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Preface

This book contains the selected research papers presented at ISIP 2016, the 11th
International Workshop on Information Search, Integration and Personalization. After
being organized in France, Japan, Thailand, Malaysia, and USA (North Dakota), this
year the workshop was held again in France, reflecting the goal of alternating places
while widening the audience. More precisely, the workshop took place in 2016 at the
University Claude Bernard Lyon 1, November 3–4.

Two keynote speeches (whose abstracts are included here) were given during the
workshop:

– Professor Jun Adachi (National Institute of Informatics, Japan), “Social CPS: Its
Concept and Practical Experience Acquired in the Demonstrative Experiment”

– Professor Paolo Papotti (Arizona State University, USA), “Detecting Data Errors:
Where Are We and What Needs to Be Done?”

There were 30 presentations of scientific papers, of which 13 were submitted to the
post-workshop peer review. The international Program Committee selected eight
papers to be included in the proceedings.

The themes of the presented and/or submitted papers reflected today’s diversity of
research topics as well as the rapid development of interdisciplinary research. With
increasingly sophisticated research in science and technology, there is a growing need
for interdisciplinary and international availability, distribution, and exchange of the
latest research results, in organic forms, including not only research papers and mul-
timedia documents, but also various tools developed for measurement, analysis,
inference, design, planning, simulation, and production as well as the related large data
sets. Similar needs are also growing for the interdisciplinary and international avail-
ability, distribution, and exchange of ideas and works among artists, musicians,
designers, architects, directors, and producers. These contents, including multimedia
documents, application tools, and services are being accumulated on the Web, as well
as in local and global databases, at a remarkable speed that we have never experienced
with other kinds of publishing media. Large amounts of content are now already on the
Web, waiting for their advanced personal and/or public reuse. We need new theories
and technologies for the advanced information search, integration through interoper-
ation, and personalization of Web content as well as database content.

The ISIP 2016 workshop was organized to offer a forum for presenting original
work and stimulating discussions and exchanges of ideas around these themes,
focusing on the following topics.

– Data Quality
– Social Cyber-Physical Systems
– Information search in large data sets (databases, digital libraries, data warehouses)
– Comparison of different information search technologies, approaches, and

algorithms



– Novel approaches to information search
– Personalized information retrieval and personalized Web search
– Data Analytics (Data Mining, Data Warehousing)
– Integration of Web services, Knowledge bases, Digital libraries
– Federation of Smart Objects

ISIP started as a series of Franco-Japanese workshops in 2003, and its first edition
took place under the auspices of the French embassy in Tokyo, which provided the
financial support along with JSPS (Japanese Society for the Promotion of Science). Up
until 2012, the workshops alternated between Japan and France, and attracted
increasing interest from both countries. Then, motivated by the success of the first
editions of the workshop, participants from countries other than France or Japan vol-
unteered to organize it in their home country.

The history of past ISIP workshops is as follows:

– 2003: First ISIP in Sapporo (June 30 to July 2, Meme Media Lab, Hokkaido
University, Japan)

– 2005: Second ISIP in Lyon (May 9–11, University Claude Bernard Lyon 1, France)
– 2007: Third ISIP in Sapporo (June 27–30, Meme Media Laboratory, Hokkaido

University, Japan)
– 2008: 4th ISIP in Paris (October 6–8, Tour Montparnasse, Paris, France)
– 2009: 5th ISIP in Sapporo (July 6–8, Meme Media Laboratory, Hokkaido

University, Japan)
– 2010: 6th ISIP in Lyon (October 11–13, University Claude Bernard Lyon 1, France)
– 2012: 7th ISIP in Sapporo (October 11–13, Meme Media Laboratory, Hokkaido

University, Japan)
– 2013: 8th ISIP in Bangkok (September 16–18, Centara Grand and Bangkok Con-

vention Centre Central World Bangkok, Thailand).
– 2014: 9th ISIP in Kuala Lumpur (October 9–10, HELP University, Kuala Lumpur,

Malaysia).
– 2015: 10th ISIP in Grand Forks (October 1–2, University of North Dakota, Grand

Forks, North Dakota, USA)

Originally, the workshops were intended for a Franco-Japanese audience, with the
occasional invitation of researchers from other countries as keynote speakers. The
proceedings of each workshop were published informally, as a technical report of the
hosting institution. One exception was the 2005 workshop, selected papers of which
were published by the Journal of Intelligent Information Systems in its special issue for
ISIP 2005 (Vol. 31, Number 2, October 2008). The original goal of the ISIP workshop
series was to create close synergies between a selected group of researchers from the
two countries; and indeed, several collaborations, joint publications, joint student
supervisions, and research projects originated from participants of the workshop.

After the first six workshops, the organizers concluded that the workshop series had
reached a mature state with an increasing number of researchers participating every
year. As a result, the organizers decided to open up the workshop to a larger audience
by inviting speakers from over ten countries at ISIP 2012, ISIP 2013, ISIP 2014, as
well as at ISIP 2015. The effort to attract an even larger international audience led to the
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workshop being organized in countries other than France and Japan. This will continue
in the years to come. During the past four years in particular, an extensive effort was
made to include in the Program Committee academics coming from around the globe,
giving the workshop an even more international character and disseminating its
information and results globally. We expect this to have an important effect in the
participation of the workshop in the years to come.

The selected papers contained in this book are grouped into three major topics,
namely, “Exploratory Analytics”, “Mobility and Location Data Analytics”, and “Large
Graph Management”; they span major topics in information management research both
modern and traditional.

We would like to express our appreciation to all the staff members of the organizing
institution for the help, kindness, and support before during and after the workshop. Of
course we also would like to cordially thank all speakers and participants of ISIP 2016
for their intensive discussions and exchange of new ideas. This book is an outcome of
those discussions and exchanged ideas. Our thanks also go to the Program Committee
members whose work was undoubtedly essential for the selection of the papers con-
tained in this book.

July 2017 Jean-Marc Petit
Nicolas Spyratos
Yuzuru Tanaka
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Social CPS: Its Concept and Practical
Experience Acquired in the Demonstrative

Experiment

Jun Adachi

National Institute of Informatics, Japan

A cyber-physical system (CPS) is an IT-based system that grasps the physical world by
sensing, then analyzes the acquired data in order to give feedback to the real world.
This general scheme of CPS is expected to have diversified potential possibility to
enhance the current systems, in particular complex and huge social systems that include
interaction with humans. We call this “social CPS.”

We have been conducting a research project titled “CPS-IIP: Integrated IT Plat-
forms for Cyber-Physical Systems to Accelerate Implementation of Efficient Social
Systems” since 2012, funded by the Japanese Ministry of Education, Culture, Sports,
Science, and Technology.

In this talk, I will explain the concepts and the goals of the project, which includes
implementation of two demonstrative systems as practical application of CPS to social
systems: “Smart Snow Plowing” and “Human-Centric Energy Management.” Our
development of various basic technologies for CPS, such as data store and
high-throughput processing systems, smart federated analytics with machine-learning
techniques, and various sensing technologies for real-world data processing, will also
be introduced.



Detecting Data Errors: Where Are We
and What Needs to Be Done?

Paolo Papotti

Arizona State University, USA

Data cleaning has played a critical role in ensuring data quality for enterprise appli-
cations. Naturally, there has been extensive research in this area, and many data
cleaning algorithms have been translated into tools to detect and to possibly repair
certain classes of errors such as outliers, duplicates, missing values, and violations of
integrity constraints. Since different types of errors may coexist in the same data set, we
often need to run more than one kind of tool.

In a recent effort, we investigated two pragmatic questions: (1) are these tools
robust enough to capture most errors in real-world data sets? and (2) what is the best
strategy to holistically run multiple tools to optimize the detection effort? To answer
these two questions, we obtained multiple data cleaning tools that utilize a variety of
error detection techniques. We also collected five real-world data sets, for which we
could obtain both the raw data and the ground truth on existing errors.

In this talk, we report our experimental findings on the errors detected by the tools
we tested. First, we show that the coverage of each tool is well below 100%. Second,
we show that the order in which multiple tools are run makes a big difference. Hence,
we propose a holistic multi-tool strategy that orders the invocations of the available
tools to maximize their benefit, while minimizing human effort in verifying results.
Third, since this holistic approach still does not lead to acceptable error coverage, we
discuss two simple strategies that have the potential to improve the situation, namely
domain specific tools and data enrichment. We close this talk by reasoning about the
errors that are not detectable by any of the tools we tested and possible directions of
future research.
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Towards User-Aware Rule Discovery

Venkata Vamsikrishna Meduri and Paolo Papotti(B)

Arizona State University, Tempe, USA
{vmeduri,ppapotti}@asu.edu

Abstract. Rule discovery is a challenging but inevitable process in sev-
eral data centric applications. The main challenges arise from the huge
search space that needs to be explored, and from the noise in the data,
which makes the mining results hardly useful. While existing state-of-
the-art systems pose the users at the beginning and the end of the
mining process, we argue that this paradigm must be revised and new
rule mining algorithms should be developed to let the domain experts
interact during the discovery process. We discuss how new systems that
embrace this approach overcome current limitations and ultimately result
in shorter time and smaller user effort for rule discovery.

1 Introduction

Rule discovery from data is of utmost importance given the applicability of
rules in several real world data-centric applications such as cleaning [13,25,32],
fraud detection [4,5], cybersecurity [22,28], smart cities [15,20], and database
design [19,21,34]. While for many of these applications machine learning (ML)
approaches have been designed, rules are still extremely popular in the indus-
try [32]. In fact, rules are a favored choice to encode the background knowledge
of the domain experts and ultimately take decisions over data. For example,
financial services corporations manually create corpora of thousands of rules to
identify fraudulent credit card transactions [24]. The main advantages of rule
based approaches include the ability to work without training data, the possibil-
ity to debug them by non-experts, the potential to handle specialized infrequent
patterns, and the semantically explainable and interpretable output [32].

In this work we focus on rules for data quality. We are interested in rules that
go beyond traditional association rules [3], both in terms of complexity of the rule
language and in terms of supported data models. Consider a scenario with credit
card transactions by a customer, as shown in Fig. 1. A domain expert states that
if there are two transactions from the same card and the same merchant, the
transaction IDs must be consistent with the timestamps, or the transactions
should be manually reviewed. In other words, if a transaction has a higher id
than another one that is registered later, there must be a problem.

In this example, the rule is triggered because record T2 for transaction with
ID “XX216” is registered before transaction “XX214” in T1. The rule can be
formally stated by using the formalization of Denial Constraints (DCs) [10] as

c© Springer International Publishing AG 2017
D. Kotzinos et al. (Eds.): ISIP 2016, CCIS 760, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-68282-2 1



4 V.V. Meduri and P. Papotti

∀Tα, Tβ ∈ R,¬(Tα.Merchant = Tβ .Merchant ∧ Tα.CreditCard =
Tβ .CreditCard∧Tα.T ransID > Tβ .T ransID∧Tα.T ime < Tβ .T ime)

where the universal variable Tα and Tβ over the records are used to define pred-
icates that, if true at the same time, trigger the rule.

TransID ItemId Merchant CreditCard Time
T1 XX214 17683 PayPal XXX7038 10:35:02
T2 XX216 43266 PayPal XXX7038 10:34:43

Fig. 1. Credit card transactions.

However, discovering rules is a difficult exercise. Current approaches for rule
discovery treat the algorithm as a black box, where the users are only engaged in
the definition of the input parameters, such as the minimum support to consider
a rule valid, and in the evaluation of the ultimate output. Unfortunately, these
design choices make such approaches hard to use in real-world scenarios for three
main reasons.

1. In the input definition step, several parameters strongly impact the final
output, but are very hard to set upfront. Examples of such parameters include
the percentage of tolerance to noise to discover approximate rules, or the
way to select constants to be considered for rule discovery. These parameters
are rarely known apriori, but tuning them with a trial-and-error approach is
infeasible, given the large number of possible value combinations and the long
running execution times for the mining, as discussed next.

2. Complexity in the mining of the rules comes from both the size of the schema
and the size of the data. The schema complexity is exponential in the number
of attributes, as all combinations of attributes must be tested [10]. For exam-
ple, for the transactions example presented in Fig. 1, the rule may also need
to involve attribute ItemId. Moreover, if the language supports complex pair-
wise rules, such as denial constraints or de-duplication rules, the complexity
is quadratic over the number of tuples.

3. In the output consumption, the number of rules that hold over the data is
usually large, especially when constants and approximate rules are allowed,
as they are often needed in practice. Moreover, when tolerance to noise in
the data is required, semantically valid rules are mixed with incorrect rules
because of dirty values in the data. This problem is alleviated by pruning
mechanisms and ranking, but ultimately it leads to a large amount of time
spent by the domain experts to identify the valid rules among the thousands
that hold on the data.

In addition to these shortcomings, we should consider the limits in terms
of the expressive power in the existing solutions. Popular rules expressed with
ETL or procedural languages employ User Defined Functions (UDFs) to specify
special comparisons among values or complex look up functions. These spe-
cialized functions lead to more powerful rules, but the discovery of the right
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function is hard, as it is domain and dataset specific. Consider Temporal Func-
tional Dependencies (TFDs), which are FDs that hold only during a certain
time period, e.g., “the same person cannot be in two different places at the same
time” [1,31]. Discovering the appropriate functions (the absolute time difference
between timestamps) from a given library of UDFs [30,33] and the correct tem-
poral values (the correct “same time” duration) is hard. These hard discovery
cases lead to new input parameters, longer execution times, and larger number
of output rules, thus exacerbating the three problems listed above.

We believe that the most promising way to overcome the limits of traditional
approaches is to rethink discovering algorithms to make them user-aware. This
change of perspective should cover all the aspects mentioned above: a more
natural input for the users, incremental efficient algorithms to enable interactive
response time, and a simpler and more effective way to identify the useful rules.
As an orthogonal dimension, the new systems should also embrace a language
that can use libraries of user-defined functions, in order to discover more powerful
rules. In order to prune the huge unwanted search space while retaining high
expressive power, we can use human support in the search algorithm as early as
possible, so that it can steer the search in the right direction.

In the following, we first describe the main challenges in creating such new
systems (Sect. 2), and we then discuss new approaches that we believe are head-
ing in the correct direction (Sect. 3).

2 Why Rule Discovery Is Hard

In this Section, we first introduce formally a class of rules that will be used
in the examples, and briefly give intuitions about other relevant classes. We
then discuss rule discovery algorithms in general. Finally, we give the five main
challenges in rule discovery.

2.1 Denial Constraints

Consider the example in Fig. 2 with items from a chain of grocery stores in three
states, “AZ”, “CA” and “WA”. Assume that only “Shoes” from the store in
state “AZ” and “EarPhones” from the store in “WA” are labeled as “General”;
in any other state both items can only be listed under the type “FootWear”
and “Electronics”, respectively. The highlighted value for the Type indicates an
error in tuple r3, as the entry “EarPhones” has been labeled “General” instead
of “Electronics” in “AZ”.

For a relation R, we use a notation for DCs of the form
ϕ : ∀tα, tβ , tγ , . . . ∈ R,¬(P1 ∧ . . . ∧ Pm)

where Pi is of the form v1φv2 or v1φc with v1, v2 ∈ tx.A, x ∈ {α, β, γ, . . .}, A ∈ R,
φ ∈ {=, <,>, �=,≤,≥}, and c is a constant.

Assume that a mining algorithm comes up with several approximate rules
for the relation in Fig. 2. We use attribute abbreviations for readability.
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ItemID Location Title Description Type
r1 17683 AZ Levis Shoes General
r2 34987 CA AllStar Shoes FootWear
r3 14325 AZ Samsung EarPhones General
r4 82971 WA Nokia EarPhones General
r5 9286 CA Toshiba EarPhones Electronics

Fig. 2. Items in a chain of grocery stores.

R1 : ∀Tα ∈ R,¬(Tα.Desc. = “EarPhones” ∧ Tα.T ype �= “Electronics”)
R2 : ∀Tα ∈ R,¬(Tα.Loc. = “AZ” ∧ Tα.Desc. = “EarPhones”∧

Tα.T ype �= “Electronics”)
R3 : ∀Tα ∈ R,¬(Tα.Desc. = “Shoes” ∧ Tα.T ype �= “General”)
R4 : ∀Tα ∈ R,¬(Tα.Loc. = “AZ” ∧ Tα.Desc. = “Shoes”∧

Tα.T ype �= “General”)
R5 : ∀Tα, Tβ ∈ R,¬(Tα.Desc. = Tβ .Desc. ∧ Tα.T ype �= Tβ .T ype)
R6 : ∀Tα, Tβ ∈ R,¬(Tα.Loc. = Tβ .Loc. ∧ Tα.Desc. = Tβ .Desc∧

Tα.T ype �= Tβ .T ype)

Only some of the approximate rules that have been automatically discovered
are correct. Rule R1 states that all “EarPhones” should be binned into the type
“Electronics”, and identifies tuple r4 as a violation while is not the case. Hence,
R1 is an incorrect rule. Rule R2 is correct and identifies the error in r3. However,
it only enforces our domain knowledge for “EarPhones” and not for “Shoes”.
Since “Shoes” in “AZ” can be misclassified to any other type than “General”,
we need an additional rule, such as R4, to detect all errors. Rule R3 is correct for
items sold in state “AZ”, but would identify correct values as errors in the other
states. Rule R5 represents a functional dependency stating that the Description
determines the Type and it is incorrect, since tuples r4 and r5 are erroneously
identified as errors. Rule R6 states that Location and Description determine the
Type. This rule is correct and more general than the union of R2 and R4 as it
does not depend on constants. In fact, it can enforce all the domain constraints
on future tuples not restricted to just “Shoes” or “EarPhones”.

2.2 Other Rule Types

Denial Constraints can express several common formalisms, such as Functional
Dependencies [21,34] and Conditional Functional Dependencies [8,13]. They can
express single tuple level rules (R1–R4) and table level rules, i.e., rules involving
two or more tuples in the premise (R5, R6). Also they allow the use of variables
and constants, and join across different relations. However, rule types are not
limited to what we presented above. There are several other data quality rule
types that are common in practice.

Regular-expression based rules specify constraints on textual patterns in a
tuple [18] and lead to data transformations such as substring extraction, delim-
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iter identification, and the specification of filters. For instance, a rule may state
that only 5-digit numbers in the ItemID attribute of a tuple are allowed.

A very important problem where rules have proven their effectiveness is
Entity Resolution [25,33]. The goal here is to perform de-duplication, i.e., to
identify pairs and group of records that refer to the same real-world entity. An
exemplary rule for the item data in Fig. 2 may state that two items should be
merged if they have very similar ItemID and the same Location and Title.

Another example of rule types are inference rules, which suggest when two
entities respect a particular relationship in a Knowledge Base [16]. These rules
help infer and add missing knowledge to the KB. An inference rule can state that
two persons sharing a child are married, therefore a new fact can be inferred in
the KB. Inference rules are different from association rules [3], which do not
derive new facts, but are popular in relational databases to discover interesting
relations between variables, e.g., “If a client bought tomatoes and hamburgers,
then she is likely to also buy buns”.

Finally, lookup rules use an external reliable source of information which can
be exploited up to identify errors in the database. The external source can either
be a Knowledge Base (KB) [11] or a table of master data [14]. The discovery
process tries to map the columns in the relation of interest to the external,
reliable source. The resulting rule can then be used to verify if the relation
conforms to the external source. For example, in Fig. 2, a rule would map the
attributes Title and Type in the relation to two columns occurring in a master
table, or to a hasType(Title, Type) relationship in a KB. Every erroneous entry
for Type, such as “Vegetables” for the Title “Levis”, is identified as an error
because it violates the mapping stated in the rule. A lookup rule for the example
in Fig. 2 and a master table M can be expressed in a DC as follows.

R7 : ∀Tα ∈ R, Tβ ∈ M¬(Tα.T itle = Tβ .ItemTitle ∧ Tα.T ype �= Tβ .Class)

The rule states that if the Title of a tuple in the relation is equal to an ItemTitle
value in the master data, then the value in the relation for Type should match
the corresponding value specified by Class in the master data, otherwise there
must be an error in the relation.

2.3 Discovering Rules

All the different kinds of rules share challenges in their discovery process. We
first give an intuition of how these mining algorithms work in general, and we
then discuss their challenges in real-world applications. We divide the algorithms
into two main categories.

Lattice traversal algorithms. The search space for rule discovery can be
seen as a power set lattice of all attribute combinations. Several algorithms try
to come up with the right way to traverse such a lattice. Different approaches
have been tested, such as level-wise bottom-up traversal strategy and depth-first
random walk. The commonality in these approaches is that they generate new
rule candidates sequentially and immediately validate them individually (i.e.,
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with a query over the data). The strategy to deal with the large search space
is to prune it incrementally by inferring the validity of candidates that have
not been checked yet. This test can be done exploiting the static analysis of
the already discovered rules by using the minimality criterion, language axioms
(e.g., augmentation and transitivity), and logical implication [17,19,21].

Difference- and agree-set algorithms. These algorithms model the search
space in an alternative way by using difference and agree-sets. For pair-wise
rules, the idea is to search for sets of attributes that agree on the values in the
cross product of all tuples. Due to this change in the modelling, they do not try
to successively check rules and aggressively prune the lattice search space. On
the other hand, they look for attribute sets that agree on certain operators over
the tuple values, since those can be in a dependency with other sets of attributes
that also agree on some operator. Once obtained the agree-sets, the algorithms
try derive the valid rules from them, either level-wise or by transforming them
into a search tree that can traversed depth-first [10,34].

Rule discovery algorithms are then commonly extended in two directions.
First, in the discovery problem a rule is considered correct if there are no

violations when applied over the data. However, in real-world scenarios, there
are two main reasons to relax this requirement:

Overfitting. Data is dynamic and as more data becomes available, overfitting
constraints on current data set can be problematic.

Errors. The common assumption is that errors constitute small percentage of
data, thus discovering rules that hold for most of the dataset is a common
approach to overcome this issue.

What is usually done is to modify the discovery statement into an approxi-
mate rule discovery problem. The goal is still to find valid rules, but now a rule
is considered of interest if the percentage of violations (i.e., tuples not satisfying
the rules) is below a given threshold. For this new problem, the original mining
algorithm is revised to take this extension into account.

A second important and common aspect is the extension of the search space
to also handle constants. The reason is that a given rule may not hold on the
entire dataset, thus conditional rules are useful. Adding a new predicate with a
constant is a straightforward operation, but the number of constant predicates
is linear w.r.t. the number of constants in the active domain, which is usually
very large. The common approach here is to focus on discovering rules for the
frequent constants in the dataset [12,13].

As for the approximate version, the problem is revised to discover rules that
involve constants with a frequency in the dataset above a given threshold. A
common solution is to follow the “Apriori” approach to discover the frequent
constants and then include only these constants in the predicates in the search
space [10].
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2.4 Challenges

We now use the example in Fig. 2 to illustrate the five main issues in rule dis-
covery.

Scalability. Discovering rules is an expensive process. Consider rule discov-
ery systems for Knowledge Bases [16]. A KB consists of <subject, relationship,
object> triples such that a relationship holds over the <subject, object> pair.
Since KBs do not have a generic schema presented upfront, the discovery of a
rule is done by the enumeration of all the instances of <subject, object> pairs
conforming to any of the relationships in the KB. In order to efficiently measure
the support for the rules while discovering them, the entire KB is loaded into
the main memory. Also, literals (constants) are removed from KB to make it fit
the memory. Even with such extensive pre-pruning, these systems suffer from
memory concerns and are hence constrained to mine rules with at most 3 atoms.

Traditional database rule mining methods suffer from similar limitations
[8,13,21,26,34]. Since any subset of attributes can be part of a rule, there is
an exponential number of rules to be tested w.r.t. the number of attributes in
the input relation [10,19]. Also, rules that look over pairs of tuples with oper-
ators different from the equality, such as similarity comparisons for entity reso-
lution [25,30] or not equal operators in DCs, have a quadratic complexity over
the number of tuples in the dataset. Main memory algorithms can address this
issue, but have obvious constraints on the maximum amount of data that can
be handled.

Sampling seems a natural candidate to alleviate the memory concerns when
generating rules. However, picking a representative sample that captures the
subtleties of all the existing patterns in the data is not feasible. The main reason
is the necessity to discover rules involving constants. For example, there is only
a single tuple, r1, in Fig. 2 for the fact that in “AZ”, “Shoes” can be categorized
as a “General” item. However, even if we sample three tuples r2, r3 and r4 from
the item list, thus with a larger sample size, we would not capture the specified
pattern. The same issue applies with larger and more realistic datasets.

Another dimension in the complexity is the number of predicates that need
to be tested. If we enable the use of a library of UDFs, each with its own con-
figuration, such as a threshold for a similarity function in entity resolution [33],
the search space becomes even larger and less tractable.

Noise. Noise is omnipresent in real datasets, and with percentages that can
reach up to 26% of the data in applications such as data integration [1]. In
addition, data can quickly turn stale. For instance, with concept drift, the com-
position of electronic goods like smartphones changes, thus there is a need of
updating the classified category of their components [32]. In order to handle sig-
nificant percentages of noise, rule discovery algorithms allow approximate rules
that hold on most of the data. This is done by setting a threshold on the amount
of admissible violations for a rule to be still considered valid. Approximate rules



10 V.V. Meduri and P. Papotti

are learnt from the patterns in the data occurring with a percentage of excep-
tions below the threshold. While this seems to be a valid solution, and it is used
in several approaches, there are two important complications.

– Since the amount of errors in data is usually unknown, identifying a suitable
threshold to overcome the noise is a trial-and-error process, where several
thresholds are tried until an appropriate value is identified. In our running
example, we would have to put a 20% threshold to discover R2 (r3 is one
tuple among five).

– Even after setting a threshold, it is not guaranteed that the rules mined out
of the frequent patterns are semantically valid. In fact, large thresholds lead
to rules that are incorrect. For example, if we set the noise threshold to 20%
in Fig. 2, a DC discovery algorithm would mine rule R5

∀Tα, Tβ ∈ R,¬(Tα.Desc. = Tβ .Desc. ∧ Tα.T ype �= Tβ .T ype)
This is because we treat as error the evidence from tuple r1 that in “AZ”,
“Shoes” are allowed to be categorized as “Grocery” items. An appropriate
rule would have been
∀Tα, Tβ ∈ R,¬(Tα.Location = Tβ .Location ∧ Tα.Description =

Tβ .Description ∧ Tα.T ype �= Tβ .T ype)
but this is not inferred because the incorrect rule is more general, and for
implication the correct rule is not part of the output.

Large Output. Consider again the example in Fig. 2. A possible rule would
state that ItemID equals to “9286” indicates “EarPhones”. If we go beyond com-
parisons based on equalities, we could incorrectly infer that items with a descrip-
tion of “EarPhones” and ItemID greater than “9286” are classified with type
“General”. Experiments show that temporal FDs are most effective if the dura-
tion constants are discovered at the entity level by defining a rule with different
constants for each entity [1]. For instance, Obama travels more often than an
average person, and therefore has a smaller duration in the “same time” exam-
ple discussed above. The same observation motivated Conditional Functional
Dependencies, which extend FDs with constants. It is easy to see that there is
a plethora of rules pivoting on constants, and the good ones are hidden among
the many that do not hold semantically. The traditional way to handle this big
search space is to rely on the most popular constants [1,10]. These constants
occur in enough tuples to gather the evidence to derive a rule. This support
threshold to mine rules containing only popular constants is a crucial parameter
in the input definition to find the sweet spot between acceptable execution times
and the discovery of useful rules involving constants.

Enabling constants leads to a large number of rules in the output of the min-
ing systems. To facilitate the users, implication tests for pruning and ranking
techniques are popular solutions. However, ranking rules is hard, as useful, cor-
rect rules may have very low support, i.e., since they cover only very few tuples
for rare events, therefore they may end up at the bottom of the ranking. Other
systems resort even to crowdsourcing as a post-processing step to evaluate the
rules [11,32]. However, the results are commonly in the order of thousands of
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rules, thus hard to skim, especially when most of the discovered rules are not
useful because of the issues raised by the approximation that handles the noise.
Ultimately, selecting the correct rules among thousands of results is a daunting
task that requires experts both in the rule language at hand (to understand the
precise semantics of the rule: “what does it mean?”) and in the data domain (to
validate the semantic correctness of the rule: “is it always true?”).

Hard Configuration. As it should be clear from the discussion on the role
of noise and constants, rule discovery algorithms require several non-obvious
parameters to be set. In general, there is no way to know in advance what
is the amount of noise that should be tolerated in the discovery of the rules.
Also, high noise threshold can hide important rules, so there is no one unique
value that suddenly leads to the discovery of all the semantically correct rules.
The same challenge applies for the threshold for the constant values and several
other parameters that are language specific. For example, in algorithms for the
discovery of TFDs the granularity of the time buckets is required (minutes, hours,
or days?) [1], or for inference rules mining, the maximum number of hops to be
traversed in the KB must be set [16].

Since the search space of possible rules is exponential in the number of
attributes, some systems even require an initial suggestion of the rule structure
from the user to begin with. For instance, in [33], the user is asked to provide
the DNF specification of the rule grammar for Entity Resolution that specifies
the attributes that need to be considered to classify a pair of tuples as referring
to the same entity or not. In addition to that, in case the rules rely on functions
with accompanying thresholds, it is a difficult task for the user to specify those
values (how similar should two IDs be to be considered a match?).

Need for Heterogeneous Rule Types. Several types of rules are needed
for any application, but there is no a single system that discovers all kinds of
rules [2]. There are primarily two different types of rules - syntactic and semantic.
The error that we see in tuple r3 of Fig. 2 can be fixed by a semantic rule, such
as a DC that states that “EarPhones” can be tagged as a “General” item in all
states but “WA” (R2). But a regular expression that restrains the text patterns
in the table in Fig. 2 would capture if an entry for Location is expressed as
“Washington”, instead of “WA”. Likewise, if another syntactic rule states that
ItemID can only be a 5-digit number, tuple r5 can be treated as a violation of that
rule because of the 4-digit entry for ItemID. Specific tools such as Trifacta [18]
and OpenRefine [2] discover and enforce syntactic rules as regular expressions
on the textual patterns of the attribute values. The same discussion applies for
lookup rules. There can be data errors that are not captured syntactically nor
by a DC, but require to verify the data with some reference information, such as
in R7 (Sect. 2.2), but these rules usually require different discovery algorithms
(e.g., [11,14]).
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It is clear that in general more than one rule type needs to be defined for a
given application. But this implies that multiple tools need to be configured and
multiple outputs must be manually verified by the users.

3 Opportunities and Directions

To overcome the challenges in Sect. 2, we envision a rule discovery system that
puts the users at the center of the mining process. The main idea is that the
human-in-the-loop proactively participates in the discovery by interacting with
the mining algorithms, instead of limiting the interaction to the specification of
parameters and the post-pruning of rules emitted by the black box. Following
are the main directions of research that we recognize in recent work for the new
generation of rule discovery systems.

Continuous Involvement. Given the challenges discussed in the previous
section, we argue that there is a clear opportunity of having the human expert
involved along with the system in the rule generation process. This means that
the users do not need to set up the parameters upfront, and do not need to eval-
uate long lists of rules at the output. However, the first step to move toward this
vision is to achieve interactive response times in the mining steps. There have
been several efforts to reduce the overall mining time by exploiting distributed
algorithms [7,19]. These solutions exploit parallelization techniques to distribute
the most expensive operations, such as joins, by using native primitives under
the Map-Reduce paradigm. However, we argue that another direction should be
explored to enable a novel, more effective approach to the rule discovery problem.

The solution we envision for this problem is to drop the one-shot algorithms
that discover all the possible rules in a dataset. Instead, we should interleave the
pivotal steps of the rule mining algorithm with user interactions. Of course,
understanding when and how to ask for user feedback is a crucial require-
ment. Recent works have started to look at this problem in the context of
user updates [17,18]. The systems discover the possible rules underlying a given
update and validate the most promising tentative rules with the users. This
early feedback is useful to prune large portions of the search space and guide
the algorithms towards the correct rules. Besides that, pivoting on the user for
feedback can also address the issue of noise, even when the examples underlying
meaningful rules have very small support in the table, such as tuple r1 in Fig. 2.
In this example, a single tuple is below the noise threshold and can hence be
mistaken for noise. However such an example can be championed by the data
expert is (s)he thinks that the corresponding rule can contribute to high coverage
and recall.

Let us clarify this idea of contribution in the context of data cleaning. For
data cleaning rules, the challenge lies in identifying the rule that maximizes the
number of covered dirty tuples in the database, while minimizing the number
of questions asked to the users. Given a search space of the possible rules, the
algorithms try to quickly identify rules to be presented to the user for validation
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that are both as general as possible (to maximize impact) and most likely correct
(to quickly identify valid rules). This is in opposition to the enumeration of
the entire space of traditional algorithms. Results show that with as little as
two questions for a user update, general rules can be discovered [17]. This is
done from a user update, a simple action that does not require setting input
parameters. By validating a small number of “promising” rules with the user
(i.e., rules that find the good compromise between coverage and likelihood of
being correct), the system is not exposing the long list of rules to evaluate at
the end of a time consuming mining. Thus the algorithmic effort in presenting
the right set of questions to the human-in-the-loop coupled with her feedback
tackle the issue of the large output.

For example, consider again Fig. 2. If the user updates the incorrect value
“General” to “Electronics”, this would create a search space with Type as the
right hand side of the rule, as this is where the user made the update. Now
the search space is still exponential over the number of attributes, but with the
user validating or refusing a possible rule, the algorithm quickly converges to the
search space area containing the correct rule. Suppose the first rule exposed to
the user is

∀Tα ∈ R,¬(Tα.Desc. = “EarPhones” ∧ Tα.T ype �= “Electronics”)

and the user does not validate it. This is a clear sign that a more specific rule is
needed, if we want to use Description. So another question can be asked for rule

∀Tα ∈ R,¬(Tα.Loc. = “AZ” ∧ Tα.Desc. = “EarPhones” ∧ Tα.Type �= “Electronics”)

which this time is validated. A rule involving constants is obtained for a dirty
dataset without setting any input parameter.

However, two important limitations hinder the impact of such solutions.
First, the current languages support simple 1-tuple rules, thus not exploiting
more powerful rule languages, such as Denial Constraints over multiple tuples.
Second, these systems are designed to handle one update at a time, or a sequence
of updates with the same semantics. However, given a batch of user updates over
the data, such as historical data for data cleaning, it is rarely the case that all
updates have been made with a single rule in mind. On the contrary, it is likely
that each, or subsets, of the updates have a different underlying rule guiding the
users towards the update. This is a challenging problem for which new algorithms
are needed.

ItemID Location Title Description Type
r1 - AZ Levis.D Shoes General
r1 - Arizona L.Denim Shoes FootWear
r2 34987 California AllStar Shoes FootWear
r2 - CA Converse.AS Shoes FootWear

Fig. 3. De-duplicating items in a grocery store.
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User Defined Functions. As discussed above, more expressive rules are needed
in real world datasets for complex problems, such as de-duplication (a.k.a., entity
resolution) [6,23,30]. For instance, if we treat r1 and r′

1 as a tuple pair in Fig. 3,
we may want to be able to assess whether the records in the pair are duplicates
of the same item.

An approach to the de-duplication problem is to feed ML algorithms with
positive and negative examples, and build a model for a classifier. Interestingly,
a set of rules can outperform an ML based approach for this task [30,33]. In
particular, provided a grammar to shape the form of the rules and a library of
similarity functions (available also to the ML classifier), the appropriate func-
tions and their thresholds can be automatically discovered given sets of positive
and negative pairs. In our example in Fig. 3, a DNF grammar can be

sim(ItemID)∨(sim(Title)∧sim(Type))∨(sim(Title)∧sim(Loc.)∧sim(Desc.))

The rules satisfying this grammar state that a tuple pair can be labeled identical
if the tuples are similar w.r.t. ItemID alone (expressed by sim function), or over
Title and Type together, or upon Title, Location, and Description. However, the
ItemID values are often missing from the table in Fig. 3, which makes other
DNF clauses in the grammar more useful in this example. Given a library of
similarity functions F1, . . . , Fn and a set of threshold values T1, . . . , Tm, the
computation of similarity function sim(attr) in the DNF grammar is done by
checking every Fi(r1[attr], r′

1[attr]) > Tj , with i ∈ 1, . . . , n and j ∈ 1, . . . , m.
The test checks if the outcome of applying the similarity function Fi upon the
attribute attr exceeds one or more threshold values. The system then picks the
appropriate Fi and Tj for all attributes participating in the DNF grammar by
pruning redundant threshold values and similarity functions with greedy and hill
climbing algorithms.

This is a case of the opportunity of using a library of UDFs to discover more
expressive rules, without exposing the internals of the mining to the domain
experts. The system is thus not hard to configure as all the human helper needs
to provide is an easy-to-define input in the form of labeled training data and has
to examine the results matches and mismatches, which can be used to refine the
rules, rather than the output rules themselves. As in the case of the updates, users
only have to deal with examples over the data, thus there is no required expertise
in logic nor in procedural code. However, in cases where the training sets are too
small or not representative, the above approach would fail. It is easy to see active
learning as a tool to help classify ambiguous test data by using human support.
Bootstrapping hard-to-classify test points into the training data will strengthen
the rule mining algorithms. Tuple r1 in Fig. 2 is a hard-to-classify example as it
is mistaken for an error by most rule discovery systems. A human may know that
stores in “AZ” should classify “Shoes” as “General” items, thus she would label
this tuple as a candidate into the training data. However, integrating active
learning to the discovery process is not easy because new mining algorithms
should be designed for identifying what are the most beneficial examples for the
internal model. While this has shown potential in ad-hoc solutions [29], it is not
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obvious how to make it more general for the discovery of arbitrary rules beyond
entity resolution.

Tool Ensembles. Given the necessity of using a plethora of heterogeneous
rules to fix multiple types of errors, an ensemble of tools performs better than
a single tool. Recent results have shown that combining multiple kinds of rules
is mandatory to obtain high recall in the task at hand, and best results are
obtained when combining rules with statistical methods [2,27]. For example, a
recent ensemble for error detection in [2] consists of tools for outlier detection
together with both syntactic and semantic rules. The authors here focus on
combining the cleaning suggestions from these tools over the data, as they rely
on manually tuned tools and hand written rules.

However, we know that discovering correct rules is a challenging problem,
and (manually) doing it over dirty data for multiple tools is indeed an expensive
operation. To tackle this problem, we believe that the idea of assembling differ-
ent rules should be lifted to the idea of combining multiple discovery algorithms.
Instead of having the user manually checking rules for each tool supporting a
single language (say, syntactic or semantic), the ensemble over the data enables
a unified approach to the heterogeneity problem. Given multiple algorithms to
discover rules on a given dataset, we can filter the rules emitted by the ensemble
to apply only those that have a mutual consensus about identifying a tuple or
an attribute for the task at hand. This naive approach is similar to majority
voting – if a large fraction of algorithms agree, then they are trustable –but
more sophisticated techniques can be developed. For example, the majority vot-
ing can be parameterized by using a min-K approach, where K indicates the
minimum number of tools that produce rules that agree over the data. Another
approach resorts to ordering the diverse rules from the ensemble by their esti-
mated precision, for example computed upon a sampled dataset for which the
ground truth is available. This enables a data expert to validate the outcome
emitted by each tool in the ranked order, while implicitly giving feedback on all
the rule discovery algorithms. In fact, we can label the rules as meaningful or
not depending on the validation of the rule outcome by the expert. This ensures
that a manual validation step can greatly help the rule selection.

4 Conclusion

Discovering rules that are semantically meaningful is important in many appli-
cations, but it is a challenging task. In this paper, we propose to open the black
box of rule discovery systems to the end user by emphasizing the need to employ
early human feedback into the rule mining process. There are techniques that
also aim at opening the blackbox of Machine Learning for Information Extrac-
tion (IE) [9]. However, ML approaches are mostly non-interpretable.

Our vision goes beyond the state-of-the-art rule mining frameworks that
use the human help only to set parameters and to select valid rules from the
discovered ones. We argue that such design decisions fail to effectively help the
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users in producing meaningful rules. This goal can be better achieved by enabling
human suggestions during the algorithmic phase of rule discovery.

In this context, we discussed how recent trends in rule discovery systems
show great potential for new research that finally put the user at the center of
the mining process. We advocate for new solutions with the goal of graciously
involving the human in the mining, with very limited input to bootstrap and
immediate interaction to guide the mining towards the right direction. The three
main directions that we advocate are (i) a direct involvement of the user in
the traversal of the search space, (ii) the support for libraries of user defined
functions to discover more expressive rules, and (iii) an ensemble of rule discovery
algorithms to handle the diversity of languages available and steer effectively the
human interaction.
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Abstract. Data in Astrophysics are very often structured with the rela-
tional data model. One particularity is that every value is a real number
and comes with an associated error measure, leading to a numerical inter-
val [value − error, value + error]. Such Astrophysics databases can be
seen as interval-based numerical databases.

Classical data mining approach, specifically those related to integrity
constraints, are likely to produce useless results on such databases, as
the strict equality is very unlikely to give meaningful results.

In this paper, we revisit a well-known problem, based on unary inclu-
sion dependency discovery, to match the particularities of Astrophysics
Databases. We propose to discover injective mapping between attributes
of a source relation and a target relation. At first, we define two notions
of inclusion between intervals. Then, we adapt a condensed representa-
tion proposed in [15] allowing to find a mapping function between the
source and the target. The proposition has been implemented and sev-
eral experiments have been conducted on both real-life and synthetic
databases.

1 Introduction

Astrophysics is known to generate huge amount of data in large experiments,
as for example with the Large Synoptic Survey Telescope (LSST1), a wide-field
survey reflecting telescope in Chile. The camera is expected to take over 500,000
pictures per year, leading to more than 60 petabytes of data at the end of
the project. After a long image processing process, relevant data are stored in

1 https://www.lsst.org.
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Fig. 1. Example of astrophysics database

specialized Relational Database Management Systems (RDBMS). Since every
value comes with its associated error measure, it can be seen as a numerical
interval [value − error, value + error]. Then, such Astrophysics databases are
interval-based numerical databases and look like the data given in Fig. 1. u and
erru (resp. g, r, i, z) are the magnitude (flux in log scale) and corresponding
error of an astrophysical object measured through a passband color filter named
u (resp. g, r, i, z). The u, g, r, i, z color filters slice the visible spectrum in five
similar size bins. For each attribute that contains a magnitude parameter, there
is an associated error measure attribute (e.g. u and err u).

Classical data mining approach, specifically those related to integrity con-
straints like functional dependencies (FD), conditional FD or inclusion depen-
dencies (IND), are likely to produce useless results on such databases. The partic-
ularities of interval-based databases impose peculiar problems to the associated
discovery problems.

In this paper, we revisit a well-known problem, the discovery of unary inclu-
sion dependency discovery, to match the particularities of Astrophysics Data-
bases. Due to the nature of the data in use, the proposed solution has to be
changed with respect to existing approaches [15,16].

More precisely, we propose to discover injective mapping between attributes
of a source relation and a target relation. In order to solve the problem of
discovering such mappings, we adapt the problem of discovering unary inclu-
sion dependencies for interval-based databases. With respect to the application
domain in Astrophysics, we do not claim that such mappings solve real problems
for astrophysicists, even if some applications could benefit from it. The problem
studied in this paper should be thought as a first step, opening many opportu-
nities to address others related problems, more challenging and interesting for
astrophysicists.

Let us consider two interval-based relations s and t over relation schema S
and T respectively. As usual, attributes of a relation r over R are denoted by
sch(R).

Problem Statement

Given a source s and a target t such that |sch(S)| ≤ |sch(T )|, find a
mapping f from sch(S) to sch(T ) such that (1) f is injective (f(A) =
f(B) ⇒ A = B) and (2) for every attribute A ∈ sch(R), the values of A
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in s and the values of f(A) in t should be as similar as possible, i.e. some
forms of inclusion dependencies should exist between them.

To deal with this problem, we propose a contribution based on the following
three-step process:

– First, we define two types of membership of an interval into a collection of
intervals. The first one is based on the classical inclusion between intervals
while the second one is defined on the so-called canonical representation of a
collection of intervals.

– Second, we extend the work of [15] and build a condensed representation of
an interval-based numerical database as a binary relation (or transactional
database where transactions are values and items are attributes). At the end,
we discover a set of approximate unary inclusion dependencies from the source
to the target.

– Finally, we propose a method to find an injective mapping, which is equivalent
to the minimum weight matching in an weighted bipartite graph, resolved
with the Hungarian algorithm [12] in this paper.

The proposition has been implemented and several experiments have been
conducted on both real-life and synthetic databases. Even if the overall com-
plexity of the studied problem remains polynomial, the overhead with respect to
classical databases turns out to be rather low. The main lesson we have learned
from this work is that many contributions in pattern mining could be revisited
in order to deal with interval-based numerical databases.

To the best of our knowledge, this is the first contribution dealing with the
discovery of integrity constraints in interval-based numerical databases.

Paper Organization. The remaining part of the paper is organized as follows:
Sect. 2 gives preliminaries of the paper. Section 3 adapts the condensed represen-
tation of [15] to interval-based databases. Section 4 introduces details about the
discovery of approximate unary inclusion dependencies. Section 5 describes the
main algorithm SR2TR providing an injective mapping between a source and a
target relations, and the results of experiments. Section 7 concludes the paper
and gives some perspectives to this work.

2 Preliminaries

Basic database notions are given here, more details can be found for example in
[14]. We restrict our attention to interval-based numerical databases only.

Let U be a set of attributes and D the possible intervals over real numbers. A
relation symbol is generally denoted by R and its schema by sch(R), sch(R) ⊆ U .
When clear from context, we shall use R instead of sch(R). Each attribute has
a domain, included in D. A tuple over R is an element of the cartesian product
D|R|. An interval-based numerical relation (or simply relation) r over R is a set
of tuples over R. An interval-based numerical database d (or simply database)
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over a set of relation symbol {R1, . . . , Rn} is a set of n interval-based relations
{r1, . . . , rn}, ri defined over Ri for i = 1..n.

Given a relation r over R and A ∈ R, the active domain of A in r is
denoted by ADOM(A, r). The active domain of r is denoted by ADOM(r) =⋃

A∈R ADOM(A, r). The projection of a tuple t on an attribute set X ⊆ R
is denoted by t[X]. The projection of a relation r onto a set of attributes X,
denoted by πX(r), is defined by πX(r) = {t[X]|t ∈ r}.

Let I, J be two intervals of D. We note min(I) (resp. max(I)) the minimum
(resp. maximum) value of I. I is contained in J , denoted by I ⊆ J , if min(J) ≤
min(I) ≤ max(I) ≤ max(J).

Let I be a collection of intervals of D. The union of I is the minimal number
of intervals covering I. Since its union is unique, it represents a canonical form
of I, and will be denoted by cano(I). More formally, cano(I) can be defined by
induction as follows:
cano(I) = I if for all J1, J2 ∈ I, J1 ∩ J2 = ∅

= cano(I \ {J1, J2}) ∪ {J3}) otherwise with J1, J2 ∈ I, J1 ∩ J2 �= ∅ and
J3 = [min(min(J1),min(J2)),max(max(J1),max(J2))]

I is said to be connected if |cano(I)| = 1.
We now introduce the classical syntax and semantics of unary inclusion

dependencies between relation symbols R and S.

Definition 1. An unary inclusion dependency (UIND) from R to S is a state-
ment of the form R[A] ⊆ S[B], where A ∈ R, B ∈ S.

Definition 2. Let d = {r, s} be a database over {R,S}. An unary inclusion
dependency R[A] ⊆ S[B] is satisfied in d, denoted by d |= R[A] ⊆ S[B], iff for
all u ∈ r, there is v ∈ s such that u[A] = v[B] or equivalently πA(r) ⊆ πB(s).

Example 1. Let r0 be a classical relation over R (see Fig. 2).
Several classical UINDs are satisfied in {r0}, for instance R[A] ⊆ R[D] and

R[B] ⊆ R[C].

Fig. 2. A toy relation r0

When working with intervals, the strict equality “=” used in the definition of the
satisfaction of an UIND is likely to produce unsatisfying results. For instance,
in Fig. 3, the relation r1 has no satisfied UINDs.
This leads to introducing different UIND satisfaction on intervals.
We define two kinds of satisfied UINDs over interval-based numerical database:
classical satisfaction based on interval inclusion over collection of intervals and
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Fig. 3. A toy interval-based relation r1

canonical satisfaction based on interval inclusion over the canonical representa-
tion of collection of intervals.
Let d = {r, s} be an interval-based numerical database over {R,S}.

Definition 3. An UIND R[A] ⊆ S[B] is classically satisfied in d, denoted by
d |=1 R[A] ⊆ S[B], iff for all u ∈ r, there is v ∈ s such that u[A] ⊆ v[B].

An UIND R[A] ⊆ S[B] is canonically satisfied in d, denoted by d |=2 R[A] ⊆
S[B], iff for all u ∈ r, there is v ∈ cano(ADOM(B, s)) such that u[A] ⊆ v.

We will note d |=λ R[A] ⊆ S[B] to refer to both of them.

Example 2. In the relation r1 of Fig. 3, for the satisfaction, we have an UIND
r0 |= A ⊆1 B as [0, 0.5] ⊆ [0, 1], [1, 1.5] ⊆ [1, 2] and [2, 3] ⊆ [1.5, 4]. For the
second one, r0 |= A ⊆2 B as [0, 0.5] ⊆ [0, 4], [1, 1.5] ⊆ [0, 4] and [2, 3] ⊆ [0, 4].

We also need to define when a given interval belongs to a collection of
intervals.

Let I be an interval and I a collection of intervals.
I is classically included in I, denoted by I ⊆1 I, if there exists I ′ ∈ I such

that I ⊆ I ′. I is canonically included in I, denoted by I ⊆2 I if I ⊆1 cano(I).

3 Condensed Representation for Interval-Based
Relations

We now extend the contribution for discovering UINDs in databases [15] to
interval-based numerical databases. This is, up to our knowledge, the best app-
roach for discovering UINDs. It relies on a preprocessing to get a condensed
representation from the initial database.

Now, we define a condensed representation for UIND discovery.

Definition 4. The condensed representation of an interval-based numerical
relation r, denoted by CR⊆λ

(r), is defined by:

CR⊆λ
(r) = {(I,X) | I ∈ ADOM(r),X = {A ∈ R | I⊆λADOM(A, r)}}

Condensed representations from the two defined satisfactions can be different.
We denote CR⊆1(r) and CR⊆2(r) the condensed representations for ⊆1 and ⊆2

respectively.

Example 3. The condensed representations CR⊆1(r1) and CR⊆2(r1) of the rela-
tion r1 (see Fig. 3).
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Fig. 4. Condensed representations of r1 for both semantics

Given a set of relations r1, r2, ..., rn, its condensed representation is defined
by as:

CR⊆λ
(r1, r2, ..., rn) =

⋃

i=1..n

CR⊆λ
(ri).

Definition 5. The support of an attribute set X ⊆ R in CR⊆λ
(r), denoted by

sup(X,CR⊆λ
(r)), is defined by:

sup(X,CR⊆λ
(r)) = |{(i, Y ) ∈ CR⊆λ

(r)|X ⊆ Y }|

Definition 6. The closure of an attribute A ∈ sch(R) with respect to CR⊆λ
(r),

denoted by A+
CR⊆λ

(r), is defined as:

A+
CR⊆λ

(r) =
⋂

(i,X)∈CR⊆λ
(r)

{X|A ∈ X}

Example 4. In Fig. 4, for CR⊆1(r1) we have that sup({A}, CR⊆1(r1)) = 3,
sup({A,B}, CR⊆1(r1)) = 3 and A+

CR⊆1 (r1)
= {A,B,C}, C+

CR⊆1 (r1)
= {C}.

As for CR⊆2(r1), sup({B,C}, CR⊆2(r1)) = 6, sup({C}, CR⊆2(r1)) = 6 and
C+

CR⊆2 (r1)
= {B,C}.

4 Unary Inclusion Dependencies Discovery
in a Single Interval-Based Relation

To alleviate the notations, we consider a single relation only, i.e. UIND of the
form r |=λ R[A] ⊆ R[B]. Let r be a relation over R and A,B ∈ R.

We first give a technical lemma which relates the definition of r |=2 A ⊆ B
to the canonical representation of the intervals of A in r.

Lemma 1. r |=2 A ⊆ B ⇐⇒ ∀I ∈ cano(ADOM(A, r)),∃J ∈
cano(ADOM(B, r)), I ⊆ J .
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Proof. (=⇒) Suppose not. Assume, to the contrary that there exists I ′ ∈
cano(ADOM(A, r)), such that for all J ∈ cano(ADOM(B, r)), I ′ 	⊆ J .

Let I ⊆ ADOM(A, r) be the maximal collection of intervals such that
cano(I) = {I ′}.

By definition, r |=2 A ⊆ B implies that for all I ∈ ADOM(A, r), there
exists J ∈ cano(ADOM(B, r)) such that I ⊆ J .

If |I| = 1, then we have a contradiction and the result follows.
Assume |I| > 1. The collection I can be divided into n > 1 disjoint non-

empty collections of intervals {I1, I2, .., In} such that there exist n different
associated intervals {J1, J2, .., Jn} ∈ cano(ADOM(B, r)) such that for all I ∈
Iλ, I ⊆ Jλ, λ ∈ {1, 2, .., n}.

Since |cano(I)| = 1, for every Iλ ∈ {I1, I2, .., In}, there exists Iλ′ ∈ {I1,
I2, .., In}, λ 	= λ′ such that there exists I0 ∈ Iλ, K0 ∈ Iλ′ such that I0 ∩K0 	= ∅.

But I0 ⊆ Jλ, K0 ⊆ Jλ′ , then Jλ ∩ Jλ′ 	= ∅. Contradiction as Jλ, Jλ′ are
supposed to be non-intersecting.

(⇐=)
Let I ′ ∈ ADOM(A, r). Then there exists I ∈ cano(ADOM(A, r)) such that

I ′ ⊆ I. Since for all I ∈ cano(ADOM(A, r)), there existsJ ∈ cano(ADOM(B, r))
such that I ⊆ J , it follows that I ′ ⊆ J . Thus r |=2 A ⊆ B.

Intuitively, the main result of the paper states that every inclusion of the
form A ⊆ B that holds in r turns out to be equivalent to a closure computation
on the associated condensed representation.

We can now give the main result of the paper.

Theorem 1.
r |=λ A ⊆ B ⇐⇒ B ∈ A+

CR⊆λ
(r)

Proof. We consider the two UIND satisfactions presented before:

1. r |=1 A ⊆ B ⇐⇒ B ∈ A+
CR⊆1 (r)

(=⇒)
Let (I ′,X) ∈ CR⊆1(r) such that A ∈ X. Then, there exists I ∈ ADOM(A, r)
such that I ′ ⊆ I. Or r |=1 A ⊆ B implies that there exists J ∈ ADOM(B, r)
such that I ⊆ J . It follows that I ′ ⊆ J , and thus B ∈ X. Then B ∈ A+

CR⊆1 (r)
.

(⇐=)
B ∈ A+

CR⊆1 (r)
⇐⇒ for all (I,X) ∈ CR⊆1(r), if A ∈ X then B ∈ X. For all

I ∈ ADOM(A, r), there exists a pair (I,X) ∈ CR⊆1(r) such that A ∈ X.
Thus, B ∈ X also holds, i.e. there exists J ∈ ADOM(B, r) such that I ⊆ J .
Thus r |=1 A ⊆ B.

2. r |=2 A ⊆ B ⇐⇒ B ∈ A+
CR⊆2 (r)

(=⇒)
Let (I ′,X) ∈ CR⊆2(r) such that A ∈ X. Then, there exists I ∈
cano(ADOM(A, r)) such that I ′ ⊆ I. Based on Lemma 1, r |=2 A ⊆ B
implies that there exists J ∈ cano(ADOM(B, r)) such that I ⊆ J . It follows
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that I ′ ⊆ J , and thus B ∈ X. Then B ∈ A+
CR⊆1 (r)

.
(⇐=)

For all I ′ ∈ ADOM(A, r), there exists a pair (I,X) ∈ CR⊆2(r) such that
A ∈ X and I ′ ⊆ I. Thus, B ∈ X also holds, i.e. there exists J ∈ ADOM(B, r)
such that I ⊆ J . It follows that I ′ ⊆ J .
Thus r |=2 A ⊆ B.

From previous theorem, the discovery of UIND is based on the following
property, based on support counting in the condensed representation.

Property 1.

B ∈ A+
CR⊆λ

(r) ⇐⇒ sup({A,B}, CR⊆λ
(r)) = sup({A}, CR⊆λ

(r)).

Proof. B ∈ A+
CR⊆λ

(r) ⇐⇒ for all (I,X) ∈ CR⊆λ
(r), if A ∈ X then B ∈ X.

Equivalently, the support of {A} and {A,B} are the same in CR⊆λ
(r), i.e.

sup({A,B}, CR⊆λ
(r)) = sup({A}, CR⊆λ

(r)).

5 Approximate Unary IND Between Two
Interval-Based Relations

Within this setting, an unary IND A⊆λB may be still unsatisfied in a relation
due to a few counter-examples. As a result, we introduce an approximation
measure to extract approximate unary inclusion dependencies from a relation.
This approximation will be calculated based on the support of attributes’ sets.
The error measure related to the correspondence between two attributes, denoted
error can be defined using the support of attribute sets as follows:

Definition 7. Let r be a relation over R and A,B ∈ R.

error(r |=λ A ⊆ B) = 1 − sup({A,B}, CR⊆λ
(r))

sup({A}, CR⊆λ
(r))

Given two relations r over R and s over S, we are interested in finding the
approximative unary inclusion dependencies from single attributes of R with
respect to singles attributes of S. From now on, we consider the relation r as a
source relation and s as a target relation.

Based on the previous definition we can build a matrix of error measures,
such that each element of the matrix is represented as the value of the error
measure between a single attribute from R and a single attribute of S (Fig. 5).

Example 5. Let r2, s2 be two toy relations:
Based on the condensed representation CR⊆1(r2, s2), we build a matrix of

error measures error({r2, s2} |=1 X ⊆ Y ) with X as attribute over r2 and Y as
attribute over s2 (Fig. 6):
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Fig. 5. Toy relations r2 and s2

Fig. 6. The condensed representation of r2 and s2 and the associated matrix of error
measures

As we search to find the most appropriate injective matching function
between two schema relations, given the matrix of error measures, we can refor-
mulate this problem as follows:

Given an error matrix between two schema relations R and S, find the
best matching with the minimum error between R and S.

This problem is in fact an assignment problem [12] which consists of finding a
maximum weight matching in a weighted bipartite graph. Hungarian Algorithm
[11] is one of the algorithms that can solve the assignment problem. There
are other algorithms that include adaptations as the Simplex Algorithm and
the Auction Algorithm [2]. The assignment problem is a special case of the
transportation problem [10], which is a variation of minimum cost maximum
flow problem [1].

6 Scalable Algorithms

We propose a polynomial algorithm called SR2TR, which provides an injective
mapping based on the discovery of a set of approximate unary INDs from a
source relation r over R to a target relation s over S.
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Algorithm 1. (SR2TR) Mapping from Source Relation to Target Relation
Input: two relations: r over R and s over S
Output: A mapping function f from R to S
1: CR = Preprocessing(r, s)
2: M = MEM(CR)
3: f = FindMatching(M)
4: return f .

Algorithm 1 can be summarized as follows:

1. Process the condensed representation CR(r, s) - Preprocessing(r,s);
2. Build the matrix of error measures M based on CR(r, s) - MEM(CR);
3. Find the minimum weight matching in the weighted bipartite graph con-

structed from M - FindMatching(M).

Two other algorithms are provided: Algorithm2 for the Preprocessing func-
tion (line 1 of Algorithm1) and Algorithm 3 for the MEM function (line 2 of
Algorithm 1). The FindMatching function (line 3, Algorithm3) corresponds to
the minimum weight matching in a weighted bipartite graph. From the matrix of
error measures M , we have implemented the Hungarian Algorithm, not detailed
here.

Algorithm 2. (Preprocessing) Computing the condensed representation of r∪s

Input: Two relations r over R and s over S
Output: Condensed representation CR(r, s)
1: CR=∅
2: for all I ∈ ADOM(r) ∪ ADOM(s) do
3: BR = ∅
4: for all A ∈ R ∪ S do
5: if check inclusion(I,ADOM(A, r ∪ s)) = true then
6: BR[A] = true
7: else
8: BR[A] = false
9: end if

10: end for
11: CR.add(BR)
12: end for
13: return CR

For each interval I ∈ ADOM(r) ∪ ADOM(s), we search all single attributes
A ∈ R ∪ S for which I is included in ADOM(A, r ∪ s) (line 5). Then we update
the binary relation BR accordingly, which is afterwards added to CR. As the set
ADOM(A, r ∪ s) is a set of intervals, from which we can construct an interval
tree for each single attribute in R ∪ S, so that check inclusion is logarithmic in
the size of the r and s.
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Algorithm 3. (MEM) Compute the matrix of error measures
Input: Condensed representation CR(r, s)
Output: The matrix of error measures between R and S
1: init(M)
2: for all A ∈ R do
3: for all (I,X) ∈ CR(r, s) where A ∈ X do
4: sup1[A] = sup1[A] + 1
5: for all B ∈ S where B ∈ X do
6: sup2[A][B] = sup2[A][B] + 1
7: end for
8: end for
9: end for

10: for all A ∈ R and B ∈ S do
11: M [A][B] = 1.0 − sup2[A][B]/sup1[A]
12: end for
13: return M

Based on the condensed representation CR(r, s), we form the matrix of error
measures M of size |R| ∗ |S|. Line 1, M is initialized and filled with zeros in the
init(M) function. At this point we create two arrays, sup1 and sup2, referring
to the support of size 1 and 2 of R∪S. Then, we search through all the elements
of CR and we update step by step the support accordingly (lines 4, 6). Lines
10–11, we fill the matrix M, such that the value of an element M [A][B] of the
matrix is equal to 1 − sup({A,B})

sup({A}) , where A ∈ R and B ∈ S.

Complexity Analysis of SR2TR. Let n = |R|, m = |S|, a = |r|, b = |s|. The
theoretical complexity is in O((n ∗ a + m ∗ b) ∗ (n ∗ log(a) + m ∗ log(b)) + P )
where P is the complexity of the matching algorithm. In case of the Hungarian
Algorithm, its complexity would be (n+m)4, which can be reduced to (n+m)3

[4,8,9,13].

7 Experimental Results

We implemented the previous algorithms in C++ and conducted experiments
to determine its effectiveness. We used datasets provided by astrophysicists of
IN2P3 and synthetic databases to check the scalability of the algorithm. Our
experiments were run using a machine with an Intel Core i7-4712MQ (2.3 GHz)
CPU and 12 GB of memory. We focused on the classical UIND definition, referred
to as ⊆1. The results with canonical UIND, referred to as ⊆2, being quite similar
are not discussed.

The IN2P3 dataset is composed of two databases with 11 single attributes
each.

With respect to the number of tuples of the two databases, we obtained
acceptable execution times (see Fig. 7), linear in the size of the data.
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Fig. 7. Real-life astrophysics database

To test the scalability of our technique with regard to the response time
and the memory usage, we created 4 tests realized on synthetic datasets. The
datasets are composed of floating numbers in the interval [0, 5000] and with an
error measure in the interval [0, 1].

The first test considers a target relation of 100000 tuples, 20 attributes in
each relation schema and a varying number of tuples in the source relation (see
Fig. 8). We can observe a polynomial behavior on experimental results both in
response time and memory usage.

The second test considers a source relation of 1000 tuples, 20 attributes
in each relation schema and a varying number of tuples in the target relation
(see Fig. 9). In both the response time and memory usage we recognize a linear
behavior.

The following test considers a target schema relation with 100 single
attributes, 100 tuples in each relation and a varying number of single attributes

Fig. 8. Varying the number of tuples in the source relation
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Fig. 9. Varying of the number of tuples in the target relation

Fig. 10. Varying the number of single attributes in the source schema relation

Fig. 11. Varying the number of single attributes in the target schema relation



Discovering Injective Mapping Between Relations in Astrophysics Databases 31

in the source schema relation (see Fig. 10). We observe a linear behavior on
experimental results both in response time and memory usage.

The last test considers a source relation with 10 single attributes, and 100
tuples in each relation and a varying number of single attributes in the target
schema relation (see Fig. 11). A polynomial behavior can be observed both in
response time and memory usage.

8 Conclusion

We have addressed the problem of finding an injective mapping between
attributes from a source relation to a target relation in an interval-based numeri-
cal databases. The proposition is mainly based on the work of [15] on the discov-
ery of approximate unary inclusion dependencies. We implemented the contribu-
tions and tested on both real life and synthetic databases. Dealing with intervals
instead of classical values turns out to feasible in practice for this polynomial
problem, and requires mainly to think about notions such as the membership of
an interval into a collection of intervals.
Many perspectives do exist for this work: First, the Astrophysics setting of this
paper offers opportunities to extend the contributions made in this paper to real
Astrophysics problems. More joint works are needed to better understand the
needs of each other. Second, many pattern mining problems can be revisited for
interval-based numerical databases. For example, the discovery of conditional
functional dependencies could be revisited [6] as well as the discovery of editing
rules [5,7] for data cleaning, a main concern in Astrophysics.

Acknowledgments. This work has been partially funded by the CNRS Mastodons
projects (QualiSky 2016 and 2017).
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Abstract. We have developed an ad-hoc wireless positioning network
(AWPN) to realize on-demand indoor location-based services [10]. This
paper extends our AWPN to handle huge number of localization requests.
In AWPN, WiFi APs measure received signal strength (RSS) of WiFi
signals and send the RSS information to a localization server via a WiFi
mesh network. The maximum number of WiFi devices is therefore limited
by computational resources on the localization server. We push this limit
by introducing a new distributed calculation scheme: we use the MapRe-
duce computation framework and perform map processes on APs and
reduce processes on localization servers. We also utilize a network router
capable of network address translation (NAT) for shuffle processes to
provide scalability. We implemented and evaluated our distributed calcu-
lation scheme to demonstrate that our scheme almost evenly distributes
localization calculations to multiple localization servers with approxi-
mately 26% variations.

Keywords: Ad-hocwireless positioningnetwork (AWPN) ·MapReduce ·
Distributed calculation · Network address translation (NAT)

1 Introduction

In recent years, smartphones have become prevalent, which pushes increasing
attention to location-based services. Location-based services are mainly devel-
oped for outdoor use because the global positioning system (GPS) is widely
available in outdoor environments. Indoor localization is now more required to
extend location-based services to indoor environments.

We are developing a WiFi ad-hoc wireless positioning network (AWPN) to
realize on-demand indoor location-based services that are used in one-time use
scenarios such as a navigation in an exhibition event. The AWPN is a localization
system built on a WiFi mesh network. In AWPN, WiFi access points (APs)
c© Springer International Publishing AG 2017
D. Kotzinos et al. (Eds.): ISIP 2016, CCIS 760, pp. 33–48, 2017.
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capture IEEE 802.11 ProbeRequest frames sent from a WiFi device and measure
received signal strength (RSS) of the frames. The RSS-data is then sent to a
localization server via a WiFi mesh network to estimate the device location.

When we use AWPN in a large indoor environment, the localization server
receives huge number of RSS-data, which increases computational requirements
on the localization server. Large-scale AWPN consists of many WiFi APs that
receive signals from many WiFi devices. Although single localization calcula-
tion completes in few milliseconds [10], localization calculations for hundreds
of WiFi devices require considerable time. Especially, smartphones send many
ProbeRequest frames every second, which drastically increases the number of
localization calculations.

To address the calculation load problem, the MapReduce distributed calcu-
lation systems [2,3] such as Hadoop [21] have been widely adopted. MapReduce
systems, however, are inefficient for AWPN localization calculations because
computational resource for distribution is not negligible. MapReduce systems
consists of three processes: map process in which calculation tasks are associ-
ated with specific hash values named keys, shuffle process in which map tasks
are distributed to calculation nodes based on the keys, and reduce process in
which mapped data are aggregated to calculate final results. The MapReduce
effectively distributes calculation load onto calculation nodes when the map and
reduce processes are heavier than the shuffle process. In AWPN, localization
calculation itself is lightweight computation. Shuffle processes and data commu-
nications between calculation nodes for shuffling are not negligible in AWPN.

As a new solution for the calculation load problem in AWPN, this paper
presents a distributed calculation scheme such that MapReduce processes are
distributed to APs and localization servers. In the proposed calculation scheme,
APs perform map processes and localization servers perform reduce processes.
The APs measure the RSS of a ProbeRequest frame and determine the localiza-
tion server to send the RSS-data based on the information in the ProbeRequest
frame. RSS-data, generated on multiple APs, of an identical ProbeRequest frame
is therefore collected on the same localization server.

Practically, we utilize a network router for shuffle processes to easily sup-
port scalability. The required number of localization servers is dependent on
the scale of AWPN and the number of WiFi devices to be localized. To avoid
reconfiguration of WiFi APs in the environment when the number of localiza-
tion servers changes, we use network address translation (NAT) on a network
router to forward RSS-data to localization servers. The router is specified as a
default gateway in AWPN to collect all the RSS-data on the router. RSS-data
is forwarded to a specific localization server based on a key value in the RSS-
data. The number change of localization servers only requires reconfiguration of
address translation rules, which is defined in the network router.

Note that our approach is another form of MapReduce implementation with a
simple feature set. Our distributed calculation scheme does not provide features
such as dynamic scaling and fault tolerance that are widely available in orig-
inal MapReduce systems. These features are often insignificant in localization
systems for location-based services.
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Fig. 1. Overview of ad-hoc wireless positioning network (AWPN)

To demonstrate the effectiveness of the proposed distributed calculation
scheme, we conducted experimental evaluations in a Kyushu University building.
The experimental evaluations reveal that the proposed distributed calculation
scheme successfully distributed RSS-data to localization servers with imbalance
of 26%.

The remainder of this paper is structured as follows. Section 2 briefly
describes AWPN and shows requirements of a distributed calculation scheme
in AWPN. In Sect. 3, we present a distributed calculation scheme using network
address translation for AWPN, followed by implementation in Sect. 4. In Sect. 5,
we conducted experimental evaluations of the proposed distributed calculation
scheme. Finally, Sect. 6 concludes the paper.

2 Distributed Calculation in Ad-hoc Wireless
Positioning Network

2.1 Ad-hoc Wireless Positioning Network

Ad-hoc Wireless Positioning Network (AWPN) is a WiFi mesh network capable of
localizing WiFi devices [17]. Figure 1 depicts an overview of AWPN. To construct
AWPN, we install multiple WiFi APs into a localization target area and connect
a localization server to an AP named a core AP. The network is automatically
constructed with multi-hop links between APs. APs detect a WiFi signal sent from
a WiFi device in the localization target area and measures received signal strength
(RSS) of the signal. The RSS-data and the WiFi device address are then sent to
a localization server. The localization server calculates the device location using
multilateration with the RSS-data sent from multiple APs.

In AWPN, calculation load becomes heavier as the number of RSS-data
increases because the localization server performs all the calculations. Distrib-
uted calculation is an effective solution to address this calculation load problem.

There are two requirements for distributed calculation in AWPN.
The first requirement is independence between AWPN scale and system con-

figurations. When we extend a localization target area, we need to add APs and
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Fig. 2. RSS-data processing time on MongoDB

localization servers to process increased number of RSS-data. Changing system
configurations such as AP configuration parameters, AP firmware, and localiza-
tion server program requires much cost because there are hundreds of APs and
localizations servers in AWPN.

The second requirement is small overhead. In large-scale AWPN, localization
servers perform huge number of localization calculations because many WiFi
devices transmit ProbeRequest frames more than once per second. Localization
calculation is not a heavy task and is finished in few milliseconds [10]. Overhead
for calculations including RSS-data reception should be minimized.

Figure 2 shows the time required for RSS-data processing on MongoDB dis-
tributed database [18]. We collected RSS-data using AWPN installed in our lab-
oratory and inserted the RSS-data into MongoDB. On MongoDB, we grouped
RSS-data by sender WiFi devices and counted the number of RSS-data in each
group. We repeated data processing for 100 times and averaged the processing
time. Figure 2 indicates that the processing time greatly increased as the num-
ber of RSS-data increased when the number of RSS-data was more than 5,000.
We only counted the number of RSS-data in this example. We can confirm that
overhead to retrieve data from database is considerable when we process huge
number of RSS-data.

2.2 Related Works

For many high computation applications, MapReduce-based distributed calcu-
lation systems [2,3] are widely adopted to process high volume of data. For
example, the MapReduce systems are utilized in machine learning as well as
data mining [8,9,15], clustering [22], pairwise document similarity calculation [6],
and genome analysis [16]. Also there are many MapReduce extensions such as
MRPGA [13], Twister [4], DELMA [7], Tiled-MapReduce [1], SpatialHadoop [5],
and epiC [12].

The MapReduce systems, however, suffer from high overhead for local-
ization calculation in AWPN because localization calculation is a lightweight
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computational task. In the MapReduce systems, RSS-data is first stored in a
distributed database. RSS-data is then analyzed and grouped by sender devices
in map processes to calculate device location. In reduce processes, device loca-
tion is calculated using the grouped RSS-data. A node called a master node
distributes map and reduce processes to calculation nodes. In AWPN, the load
of the master node becomes significant when processing huge number of RSS-
data. Data reading from the distributed database in map and reduce processes
is another overhead in AWPN because results of map and reduce processes are
stored in distributed nodes.

Kafka [14] is a distributed messaging system for realtime data processing,
which is another form of distributed calculation systems. In Kafka, producers
generate messages and send the messages to servers named brokers, which pro-
vide distributed data queues. Application servers, named consumers, retrieve
messages from brokers at their own rate to process the messages. When we
apply Kafka to AWPN localization calculations, APs send RSS-data to brokers
and localization servers consume the RSS-data. Using a gateway service, Kafka
easily adapts to the change of the number of localization servers. This pub-
lish/subscribe model is also used in several IoT middlewares such as DDS [19]
and DPWS [11].

Although distributed data processing schemes using a publish/subscribe
model can perform localization calculations with high flexibility, a broker
requires higher computational resources compared to our approach. Data storage
on a broker is also required to safely process stream data. Our approach only
requires network routers with sufficient network capacity.

3 Distributed Calculation Scheme for AWPN

3.1 Overview

Figure 3 shows an overview of our distributed calculation scheme using address
translation. Our key idea is to distribute MapReduce processes to APs, net-
work router, and localization servers. An AP receives a ProbeRequest frame
and measures received signal strength (RSS) of the frame. The AP performs
a map process; the AP calculates a key value based on the information in the
ProbeRequest frame. The RSS value as well as key value is sent to a network
router as RSS-data. When the network router receives RSS-data, the router per-
forms a shuffle process; RSS-data is sent to the localization server associated
with the key value in the RSS-data. The RSS-data with the same key values is
therefore collected to the same localization server. The localization server then
performs a reduce process, i.e., calculates location of a WiFi device.

Following subsections describe details of map and shuffle processes.

3.2 Map Process

In a map process, an AP calculates a key value based on the information in a
ProbeRequest frame sent from a WiFi device. An AP retrieves the information
below to calculate a key value:
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Fig. 3. Overview of distributed calculation scheme using network address translation
for AWPN

– The MAC address of a source WiFi device
– The sequence number of a ProbeRequest frame
– The reception time of a ProbeRequest frame

The key values are associated with IP addresses in an address space not
used in a WiFi mesh network. An AP sends RSS-data to the IP address associ-
ated with a calculated key value. We configure the WiFi mesh network to use a
network router as a default gateway. All the RSS-data is therefore sent to the net-
work router. In Fig. 3, for example, RSS-data sent to an address in 10.0.0.0/24
address space is actually sent to the network router because 10.0.0.0/24 is
outside of 172.17.0.0/16 network.

Key value calculation algorithm should be simple enough because APs have
limited computational resources. As a simple example in this paper, a key value
k is calculated from the last byte m of the MAC address of a source WiFi device
and the sequence number s of a ProbeRequest frame as

k = (m + s) mod 256. (1)

Sequence number should be included in a key calculation because a WiFi device
successively sends ProbeRequest frames with different sequence numbers in a
short time. For binding between key values and IP addresses, we map an 8-bit
key value to a last byte of an IP address in 10.0.0.0/24 address space.

3.3 Shuffle Process

In a shuffle process, a network router changes the destination address of RSS-
data using network address translation (NAT) to forward RSS-data to localiza-
tion servers. The network router is responsible for distribution of RSS-data for
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Fig. 4. Overview of shuffle process in network router

localization calculation. The number change of localization servers only requires
reconfiguration of the network router.

Figure 4 shows an overview of a shuffle process in a network router.
The figure shows an example with two localization servers 192.168.0.1 and
192.168.0.2. APs send RSS-data to an IP address in 10.0.0.0/24 address
space. The destination address space 10.0.0.0/24 is divided into 10.0.0.0/25
and 10.0.0.128/25 subnets, each of which is assigned to a localization server.
The network router performs network address translation with rules shown in
Fig. 4 to forward RSS-data to localization servers. Although we can divide the
destination address space at any point, the size of subnets should be the same
to evenly distribute RSS-data to localization servers.

When the number N of localization servers is not the power of 2, i.e., N �= 2n

(n is zero or a positive integer), we need complicated address translation rules.
For example, when we add another localization server in Fig. 4, we want to evenly
divide the address space into three subnets below:

– 10.0.0.0 ∼ 10.0.0.84,
– 10.0.0.85 ∼ 10.0.0.169,
– 10.0.0.170 ∼ 10.0.0.255.

The size of a subnet is 85 or 86 in this case. Subnets are defined by a netmask,
which restricts the size of a subnet to the power of 2. We cannot evenly divide
the address space into three subnets with any netmask.

When N �= 2n, we divide an address space into subnets until the number
of the subnets is greater than N and assign the subnets to localization servers.
Here we explain the address division using an example when the number N of
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Fig. 5. Example of address space division (N = 5, kmax = 2)

localization servers is five as shown in Fig. 5. We first divide the address space
into eight subnets. Five of the subnets are assigned to each localization server.
Three remaining subnets are more divided into six small subnets, five of which
are assigned to localization servers. We repeat this division process for up to
kmax times and assign remaining subnets to localization servers as shown in
Fig. 5.
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Fig. 6. Address imbalance Baddr as a function of the number N of localization servers
(kmax = 1, 2, 3, 4)

Although the address division process results in imbalance of the number of
addresses in subnets, the imbalance decreases as the maximum number kmax of
divisions increases. Figure 6 shows address imbalance Baddr as a function of the
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number N of localization servers. Address imbalance Baddr is defined as

Baddr = max
∣
∣
∣
∣

ai − ā

ā

∣
∣
∣
∣
, (2)

where ai is the number of addresses assigned to localization server i and ā is the
average number of addresses assigned to localization servers. Address imbalance
Baddr becomes 0 for an ideal case, i.e., addresses are evenly assigned to localiza-
tion servers. Figure 6 indicates that the maximum address imbalance decreases as
0.875, 0.25, 0.125, and 0.063 as the maximum number kmax of divisions increases
from 1 to 4. Increase in kmax results in increase in the computation load on a
network router. kmax is determined based on computational resources on the
router.

4 Implementation

We implemented the proposed distributed calculation scheme using off-the-shelf
devices. Figure 7 shows the overview of our implementation. We installed four
PicoCELA PCWL-0100 APs and a Netgear WNDR4300 network router, which
are shown in Fig. 8. Table 1 shows specifications of PCWL. PCWLs are WiFi APs
that automatically build a WiFi mesh network. We implemented a C program
that captures ProbeRequest frames to generate RSS-data and perform map
processes on Linux running on PCWL.

Fig. 7. Overview of implementation

We prepared three virtual machines: two for localization servers and one for
a database server. The virtual machines were managed by the VMware ESXi 6.0
hypervisor running on a Supermicro 6018R-TD server with a 1.8 GHz eight-core
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Fig. 8. AP and network router used in implementation

Table 1. Specifications of PCWL-0100 [20]

Range in line-of-sight Approx. 150 m

TX power of mesh wireless 16 dBm

TX power of access wireless 16 dBm

Access wireless standard IEEE 802.11b/g

Number of mesh wireless IFs 2 (except an access wireless IF) 5.15 ∼ 5.35 GHz

Physical dimensions W142 mm × H118 mm × D39 mm

Weight 450 g

Intel XeonE5-2630Lv3 CPU, 16 GB memory, and four 2 TB disk drives. Each
virtual machine used single CPU core and 2 GB memory. Debian/GNU Linux
8.0 was running on virtual machines, which were built on separate disk drives
to minimize mutual influence between the virtual machines.

The localization server was implemented as a C++ program. The localization
server received RSS-data from the network router and estimate WiFi device
location using a simple multilateration algorithm. The results were sent to a
MongoDB database server.

5 Evaluation

To validate the effectiveness of the proposed distributed calculation scheme pre-
sented in Sect. 3, we evaluated RSS-data imbalance that indicates fairness of
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RSS-data distribution. We also evaluated the CPU usage and time for localiza-
tion calculations as a function of RSS-data traffic to estimate the number of
localization servers required for practical deployment.

In our evaluations, we used RSS-data collected in a real environment. We
installed four PCWLs in our laboratory and collected RSS-data generated from
ProbeRequest frames sent from user devices such as smartphones and laptops.
The RSS-data was collected for approximately three and half days. The number
of collected RSS-data is 137,061.

5.1 RSS-Data Imbalance

RSS-data imbalance is a figure that indicates how uniformly RSS-data is dis-
tributed to localization servers. RSS-data imbalance Brss is defined in the same
manner as the address imbalance as

Brss = max
∣
∣
∣
∣

ri − r̄

r̄

∣
∣
∣
∣
, (3)

where ri is the number of RSS-data received on localization server i and r̄ is the
average number of RSS-data received on localization servers. RSS-data imbal-
ance Brss becomes 0 for an ideal case, i.e., RSS-data is evenly distributed to
localization servers.

We calculated the number of RSS-data received on each localization server
using the RSS-data collected in a real environment, while changing the number
of localization servers. For each RSS-data, destination localization server was
calculated using the map process described in Eq. (1) and the shuffle process
presented in Sect. 3.3. RSS-data imbalance was calculated using Eq. (3) with the
number of RSS-data received on each localization server.

Figure 9 shows RSS-data imbalance Brss as a function of the number N of
localization servers. Figure 9 indicates the following:

– Comparing Figs. 6 and 9, RSS-data imbalance Brss curve is similar to the
address imbalance curve in Fig. 6. When address imbalance was big, RSS-data
was not evenly distributed to localization servers, resulting in big RSS-data
imbalance.

– RSS-data imbalance Brss had a tendency to decrease as the maximum num-
ber kmax of divisions increases. In a range of kmax from 1 to 4, RSS-data
imbalance Brss became maximum at 0.26 when kmax = 3.

From the above results, we conclude that a hash function used in a map process is
a key factor to evenly distribute RSS-data in our distributed calculation scheme.
The simple hash function presented in Eq. (1) in Sect. 3.2 exhibited low perfor-
mance in terms of fair distribution of RSS-data.

5.2 CPU Usage

To validate that a localization calculation is not a heavy task compared to RSS-
data reception, we evaluated CPU usage while changing RSS-data traffic, i.e., the



44 J. Kajimura et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16  18  20

R
SS

-d
at

a 
im

ba
la

nc
e 
B
rs
s

Number N of localization servers

kmax=1
       =2
       =3
       =4

Fig. 9. RSS-data imbalance Brss as a function of the number N of localization servers
(kmax = 1, 2, 3, 4)

 2

 4

 6

 8

 10

 12

 14

 0  500  1000  1500  2000  2500  3000  3500

C
PU

 u
sa

ge
 [%

]

RSS-data traffic [counts/s]

w   calculation
w/o calculation

Fig. 10. CPU usage as a function of RSS-data traffic

number of RSS-data sent in one second. We sent dummy RSS-data at a specific
rate and recorded average CPU usage for 300 s using sysstat command. Not
to perform wasting calculations, we only sent RSS-data that can be successfully
localized. We compared CPU usages with and without localization calculations.

Figure 10 shows CPU usage as a function of RSS-data traffic. Figure 10 indi-
cates the following:

– CPU usage almost linearly increased as the RSS-data traffic increased. The
numbers of RSS-data receptions and localization calculations are proportional
to RSS-data traffic, which linearly increased CPU usage.
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– There was a slight difference of CPU usages between with and without local-
ization calculations. The difference of CPU usages between with and without
localization calculations, i.e., CPU usage for localization calculations, was
quite small.

The above results reveal that localization calculation is a lightweight task in
comparison with RSS-data reception.

5.3 Calculation Time

To estimate how many servers are required to localize huge number of WiFi
devices, we evaluated localization calculation time. We modified localization cal-
culation program on a localization server installed in a real environment to record
start and end time for every localization calculation. Localization calculations
were performed for 80,941 times with 137,061 RSS-data.

Figure 11 shows an empirical cumulative distributed function (ECDF) of
localization calculation time. Black and blue lines in the Fig. 11 show the results
for all calculations and successful calculations, respectively. Figure 11 shows the
following:

– More than 80% of calculations were completed in 5 ms. Localization calcula-
tion is not a heavy task for a localization server and doesn’t take much time
for a single calculation.

– 83.6% of successful calculations were completed in 5 ms. 83.6% and 96.9% of
successful calculations were completed in 5 and 10 ms, respectively. For more
than 100 localization calculations per second, multiple servers or multi-thread
programming is required to complete localizations in realtime.
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6,955 localization calculations have been succeeded, which is 8.6% of all the
calculations. We used four APs in this evaluation and calculated device location
using multilateration. Multilateration requires RSS-data from all the four APs
to estimate device location in our evaluation environment. 69.3% of localiza-
tion calculations failed because of less number of RSS-data, which completed in
5 ms. Remainder 22.1% of calculations diverged because of the variations of RSS
caused by multi-paths and measurement errors, which took longer time.

The above results reveal that our distributed calculation scheme requires
parallel computation for more than 100 localization calculations per second.
Referring to Sect. 5.2, the number of localization servers might be estimated
based on the CPU usage of RSS-data reception. As shown in Fig. 10, the CPU
usage linearly increases as RSS-data traffic increases. We might need more than
two servers when RSS-data traffic is more than 25,000 counts every second.
The RSS-data traffic greatly increases as the numbers of WiFi devices and APs
increase.

6 Conclusion

This paper presented a new distributed calculation scheme for an ad-hoc wireless
positioning network (AWPN) to process huge number of localization requests.
Our approach is to distribute MapReduce processes to WiFi APs, a network
router, and localization servers: map processes on APs, shuffle processes on
a router, and reduce processes on localization servers. Using network address
translation (NAT) in shuffle processes, our distributed calculation scheme easily
provides scalability with variable number of localization servers. We conducted
experimental evaluations in a real environment and confirmed that our scheme
successfully distributed localization calculations with the maximum RSS-data
imbalance of 0.26. The RSS-data imbalance of 0.26 might be insufficient in prac-
tical use cases. We are working on a hash function in a shuffling process to evenly
distribute calculation tasks.
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Abstract. Because vehicular traffic is affected by weather conditions,
knowledge of the relationship between weather and traffic enables
attempts to improve social services through applications such as
situation-aware anomaly vehicle detection and snow-removal planning
in snowy countries. We propose a weather-aware traffic state model for
vehicular traffic analysis in consideration of weather conditions. The
model is a probabilistic latent variable model that integrates weather
and traffic data, whereby the characteristics of the traffic according to
location, time, and weather condition are obtained automatically. After
we observe both weather and travel times along road segments, we derive
the expectation–maximization algorithm for model parameter estima-
tion and the predictive distribution of travel time given the weather
observation values. We evaluated the model qualitatively and quanti-
tatively using winter traffic and weather data for the city of Sapporo,
Japan, which is a large city that suffers heavy snowfalls. The empirical
analysis with model visualization outcomes demonstrated the relation-
ship between the expected vehicular speed and weather conditions, and
showed the potential bottleneck segments for given weather conditions.
The quantitative evaluation showed that our model fits the data better
than a linear regression model, which suggests the potential for anomaly
detection from vehicular observation data.

Keywords: Data integration · Data mining · Latent variable models ·
Probe-car data · Social cyber–physical systems · Weather-aware traffic
state analysis

1 Introduction

Real-world traffic is complex and involves various factors. One important factor is
the weather conditions. These change the driving environment, including visibil-
ity and road surface conditions, which affects the movement of vehicles in terms
of running speed, vehicular gaps, and so on. Bad weather also affects the behavior
of people: they may change their destination or visiting order, or avoid traveling
at all, which affects the traffic volume and travel route. Knowledge of the rela-
tionship between weather and traffic enables attempts to improve social services.
c© Springer International Publishing AG 2017
D. Kotzinos et al. (Eds.): ISIP 2016, CCIS 760, pp. 51–65, 2017.
DOI: 10.1007/978-3-319-68282-2 4
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For example, if the roads and intersections in which heavy snow often hinders the
traffic are known, effective road improvement and snow-removal planning will be
available. Situation-aware detection of anomalies in vehicle movements will also
be possible with such knowledge and the awareness of the current condition. This
approach also promises to provide finer-grained traffic information than existing
approaches: for instance, that traffic is congested because the average speed has
fallen below a prescribed value.

The relationship between weather and vehicular traffic has been studied over
decades. Traffic engineers studied the effect of weather on freeway traffic in
1988 [5]. Keay and Simmonds analyzed the relationship between rainfall and
traffic volume in Melbourne, Australia, using a linear regression method [7].
Recent studies also utilized linear regression techniques but they are application-
oriented. Lee et al. developed a linear regression model to predict traffic conges-
tion using weather data [9]. Tanimura et al. also used a linear regression model
to predict the reductions in vehicle speeds in snowy conditions [11]. Xu et al.
predicted traffic flows based on weather data using an artificial neural network
as well as a linear regression method [13]. These studies model the relationship
between weather and traffic in terms of traffic statistics or aggregated values.
However, they do not model the relationship between weather and the behavior
of individual vehicles.

The movement of a vehicle differs substantially among individuals. In par-
ticular, on ordinary roads, the speeds of vehicles vary greatly because they fre-
quently slow down for intersections, traffic lights, and pedestrians. Therefore, in
this paper, we model the traffic by probabilistic means. With the probabilistic
distribution of the traffic observation values, such as travel time at a certain
location over a selected period, the degree of anomaly of the observed behav-
ior of an individual vehicle can be evaluated quantitatively. Statistics such as
mean travel time and average speed can also be calculated based on the distrib-
ution. Earlier studies proposed several probabilistic distribution models [2,4,14];
however, they have not considered the weather conditions.

In this paper, we develop a weather-aware traffic state model (WATS model),
a probabilistic model of observed values for traffic with consideration of weather
conditions. Our probabilistic model aims at learning the “normal” patterns of
traffic using data archives, which would be used for the applications described
above, i.e., traffic incident detection and snow-removal planning. We have pre-
viously proposed a latent variable model for traffic state, and have shown its
effectiveness for incident detection on expressways [8]. This model introduced
latent traffic states such as “smooth” and “congested,” and assumed the traffic
observation values depend on the latent states. This paper extends the model by
introducing variables related to weather conditions and relationships among the
variables. The WATS model assumes not only that the traffic observation value
depends on latent traffic states, but also that the traffic state depends on the
weather. We introduce weather states to relate the traffic data to the weather
data observed at the same time of day, thus allowing the relationship between
weather and traffic to be learned. We borrow the idea of a Pachinko allocation
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model [10], which is a latent variable model that analyzes topics in textual infor-
mation by considering correlations among latent information, to realize a feasible
model for the problem.

We also aim to apply the WATS model to ordinary roads as well as express-
ways. In this study, we conducted an experiment in the city of Sapporo,
Hokkaido, Japan. Sapporo is the metropolis of Hokkaido prefecture, and the
fourth largest city in Japan in terms of population. While more than 1.9 M peo-
ple live there, the city is located in a heavy snowfall region. The city spent
more than 18 billion yen (about $US 150 M) on plans to counter snow in the
2015 fiscal year, with more than three quarters of the budget devoted to snow
removal [3]. It is important to enhance cost effectiveness while reducing the bad
influence of snow on traffic. Against this background, we attempted an empirical
analysis on the weather–traffic relationship in Sapporo in winter. The visualized
results of the WATS model indicate that it is possible to find bottlenecks that
change according to weather and time. Our quantitative evaluation showed that
the model fits the data better than an existing weather–traffic model, suggesting
the potential for incident detection.

The main contributions of this paper are as follows.

– We propose a weather-aware traffic state (WATS) model. It is a new proba-
bilistic latent variable model that integrates weather and traffic data, deriving
the characteristics of the traffic according to location, time, and weather con-
dition automatically.

– We show the effectiveness and the potential of the WATS model by our empir-
ical qualitative and quantitative evaluations. The evaluation was conducted
in the city of Sapporo, located in Japan’s snow country.

The rest of this paper is organized as follows. In Sect. 2, we propose the WATS
model. Section 3 reports the result of our empirical experiment and discusses the
results, issues and future work. Finally, Sect. 4 concludes the paper.

2 Weather-Aware Traffic State Model

In this section, we present our WATS model. The aim of our model is to integrate
observation data, traffic conditions, and weather conditions, so that the relation-
ship between weather and vehicular traffic can be analyzed. Table 1 summarizes
the notation used in this paper.

2.1 Model Design Concepts

We use two kinds of data:

– weather observation data, which are obtained periodically (e.g., hourly),
– traffic observation data, which are obtained intermittently or continuously.
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Table 1. Notation

Notation Definition

s Road segment

ds Length of road segment s

S Number of road segments

t Time

T Number of weather observation data

n Index of traffic observation data

Nts Number of traffic observation data in segment s in time t

w Weather observation data

D Dimension of w

x Traffic observation data

μ, Λ Mean and precision, respectively, of w

λ Mean travel speed

l, k Index of latent states

L, K Number of latent weather and traffic states, respectively

π Mixing coefficient of weather states

v Latent weather state

y, z Latent weather and traffic state, respectively

θ Mixing coefficient of traffic states

Θ Set of parameters: (π, θ, μ, Λ, λ)

η All hyperparameters: (α, β, a, b, μ0, γ, W , ν)

Here we develop a latent variable model, whereby weather-aware traffic perfor-
mance is described in terms of a probability distribution.

Weather observation data indicate the weather conditions in the subject area.
At time t, only one weather observation data point w is obtained. The observa-
tion value is numerical and we assume w follows a Gaussian distribution with
mean μ and precision (i.e., the inverse of the covariance matrix) Λ. The mean
and covariance can change according to weather conditions. For example, tem-
perature tends to be low and snowfall tends to be large in “snowy” conditions,
and temperature tends to be high and snowfall tends to be zero in “sunny” con-
ditions. We introduce L weather states, each of which is characterized by the
mean μl and the precision Λl. Then the probability distribution of the weather
observation at time t is described in terms of a mixture of these components:

p(wt | Θ) =
L∑

l=1

πtlN (wt | μt | Λ−1
l ), (1)

where πt is the mixing coefficient vector at time t. πtl is equivalent to the prob-
ability of being in the l-th weather state at time t. The mixing coefficient varies
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according to the time t while each of L component Gaussians is identical over
time. Therefore, πt characterizes the weather condition at time t.

Intuitively, we can identify traffic states as being “smooth” or “congested,”
regardless of location, and the traffic state information is strongly related to
geographical and time-of-day conditions [8]. Therefore, traffic observations are
conducted for each segment s, which is the unit for traffic observation and is
specified by road segment, direction, and time period, such as “morning” or
“evening.” At time t, Nts traffic observation data points are obtained from
segment s.

There are several options for traffic observation values, e.g., travel time and
average speed. In this paper, we use travel time as the traffic observation value
x. Travel time can be measured directly using probe cars [12]. The travel time
depends on both the length of the road segment and traffic condition, and we
model the relationship among them. Although several models have been pro-
posed for travel time distribution [2,4], they are too complicated to incorporate
into our model or they need additional features for estimation. Intuitively, traffic
conditions can be characterized by the average speed λ: the traffic is “smooth” if
λ is large, and “congested” if λ is small. We therefore introduce K traffic states
with different average speeds {λk} and the gamma distribution Gamma(ds, λk),
where ds is the road length of the segment s. This distribution makes sense with
the assumption of a Poisson process: considering the event that a vehicle goes
forward a unit length, the rate λ, or average number of times the event occurs,
is equivalent to the average speed, and the total time required for k occurrences
of the event is equivalent to the travel time on a road of length k and follows
an Erlang distribution. The gamma distribution is the generalized form of the
Erlang distribution by allowing k to be a positive real number rather than a
positive integer. Note that we use the notation Gamma(ds, λk) in this paper for
the gamma distribution with the following probability density function:

Gamma(x | ds, λk) =
λds

k xds−1exp(−λkx)
Γ(ds)

, (2)

where Γ(z) is the gamma function.
Traffic conditions vary according to the time and place and depend on the

“condition” there, e.g., road shape and congestion occurrence. The condition can
also change according to the weather even at a particular place. For example,
traffic congestion may occur when it snows. There seems to be a hierarchical
property: traffic observations depend on the traffic conditions, and the traffic
conditions depend on the weather conditions. In this study, we model the rela-
tionship as a latent variable model, borrowing the idea of the Pachinko allocation
model (PAM) [10]. PAM was proposed to analyze topics in textual informa-
tion with consideration of correlations among latent information. It introduces
a hierarchical structure among latent variables: word occurrence in a document
depends on its topic and the topic depends on the supertopic. In our WATS
model, the traffic observation value depends on the traffic state and the traffic
state depends on the weather state. The probability distribution of the traffic
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Fig. 1. Graphical model for the WATS model.

observation value is described in terms of a hierarchical mixture:

p(xtsn | Θ) =
L∑

l=1

πtl

K∑

k=1

θslkGamma(xtsn | ds, λk), (3)

where θsl is the mixing coefficient vector, the k-th element of which is equivalent
to the probability of being in the k-th traffic state in segment s in the l-th
weather state. Each of K component gamma distributions is identical regardless
of the segment and the weather state. Therefore, θsl characterizes the traffic
performance for each road segment and for each weather state.

2.2 Generative Model

Figure 1 shows the graphical model for the WATS model. The upper part gener-
ates the weather observation data wt while the lower part generates the traffic
observation data xtsn. The two kinds of data in the same time t are associated
with each other by the parameter πt. The generative process is as follows:

1. Generate parameters:
(a) Generate the mean speed λk ∼ Gamma(a, b) for each of K traffic states;
(b) Generate the pair of the mean vector and the precision matrix of the

weather observation values (μl,Λl) ∼ Gauss–Wishart(μ0, γ,W , ν) for
each of L weather states;

(c) Generate the mixing coefficient θsl ∼ Dirichlet(βl) for each segment s
and for each weather state l;

2. Generate the data at time t:
(a) Generate a mixing coefficient πt ∼ Dirichlet(α);
(b) Generate weather observation data:
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i. Generate the weather state vt ∼ Multinomial(πt);
ii. Generate the weather observation vector wt ∼ N (μl,Λ

−1
l ), where

vt = l.
(c) Generate the nth traffic observation data for each segment s:

i. Generate ytsn ∼ Multinomial(πt);
ii. Generate ztsn ∼ Multinomial(θsl), where ytsn = l;
iii. Generate x[tsn] ∼ Gamma(ds, λk), where ztsn = k.

According to the generative process above, the log-likelihood is derived as
follows:

∑

t

ln
∑

l

πtlN (w t | μl,Λ
−1
l ) +

∑

t,s,n

ln
∑

l,k

πtlθslkGamma(xtsn | ds, λk). (4)

2.3 Model Estimation

Maximum-likelihood (ML) estimations or maximum a posteriori (MAP) esti-
mations for latent variable models generally use the expectation–maximization
(EM) algorithm [1]. The EM algorithm iterates E- and M-steps alternately until
the log-likelihood converges. We show the update formulas for our WATS model;
they can be derived by considering some conditional probabilities based on the
graphical model, but the mathematical details of the derivation are are omitted
here because of space limitations.

The E-step calculates the posteriors:

ζtl ≡ p(vt = l | wt,Θ) ∝ πtlN (w t | μl,Λ
−1
l ), (5)

ξtsnlk ≡ p(ytsn = l, ztsn = k | xtsn,Θ) ∝ πtlθslkGamma(xtsn | ds, λk). (6)

The M-step maximizes the following Q function for the ML estimation, or the
Q̃ function for the MAP estimation:

Q =
∑

t,l

ζtl
[
ln N (wt | μl,Λ

−1
l ) + lnπtl

]

+
∑

t,s,n,l,k

ξtsnlk [ln Gamma(xtsn | ds, λk) + ln θslk + lnπtl] , (7)

Q̃ = Q + ln p(Θ). (8)

This Q or Q̃ is maximized by introducing Lagrange multipliers and setting its
partial derivatives with respect to each parameter to zero. The update formulas
for MAP estimation are derived as follows:

πtl ∝ ζtl +
∑

s,n,k

ξtsnlk + αl − 1, θslk ∝
∑

t,n

ξtsnlk + βlk − 1, (9)

λk =

∑
t,s,n,l ξtsnlkds + a − 1

∑
t,s,n,l ξtsnlkxtsn + b

, μl =
∑

t ζtlwt + γμ0∑
t ζtl + γ

, (10)

Λ−1
l =

∑
t ζtl(wt − μl)(wt − μl)T + γ(μl − μ0)(μl − μ0)T + W −1

∑
t ζtl + ν − D

. (11)
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πtl and θslk should be normalized so that
∑

l πtl = 1 and
∑

k θslk = 1 respec-
tively. As for the ML estimation, constant terms (i.e., terms that do not include
ζtl or ξtsnlk) are simply eliminated.

2.4 Prediction

Once the model parameter Θ is estimated, we can calculate the predictive dis-
tribution of travel time x in the segment s as the conditional probability given
a weather observation vector w. Based on the graphical model, the predictive
distribution is derived as follows:

p(x | w, s,Θ) =
∑

k

ωkGamma(x | ds, λk), (12)

where

ωk ≡
∑

l θslkαl

(
q(w) + N (w | μl,Λ

−1
l )

)

(
∑

l αl + 1) q(w)
, (13)

q(w) ≡
∑

l

αlN (w | μl,Λ
−1
l ). (14)

Therefore, the predicted travel time follows a gamma mixture distribution. The
expected travel time is obtained as follows:

E[x | w, s,Θ] =
∑

k

ωk
ds
λk

. (15)

The predictive distribution and the expected value above include the hyper-
parameter α in the formulas. It is given in the MAP estimation, but it is not
given in the ML estimation. According to Eqs. (7) and (8), the ML estimation can
be regarded as a MAP estimation that assumes that the prior p(Θ) is uniform,
i.e., constant. α is the parameter of a Dirichlet distribution, which is equivalent
to a uniform distribution when α = 1, i.e., αl = 1 for all l. Therefore, we propose
to use α = 1 for prediction with the estimated value of ML estimation.

3 Experiment

We have conducted an empirical winter traffic analysis in the city of Sapporo by
applying the WATS model to real weather and traffic data. This section reports
and discusses the experimental results.

3.1 Data Set

Figure 2 shows the subject area, a part of Sapporo, Hokkaido, Japan. Snow falls
in Sapporo from the end of October to April and the snow depth reaches about
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Sapporo sta.

AMeDAS

Tokyo

Sapporo

Fig. 2. Map of Sapporo, Hokkaido, Japan. The red-line polygon shows the subject area.
The Sapporo AMeDAS station is also shown. Map tiles c©OpenStreetMap contributors,
CC BY-SA 2.0.

one meter in midwinter every year. Surface weather such as temperature and
precipitation is observed at about 1300 stations in Japan using the Automated
Meteorological Data Acquisition System (AMeDAS) developed and operated
by the Japan Meteorological Agency [6]. In this experiment, we used weather
observation data from Sapporo AMeDAS station and traffic data within the
region shown in Fig. 2; the nearest AMeDAS station is Sapporo.

We obtained probe-car data in Sapporo city, and then we preprocessed them
to generate traffic data for each road segment. The original probe-car data
include trajectory information, i.e., a sequence of time–location data points for
each active probe car. The preprocess had five phases: we defined segments
according to the road segments and time period; map matching was conducted
to associate a vehicular location with a road segment; trajectory data were inter-
polated linearly so that the time when the vehicle entered or exited the segment
was determined; and the travel time for each segment was observed. As men-
tioned previously, each segment was determined by road segment, direction, and
time period. Our road segments follow the main road segment data in a com-
mercial digital road map. They are divided by day (weekday or holiday) and by
time period: morning rush hour (7–10 h), daytime (10–17 h), evening rush hour
(17–20 h), and night (20–7 h on the following day). For the weather observation
data, we used hourly data at Sapporo AMeDAS station, including temperature
[◦C], snowfall [cm/h], snow depth [cm], and precipitation [mm/h].

We obtained weather and traffic data from January 2010 to February 2015,
but we used only winter data from October to April of each year. We used data
in or before April 2014 for model training, and that in and after October 2014
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for testing. We removed noisy segments that have less than 1000 training data
points from the data set. The final training data include 31,891 segments and
74,826,640 traffic observations.

3.2 Parameter Estimation

We first trained the WATS model using the training data. In this experiment,
we conducted ML estimation. We assumed eight weather states and 16 traffic
states, but we did not assume any other parameter values such as mean speed
or mean temperature, which were estimated from the training data.

We implemented the EM algorithm described in the previous section using
OpenMP for multiprocessing. The EM algorithm required about 13 min using
parallel processing with 36 CPU cores. Tables 2 and 3 show the estimated
parameter values. The eight estimated weather states include snowy conditions
(l = 1, 2, 4), warm conditions (7, 8), and snow-accumulated conditions (1–6).
The mean speed of the traffic states extends over a wide range from “almost
stopped” to “very fast.” The estimated mean speed for the 16th traffic state was
quite fast; this seems to be caused by outliers in the training data, which were
possibly caused by map-matching failures. However, these would be insignificant
in this experiment because the estimated mixing coefficient value for the 16th
traffic state was zero or almost zero for almost all segments; that is, the 16th
traffic state was ignored automatically.

We visualized the estimated model as shown in Fig. 3 for a qualitative analy-
sis. Because of space limitations, the figure shows the estimated model only
for the morning rush hour on weekdays. The color of a segment indicates the
expected values of average link speeds; their probability densities were obtained

Table 2. Estimated mean parameters for each weather state distribution. The weather
states are ordered by temperature.

Weather state l 1 2 3 4 5 6 7 8

Temperature [◦C] −3.6 −2.9 −2.4 −1.8 −1.4 1.1 8.3 8.8

Snowfall [cm/h] 2 1 0 3 0 0 0 0

Snow depth [cm] 65 56 66 47 56 17 0 0

Precipitation [mm/h] 1.1 0.5 0.0 2.4 0.6 0.0 1.4 0.0

Table 3. Estimated mean parameter for each traffic state distribution. The traffic
states are ordered by mean speed.

Traffic state k 1 2 3 4 5 6 7 8

Mean speed [km/h] 1.2 3.0 5.0 7.2 10.0 13.4 17.6 23.3

Traffic state k 9 10 11 12 13 14 15 16

Mean speed [km/h] 31.0 39.4 48.1 56.9 65.6 75.4 96.7 295.5
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(a) l = 1. (b) l = 2. (c) l = 3. (d) l = 4.

(e) l = 5. (f) l = 6. (g) l = 7. (h) l = 8.

Fig. 3. Estimated model for the morning rush hour (7–10 h) on weekdays. The color
of a segment indicates the expected value of the average link speed. Green represents
high speed (100 km/h), red is moderate speed (50 km/h), and blue is “almost stopped”
(0 km/h). Each subfigure corresponds to one of the eight weather states. Base map
tiles c©OpenStreetMap contributors, Who’s On First, and openstreetmapdata.com.
Data are licensed under ODbL. (Color figure online)

by the transformation of random variables using the estimated travel time dis-
tribution and the road length. The map tends to be red as the weather states
become warmer with less snow, but the map of the 6th state is exceptional
because it is almost blue. This suggests that the traffic tends to slow down
almost everywhere when the temperature is nearly zero degrees and there is
snow accumulation. Vehicles can be expected to slow down in such weather con-
ditions because the accumulated snow melts and freezes at around zero degrees
and makes the road surface condition very poor. On the other hand, some road
links keep the mean travel speed over different weather states at a slow value.
We speculate that the reason is queueing and waiting for traffic lights regardless
of weather.

3.3 Model Evaluation

We evaluated two quantitative metrics: prediction error of the expected travel
time and the cross entropy. For comparison, we also trained linear regression
models for each segment as the baseline.

Expected Travel Time Prediction. With the estimated model, we calcu-
lated the expected travel time for each road segment every hour. We used ML

http://openstreetmapdata.com
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estimation in this experiment, so the expected value was given by Eq. (15) with
α = 1 as we described in the previous section. We regarded the sample mean
of the actual travel times of vehicles in the test data as the ground truth in this
experiment. Statistically, the number of samples should be large enough to be a
reliable estimator of the ground truth. We therefore employed only the test cases
that included 30 or more actual travel time observations per hour. We obtained
141 test cases from 68 segments.

Figure 4 shows the distribution of prediction error with the WATS model.
Here it can be seen that the error distribution has a sharp peak around zero.
The absolute prediction error was less than 2.5 s for more than 40% of the test
cases and less than 20 s for 90%.

Figure 5 shows the comparison of the prediction error between the WATS
model and the linear regression method. For this evaluation, the linear regression
model was trained for each segment using the training data, with the hourly
weather observation value w being the input value and with the mean travel
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Fig. 4. Histogram of prediction errors for expected travel time calculated with the
WATS model. Positive error means that the predicted travel time was longer than the
ground truth, and vice versa.
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Fig. 5. Comparison of the prediction performance of the expected travel time between
the linear regression (baseline) method and the proposed (WATS) model.
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time per hour being the target value. In the left figure, each point corresponds
to a test case, and the error of the proposed method against the baseline method
is shown. The plots are substantially along the identity line shown as a red
line, and there are both improved and worse cases. The right figure shows the
distribution of absolute prediction error of the two methods. The distribution
seems to be exponential, and the median for the WATS model was less than that
of the linear regression model. However, it is clear that the difference between
two distributions is not very significant and the performances of the two methods
are comparable.

Cross Entropy. From the viewpoint of probabilistic modeling, cross entropy
between the distribution estimated by the model and that of the training data
set is also an interesting evaluation metric. It is equal to the average negative log-
likelihood over the test data. Smaller entropy values indicate better explanations
of the data set by the probabilistic model and therefore such a model is con-
sidered to be better at summarizing the data. The linear regression is regarded
as a Gaussian model; i.e., the target variable follows a Gaussian distribution
with mean represented by a linear formula and the variance is a constant. The
variance estimator is the variance of the residual in the training data set.

In this evaluation, the linear regression model was trained for each segment,
with the hourly weather observation value w being the input value and with the
actual travel time being the target value, so that the cross entropy of the actual
travel time data can be evaluated. The test data included 56,186,309 observation
values from 31,891 segments. The cross entropy for the linear model was 4.57
while that for the WATS model was 3.35 (73% of the value for the linear model),
calculated using natural logarithms. This shows that our method fitted the data
better than did the linear regression method.

3.4 Discussion

Our model has confirmed that traffic patterns depend on weather conditions
as well as time and location. It shows traffic smoothness through the travel
time or travel speed distributions under different weather conditions, which are
characterized by values such as temperature and snow depth, and the model
shows the chronic or weather-sensitive bottlenecks. Road administrators and
experts might use this knowledge to improve roads before disaster occurs, or for
planning snow removals after a heavy snowfall. Thanks to the mixing coefficient
for each road segment and for each weather state in our model, clustering analysis
could also be applied over the segments. If it works, it will help us to understand
the characteristics for each road segment and time period by grouping similar
segments such as “susceptible to snow.”

The prediction performance of the expected value using our WATS model was
comparable to that with linear regression. This result suggests that statistics
such as expected value can be learned by a simple model and that there is
potentially a linear relationship between weather and traffic. However, the WATS
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model reduced the entropy of data and therefore fitted the data better than
the linear regression model, which cannot explain the individual data points.
It is presumably caused by the multimodality of the travel time distribution.
Typically, there are several modes in ordinary roads. Vehicles that pass through
the road link without stopping are said to be in “smooth” mode. Vehicles may
also stop at an intersection or a traffic signal, so the mean speed slows down in
this case; such vehicles are in “stop” mode. Because of this multimodality, the
expected value can take a value with a low probability density. In other words,
the actual observed values tend to differ from the expected value, and therefore,
it seems not to be reasonable to suppose that an observed value is unusual or
anomalous just because it differs from the expected value.

Cross entropy is the average information of a data point. Less entropy indi-
cates less information per data point, so that the data become more predictable.
In other words, a low-entropy model can regard most of the data as usual. From
the entropy evaluation, the proposed model regards larger amounts of data as
more “usual” than does the linear regression. Further work is under way to
conduct anomaly detection using the WATS model, whereby traffic incidents or
sudden bottlenecks could be found in real time.

Our analysis is empirical but represents a first step in understanding the
social–physical space. In this paper, we have used travel time as the feature
value for the traffic on a road segment and assumed that it follows a gamma dis-
tribution. However, feature selection and probabilistic modeling are still open to
discuss. Other features such as traffic flow and density, which might be obtained
from data sources other than probe vehicles, would be worth considering. Knowl-
edge information such as traffic signal timing will also be helpful to improve
graphical model structure and probability distribution functions for mixture
components. The model estimation algorithm also requires further development.
Model selection, such as determining K and L, is an important open problem.
Bayesian inference may also improve model estimation.

4 Conclusion

We have studied a probabilistic model to describe traffic observation data using
both traffic and weather conditions. We proposed the WATS model, which is
a latent variable model to relate traffic data to weather data by borrowing the
idea of the Pachinko allocation model. We have conducted an empirical winter
traffic analysis in the city of Sapporo, Japan, by applying the WATS model to
real weather and traffic data. The model showed the relationship of the expected
vehicular speed to weather conditions, and showed the potential bottleneck seg-
ments according to the weather conditions. The quantitative evaluation showed
that the WATS model fits the data better than the linear regression model,
which suggests the potential for anomaly detection from vehicular observation
data.
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Abstract. Road surface conditions have a significant impact on trans-
port safety and driving comfort, particularly in snowy areas. This paper
proposes a new method for estimating road surface conditions by using
a motion sensor embedded in a smartphone. The method is based on
a mobile sensing framework that can collect sensor data using crowd-
sourcing. In this study, we have defined new road surface conditions as
the estimation target, which takes into account both the substance that
covers the road surface, and the shape of the road surface itself. The
paper also describes a method of feature selection, comprising two steps:
First, an initial feature set is directly calculated using various features
published in previous studies, using raw sensor data. Second, three fea-
ture selection algorithms are compared: Principal Component Analysis
(PCA), Relief-F, and Sequential Forward Floating Search (SFFS), and
the most effective of the three chosen. In this study, the SFFS algorithm
showed higher accuracy than the others. The road surface condition clas-
sification was performed across different speed ranges using the Random
Forest Classifier, and results show that the best accuracy, of about 91%,
was obtained in the 50 km/h–80 km/h range.

Keywords: Road surface condition · Relief-F · SFFS · Random forest ·
Acceleration · Smartphone · Crowdsorucing

1 Introduction

Road surface conditions are a cause of traffic accidents, particularly in snowy
regions, and Fig. 1 shows the winter traffic accident rates for different road sur-
face conditions in snowy areas of Japan; the figure shows that about 50% of
accidents have occurred on frozen road surfaces. In areas of snowfall, the road
surface can have many different states, which will change with weather and vol-
ume of traffic. The changes are mainly influenced by two factors: (1) The sub-
stance that covers the road surface, such as asphalt, water, snow, and ice, which
is called the road surface type (RST); and (2) The shape of the road surface,
such as its roughness or frequency of potholes, which is called the road surface
c© Springer International Publishing AG 2017
D. Kotzinos et al. (Eds.): ISIP 2016, CCIS 760, pp. 66–81, 2017.
DOI: 10.1007/978-3-319-68282-2 5
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Fig. 1. Traffic accident rates for different road surface conditions

shape (RSS). Most related works on the estimation of road surface conditions
focus on only one of these two factors.

Automatically estimating road surface conditions is a critical activity in
transport infrastructure management, and many approaches have been proposed.
Most make use of expensive sensors to detect road anomalies, or evaluate the road
roughness index, however a common problem of these approaches is the high cost
of setup and execution. Modern smartphones contain various sensor types such
as an accelerometer, gyroscope, and Global Positioning System (GPS), which
allow the smartphone to track its position and motion states with a high degree
of precision. Because the penetration rate of smartphones is increasing, crowd-
sourced mobile sensing, used for collecting low-cost smartphone sensor data, has
become possible; this allows for the use of an in-vehicle smartphone to monitor
and estimate road surface conditions. Estimating road conditions using such sen-
sors, which are usually loosely placed in the car, nonetheless poses a significant
challenge.

Our study proposes a new method for estimating road surface conditions, by
using a motion sensor embedded in a smartphone. The method is based on a
mobile sensing framework [1], which can collect sensor data reflecting microscopic
roadside phenomena using crowdsourcing. In our study, a published smartphone
application called “Drive around the corner” is used. This provides an online
driving recorder service to collect both sensor data and videos, recorded from
the view of the driver; by using this application, users benefit from a free record
of their driving, and we obtain large amounts of low-cost sensor data. By utilizing
these collected sensor data, the proposed method can estimate road surface con-
ditions which contain both the RSS and RST factors. This paper also describes
a method of feature selection, containing two steps: First, to determine an initial
feature set we directly calculate various features published in previous studies,
using raw sensor data. Second, we compare three feature selection algorithms
for effectiveness: Principal Component Analysis (PCA) [8], Relief-F [11,12], and
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Sequential Forward Floating Search (SFFS) [7]. In this study, the SFFS algo-
rithm showed higher accuracy than the others. The road surface condition clas-
sification was performed across different speed ranges using the Random Forest
Classifier [2].

This paper is organized as follows: Sect. 2 compares our method with other
related research works; Sect. 3 introduces the smartphone application “Drive
around the corner”; Sect. 4 defines a new road surface condition, with some
examples; Sect. 5 presents the proposed method for estimating a road surface
condition; Sect. 6 shows the experiment results and discussion; lastly, our con-
clusions are presented in Sect. 7.

2 Related Work

In this section, we give a short overview of other systems used to estimate road
surface conditions. These systems can be divided into the following two types:
(1.) The use of acceleration sensors to estimate the RSS; and (2.) The use of
cameras to estimate the RTS.

2.1 Estimation of Road Surface Conditions Using Acceleration
Sensors

For paved roads, most existing work relates to the RSS; for example, the road
roughness, or road anomalies such as potholes. The International Roughness
Index (IRI) [17] is a standard global index of road roughness, and study [4]
shows that the IRI and the Root Mean Square (RMS) of the vertical compo-
nent of acceleration values, have a high correlation. Using this relationship, it is
possible to calculate approximate values of the IRI, however a limitation of the
study [4] is that the parameter must be manually adjusted for different vehicles.
Another study [19] provides a spring and damper model, which can automatically
estimate vehicle parameters including a damping ratio and resonant frequency,
and can then use these parameters to calculate approximate values of the IRI.
A further study [14] also evaluates the roughness index, but focuses mainly on
detecting the changing road conditions. Other research has studied the detection
of road surface anomalies, such as potholes; one study [3] provided an improved
Gaussian Mixture Model (GMM) for detection of road potholes.

2.2 Estimation of Road Surface Condition Using Cameras

In contrast to normal paved roads, most work on snow covered roads concerns the
RST, and uses image processing techniques. Studies [10,15,16] use standard in-
vehicle camera devices, such as a driving recorder or smartphone. Among these
studies, [10,15] can determine wet or snowy conditions with a high degree of
accuracy; however, they cannot detect frozen roads that are the most dangerous
in snowy areas. Study [16] can detect frozen roads, but with an accuracy of
less than 60%. Study [20] also uses an in-vehicle camera to estimate the road



Estimating Road Surface Condition Using Crowdsourcing 69

Table 1. Summary of related works

Estimation target Estimation
accuracy

Robustness Estimation
cost and
granularity

RST RSS

Accelerometer [3,4,14,19] × � High High High

× � High High Low

In-vehicle camera [10,15,16,20] � × Low Low Low

� × High Middle High

Fixed camera [9] � × High Middle High

surface condition with a high level of accuracy, but it is necessary to attach
two polarizing films to the lens. Finally, study [9] used a fixed camera placed at
representative points on major roads, and to improve accuracy the study also
used weather data; the geographical area covered however, was limited.

2.3 Summary of Related Works

Table 1 shows a summary of the related work discussed in this section. A com-
mon problem is that no single study supports both RSS and RST. Additionally,
approaches using motion sensors such as an accelerometer are more robust than
those using cameras. For these reasons, in our study we have estimated new road
surface conditions using both the RSS and the RST. Furthermore, we have pro-
vided a method to estimate newly defined road surface conditions using motion
sensors only.

3 “Drive Around-the-Corner”: A Driving Recorder
Application

The authors have developed a driving recorder service called “Drive around-the-
corner” (Drive ATC); development started in February 2015, and the application
became available to the public in February 20161. The function of Drive ATC is
to collect behavior logs and event posts, and to deliver information relating to
the driver’s current position.

The service can be accessed via an iOS application; before driving, users
mount their own smartphone, connect a power supply cable if necessary (Fig. 2),
and then open the application and start recording (Fig. 3). No further action
is necessary, and behavior logs and movies are recorded and uploaded to the
service platform while driving.

1 https://itunes.apple.com/app/drive-around-the-corner./id1053216595.

https://itunes.apple.com/app/drive-around-the-corner./id1053216595
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Fig. 2. Smartphone mounting positions.

(a) Main Screen

(b) Event options

Fig. 3. The “Drive around-the-corner” application. Traffic information, user-posted
events, events extracted from sensor data, and footprints, are shown on the main screen
map. (Color figure online)

3.1 User Functions

Map with Event Information. When the Drive ATC application is invoked,
it shows a map of the driver’s current position (Fig. 3(a)); roadside events are
retrieved using the service platform and displayed on the map. For example, the
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Table 2. Drive ATC collected data types

Type Attributes Sampling rate

Location Latitude, longitude, and altitude with accuracy 1 Hz

Heading True north with accuracy 1 Hz

Move Speed, course 1 Hz

Acceleration x, y, z 30 Hz

Rotation rate x, y, z 30 Hz

yellow icon located at the center of Fig. 3(a) denotes road construction, with the
information posted by other Drive ATC users.

Footprint markers indicate previously visited locations, and snow is shown
as a triangle. The markers vary with the speed at the position; a shorter triangle
denotes slower speed, and a longer triangle faster speed.

Posting Events. To enable users to report a roadside event to others whilst
their vehicle is stationary, the application provides a function to post event
information. After tapping the footprint marker on the top right corner, users
are requested to select an event (Fig. 3(b)). There are eight candidate events in
the following three categories: Heavy Traffic, Road Condition, and Roadblock.
The selected event is posted to the service platform with the current time and
location.

Settings. A menu button to access the application settings is located at the
top left corner (Fig. 3(a)). The menu consists of the following list: “about the
App”, “Movie list”, “Settings”, “Event list”, and “User account”. Users can play
recorded movies and export them to the general image folder in the movie list.

3.2 Sensing Functions

User Data. The first time a user accesses the Drive ATC service, the following
user attributes are collected

– Gender
– Birth year
– Zip code of home town
– Email address
– Nickname

Onboard Location and Motion Sensors. The Drive ATC application
retrieves location and motion data from onboard sensors. During driving, behav-
ior logs and movies are recorded, and collected data are pooled in the local data
store and then transmitted to the service platform; the types of data collected
are shown in Table 2.
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4 Road Surface Condition Definition

In this section we explain the definitions used for estimating target road surface
conditions. First, we define a set of both road surface types (RST) and road
surface shapes (RSS). The set of RST includes four elements: Paved, sherbet,
compacted snow, and frozen. The set of RSS also includes four elements: Smooth,
bumpy, potholes, and potholes/bumpy. Tables 3 and 4 show details of these; the
new road surface conditions are defined by the cartesian product of these two
sets.

Figure 4 shows some examples of the defined road surface conditions.
Fig. 4(a), (b), and (c) show frozen road surfaces with different RSS. In snowy
areas, these are the most dangerous road types; even cars fitted with winter tires
may slip. Figure 4(d) shows a sherbet road surface with some potholes; although
this kind of road is less hazardous than frozen roads, it will affect vehicle speed.
Figure 4(c) shows a road covered with compacted snow; although the road has
a covering of snow, driving on this kind of road is usually normal.

(a) frozen road surface with bumpy (b) frozen road surface with potholes

(c) mirror- like frozen road surface (d) sherbet road surface with potholes

(e) flat road surface with snowfall

Fig. 4. Some examples of the defined road surface conditions
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Table 3. Road surface type definitions

Road surface Definitions

Paved road The road surface is paved with asphalt or concrete, and with no
snow or ice on the surface.

Sherbet The road surface is covered by mixed water and snow ice.

Compacted snow The road surface is covered with dry snow.

Frozen The road surface is covered with solid ice or freezing

Table 4. Road surface shape definitions

Road surface Definitions

Smooth A flat road surface with no bumps or potholes.

Bumpy The road surface is flat but has many raised parts.

Potholes The road surface has some large holes.

Bumpy & Potholes A mixed road surface with bumps and potholes

5 Proposed Method for Estimating Road Surface
Conditions

As mentioned in Sect. 2, most related work has focused only on vertical direc-
tion acceleration when estimating road surface conditions, when in fact road
surface conditions generate other vehicle in-motion values. Figure 5 shows the
raw acceleration data collected for different road conditions. The condition of
the left road is frozen and rough, whilst the road on the right is compacted and
smooth. When the vehicle is on the left road, acceleration values for both verti-
cal and horizontal direction are greater than for the right road. The reason for
the horizontal motion may be due to the car slipping in a horizontal direction
despite the driver preference to keep the driving direction forwards only. We can
assume from this example that the motion values may reflect both the type and
shape of the road surface. If this assumption is true, we can use motion values
to classify only road surface conditions that include both type and shape.

In contrast, many studies have used motion values to detect human activi-
ties [5,13,18], and changes in vehicle activity may also be seen as a change in
road surface conditions; the vehicle activity can then be used to indirectly solve
the problem of estimating road surface conditions; the details of the proposed
method will be discussed.

5.1 Feature Extraction

In the field of human activity recognition, many effective features have been
published using motion sensor data; in our study, these were used as an initial
feature set. In our method, signals from each axis of the accelerometer and
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Fig. 5. The number of each road condition at different speed range in the datasets

gyroscope are segmented into windows of 2 s, with a 50% overlap between two
consecutive windows. We use xa, ya, and za to denote the three axes of the
accelerometer, and use xg, yg, and zg to denote the three axes of the gyroscope.
For both the accelerometer and gyroscope, the x-axis is the direction of the car
axle, the y-axis is the direction in which the car is heading, and the z-axis is
the vertical direction. Table 5 shows the details of the initial feature set. The
extracted features have 67 dimensions in total.

In the field of human activity recognition, the feature “Energy” shown in
Table 5 was calculated by using the sum of the squared discrete FFT component
magnitudes of the signal. According to [6] human activity often occurs at low
frequencies. Therefore, we assume that driving behaviors may also be centralized
at a low frequency. In addition, vehicle activity depending on the road surface
conditions or the engine vibrations often occur at a high frequency. In this study,
to reduce the mutual influence between them, we divided the frequency domain
into five equal intervals (from low to high), and calculated the energy associated
with each interval.

5.2 Features Selection

A good feature set helps to improve the efficiency of the classification algorithms
and enables accurate classification. Numerous feature selection algorithms have
been published. Among them, the PCA, Relief-F, and SFFS are three popular
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Table 5. Initial set of features for estimating road surface condition

Type of featuer Features

Mean meant (t ∈ {xa, ya, za, xg, yg, zg})

Standard deviation stdt (t ∈ {xa, ya, za, xg, yg, zg})

Correlation correlationt (t ∈ {xa ya, ya za, za xa, xg yg, yg zg, zg xg})

Energy energyti (t ∈ {xa, ya, za, xg, yg, zg}, i ∈ [0, 4])

Entropy entropyt (t ∈ {xa, ya, za, xg, yg, zg})

Max maxt (t ∈ {xa, ya, za, xg, yg, zg})

Min mint (t ∈ {xa, ya, za, xg, yg, zg})

Mean speed mspt (t ∈ {xa, ya, za, xg, yg, zg})

algorithms for feature selection. To select the best features from the initial feature
set, we compared these three algorithms to choose the best one. In this study,
we determined the criteria of choice as the number of features that provide the
best accuracy with the random forest classifiers. For evaluating the accuracy, we
used the ten-fold cross-validation approach.

PCA is a mathematical algorithm that reduces the dimensionality of the
data while retaining most of the variation in the data set. It accomplishes this
reduction by identifying directions, called principal components, along which
the variation in the data is maximal. Using this algorithm to select features, we
gradually increased the number of PCA components beginning with two PCA
components and calculated the accuracy each time for all the 67 PCA compo-
nents. Finally, the least number of features that provided maximum accuracy
were selected.

Relief-F is a filter-based feature selection method used for the weight esti-
mation of a feature. The weight of a feature of a measurement vector is defined
in terms of the feature relevance. The features were sorted according to their
relevance in decreasing order. The most relevant feature was first added and
the accuracy of the given dataset was found using random forest classifiers.
Subsequently, the successive relevant features were added sequentially, and the
accuracy was calculated each time until all the 67 features were added. Finally,
the least number of features that provided maximum accuracy was selected.

SFFS is a wrapper-based feature selection method. It uses a classification
scheme as a wrapper around which the whole feature selection is carried out.
It starts with an empty set for the desired selected features “X”. The features
are to be selected from a larger set of features “S”. Let’s be the most significant
feature in S with respect to X, which provides the least accuracy when included
in X. At each iteration, the most significant feature in S is included in X if its
inclusion does not increase the accuracy. Similarly, the least significant feature
in X is found and removed if its exclusion helps improve the accuracy.
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5.3 Classification

In this study, we use the random forest classifiers to classify the road surface
conditions based on the folders for cross validation. A random forest classifier
is an ensemble learning method that constructs a multitude of decision trees at
training time. It is one of the most successful ensemble learning techniques that
has proved to be very popular and powerful in pattern recognition and machine
learning for high-dimensional classification and imbalanced problems.

According to the study [3], different speeds of a vehicle will affect the values
of the frequency and the amplitude of the motion, even for a vehicle driving on
the same road under the same conditions. In this study, we divided the velocity
domain into intervals of 10 km/h. The road-surface condition was classified across
different speed ranges using the random forest classifier.

6 Experimental Results and Discussion

6.1 Datasets

The road condition labels were manually generated by three people living in
an area of snowfall. The actual ground conditions were determined by voting
results from these three people. In addition to the road surface conditions, the
acceleration and gyro are also affected by the car, driver, smartphone, and the
mount. To reduce these factors, we used the same car and driver, with the
same smartphone and mount; differences in motions should thus be affected
only by road conditions and driving behavior. We used the dataset from one
user, and Fig. 6 shows the numbers of each road condition at different speed
ranges. Because the drive recorder application was used during daily driving,
imbalances inevitably occurred in the collected data.

Fig. 6. Numbers of each road condition at different speed ranges
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Fig. 7. Selected features from three feature selection algorithms

Fig. 8. Performance index comparisons for random forest classifiers, combined with
the feature selected algorithms

6.2 Feature Selection and Classification Accuracy

To select the best features from the initial feature set, we compared three kinds
of feature selection algorithm: The PCA, the Relief-F, and the SFFS. Each algo-
rithm is evaluated against the accuracy of the random forest, with ten folders
for cross validation. The accuracy is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP is the number of true positives, FN the number of false negatives,
TN the number of true negatives, and FP the number of false positives. Figure 7
shows the selected features from three feature selection algorithms, and Fig. 8
shows the performance index comparisons for random forest classifiers, combined
with the feature selected algorithms; the SFFS algorithm is most effective, with
fewer features and higher accuracy in each speed range.

Based on the results above, we decided to use SFFS as the feature selection
algorithm. In this study, the classification was evaluated against the recall of the
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Fig. 9. Results of the SFFS + Random forest classification, across different speed
ranges

Fig. 10. Details of the selected features by using the SFFS in different speed ranges.

random forest, with ten folders for cross validation. The recall is defined as

Recall =
TP

TP + FN
(2)

Figure 9 shows the results of the SFFS+Random forest classification across
different speed ranges; The results show that the best average of recall, of about
91%, was obtained in the 50 km/h–80 km/h range. Therefore, we could confirm
that the road surface conditions can be effectively classified by using only the
motion values when the speed is greater than 50 km/h. In particular, we could
confirm that the most dangerous frozen road can be classified by using only the
motion values.

Figure 10 shows the details of the major features selected by using the SFFS.
The most common features in different speed ranges are the correlation between
the directions of the vertical and the car axle, the standard deviation of the
pitching of the vehicle, and the high frequency energy.
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6.3 Discussion

From the experimental results, we can see that the more complex RSS such as
bumpy na potholes are distributed in the low-speed range, and accuracy of the
classification between them is very low. One of the reasons is that we have not
quantitatively defined the RSS.

In this paper, we have described an estimation method for the road-surface
condition by using only one vehicle. However, in the future, we need to estimate
the road surface conditions by using multiple vehicles. Many factors influence
vertical motion values. One of the factors is the type of vehicle. Length of the
wheelbase and the strength of the suspension differ depending on the type of
vehicle, and we believe these aspects have an influence on the motion values.
The other factor is the individuals driving style. We infer that the motion values
change differently, depending on the individuals driving technique and experi-
ence. We need to verify the relationship between these factors and the motion
values in the future.

7 Conclusions

In this paper, we have proposed a new method for estimating road-surface condi-
tions using motion sensor data. The motion sensor data are collected by a smart-
phone application called “Drive around the corner.” This provides an online
driving recorder service to collect both sensor data and videos, recorded from
the view of the driver. Using this application, users benefit from a free record
of their driving, and we obtain large amounts of low-cost sensor data. The pro-
posed method can use only the collected motion values to classify both the RST
and the RSS. In the future, we will consider a method to improve estimation
accuracy in full speed range. We will also consider how to eliminate the individ-
ual differences between different vehicles or drivers to estimate the road surface
conditions by using multiple vehicles.
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Abstract. Demand for care services, especially for children and the elderly, has
been increasing. Several GPS-based pedestrian tracking systems have been
researched and developed, but GPS cannot provide accurate position estimates in
high-rise areas and indoor environments. In order to settle this issue, we propose a
pedestrian tracking system that uses Wi-Fi beacons held by target persons and Wi-
Fi access points placed widely and densely in a specified area. Target users’ posi‐
tions are estimated on the basis of probe request signals broadcast by the Wi-Fi
beacons. The positioning algorithm is based on proximity detection based on
received signal strength. In addition, the proposed method uses a computation time
reduction strategy and error reduction techniques. Each target’s trajectory is esti‐
mated on the basis of position estimates using several trajectory correction algo‐
rithms. Experimental results show that the proposed positioning system can esti‐
mate a target’s trajectory with approximately 80% accuracy, with a positioning
delay, i.e., time taken to estimate a target’s position, of approximately 2.8 s.

Keywords: Indoor positioning · Target tracking · Care service · Wi-Fi · Probe
request signal

1 Introduction

Anxiety regarding public safety for children, women, and the elderly is increasing [1, 2].
For example, most Japanese children carry an “anti-crime buzzer” to and from school. The
increasing number of aged wanderers has become urgent social issue owing to the rapid
aging of the population [3]. Reflecting these backdrops, demand for care services, espe‐
cially for children and the elderly has been increasing. In outdoor environment, GPS based
caring systems are already in practical use [4, 5]. However, GPS cannot provide accurate
position estimates in high-rise areas and indoor environment.

The importance of traffic offloading from cellular networks to Wi-Fi networks
is also increasing, owing to the rapid growth of network traffic [6] caused by widely
distributed smartphones and tablet devices. To expand Wi-Fi coverage areas, large
numbers of Wi-Fi access points (APs) are being installed in urban areas, including
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shopping malls and underground malls. We consider that this AP infrastructure can
be utilized for pedestrian tracking systems, to achieve pedestrian tracking system
applicable in the environments that GPS cannot provide accurate positioning esti‐
mates. This paper proposes a pedestrian tracking system that utilizes widely and
densely placed APs. The algorithm is consider to be applicable in indoor environ‐
ment and achieve high tracking resolution and accuracy.

The remainder of this paper is organized as follows. Section 2 describes research
background including brief introduction of related researches. Section 3 describes the
proposed system, and Sect. 4 shows experimental results of the proposed system in
indoor environment. Section 5 concludes this paper.

2 Research Background

2.1 Overview of Basic Positioning Methods

This section reviews some basic positioning methods. Positioning algorithms are
roughly categorized as range-based and range-free. Among range-free methods, the
simplest is a proximity-based method that estimates a device’s position as an AP’s posi‐
tion, on the basis of a proximity metric, e.g., the received signal strength indication
(RSSI). The centroid [7] and weighted centroid [8] methods estimate a device’s position
as the weighted center of the APs whose signals were captured by the device, or else as
the APs that captured the signal broadcast by the device. For range-based methods,
trilateration uses three known positions and the distances to an unknown position, i.e.,
the position to be estimated. To estimate distances, RSSI, time of arrival, and time
difference of arrival are used. Triangulation uses two known positions and two angles
toward the unknown position. This method works with an angle measurement method,
e.g., angle of arrival observed using an antenna array.

Positioning accuracy can be improved by taking into account the possible walking
paths in a given positioning area for position estimation. Typical examples of positioning
methods utilizing this kind of information are as follows. Madigan et al. use a Bayesian
graphical model [9] in indoor positioning. Their approach has achieved approximately
5–6 m positioning accuracy while excluding the requirement for training data. C.S.
Jensen et al. have proposed a graph model-based approach [10]. Their method uses RFID
readers attached to each door in the positioning area and estimates each RFID tag’s
position using several graphs defined on the basis of the area’s floor plan. The results of
their simulation suggest that their method can accurately track each RFID tag held by
the target pedestrians.

Positioning frameworks can be roughly categorized into device- (terminal) and
network-side systems. In a device-side system, a device estimates its own position. An
advantage of this framework is that device movement can be directly and precisely
observed using sensors on the device. In contrast, the computational and power resources
of a mobile device are limited compared to that of standard desktop computers. A
network-side system estimates the device position using networked sensors, such as
passive infrared sensors or Wi-Fi APs. Each device obtains its position estimates by
accessing the network. For example, a device’s position can be estimated by observing
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the signals broadcast by the device on Wi-Fi APs placed in the given area. Advantages
of this framework are that software does not need to be installed on mobile devices, and
high-performance computing equipment can be used for position estimation.

2.2 Wi-Fi Based Pedestrian Tracking Systems

There exists several pedestrian tracking systems utilizing Wi-Fi signal. Musa and Eriks‐
son’s method [11] employs a simple hidden Markov model to estimate device position
accurately. However, this method was only evaluated on a granularity of around 100 m,
and its evaluation was focused mostly on 1-D placement of APs. Mirowski et al.’s
method [12] employs kernel based algorithm in position estimation with using large
number of fingerprints gathered in a certain positioning area. Marthisen et al.’s method
[13] utilizes radio map prepared on the basis of the previously measured data, to estimate
position of pedestrian.

We propose a method to achieve fine-grained pedestrian tracking, i.e., pedestrian
tracking inside a building, by utilizing densely placed Wi-Fi APs and eliminating refer‐
ence data preparation.

2.3 Wireless Backhaul Technology

Small cells are the key technology in setting up a wide Wi-Fi coverage area and achieving
large network capacity. To connect small cells to the core network (e.g., Internet), back‐
haul is essential. However, wired backhaul is inefficient, because all access points are
wired to the core network; to achieve wide Wi-Fi coverage areas, huge amounts of cables
must be installed.

Wireless backhaul is a wireless multi-hop network in which access points are linked
wirelessly with the capability of relaying packets. In a wireless backhaul network, a few
access points (we refer to them as “core nodes”) are wired to the core network and serve
as gateways connecting the wireless multi-hop network to the Internet. Therefore,

Fig. 1. Simple image of Wireless backhaul network. Wireless backhaul technology enables the
setting up of a large Wi-Fi coverage area without laying huge amounts of access cables.

84 R. Abe et al.



wireless backhaul is advantageous in achieving a wide Wi-Fi coverage area, because
this technology can reduce wiring cost significantly. For example, as in Fig. 1, a Wi-Fi
coverage area can be set up by placing wireless APs, with only one AP wired to the core
network. However, mobile devices in this area can access the Internet, regardless of the
AP to which a device is associated.

2.4 PCWL-0200

PCWL-0200 [14] is a wireless local area network (LAN) AP developed in our laboratory
that uses wireless backhaul technology. This AP can set up a Wi-Fi coverage area
without configuring a relay route among APs manually; the route is determined auto‐
matically, on the basis of the radio wave propagation environment, e.g., the RSSI
observed between each two APs. PCWL-0200 has been commercialized, and a signifi‐
cant number of Wi-Fi access areas set up by these APs are in practical use.

Another feature of PCWL-0200 is that this AP can capture probe request signals
broadcast by surrounding mobile devices. When a core node is wired to the Internet,
probe request signals captured around the area can be stored to an online database server
via the wireless backhaul network.

2.5 Probe Request Signal

There are two means of establishing connections between Wi-Fi devices and APs, active
and passive scanning. In active scanning, a device broadcasts a probe request and listens
for a probe response from surrounding APs. A connection can be established, when a
probe response is received. Passive scanning uses beacon signals broadcast periodically
by APs to establish a connection. Most smartphones broadcast probe request signals at
random intervals to run active scanning and establish a network connection quickly. The
frequency at which a Wi-Fi device broadcasts a probe request signal differs based on
factors such as device type, connection status, operating system, and software. Gener‐
ally, mobile devices broadcast probe request signals more frequently when it is not
associated to an AP, and its display is turned on. The following information can be
obtained from a probe request signal:

• Sender media access control (MAC) address
• RSSI
• Extended service set identifier (ESS-ID, only when explicitly declared)

Originally, a MAC address is factory assigned and unique to each network interface.
However, recent operating systems are capable of broadcasting probe request signals
with randomized address [15]. MAC address randomization by itself does not affect
device tracking, but in case that change in MAC address is too frequently, a device
becomes difficult to be tracked. Therefore, the proposed system uses Wi-Fi tag that
always broadcasts probe request signal with factory assigned MAC address.
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3 Proposed System

3.1 Outline

Our pedestrian tracking system uses Wi-Fi APs to set up a positioning area and Wi-Fi
beacons that broadcast probe request signals periodically. Therefore, accurate position
estimates of each device can be obtained in indoor environment where GPS-based posi‐
tioning cannot work properly. Each beacon’s position, i.e., target user’s position, in this
area is estimated using a networked server, on the basis of the probe request signals
broadcast by the beacons and captured by the APs. The position estimates are stored in
a networked database. The trajectories of each beacon are estimated on the basis of the
position estimates, with taking the floor plan of the area into account. Consequently, our
algorithm can be categorized as a graph-based model; APs correspond to nodes, and
routes in the positioning area correspond to edges.

3.2 System Components

The system components are shown in Fig. 2. Each target user holds a Wi-Fi beacon.
PCWL-0200 s are used to set up a Wi-Fi coverage area, i.e., a positioning area, and
capture probe request signals broadcast by surrounding beacons. These APs transmit
these signals to a “positioning server,” implemented in Python, via the wireless backhaul
network at the request of the server. Note that a single probe request signal can be
captured on multiple APs. Each beacon’s position is estimated on the positioning server
through analysis of these signals.

Fig. 2. System components. Each beacon’s position is estimated on the positioning server by
analyzing the probe request signals captured by wireless APs. Probe request signals are gathered
to the server via the wireless backhaul network.
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Position estimates are stored in a MongoDB [16] “positioning database.” The trajec‐
tory of each beacon is estimated from its position estimates and also stored in the data‐
base. These trajectories are displayed visually using the D3.js [17] JavaScript library.
The web server is implemented using Django [18].

3.3 Positioning Algorithm

The proposed method estimates each beacon’s position based on the RSSI values of the
probe request signal. Specifically, a beacon is estimated to be located close to the AP
that observes the highest RSSI value for the beacon. Position estimates for each beacon
are aggregated as a list whose temporal length is within 1 min. This list includes the AP
identification number and indicates the route that the beacon has traveled, i.e., trajectory
of the beacon.

Positioning accuracy of primitive position estimates is not stable since it is simply
estimated based on the measured RSSI values. In order to reduce positioning error, the
proposed method uses the following countermeasures:

1. Estimated walking speed
2. Previous position estimates
3. RSSI threshold

Estimated walking speed is calculated from the positioning area route information
and the temporal difference between the latest and the previous position estimates. If
the speed exceeds a specified threshold (3.9 m/s in the proposed method), the latest
estimate is assumed to be an error and is eliminated. This countermeasure reduces errors
that occur when the direct distance between two APs is short and no direct walking path
exists between them, e.g., opposite side of an atrium or shrubbery. For example, in
Fig. 3, a device is sometimes estimated as having traveled from AP19 to AP23, a distance

Fig. 3. Error reduction with estimated walking speed. Since a device has been estimated as having
traveled from AP19 to AP23 (56.5 m) in 5 s, the latest position estimate (AP23) is eliminated.
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of 56.5 m in 5 s. Since the estimated walking speed (11.3 m/s) exceeds the threshold,
the latest position estimate (AP23) is eliminated.

Our positioning algorithm is based on RSSI observations. Consequently, a device is
sometimes estimated as alternating between two neighboring APs, even though the
device actually remains at a fixed position, owing to RSSI fluctuation. The proposed
method takes into account the position estimates calculated in the previous 1 min. If
shuttling exceeds a specified threshold, then the device is estimated to have stayed close
to the AP that observed the strongest RSSI most frequently in 1 min.

A probe request signal can be received by APs located on the same floor as the device
and by APs located on different floors. The positioning accuracy can be improved by
eliminating the signals observed on different floors. The proposed method also takes
into account the RSSI of the probe request signals. Signals whose RSSI values are higher
than a specified threshold are used for position estimation. This threshold is set to −80
dBm, which was determined by investigating actual misestimated samples.

3.4 Trajectory Estimation Algorithm

The proposed system estimates each beacon’s trajectory on the basis of the spatial series
of the position estimates. Primitive trajectory is estimated by simply connecting each
position estimate in time-series order. Trajectory estimation accuracy is considered to
be improved by taking positioning history into account. Our system uses the trajectory
correction by reverse partial match and pedestrian trajectory interpolation algorithms,
in order to improve tracking accuracy.

(A) Trajectory Correction by Reverse Partial Match
Each beacon’s trajectory is estimated on the basis of position estimates. Therefore, RSSI
fluctuation leads to unnatural trajectory estimation, since the proposed system estimates
each beacon’s position on the basis of the RSSI value of the probe request signals. For
example, in Fig. 4, a beacon has traveled from A to D straightforwardly, i.e.,
A → B → C → D. However, as a result of the RSSI fluctuation, RSSI-based position esti‐
mates sometimes do not match the actual walking path, as shown on the left-hand side of
Fig. 4, i.e., A → C → B → D. If the trajectory of each beacon is estimated as a simple

Fig. 4. Trajectory correction by reverse partial match. By considering only the spatial series of
positon estimates, a particular target is estimated to be wandering around a particular location,
owing to the fluctuation of RSSI. By considering partial trajectory matches, the system reduces
unnatural trajectory estimations.
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spatial series of the position estimates, the estimated trajectory will sometimes be
unnatural. In this example, the beacon is estimated to be wandering between B and C.

To settle this issue, the proposed method considers the reverse partial match between
the latest and the previous trajectories in pedestrian trajectory estimation. If the latest
trajectory contains reverse partial match of the previous trajectory, this partial match is
removed from the latest trajectory; the reverse partial match is considered to be the
principal cause of the unnatural trajectory estimation. For example, in Fig. 4, the trajec‐
tory between 5 and 10 s partially matches the reverse trajectory between 0 and 5 s, i.e.,
C → B, and this partial match is eliminated. As a result, the beacon is regarded to be
stationary at C in the interval between 5 and 10 s. In the event that a target is actually
wandering between specific positions, we can still recognize this situation on the
proposed system. In case that a target is actually wandering between A and B as
A → B → A → B → A → B → A → B… , their trajectory is estimated as
A → B → B → B → A → A → A → B… ; a person is estimated to be wandering
between A and B while staying at A and B.

(B) Pedestrian Trajectory Interpolation
Although a Wi-Fi beacon broadcasts probe request signals every 0.8 s and a PCWL
transmits captured signals to the positioning server every 5 s, the system sometimes fails
to correct the signal broadcast by beacons, as a result of such factors as radio wave
interference or network delay. Therefore, the system sometimes cannot estimate the
beacon’s position, and its trajectory becomes difficult to estimate. Against this issue, the
proposed method uses the following trajectory interpolation method.

In case that the position of a certain device cannot be estimated, the device is regarded
to be stayed at a latest position estimate, until the newest positon estimate of the device
could be obtained, i.e., probe request signal from the device could be captured again.
For example, in Fig. 5, the system cannot estimate a beacon’s position at time = 10 s.
Because the previous position estimate was B, the system regards the beacon as staying
at B. The beacon is regarded as staying there until the next position estimate is obtained.
In Fig. 5, the beacon is regarded to have traveled from B to D between time = 10 s and
15 s, because the system could estimate its position at time = 15 s.

Fig. 5. Example of pedestrian trajectory interpolation. Without interpolation, a beacon cannot be
tracked until the signal from the beacon could be observed again. By trajectory interpolation, the
system can track the beacon continuously, even if the signal from the beacon could not be observed
for a while.
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3.5 Data Visualization Framework

Figure 6 shows a screenshot of the proposed system. The main panel (panel 1) displays
the estimated trajectory of each Wi-Fi beacon. The filled numbered circles indicate the
location of each AP, and the arrows and unfilled circles, colored as shown in the legend,
indicate the estimated trajectory of each beacon. The arrows indicate a route each beacon
has traveled for a specific duration, and the unfilled circles indicate a location at which
the beacon has stayed. In Fig. 6, Beacon 1 (blue) has stayed near AP12, and Beacon 3
(green) has traveled from AP7 to AP5. This panel also has functionalities to show the
floor on which each beacon is located, and to change the floor to display estimated
trajectories. The floor on which each device is located is displayed in the right hand table
of the main panel. This table also indicates the names of users who hold Wi-Fi beacons.
Clicking a tab on the main panel chooses the floor of the data to be displayed.

Fig. 6. Screenshot of the proposed system. The arrows and unfilled circles colored as shown in
the legend indicate the estimated position of each beacon. (Color figure online)

The time setting panel (panel 2) has the function of choosing the time of the data
to be displayed. Pressing the “Animation” button triggers the main panel to update
its components automatically; we can visually recognize the routes on which devices
have traveled. The duration setting panel (panel 3) has the function of choosing the
duration (temporal length) of the data to be displayed. The detailed movement of
each beacon can be observed by setting a short duration, e.g., 5 s, and their traveled
route can be observed by setting a long duration, e.g., 1 min. The miscellaneous
settings panel (panel 4) contains functions to choose among several display settings.
The “RealTime” button has a function for switching the main panel to real-time
mode, in which the panel shows each beacon’s position for the exact current time
while automatically refreshing the panel.
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4 Evaluation

To evaluate the positioning accuracy of the proposed system, we conduct two experi‐
ments, staying and walking experiment. The experimental settings common to both
experiments are shown in Table 1. In both experiments, a positioning area is set up using
PCWL-0200 APs, and Wi-Fi beacons that broadcast a probe request signal every 0.8 s.
Positions of each beacon are estimated on the positioning server every 5 s.

Table 1. Experimental settings. These settings are the same in the walking and staying
experiments.

Wi-Fi AP PCWL-0200
Wireless module of the Wi-Fi beacon IWM-1101
Broadcast interval of the Wi-Fi beacon (Probe request signal) 0.8 s
Interval of position estimation 5 s

Note that the beacon’s position is estimated as the position of a particular AP. Since
the granularities of the actual and estimated positions differ, we defined correct position
estimates as shown in Fig. 7. This definition is obtained by considering the effect of the
RSSI fluctuation of the probe request signals. In the event that the actual position is
between APs, both APs are regarded as correct position estimates. For example in
Fig. 7(a), AP1 and AP2 are the correct position estimates, when the actual position was
at A. In the event that the actual position is within 1 m from a particular AP, this AP and
its adjacent APs are regarded as correct position estimates. For example in Fig. 7(a),
AP1, AP2, and AP3 are correct position estimates, when the actual position was at B.
Further examples of the relationship between the actual and correct position estimates
are shown in Fig. 7(b).

Fig. 7. Definition of the correct position estimates. The position estimates are obtained as the
locations of the respective APs.
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4.1 Staying Experiment

The physical environment of the staying experiment is shown in Fig. 8. In this experi‐
ment, two Wi-Fi beacons were placed at the middles of the straight paths (AP7 and AP20
in Fig. 8) and the intersections (AP5 and AP16 in Fig. 8).

Fig. 8. Physical environment of the staying experiment. The unfilled circles indicate the actual
positions of the respective beacons.

The overall accuracy of the staying experiment was approximately 90.5%. Specifi‐
cally, the accuracy at the middle of the straight path was 90.0%, and the accuracy at the
intersection was 91.0%. All incorrect estimates involved the APs the second from the
AP most adjacent to the actual position, as shown in Fig. 9. The maximum value of the
distance error, i.e., the distance between misestimated results and their most adjacent
correct position estimates, was approximately 22.3 m. The occurrence probability of the
distance error decreases when the distance error itself increases, shown as Fig. 10. Note
that this probability does not include the case in which our system cannot estimate a
beacon’s position. This probability is affected by the visibility between APs and by the
distance between the AP most adjacent to the actual position and the APs regarded as

Fig. 9. Incorrect position estimates in the staying experiment. Solid line circles indicate actual
positions of Wi-Fi beacons, and dotted line circles show incorrect position estimates. All incorrect
estimates involved the APs the second from the AP most adjacent to the actual position.
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correct position estimates. We consider that the main cause of these misestimates is the
RSSI threshold (countermeasure 3 in Sect. 3.3).

Fig. 10. Distance error of miss estimations. When the distance error increases, its occurrence
probability decreases. Note that this probability does not include the case in which the proposed
system cannot estimate a beacon’s positon.

4.2 Walking Experiment

The physical environment of the walking experiment is shown in Fig. 11. In this experi‐
ment, two participants walked along the predefined route three times, holding two Wi-Fi
beacons. Their actual walking routes were recorded manually, i.e., each participant
recorded the time of arrival at a specific intersection, AP, or other location of interest.

Fig. 11. Physical environment of the walking experiment. Each participant walked along a
predefined route indicated by arrows.

(A) Evaluation Method
We compared the estimated and actual positions every 5 s. However, the actual walking
route was not always recorded every 5 s, since we recorded the times when participants
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arrived at specific locations in this experiment. We determined actual positions every
5 s, on the basis of the actual walking routes recorded manually, as shown in Fig. 12. In
the figure, the left-hand table shows manually recorded actual positions. Actual positions
each 5 s (right-hand table in Fig. 12) were calculated on the basis of the manually
recorded positions, assuming that the walking speeds of the participants were constant.
For example, in Fig. 12, the position at time = 5 s is adjacent to AP2, the position at
time = 10 s is between AP2 and AP3, and so on.

Fig. 12. Determination of actual positions from actual walking routes. Actual walking routes
were recorded manually, and the walking speed of each participant is assumed to be constant.

(B) Results of the Walking Experiment
The overall accuracy of the walking experiment was approximately 79.6%. The accuracy
on the CCW-route was 84.0%, and on the CW-route was 75.2%. We consider that the
accuracy in CW-route was lower than CCW-route, because CW-route turns at a inter‐
section earlier than CCW-route. The accuracy tended to decrease when the beacon was
located around an intersection, or on a route on which the distance between APs is
relatively short.

4.3 Positioning Delay Analysis

The positioning delay of the proposed system, i.e., the time taken to estimate a beacon’s
position, was evaluated by measuring the time taken to estimate each beacon’s position.
Here ttrans is the time taken to gather probe request data to the positioning server, tcalc is
the time taken for the server to estimate the device’s position, and tposdelay is the total
positioning delay. ttrans and tcalc are obtained by referring to the log file stored on the
positioning server, and tposdelay is calculated as follows:

tposdelay = ttrans + tcalc. (1)
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The average delay was approximately 2.81 s, and its proportion was

ttrans:ttalc = 3:1. (2)

5 Conclusion

This paper shows a pedestrian tracking system using probe request signals broadcast
from Wi-Fi beacons. The positioning area was set up using PCWL, a Wi-Fi AP capable
of capturing probe request signals and easily extending the Wi-Fi coverage area, owing
to its wireless backhaul technology. The system estimates each beacon’s position on the
basis of proximity detection using RSSI and several error reduction techniques. Each
beacon’s trajectory is estimated on the basis of the spatial series of position estimates
using several trajectory correction algorithms. The experimental results show that the
proposed method could estimate a beacon’s position with 90.5% accuracy when the
beacon is staying at a particular location and could track each beacon’s trajectory with
79.6% accuracy.

In the future, we plan to improve positioning accuracy further using the position
history of each beacon and to determine more detailed information regarding the given
positioning area, including reducing delays, particularly those of the web viewer. In
addition, further experiments at practical sites, e.g., shopping malls and underground
arcades, will be conducted.
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Abstract. Today we are witnessing an explosion in the size and the amount of
the available RDF datasets. As such, conventional single node RDF manage-
ment systems give their position to clustered ones. However most of the cur-
rently available clustered RDF database systems partition data using hash
functions and/or vertical and horizontal partition algorithms with a significant
impact on the number of nodes required for query answering, increasing the
total cost of query evaluation. In this paper we present a novel semantic parti-
tioning approach, exploiting both the structure and the semantics of an RDF
Dataset, for producing vertical partitions that significantly reduce the number of
nodes that should be visited for query answering. To construct these partitions,
first we select the most important nodes in a dataset as centroids, using the
notion of relevance. Then we use the notion of dependence to assign each
remaining node to the appropriate centroid. We evaluate our approach using
three real world datasets and demonstrate the nice properties that the constructed
partitions possess showing that they significantly reduce the total number of
nodes required for query answering while introducing minimal storage
overhead.

1 Introduction

The recent explosion of the Data Web and the associated Linked Open Data
(LOD) initiative have led to an enormous amount of widely available RDF datasets.
For example, data.gov comprises in more than 5 billion triples, the Linked Cancer
Genome Atlas currently consists of more than 7 billion triples and is estimated to reach
30 billion [27] whereas the LOD cloud contained already 62 billion triples since
January 2014 [25].

To store, manage and query these ever increasing RDF data, many systems were
developed by the research community (e.g. Jena, Sesame etc.) and by many com-
mercial vendors (e.g. Oracle and IBM) [10]. Although, these systems have demon-
strated great performance on a single node, being able to manage millions, and, in some
cases, billions of triples, as the amount of the available data continues to scale, it is no
longer feasible to store the entire dataset on a single node. Consequently, under the
light of the big data era, the requirement for clustered RDF database systems is
becoming increasingly important [6].

In principle the majority of the available clustered RDF database systems, such as
SHARD [23], YARS2 [6], and Virtuoso [20] partition triples across multiple nodes
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using hash functions. However, hash functions require in essence contacting all nodes
for query answering and when the size of the intermediate results is large, the
inter-node communication cost can be prohibitively high. To face this limitation, other
systems try to partition RDF datasets into clusters such that the number of queries that
hit partition boundaries is minimized. However most of these systems either treat RDF
as simple graphs, exploiting graph partitioning algorithms, [7] or cluster triples based
on locality measures with limited semantics [17].

Although RDF datasets can be interpreted as simple graphs, besides their structural
information they have also attached rich semantics which could be exploited to
improve the partition algorithms and dictate a different approach. As such, in this paper,
we focus on effectively partitioning RDF datasets across multiple nodes exploiting all
available information, both structural and semantic. More specifically our contributions
are the following:

• We present RDFCluster, a novel platform that accepts as input an RDF dataset and
the number of the available computational nodes and generates the corresponding
partitions, exploiting both the semantics of the dataset and the structure of the
corresponding graph.

• We view an RDF dataset as two distinct and interconnected graphs, i.e. the schema
and the instance graph. Since query formulation is usually based on the schema, we
generate vertical partitions based on schema clusters. To do so we select first the
most important schema nodes as centroids and assign the rest of the schema nodes
to their closest centroid similar to [11]. Then individuals are instantiated under the
corresponding schema nodes producing the final partitions of the dataset.

• To identify the most important nodes we reuse the notion of relevance based on the
established measures of the relative cardinality and the in/out degree centrality of a
node [30]. Then to assign the rest of the schema nodes to a centroid we define the
notion of dependence assigning each schema node to the cluster with the maximum
dependence between that node and the corresponding centroid.

• We describe the aforementioned algorithm and we present the computational
complexity for computing the corresponding partitions given a dataset and the
available computational nodes.

• Then, we experiment with three datasets, namely CRMdig, LUBM and eTMO, and
the corresponding queries and we show the nice properties of the produced parti-
tions with respect to query answering, i.e. the high quality of the constructed
partitions and the low storage overhead it introduces.

Our partitioning scheme can be adopted for efficient storage of RDF data reducing
communication costs and enabling efficient query answering. Our approach is unique in
the way that constructs data partitions, based on schema clusters, constructed com-
bining structural information with semantics. We have to note that in this paper we are
not interested in benchmarking clustered RDF systems but only on the corresponding
partition algorithm.

The rest of the paper is organized as follows. Section 2 introduces the formal
framework of our solution and Sect. 3 describes the metrics used to determine how the
cluster should be formulated and the corresponding algorithm. Then, Sect. 4 describes

100 G. Troullinou et al.



the evaluation conducted and Sect. 5 presents related work. Finally, Sect. 6 concludes
the paper and presents directions for future work.

2 Preliminaries and Example

In this paper, we focus on datasets expressed in RDF, as RDF is the de-facto standard
for publishing and representing data on the Web. The representation of knowledge in
RDF is based on triples of the form (subject, predicate, object). RDF datasets have
attached semantics through RDFS1, a vocabulary description language. Here, we will
follow an approach similar to [12], which imposes a convenient graph-theoretic view of
RDF data that is closer to the way the users perceive their datasets.

Representation of RDF data is based on three disjoint and infinite sets of resources,
namely: URIs (U), literals (L) and blank nodes (B). We impose typing on resources, so
we consider 3 disjoint sets of resources: classes (C � U [ B), properties (P � U), and
individuals (I � U [ B). The set C includes all classes, including RDFS classes and
XML datatypes (e.g., xsd:string, xsd:integer). The set P includes all properties, except
rdf:type which connects individuals with the classes they are instantiated under. The set
I includes all individuals (but not literals).

In this work, we separate between the schema and instances of an RDF dataset,
represented in separate graphs (GS, GI respectively). The schema graph contains all
classes and the properties they are associated with (via the properties’ domain/range
specification); note that multiple domains/ranges per property are allowed, by having
the property URI be a label on the edge (via a labelling function k) rather than the edge
itself. The instance graph contains all individuals, and the instantiations of schema
properties; the labelling function k applies here as well for the same reasons. Finally,
the two graphs are related via the sc function, which determines which class(es) each
individual is instantiated under. Formally:

Definition 1 (RDF Dataset). An RDF dataset is a tuple V ¼ GS;GI ; k; sch i such that:

• GS is a labelled directed graph GS = (VS, ES) such that VS, ES are the nodes and
edges of GS, respectively, and VS � C [ L.

• GI is a labelled directed graph GI = (VI, EI) such that VI, EI are the nodes and edges
of GI respectively, and VI � I [ L.

• A labelling function k: ES [ EI 7! P that determines the property URI that each
edge corresponds to (properties with multiple domains/ranges may appear in more
than one edge).

• A function sc: I 7! 2C associating each individual with the classes that it is
instantiated under.

For simplicity, we forego extra requirements related to RDFS inference (sub-
sumption, instantiation) and validity (e.g., that the source and target of property
instances should be instantiated under the property’s domain/range respectively),
because these are not relevant for our results below and would significantly complicate

1 https://www.w3.org/TR/rdf-schema/.
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our definitions. In the following, we will write p(v1, v2) to denote an edge e in GS

(where v1, v2 2 VS) or GI (where v1, v2 2 VI) from node v1 to node v2 such that
k(e) = p. In addition for brevity we will call schema node a node c 2 VS, class node a
node c 2 C \ VS and instance node a node u 2 I \ VI. In addition a path from v1 2 VS

to v2 2 VS, i.e. path(v1, v2), is the finite sequence of edges, which connect a sequence of
nodes, starting from the node v1 and ending in the node v2. In this paper we will focus
on class and instance nodes due to lack of space, but our approach can be easily
generalized to include literals as well.

Now as an example consider the LUBM ontology2 part shown in Fig. 1 used to
describe a university domain. This example contains 20 classes and many properties.
Now assume that we would like to partition the corresponding RDF dataset into three
partitions revealing discriminating features for each one of them. One way to do that
for example would be to identify first the three most importance schema nodes of the
dataset, allocate each one of those nodes to the corresponding cluster as a centroid and
finally place into the same cluster the schema nodes that depend on those selected
nodes. The clusters generated using our approach are shown in Fig. 1. The most
important schema nodes, as identified by our algorithm, are the “Professor”, the
“Publication” and the “Person” classes. These are used as centroids and the remaining
schema nodes are assigned to the appropriate clusters by identifying the schema nodes
that depend on those centroids. Finally the instance nodes are assigned to the class
nodes that are instantiated under. In this paper we will use the term cluster to refer only
to the schema graph and the term partition to refer to the entire dataset.

When data is partitioned across multiple machines the particular partitioning
method, can have a significant impact on the amount of data that needs to be shipped

Fig. 1. An example RDF dataset and the corresponding partitions of our algorithm

2 http://swat.cse.lehigh.edu/projects/lubm/.
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over the network at query time. Ideally we would like the constructed partitions to
increase the likelihood that query answers can be computed locally reducing the
communication cost. In general, in distributed query processing, where multiple nodes
are available, query answering proceeds by first breaking the query into pieces, all of
which can be evaluated independently within individual partitions. The query pieces
are then evaluated in the relevant partitions obtaining partial matches and they are
joined to produce the final answer. Again, in this paper we are not interested on the
technicalities of query answering but only on the aforementioned partitioning algorithm
and how the careful placement of the nodes within partitions could optimize the overall
number of nodes to be visited for query answering.

Assume for example the following SPARQL query involving 3 classes and 2
user-defined properties, requesting all publications of the persons belonging to an
organization:

If data was partitioned using a simple hash partitioning algorithm, then obviously
all nodes would have to be examined. If however, the data was partitioned as shown in
Fig. 1 then only two nodes would have to be contacted, as instances of the “Organi-
zation” and “Publication” classes can be found in the second partition and the
instances of “Person” can be located at the third partition. We therefore, instead of
using simple hash or graph partitioning algorithm are looking for a more advanced
method, partitioning the schema into appropriate clusters, considering the semantics of
the nodes and the structural information of the corresponding graph.

3 Metrics

Our clustering framework follows the K-Medoids clustering method [11]; we select the
most centrally located point in a cluster as a centroid, and assign the rest of points to
their closest centroids. To identify the most centrally located point in a cluster we use
the notion of relevance. Then dependence is used for extracting nodes, highly relevant
to the specific important nodes (centroids) connecting other nodes to the most
important ones.

3.1 Identifying Centroids

Initially, the notion of centrality [30] is used to quantify how central is a class node in a
specific RDF dataset. To identify the centrality of a class node c in a dataset V, we
initially consider the instances it contains by calculating its relative cardinality. The
relative cardinality RC(p(c, ci)) of an edge p(c, ci), which connects the class nodes c and
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ci in the schema graph, is defined as the number of the specific instance connections
between the corresponding two classes divided by the total number of the connections
of the instances that these two classes have. Then, we combine the data distribution
with the number of the incoming/outgoing edges, aka properties, of this class. As such,
the in/out-centrality (Cin/Cout) is defined as the sum of the weighted relative cardi-
nalities of the incoming/outgoing edges:

Definition 2 (Centrality). Assume a node c 2 C \ VS in a dataset V = GS;GI ; k; sch i.
The in-centrality Cin(c) (respectively, the out-centrality Cout(c)) of c is defined as the
sum of the weighted relative cardinality of the incoming p(ci, c) 2 Es (respectively,
outgoing p(c, ci) 2 ES) edges:

CoutðcÞ ¼
P

pðc;ciÞ2Es

RCðpðc; ciÞÞ � wp CinðcÞ ¼
P

pðci;cÞ2Es

RCðpðci; cÞÞ � wp

The weights in the above formula have been experimentally defined [30] and vary
depending on whether edges that correspond to properties are user-defined or RDF/S,
giving higher importance to user-defined ones (in our experiments we used wp = 0.8
for user-defined properties and wp = 0.2 for RDF/S ones). This is partly because
user-defined properties correlate classes, each exposing the connectivity of the entire
schema, in contrast to hierarchical or other kinds (e.g., rdfs:label) of RDF/S properties.
Consider now the “Article” class shown in Fig. 1. Assume also that there are not any
instances in the corresponding dataset. Then the relative cardinality of all nodes is
initialized to a constant a = 0.03. As such Cin(University) = 0 since there are no
incoming edges and Cout(University) = RC(rdf:type) * wrdf:type = 0.03 * 0.2 = 0.06.

Now that centrality is defined we are going to define relevance. The notion of
relevance [30] has been proposed as adequate for quantifying the importance of a class
in an RDF dataset. In particular, relevance is based on the idea that the importance of a
class should describe how well the class could represent its neighborhood. Intuitively,
classes with many connections with other classes in a dataset should have a higher
importance than classes with fewer connections. Thus, the relevance of a class is
affected by the centrality of the class itself, as well as by the centrality of its neigh-
boring classes. Moreover, since the version might contain huge amounts of data, the
actual data instances of the class should also be considered when trying to estimate its
importance, namely relevance. Formally, relevance is defined as follows:

Definition 3 (Relevance). Assume a node c 2 C \ VS in a dataset V = GS;GI ; k; sch i.
Assume also that c1, …, cn 2 ES are the incoming edges of c (p(ci, c) 2 ES) and
c01; � � � c0k 2 ES are the outgoing edges of c p c; c0i;

� � 2 Es
� �

. Then the relevance of c, i.e.
Relevance(c), is the following:

Relevance cð Þ ¼ CinðcÞ � nþCoutðcÞ � kPk
j¼1

CoutðcjÞ
� �þ Pn

i¼1
CinðciÞð Þ

The aforementioned metric identifies class nodes being able to represent an entire
area and as a consequence those nodes can be used as the centroids of the corresponding
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graph. In our example, shown in Fig. 1, Relevance(University) = Cin(Univer-
sity) + Cout(University)/Cout(Organization) + 0 = 0 + 0.06/0.048 = 1.25.

3.2 Assigning Nodes to Centroids

Having a method to identify the most important nodes (centroids) in an RDF dataset we
are now interested on identifying to which cluster the remaining nodes should be
assigned to. Our first idea to this direction comes from the classical information theory;
that infrequent words are more informative that frequent ones. The idea is also widely
used in the field of instance matching [24]. The basic hypothesis here is that the greater
the influence of a property on identifying a corresponding instance the less times it is
repeated. According to this idea, we try to initially identify the dependence between
two classes based on their data instances.

In our running example, the node “Person” has a high relevance in the graph and as
a consequence a great probability to be used as a centroid. Assume also two nodes
“SSN” and “Work” directly connected it. Although an instance of “Person” can have
only one social security number, many persons can be employed by the same employer
and as such a person cannot be characterized by his work. As a consequence, the
dependence between “Person” and “SSN” is higher than the dependence between
“Person” and “Telephone”. Based on this observation, we define the measurement of
cardinality closeness of two adjacent schema nodes.

Definition 4 (Cardinality Closeness). Let ck, cs be two adjacent schema nodes and ui,
uj 2 GI such that sc(ui) = ck and sc(uj) = cs. The cardinality closeness of p(ck, cs),
namely the CC(p(ck, cs)), is the following:

CCðpðck; csÞÞ ¼ 1
jcj þ

DistinctValuesðpðui; ujÞÞ
Instancesðpðui; ujÞÞ

where |c|, c 2 C \ VS the number of nodes in the schema graph, DistinctValues(p(ui,
uj)) the number of distinct p(ui, uj) and Instances(p(ui, uj)) the number of p(ui, uj).
When there are no instances Instances(p(ui, uj)) = 1 and DistinctValues(p(ui, uj)) = 0.

The constant 1/|c| is added in order to have a minimum value for the CC in case of
no available instances. Having defined the cardinality closeness of two adjacent
schema nodes we proceed further to identify their dependence. As such we identify the
dependence between two classes as a combination of their cardinality closeness, the
relevance of the classes and the number of edges between these two classes:

Definition 5 (Dependence of two schema nodes). The dependence of two schema
nodes cs and ce, i.e. the Dependence(cs, ce), is given by the following formula

Dependenceðcs; ceÞ ¼ 1

pathðcs; ceÞj j2 � Relevance csð Þ �
Xe
i¼sþ 1

Relevance cið Þ
CC pðci�1; ciÞð Þ

 !
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Obviously as we move away from a node, the dependence becomes smaller by
calculating the differences of relevance across a selected path in the graph. We penalize
additionally dependence dividing by the distance of the two nodes. The highest the
dependence of a path, the more appropriate is the first node to describe the final node of
the path. Also note that the Dependence(cs, ce) is different than Dependence(ce, cs). For
example, Dependence(Publication, Book) � Dependence(Book, Publication). This is
happening, since the dependence of a more relevant node toward a less relevant node is
higher than the other way around, although, they share the same cardinality closeness.

3.3 The Clustering Algorithm

Having defined both the relevance for identifying the most important nodes and the
dependence of two schema nodes we are now ready to define the semantic partitioning
problem:

Definition 6 (Semantic Partitioning Problem). Given an RDF Dataset V = GS;GI ;h
k; sci, partition V into k subsets V1, V2, …, Vk such that:

1. V =
Sk

i¼1 Vi

2. Let topk = {c1, …, ck} be the k schema nodes with the highest relevance in V. Then
c1 2 V1, …, ck 2 Vk

3. Let dj be a schema node and dj 62 topk. Then
Dependence(dj, cp) = max0� x� k Dependenceðdj; cxÞ ! 9 dj in Vp, (1 � p � k)

4. 8u 2 GI ; such that sc(u) 2 GS and sc(u) 2 Vj ! 9 u in Vj

The first requirement says that we should be able to recreate V by taking the union
of all Vi (1 � i � k). The second one that each cluster should be based on one of the
nodes with the top k relevance (the topk set) as a centroid, and the third that each node
that does not belong to the topk should appear at least in the cluster with the maximum
dependence between the specific node and the corresponding centroid. Note that a node
can appear in multiple clusters. The idea originates from social networks where an
individual can simultaneously belong to several communities (family, work etc.),
similarly an RDF resource might belong to more than one clusters. As such, in order to
include a schema node in the Vp cluster (1 � p � k) we are looking for the path
maximizing the Dependence. In the selected path however there might exist nodes not
directly assigned to Vp. We include those nodes in the cluster as well since they have
also high dependence to the centroid. Finally all instances are replicated under the
corresponding schema nodes.

The corresponding algorithm is shown in Fig. 2. The algorithm gets as input an
RDF dataset and the number of computational nodes (k) and partitions the dataset into
k partitions. Bellow we explain in more detail each of the steps of the algorithm.

The algorithm starts by calculating the relevance of all schema nodes (lines 2–3).
More specifically for each node in GS we calculate the corresponding relevance
according to Definition 3. Having calculated the relevance of each node we would like
to get the k most important ones to be used as centroids in our clusters. Those are
selected (line 4) and then assigned to the corresponding cluster (lines 5–6).
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Then the algorithm examines the remaining schema nodes to determine to which
cluster they should be placed at. For each node we calculate the dependence between
the selected node and all centroids (line 7). We select to place the node in the cluster
with the maximum dependence between the aforementioned node and the k centroids
(line 8). However we are not only interested in placing the selected node to the
identified cluster but we place the whole path and specifically the nodes contained in
the path, which connects the selected node with the appropriate centroid
(path_with_max_depedence), maximizing the dependence of the selected node in that
cluster (line 9) as well. Next, we add to each cluster the corresponding instance nodes
to the schema nodes they are instantiated under. Finally, we return the partitions to the
user. The correctness of the algorithm is immediately proved by construction.

To identify the complexity of the algorithm we should first identify the complexity
of its various components. Assume |V| the number of nodes, |E| the number of edges

and |I| the number of instances. For identifying the relative cardinality of the edges we
should visit all instances and edges once. Then for calculating the schema node cen-
tralities we should visit each node once whereas for calculating the relevance of each
node we should visit twice all nodes O(|I| + |E| + 2|V|). Then we have to sort all nodes
according to their relevance and select the top k ones O(|V|log|V|). To calculate the
dependence of each node we should visit each node once per selected node O(k|V|),
whereas to identify the path maximizing the dependence we use the weighted Dijkstra
algorithm with cost O(|V|2). Finally we should check once all instances for identifying
the clusters to be assigned O(|I|). As such the time complexity of the algorithm is
polynomial O(|I| + |E| + 2|V|) + O(|V|log|V|) + O(k|V|) + O(|V|2) � O(|V|2).

Algorithm 1: RDFCluster(V, k)
Input: An RDF dataset V , k the number of the available nodes. 
Output: A set S of k partitions S={V1,…, Vk}.

1.
2.  for each node ci
3.   ri := calculate_relevance(V, ci)
4. topk := select_top_nodes(r, k)
5. for each node ci topk.
6.  Vi=Vi ci
7. for each node ci topk
8. j= find_cluster(ci, topk) 
9.   Vj=Vj path_with_max_dependence(ci, V) 

10. for each node ci in Vj
11.      Vj = Vj Instances(ci) 
12. Return S={V1,…, Vk}

∪

∪

∪

Fig. 2. The RDFCluster algorithm
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4 Evaluation

To evaluate our approach and the corresponding algorithm we used three RDF datasets:
CRMdig

3. CRMdig is an ontology to encode metadata about the steps and methods
of production (“provenance”) of digitization products and synthetic digital represen-
tations created by various technologies. The ontology contains 126 classes and 435
properties. For our experiments we used 900 real instances from the 3D-SYSTEK4

project. In addition we used 9 template queries published in [28] with an average size
of 6 triple patterns.

LUBM. The Lehigh University Benchmark (LUBM) is a widely used benchmark
for evaluating semantic web repositories. It contains 43 classes, and 32 properties
modeling information about universities and is accompanied by a synthetic data gen-
erator. For our tests we used the default 1555 instances coming from a real dataset. The
benchmark provides 14 test queries that we used in our experiments with an average
size of 4 triple patterns.

eTMO. This ontology has been defined in the context of MyHealthAvatar5 EU
project [16] and is used to model various information within the e-health domain. It is
consisted of 335 classes and 67 properties and it is published with 7848 real instances
coming from the MyHealthAvatar EU project. For querying we used 8 template queries
specified within the project for retrieving relevant information, with an average size of
17 triple patterns per query.

Each dataset was split into 2, 5 and 10 partitions and we used all queries available
for query answering. For a fixed dataset, increasing the number of partitions is likely to
increase the number of nodes required for answering queries as the data becomes more
fragmented. However, it increases the number of queries that can be answered inde-
pendently in parallel reducing the computation task for a single node. As we have
already mentioned, our task is not to measure end-to-end query answering times
involving multiple systems but to evaluate the quality of the constructed partitions with
respect to the query answering

As such, for each V1, …, Vk (k = 2, 5, 10) we measure the following character-
istics: (i) The quality of constructed partitioning algorithms, i.e. the percentage of the
test queries that can be answered only by a single partition, (ii) the number of partitions
that are needed in order to answer each query and (iii) the space overhead that our
algorithm introduces in both schema nodes and the dataset.

We compare our approach with (a) subject-based hash partitioning similar to
YARS2 [6] and Trinity.RDF [34] called Hashing, and (b) METIS used by [7, 17] for
clustering RDF Datasets. Hashing is distributing triples in partitions by applying a hash
function to the subject of the triple in order to guarantee that star queries can be
evaluated locally. METIS [13] on the other hand calculates n disjoint sets of nodes such
that all sets are of similar sizes and the number of edges in connecting nodes in distinct
sets is minimized. In this work we focus only on the partitioning schemes of the

3 http://www.ics.forth.gr/isl/index_main.php?l=e&c=656.
4 http://www.ics.forth.gr/isl/3D-SYSTEK/.
5 http://www.myhealthavatar.eu/.
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aforementioned works. All datasets and queries used in our experiments along with the
detailed results can be found online6.

4.1 Quality

We perceive the quality of a partitioning algorithm with respect to query answering as
the percentage of queries that can be answered by a single computational node without
requiring to visit additional nodes to provide answers to the user. The results for all
queries in our three datasets for the three algorithms in 2, 5 and 10 partitions are shown
in Table 1.

We can easily identify that RDFCluster is better in almost all the cases showing the
high quality of the produced partitions with respect to query answering. The only case
that METIS is better than RDFCluster is in LUBM when we have 5 partitions where
one more query can be answered by a single one. However, for LUBM, even in 5
partitions as we shall see in the sequel (Sect. 4.2) our algorithm requires less nodes to
be visited on average for answering the benchmark queries. In addition we expect that
as the number of partitions increases the average number of queries that can be
answered by an individual partition decreases as the data are distributed to more nodes.
Our expectations are confirmed by our results.

In addition as expected, smaller queries (LUBM with an average of 4 triple patterns
per query and CRMdig with an average of 6 triple patterns per query) show a greater
likelihood to be answered by a single node than queries with more triple patterns such
as eTMO with an average of 17 triple patterns per query.

4.2 Number of Clusters Required for Answering a Query

Besides evaluating the quality of our algorithm, another interesting dimension is to
evaluate how much work is required for answering the queries in each case in terms of
the nodes required to be visited. The nodes to be visited give us an intuition about how
many joins will be required to construct the final answer that will be returned to the
user. This is critical because, in order to ensure the completeness of query answers, all
partial matches in all partition elements must be computed and joined together.

Table 1. The quality of the three clustering algorithms Hashing (H), Metis (M) and RDFCluster
(RC) in 2, 5 and 10 partitions.

Partitions CRMdig LUBM eTMO
H M RC H M RC H M RC

2 22% 22% 100% 14% 14% 36% 0% 0% 88%
5 0% 0% 44% 14% 21% 14% 0% 0% 13%
10 0% 0% 22% 7% 7% 14% 0% 0% 13%

6 http://www.ics.forth.gr/*kondylak/ISWC2016_Evaluation.zip.
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The results are shown in Fig. 3 where we can see that in all cases RDFCluster
requires on average less nodes to be visited for query answering, showing again the
nice properties of our algorithm. Note that even for large queries (eTMO with an
average of 17 triple patterns) our algorithm requires only three partitions to be visited
on average for query answering and this applies even in the case of 10 partitions.

4.3 Storage Overhead

The storage overhead provides us with an indication of how much space is needed for
our approach compared to the space required for storing all datasets in a single node.
Since Hashing and METIS algorithms construct non-overlapping clusters they have no
storage overhead. However for simple variations of hash allowing duplication the
overhead can be really high (e.g. 2-hop duplication can lead to an overhead up to 430%
[7]). In our case, since we allow a class node and the corresponding instances to be
replicated in multiple nodes we expect as the number of clusters increases to increase
the storage overhead as well.

Fig. 3. The number of nodes required for answering the benchmark queries.

Table 2. Schema nodes overhead as the number of clusters increases

Clusters CRMdig LUBM eTMO

2 1.55% 3.33% 0.65%
5 1.55% 8.33% 4.90%
10 6.20% 15.00% 7.19%

Table 3. Total storage overhead as the number of clusters increases

Clusters CRMdig LUBM eTMO

2 0.10% 0.12% 0.04%
5 0.10% 0.89% 0.29%
10 16.73% 1.13% 2.78%
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To identify and understand the overhead introduced by our algorithm first we focus
only on the schema graph and identify the overhead introduced there. This is shown in
Table 2 calculating the percentage GSV1j j þ . . .þ GSVKj j � GSj j= GSj j. As shown the
overhead is minimal introducing at most 15.00% additional schema nodes for LUBM
whereas for eTMO and CRMdig is only 7.19% and 6.20% respectively.

The impact of these additional schema nodes to the overhead of the entire dataset is
shown in Table 3. The table shows the total storage overhead introduced by our
algorithm, i.e. the percentage |V1| + … + |Vk | − |V|/|V|. As shown, the total storage
overhead introduced from our algorithm is at most 16.73% for CRMdig and for the
majority of the cases less than 1%. Another interesting observation is that in almost all
the cases the schema nodes overhead is greater than the corresponding total storage
overhead showing that our algorithm succeeds in replicating only nodes with small
additional overhead that however significantly improve query answering as shown in
previous sections.

Overall, as the experiments show although our algorithm chooses to sacrifice equal
data distribution on the nodes to achieve a better performance with respect to query
answering the imposed overhead is really low reaching at most 16.73% overhead on
our test cases.

5 Related Work

Graph clustering has received much attention over the latest years [35], aiming to
partition large graphs into several densely connected components, with many applica-
tion such as community detection in social networks, identification of interactions in
protein interaction networks etc. The problem proved to be an NP-complete problem [5].
Typical algorithms of this class include local search based solutions (such as KL [15]
and FM [4]), which swap heuristically selected pairs of nodes, simulated annealing [8],
and genetic algorithms [3]. Algorithms in this category focus on the topological
structure of a graph so that each partition achieves a cohesive internal structure and there
are approaches based on normalized-cut [26], modularity [20], structural density [33],
attribute similarity [29] or combinations between those [35]. To scale up to graphs with
millions of nodes, multi-level partitioning solutions, such as Metis [13], Chaco [9], and
Scotch [22], and variations over these have been proposed.

To this direction, several approaches try to represent RDF datasets as graphs and
exploit variations of the aforementioned data for data partitioning. For example, Wang
et al. [31] focus on providing semantic-aware highly parallelized graph partitioning
algorithms for generic-purpose distributed memory systems whereas Huang et al. [7]
apply graph partitioning over the Hadoop MapReduce framework trying to reduce as
much as possible the communication costs. Our approach however, does not focus only
on the structural part of the graph for partitioning the RDF datasets but considers in
addition semantic information (such as the number of instances, the distinct instance
values, assigns different weights according to the type of the properties) with the same
target however, i.e. to reduce as much as possible the communication costs among
partitions when these partitions are used for query answering.
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Other clustered RDF database systems, such as SHARD [23], YARS2 [6], and
Virtuoso [20] partition triples across multiple nodes using hash functions. However,
portioning data using hashing requires a lot of communication overhead for query
answering since in essence all nodes have to be contacted. The same problem appear in
other works that adopt vertical [2] or horizontal partitioning schemes based on triples
[18] ignoring however the correlation between triples, leading to a large number of join
operators among the compute nodes. Other algorithms, but with the same problem use
hybrid hierarchical clustering [19] combining an affinity propagation clustering algo-
rithm and the k-Means clustering algorithms. To overcome that problem Lee et al. [17]
proposed to by use locality sensitive hashing schemes. Although this approach moves
to the same direction with ours, trying to exploit semantics, the adopted solution is
limited to only the fact that triples are anchored at the same subject or object node. In
addition according to our experiments our solution outperforms similar approaches.

Finally there are approaches that try to monitor the execution of SPARQL queries
[1] or assume that query patterns are already available [32] and keep track of records
that are co-accessed and physically cluster them using locality sensitive hashing
schemes. Our approach uses a similar “profiling” mechanism but instead of focusing on
queries, we focus on profiling “data” identifying and combining the knowledge of the
instance distribution with structure and semantics. A more thorough overview of the
different partition schemes for RDF datasets can be found on [10].

6 Conclusions and Future Work

In this paper we present a novel method that gets as input and RDF dataset and the
number of available computational nodes and returns a set of partitions to be stored on
the aforementioned nodes. To select the centroids for the each cluster initially our
algorithm selects the most important nodes based on the notion of relevance. Then to
assign the remaining nodes to a cluster we use the notion of dependence eventually
assigning the remaining schema nodes to the cluster maximizing the dependence with
the corresponding centroid. Having constructed the appropriate “schema clusters” we
place next the instances on the corresponding classes they belong to. Our algorithm
exploits both structural and semantic information in order to both select the most
important nodes and then to assign the remaining nodes to the proper clusters. In
addition, since both our constructed clusters and user queries are based on schema
information we argue that this partitioning scheme will have a beneficial impact on
query evaluation limiting significantly the nodes that should be visited to answer
frequent queries.

The quality of our partitioning scheme is verified by our experiments. We use three
RDF Datasets, namely CRMdig, LUBM and eTMO with their corresponding template
queries and we show that the clusters produced significantly limit the number of
clusters to be contacted for query answering. Obviously, as the number of clusters
increases, eventually the number of nodes required for query answering increases as
well, leading to trade-offs among load-balancing and the number of nodes to be used.
However, as shown, our algorithm achieves better performance than existing systems
with respect to query answering, requiring at most 3 nodes for our template queries
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even when the dataset is partitioned in 10 nodes. In addition, although in order to these
results we allow replication, we show that the impact is minimal imposing at most at
most 16.73% total storage overhead.

As future work we intend to explore how our algorithm shall be adapted when no
schema is available in an RDF dataset; it is true that RDF datasets do not have always a
predefined schema which limits their use to express queries or to understand their
content. To this direction approaches are starting to emerge discovering the types of the
data using clustering algorithms [14]. Furthermore, we plan to deploy our clustering
algorithm in a real clustered environment and to measure the actual improvement on
query execution times, comparing our solution with other competitive approaches. In
addition our clustering method does not considers limiting the number of nodes that are
included in each cluster. However, an idea would be to try to limit the nodes assigned
to each cluster trying in parallel to maximize the total dependence of the selected
nodes. The problem is well-known to be NP-complete, requires complex variation
algorithms over Steiner-Tree problem and we have already started to explore inter-
esting approximations [21]. Obviously as the size and complexity of data increases,
partitioning schemes are becoming more and more important and several challenges
remain to be investigated in the near future.
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Abstract. When an individual joins an Online Social Network (OSN),
he creates connections by interacting with the other users directly or
indirectly and forms its own Online Personal Network (OPN). These
OPNs are not static, but they evolve over time as new people join or
quit them and as new relationships are established or old ones broken.
Understanding how OPNs are evolving is still missing in the current
literature, while OSNs’ evolution was widely addressed and many models
were proposed. In this paper, we propose to fill this gap by performing an
experimental analysis over a large set of real OPNs by the mean of the
computation of metrics that characterize their structure. We examine
how these metrics behave when the OPNs change over time in order to
discover the properties driving the evolution of their structure, which
can help in providing evolution models dedicated to OPNs.

Keywords: Online personal networks · Online personal networks evo-
lution · Network dynamics · Online social networks · Graph metrics

1 Introduction

An Online Social Network (OSN) consists of a set of nodes that represent the
actors (e.g. the persons) involved in the network, while the edges connecting
the nodes represent (online) social relationships like friendship, family, work and
others. At the same time, each individual belonging to an OSN has its own
Online Personal or Egocentric Network composed of that node/user as its focal
point (named ego) and of these users that the ego is interacting with directly or
indirectly (named alters).

But, OSNs carry many dynamic characteristics and they change over time
in terms both of structure (e.g. nodes or connections with other nodes are
added/deleted) and weight of the links (e.g. strength of exchanges between two
nodes). Understanding the dynamic nature of OSNs has been widely addressed in
c© Springer International Publishing AG 2017
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the literature and many models were proposed to capture this evolution. Most
of these models are based on properties that concern the OSN structure as a
whole, e.g. the global clustering coefficient. But for us as individuals, what hap-
pens to the whole network is less important than what happens to our corner
of this online world. So, we are more interested on how our personal network
will evolve over time and how this evolution will affect us in terms of our local
communities or the information that will reach us. Thus, in contrast with the
prevailing approach of studying the evolution of the whole OSNs, we are inter-
ested in extracting from the OSN the individuals’ OPNs and study the dynamics
of each personal network individually to understand the evolution at the individ-
ual user level. Our goal is to analyze an adequate number of personal networks
that would allow us to draw reproducible conclusions (if any) and at the end
quantify these conclusions in the form of an evolutionary model.

The dynamics of personal networks can provide insights at various levels.
Firstly, at the level of the ego, we are interested in finding how the ego is affect-
ing or is affected by his alters over time and how this affects the evolution of
the entire OSN. For instance, it has been demonstrated that the health of a
person is strongly related with the number of friends the person has [19], and
the identification of influential individuals inside an online social network can
lead marketing strategy’s decisions [10]. Secondly, at the level of the personal
network, we are interested in finding if and how different sub-circles are been
developing as the network evolves and how this affects the importance of the ego
in the functioning of the personal network.

However, only few works were dedicated to the study of OPNs dynamics.
These works focused mainly on: (1) checking if the discovered patterns that
characterized evolving human relationships over time in offline personal networks
(i.e., personal networks as studied in social sciences to represent relationships of
a person in the real society) are valid when we switch to online personal net-
works; (2) analyzing OPNs in specific online applications (for example Facebook
or Twitter individually) to detect and describe the different phases about the
activity of a user over time after joining the OSN; or (3) providing software that
offer visualization support in order to analyze a given isolated evolving personal
network. Nevertheless, we are still missing contributions that allow to know more
about the structural properties of OPNs.

In this paper, we describe an experimental analysis over a set of OPNs that
evolve over time. They are extracted from a greater coauthors OSN that cap-
tures collaboration among scientists who have coauthored at least a journal or
conference publication. The analysis consists of computing a set of metrics over
the selected OPNs for different time steps that correspond to years in real life.
The metrics capture information about the ego, the relationship between the ego
and its alters, the overall importance of the ego, but also information on alters’
connectedness, their local structure, and the appearance of sub-communities.
For each metric, we provide the prevailing behavior as the OPN evolves but also
we explain this behavior, where possible, in terms of what we know from the
literature on network evolution in general, personal networks and evolution of
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coauthors’ social networks. Our goal is to understand the properties and their
trends that characterize or explain the changes that personal networks sustain
over time. In a future work, we plan to quantify and mathematically describe
the trends of these properties so as to be able to propose an evolution model for
OPNs. To the best of our knowledge, this is the first effort that tries to perform
large scale analytics on evolving OPNs in an effort to understand and capture
the dynamics of such networks.

The remainder of this paper is structured as following: in Sect. 2, we define
formally an OPN, and in Sect. 3, we review a set of works that have studied OPNs
evolution. In Sect. 4, we describe the set of metrics we used in our analysis, and in
Sect. 5, we describe the evolution study that we carried and the evolution trends
detected via the analysis per metric. Finally, in Sect. 6 we discuss the discovered
properties from the studied evolving OPNs, and we conclude with Sect. 7.

2 Preliminaries

As stated in the introduction, a personal network is a network that has an indi-
vidual as its focal user (named ego) and the users that are directly or indirectly
connected to him (named alters). In our previous work [6], we provided a set
of formal definitions for OPNs that account for the different characteristics of
today’s OSNs. Next, we provide the definition of an OSN and then we report
the definition of an undirected personal network.

Definition 1. An (undirected) Online Social Network is a graph G(V,E) where
V is the set of nodes representing the social actors and E is the set of (undirected)
edges representing the links between them.

Definition 2. We define an undirected personal network PNe of an ego (aka
individual node) e as being a sub-network of an online social network composed of
the ego and the individuals who are connected to it directly or indirectly (named
alters), and of all the connections between e and his alters, and between the
alters.

PNe = G′(V ′, E′), whereV ′ ⊆ V,E′ ⊆ E
V ′ = {x ∈ V | dG(e, x) ≤ k ∧ ∃y ∈ V, dG(e, y) = k} ∪ {e}
E′ = {{x, y} ∈ E | x ∈ V ′ ∧ y ∈ V ′}

where V ′ represents the set of nodes composed of the ego node e and all nodes that
are connected to e via a shortest path of maximum length k , with the condition
that at least one node y is at a k distance from e, and E′ holds the set of all
possible edges linking V ′’s nodes. The shorted path is computed by dG(e, x) as
the number of edges contained in the shortest path connecting e to x.

In Fig. 2-a, we give an example of a personal network where the ego is the
node in the center of the graph and the set of alters is composed of nodes 2,
3, 4, 5, 6, and 7. Each node is at a distance one from the ego, so, for this
personal network, k = 1. In contrast, for the personal network in Fig. 2-b, since
dG(ego, 8) = 2, k = 2.
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In this paper, we use Definition 2 for the extraction of personal networks
from the entire undirected social network of scientific collaborations, in order
to observe and analyse the evolution of a set of individual authors’ personal
networks.

3 Literature Review

In the last years, numerous studies in OSN analysis has been devoted to under-
stand their evolution over time. These works tempted to develop generative
models for large networks that reproduce the properties revealed by the analysis
of different online networks, such as their scale-free nature in degree distribu-
tion, their high clustering coefficient, and their low average shortest path length
that separates nodes (so called the small-world phenomenon [22,23]). However,
studies on understanding the evolution of OPNs are still young and only a few
works were devoted to that.

For example, in [2], the authors aimed to discover how the size and the
structure of personal networks’ layers change over time. In social science [21],
a layer is composed of the alters having the same degree of intimacy with the
ego. Using Twitter data in order to assess whether offline personal networks’
properties are also valid in Twitter’s OPNs, the authors outlined that the number
of active relationships maintained by the ego remains constant due to the limited
cognitive capacity of human brain. Furthermore, they noted that when the ego
joins the OSN, the number of ego’s relationships shows an important burst that
converges to a constant value. The number of strong relationships is small and
is maintained over time, but most of the relationships become weaker shortly
after their creation. The later has also been observed in [24] that analyzed the
evolution of the Facebook interaction graph and found that different personal
networks’ links are rapidly activated and deactivated exhibiting a decreasing
strength (i.e. decreasing number of exchanges) and that this starts soon after
they were created.

Although these conclusions can be helpful when modeling the evolution of
relationships’ strength in personal networks, they remain limited since they do
not reflect how OPNs graph structure is affected over time when nodes and edges
are added or deleted. Moreover, by considering only the relationships between
the individual (ego) and his direct connections (personal networks with k = 1),
these studies restrict the information about the evolution of the personal network
since many times the evolution appears not on the 1-level but on levels 2 and
above.

Visualization techniques help in understanding the evolution of OPNs. In
that respect, in [20] the authors propose techniques to visualize large scale per-
sonal networks evolution by considering the data as continuous streams, and the
visualization software EgoLines, presented in [27], proposes a dynamic analysis
of personal networks. These tools allow to isolate a personal network and ana-
lyze its evolution with a visual support, but they are lacking the capabilities of
performing massive scale analysis. The system EgoSlider [26] allows the analy-
sis of a set of dynamic personal networks by summarizing their properties at
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the network, individual or temporal-based level. Unfortunately, the integrated
metrics (e.g. number of alters, edges between alters, etc.) are limited and provide
only generic information about the OPN.

As in this paper we are interested in understanding the factors that govern
the evolution of OPNs by making a large-scale study, we use the expanded defin-
itions of OPNs beyond the immediate social cycle (or for k ≥ 1), and we focus on
understanding: (i) the evolution of ego node’s properties and (ii) the evolution
of the personal network’s structure. We do this by studying a set of metrics that
represent key information at both evolution points. In that respect, we follow
the analytical work done for the full OSN in [3] where the evolution of scientific
collaborations network data was studied by the mean of graph metrics. Com-
pared to this work, we use similar metrics (adapted to personal networks in our
case) and we work on similar data sets since both works consider co-authorship
networks from the DBLP data set. The metrics that we use for understanding
the evolution of OPNs are presented in the next section.

4 Metrics for the Analysis of OPNs Evolution

As outlined previously, we can use metrics that describe the structure of the
OPNs to capture its evolution and get insights on how personal networks grow,
shrink or change over time. From the many metrics proposed in the literature for
capturing the structure of social networks, we picked those that we believe better
representing the structure of OPNs, but also able to provide some insights or
patterns on their dynamics. The goal of this paper is not to propose new metrics
for capturing the evolution of OPNs, but to reuse existing metrics in an evolving
fashion in order to capture the dynamics. These metrics are presented hereafter.

4.1 Metrics Computed at the Personal/Ego Network Level

In this section we present a set of metrics with their respective definitions applied
to undirected OPNs and that are computed at the personal network level.

Number of nodes and edges. The two metrics are defined in Definition 3.
The OPN in Fig. 2-a has n = 7 and m = 9. We compute the number of nodes
and edges to capture the OPN’s size and to detect its change over time when
nodes and edges are added and/or deleted.

Definition 3. If G′(V ′, E′) is an OPN as defined in Definition 2, then n = |V ′|
and m = |E′| are, respectively, the number of nodes and the number of edges
composing G′.

Density. The density (or connectedness [12]) of a network, defined by Defini-
tion 4, assesses how much connected are the actors of the network.

Definition 4. The density D of an undirected personal network G′(V ′, E′) is
D = 2 × m/(n × (n − 1)), where m and n are the number of edges and of nodes
of the network.
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For instance, the OPN in Fig. 2-a has D = 0.42. A high density means that
the nodes are well connected; for instance, a complete graph (Fig. 3-a) has D = 1.
On the contrary, a low density indicates a low number of edges between the
OPN’s nodes. Thus, the density of an evolving OPN describes the evolution of
its connectedness (whether the density is increasing or decreasing).

Global clustering coefficient (Transitivity Index). The global clustering
coefficient (GCC), introduced in [18] and defined in Definition 5 for OPNs,
quantifies the transitivity in random graphs. The transitivity indicates that if a
node x is connected to y and y is connected to z, then nodes x and z are likely
to be connected. In a network, these structures are called triangles or closed
triplets.

Definition 5. The global clustering coefficient of G′(V ′, E′) (undirected per-
sonal network) is defined as GCC = 3×T/C, where T is the number of triangles
in G′ and C is the number of connected triples in G′ (three nodes with at least
2 edges).

The OPN in Fig. 2-a has 3 triangles and 22 connected triples, thus its
GCC = 0.409. We want to compute GCC on OPNs to verify if (and how)
the triangles characterize OPNs. Given a network, if GCC = 1, then every triad
is a triangle (i.e. in complete OPNs, such as Fig. 3-a); if GCC = 0, then no
triangle is present (i.e. in a star OPN, Fig. 3-b). The GCC was widely addressed
in OSNs’ evolution studies [7,14,17], as triangles were observed in many real
OSNs and several OSNs’ evolution models are based on them.

Average clustering coefficient (Average Watts-Strogatz Clustering
Coefficient). This metric, introduced in [25] and defined in Definition 6, allows
to characterize how much, in average, a network is locally clustered. The met-
ric is computed by averaging the local clustering coefficients (defined later in
Sect. 4.2) of the nodes.

Definition 6. The average clustering coefficient (< C >) of an undirected per-
sonal network G′(V ′, E′) is < C >=

∑
x∈V ′ Cx/n, where Cx is the local cluster-

ing coefficient of node x, ∀x ∈ V ′ and n is the number of nodes.

< C > ranges between zero and one. A value close to zero means that in aver-
age, the nodes are part of limited transitive relationships, while a value close to
one indicates that the nodes participate in many transitive relationships (i.e. in
complete OPNs, such as Fig. 3-a). For OPNs, we are interested in computing
both clustering coefficients, GCC and < C >, to compare their evolution over
time. Moreover, < C > might provide a more precise idea of the connectivity of
nodes in OPNs because it focuses on the local connectivity, meanwhile GCC is
computing the connectivity over the whole network (which is counter intuitive
in OPNs according to Definition 2).
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Degree centrality and average degree centrality. The degree centrality of a
node, introduced in [11] and defined in Definition 7, is the number of connections
that the node has in the OPN.

Definition 7. The degree centrality of node x (degx) in an undirected personal
network G′(V ′, E′) is given by degx =

∑
y exy, where exy = 1 if an edge exists

between the nodes x and y ∈ V ′, and exy = 0 otherwise.

For OPNs, we compute the degree centrality over all nodes for two purposes:
(1) to check if the nodes’ degree is following a power law distribution and (2)
to compute the average degree (< deg >) of all the nodes in the OPN, defined
below.

Definition 8. The average degree < deg > of an undirected personal network
G′(V ′, E′) is given by < deg >=

∑

x∈V ′
degx/n = 2 × m/n.

Power law distribution. The power law distribution of nodes’ degrees is a
property that appears in many real OSNs. For a network, it consists in having
few nodes with a high degree and many nodes with low degree. Named the pref-
erential attachment, it is the main property governing the majority of evolution
models.

In order to verify if the nodes’ degrees are following a power law distribution,
we compute the degrees (as described in Definition 7) of all the nodes in the OPN.
If verified, the degree distribution of the nodes should take the form P (x) =
cx−α, where P (x) denotes the fraction of nodes in the OPN having degree x,
c is a normalization constant and α represents the exponent of the power law
distribution function. If an OPN has a power law degree distribution, it means
that the number of nodes with degree x is proportional to x−α and α is the
slope of the distribution and ranges typically around 2 or 3. When α is high, the
number of nodes with high degree is smaller than the number of nodes with low
degree. The personal network given in Fig. 2-a follows a power law distribution
with α = 3.17.

For OPNs, our aim is to check if the power law distribution holds, as in the
case of OSNs. This information will allow us to validate whether the evolution
models based on preferential attachment are suitable for OPNs and to what
extend or not.

Ego’s maximum degree of separation (k-max). In the Definition 2 of
OPNs, the parameter k is used to limit the nodes part of the OPN, since only
the alters that are at a maximum distance k from the ego can be part of the
k-personal network of the ego. For a 2-personal networks, k = 2 and the alters
are at a maximum distance of 2 from the ego. Note that by distance between
two nodes, we mean the shortest path length between those nodes. By k-max,
defined in Definition 9, we capture the maximum distance between the ego node
and all alters reachable from the ego, and we observe how k-max changes when
the OPN evolves. Moreover, we check if the 6-degree of separation principle
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[22,23], validated in real world OSNs [13,15], is satisfied for OPNs. The 6-degree
of separation, known as the “small world” phenomenon, suggests that each pair
of nodes inside an OSN is connected via a shortest path of average length 6.

Definition 9. The ego’s e maximum degree of separation (k-max) in a undi-
rected personal network G′(V ′, E′) is given by k − max = maxx∈E′(d(e, x)),
where d(e, x) is the shortest path length between the ego node e and every node
x reachable from e.

4.2 Metrics Computed at the Ego Level

Ego degree centrality. In Definition 7, we presented the degree centrality of
any node x in the OPN. We compute dege in order to capture how the number of
ego’s direct connections is evolving over time (in the OPN in Fig. 2-a, dege = 6).
Below, we define the degree centrality of the ego node.

Definition 10. The degree centrality deg of ego e in an undirected personal
network G′(V ′, E′) is given by dege =

∑
x eex, where mex denotes that an edge

exists between the ego node e and another node x ∈ V ′.

Betweenness centrality. The metric, introduced in [11] and defined in Defin-
ition 11, assesses the extent to which a node is between all the other nodes in
the network. In [12], the betweenness centrality is introduced only for 1-personal
networks, thus the Definition 11 was adapted to apply to k-personal networks.
To this end, we do not restrict x and y to nodes directly connected to the ego,
but x and y have to be at a maximum distance k from e. A high ego between-
ness means that the ego participates in many shortest paths in its OPN (e.g.
in the OPN in Fig. 2-a, Be = 0.76) and reveals its importance inside its OPN
(e.g. in the star personal network in Fig. 3-b the ego is the unique intermedi-
ate on all shortest paths between each pair of nodes and Be = 1). When the
OPN is evolving, we observe whether the importance of the ego is affected; thus
more information about the structural changes in the network while evolving is
revealed, e.g. if an ego’s betweenness decreases, then OPN alters become more
and more connected over time (thus ego becomes less important).

Definition 11. The betweenness centrality of an ego e (Be) inside its undi-
rected personal network G′(V ′, E′) is Be =

∑

x�=y �=e

Sx,y(e)/Sx,y for every pair

(x, y), x, y ∈ V ′, where Sx,y is the number of shortest paths between x and y in
G′, and Sx,y(e) is the number of those passing through e.

Local clustering coefficient (Watts-Strogatz clustering coefficient [25]).
While the global clustering coefficient and the average clustering coefficient cap-
ture the transitivity inside a (personal) network, the local clustering is computed
at a node level to detect the transitivity inside a node’s immediate neighborhood
(nodes directly connected to ego), as defined hereafter. For OPNs, we compute
this metric only at the ego level (Ce) to capture the ego’s connections at the 1st
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level. Ce ranges in the interval [0, 1]. A high local clustering coefficient indicates
that most of ego’s alters are connected with each other, while a low one indicates
that only few links exist between ego’s alters (e.g. in the star personal network
in Fig. 3-b, Ce = 0). Thus, when the OPN evolves, by computing this metric,
our aim is to observe the changes in the 1st level ego’s alters connections rate
which affects ego’s importance.

Definition 12. The local clustering coefficient of node x (Cx) in the undirected
personal network G′(V ′, E′) is Cx = 2 × mx/degx(degx − 1), where mx is the
number of edges between neighbors of x and degx is the degree of x.

Effective size. This metric, introduced in [4] and defined in Definition 13, is
computed for 1-personal networks and quantifies the connectedness of ego’s 1-
level alters. It is based on the notion of redundancy. A personal network of the
ego e has redundancy if e’s alters are connected with each other. In order to
facilitate the effective size interpretation, we compute the efficiency (Eff). The
efficiency norms the effective size of a personal network by the actual number
of ego’s alters dege as given hereafter Eff = E/dege. Compared to the effective
size, the efficiency is easier to evaluate since it ranges in [0, 1]. A high effective size
(and efficiency) reflects the fact that the redundancy is low i.e. the alters are not
well connected with each other (e.g. in the star network in Fig. 3-b, Eff = 1).
As for the local clustering coefficient, the effective size/efficiency allows us to
capture the degree of connectedness between ego’s alters and so the loss or gain
of importance of the ego when the 1-personal network evolves over time.

Definition 13. The effective size E of e in the undirected 1-personal network
G′(V ′, E′) is E = dege − Red, where dege is the degree of e and Red is the
redundancy defined as Red = 2 × me/dege, where me represents the number of
edges between e’s alters.

In this section, we presented the set of metrics that we will use in the analysis
of the co-authorship OPNs’ evolution. We provide in Table 2, as an example, the
computation of all the above metrics on the OPN given in Fig. 2-a.

5 Online Personal Networks Evolution Study

5.1 Dataset Description

We have chosen to perform the analysis on OPNs from DBLP (Digital Bibliog-
raphy & Library Project) Computer Networks dataset1. We constructed from
DBLP the network of co-authorships with connections between pairs of authors
who share at least one publication in the field of Computer Networks. The cor-
responding co-authorship network graph (undirected, since the relationship is
symmetric) holds 13854 authors (nodes) and 32946 co-authorships (edges), and
reflects those authors who have published in the period 1971–2013 and who do

1 https://aminer.org/citation.

https://aminer.org/citation
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not belong to independent communities but belong to the giant component of
the whole graph of scientific collaborations in Computer Networks area in 2013.

The evolution of a scientific collaboration network from time t to time t + 1
consists in the addition of new authors (nodes) that join the network and create
new collaborations (edges) with existing authors that were in the network at time
t. New edges can also appear between two authors already in the network at time
t, as well as between two new authors joining the network at time t + 1. Since
in our current analysis we do not exploit link weights, edges between existing
nodes are not considered. In this context, the t parameter corresponds to the
year in which a co-authorship was established (year of the published paper).
Thus, one can capture the co-authorship network at a given starting time point
and observe how this network evolves by the addition of nodes and edges until
a final time point.

In our case, the aim is not to study the evolution of collaboration network as
a whole, but to understand the evolution of the personal collaboration networks
of a set of individual authors (egos) over time in an effort to understand if the
evolution of the personal networks shares common characteristics, patterns or
trends or if the behavior is specific to each personal network. To do so, we have
split our data into 5 parts; each part is composed of a set of authors (egos)
that have started publishing on a given year (dataset1 holds authors that had
their first publication in 2004, dataset2 contains authors that had their first
publication in 2005, and so on). In Table 3 we give in the third column the
number of authors analysed per part, while the last column contains the time
window on which we studied the evolution per part. We started studying the
evolution of each part two years after the dataset’s authors joined the network
since we have observed that during the first two years a considerable fraction
of personal networks remains unchanged (do not evolve in terms of nodes’ and
edges’ addition), which is an interesting observation.

In the remainder of this section, we describe the methodology we used to
analyze the DBLP data set, which relies on the metrics we presented in Sect. 4
focusing on understanding personal collaboration networks’ evolution.

5.2 Description of the analysis

The analysis of the set of selected online personal networks is performed via
the computation of the set of metrics described in the previous section over the
different time-steps (each time-step corresponds to a year in our case). At the
end we try to consolidate the observed behavior of the metrics over the personal
networks and over the years in order to reach, wherever possible, a common
conclusion.

To do that, we use PERSONA (PERSonal Online social Networks’ Analytics)
platform [6] in order to extract, from the entire network of collaborations, the
desired personal network of a given ego, and then we compute all metrics on the
extracted network. To extract a personal network, we need to specify the dataset
of which the ego is part (e.g. dataset1), the year (possible values depending on
the dataset presented in Table 3) and the k value (we distinguish five values
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for k, from 1 to 5). We stopped at 5 because, as it is observed in Fig. 1i and
discussed thereafter, there are very few personal networks with k − max values
of 6 and 7 and no personal networks with k − max between 8 and 13 and after
13 each personal network joins the giant component. Thus, for a given dataset
and a specific metric, we will compute all the values of the metric for the authors
(i.e. the ego/personal networks) for each year value and each k. For example,
the density of dataset dataset1, is computed as the value of the density for the
personal network of each author inside dataset1 on each year from 2006 to 2013
and for each k = 1, 2 . . . , 5. For the case of the effective size, the local clustering
coefficient and the degree centrality, we stop at k = 1 since these metrics are
relevant only for 1-level personal networks.

Then, in order to assess the evolution of each metric through all the personal
networks for the same dataset, we make two types of plots (for each couple
(year, k)): (i) one of the value of the metric computed for each personal network;
and (ii) one that represents the distribution of the values of the metric through
all the personal networks in the same dataset. By using both types of plots,
we can observe the tendency that a given metric has in terms of increasing or
decreasing through the years and observe the behavior when k changes. In the
next subsection, we provide the results of these representations and discuss the
observed behavior of each metric.

5.3 Metrics Evolution Trends Detected via the Analysis

Before presenting the findings for each metric, we precise that the obtained
results for all the metrics are the same for all the 5 datasets. Thus, in the follow-
ing, we choose to report the results observed on dataset1 which has the largest
time window for studying the evolution.

Number of nodes and edges. In co-authorship networks nodes and edges are
only added over time and cannot be removed. It was not possible to identify a
single rate with which nodes and edges are added over the years. However, the
role of edges in shaping the evolving structure of a personal network, will be
further clarified as we discuss the rest of the metrics that follow.

Density. The density quantifies how well connected the nodes composing the
personal networks are. When k=1, we observe a large proportion of personal
networks with a density equal to 1 (see Fig. 1d) with density distribution on
2009 (we obtained the same distribution on the other years) which means that
all the nodes are connected with each other at this level where personal networks
are frequently composed of only few nodes (2, 3 or 4). This proportion decreases
as the personal networks grow with nodes that are joining them but that do not
necessarily connect to all the existing nodes. In 2013, some personal networks
keep their density at 1, but in general the tendency is that the density decreases
over the years. This tendency is also valid for k = 2, 3, 4, 5 where no personal
network has a density equal to 1 and all of them get it decreasing to reach very
low values at the last years (Fig. 1a).
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The observed behavior is justified by the fact that generally when authors
publish for the first time and join the network, they link to the set of authors
with whom they share this first publication which explains at the beginning the
emergence of complete networks at k = 1. Then, as years pass, if an author has
new collaborations, they will not include necessarily all the previous collabora-
tors of the author, and so the density decreases, and this regardless of the k. The
behaviour is the same with the one reported in [1] for the whole collaboration
network extracted from a collection of papers in High Energy Physics Theory.

Global clustering coefficient and average clustering coefficient. As pre-
sented in Sect. 4, we want to measure the transitivity inside co-authorship per-
sonal networks via two metrics: (1) the global clustering coefficient (transitivity
index) and (2) the average Watts-Strogatz clustering coefficient. While the first
one captures the global transitivity of the personal network and the second one
expresses the transitivity around the nodes, we want to check if both metrics
behave the same or not. In the literature, e.g. in [16], the authors claim that
both metrics represent the clustered architecture of the network, with a small
difference on value scaling. A more recent work [9] is discussing the divergence
of these two metrics on a particular graph structure named windmill graphs.

Windmill graphs (an example is presented in Fig. 4) are characterized by the
presence of a central node that is surrounded by cliques composed of nodes that
are completely connected with each other and with the central node but that
do not have any connections with the other cliques (or have few connections
in real world networks where cliques are overlapping). We believe that such
structure can arise in personal networks especially when coming from scientific
collaboration networks as stated in [9], where the authors prove the presence
of windmill graph structures inside both collaboration and citation networks.
Moreover, they have showed the divergence of the two clustering metrics.

Thus, in our work, we aim to test if: for collaboration personal networks the
two metrics behave in the same or different ways; if the change of the two metrics
over time shows the same or inverse tendency; and if the windmill graphs appear
as a case for the personal networks in any time during their evolution over time.

We will discuss the observed trend for each metric separately. As observed
for the density, at k = 1 a high proportion of author’s personal networks have a
global clustering coefficient that is equal to 1 because personal networks at this
level are usually complete. This proportion, as again observed for the density, is
not present anymore for k = 2. We also distinguish at k = 1, a set of personal
networks with a global clustering coefficient of 0 (Fig. 1c). This is due to the
absence of triangles because we are in the case of a personal network with only
two nodes and one edge connecting them. But, as the personal networks grow
over time, triangle are formed and so, the global clustering of such personal net-
works will get a value different than 0. Concerning the trend over the years, the
global clustering coefficient decreases which means that there is less transitivity
caused by the fact that there are fewer connections among the alters regard-
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less of k. These observations are consistent with the earlier discussion about the
density.

For the average clustering coefficient, for k = 1 and in the early years, a
significant set of personal networks hold the maximum average clustering coef-
ficient value (equal to 1), because these personal networks are complete graphs.
Similarly, we observed some personal networks with an average clustering coeffi-
cient equal to 0 due to the absence of triads around the nodes (see Fig. 1b). We
notice that in general ∀k = 1..5, the value of the average clustering coefficient is
high with a tendency of increasing through the years. The same tendency was
observed for the whole collaboration networks in the Mathematics and Neural
Sciences fields in [3].

Thus, when the personal networks are evolving over time , the global cluster-
ing coefficient and the average one exhibit opposite behaviors, since the first one
gets decreasing and the second on gets increasing (see Fig. 1e). We can notice
that, while the average clustering coefficient is high and gets higher with years,
the global one gets lower and lower. This is compatible with the observations
about windmill graphs in [9] where the authors claimed that this kind of graphs
are locally clustered but globally poorly clustered, which is also verified for our
personal networks.

The underlined observations are explained by the fact that in the personal
networks of scientists, a publication will involve the creation of a clique between
the authors of that publication where each one is connected to the other which
explains the high average local clustering coefficient around nodes. But, the fact
that a given author can over time have publications with new collaborators that
will not in the most of cases concern the old ones, will from one side decrease the
global clustering inside the personal network, and from the other side increase the
average clustering coefficient. This could be explained by the fact that scientists
during their career are led to change institutions and work places, collaborate
with new authors (e.g. PhD students) and even change their research focus.

Power law distribution. In order to check the existence of a power law dis-
tribution over the degrees of nodes part of co-authorship personal networks, we
have used the approach proposed in [5]. Thus, we provide as input a vector of
discrete values representing the degrees of nodes of the personal network for
which we want to perform the test, and we get as output the answer of the
test (true if the personal network follows a power law distribution, false if not)
depending on the significance parameter computed by the algorithm, and the
estimated parameter α of the power law distribution function. For the evolution,
the power law distribution means that when new nodes arrive to the personal
network, they will tend to connect to nodes having a high degree, which will
lead to the appearance of some highly connected nodes in the personal networks
and many weakly connected nodes.

Computing the Power Law for personal networks of k = 1, 2, 3 was not possi-
ble because the networks were too small and the computation did not make any
sense. Figures 1f and g represent, for k = 4 and 5 respectively during the period
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2006–2013, the proportion of personal networks that follows (in blue) or not (in
red) a power law distribution for their degrees. The Power Law holds for k = 4,
while the true/false proportion remains about the same over the years. At k = 5,
the results are not so conclusive and the tendency is inverted since 2010 when
the proportion of personal networks having the power law test to false over-
passes true. This later observation is interesting since we expected that, larger
personal networks as it is the case when k = 5, to confirm the properties that
were observed for global networks as the power law distribution of networks’
nodes degrees as proved in [3] for the case of scientific collaboration networks.

We also observed that the proportion of personal networks that returned
false was increasing with k (for k = 4 and k = 5) and over the years. We were
unable to verify the main reason why this happens and this behavior is the
opposite than the expected one. One possible but still unverified explanation
could be that the evolution of personal networks connects previously existing
cliques (see the clique between the 15 nodes labeled from 1589 to 1603 in the
example Fig. 5). In a clique, each node is highly connected locally so the merging
of two cliques into one creates a new, bigger and more connected clique; thus
we have more nodes with higher degrees and subsequently the Power Law tests
fail for all these nodes. This behavior is compatible with what happens in many
cases in co-authorship networks, where we frequently see collaborations among
groups and a new publication has as authors all (or almost all) the members of
both groups. As we already stated, unfortunately, it was not possible to verify
this explanation experimentally. However, if we consider the co-authors network
as a whole, the degrees’ distribution follows a power law (as observed in [3]);
this comes from the fact that at a large scale the proportion of such highly
connected authors becomes negligible compared to the majority of authors that
have a small amount of collaborations.

Ego’s maximum degree of separation (k-max). As presented in Sect. 4,
we would like to know the maximum shortest path from the ego observed in a
personal network. We performed the computation of k − max on our dataset
for each ego and for each year from 2006 to 2013. The plot in Fig. 1i gives the
distribution of k − max value over all the years. We distinguish two phases: (1)
the first around k − max = 4 to 7 with very few personal networks having such
values, and (2) the second one ranges from k − max = 13 to 25. We notice that
no personal network has a k − max value between 8 and 12, whatever the year.

The evolution of k −max over the years reveals that after reaching a certain
size, the number of nodes composing the personal network will remain stable
while k − max can vary (the maximum k − max achieved equals 25). This size
corresponds to the whole network giant component size for each year (Fig. 1j).
The fact that no k−max value is between 8 and 12 is due to the interconnection
among existing personal networks which makes jump k − max from 7 to a value
≥ 13. As we report in Table 1, the average k − max computed for each year
from 2006 to 2013 ranges between 15 and 19 approximately, which means that
it is constantly higher than 6. We conclude that the “6-degrees of separation”
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property that characterizes “small world” networks does not hold in our case
and thus the collaboration network we are studying does not represent a “small
world” network. On the contrary, in [8] is found that the 6-degrees of separation
phenomenon is valid when they studied the collaboration network of scientists
who publish in the Database area.

Table 1. Average k − max per year.

Year 2006 2007 2008 2009 2010 2011 2012 2013

Average k − max 18.18 18.39 18.00 16.61 17.82 16.18 15.82 15.81

Ego degree centrality and personal networks average degree. After com-
puting the degree centrality over personal networks’s nodes to check the existence
of a power law distribution, we now present the results obtained for both: the
degrees of egos and the average degree for all personal network’s nodes. Firstly,
for the degree of the egos of our dataset, we observed that in general only few
egos are very highly connected while most of them have low degrees (Fig. 1h).
The distribution remains almost the same even when years pass. Secondly, for
the average degree over all the nodes composing the personal networks, we would
like to check if the assumption of a constant average degree, made by existing full
networks evolution models, is valid when considering personal networks instead
of full networks. We found that for k = 1, when the personal network is created,
the average degree remains low (there are a lot of values around 1 and 2) even
when the personal network grows. Then, from k = 2 we have seen that there
are fewer values around 1 and 2 and the average degree increases to concentrate
around a value of 4 or 5 (see Fig. 1k).

Our results are consistent with what was found in [3] when studying the
whole network of scientific collaboration in both Mathematics and Neural Sci-
ences fields (in both networks the average degree increases over time); even if it
is not the common behavior observed in real world social networks as addressed
above. The average degree increase over time is explained by the fact that when
a new publication is registered, its authors form necessarily a clique (all coau-
thors of the same publication are connected with each other); then when another
publication comes with mainly the same authors and some new ones, these new
ones are added to the clique. This results in increasing the average degree among
the alters of a personal network while maintaining the same k for the personal
network.

Betweenness centrality. We evaluate the ego betweenness centrality over time
in order to observe how its importance is affected when the personal network
is evolving. For k = 1, we observed that a significant number of egos have
a betweenness of 1 in their personal networks, which reflects the case of star
networks where the ego is the unique intermediate between its alters. Then
for k = 2, this trend is not present anymore, as more nodes are included in
the personal networks. We also observed, that many egos have a betweenness
of 0 regardless of k, which denotes that no shortest path between any pair of
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nodes is passing through the ego. In this situation the ego is considered as not
important since its alters can reach each other without passing through it. This
is an important conclusion for the information diffusion in personal networks
because it shows that many times the personal network evolves without the active
participation of the initiating node and that the ego node does not influence
significantly after a point in time the other members of the network.

The ego betweenness evolution over time was observed as increasing for k = 2
and k = 3 and decreasing for k = 4 and k = 5. We explain the fact that it
increases for k = 2 and k = 3 by the addition of nodes that connect to ego’s
alters but, in order for these new nodes to reach the other alters of the ego, they
have to go by the ego and thus ego’s importance is increasing. In the context
of scientific collaborations, this situation is emerging when, for example, one of
ego’s co-authors makes a new collaboration with a new set of authors. Then, the
path between one of the new collaborators and an old ego co-authors includes
necessarily the ego. For k = 4 or 5 we were unable to verify the reason of the
different behaviour. One plausible explanation is that since (as discussed earlier)
cliques have already started forming then in this case of personal networks, new
collaborations happen between cliques in a more complete way (two groups col-
laborating) and thus the evolved network contains a new bigger clique. Having
local cliques decreases the importance of the ego. Another plausible explanation
could be that the ego is not getting new connections (collaborations) as the ego
in the network in Fig. 6, or are making few ones, where one (or more) of his
alters (co-authors) are leading the main dynamics inside its personal network
(as the alter “383” inside the circle). Unfortunately, it was not possible to verify
either one of these explanations experimentally.

Local clustering coefficient and efficiency. We grouped the local clustering
coefficient and efficiency results discussion because both metrics are computed at
the ego level and concern only 1-personal networks (k = 1). We have observed
that both the local clustering coefficient and the efficiency decrease over the
years, when new nodes integrate the 1-personal networks. This indicates that
ego’s alters are less connected with each other over time; and it means that new
collaborations for 1-level personal networks happen mainly with the ego and
usually do not involve many of the other existing collaborators. This explains
also the fact that the average clustering coefficient in a 1-level personal network
is increasing; the new connections are usually “complete” either with the ego or
with the ego and few of the existing collaborators so we have all the possible
triangles materialized (the local clustering coefficient of the alters equals 1 which
increases the average clustering coefficient of the 1-personal network). One the
other hand, for the ego this means that he has a lot of incomplete triangles since
the new nodes will not participate in materializing the majority of the possible
triangles with the rest of the alters.
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(a) Density evolution for k 4 & year 2006 (left), 2009 (middle), 2012 (right).

(b) Average clustering
coefficient for k 1,

year 2006.

(c) Global clustering
coefficient for k 1,

year 2006.

(d) Density distribution for
k 1, year 2009.

(e) Average clustering coefficient and global clustering coefficient evolution from
year 2006 to year 2009 for k 5.

(f) Power law distribution test
on degree distribution for

k 4 over the years.

(g) Power law distribution
test on degree distribution for

k 5 over the years.

(h) Distribution of degree
centrality of egos for k 1

and year 2010.

(i) k max’s distribution over
the years.

(j) k max vs. the number of
nodes over the years.

(k) Average degree of egos for
k 3 and year 2012.

Fig. 1. Evolution of personal network metrics. (Color figure online)
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Table 2. Metrics computation
example.

Metric Value

k 1

Number of nodes 7

Number of edges 9

Density 0.42

Number of triangles 3

Number of connected
triples

22

Global clustering
coefficient

0.409

Average clustering
coefficient

0.695

Power law test True with
α =3.17

Ego degree 6

Ego betweenness 0.76

Average degree 2.57

Local clustering
coefficient

0.2

Efficiency 0.83

Table 3. The description of the different
parts of the used DBLP data set.

Dataset Year
of first
appearence

Number of
analysed
authors

Time
window

1 2004 560 2006 to 2013

2 2005 594 2007 to 2013

3 2006 1096 2008 to 2013

4 2007 1029 2009 to 2013

5 2008 1256 2010 to 2013

(a) 1-personal net-
work.

(b) 2-personal net-
work.

Fig. 2. Personal networks examples.

(a) Complete per-
sonal network.

(b) Star personal net-
work.

Fig. 3. Particular personal networks
examples.

6 Influence of Metrics’ Trends on Personal Networks
Evolution

In Table 4, we summarize the main observations that we made in the previous
section regarding the evolution of the metrics in the co-authorship personal net-
works. We report in the second column the observations regarding the parameter
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Table 4. Summary of the observations of metrics’ evolution.

Metric Observations regarding k Observations over years

Ego Degree Centrality
(dege) (only for k = 1)

few egos with a high
degree, low degree (2 or 3)
frequent

OPN keeps the same
tendency while evolving

Local Clustering
Coefficient (Ce) (only for
k = 1)

many networks have
Ce = 1 some have Ce = 0

decreasess

Efficiency (only for k = 1) - decreases

Density (D) ∀k ∈ {1, 2}, D is high ∀k, decreases

Global Clustering
Coefficient (GCC)

k = 1, high GCC ∀k, decreases

Average Clustering
Coefficient (< C >)

∀k, high < C > ∀k, increases

Number of nodes and
edges

- ∀k, both increase

Average Degree for k = 1, around 1, 2
for k ≥ 2, around 4, 5

∀k ∈ {2, 3, 4, 5}, increases

Ego Betweenness
Centrality (Be)

k = 1, for many networks
Be = 1
∀k, for many networks
Be = 0

∀k ∈ {2, 3}, increases
∀k ∈ {4, 5}, decreases

Power law distribution ∀k ∈ {1, 2}, verified
∀k ∈ {3, 4, 5}, less verified

∀k ∈ {1, 2}, ∀year, verified
in more than 80% of cases
∀k ∈ {3, 4}, less verified
especially for year ≥ 2011
for k = 5, ∀year ≥ 2011,
not verified

K − max - ∀year ≥ 2011,
k − max > 13 for all the
personal networks

k, while in the third column we present the observed evolution trends for each
metric over the different time steps (years).

In the following subsections, we firstly discuss the insights from the metrics
about the evolution of co-authors personal networks for the special case when k
= 1 and then we discuss the more general case of k > 1.

6.1 Observations for the Evolution of 1-Personal Networks

From our observations, 1-personal networks constitute a particular case. Indeed,
a large proportion of 1-level personal networks are small star networks with few
nodes characterized with an ego betweenness centrality of Be = 1 along with a
weak ego degree (for example, if an ego has 2 connections, these two connections
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Fig. 4. Windmill
graph W = (3, 4).

Fig. 5. Example of a clique formation.

correspond to two independent collaborations, the ego in this case plays a key
role given its important position). Furthermore, in other cases we observe the
exact opposite phenomenon: because of the co-authorship network’s specificity
where when we have many coauthors in a paper, these coauthors are connected
in a complete subgraph, a considerable set of 1-personal networks is consisting
of complete graphs, characterized with an ego betweenness of Be = 0.

For both the egos’ degrees and egos’ betweenness, when the network evolves
over time, the situation remains the same. More precisely, the evolution affects
mostly the connections among alters who were characterized at the beginning
with an important number of connections and then they become less connected
over time as new alters join the 1-level personal network (the density, the
local clustering and the efficiency decrease). However the addition also of nodes
(alters) keeps the average degree for the 1-level personal network nodes low.

6.2 Observations for the Evolution of Personal Networks with k > 1

The personal networks with k = 2, 3, 4, 5 are characterized by both a decreasing
density and global clustering coefficient. The nodes joining the personal network
create very few edges compared to the possible number of edges that can be
created among the nodes, and thus we get a lower density and a lower transitivity
at the personal network level. At the local level, the average clustering coefficient
was observed to be high and gets higher when the personal networks are growing
which indicates a high local clustering around the nodes, not necessarily the ego
anymore. We can explain that by the fact that co-authorships are made generally
between 3, 4 or 5 authors and the emergence of a new collaboration imply the
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Fig. 6. Personal network (k = 4) example for low ego betweenness extracted from
co-authorship networks.

creation of a highly clustered local structure since all the authors that made this
collaboration are going to be already connected with each other.

The trends we discussed so far concerns all personal networks with k from
2 to 5. Nevertheless, ego’s betweenness centrality behaves differently: it was
increasing for k = 2, 3 but decreases for k = 4, 5. On the one side, the increase at
k = 2, 3 is due to the addition of nodes around the ego that form disconnected
groups of alters (as the windmill graph example) and the ego plays the role of
a linker between them. On the other side, when we consider a k = 4 or 5, then
as we already discussed, existing cliques might merge into bigger and more con-
nected cliques and thus the ego’s betweeness decreases. This hypothesis was not
validated experimentally yet, though. Additionally, the power law distribution
of degrees is better satisfied when k = 4 than k = 5. This hypothesis has not
been verified experimentally yet.

6.3 Towards Developing Evolution Models for OPNs
Using the Observations of Metrics’ Evolution

The aim of this paper is not only the understanding of how OPNs change over
time, but also to discover properties that one can benefit from in order to provide
an evolution model dedicated to OPNs. From the results summarized previously
in this section, we ended up with some insights on how personal networks’ struc-
ture changes over time as nodes and edges are added. We discuss here the fol-
lowing type of evolution: at time t, an OPN has nt nodes and mt links; at times
t + 1 we need to predict both the number of new nodes entering the network
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and how these nodes connect to the personal network (and also, if any, the new
links created).

Firstly, an evolution model should be able to describe 1-personal network’s
connections, that include ego-alter and alter-alter connections. We discovered
that, at k = 1, nodes are not very connected and maintain, in average, a low
degree over time; also, the main dynamics takes place for the connections among
alters since, as nodes are integrating the personal network at this level, alters
become less and less connected (density, local clustering and efficiency decrease).
So the evolution model should assign over time fewer edges between alters.

Secondly, it is important to note that, when a personal network evolves,
if at time t, the maximum distance from the ego (in terms of shortest path
length) is equal to k, then at time t + 1, it may be equal to k + i (and not
k + 1), as new nodes connect to existing nodes that are at k distance from
the ego. This is following our definition of an OPN, as presented in Sect. 2.
The evolution of a given metric over time might be different depending on k
as it is the case for the betweenness centrality. Indeed, at the second and third
levels (k = 2, 3), given that the connections’ number among alters decreases
(decreasing density), ego importance gets higher (increasing betweenness for
k = 2, 3). Then, as the personal network grows, nodes get farther from the
ego (k > 3), and ego’s importance falls over time (decreasing betweenness for
k = 4, 5) since new shortest paths are emerging between alters that do not
include the ego. So, the potential model needs to account for the transition
phase when the ego node moves from a key position in its personal network to a
less important one. As discussed earlier our unverified explanation discusses the
possibility that the personal network will get higher degree nodes and structures
of cliques (which increases the average degree of the personal network) as time
goes by. This is consistent with the behaviour of the average local clustering
coefficient, which increases for the same personal networks, indicating stronger
local connections.

Finally, an evolution model for personal networks needs to know at which
moment the personal network joins the entire network (the giant component).
With the computation of k − max, we have seen that we can keep evolving the
network and exceed k = 6 which is the distance suggested as separating any two
nodes inside a social network (6◦ of separation). We confirmed experimentally
that the average shortest path in our personal networks between any ego and
any node of its personal network fluctuates on average between 15 and 19 for all
time steps (years) and that the personal network will join the giant component
when k − max reaches 13. This is a very useful observation since it tells us that
after a specific number of time steps personal networks are able to reach all the
nodes in the online social network. From an information diffusion perspective,
this allows us to disseminate information to everybody after remaining for some
time active in a social network.
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7 Conclusions and Future Work

In this paper, we performed an analytical study of personal networks of coau-
thors in scientific publications, with the goal to use the results of this study to
understand the evolution of the corresponding personal networks. We selected
a set of metrics that characterizes the personal networks’ structure and that
allowed us to capture the change over time of this structure. We were interested
to understand not only the specific values of the metrics but mainly how these
values change over time.

However, some elements of this understanding remain incomplete and need
to be investigated more deeply. These include, for example, the quantification of
the presence of some specific structures (as windmills, cliques) in order to char-
acterise precisely personal networks structure and attribute correctly the reason
for some of the observed behaviour. In our future work we plan to accomplish
that via the use of clustering methods depending on the metrics we studied and
their evolution over time that will hopefully verify the now suspected evolution
patterns. In this way, we will be able to establish accurately the effect that has
each of these specific structures in the evolution of personal networks. Then,
effective models can be provided for describing personal networks dynamics.
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3. Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolu-
tion of the social network of scientific collaborations. Physica A 311(3), 590–614
(2002)

4. Burt, R.S.: Le capital social, les trous structuraux et l’entrepreneur. Revue
française de sociologie, pp. 599–628 (1995)

5. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

6. Djemili, S., Marinica, C., Malek, M., Kotzinos, D.: A definitions’ framework for
personal/egocentric online social networks. In: 7éme conférence sur les modéles et
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