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Abstract. Today we are witnessing an explosion in the size and the amount of
the available RDF datasets. As such, conventional single node RDF manage-
ment systems give their position to clustered ones. However most of the cur-
rently available clustered RDF database systems partition data using hash
functions and/or vertical and horizontal partition algorithms with a significant
impact on the number of nodes required for query answering, increasing the
total cost of query evaluation. In this paper we present a novel semantic parti-
tioning approach, exploiting both the structure and the semantics of an RDF
Dataset, for producing vertical partitions that significantly reduce the number of
nodes that should be visited for query answering. To construct these partitions,
first we select the most important nodes in a dataset as centroids, using the
notion of relevance. Then we use the notion of dependence to assign each
remaining node to the appropriate centroid. We evaluate our approach using
three real world datasets and demonstrate the nice properties that the constructed
partitions possess showing that they significantly reduce the total number of
nodes required for query answering while introducing minimal storage
overhead.

1 Introduction

The recent explosion of the Data Web and the associated Linked Open Data
(LOD) initiative have led to an enormous amount of widely available RDF datasets.
For example, data.gov comprises in more than 5 billion triples, the Linked Cancer
Genome Atlas currently consists of more than 7 billion triples and is estimated to reach
30 billion [27] whereas the LOD cloud contained already 62 billion triples since
January 2014 [25].

To store, manage and query these ever increasing RDF data, many systems were
developed by the research community (e.g. Jena, Sesame etc.) and by many com-
mercial vendors (e.g. Oracle and IBM) [10]. Although, these systems have demon-
strated great performance on a single node, being able to manage millions, and, in some
cases, billions of triples, as the amount of the available data continues to scale, it is no
longer feasible to store the entire dataset on a single node. Consequently, under the
light of the big data era, the requirement for clustered RDF database systems is
becoming increasingly important [6].

In principle the majority of the available clustered RDF database systems, such as
SHARD [23], YARS2 [6], and Virtuoso [20] partition triples across multiple nodes
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using hash functions. However, hash functions require in essence contacting all nodes
for query answering and when the size of the intermediate results is large, the
inter-node communication cost can be prohibitively high. To face this limitation, other
systems try to partition RDF datasets into clusters such that the number of queries that
hit partition boundaries is minimized. However most of these systems either treat RDF
as simple graphs, exploiting graph partitioning algorithms, [7] or cluster triples based
on locality measures with limited semantics [17].

Although RDF datasets can be interpreted as simple graphs, besides their structural
information they have also attached rich semantics which could be exploited to
improve the partition algorithms and dictate a different approach. As such, in this paper,
we focus on effectively partitioning RDF datasets across multiple nodes exploiting all
available information, both structural and semantic. More specifically our contributions
are the following:

e We present RDFCluster, a novel platform that accepts as input an RDF dataset and
the number of the available computational nodes and generates the corresponding
partitions, exploiting both the semantics of the dataset and the structure of the
corresponding graph.

e We view an RDF dataset as two distinct and interconnected graphs, i.e. the schema
and the instance graph. Since query formulation is usually based on the schema, we
generate vertical partitions based on schema clusters. To do so we select first the
most important schema nodes as centroids and assign the rest of the schema nodes
to their closest centroid similar to [11]. Then individuals are instantiated under the
corresponding schema nodes producing the final partitions of the dataset.

e To identify the most important nodes we reuse the notion of relevance based on the
established measures of the relative cardinality and the in/out degree centrality of a
node [30]. Then to assign the rest of the schema nodes to a centroid we define the
notion of dependence assigning each schema node to the cluster with the maximum
dependence between that node and the corresponding centroid.

e We describe the aforementioned algorithm and we present the computational
complexity for computing the corresponding partitions given a dataset and the
available computational nodes.

e Then, we experiment with three datasets, namely CRMg;,, LUBM and eTMO, and
the corresponding queries and we show the nice properties of the produced parti-
tions with respect to query answering, i.e. the high quality of the constructed
partitions and the low storage overhead it introduces.

Our partitioning scheme can be adopted for efficient storage of RDF data reducing
communication costs and enabling efficient query answering. Our approach is unique in
the way that constructs data partitions, based on schema clusters, constructed com-
bining structural information with semantics. We have to note that in this paper we are
not interested in benchmarking clustered RDF systems but only on the corresponding
partition algorithm.

The rest of the paper is organized as follows. Section 2 introduces the formal
framework of our solution and Sect. 3 describes the metrics used to determine how the
cluster should be formulated and the corresponding algorithm. Then, Sect. 4 describes
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the evaluation conducted and Sect. 5 presents related work. Finally, Sect. 6 concludes
the paper and presents directions for future work.

2 Preliminaries and Example

In this paper, we focus on datasets expressed in RDF, as RDF is the de-facto standard
for publishing and representing data on the Web. The representation of knowledge in
RDF is based on triples of the form (subject, predicate, object). RDF datasets have
attached semantics through RDFS', a vocabulary description language. Here, we will
follow an approach similar to [12], which imposes a convenient graph-theoretic view of
RDF data that is closer to the way the users perceive their datasets.

Representation of RDF data is based on three disjoint and infinite sets of resources,
namely: URIs (U), literals (L) and blank nodes (B). We impose typing on resources, SO
we consider 3 disjoint sets of resources: classes (C C U U B), properties (P C U), and
individuals (I C U U B). The set C includes all classes, including RDFS classes and
XML datatypes (e.g., xsd:string, xsd:integer). The set P includes all properties, except
rdf:type which connects individuals with the classes they are instantiated under. The set
I includes all individuals (but not literals).

In this work, we separate between the schema and instances of an RDF dataset,
represented in separate graphs (Gg, Gy respectively). The schema graph contains all
classes and the properties they are associated with (via the properties’ domain/range
specification); note that multiple domains/ranges per property are allowed, by having
the property URI be a label on the edge (via a labelling function A) rather than the edge
itself. The instance graph contains all individuals, and the instantiations of schema
properties; the labelling function A applies here as well for the same reasons. Finally,
the two graphs are related via the . function, which determines which class(es) each
individual is instantiated under. Formally:

Definition 1 (RDF Dataset). An RDF dataset is a tuple V = (Gg, Gy, 4, 7.) such that:

e Gy is a labelled directed graph Gg = (Vs, Es) such that Vs, Eg are the nodes and
edges of Gyg, respectively, and V¢ C C U L.

e (s alabelled directed graph G; = (V;, E)) such that V,, E; are the nodes and edges
of G respectively, and V; C 1 U L.

e A labelling function A: Eg U E; — P that determines the property URI that each
edge corresponds to (properties with multiple domains/ranges may appear in more
than one edge).

e A function 7: I — 2€ associating each individual with the classes that it is
instantiated under.

For simplicity, we forego extra requirements related to RDFS inference (sub-
sumption, instantiation) and validity (e.g., that the source and target of property
instances should be instantiated under the property’s domain/range respectively),
because these are not relevant for our results below and would significantly complicate

! https://www.w3.org/TR/rdf-schema/.
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our definitions. In the following, we will write p(v;, v») to denote an edge ¢ in Gg
(where v; v, € Vg) or G; (where v; v, € V) from node v; to node v, such that
Ale) = p. In addition for brevity we will call schema node a node ¢ € Vg, class node a
node ¢ € C N Vgand instance node anode u € I N V,. In addition a path from v; € Vg
to vy € Vg, i.e. path(v,, v,), is the finite sequence of edges, which connect a sequence of
nodes, starting from the node v; and ending in the node v,. In this paper we will focus
on class and instance nodes due to lack of space, but our approach can be easily
generalized to include literals as well.

Now as an example consider the LUBM ontology” part shown in Fig. 1 used to
describe a university domain. This example contains 20 classes and many properties.
Now assume that we would like to partition the corresponding RDF dataset into three
partitions revealing discriminating features for each one of them. One way to do that
for example would be to identify first the three most importance schema nodes of the
dataset, allocate each one of those nodes to the corresponding cluster as a centroid and
finally place into the same cluster the schema nodes that depend on those selected
nodes. The clusters generated using our approach are shown in Fig. 1. The most
important schema nodes, as identified by our algorithm, are the “Professor”, the
“Publication” and the “Person” classes. These are used as centroids and the remaining
schema nodes are assigned to the appropriate clusters by identifying the schema nodes
that depend on those centroids. Finally the instance nodes are assigned to the class
nodes that are instantiated under. In this paper we will use the term cluster to refer only
to the schema graph and the term partition to refer to the entire dataset.
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Fig. 1. An example RDF dataset and the corresponding partitions of our algorithm

When data is partitioned across multiple machines the particular partitioning
method, can have a significant impact on the amount of data that needs to be shipped

2 hitp://swat.cse.lehigh.edu/projects/lubm/.
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over the network at query time. Ideally we would like the constructed partitions to
increase the likelihood that query answers can be computed locally reducing the
communication cost. In general, in distributed query processing, where multiple nodes
are available, query answering proceeds by first breaking the query into pieces, all of
which can be evaluated independently within individual partitions. The query pieces
are then evaluated in the relevant partitions obtaining partial matches and they are
joined to produce the final answer. Again, in this paper we are not interested on the
technicalities of query answering but only on the aforementioned partitioning algorithm
and how the careful placement of the nodes within partitions could optimize the overall
number of nodes to be visited for query answering.

Assume for example the following SPARQL query involving 3 classes and 2
user-defined properties, requesting all publications of the persons belonging to an
organization:

SELECT ?X, ?Y, 2?7 WHERE{
?X rdf:type ub:Person.
?Y rdf:type ub:0Organization.
?P rdf:type ub:Publication.
?Y ub:affiliatedOf ?Z
?Y ub:orgPublication ?P

If data was partitioned using a simple hash partitioning algorithm, then obviously
all nodes would have to be examined. If however, the data was partitioned as shown in
Fig. 1 then only two nodes would have to be contacted, as instances of the “Organi-
zation” and “Publication” classes can be found in the second partition and the
instances of “Person” can be located at the third partition. We therefore, instead of
using simple hash or graph partitioning algorithm are looking for a more advanced
method, partitioning the schema into appropriate clusters, considering the semantics of
the nodes and the structural information of the corresponding graph.

3 Metrics

Our clustering framework follows the K-Medoids clustering method [11]; we select the
most centrally located point in a cluster as a centroid, and assign the rest of points to
their closest centroids. To identify the most centrally located point in a cluster we use
the notion of relevance. Then dependence is used for extracting nodes, highly relevant
to the specific important nodes (centroids) connecting other nodes to the most
important ones.

3.1 Identifying Centroids

Initially, the notion of centrality [30] is used to quantify how central is a class node in a
specific RDF dataset. To identify the centrality of a class node ¢ in a dataset V, we
initially consider the instances it contains by calculating its relative cardinality. The
relative cardinality RC(p(c, c;)) of an edge p(c, ¢;), which connects the class nodes ¢ and
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¢; in the schema graph, is defined as the number of the specific instance connections
between the corresponding two classes divided by the total number of the connections
of the instances that these two classes have. Then, we combine the data distribution
with the number of the incoming/outgoing edges, aka properties, of this class. As such,
the in/out-centrality (C;,/C,,;) is defined as the sum of the weighted relative cardi-
nalities of the incoming/outgoing edges:

Definition 2 (Centrality). Assume a node ¢ € C N Vgin adataset V = (Gs, Gy, 4, 7.).
The in-centrality C;,(c) (respectively, the out-centrality C,,(c)) of c is defined as the
sum of the weighted relative cardinality of the incoming p(c; ¢) € E; (respectively,
outgoing p(c, ¢;) € Eg) edges:

Cou(c)= > RC(p(c,c;)) *wp, Cilc)= >, RC(p(ci,c))*w,

plc,ci)EE, p(ci,c)EE,

The weights in the above formula have been experimentally defined [30] and vary
depending on whether edges that correspond to properties are user-defined or RDF/S,
giving higher importance to user-defined ones (in our experiments we used w, = 0.8
for user-defined properties and w, = 0.2 for RDF/S ones). This is partly because
user-defined properties correlate classes, each exposing the connectivity of the entire
schema, in contrast to hierarchical or other kinds (e.g., rdfs:label) of RDF/S properties.
Consider now the “Article” class shown in Fig. 1. Assume also that there are not any
instances in the corresponding dataset. Then the relative cardinality of all nodes is
initialized to a constant a = 0.03. As such C;,(University) = 0 since there are no
incoming edges and C,,(University) = RC(;qprype) * Wrapnpe = 0.03 * 0.2 = 0.06.

Now that centrality is defined we are going to define relevance. The notion of
relevance [30] has been proposed as adequate for quantifying the importance of a class
in an RDF dataset. In particular, relevance is based on the idea that the importance of a
class should describe how well the class could represent its neighborhood. Intuitively,
classes with many connections with other classes in a dataset should have a higher
importance than classes with fewer connections. Thus, the relevance of a class is
affected by the centrality of the class itself, as well as by the centrality of its neigh-
boring classes. Moreover, since the version might contain huge amounts of data, the
actual data instances of the class should also be considered when trying to estimate its
importance, namely relevance. Formally, relevance is defined as follows:

Definition 3 (Relevance). Assume anode ¢ € C N Vgin adataset V = (Gs, Gy, 4, 7.).
Assume also that ¢y, ..., ¢, € Eg are the incoming edges of ¢ (p(c;, ¢) € Es) and
c\, - ¢}, € Es are the outgoing edges of ¢(p(c, ¢},) € E;). Then the relevance of c, i.e.
Relevance(c), is the following:

Cin(c) *n+ Copulc) xk
(Courlcy)) + ;’Z(cm)

Relevance(c) =

n

Jj=1

The aforementioned metric identifies class nodes being able to represent an entire
area and as a consequence those nodes can be used as the centroids of the corresponding
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graph. In our example, shown in Fig. 1, Relevance(University) = C;,(Univer-
sity) + Cou(University)/C,,(Organization) + 0 = 0 + 0.06/0.048 = 1.25.

3.2 Assigning Nodes to Centroids

Having a method to identify the most important nodes (centroids) in an RDF dataset we
are now interested on identifying to which cluster the remaining nodes should be
assigned to. Our first idea to this direction comes from the classical information theory;
that infrequent words are more informative that frequent ones. The idea is also widely
used in the field of instance matching [24]. The basic hypothesis here is that the greater
the influence of a property on identifying a corresponding instance the less times it is
repeated. According to this idea, we try to initially identify the dependence between
two classes based on their data instances.

In our running example, the node “Person” has a high relevance in the graph and as
a consequence a great probability to be used as a centroid. Assume also two nodes
“SSN” and “Work” directly connected it. Although an instance of “Person” can have
only one social security number, many persons can be employed by the same employer
and as such a person cannot be characterized by his work. As a consequence, the
dependence between “Person” and “SSN” is higher than the dependence between
“Person” and “Telephone”. Based on this observation, we define the measurement of
cardinality closeness of two adjacent schema nodes.

Definition 4 (Cardinality Closeness). Let ¢;, ¢, be two adjacent schema nodes and u;,
u; € Gy such that t.(u;) = ¢, and t.(u;) = ¢,. The cardinality closeness of p(cy, cy),
namely the CC(p(cy, cy)), is the following:

1 DistinctValues(p(u;, u;))

CC(p(cr;cy)) = m Instances(p(u;, u;))

where |c|, c € C N Vg the number of nodes in the schema graph, DistinctValues(p(u;,
u;)) the number of distinct p(u;, u;) and Instances(p(u; u;)) the number of p(u;, uy).
When there are no instances Instances(p(u; u;)) = 1 and DistinctValues(p(u;, u;)) = 0.
The constant 1/|c| is added in order to have a minimum value for the CC in case of
no available instances. Having defined the cardinality closeness of two adjacent
schema nodes we proceed further to identify their dependence. As such we identify the
dependence between two classes as a combination of their cardinality closeness, the
relevance of the classes and the number of edges between these two classes:

Definition 5 (Dependence of two schema nodes). The dependence of two schema
nodes ¢, and c,, i.e. the Dependence(cy, c,), is given by the following formula

1 °\ Relevance(c;)
D d. s3Ce) =" 3 Rel s) — ey
cpendencelcs,cc) |path(cy, c.)|* ' ( clevance(c i:SZ-H CCCU(Ci—vai))>
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Obviously as we move away from a node, the dependence becomes smaller by
calculating the differences of relevance across a selected path in the graph. We penalize
additionally dependence dividing by the distance of the two nodes. The highest the
dependence of a path, the more appropriate is the first node to describe the final node of
the path. Also note that the Dependence(c,, c,) is different than Dependence(c,, c,). For
example, Dependence(Publication, Book) > Dependence(Book, Publication). This is
happening, since the dependence of a more relevant node toward a less relevant node is
higher than the other way around, although, they share the same cardinality closeness.

3.3 The Clustering Algorithm

Having defined both the relevance for identifying the most important nodes and the
dependence of two schema nodes we are now ready to define the semantic partitioning
problem:

Definition 6 (Semantic Partitioning Problem). Given an RDF Dataset V = (G, G,
A,7.), partition V into k subsets V;, V,, ..., Vi such that:

V= Uf:1 Vi
2. Let top; = {cy, ..., c;} be the k schema nodes with the highest relevance in V. Then
c;€Vy ., €V
3. Let d; be a schema node and d; ¢ top,. Then
Dependence(d;, c,) = maxo< < Dependence(dj,cx) — 3d;jinV, (I < p < k)
4. Vu € Gy, such that t.(u) € Gs and t.(u) € V; - Juin V;

The first requirement says that we should be able to recreate V by taking the union
of all V, (1 < i < k). The second one that each cluster should be based on one of the
nodes with the top & relevance (the top, set) as a centroid, and the third that each node
that does not belong to the top; should appear at least in the cluster with the maximum
dependence between the specific node and the corresponding centroid. Note that a node
can appear in multiple clusters. The idea originates from social networks where an
individual can simultaneously belong to several communities (family, work etc.),
similarly an RDF resource might belong to more than one clusters. As such, in order to
include a schema node in the V, cluster (1 < p < k) we are looking for the path
maximizing the Dependence. In the selected path however there might exist nodes not
directly assigned to V,,. We include those nodes in the cluster as well since they have
also high dependence to the centroid. Finally all instances are replicated under the
corresponding schema nodes.

The corresponding algorithm is shown in Fig. 2. The algorithm gets as input an
RDF dataset and the number of computational nodes (k) and partitions the dataset into
k partitions. Bellow we explain in more detail each of the steps of the algorithm.

The algorithm starts by calculating the relevance of all schema nodes (lines 2-3).
More specifically for each node in Gs we calculate the corresponding relevance
according to Definition 3. Having calculated the relevance of each node we would like
to get the k most important ones to be used as centroids in our clusters. Those are
selected (line 4) and then assigned to the corresponding cluster (lines 5-6).
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Then the algorithm examines the remaining schema nodes to determine to which
cluster they should be placed at. For each node we calculate the dependence between
the selected node and all centroids (line 7). We select to place the node in the cluster
with the maximum dependence between the aforementioned node and the k centroids
(line 8). However we are not only interested in placing the selected node to the
identified cluster but we place the whole path and specifically the nodes contained in
the path, which connects the selected node with the appropriate centroid
(path_with_max_depedence), maximizing the dependence of the selected node in that
cluster (line 9) as well. Next, we add to each cluster the corresponding instance nodes
to the schema nodes they are instantiated under. Finally, we return the partitions to the
user. The correctness of the algorithm is immediately proved by construction.

To identify the complexity of the algorithm we should first identify the complexity
of its various components. Assume |V| the number of nodes, |[E| the number of edges

Algorithm 1: RDFCluster(V, k)
Input: An RDF dataset V= (G, G, 4, T.), k the number of the available nodes.
Output: A set S of k partitions S={V, ..., V.

2. foreachnode c; € Gg

3 r;:= calculate relevance(V, c;)
4 topy. := select top nodes(r, k)

5. foreach node c; € top,,

6. Vi=Vio e

7. foreach node c; & topy

8 j=find_cluster(c; topy)

9 V=V, path_with_max_dependence(c; V)
10.  for each node c;in V;
I1. V;=V; v Instances(c;)
12. Return S:{V],..., Vk}

Fig. 2. The RDFCluster algorithm

and |I| the number of instances. For identifying the relative cardinality of the edges we
should visit all instances and edges once. Then for calculating the schema node cen-
tralities we should visit each node once whereas for calculating the relevance of each
node we should visit twice all nodes O(|I] + |E| + 2|V|). Then we have to sort all nodes
according to their relevance and select the top k ones O(|V|log|V|). To calculate the
dependence of each node we should visit each node once per selected node O(k|V]),
whereas to identify the path maximizing the dependence we use the weighted Dijkstra
algorithm with cost O(|V[?). Finally we should check once all instances for identifying
the clusters to be assigned O(|I)). As such the time complexity of the algorithm is
polynomial O(|I| + [E| + 2|V|) + O(|V[log|V]) + OK|V|) + O(V]*) < O(V[).
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4 Evaluation

To evaluate our approach and the corresponding algorithm we used three RDF datasets:

CRMdigS. CRMy;, is an ontology to encode metadata about the steps and methods
of production (“provenance”) of digitization products and synthetic digital represen-
tations created by various technologies. The ontology contains 126 classes and 435
properties. For our experiments we used 900 real instances from the 3D-SYSTEK"
project. In addition we used 9 template queries published in [28] with an average size
of 6 triple patterns.

LUBM. The Lehigh University Benchmark (LUBM) is a widely used benchmark
for evaluating semantic web repositories. It contains 43 classes, and 32 properties
modeling information about universities and is accompanied by a synthetic data gen-
erator. For our tests we used the default 1555 instances coming from a real dataset. The
benchmark provides 14 test queries that we used in our experiments with an average
size of 4 triple patterns.

eTMO. This ontology has been defined in the context of MyHealthAvatar® EU
project [16] and is used to model various information within the e-health domain. It is
consisted of 335 classes and 67 properties and it is published with 7848 real instances
coming from the MyHealthAvatar EU project. For querying we used 8 template queries
specified within the project for retrieving relevant information, with an average size of
17 triple patterns per query.

Each dataset was split into 2, 5 and 10 partitions and we used all queries available
for query answering. For a fixed dataset, increasing the number of partitions is likely to
increase the number of nodes required for answering queries as the data becomes more
fragmented. However, it increases the number of queries that can be answered inde-
pendently in parallel reducing the computation task for a single node. As we have
already mentioned, our task is not to measure end-to-end query answering times
involving multiple systems but to evaluate the quality of the constructed partitions with
respect to the query answering

As such, for each VI, ..., Vk (k =2, 5, 10) we measure the following character-
istics: (i) The quality of constructed partitioning algorithms, i.e. the percentage of the
test queries that can be answered only by a single partition, (ii) the number of partitions
that are needed in order to answer each query and (iii) the space overhead that our
algorithm introduces in both schema nodes and the dataset.

We compare our approach with (a) subject-based hash partitioning similar to
YARS?2 [6] and Trinity.RDF [34] called Hashing, and (b) METIS used by [7, 17] for
clustering RDF Datasets. Hashing is distributing triples in partitions by applying a hash
function to the subject of the triple in order to guarantee that star queries can be
evaluated locally. METIS [13] on the other hand calculates n disjoint sets of nodes such
that all sets are of similar sizes and the number of edges in connecting nodes in distinct
sets is minimized. In this work we focus only on the partitioning schemes of the

3 http://www.ics.forth.gr/isl/index_main.php?l=e&c=656.
4 http://www.ics.forth.gr/isl/3D-SYSTEK/.
5 http://www.myhealthavatar.eu/.
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aforementioned works. All datasets and queries used in our experiments along with the
detailed results can be found online®.

4.1 Quality

We perceive the quality of a partitioning algorithm with respect to query answering as
the percentage of queries that can be answered by a single computational node without
requiring to visit additional nodes to provide answers to the user. The results for all
queries in our three datasets for the three algorithms in 2, 5 and 10 partitions are shown
in Table 1.

We can easily identify that RDFCluster is better in almost all the cases showing the
high quality of the produced partitions with respect to query answering. The only case
that METIS is better than RDFCluster is in LUBM when we have 5 partitions where
one more query can be answered by a single one. However, for LUBM, even in 5
partitions as we shall see in the sequel (Sect. 4.2) our algorithm requires less nodes to
be visited on average for answering the benchmark queries. In addition we expect that
as the number of partitions increases the average number of queries that can be
answered by an individual partition decreases as the data are distributed to more nodes.
Our expectations are confirmed by our results.

In addition as expected, smaller queries (LUBM with an average of 4 triple patterns
per query and CRMg;, with an average of 6 triple patterns per query) show a greater
likelihood to be answered by a single node than queries with more triple patterns such
as eTMO with an average of 17 triple patterns per query.

Table 1. The quality of the three clustering algorithms Hashing (H), Metis (M) and RDFCluster
(RC) in 2, 5 and 10 partitions.

Partitions | CRM ;e LUBM eTMO

H M |[RC |[H |[M |RC H |[M |RC
2 22% | 22% | 100% | 14% | 14% | 36% | 0% | 0% | 88%
5 0% | 0% | 44% |14% | 21% | 14% | 0% | 0% | 13%
10 0% | 0% | 22% | 7% | 7% | 14% | 0% | 0% | 13%

4.2 Number of Clusters Required for Answering a Query

Besides evaluating the quality of our algorithm, another interesting dimension is to
evaluate how much work is required for answering the queries in each case in terms of
the nodes required to be visited. The nodes to be visited give us an intuition about how
many joins will be required to construct the final answer that will be returned to the
user. This is critical because, in order to ensure the completeness of query answers, all
partial matches in all partition elements must be computed and joined together.

S http://www.ics.forth.gr/ ~ kondylak/ISWC2016_Evaluation.zip.
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The results are shown in Fig. 3 where we can see that in all cases RDFCluster
requires on average less nodes to be visited for query answering, showing again the
nice properties of our algorithm. Note that even for large queries (€TMO with an
average of 17 triple patterns) our algorithm requires only three partitions to be visited
on average for query answering and this applies even in the case of 10 partitions.
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Fig. 3. The number of nodes required for answering the benchmark queries.

4.3 Storage Overhead

The storage overhead provides us with an indication of how much space is needed for
our approach compared to the space required for storing all datasets in a single node.
Since Hashing and METIS algorithms construct non-overlapping clusters they have no
storage overhead. However for simple variations of hash allowing duplication the
overhead can be really high (e.g. 2-hop duplication can lead to an overhead up to 430%
[7]). In our case, since we allow a class node and the corresponding instances to be
replicated in multiple nodes we expect as the number of clusters increases to increase
the storage overhead as well.

Table 2. Schema nodes overhead as the number of clusters increases

Clusters | CRMy;, | LUBM | eTMO
2 1.55% 3.33% | 0.65%
5 1.55% 8.33% | 4.90%
10 6.20% |15.00% |7.19%

Table 3. Total storage overhead as the number of clusters increases

Clusters | CRMy;, | LUBM | eTMO
2 0.10% |0.12% | 0.04%
5 0.10% | 0.89% | 0.29%
10 16.73% | 1.13% |2.78%
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To identify and understand the overhead introduced by our algorithm first we focus
only on the schema graph and identify the overhead introduced there. This is shown in
Table 2 calculating the percentage |Gsyi|+ ...+ |Gsvk| — |Gs|/|Gs|. As shown the
overhead is minimal introducing at most 15.00% additional schema nodes for LUBM
whereas for eTMO and CRMg;, is only 7.19% and 6.20% respectively.

The impact of these additional schema nodes to the overhead of the entire dataset is
shown in Table 3. The table shows the total storage overhead introduced by our
algorithm, i.e. the percentage |V1| + ... + [Vk | — |V|/|V]. As shown, the total storage
overhead introduced from our algorithm is at most 16.73% for CRMdig and for the
majority of the cases less than 1%. Another interesting observation is that in almost all
the cases the schema nodes overhead is greater than the corresponding total storage
overhead showing that our algorithm succeeds in replicating only nodes with small
additional overhead that however significantly improve query answering as shown in
previous sections.

Overall, as the experiments show although our algorithm chooses to sacrifice equal
data distribution on the nodes to achieve a better performance with respect to query
answering the imposed overhead is really low reaching at most 16.73% overhead on
our test cases.

5 Related Work

Graph clustering has received much attention over the latest years [35], aiming to
partition large graphs into several densely connected components, with many applica-
tion such as community detection in social networks, identification of interactions in
protein interaction networks etc. The problem proved to be an NP-complete problem [5].
Typical algorithms of this class include local search based solutions (such as KL [15]
and FM [4]), which swap heuristically selected pairs of nodes, simulated annealing [8],
and genetic algorithms [3]. Algorithms in this category focus on the topological
structure of a graph so that each partition achieves a cohesive internal structure and there
are approaches based on normalized-cut [26], modularity [20], structural density [33],
attribute similarity [29] or combinations between those [35]. To scale up to graphs with
millions of nodes, multi-level partitioning solutions, such as Metis [13], Chaco [9], and
Scotch [22], and variations over these have been proposed.

To this direction, several approaches try to represent RDF datasets as graphs and
exploit variations of the aforementioned data for data partitioning. For example, Wang
et al. [31] focus on providing semantic-aware highly parallelized graph partitioning
algorithms for generic-purpose distributed memory systems whereas Huang et al. [7]
apply graph partitioning over the Hadoop MapReduce framework trying to reduce as
much as possible the communication costs. Our approach however, does not focus only
on the structural part of the graph for partitioning the RDF datasets but considers in
addition semantic information (such as the number of instances, the distinct instance
values, assigns different weights according to the type of the properties) with the same
target however, i.e. to reduce as much as possible the communication costs among
partitions when these partitions are used for query answering.
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Other clustered RDF database systems, such as SHARD [23], YARS2 [6], and
Virtuoso [20] partition triples across multiple nodes using hash functions. However,
portioning data using hashing requires a lot of communication overhead for query
answering since in essence all nodes have to be contacted. The same problem appear in
other works that adopt vertical [2] or horizontal partitioning schemes based on triples
[18] ignoring however the correlation between triples, leading to a large number of join
operators among the compute nodes. Other algorithms, but with the same problem use
hybrid hierarchical clustering [19] combining an affinity propagation clustering algo-
rithm and the k-Means clustering algorithms. To overcome that problem Lee et al. [17]
proposed to by use locality sensitive hashing schemes. Although this approach moves
to the same direction with ours, trying to exploit semantics, the adopted solution is
limited to only the fact that triples are anchored at the same subject or object node. In
addition according to our experiments our solution outperforms similar approaches.

Finally there are approaches that try to monitor the execution of SPARQL queries
[1] or assume that query patterns are already available [32] and keep track of records
that are co-accessed and physically cluster them using locality sensitive hashing
schemes. Our approach uses a similar “profiling” mechanism but instead of focusing on
queries, we focus on profiling “data” identifying and combining the knowledge of the
instance distribution with structure and semantics. A more thorough overview of the
different partition schemes for RDF datasets can be found on [10].

6 Conclusions and Future Work

In this paper we present a novel method that gets as input and RDF dataset and the
number of available computational nodes and returns a set of partitions to be stored on
the aforementioned nodes. To select the centroids for the each cluster initially our
algorithm selects the most important nodes based on the notion of relevance. Then to
assign the remaining nodes to a cluster we use the notion of dependence eventually
assigning the remaining schema nodes to the cluster maximizing the dependence with
the corresponding centroid. Having constructed the appropriate “schema clusters” we
place next the instances on the corresponding classes they belong to. Our algorithm
exploits both structural and semantic information in order to both select the most
important nodes and then to assign the remaining nodes to the proper clusters. In
addition, since both our constructed clusters and user queries are based on schema
information we argue that this partitioning scheme will have a beneficial impact on
query evaluation limiting significantly the nodes that should be visited to answer
frequent queries.

The quality of our partitioning scheme is verified by our experiments. We use three
RDF Datasets, namely CRMg;,, LUBM and eTMO with their corresponding template
queries and we show that the clusters produced significantly limit the number of
clusters to be contacted for query answering. Obviously, as the number of clusters
increases, eventually the number of nodes required for query answering increases as
well, leading to trade-offs among load-balancing and the number of nodes to be used.
However, as shown, our algorithm achieves better performance than existing systems
with respect to query answering, requiring at most 3 nodes for our template queries
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even when the dataset is partitioned in 10 nodes. In addition, although in order to these
results we allow replication, we show that the impact is minimal imposing at most at
most 16.73% total storage overhead.

As future work we intend to explore how our algorithm shall be adapted when no
schema is available in an RDF dataset; it is true that RDF datasets do not have always a
predefined schema which limits their use to express queries or to understand their
content. To this direction approaches are starting to emerge discovering the types of the
data using clustering algorithms [14]. Furthermore, we plan to deploy our clustering
algorithm in a real clustered environment and to measure the actual improvement on
query execution times, comparing our solution with other competitive approaches. In
addition our clustering method does not considers limiting the number of nodes that are
included in each cluster. However, an idea would be to try to limit the nodes assigned
to each cluster trying in parallel to maximize the total dependence of the selected
nodes. The problem is well-known to be NP-complete, requires complex variation
algorithms over Steiner-Tree problem and we have already started to explore inter-
esting approximations [21]. Obviously as the size and complexity of data increases,
partitioning schemes are becoming more and more important and several challenges
remain to be investigated in the near future.
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