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Abstract. We revisit the early publications of Ed Brinksma devoted,
on the one hand, to the definition of the formal description technique
LOTOS (ISO International Standard 8807:1989) for specifying commu-
nication protocols and distributed systems, and, on the other hand,
to two proposals (Extended LOTOS and Modular LOTOS) for mak-
ing LOTOS a simpler and more expressive language. We examine how
this scientific agenda has been dealt with during the last decades. We
review the successive enhancements of LOTOS that led to the definition
of three languages: E-LOTOS (ISO International Standard 15437:2001),
then LOTOS NT, and finally LNT. We present the software implemen-
tations (compilers and translators) developed for these new languages
and report about their use in various application domains.
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1 Introduction

The present article was written in honor of Ed Brinksma and included in a
collective Festschrift book offered to him at the occasion of his 60th birthday.

The first part of Ed Brinksma’s research career has been devoted to the
design of formal methods for the specification of communication protocols and
distributed systems, the LOTOS language being the common theme and vital
lead for the scientific contributions. This first part approximately extends over
twelve years, between 1984 (as dated by the conference article [14]) and 1995 (as
dated by the book chapter [9]). It was directly succeeded, with some chronological
overlap, by a second part centered on conformance testing for protocols (with a
first paper [16] published in 1991) and a third part centered on real time and
performance evaluation (with early papers, e.g., [15] published in 1995).

In the present article, we focus on this first part, in which we distinguish
two different threads of work: (i) the definition of the LOTOS language, which
culminated with its adoption by ISO (International Standard 8807:1989) and (ii)
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the elaboration of two proposals for enhancing LOTOS, by introducing valuable
features not present in the standard, either because they were not ready on time
when it was adopted or because they did not reach international consensus.

The present article is organized as follows. Section 2 recalls the contributions
of Ed Brinksma to the definition of LOTOS and gives a brief account of the
impact of this language in academia and industry. The two next sections review
two early languages proposed by Ed Brinksma for enhancing LOTOS, namely
Extended LOTOS (Sect. 3) and Modular LOTOS (Sect. 4). The three next sec-
tions present three more recent languages that, between 1993 and now, have
been proposed to supersede LOTOS, namely E-LOTOS (Sect. 5), LOTOS NT
(Sect. 6), and LNT (Sect. 7), with some discussion about the actual impact of
these languages. Finally, Sect. 8 gives a few concluding remarks.

2 LOTOS

Among all publications of Ed Brinksma related to the definition of LOTOS, we
highlight three key contributions, each of a different nature and scope:

– Obviously, the ISO Draft International Standard defining LOTOS [58] occu-
pies a place of choice. Even if earlier drafts of LOTOS had circulated before
(e.g., Ed Brinksma’s first tutorial on LOTOS [10] given in 1985) and even if
experiments with LOTOS had already been done at some universities (e.g.,
the model-checking verification of protocols in 1986 [33,34]), this Draft Inter-
national Standard published in 1987 was the first complete, coherent defin-
ition of LOTOS made available to the international community. Two years
after, this document reached its final status by being approved as the ISO
International Standard 8807:1989 [60].
The definition of LOTOS was a collective achievement done within an ISO
committee (project 97.21.20.2) under the leadership of Ed Brinksma, who
was the editor in charge of producing the standard. Tommaso Bolognesi,
Günter Karjoth, Luigi Logrippo, Jan de Meer, Elie Najm, Juan Quemada,
Pippo Scollo, Alaister Tocher, Jan Tretmans, and Chris Vissers participated,
among others, in this committee.
The resulting LOTOS language was an audacious combination of the most
recent innovations in formal methods at that time. To describe and manip-
ulate data structures, the LOTOS committee selected abstract data types—
more precisely, a dialect of the algebraic language ACT ONE [25,26,80]. To
describe the behaviour of concurrent processes, the committee retained the
key ideas of process algebra, blending into a single language the best features
of several calculi, namely CCS [82], TCSP [17], and Circal [81]; LOTOS also
brought original ideas, such as its “disable” operator, which models nonde-
terministic disruption (e.g., crashes and failures), and its “enable” operator,
which allows value-passing sequential continuation after the termination of a
group of parallel processes.
The definition of LOTOS provided in the ISO standard was fully formal,
much in line with the longstanding Dutch tradition of computer-language
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definitions. The syntax was given as a BNF grammar; the static semantics
was specified as a set of mathematical constraints and functions defined by
induction over syntactic constructs; the semantics of data types was expressed
as a many-sorted term algebra obtained by quotienting the algebra generated
by a derivation system; finally the behavioural semantics of processes was
defined operationally using a set of structured operational semantics rules.
This formal definition was followed by annexes providing informal explana-
tions and complementary information.

– Jointly written with Tommaso Bolognesi, Ed Brinskma’s tutorial on LOTOS
[6] is also a highly cited publication. Written in a lively style and illustrated
with a wealth of examples, this tutorial targets the end users of LOTOS. It
is orthogonal and complementary to the (somewhat dry) ISO standard defi-
nition, primarily oriented towards language implementers and semanticists.

– Another insightful contribution is Ed Brinskma’s 1989 paper on constraint-
oriented specification [12]. It is well-known that the decomposition of a com-
puter system into concurrent/parallel tasks may take two forms: it is either
physical if the decomposition closely reflects the actual distribution of tasks
over processors, or logical otherwise, if the decomposition is rather intended
to provide the system with a modular structure that does not necessarily
correspond to its actual topology. Ed Brinksma develops the latter approach
in the framework of the LOTOS multiway rendezvous, which enables two
or more processes to synchronize, negotiate, and exchange data values dur-
ing one atomic event. The paper formulates the fundamental intuition of
parallel composition as conjunction, meaning that the multiway rendezvous
achieves the logical conjunction of all the individual constraints expressed by
a set of processes running concurrently. This idea enables a certain degree
of “declarative” programming (namely, constraint solving) to be introduced
in the framework of a fundamentally “operational” (i.e., constructive, imper-
ative) language such as LOTOS. The usefulness of the approach is demon-
strated on realistic examples of communication protocols [12], but it is also
relevant to other application domains, e.g., hardware circuits ([41] shows how
the complex arbitration protocol of the SCSI-2 bus can be concisely modelled
using an eight-party LOTOS rendezvous) or robotics ([47] illustrates how a
software controller for an entire manufacturing plant can be obtained as the
parallel composition of many simple controllers, one for each device or degree
of freedom of a device in the plant).

Retrospectively, the international effort invested in LOTOS was successful in
several respects:

– Although LOTOS is a committee-designed language based on two very differ-
ent concepts (algebraic data types and process calculi), it achieves a suitable
compromise and a fair integration between its various elements. All its lan-
guage constructs (perhaps with the exception of the choice and par operators
on gate lists) derive from concrete needs and are useful in practice.

– LOTOS is clearly more abstract and higher level than the two other standard-
ized languages it was competing with (namely, Estelle [59] and SDL [18]), and
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proved that a specification language could be formal and executable at the
same time.

– The design of LOTOS made it clear that process calculi were not only math-
ematical notations for studying concurrency theory, but that they could be
turned into computer languages used to model real-life systems. LOTOS was
indeed the first process calculus in which large specifications of complex sys-
tems (e.g., protocols and services of OSI and ISDN networks) were produced.
Later, it was shown that the high abstraction level of LOTOS makes it also
suitable to other application domains, e.g., multiprocessor architectures and
asynchronous circuits.

– The LOTOS community put strong emphasis on software tools, often in
the framework of European projects such as SEDOS, LOTOSphere, SPECS,
EUCALYPTUS-1 and -2, etc. Today, most of these tools are no longer avail-
able, but the CADP toolbox1 [45] is still actively maintained. Also, many
ideas present in early LOTOS tools would certainly benefit from modern
developments in symbolic execution and verification technology.

On the negative side, one can point out two main shortcomings of LOTOS:

– Despite its status of international standard, LOTOS did not manage to unite
the academic community working on process calculi. Not only the preexisting
algebras/calculi ACP, CCS, and CSP remained, but new languages appeared,
e.g., μCRL. This resulted in fragmented efforts and a lack of critical mass that
became apparent in the mid-90s.

– LOTOS also failed to gain wide industrial acceptance, mostly due to its so-
called “steep learning curve”. Because it is an abstract, expressive, and flexible
language based on concepts absent from mainstream languages, LOTOS is
best used by high-level experts rather than average software programmers:
this is unfortunately a fatal flaw as far as dissemination is concerned.

3 Extended LOTOS

As soon as the definition of LOTOS was frozen as an ISO standard, it appeared
that the language was not fully satisfactory and that some of its features could
be redesigned in a better way. Ed Brinksma’s role as the editor of the LOTOS
standard did not prevent him from suggesting enhancements to LOTOS.

His first contribution in this respect is his PhD thesis [11], defended in 1988,
which proposes a language named “Extended LOTOS” that significantly dif-
fers from LOTOS. Concerning data specifications, Extended LOTOS keeps the
abstract data types of LOTOS, but adds better support for modules. Concern-
ing behavioural specifications (namely, concurrent processes), Extended LOTOS
brings deeper changes:

– It introduces a notion of action product inspired from SCCS [83], whereas
LOTOS only has simple actions.

1 http://cadp.inria.fr.

http://cadp.inria.fr
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– Extended LOTOS attempts at unifying in one single operator both forms of
sequential composition (action prefix and “enable”) that exist in LOTOS.

– Extended LOTOS breaks with the algebraic style of LOTOS and other process
calculi by replacing unary and binary operators with n-ary constructs having
a fully bracketed syntax, e.g., “sel B1 [] B2 [] ... [] Bn endsel” for nondeter-
ministic choice or “par B1 || B2 || ... || Bn endpar” for parallel composition.

– Extended LOTOS proposes other desirable features, among which a par oper-
ator ranging over a finite domain of values.

Although Extended LOTOS has never been actually implemented, these ideas
had the merit to point out the main shortcomings of LOTOS and made it clear
that the language, despite its status of international standard, still deserved
major enhancements.

4 Modular LOTOS

Published three years later, a deliverable (edited by Ed Brinksma) of the LOTO-
Sphere project [13] adopts a point of view orthogonal to that of Extended
LOTOS: leaving aside all ideas for improving the behaviour part of LOTOS,
this deliverable focuses on enhancements to the data part of LOTOS, in which
usability problems have been identified as most crucial, and proposes a new lan-
guage called “Modular LOTOS”, two synthetic presentations of which can also
be found in [9,90]. Modular LOTOS suggests the following enhancements:

– Distinction between constructors and functions, whereas LOTOS made no
difference between these two forms of operations;

– Introduction of partial functions, whereas LOTOS only allowed totally defined
operations;

– Support for built-in types (e.g., natural numbers, integer numbers, strings)
and generic data structures (e.g., lists, sets, arrays, etc.);

– Introduction of modules gathering data and/or behaviour definitions, namely,
types, constructors, functions, and processes;

– Introduction of module interfaces (called descriptions) that can be used to
hide certain definitions contained in modules;

– Introduction of renaming to avoid name clashes between different modules;
– Support for generic modules parameterized by descriptions.

To our knowledge, Modular LOTOS has never been implemented, although key
ideas (namely, distinction between constructors and functions, partial functions,
and splitting of large LOTOS specifications into multiple files) were already
supported in the CÆSAR.ADT compiler for LOTOS [35]. At this point, Ed
Brinskma shifted his research interests to other topics, but the LOTOS reform
movement he had initiated expanded rapidly.
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5 E-LOTOS

Between 1993 and 2001, an ISO committee gathered under the lead of Juan Que-
mada to revise the LOTOS standard. Arnaud Février, Hubert Garavel, Alan Jef-
frey, Guy Leduc, Luc Léonard, Luigi Logrippo, José Mañas, Elie Najm, Mihaela
Sighireanu, and Jacques Sincennes participated in this committee as regular
contributors, with the help of more than twenty occasional contributors [89].

At the beginning, the proposed changes were modest, trying to repair rather
than replace LOTOS; as time passed, it appeared that more radical enhance-
ments were desirable. This work eventually resulted in a new language named
E-LOTOS (for “Enhanced LOTOS”) approved as ISO/IEC International Stan-
dard 15437:2001 [61]. Tutorials on E-LOTOS can be found in [101], [56,57,70].
Compared to LOTOS, E-LOTOS brings deep changes that aim at greater expres-
siveness and/or better user-friendliness:

– Concerning the data types, E-LOTOS goes far beyond the ideas suggested for
Modular LOTOS. Rather than enhancing ACT-ONE, E-LOTOS removes it,
replacing abstract data types with a functional language—an approach also
explored in [5], which proposes a concurrent language combining a process cal-
culus (CCS) and a functional language (ML). E-LOTOS goes even further by
giving its functional language an imperative flavour: in particular, E-LOTOS
variables can be assigned and E-LOTOS functions can have output (i.e., call
by result) parameters to return multiple results, which, in conventional func-
tional languages, is usually done by returning tuple values.

– E-LOTOS data types can be records (with named or unnamed fields) or (pos-
sibly recursive) types defined by a list of constructors. E-LOTOS also provides
predefined types (Booleans, naturals, integers, rationals, floating-point reals,
characters, and strings) and abbreviations for declaring enumerated types,
records, sets, and lists.

– Contrary to LOTOS, in which the data and behaviour parts are two entirely
different sub-languages, E-LOTOS tries to unify functions and processes;
functions can be seen as particular cases of processes that only do local calcu-
lations before terminating, do not perform any observable or invisible action,
and do not let time elapse. Consequently, functions and processes share a
number of common constructs, among which: variable assignments, if-then-
else conditionals, case with pattern matching, while loops, for loops, etc.

– In both its data and behaviour parts, E-LOTOS introduces a unique sequen-
tial composition operator, which unifies the action-prefix and “enable” oper-
ators present in the behaviour part of LOTOS.

– E-LOTOS provides support for exception handling. In the data part of
E-LOTOS, exceptions bring a convenient solution to the need for partial
functions. In the behaviour part, exceptions allow some involved communi-
cation protocols to be described compositionally—see [49] for an advocacy
paper on exceptions in process calculi.

– Gates (i.e., communication ports) are explicitly typed in E-LOTOS, whereas
they are untyped in LOTOS—see [36] for an introduction to gate typing,
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which leads to more readable specifications, detects communication mis-
matches at compile time rather than at run time, and provides a simple
solution to the “structured events” issue in the constraint-oriented style.

– To express quantitative time aspects, the behaviour part of E-LOTOS allows
to specify constraints on the duration of actions and/or the instant(s) at which
they may occur. Such features are required to describe isochronous protocols
and real-time systems precisely, and many timed extensions of LOTOS have
been proposed, e.g., ET-LOTOS [71,72] and RT-LOTOS [22].

– The behaviour part of E-LOTOS introduces a n-ary parallel operator [51]
that generalizes the three binary parallel composition operators of LOTOS.
This new operator is easier to use, more readable, and enables m-among-n
synchronization (in particular, the 2-among-n synchronization of CCS).

– The behaviour part of E-LOTOS also introduces new operators, such as
rename (which allows to change the name of observable actions and excep-
tions, to merge or split gates, and to add or remove offers from actions)
and suspend/resume (which generalizes the “disable” operator of LOTOS by
allowing resumable interrupts to be modelled).

– Finally, E-LOTOS provides modules that may contain types, functions,
and/or processes. Modules can be imported and exported; they have inter-
faces for information hiding and can be generic.

Due to its new features resulting from multiple, sometimes conflicting influ-
ences, and despite the unification between functions and processes, E-LOTOS is
a complex language, with an impressive number of semantic rules. The E-LOTOS
standard has 120 pages (+80 pages of annexes), while the LOTOS standard has
only 70 pages (+70 pages of annexes). It is therefore unclear whether E-LOTOS
brings a satisfactory answer to the “steep learning curve” issue with LOTOS.

This probably explains why E-LOTOS only had a marginal impact in prac-
tice. Very few case studies have been done using E-LOTOS; one can men-
tion [96,99] (which compares LOTOS and E-LOTOS on a common example),
[21,24,92,93]. To our knowledge, E-LOTOS has never been implemented in soft-
ware tools (except perhaps [24] or [74]) nor taught in university classes.

In some sense, the shift from LOTOS to E-LOTOS is reminiscent of the shift
from Algol 60 to Algol 68: a simple, elegant, yet limited language was replaced
by a larger, more expressive, formally defined language, which, because of its
growth in complexity, failed to build a sufficient momentum of interest among
its potential users.

6 LOTOS NT

6.1 Design of LOTOS NT

In 1997, when it became manifest that E-LOTOS was getting too large and
too complex, INRIA Grenoble started investigating a fallback solution. This
led to the design of LOTOS NT (where “NT” stands for “New Technology”),
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a simplified dialect of E-LOTOS that could be feasibly implemented and provide
an actual replacement solution for LOTOS.

It was decided to not introduce in LOTOS NT some questionable features
that significantly contribute to the complexity of E-LOTOS, among which: type
synonyms, anonymous tuples (i.e., the possibility, borrowed from ML, that any
list of values put between parentheses creates a new value having a valid, yet
undeclared tuple type), extensible records, type equality relation based on struc-
ture equivalence (rather than name equivalence), subtyping relation based on
record subtyping, etc.

For the same reasons, two features present in E-LOTOS but absent from
LOTOS, the suspend-resume operator and the support for quantitative time,
were not introduced in LOTOS NT, as it was felt that the potential applications
of such features were already covered by competing formalisms such as timed
automata [2] and were not worth the effort/impact ratio.

The formal definition of LOTOS NT (syntax, static semantics, and dynamic
semantics) was given in [94]. Rationale for the design of LOTOS NT (and of E-
LOTOS as well, since LOTOS NT influenced the latest evolutions of E-LOTOS)
can be found in [50].

6.2 Implementation of LOTOS NT

To implement this language, a compiler named TRAIAN2 [95] has been devel-
oped at INRIA Grenoble since 1997. It is built using the SYNTAX [7] and
FNC-2 [63] compiler-generation tools designed at INRIA Rocquencourt. Unfor-
tunately, FNC-2 ceased to be maintained in 1999, which prevented TRAIAN
from being completed; as a consequence, TRAIAN only handles the data part of
LOTOS NT (i.e., types and functions) but not the behaviour part (i.e., processes
and channels).

As it is, TRAIAN performs lexical analysis, syntactic analysis, abstract syn-
tax tree construction, static semantics analysis of LOTOS NT data specifica-
tions, and translates these into C programs, which can in turn be compiled and
executed. TRAIAN has been regularly maintained and enhanced: ten releases
have been issued since 1998, the latest version of TRAIAN (dated 2016) con-
taining 55,500 lines of FNC-2 and C code.

6.3 Applications of LOTOS NT

Although TRAIAN only supports a fragment of LOTOS NT, it has useful appli-
cations in compiler construction. Our approach [44] consists in using the SYN-
TAX compiler generator for the lexical and syntactic analyses, together with
LOTOS NT for semantical aspects, in particular the definition, construction,
and traversals of abstract trees. Some involved parts of the compiler can be
written directly in C if necessary, but most of the compiler is usually written in
LOTOS NT, which is then translated into C code by TRAIAN.

2 http://vasy.inria.fr/traian.

http://vasy.inria.fr/traian
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The combined use of SYNTAX, LOTOS NT, and TRAIAN proves to be sat-
isfactory, as regards both the rapidity of development and the quality of resulting
compilers. So far, twelve compilers have been developed at INRIA Grenoble using
this approach: AAL [75], ATLANTIF [97], CHP2LOTOS [46], CTRL2BLK [76],
EVALUATOR 4.0 [79], EXP.OPEN 2.0 [67], FSP2LOTOS [68], GRL2LNT [62],
LNT2LOTOS [19], NTIF [43], PIC2LNT [77], and SVL [23,42,66].

7 LNT

7.1 Design of LNT

Because of the limitations of TRAIAN, LOTOS NT does not provide a replace-
ment solution for LOTOS. The need for a better language based on process
calculi remains [38,39], even if all prior attempts have failed to provide a usable
solution.

In 2005, a new opportunity was found to progress this agenda: the Bull com-
pany was interested in using the CADP toolbox to formally verify multiproces-
sor architectures, but was reluctant to use LOTOS as a modelling language,
mostly due to the verbosity of the LOTOS data part. To ease the writing of
large specifications by Bull, still using the existing CADP tools, INRIA Greno-
ble undertook the development of a translator to convert LOTOS NT data types
and functions into LOTOS ones. This made it possible to produce specifications
combining a data part written in LOTOS NT (more concise and less error-prone
than LOTOS) and a behaviour part written in LOTOS. The translator con-
verted such composite specifications into plain LOTOS ones, which then could
be analyzed by the CADP tools.

A first version of this translator was delivered to Bull in July 2005. Since
then, the translator has been constantly improved and extended to handle new
LOTOS NT features. In 2007, support for the behaviour part of LOTOS NT
was added; this progressively removed the need for composite specifications, as
it became possible to write entire specifications in LOTOS NT, with no LOTOS
code at all.

Due to the rapid evolution of this translator, its input language gradu-
ally diverged from the original LOTOS NT implemented in TRAIAN, which
remained quite stable in comparison. To avoid ambiguities, it was decided in
2014 to give this input language a new name (“LNT”), while reserving the name
“LOTOS NT” for the language accepted by TRAIAN—such a distinction was
not made in papers published before Spring 2014, in which LOTOS NT and
LNT were used as synonyms.

The current definition of LNT is given in [19]. In a nutshell, LNT combines, in
a single language with an Ada-like syntax designed to favour readability, selected
features borrowed from imperative languages, functional languages, and value-
passing process calculi:

– An LNT specification is a set of modules, each of which may import other
modules and define types, functions, channels, and/or processes.
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– A type is either predefined (namely, bool, nat, int, real, char, and string),
defined by specifying the free constructors that generate its domain of values,
or defined using the type combinators array, list, range, set, sorted list,
sorted set, and where (the latter enabling predicate subtyping).

– A function is either predefined (namely, logical, arithmetical, and relational
operations on predefined types), automatically generated for some user-
defined type (such as free constructors, but also equality, order relations,
field accessors and selectors, etc., which are generated if the user requests
them), or have a handwritten definition provided by the user.

– A channel is a gate type that, following the ideas of [36], specifies the types of
values to be sent or received during interactions on a given gate. There exist
two special channels: none, which expresses that no value can be sent or
received (this is useful for pure synchronization and exceptions), and any,
which permits all values to be sent or received (this allows gates to be
“untyped”, as in LOTOS, thus ensuring backward compatibility).

– A process is a program fragment that, as in LOTOS and other process calculi,
executes and communicates with its environment by sending and/or receiving
values on a set of gates.

Globally, LNT has four different kinds of routines, of increasing complexity:

– A constructor has only in parameters (call by value), no explicit definition,
and does not raise exceptions.

– A pure function has only in parameters, an implicit or explicit definition, and
may raise exceptions if needed (this provides for partially-defined functions).

– A procedural function (or procedure, for short) may have in, out (call by
result), or in-out (call by value-result) parameters; unlike constructors and
pure functions, it does not necessarily return a result; it usually has an explicit
definition and may raise exceptions.

– A process may also have in, out, or in-out parameters; it has an explicit
definition, may raise exceptions [49], and interacts with its environment by
means of gates. The key difference between processes and other routines is
that the execution of processes can be nondeterministic and let time elapse
(the execution semantics is that of process calculi and labelled transition
systems) whereas the three former kinds of routines execute deterministically
and atomically (the execution semantics is that of functional languages).

LNT possesses three main concepts for denoting computation:

– An expression corresponds to the usual notion of expression in imperative
programming languages. It is an algebraic term built using constants, vari-
ables, and calls to constructors and pure functions. The evaluation of each
expression is deterministic (it always returns the same result or raises the
same exception), atomic (it is expected to terminate and take a negligible
amount of time), and free from side effects (it does not modify variables).

– An instruction corresponds to the usual notion of statement in imperative
programming languages. Instructions serve to explicitly define the bodies of
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LNT functions. Basic instructions include: null (which does nothing), assign-
ment to a variable or an array element, return of a function result, raise
of an exception, procedure call, assert, etc. Instructions can be combined
using structured-programming constructs, such as sequential composition, if-
then-else conditionals, case with pattern matching, for and while loops,
loops with break clauses, and declarations of variables with a limited scope.
Because instructions manipulate and modify a store, the semantics of LNT
relies on static analysis to prohibit all situations where uninitialized variables
could be used; this way, instructions have an imperative-programming syntax
and a functional-programming semantics. Like the evaluation of expressions,
the execution of instructions is deterministic and atomic.

– A behaviour is the LNT equivalent of a LOTOS “behaviour expression”.
Behaviours serve to define the bodies of LNT processes. Behaviours can be
seen as a superset of instructions since they contain all instructions (except
return) but also include additional constructs specific to process calculi: stop
(deadlock), communication on a gate (possibly with sending and/or receiving
values), assignment of a non-deterministic value to a variable, process call,
forever loop without break clause, non-deterministic choice (which is n-ary,
rather than binary), parallel composition (which is n-ary and graphical [51],
i.e., explicitly describes the communications/synchronizations between con-
current behaviours), gate hiding, and disruption (i.e., the “disable” operators
of LOTOS). Unlike instructions, the execution of behaviours is nondetermin-
istic, non-atomic, and may never terminate.

In the design of LNT, one main attainment is the integration in a single language
of two very different models of computations: imperative/functional languages
and process calculi. This was not the case with LOTOS, nor with its competi-
tors Estelle and SDL, both of which clumsily amalgamate state machines with
another formalism for data computation. Such a unification, which had been
tried without success in E-LOTOS, is now effective in LNT. A key issue was the
status of sequential composition [40], which led to question and discard some
well-established habits of process calculi, especially the action-prefix operator of
CCS and LOTOS, and the use of dynamic semantics in place of static semantics.

7.2 Implementation of LNT

Contrary to the four aforementioned languages (Extended-LOTOS, Modular
LOTOS, E-LOTOS, and LOTOS NT), the definition and implementation of
which were planned as two successive steps (the latter being never undertaken or
never completed), LNT was designed in a radically different way, using an “agile”
approach. Every new language feature was first implemented and assessed on a
growing base of non-regression tests before being adopted for LNT.

Initially designed as a standalone tool, the translator from LNT to LOTOS
became an integral part of the CADP toolbox in 2010. Actually, this translator
is not one single tool, but comprises three complementary tools:
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– LPP3 (“LNT PreProcessor”) is a small translator (2000 lines of C and Lex
code) that expands the user-friendly LNT notations for literal constants
(numbers, characters, strings, etc.) into algebraic terms making use of prede-
fined LOTOS sorts and operations defined in custom libraries.

– LNT2LOTOS4 is a rather complex translator developed using the afore-
mentioned SYNTAX/TRAIAN technology (3800 lines of SYNTAX code,
35,500 lines of LOTOS NT, and 2900 lines of C code). LNT2LOTOS trans-
lates an LNT specification into LOTOS code, possibly augmented with some
little C code fragments.

– LNT.OPEN5 is a small utility (400 lines of shell script) that provides a top-
level entry point for processing LNT specifications with the CADP tools and,
more specifically, with the CÆSAR.ADT [35] and CÆSAR [48] compilers for
LOTOS, and the OPEN/CÆSAR framework [37] for simulation, verification,
and testing. Taking as input an LNT specification and an OPEN/CÆSAR
application program, LNT.OPEN first translates (the various modules com-
posing) the LNT specification into LOTOS by calling LPP and LNT2LOTOS,
then compiles the generated LOTOS specification by calling CÆSAR.ADT
and CÆSAR, and finally invokes the OPEN/CÆSAR application program to
explore and analyze the corresponding state space on the fly.

Without exposing in full detail the algorithms implemented in LNT2LOTOS,
these are some key principles underlying the translation:

– The main guideline is to keep the translation as simple as possible, so as
to swiftly upgrade the translator each time the definition of LNT evolves.
Consequently, duplication of work between the translator and the LOTOS
compilers is avoided, meaning that the translator does not implement certain
static semantics checks at the LNT level if the same checks are later performed
at the LOTOS level. In particular, the translator makes no attempt to infer
and check the types of LNT value expressions, deferring these tasks to the
LOTOS compilers operating on the generated code.

– The channels used for typing LNT gates raise a specific problem because, on
the one hand, the LNT2LOTOS translator is not intended to perform type
checking and, on the other hand, LNT gates, which are typed, are translated
into LOTOS gates, which are untyped, so that type-checking errors at the
LNT level cannot be detected at the LOTOS level. To address this problem,
LNT2LOTOS generates, for each LNT channel C, one or several overloaded
LOTOS constant functions fC , which take as parameters the expected typed
values specified for C and always return true. For each LNT action involving
some gate G whose channel is C, a LOTOS Boolean guard is generated,
which invokes function fC with the input or output offers of the action, thus
expressing in LOTOS the type-checking constraints arising from the definition
of C. If the action is not well-typed at the LNT level, the corresponding

3 http://cadp.inria.fr/man/lpp.html.
4 http://cadp.inria.fr/man/lnt2lotos.html.
5 http://cadp.inria.fr/man/lnt.open.html.
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guard will provoke at the LOTOS level a type-checking error at compile time;
otherwise, the guard will evaluate to true at run time.

– The LNT2LOTOS translator performs, on LNT functions and processes, sta-
tic analyses not done at the LOTOS level; for instance, it rejects (or warns
about) unused variables, variables used without being assigned before, vari-
ables assigned but never used, variables shared between concurrent processes,
etc. Such checks are either required by the LNT semantics (see [40] for a dis-
cussion) or suitable to ensure that LNT specifications remain as simple as
possible, so as to increase readability and efficiency of verification.

– The predefined types of LNT (bool, nat, etc.) are implemented using base
libraries written in LOTOS and C code. The user-defined types (built using
free constructors or type combinators) are translated into LOTOS abstract
data types (possibly with some additional C code meant for efficiency),
together with their associated functions (equality, order relations, field acces-
sors and selectors, etc.).

– Although, in LNT, user-defined functions and processes have the same func-
tional/imperative style and share many constructs (e.g., assignments, assert,
raise, if-then-else, pattern-matching case, for and while loops, loops with
break, etc.), the two algorithms that translate, respectively, these functions
and processes into LOTOS are very different, due to the fundamental asym-
metry, in the target language, between the data part (based on abstract data
types) and the behaviour part (based on process calculi).

– Our algorithm for translating LNT functions generalizes the one proposed
in [88], which translates into Horn clauses a small subset of C functions
with only integer and list types. Our algorithm translates LNT functions
into LOTOS (non-constructor) operations, which are defined using algebraic
equations considered as conditional term-rewrite rules. The translation takes
advantage of the rewrite strategy implemented in the CÆSAR.ADT compiler,
which assumes a decreasing priority between equations. Notice that each LNT
function having out parameters (call by result) or in-out parameters (call
by value-result) translates to several LOTOS functions. The translation of
certain LNT constructs (assert, case, and loops) also generates auxiliary
LOTOS functions.

– Our algorithm for translating LNT processes takes its roots in our prior works
on the translation to LOTOS of three modelling languages for hardware and
software systems: the CHP2LOTOS translator [46] for CHP, the FLAC trans-
lator [4] for Fiacre, and the FSP2LOTOS translator [68] for FSP. The algo-
rithm is involved, but four main points are worth being highlighted.
(i) Certain behavioural LNT constructs directly map to equivalent LOTOS
ones. For instance, each LNT gate translates to a corresponding LOTOS gate
and each LNT process translates to a corresponding LOTOS process. The
algorithm benefits from the fact that both LOTOS and LNT have an action-
based (rather than state-based) semantics and share a common semantic
model (namely, labelled transition systems). Thanks to action-based seman-
tics, the translation can freely introduce auxiliary LOTOS processes and vari-
ables, still preserving the semantic model (which would not be possible with
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state-based semantics); in particular, execution traces are identical at the
LOTOS and LNT levels, which avoids the usual need for a reverse transla-
tion of diagnostics from the target to the source level.
(ii) Certain behavioural LNT constructs are too powerful to be expressed
using only the behaviour part of LOTOS; for such constructs, the data part of
LOTOS must also be used, by generating auxiliary sorts, operations, and alge-
braic equations. For instance, the case construct present in LNT processes is
translated using both the behaviour part of LOTOS (nondeterministic choice
and Boolean guards are used to express the selection between the various
case branches) and the data part of LOTOS (equations, considered as rewrite
rules, are used to express pattern matching, which is not supported by the
behaviour part of LOTOS).
(iii) An involved part of the algorithm translates the LNT parallel composi-
tion operator, which is n-ary, into an algebraic combination of LOTOS parallel
composition operators, which are binary. Such a translation does not always
succeed, meaning that certain network topologies specified in LNT cannot be
expressed in LOTOS [51]; however, we never faced this problem in real-life
case studies. Also, it was not possible to introduce in LNT the concept of
n-among-m synchronization proposed in [51], because it is not supported in
LOTOS; such a limitation is more annoying in practice, e.g., for the specifica-
tion of Web services, which quite often require 2-among-m synchronization.
(iv) Another involved part of the algorithm translates the LNT sequential
composition operator (which is unique, symmetric, atomic, and lets all val-
ues of variables assigned on its left-hand side flow implicitly to its right-hand
side [40]) into one of the two LOTOS sequential composition operators, either
the action-prefix operator (which is asymmetric, atomic, and lets variable val-
ues flow implicitly from its left- to its right-hand side) or the “enable” operator
(which is symmetric, non-atomic as it generates a τ -transition, and forbids
variable values to flow from its left- to its right-hand side except if these
variables are explicitly listed in an accept clause). Following the principles
set for the CHP2LOTOS translator [46], we chose to generate action prefix
as much as possible and “enable” only when unavoidable, which produces
better LOTOS code at the expense of a more involved translation. To fight
state-space explosion and preserve strong equivalence between the LNT and
LOTOS specifications, we slightly deviated from LOTOS semantics by adding
a special pragma “(*! atomic *)” that instructs the LOTOS compiler not to
generate a τ -transition when implementing the “enable” operator. There are
many other algorithmic subtleties, such as the creation of auxiliary “contin-
uation” processes for those LNT behaviours following loops and conditionals
(i.e., case, if, and select), the translation of parallel composition occurring
on the left-hand side of sequential composition where each parallel branch
computes the values of different variables, the translation of out and in-out
parameters of LNT processes into exit results returned by LOTOS processes,
the need to respect the strict typing rules set by LOTOS “functionality” con-
straints, the optimization of tail-recursive process instantiations, etc.
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In addition to the above tools, which ultimately translate an LNT specification
into a sequential C program, there also exists a compiler named DLC (“Distrib-
uted LNT Compiler”) [31,32] that translates an LNT specification into a set of
C programs executing concurrently and communicating through TCP sockets;
to produce such a distributed implementation, the DLC compiler exploits the
concurrent architecture defined by the parallel composition operators present in
the LNT specification.

7.3 Applications of LNT

The usability of the LNT language gradually increased with the progress of its
translator to LOTOS. As of mid-2009, this translator was sufficiently complete
and robust to allow a total shift from LOTOS to LNT at INRIA Grenoble,
where no LOTOS code has been manually written since then, LNT being now
the preferred high-level language for modelling concurrent systems and analyzing
them using the CADP tools.

At Grenoble INP and Université Grenoble-Alpes, LNT has also replaced
LOTOS to teach master students the fundamentals of concurrency theory. We
observed that LNT enables students to better focus on high-level concepts, rather
than getting lost in low-level details of LOTOS syntax and static semantics.

The LNT language and its tools have been used for many case studies, at
INRIA Grenoble and in other academic or industrial labs as well (we only men-
tion those not affiliated with the authors’ institutions):

– Avionics: verification of an equipment failure management protocol6 and of
a ground-plane communication protocol7 [52,98] provided by Airbus;

– Cloud computing : verification of self-configuration protocols8 [27] (Orange
Labs), of the Synergy reconfiguration protocol for component-based sys-
tems9 [8], and of dynamic management protocol for cloud applications10 [1];

– Distributed algorithms: verification and performance evaluation of mutual
exclusion protocols11 [78], verification of multiway synchronization proto-
cols12 [28,30,32], specification and rapid prototyping of Stanford’s RAFT
distributed consensus algorithm13 [29,32], and performance evaluation of con-
current data structures14 [102] (RWTH Aachen, Germany and Chinese Acad-
emy of Sciences, Beijing, China);

– Hardware design: formal analysis and co-simulation of a dynamic task dis-
patcher15 [69] (STMicroelectronics), formal analysis of ARM’s ACE cache

6 http://cadp.inria.fr/case-studies/09-k-failure-management.html.
7 http://cadp.inria.fr/case-studies/09-h-tftp.html.
8 http://cadp.inria.fr/case-studies/11-i-selfconfig.html.
9 http://cadp.inria.fr/case-studies/11-h-synergy.html.

10 http://cadp.inria.fr/case-studies/13-g-dynamic-management.html.
11 http://cadp.inria.fr/case-studies/10-f-mutex.html.
12 http://cadp.inria.fr/case-studies/13-d-multiway.html.
13 http://cadp.inria.fr/case-studies/15-g-raft.html.
14 http://cadp.inria.fr/case-studies/16-b-concurrent.html.
15 http://cadp.inria.fr/case-studies/11-g-dtd.html.
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coherency protocol16 [64,65] (STMicroelectronics), verification and rapid pro-
totyping of an asynchronous model of the Data Encryption Standard17 [91],
verification of a fault-tolerant routing algorithm for a network-on-chip18 [103]
(University of Utah, USA);

– Human-computer interaction: specification and validation of graphical user
interfaces for a prototype control room of a nuclear power plant19 [85] and of
plastic user interfaces exploiting domain ontologies20 [20] (Toulouse, France);

– Industrial systems: model-based testing of the CANopen field bus and Ener-
gyBus architecture21 [53] (Saarland University, Germany), formal specifica-
tion and rapid prototyping of a software controller for a metal processing
plant22 [47].

Another indication of the practical usefulness of LNT is given by its use as a
target language in a growing number of translators, which implement various
languages by translating them to LNT. Indeed, LNT suitably replaces LOTOS
for automatically-generated code as well as for handwritten code, since the trans-
lation to LNT is much easier than the translation to LOTOS, and because it is
now preferable to let the LNT2LOTOS translator take in charge all algorithmic
subtleties required to produce valid and efficient LOTOS code. We are aware of
the following tools (again, we do not mention the authors’ institutions):

– The BPMN2Py/Py2LNT translators23 [55,86] for analyzing choreographies
of Web services specified in WS-CDL (Université de Nantes, France);

– The CMT translator [73] for the BPEL/WSDL specification languages
for Web services (Tsinghua University, Beijing, China and MIT, Cam-
bridge, MA, USA), and another, more complete algorithm for translating
BPEL/WDSL/Xpath/XML Schema to LNT [98];

– The DFTCalc tool24 [3,54] for Dynamic Fault Trees (University of Twente,
The Netherlands);

– The EB32LNT translator25 [100] for the EB3 specification language for infor-
mation systems (Université Paris Est, France);

– The GRL2LNT translator26 [62] for the GRL specification language for GALS
(Globally Asynchronous Locally Synchronous) systems;

– The OCARINA tool27 [84] for the AADL architecture description language
(ISAE, Toulouse, France and University of Sfax, Tunisia);

16 http://cadp.inria.fr/case-studies/13-e-ace.html.
17 http://cadp.inria.fr/case-studies/15-f-des.html.
18 http://cadp.inria.fr/case-studies/13-f-utahnoc.html.
19 http://cadp.inria.fr/case-studies/14-d-hmi.html.
20 http://cadp.inria.fr/case-studies/15-d-plastic-user-interfaces.html.
21 http://cadp.inria.fr/case-studies/14-c-energybus.html.
22 http://cadp.inria.fr/case-studies/17-a-production-cell.html.
23 http://cadp.inria.fr/software/12-e-choreography.html.
24 http://cadp.inria.fr/software/12-i-dftcalc.html.
25 http://cadp.inria.fr/software/13-a-eb3.html.
26 http://cadp.inria.fr/software/14-c-grl.html.
27 http://cadp.inria.fr/software/15-b-ocarina.html.
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– The PIC2LNT translator28 [77] for the applied π-calculus (an extension of
the π-calculus with typed data values);

– the VBPMN translator29 [87] for the BPMN language for describing business
processes (Université Paris Ouest, France).

8 Conclusion

Computer systems handling asynchronous concurrency are inherently complex
and cannot be reliably designed without adequate specification languages sup-
ported by sound analysis tools. Ed Brinksma contributed to this agenda in two
significant ways: (i) by leading the definition and standardization of the LOTOS
language, which exposed the key ideas of process calculi to a large audience and
sparkled considerable interest in academia and industry; (ii) by sending a clear
signal that LOTOS, despite its qualities, was not the end of the road and that
further enhancements were possible and desirable.

The present paper provided a retrospective account of the evolution of the
LOTOS-based family of specification languages, starting from LOTOS itself,
reviewing the successive proposals for enhancing LOTOS (Extended LOTOS,
Modular LOTOS, E-LOTOS, and LOTOS NT), and ending with LNT, the
most recent descendent, which preserves the most valuable ideas of process cal-
culi but entirely modifies the shape of the language to make it compatible with
mainstream programming languages. The feedback acquired by using LNT for
the design of complex industrial systems suggests that LNT provides a viable
and effective replacement for LOTOS. Quoting STMicroelectronics engineers:
“Although modeling the [Dynamic Task Dispatcher] in a classical formal specifi-
cation language, such as LOTOS, is theoretically possible, using LNT made the
development of a formal model practically feasible” [69].

Concerning future work, we can highlight two main research directions:

– The LNT language is not yet frozen and can still be further enhanced. For
instance, the unification of exceptions across functions and processes is almost
complete. We now consider equipping processes with optional return behav-
iours, so that functions become a strict subset of processes. We also plan
to introduce, beyond assertions that already exist in LNT, pre-conditions,
post-conditions, and loop invariants that would allow the application of main-
stream theorem provers and static analyzers to LNT specifications.

– The current implementation of LNT by translation to LOTOS is justified
by the reuse of existing LOTOS tools. It is intellectually challenging, but
sometimes overly complex: for instance, LNT functions, written in a func-
tional/imperative style, are first translated to LOTOS algebraic equations,
and then compiled back to imperative C code. A native implementation of
LNT would certainly be simpler and more efficient; it would also overcome

28 http://cadp.inria.fr/software/13-d-pic2lnt.html.
29 http://cadp.inria.fr/software/16-a-vbpmn.html.
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certain LOTOS limitations that currently prevent useful constructs, such as
the trap operator for exception catching [49] and the n-among-m synchro-
nization pattern in parallel composition [51], from being added to LNT.
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55. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)

http://dx.doi.org/10.1007/3-540-36135-9_18
http://dx.doi.org/10.1007/3-540-45937-5_3
http://dx.doi.org/10.1007/978-3-642-02652-2_20
http://dx.doi.org/10.1007/978-3-642-02652-2_20
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-319-25423-4_19
http://dx.doi.org/10.1007/978-3-319-25423-4_19


24 H. Garavel et al.

ATVA 2012. LNCS, vol. 7561, pp. 238–253. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33386-6 20

56. Huecas, G., Llana-Dı́az, L., Quemada, J., Robles, T., Verdejo, A.: Process calculi:
E-LOTOS. In: Bowman, H., Derrick, J. (eds.) Formal Methods for Distributed
Processing: A Survey of Object-Oriented Approaches, pp. 77–104. Cambridge
University Press, Cambridge (2001)

57. Huecas, G., Llana-Dı́az, L., Robles, T., Verdejo, A.: E-LOTOS: an overview. In:
Marsan, M.A., Quemada, J., Robles, T., Silva, M. (eds.) Proceedings of the Work-
shop on Formal Methods and Telecommunications (WFMT’99), Zaragoza, Spain,
pp. 94–102. Prensas Universitarias de Zaragoza, September 1999

58. ISO/IEC: LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. Draft International Standard 8807, Inter-
national Organization for Standardization - Information Processing Systems -
Open Systems Interconnection, Geneva, July 1987

59. ISO/IEC: ESTELLE - A Formal Description Technique Based on an Extended
State Transition Model. International Standard 9074, International Organization
for Standardization - Information Processing Systems - Open Systems Intercon-
nection, Geneva, September 1988

60. ISO/IEC: LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization - Information Processing Systems - Open Sys-
tems Interconnection, Geneva, September 1989

61. ISO/IEC: Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization - Information Tech-
nology, Geneva, September 2001

62. Jebali, F., Lang, F., Mateescu, R.: Formal modelling and verification of GALS
systems using GRL and CADP. Formal Asp. Comput. 28(5), 767–804 (2016)

63. Jourdan, M., Parigot, D.: Application development with the FNC-2 attribute
grammar system. In: Hammer, D. (ed.) CC 1990. LNCS, vol. 477, pp. 11–25.
Springer, Heidelberg (1991). doi:10.1007/3-540-53669-8 71

64. Kriouile, A., Serwe, W.: Formal analysis of the ACE specification for cache coher-
ent systems-on-chip. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS, vol.
8187, pp. 108–122. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41010-9 8

65. Kriouile, A., Serwe, W.: Using a formal model to improve verification of
a cache-coherent system-on-chip. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 708–722. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 62

66. Lang, F.: Compositional verification using SVL scripts. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 465–469. Springer, Heidelberg (2002).
doi:10.1007/3-540-46002-0 33

67. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). doi:10.
1007/11589976 6. Full version available as INRIA Research Report RR-5673

68. Lang, F., Salaün, G., Hérilier, R., Kramer, J., Magee, J.: Translating FSP into
LOTOS and networks of automata. Formal Asp. Comput. 22(6), 681–711 (2010)

69. Lantreibecq, E., Serwe, W.: Formal analysis of a hardware dynamic task dis-
patcher with CADP. Sci. Comput. Program. 80(Part A), 130–149 (2014)

70. Leduc, G., Jeffrey, A., Sighireanu, M.: Introduction à E-LOTOS. In: Cavalli, A.
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72. Léonard, L., Leduc, G.: A formal definition of time in LOTOS. Formal Asp.
Comput. 10(3), 248–266 (1998)

73. Li, X., Madnick, S., Zhu, H., Fan, Y.: Improving data quality for web services
composition. In: Proceedings of the 7th International Workshop on Quality in
Databases (QDB 2009), Lyon, France, August 2009

74. Massetto, F.I., de Souza, W.L., Zorzo, S.D.: Simulator for E-LOTOS specifica-
tions. In: Proceedings of the 35th Annual Simulation Symposium (SS 2002), San
Diego, California, USA, pp. 389–394. IEEE Computer Society, Washington, D.C.,
April 2002

75. Mateescu, R.: A generic framework for model checking software architectures. In:
Augusto, J.C., Ultes-Nitsche, U. (eds.) Proceedings of the 2nd International Work-
shop on Verification and Validation of Enterprise Information Systems (VVEIS
2004), Porto, Portugal. INSTICC Press, April 2004. Keynote presentation

76. Mateescu, R., Monteiro, P.T., Dumas, E., de Jong, H.: Computation tree regular
logic for genetic regulatory networks. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee,
I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 48–63. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88387-6 6

77. Mateescu, R., Salaün, G.: PIC2LNT: model transformation for model check-
ing an applied pi-calculus. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 192–198. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36742-7 14

78. Mateescu, R., Serwe, W.: Model checking and performance evaluation with CADP
illustrated on shared-memory mutual exclusion protocols. Sci. Comput. Program.
78(7), 843–861 (2013)

79. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68237-0 12

80. de Meer, J., Roth, R., Vuong, S.: Introduction to algebraic specifications based
on the language ACT ONE. Comput. Netw. ISDN Syst. 23(5), 363–392 (1992)

81. Milne, G.J.: CIRCAL and the representation of communication, concurrency, and
time. ACM Trans. Progr. Lang. Syst. 7(2), 270–298 (1985)

82. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). doi:10.1007/3-540-10235-3

83. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267–
310 (1983)

84. Mkaouar, H., Zalila, B., Hugues, J., Jmaiel, M.: From AADL model to LNT spec-
ification. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015. LNCS,
vol. 9111, pp. 146–161. Springer, Cham (2015). doi:10.1007/978-3-319-19584-1 10

85. Oliveira, R., Dupuy-Chessa, S., Calvary, G., Dadolle, D.: Using formal models to
cross check an implementation. In: Luyten, K., Palanque, P. (eds.) Proceedings of
the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS 2016), Brussels, Belgium, pp. 126–137. ACM, New York, June 2016

86. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies.
In: Proceedings of the 27th Symposium On Applied Computing (SAC 2012), Riva
del Garda, Italy. ACM Press, New York, March 2012

87. Poizat, P., Salaün, G., Krishna, A.: Checking business process evolution. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 36–
53. Springer, Cham (2017). doi:10.1007/978-3-319-57666-4 4

http://dx.doi.org/10.1007/978-3-540-88387-6_6
http://dx.doi.org/10.1007/978-3-642-36742-7_14
http://dx.doi.org/10.1007/978-3-642-36742-7_14
http://dx.doi.org/10.1007/978-3-540-68237-0_12
http://dx.doi.org/10.1007/978-3-540-68237-0_12
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/978-3-319-19584-1_10
http://dx.doi.org/10.1007/978-3-319-57666-4_4


26 H. Garavel et al.
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