beijing, China
{z-y14,jing-zha15}@mails.tsinghua.edu.cn, thomasparadis@126.com,

greener2009@gmail.com, lijuanzi@tsinghua.edu.cn,

zheng.haitao@sz.tsinghua.edu.cn

Abstract. Wikipedia infoboxes contain information about article enti-
ties in the form of attribute-value pairs, and are thus a very rich source
of structured knowledge. However, as the different language versions
of Wikipedia evolve independently, it is a promising but challenging
problem to find correspondences between infobox attributes in differ-
ent language editions. In this paper, we propose 8 effective features for
cross lingual infobox attribute matching containing categories, templates,
attribute labels and values. We propose entity-attribute factor graph to
consider not only individual features but also the correlations among
attribute pairs. Experiments on the two Wikipedia data sets of English-
Chinese and English-French show that proposed approach can achieve
high F1-measure: 85.5% and 85.4% respectively on the two data sets.
Our proposed approach finds 23,923 new infobox attribute mappings
between English and Chinese Wikipedia, and 31,576 between English and
French based on no more than six thousand existing matched infobox
attributes. We conduct an infobox completion experiment on English-
Chinese Wikipedia and complement 76,498 (more than 30% of EN-ZH
Wikipedia existing cross-lingual links) pairs of corresponding articles
with more than one attribute-value pairs.

1 Introduction

With the rapid evolution of the Internet to be a world-wide global information
space, sharing knowledge across different languages becomes an important and
challenging task. Cross-lingual knowledge sharing not only benefits knowledge
internationalization and globalization, but also has a very wide range of applica-
tions such as machine translation [20], information retrieval [19] and multilingual
semantic data extraction [7,9]. Wikipedia is one of the largest multi-lingual ency-
clopedic knowledge bases on the Web and provides more than 25 million articles
in 285 different languages. Therefore, many multilingual knowledge bases (KB)
have been constructed based on Wikipedia, such as DBpedia [7], YAGO [9],
Bablenet [11] and XLore [18]. Some approaches have been proposed to find
cross-lingual links between Wiki articles, e.g., [15–17].

c© Springer International Publishing AG 2017
C. d’Amato et al. (Eds.): ISWC 2017, Part I, LNCS 10587, pp. 745–760, 2017.
DOI: 10.1007/978-3-319-68288-4_44

746 Y. Zhang et al.

There is a large amount of semantic information contained in Wikipedia
infoboxes, which provide semi-structured, factual information in the form of
attribute-value pairs. Attributes in infoboxes contain valuable semantic informa-
tion, which play a key role in the construction of a coherent large-scale knowl-
edge base [9]. However, each language version maintains its own set of infoboxes
with their own set of attributes, as well as sometimes providing different values
for corresponding attributes. Thus, attributes in different Wikipedia must be
matched if we want to get coherent knowledge and develop some applications.
For instance, inconsistencies among the data provided by different editions for
corresponding attributes could be detected automatically. Furthermore, English
Wikipedia is obviously larger and of higher quality than low resource languages,
which is why we can use attribute alignments to expand and complete infoboxes
in other languages, or at least help Wikipedia communities to do so. In addition,
the number of existing attribute mappings is limited, e.g., there are more than
100 thousand attributes in English Wikipedia but only about 5 thousand (less
than 5%) existing attribute mappings between English and Chinese.

Being aware of the importance of this problem, several approaches have been
proposed to find new cross-lingual attribute mappings between Wikis. Bouma
et al. [2] found alignments between English and Dutch infobox attributes based
on values. Rinser et al. [13] proposed an instance-based schema matching app-
roach to find corresponding attributes between different language infobox tem-
plates. Adar et al. [1] defined 26 features, such as equality, word, translation
and n-gram features, then applied logistic regression to train a boolean classi-
fier to detect whether two attributes are likely to be equivalent. These methods
can be split into two categories: similarity-based and learning-based. Both of
them mostly use the information of the attributes themselves and ignore the
correlations among attributes within one knowledge base.

Based on our observation, there are several challenges involved in finding mul-
tilingual correspondences across infobox attributes. Firstly, there are Polysemy-
Attributes (a given attribute can have different semantics, e.g., country can mean
nationality of one person or place of a production) and Synonym-Attributes (dif-
ferent attributes can have the same meaning, e.g., alias and other names), which
leads to worse performance on label similarity or translation based methods.
Secondly, there also exist some problems in the values of attributes: 1. differ-
ent measurement (e.g., population of Beijing is 21,700,000 in English edition
and 2170 ten thousand in Chinese). 2. timeliness (e.g., population of Beijing is
21,150,000 (in 2013) in French edition). In this way, labels and values alone are
not credible enough for cross-lingual attribute matching.

In order to solve above problems, we first investigate several effective fea-
tures considering characteristics of cross-lingual attribute matching problem,
and then propose an approach based on factor graph model [6]. The most sig-
nificant advantage of this model is that it can formalize correlations between
attributes explicitly, which is specified in Sect. 3. Specifically, our contributions
include:

Cross-Lingual Infobox Alignment in Wikipedia Using EAFG 747

– We formulate the problem of attribute matching (attribute alignment) across
Wikipedia knowledge bases in different language editions, and analyse several
effective features based on categories, templates, labels and values.

– We present a supervised method based on an integrated factor graph model,
which leverages information from a variety of sources and utilizes the corre-
lations among attribute pairs.

– We conduct experiments to evaluate our approach on existing attribute map-
pings in the latest Wikipedia. It achieves a high F1-measure 85.5% between
English and Chinese and 85.4% between English and French. Furthermore,
we run our model on English, Chinese and French Wikipedia, and success-
fully identify 23,923 new cross-lingual attribute mappings between English
and Chinese, 31,576 between English and French.

The rest of this paper is organized as follows, Sect. 2 defines the problem of
attribute matching and some related concepts; Sect. 3 describes the proposed
approach in detail; Sect. 4 presents the evaluation results; Sect. 5 discusses some
related work and finally Sect. 6 concludes this work.

2 Problem Formulation

In this section, we formally define the problem of Wikipedia attribute (property)
matching. We define the Wiki knowledge base and elements in it as follows.

Definition 1. Wiki Knowledge Base. We consider each language edition of
Wikipedia as a Wiki Knowledge Base, which can be represented as

K = {A,P}

where A = {ai}n
i=1 is the set of articles in K and n is the size of A, i.e., the

number of articles. P = {pi}r
i=1 is the set of attributes in K and r is the size

of P .

Definition 2. Wiki Article. A Wiki Article can be formally defined as fol-
lows,

a = (Ti(a), T e(a), Ib(a), C(a))

where

– Ti(a) denotes the title of the article a.
– Te(a) denotes the unstructured text description of the article a, in other

words, the free-text contents of the article a.
– Ib(a) is the infobox associated with a; specifically, Ib(a) = {pi, vali}k

i=1 repre-
sents the list of attribute-value pairs in this article’s infobox, P (a) = {pi}k

i=1

represents the set of attributes which appear in Ib of a.
– C(a) denotes the set of categories of the article a.

748 Y. Zhang et al.

Definition 3. Attribute. According to the above definitions, an attribute can
be defined as a 5-tuple,

attr = (L(p), SO(p), AU(p), C(p), T (p))

where

– L(p) denotes the label of attribute p.
– SO(p) = {(a, val) | ∀a ∈ A,∃(p, val) ∈ Ib(a)} denotes a set which

contains the subject-object pairs of the attribute. For example, in Fig. 1,
attribute Alma mater has a pair (Mark Zuckerberg, Harvard University) in
SO(pAlma mater).

– AU(p) = {a | ∀a,∃(a, val) ∈ SO(p)} denotes the set of articles which use
attribute p.

– C(p) =
⋃

(p,o)∈Ib(a)

C(a) denotes a set of categories in which the attribute

appears. For example, C of attribute Born contains a category People.
– T (p) = {pi}m

i=1 denotes the Infobox template to which the attribute p belongs.

Definition 4. Attribute Matching (Property Matching). Given two Wiki
Knowledge Bases K1 = {A1, P1} and K2 = {A2, P2}, attribute matching is a
process of finding, for each attribute pi ∈ P1, one or more equivalent attributes
in knowledge base K2. When the two Wiki knowledge bases are in different lan-
guages, we call it the cross-lingual attribute matching (infobox alignment) prob-
lem. Generally, EL, EC and AL denote the existing cross-lingual links between
articles, categories and attributes respectively between different language versions
of Wikipedia.

Here, we say two attributes are equivalent if they semantically describe the
same type of information about an entity. Figure 1 shows an example of attribute

Fig. 1. An example of attribute matching

Cross-Lingual Infobox Alignment in Wikipedia Using EAFG 749

matching results concerning infoboxes of Zuckerberg (CEO of Facebook) in Eng-
lish, Chinese and French Wikipedia.

As shown in Fig. 1, Born, and Naissance are equivalent infobox
attributes, which can be easily found according to the values using a trans-
lation tool. However, for attribute Net worth and its Chinese corresponding
attribute , they have different values because of timeliness, so we cannot
find the alignment using value-based method. Furthermore, English Infobox (the
left) has an attribute Relatives, which does not exist in other two versions. So
we can complete the Chinese infobox of Zuckerberg if we find that is the
corresponding attribute of Relatives in Chinese.

3 The Proposed Approach

In this section, we first describe the motivation and overview of our approach,
and then we introduce our proposed model in detail.

3.1 Overview

For the problem of Wikipedia attribute matching, existing works [1,2,13] mostly
used label- and value-based features. Effectiveness of these direct features has
been proved. However, as for cross-lingual attribute matching, text similarity
cannot be computed directly and machine translation may induce more errors.
In this way, only text feature is not enough. There are some works [15,17] on
a similar problem, Wikipedia cross-lingual entity matching, and in these works
some useful language-independent features are proposed, such as text hyperlinks.
Furthermore, these works also provide large amounts of cross-lingual article links
which are very valuable. Inspired by these works, we try to design a model
leveraging text, article, category and template features simultaneously. Thus,
there are two questions in front of us.

– How to use existing cross-lingual links as seeds to help us find more attribute
mappings?

– How to use other information (e.g., article, category and external text) to
deal with the lack of information in attribute itself?

3.2 Entity-Attribute Factor Graph Model

Factor graph model [6] has such an assumption that observation data depends
on not only local features, but also on relationships with other instances. The
characteristic of this model is fit for our problem intuitively, because:

– A pair of attributes is more likely equivalent if they co-occur with aligned
attributes in a pair of equivalent articles.

– Template pairs which contain more equivalent attribute pairs tend to be more
semantically similar, and other attribute pairs in such templates are more
likely equivalent than the ones in other templates.

– Attribute pairs tend to be equivalent if their synonymous pairs are equivalent.

750 Y. Zhang et al.

Fig. 2. An illustration of Entity-Attribute Factor Graph (EAFG) model

In this paper, using definitions in Sect. 2, we formalize the attribute matching
problem into a model named Entity-Attribute Factor Graph (EAFG), which is
shown in Fig. 2.

Figure 2 contains two parts, the left one is relation graph, which represents
several relations in two editions of Wikipedia K1 and K2. Different language ver-
sions are separated by a diagonal line. The attribute layer contains the attributes
and template relations among them. Similarly, the article layer contains the arti-
cles and category relations. The imaginary lines between the two layers denote
the relation of usage between articles and attributes, and the red dashed lines
denote the existing cross-lingual links. The right one is factor graph, the white
nodes are variables, there are two types of variables, xi and yi. Each candidate
pair is mapped to an observed variable xi. The hidden variable yi represents a
Boolean label (equivalent or inequivalent) of the observed variable xi. For exam-
ple, x2 in Fig. 2 corresponds to a candidate attribute pairs (pi3, pj2), and there
exists a cross-lingual link between pi3 and pj2, so the hidden variable y2 equals
to 1. The black nodes in factor graph are factors, there are three types, f , g,
and h. Each type is associated with a kind of feature function which transforms
relations into a computable feature.

Now, we define these feature functions in EAFG model in detail:

– Local feature function: f(yi, xi) is a feature function which represents the
posterior probability of label yi given xi; it describes local information and
similarity on observed variables in EAFG;

– Template feature function: g(yi, CO(yi)) denotes the correlation between
hidden variables according to template information. CO(yi) is the set of vari-
ables having template co-occurrence relation with yi.

– Synonym feature function: h(yi, SY (yi)) denotes the correlation between
hidden variables according to synonymous information. SY (yi) is the set of
variables being semantically equivalent.

According to these feature functions, we can define joint distribution over
the Y on our graph model as

Cross-Lingual Infobox Alignment in Wikipedia Using EAFG 751

p(Y) =
∏

i

f(yi, xi)g(yi, CO(yi))h(yi, SY (yi)) (1)

Then we introduce the definition of three feature functions in detail.

1. Local feature function

f(yi, xi) =
1

Zα
exp{αTf(yi, xi)} (2)

where f(yi, xi) = <flabel, fwe, fso, fau, fcate> is a vector of features; α denotes
the corresponding weights of these features; xi is a variable corresponding to
attribute pair (pa, pb). Then we describe these five features in detail.
(a) Label similarity feature: it computes the Levenshtein distance [3] after

translating non-English attribute labels to English ones, and then get the
similarity according to it.

flabel = 1 − Leven(L(pa), L(pb))
max(len(L(pa)), len(L(pb)))

(3)

where Leven(L(pa), L(pa)) denotes the Levenshtein distance between two
labels, and len(L(p)) denotes the length of the label of the attribute p.
Word embedding [10] represents each word as a vector and is able to
grasp semantic information. We trained 100-dimension word embeddings
on English Wikipedia text and represent each label as a vector (non-
English labels are replaced by their translation result). Let WE(p) be
the word embedding (a 100-dimension vector) of the label of attribute p,
we have

fwe = 1 −
arccos(WE(pa)·WE(pb)

‖WE(pa)‖2×‖WE(pb)‖2
)

π
(4)

where ‖WE(pa)‖2 denotes the Euclidean norm of the vector WE(pa),
and fwe is the cosine similarity between word embeddings of pa and pb.

(b) Subject-object similarity feature: according to Definition 3, we can get a
set SO for each attribute and compute the similarity between the two
sets. First, we define an equivalence relation between subject-object pairs
as

(si, oi) ≡ (sj , oj) ⇐⇒ (si, sj) ∈ EL ∧ oi ≡ oj

it denotes pair (si, oi) in SOi is equivalent with (sj , oj) in SOj if and only
if there is a cross-lingual link between subjects, and objects are equivalent.
The condition of objects being equivalent depends on the data type. For
example, for type Integer, the objects should be equal, and for type
entity, they should also have a cross-lingual link. fso is defined as

fso =
2 × |{(si, oi) ≡ (sj , oj) | (si, oi) ∈ SO(pa), (sj , oj) ∈ SO(pb)}|

|SO(pa)| + |SO(pb)| (5)

752 Y. Zhang et al.

(c) Article-usage feature: according to Definitions 3 and 4, we can define fau

as

fau =
2 × |{(a, b) | (a, b) ∈ EL, a ∈ AU(pa), b ∈ AU(pb)}|

|AU(pa)| + |AU(pb)| (6)

this feature represents the similarity between two article sets which con-
tain the two attributes in their infoboxes respectively.

(d) Category similarity feature: similarly, we can define fcate as

fcate =
2 × |{(c, c′) | (c, c′) ∈ EC, c ∈ C(pa), c′ ∈ C(pb)}|

|C(pa)| + |C(pb)| (7)

where C(p) is defined in Definition 3 and EC is defined in Definition 4.
This feature represents the similarity between two category sets related
to the two attributes.

2. Template feature function

g(yi, CO(yi)) =
1

Zβ
exp{

∑

yj∈CO(yi)

βTg(yi, yj)} (8)

where β denotes the weight remaining to learn, and g(yi, yj) denotes a func-
tion to specify whether there exists a template sharing correlation between
attribute pairs. Let (pai

, pbi) and (paj
, pbj) be the attribute pairs related with

node yi and yj respectively in the factor graph. g(yi, yj) = 1 if pai
and paj

appear in one common template, and so are pbi and pbj , otherwise 0. It should
be noticed that this function is used to capture the relations between candi-
date attribute mappings.

3. Synonym feature function

h(yi, SY (yi)) =
1

Zγ
exp{

∑

yj∈S(yi)

γTh(yi, yj)} (9)

where γ denotes the weight remaining to learn, and h(yi, yj) denotes the
probability of semantically equivalence between yi and yj . First we define
semantic relatedness between two attributes as,

SR(pi, pj) =
2 × |{(ci, cj) | ci ≡ cj , ci ∈ C(pi), cj ∈ C(pj)}|

|C(pi)| + |C(pj)| (10)

which is similar with Eq. 7, except that pi and pj here are from the same
language, thus the equivalence between category pairs can be derived directly.
Then let (pai

, pbi) and (paj
, pbj) be the attribute pairs related with node yi

and yj respectively, we have

h(yi, yj) = SR(pai
, paj

) × SR(pbi , pbj) (11)

Therefore, the purpose of this feature function is to find more cross-lingual
attribute mappings using information of synonym within one language edition
of data set.

Cross-Lingual Infobox Alignment in Wikipedia Using EAFG 753

3.3 Learning and Inference

Given a set of labeled nodes (known attribute mappings) in the EAFG, learning
the model is to estimate an optimum parameter configuration θ = (α, β, γ)
to maxmize the log-likelihood function of p(Y). Based on Eqs. 1–11, the joint
distribution p(Y) can be denoted as

p(Y) =
1
Z

∏

i

exp{θT(f(yi, yj),
∑

yj

g(yi, yj),
∑

yj

h(yi, yj))} (12)

We use log-likelihood function log(p(Y L)) as the object function, where Y L

denotes the known labels. Then we apply a gradient descent method to estimate
the parameter θ. After learning the optimal parameter θ, we can infer the unknown
labels by finding a set of labels which maximizes the joint probability p(Y).

4 Experiments

In this paper, the proposed approach is a general model (translation based fea-
tures are optional), so we use the data from three language editions of Wikipedia
(English, Chinese and French) to evaluate our proposed approach. First we eval-
uate EAFG model on existing cross-lingual attribute mappings, and then we
use our approach to find English-Chinese and English-French mappings within
Wikipedia.

4.1 Data Set

We construct two data sets (English-Chinese and English-French) from existing
cross-lingual attribute links in Wikipedia. Table 1 shows the size of the 2 data
sets. In each data set, we randomly select 2,000 corresponding attribute pairs
which are labeled as positive instances. For each positive instance, we generate 5
negative instances by randomly replacing one of the attribute in the pairs with
a wrong one.

Table 1. Size of the 2 data sets

Data set #Attribute pairs #Related articles #Related categories

EN-ZH 2000 EN:96,331 ZH:54,195 EN:13,763 ZH:9,132

EN-FR 2000 EN:103,915 FR:89,012 EN:15,698 FR:12,371

754 Y. Zhang et al.

4.2 Comparison Methods

We conduct four existing cross-lingual attribute matching methods. They are
translation based method Label Matching (LM), Similarity Aggregation (SA)
based method, classification based method Support Vector Matching (SVM) and
another logistic regression based method (LR-ADAR) on the work of Adar [1].
As for our proposed approach, in order to evaluate the influence of translation
tool, we conduct EAFG-NT (No Translation) which is same as EAFG except
that it does not use translation-based features.

– Label Matching (LM). This method first uses Google Translation API to
translate the labels of attributes in other languages into English, and then
matches them. For each attribute pair, they are considered as equivalent
attributes if they have strictly the same English labels.

– Similarity Aggregation (SA). This method aggregates several similarities
of each attribute pair into a combined one averagely. Here, we compute 5
similarities same as local feature function in Sect. 3, namely label similar-
ity, subject-object similarity, article-usage similarity, category similarity and
word embedding similarity.

Sim(pi, pj) =
1
5
(flabel + fso + fau + fcate + fwe)

Then it selects pairs whose similarity is over a threshold φ as equivalent pairs.
In our experiment, we test the parameter φ from 0.05 to 1.00 increasing by
0.05, and this method achieves the best F1-measure when φ = 0.75 on EN-ZH
data set, φ = 0.80 on EN-FR data set.

– Support Vector Machine (SVM). This method first computes the five
similarities in method SA, and then trains a SVM model [4]. Here, we use
Scikit-Learn package [12] in our experiment with a linear kernel and parame-
ter C = 1.0. Finally we predict the equivalence of new attribute pairs using
this model. Compared with our approach, this method only uses similari-
ties of attributes as features, and it does not take correlations among these
instances into consideration.

– Logistic Regression (LR-ADAR) In [1], the author defined 26 features
and trained a logistic regression model to solve this problem. They obtained
good results in their experiments, so we implement this method as a compari-
son. Here we also use Scikit-Learn package to train a logistic regression model
with 17 of their features (removing some language features because they are
not suitable for Chinese). In our experiment, it achieves the best result when
we use parameter C = 10 and L1-regularization.

4.3 Performance Metrics

We use Precision, Recall and F1-measure to evaluate different attribute match-
ing methods. They are defined as usual: Precision is the percentage of correct
discovered matched in all discovered matches; Recall is the percentage of correct
discovered matches in all correct matches; F1-Measure is the harmonic mean of
precision and recall. The data sets we use are described in Sect. 4.1.

Cross-Lingual Infobox Alignment in Wikipedia Using EAFG 755

4.4 Settings

For SVM, LR-ADAR and EAFG, we conduct 10-fold cross validation on the
evaluation data set. EAFG uses 0.001 learning rate and runs 1000 iterations in
all the experiments, and SVM and LR-ADAR runs with settings described in the
above. As mentioned before, translation tool is optional in our approach, so we
also implement method EAFG-NT for comparison. All experiments are carried
out on a Ubuntu 14.04 server with 2.8 GHz CPU (8 cores) and 128 GB memory.

4.5 Results Analysis

Table 2 shows the performance of these 5 methods on English-Chinese (EN-ZH)
and English-French (EN-FR) data sets. For EN-ZH data set, according to the
results, the LM method gets a high precision of 97.3%, but its recall is only 26.1%.
Apparently, the variety of translation results and too strict matching condition
are the main reasons of the result. By using similarities on various information,
SA improves recall significantly in comparison to LM, but it does not achieve
good precision because averaging strategy is too simple. SVM and LR-ADAR
are both learning-based methods. SVM method gets a precision of 87.5% with
a recall 75.2%. Compared with SVM, LR-ADAR gets better precision but lower
recall, and outperforms SVM by 1.0% in terms of F1-measure. Our method
EAFG uses the same training data with SVM, and outperforms SVM by 4.6% in
terms of F1-measure. EAFG get similar precision with LR-ADAR, but EAFG is
able to discover more attribute mappings by considering the correlation between
attribute pairs. EAFG-NT only uses language-independent features, although
it does not work as well as EAFG, it still outperforms SVM by 0.5%, which
indicates that correlations among attributes are helpful for the problem indeed.
As for EN-FR data set, most of these methods get better precision than EN-ZH,
and we think it is because English and French are both European languages.
Correspondingly, we can get similar conclusions from the experiment on EN-FR
data set.

Table 2. Perfomance of 5 methods on English-Chinese and English-French data sets.

Method English-Chinese English-French

Precision Recall F1-Measure Precision Recall F1-Measure

LM 0.973 0.261 0.412 0.982 0.271 0.425

SA 0.749 0.673 0.709 0.764 0.662 0.709

SVM 0.875 0.752 0.809 0.883 0.755 0.814

LR-ADAR 0.907 0.746 0.819 0.917 0.739 0.818

EAFG(NT) 0.863 0.771 0.814 0.877 0.774 0.822

EAFG 0.911 0.805 0.855 0.913 0.802 0.854

756 Y. Zhang et al.

4.6 Discovering New Cross-Lingual Attribute Mappings
in Wikipedia

The motivation of this work is to find more attribute mappings among dif-
ferent language versions of Wikipedia. Therefore, we applied our proposed
EAFG to align attributes in English, Chinese and French Wikipedia. First, we
extract 107,302, 56,140 and 85,841 attributes from English, Chinese and French
Wikipedia respectively. The existing attribute mappings are used for training,
and the learned model is employed to predict the correspondence between cross-
lingual attribute pairs. Both training and prediction are completed on a server
with a 2.8 GHz CPU (32 cores) and 384 GB memory, and it costs 13 h and
21 h for EN-ZH and EN-FR data set respectively. Finally we get 23,923 new
attribute mappings between English and Chinese Wikipedia, and 31,576 map-
pings between English and French. Table 3 presents a few examples of the dis-
covered mappings.

Table 3. Examples of discovered attribute mappings

4.7 Wikipedia Infobox Completion

Apparently, we can transfer infobox information that is missing in one language
from other languages in which the information is already present, if we have the
alignment of attributes. In this paper, we try to complement Chinese and English
Wikipedia infoboxes from each other using the attribute alignments obtained
above EAFG. Firstly, we extract 223,159 existing corresponding English-Chinese
article pairs, and finally 76,498 article pairs are replenished by at least 1 attribute
value. Figure 3 shows the number of added attribute values with respect to each
article. The maximum number of added attribute values for one article is 34 and
the average is 5.75, which indicates that infoboxes in Chinese and English both
benefit a lot from the attribute alignments.

Cross-Lingual Infobox Alignment in Wikipedia Using EAFG 757

0

5

10

15

20

25

30

35

40

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

nu
m

be
r

of
 a

dd
ed

 a
tt

ri
bu

te
 v

al
ue

s

article ID sorted by the number of added attribute values
max = 34, min = 1, avg = 5.75

Fig. 3. Statistics of EN-ZH infobox complementing

We also count the times of each attribute being added into Chinese infoboxes,
and list the top 20 attributes in Fig. 4. It should be noticed that most of the
attributes are from these categories: Person (e.g., Born and Nationality), Loca-
tion (e.g., time-zone and Original language) and Film (e.g., Director and Pro-
ducer). The reason is that entities of these categories tend to have strong local
features, and thus lead to imbalance of information among different language
versions of Wikipedia. For example, a recent TV play The Journey of Flower1

(2 in Chinese) is very popular in China and its Chinese Wikipedia page
contains elaborate information. In this experiment, we add 7 attribute values
(such as (editor, Tianen Su), (original channel, Hunan Satellite)) from Chinese
to English Wikipedia with respect to this entity (i.e., The Journey of Flower).

0

2000

4000

6000

8000

10000

12000

14000

Ti
m

es
 o

f b
ei

ng
 a

dd
ed

Attribute Name

Fig. 4. Top 20 Attributes in EN-ZH infobox complementing

1 https://en.wikipedia.org/wiki/The Journey of Flower.
2 https://zh.wikipedia.org/wiki/%E8%8A%B1%E5%8D%83%E9%AA%A8.

https://en.wikipedia.org/wiki/The_Journey_of_Flower
https://zh.wikipedia.org/wiki/%E8%8A%B1%E5%8D%83%E9%AA%A8

758 Y. Zhang et al.

5 Related Work

In this section, we review some related work.

5.1 Wikipedia Infobox Alignment

Though there have been some works on Wikipedia cross-lingual infobox align-
ment (attribute matching) and its applications in the real world. Adar [1]
used a supervised classifier to identify cross-language infobox alignments. They
use 26 features, including equality and n-gram to train the classifier. Through
a 10-fold cross-validation experiment on English, German, French and Span-
ish, they report having achieved 90.7% accuracy. Bouma [2] proposed a value-
based method for matching infobox attributes. They first normalized all infobox
attribute values, such as numbers, data formats and some units, and then
matched the attributes according to the equality between English and Dutch
Wikipedia. Rinser [13] proposed an instance-based attribute matching approach.
They first matched entities in different language editions of Wikipedia, then they
compared the values in attribute pairs and got final results using the entity map-
pings. However, these works did not consider the correlations among candidate
attribute pairs, which is proved to be effective for attribute matching in our
work.

5.2 Ontology Schema Matching

Ontology schema matching [14] is another related problem which mainly aims
to get alignments of concepts and properties. Currently, some works focus on
monolingual matching tasks, such as SOCOM [5] and RiMOM [8,21]. These
systems deal with the cross-lingual ontology matching problem mainly using
machine translation tools to bridge the gap between languages. In our approach,
translation-based features are optional.

6 Conclusions and Future Work

In this paper, we propose a cross-lingual attribute matching approach. Our
approach integrates several feature functions in a factor graph model (EAFG),
including labels, templates, categories and attribute correlations to predict new
cross-lingual attribute mappings. Evaluations on existing mappings show that
our approach can achieve high F1-measure with 85.5% and 85.4% on English-
Chinese and English-French Wikipedia respectively. Using our approach, we have
found 23,923 new attribute mappings between English and Chinese Wikipedia
and 31,576 between English and French. It is obvious that article and attribute
mappings can benefit each other. Therefore, in the future, we are going to design
a framework which can simultaneously and iteratively align all of the elements
in Wikipedia.

Cross-Lingual Infobox Alignment in Wikipedia Using EAFG 759

Acknowledgments. The work is supported by 973 Program (No. 2014CB340504),
NSFC key project (No. 61533018, 61661146007), Fund of Online Education Research
Center, Ministry of Education (No. 2016ZD102), THUNUS NExT Co-Lab, National
Natural Science Foundation of China (Grant No. 61375054), Natural Science Founda-
tion of Guangdong Province (Grant No. 2014A030313745).

References

1. Adar, E., Skinner, M., Weld, D.S.: Information arbitrage across multi-lingual
wikipedia. In: International Conference on Web Search and Web Data Mining,
WSDM 2009, Barcelona, Spain, pp. 94–103, February 2009

2. Bouma, G., Duarte, S., Islam, Z.: Cross-lingual alignment and completion of
wikipedia templates. In: Proceedings of the Third International Workshop on Cross
Lingual Information Access: Addressing the Information Need of Multilingual Soci-
eties, pp. 21–29. Association for Computational Linguistics (2009)

3. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks 2003, pp. 73–78 (2003)

4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

5. Fu, B., Brennan, R., O’Sullivan, D.: Cross-lingual ontology mapping – an investi-
gation of the impact of machine translation. In: Gómez-Pérez, A., Yu, Y., Ding, Y.
(eds.) ASWC 2009. LNCS, vol. 5926, pp. 1–15. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-10871-6 1

6. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

7. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale,
multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195
(2015)

8. Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: a dynamic multistrategy ontology align-
ment framework. IEEE Trans. Knowl. Data Eng. 21(8), 1218–1232 (2009)

9. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: a knowledge base from multilin-
gual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research,
CIDR Conference (2014)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

11. Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: machine learn-
ing in python. J. Mach. Learn. Res. 12(10), 2825–2830 (2013)

13. Rinser, D., Lange, D., Naumann, F.: Cross-lingual entity matching and infobox
alignment in wikipedia. Inf. Syst. 38(6), 887–907 (2013)

14. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

15. Sorg, P., Cimiano, P.: Enriching the crosslingual link structure of wikipedia-a
classification-based approach. In: Proceedings of the AAAI Workshop on Wikipedia
& Artifical Intelligence (2008)

http://dx.doi.org/10.1007/978-3-642-10871-6_1
http://dx.doi.org/10.1007/978-3-642-10871-6_1

760 Y. Zhang et al.

16. Wang, Z., Li, J., Tang, J.: Boosting cross-lingual knowledge linking via concept
annotation. In: International Joint Conference on Artificial Intelligence, pp. 2733–
2739 (2013)

17. Wang, Z., Li, J., Wang, Z., Tang, J.: Cross-lingual knowledge linking across wiki
knowledge bases. In: International Conference on World Wide Web, pp. 459–468
(2012)

18. Wang, Z., Li, J., Wang, Z., Li, S., Li, M., Zhang, D., Shi, Y., Liu, Y., Zhang,
P., Tang, J.: Xlore: a large-scale English-Chinese bilingual knowledge graph. In:
Proceedings of the 2013th International Conference on Posters & Demonstrations
Track, vol. 1035, pp. 121–124. CEUR-WS.org (2013)

19. Wang, Z., Li, Z., Li, J., Tang, J., Pan, J.Z.: Transfer learning based cross-lingual
knowledge extraction for wikipedia. In: ACL (1), pp. 641–650 (2013)

20. Wentland, W., Knopp, J., Silberer, C., Hartung, M.: Building a multilingual lexi-
cal resource for named entity disambiguation, translation and transliteration. In:
International Conference on Language Resources and Evaluation, LREC 2008,
Marrakech, Morocco, 26 May–1 June 2008, pp. 3230–3237 (2008)

21. Zhang, Y., Li, J.: Rimom results for OAEI 2015. Ontol. Match. 185 (2015)

Author Index

Acosta, Maribel II-3
Alani, Harith I-138
Alaya, Nourhène I-3
Alharbi, Eisa I-20
Allik, Alo II-156
Arias, Mario II-75
Artale, Alessandro I-37
Atzeni, Mattia II-20
Atzori, Maurizio II-20
Auer, Sören II-350

Bach, Benjamin I-400
Baier, Stephan I-53
Bal, Henri I-69
Bazoobandi, Hamid R. I-69, I-87
Bechhofer, Sean II-29
Beck, Harald I-87
Beek, Wouter II-75
Begur Sreekanth, Nikhila II-263
Ben Yahia, Sadok I-3
Bernstein, Abraham I-313
Bin, Simon II-147
Blanch, Kate II-263
Bloem, Peter II-156
Boneva, Iovka I-104
Both, Fabian I-694
Bourgaux, Camille I-121
Brambilla, Marco II-202
Brandt, S. II-314
Bühmann, Lorenz II-147
Burel, Grégoire I-138
Bustos, Benjamin II-84

Calbimonte, Jean-Paul II-38
Calvanese, Diego I-452
Carral, David I-156
Casanova, Marco Antonio II-193
Centeno, Emilio I-436
Chakraborty, Nilesh II-147
Charalambidis, Angelos I-711
Chekol, Melisachew Wudage I-490
Chen, Jieying I-173
Chheda, Nilay II-263
Christophides, Vassilis I-260

Cimiano, Philipp I-329
Clinton, Éamonn II-66
Cochez, Michael I-190
Conrads, Felix II-48
Corby, Olivier I-208
Corcoglioniti, Francesco II-165
Cotting, Alexandre II-38
Cuenca Grau, Bernardo I-526, I-594
Cui, Xuan I-728
Curé, Olivier I-559

de Boer, Victor II-156
De Giacomo, Giuseppe I-225
De Meester, Ben II-297
de Valk, Reinier II-156
Debruyne, Christophe II-66
Degler, Duane II-263
Dell’Aglio, Daniele I-243
Della Valle, Emanuele II-202
Dennis, Matt I-243
Dimou, Anastasia II-297
Dragoste, Irina I-156
Dubey, Mohnish II-210
Dubosson, Fabien II-38

Efthymiou, Vasilis I-260
Egyedi, Attila L. II-103
Eichelberger, Eugene II-367
El Hassad, Sara I-278
Emile-Geay, Julien II-231
Ermilov, Ivan II-147
Evelo, Chris I-436

Faron-Zucker, Catherine I-208
Fazekas, György II-29
Fernández, Javier D. II-75
Ferrada, Sebastián II-84
Fink, Eleanor II-263
Fionda, Valeria I-296
Franconi, Enrico I-37
Furlong, Laura I. I-436

Galárraga, Luis I-661
Gallagher, Gemma II-367

Gandon, Fabien I-208
Gangemi, Aldo II-156
Garijo, Daniel II-94, II-231
Gil, Yolanda II-231
Giuliano, Claudio II-165
Goasdoué, François I-278
Gonçalves, Rafael S. II-103
Grangel-González, Irlán II-350
Graybeal, John II-103
Grubenmann, Tobias I-313
Gueret, Christophe II-367

Hakimov, Sherzod I-329
Halilaj, Lavdim II-350
Hamie, Ali I-20
Hansen, Peter I-347
Hartig, Olaf I-364
Hassanzadeh, Oktie I-260
Hayes, Jer II-367
Heino, Erkki II-280
Heist, Nicolas I-383
Hellmann, Sebastian II-297
Herrera, José Eduardo Talavera II-193
Hertling, Sven II-111
Hilfiker, Roger II-38
Hoekstra, Rinke II-156, II-334
Hogan, Aidan II-84
Horrocks, Ian I-526, II-314
Hose, Katja I-471
Hou, Lei I-745
Hovland, Dag II-120
Howse, John I-20
Hu, Wei I-628, II-219
Hyvönen, Eero II-280

Ikkala, Esko II-280
Ivanova, Valentina I-400

Jabeen, Hajira II-147
Jain, Nimesh II-263
Janssen, Berit II-156
Jaudoin, Hélène I-278
Jebbara, Soufian I-329

Kaffee, Lucie-Aimée I-542
Kalaycı, E. II-314
Kamdar, Maulik R. II-130
Kejriwal, Mayank II-139, II-247
Kharlamov, Evgeny I-594, II-314

Khider, Deborah II-231
Knoblock, Craig A. II-263
Koho, Mikko II-280
Konstantopoulos, Stasinos I-711
Kontchakov, Roman II-120
Kontokostas, Dimitris II-297
Kostylev, Egor V. I-594
Krötzsch, Markus I-156, I-418
Kuhn, Tobias I-436

Labra Gayo, Jose E. I-104
Lafourcade, Mathieu I-678
Lambrix, Patrick I-400
Lamolle, Myriam I-3
Lange, Christoph II-350
Lanti, Davide I-452
Laurent, Anne I-678
Lavin, Peter II-66
Lécué, Freddy II-367
Lehmann, Jens II-48, II-147, II-210, II-297
Lembo, Domenico I-225
Leme, Luiz André P. Paes II-193
Leskinen, Petri II-280
Letter, Ian I-364
Li, Chengkai I-628
Li, Juanzi I-745
Li, Xue II-219
Liu, Jun II-219
Liu, Wenqiang II-219
Lohmann, Steffen II-350
Lopes, Giseli Rabello II-193
Ludwig, Michel I-173
Lutz, Carsten I-347

Ma, Yue I-173
Ma, Yunpu I-53
Maheshwari, Gaurav II-210
Mäkelä, Eetu II-280
Mandon, Théophile I-678
Mannens, Erik II-297
Maroy, Wouter II-297
Martínez-Prieto, Miguel A. II-75
Martínez-Romero, Marcos II-103
Marx, Maximilian I-418
Mauri, Andrea II-202
McCanney, Peter II-367
McKay, Nicholas II-231
McNerney, Lorraine II-66
Meehan, Alan II-66

762 Author Index

Mehdi, Gulnar II-314
Meilicke, Christian I-490
Meroño-Peñuela, Albert II-156, II-334
Mirza, Paramita I-507
Montoya, Gabriela I-471
Moor, Dmitry I-313
Morsey, Mohamed II-48
Musen, Mark A. II-103, II-130

Nautiyal, Atul II-66
Nechaev, Yaroslav II-165
Nemirovski, German I-490
Newbury, David II-263
Ngonga Ngomo, Axel-Cyrille II-48, II-147
Nolle, Andreas I-490
Nunes, Bernardo Pereira II-193

O’Connor, Martin J. II-103
O’Sullivan, Declan II-66
Oriol, Xavier I-225
Ozaki, Ana I-418

Page, Kevin II-29, II-156
Palmirani, Monica II-175
Pan, Jeff Z. I-243
Paradis, Thomas I-745
Paulheim, Heiko I-190, I-383, II-111
Pellissier Tanon, Thomas I-507
Peñaloza, Rafael I-37
Pérez, Jorge I-364
Pernelle, Nathalie I-661
Peroni, Silvio II-175, II-184
Petersen, Niklas II-350
Petrova, Alina I-526
Phethean, Chris I-542
Pietriga, Emmanuel I-400
Pirrò, Giuseppe I-296
Piscopo, Alessandro I-542
Ponzetto, Simone Paolo I-190
Prud’hommeaux, Eric G. I-104

Qi, Guilin I-728
Queralt-Rosinach, Núria I-436

Raju Krishna, Ravi II-263
Ratnakar, Varun II-231
Razniewski, Simon I-507
Ren, Xiangnan I-559
Rettinger, Achim I-694

Ristoski, Petar I-190
Rodriguez-Muro, Mariano I-260
Roshchin, Mikhail II-314
Runkler, Thomas II-314

Saif, Hassan I-138
Saïs, Fatiha I-661
Saleem, Muhammad II-48, II-147
Samavi, Reza I-645
Sanderson, Robert II-263
Sattler, Uli I-577
Savković, Ognjen II-314
Savo, Domenico Fabio I-225
Sazonau, Viachaslau I-577
Schlobach, Stefan II-156
Schumacher, Michael II-38
Sejdiu, Gezim II-147
Seuken, Sven I-313
Sherkhonov, Evgeny I-526, I-594
Shotton, David II-184
Simperl, Elena I-542
Skaf-Molli, Hala I-471
Skjæveland, Martin G. II-120
Snyder, Sara II-263
Sportelli, Francesco I-37
Stadler, Claus II-147
Stapleton, Gem I-20
Stegemann, Timo I-611
Stepanova, Daria I-507
Stringer, Bas II-156
Stuckenschmidt, Heiner I-490
Suchanek, Fabian I-661
Sun, Zequn I-628
Sure-Vetter, York II-3
Sutton, Andrew I-645
Symeonidou, Danai I-661
Szekely, Pedro II-139, II-247, II-263

Tamper, Minna II-280
Tchechmedjiev, Andon I-678
Teniente, Ernest I-225
Thoma, Steffen I-694
Thost, Veronika I-418
Todorov, Konstantin I-678
Tommasini, Riccardo II-202
Touloumis, Anestis I-20
Tresp, Volker I-53
Trivedi, Priyansh II-210
Troumpoukis, Antonis I-711

Author Index 763

Tudorache, Tania II-130
Tuominen, Jouni II-280
Turhan, Anni-Yasmin I-121

Urbani, Jacopo I-69, I-87

van de Moosdijk, Sara II-367
van Deemter, Kees I-243
van Harmelen, Frank I-69
Verborgh, Ruben II-297
Vidal, Maria-Esther II-3
Vitali, Fabio II-175, II-184

Waaler, Arild II-120
Walk, Simon II-130
Walther, Dirk I-173
Wang, Meng II-219
Wang, Sen II-219
Weigl, David M. II-29
Weikum, Gerhard I-507

Westphal, Patrick II-147
Willighagen, Egon I-436
Willrett, Debra II-103
Wilmering, Thomas II-29
Wu, Jiewen II-367
Wu, Tianxing I-728

Xiao, Guohui I-452, II-314
Xu, Kang I-728

Yao, Yixiang II-263

Zakharyaschev, Michael II-120
Zhang, Jiaheng II-219
Zhang, Jing I-745
Zhang, Lei I-728
Zhang, Yan I-745
Zheng, Haitao I-745
Ziegler, Jürgen I-611

764 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	From Relational to Semantic Data Mining
	Ontologies for the Modern Age
	Applied Semantics: Beyond the Catalog
	Contents – Part I
	Contents -- Part II
	Research Track
	Multi-label Based Learning for Better Multi-criteria Ranking of Ontology Reasoners
	1 Introduction
	2 Background and Related Works
	2.1 Key Notions of Multi-label Learning Paradigm
	2.2 Multi-label Learning Techniques for Algorithm Selection
	2.3 Ontology Features

	3 Novel Multi-label Learning Method for Multi-criteria Ranking of Ontology Reasoners
	3.1 Reasoner Ranking Criteria and Preference Rules
	3.2 Specification of the Novel Multi-label Ranking Method
	3.3 Multi-RakSOR Learning and Prediction Steps
	3.4 Ranking Consistency Checking Method

	4 Data Collection
	5 Experimental Evaluation of Multi-RakSOR
	5.1 Evaluation Metrics
	5.2 Multi-label Learning Methods
	5.3 Relevance Prediction Assessment Results
	5.4 Ranking Prediction Assessment Results

	6 Experimental Evaluation of Meta-RakSOR
	7 Conclusion
	References

	The Efficacy of OWL and DL on User Understanding of Axioms and Their Entailments
	1 Introduction
	2 Background
	3 Tasks: Understanding Axioms and Inference
	4 Main Hypotheses
	5 Empirical Study Design
	5.1 Designing Questions for the Study
	5.2 Experiment Phases
	5.3 Experiment Execution
	5.4 Statistical Methods

	6 Results
	6.1 Understanding Tasks
	6.2 Sound Inference Tasks
	6.3 Unsound Inference Tasks
	6.4 Time Performance

	7 Discussion
	7.1 Understanding Axioms
	7.2 Sound Inferences
	7.3 Unsound Inferences

	8 Threats to Validity
	9 Conclusion
	References

	A Decidable Very Expressive Description Logic for Databases
	1 Introduction
	2 The Description Logic DLR+
	3 Expressiveness of DLR+
	4 The DLR Fragment of DLR+
	5 Mapping DLR to ALCQI
	6 Implementation of a DLR API
	7 Conclusions
	References

	Improving Visual Relationship Detection Using Semantic Modeling of Scene Descriptions
	1 Introduction
	2 Background and Related Work
	2.1 Statistical Link Prediction
	2.2 Image Classification and Object Detection
	2.3 Visual Relationship Detection

	3 Modeling Visual Relationships
	3.1 Problem Description
	3.2 Semantic Model
	3.3 Visual Model
	3.4 Probabilistic Joint Model

	4 Experiments
	4.1 Dataset
	4.2 Visual Relationship Detection
	4.3 Zero-Shot Learning

	5 Conclusion
	References

	An Empirical Study on How the Distribution of Ontologies Affects Reasoning on the Web
	1 Introduction
	2 Experimental Setup
	3 Local Reasoning
	4 IRI De-referencing
	4.1 Experimental Results

	5 OWL Imports
	5.1 Experimental Results

	6 Related Work
	7 Conclusions
	References

	Expressive Stream Reasoning with Laser
	1 Introduction
	2 Theoretical Background: LARS
	2.1 Plain LARS Programs

	3 Incremental Evaluation of LARS Programs
	4 Evaluation
	5 Related Work and Conclusion
	References

	Semantics and Validation of Shapes Schemas for RDF
	1 Introduction
	2 Shapes Schemas
	3 Semantics of Shapes Schemas
	3.1 Typing and Correct Typing
	3.2 Stratified Negation
	3.3 Maximal Correct Typing

	4 Validation
	4.1 Refinement Algorithm
	4.2 Recursive Algorithm
	4.3 On Implementation of the Validation Algorithms

	5 Conclusion
	References

	Temporal Query Answering in DL-Lite over Inconsistent Data
	1 Introduction
	2 Preliminaries
	3 Temporal Query Answering over Inconsistent Data
	4 Complexity Analysis for DL-LiteR
	5 Conclusion and Future Work
	References

	Semantic Wide and Deep Learning for Detecting Crisis-Information Categories on Social Media
	1 Introduction
	2 Related Work
	3 The Sem-CNN Approach for Identifying Crisis Information Categories
	3.1 Text Preprocessing
	3.2 Word Vector Initialisation
	3.3 Concept Extraction and Semantic Vector Initialisation
	3.4 A Wide and Deep Semantic CNN Model for Text Classification

	4 Experimental Setup
	4.1 Dataset
	4.2 Concept Extraction
	4.3 Baselines

	5 Evaluation
	5.1 Baselines Results
	5.2 Sem-CNN Results

	6 Discussion and Future Work
	7 Conclusion
	References

	Tractable Query Answering for Expressive Ontologies and Existential Rules
	1 Introduction
	2 Preliminaries
	3 Tractable Reasoning for Disjunctive Existential Rules
	4 Tractable Reasoning for Ontologies
	5 Evaluation
	6 Conclusions and Future Work
	References

	Zooming in on Ontologies: Minimal Modules and Best Excerpts
	1 Introduction
	2 Preliminaries
	3 Application of Subsumption Justification
	3.1 Application 1: Computing Minimal Modules
	3.2 Application 2: Computing Best Excerpts

	4 Algorithms of Computing Subsumption Justifications
	4.1 Computing Subsumer Justifications
	4.2 Computing Subsumee Justifications

	5 Evaluation
	6 Conclusion
	References

	Global RDF Vector Space Embeddings
	1 Introduction
	2 Related Work
	3 Global Vectors from RDF Data
	3.1 The GloVe Model
	3.2 Building a Co-occurrence Matrix from Graph Data
	3.3 BCA: A Fast Personalized PageRank Approximation
	3.4 A Fast All-Pairs PPR Algorithm
	3.5 Biasing the Random Walks
	3.6 Combining the Pieces

	4 Evaluation
	4.1 Machine Learning Tasks
	4.2 Document Modeling

	5 Conclusion and Outlook
	References

	LDScript: A Linked Data Script Language
	1 Introduction
	2 Related Work
	3 Overview of LDScript
	3.1 LDScript Function Definition
	3.2 Local Variable Declaration
	3.3 Loop Statements
	3.4 Function Evaluation
	3.5 List Datatype

	4 LDScript Formal Definition
	4.1 LDScript Syntax
	4.2 LDScript Semantics

	5 Examples of Use Cases
	5.1 Extended Aggregates
	5.2 Procedural Attachment
	5.3 Calendar
	5.4 SHACL

	6 Implementation and Evaluation
	6.1 Generic Evaluation and Validation
	6.2 Java Compiling and Specific Evaluation

	7 Conclusion and Future Work
	References

	Practical Update Management in Ontology-Based Data Access
	1 Introduction
	2 Preliminaries
	3 Write-also OBDA Systems
	4 Ontology-Level Update
	5 Source-Level Update
	5.1 Coherent Source-Level Updates
	5.2 Incoherent Source-Level Update

	6 Conclusion
	References

	Computing Authoring Tests from Competency Questions: Experimental Validation
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Participants
	3.2 Materials
	3.3 Variables
	3.4 Procedure
	3.5 Hypotheses

	4 Results
	5 Discussion
	6 Conclusions
	References

	Matching Web Tables with Knowledge Base Entities: From Entity Lookups to Entity Embeddings
	1 Introduction
	2 Background and Related Work
	3 Matching Algorithms
	3.1 Lookup Method
	3.2 Entity Embeddings Method
	3.3 Ontology Matching Method
	3.4 Hybrid

	4 Experiments
	4.1 Datasets
	4.2 Evaluation

	5 Conclusion and Future Work
	References

	Learning Commonalities in SPARQL
	1 Introduction
	2 Preliminaries
	2.1 The Resource Description Framework (RDF)
	2.2 SPARQL Conjunctive Queries

	3 Problem Statement
	3.1 Comparing Queries w.r.t. Ontological Constraints
	3.2 Learning lggs w.r.t. Ontological Contraints

	4 Computing lggs of Queries w.r.t. Ontological Constraints
	5 Experiments
	6 Related Work and Conclusion
	References

	Meta Structures in Knowledge Graphs
	1 Introduction
	1.1 Running Example

	2 Discovering Meta Structures
	2.1 Problem Formalization
	2.2 SP1: Building m-Meta Structure Instances
	2.3 SP2: Abstracting Meta Structure Instances

	3 Meta Structure Based Relevance
	4 Implementation and Evaluation
	4.1 Efficiency
	4.2 Effectiveness

	5 Related Work
	6 Concluding Remarks and Future Work
	References

	Challenges of Source Selection in the WoD
	1 Introduction
	2 Related Work
	3 Experimental Evaluation of the Cumulative Join Estimation Error
	3.1 Query Approximation Engine
	3.2 Experimental Setup
	3.3 Results

	4 Theoretical Analysis of the Cumulative Join Estimation Error
	5 Limitations and Future Work
	6 Conclusion
	References

	AMUSE: Multilingual Semantic Parsing for Question Answering over Linked Data
	1 Introduction
	2 Approach
	2.1 DUDES
	2.2 Imperatively Defined Factor Graphs
	2.3 Inference
	2.4 Features
	2.5 Learning Model Parameters
	2.6 Addressing the Lexical Gap

	3 Experiments and Evaluation
	3.1 Evaluating the Lexicon Generation
	3.2 Evaluating Question Answering
	3.3 Error Analysis

	4 Related Work
	5 Conclusion
	References

	Computing FO-Rewritings in EL in Practice: From Atomic to Conjunctive Queries
	1 Introduction
	2 Preliminaries
	3 Tree-Quantified CQs
	4 Rooted CQs
	5 Experiments
	6 Conclusion
	References

	A Formal Framework for Comparing Linked Data Fragments
	1 Introduction
	2 Linked Data Fragment Machine
	2.1 Preliminaries
	2.2 Formalization
	2.3 Rationale and Limitations of LDFMs
	2.4 Computability and Expressiveness for LDFMs

	3 Expressiveness Lattice
	3.1 The Expressiveness of Using the BRTPF Interface
	3.2 The Expressiveness of Using the TPF Interface

	4 Comparisons Based on Classical Complexity Classes
	5 Additional Complexity Measures
	6 Concluding Remarks and Future Work
	References

	Language-Agnostic Relation Extraction from Wikipedia Abstracts
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Overall Approach
	3.2 Feature Engineering
	3.3 Machine Learning Algorithms

	4 Experiments
	4.1 Pre-study on English Abstracts
	4.2 Cross-Lingual Relation Extraction
	4.3 Topical and Geographical Analysis by Language

	5 Conclusion and Outlook
	References

	Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments
	1 Introduction
	2 Ontology Alignment Evaluation
	2.1 Evaluation Use Cases
	2.2 Existing Approaches
	2.3 Frameworks for Ontology Alignment Evaluation

	3 Matrix Cubes and the Cubix Interface
	4 Alignment Cubes
	4.1 From Matrix Cubes to Alignment Cubes
	4.2 Granularity Levels
	4.3 Interactive Visual Exploration
	4.4 Compare and Contrast

	5 Use Cases Support
	5.1 Comparing Alignments, Systems and Support for Comparative Evaluation
	5.2 Ontology Alignment Evolution

	6 Discussion and Future Work
	7 Conclusions
	References

	Attributed Description Logics: Ontologies for Knowledge Graphs
	1 Introduction
	2 Attributed Description Logics
	2.1 Syntax and Intuition
	2.2 Formal Semantics

	3 Expressivity of Attributed Description Logics
	4 Reasoning in ALCH@
	5 Tractable Reasoning in Attributed EL
	6 Attributed OWL
	7 Conclusion
	References

	Reliable Granular References to Changing Linked Data
	1 Introduction
	2 Background
	3 Approach
	3.1 Incremental Datasets with Nanopublications
	3.2 From Snapshots to Incremental Datasets
	3.3 Granular and Reliable Retrieval

	4 Implementation and Methods
	4.1 Nanopublication Operation Tool: npop
	4.2 Evaluation on Data Publishing
	4.3 Evaluation on Data Analyses

	5 Results
	6 Discussion and Conclusions
	References

	Cost-Driven Ontology-Based Data Access
	1 Introduction
	2 Preliminaries
	3 Cover-Based Translation in OBDA
	4 Unfolding Cardinality Estimation
	5 Unfolding Cost Model
	6 Experimental Results
	7 Conclusion and Future Work
	References

	The Odyssey Approach for Optimizing Federated SPARQL Queries
	1 Introduction
	2 Related Work
	3 The Odyssey Approach
	3.1 Dataset Statistics on Individual Datasets
	3.2 Federated Statistics
	3.3 Reducing the Sizes of Entity Descriptions
	3.4 Optimizing Federated Queries

	4 Evaluation
	4.1 Experimental Results
	4.2 Combining Odyssey with Existing Optimizers

	5 Conclusion
	References

	Automated Fine-Grained Trust Assessment in Federated Knowledge Bases
	1 Introduction
	2 Preliminaries
	2.1 Federated DL-LiteA Knowledge Bases
	2.2 Inconsistency in Description Logics
	2.3 Markov Networks

	3 Conflict Graph and Repair Generation
	4 Fine-Grained Trust Assessment
	4.1 Signature Accuracy
	4.2 Assertion Trusts
	4.3 Signature Trusts
	4.4 Data Source Trusts

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Completeness-Aware Rule Learning from Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Completeness-Aware Rule Scoring
	4.1 Completeness Confidence
	4.2 Completeness Precision and Recall
	4.3 Directional Bias

	5 Acquisition of Numerical Statements
	6 Evaluation
	6.1 Completeness-Aware Rule Learning
	6.2 Automated Acquisition of Cardinality Statements

	7 Conclusion and Future Work
	References

	Entity Comparison in RDF Graphs
	1 Introduction
	2 Preliminaries
	3 A Framework for Entity Comparison
	4 Computing a Most Specific Similarity Query
	5 Computing Most General Difference Queries
	6 Case Study
	7 Related Work
	8 Conclusion and Future Work
	References

	Provenance Information in a Collaborative Knowledge Graph: An Evaluation of Wikidata External References
	1 Introduction
	2 Background and Related Work
	2.1 Provenance in Wikidata
	2.2 Authoritativeness in Wikidata
	2.3 Evaluating Provenance

	3 Methods
	3.1 Source Evaluation
	3.2 Automatic Evaluation Model

	4 Evaluation
	4.1 Data
	4.2 Metrics
	4.3 Crowdsourcing Experiment Evaluation
	4.4 Relevance Evaluation
	4.5 Authoritativeness Evaluation
	4.6 Quality Prediction Models

	5 Discussion
	6 Conclusions and Future Work
	References

	Strider: A Hybrid Adaptive Distributed RDF Stream Processing Engine
	1 Introduction
	2 Background Knowledge
	3 Strider Overview
	3.1 Continuous Query Example
	3.2 Architecture

	4 Strider's Continuous SPARQL Processing
	4.1 Query Processing Outline and Trigger Layer
	4.2 Run-Time Query Plan Generation
	4.3 B-AQP and F-AQP

	5 Evaluation
	5.1 Implementation Details
	5.2 Experimental Setup
	5.3 Evaluation Results and Discussions

	6 Related Work
	7 Conclusion and Future Work
	References

	Mining Hypotheses from Data in OWL: Advanced Evaluation and Complete Construction
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Advanced Evaluation of Hypotheses
	4.1 New Logical Measures
	4.2 New Statistical Measures

	5 Complete Construction of Hypotheses
	6 Empirical Evaluation
	6.1 Mutual Correlations of Hypothesis Quality Measures
	6.2 A Case Study

	7 Future Work
	References

	Semantic Faceted Search with Aggregation and Recursion
	1 Introduction
	2 Preliminaries
	3 Faceted Queries
	4 Extended Faceted Queries
	5 Answering Extended Faceted Queries
	6 Query Containment and Equivalence
	7 Related Work
	8 Conclusion and Future Work
	References

	Investigating Learnability, User Performance, and Preferences of the Path Query Language SemwidgQL Compared to SPARQL
	1 Introduction
	2 Related Work
	3 SemwidgQL
	3.1 Core Features
	3.2 Advanced Features

	4 Empirical User Study
	4.1 Method
	4.2 Results
	4.3 Discussion

	5 Evaluation of SemwidgQL's Expressiveness
	6 Conclusion
	References

	Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding
	1 Introduction
	2 Related Work
	2.1 KB Embedding
	2.2 Cross-Lingual KB Alignment

	3 Cross-Lingual Entity Alignment via KB Embedding
	3.1 Overview
	3.2 Structure Embedding
	3.3 Attribute Embedding and Entity Similarity Calculation
	3.4 Joint Attribute-Preserving Embedding
	3.5 Discussions

	4 Evaluation
	4.1 Datasets
	4.2 Comparative Approaches
	4.3 Evaluation Metrics
	4.4 Experimental Results

	5 Conclusion and Future Work
	References

	Blockchain Enabled Privacy Audit Logs
	1 Introduction
	2 Characteristics of Tamper-Proof Privacy Logs
	2.1 Tamper-Proof Privacy Audit Log Desiderata

	3 Blockchain Enabled Privacy Audit Logs
	3.1 Bitcoin Blockchain
	3.2 Architectural Components
	3.3 Signature Graph Generation
	3.4 Block Graph Generation

	4 Log Integrity Verification
	5 Experimental Evaluation
	5.1 Dataset
	5.2 Test Environment
	5.3 Experimental Results

	6 Related Work
	7 Conclusions
	References

	VICKEY: Mining Conditional Keys on Knowledge Bases
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Mining Conditional Keys
	4.1 Discovery of Non-keys
	4.2 Generation of Conditional Key Graphs
	4.3 Mining of Conditional Key Graphs
	4.4 Implementation

	5 Experiments
	5.1 Runtime Experiments
	5.2 Extrinsic Evaluation

	6 Conclusion
	References

	Ontolex JeuxDeMots and Its Alignment to the Linguistic Linked Open Data Cloud
	1 Introduction
	2 JeuxDeMots: A Lexical Network
	2.1 Construction of JdM
	2.2 Relations

	3 Related Work
	3.1 The Ontolex Model
	3.2 Converting Lexical Resources to Ontolex
	3.3 Word Sense Alignment Techniques for the LLOD Cloud

	4 Producing Ontolex JeuxDeMots
	5 Linking Ontolex JdM to the LLOD Cloud
	6 Evaluation of the Linking Algorithm
	6.1 Benchmark Construction
	6.2 Experimental Protocol
	6.3 Results and Discussion

	7 Conclusion
	References

	Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics
	1 Introduction
	2 Related Work on Fusion of Learned Representations
	3 Uni-Modal Vector Representations
	4 Tri-Modal Concatenated Concept Space
	5 Shared Cross-Modal Concept Space
	6 Experiments
	6.1 Word Similarity
	6.2 Noise Induced Errors Vs. Complementary Information Gain
	6.3 Entity Segmentation
	6.4 Entity-Type Prediction
	6.5 Key Findings

	7 Conclusion and Future Work
	References

	An Extension of SPARQL for Expressing Qualitative Preferences
	1 Introduction
	2 Background
	3 The SPREFQL Language
	3.1 Syntax
	3.2 Semantics
	3.3 Expressive Power of SPREFQL

	4 Experiments
	4.1 Implementation and Experimental Setup
	4.2 Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Encoding Category Correlations into Bilingual Topic Modeling for Cross-Lingual Taxonomy Alignment
	1 Introduction
	2 Preliminaries
	2.1 Cross-Lingual Taxonomy Alignment
	2.2 Bilingual Topic Modeling

	3 Models
	3.1 Overview
	3.2 Generative Processes
	3.3 Computing Prior Category Distribution
	3.4 Parameters Estimation

	4 Experiments
	4.1 Experiment Settings
	4.2 Parameter Tuning
	4.3 Result Analysis

	5 Related Work
	5.1 Cross-Lingual Schema Matching
	5.2 Metadata Topic Models

	6 Conclusions and Future Work
	References

	Cross-Lingual Infobox Alignment in Wikipedia Using Entity-Attribute Factor Graph
	1 Introduction
	2 Problem Formulation
	3 The Proposed Approach
	3.1 Overview
	3.2 Entity-Attribute Factor Graph Model
	3.3 Learning and Inference

	4 Experiments
	4.1 Data Set
	4.2 Comparison Methods
	4.3 Performance Metrics
	4.4 Settings
	4.5 Results Analysis
	4.6 Discovering New Cross-Lingual Attribute Mappings in Wikipedia
	4.7 Wikipedia Infobox Completion

	5 Related Work
	5.1 Wikipedia Infobox Alignment
	5.2 Ontology Schema Matching

	6 Conclusions and Future Work
	References

	Author Index

