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Abstract. Model-checking is an effective formal verification technique
that has also been extended to quantitative logics and models such as
PCTL and DTMCs as well as CSL and CTMCs/CTMDPs. Unfortu-
nately, the state-space explosion problem of classical model-checking
algorithms affects also quantitative extensions. Mean-field techniques
provide approximations of the mean behaviour of large population mod-
els. These approximations are deterministic: a unique value of the frac-
tions of agents in each state is computed for each time instant. A drastic
reduction of the size of the model is obtained enabling the definition of
an efficient model-checking algorithm. This paper is a survey of work
we have done in the last few years in the area of mean-field approxi-
mated probabilistic model-checking. We start with a brief description
of FlyFast, an on-the-fly model checker we have developed for approxi-
mated bounded PCTL model-checking, based on mean-field population
DTMC approximation. Then we show an example of use of FlyFast in
the context of Collective Adaptive Systems. We also discuss two addi-
tional interesting front-ends for FlyFast; the first one is a translation from
CTMC-based population models and (a fragment of) CSL that allows
for approximate probabilistic model-checking in the continuous stochas-
tic time setting; the second one is a translation from a predicate-based
process interaction language that allows for probabilistic model-checking
of models based on components equipped both with behaviour and with
attributes, on which predicates are defined that can be used in compo-
nent interaction primitives.

Keywords: Probabilistic on-the-fly model-checking · Mean-field
approximation · Discrete time Markov chains · Time bounded proba-
bilistic computation tree logic · Collective Adaptive Systems

1 Introduction and Related Work

Model-checking is an effective, powerful, and successful formal verification tech-
nique for concurrent and distributed systems that has also been extended to
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quantitative logics and models. It consists of an efficient procedure that, given a
model M of the system, typically composed of system states and related tran-
sitions, decides whether M satisfies a logical formula Φ, typically drawn from
a temporal logic. Traditionally, model-checking approaches are divided into two
broad categories: global approaches and local approaches.

In global model-checking approaches, the procedure determines the set of
all states in M that satisfy Φ. Global model-checking algorithms are popular
because of their computational efficiency and can be found in many model-
checkers, both in a qualitative and in a probabilistic setting (see e.g. [2,3,11,
16,36]). The set of states that satisfy a formula is constructed recursively in a
bottom-up fashion following the syntactic structure of the formula. Moreover, for
stochastic model-checking, the global model-checking algorithm relies on exist-
ing and well-known algorithms for Markov Chains, such as those for transient
and steady-state analysis (see e.g. [2]). Despite their success, the scalability of
model-checking algorithms has always remained a concern due to the potential
combinatorial explosion of the state space that needs to be searched.

This is unfortunate since current trends in information technology, like the
Internet of Things (IoT), include specifically systems composed of a large num-
ber of components, often acting collectively and adapting to changing conditions,
the so called Collective Adaptive Systems1 (CAS), like, for instance gossip pro-
tocols, self-organised collective decision making, computer epidemic and smart
urban transportation systems and decentralised control strategies for smart
grids [4,10,12,49]. Given that large portions of the IoT are intrinsically (part of)
critical infrastructures, with safety, security, and, in general, high dependability
requirements, it is of great importance that system designers have the possibility
to perform formal analysis before developing and deploying them.

In order to mitigate the state space explosion problem, in the qualitative
analysis domain, local model-checking algorithms have been proposed that, given
a state s in M, determine whether s satisfies Φ. Local model-checking approaches
use the so called ‘on-the-fly’ paradigm (see e.g. [5,17,26,32]) and follow a top-
down approach that does not require global knowledge of the complete state
space. For each state that is encountered, starting from a given state, the out-
going transitions are followed to adjacent states, constructing step by step local
knowledge of the state space until it is possible to decide whether the given
state satisfies the formula. For qualitative model-checking, local model-checking
algorithms have been shown to have the same worst-case complexity as the best
existing global procedures for the above mentioned logics. However, in practice,
they have better performance when only a subset of the system states need to be
analysed to determine whether a system satisfies a formula. Furthermore, local
model-checking may still provide some results in case of systems with a very
large or even infinite state space where global model-checking approaches would
be impossible to use.

In the context of probabilistic model-checking several on-the-fly appro-
aches have been proposed, among which [21,29,40]. In [21], a probabilistic

1 See, e.g. www.focas.eu/adaptive-collective-systems.

www.focas.eu/adaptive-collective-systems


256 D. Latella et al.

model-checker is shown for the time bounded fragment of the Probabilistic Com-
putation Tree Logic (PCTL) [30]. An on-the-fly approach for full PCTL model-
checking is proposed in [40] where, actually, a specific instantiation is presented
of an algorithm which is parametric with respect to the specific probabilistic
processes modelling language and logic, and their specific semantics. Finally,
in [29] an on-the-fly approach is used for detecting a maximal relevant search
depth in an infinite state space and then a global model-checking approach is
used for verifying bounded Continuous Stochastic Logic (CSL) [1,2] formulas in
a continuous time setting on the selected subset of states.

An on-the-fly approach by itself however, does not solve the challenging
scalability problems that arise in truly large parallel systems, such as CAS.
To address this type of scalability challenges in probabilistic model-checking,
recently, several approaches have been proposed. In [28,31] approximate proba-
bilistic model-checking is introduced. This is a form of statistical model-checking
that consists in the generation of random executions of an a priori established
maximal length [37]. On each execution the property of interest is checked and
statistics are performed over the outcomes. The number of executions required
for a reliable result depends on the maximal error-margin of interest. The app-
roach relies on the analysis of individual execution traces rather than a full state
space exploration and is therefore memory-efficient. However, the number of exe-
cution traces that may be required to reach a desired accuracy may be large and
therefore time-consuming. The approach works for general models, i.e. models
where stochastic behaviour can also be non Markovian and that do not neces-
sarily model populations of similar objects. On the other hand, the approach is
not independent from the number of objects involved.

In [38], we presented a scalable model-checking algorithm, based on mean-
field approximation, for the verification of time bounded PCTL properties of an
individual2 in the context of a system consisting of a large number of interact-
ing objects. Also this algorithm is actually an instantiation of the above men-
tioned parametric algorithm for (exact) probabilistic model-checking [40]. In this
case, the parametric algorithm is instantiated on (time bounded PCTL and) the
approximate, mean-field, semantics of a population process modelling language.
The approach is based on the idea of fast simulation, as introduced in [46]. More
specifically, the behaviour of a generic agent with S states in a clock-synchronous
system with a large number N of instances of the agent at given step (i.e. time)
t is approximated by K(µ(t)) where K(m) is the S × S probability transition
matrix of a (inhomogeneous) DTMC and µ(t) is a vector of size S approximating
the mean behaviour of the global system at t; each element of µ(t) is associated
with a distinct state of the agent, say C, and gives an approximation of (the
average of) the fraction of the instances of the agent that are in state C in the

2 The technique can be applied also to a finite selection of individuals; in addition,
systems with several distinct types of individuals can be dealt with. For the sake of
simplicity, in the present paper we consider systems with many instances of a single
individual only and we focus in the model-checking a single individual in such a
context.
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global system, at step t. Note that such an approximation is deterministic, i.e.
µ is a function of the step t, computed iteratively, using (again) matrix K(m);
the exact behaviour of the rest of the system would instead be a large DTMC
in turn. Note furthermore, that K(m) does not depend on N ; in other words,
the cost of the analysis is independent from the number of objects involved, but
only depends on the number of states of the single individual object. Our work
is based on mean-field approximation in the discrete time setting; approximated
mean-field model-checking in the continuous time setting has been presented in
the literature as well. In the latter case, the deterministic approximation of the
global system behaviour is formalised as an initial value problem using a set of
differential equations. Preliminary ideas on the exploitation of mean-field con-
vergence in continuous time for model-checking were informally sketched in a
presentation at QAPL 20123 [34], but no model-checking algorithms were pre-
sented. Follow-up work on the above mentioned approach can be found in [33]
which relies on earlier results on fluid model-checking by Bortolussi and Hill-
ston [7], later published in [8]. Bortolussi and Hillston propose a global CSL
model-checking procedure for the verification of properties of a selection of indi-
viduals in a population. The procedure relies on mean-field convergence and fast
simulation results in a continuous time setting (see also [9,18,25] and references
therein). The approach in [7,8] is based on an interleaving model of computa-
tion, rather than a clock-synchronous one. Furthermore, a global model-checking
approach, rather than an on-the-fly approach is adopted; it is also worth not-
ing that the treatment of nested formulas, whose truth value may change over
time, turns out to be much more difficult in the interleaving, continuous time,
global model-checking approach than in the clock-synchronous, discrete time,
on-the-fly one.

We conclude this brief overview on related work by mentioning the app-
roach of using techniques and tools developed for continuous signal monitoring
as means for performing approximated global model checking of probabilistic
models. In this approach, a deterministic, continuous, approximation of a pop-
ulation system model is first computed [9], and then monitoring techniques are
applied on the resulting function of continuous time [23,24]. Recently, this app-
roach has been extended in order to include also spatial features [50], as originally
proposed in [13].

We finally note that one should keep in mind that mean-field/fluid procedures
are based on approximations of the global behaviour of a system. Consequently,
the techniques should be considered as complementary to other, more accurate
analysis techniques for CAS, primarily those based on stochastic simulation, like
for example statistical model-checking. In practice, given the high computational
cost of simulation based techniques, especially when compared with the very low
cost of the mean-field based techniques, the latter are more suitable for getting
first ideas on the main features of the models at hand and a first screening

3 Tenth Workshop on Quantitative Aspects of Programming Languages, March 31 -
April 1, 2012, Tallinn, Estonia.
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thereof. Then, when only a few options are left, more detailed analyses could be
performed and more accurate techniques would be recommended.

In this paper, we present a survey of work we have carried out recently
within the context of the EU project QUANTICOL4 in the area of mean-field
approximated probabilistic model-checking. We start with a brief description, in
Sect. 2, of FlyFast, the on-the-fly model checker which implements the procedure
we proposed in [38,42,43]. Then, in Sect. 3 we show a complete example of use
of FlyFast in the context of Collective Adaptive Systems, taken from [39]. In
Sect. 4 we discuss two additional interesting front-ends for FlyFast; the first one,
originally presented in [41], is a translation to FlyFast from CTMC-based popu-
lation models and (a fragment of) CSL that allows for approximate probabilistic
model-checking in the continuous stochastic time setting; the second one, origi-
nally presented in [15], is a translation to FlyFast from a predicate-based process
interaction language that allows for probabilistic model-checking of bounded
PCTL formulas on models based on components equipped both with behav-
iour and with attributes; component interaction takes place via communication
primitives using predicates over attributes for expressing the set of partners in
multi-cast communication. We finally draw some conclusions in Sect. 5.

2 A Brief Overview of FlyFast

In this section we recall the main features of FlyFast.5 The reader interested in
details is referred to [38,42,43]. A FlyFast model specification characterises a sys-
tem consisting of the clock-synchronous product of a (large) number of instances
of a probabilistic process. Systems with several distinct types of processes can
be specified as well; here we consider only the case of a single process type
for the sake of simplicity. The size of the system is assumed constant during
system evolution; FlyFast does not support explicit dynamic creation/deletion
of processes. The behaviour of the probabilistic process is specified by a set Δ
of state and action probability definitions. A state definition has the following
syntax: state C {a1.C1 + . . . + ar.Cr} where ai ∈ A—the set of FlyFast actions—
C, Ci ∈ —the set of FlyFast states—and, for i, j = 1, . . . , r ai �= aj if i �= j; note
that Ci = Cj with i �= j is allowed instead. The informal meaning of the above
definition is that, when in state C, the process can jump to state C1, by executing
(atomic) action a1, or to state C2, by executing (atomic) action a2, and so on.
Each action has a probability assigned by means of an action probability defin-
ition of the form action a : exp where exp is an expression involving constants
and frc (C) terms. Constants are floating point values or names associated to
such values using the construct const name = value—we let A denote the set
of such auxiliary definitions; frc (C) denotes the element associated to state C

4 http://www.quanticol.eu.
5 FlyFast (https://quanticol.github.io/jSAM/flyfast.html) is provided within the

jSAM (java StochAstic Model Checker) framework which is an open source Eclipse
plugin (https://quanticol.github.io/jSAM/).

http://www.quanticol.eu
https://quanticol.github.io/jSAM/flyfast.html
https://quanticol.github.io/jSAM/


FlyFast: A Scalable Approach to Probabilistic Model-Checking 259

in the current occupancy measure vector—o.m.v. in the sequel—that is a vec-
tor with as many elements as the number of states of the individual process;
the element associated to a specific state gives the fraction of the subpopula-
tion currently in that state over the size of the overall population; the o.m.v.
is a compact abstract representation of the system global state, where process
identity is lost. Thus, the probability of executing a transition of a process in
the system may depend on the global distribution of the processes in their local
states within the system; process interaction is thus probabilistic and indirect,
via transition probabilities, i.e. functions of the o.m.v.. Note that, whenever the
exit probability p of a state is smaller than 1, FlyFast implicitly inserts a self-
loop in the state, associated with the residual probability 1−p. The initial state
of the system is specified by means of the system construct, followed by the
name of the system model, and the vector C0 of the names of the initial state of
all other instances, which implicitly specifies also the size N of the system. By
convention, the first element C0[1] of vector C0 refers to the individual process
to analyse. In general more then one process can be specified for analysis; here
we consider only the case of the single process for the sake of simplicity.

const N = 2000
const alpha e = 0.1
const alpha i = 0.2
const alpha r = 0.2
const alpha a = 0.4
const alpha l = 0.1
action inf ext : alpha e
action inf int : alpha i ∗ frc (I)
action activate : alpha a
action recover : alpha r
action loss : alpha l

state S {inf ext.E + inf int.E}
state E {activate.I}
state I {recover.R}
state R {loss.S}

system SEIR = 〈S[N], E[0], I[0], R[0]〉

Fig. 1. A FlyFast specification of an epidemic model

Example 1 (An epidemic system model). In Fig. 1 the FlyFast specification of
the epidemic model discussed in [38] is shown. The system is composed of 2000
instances of a process with four states; when in state S (susceptible) the process
can become exposed (state E) either via an external infection, with probability
alpha e, or via internal infection, with a probability that is proportional to
the fraction of processes in the system that are already infected, i.e. alpha i ∗
frc (I). The infection activates in an exposed process with probability alpha a,
leading to state I. An infected process may recover with probability alpha r
and then loose immunity with probability alpha l. Initially, all 2000 instances
are in state S6.

Given specification 〈Δ,A,C0〉 for a system model of size N , FlyFast gener-
ates a transition probability matrix K(m) such that K(m)c,c′ is the probability
for the (individual) probabilistic process to jump from state C to C′, given the
6 In FlyFast, the notation C[n] is used for indicating n copies of state C.



260 D. Latella et al.

current o.m.v. m. Thus, K(m) is a function of the o.m.v. m; strictly speaking,
Δ characterises an inhomogeneous DTMC. In [38,42] the details of the formal
operational semantics definition for the model specification language are pro-
vided as well as the procedure for generating K(m); in the sequel we recall
only the main steps. Let Δ be the set of states defined in Δ, with |Δ| = S,
US = {(m1, . . . ,mS) ∈ [0, 1]S |m1 + . . . + mS = 1} denote the unit simplex
of dimension S, and I : Δ → {1, . . . , S} be a bijection. For state C ∈ Δ,
with I(C) = c, the interpretation [[frc (C)]]m of frc (C) in the current o.m.v.
m = (m1, . . . ,mS) is defined as expected: [[frc (C)]]m = mc, i.e. frc (C) is the
fraction of the subpopulation currently in state C over the size of the overall
population, which, by definition of the o.m.v., is exactly the element mc of
m. The probability associated with an action a by action probability definition
action a : E is a function πa(m) of the o.m.v. m, defined as πa(m) = [[E]]m,
where the interpretation function [[·]] is defined recursively on arithmetic expres-
sions E involving frc and constants, in the obvious way. More precisely, letting
C

a� C′ represent an a-labelled transition in the operational semantics of the
FlyFast modelling language and assuming c = I(C) �= c′ = I(C′), the proba-
bility matrix function K : US × {1, . . . , S} × {1, . . . , S} → [0, 1] is defined as
follows: K(m)c,c′ =

∑
a:C

a�C′ πa(m) and K(m)c,c = 1−∑
j∈{1,...,S}\{c} K(m)c,j .

In other words, K(m)c,c′ is the cumulative probability of jumping from C to C′,
abstracting from the specific action performed by the process in the jump; this
abstraction choice is typical of probabilistic, PCTL/DTMC-based approaches.
Finally, note that, by construction, K(m) does not depend on N .

Example 2. It is easy to see that, for the model of Example 1, the resulting
matrix is the following one, with m = (ms,me,mi,mr) where ms is the fraction
of processes in state S, me is the fraction in state E, mi is the fraction in state
I, and mr is the fraction in state R:

K(ms,me,mi,mr) =

⎛

⎜
⎜
⎝

1 − (0.1 + 0.2mi) 0.1 + 0.2mi 0 0
0 0.6 0.4 0
0 0 0.8 0.2

0.1 0 0 0.9

⎞

⎟
⎟
⎠

The exact probabilistic semantics of the complete system model is easily given
as product of N instances of K with appropriate o.m.v. parameter and argu-
ment states. In other words, the transitions of different processes are intended
as stochastically independent7. More precisely, for global system state C ∈ ΔN ,
let the associated o.m.v. M(C) be defined as M(C) = (M1, . . . ,MS) with
Mi = 1

N

∑N
n=1 1{C[n]=I−1(i)} where 1{α=β} is 1, if α = β, and 0 otherwise. The

probabilistic semantics of the system is the DTMC X(N)(t) with one-step transi-
tion probability SN × SN matrix P with PC,C′ =

∏N
n=1 K(M(C))I(C[n]),I(C′

[n])

7 It is worth stressing here that in the model of process interaction presented in [46],
which FlyFast is based on, processes do not synchronize on actions explicitly (i.e.
there is no notion of randez-vous here). Process interaction is only indirect, by means
of the impact of the o.m.v. on individual transition probabilities.
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and initial probability mass all in C0. FlyFast provides a standard stochastic sim-
ulation functionality based on the exact probabilistic semantics, namely matrix
P. In particular one can execute single runs or get averages of a user-specified
number of runs. The output is given in the form of traces of the o.m.v. DTMC
M(N)(t) = M(X(N)(t)). In addition, the tool can perform exact, on-the-fly (full)
PCTL model checking using P. FlyFast accepts state formulas built out of atomic
propositions, negations, disjunctions and probabilistic quantification over path-
formulas; the latter are next and until formulas. Of course, as opposed to approx-
imate model-checking, exact PCTL model-checking of a formula can be used only
if the portion of the state-space which needs to be generated and analysed for
deciding satisfaction of the formula is not too large.

Example 3. For the epidemic model of Example 1, but with constant N set to 8,
for a system with only 8 processes, we consider the following properties, where
tt stands for true, LowInf is defined, using the formula construct of FlyFast,
as follows: formula LowInf : (frc I) < 0.25, and I (E, respectively) labels all
system states the first element of which is process state I (E, respectively):

P1 the worm will be active in the first component within k steps with a proba-
bility that is at most p: P≤p(tt U≤k I);

P2 the probability that the first component is infected, but latent, in the next
k steps while the worm is active on less then 25% of the components is at
most p: P≤p(LowInfU≤k E);

P3 the probability to reach, within k steps, a configuration where the first com-
ponent is not infected but the worm will be activated with probability greater
than 0.3 within 5 steps is at most p:

P≤p(tt U≤k (!E∧ !I ∧ P>0.3(tt U≤5 I))).

In Fig. 2 the result of exact PCTL model-checking of Example 1 is reported. On
the left the probability of the set of paths that satisfy the path-formulae used
in the three formulae above is shown for k from 0 to 70. On the right the time
needed to perform the analysis using PRISM [36] and using FlyFast exact PCTL
model checking are presented8.

More interestingly, FlyFast can compute the deterministic limit of the o.m.v.
DTMC, for N → ∞, and execute time bounded PCTL model-checking using
such a deterministic approximation. The approach has been inspired by Fast
Simulation, proposed in [46] and is based on Theorem 4.1 of [46], actually on a
simplified version of the theorem, thanks to the specific syntax of the expressions
used in FlyFast action probability definitions. Informally, let C0

(N) be the ini-
tial state of the FlyFast specification of a system with N processes and assume
there exists µ0 ∈ US such that almost surely limN→∞ M(C0

(N)) = µ0. Let
8 We used a 1.86 GHz Intel Core 2 Duo with 4 GB. State space generation time of

PRISM is not counted. The experiments are available in the FlyFast web site, show-
ing that the latter has comparable performance. Worst-case complexity of both algo-
rithms are also comparable.
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Fig. 2. Exact model-checking results (left) and verification time (right).

function µ(t) be defined as follows: µ(0) = µ0 and µ(t + 1) = µ(t)T · K(µ(t)),
where, as usual, mT is the transpose of vector m. Then, for any fixed time
τ , almost surely limN→∞ M(N)(τ) = µ(τ)—cfr. Theorem 4.1 of [46]. So, the
matrix K(m) generated by FlyFast can be conveniently (re)used also for approx-
imating the o.m.v., which, we recall, is an abstract representation of the global
system state; it is important to stress here that the o.m.v. M(N)(t) is a sto-
chastic process, whereas the approximation we use, µ(t), is deterministic, i.e.
just a function of the step (time) t. We consider now the stochastic process
H(t) the generic state of which, at time t, is a pair (C,µ(t)). The first com-
ponent C is the current state of the selected process in the system we are
interested in, and the second component µ(t) represents the current global
system state. It is easy to see that H(t) is a DTMC and that the prob-
ability of a jump from state (C,µ(t)) to (C′,µ(t + 1)) is K(µ(t))I(C),I(C′).
H(t) is the approximated probabilistic semantics of the system model. By per-
forming on-the-fly model-checking on H(t)—where state labels of the selected
process are exported to pair states (C,µ)—FlyFast provides an approximated,
mean-field based, efficient time bounded PCTL model-checking functionality. In
other words, for any fixed time τ , sample C of X(t) at time τ and safe for-
mula9 Φ the following holds: C |=X(t) Φ if and only if (C[1],µ(τ)) |=H(t) Φ.
In the case of mean-field model-checking, the set of atomic propositions is the
set of states of the single agent or assertions on the components of the o.m.v.;
in addition one can assign a name to a formula and use it in larger formulas.
Finally, note that FlyFast can provide, as a by-product, the plot of µ(τ) for τ
ranging in a user-specified range.

Example 4. Figure 3 shows the result of mean-field, approximated model-
checking by FlyFast on the model of Example 1 with formulas as in Example 3,
for the first object of a large population of 2000 objects, each initially in state S.
In Fig. 3 (left) the same properties are considered as in Example 3. The analysis
takes less than a second and is insensitive to the total population size. Figure 3
(right) shows how the probability measure of the set of paths satisfying the

9 We refer to [38,42] for the characterisation of safe formulas and a related discussion.
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formula tt U≤k (!E ∧!I ∧ P>0.3(tt U≤5 I)) of property P3 on page 8, (for
k = 3), changes for initial time t0 varying from 0 to 10.
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Fig. 3. Mean-field model-checking results.

We close this section by stressing that the exact full PCTL model-checker
and the approximated mean-field time bounded PCTL model-checker are both
instances of the same parametric implementation of an on-the-fly model-checking
algorithm. Furthermore, the computation of the set of states to be analysed
at the next step is a key operation of the on-the-fly procedure and, for exact
model-checking, in the worst case the step returns SN states, whereas for mean-
field model-checking, the number of states returned in the worst case drops
dramatically to S.

3 Predator-Prey Model of Lotka-Volterra in FlyFast

The next example we consider is a widely studied model for ecological compe-
tition, first independently investigated by the biophysicist Alfred Lotka and the
Italian mathematician and physicist Vito Volterra in the twenties of the 19th
century [48,51]. Since then, the model has been studied extensively by numerous
other scientists and some of its elements are still at the basis of many popula-
tion models that have been developed in the course of time, both in continuous
time, e.g. [19,27] and references therein, and in discrete time settings, e.g. [22].
In its simplest form the model can be interpreted as a simplified and idealised
description of two species in an ecosystem, often indicated as predator and prey,
or foxes and rabbits for a concrete example.

In the variant we consider here we assume that each element of the two
species can be in one of two states; it is either alive, or it is somehow ‘dormant’
waiting to get born again. We do this because the language we use does not
provide explicit constructs for the dynamic creation of objects and is implicitly
assuming that the total population size of all species remains constant. If we
choose the size of the ‘dormant’ part of the population of each species large
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enough, this should not have any effect on the part of the population that is
alive, since there are always enough dormant rabbits and foxes to get born.

As in the original version, we assume that the model depends on four para-
meters:

– The net probability ‘a’ of an increase in the size of the rabbit population
which is the difference between the natural birth and death probabilities.

– The probability ‘b’ of rabbits that die because they are eaten by foxes
– The probability ‘e’ of extra foxes being born and surviving because they eat

rabbits (efficiency).
– The net probability ‘c’ of the natural decrease in the population of foxes.

Since the life of a fox depends on the availability of rabbits, there is a natural
tendency of foxes to die when there a few or no rabbits.

A model in terms of difference equations of the populations of foxes and rabbits
can then be given by:

RD(t + 1) = RD(t) + b · h · RL(t) · FL(t) − a · h · RL(t)
RL(t + 1) = RL(t) + a · h · RL(t) − b · h · RL(t) · FL(t) (1)
FD(t + 1) = FD(t) − e · h · RL(t) · FL(t) + c · h · FL(t)
FL(t + 1) = FL(t) + e · h · RL(t) · FL(t) − c · h · FL(t)

where t ranges over the set of the natural numbers, RD and RL are the fractions
of ‘dormant’ and ‘alive’ rabbits, respectively, and FD and FL the fractions of
‘dormant’ and ‘alive’ foxes, respectively. The factor h is a rescaling factor for
the duration of steps and 0 < h < 1. The smaller the value of h the smaller the
relative probabilities of the different events and the more accurate the results,
but at the cost of an increase of the number of steps per time-unit in the model-
checking procedure, which takes more time. For the model in this section we
chose h = 0.125. Note that when this discrete model is interpreted as an approx-
imation of the well-known continuous time model, i.e. in terms of differential
equations, this approximation is not perfect, in the sense that the solution of
the differential equations would give a perfect oscillating behaviour, whereas the
solution of the difference equations will result in a small error in each step. This
error has a cumulative effect resulting in oscillations with ever higher peaks, as
can easily be observed in the results. A better approximation of the continu-
ous model could be reached by using a more sophisticated integration method
instead of the Euler method that is used implicitly in this case study.

The FlyFast specification of the Lotka-Volterra model is shown in Fig. 4.
Assuming I(RD) = 1, I(RL) = 2, I(FD) = 3, I(FL) = 4, the 4 × 4 matrix
K : U4 × {1, . . . , 4} × {1, . . . , 4} → [0, 1] generated by FlyFast is shown below,
noting that the matrix is stochastic for the time interval of interest (and in
particular m1 �= 0 �= m3):

K(m1,m2,m3,m4) =

⎛

⎜
⎜
⎝

1 − a·h· m2
m1

a·h· m2
m1

0 0
b·h·m4 1 − b·h·m4 0 0

0 0 1 − e·h·m2 · m4
m3

e·h·m2
m4
m3

0 0 c·h 1 − c·h

⎞

⎟
⎟
⎠
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const a = 0.04
const b = 0.5
const c = 0.05
const e = 0.2
const h = 0.125
action rborn : a ∗ h ∗ frc (RL)/frc (RD)
action rdies : b ∗ h ∗ frc (FL)
action fborn : e ∗ h ∗ frc (RL) ∗ frc (FL)/frc (FD)
action fdies : c ∗ h

state RD {rborn.RL}
state RL {rdies.RD}
state FD {fborn.FL}
state FL {fdies.FD}

system LoVo = 〈RD[5000], RL[1000], FD[3000], FL[1000]〉

Fig. 4. A FlyFast specification of the Lotka-Volterra model

It is easy to see that by computing µ(t + 1) as µ(t + 1) = µ(t)T · K(µ(t)),
where µ(t) = (μ1(t), μ2(t), μ3(t), μ4(t)), one obtains again the difference Eq. (1)
of page 11, where, of course, μ1(t) stands for RD(t), μ2(t) for RL(t), μ3(t) for
FD(t), and μ4(t) for FL(t).

As it is well known, the global behaviour of the (idealised) model shows
oscillations in the populations of rabbits and foxes for certain values of the model
parameters. In fact, the model has very interesting behaviour and is therefore
widely studied, but in this paper we focus mainly on the illustration of the
application of fast mean field model checking of an individual rabbit or fox in
the context of the overall oscillating behaviour. For example, for the values of the
parameters and initial state as in Fig. 4, we obtain the results for the occupancy
measure varying over time shown in Fig. 5, which is the plot of the limit o.m.v.
µ(τ) produded by FlyFast.
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Fig. 5. Fraction of rabbit and fox populations.

In the predator-prey model one could furthermore be interested to know what
is the probability that a rabbit survives for a certain amount of time, and how
this probability changes over time with the oscillation of the population of foxes.
Figure 6 shows the probability that a fox gets born or dies within time bound t
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ranging from 0 to 3000 time steps. It also shows the results for a rabbit getting
born or dying. The formula for the probability that a rabbit gets born within t
time steps is P=?(RD U≤t RL). The other formulas are similar. Figure 6 shows
that both foxes and rabbits eventually get born and die when given enough time
and starting from the initial state of the overall system. The curves also reflect
the oscillations in the populations over time and consequently the change in
probability to get born or die.
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Fig. 6. Probability that a fox (rabbit) gets born or dies within time bound t ranging
from 0 to 3000 time steps.

Figure 7 shows the time-dependent probability of a fox and a rabbit to get
born or die in the next 10 time steps, starting from initial times ranging from
0 to 5000. The probability that a rabbit dies within 10 time units is obtained by
evaluating the property P=?(RL U≤10 RD), for different initial times. The other
formulas are similar. In this oscillating system the time-dependence of these
probabilities can be observed very well. The probabilities of a rabbit getting born
(dying respectively) within 10 time units and a fox getting born follow closely
the oscillations in the respective population sizes. The probability that a fox dies
in this model is constant. The amplitude of the oscillations is slowly increasing.
This is likely due to the accumulation of small errors in the computation due
to the constant step size used in the computations. In fact it is well-known
that a mean-field approximation may become less accurate on the longer run,
in a discrete time setting. See e.g. [19] for a study of this aspect of the Lotka-
Volterra model in the continuous time setting. We will come back to these issues
in Sect. 4.1.

Finally, Fig. 8 shows the time dependent probability of reaching a state,
within 100 time steps, in which the probability of an individual rabbit to die
within 10 time steps is higher than 0.2. This probability is shown for different
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Fig. 7. Time dependent probability to get born or die in the next 10 time steps for
different initial times from 0 to 5000.

initial times ranging from 0 to 5000. This is a typical example of a ‘nested’
formula involving two occurrences of the until operator. The formula is:

P=?(tt U≤100 ( RL ∧ P>0.2( RL U≤10 RD)))

The figure shows that there are indeed relatively short periods in which such
states can be reached within 100 time steps. Nested formulas are relatively easy
to handle due to the iterative and recursive way in which the FlyFast model-
checker works.

4 Extending the Applicability of FlyFast

In the previous sections we have shown examples of the expected use of FlyFast,
namely the development of a probabilistic, discrete time, population model of the
system of interest and its analysis, mainly via bounded PCTL model-checking
based on mean-field semantics. In this section we briefly describe two exten-
sions of the applicability of the tool, both designed as additional front-ends for
FlyFast, so that no modifications are required of the tool itself. The first exten-
sion concerns on-the-fly fluid CSL model-checking of continuous time population
models; the second extends the FlyFast modelling language, and its underlying
agent interaction paradigm, by adding predicate based communication primi-
tives. Details on the first extension can be found in [41] while the second front
end is described in detail in [15,44].

4.1 FlyFast Front-end for Fluid Model-checking of Continuous Time
Population Models

Fluid model checking [7,8,33] relies on a global model checking approach for
time-inhomogeneous Continuous Time Markov Chains (ICTMC) representing
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Fig. 8. Time dependent probability of reaching a state, within 100 time steps, in which
the probability of an individual rabbit to die within 10 time steps is less than 0.2 for
different initial times ranging from 0 to 5000.

an individual object in the context of a large CTMC population model. The
rates of the individual may depend on the fraction of the population that is in
a particular state. The algorithm relies on the deterministic approximation of
the average stochastic behaviour of the system in continuous time, i.e. a fluid
approximation [9,35]. Although the technical and mathematical foundations of
the continuous time case are obviously different from those in the discrete case,
at the intuitive/conceptual level, the two cases are similar.

Suppose you have system of N agents, each modelled by a ICTMC with
states in {1, . . . , S}, and S × S infinitesimal generator matrix Q(N)(x) that
may depend on the current o.m.v. x ∈ US ; the o.m.v. process is a CTMC on
the space [0, 1]S with initial state x

(N)
0 equal to the fraction of agents in each

local state, in the initial global state. The average infinitesimal variation of the
o.m.v. process, given that it is in state x is F (N)(x) = xT · Q(N)(x). If, for
N → ∞, Q(N)(x) converges uniformly to the Lipschitz continuous generator
matrix Q(x), and x

(N)
0 to x0, and, furthermore, if x(t) is the solution of the

ODE dx
dt = F (x) = xT · Q(x) for initial condition x(0) = x0, then, almost

surely, in the limit, the o.m.v. process behaves the same as x(t), for any finite
time horizon T [18,35].

This fundamental result has given rise to a fast simulation approach also in
the continuous case. Assuming, again by convention and without loss of gen-
erality, that we are interested in the first of the N agents, let Z(N)(t) be the
ICTMC on space {1, . . . , S} modelling the behaviour of such an agent. Let us
furthermore consider the ICTMC on {1, . . . , S} z(t) such that Pr{z(t + dt) =
j|z(t) = i} = qi,j(x(t))dt, and let Qz(x(t)) = (qi,j(x(t))). We then have that for
any finite horizon T and t ≤ T the behaviour of the single object Z(N)(t) tends
to the behaviour of the object that senses the rest of the system only through
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its limit behaviour given by x, i.e. z(t). On the basis of these results, in [7,8] a
model-checking algorithm has been proposed for CSL robust10 formulas.

In [41] we took an alternative approach, showing that, under suitable con-
vergence and scaling assumptions11, and for models that are not too stiff12,
fluid model checking can be performed exploiting on-the-fly mean field model
checking. In particular, in [41] a mechanical translation is defined which derives
a time-inhomogeneous DTMC and a bounded PCTL formula from the input
ICTMC model and bounded CSL formula. FlyFast can then be used for perform-
ing on-the-fly mean-field model-checking of the derived formula on the derived
IDTMC.

Our approach starts from the idea that we can interpret the difference equa-
tions obtained from a discrete time population model as an instance of the
Euler forward method for approximating the solution of a set of ODEs. The
set of ODEs we are interested in solving are those of a corresponding contin-
uous population model. This, in turn, means that we need to derive suitable
values for the probabilities from the rates in the continuous model. What we
are actually interested in is to transform an ICTMC model of an individual
(from which the ODEs can be derived) into an IDTMC model, with the same
local states and jump structure as the ICTMC; from this IDTMC we get the
set of difference equations that can be used to approximate the solution of the
ODEs. Intuitively, the IDTMC is obtained from the ICTMC using an approach
which is similar to CTMC uniformisation13; we define a probability matrix K
such that K = I + 1

q · Q, where Q is the infinitesimal rate matrix—which is
a function of x(t)—and q must not only satisfy the standard requirements for
uniformisation, but also be such that absolute stability of the method as well as
acceptable accuracy are guaranteed [47]. This procedure produces a discretisa-
tion of the continuous-time model; of course, also the logical formulas must be
translated by consistently discretising them—and in particular the time bound
of the bounded until operator.

We refer to [41] for the detailed definition of the translations and their correct-
ness proof. Here we point out that such global fluid model checking algorithms,
as described in [7,8], require the a priori calculation of discontinuity points, i.e.
points in time in which the truth values of time-dependent (sub)-formulas of an
until formula change. This is a non-trivial task and consists in finding all zeros of
an analytic function. In the on-the-fly setting, instead, such points are detected
automatically during the computation of the probabilities, up to a difference that
is in the order of a small discrete step size; moreover, on-the-fly approaches are
particularly efficient when verifying conditional reachability properties because
in that case much fewer states need to be generated.

10 We refer to [7,8] for the definition of formula robustness.
11 See Theorem 5 of [7].
12 Stiff models are those whose rates differ several orders of magnitude.
13 More specifically, we use only the discretisation phase of uniformisation, and not

the transient analysis part, that would require a further composition with a Poisson
process.
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On the other hand, our approach is ultimately based on an Euler forward
method to solve differential equations. This poses certain limitations on the
continuous time models that can be analysed efficiently this way, in particular
they should not be too stiff. For non stiff models the results are promising as
shown in [41] for the available benchmark models for which also some results for
global fluid model checking and statistical model checking are available in the
literature.

4.2 FlyFast Front-End for Predicate-Based Coordination

Recent proposals for CAS modelling and programming languages, like [6,20],
typically assume any such a system be composed of a set of independent compo-
nents where a component is a process equipped also with a set of attributes
describing features of the component. Attributes can be used in predicates
appearing in the language input/output primitives. Predicate-based output/input
multicast, originally proposed in [45], forms the basis of interaction schemes
in languages like SCEL [20] and Carma [6]. In [15] we proposed PiFF—
Predicate-based Interaction for FlyFast—a front-end modelling language for Fly-
Fast inspired by Carma, that provides predicate-based input/output multicast
actions.

In PiFF, each component consists of a behaviour—modelled, like in Fly-
Fast, as a DTMC-like agent—and a set of attributes. The attribute name-value
correspondence is kept in the current store of the component. Associated to
each action there is also an (atomic) probabilistic store-update. For instance,
assume components have an attribute named loc which takes values in the set
of points of a space, thus recording the current location of the component. The
following action models a multi-cast via channel α to all components in the
same location as the sender, making the latter change its location randomly:
α∗[loc = my.loc]〈〉Jump. Here Jump is assumed to randomly update the store
and, in particular attribute loc. The computational model of PiFF is clock-
synchronous, as in FlyFast, but at the component level. In addition, each compo-
nent is equipped with a local outbox. The effect of an output action α∗[πr]〈〉σ is
to deliver output label α〈〉 to the local outbox, together with the predicate πr,
which (the store of) the receiver components will be required to satisfy, as well
as the current store of the component executing the action; the current store is
then updated according to update σ. Note that output actions are non-blocking
and that successive output actions of the same component overwrite its outbox.
An input action α∗[πs]()σ by a component will be executed with a probability
which is proportional to the fraction of all those components whose outboxes
currently contain the label α〈〉, a predicate πr which is satisfied by the compo-
nent, and a store which satisfies predicate πs in turn. If such a fraction is zero,
then the input action will not take place (input is blocking), otherwise the action
takes place, the store of the component is updated via σ, and its outbox cleared.

A PiFF model specification is compiled into a FlyFast model specification by
means of a (purely mechanical) translation and related bounded PCTL formulas
are mechanically translated as well. For the sake of simplicity, we do not describe
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the translation here; the interested reader can find its definition in [15], where
the formal stochastic semantics of PiFF are also given and the translation is
shown correct with respect to such semantics; optimisation of the translation
is dealt with in [44]. In particular, in [44], a bisimilarity based state-reduction
strategy for the target model specification is proposed.

5 Conclusions

Model-checking has proven to be an effective and successful formal verifica-
tion technique. Initially developed for qualitative models and logics, it has been
extended also to quantitative models and logics such as DTMCs and PCTL as
well as CTMCs and CSL. It is well known that model-checking suffers from
the state-space explosion problem, which makes the technique non-scalable and
thus poorly applicable to large scale systems. On the other hand, current trends
in information technology, like the Internet of Things, include systems com-
posed of a large number of components, often acting collectively and adapting
to changing conditions, the so called Collective Adaptive Systems. In this paper
we have briefly described the work we have been carrying out in the area of
approximated bounded PCTL model-checking of Population DTMC models. In
particular we have given an introductory description of FlyFast, a mean-field,
on-the-fly bounded PCTL model-checker, including an overview of its theoret-
ical foundation, its main functionalities and a detailed example of application.
A couple of extensions of the applicability of the tool have been shown as well,
in the form of specific additional front-ends to the original tool; thus, the tool
applicability is extended without actually modifying the tool.

There are several lines of future work of our interest. First of all, following
approaches similar to those presented in [46], we plan to investigate the extension
of the model-checking technique to systems with memory/rewards. Space and
the spatial distribution of agents play a major role in CAS and, consequently, it
should be a “first class” component of the modelling language and the underlying
framework. For this reason, we have investigated Closure Spaces, a generalisation
of Topological Spaces that includes discrete, graph-like, space structures, for
which we have developed the Spatial Logic for Closure Spaces, SLCS and a
specific model-checking algorithm [13,14]. A subject for future research is thus to
incorporate a notion of space in the FlyFast modelling language and to integrate
FlyFast and topochecker, the spatial model-checker for SLCS and its extensions.
The investigation of different classes of interaction probability specifications in
the FlyFast modelling language and of their implications on issues like model-
reduction (see e.g. [44]) is also a promising subject for future research.

Acknowledgments. In the late 80’s of the previous century, Diego met Ed, who was
chairing a Work Package of the EU Lotosphere project, in which Diego participated
as well. At that time, Diego was fascinated by the early work on probabilistic process
algebras by Scott Smolka, Kim Larsen and others and he was applying similar ideas to
LOTOS, together with Paola Quaglia. At the same time, he was loving the work of Rom,
supervised by Ed, on Bundle Event Structures as a mathematical model underlying
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Not surprisingly, Diego moved to Twente where he spent 12 months, from july 1992
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This was the start of a lively friendship of the four of them as well as of a series of
headaches when trying to find finite graph-like representations of such structures suit-
able for analysis. They have been struggling together for years, searching for cut-off
events in those slippery structures. Eventually, Mieke moved to Italy and joined the
group of cut-off events hunters. It was fun! Maybe we did not manage to completely
master the analysis of quantitative Bundle Event Structures, but we are aware of a
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