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Abstract. Service-oriented systems interconnect with other systems in
a time critical manner, making their performance vital. For this pur-
pose, we propose an automated performance evaluation approach for
service-oriented systems which includes both performance measurement
and prediction. The approach makes use of the iDSL language, a domain
specific language tailored to modeling service-oriented systems, and the
iDSL toolchain to evaluate iDSL models, as follows. First, discrete-event
simulation yields many performance artifacts, e.g., latency breakdown
charts, cumulative distribution graphs, and latency bar charts. Second,
timed automata-based model checking yields absolute latency bounds.
Third, probabilistic timed automata-based model checking leads to exact
latency distributions for each service. We successfully validated our app-
roach; several case studies on interventional X-ray systems displayed sim-
ilar measured and predicted outcomes.

1 Introduction

An embedded system is a computer system that has a dedicated function within
a larger system, often with real-time computing constraints [16,27]. Today, the
majority of the commonly used devices are embedded systems, ranging from
simple digital watches, to complex medical machines [19]. An embedded system
is frequently used to perform safety critical tasks, which makes their malfunc-
tioning prone to serious injury and fatalities, such as with medical systems. An
embedded system interacts with its environments in a time critical way. Its safety
is therefore predominantly determined by its performance, which is expressed in
terms of response times, resource utilizations and queue sizes.

Many current practices only address the performance at the end of the devel-
opment trajectory and only resort to tuning of the performance until the system
is “good enough” [21]. Contrarily, we advocate that each design decision dur-
ing system development should be evaluated for performance immediately, as
it can have an increasing impact on performance later on. This prevents unex-
pected performance issues that are hard and costly to fix, especially the ones
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that are detected late. On top of that, it is recommended to make use of per-
formance predictions, which can provide early insight in the performance of
different design alternatives, without having to realize an actual system yet. We
claim that prediction-based performance evaluation should be an integral part
of the design of complex embedded systems [18].

Good performance is hard to achieve, because embedded systems come with
increasingly heterogeneous, parallel and distributed architectures [18]. At the
same time, they are designed for many product lines and different configurations,
which gives rise to many potential designs. Moreover, accurately predicting per-
formance characteristics of embedded systems is hard, since the real system does
not exist yet. Once the system has been built, measurements to gain insight in
the performance tend to be expensive, because they require the system to run
for quite some time, e.g., to detect rare performance outliers.

To narrow our scope, we constrain ourselves to so-called service-oriented sys-
tems [15,23–26], a special class of embedded systems that have the following
four properties. First, service-oriented systems provide services to their environ-
ment, accessible via so-called service requests. Second, a service request leads
to exactly one service response. Third, individual service requests are isolated
from each other in a service-oriented system and do, therefore, not affect each
other’s functionality. Fourth, service requests may negatively affect each other’s
performance by competing for the same resource in the service-oriented system.
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Fig. 1. System development including performance measurement and prediction.

We propose a framework for the performance evaluation of service-oriented
systems (see Fig. 1), comprising performance measurement and prediction.

Performance measurement starts with the realization of a “system design +
use cases”, a blueprint of the system to be realized, resulting into a “realized
system” via a realization. Performing measurements on this system then yield
“performance results”. Performance measurement comes with two downsides:
(i) realizing a system is (often) very costly, let alone realizing many different
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systems only for testing purposes; and, (ii) since exhaustive performance mea-
surement is impossible, assessing the performance of rare but important events
is difficult.

Performance prediction starts with modeling the performance of a “system
design + use cases”, which may include the use of existing “performance results”,
i.e., measurements, for model calibration. The resulting “high-level performance
model” enters the “toolchain” in which it is transformed into a “underlying per-
formance model”, and subsequently evaluated for performance, yielding “per-
formance results”. In this paper, performance prediction relies on measurements
and can therefore only be used in addition to performance measurement. Also, it
is model-based and thus inherently inaccurate. On the upside, however, a “high-
level performance model” may represent many system designs and performing
measurements on them can often be done at high speed. Hence, performance
prediction is suitable for quickly evaluating the performance of many designs
and thus enables design space exploration [5,11].

In this paper, we focus on performance prediction only. We do thereby assume
that measurements for calibration purposes are readily available.

In the following, we address four requirements that a performance predic-
tion approach should meet. For this purpose, Fig. 1 has been augmented with
labels R1, R2, R3 and R4, respectively. We elaborate on them, as follows:

R1 A high-level performance model should be expressive, yet concise. The model
should allow for the use of different evaluation techniques. An integrated
Development Environment (IDE) and/or graphical user interface (GUI)
should be provided to ease modeling. The model should support calibration
based on measurements and the Y-chart philosophy by supporting, and sepa-
rating, the applications, platforms, and mappings. Finally, mechanisms such
as compositionality, layers and hierarchies, and/or classes, are called for.

R2 The underlying performance model should make it easy to analyze complex
high-level performance models and also support the enabling and disabling
of different properties, such as nondeterministic choices.

R3 The performance evaluation process should be fully automated; a system
designer creates a model, which is evaluated without any user interaction,
and results are automatically returned. This includes Design Space Explo-
ration [5,11] and post-processsing steps, e.g., visualizations. Also, multiple
modes of analysis should be supported for models of reasonable complexity.
Besides discrete-event simulations for quick results, model checking should
be supported for more accurate results. Finally, evaluating the model should
take a limited amount of time and scale well for models of complex systems.

R4 Performance evaluations should lead to various results types, e.g., utiliza-
tions, latency breakdown charts, and latency distributions. Whenever possi-
ble, the results should be presented visually for easy human interpretation.

In previous work [22], many toolsets that support the performance evaluation
process have been compared regarding these requirements; often their level of
automation is limited, their models tend to be at a lower level of abstraction as
called for, only one way of analysis is supported, and results are not visualized.
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This paper’s remainder is organized, as follows. Section 2 reveals so-called
interventional X-ray systems, which are medical systems. Section 3 introduces
the high-level iDSL language, followed by the iDSL tool chain in Sect. 4. Section 5
provides an extensive case study. Finally, Sect. 6 concludes the paper.

2 Interventional X-ray Systems

For a running example, we introduce interventional X-ray (iXR) systems, which
are medical imaging systems that enable minimally-invasive surgeries.

An iXR system consist of a number of parts (as depicted in Fig. 2), as follows.
It is used to assist a surgeon while performing surgery, during which a patient lies
on a table. The iXR system displays a continuous stream of images of (the inside
of) a patient on a display. These images are based on X-ray beams, generated in
the arc and caught by the detector, whose task it is to extract raw images from
X-ray beams. Via the control panel, the surgeon can move the arc and table in
various ways and thereby change the angle of the recorded images of the patient,
which are shown continuously on the display.

An iXR system needs to support different settings so that it can be cus-
tomized for a specific patient, surgeon and procedure, for instance: (i) mono- or
biplane, i.e., using either one or two X-Ray beams to generate and detect images,
yielding 2D or 3D images; (ii) image resolution, e.g., images of 5122, 10242 or
20482 pixels; and, (iii) image frame-rate, e.g., 5, 10 or 25 images per second.

Image Processing (IP) is an important subsystem of an iXR system. It turns
raw X-ray images into high quality ones, in real-time; IP retrieves unprocessed
images from the X-ray detector, processes them to enhance their quality, and
delivers them to the display to be seen by the surgeon (see Fig. 2). IP comprises
different kinds of operations, e.g., detecting so-called dead pixels, reducing spatial
and temporal noise, and preparing an image for a particular display.

Fig. 2. The main parts that constitute an interventional X-ray system
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IP is a trade-off between (i) constant quality and frame-rate of the images,
(ii) average throughput, latency and jitter of individual images, (iii) amount
of X-Ray a patient and surgeon get exposed to during a treatment, and (iv)
required computational resources to process images.

The safety of IP is mainly determined by performance, viz., a surgeon needs
to continuously receive high quality images to perform surgery on a patient.
Hence, the image latency, the time between an image arriving on the detector
and appearing on the display, needs to meet a strict requirement. Literature
suggests an average latency below 165 ms for proper hand-eye coordination [12].

3 The iDSL Language

In this section, the iDSL language, which forms a conceptual model of a service-
oriented systems, is defined [22,25]. It comprises six sections (see Fig. 3).
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Fig. 3. A conceptual model of a service system.

A service-oriented system (see Fig. 3-C) provides one or more services to one
or more service users (exterior to the service-oriented system), viz., a service
user sends a request for a specific service at a given time, after which the system
responds with some delay. A service is an entity that performs functions ranging
from simple requests to computationally expensive processes.

Service-oriented systems do not only need to return the right answers to
requests, but also face stringent performance constraints, e.g., the system has
to reply to a request within a certain time, often referred to as latency. Service-
oriented systems can particularly be hard to analyze when they handle many
service requests in parallel, for multiple kinds of services, in a real-time manner.

A service is decomposed into one or more processes, resources and a mapping,
in line with the Y-chart philosophy [14]. A process (see Fig. 3-A) decomposes
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high-level service requests into atomic tasks, each assigned to a resource via the
mapping (not shown in the figure). Hence, the mapping connects the process
to resource it relies on. A resource (see Fig. 3-B) is capable of performing one
atomic task at a time. When multiple services are invoked of which the resources
they rely on overlap, contention may occur, making performance analysis hard.

A scenario (see Fig. 3-D) comprises a number of invoked service requests
over time to observe the performance behavior of the service system in specific
circumstances over time. Service requests are functionally independent of each
other, i.e., service requests do not affect each other’s functional outcomes, but
may affect each other’s performance negatively due to contention.

A study (see Fig. 3-E) is a set of scenarios to be evaluated, so as to derive the
system’s underlying characteristics. Within a study, a design space is an efficient
way to describe a large number of similar scenarios.

Finally, a measure of interest (see Fig. 3-F) defines an interesting performance
metric, given a system and scenario, e.g., latencies and queue sizes.

In this section’s remainder, we illustrate the meaning of the iDSL language
via a running example of a so-called biplane iXR system (see Sect. 2).

The high-level Process decomposes a service into several atomic tasks, repre-
sented by a recursive data structure with layers of sub-processes. At the lowest
abstraction level, an atomic task specifies a workload, e.g., some CPU cycles.

The example process of Table 1 combines hierarchies (curly brackets), sequen-
tial compositions (seq) and atomic tasks (atom). At its highest level, it consists
of a sequential task “image processing seq” that decomposes into an atomic task
“pre-processing” with (fixed) load 50, a sequential task “image processing” and
an atomic task “post-processing” with load 25. In turn, the sequential task
“image processing” decomposes into three atomic tasks named “motion com-
pensation” with load 44, “noise reduction”, and “contrast” with load 134. The
load of “noise reduction” is drawn from a uniform distribution on [80, 140].

As in [3], iDSL also supports process algebra constructs for parallelism (par),
nondeterministic (alt) and probabilistic choice (palt), mutual exclusion (mutex )
to permit only one process instance to enter a certain subprocess at a time, and
design alternative (desalt) to implement a subprocess that varies across designs.

Table 1. The code of an iDSL process

Section Process
ProcessModel image_processing_application

seq image_processing_seq {
atom image_pre_processing load 50
seq image_processing {

atom motion_compensation load 44
atom noise_reduction load uniform(80:140)
atom contrast load 134 }

atom image_post_processing load 25 }
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The high-level Resource is decomposed into a number of atomic resources
(atom) via different layers of decomposable resources (decomp). Each atomic
resource has a constant rate that specifies how much load it can process per
time unit, e.g., the number of CPU cycles per second. The example resource
“image processing -decomp” of Table 2 is a composite resource which consists of
two atomic resources, i.e., a “CPU” with rate 2 and a “GPU” with rate 5.

Table 2. The code of an iDSL resource

Section Resource
ResourceModel image_processing_PC decomp

image_processing_decomp { atom CPU rate 2, atom GPU rate 5 }

Table 3. The code of an iDSL system

Section System
Service image_processing_service

Process image_processing_application
Resource image_processing_PC
Mapping assign ( image_pre_processing, CPU )

( motion_compensation, CPU )( noise_reduction, CPU )
( contrast, CPU )( image_post_processing, GPU)

Table 4. The code of an iDSL scenario

Section Scenario
Scenario image_processing_run

ServiceRequest image_processing_service at time 0, 400, ...
ServiceRequest image_processing_service

at time dspace("offset"), (dspace("offset")+400), ...

The high-level System provides one or more services to its environment.
The example system of Table 3 comprises one service which decomposes into a
process (see Table 1), resource (see Table 2) and a mapping. This decomposition
makes it easy to change a process and/or resource part of a service, e.g., to
apply Design Space Exploration (DSE). Finally, the mapping assigns atomic
task “image post processing” to “GPU”, and the other atomic tasks to “CPU”.

The high-level Scenario comprises several service requests to a system, each
for a given service and at a certain time. The example biplane iXR system of
Table 4 has two services types, viz., for frontal and lateral IP. They are modeled
similarly, i.e., using the example service of Table 3. Frontal IP requests occur
with fixed inter-arrival times of 400, without an initial delay. Lateral IP requests
also have inter-arrival times of 400, but the initial delay is design dependent,
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Table 5. The code of an iDSL study

Section Study
Scenario image_processing_run

DesignSpace ("offset" "0" "20" "40" "80" "120" "160" "260")

Table 6. The code of an iDSL measure

Section Measure
Measure ServiceResponseTimes using 1 run of 250 requests
Measure ServiceResponseTimes absolute

viz., the dspace operator with parameter “offset” refers to dimension “offset” in
the design space (see Table 5), which varies from 0 till 260.

The high-level Study characterizes a set of designs to compare. A design space
is a shorthand way to specify many designs; it consist one or more dimensions
that each have several possible values. A design provides a unique valuation for
each dimension. The example study of Table 5 encompasses a design space with
one dimension “offset” that comprises seven values. The dimension is used to
vary the degree of concurrency between both services in Table 4.

The high-level Measure defines, given a system and scenario, the metrics the
system designer is interested in and how they are obtained.

The example measure of Table 6 consists of two measures that both return
service response times. To this end, the first measure uses 1 discrete-event simula-
tion run of 250 requests (see Sect. 4.4, discrete-event simulation) which provides
insight in resource utilizations and latency breakdowns in one go. The second
measure employs an iterative model checking approach (see Sect. 4.4).

4 The iDSL Toolchain
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The iDSL toolchain takes an iDSL
model (of Sect. 3) as input and auto-
matically generates a wide array
of performance artifacts. For this
purpose, the iDSL toolchain subse-
quently executes the following four
steps: (i) calibrate the model on the
basis of measurements (see Sect. 4.1);
(ii) simplify the model (see Sect. 4.2);
(iii) transform the model into a low-
level Modest model (see Sect. 4.3,
[8–10]); and, (iv) evaluate the perfor-
mance of the model (see Sect. 4.4). In
Fig. 1, these steps are labeled T 1, T 2,
T 3 and T 4, respectively.
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4.1 Calibrating the Model on the Basis of Measurements

In Sect. 3, an atomic task load in a iDSL process (see Table 1) is either fixed
or uniformly drawn from a certain interval. Next, we propose an Empirical Dis-
tribution Function (EDF) as a third possibility to enable model calibration on
the basis of measurements. In Table 7, we observe that an EDF load has one
parameter and comes in two flavors. Atomic task “edf values” is initiated with
a sequence of measurements values, whereas “edf files” refers to an external file
containing measurements.

The EDF for n numerically-sorted measurements m1,m2, . . . ,mn−1,mn (see
Fig. 4) is a step function that jumps up by 1

n at each of the n data points.
Optionally, iDSL provides EDF prediction during which EDFs are predicted for
designs for which no measurements have been performed, on the basis of existing
EDFs. This is carefully explained in [22,26], but beyond the scope of this paper.

Next, we show how model simplification is applied to an atomic task with
an EDF load (in Sect. 4.2), after which it is transformed into a palt-construct as
part of the transformation to Modest (in Sect. 4.3).

Table 7. The code of a small iDSL process with an EDF

Section Process
ProcessModel image_processing_application seq {

atom edf_values load EDF with values 6 8 10
atom edf_files load EDF from file "measurements.dat"

4.2 Simplifying the Model

Generally, an iDSL model is often too hard to analyze, especially when the
iDSL processes have variable loads. To this end, iDSL comes with two model
simplification techniques for EDFs in the iDSL process, viz., the clustering of
loads and changing the model time unit.

The clustering of loads is applied to atomic processes that are defined as
an EDF. Measurements are clustered into a number of clusters using K-means
clustering [13]. Each cluster is summarized by the smallest interval of nondeter-
ministic time containing all its measurements. These intervals are combined via
a probabilistic choice, thereby reducing the number of probabilistic alternatives.

Figure 5 presents a small example based on three measurement values 6, 7
and 18. Figure 5(a) shows the original EDF, which assigns an equal weight of 1

3
to each of the 3 measurements. When the number of given clusters is at least the
number of measurements, this original EDF is returned since each measurement
is assigned to its individual cluster. Figure 5(b) displays the result of K-means
clustering with 2 clusters, viz., measurements 6 and 7 are grouped in one cluster
due to their proximity, and 18 in the other. Hence, 6 and 7 are represented by
a nondeterministic time interval, graphically depicted as a grey area covering
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Fig. 5. EDFs based on measurements 6µs, 7µs and 18µs that are simplified using
K-means clustering.

time range [6 : 7], and probability range [0 : 2
3 ]. This grey area represents an

ambiguity, viz., all distributions that go through this area are possible. The
result is accurate, which means that the real distribution goes through this area.
[23] quantifies this ambiguity. Finally, Fig. 5(c) shows the one cluster case. All
measurements end up in one cluster, yielding a nondeterministic time range
[6 : 18] and probability range [0 : 1].

Changing the model time unit increases the global time unit of the iDSL
model. It is, among others, applied to all EDF functions in the model: (i) the
measurements are divided by the chosen time unit and rounded to the nearest
integer value; (ii) performance evaluation is applied; and, (iii) the results are
multiplied by the time unit again. Bigger time steps reduce the model complexity,
whereas rounding reduces precision. In [23], this loss of precision is quantified.
Note that rounding can both lead to conservative or overestimated results.

Figure 6 shows an example, again for measurements 6, 7 and 18. Figure 6(a)
shows the case of time unit = 1, i.e., dividing measurements by 1 does not intro-
duce rounding errors. Figure 6(b) highlights the case for time unit = 6. Measure-
ments 6 and 18 are not rounded by being multiples of 6, but measurement 7
induces a rounding error, viz., an integer division of 7 by 6 followed by a multi-
plication by 6 yields 6 instead of 7. Effectively, measurement 7 is replaced by a 6,
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Fig. 6. EDFs based on measurements 6µs, 7µs and 18µs that are simplified by increas-
ing the time unit.



224 F. van den Berg et al.

yielding two 6 and one 18 values. Figure 6(c) the shows case for time unit = 15.
Measurements 6 and 7 are both rounded to 0, and measurement 18 becomes 15.

Finding the right abstraction level of the model is achieved by systemati-
cally benchmarking iterations of MCSTA for models with different combinations
of clusters and time units. It is the objective to find a model that computes fast
enough and at the same contains enough level of detail. [22,23] describes the
algorithm in detail.

4.3 Transforming the iDSL Model into Equivalent Modest Models

We explain how an iDSL model transforms into a set of Modest models
[8–10] (as graphically depicted in Fig. 7). [25] provides a concrete example. On
top, a Modest model comprises a parallel execution of interacting processes,
i.e., services, resources and generators, implemented using a par-construct. This
similar to a system in LOTOS [3].

For each ProcessModel in the iDSL process, a similar Modest process is
generated. To this end, there are two types of processes. First, a compound
process contains one operator, e.g., par, seq, alt and palt, and recursively refers to
subprocesses. Furthermore, an atomic process with an EDF load is transformed
into a palt-construct: an alternative is created for each jump in the cumulative
distribution function with a weight corresponding to the jump size. For instance,
Fig. 4 conveys a jump from 1

n to 2
n at time M2, which translates to a palt-

alternative with weight 2
n − 1

n = 1
n and time M2. Note that each alternative is

an atomic process. Second, atomic processes signal their ID and a load to a fixed
resource queue, viz., the one defined in the mapping, and wait for a result.

For each ResourceModel in the iDSL resource, a Modest resource queue and
resource process are generated, which both repeat forever (as indicated by the
repeat symbol) for FIFO scheduling. A resource queue either receives an ID and
load from a atomic process (a buffer addition), or forwards an ID and load to its
resource (a buffer removal), each iteration. In turn, a Modest resource waits for a
resource queue to provide an ID and load, processes it using a delay (as indicated
by the stopwatch), and returns the result to the atomic process with the given
ID. A resource queue is not generated in case of nondeterministic scheduling,
since the order at which requests arrive is not relevant. In this case, the ID and
a load an atomic process signals is directly connected to the resource process.
We stress that other scheduling methods are not yet supported.

For each Service in the iDSL system, one or more Modest services are gener-
ated. Each service alternately waits for an incoming request trigger and activates
the process that corresponds to the service. The number of created Modest ser-
vices decide how many service instances the system can handle simultaneously,
which is one by default to have a simple model. However, it can be overridden by
the “numinstances” keyword. Moreover, the service mapping is used to connect
the atomic processes and resource queues (see the green circle in Fig. 7).

For each ServiceRequest in the iDSL Scenario, a Modest init generator is
generated that generates an initial delay, followed by a call to a Modest generator
process that forever triggers a service at fixed inter-arrival times.
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Fig. 7. The Modest processes that are generated given an iDSL model. (Color figure
online)

Finally, similar Modest models are created for each design in the iDSL study
and for each measure in the iDSL measure, as follows. First, a design instance
provides a valuation for each dimension. It is used, among others, to replace the
dspace operator by the actual value of the respective dimension in arithmetic
expressions, e.g., the service request times in Table 4. Second, a measure specifies
how a Modest model is analyzed. This requires measure specific adjustments to
be made to the model (see Sect. 4.4), e.g., turning real values into integers.

4.4 Evaluating a Modest Model to Yield Performance Artifacts

In this section, Modest models of the previous section are evaluated for each
design, using different evaluation techniques. Besides discrete-event simulation,
there are four ways of model checking, viz., TA-based, PTA-based, and efficient
PTA-based, and efficient & scalable PTA-based. Each technique comprises three
execution steps: (i) the Modest model is modified to be compatible with the
given technique; (ii) a Modest tool is applied to the Modest model at least once
yielding performance numbers; and, (iii) post-processing turns the performance
numbers into artifacts. Next, we explain these steps for each technique.
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Discrete-event simulation yields latencies of services, subprocesses and
resource utilizations. Latencies are obtained by enclosing each service and sub-
process with stopwatches. An additional service counter and properties for each
subsequent request of a given service then make it possible to retrieve individual
latencies for a service. A resource utilization is obtained by adding a counter to
a resource that keeps track of the total time it is processing. This counter value
is divided by the total running time of the system, which is implemented as a
global counter. For each run, MODES of the Modest toolset [10] is used once to
perform a discrete-event simulation on the Modest model. MODES is instructed
to use an as soon as possible (ASAP) scheduler for time, and uniform resolution
for nondeterminism choice. This is a pragmatic and commonly used choice that
does not need to reflect the real underlying structure [4].

Post-processing yields three performance artifacts. First, a latency bar chart
(see Fig. 11(c)) is generated using GNUplot [20], which visually displays succeed-
ing latency times.

Second, a latency breakdown chart (see Fig. 11(a)) conveys the static process
structure of a service extended with its dynamics, i.e., latencies and utilizations.
The graph structure is derived by recursively traversing the iDSL process and
resource. It is augmented with placeholders in one go wherever performance num-
bers are needed. Next, these placeholders are replaced by the relevance Modest
properties, after which GraphViz [6] renders the visualization.

Third, a cumulative distribution graph (see Fig. 11(b)) displays latency times
for different designs. Hence, they are convenient to get insight in the consequences
of certain design decisions. To this end, the latency values of the different designs
are gathered, combined, and turned into a plot using GNUplot [20].

TA-based model checking yields absolute service latencies. To make the
model finite, real values that concern time (including loads and rates) are
rounded to their nearest integer values. Additionally, probabilistic choices and
infinite distributions are replaced by nondeterministic choices. Latencies of ser-
vices are obtained by enclosing each service with stopwatches that reset after
registering one latency. To reduce the state space size, no service counter is
added; we do not retrieve which latency is the maximum one. Combined, this
leads to a finite, decidable model. TA-based model checking is performed using
MCTAU [1]. Via a binary search algorithm of [25], i.e., recursive function lb (in
Table 8), an initial range of possible values is halved iteratively until one value

Table 8. Function lb: compute lower bounds, pseudo code

lb ([lbound:ubound]){
if (abs(ubound-lbound)<=1) return lbound // case a
check_value=(lbound+ubound)/2
UPPAAL (p = probability(latency<check_value))
if ( p=0 ) lb (check_value,ubound) // case b
else lb (lbound,check_value) } // case c
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remains. This initial range is [0 : n], where n is a deliberate overestimation of
the latency. Each iteration, one of the following three cases occur: (a) there is
only one possible value left, which is returned; (b) model checking conveys that
the probability that the value is in the lower half of the values is 0 in which case
the upper half of the values is returned; or, (c) the lower half of the values is
returned. The complexity of the algorithm is O(log(n)), where n is the chosen
overestimation.

PTA-based model checking yields exact service latency distributions for each
service; a Modest model is created for each service and both the minimum and
maximum probability to compute the latency distribution of that particular
service. In each Modest model, only the process of the given service is enclosed
by stopwatches that record latencies of the service requests. The Modest models
have one parameter time t ∈ R≥0, and return a probability p: the probability
that the service completes within time t.

In iDSL, however, a service leads to an infinite stream of service requests,
each with its individual latency. Ideally, the average of this infinite stream of
latencies is a measure for the performance of the whole service. Put formally:

PΩ(t) = lim
k→∞

1
k

k∑

n=1

Pn(t), (1)

where PΩ(t) is the combined probability, n the service request number, t the
latency time, Pn(t) the probability that service request n finishes within time t.

This infinite sum cannot be directly computed. Instead, the computable geo-
metric distribution [17] is proposed that is capable of detecting an absolute
maximum latency, weighing service requests in an exponentially decreasing way:

PΩ(t) =
∞∑

n=1

(1 − ρ)n−1 ρ Pn(t), (2)

where ρ ∈ (0 : 1) is the geometric distribution parameter. The distribution is
similar to (1), for ρ ≈ 0 and capable of finding the absolute latencies.

In Modest, the geometric distribution is implemented as a binary probabilis-
tic choice every time a service request completes (as depicted in Fig. 8(a)): either
the currently measured latency is returned, with probability ρ ( 1

10 in the figure),
or the next service request is evaluated, with probability 1−ρ ( 9

10 in the figure).
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Fig. 8. Binary probabilistic choices induce the geometric distribution
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The geometric distribution is memoryless, i.e., the binary choice does not rely
on the service request number. It can thus be represented as a single reoccurring
service request (as depicted in Fig. 8(b)). The figure conveys that a lower ρ-value
yields a more complex model and more precise results, viz., for small values of ρ,
the probability that state “Service Response” is followed by many occurrences
of “Service Request” increases. In this paper, we empirically choose ρ = 1

10 ; it
leads to a state space that is large enough to deliver a reasonable amount of
accuracy and which is moreover practically handleable.

The algorithm to compute a latency distribution of a service [22,24] comprises
three steps in which MCSTA, the explicit-state model checker for STA of the
Modest toolset, is iteratively applied, as follows. First, the initial scan is used to
obtain an upper bound on the latency. Second, the binary lower & upper bound
search are binary searches, similar to TA-based model checking, to obtain a exact
lower an upper bound. Third, the whole distribution is obtained by computing
all values between the bounds in a brute force way.

Efficient PTA-based model checking provides the same functionality as its
inefficient counterpart, but in a more efficient manner [22,23]. The efficiency gain
is the result of executing three lightweight techniques initially as shown in Fig. 9.
Besides a so-called basic estimate function, we reuse the already introduced
discrete-event simulation and four TA-based model checking techniques.

TA-based model checking
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Fig. 9. The dataflow of three lightweight techniques. On the edges, execution times for
service Frontal IP and offset = 0 are shown.

A basic estimate function returns, given a iDSL process, an optimistic but
possibly inaccurate bound of either the minimum (maximum) latency. It is easy
to compute. The result is optimistic because the concurrency between services
and processing steps for resources are not taken into account. Hence, the best
case can be used as a minimum for T lb

min (A), a lower bound for Tmin, and
the worst case for Tub

max (B), an upper bound for Tmax. Table 9 conveys the
recursive definition of the best case, as follows: (i) for an atomic process, the
taskload is returned; (ii) for a (probabilistic) alternative process, the minimum
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of all recursively evaluated children processes is returned; (iii) for a parallel
process, the maximum of the evaluated children processes is returned; and, (iv)
for a sequential process, the sum of the evaluated children is returned. The worst
case is defined analogously, but returns the maximum in case of a (probabilistic)
alternative process.

Table 9. The recursive definition of the basic estimate (best case) function

BE: Basic estimate (best case) function

BE atom{p_1} = p_1.taskload

BE alt{p_1,...,p_n} = MIN { BE x | x in {p_1,...,p_n} }

BE palt{p_1,...,p_n} = MIN { BE x | x in {p_1,...,p_n} }

BE par{p_1,...,p_n} = MAX { BE x | x in {p_1,...,p_n} }

BE seq{p_1,...,p_n} = BE p_1 + BE p_2 + ... + BE p_n

Discrete-event simulations display average behavior, which means that the
minimum outcome of all runs can be used as a maximum for T lb

min (C), and the
maximum outcome as a minimum for Tub

max (D). Using the maximum of B and
D for the minimum of Tub

max, makes the range of Tub
max as small as possible.

TA-based model checking T lb
min and Tub

max provide an absolute minimum and
maximum, i.e., regardless of how nondeterminism is resolved, respectively. They
are used as a minimum (F+G) and maximum (H+I) for tub

min and tlbmax.
Efficient PTA-based model checking comprises five steps: (i) compute the

basic estimates; (ii) perform multiple discrete-event simulation runs; (iii) perform
TA-based model checking tlbmin and tub

max; (iv) perform TA-based model checking
tub
min and tlbmax; and, (v) execute brute force PTA-based model checking.

Efficient and scalable PTA-based model checking is similar to the previous
technique, but is applied to a model that is simplified using the algorithm of the
Sect. 4.2. Overall, it aims to deliver a practical compromise between the amount
of needed memory, amount of wall clock time, and quality of the results. In
Sect. 5.2 (results), we illustrate the concrete efficiency gain.

5 Case Study on Interventional X-ray Systems

This section conveys two experiments in which various performance artifacts are
returned (in Sect. 5.1) and exact results are computed (in Sect. 5.2).

5.1 Experiment I: Retrieving a Wide Array of Performance
Artifacts

Experiment I focuses on generating many performance artifacts. This takes its
toll on the high-level model quality which is simple, and moreover limits perfor-
mance evaluation, viz., primarily discrete-event simulations are performed. For
the sake of efficiency, the running example as introduced in Sect. 3 is reused.
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Transformation. The resulting Modest code comprises a parallel process at
its highest level, which contains service “image processing service”, resources
“CPU” and “GPU” that run forever, and two generators that call “image -
processing service”. The service waits for incoming requests of either of the gen-
erators and triggers the process, similar to the iDSL process, in return. Atomic
processes in the process call the respective resources, which perform a delay.
Since nondeterministic scheduling is employed, the resources have no queues.

Evaluation. The iDSL measure (see Table 6) contains two measures, as follows.
First, discrete-event simulation yields a single MODES execution that leads to
latencies and utilizations in one go.

Second, TA-based model checking includes rounding the real values to inte-
gers. Since all but one values of the loads and rates are integers already, the model
is not affected by this step. The uniform choice of atomic task “noise reduction”,
however, is turned into a nondeterministic equivalent. Stopwatches are added
to measure latencies. Given this model, a lower and upper bound latency
are obtained via the binary search algorithm of Sect. 4.4 (TA-based model
checking).

Results come in various kinds, as follows. First, the latency bar chart for off-
set = 0 of Fig. 11(c) conveys that the latencies vary much, i.e., between 200 and
380, as a result of extreme concurrency. This variation is less for other offsets.

Second, the latency breakdown chart for offset = 0 of Fig. 11(a) illustrates how
the overall latency is dispersed over its subprocesses. Tasks “Noise reduction”
and “Contrast” account for 71% of the total latency. The utilization of “CPU”
of 0.83 is high, but not alarming. The utilization of “GPU” is low, viz., 0.025.

Third, the cumulative distribution graph of Fig. 11(b) displays the cumula-
tive latency functions for seven designs with offsets varying from 0 to 200. As
anticipated, the offsets and latency times are negatively correlated, i.e., a smaller
offset induces that the execution of services overlap more (see Table 13) and thus
display more concurrency. In turn, this leads to a higher latency.

Fig. 10. The absolute lower and upper bound

Fourth, Fig. 10 conveys, for
a system with one service and
obtained via TA-based model
checking, the minimum and
maximum absolute latency, viz.,
159 and 189, respectively. It also
shows a CDF of the same system
based on discrete-event simula-
tion. We observe that the bounds
are valid, i.e., s(159) = 0 and
s(189) = 1, and strict, i.e.,
s(159 + ε) > 0 and s(189 − ε)<1,
where ε > 0 and s(n) is the probability that a latency equal to or below n based
on discrete-event simulation.
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Fig. 11. Three ways of representing latencies, generated from the iDSL code

5.2 Experiment II: Retrieving Exact Latency Distributions

Experiment II concerns generating exact latency distributions; the results gen-
erated using the model have to match the true values. This is accomplished by
applying exhaustive methods based on model checking. Consequently, the model
must be simple enough to deal with much complexity.

iDSL Model. The system (see Table 12) consists of two similar image process-
ing services, a so-called frontal and lateral one. They are built up of the same
process (see Table 10) and resource (see Table 11). The process encompasses
successive high-level tasks “Noise reduction” and “Refinement”, which decom-
pose into atomic tasks with EDF loads resulting from measurements. Notably,
subprocess “Refinement” contains a nondeterministic choice, viz., atomic task
“Refine” is executed either once or twice, which depends on the number of mon-
itors connected to the iXR system. The resource (see Table 11) contains atomic
resource “CPU” with rate 1 and buffersize 10 for FIFO scheduling, to which all
atomic tasks are mapped. In the scenario (of Table 13), both frontal and lateral
image processing are called with fixed inter-arrival times 40000. The offset of
frontal is 0, the one of lateral depends on the “offset” dimension in the study
(see Table 14).
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Table 10. The code of an iDSL process with abstract loads

Section Process
ProcessModel Image_Processing seq {

seq Noise_reduction {
atom Pre_processing load EDF from file "pproc"
atom Decompose load EDF from file "dcomp"
atom Spatial_noise_red load EDF from file "snr"
atom Temporal_noise_red load EDF from file "tnr"
atom Compose load EDF from file "comp" }

seq Refinement { alt {
atom Refine load EDF from file "ref"

seq { atom Refine load EDF from file "ref"
atom Refine load EDF from file "ref" } } } }

Table 11. The code of an iDSL resource

Section Resource
ResourceModel Image_PC decomp { atom CPU rate 1 buffersize 10}

Table 12. The code of an iDSL system comprising two services

Section System
Service Frontal_Image_Processing_Service

Process Image_Processing
Resource Image_PC
Mapping assign (a11,CPU) scheduling policy (CPU, FIFO)

Service Latera1_Image_Processing_Service
Process Image_Processing
Resource Image_PC
Mapping assign (all,CPU) scheduling policy (CPU, FIFO)

Table 13. The code of an iDSL scenario with two concurrent services

Section Scenario
Scenario BiPlane_Image_Processing_run

ServiceRequest FPontal_Image_Pnocessing_Serice
at time 0, 40000, ...

ServiceRequest Lateral_Image_Processing_Senvice
at time dspace("offset"), 40000+dspace("offset"), ...
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Table 14. The code of an iDSL study

Section Study
Scenario BiPlane_Image_Processing_run

DesignSpace (offset {"0" "10000" "20000" "30000"} )

Table 15. The code of an iDSL measure

Section Measure
Measure ServiceResponseTimes PTA scalable
Measure ServiceResponseTimes PTA scalable efficient

ServiceResponseTimes using 1 run of 1000 requests

Transformation. The Modest code comprises a parallel process at its highest
level, with services “Frontal Image Processing Service” and a lateral equivalent,
a resource “CPU”, a resource queue “CPU queue”, and two generators that each
call a different service. The two services alternately wait for incoming requests
from different generators and call the same process. Atomic processes all call
“CPU queue”, providing taskloads that Resource “CPU” processes.

Fig. 12. The lower (in purple) and upper bound CDF (in red), the simulation average
(in blue), and α = 0.95 confidence interval (in black) for two designs. (Color figure
online)
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Evaluation. The iSDL measure (of Table 15) encompasses two scalable Proba-
bilistic Timed Automata measures, viz., an inefficient and efficient variant. The
model is simplified using 256 cluster segments and time unit 4 (see Sect. 4.2).
Additionally, a discrete-event simulation measure is added for validation.

Results. We compare the efficient approach with the inefficient one. The execu-
tion of basic estimates and discrete-event simulation takes only 27 s (<2%), but
yields fairly tight bounds for model checking (as graphically depicted in Fig. 9),
viz., [47 : 99], [110 : ∞], [97 : 110] and [97 : 110]. Hence, in return for little
time, many expensive PTA-based model checking calls can be saved. Averagely,
a TA-based model checking call takes 28 s and a PTA-based one 44 s. TA-based
model checking is thus useful for the binary lower & upper bound search. Overall,
the efficient approach takes (for offset = 0) 1589 s (50 calls), opposed to 1937 s
(61 calls) for the inefficient one.

Validation is successful; the simulation confidence intervals (in black) are
located between the lower (in purple) and upper bound (in red) in Fig. 12 for
two offsets, despite the application of model simplifications (of Sect. 4.2).

6 Conclusion

This paper presents a method for performance evaluation of service-oriented
systems which has been put into practice using two experiments, as follows.

The Performance Evaluation Process. To gain insight in the performance
of embedded systems, we have proposed a framework for performance evaluation
of service-oriented systems: A high-level performance model is obtained by mod-
eling the performance of a system. Optionally, this model is simplified to make
it scalable, after which it is transformed into a underlying performance model
that adheres to a widespread formalism, e.g., Stochastic Timed Automata (STA,
[2,7]). Applying performance evaluation yields performance results.

Two experiments have been conducted which exemplified a performance evalu-
ation approach that: (i) provides a domain specific, high-level modeling language;
(ii) allows for the automatic evaluation of a large number of complex designs;
(iii) supports different ways of performance evaluation; and, (iv) presents its
results intuitively via visualizations.

References

1. Bogdoll, J., David, A., Hartmanns, A., Hermanns, H.: MCTAU: bridging the
gap between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) SPIN
2012. LNCS, vol. 7385, pp. 227–233. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31759-0 16

2. Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: Modest: a compo-
sitional modeling formalism for hard and softly timed systems. IEEE Trans. Softw.
Eng. 32(10), 812–830 (2006)

http://dx.doi.org/10.1007/978-3-642-31759-0_16
http://dx.doi.org/10.1007/978-3-642-31759-0_16


iDSL: Automated Performance Evaluation of Service-Oriented Systems 235

3. Brinksma, H., Katoen, J.-P., Langerak, R., Latella, D.: Partial order models for
quantitative extensions of LOTOS. Comput. Netw. ISDN Syst. 30(9), 925–950
(1998)

4. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
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