
Joost-Pieter Katoen
Rom Langerak
Arend Rensink (Eds.)

ModelEd, TestEd, TrustEd

Fe
st

sc
hr

ift
LN

CS
 1

05
00

Essays Dedicated to Ed Brinksma
on the Occasion of His 60th Birthday

 123

Lecture Notes in Computer Science 10500

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Joost-Pieter Katoen • Rom Langerak
Arend Rensink (Eds.)

ModelEd, TestEd, TrustEd
Essays Dedicated to Ed Brinksma
on the Occasion of His 60th Birthday

123

Editors
Joost-Pieter Katoen
RWTH Aachen University
Aachen
Germany

and

University of Twente
Enschede
The Netherlands

Rom Langerak
University of Twente
Enschede
The Netherlands

Arend Rensink
University of Twente
Enschede
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68269-3 ISBN 978-3-319-68270-9 (eBook)
DOI 10.1007/978-3-319-68270-9

Library of Congress Control Number: 2017954907

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: The drawing on the front cover depicts (an abstract version of) a Lotus flower.
Ed Brinksma is most well-known for the development of the LOTOS specification language and used a
similar figure in one of his papers to indicate several equivalences for LOTOS. Used with permission.

Photograph on p. V: Copyright on the photograph of the honoree by the University of Twente,
The Netherlands. Used with permission.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-6143-1926

Ed Brinksma

Foreword

This Festschrift is a birthday salute to Ed Brinksma, who recently celebrated his 60th
birthday. It contains contributions by a number of Ed’s colleagues, former PhD stu-
dents, and researchers with whom Ed has been collaborating intensively. Ed has been
very active in academic research; about 12 years ago he became Director of the
Embedded Systems Institute followed by many years as Rector of the University of
Twente, a job he fulfilled until the end of 2016 with full devotion and great enthusiasm.

The Festschrift is a tribute to the various seminal contributions of Ed Brinksma. Ed
studied mathematics at the Rijksuniversiteit Groningen and completed his studies in the
field of mathematical logics under the supervision of Johan van Benthem, one of the
contributors to this Festschrift. In 1982, he took up an assistant professorship at the
University of Twente, those days called the Technische Hogeschool Twente. It seems
Twente is the right place for Ed, as he is still employed at this university! In 1988, Ed
received a doctoral degree from Twente for his dissertation entitled “On the Design of
Extended LOTOS,” which he completed under the supervision of Chris Vissers. As a
34-year-old researcher he got a full professorship in Twente in 1991; those days Ed was
one of the youngest professors (if not the youngest) in computer science in The
Netherlands.

Ed’s research is in the field of formal methods, or as he likes to phrase it, applied
mathematics in computer science. In his research philosophy, formal methods research
is based on a carefully balanced interaction between foundational aspects on the one
hand, and software tool support and applications on the other. His research reflects this.
Ed is perhaps most well-known for his work on the modelling formalism LOTOS
(language of the temporal ordering of events), the only process algebra that made it into
an international standard (in 1989) for describing communication protocols and dis-
tributed systems.

Ed recognized that a language in itself is insufficient. Together with Chris Vissers,
Pippo Scollo, and Marten van Sinderen, he developed various specification techniques
— in current jargon one would nowadays probably call them “patterns” — to assist the
design process of distributed systems. The so-called constraint-oriented specification
style is a prominent example of such pattern. He complemented this with a vision on
transformational design that he developed for, amongst others, interface refinement,
decomposition of processes into distributed ones, and the transformational design of
cache coherency protocols.

Ed has been one of the pioneers of systematic and rigorous testing of implemen-
tations of (distributed) systems. His identification of the so-called canonical tester and
the accompanying test derivation algorithms constitute the basis for modern
model-based testing and have been important inputs to the ISO standard on testing.
Together with Jan Tretmans, one of his first PhD students, he developed this further.
Jan’s contribution to this Festschrift gives a nice account of how this approach today
has evolved into a practical one.

Another area that Ed pioneered has been the integration of performance and relia-
bility aspects into formal methods. In the mid-1990s, he equipped process algebras
with probabilities and time; later he developed algorithms for timed automata enriched
with prices. His early aim, the full integration of performance and reliability analysis
into a single framework, has formed the basis of current flourishing research areas such
as probabilistic model checking. Quantitative extensions of modelling formalisms and
semantic models are still an active area of research. Various contributions in this
Festschrift give a good indication of what has been achieved so far.

Other topics Ed intensively considered are true concurrency semantics, first for
LOTOS, and later for the sake of simplifying the verification. Later, he became
increasingly interested in modelling where the central question is where good and
adequate models come from. The contribution of Bernhard Steffen and his co-authors
to this Festschrift shows how learning can be applied to synthesize such models in a
semi-automated manner. A fascinating development on this topic can be witnessed in
the last few decades.

It is worth to mentioning that Ed played a decisive role in establishing international
conferences in the field of formal methods. He has been one of the key players in the
establishment of the conference series Formal Description Techniques (FORTE) and
Protocol Specification, Verification, and Testing (PSTV). He also took the initiative to
set up the first meetings on formal testing, resulting in the International Workshop on
Protocol Test Systems (IWPTS), and actively stimulated the birth of the conference
series on Quantitative Evaluation of Systems (QEST). FORTE and QEST still exist;
IWPTS has been the trendsetter for various other workshops and conferences in testing.
In 1995, together with Rance Cleaveland, Kim Guldstrand Larsen, and Bernhard
Steffen, Ed took the initiative to launch the TACAS (Tools and Algorithms for the
Construction and Analysis of Systems) workshop. This European counterpart to the (at
that time) US-dominated CAV conference has over the years evolved into one of the
most prominent conferences on formal verification and tools.

Ed’s vision of science, something he discusses in an extremely passionate manner
and with extensive (and lengthy) motivation, has inspired many of his pupils and
fellow researchers. In particular, his search for simplicity — in his inauguration speech
in 1991, Ed summarized this as, “the development of formal methods makes no sense
when this is not accompanied by a dedicated effort to present ideas in a crystal clear and
simple manner”1 — has always been a key element in his view.

Besides being our example of an excellent researcher, inspiring mentor, and a great
boss, Ed first and foremost is our friend. We could have filled yet another book with
anecdotes about trips – do you still remember Crete, Aalborg, Beijing, and Australia,
Ed? Just to mention a few – and stories about Lotosphere dinners, entertaining evenings
(nights?) in bars and restaurants. Thanks for all the wonderful times, and thanks for
being a great friend and colleague. Ed, many congratulations on your 60th birthday!
Have a good one.

1 De ontwikkeling van formele methoden is zinloos wanneer deze niet wordt begeleid door gerichte
inspanning om de presentatie van de ideeen zo helder en eenvoudig mogelijk te houden.

VIII Foreword

We thank Springer, in particular Alfred Hofmann, Anna Kramer, and Ingrid Haas,
for their support, and thank Harold Bruintjes for his assistance in generating the final
version of the Festschrift. Thomas Noll is thanked for his reviewing efforts and Ida den
Hamer for the local organization.

August 2017 Joost-Pieter Katoen
Rom Langerak
Arend Rensink

Foreword IX

Contents

Modeling and Semantics

From LOTOS to LNT . 3
Hubert Garavel, Frédéric Lang, and Wendelin Serwe

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 27
Tommaso Bolognesi

Problem Solving Using Process Algebra Considered Insightful 48
Jan Friso Groote and Erik P. de Vink

Delayed-Choice Semantics for Pomset Families and Message
Sequence Graphs . 64

Clemens Dubslaff and Christel Baier

Testing

On the Existence of Practical Testers . 87
Jan Tretmans

Compositional Testing of Real-Time Systems . 107
Kim G. Larsen, Axel Legay, Marius Mikučionis, Brian Nielsen,
and Ulrik Nyman

Model-Based Testing Without Models: The TodoMVC Case Study. 125
Alexander Bainczyk, Alexander Schieweck, Bernhard Steffen,
and Falk Howar

Diagnosis and Testing: How is Their Relation? Can They Be Combined? . . . 145
Laura Brandán Briones and Agnes Madalinski

Analysis

Verifying Properties of Systems Relying
on Attribute-Based Communication . 169

Rocco De Nicola, Tan Duong, Omar Inverso, and Franco Mazzanti

How Much Are Your Geraniums? Taking Graph Conditions Beyond
First Order . 191

Arend Rensink

http://dx.doi.org/10.1007/978-3-319-68270-9_1
http://dx.doi.org/10.1007/978-3-319-68270-9_2
http://dx.doi.org/10.1007/978-3-319-68270-9_3
http://dx.doi.org/10.1007/978-3-319-68270-9_4
http://dx.doi.org/10.1007/978-3-319-68270-9_4
http://dx.doi.org/10.1007/978-3-319-68270-9_5
http://dx.doi.org/10.1007/978-3-319-68270-9_6
http://dx.doi.org/10.1007/978-3-319-68270-9_7
http://dx.doi.org/10.1007/978-3-319-68270-9_8
http://dx.doi.org/10.1007/978-3-319-68270-9_9
http://dx.doi.org/10.1007/978-3-319-68270-9_9
http://dx.doi.org/10.1007/978-3-319-68270-9_10
http://dx.doi.org/10.1007/978-3-319-68270-9_10

iDSL: Automated Performance Evaluation of Service-Oriented Systems 214
Freek van den Berg, Boudewijn R. Haverkort, and Jozef Hooman

Probabilities

Against All Odds: When Logic Meets Probability . 239
Johan van Benthem

FlyFast: A Scalable Approach to Probabilistic Model-Checking Based
on Mean-Field Approximation . 254

Diego Latella, Michele Loreti, and Mieke Massink

The Road from Stochastic Automata to the Simulation of Rare Events 276
Pedro R. D’Argenio, Carlos E. Budde, Matias David Lee, Raúl E. Monti,
Leonardo Rodríguez, and Nicolás Wolovick

System Dynamics

Discretization of Continuous Dynamical Systems Using UPPAAL 297
Stefano Schivo and Rom Langerak

Analysis and Design of Interconnected Systems: A Systems
and Control Perspective . 316

Arjan van der Schaft

Applications

Runtime Monitoring Based on Interface Specifications. 335
Ivan Kurtev, Jozef Hooman, and Mathijs Schuts

From Lotosphere to Thermosphere . 357
Holger Hermanns

Boosting Fault Tree Analysis by Formal Methods . 368
Joost-Pieter Katoen and Mariëlle Stoelinga

Author Index . 391

XII Contents

http://dx.doi.org/10.1007/978-3-319-68270-9_11
http://dx.doi.org/10.1007/978-3-319-68270-9_12
http://dx.doi.org/10.1007/978-3-319-68270-9_13
http://dx.doi.org/10.1007/978-3-319-68270-9_13
http://dx.doi.org/10.1007/978-3-319-68270-9_14
http://dx.doi.org/10.1007/978-3-319-68270-9_15
http://dx.doi.org/10.1007/978-3-319-68270-9_16
http://dx.doi.org/10.1007/978-3-319-68270-9_16
http://dx.doi.org/10.1007/978-3-319-68270-9_17
http://dx.doi.org/10.1007/978-3-319-68270-9_18
http://dx.doi.org/10.1007/978-3-319-68270-9_19

Modeling and Semantics

From LOTOS to LNT

Hubert Garavel1,2,3(B), Frédéric Lang1,2,3, and Wendelin Serwe1,2,3

1 INRIA, Grenoble, France
{hubert.garavel,frederic.lang,wendelin.serwe}@inria.fr

2 Univ. Grenoble Alpes, LIG, 38000 Grenoble, France
3 CNRS, LIG, 38000 Grenoble, France

http://convecs.inria.fr

Abstract. We revisit the early publications of Ed Brinksma devoted,
on the one hand, to the definition of the formal description technique
LOTOS (ISO International Standard 8807:1989) for specifying commu-
nication protocols and distributed systems, and, on the other hand,
to two proposals (Extended LOTOS and Modular LOTOS) for mak-
ing LOTOS a simpler and more expressive language. We examine how
this scientific agenda has been dealt with during the last decades. We
review the successive enhancements of LOTOS that led to the definition
of three languages: E-LOTOS (ISO International Standard 15437:2001),
then LOTOS NT, and finally LNT. We present the software implemen-
tations (compilers and translators) developed for these new languages
and report about their use in various application domains.

Keywords: Abstract data type · Algebraic specification · Concurrency
theory · E-LOTOS · Formal description technique · Formal method ·
Formal specification · LOTOS · LNT · Process algebra · Process
calculus · Specification language

1 Introduction

The present article was written in honor of Ed Brinksma and included in a
collective Festschrift book offered to him at the occasion of his 60th birthday.

The first part of Ed Brinksma’s research career has been devoted to the
design of formal methods for the specification of communication protocols and
distributed systems, the LOTOS language being the common theme and vital
lead for the scientific contributions. This first part approximately extends over
twelve years, between 1984 (as dated by the conference article [14]) and 1995 (as
dated by the book chapter [9]). It was directly succeeded, with some chronological
overlap, by a second part centered on conformance testing for protocols (with a
first paper [16] published in 1991) and a third part centered on real time and
performance evaluation (with early papers, e.g., [15] published in 1995).

In the present article, we focus on this first part, in which we distinguish
two different threads of work: (i) the definition of the LOTOS language, which
culminated with its adoption by ISO (International Standard 8807:1989) and (ii)
c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 3–26, 2017.
DOI: 10.1007/978-3-319-68270-9 1

4 H. Garavel et al.

the elaboration of two proposals for enhancing LOTOS, by introducing valuable
features not present in the standard, either because they were not ready on time
when it was adopted or because they did not reach international consensus.

The present article is organized as follows. Section 2 recalls the contributions
of Ed Brinksma to the definition of LOTOS and gives a brief account of the
impact of this language in academia and industry. The two next sections review
two early languages proposed by Ed Brinksma for enhancing LOTOS, namely
Extended LOTOS (Sect. 3) and Modular LOTOS (Sect. 4). The three next sec-
tions present three more recent languages that, between 1993 and now, have
been proposed to supersede LOTOS, namely E-LOTOS (Sect. 5), LOTOS NT
(Sect. 6), and LNT (Sect. 7), with some discussion about the actual impact of
these languages. Finally, Sect. 8 gives a few concluding remarks.

2 LOTOS

Among all publications of Ed Brinksma related to the definition of LOTOS, we
highlight three key contributions, each of a different nature and scope:

– Obviously, the ISO Draft International Standard defining LOTOS [58] occu-
pies a place of choice. Even if earlier drafts of LOTOS had circulated before
(e.g., Ed Brinksma’s first tutorial on LOTOS [10] given in 1985) and even if
experiments with LOTOS had already been done at some universities (e.g.,
the model-checking verification of protocols in 1986 [33,34]), this Draft Inter-
national Standard published in 1987 was the first complete, coherent defin-
ition of LOTOS made available to the international community. Two years
after, this document reached its final status by being approved as the ISO
International Standard 8807:1989 [60].
The definition of LOTOS was a collective achievement done within an ISO
committee (project 97.21.20.2) under the leadership of Ed Brinksma, who
was the editor in charge of producing the standard. Tommaso Bolognesi,
Günter Karjoth, Luigi Logrippo, Jan de Meer, Elie Najm, Juan Quemada,
Pippo Scollo, Alaister Tocher, Jan Tretmans, and Chris Vissers participated,
among others, in this committee.
The resulting LOTOS language was an audacious combination of the most
recent innovations in formal methods at that time. To describe and manip-
ulate data structures, the LOTOS committee selected abstract data types—
more precisely, a dialect of the algebraic language ACT ONE [25,26,80]. To
describe the behaviour of concurrent processes, the committee retained the
key ideas of process algebra, blending into a single language the best features
of several calculi, namely CCS [82], TCSP [17], and Circal [81]; LOTOS also
brought original ideas, such as its “disable” operator, which models nonde-
terministic disruption (e.g., crashes and failures), and its “enable” operator,
which allows value-passing sequential continuation after the termination of a
group of parallel processes.
The definition of LOTOS provided in the ISO standard was fully formal,
much in line with the longstanding Dutch tradition of computer-language

From LOTOS to LNT 5

definitions. The syntax was given as a BNF grammar; the static semantics
was specified as a set of mathematical constraints and functions defined by
induction over syntactic constructs; the semantics of data types was expressed
as a many-sorted term algebra obtained by quotienting the algebra generated
by a derivation system; finally the behavioural semantics of processes was
defined operationally using a set of structured operational semantics rules.
This formal definition was followed by annexes providing informal explana-
tions and complementary information.

– Jointly written with Tommaso Bolognesi, Ed Brinskma’s tutorial on LOTOS
[6] is also a highly cited publication. Written in a lively style and illustrated
with a wealth of examples, this tutorial targets the end users of LOTOS. It
is orthogonal and complementary to the (somewhat dry) ISO standard defi-
nition, primarily oriented towards language implementers and semanticists.

– Another insightful contribution is Ed Brinskma’s 1989 paper on constraint-
oriented specification [12]. It is well-known that the decomposition of a com-
puter system into concurrent/parallel tasks may take two forms: it is either
physical if the decomposition closely reflects the actual distribution of tasks
over processors, or logical otherwise, if the decomposition is rather intended
to provide the system with a modular structure that does not necessarily
correspond to its actual topology. Ed Brinksma develops the latter approach
in the framework of the LOTOS multiway rendezvous, which enables two
or more processes to synchronize, negotiate, and exchange data values dur-
ing one atomic event. The paper formulates the fundamental intuition of
parallel composition as conjunction, meaning that the multiway rendezvous
achieves the logical conjunction of all the individual constraints expressed by
a set of processes running concurrently. This idea enables a certain degree
of “declarative” programming (namely, constraint solving) to be introduced
in the framework of a fundamentally “operational” (i.e., constructive, imper-
ative) language such as LOTOS. The usefulness of the approach is demon-
strated on realistic examples of communication protocols [12], but it is also
relevant to other application domains, e.g., hardware circuits ([41] shows how
the complex arbitration protocol of the SCSI-2 bus can be concisely modelled
using an eight-party LOTOS rendezvous) or robotics ([47] illustrates how a
software controller for an entire manufacturing plant can be obtained as the
parallel composition of many simple controllers, one for each device or degree
of freedom of a device in the plant).

Retrospectively, the international effort invested in LOTOS was successful in
several respects:

– Although LOTOS is a committee-designed language based on two very differ-
ent concepts (algebraic data types and process calculi), it achieves a suitable
compromise and a fair integration between its various elements. All its lan-
guage constructs (perhaps with the exception of the choice and par operators
on gate lists) derive from concrete needs and are useful in practice.

– LOTOS is clearly more abstract and higher level than the two other standard-
ized languages it was competing with (namely, Estelle [59] and SDL [18]), and

6 H. Garavel et al.

proved that a specification language could be formal and executable at the
same time.

– The design of LOTOS made it clear that process calculi were not only math-
ematical notations for studying concurrency theory, but that they could be
turned into computer languages used to model real-life systems. LOTOS was
indeed the first process calculus in which large specifications of complex sys-
tems (e.g., protocols and services of OSI and ISDN networks) were produced.
Later, it was shown that the high abstraction level of LOTOS makes it also
suitable to other application domains, e.g., multiprocessor architectures and
asynchronous circuits.

– The LOTOS community put strong emphasis on software tools, often in
the framework of European projects such as SEDOS, LOTOSphere, SPECS,
EUCALYPTUS-1 and -2, etc. Today, most of these tools are no longer avail-
able, but the CADP toolbox1 [45] is still actively maintained. Also, many
ideas present in early LOTOS tools would certainly benefit from modern
developments in symbolic execution and verification technology.

On the negative side, one can point out two main shortcomings of LOTOS:

– Despite its status of international standard, LOTOS did not manage to unite
the academic community working on process calculi. Not only the preexisting
algebras/calculi ACP, CCS, and CSP remained, but new languages appeared,
e.g., μCRL. This resulted in fragmented efforts and a lack of critical mass that
became apparent in the mid-90s.

– LOTOS also failed to gain wide industrial acceptance, mostly due to its so-
called “steep learning curve”. Because it is an abstract, expressive, and flexible
language based on concepts absent from mainstream languages, LOTOS is
best used by high-level experts rather than average software programmers:
this is unfortunately a fatal flaw as far as dissemination is concerned.

3 Extended LOTOS

As soon as the definition of LOTOS was frozen as an ISO standard, it appeared
that the language was not fully satisfactory and that some of its features could
be redesigned in a better way. Ed Brinksma’s role as the editor of the LOTOS
standard did not prevent him from suggesting enhancements to LOTOS.

His first contribution in this respect is his PhD thesis [11], defended in 1988,
which proposes a language named “Extended LOTOS” that significantly dif-
fers from LOTOS. Concerning data specifications, Extended LOTOS keeps the
abstract data types of LOTOS, but adds better support for modules. Concern-
ing behavioural specifications (namely, concurrent processes), Extended LOTOS
brings deeper changes:

– It introduces a notion of action product inspired from SCCS [83], whereas
LOTOS only has simple actions.

1 http://cadp.inria.fr.

http://cadp.inria.fr

From LOTOS to LNT 7

– Extended LOTOS attempts at unifying in one single operator both forms of
sequential composition (action prefix and “enable”) that exist in LOTOS.

– Extended LOTOS breaks with the algebraic style of LOTOS and other process
calculi by replacing unary and binary operators with n-ary constructs having
a fully bracketed syntax, e.g., “sel B1 [] B2 [] ... [] Bn endsel” for nondeter-
ministic choice or “par B1 || B2 || ... || Bn endpar” for parallel composition.

– Extended LOTOS proposes other desirable features, among which a par oper-
ator ranging over a finite domain of values.

Although Extended LOTOS has never been actually implemented, these ideas
had the merit to point out the main shortcomings of LOTOS and made it clear
that the language, despite its status of international standard, still deserved
major enhancements.

4 Modular LOTOS

Published three years later, a deliverable (edited by Ed Brinksma) of the LOTO-
Sphere project [13] adopts a point of view orthogonal to that of Extended
LOTOS: leaving aside all ideas for improving the behaviour part of LOTOS,
this deliverable focuses on enhancements to the data part of LOTOS, in which
usability problems have been identified as most crucial, and proposes a new lan-
guage called “Modular LOTOS”, two synthetic presentations of which can also
be found in [9,90]. Modular LOTOS suggests the following enhancements:

– Distinction between constructors and functions, whereas LOTOS made no
difference between these two forms of operations;

– Introduction of partial functions, whereas LOTOS only allowed totally defined
operations;

– Support for built-in types (e.g., natural numbers, integer numbers, strings)
and generic data structures (e.g., lists, sets, arrays, etc.);

– Introduction of modules gathering data and/or behaviour definitions, namely,
types, constructors, functions, and processes;

– Introduction of module interfaces (called descriptions) that can be used to
hide certain definitions contained in modules;

– Introduction of renaming to avoid name clashes between different modules;
– Support for generic modules parameterized by descriptions.

To our knowledge, Modular LOTOS has never been implemented, although key
ideas (namely, distinction between constructors and functions, partial functions,
and splitting of large LOTOS specifications into multiple files) were already
supported in the CÆSAR.ADT compiler for LOTOS [35]. At this point, Ed
Brinskma shifted his research interests to other topics, but the LOTOS reform
movement he had initiated expanded rapidly.

8 H. Garavel et al.

5 E-LOTOS

Between 1993 and 2001, an ISO committee gathered under the lead of Juan Que-
mada to revise the LOTOS standard. Arnaud Février, Hubert Garavel, Alan Jef-
frey, Guy Leduc, Luc Léonard, Luigi Logrippo, José Mañas, Elie Najm, Mihaela
Sighireanu, and Jacques Sincennes participated in this committee as regular
contributors, with the help of more than twenty occasional contributors [89].

At the beginning, the proposed changes were modest, trying to repair rather
than replace LOTOS; as time passed, it appeared that more radical enhance-
ments were desirable. This work eventually resulted in a new language named
E-LOTOS (for “Enhanced LOTOS”) approved as ISO/IEC International Stan-
dard 15437:2001 [61]. Tutorials on E-LOTOS can be found in [101], [56,57,70].
Compared to LOTOS, E-LOTOS brings deep changes that aim at greater expres-
siveness and/or better user-friendliness:

– Concerning the data types, E-LOTOS goes far beyond the ideas suggested for
Modular LOTOS. Rather than enhancing ACT-ONE, E-LOTOS removes it,
replacing abstract data types with a functional language—an approach also
explored in [5], which proposes a concurrent language combining a process cal-
culus (CCS) and a functional language (ML). E-LOTOS goes even further by
giving its functional language an imperative flavour: in particular, E-LOTOS
variables can be assigned and E-LOTOS functions can have output (i.e., call
by result) parameters to return multiple results, which, in conventional func-
tional languages, is usually done by returning tuple values.

– E-LOTOS data types can be records (with named or unnamed fields) or (pos-
sibly recursive) types defined by a list of constructors. E-LOTOS also provides
predefined types (Booleans, naturals, integers, rationals, floating-point reals,
characters, and strings) and abbreviations for declaring enumerated types,
records, sets, and lists.

– Contrary to LOTOS, in which the data and behaviour parts are two entirely
different sub-languages, E-LOTOS tries to unify functions and processes;
functions can be seen as particular cases of processes that only do local calcu-
lations before terminating, do not perform any observable or invisible action,
and do not let time elapse. Consequently, functions and processes share a
number of common constructs, among which: variable assignments, if-then-
else conditionals, case with pattern matching, while loops, for loops, etc.

– In both its data and behaviour parts, E-LOTOS introduces a unique sequen-
tial composition operator, which unifies the action-prefix and “enable” oper-
ators present in the behaviour part of LOTOS.

– E-LOTOS provides support for exception handling. In the data part of
E-LOTOS, exceptions bring a convenient solution to the need for partial
functions. In the behaviour part, exceptions allow some involved communi-
cation protocols to be described compositionally—see [49] for an advocacy
paper on exceptions in process calculi.

– Gates (i.e., communication ports) are explicitly typed in E-LOTOS, whereas
they are untyped in LOTOS—see [36] for an introduction to gate typing,

From LOTOS to LNT 9

which leads to more readable specifications, detects communication mis-
matches at compile time rather than at run time, and provides a simple
solution to the “structured events” issue in the constraint-oriented style.

– To express quantitative time aspects, the behaviour part of E-LOTOS allows
to specify constraints on the duration of actions and/or the instant(s) at which
they may occur. Such features are required to describe isochronous protocols
and real-time systems precisely, and many timed extensions of LOTOS have
been proposed, e.g., ET-LOTOS [71,72] and RT-LOTOS [22].

– The behaviour part of E-LOTOS introduces a n-ary parallel operator [51]
that generalizes the three binary parallel composition operators of LOTOS.
This new operator is easier to use, more readable, and enables m-among-n
synchronization (in particular, the 2-among-n synchronization of CCS).

– The behaviour part of E-LOTOS also introduces new operators, such as
rename (which allows to change the name of observable actions and excep-
tions, to merge or split gates, and to add or remove offers from actions)
and suspend/resume (which generalizes the “disable” operator of LOTOS by
allowing resumable interrupts to be modelled).

– Finally, E-LOTOS provides modules that may contain types, functions,
and/or processes. Modules can be imported and exported; they have inter-
faces for information hiding and can be generic.

Due to its new features resulting from multiple, sometimes conflicting influ-
ences, and despite the unification between functions and processes, E-LOTOS is
a complex language, with an impressive number of semantic rules. The E-LOTOS
standard has 120 pages (+80 pages of annexes), while the LOTOS standard has
only 70 pages (+70 pages of annexes). It is therefore unclear whether E-LOTOS
brings a satisfactory answer to the “steep learning curve” issue with LOTOS.

This probably explains why E-LOTOS only had a marginal impact in prac-
tice. Very few case studies have been done using E-LOTOS; one can men-
tion [96,99] (which compares LOTOS and E-LOTOS on a common example),
[21,24,92,93]. To our knowledge, E-LOTOS has never been implemented in soft-
ware tools (except perhaps [24] or [74]) nor taught in university classes.

In some sense, the shift from LOTOS to E-LOTOS is reminiscent of the shift
from Algol 60 to Algol 68: a simple, elegant, yet limited language was replaced
by a larger, more expressive, formally defined language, which, because of its
growth in complexity, failed to build a sufficient momentum of interest among
its potential users.

6 LOTOS NT

6.1 Design of LOTOS NT

In 1997, when it became manifest that E-LOTOS was getting too large and
too complex, INRIA Grenoble started investigating a fallback solution. This
led to the design of LOTOS NT (where “NT” stands for “New Technology”),

10 H. Garavel et al.

a simplified dialect of E-LOTOS that could be feasibly implemented and provide
an actual replacement solution for LOTOS.

It was decided to not introduce in LOTOS NT some questionable features
that significantly contribute to the complexity of E-LOTOS, among which: type
synonyms, anonymous tuples (i.e., the possibility, borrowed from ML, that any
list of values put between parentheses creates a new value having a valid, yet
undeclared tuple type), extensible records, type equality relation based on struc-
ture equivalence (rather than name equivalence), subtyping relation based on
record subtyping, etc.

For the same reasons, two features present in E-LOTOS but absent from
LOTOS, the suspend-resume operator and the support for quantitative time,
were not introduced in LOTOS NT, as it was felt that the potential applications
of such features were already covered by competing formalisms such as timed
automata [2] and were not worth the effort/impact ratio.

The formal definition of LOTOS NT (syntax, static semantics, and dynamic
semantics) was given in [94]. Rationale for the design of LOTOS NT (and of E-
LOTOS as well, since LOTOS NT influenced the latest evolutions of E-LOTOS)
can be found in [50].

6.2 Implementation of LOTOS NT

To implement this language, a compiler named TRAIAN2 [95] has been devel-
oped at INRIA Grenoble since 1997. It is built using the SYNTAX [7] and
FNC-2 [63] compiler-generation tools designed at INRIA Rocquencourt. Unfor-
tunately, FNC-2 ceased to be maintained in 1999, which prevented TRAIAN
from being completed; as a consequence, TRAIAN only handles the data part of
LOTOS NT (i.e., types and functions) but not the behaviour part (i.e., processes
and channels).

As it is, TRAIAN performs lexical analysis, syntactic analysis, abstract syn-
tax tree construction, static semantics analysis of LOTOS NT data specifica-
tions, and translates these into C programs, which can in turn be compiled and
executed. TRAIAN has been regularly maintained and enhanced: ten releases
have been issued since 1998, the latest version of TRAIAN (dated 2016) con-
taining 55,500 lines of FNC-2 and C code.

6.3 Applications of LOTOS NT

Although TRAIAN only supports a fragment of LOTOS NT, it has useful appli-
cations in compiler construction. Our approach [44] consists in using the SYN-
TAX compiler generator for the lexical and syntactic analyses, together with
LOTOS NT for semantical aspects, in particular the definition, construction,
and traversals of abstract trees. Some involved parts of the compiler can be
written directly in C if necessary, but most of the compiler is usually written in
LOTOS NT, which is then translated into C code by TRAIAN.

2 http://vasy.inria.fr/traian.

http://vasy.inria.fr/traian

From LOTOS to LNT 11

The combined use of SYNTAX, LOTOS NT, and TRAIAN proves to be sat-
isfactory, as regards both the rapidity of development and the quality of resulting
compilers. So far, twelve compilers have been developed at INRIA Grenoble using
this approach: AAL [75], ATLANTIF [97], CHP2LOTOS [46], CTRL2BLK [76],
EVALUATOR 4.0 [79], EXP.OPEN 2.0 [67], FSP2LOTOS [68], GRL2LNT [62],
LNT2LOTOS [19], NTIF [43], PIC2LNT [77], and SVL [23,42,66].

7 LNT

7.1 Design of LNT

Because of the limitations of TRAIAN, LOTOS NT does not provide a replace-
ment solution for LOTOS. The need for a better language based on process
calculi remains [38,39], even if all prior attempts have failed to provide a usable
solution.

In 2005, a new opportunity was found to progress this agenda: the Bull com-
pany was interested in using the CADP toolbox to formally verify multiproces-
sor architectures, but was reluctant to use LOTOS as a modelling language,
mostly due to the verbosity of the LOTOS data part. To ease the writing of
large specifications by Bull, still using the existing CADP tools, INRIA Greno-
ble undertook the development of a translator to convert LOTOS NT data types
and functions into LOTOS ones. This made it possible to produce specifications
combining a data part written in LOTOS NT (more concise and less error-prone
than LOTOS) and a behaviour part written in LOTOS. The translator con-
verted such composite specifications into plain LOTOS ones, which then could
be analyzed by the CADP tools.

A first version of this translator was delivered to Bull in July 2005. Since
then, the translator has been constantly improved and extended to handle new
LOTOS NT features. In 2007, support for the behaviour part of LOTOS NT
was added; this progressively removed the need for composite specifications, as
it became possible to write entire specifications in LOTOS NT, with no LOTOS
code at all.

Due to the rapid evolution of this translator, its input language gradu-
ally diverged from the original LOTOS NT implemented in TRAIAN, which
remained quite stable in comparison. To avoid ambiguities, it was decided in
2014 to give this input language a new name (“LNT”), while reserving the name
“LOTOS NT” for the language accepted by TRAIAN—such a distinction was
not made in papers published before Spring 2014, in which LOTOS NT and
LNT were used as synonyms.

The current definition of LNT is given in [19]. In a nutshell, LNT combines, in
a single language with an Ada-like syntax designed to favour readability, selected
features borrowed from imperative languages, functional languages, and value-
passing process calculi:

– An LNT specification is a set of modules, each of which may import other
modules and define types, functions, channels, and/or processes.

12 H. Garavel et al.

– A type is either predefined (namely, bool, nat, int, real, char, and string),
defined by specifying the free constructors that generate its domain of values,
or defined using the type combinators array, list, range, set, sorted list,
sorted set, and where (the latter enabling predicate subtyping).

– A function is either predefined (namely, logical, arithmetical, and relational
operations on predefined types), automatically generated for some user-
defined type (such as free constructors, but also equality, order relations,
field accessors and selectors, etc., which are generated if the user requests
them), or have a handwritten definition provided by the user.

– A channel is a gate type that, following the ideas of [36], specifies the types of
values to be sent or received during interactions on a given gate. There exist
two special channels: none, which expresses that no value can be sent or
received (this is useful for pure synchronization and exceptions), and any,
which permits all values to be sent or received (this allows gates to be
“untyped”, as in LOTOS, thus ensuring backward compatibility).

– A process is a program fragment that, as in LOTOS and other process calculi,
executes and communicates with its environment by sending and/or receiving
values on a set of gates.

Globally, LNT has four different kinds of routines, of increasing complexity:

– A constructor has only in parameters (call by value), no explicit definition,
and does not raise exceptions.

– A pure function has only in parameters, an implicit or explicit definition, and
may raise exceptions if needed (this provides for partially-defined functions).

– A procedural function (or procedure, for short) may have in, out (call by
result), or in-out (call by value-result) parameters; unlike constructors and
pure functions, it does not necessarily return a result; it usually has an explicit
definition and may raise exceptions.

– A process may also have in, out, or in-out parameters; it has an explicit
definition, may raise exceptions [49], and interacts with its environment by
means of gates. The key difference between processes and other routines is
that the execution of processes can be nondeterministic and let time elapse
(the execution semantics is that of process calculi and labelled transition
systems) whereas the three former kinds of routines execute deterministically
and atomically (the execution semantics is that of functional languages).

LNT possesses three main concepts for denoting computation:

– An expression corresponds to the usual notion of expression in imperative
programming languages. It is an algebraic term built using constants, vari-
ables, and calls to constructors and pure functions. The evaluation of each
expression is deterministic (it always returns the same result or raises the
same exception), atomic (it is expected to terminate and take a negligible
amount of time), and free from side effects (it does not modify variables).

– An instruction corresponds to the usual notion of statement in imperative
programming languages. Instructions serve to explicitly define the bodies of

From LOTOS to LNT 13

LNT functions. Basic instructions include: null (which does nothing), assign-
ment to a variable or an array element, return of a function result, raise
of an exception, procedure call, assert, etc. Instructions can be combined
using structured-programming constructs, such as sequential composition, if-
then-else conditionals, case with pattern matching, for and while loops,
loops with break clauses, and declarations of variables with a limited scope.
Because instructions manipulate and modify a store, the semantics of LNT
relies on static analysis to prohibit all situations where uninitialized variables
could be used; this way, instructions have an imperative-programming syntax
and a functional-programming semantics. Like the evaluation of expressions,
the execution of instructions is deterministic and atomic.

– A behaviour is the LNT equivalent of a LOTOS “behaviour expression”.
Behaviours serve to define the bodies of LNT processes. Behaviours can be
seen as a superset of instructions since they contain all instructions (except
return) but also include additional constructs specific to process calculi: stop
(deadlock), communication on a gate (possibly with sending and/or receiving
values), assignment of a non-deterministic value to a variable, process call,
forever loop without break clause, non-deterministic choice (which is n-ary,
rather than binary), parallel composition (which is n-ary and graphical [51],
i.e., explicitly describes the communications/synchronizations between con-
current behaviours), gate hiding, and disruption (i.e., the “disable” operators
of LOTOS). Unlike instructions, the execution of behaviours is nondetermin-
istic, non-atomic, and may never terminate.

In the design of LNT, one main attainment is the integration in a single language
of two very different models of computations: imperative/functional languages
and process calculi. This was not the case with LOTOS, nor with its competi-
tors Estelle and SDL, both of which clumsily amalgamate state machines with
another formalism for data computation. Such a unification, which had been
tried without success in E-LOTOS, is now effective in LNT. A key issue was the
status of sequential composition [40], which led to question and discard some
well-established habits of process calculi, especially the action-prefix operator of
CCS and LOTOS, and the use of dynamic semantics in place of static semantics.

7.2 Implementation of LNT

Contrary to the four aforementioned languages (Extended-LOTOS, Modular
LOTOS, E-LOTOS, and LOTOS NT), the definition and implementation of
which were planned as two successive steps (the latter being never undertaken or
never completed), LNT was designed in a radically different way, using an “agile”
approach. Every new language feature was first implemented and assessed on a
growing base of non-regression tests before being adopted for LNT.

Initially designed as a standalone tool, the translator from LNT to LOTOS
became an integral part of the CADP toolbox in 2010. Actually, this translator
is not one single tool, but comprises three complementary tools:

14 H. Garavel et al.

– LPP3 (“LNT PreProcessor”) is a small translator (2000 lines of C and Lex
code) that expands the user-friendly LNT notations for literal constants
(numbers, characters, strings, etc.) into algebraic terms making use of prede-
fined LOTOS sorts and operations defined in custom libraries.

– LNT2LOTOS4 is a rather complex translator developed using the afore-
mentioned SYNTAX/TRAIAN technology (3800 lines of SYNTAX code,
35,500 lines of LOTOS NT, and 2900 lines of C code). LNT2LOTOS trans-
lates an LNT specification into LOTOS code, possibly augmented with some
little C code fragments.

– LNT.OPEN5 is a small utility (400 lines of shell script) that provides a top-
level entry point for processing LNT specifications with the CADP tools and,
more specifically, with the CÆSAR.ADT [35] and CÆSAR [48] compilers for
LOTOS, and the OPEN/CÆSAR framework [37] for simulation, verification,
and testing. Taking as input an LNT specification and an OPEN/CÆSAR
application program, LNT.OPEN first translates (the various modules com-
posing) the LNT specification into LOTOS by calling LPP and LNT2LOTOS,
then compiles the generated LOTOS specification by calling CÆSAR.ADT
and CÆSAR, and finally invokes the OPEN/CÆSAR application program to
explore and analyze the corresponding state space on the fly.

Without exposing in full detail the algorithms implemented in LNT2LOTOS,
these are some key principles underlying the translation:

– The main guideline is to keep the translation as simple as possible, so as
to swiftly upgrade the translator each time the definition of LNT evolves.
Consequently, duplication of work between the translator and the LOTOS
compilers is avoided, meaning that the translator does not implement certain
static semantics checks at the LNT level if the same checks are later performed
at the LOTOS level. In particular, the translator makes no attempt to infer
and check the types of LNT value expressions, deferring these tasks to the
LOTOS compilers operating on the generated code.

– The channels used for typing LNT gates raise a specific problem because, on
the one hand, the LNT2LOTOS translator is not intended to perform type
checking and, on the other hand, LNT gates, which are typed, are translated
into LOTOS gates, which are untyped, so that type-checking errors at the
LNT level cannot be detected at the LOTOS level. To address this problem,
LNT2LOTOS generates, for each LNT channel C, one or several overloaded
LOTOS constant functions fC , which take as parameters the expected typed
values specified for C and always return true. For each LNT action involving
some gate G whose channel is C, a LOTOS Boolean guard is generated,
which invokes function fC with the input or output offers of the action, thus
expressing in LOTOS the type-checking constraints arising from the definition
of C. If the action is not well-typed at the LNT level, the corresponding

3 http://cadp.inria.fr/man/lpp.html.
4 http://cadp.inria.fr/man/lnt2lotos.html.
5 http://cadp.inria.fr/man/lnt.open.html.

http://cadp.inria.fr/man/lpp.html
http://cadp.inria.fr/man/lnt2lotos.html
http://cadp.inria.fr/man/lnt.open.html

From LOTOS to LNT 15

guard will provoke at the LOTOS level a type-checking error at compile time;
otherwise, the guard will evaluate to true at run time.

– The LNT2LOTOS translator performs, on LNT functions and processes, sta-
tic analyses not done at the LOTOS level; for instance, it rejects (or warns
about) unused variables, variables used without being assigned before, vari-
ables assigned but never used, variables shared between concurrent processes,
etc. Such checks are either required by the LNT semantics (see [40] for a dis-
cussion) or suitable to ensure that LNT specifications remain as simple as
possible, so as to increase readability and efficiency of verification.

– The predefined types of LNT (bool, nat, etc.) are implemented using base
libraries written in LOTOS and C code. The user-defined types (built using
free constructors or type combinators) are translated into LOTOS abstract
data types (possibly with some additional C code meant for efficiency),
together with their associated functions (equality, order relations, field acces-
sors and selectors, etc.).

– Although, in LNT, user-defined functions and processes have the same func-
tional/imperative style and share many constructs (e.g., assignments, assert,
raise, if-then-else, pattern-matching case, for and while loops, loops with
break, etc.), the two algorithms that translate, respectively, these functions
and processes into LOTOS are very different, due to the fundamental asym-
metry, in the target language, between the data part (based on abstract data
types) and the behaviour part (based on process calculi).

– Our algorithm for translating LNT functions generalizes the one proposed
in [88], which translates into Horn clauses a small subset of C functions
with only integer and list types. Our algorithm translates LNT functions
into LOTOS (non-constructor) operations, which are defined using algebraic
equations considered as conditional term-rewrite rules. The translation takes
advantage of the rewrite strategy implemented in the CÆSAR.ADT compiler,
which assumes a decreasing priority between equations. Notice that each LNT
function having out parameters (call by result) or in-out parameters (call
by value-result) translates to several LOTOS functions. The translation of
certain LNT constructs (assert, case, and loops) also generates auxiliary
LOTOS functions.

– Our algorithm for translating LNT processes takes its roots in our prior works
on the translation to LOTOS of three modelling languages for hardware and
software systems: the CHP2LOTOS translator [46] for CHP, the FLAC trans-
lator [4] for Fiacre, and the FSP2LOTOS translator [68] for FSP. The algo-
rithm is involved, but four main points are worth being highlighted.
(i) Certain behavioural LNT constructs directly map to equivalent LOTOS
ones. For instance, each LNT gate translates to a corresponding LOTOS gate
and each LNT process translates to a corresponding LOTOS process. The
algorithm benefits from the fact that both LOTOS and LNT have an action-
based (rather than state-based) semantics and share a common semantic
model (namely, labelled transition systems). Thanks to action-based seman-
tics, the translation can freely introduce auxiliary LOTOS processes and vari-
ables, still preserving the semantic model (which would not be possible with

16 H. Garavel et al.

state-based semantics); in particular, execution traces are identical at the
LOTOS and LNT levels, which avoids the usual need for a reverse transla-
tion of diagnostics from the target to the source level.
(ii) Certain behavioural LNT constructs are too powerful to be expressed
using only the behaviour part of LOTOS; for such constructs, the data part of
LOTOS must also be used, by generating auxiliary sorts, operations, and alge-
braic equations. For instance, the case construct present in LNT processes is
translated using both the behaviour part of LOTOS (nondeterministic choice
and Boolean guards are used to express the selection between the various
case branches) and the data part of LOTOS (equations, considered as rewrite
rules, are used to express pattern matching, which is not supported by the
behaviour part of LOTOS).
(iii) An involved part of the algorithm translates the LNT parallel composi-
tion operator, which is n-ary, into an algebraic combination of LOTOS parallel
composition operators, which are binary. Such a translation does not always
succeed, meaning that certain network topologies specified in LNT cannot be
expressed in LOTOS [51]; however, we never faced this problem in real-life
case studies. Also, it was not possible to introduce in LNT the concept of
n-among-m synchronization proposed in [51], because it is not supported in
LOTOS; such a limitation is more annoying in practice, e.g., for the specifica-
tion of Web services, which quite often require 2-among-m synchronization.
(iv) Another involved part of the algorithm translates the LNT sequential
composition operator (which is unique, symmetric, atomic, and lets all val-
ues of variables assigned on its left-hand side flow implicitly to its right-hand
side [40]) into one of the two LOTOS sequential composition operators, either
the action-prefix operator (which is asymmetric, atomic, and lets variable val-
ues flow implicitly from its left- to its right-hand side) or the “enable” operator
(which is symmetric, non-atomic as it generates a τ -transition, and forbids
variable values to flow from its left- to its right-hand side except if these
variables are explicitly listed in an accept clause). Following the principles
set for the CHP2LOTOS translator [46], we chose to generate action prefix
as much as possible and “enable” only when unavoidable, which produces
better LOTOS code at the expense of a more involved translation. To fight
state-space explosion and preserve strong equivalence between the LNT and
LOTOS specifications, we slightly deviated from LOTOS semantics by adding
a special pragma “(*! atomic *)” that instructs the LOTOS compiler not to
generate a τ -transition when implementing the “enable” operator. There are
many other algorithmic subtleties, such as the creation of auxiliary “contin-
uation” processes for those LNT behaviours following loops and conditionals
(i.e., case, if, and select), the translation of parallel composition occurring
on the left-hand side of sequential composition where each parallel branch
computes the values of different variables, the translation of out and in-out
parameters of LNT processes into exit results returned by LOTOS processes,
the need to respect the strict typing rules set by LOTOS “functionality” con-
straints, the optimization of tail-recursive process instantiations, etc.

From LOTOS to LNT 17

In addition to the above tools, which ultimately translate an LNT specification
into a sequential C program, there also exists a compiler named DLC (“Distrib-
uted LNT Compiler”) [31,32] that translates an LNT specification into a set of
C programs executing concurrently and communicating through TCP sockets;
to produce such a distributed implementation, the DLC compiler exploits the
concurrent architecture defined by the parallel composition operators present in
the LNT specification.

7.3 Applications of LNT

The usability of the LNT language gradually increased with the progress of its
translator to LOTOS. As of mid-2009, this translator was sufficiently complete
and robust to allow a total shift from LOTOS to LNT at INRIA Grenoble,
where no LOTOS code has been manually written since then, LNT being now
the preferred high-level language for modelling concurrent systems and analyzing
them using the CADP tools.

At Grenoble INP and Université Grenoble-Alpes, LNT has also replaced
LOTOS to teach master students the fundamentals of concurrency theory. We
observed that LNT enables students to better focus on high-level concepts, rather
than getting lost in low-level details of LOTOS syntax and static semantics.

The LNT language and its tools have been used for many case studies, at
INRIA Grenoble and in other academic or industrial labs as well (we only men-
tion those not affiliated with the authors’ institutions):

– Avionics: verification of an equipment failure management protocol6 and of
a ground-plane communication protocol7 [52,98] provided by Airbus;

– Cloud computing : verification of self-configuration protocols8 [27] (Orange
Labs), of the Synergy reconfiguration protocol for component-based sys-
tems9 [8], and of dynamic management protocol for cloud applications10 [1];

– Distributed algorithms: verification and performance evaluation of mutual
exclusion protocols11 [78], verification of multiway synchronization proto-
cols12 [28,30,32], specification and rapid prototyping of Stanford’s RAFT
distributed consensus algorithm13 [29,32], and performance evaluation of con-
current data structures14 [102] (RWTH Aachen, Germany and Chinese Acad-
emy of Sciences, Beijing, China);

– Hardware design: formal analysis and co-simulation of a dynamic task dis-
patcher15 [69] (STMicroelectronics), formal analysis of ARM’s ACE cache

6 http://cadp.inria.fr/case-studies/09-k-failure-management.html.
7 http://cadp.inria.fr/case-studies/09-h-tftp.html.
8 http://cadp.inria.fr/case-studies/11-i-selfconfig.html.
9 http://cadp.inria.fr/case-studies/11-h-synergy.html.

10 http://cadp.inria.fr/case-studies/13-g-dynamic-management.html.
11 http://cadp.inria.fr/case-studies/10-f-mutex.html.
12 http://cadp.inria.fr/case-studies/13-d-multiway.html.
13 http://cadp.inria.fr/case-studies/15-g-raft.html.
14 http://cadp.inria.fr/case-studies/16-b-concurrent.html.
15 http://cadp.inria.fr/case-studies/11-g-dtd.html.

http://cadp.inria.fr/case-studies/09-k-failure-management.html
http://cadp.inria.fr/case-studies/09-h-tftp.html
http://cadp.inria.fr/case-studies/11-i-selfconfig.html
http://cadp.inria.fr/case-studies/11-h-synergy.html
http://cadp.inria.fr/case-studies/13-g-dynamic-management.html
http://cadp.inria.fr/case-studies/10-f-mutex.html
http://cadp.inria.fr/case-studies/13-d-multiway.html
http://cadp.inria.fr/case-studies/15-g-raft.html
http://cadp.inria.fr/case-studies/16-b-concurrent.html
http://cadp.inria.fr/case-studies/11-g-dtd.html

18 H. Garavel et al.

coherency protocol16 [64,65] (STMicroelectronics), verification and rapid pro-
totyping of an asynchronous model of the Data Encryption Standard17 [91],
verification of a fault-tolerant routing algorithm for a network-on-chip18 [103]
(University of Utah, USA);

– Human-computer interaction: specification and validation of graphical user
interfaces for a prototype control room of a nuclear power plant19 [85] and of
plastic user interfaces exploiting domain ontologies20 [20] (Toulouse, France);

– Industrial systems: model-based testing of the CANopen field bus and Ener-
gyBus architecture21 [53] (Saarland University, Germany), formal specifica-
tion and rapid prototyping of a software controller for a metal processing
plant22 [47].

Another indication of the practical usefulness of LNT is given by its use as a
target language in a growing number of translators, which implement various
languages by translating them to LNT. Indeed, LNT suitably replaces LOTOS
for automatically-generated code as well as for handwritten code, since the trans-
lation to LNT is much easier than the translation to LOTOS, and because it is
now preferable to let the LNT2LOTOS translator take in charge all algorithmic
subtleties required to produce valid and efficient LOTOS code. We are aware of
the following tools (again, we do not mention the authors’ institutions):

– The BPMN2Py/Py2LNT translators23 [55,86] for analyzing choreographies
of Web services specified in WS-CDL (Université de Nantes, France);

– The CMT translator [73] for the BPEL/WSDL specification languages
for Web services (Tsinghua University, Beijing, China and MIT, Cam-
bridge, MA, USA), and another, more complete algorithm for translating
BPEL/WDSL/Xpath/XML Schema to LNT [98];

– The DFTCalc tool24 [3,54] for Dynamic Fault Trees (University of Twente,
The Netherlands);

– The EB32LNT translator25 [100] for the EB3 specification language for infor-
mation systems (Université Paris Est, France);

– The GRL2LNT translator26 [62] for the GRL specification language for GALS
(Globally Asynchronous Locally Synchronous) systems;

– The OCARINA tool27 [84] for the AADL architecture description language
(ISAE, Toulouse, France and University of Sfax, Tunisia);

16 http://cadp.inria.fr/case-studies/13-e-ace.html.
17 http://cadp.inria.fr/case-studies/15-f-des.html.
18 http://cadp.inria.fr/case-studies/13-f-utahnoc.html.
19 http://cadp.inria.fr/case-studies/14-d-hmi.html.
20 http://cadp.inria.fr/case-studies/15-d-plastic-user-interfaces.html.
21 http://cadp.inria.fr/case-studies/14-c-energybus.html.
22 http://cadp.inria.fr/case-studies/17-a-production-cell.html.
23 http://cadp.inria.fr/software/12-e-choreography.html.
24 http://cadp.inria.fr/software/12-i-dftcalc.html.
25 http://cadp.inria.fr/software/13-a-eb3.html.
26 http://cadp.inria.fr/software/14-c-grl.html.
27 http://cadp.inria.fr/software/15-b-ocarina.html.

http://cadp.inria.fr/case-studies/13-e-ace.html
http://cadp.inria.fr/case-studies/15-f-des.html
http://cadp.inria.fr/case-studies/13-f-utahnoc.html
http://cadp.inria.fr/case-studies/14-d-hmi.html
http://cadp.inria.fr/case-studies/15-d-plastic-user-interfaces.html
http://cadp.inria.fr/case-studies/14-c-energybus.html
http://cadp.inria.fr/case-studies/17-a-production-cell.html
http://cadp.inria.fr/software/12-e-choreography.html
http://cadp.inria.fr/software/12-i-dftcalc.html
http://cadp.inria.fr/software/13-a-eb3.html
http://cadp.inria.fr/software/14-c-grl.html
http://cadp.inria.fr/software/15-b-ocarina.html

From LOTOS to LNT 19

– The PIC2LNT translator28 [77] for the applied π-calculus (an extension of
the π-calculus with typed data values);

– the VBPMN translator29 [87] for the BPMN language for describing business
processes (Université Paris Ouest, France).

8 Conclusion

Computer systems handling asynchronous concurrency are inherently complex
and cannot be reliably designed without adequate specification languages sup-
ported by sound analysis tools. Ed Brinksma contributed to this agenda in two
significant ways: (i) by leading the definition and standardization of the LOTOS
language, which exposed the key ideas of process calculi to a large audience and
sparkled considerable interest in academia and industry; (ii) by sending a clear
signal that LOTOS, despite its qualities, was not the end of the road and that
further enhancements were possible and desirable.

The present paper provided a retrospective account of the evolution of the
LOTOS-based family of specification languages, starting from LOTOS itself,
reviewing the successive proposals for enhancing LOTOS (Extended LOTOS,
Modular LOTOS, E-LOTOS, and LOTOS NT), and ending with LNT, the
most recent descendent, which preserves the most valuable ideas of process cal-
culi but entirely modifies the shape of the language to make it compatible with
mainstream programming languages. The feedback acquired by using LNT for
the design of complex industrial systems suggests that LNT provides a viable
and effective replacement for LOTOS. Quoting STMicroelectronics engineers:
“Although modeling the [Dynamic Task Dispatcher] in a classical formal specifi-
cation language, such as LOTOS, is theoretically possible, using LNT made the
development of a formal model practically feasible” [69].

Concerning future work, we can highlight two main research directions:

– The LNT language is not yet frozen and can still be further enhanced. For
instance, the unification of exceptions across functions and processes is almost
complete. We now consider equipping processes with optional return behav-
iours, so that functions become a strict subset of processes. We also plan
to introduce, beyond assertions that already exist in LNT, pre-conditions,
post-conditions, and loop invariants that would allow the application of main-
stream theorem provers and static analyzers to LNT specifications.

– The current implementation of LNT by translation to LOTOS is justified
by the reuse of existing LOTOS tools. It is intellectually challenging, but
sometimes overly complex: for instance, LNT functions, written in a func-
tional/imperative style, are first translated to LOTOS algebraic equations,
and then compiled back to imperative C code. A native implementation of
LNT would certainly be simpler and more efficient; it would also overcome

28 http://cadp.inria.fr/software/13-d-pic2lnt.html.
29 http://cadp.inria.fr/software/16-a-vbpmn.html.

http://cadp.inria.fr/software/13-d-pic2lnt.html
http://cadp.inria.fr/software/16-a-vbpmn.html

20 H. Garavel et al.

certain LOTOS limitations that currently prevent useful constructs, such as
the trap operator for exception catching [49] and the n-among-m synchro-
nization pattern in parallel composition [51], from being added to LNT.

References

1. Abid, R., Salaün, G., Bongiovanni, F., De Palma, N.: Verification of a dynamic
management protocol for cloud applications. In: Van Hung, D., Ogawa, M. (eds.)
ATVA 2013. LNCS, vol. 8172, pp. 178–192. Springer, Cham (2013). doi:10.1007/
978-3-319-02444-8 14

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc:
a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M.
(eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40793-2 27

4. Berthomieu, B., Bodeveix, J.P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: FIACRE: an intermediate language for model verification
in the TOPCASED environment. In: Laprie, J.C. (ed.) Proceedings of the 4th
European Congress on Embedded Real-Time Software (ERTS 2008), Toulouse,
France, January 2008

5. Berthomieu, B., Le Sergent, T.: Programming with behaviors in an ML framework
— the syntax and semantics of LCS. In: Sannella, D. (ed.) ESOP 1994. LNCS,
vol. 788, pp. 89–104. Springer, Heidelberg (1994). doi:10.1007/3-540-57880-3 6

6. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. ISDN Syst. 14(1), 25–59 (1988)

7. Boullier, P., Jourdan, M.: A new error repair and recovery scheme for lexical and
syntactic analysis. Sci. Comput. Program. 9(3), 271–286 (1987)

8. Boyer, F., Gruber, O., Salaün, G.: Specifying and verifying the SYNERGY recon-
figuration protocol with LOTOS NT and CADP. In: Butler, M., Schulte, W. (eds.)
FM 2011. LNCS, vol. 6664, pp. 103–117. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21437-0 10

9. Brinksma, E., Leih, G.: Enhancements of LOTOS. In: Bolognesi, T., Lagemaat,
J., Vissers, C. (eds.) LOTOSphere: Software Development with LOTOS, pp. 453–
466. Kluwer Academic Publishers, Dordrecht (1995)

10. Brinksma, E.: A tutorial on LOTOS. In: Diaz, M. (ed.) Proceedings of the 5th
IFIP International Workshop on Protocol Specification, Testing and Verification
(PSTV 1885), Moissac, France, pp. 171–194. North-Holland, Amsterdam, June
1985

11. Brinksma, E.: On the design of Extended LOTOS - a specification language for
open distributed systems. Ph.D. thesis, University of Twente, November 1988

12. Brinksma, E.: Constraint-oriented specification in a constructive formal descrip-
tion technique. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX
1989. LNCS, vol. 430, pp. 130–152. Springer, Heidelberg (1990). doi:10.1007/
3-540-52559-9 63

13. Brinksma, E.: Task 1.4 Deliverable on Language Enhancements, LOTOSphere
(ESPRIT Projet 2304) Document ref. Lo/WP1/T1.4/N0016/V3, 146 p., April
1992

http://dx.doi.org/10.1007/978-3-319-02444-8_14
http://dx.doi.org/10.1007/978-3-319-02444-8_14
http://dx.doi.org/10.1007/978-3-642-40793-2_27
http://dx.doi.org/10.1007/3-540-57880-3_6
http://dx.doi.org/10.1007/978-3-642-21437-0_10
http://dx.doi.org/10.1007/978-3-642-21437-0_10
http://dx.doi.org/10.1007/3-540-52559-9_63
http://dx.doi.org/10.1007/3-540-52559-9_63

From LOTOS to LNT 21

14. Brinksma, E., Karjoth, G.: A specification of the OSI transport service in LOTOS.
In: Yemini, Y., Strom, R.E., Yemini, S. (eds.) Proceedings of the 4th IFIP Inter-
national Workshop on Protocol Specification, Testing and Verification, Skytop
Lodge, PA, USA, pp. 227–251. North-Holland, Amsterdam, June 1984

15. Brinksma, E., Katoen, J.P., Langerak, R., Latella, D.: A stochastic causality-
based process algebra. Comput. J. 38(7), 552–565 (1995)

16. Brinksma, E., Tretmans, J., Verhaard, L.: A framework for test selection. In: Jons-
son, B., Parrow, J., Pehrson, B. (eds.) Proceedings of the IFIP WG6.1 9th Interna-
tional Symposium on Protocol Specification, Testing and Verification, Stockholm,
Sweden. pp. 233–248. North-Holland, Amsterdam, June 1991

17. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequen-
tial processes. J. ACM 31(3), 560–599 (1984)

18. CCITT: Specification and Description Language. Recommendation Z.100, Inter-
national Consultative Committee for Telephony and Telegraphy, Geneva, March
1988

19. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS
Translator (Version 6.7), INRIA, Grenoble, France, July 2017

20. Chebieb, A., Ameur, Y.A.: Formal verification of plastic user interfaces exploiting
domain ontologies. In: Zhiqiu, H., Jun, S. (eds.) Proceedings of the International
Symposium on Theoretical Aspects of Software Engineering (TASE 2015), Nan-
jing, China, pp. 79–86. IEEE Computer Society, Washington, D.C. (2015)

21. Clark, R.G., Moreira, A.: Use of E-LOTOS in adding formality to UML. J.
Univers. Comput. Sci. 6(11), 1071–1087 (2000)

22. Courtiat, J., Santos, C.A.S., Lohr, C., Outtaj, B.: Experience with RT-LOTOS,
a temporal extension of the LOTOS formal description technique. Comput. Com-
mun. 23(12), 1104–1123 (2000)

23. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19811-3 9

24. de Souza, W.L., et al.: Design of distributed multimedia applications (DAMD).
In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.) FM-Trends
1998. LNCS, vol. 1641, pp. 77–91. Springer, Heidelberg (1999). doi:10.1007/
3-540-48257-1 4

25. Ehrig, H., Fey, W., Hansen, H.: An algebraic specification language with two levels
of semantics. Bericht No. 83-03, Fachbereich 20-Informatik, Technische Univer-
sität Berlin (1983)

26. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6.
Springer, Heidelberg (1985). doi:10.1007/978-3-642-69962-7

27. Etchevers, X., Salaün, G., Boyer, F., Coupaye, T., Palma, N.D.: Reliable self-
deployment of distributed cloud applications. Softw. Pract. Exp. 47(1), 3–20
(2017)

28. Evrard, H.: Génération automatique d’implémentation distribuée à partir de
modèles formels de processus concurrents asynchrones. Thèse de Doctorat, Uni-
versité de Grenoble, July 2015

29. Evrard, H.: DLC: compiling a concurrent system formal specification to a
distributed implementation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 553–559. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 34

http://dx.doi.org/10.1007/978-3-642-19811-3_9
http://dx.doi.org/10.1007/978-3-642-19811-3_9
http://dx.doi.org/10.1007/3-540-48257-1_4
http://dx.doi.org/10.1007/3-540-48257-1_4
http://dx.doi.org/10.1007/978-3-642-69962-7
http://dx.doi.org/10.1007/978-3-662-49674-9_34
http://dx.doi.org/10.1007/978-3-662-49674-9_34

22 H. Garavel et al.

30. Evrard, H., Lang, F.: Formal verification of distributed branching multiway syn-
chronization protocols. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -
2013. LNCS, vol. 7892, pp. 146–160. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38592-6 11

31. Evrard, H., Lang, F.: Automatic distributed code generation from formal mod-
els of asynchronous concurrent processes. In: Aldinucci, M., Daneshtalab, M.,
Leppänen, V., Lilius, J. (eds.) Proceedings of the 23rd Euromicro International
Conference on Parallel, Distributed and Network-based Processing - Special Ses-
sion on Formal Approaches to Parallel and Distributed Systems (PDP/4PAD
2015), Turku, Finland, pp. 459–466. IEEE Computer Society Press, Washington,
D.C., March 2015

32. Evrard, H., Lang, F.: Automatic distributed code generation from formal models
of asynchronous processes interacting by multiway rendezvous. J. Log. Algebr.
Methods Program. 88, 121–153 (2017)

33. Garavel, H.: Utilisation du système CESAR pour la vérification de protocoles
spécifiés en LOTOS. Rapport SPECTRE C2, Laboratoire de Génie Informatique
- Institut IMAG, Grenoble, December 1986

34. Garavel, H.: Vérification de programmes LOTOS à l’aide du système QUASAR.
Master’s thesis, Institut National Polytechnique de Grenoble, September 1986

35. Garavel, H.: Compilation of LOTOS abstract data types. In: Vuong, S.T. (ed.)
Proceedings of the 2nd International Conference on Formal Description Tech-
niques FORTE 1989, Vancouver BC, Canada, pp. 147–162. North-Holland, Ams-
terdam, December 1989

36. Garavel, H.: On the introduction of gate typing in E-LOTOS. In: Dembinski, P.,
Sredniawa, M. (eds.) Proceedings of the 15th IFIP International Workshop on
Protocol Specification, Testing and Verification (PSTV 1995), Warsaw, Poland,
pp. 283–298. Chapman & Hall, New York, June 1995

37. Garavel, H.: OPEN/CÆSAR: an open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.
Springer, Heidelberg (1998). doi:10.1007/BFb0054165

38. Garavel, H.: Défense et illustration des algèbres de processus. In: Mammeri, Z.
(ed.) Actes de l’Ecole d’été Temps Réel ETR 2003, Toulouse, France. Institut de
Recherche en Informatique de Toulouse, September 2003

39. Garavel, H.: Reflections on the future of concurrency theory in general and process
calculi in particular. In: Palamidessi, C., Valencia, F.D. (eds.) Proceedings of the
LIX Colloquium on Emerging Trends in Concurrency Theory, Ecole Polytechnique
de Paris, France, 13–15 November 2006. Electronic Notes in Theoretical Computer
Science, vol. 209, pp. 149–164. Elsevier Science Publishers, Amsterdam, April
2008. Also available as INRIA Research Report RR-6368

40. Garavel, H.: Revisiting sequential composition in process calculi. J. Log. Algebr.
Methods Program. 84(6), 742–762 (2015)

41. Garavel, H., Hermanns, H.: On combining functional verification and perfor-
mance evaluation using CADP. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME
2002. LNCS, vol. 2391, pp. 410–429. Springer, Heidelberg (2002). doi:10.1007/
3-540-45614-7 23

42. Garavel, H., Lang, F.: SVL: a scripting language for compositional verifica-
tion. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) FORTE 2001. IIFIP, vol.
69, pp. 377–392. Kluwer Academic Publishers, Dordrecht (2002). doi:10.1007/
0-306-47003-9 24

http://dx.doi.org/10.1007/978-3-642-38592-6_11
http://dx.doi.org/10.1007/978-3-642-38592-6_11
http://dx.doi.org/10.1007/BFb0054165
http://dx.doi.org/10.1007/3-540-45614-7_23
http://dx.doi.org/10.1007/3-540-45614-7_23
http://dx.doi.org/10.1007/0-306-47003-9_24
http://dx.doi.org/10.1007/0-306-47003-9_24

From LOTOS to LNT 23

43. Garavel, H., Lang, F.: NTIF: a general symbolic model for communicating sequen-
tial processes with data. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS,
vol. 2529, pp. 276–291. Springer, Heidelberg (2002). doi:10.1007/3-540-36135-9 18

44. Garavel, H., Lang, F., Mateescu, R.: Compiler construction using LOTOS NT. In:
Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 9–13. Springer, Heidelberg
(2002). doi:10.1007/3-540-45937-5 3

45. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. (STTT) 15(2), 89–107 (2013). Springer

46. Garavel, H., Salaün, G., Serwe, W.: On the semantics of communicating hardware
processes and their translation into LOTOS for the verification of asynchronous
circuits with CADP. Sci. Comput. Program. 74(3), 100–127 (2009)

47. Garavel, H., Serwe, W.: The unheralded value of the multiway rendezvous: illus-
tration with the production cell benchmark. In: Hermanns, H., Höfner, P. (eds.)
Proceedings of the 2nd Workshop on Models for Formal Analysis of Real Systems
(MARS 2017), Uppsala, Sweden, vol. 244, pp. 230–270. Electronic Proceedings in
Theoretical Computer Science, April 2017

48. Garavel, H., Sifakis, J.: Compilation and verification of LOTOS specifications. In:
Logrippo, L., Probert, R.L., Ural, H. (eds.) Proceedings of the 10th IFIP Inter-
national Symposium on Protocol Specification, Testing and Verification (PSTV
1990), Ottawa, Canada, pp. 379–394. North-Holland, Amsterdam, June 1990

49. Garavel, H., Sighireanu, M.: On the introduction of exceptions in LOTOS.
In: Gotzhein, R., Bredereke, J. (eds.) Proceedings of the IFIP Joint Interna-
tional Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification
(FORTE/PSTV 1996), Kaiserslautern, Germany, pp. 469–484. Chapman & Hall,
New York, October 1996

50. Garavel, H., Sighireanu, M.: Towards a second generation of formal description
techniques - rationale for the design of E-LOTOS. In: Groote, J.F., Luttik, B.,
Wamel, J. (eds.) Proceedings of the 3rd International Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS 1998), Amsterdam, The Netherlands,
pp. 187–230. CWI, Amsterdam, May 1998. Invited lecture

51. Garavel, H., Sighireanu, M.: A graphical parallel composition operator for process
algebras. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Formal Methods for Proto-
col Engineering and Distributed Systems. IAICT, vol. 28, pp. 185–202. Kluwer
Academic Publishers, Dordrecht (1999)

52. Garavel, H., Thivolle, D.: Verification of GALS systems by combining syn-
chronous languages and process calculi. In: Păsăreanu, C.S. (ed.) SPIN 2009.
LNCS, vol. 5578, pp. 241–260. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02652-2 20

53. Graf-Brill, A., Hermanns, H., Garavel, H.: A model-based certification framework
for the EnergyBus standard. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 84–99. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43613-4 6

54. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via
fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). doi:10.1007/
978-3-319-25423-4 19

55. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)

http://dx.doi.org/10.1007/3-540-36135-9_18
http://dx.doi.org/10.1007/3-540-45937-5_3
http://dx.doi.org/10.1007/978-3-642-02652-2_20
http://dx.doi.org/10.1007/978-3-642-02652-2_20
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-319-25423-4_19
http://dx.doi.org/10.1007/978-3-319-25423-4_19

24 H. Garavel et al.

ATVA 2012. LNCS, vol. 7561, pp. 238–253. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33386-6 20

56. Huecas, G., Llana-Dı́az, L., Quemada, J., Robles, T., Verdejo, A.: Process calculi:
E-LOTOS. In: Bowman, H., Derrick, J. (eds.) Formal Methods for Distributed
Processing: A Survey of Object-Oriented Approaches, pp. 77–104. Cambridge
University Press, Cambridge (2001)

57. Huecas, G., Llana-Dı́az, L., Robles, T., Verdejo, A.: E-LOTOS: an overview. In:
Marsan, M.A., Quemada, J., Robles, T., Silva, M. (eds.) Proceedings of the Work-
shop on Formal Methods and Telecommunications (WFMT’99), Zaragoza, Spain,
pp. 94–102. Prensas Universitarias de Zaragoza, September 1999

58. ISO/IEC: LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. Draft International Standard 8807, Inter-
national Organization for Standardization - Information Processing Systems -
Open Systems Interconnection, Geneva, July 1987

59. ISO/IEC: ESTELLE - A Formal Description Technique Based on an Extended
State Transition Model. International Standard 9074, International Organization
for Standardization - Information Processing Systems - Open Systems Intercon-
nection, Geneva, September 1988

60. ISO/IEC: LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, International
Organization for Standardization - Information Processing Systems - Open Sys-
tems Interconnection, Geneva, September 1989

61. ISO/IEC: Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization - Information Tech-
nology, Geneva, September 2001

62. Jebali, F., Lang, F., Mateescu, R.: Formal modelling and verification of GALS
systems using GRL and CADP. Formal Asp. Comput. 28(5), 767–804 (2016)

63. Jourdan, M., Parigot, D.: Application development with the FNC-2 attribute
grammar system. In: Hammer, D. (ed.) CC 1990. LNCS, vol. 477, pp. 11–25.
Springer, Heidelberg (1991). doi:10.1007/3-540-53669-8 71

64. Kriouile, A., Serwe, W.: Formal analysis of the ACE specification for cache coher-
ent systems-on-chip. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS, vol.
8187, pp. 108–122. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41010-9 8

65. Kriouile, A., Serwe, W.: Using a formal model to improve verification of
a cache-coherent system-on-chip. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 708–722. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 62

66. Lang, F.: Compositional verification using SVL scripts. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 465–469. Springer, Heidelberg (2002).
doi:10.1007/3-540-46002-0 33

67. Lang, F.: Exp.Open 2.0: a flexible tool integrating partial order, compositional,
and on-the-fly verification methods. In: Romijn, J., Smith, G., van de Pol, J.
(eds.) IFM 2005. LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005). doi:10.
1007/11589976 6. Full version available as INRIA Research Report RR-5673

68. Lang, F., Salaün, G., Hérilier, R., Kramer, J., Magee, J.: Translating FSP into
LOTOS and networks of automata. Formal Asp. Comput. 22(6), 681–711 (2010)

69. Lantreibecq, E., Serwe, W.: Formal analysis of a hardware dynamic task dis-
patcher with CADP. Sci. Comput. Program. 80(Part A), 130–149 (2014)

70. Leduc, G., Jeffrey, A., Sighireanu, M.: Introduction à E-LOTOS. In: Cavalli, A.
(ed.) Ingénierie des protocoles et qualité de service. Collection IC2, chap. 6, pp.
213–253. Hermès, Paris (2001)

http://dx.doi.org/10.1007/978-3-642-33386-6_20
http://dx.doi.org/10.1007/978-3-642-33386-6_20
http://dx.doi.org/10.1007/3-540-53669-8_71
http://dx.doi.org/10.1007/978-3-642-41010-9_8
http://dx.doi.org/10.1007/978-3-662-46681-0_62
http://dx.doi.org/10.1007/978-3-662-46681-0_62
http://dx.doi.org/10.1007/3-540-46002-0_33
http://dx.doi.org/10.1007/11589976_6
http://dx.doi.org/10.1007/11589976_6

From LOTOS to LNT 25

71. Léonard, L., Leduc, G.: An introduction to ET-LOTOS for the description of
time-sensitive systems. Comput. Netw. ISDN Syst. 29(3), 271–292 (1997)

72. Léonard, L., Leduc, G.: A formal definition of time in LOTOS. Formal Asp.
Comput. 10(3), 248–266 (1998)

73. Li, X., Madnick, S., Zhu, H., Fan, Y.: Improving data quality for web services
composition. In: Proceedings of the 7th International Workshop on Quality in
Databases (QDB 2009), Lyon, France, August 2009

74. Massetto, F.I., de Souza, W.L., Zorzo, S.D.: Simulator for E-LOTOS specifica-
tions. In: Proceedings of the 35th Annual Simulation Symposium (SS 2002), San
Diego, California, USA, pp. 389–394. IEEE Computer Society, Washington, D.C.,
April 2002

75. Mateescu, R.: A generic framework for model checking software architectures. In:
Augusto, J.C., Ultes-Nitsche, U. (eds.) Proceedings of the 2nd International Work-
shop on Verification and Validation of Enterprise Information Systems (VVEIS
2004), Porto, Portugal. INSTICC Press, April 2004. Keynote presentation

76. Mateescu, R., Monteiro, P.T., Dumas, E., de Jong, H.: Computation tree regular
logic for genetic regulatory networks. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee,
I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 48–63. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88387-6 6

77. Mateescu, R., Salaün, G.: PIC2LNT: model transformation for model check-
ing an applied pi-calculus. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 192–198. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36742-7 14

78. Mateescu, R., Serwe, W.: Model checking and performance evaluation with CADP
illustrated on shared-memory mutual exclusion protocols. Sci. Comput. Program.
78(7), 843–861 (2013)

79. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 148–164. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68237-0 12

80. de Meer, J., Roth, R., Vuong, S.: Introduction to algebraic specifications based
on the language ACT ONE. Comput. Netw. ISDN Syst. 23(5), 363–392 (1992)

81. Milne, G.J.: CIRCAL and the representation of communication, concurrency, and
time. ACM Trans. Progr. Lang. Syst. 7(2), 270–298 (1985)

82. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). doi:10.1007/3-540-10235-3

83. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, 267–
310 (1983)

84. Mkaouar, H., Zalila, B., Hugues, J., Jmaiel, M.: From AADL model to LNT spec-
ification. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015. LNCS,
vol. 9111, pp. 146–161. Springer, Cham (2015). doi:10.1007/978-3-319-19584-1 10

85. Oliveira, R., Dupuy-Chessa, S., Calvary, G., Dadolle, D.: Using formal models to
cross check an implementation. In: Luyten, K., Palanque, P. (eds.) Proceedings of
the 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS 2016), Brussels, Belgium, pp. 126–137. ACM, New York, June 2016

86. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies.
In: Proceedings of the 27th Symposium On Applied Computing (SAC 2012), Riva
del Garda, Italy. ACM Press, New York, March 2012

87. Poizat, P., Salaün, G., Krishna, A.: Checking business process evolution. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 36–
53. Springer, Cham (2017). doi:10.1007/978-3-319-57666-4 4

http://dx.doi.org/10.1007/978-3-540-88387-6_6
http://dx.doi.org/10.1007/978-3-642-36742-7_14
http://dx.doi.org/10.1007/978-3-642-36742-7_14
http://dx.doi.org/10.1007/978-3-540-68237-0_12
http://dx.doi.org/10.1007/978-3-540-68237-0_12
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/978-3-319-19584-1_10
http://dx.doi.org/10.1007/978-3-319-57666-4_4

26 H. Garavel et al.

88. Ponsini, O., Fédèle, C., Kounalis, E.: Rewriting of imperative programs into log-
ical equations. Sci. Comput. Program. 56(3), 363–401 (2005)

89. Quemada, J.: E-LOTOS Has Born, February 1997. Email announcement available
from ftp://ftp.inrialpes.fr/pub/vasy/publications/elotos/announce-97.txt

90. Roth, R., de Meer, J., Storp, S.: Data specifications in Modular LOTOS. In:
Bolognesi, T., Lagemaat, J., Vissers, C. (eds.) LOTOSphere: Software Develop-
ment with LOTOS, pp. 467–479. Kluwer Academic Publishers, Dordrecht (1995)

91. Serwe, W.: Formal specification and verification of fully asynchronous implemen-
tations of the Data Encryption Standard. In: van Glabbeek, R., Groote, J.F.,
Höfner, P. (eds.) Proceedings of the International Workshop on Models for For-
mal Analysis of Real Systems (MARS 2015), Suva, Fiji. Electronic Proceedings
in Theoretical Computer Science, vol. 196. Open Publishing Association (2015)

92. Shankland, C., Verdejo, A.: Time, E-LOTOS, and the FireWire. In: Marsan,
M.A., Quemada, J., Robles, T., Silva, M. (eds.) Proceedings of the Workshop on
Formal Methods and Telecommunications (WFMT 1999), Zaragoza, Spain, pp.
103–119. Prensas Universitarias de Zaragoza, September 1999

93. Shankland, C., Verdejo, A.: A case study in abstraction using E-LOTOS and the
FireWire. Comput. Netw. 37(3/4), 481–502 (2001)

94. Sighireanu, M.: Contribution à la définition et à l’implémentation du langage
“Extended LOTOS”. Thèse de Doctorat, Université Joseph Fourier (Grenoble),
January 1999

95. Sighireanu, M., Catry, A., Champelovier, D., Garavel, H., Lang, F.,
Schaeffer, G., Serwe, W., Stoecker, J.: LOTOS NT User’s Man-
ual (Version 2.8), INRIA/CONVECS, Grenoble, France, 109 p.
ftp://ftp.inrialpes.fr/pub/vasy/traian/manual.pdf

96. Sighireanu, M., Turner, K.: Requirement capture, formal description and ver-
ification of an invoicing system. Research Report RR-3575, INRIA, Grenoble,
December 1998

97. Stöcker, J., Lang, F., Garavel, H.: Parallel processes with real-time and data:
the ATLANTIF intermediate format. In: Leuschel, M., Wehrheim, H. (eds.) IFM
2009. LNCS, vol. 5423, pp. 88–102. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00255-7 7

98. Thivolle, D.: Langages modernes pour la vérification des systèmes asynchrones.
Thèse de Doctorat, Université Joseph Fourier, Grenoble, France and Universitatea
Politehnica din Bucuresti, Bucharest, Romania, April 2011

99. Turner, K.J., Sighireanu, M.: (E)-Lotos: (enhanced) language of temporal order-
ing specification. In: Frappier, M., Habrias, H. (eds.) Software Specification Meth-
ods: An Overview Using a Case Study, pp. 166–190. Springer, London (2001).
doi:10.1007/978-1-4471-0701-9 10

100. Vekris, D., Lang, F., Dima, C., Mateescu, R.: Verification of EB3 specifications
using CADP. Formal Asp. Comput. 28(1), 145–178 (2016)

101. Verdejo, A.: E-LOTOS: Tutorial and Semantics. Master’s thesis, Departamento
de Sistemas Informáticos y Programación, Universidad Complutense de Madrid,
Spain, June 1999

102. Wu, H., Yang, X., Katoen, J.-P.: Performance evaluation of concurrent data struc-
tures. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984,
pp. 38–49. Springer, Cham (2016). doi:10.1007/978-3-319-47677-3 3

103. Zhang, Z., Serwe, W., Wu, J., Zheng, T.Y.H., Myers, C.: An improved fault-
tolerant routing algorithm for a network-on-chip derived with formal analysis.
Sci. Comput. Program. 118, 24–39 (2016)

http://ftp.inrialpes.fr/pub/vasy/publications/elotos/announce-97.txt
http://ftp.inrialpes.fr/pub/vasy/traian/manual.pdf
http://dx.doi.org/10.1007/978-3-642-00255-7_7
http://dx.doi.org/10.1007/978-3-642-00255-7_7
http://dx.doi.org/10.1007/978-1-4471-0701-9_10
http://dx.doi.org/10.1007/978-3-319-47677-3_3

LOTOS-Like Composition of Boolean Nets
and Causal Set Construction

Tommaso Bolognesi(B)

CNR-ISTI, Pisa, Italy
t.bolognesi@isti.cnr.it

Abstract. In the context of research efforts on causal sets as discrete
models of physical spacetime, and on their derivation from simple, deter-
ministic, sequential models of computation, we consider boolean nets, a
transition system that generalises cellular automata, and investigate the
family of causal sets that derive from their computations, in search for
interesting emergent properties. The choice of boolean nets is motivated
by the fact that they naturally support compositions via a LOTOS-
inspired parametric parallel operator, with possible interesting effects on
the emergent structure of the derived causal sets.

More generally, we critically reconsider the whole issue of algorithmic
causet construction and expose the limitations suffered by these struc-
tures w.r.t. to the requirements of Lorentz invariance that even discrete
models of physical spacetime, as recently shown, can and should sat-
isfy. We conclude by hinting at novel ways to add momentum to the
bold research programme that attempts to identify the natural with the
computational universe.

Keywords: Boolean nets · Causal sets · Discrete spacetime · Parallel
composition · LOTOS

1 Introduction

This paper is dedicated to Ed Brinksma and is largely motivated by a desire
to explore possible bridges between the topics investigated by Ed and friends in
‘those good-old LOTOS days’ – process-algebraic languages and operators, for-
mal specification styles and structuring principles, etc.1 – and the new research
field that the author has joined after quitting the formal methods community,
around 2005. This new area of activity deals with the emergent properties of the

1 Of course the range of Ed’s activities is broader, as suggested by the Festschrift
title ‘ModelEd, TestEd, TrustEd’. Indeed, the addition of ‘randomisEd’ wouldn’t
be completely inappropriate, in light of an episode which involved a small group of
‘LOTOS-eaters’ during a relaxing late-evening walk in a forgotten European city.
On that occasion Prof. Brinksma, dissatisfied with the manipulations performed on
the Rubik Magic Rings puzzle by the author – dismissed as insufficiently random –
gave a public, truly brilliant demonstration of his unexpected randomisation skills.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 27–47, 2017.
DOI: 10.1007/978-3-319-68270-9 2

http://orcid.org/0000-0003-0854-2587

28 T. Bolognesi

computations of simple programs, and with discrete models of physical space-
time. The occasion gives us also the opportunity for a critical assessment of some
of the steps taken in these directions.

Causal Sets. Causality among events in spacetime is regarded by many theoreti-
cal physicists as a most fundamental aspect of nature, and represents a key notion
in the continuum spacetime of Special and General Relativity. When revisited
under the assumption of spacetime discreteness – a feature often imagined to
manifest itself at the Plank scale (10−35 m, 10−44 s) – the idea of causality finds
a simple realisation in terms of causal sets [10,28,30]. A causal set, or causet,
is a partially ordered set of events (S,�) with the additional property of being
finitary, which means that all order intervals I[s, t] = {x|s � x � t}, for any
pair of elements s and t (the source and the sink) must be finite. A causet can
be represented by a directed acyclic graph. Most efforts in the Causal Set Pro-
gramme are concerned with identifying adequate counterparts, in the discrete
setting, of concepts and features of continuous spacetime [29], such as lightcones,
Lorentz invariance [12], dimensionality [22], curvature [1].

The most direct way to obtain a causet of solid, physical realism is to directly
derive it, using the stochastic sprinkling technique to be introduced later, from a
solid, continuous, Lorentzian manifold (e.g. flat Minkowski or positively-curved
De Sitter space-time) guaranteed to satisfy the Einstein field equations. However,
an attractive challenge for those who support the conjecture of an ultimately
discrete, computational and deterministic nature of the universe, is to derive
realistic causets directly from the computations of simple, discrete, deterministic
models, without resorting to predefined continuum solutions, as sprinkling does.
This idea has been first proposed by Wolfram [34], under the whimsical name of
‘universe hunting’, and has been further investigated by the author since 2010,
often referred to as ‘algorithmic causet construction’ [3–5].

Bridges. How can we establish a bridge between algorithmic causal sets and
process algebra? A possible link is suggested by the observation that partially
ordered structures of events are such general and flexible mathematical objects
that, unsurprisingly, they find application in a number of diverse fields of science
and technology, including Computer Science. For example, roughly in the same
period during which the Causal Set Programme for Quantum Gravity started to
use these structures as discrete models of spacetime, in Theoretical Computer
Science, in the areas of Concurrency Theory and Formal Methods, the ‘true
concurrency semantics’ research effort started to devise mappings from process
algebras to event structures somewhat analogous to causets [32,33].

An important difference between the two types of event set, from Physics
and from Computer Science, is that in the former all events are expected to take
place, while in the latter, as a reflection of choice operators in the syntax, special
relations indicate that some events are in conflict. In Bundle Event Structures
[20], for example, relation e#e′ means that there is no system run in which both
e and e′ occur: some portions of the event structure remains ‘unvisited’.

However, a difference between the two structures that is more interesting
for our purposes here is that we cannot hope to detect emergent, macroscopic,

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 29

possibly regular patterns in stochastic causets - by the very definition of stochas-
tic process - while in the event structures from Computer Science this is certainly
possible, since structure and order are inherited from the syntax itself. This fact,
abstractly represented in Fig. 1, makes event structures from process algebraic
specifications potentially interesting under a quantum gravity or computational
universe perspective.

Fig. 1. The true-concurrency semantics of a process-algebraic specification maps a
formal piece of syntax into a highly structured set of partially ordered events. The
structure found in the semantic object on the r.h.s. is inherited from the structure in
the syntactic object on the l.h.s.

Indeed, our initial plan was to investigate the emergent properties of the event
structures obtained by the ‘true concurrency semantics’ of LOTOS [20] for large
corpora of specifications, possibly generated at random. The unavailability of a
fully automated semantics for a sufficiently large subset of the language – one
including recursion – and the limited resources at our disposal, prevented us from
following this path. We have therefore opted for a conceptually simpler labelled
transition system – boolean nets – and have studied the causets that originate
from their computations. Interestingly, it is straightforward to export to this
state transition model the LOTOS parametric parallel composition operator,
that represents a key structuring construct of the language: this is attractive, in
light of the importance that we attribute to the emergence of macro/structures
in causets.

Paper Plan. In Sect. 2 we introduce boolean nets, their synchronous and asyn-
chronous executions, and the global graphs derived in the two cases. In Sect. 3
we contrast stochastic vs. deterministic causet construction techniques, recall-
ing the main technique of the first type – manifold sprinkling – and mentioning
two alternative approaches – indirect and direct – for building causets of the
second type. In Sect. 4 we address the derivation of causets from (unstructured)
asynchronous computations of boolean networks, under three different execution
policies, and we study a peculiar property of the obtained graphs that has to do
with Lorentz invariance. This leads us to critically reconsider the indirect app-
roach to algorithmic causet construction in its generality. In Sect. 5 we consider

30 T. Bolognesi

the parametric parallel composition of (asynchronous) boolean nets, and take a
preliminary look at the associated causets. In Sect. 6 we mention a few aspects in
which, in our opinion, research and experimentation on ‘universe hunting’ could
find new momentum and better results in term of emergent complexity.

2 Boolean Networks: Sync and Async Execution

Boolean networks, abbreviated bool nets in the sequel, are a sequential dynamical
system based on a finite set of boolean variables, each controlled by a different
boolean function. Random bool nets have been originally developed by Stuart
Kauffman for modelling genetic regulatory networks [19], and have found appli-
cation, more recently, in Integrated Information Theory, as abstract models of
neural networks [25].

2.1 The Model

An (N, k)-bool net is a pair (G(B,E), F) where:

– G(B,E) is a directed graph with N vertices B = {b1, . . . , bN}, and N · k
edges E that specify the k input arguments: bi,1 → bi, . . . , bi,k → bi for every
bi ∈ B.

– F = {f1, . . . fN} is a set of N boolean functions of k arguments.

Each vertex bi ∈ B is a boolean variable controlled by boolean function
fi(bi,1 . . . bi,k) ∈ F . The ordered k-tuple of arguments (bi,1 . . . bi,k) identifies the
bits in B that fi reads, and corresponds to k directed edges in E, namely edges
bi,1 → bi, . . . , bi,k → bi. Thus, there is a total of |E| = N ∗ k edges.2 The
G(B,E) graph of a (N5, k3)-bool net is provided, as an example, in Fig. 2-left.
The numeric codes of the boolean functions associated to each node are indicated
in parentheses. Note that there are 22

k

boolean functions of k variables – 256
for this example.

There are two ways in which a boolean net can be executed:

Synchronous execution. This criterion naturally combines with a discrete time
assumption: at each time step, or clock tick t = 0, 1, 2 . . . , each function fi reads
the values of its k arguments – the bits bi,1, . . . , bi,k identified by the incoming
edges of node bi – and fires, assigning the computed value to its controlled node,
i.e. to variable bi. All functions fire together. Under this synchronous firing pol-
icy, boolean nets are a generalisation of cellular automata [17].
We assume deterministic functions F = {f1, . . . fN}, thus synchronous evo-
lution is itself deterministic: each global state has only one successor. Thus,
placing deterministic bool nets with synchronous evolution in the wider con-
text of probabilistic system - viewing them as special, limit cases of that

2 Note that, unless decorated with appropriate edge priority assignments, the graph
is not sufficient for correctly identifying the order of function arguments: this is
disambiguated in F .

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 31

Fig. 2. G(B, E) directed graph for a (N5, k3)-bool net (left). Numbers in parentheses
near each node identify the boolean function of three variables that controls the node
bit. Each node has three incoming arcs, identifying the argument bits. Global graphs
for the same net under sync (middle) and async (right) execution.

family - we can represent them by causal graphs [26], since they fulfill the
requirement that the state at time t + 1 of each variable bi, denoted bt+1

i ,
is conditionally independent of bt+1

j , for every other variable bj , given the
global state Bt of the system at time t: prob(bt+1

i |Bt, bt+1
j) = prob(bt+1

i |Bt).
Each bit/function bi = fi(bi,1. . .bi,k) can thus be interpreted as an individual
causal element within the system [26].

Asynchronous execution. Although we assume deterministic functions F =
{f1, . . . fN}, asynchronous evolution admits both deterministic and nonde-
terministic variants.
The nondeterministic form naturally combines with a continuous time
assumption: we imagine function firing to be an instantaneous random event,
occurring independently from other firings. In continuous time, the proba-
bility of two firings to occur simultaneously is zero, thus we assume that all
these events occur one at a time, in an interleaving fashion. Correspondingly,
each global state may have multiple successors – as many as the number N of
bits. The continuous time postulate that no two firings occur simultaneously
actually introduces a causal dependency between the individual bits bi ∈ B.
While the global transitions of the system from its current state Bt to its
next state Bt+1 may still be interpreted as a global mechanism, the states
of individual bits within system B are not conditionally independent on the
past. The next state of an individual bit may depend on the next state of
other bits bj in addition to the current state of its parents {bi,1 . . . bi,k}. For
this reason, asynchronously updated bool nets cannot be interpreted as a
system composed of individual causal elements [25], and thus do not readily
fit into the framework of causal graphs [26].
Two types of deterministic, asynchronous bool nets shall be introduced later.

32 T. Bolognesi

2.2 Global Graphs

Bool nets, either sync or async, are finite transition systems, thus we can capture
their behaviour by a directed, global, state transition graph in which each node
is a global state, i.e. a tuple of bits. For a complete characterisation of the bool
net behaviour we do not refer to a specific initial global state, but create all
global states and find all transitions that emanate from each of them. In general
the graph may be disconnected.

Two global graphs, for the same boolean net but with sync or async execu-
tion, are illustrated in Fig. 2. The sync graph in the middle has two connected
components, each featuring a three-node cyclic attractor. The layout of the async
graph on the right exhibits some degree of symmetry, and may give the impres-
sion of a 3-D assembly of cubic frames: this is a consequence of the transition
interleaving policy, by which a group of transitions may fire in all possible order-
ings. (In a simple setting, with just two transitions, interleaving yields the typical
diamond shape.)

3 Stochastic vs. Deterministic Causets

Started in the late 1980’s [10], the Causal Set Programme has always been con-
cerned with techniques for building realistic causets, able to reproduce or approx-
imate features of physical, continuous spacetime. Invariably, all the considered
techniques have been of stochastic nature. The primary technique, in this group,
is sprinkling.

By the sprinkling technique one can derive a causet from a Lorentzian mani-
fold M provided with a volume measure, in two steps. First one creates a uniform,
Poisson distribution of points - to become the causet nodes - in a finite region
of M , with density δ, so that the expected number of points in a volume V is
δV , and the probability to find exactly n points in that portion is:

P (n) =
(δV)ne−δV

n!
. (1)

Then the causet edges are created by letting the sprinkled points inherit the
causal structure of M : in M two points/events are causally related when their
squared Lorentz distance L2 is positive (time-like relation) or null (light-like
relation), and are causally unrelated when L2 is negative (space-like relation).3

In the sequel we shall conveniently call these objects sprinkled causets. Sprinkled
causets can be regarded as the most direct discrete versions of ‘real’, continuous
forms of physical spacetime (e.g. Minkowski and De Sitter).

As mentioned in the introduction, a challenging goal of causet-based quantum
gravity research is to build causets of physical significance without resorting to an
underlying continuum, with the manifold obtained a posteriori, as an asymptotic
approximation.
3 In four dimensional, Minkowski spacetime M1+3, with time dimension t and spatial

dimensions x, y, z, the squared Lorentz distance between events e1(t1, x1, y1, z1) and
e2(t2, x2, y2, z2) is L2(e1, e2) = +(t2 − t1)

2 − (x2 − x1)
2 − (y2 − y1)

2 − (z2 − z1)
2.

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 33

The first experiments with deterministic techniques for causet construction,
as opposed to stochastic techniques, have been carried out by Wolfram [34],
although some preliminary ideas can be found in [16].

The rationale for this alternative approach is, in our opinion, quite strong,
although still controversial in the community of theoretical physicists: as widely
shown by Wolfram with cellular automata and other simple models [34], the rich-
ness and variety of patterns that emerge from suitable (and, typically, graphi-
cal) representation of deterministic computations, ranging from regular, periodic
behaviours to fractal structures, from pseudo-randomness to ‘digital particles’, is
far beyond the reach of purely stochastic models. Furthermore, the assumption
of a physical universe fundamentally fuelled, at its lowest spacetime scales, by a
digital computation rather than by differential equations, has appealed several
physicists (and non-physicists) in the last decades [15,21,31,36] and may be, at
present, the best candidate for explaining the peculiar mix of order and disor-
der found in nature. (For a comprehensive collection of papers on these issues,
see [13].)

Following Wolfram’s pioneering steps, we have carried out a number of
additional experiments with algorithmic causet construction [3–8], investigat-
ing properties such as dimensionality, curvature, and Lorentz invariance in the
discrete setting.

We distinguish two main techniques for algorithmic causet construction.

Indirect. Reflecting Wolfram’s original ideas, a causet is obtained by consid-
ering the computation of a sequential model (e.g. an n-dimensional Turing
machine), by viewing the computation steps as the events (nodes) of the
causet, and by inferring the causal relations among events from the write
and read operations carried out at each step on the state variables of the
model (e.g. the tape cells and the state of the Turing machine head). A con-
crete example of application of this technique is provided in Sect. 4.

Direct. In this case we devise an algorithm that directly creates and manipulates
the graph representing the causet.

As the reader may have already realised, there is an abundant degree of arbi-
trariness in these constructions, and no clear guiding principle for their choice,
other than, perhaps, conceptual simplicity. The exploration of the computa-
tional universe, as conceived by Wolfram, is fundamentally a blind experimental
activity: run virtually all instances of the model at hand and see what happens.
One may also object that, under the assumption of a computational universe,
the choice of a specific Turing-universal model from which to derive causets is
irrelevant, since all of them are equivalent, at least in terms of computing power.
In practice, however, different models perform quite differently when it comes
to concretely spotting interesting properties. Cellular automata diagrams, for
example, are more convenient than many other models for detecting, by direct
visual inspection, interesting emergent patterns such as digital particles. Thus,
we still consider it interesting to explore families of causets derived from different
models of computation.

34 T. Bolognesi

4 Causets from Async Bool Nets

What type of causet can be derived from the computation of a bool net, following
the ‘indirect’ construction approach of Sect. 3?

Let A = (G(B,E), F) be a (N, k)-bool net, and let us conveniently restrict
here to the case of asynchronous execution (see Subsect. 2.1), in which step w of
the sequential computation corresponds to the application of just one boolean
function fi ∈ F , that we write fw

i (bi,1, . . . bi,k) for stressing its position w in the
sequence of steps. We shall directly say that event w has written bit bi after
reading bits bi,1, . . . bi,k. We have chosen to address asynchronous rather than
synchronous bool nets because they are closer to the LOTOS execution model,
and because the derivation of causets from them is easier and more in line with
our past experiments.

Following the general technique described in [4], to which the reader is
referred for more details, a causet C = (S,�) is readily obtained from the
selected computation of bool net A as follows:

– S is the set of computation steps, identified only by their temporal order of
occurrence w – a natural number;

– v � w, where v, w ∈ S, whenever one of the arguments bi,1, . . . bi,k of function
fw

i (bi,1, . . . bi,k), say bi,j , sees event v as its most recent writer event, meaning
that no other event between v and w has written bi,j . We say that bi,j is the
causality mediator between v and w.

For obtaining and comparing multiple causet types from the same basic
model we consider three different bool net (async) execution policies:

Nondeterministic - At each step the choice of which function to fire it taken
uniformly at random.

Deterministic - bit cycling - The N bits of the net are updated one after
the other, from left to right, in cycles.

Deterministic - label cycling - Function firings are enriched by labels, which
turn out to be particularly useful when used in conjunction with LOTOS-like
parallel composition of bool nets. These labels are assigned by a determinis-
tic mechanism: each function fi(bi,1, . . . bi,k), controlling bit bi of net A has
an associated one-to-one labelling function α : {0, 1}k → L, which returns a
different symbol of alphabet L for each different k-tuple of bits read by fi.
L thus includes 2k symbols; furthermore, it is ordered.4 A pointer scans L
from left to right, and stops at the first label that is represented in one of
the transitions: this is the transition to be fired. When multiple transitions
share that label, the one corresponding to the bit with lowest index is chosen.
This labelling policy is just a simple implementation of the idea that a tran-
sition label should depend on the current state of the system, but there are

4 For k = 3, for example, we typically set α(0, 0, 0) = 0, α(0, 0, 1) = 1, . . . , α(1, 1, 1) =
7, with L = {0 . . . 7} ordered in the natural way. In the sequel we shall also create
a different labelling function for each different bool net bit by considering different
rotations of the range tuple (0 . . . 7).

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 35

clearly many other ways to reflect this requirement, or even to dismiss it. Our
choice has been, admittedly, quite arbitrary, and we cannot exclude that other
labelling techniques might yield more interesting causets; indeed, a certain
degree of arbitrariness seems unavoidable, in ‘Wolfram-style’ explorations of
the huge universe of deterministic computations.

Which causet properties are we going to analyse?
In [8] we have considered several statistical indicators meant to characterise

causets obtained from various techniques, and to measure their closeness to the
ideal Lorentzian causets – the sprinkled causets mentioned in Sect. 3. Here we
focus on just one indicator, which refers to the out-degrees of causet nodes.5

The importance of looking at the growth rate of causet node out-degrees is
well explained by Rideout [27]:

“The ‘usual’ discrete structures which we encounter, e.g. as discrete
approximations to spatial geometry, have a ‘mean valence’ of order 1.
e.g. each ‘node’ of a Cartesian lattice in three dimensions has six nearest
neighbors. [...] Such discrete structures cannot hope to capture the noncom-
pact Lorentz symmetry of spacetime. Causal sets, however, have a ‘mean
valence’ which grows with some finite power of the number of elements in
the causal set. It is this ‘hyper-connectivity’ that allows them to maintain
Lorentz invariance in the presence of discreteness.”

Thus, an important requirement for a causet to support Lorentz invariance
is that the number of outgoing links from the generic causet node should grow
with the size of the causet (see also [9]).

In [11] Bombelli et al. mention that, considering the causet C[s, t] obtained
from uniformly sprinkling points in an order interval I[s, t] of height T of
d-dimensional Minkowski space (T being the Lorentz distance between s and
t), the number of nearest neighbors of the root node s – the number of outgoing
links – grows like Log(T) for d = 2, and like T d−2 for d ≥ 3, provided that
the sprinkling density is kept constant. Again, the essential feature here is that
the out-degree of each node in a sprinkled causet will grow, possibly slowly, but
unbounded, as new nodes are added.

Can we expect this feature to be satisfied by the causets derived from the
three variants of bool net computation just introduced? The answer depends
on whether we adopt a nondeterministic or deterministic execution and, in the
second case, it depends on the type of algorithm.

Let us clarify the issue in the wider context of causets derived from the
sequential steps of virtually any model of computation, following the ‘indirect’
technique in which causality is induced by the mediation of state variables.

Consider some generic sequential model of computation and let X be the
possibly dynamic set of state variables that can be read, written, created or

5 Recall that we always consider the causet in its transitively reduced form, or Hasse
diagram, whose edges are often called ‘links’.

36 T. Bolognesi

destroyed by the computation steps. Recall that we establish a direct correspon-
dence between the steps and the causet nodes, so that we can sloppily attribute
read/write or create/destroy operations to the ones or the others.

Here is what may happen in terms of causet link creation and node out-degree
growth:

– If event w reads variable x ∈ X, then a new edge v → w is created, where
event v is the most recent writer of x.

– If event w creates variable x, it acquires the opportunity to see its own out-
going edges grow in number, thanks to all future events, if any, that read x
before some other event writes or destroys x.

– If event w writes or destroys x, it permanently prevents node v – the most
recent writer of x until w – to collect further outgoing edges.

If follows that the only circumstance in which a causet node v can see its
out-degree grow unbounded is when v creates/writes x, and in the subsequent
events, x is read infinitely often but never rewritten.

As a consequence, any fair sequential model in which each state variable
is always eventually updated yields causets in which all nodes exhibit an O(1)
growth of their out-degrees. This is clearly the case of our nondeterministic,
async bool net computations, that behave fairly by definition!

How about deterministic bool net computations? The ‘advantage’ of these
computations is that they may behave unfairly in a number of creative ways!

Let us then consider Fig. 3. In these plots we compare four types of causets
in terms of their node degree growth. They are: causets from sprinkling in 2D
space (see Sect. 3), causets from nondeterministic bool nets, and causets from
deterministic bool nets with bit-cycling or label-cycling.

Each plot refers to the growth of a single 300-node causet, and collects 300
function plots, each describing the out-degree growth of a different node as the
causet develops.

The two plots in the upper row, with their random-like traits, reflect the non-
deterministic nature of the computations from which they originate, but differ in
a fundamental aspect: in a sprinkled causet (upper-left) – the structure of refer-
ence for Lorentz invariance – each node out-degree grows slowly but unbounded;
in a causet from an infinite, nondeterministic async bool net computation, each
node reaches, with probability 1, a constant, permanent out-degree, for the rea-
sons we have discussed, although ever bigger constants may be achieved, as the
computation unfolds.

The two plots in the lower row are from the two deterministic variants of
async bool net computations: bit-cycling and label-cycling. Not surprisingly, the
bit-cycling policy, being maximally fair with respect to bit choice, prevents the
growth of node out-degrees beyond N , the number of bits in the net, since, in
the causet construction process, no event can play the role of most recent bit
writer for more than N steps. On the contrary, the label-cycling policy, exerting
only an indirect control on the choice of the bit to update, leaves room, in a
few cases, to ‘unfair’ behaviours, thus to unbounded node out-degree growth, as
clearly visible in the lower-right plot of Fig. 3.

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 37

Fig. 3. Individual growth rates, as a function of causet size, of the out-degree of all
nodes in causets of four types: sprinkled causet of dimensions d = 2 (upper-left), causet
from nondeterministic async bool net (upper-right), from deterministic async bool net
with bit cycling (lower-left), and from deterministic async bool net with label cycling
(lower-right).

Indeed, we can cheaply establish a limitation also for the deterministic
causets from label-cycling bool net computations: the number of causet nodes
with unbounded node degree must be finite, and smaller than N , the total num-
ber of bits. The reason is as follows. Recalling that each event writes precisely
one bit of the net, if we had more than N events exhibiting unbounded out-
degree growth, by the pigeon-hole principle at least two of them, ex and ey,
would be in charge of the same bit, implying that the occurrence of the most
recent of them in the sequential computation, say ey, would obscure ex as most
recent writer of that bit, stopping permanently the out-degree growth of ex.

This circumstance indicates that these toy causets cannot compete with
sprinked causets in terms of physical realism. Still, the examples above seem
to demonstrate that, when focusing on the much desired property of unbounded
out-degree growth, a deterministic approach to causet construction may offer
advantages w.r.t. a nondeterministic one – excluding of course sprinkling itself,
which directly derives its good properties from an underlying manifold of guar-
anteed physical significance.

Discussion on the limits of causets obtained by the ‘indirect’ technique shall
be resumed in the closing section.

38 T. Bolognesi

Although it might be interesting to study further properties of the class of
causets derived from unstructured bool nets, we turn now to LOTOS-like com-
positions of bool nets, hoping to spot interesting effects on the derived causets
in terms of macroscopic emergent properties.

5 Causets from Parallel Compositions of Bool Nets

This section deals with deterministic computations of LOTOS-like compositions
of bool nets. In this case, for moving from potentially nondeterministic compu-
tations to deterministic ones we disregard the bit-cycling technique and concen-
trate on the label-cycling policy, given the fundamental role played by transition
labels in the LOTOS parametric parallel composition operator.

5.1 Composing Bool Nets

When two LOTOS processes P and Q are composed in a parallel composi-
tion expression ‘P |[syncLabs]|Q’, where syncLabs is a set of labels, the result-
ing labelled transition system is obtained by forcing the processes to proceed
jointly – in synchrony – on the transitions with labels in syncLabs, while pro-
ceeding independently on their other transitions – in an interleaving fashion.
This is what established by the inference rules of transition for the parametric
parallel composition operator:

P
x−→ P ′ ∧ x /∈ syncLabSet

P |[syncLabSet]|Q x−→ P ′|[syncLabSet]|Q (left interleaving) (2)

Q
x−→ Q′ ∧ x /∈ syncLabSet

P |[syncLabSet]|Q x−→ P |[syncLabSet]|Q′ (right interleaving) (3)

P
x−→ P ′ ∧ Q

x−→ Q′ ∧ x ∈ syncLabSet

P |[syncLabSet]|Q x−→ P ′|[syncLabSet]|Q′ (synchronisation) (4)

The derivation of a global transition graph from an async bool net (unstruc-
tured) was discussed in Subsect. 2.2. Since the semantics rules (2)–(4) for LOTOS
parallel composition are applicable to labelled transition systems, it is perfectly
feasible to apply them to the composition of boolean nets P and Q. The only
missing elements are transitions labels!

For assigning labels to the individual transitions of async bool nets P and Q,
we use the deterministic labelling policy described in Sect. 4, based on a labelling
function α. On this basis, the application of rules (2)–(4) becomes possible, and
the expression P |[syncLabs]|Q formally identifies all possible transitions of the
composite system also when P and Q are bool nets.

Thus, expression P |[syncLabs]|Q denotes a composite system in which P
and Q may execute their respective transitions independently form each other,
or jointly, when both are labelled by an element of syncLabs, thus involving a
mix of synchrony and asynchrony. We shall use the LOTOS notation ‘P |||Q’ for
the case syncLabs = φ (‘pure interleaving’). Of course, the composite transition
system can be further composed with additional async nets.

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 39

5.2 Derived Causets

For exploring the class of causets associated with deterministic computations of
composite bool nets, we start from most elementary instances of the model. We
shall therefore consider bool net compositions of form P [N3, k3]|||Q[N3, k3].

Figure 4 illustrates four typical pairs of graphs for this type of composition.
Each pair consists of a raw causet and its transitively reduced form, next to each
other. All four reduced causets – the proper causets of interest here – collapse
to a trivial tree form that basically washes away the structure of the raw graph.

Fig. 4. Causets from deterministic computations of randomly generated bool nets
P [N3, k3] and Q[N3, k3] composed by disjoint (interleaving) parallel composition
P |||Q. The computation is made deterministic by the cycling label policy described
in the text. The four (transitively reduced) causets share the same trivial tree-like
form, and are shown, for clarity, with fewer nodes than the corresponding raw graph.
In the raw graphs, the causal edges created by transitions of P and Q are rendered,
respectively, in black and grey. The central node with high out-degree in the upper-left
graph corresponds to the initial event of the computation, which initialises all 6 bits of
P and Q. The different shapes of the raw graphs essentially depend on the number of
nodes that succeed to permanently keep the role of last writer for some bit of P or Q.

It is easy to realise that, by using the P |||Q composition, the causet events
generated by the independent transitions of P and Q can only be arranged in
two independent total orders: when N = k, as in this case, each event e of P
reads all bits of P , thus it causally depends on the immediately preceding event
e′ of P , no matter which bit e′ has written. Likewise for Q.

It is important not to confuse global transition graphs, not shown here,
with causets. First, the global transition graph contains all transitions among
all possible global system states, while a causet corresponds to one particular
execution path on the global graph, and reveals its intrinsic partial order, if any.

40 T. Bolognesi

Second, a causet node represents an event corresponding to a transition in the
global graph.6

Figure 5 refers to two bool net compositions of form P [N3, k3]|{a}|Q[N3, k3],
in which P and Q must synchronise on just one label (‘a’), out of the 2k = 8
labels of alphabet L. This simple change is sufficient to induce a change in the
derived causets, which appear on the r.h.s. of the figure: now some causet events
correspond to synchronisations between P and Q, and the causets appear as
two separate causal paths that periodically share these events. In spite of the
extreme simplicity of these patterns, we may regard them as a first, rudimen-
tary demonstration of how to promote the appearance of macrostructures – the
intertwined causal paths of P and Q – in a causet.

Fig. 5. Causets from deterministic computations of randomly generated bool nets
P [N3, k3] and Q[N3, k3] composed by parallel composition P |{a}|Q. Raw and reduced
causet forms are shown next to each other. Again, the different growth patterns of the
raw causets (circular vs. linear) are not retained in the reduced causets, which appear
essentially equivalent.

The inspection of causets from P (N3, k3)|[syncLabs]|Q(N3, k3) bool net
compositions with increasing coupling, i.e. larger set syncLab, does not reveal
any qualitatively different causet structure, except for an increased probability
of deadlock – a bool net waiting to synchronise its transition on a label not
available in the transitions of the other. (Note that talking about deadlock prob-
ability corresponds to the fact that we are creating random instances of bool
nets, for the given parameter settings, i.e. random sets of boolean functions.)

6 In the graphical rendering of causets, we may render differently (black/gray/dashed)
the edges that point to a node, depending on whether that node corresponds to a
transition from P , from Q, or from both. This is the criterion adopted for Figs. 4
and 5. As an alternative, we may directly paint the causets node differently, as done
for the subsequent figures.

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 41

Moving now to higher parameter values we find causets (in their transitively
reduced form!) of higher complexity. A curious phenomenon observed here is the
dependence of the causet overall shape, or growth symmetry – again, circular or
linear – on the coupling factor |syncLabs|. Figure 6 shows the causets obtained
from P [N15, k3]|[syncLabs]|Q[N15, k3] compositions of a fixed pair of bool nets,
with |syncLabs| ranging from 0 to 8, the alphabet size.

Fig. 6. Causets from parallel compositions P [N15, k3]|[syncLabs]|Q[N15, k3] of two
bool nets, with coupling factor |syncLabs| ranging from 0 to 8, as indicated on top of
each graph. Only for coupling factor 7 does the causet assume a linear shape.

Curiously, with 7 synchronisation labels the causet develops linearly rather
than circularly. Note that with the (N15, k3) parameter setting, deadlocks end
up being much less frequent, due to the increased offer of labeled transitions by
the two interacting nets.

Our primary motivation for exploring causets from structured, composite
bool net systems was to spot the emergence of corresponding macro structures
in the causets themselves, and the possibility to identify a partition into distin-
guishable regions. Graph and network theories certainly provide an abundance
of tools that might prove useful for formally characterising or measuring ‘inter-
esting’ causet partitions, but their consideration is beyond the scope of this
paper. On the other hand, a simple way to help identifying regions by direct
visual inspection is to paint causet nodes with different colors, following some
predefined criterion. In the case of bool net parallel compositions an obvious
criterion, implicitly suggested already in Fig. 1, is to differentiate among nodes
corresponding to independent transitions of P , of Q, and of P and Q jointly. In
Fig. 7 we provide two examples (one of them is the second element in the upper
row of Fig. 6) in which the three types of causet node are painted, respectively,
in white, black and pink.

With respect to the construction of realistic discrete models of physical space-
time, the experiments we have carried out with interacting bool nets, some

42 T. Bolognesi

Fig. 7. Painting causet nodes. White and black nodes correspond to transitions per-
formed in interleaving by bool nets P and Q, respectively. Pink nodes correspond to
joint transitions of the two bool nets. (Color figure online)

of which have been illustrated here, suggest that the value of the algorith-
mic causets obtained in this way is mainly metaphorical. The case of cellular
automata is somewhat analogous: very few people believe that those automata
can, in themselves, fully explain or actually generate the whole physical universe,
but more people may be convinced that the surprising emergent properties they
exhibit, often resembling patterns and processes found in nature, hint at the
existence of some deep connection between the computational and the natural
universe. Our causets from bool nets indicate that it is possible to obtain some
form of macro-structure from deterministic, sequential computations. However,
an important limitation of this approach is that the macrostructure is not gen-
uinely emergent, in the same way as digital particles unpredictably emerge in
some cellular automata, but is an expected consequence of the structure built
into the process by us.

This and other limitations of the ‘algorithmic causet’ effort are discussed in
the next, closing section, where we also hint at possible solutions and mention
some promising developments.

6 Conclusions

The limitations affecting the causets discussed in this paper represent only a
part (and not the most problematic!) of the difficulties that experiments with
algorithmic causet construction have faced in the last 15 years. Let us briefly
summarise the issues, placing them in a temporal perspective.

The first derivation of causets (or ‘causal networks’) from the computations of
a sequential model, namely a mobile automaton operating on a one-dimensional
array of cells, has been proposed by Wolfram (see [34], p. 489, and the interactive
demo [24]). The crucial limitation of those graphs is that the transitively reduced
causet is totally ordered, corresponding to a sequence of nodes with both in-
degree 1 (except for the root) and out-degree 1. According to the findings on
Lorentz invariance in the discrete setting [9,11,27], this is bad.

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 43

The total order of events is a direct consequence of the short steps taken by
the automaton on the cell array: some of the three (or more) cells read at each
step must have been written in the immediately preceding step, yielding events
that are causally linked one after the other. (A way to avoid the total order is
to consider ‘jumping mobile automata’ [4].)

The same total-order limitation is suffered by causets derived from Tur-
ing Machines (TM), also investigated by Wolfram and others (see demo [35]).
A jumping policy would not be effective here, since it is now also the state of
the machine head that inevitably plays the role of causality mediator between
any pair of adjacent events.

Some of the features exhibited by the raw causets derived from the above
models appear potentially interesting, even under a Physics perspective. In [4],
for example, we have classified the raw causets from the computations of the
4096 elementary TM’s – those with 2 states and binary tape. The large majority
of them cannot escape the dull fate of a trivial, one-dimensional growth, as in
case 7 of Fig. 6, but, interestingly, the toy spacetime produced in 12 cases is
two-dimensional and planar: it is flat (Euclidean) for 8 of them, and negatively
curved (hyperbolic) for the remaining 4.

It is frustrating to discover elaborate patterns in algorithmic, raw causet, and
see them vanish completely after transitive reduction. To mitigate the problem,
in [3] we have shown that when transitive reduction is applied to a local area
of the raw causet, rather than globally, some patterns in that area may survive,
notably digital particles.

Another important limitation that affects the raw and, a fortiori, the reduced
causets from several simple models of computation is planarity. In [4] it is proved
that the causets from general, one-dimensional TMs, from two variants of mobile
automata on tape, from string rewrite systems, and from tag systems and cyclic
tag systems are all planar, a feature that conflicts with the four dimensions of
conventional spacetime.

One way to obtain causets of higher dimensionality consists in increasing
the dimensionality of the support on which their parent computation operates,
based on the idea that a d-dimensional support should yield a (d+1)-dimensional
causet, due to the expected contribution of the intervened time dimension.
For this reason, causets from two-dimensional TM’s and from network mobile
automata [2] – a model analogous to mobile automata on tape, but operating
by rewrite rules on planar, trivalent networks – have been widely investigated in
[3], yielding examples of three-dimensional causets. Some improved results were
obtained by dropping the planarity requirement for the support network, and
by using genetic algorithms [6].7

In light of the Occam’s razor principle, however, a technique by which
the desired causet features (high dimensionality or macro-regions) emerge

7 Several techniques are available for measuring the dimension of a graph [23]. Unfor-
tunately their estimates may disagree! For the mentioned example we have used the
‘node shell growth rate’ technique, which provided a dimension 3 estimate but only
relative to the node shells centered a the causet root.

44 T. Bolognesi

spontaneously from a simple and abstract computation should be preferred over
ones by which they are built explicitly into the process.

In this paper we have focused on a specific feature of algorithmic causets
related to Lorentz invariance: node out-degree growth, as a function of causet
size. In this respect, the status of the various classes of algorithmic causets can
be summarised as follows, in order of increasing interest.

– Out-degree = 1 for all causet nodes. This is the trivial case of totally ordered
causets, which would not even deserve mention if it were not the norm for
most of the initial experiments in the field.

– O(1) out-degree growth for all nodes. Causet nodes are related by a proper
partial order, but none of their out-degrees can grow beyond a constant value.
Graphs assume a typical, uninteresting ‘polymer-like’, linear structure. When
using the indirect causet construction technique in which causality is induced
by read-write operations on state variables, an O(1) growth is observed when-
ever these operations interest all variables in a fair manner. Examples include
the discussed causets from bool net computations using the cycling-bit pol-
icy, but also many causets from our past experiments with network mobile
automata.

– The out-degree grows unbounded (polynomially) for a finite number of nodes.
An example, referring to bool net computations using the cycling-label policy,
was illustrated in Fig. 3, in the lower-right plot.

– The out-degree grows unbounded for an unboundedly growing number of
nodes, although not for all of them. This feature cannot be observed with
causets derived from computations involving a finite and constant number of
state variables, like the bool nets considered in the paper, but may be satisfied
by dropping that limitation: when new state variables are constantly created,
some of them may end up being read infinitely often without being rewritten,
thus inducing unbounded growth in the out-degree of their last writer event.
Clearly this privilege cannot be enjoyed by all causet nodes, since any write
operation (we assume they never cease) will permanently stop the out-degree
growth of some causet node, as explained in the paper. In network mobile
automata, state variables – represented by the faces of the dynamic, planar
network – are constantly created by one of the two employed rewrite rules,
thus the feature in question can be potentially observed, although in the
referenced papers we have not investigated it. Note that the above limitations
may affect the causets from virtually any sequential model of computation,
given the general validity of the arguments we have provided.

– The out-degree grows unbounded for all causet nodes. This is the ideal
case observed with stochastic, sprinkled causets, consistent with the Lorentz-
invariance requirement. With the indirect causet construction technique of
concern in this paper, this feature cannot be achieved. On the contrary, it
can with an algorithmic, direct causet construction technique such as the one
described in [8].

Coming now to a more general assessment of the results obtained so far with
algorithmic causets and other analogous efforts, in our opinion the most serious

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 45

problem that this research faces today is that the powerful phenomenon of emer-
gence in computation has never succeeded to ignite a multi-layered cascade of
hierarchical levels of emergence, beyond the first level. With Wolfram’s ECA’s
[34], for example, the ground level 0 consists of the boolean functions defining
the automata, and a level 1 may emerge from it, e.g. with the digital particles
of ECA 110: no level 2 in turn emerges from the interactions of these particles.

This persistent failure to achieve a multi-layered architecture of emergence
from simple models of computation seems to indicate that radically new and
even more ‘creative’ ingredients must be involved in the process. We tentatively
list three of them, not completely disjoint from one another.

Self-modifying code. Rather that being static, the algorithm that fuels the
simulated universe from the bottom could modify itself as it evolves. This
is certainly a substantial paradigmatic change, and a well-known concept in
Computer Science, but we are not aware of any successful experiments with
it in the area of interest here.

Top-down causation. This is regarded as one of the key factors for boosting
complexity and variety in the biosphere: the upper level – e.g. a collectivity –
induces changes back to the lower level – e.g. the individuals. George Ellis
has recently shown how effective and pervasive top-down causation can be,
beyond the realm of biology [14].

Emergent causality. Under the usual, reductionist interpretation of the nat-
ural world, or of complex artificial systems, all the causal power resides at the
lowest, most reduced level of description, leaving no room for causation at the
upper levels. But very recent work has shown [18], precisely in the context of
the boolean networks described in Subsect. 2.1, and using a formal notion of
Effective Information based on relative entropy (or ‘Kullback-Leibler diver-
gence’), that in some cases the upper levels can supersede the lower ones in
causal power.

We hope to witness, in the near future, a new wave of experiments on algo-
rithmic causet construction and ‘universe hunting’ able to fruitfully incorporate
some of the concepts listed above. The task is demanding, its potential results
groundbreaking: not only might they reveal a whole new generation of emergent,
computation-based phenomena of relevance for complexity studies and funda-
mental physics, but they could also shed light on the mechanisms at the roots
of agency and, ultimately, of consciousness [25].

Acknowledgements. The author expresses his warmest gratitude to Larissa
Albantakis for many stimulating exchanges and discussions on notions of causal-
ity, Effective Information, Integrated Information. Lack of time has prevented
us from completing our joint investigation of the possible applications of these
recently proposed informational measures to the synchronous/asynchronous, deter-
ministic/nondeterministic, unstructured/composite boolean networks considered here.
This will be the subject of a forthcoming paper.

This work has been partially funded by FQXi Mini-Grant number: FQXi-MGA-
1702.

46 T. Bolognesi

References

1. Benincasa, D.M.T., Dowker, F.: The scalar curvature of a causal set. Phys. Rev.
Lett. 104, 181301 (2010). http://arxiv.org/abs/1001.2725

2. Bolognesi, T.: Planar trinet dynamics with two rewrite rules. Complex Syst. 18(1),
1–41 (2008)

3. Bolognesi, T.: Algorithmic causets. In: Space, Time, Matter - Current Issues in
Quantum Mechanics and Beyond - Proceedings of DICE 2010. IOP (2011). J.
Phys. - Conf. Ser

4. Bolognesi, T.: Causal sets from simple models of computation. Int. J. Unconvn.
Comput. (IJUC) 7, 489–524 (2011)

5. Bolognesi, T.: Algorithmic causal sets for a computational spacetime. In: Zenil, H.
(ed.) A Computable Universe. World Scientific, Singapore (2013)

6. Bolognesi, T.: Do particles evolve? In: Zenil, H. (ed.) Irreducibility and Computa-
tional Equivalence. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35482-3 12

7. Bolognesi, T.: Spacetime computing: towards algorithmic causal sets with special-
relativistic properties. In: Adamatzky, A. (ed.) Advances in Unconventional
Computing. ECC, vol. 22, pp. 267–304. Springer, Cham (2017). doi:10.1007/
978-3-319-33924-5 12

8. Bolognesi, T.: Simple indicators for lorentzian causets. Class. Quantum Gravity
33(18), 185004 (2016). (41 p.)

9. Bombelli, L., Henson, J., Sorkin, R.D.: Discreteness without symmetry breaking:
a theorem May 01 2006. Mod. Phys. Lett. A 24, 2579–2587 (2009). doi:10.1142/
S0217732309031958

10. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Space-time as a causal set. Phys.
Rev. Lett. 59(5), 521–524 (1987)

11. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Reply to comment on ‘space-time
as a causal set’. Phys. Rev. Lett. 60(7), 656 (1988)

12. Dowker, F., Henson, J., Sorkin, R.: Quantum gravity phenomenology, Lorentz
invariance and discreteness. Mod. Phys. Lett. A 19, 1829–1840 (2004)

13. Zenil, H. (ed.): A Computable Universe. World Scientific, Singapore (2013)
14. Ellis, G. (ed.): How Can Physics Underlie the Mind?. TFC. Springer, Heidelberg

(2016). doi:10.1007/978-3-662-49809-5
15. Fredkin, E.: Five big questions with pretty simple answers. IBM J. Res. Dev. 48(1),

31–45 (2004)
16. Gacs, P., Levin, L.A.: Causal nets or what is a deterministic computation? Inf.

Control 51, 1–19 (1981)
17. Gardner, M.: Mathematical games: the fantastic combinations of John Conway’s

new solitaire game ‘Life’. Sci. Am. 223(4), 120–123 (1970)
18. Hoel, E.P., Albantakis, L., Tononi, G.: Quantifying causal emergence shows that

macro can beat micro. PNAS 110(49), 19790–19795 (2013)
19. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic

nets. J. Theoret. Biol. 22, 437–467 (1969)
20. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.

In: Diaz, M. Groz, R. (eds) FORTE. IFIP Transactions, vol. C-10, pp. 331–346.
North-Holland, Amsterdam (1992)

21. Lloyd, S.: Universe as quantum computer. Complexity 3(1), 32–35 (1997)
22. Meyer, D.A.: The dimension of causal sets. Ph.D. thesis, MIT (1989)
23. Nowotny, T., Requardt, M.: Dimension theory of graphs and networks, July 1997.

http://arxiv.org/abs/hep-th/9707082

http://arxiv.org/abs/1001.2725
http://dx.doi.org/10.1007/978-3-642-35482-3_12
http://dx.doi.org/10.1007/978-3-319-33924-5_12
http://dx.doi.org/10.1007/978-3-319-33924-5_12
http://dx.doi.org/10.1142/S0217732309031958
http://dx.doi.org/10.1142/S0217732309031958
http://dx.doi.org/10.1007/978-3-662-49809-5
http://arxiv.org/abs/hep-th/9707082

LOTOS-Like Composition of Boolean Nets and Causal Set Construction 47

24. Nussey, A., Tafjord, O.: Causal network generated by a mobile automaton.
The Wolfram Demonstrations Project. http://demonstrations.wolfram.com/Cau
salNetworkGeneratedByAMobileAutomaton/

25. Masafumi, O., Larissa, A., Giulio, T.: From the phenomenology to the mechanisms
of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10(5),
e1003588 (2014)

26. Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Cambridge Univer-
sity Press, Cambridge (2000)

27. Rideout, D.P.: HomePage. University of California, San Diego, valid March 2016.
http://www.math.ucsd.edu/∼drideout/

28. Rideout, D.P., Sorkin, R.D.: A classical sequential growth dynamics for causal sets.
Phys. Rev. D 61, 024002 (1999). http://arxiv.org/abs/gr-qc/9904062 [gr-qc]

29. Saravani, M., Aslanbeigi, S.: On the Causal Set-Continuum Correspondence,
25 May 2014. arXiv:1403.6429v1 [hep-th]

30. Sorkin, R.D.: Causal sets: discrete gravity. In : Gomberoff, A. Marolf, D. (eds.)
Proceedings of the Valdivia Summer School, September 2003. http://arxiv.org/
abs/gr-qc/0309009

31. Hooft, G.: The cellular automaton interpretation of quantum mechanics, June 2014.
http://arxiv.org/abs/1405.1548 [quant-ph]

32. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 31

33. Winskel, G.: An introduction to event structures. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 364–397. Springer,
Heidelberg (1989). doi:10.1007/BFb0013026

34. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)
35. Zeleny, E.: Turing machine causal networks. The Wolfram Demonstrations Project.

http://demonstrations.wolfram.com/TuringMachineCausalNetworks/
36. Zuse, K.: Calculating space. Technical report, Proj, MAC, MIT, Cambridge, Mass

(1970). Technical Translation AZT-70-164-GEMIT. Original title: “Rechnender
Raum”

http://demonstrations.wolfram.com/CausalNetworkGeneratedByAMobileAutomaton/
http://demonstrations.wolfram.com/CausalNetworkGeneratedByAMobileAutomaton/
http://www.math.ucsd.edu/~drideout/
http://arxiv.org/abs/gr-qc/9904062
http://arxiv.org/abs/1403.6429v1
http://arxiv.org/abs/gr-qc/0309009
http://arxiv.org/abs/gr-qc/0309009
http://arxiv.org/abs/1405.1548
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/BFb0013026
http://demonstrations.wolfram.com/TuringMachineCausalNetworks/

Problem Solving Using Process Algebra
Considered Insightful

Jan Friso Groote(B) and Erik P. de Vink

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{J.F.Groote,E.P.d.Vink}@tue.nl

Abstract. Process algebras with data, such as LOTOS, PSF, FDR, and
mCRL2, are very suitable to model and analyse combinatorial problems.
Contrary to more traditional mathematics, many of these problems can
very directly be formulated in process algebra. Using a wide range of
techniques, such as behavioural reductions, model checking, and visuali-
sation, the problems can subsequently be easily solved. With the advent
of probabilistic process algebras this also extends to problems where
probabilities play a role. In this paper we model and analyse a number
of very well-known – yet tricky – problems and show the elegance of
behavioural analysis.

1 Introduction

There is great joy in solving combinatorial puzzles. Numerous books have
appeared describing those [13,33]. And although some of the puzzles are easy to
solve once properly understood, they are real brain teasers for most people.

Many of these puzzles are about behaviour. Classical mathematics and logic
hardly provides an effective context to solve such problems systematically. This
is apparent if one considers classical analysis. But also fields like graph theory,
combinatorics, combinatorial optimisation, probability theory, and even logic all
require a translation of the problem to the mathematical domain that is generally
not completely straightforward.

This is where process algebras come in. Process algebras are very suited to
describe the behaviour often present in the puzzles mentioned. In the last decades
numerous tools have been developed to provide insight in the behaviour denoted
in a process algebra expression as it quickly became clear that the behaviour
described in such an expression can be rather intricate. This gave rise to hiding
of actions, behavioural reductions, various visualisation techniques, as well as
modal logics to express and validate properties about behaviour.

The early 1970s can be seen as the period when process algebra was born.
Both Milner and Bekic̆ wrote a treatise expressing that actions were important
to study behaviour [2,25,27]. It was the seminal work of Milner in 1981 that put
process algebras on the map [28]. This had quite some effect. For instance Hoare
presented CSP in 1978 as an advanced programming language [21], whereas

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 48–63, 2017.
DOI: 10.1007/978-3-319-68270-9 3

http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0001-9514-2260

Problem Solving Using Process Algebra Considered Insightful 49

he presented it in 1985 as a process algebra [22]. The work on CSP has been
developed into the impressive family of tools, FDR, that are based on failure
divergence refinement [14,31].

The work on CCS also inspired the design of the language LOTOS [24] as
a language to model communication services and protocols. A major role in its
development was played by the Technische Hogeschool Twente (now Twente
University) first in the completely formal standardisation of the language, with
Brinksma as main editor, and later in activities to build tools around it. Notable
are the extensive formal specifications of standard protocols, but also those of
manufacturing systems, that were developed at the time [5,7,32]. The CADP
toolset stems from this period [12]. It is the only major toolset still capable
of analysing LOTOS specifications. Furthermore, it has become quite powerful
throughout the years.

The Algebra of Communicating Processes (ACP) was developed in Amsterdam
[3,4] around the same time. In order to model practical systems first PSF (Proto-
col Specification Formalism) was designed [26], which was followed by the simpler
formalism μCRL [18], later renamed to mCRL2, which was also directed towards
analysis of practical specifications [17]. All these LOTOS-like formalisms use data
based on abstract equational datatypes. mCRL2 also supports time and these days
also probabilities.

An important feature of mCRL2 is the support for a modal logic with
time and data, which is very useful to investigate properties of the described
behaviour. Temporal logic, with the operators [F] and [P], stems from [30].
Pnueli pointed to the applicability of formal logics to analyse behaviour [29].
For mCRL2 we are using the modal mu-calculus which is essentially Hennessy-
Milner logic [20] with fixed points [23]. An alternative is the use of linear time
logic (LTL [29]) or computational tree logic (CTL [8]), but these are far less
expressive than the modal mu-calculus [15].

In this paper we show process algebraic models of a number of well-known
mathematical puzzles. Most people find them hard to solve when they are con-
fronted with them for the first time. We show that the puzzles can straightfor-
wardly be modelled into process algebra and using the standard analysis tools,
such as behavioural reduction, model checking, and visualisation, the solutions
to these puzzles are easy to obtain.

The major observation is that process algebra is an industrious mathemat-
ical discipline in itself due to its capacity to understand worldly phenomena.
Traditionally, there is a tendency to think that process algebras, or more gener-
ally formal methods, are intended to analyse software, protocols, and complex
distributed algorithms. But the application to examples as in this paper shows
that process algebra has an independent stand.

In this paper we use the language mCRL2, as we are acquainted with it, and
it offers all we need, namely the capacity to express behaviour, data structures,
probabilities, time (although we do not exploit time here), and modal formulas.
mCRL2 has a very rich toolset offering a whole range of analysis methods, far
more than we use for the examples in this article. In the following we do not

50 J.F. Groote and E.P. de Vink

explain the tool nor the formalism. For this we refer to [17] or the webpage
www.mcrl2.org. The examples in this article are part of the mCRL2 distribution
downloadable from this website.

2 The Problem of the Wolf, Goat, and Cabbage

A problem that is well-known, at least to the people in Western Europe, is
the problem of the wolf, the goat, and the cabbage: A traveller walks through
stretched Russian woods together with a friendly wolf, a goat, and a cabbage.
Hungry and worn out, this companionship arrives at a river that they must cross.
There is a small boat only sufficient to carry our traveller and either the wolf,
the goat, or the cabbage. More than two do not fit. Crossing is complex as when
left unsupervised by the traveller, the wolf will eat the goat, while the goat will
eat the cabbage. The question to answer is whether it is possible to cross the
river without the goat or the cabbage being eaten.

This problem is quite old. It already appeared in a manuscript from the eighth
century A.D. [1]. Dijkstra wrote one of his well-known EWDs addressing this
problem [10]. The description in mCRL2 can be found in Table 1. The description
uses two shores, left and right, which are essentially sets of ‘items’, i.e. sets of
wolf, goat, and/or cabbage, resting at that shore. The opposite shore is given by
a function opp. An update function is used to remove items from one side and
add it to the other.

The behaviour of crossing the river is given by the process WGC. It has
two parameters, namely the shores s comprised of the sets of items at each side
of the river, and the current position p of the traveller. Observe that mCRL2
accommodates the use of data types such as sets which allows to neatly describe
the shores as a pair of sets containing items. The first two pairs of lines of the
WGC process express that if the wolf and the goat, or the goat and the cabbage
are at the side opposite of the traveller, something is eaten, expressed by the
action is eaten. The symbol δ indicates that the process stops after this action.
Note that actions are typeset in a different font for easy recognition.

The third group of lines of the process expresses that the traveller can move
to the other shore alone, by performing the move action. To reduce the number of
transitions somewhat, we only allow this when no item can be eaten. The fourth
group of lines expresses that the traveller can transport one item from one shore
to the other. The last group of lines states that if the complete companionship
arrives at the right shore, the action done can take place. Initially, the traveller,
wolf, goat, and cabbage are at the left shore.

As the state space of this behaviour is small, it can nicely be visualised. See
Fig. 1. At the top we find the initial state, which is green. The goal state is
coloured blue at the bottom. All states where an action is eaten can be done
are coloured red. They go to the white deadlocked state. All labels is eaten
are removed for readability. States where nothing is eaten are green, yellow, or
blue. It is easy to see that there are paths from the green to the blue state
through yellow states by moving counter clock wise through the graph. One of
such paths is

www.mcrl2.org

Problem Solving Using Process Algebra Considered Insightful 51

Table 1. An mCRL2 description of the problem of the wolf, the goat, and the cabbage

move(right, goat) · move(left) · move(right,wolf) · move(left, goat) ·
move(right, cabbage) · move(left) · move(right, goat) · done.

Inspection of the state space also reveals that there is one other essential solution
to this problem, namely one where the places of the wolf and the cabbage are
exchanged. This is no surprise as the wolf and the cabbage have symmetrical
roles. Note that it is also clear why this puzzle is considered tricky. Each solution
requires the counter intuitive step of moving the goat three times across the river,
an insight that requires humans to overcome their default mental set.

52 J.F. Groote and E.P. de Vink

Fig. 1. The state space of the problem with the wolf, the goat and the cabbage (Color
figure online)

For this puzzle we are lucky that the number of states is sufficiently small
to be depicted. In general this is not the case. Fortunately, modal formulas are
a marvellous tool to investigate properties of behaviour. In this case we want to
know whether there is a path from the initial state to a state where the action
done is possible, while no action is eaten is possible in any of the states on
this path. In the modal mu-calculus as available in the mCRL2 toolset this is
expressed by

μX.((〈true〉X ∨ 〈done〉true) ∧ ¬〈∃i: Item.is eaten(i)〉true).

The use of the minimal fixed point guarantees that the action done must be
reached in a finite number of steps. The modality 〈true〉 says that an arbitrary
action can be done. Checking this formula instantly yields true confirming that
the traveller can safely reach the other shore with all the companions intact.

3 Crossing a Rope Bridge in the Dark

The second problem is similar in nature to the first but not as well-known. Four
people of different age arrive at a rope bridge across a canyon in the night. They
need to cross the bridge as quickly as possible. Each person has its own time to
cross the bridge, namely, 1, 2, 5, and 10 min. Unfortunately, the bridge can only
carry the weight of two persons simultaneously. To make matters worse, they

Problem Solving Using Process Algebra Considered Insightful 53

Table 2. The problem of crossing a rope bridge specified in mCRL2

only carry one flashlight. Crossing without the flashlight is impossible. So, the
flashlight needs to be returned for others to cross. The question is to find the
minimal time in which the group of people can cross the bridge.

The problem is modelled in mCRL2 in Table 2. The location of each person is
now given by a function location:Person → Position. The function update con-
struction is used to change a function. The expression location[p → s] represents
a new function which is equal to location except that person p is now mapped

54 J.F. Groote and E.P. de Vink

to position s. The parameter time records the total time to cross the bridge and
light position keeps track of the place of the flashlight.

The behaviour consists of three summands, and is a direct translation of the
problem. The first summand expresses that if all people are at the far side, a
ready action is done, reporting the time to cross. The second summand expresses
that one person crosses the bridge, and the third summand indicates that two
people move to the other side together.

Natural numbers in mCRL2 are specified using abstract data types and have
no upper bound. This means that the state space of this problem is infinite as
there are inefficient crossing strategies that can take arbitrarily large amounts of
time. Although not strictly necessary, as mCRL2 is very suitable to investigate
infinite state spaces, it is generally a wise strategy to keep state spaces finite and
even as small as reasonably possible. Solving the problem naively, quickly leads
to a crossing time of 19 min. We therefore limit the maximal crossing time to
20 min and focus on in the question whether crossing under 19 min is possible.

The generated state space is somewhat larger, namely 470 states and 1607
transitions, which disallows inspection as an explicit graph. Fortunately, we can
use the tool ltsview, which can visualise the structure of large transition systems
[16], in some case up to millions of states. Pictures made by ltsview appear to
be rather pointless pieces of art at first glance, but when investigated, provide
remarkable insight in the depicted behaviour.

The behaviour of crossing the rope bridge is depicted in Fig. 2 at the left. The
initial state is at the top. The layering corresponds to the number of crossings of
the bridge. The individually visible states and structures that grow to the side of
the picture indicate deadlocks, i.e., states where the crossing time exceeds 20. For
instance, the states at the end of the outward moving structure at the top right
indicate that the bound of 20 min can be exceeded in three crossings. The red
disk (the one but lowest) is the disk containing the action ready(17). There are
no ready actions with a lower argument. This indicates that the bridge cannot
be crossed in less than 17 min.

ltsview is not the most efficient way to inspect which ready actions are
possible. By searching for actions while generating the state space it becomes
immediately clear that the actions ready(17), ready(19) and ready(20) are pos-
sible. A trace to ready(17) is

move(p2, p1, far side) · move(p1, this side) · move(p4, p3, far side) ·
move(p2, this side) · move(p2, p1, far side) · ready(17).

This trace shows why this puzzle is hard to solve. The idea to save time to let
the two slowest persons cross simultaneously does not easily come to mind for
most people.

Using modal logics we can also easily check that 17 is the most optimal
crossing time. The next formula, which says that there is a path to the action
ready(17) and not to any action ready(n) for any n < 17, is readily proven to
hold:

〈true�· ready(17)〉 true ∧ ∀n:N.(n < 17 → [true�· ready(n)] false).

Problem Solving Using Process Algebra Considered Insightful 55

Fig. 2. An ltsview visualisation of crossing a rope bridge and the game tic-tac-toe
(Color figure online)

4 A Winning Strategy in Tic-tac-toe

Finding winning strategies in games can also be neatly expressed and studied in
process theory. One of the simplest well-known games that can be analysed in
this way is tic-tac-toe. Essentially, tic-tac-toe consists of a 3 by 3 board where two
players alternatingly put a naught or cross at empty positions on the board. The
first player that has three of naughts or crosses in a row, horizontally, vertically
or diagonally, wins the game.

Table 3 contains a rather natural formalisation of this game. The playing
board is given by a function from pairs of naturals to pieces. A less elegant
formulation uses lists of lists of pieces, but for state space generation this is
much faster. A player moves by putting its own piece at an empty position on
the board using the action put. The action win is used to indicate that one of the
players did win. The most complex function is did win(p, b), checking whether
player p, represented by a piece, did win the game. In the formalisation we use
c → p 	 q denoting ‘if c then p else q’.

The total behaviour of this game has 5479 states and 17109 transitions, which
is not very large. This behaviour is depicted in Fig. 2 at the right. The red dot at
the right middle indicates where player ‘naught’ can win. There are more such
states two disks lower, but they are hardly visible in the figure.

Although the transition system for this game is relatively small, it makes no
sense to investigate it directly to determine whether the player that starts the
game has a winning strategy. Fortunately, modal formulas come to the rescue.

56 J.F. Groote and E.P. de Vink

Table 3. An mCRL2 formalisation of tic-tac-toe

The following formula expresses that player ‘cross’ has a winning strategy. It says
that there is a way to put a cross on the board after which player ‘cross’ wins,
or for every counter move by player ‘naught’, X must hold again, saying that
also in that case player ‘cross’ has a winning strategy. This formula is invalid.
There is no winning strategy for the player ‘cross’, and due to symmetry neither
for player ‘naught’.

μX.〈∃i, j : N+.put(cross, i, j)〉 (〈win(cross)〉true ∨
([∃i, j : N+.put(naught, i, j)]X ∧ 〈true〉true)

)

Note that we use of a minimal fixed point operator expressing that winning must
happen within a finite number of steps. As there are only a limited number of
moves in tic-tac-toe this is always satisfied, hence a maximal fixed point operator
could also have been used.

Problem Solving Using Process Algebra Considered Insightful 57

5 The Monty Hall Problem

Processes algebras have seen various extensions. One of these extensions is
the addition of probabilities, which gives rise to the interesting combination of
nondeterministic and probabilistic behaviour. This opens up the field of prob-
abilistic puzzles to be modelled. The Monty Hall problem is a very nice exam-
ple, because when understood is it very simple, yet most people fail to solve it
properly.

Table 4. An mCRL2 specification of the Monty Hall quiz

The Monty Hall problem is a tv-quiz from the 1960s. A player can win
a prize when he opens one of three doors with the prize behind it. Initially,
the player selects a door with probability 1

3 . Subsequently, the quizmaster
opens one of the remaining doors showing that it does not hide the prize.
The question is whether the player should switch doors to optimise his winning
probability.

The problem is expressed in the specification in Table 4. The process only
consists of a single action player collects prize(b) where the boolean argu-
ment b is true if a prize is collected. The dist keyword is used to indicate a
probability distribution. The process dist x : S[D(x)].p indicates that variable
x of sort S is selected with probability distribution D(x). One of the doors hides
the prize. This door is represented by the variable door with prize which can have
values d1, d2, or d3, each with a probability of 1

3 . Initially, the player selects a
door. If the player decides to switch doors after the quizmaster opened a door,
the player has a prize if and only if the initially chosen door did not carry the
prize. This is expressed by the use of not equal sign (
≈) in the argument of the
action. If the player decides to stick to the door that was initially selected, the
not equal sign should be replaced by equality.

The resulting state space has 9 transitions each with a probability 1
9 . It

is convenient to apply a probabilistic bisimulation reduction on the transition
system. This leads to the reduced transition system in Fig. 3. It is clearly visible
that the action player collects prize(true) can be done with probability 2

3 .
Thus, when switching doors the probability of obtaining a prize is 2

3 , opposed
to 1

3 when not switching doors.

58 J.F. Groote and E.P. de Vink

Fig. 3. The reduced probabilistic transition system for the Monty Hall problem

6 The Problem of the Lost Boarding Pass

More complex probabilistic problems can become rather hard even with the
full strength of probability theory at ones disposal. Yet modelling the problem
in mCRL2 is again pretty straightforward. The tools can subsequently help to
obtain the required answer.

A particularly intriguing puzzle is that of the lost boarding pass as it has
a remarkable answer, defying the intuition of most people trying to solve the
problem: There is a plane with 100 seats. The first passenger boarding the plane
lost his boarding ticket and selects a random seat. Each subsequent passenger
will use his own seat unless it is already occupied. In that case he also selects
a random seat. The question is what the probability is that the last passenger
entering the plane will sit in his own seat.

The behaviour is modelled in Table 5. The number N is the number of seats,
which is set to 100. The behaviour of entering the plane is characterised by two
parameters. The parameter number of empty seats indicates how many seats are
still empty in the plane. The parameter everybody has his own seat indicates that
all remaining seats correspond exactly with the places for all passengers that still
have to board the plane. Except if the number of empty seats is 0. In that case
it indicates whether the last passenger got its own seat.

Initially the first passenger selects his seat at random. With probability 1
N he

will end up at his own seat. This corresponds with the situation where b is true. In
the main process Plane, when all passengers have boarded the plane, the action
last passenger has his own seat indicates by its argument whether the last
passenger got his own seat. If not all passengers boarded the plane yet, a next
passenger enters (indicated by the action enter) and then it can either be that he
finds his own seat free (b0 is true) or occupied (b0 is false). If everybody is sitting
at is own seat this next passenger will for sure find his own seat free. Otherwise,
he finds his own seat free with probability 1−1/number of empty seats as exactly
one person is sitting on a wrong seat.

When this next passenger finds his own seat free he can sit down. This is
done by the action select seat with two parameters. But if his own seat is
occupied, he must randomly select a seat for himself. If he selects the seat such

Problem Solving Using Process Algebra Considered Insightful 59

Table 5. An mCRL2 specification of the lost boarding pass

that all passengers are sitting on their assigned seats (modulo a permutation)
this is indicated in the variable b1, where this passenger has probability

1/number of empty seats

of doing this.
The generated state space turns out to be linear in the size of the num-

ber of seats. It has 791 states and 790 transitions. Modulo strong probabilistic
bisimulation there are 399 states and 398 transitions. It has the shape of a long
sequence, as depicted in Fig. 4. Detailed exploration of this figure indicates that
whence all the remaining passengers correspond to the remaining seats the last
passenger will certainly get his own seat. Yet it is not obvious what the probabil-
ity for the last passenger to get his own seat is. For this we use two – at present
experimental – tools1. The first one applies a probabilistic weak trace reduction.
The obtained state space, see Fig. 5, is rather non-exciting but indicates clearly
that the probability of the last passenger to end up at its own seat is 1

2 . The
remarkable property of this exercise is that this probability is independent of
the number of seats.

1 The tools are by Olav Bunte (evaluation of modal formulas on probabilistic transition
systems) and Ferry Timmers (probabilistic trace reduction).

60 J.F. Groote and E.P. de Vink

Fig. 4. The state space of the problem of the lost boarding pass with 100 passengers

Fig. 5. The state space of the lost boarding pass problem modulo weak trace
equivalence

There is another way to obtain this probability by employing modal formulas
over reals. These formulas are derived from the modal mu-calculus but deliver a
real number, instead of a boolean. In this case the formula is just

〈true�·last passenger has his own seat(true)〉 true

which is possible as the state space is deterministic. Needless to say that the
verification of this formula yields 1

2 as well.

7 Concluding Remarks

Process algebra is generally well-suited to solve many behaviour-oriented math-
ematical puzzles. In this paper we have used the process algebraic framework of
mCRL2 to show how to model a number of such puzzles. Subsequently, the stan-
dard analysis tools available in mCRL2 (and occasionally an experimental one)
were used for behavioural reduction, model checking and visualisation. From this
it is clear that process algebra has a wider scope than the usual fields of software
analysis and distributed computing in which it finds many applications.

Problem Solving Using Process Algebra Considered Insightful 61

Process algebra focuses on behavioural aspects of the subject of study. The
underpinning algebraic and equational theory allows to relate to logics, in par-
ticular modal logics [6], as descriptions of properties or requirements over space,
time, and probabilities. Logical characterisations and their assessment via model
checking are a valuable replacement in situations where visual techniques, high-
lighted for the puzzles discussed here, become impractical.

Also other authors indicated that a notion of behaviour or state space is
required for proper conditional reasoning, especially in the probabilistic setting.
In [19] the distinction is made between ‘naive’ and ‘sophisticated’ space. For
the Monty Hall puzzle this amounts to the three doors for the naive space,
and to sequences of events for the sophisticated space. In the process algebraic
modelling of the problem, it is exactly the latter that is determined by the
specified behaviour, thus making the underlying protocol explicit.

Although we defend the use of process algebra as a qualitatively better app-
roach to solving behavioural problems, this is a subjective opinion, influenced
by our experience with process algebras. To substantiate this in a more objec-
tive manner one should measure how much time people need to solve particular
problems with particular techniques, for instance by psychological tests.

If process algebraic techniques become commonplace, it might be that the
nature of ‘tricky’ puzzles will shift where the proper behaviour is not directly
obvious. Nice examples are for instance Freudenthal problems, containing knowl-
edge, like the Muddy Children puzzle [11]. Translating knowledge into behav-
iour often requires a twist. In such cases dynamic epistemic logic might be more
suitable [9].

Acknowledgment. The authors are grateful to the reviewers for their constructive
and inspiring comments.

References

1. Hadley, J., Singmaster, D.: Problems to sharpen the young. Math. Gaz. 76(475),
102–126 (1992). doi:10.2307/3620384

2. Bekič, H.: Towards a mathematical theory of processes. Technical report TR25.125,
IBM Laboratory, Vienna (1971). Also appeared in Jones, C.B. (ed.) Programming
Languages and Their Definition, Lecture Notes in Computer Science, vol. 177.
Springer (1984)

3. Bergstra, J.A., Klop, J.W.: Fixed point semantics in process algebras. Report IW
206, Mathematisch Centrum, Amsterdam (1982)

4. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Comput. 60(1/3), 109–137 (1984)

5. Biemans, F., Blonk, P.: On the formal specification and verification of CIM archi-
tectures using LOTOS. Comput. Ind. 7(6), 491–504 (1986)

6. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Studies in Logic and Practical Reasoning, vol. 3. Elsevier, Amsterdam (2007)

7. Brinksma, E., Karjoth, G.: A specification of the OSI transport service in LOTOS.
In: Yemini, Y., Strom, R.E., Yemini, S. (eds.) Protocol Specification, Testing and
Verification IV, pp. 227–251. North-Holland, Amsterdam (1984)

http://dx.doi.org/10.2307/3620384

62 J.F. Groote and E.P. de Vink

8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

9. van Ditmarsch, H., van der Hoek, W., Kooij, B.: Dynamic Epistemic Logic. Studies
in Epistemology, Logic, Methodology, and Philosophy of Science, vol. 337. Springer,
Heidelberg (2008). doi:10.1007/978-1-4020-5839-4

10. Dijkstra, E.W.: Pruning the search tree. EWD1255. www.cs.utexas.edu/users/
EWD/transcriptions/EWD12xx/EWD1255.html. Accessed June 2017

11. van Emde Boas, P., Groenendijk, J., Stokhof, M.: The conway paradox: its solu-
tion in an epistemic framework. In: Groenendijk, J., Janssen, T.M.V., Stokhof,
M. (eds.) Truth, Interpretation, and Information: Selected Papers from the Third
Amsterdam Colloquium, pp. 159–182. Foris Publications, New York (1984)

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013)

13. Gardner, M.: My Best Mathematical and Logic Puzzles. Dover, Downers Grove
(1994)

14. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

15. Cranen, S., Groote, J.F., Reniers, M.A.: A linear translation from CTL* to the
first-order modal µ-calculus. Theoret. Comput. Sci. 412(28), 3129–3139 (2011)

16. Groote, J.F., van Ham, F.: Interactive visualization of large state spaces. Int. J.
Softw. Tools Technol. Transf. 8(1), 77–91 (2006)

17. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communication Systems.
The MIT Press, Cambridge (2014). (See for the toolset www.mcrl2.org)

18. Groote, J.F., Ponse, A.: The syntax and semantics of µCRL. Report CS-R9076,
CWI, Amsterdam (1990)

19. Grünwald, P., Halpern, J.Y.: Updating probabilities. In: Darwiche, A., Friedman,
N. (eds.) Uncertainty in Artificial Intelligence, pp. 187–196. Morgan Kaufman,
Burlington (2002)

20. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2 79

21. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

22. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,
Upper Saddle River (1985)

23. Kozen, D.: Results on the propositional µ-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

24. ISO 8807:1989. Information processing systems - Open Systems Interconnection
- LOTOS - A formal description technique based on the temporal ordering of
observational behaviour. ISO/IECJTC1/SC7 (1989)

25. Milner, R.: An approach to the semantics of parallel programs. In: Proceedings
Convegno di Informatica Teorica, pp. 283–302, Pisa (1973)

26. Mauw, S., Veltink, G.J.: A process specification formalism. Fundam. Inform. XIII,
85–139 (1990)

27. Milner, R.: Processes: a mathematical model of computing agents. In: Rose, H.E.,
Shepherdson, J.C. (eds.) Proceedings Logic Colloquium 1972, pp. 158–173. North-
Holland, Amsterdam (1973)

http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-1-4020-5839-4
www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1255.html
www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1255.html
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://www.mcrl2.org/
http://dx.doi.org/10.1007/3-540-10003-2_79

Problem Solving Using Process Algebra Considered Insightful 63

28. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

29. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,
pp. 46–57. IEEE, Piscataway (1977)

30. Prior, A.N.: Time and Modality. Oxford University Press, Oxford (1957)
31. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010).

doi:10.1007/978-1-84882-258-0
32. van Sinderen, M., Ajubi, I., Caneschi, F.: The application of LOTOS for the formal

description of the ISO session layer. In: Turner, K.J. (ed.) Formal Description
Techniques, pp. 263–277. North-Holland, Amsterdam (1989)

33. Winkler, P.: Mathematical Puzzles. A Connaisseur’s Collection. A.K. Peters,
Natick (2004)

http://dx.doi.org/10.1007/978-1-84882-258-0

Delayed-Choice Semantics for Pomset Families
and Message Sequence Graphs

Clemens Dubslaff(B) and Christel Baier

Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
{clemens.dubslaff,christel.baier}@tu-dresden.de

Abstract. Message sequence charts (MSCs) are diagrams widely used
to describe communication scenarios. Their higher-order formalism is
provided by graphs over MSCs, called message sequence graphs (MSGs),
which naturally induce a non-interleaving linear-time semantics in terms
of a pomset family. Besides this pomset semantics, an operational
semantics for MSGs was standardized by the ITU-T as an interleav-
ing branching-time semantics using a process-algebraic approach. A key
ingredient in the latter semantics is delayed choice, formalizing that
choices between communication scenarios are only made when they are
inevitable. In this paper, an approach towards branching-time semantics
for pomset families that follows the concept of delayed choice is proposed.
First, transition-system semantics are provided where global states com-
prise cuts of pomsets represented either by suffixes or prefixes of family
members. Second, an event-structure semantics is presented those ben-
efit is to maintain the causal dependencies of events provided by the
pomset family. These semantics are also investigated in the context of
pomset families generated by MSGs.

1 Introduction

During the last decades, much effort has been put into developing models for
concurrent systems to specify and reason about communication protocols. Mes-
sage sequence charts (MSCs) provide an intuitive formalism to describe scenarios
for asynchronously communicating processes. They are standardized by the ITU
[18] and have been also included into the current UML 2.0 specification [11]
as sequence diagrams. An MSC comprises time lines for each process on which
events of the respective process are totally ordered, and message arrows that
connect corresponding send and receive events between the processes. Two com-
munication scenarios given by MSCs can be composed by extending the time
lines of the first MSC by the time lines of the same process in the second MSC.
This naturally allows for specifying collections of MSCs by graphs over MSCs,
called message sequence graphs (MSGs): an MSG describes all those MSCs that
arise from sequential compositions of MSCs along paths in the MSG.

The authors are supported by Deutsche Telekom Stiftung, by the DFG through the
Collaborative Research Center SFB 912 – HAEC, the Excellence Initiative by the
German Federal and State Governments (cluster of excellence cfAED), the DFG-
projects BA-1679/11-1 and BA-1679/12-1, and the 5G Lab Germany.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 64–84, 2017.
DOI: 10.1007/978-3-319-68270-9 4

Delayed-Choice Semantics for Pomset Families and MSGs 65

Example 1. In Fig. 1, an example MSG is depicted that contains two non-empty
MSCs, both describing a communication scenario where process s sends data to
process r and waits for an acknowledgment. The left scenario branch models the
case where a failure during the transmission of data occurred, imposing a timeout
at process s. Then, s resends the data to r, being either unsuccessful again (see
the self loop at the left box) or being successful (switching to the right box).
In the latter case, when r successfully received all data, an acknowledgement is
sent to s and the communication between s and r terminates.

to

Gbsp :

s
data

r

ack

s
data

r

Fig. 1. An example MSG for sender-receiver communication scenarios

Semantics for MSGs. In the taxonomy of models for concurrent systems
[34], different abstraction levels of semantics are provided along two orthogonal
axes: one distinguishes between non-interleaving and interleaving and the other
between branching-time and linear-time semantics. Non-interleaving semantics
model causal dependencies and the independence of actions in an explicit way.
Within branching-time semantics, the information when choices are made during
an execution of the system can be modeled, while linear-time semantics abstract
away from the points where these choices are made. To this end, non-interleaving
branching-time semantics can be seen as the most general semantics in this tax-
onomy and interleaving linear-time semantics as the most abstracted ones.

MSCs naturally induce a non-interleaving linear-time semantics in terms of a
partially-ordered multiset (pomset) [30], provided by the total time-line orderings
and the fact that any send event has to precede its corresponding receive event
[1]. The composition of MSCs is defined syntactically by gluing process time
lines together. This corresponds to the local concatenation of pomsets [30] where
events of the same process are assumed to depend on each other. Thus, a non-
interleaving linear-time semantics for MSGs is naturally defined by a family of
pomsets comprising the MSCs that arise from concatenating pomsets of MSCs
along paths in the MSG. This semantics for MSGs is widely accepted in the
literature and often used to reason about MSGs (cf., e.g., [2,5,19,21,26,28] and
surveys [9,27]).

Although the pomset semantics for MSGs is very natural, the standard
semantics for MSGs specified by the international telecommunication union
(ITU-T) in [17] is an interleaving branching-time semantics, defined through
a process-algebraic approach. Besides historical reasons, the choice of this app-
roach has been mainly motivated by providing an operational semantics for

66 C. Dubslaff and C. Baier

MSGs that allows to reason about the step-wise behavior of systems specified
by MSGs [23,31]. The basic building blocks of the process-algebraic semantics
are process terms for MSCs [22] defined over atomic actions, standard con-
catenation ·, and standard choice +. These process terms have an interleav-
ing branching-time semantics. The standardized process-algebraic semantics for
MSGs is obtained by a well-known standard transformation from automata the-
ory, leading to a regular expression over process terms for MSCs [31]. Within
this regular expression, special operators for concatenation, choice and recursion
[17,23,24,31]1 are employed:

– Concatenation is provided by weak sequential composition borrowed from
[33] those purpose is to transfer the local concatenation on pomsets [30] to
the world of interleaving branching-time semantics. The definition of weak
sequential composition is based on a permission relation that specifies how
process terms can be influenced by firing actions not contained in the process
term itself but in its context.

– The choice operator is given by delayed choice [3], an intrinsic linear-time
operator where choices between MSC fragments are delayed until they are
inevitable. According to [3], “the delayed-choice operator acts as a determin-
istic choice in the context of strong bisimulation by unifying process-algebra
terms with a common prefix”.

– Recursion is defined by adapting the recursion operator of [4] for MSGs with
rules for weak sequential composition and delayed choice [31].

The main challenge within the process-algebraic approach towards an oper-
ational semantics for MSGs comes into play when interpreting recursion on
process terms that involve weak sequential composition and delayed choice, as
their definition requires negative premises in the operator-defining rules. It is well
known that negative premises in operator-specifying rules impose several diffi-
culties when aiming towards fixed points [10]. Reniers, one of the authors of the
standardized process-algebraic semantics [17], noticed in his doctoral thesis [31]
that “the definition of the permission relation on recursive equations is extremely
difficult and no solution is found there yet” (see page 160 of [31]). Although [31]
adapted the standardized semantics to avoid recursive equations, his process-
algebraic semantics still contains negative premises in operator-specifying rules.
Besides others, this raises the question whether an operational semantics for
MSGs could be defined without sophisticated operators in terms of weak sequen-
tial composition and delayed choice but where the main concepts of the stan-
dardized process-algebraic semantics are maintained.

Our Contribution. Following the concept of delayed choice but avoiding
sophisticated process-algebraic operators, we define branching-time semantics
for pomset families. During the presentation of our semantics, we exemplify
1 The cited papers focus on high-level MSCs, i.e., MSGs which in addition allow for a

hierarchical structure and parallel composition. As high-level MSCs can be unfolded
into an MSG [2] without changing their operational semantics, we disregard the
parallel composition operator and focus solely on MSGs in this paper.

Delayed-Choice Semantics for Pomset Families and MSGs 67

their application to MSGs using the running example from the introduction. We
first aim towards interleaving branching-time semantics (as within the process-
algebraic approach defining delayed choice [3]) and present two different views
on defining transition systems for pomset families:

(1) Suffix transition systems arise from interpreting delayed choice on pom-
set families that, similar to the process-algebraic approach, contain all pos-
sible future behaviors of pomset-family members. This semantics is used as
a reference model for all other semantics in this paper.

(2) Prefix transition systems interpret delayed choice based on the past
behaviors of the pomset family members. They are deterministic and bisim-
ilar to the corresponding suffix transition system (1).

The purpose of suffix transition systems (1) is to closely follow the process-
algebraic approach for defining delayed-choice semantics in the context of pomset
families. Prefix transition systems (2) complete the picture of our approach and
extend the delayed-choice semantics for MSGs provided in [8] towards arbitrary
pomset families. This semantics thus provides the connection of the semantics
defined throughout this paper to the approach by [8]. Every MSG naturally
induces a pomset family where each member is an MSC. Thus, suffix and prefix
transition systems also provide delayed-choice semantics for MSGs.

We furthermore present a non-interleaving branching-time semantics for
pomset families in terms of a prime event structure [29]:

(3) Pomset event structures maintain the causality information between the
events in the pomset family members. For pomsets generated by MSGs, the
transition system induced by the pomset event structure is isomorphic to
the corresponding prefix transition system (2).

As far as we know, pomset event structures (3) provide the first non-
interleaving branching-time semantics for MSGs that follows the concept of
delayed choice.

As intended by the authors of [33], it is quite natural that the weak sequential
composition operator corresponds to the local concatenation of pomsets in our
setting, not requiring the sophisticated definition of the permission relation that
imposes difficulties within recursion. We show that the process-algebraic delayed-
choice operator corresponds to the standard union operation in the setting of
pomset families.

Further Related Work. The process-algebraic approach for the standard oper-
ational semantics for MSGs [17,23,24,31] uses interleaved models of MSCs as
basic building blocks. Based on these process terms for MSCs, sophisticated
operators of weak sequential composition and delayed choice are used to mimic
the linear-time behavior of MSGs in the branching-time setting. This is in con-
trast to our approach, where we use the pomset semantics for MSCs as basic
building blocks and exploit standard linear-time operators before interleaving
pomset families towards a branching-time semantics.

68 C. Dubslaff and C. Baier

Besides using the process-algebraic approach, a transition-system semantics
for MSGs has been presented in [7] also based on the pomset semantics for
MSGs but not obeying delayed choice in the sense as we establish in this paper.
In particular, the transition system of [7] is not deterministic. Most related to
our pomset event structure (3) is the prime-event-structure semantics for MSGs
presented in [12]. However, their recursive definition employs the standard choice
operator instead of delayed choice, inducing a transition-system semantics that
is non-deterministic and infinitely branching. Further branching-time semantics
not following the concept of delayed choice have been presented as graphs with
synchronization points [21], or Petri-net components [14].

In order to reason about quantitative aspects of MSGs, our previous work
in [8] presented a transition-system semantics for MSGs that essentially corre-
sponds to the prefix transition-system semantics (cf. (2) above).

2 Preliminaries

In this section, we recall basic concepts of models for concurrency, communica-
tion systems and notations used throughout this paper. By N we denote the set
of non-negative integers. For any set X, we denote by 2X the power set of X.

2.1 Models for Concurrency

The models we use throughout this paper mainly follow the taxonomy detailed
in the introduction (cf., e.g., [34]), comprising linear-time models in terms of
formal languages (interleaving) and pomsets (non-interleaving), and branching-
time models in terms of transition systems (interleaving) and event structures
(non-interleaving). Furthermore, we follow the principle of atomic actions, i.e.,
tasks of the system indivisible on the abstraction level of the model, where we
denote by Σ the alphabet of all actions. Instances of actions are events from a
set E that are labeled by its corresponding action name via a labeling function
λ : E → Σ.

Formal Languages. We denote by Σ� and Σ+ the set of all finite and non-
empty finite words over Σ, respectively. By ε we denote the empty word. A lan-
guage over Σ is a subset of Σ�. By w[i] we denote the (i+1)-st symbol of a word
w and by |w| the length of w.

Pomsets. A labeled partial order is a tuple P = (E,�, λ), where � is a partial
order over a set of events E and λ : E → Σ is the labeling function. We identify
isomorphic labeled partial orders, i.e., we treat them as pomsets [30]. We call a
pomset basic if λ is injective and finite if E is a finite set. If not stated differently,
we assume any pomset to be finite. Furthermore, we restrict ourselves to pomsets
that are not autoconcurrent, i.e., for all e, e′ ∈ E with λ(e) = λ(e′) we have
either e � e′ or e � e′. The empty pomset is denoted by �. The set of pomsets
over Σ is denoted by POΣ . A linearization of P is a word w ∈ Σ� for which
there is a bijection ξ : {0, ..., |w|−1} → E with λ

(
ξ(i)

)
= w[i] and ξ(i) �> ξ(j)

Delayed-Choice Semantics for Pomset Families and MSGs 69

for all i � j < |w|. P is total if for all e, e′ ∈ E with e �= e′ we have either
e < e′ or e > e′. With abuse of notations, we identify total orders with their
linearization. For a set of events F , we denote by P|F the projection of P onto
F , i.e., the pomset (E∩F,�F , λF), where e �F e′ iff e, e′ ∈ E∩F and e � e′,
and where λF (e) = α iff e ∈ F∩E and λ(e) = α. The upward closure on F
is defined as ↑F = {e ∈ E : ∃e′ ∈ F.e � e′}. A pomset P ′ for which there is
an upward closed F with P ′ = P|F is called suffix of P. P ′ is an α-suffix of
P if furthermore E\F={e} with λ(e) = α. The set of all (α-) suffixes of P is
denoted by Suff(P) (Suffα(P), respectively). Accordingly, we define the notions
of downward closure ↓F , and prefixes Pref(P) and Prefα(P). A pomset family
is a set of pomsets, where we denote the set of all pomset families over Σ by
POFΣ = 2POΣ . Notations for pomsets defined above extend to pomset families
P ∈ POFΣ as expected, e.g., for some α ∈ Σ, Suffα(P) =

⋃
P∈P Suffα(P). The

notion of α-suffixes is generalized to pomset families Suffw(P) of w-suffixes of
P for w ∈ Σ� by defining Suffε(P) = P and Suffwα(P) = Suffα

(
Suffw(P)

)
, for

w ∈ Σ�, α ∈ Σ.

Transition Systems. A transition system over an alphabet Σ is a tuple
T = (S,−→, ι,Term) where S is a countable set of states, −→ ⊆ S×Σ×S a tran-
sition relation, ι ∈ S an initial state, and Term ⊆ S a set of termination states.
A path for a word w = α0α1 · · · αn−1 is a sequence π = s0α0s1α1 . . . αn−1sn,
where s0 = ι and si

αi−→ si+1 for all i < n. π is an execution for w if sn ∈ Term.
T is finite if its reachable part {s ∈ S : ι −→� s} is finite. T is deterministic if
for all s, t, t′ ∈ S reachable in T and α ∈ Σ with s

α−→ t and s
α−→ t′ we have

t = t′. The set of all transition systems over Σ is denoted by TSΣ .

Event Structures. As a branching-time non-interleaving model we rely on
(labeled) prime event structures [29] and amend a notion of termination. A prime
event structure is a tuple E = (E,�, λ,#) that extends a possibly infinite pomset
(E,�, λ) with an irreflexive and symmetric conflict relation # ⊆ E×E such that
the following conditions hold:

(Principle of finite causes) ↓e is finite for all e ∈ E, and
(Conflict heredity) e#e′ and e′ � e′′ implies e#e′′ for all e, e′, e′′ ∈ E.

A configuration of E is a finite subset of events C ⊆ E that is

Downward-closed, i.e., ↓C = C, and
Conflict-free, i.e., for all e, e′ ∈ C we never have e#e′.

The set of configurations of E is denoted by Conf(E). A prime event structure
with termination is a pair (E ,Term), where E is a prime event structure and
Term ⊆ Conf(E) is a set of termination configurations. To simplify notations,
we use the notion of an event structure instead of “prime event structure with
termination”. We denote the set of all event structures over Σ by ESΣ .

70 C. Dubslaff and C. Baier

2.2 Relations Between Models for Concurrency

Following [34], we introduce mappings between the models of the last section:

– ts : ESΣ → TSΣ is the function that assigns the transition system
ts(E) =

(
Conf(E), ∅,−→,Term

)
to an event structure E = (E,�, λ,#,Term),

where C
α−→ D iff D = C ∪ {e} for some e ∈ E with λ(e) = α.

– pof : ESΣ → POFΣ is the function that assigns the pomset family pof(E) ={
(C,�|C , λ|C) : C ∈ Term

}
to an event structure E = (E,�, λ,#,Term).

– lang : TSΣ → Σ� is the function that assigns the language lang(T) to a tran-
sition system T comprising all words for which there is an execution in T .

– lang : POFΣ → Σ� is the function that assigns the language lang(P) =⋃
P∈P Lin(P) to a pomset family P, where Lin(P) denotes the set of lin-

earizations of P.2

It is well known that these functions commute, i.e., for any event structure E we
have lang

(
ts(E)

)
= lang

(
pof(E)

)
.

Bisimulation. Bisimilarity is a central concept to compare the behavior of
branching-time models [25]. A bisimulation between two transition systems T =
(S, ι,−→,Term) and T ′ = (S′, ι′,−→′,Term′) is a binary relation ≡ ⊆ S × S′

where ι ≡ ι′,

(a) for all s ∈ Term there is an s′ ∈ Term′ with s ≡ s′, and
(a′) for all s′ ∈ Term′ there is an s ∈ Term with s ≡ s′,

and where for all s ∈ S and s′ ∈ S′ with s ≡ s′ we have that

(b) for all t ∈ S with s
α−→ t there is a t′ ∈ S′ with s′ α−→′ t′ and t ≡ t′, and

(b′) for all t′ ∈ S′ with s′ α−→′ t′ there is a t ∈ S with s
α−→ t and t ≡ t′.

If there exists a bisimulation between T and T ′, then T and T ′ are called
bisimilar. A bisimulation for T is a bisimulation ≡ between T and T . We shall
often use the well-known fact that bisimilarity coincides with trace equivalence
for deterministic transition systems.

Lemma 1. If T and T ′ are deterministic transition systems, then T and T ′

are bisimilar iff lang(T) = lang(T ′).

2.3 Modeling Communication Systems

Let P denote a finite set of processes and let Λ be a finite alphabet of data labels.
To model communication between processes, we consider a special instance of
the alphabet Σ. That is, we consider the set of communication actions Act =⋃

p∈P Actp, where Actp comprises all actions a process p ∈ P may perform,
i.e., send actions p!q(m) (process p sends a message m to process q), receive
actions p?q(m) (p receives m from q), and local actions p(l) (p performs a local

2 Note that we overload the function lang for transition systems and pomset families.

Delayed-Choice Semantics for Pomset Families and MSGs 71

action l), for processes q ∈ P , and data labels m, l ∈ Λ. Events are instances
of actions collected in a set E to which we assign actions by a labeling function
λ : E → Act . Given a set of events F ⊆ E, we denote by F! the set of send events,
i.e., F! = {e ∈ F : ∃p, q ∈ P,m ∈ Λ.λ(e) = p!q(m)}, and by F? the set of receive
events, i.e., F? = {e ∈ F : ∃p, q ∈ P,m ∈ Λ.λ(e) = p?q(m)}. Furthermore, for a
process p ∈ P and pomset P = (F,�, λ), we define Fp = {e ∈ F : λ(e) ∈ Actp}.

Message Sequence Charts. The ITU-T standard [15] introduced message
sequence charts (MSCs) as visual formalism for communication scenarios. Here,
we recall the definition of MSCs based on pomsets [20].

Definition 1. An MSC is a pomset M = (E,�, λ) for which M|p is total for
each p ∈ P and where � =

(
<μ ∪

⋃
p∈P �|Ep

)�. Here, <μ=
{
(e, μ(e)) : e ∈ E!

}

denotes the binary relation defined for a bijection μ : E! → E? with λ(e) = p!q(m)
and λ(μ(e)) = q?p(m) for all e ∈ E!.

The mapping μ in the above definition guarantees that the action labels are
compatible with the interpretation of send and receive events, i.e., matches every
receive event with a corresponding send event. The requirement that the events
of a process are totally ordered formalizes the time-line ordering. We denote by
MSC the set of all MSCs and by bMSC the set of all basic MSCs, i.e., MSCs
(E,�, λ) where λ is injective.

Example 2. Let us return to the introductory Example 1 that models a simple
set of communication scenarios over processes P = {s, r}. The MSC depicted
on the left-hand side models a scenario with some timeout event, formalized
by Mt = (Et,�t, λt) with Et = {!, ?, to}, �t = {(!, ?), (!, to)}, and λt(!) =
s!r(data), λt(?) = r?s(data), and λt(to) = s(to). Likewise, we formalize the
MSC on the right-hand side by Ma = (Ea,�a, λa), where Ea = {!d, ?d, !a, ?a},
�a =

{
(!d, ?d), (!a, ?a), (?d, !a)

}�, and where λa is given by λa(!d) = s!r(data),
λa(?d) = r?s(data), λa(!a) = r!s(ack), and λa(?a) = s?r(ack). Note that both
MSCs are basic.

Composition. Pomsets over Act are composed by performing a local concate-
nation where events of the same process depend on each other [30]. Formally,
we define : POAct×POAct → POAct as follows: Let X = (X,�X , λX) and
Y = (Y,�Y , λY) be pomsets over Act with X ∩ Y = ∅. Then, XY is defined
as the smallest pomset Z = (Z,�, λ) where Z = X ∪ Y , �|X = �X , �|Y = �Y ,
and where for all p ∈ P , e ∈ Xp, e′ ∈ Yp we have e � e′. The composition
operation is extended to sequences of pomsets by : PO�

Act → POAct , where
ε = � and (πP) = (π) P for any π ∈ PO�

Act and P ∈ POAct . For a
language over pomset sequences L ⊆ PO�

Act , we define L = {π : π ∈ L}.
In case the pomsets to be composed are MSCs, it is easy to see that composi-

tion again yields an MSC. Intuitively, composing MSCs corresponds to “gluing”
their process lines together.

72 C. Dubslaff and C. Baier

Message Sequence Graphs. Whereas MSCs model single communication sce-
narios, message sequence graphs (MSGs) were introduced in [16] as the standard
higher-order formalism to specify collections of communication scenarios, i.e.,
sets of MSCs.

Definition 2. An MSG is a tuple G = (B, b0, ↪→, β), where B is a finite set
of boxes, b0 ∈ B an initial box, ↪→ ⊆ B×B a transition relation, and β : B →
bMSC a labeling function that assigns basic MSCs to boxes.

Note that we allow β for assigning the empty MSCs � to some box. We extend β
towards β : B� → MSC by inductively defining β(ε) = � and β(πb) = β(π)β(b)
for π ∈ B� and b ∈ B. A box sequence π = b0b1 . . . bn ∈ B� is called a path in G
if bi ↪→ bi+1 for all i < n. If π cannot be prolonged in G, i.e., there is no b ∈ B
such that bn ↪→ b, we call π an execution of G and define by B[G] the box language
of G as the set of executions of G. In the following, we assume that any path in
G can be prolonged towards an execution of G. An MSC M is accepted by G if
M arises from a composition along an execution of G. The pomset semantics of
G is the set of all MSCs accepted by G, denoted by P[G] = β

(
B[G]

)
.

Example 3. The the MSG Gbsp from Example 1 is formalized by

Gbsp =
(
{ι, t, a}, ι, {(ι, t), (ι, a), (t, t), (t, a)}, β

)

with β(ι) = �, β(t) = Mt, and β(a) = Ma where Mt and Ma are the MSCs
defined as in Example 2. The set of paths in Gbsp is the regular language given
by the regular expression ε+ ιt�(a+ε). The box language B[Gbsp] is given by the
regular expression ιt�a. The communication scenario arising from the execution
ιta ∈ B[Gbsp] is the MSC (E,�, λ) = β(ι) β(t) β(a) = Mt Ma, i.e.,
E = Et ∪ Ea, � =

(
�t ∪ �a ∪{(to, !d), (?, ?d)}

)�, and λ = λt ∪ λa.

3 Transition Systems for Pomset Families

In this section, we present transition systems for pomset families that follow
the concept of delayed choice. For this, let us fix an alphabet of actions Σ.
Although we do not consider process algebras in detail here, let us support the
intuition behind delayed choice operator ∓ by providing the process-algebraic
rules of [3], where ∓ has been defined first. A process term stands for a possible
future behavior of the system, where reductions on the terms are made through
firing actions. The operational semantics of ∓ is provided by the rules (DC1),
(DC2), (DC3), and symmetric rules with exchanged roles for process terms x

and y (and process terms x′ and y′, respectively). In these rules, x
α→ y stands

term(x)
(DC1)

term(x ∓ y)

x
α→ x′ y

α
�

(DC2)
(x ∓ y) α→ x′

x
α→ x′ y

α→ y′

(DC3)
(x ∓ y) α→ (x′ ∓ y′)

Delayed-Choice Semantics for Pomset Families and MSGs 73

for an execution of an action α ∈ Σ in x, x
α
� expresses that action α is not

executed by x, and term(x) stands for x having the option to terminate. Hence,
(DC1) states that x∓y can terminate if x can. The other rules illustrate exactly
the intuitive behavior of delayed choice: the choice between two process terms
x and y is not resolved when they perform the same actions (cf., (DC3)), but
when from x an action is performed that is not enabled in y (cf., (DC2)).

Operational Semantics for Pomset Families. To specify the operational
behavior of systems described by some pomset family P, a central aspect is to
identify the global state of the system and to describe the step-wise behavior
from each of the states. For a single pomset P = (E,�, λ), a global state is
traditionally defined by a cut, i.e., a partition of the events E into past events
U and future events V = E\U . Thus, every cut of P can be specified by either
the set of past events U or future events V – the respective other set of events
follows from the fixed set of events E. From a cut, action α can be performed
when there is a minimal future event e ∈ V labeled by α. After performing α,
the event e from the set of future events V is moved to the set of past events U .

Having the interpretation of delayed choice in mind, where process terms
describe future behaviors, we may describe cuts by their future events and
amend the partial order and labeling inherited from the given pomset. This
yields a formalization of the stepwise behavior αô of executing an action α
over (future) pomsets Y ∈ POΣ by Y αô Suffα(Y).3 The principle of the opera-
tional behavior for single pomsets can be generalized towards pomset families by
ô ⊆ POFΣ × Σ × POFΣ , where the standard union on pomset families serves
as delayed choice within the step-wise behavior ô described above. That is, for a
pomset family X ∈ POFΣ , we have X

αô Y iff Y = Suffα(X). It is easy to check
that the rules for delayed choice specified for process algebra terms are fulfilled
by ô (cf. (DC2) and (DC3)), replacing α→ by αô and using pomset families
instead of process terms. Here, X αô� denotes that Suffα(X) = ∅. Furthermore,
the empty pomset � ∈ X naturally serves as candidate for term(X) (cf. (DC1)).

Formalizing the approach with the step-wise operational behavior for pomset
families described above, we obtain suffix transition systems where cuts of the
pomset family members are represented by the pomset of future events. To
complete the picture, we further present prefix transition systems for pomset
families where cuts are represented by pomsets of past events.

For the remainder of this section, let us fix a pomset family P ∈ POFΣ .

3.1 Suffix Transition Systems

Definition 3. The suffix transition system of P is given by

Tsuff [P] =
(
2Suff(P),P,ô,T

)

where T = {X ⊆ Suff(P) : � ∈ X}, and where for X,Y ⊆ Suff(P) we have
X

αô Y iff Y = Suffα(X).
3 Note that Suffα(Y) is a singleton as we assume pomsets to be not autoconcurrent.

74 C. Dubslaff and C. Baier

Note that states of the suffix transition system of P might be an infinite pomset
family in case P is infinite.

Example 4. Let us return to our running example, i.e., let us consider the MSG
Gbsp from Example 3. By the definition of the pomset semantics for MSGs, we
have P[Gbsp] = {Mt . . .Mt Ma}. For illustration purposes, we extend the
definition of towards pomset families by X Y = {X Y : Y ∈ Y}. Using
this abbreviation and with P = P[Gbsp], Fig. 2 shows a fragment of the suffix
transition system Tsuff [P] with initial state P and one termination state {�}.
Tsuff [P] contains cycles and is infinite since for all k ∈ N the pomset family

Mt|{?} . . . Mt|{?}︸ ︷︷ ︸
k times

(
(Mt|{?,to} P) ∪ {Ma|{?d,!a,?a}}

)

is a reachable state in Tsuff [P].

Fig. 2. Fragment of the suffix transition system for P[Gbsp]

Proposition 1 (Properties of Tsuff [P]). Given P ∈ POFΣ,

(a) Tsuff [P] is deterministic, and
(b) lang

(
Tsuff [P]

)
= lang(P).

Proof. It is easy to see by the definition of Suffα(·) that Tsuff [P] is deterministic4.
Let us now show language equality of Tsuff [P] and P:

(⇒) Let w ∈ lang
(
Tsuff [P]

)
, i.e., there is an execution X0α0X1α1 . . . αn−1Xn

of Tsuff [P] with X0 = P, Xn ∈ T and w = α0α1 . . . αn−1. Then, by the
definition of T, � ∈ Xn. Furthermore, by the definition of Suffα(·), there is
a P ∈ X0 such that for all i < n there is Pi ∈ Xi with P0 = P, Pn = � and
Pi+1 = Suffαi

(Pi). We show that w is a linearization of P0 = (E,�, λ), i.e.,
there is a bijection ξ : {0, . . . , n−1} → E with λ

(
ξ(i)

)
= αi and ξ(i) �> ξ(j)

for all i � j < n. For i < n, let ξ(i) be the uniquely defined event in
Pi \ Pi+1. Then, since Pi+1 = Suffαi

(Pi), λ
(
ξ(i)

)
= αi for all i < n.

Towards a contradiction, assume that there are i � j such that ξ(i) > ξ(j).
Then, by the definition of suffixes, Pj is upward closed and thus, ξ(i) ∈ Pj .
Hence, by the definition of Suffα(·), for all k � i we have ξ(i) ∈ Pk, which
yields ξ(i) �∈ Pi \ Pi+1, contradicting the definition of ξ.

4 Recall that determinism depends only on the reachable part in Tsuff [P].

Delayed-Choice Semantics for Pomset Families and MSGs 75

(⇐) Let w ∈ lang(P), i.e., there is some P ∈ P such that w ∈ Lin(P). With w =
α0α1 . . . αn−1 and P = (E,�, λ) there is thus a bijection ξ : {0, . . . , n−1} →
E with λ

(
ξ(i)

)
= αi and ξ(i) �> ξ(j) for all i � j < n. Let Pi for i � n be

inductively defined by P0 = P and Pi+1 = Pi\{ξ(i)}. Then for all i < n we
have that ξ(i) is a minimal event in Pi and thus, by the definition of suffixes,
Pi+1 = Suffαi

(Pi). Thus, there is a path π = X0α0X1α1 . . . αn−1Xn in
Tsuff [P] with X0 = P and where Pi ∈ Xi for all i � n. As � = Pn, we have
that � ∈ Xn and hence, π is an execution in Tsuff [P]. This directly yields
w ∈ lang

(
Tsuff [P]

)
. �

Motivated by the last proposition and the fact that the step-wise behavior and
the termination states satisfy the rules for delayed choice on suffix pomset fami-
lies as illustrated in the introductory argumentation of this section, we use suffix
transition systems as a reference model for delayed-choice semantics on pomset
families.

Definition 4. A transition system T for a pomset family P obeys delayed
choice if T is deterministic and bisimilar to Tsuff [P].

3.2 Prefix Transition Systems

We now define prefix transition systems, where states are given by prefixes of a
pomset family. Intuitively, any prefix stands for the partially ordered history of
an execution of the system. Prefix transition systems generalize the transition-
system semantics for MSGs of [8] towards arbitrary pomset families (possibly
not generated by MSGs).

Definition 5. The prefix transition system semantics of P is given by

Tpref [P] =
(
2Pref(P), {�},ñ,T

)
,

where T = {X ⊆ Pref(P) : X ∩ P �= ∅} and where for X,Y ⊆ Pref(P) we have
X

αñ Y iff X = Prefα(Y).

Example 5. In Fig. 3, a fragment of the prefix transition system Tpref

[
P[Gbsp]

]

is depicted where Gbsp is as in Example 3. Note that in this example, every
reachable pomset family is a singleton.

Proposition 2 (Properties of Tpref [P]). Given P ∈ POFΣ,

(a) Tpref [P] is acyclic,
(b) Tpref [P] is deterministic, and
(c) lang

(
Tpref [P]

)
= lang(P).

Proof. In order to show that Tpref [P] is acyclic, we rely on the fact that for all
X ⊆ Pref(P) reachable in Tpref [P] we have that X ,Y ∈ X implies |X | = |Y|. Let
now #(X) denote the number of events contained in each X ∈ X. Then, for all
reachable X,Y ⊆ Pref(P) with X

αñ Y we have #(Y) = #(X)+1. Thus, Tpref [P]
is acyclic. For any Y ⊆ Pref(P) and α ∈ Σ, X = Prefα(Y) is uniquely defined
and by the definition of αñ, we directly obtain that Tpref [P] is deterministic. Let
us now show language equality of Tpref [P] and P:

76 C. Dubslaff and C. Baier

Fig. 3. Fragment of the prefix transition system for P[Gbsp]

(⇒) Let w ∈ lang(Tpref [P]), i.e., there is an execution X0α0X1α1 . . . αn−1Xn of
Tpref [P] with X0 = {�}, Xn ∈ T and w = α0α1 . . . αn−1. Then, by the
definition of T, there is some Pn = (E,�, λ) ∈ Xn such that Pn ∈ P.
Furthermore, by the definition of Prefα(·), for all i < n there is Pi ∈ Xi

with Pi = Prefαi
(Pi+1). We show that w is a linearization of P, i.e., there

is a bijection ξ : {0, . . . , n−1} → E with λ(ξ(i)) = αi and ξ(i) �> ξ(j) for
all i � j < n. For i < n, let ξ(i) be the uniquely defined event in Pi+1 \Pi.
Then, since Pi = Prefαi

(Pi+1), λ(ξ(i)) = αi for all i < n. Towards a
contradiction, assume that there are i � j such that ξ(i) > ξ(j). Then, by
the definition of prefixes, Pi+1 is downward closed and thus, ξ(j) ∈ Pi+1.
Hence, by the definition of Prefα(·), for all k > i we have ξ(j) ∈ Pk, which
yields ξ(j) �∈ Pj+1 \ Pj , contradicting the definition of ξ.

(⇐) Let w ∈ lang(P), i.e., there is some P ∈ P such that w ∈ Lin(P). With w =
α0α1 . . . αn−1 and P = (E,�, λ) there is thus a bijection ξ : {0, . . . , n−1} →
E with λ(ξ(i)) = αi and ξ(i) �> ξ(j) for all i � j < n. Let Ei for i � n
be inductively defined by E = ∅ and Ei+1 = Ei ∪ {ξ(i)}. Furthermore,
let Pi = P|Ei

for all i � n. Since ξ(i) �> ξ(j) for all i � j < n, all Pi are
downward closed and thus, by the definition of prefixes, Pi = Prefαi

(Pi+1).
Thus, there is a path π = X0α0X1α1 . . . αn−1Xn in Tpref [P] with X0 = {�}
and where Pi ∈ Xi for all i � n. As Pn = P, we have that P ∈ Xn

and hence, Xn ∩ P �= ∅. Thus, π is an execution in Tpref [P] and hence,
w ∈ lang

(
Tpref [P]

)
. �

The above proposition in combination with Proposition 1 and Lemma 1 directly
yields that Tpref [P] is a delayed-choice semantics for P:

Theorem 1. Tpref [P] obeys delayed choice, i.e., Tpref [P] is deterministic and
bisimilar to Tsuff [P].

3.3 Comparison and Discussion

To further illustrate the differences between suffix and prefix transition sys-
tems, let us consider a simple example issuing a pomset family P = {X ,Y}
that comprises the pomsets X =

(
{e, e′}, {(e, e′)}, {(e, α), (e′, α′)}

)
and Y =

Delayed-Choice Semantics for Pomset Families and MSGs 77

(
{e, e′}, ∅, {(e, α), (e′, α′)}

)
. Figure 4 depicts the resulting suffix and prefix tran-

sition systems for P. When executing α followed by α′, the choice between X
and Y is delayed, i.e., this execution could follow either X or Y. However, when
executing α′ first, the choice between X and Y is resolved towards Y. Whereas
in the case of the suffix transition system there is only one termination state, the
prefix transition system contains the history of the execution and has two termi-
nation states. Note that both transition systems contain states which comprise
more than one pomset.

Fig. 4. The (1) prefix and (2) suffix transition system for P = {X ,Y}

Using the process algebra introduced in [17,31], we can describe P by the
process-algebraic term (α‖α′)∓(α·α′). Using the rules specified in [31], we obtain
the transition system depicted in (1) of Fig. 5, which corresponds to the prefix
transition system for P. Identifying bisimilar process-algebraic terms using the
bisimulation ↔ provided in [31] yields a transition system corresponding to the
suffix transition system for P, depicted in (2) of Fig. 5.

Fig. 5. Transition system of (α‖α′) ∓ (α·α′) (1) and its quotient w.r.t. ↔ (2)

Note that in contrast to the prefix transition system Tpref

[
P[Gbsp]

]
detailed in

Example 5, Tpref [P] contains reachable states that are not singletons.

Lemma 2. For all MSGs G, the reachable states of Tpref

[
P[G]

]
are singletons.

Proof. As Tpref

[
P[G]

]
is deterministic (see Proposition 2b), every action sequence

w ∈ Act� for which there is a path yields a uniquely defined state that we denote
by Xw. Towards an induction on w, the statement holds for w = ε as then,
Xw = {�}. Let w be such that Xw =

{
(E,�, λ)

}
. Consider an α ∈ Actp for

a process p ∈ P such that there is an α-transition in Xw leading to Xwα. Let
X ∈ Xwα with X =

(
E ∪{e},� ∪ (X×{e}), λ∪{(e, α)}

)
for X ⊆ E. This can be

78 C. Dubslaff and C. Baier

assumed w.l.o.g. due to the definition of Prefα(·). If α is a local or send event,
then X = ↓Ep×{e} due to the definition of and the fact that local and send
events have at most one direct predecessor in an MSC. Let α = p?q(m) and k
denote the number of α-events in E. Since every receive event is mapped to a
send event in a basic MSC, this mapping takes over to MSCs in P[G] by the
definition of . Thus, the kth event labeled by q!p(m) on the process line Eq is
a direct predecessor of e in X . Since every receive event has at most two direct
predecessors, we obtain X = ↓ê ∪ ↓Ep again by the definition of . Hence, X is
uniquely defined through (E,�, λ) and α, leading to Xwα being a singleton. �

4 An Event Structure for Pomset Families

In this section, we present a branching-time semantics for pomset families that
is non-interleaving, i.e., models causal dependencies and independence explicitly.
Throughout this section, we fix a pomset family P over Σ. Similar to concepts
of [32], we define an event structure for P where events are pomsets that arise
from the downward closure of an event in some pomset of P. More formally, for a
pomset P ∈ P with P = (F,�, ν) and e ∈ F , we consider the pomset downward
closure of e as P|↓e with ↓e = {e′ ∈ F : e′ � e}.

Definition 6. The pomset event structure E [P] is given by (E,�, λ,#,Term)
where

– E =
{
P|↓e : P = (F,�, ν) ∈ P, e ∈ F

}

– X � Y iff X ∈ Pref(Y)
– λ(P|↓e) = ν(e) for P = (F,�, ν) ∈ P, e ∈ F
– X#Y iff there is no P ∈ P with X ,Y ∈ Pref(P)
– X ∈ Term iff there is P = (F,�, ν) ∈ P such that X = {P|↓e : e ∈ F}

To show that E [P] is well defined, we note that (E,�, λ) is a (possibly infinite)
pomset as the prefix relation on any pomset family is a partial order, and #
is clearly irreflexive and symmetric. Furthermore, the principle of finite causes
holds as P = (F,�, ν) ∈ P is finite and thus, Pref(P|↓e) is also finite for all
e ∈ F . To show that conflict heredity holds, let X ,Y,Z ∈ E and X#Y, Y � Z
and assume that X#Z does not hold. Then, there is P ∈ P such that X ,Z ∈
Pref(P). By the definition of �, Y ∈ Pref(Z) ⊆ Pref(P), which contradicts
X#Y as there should be no Q ∈ P with X ,Y ∈ Pref(Q), violated by Q = P.
It is left to show that Term ⊆ Conf

(
E [P]

)
, which is a direct consequence of the

following lemma.

Lemma 3. For all P = (F,�, ν) ∈ Pref(P), C =
{
P|↓e : e ∈ F

}
, we have

C ∈ Conf
(
E [P]

)
and P = (C,�|C , λ|C).

Proof. Towards an induction on n = |F |, the statement is clearly fulfilled for n =
0 by ∅ ∈ Conf

(
E [P]

)
. Now, let |F | = n+1 and assume that the statement holds

for all Q ∈ Pref(P) with an event space containing n elements. In particular, for
all α ∈ Σ with P ′ = (F ′,�|F ′ , ν|F ′) ∈ Prefα(P) there is an f ∈ F with ν(f) = α

Delayed-Choice Semantics for Pomset Families and MSGs 79

such that F \F ′ = {f}. Since we assume pomsets to be not autoconcurrent, f is
uniquely defined if it exists. We first show that C = C ′ ∪ {P|↓f} ∈ Conf

(
E [P]

)

with C ′ = {P ′|↓e : e ∈ F ′}. Since P ∈ Pref(P) we have P|↓f ∈ E. Furthermore,
C ′ ∈ Conf

(
E [P]

)
by induction hypothesis and thus C ⊆ E. C is conflict-free

with P as witness. Now assume that C is not downward-closed, i.e., there is an
X ∈ E \ C with X � P|↓f . By the definition of � we have X ∈ Pref(P|↓f).
Thus, there is an x ∈ F with X = P|↓x. If x �= f , then X ∈ C ′ and if x = f ,
then X = P|↓f . Hence, X ∈ C, contradicting X ∈ E \ C. Now we show that
P = (C,�|C , λ|C). By induction hypothesis, we have P ′ = (C ′,�|C′ , λ|C′). Thus,
it suffices to show that for all e ∈ F we have e � f iff P|↓e � P|↓f :

(⇒) It follows directly that ↓e ⊆ ↓f and thus, P|↓e ∈ Pref(P|↓f).
(⇐) From P|↓e ∈ Pref(P|↓f), we get ↓e ⊆ ↓f and thus, e′ � f for all e′ ∈ ↓e. �

4.1 Properties of Pomset Event Structures

In the general case, pomset event structures do not induce a deterministic tran-
sition system such they do not obey delayed choice in the sense of Definition 4.
We illustrate this fact by the following example.

Example 6. Let us reconsider the example of Sect. 3.3. On the left of Fig. 6,
the pomset event structure of {X ,Y} is depicted (1), where the arrow connects
causal dependent events and the dashed line conflicting ones. On the right of
Fig. 6, the induced transition system is shown (2). Note that this transition
system is non-deterministic in the configuration

{
Y|{e}

}
.

Fig. 6. E {X ,Y} (1) and induced transition system ts E [{X ,Y}] (2)

We now present a further lemma that intuitively provides the backward direction
of Lemma 3:

Lemma 4. For all C ∈ Conf
(
E [P]

)
we have (C,�|C , λ|C) ∈ Pref(P).

Proof. Since C is conflict-free there is a P = (F,�, ν) ∈ Pref(P) such that
X ∈ Pref(P) for all X ∈ C. Thus, there is a function ξ : C → F such that for
all X ∈ C we have X = P|↓ξ(X). Clearly, ξ is injective and it is left to show
that P|ξ(C) = (C,�|C , λ|C). We do so by showing that for all X ,Y ∈ C we have
ξ(X) � ξ(Y) iff X � Y:

80 C. Dubslaff and C. Baier

(⇒) From ↓ ξ(X) ⊆ ↓ ξ(Y), we get P|ξ(X) ∈ Pref(P|ξ(Y)) and hence, X ∈
Pref(Y).

(⇐) As X ∈ Pref(Y), we have P|ξ(X) ∈ Pref(P|ξ(Y)) and thus, ↓ξ(X) ⊆ ↓ξ(Y).
Hence, for all e′ ∈ ↓ξ(X) we get e′ � ξ(Y) and in particular ξ(X) � ξ(Y).

�

Mainly relying on Lemmas 3 and 4 above, we show compatibility of E [P] with
its generating pomset P:

Theorem 2 (Compatibility Theorem). pof
(
E [P]

)
= P.

Proof. (⊆) For all P ∈ pof
(
E [P]

)
there is some C ∈ Term with P = (C,�

|C , λ|C). By Lemma 4 we have P ∈ Pref(P) and due to the definition of Term
in E [P], we finally obtain P ∈ P.

(⊇) Let P = (F,�, ν) ∈ P and C = {P|↓e : e ∈ F}. Then, due to Lemma 3,
P = (C,� |C , λ|C) and C ∈ Term. Thus, by the definition of pof, we get
P ∈ pof

(
E [P]

)
. �

4.2 Pomset Event Structures for MSGs

As any MSG G induces a pomset semantics P[G], an event structure semantics
for G is naturally defined through E

[
P[G]

]
.

Example 7. Let us consider the running example with the MSG Gbsp from Exam-
ple 3 and denote its event structure by E

[
P[Gbsp]

]
= (E,�, λ,#,Term). Figure 7

shows a fragment of E
[
P[Gbsp]

]
. Arrows indicate direct successors, i.e., e → e′

iff e < e′ and there is no e′′ ∈ E with e < e′′ < e′. Dashed lines connect minimal
conflicting events, i.e., e --- e′ iff e#e′ and there is no e′′ ∈ E with e#e′′ < e′

or e′#e′′ < e. All other conflicting events can be derived from these minimal
conflicting events through conflict heredity. Note that, e.g., the event Ma has
no successor and is in conflict with every event of the upper branch of Fig. 7.
Thus, the configuration C = {Mt|{!},Mt|{!,?},Ma|{!d,?d,!a},Ma} is maximal in
the sense that it cannot be extended by any other event. Furthermore, C ∈ Term
as Ma ∈ P.

Fig. 7. Fragment of the event structure for P[Gbsp]

Note that the basis for our construction in Definition 6 is provided by pomset
downward closures, which in the setting of MSGs correspond to p-views for
processes p ∈ P [13]. Although the transition system induced by a pomset event

Delayed-Choice Semantics for Pomset Families and MSGs 81

structure does neither need to be deterministic nor bisimilar to the corresponding
suffix transition system (see Example 6), it obeys delayed choice in the setting
of MSGs:

Theorem 3. Let G be an MSG. Then, ts
(
E [P[G]]

)
is isomorphic to Tpref

[
P[G]

]
.

Proof. Let us denote E
[
P[G]

]
by E = (E,�, λ,#,Term) and the transition rela-

tion of ts(E) by −→. Furthermore, let Tpref

[
P[G]

]
=

(
S, {�},ñ,T

)
. Lemma 4

induces a mapping ξ : Conf(E) → Pref(P[G]) by ξ(C) = (C,� |C , λ|C) for all
C ∈ Conf(E). Due to Lemma 3, ξ is bijective. Since every reachable state X in
Tpref

[
P[G]

]
is a singleton (see Lemma 2), it suffices to show that for all α ∈ Act

and C,D ∈ Conf(E) we have C
α−→ D iff

{
ξ(C)

} αñ
{
ξ(D)

}
.

(⇒) For C
α−→ D there is an event e ∈ E such that D = C ∪ {e} and λ(e) = α.

By the definition of prefixes and the fact that we only consider pomsets that
are not autoconcurrent, we thus obtain

{
(C,�|C , λ|C)

}
= Prefα

(
{(D,�

|D, λ|D)}
)
. Hence,

{
ξ(C)

} αñ
{
ξ(D)

}
.

(⇐) Let
{
ξ(C)

} αñ
{
ξ(D)

}
. Then

{
(C,� |C , λ|C)

}
= Prefα

(
{(D,� |D, λ|D)}

)

and thus, there is an event e ∈ D with λ(e) = α such that (C,�|C , λ|C) =(
D\{e},�|D\{e}, λ|D\{e}

)
. By Lemma 3 we obtain C = D\{e} and hence,

the definition of ts(·) yields C
α−→ D.

It is left to show that C ∈ Term iff
{
ξ(C)

}
∈ T. Due to Theorem 2, we

have C ∈ Term iff ξ(C) ∈ P[G]. By the definition of Tpref

[
P[G]

]
and Lemma 2,

{X} ∈ T iff X ∈ P[G]. The statement follows directly since ξ is a bijection. �

As a direct consequence of the above theorem and Theorem 1, we obtain
that E

[
P[G]

]
can be seen as a delayed-choice semantics for G. Thus, our defini-

tion of pomset event structures covers the first non-interleaving branching-time
semantics for MSGs that follows the delayed-choice principle.

Corollary 1. ts
(
E [P]

)
obeys delayed choice, i.e., ts

(
E [P]

)
is deterministic and

bisimilar to Tsuff [P].

5 Conclusion

The main contribution of this paper is that we provided a semantical framework
of branching-time semantics for pomset families and MSGs following the delayed-
choice principle. In contrast to the original definition of delayed choice based on
process algebras, we circumvented the intrinsic linear-time operators in terms of
delayed choice [3] and weak sequential composition [33] by operating directly on
pomset families. Within this approach, delayed choice corresponds to the stan-
dard union operation on pomset families that arise from removing minimal events
of pomset family members, and weak sequential composition corresponds to local
concatenation of pomsets [30] (as intended by [33]). We thus avoid difficulties
within the definition of the standard operational semantics for MSG [17,31] that

82 C. Dubslaff and C. Baier

require fixed points over operator-defining rules with negative premises. As a ref-
erence semantics, we defined suffix transition systems, which closely follow the
process-algebraic approach in the sense that states represent future behaviors.
The prefix transition-system semantics provides a connection to the branching-
time semantics defined in [8], where quantitative aspects for MSGs have been
investigated. Whereas previously presented event-structure semantics for MSGs
[12] do not follow the delayed-choice principle, we constructed an event struc-
ture that is consistent with our transition-system semantics, i.e., those transition
system is deterministic and bisimilar to our reference semantics.

We illustrated that our event structure semantics follows the delayed-choice
principle by referring to its induced transition system. It naturally arises the
question whether there is a reasonable definition of delayed choice directly on
event structures, possibly relying on deterministic event structures [32]. This
question and the problem of defining an event structure obeying delayed choice
for arbitrary pomset families is left for further work. Towards an application of
our semantical framework, extending Lotos [6] with a delayed-choice operator
could enable reasoning about delayed-choice semantics for pomsets and MSGs.

Acknowledgments. The authors thank Arend Rensink and Joost-Pieter Katoen for
their valuable comments on this paper.

References

1. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In:
Software Concepts and Tools, pp. 304–313 (1996)

2. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999). doi:10.1007/3-540-48320-9 10

3. Baeten, J.C.M., Mauw, S.: Delayed choice: an operator for joining message sequence
charts. In: Hogrefe, D., Leue, S. (eds.) FORTE 1994. IFIPAICT, pp. 340–354.
Springer, Boston (1994)

4. Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with iteration and nesting.
Comput. J. 37(4), 243 (1994)

5. Bollig, B., Kuske, D., Meinecke, I.: Propositional dynamic logic for message-passing
systems. Log. Methods Comput. Sci. 6(3:16), 1–31 (2010)

6. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. 14, 25–59 (1987)

7. Chakraborty, J., D’Souza, D., Narayan Kumar, K.: Analysing message sequence
graph specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol.
6415, pp. 549–563. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16558-0 45

8. Dubslaff, C., Baier, C.: Quantitative analysis of communication scenarios. In:
Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp.
76–92. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1 6

9. Genest, B., Muscholl, A.: Message sequence charts: a survey. In: ACSD, pp. 2–4
(2005)

10. Groote, J.F.: Transition system specifications with negative premises. Theor. Com-
put. Sci. 118(2), 263–299 (1993)

http://dx.doi.org/10.1007/3-540-48320-9_10
http://dx.doi.org/10.1007/978-3-642-16558-0_45
http://dx.doi.org/10.1007/978-3-319-22975-1_6

Delayed-Choice Semantics for Pomset Families and MSGs 83

11. OM Group: Unified modeling language (UML): Superstructure version 2.4.1,
August 2011. http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

12. Hélouët, L., Jard, C., Caillaud, B.: An event structure based semantics for high-
level message sequence charts. Math. Struct. Comput. Sci. 12(4), 377–402 (2002)

13. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.S.: A
theory of regular MSC languages. Inf. Comput. 202, 1–38 (2005)

14. Heymer, S.: A semantics for MSC based on Petri-net components. In: Proceedings
of the 2nd Workshop of the SDL Forum Society on SDL and MSC, SAM 2000
(2000)

15. ITU-T. Message Sequence Chart (MSC). Z.120 v1.0 (1993)
16. ITU-T: Message Sequence Chart (MSC). Z.120 v2.0 (1996)
17. ITU-T: Annex B: Formal semantics of Message Sequence Charts. Z.120 v2.2 (1998)
18. ITU-T: Message Sequence Chart (MSC). Z.120 v5.0 (2011)
19. Katoen, J., Lambert, L.: Pomsets for message sequence charts. In: 8th GI/ITG-

Fachgespraech, pp. 197–207. Shaker Verlag (1998)
20. Levin, V., Peled, D.: Verification of message sequence charts via template matching.

In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997/TAPSOFT 1997. LNCS, vol. 1214,
pp. 652–666. Springer, Heidelberg (1997). doi:10.1007/BFb0030632

21. Madhusudan, P.: Reasoning about sequential and branching behaviours of message
sequence graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP
2001. LNCS, vol. 2076, pp. 809–820. Springer, Heidelberg (2001). doi:10.1007/
3-540-48224-5 66

22. Mauw, S., Reniers, M.A.: An algebraic semantics of basic message sequence charts.
Comput. J. 37, 269–277 (1994)

23. Mauw, S., Reniers, M.A.: Operational semantics for MSC’96. Comput. Netw.
31(17), 1785–1799 (1999)

24. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL Forum, pp.
291–306 (1997)

25. Milner, R.: Communication and Concurrency. PHI Series in Computer Science.
Prentice Hall, Upper Saddle River (1989)

26. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. In: Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.)
MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999). doi:10.1007/
3-540-48340-3 8

27. Muscholl, A., Peled, D.: Deciding properties of message sequence charts. In: Leue,
S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol.
3466, pp. 43–65. Springer, Heidelberg (2005). doi:10.1007/11495628 3

28. Muscholl, A., Peled, D., Su, Z.: Deciding properties for message sequence charts. In:
Nivat, M. (ed.) FoSSaCS 1998. LNCS, vol. 1378, pp. 226–242. Springer, Heidelberg
(1998). doi:10.1007/BFb0053553

29. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains.
Theor. Comput. Sci. 13(1), 85–108 (1981)

30. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Program. 15,
33–71 (1986)

31. Reniers, M.A.: Message sequence chart: Syntax and semantics. Ph.D. thesis, Eind-
hoven University of Technology, June 1999

32. Rensink, A.: A complete theory of deterministic event structures. In: Lee, I.,
Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 160–174. Springer, Hei-
delberg (1995). doi:10.1007/3-540-60218-6 12

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://dx.doi.org/10.1007/BFb0030632
http://dx.doi.org/10.1007/3-540-48224-5_66
http://dx.doi.org/10.1007/3-540-48224-5_66
http://dx.doi.org/10.1007/3-540-48340-3_8
http://dx.doi.org/10.1007/3-540-48340-3_8
http://dx.doi.org/10.1007/11495628_3
http://dx.doi.org/10.1007/BFb0053553
http://dx.doi.org/10.1007/3-540-60218-6_12

84 C. Dubslaff and C. Baier

33. Rensink, A., Wehrheim, H.: Weak sequential composition in process algebras.
In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 226–241.
Springer, Heidelberg (1994). doi:10.1007/978-3-540-48654-1 20

34. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148.
Oxford University Press, Oxford (1995)

http://dx.doi.org/10.1007/978-3-540-48654-1_20

Testing

On the Existence of Practical Testers

Jan Tretmans1,2(B)

1 TNO - Embedded Systems Innovation, Eindhoven, The Netherlands
jan.tretmans@tno.nl

2 Radboud University, Nijmegen, The Netherlands

Abstract. Model-based testing is one of the promising technologies to
increase the efficiency and effectiveness of software testing. This paper
outlines the evolution of model-based testing based on labelled transition
systems, from purely theoretical developments in the eighties to indus-
trially applicable tools now: from canonical testers to practical testers.
We present TorXakis as an example of a practical model-based tester,
founded in the testing theory for labelled transition systems, and now
being introduced in the daily practice of testing.

Keywords: Software testing · Model-based testing · Labelled transition
systems · Model-based testing tools

1 Model-Based Testing

Software Testing. Systematic testing plays an important role in the quest for
improved quality and reliability of software systems. Software testing, however, is
often an error-prone, expensive, and time-consuming process. Estimates are that
testing consumes 30–50% of the total software development costs. The tendency
is that the effort spent on testing is still increasing due to the continuing quest
for better software quality, and the ever growing size and complexity of systems.
The situation is aggravated by the fact that the complexity of testing tends
to grow faster than the complexity of the systems being tested, in the worst
case even exponentially. Whereas development and construction methods for
software allow the building of ever larger and more complex systems, there is a
real danger that testing methods cannot keep pace with these construction and
development methods. This may seriously hamper the development and testing
of future generations of software systems.

Model-Based Testing. Model-based testing (MBT) is one of the promising tech-
nologies to meet the challenges imposed on software testing. With MBT a system
under test (sut) is tested against an abstract model of its required behaviour.
The main virtue of model-based testing is that it allows test automation that
goes well beyond the mere automatic execution of manually crafted test cases. It

This work has been supported by NWO-TTW project 13859: Sumbat – Supersizing
Model-Based Testing.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 87–106, 2017.
DOI: 10.1007/978-3-319-68270-9 5

88 J. Tretmans

allows for the algorithmic generation of large amounts of test cases, including test
oracles (expected results), completely automatically from the model of required
behaviour. If this model is valid, i.e., expresses precisely what the system under
test should do, all these tests are provably valid, too.

From an industrial perspective, model-based testing is a promising approach
to detect more bugs faster and cheaper. The current state of practice is that
test automation mainly concentrates on the automatic execution of tests, but
that the problem of test generation is not addressed. Model-based testing aims
at automatically generating high-quality test suites from models, thus comple-
menting automatic test execution.

From an academic perspective, model-based testing is a formal-methods app-
roach to testing that complements formal verification and model checking. For-
mal verification and model checking intend to show that a system has specified
properties by proving that a model of that system satisfies these properties.
Thus, any verification is only as good as the validity of the model on which it
is based. Model-based testing, on the other hand, starts with a (verified) model,
and then aims at showing that the real, physical implementation of the system
behaves in compliance with this model. Due to the inherent limitations of test-
ing, testing can never be complete: testing can only show the presence of errors,
not their absence [26].

Benefits of Model-Based Testing. Model-based testing makes it possible to gener-
ate test cases automatically, enabling the next step in test automation. It makes
it possible to generate more, longer, and more diversified test cases with less
effort, whereas, being based on sound algorithms, these test cases are provably
valid.

Making models for MBT usually already leads to better understanding of
system behaviour and requirements and to early detection of specification and
design errors. Moreover, constructing models for MBT paves the way for other
model-based methods, such as model-based analysis, model checking, and simu-
lation, and it forms the natural connection to model-based system development
that is becoming an important driving force in the software industry.

Test suite maintenance, i.e., continuously adapting test cases when systems
are modified, is an important challenge of any testing process. In MBT, main-
tenance of a multitude of test cases is replaced by maintenance of one model.
Finally, various notions of (model-) coverage can be automatically computed,
expressing the level of completeness of testing, and allowing better selection of
test cases.

Sorts of Model-Based Testing. There are different kinds of testing, and thus
of model-based testing, depending on the kind of models being used, the qual-
ity aspects being tested, the level of formality involved, the degree of acces-
sibility and observability of the system being tested, and the kind of system
being tested. In this contribution we consider model-based testing as formal,
specification-based, active, black-box, functionality testing of reactive systems. It

On the Existence of Practical Testers 89

is testing, because it involves checking some properties of the sut by systemat-
ically performing experiments on the real, running sut. The kind of properties
being checked are concerned with functionality, i.e., testing whether the sys-
tem correctly does what it should do in terms of correct responses to given
stimuli. We do specification-based, black-box testing, since the externally observ-
able behaviour of the system, seen as a black-box, is compared with what has
been specified. The testing is active, in the sense that the tester controls and
observes the sut in an active way by giving stimuli and triggers to the sut,
and observing its responses, as opposed to passive testing, or monitoring. Our
suts are dynamic, data-intensive, reactive systems. Reactive systems react to
external events (stimuli, triggers, inputs) with output events (responses, actions,
outputs). In dynamic systems, outputs depend on inputs as well as on the system
state. Data-intensive means that instances of complex data structures are com-
municated in inputs and outputs, and that state transitions may involve complex
computations and constraints. Finally, we deal with formal testing : there is a
formal, well-defined theory underpinning models, suts, and correctness of suts
with respect to models, which enables formal reasoning about soundness and
exhaustiveness of generated test suites.

A Theory for Model-Based Testing. A theory for model-based testing must, nat-
urally, first of all define the models that are considered. The modelling formalism
determines the kind of properties that can be specified, and, consequently, the
kind of properties for which test cases can be generated. Secondly, it must be
precisely defined what it means for an sut to conform to a model. Conformance
can be expressed using an implementation relation, also called conformance rela-
tion [15]. Although an sut is a black box, we can assume it could be modelled by
some model instance in a domain of implementation models. This assumption is
commonly referred to as the testability hypothesis, or test assumption [32]. The
testability hypothesis allows reasoning about suts as if they were formal models,
and it makes it possible to define the implementation relation as a formal relation
between the domain of specification models and the domain of implementation
models. Soundness, i.e., do all correct suts pass, and exhaustiveness, i.e., do all
incorrect suts fail, of test suites is defined with respect to an implementation
relation.

In the domain of testing reactive systems there are two prevailing ‘schools’
of formal model-based testing. The oldest one uses Mealy-machines, also called
finite-state machines (FSM); see [20,46,51]. In this paper we concentrate on the
other one that uses labelled transition systems (LTS) for modelling. A labelled
transition system is a structure consisting of states with transitions, labelled
with actions, between them. The states model the system states; the labelled
transitions model the actions that a system can perform. There is a rich and
well-understood theory for MBT with LTS, on which we elaborate in Sect. 2.

Labelled transition systems form a well-defined semantic basis for modelling
and model-based testing, but they are not suitable for writing down models
explicitly. Typically, realistic systems have more states than there are atoms on
earth (which is approximately 1050) so an explicit representation of states is

90 J. Tretmans

impossible. What is needed is a language to represent large labelled transition
systems. Process algebras have semantics in terms of labeled transition systems,
they support different ways of composition such as choice, parallelism, sequenc-
ing, etc., and they were heavily investigated in the eighties [41,42,48]. They are
a good candidate to serve as a notation for LTS models.

Model-Based Testing Challenges. Software is anywhere, and ever more systems
depend on software: software controls, connects, and monitors almost every
aspect of systems, be it a car, an airplane, a pacemaker, or a refrigerator. Conse-
quently, overall system quality and reliability are more and more determined by
the quality of the embedded software. Typically, such software consists of several
million lines of code, with complex behavioural control-flow as well as intricate
data structures, with distribution and a lot of parallelism, having complex and
heterogeneous interfaces, and controlling diverse, multidisciplinary processes. In
addition, systems continuously evolve and are composed into larger systems and
systems-of-systems, whereas system components may come from heterogeneous
sources: there can be legacy, third-party, out-sourced, off-the-shelf, open source,
or newly developed components.

For model-based testing, these trends lead to several challenges. First, the
size of the systems implies that making complete models is often infeasible so
that MBT must deal with partial and under-specified models and abstraction,
and that partial knowledge and uncertainty cannot be avoided. Secondly, the
combination of complicated state-behaviour and intricate input and output-data
structures, and their dependencies, must be supported in modelling. Thirdly,
distribution and parallelism imply that MBT must deal with concurrency in
models, which introduces additional uncertainty and non-determinism. In the
fourth place, since complex systems are built from sub-systems and components,
and systems themselves are more and more combined into systems-of-systems,
MBT must support compositionality, i.e., building complex models by combining
simpler models. Lastly, since complexity leads to an astronomical number of
potential test cases, test selection, i.e., how to select those tests from all potential
test cases that can catch most, and most important failures, within constraints
of testing time and budget, is a key issue in model-based testing.

In short, to be applicable to testing of modern software systems, MBT
shall support partial models, under-specification, abstraction, uncertainty, state
& data, concurrency, non-determinism, compositionality, and test selection.
Though several academic and commercial MBT tools exist, there are not that
many tools that support all of these aspects.

Goal. The goal of this paper is to sketch the evolution from the existence of
canonical testers [11] to the existence of a practical tester. It is not the aim to
present a formal treatment, nor to give definitions or algorithms – we refer to
the literature for this – but we intend to give an overview of the steps that have
led from the formal canonical-tester theory to practical model-based testing
tools, which, on the one hand, have a well-founded theoretical basis, and, on
the other hand, are now being introduced in the daily practice of testing, thus
demonstrating that “Theory can be practical!” [14].

On the Existence of Practical Testers 91

More in particular, we will show the practical tester TorXakis, an MBT tool
that uses a number of the discussed testing and modelling theories [56]. Moreover,
TorXakis deals with most of the challenges posed in the previous paragraph:
it supports modelling of state-based control flow together with complex data, it
deals with non-determinism, abstraction, partial models and under-specification,
concurrency, and composition of complex models from simpler models. TorX-

akis is a research MBT tool that is being developed by the Radboud University
Nijmegen, the University of Twente, and TNO-ESI (NL), and that has been
applied to various systems, ranging from smart-cards [49] to large, high-tech
embedded systems.

Overview. This section, Sect. 1, introduced and discussed model-based testing
and set the context and goal for the remaining sections. Section 2 will describe the
evolution of testing theory for labelled transition systems starting from testing
equivalences and canonical testers up to the implementation relations that are
used in TorXakis. Section 3 demonstrates the existence of a practical tester:
it presents TorXakis, the theories underpinning it, and two small examples
starting with the obligatory Hello World! example. Finally, Sect. 4 recapitulates
and briefly looks at some future open problems.

2 Testing Transition Systems

Labelled transition systems (LTS) and its variants constitute a powerful semantic
model for describing and reasoning about dynamic, reactive systems. LTS-based
testing theory has developed over the years from a theory-oriented approach for
defining LTS equivalences to a theory that forms a sound basis for real testing
and industrially viable testing tools. In this section we sketch the evolution of
LTS-based testing theory, and thus provide an update of [18].

Testing Equivalences. Testing theory for LTS started with using testing to for-
malize the notion of behavioural equivalence for LTS. Two LTSs show equivalent
behaviour if there is no test that can observe the difference between them. By
defining appropriate formalizations for test and observation this led to the the-
ory of testing equivalences and preorders for LTS [24,25]. Different equivalences
can then be defined by choosing different formalizations of test and observation:
more powerful testers lead to stronger equivalences, and the other way around.
In the course of the years, many such variations were investigated, with testers
that can observe the occurrence of actions, the refusal of actions, or the poten-
tiality of doing actions, testers that can undo actions, that can make copies of
the system state, or that can repeat tests indefinitely. Comparative concurrency
semantics systematically compares these and other equivalences and preorders
defined over LTS [1,33,34,45,53]. Crucial in these equivalences is the notion of
non-determinism, i.e., that after doing an action in an LTS the subsequent state
is not uniquely determined. For deterministic systems almost all equivalences
coincide [29].

92 J. Tretmans

Test Generation. Whereas the theory of testing equivalences and preorders is
used to define semantic relations over LTS using all possible tests, actual testing
turns this around: given an LTS s (the specification) and a relation imp over
LTS (the implementation relation), determine a (minimal) set of tests Timp(s)
that characterizes all implementations i with i imp s.

First steps towards systematically generating such test suites (sets of tests)
from a specification LTS were made by Brinksma et al. in [11,12,17] leading to
the canonical tester theory for the implementation relation conf . The intuition
of conf is that after traces, i.e., sequences of actions, that are explicitly specified
in the specification LTS, the implementation LTS shall not unexpectedly refuse
actions, i.e., the implementation may only refuse a set of actions if the specifi-
cation can refuse this set, too. This introduces under-specification, in two ways.
First, after traces that are not in the specification LTS, anything is allowed in
the implementation. Second, the implementation may refuse less than the spec-
ification. In this approach, models were represented using the process algebraic
specification language LOTOS [7,16,42].

Inputs and Outputs. The canonical tester theory and its variations make an
important assumption about the communication between the sut and the tester,
viz. that this communication is synchronous and symmetric. Each communica-
tion event is seen as a joint action of the sut and the tester, inspired by the
parallel composition in process algebra. This also means that both the tester and
the sut can block the communication, and thus stop the other from progressing.
In practice, however, it is different: actual communication between an sut and a
tester takes place via inputs and outputs. Inputs are initiated by the tester, they
trigger the sut, and they cannot be refused by the sut. Outputs are produced
by the sut, and they are observed and cannot be refused by the tester.

A first approach to a testing theory with inputs and outputs was developed
by interpreting each action as either input or output, and by modelling the
communication medium between sut and tester explicitly [38,61]. Later this
was generalized by just assuming that inputs cannot be refused by the sut –
the sut is assumed to be input-enabled, i.e., in each state there is a transition
for all input actions – and outputs cannot be refused by the tester, akin to
I/O-automata [47]. Adding these assumptions to the concepts of the canonical
tester theory and conf – refusal sets of the implementation shall be refusal
sets of the specification, but only for explicitly specified traces – leads to a new
implementation relation that was coined ioconf [58]. The assumptions that the
sut cannot refuse inputs and the tester cannot refuse outputs makes that the
only relevant refusal that remains is refusing all possible outputs by the sut,
which is called quiescence [62]. Intuitively, quiescence corresponds to observing
that there is no output of the sut, which is an important observation in testing
theory as well as in practical testing.

In ioconf the test will stop after observing quiescence, i.e., during each
test run quiescence occurs at most once, as the last observation. Phalippou
noticed that in practical testing quiescence is observed as a time-out during
which no output from the sut is observed, and that after such a time-out testing

On the Existence of Practical Testers 93

continues with providing a next input to the sut, so that quiescence can occur
multiple times during a test run [52]. Inspired by this observation, repetitive
quiescence was added to ioconf , leading to the implementation relation ioco
[59]. Theoretically, ioco is akin to failure-trace preorder with inputs and outputs
[45]. Intuitively, ioco expresses that an sut conforms to its specification if the
sut never produces an output that cannot be produced by the specification in
the same situation, i.e., after the same trace. Quiescence is treated as a special,
virtual output, actually expressing the absence of real outputs.

For ioco-testing there is a test generation algorithm that was proved to
be sound – all ioco-correct suts pass all generated tests – and exhaustive –
all ioco-incorrect suts are eventually detected by some generated test. The
implementation relation ioco is the basis for a couple of MBT tools, such as
TGV [43], the Agedis Tool Set [36], TorX [5], JTorX [4], Uppaal-Tron
[40], Axini Test Manager (ATM) [2], and TorXakis (Sect. 3).

A couple of variations have been proposed for ioco, such as uioco dealing
more accurately with under-specification [6], mioco for multiple input and out-
put channels [39], wioco that diminishes the requirements on input enabled-
ness [64], various variants of timed-ioco [9,40,44], and sioco for LTS with
data [30,31].

Data. The ioco-testing theory for labelled transition systems mainly deals with
the dynamic aspects of system behaviour, i.e., with state-based control flow. The
static aspects, such as data structures, their operations, and their constraints,
which are part of almost any real system, are not covered. Symbolic Transi-
tion Systems (STS) add (infinite) data and data-dependent control flow, such
as guarded transitions, to LTS, founded on first order logic [31]. Symbolic ioco
(sioco) lifts ioco to the symbolic level. The semantics of STS and sioco is
given directly in terms of LTS; STS and sioco do not add expressiveness but
they provide a way of representing and manipulating large and infinite transi-
tion systems symbolically. Test generation in TorXakis uses STS following the
algorithm of [30].

3 A Practical Tester: TorXakis

TorXakis is an experimental tool for on-line model-based testing. This section
gives a light-weight introduction to TorXakis, the underlying theory, its mod-
els, and its usage, illustrated with two examples: the obligatory Hello World!
example and a more elaborate Job-Dispatcher example. TorXakis is freely
available under a BSD3 license [56].

3.1 Theory

Test Generation Algorithm. TorXakis implements the ioco-testing theory
[59,60] for labelled transition systems. More precisely, it implements test genera-
tion for symbolic transition systems following the on-the-fly ioco-test generation
algorithm described in [30].

94 J. Tretmans

TorXakis is an on-the-fly (on-line) MBT tool which means that it combines
test generation and test execution: generated test steps are immediately executed
on the sut and responses from the sut are immediately checked and used when
calculating the next step in test generation.

Currently, only random test selection is supported, i.e., TorXakis chooses
a random action among the possible inputs to the sut in the current state.
This involves choosing among the transitions of the STS and choosing a value
from the (infinite, constrained) data items attached to the transition. The latter
involves constraint solving.

Modelling. TorXakis uses its own language to express models. The language
is strongly inspired by the process-algebraic language Lotos [7,42], and incor-
porates ideas from Extended Lotos [12] and mCRL2 [35]. The semantics is
based on STS, which in turn has a semantics in LTS. The process-algebraic part is
complemented with a data specification language based on algebraic data types
(ADT) and functions like in functional languages. In addition to user-defined
ADTs, predefined data types such as booleans, unbounded integers, strings, and
regular expressions over strings are provided.

Having its roots in process algebra, the language is compositional. It has
several operators to combine processes: sequencing, choice, parallel composition
with and without communication, interrupt, disable, and abstraction (hiding).
Communication between processes can be multi-way, and actions can be built
using multiple labels.

Implementation. TorXakis builds on the model-based testing tools TorX [5]
and JTorX [4]. The main additions are data specification and manipulation
with algebraic data types, and its own, well-defined modelling language. Like
TorX and JTorX, TorXakis generates tests by first unfolding the process
expressions from the model into a behaviour tree, on which primitives are defined
for generating test cases. Unlike TorX and JTorX, TorXakis does not unfold
data into all possible concrete data values, but it keeps data symbolically. Unfold-
ing of process expressions is similar to the LOTOS simulators HIPPO [28,57]
and SMILE [27].

In order to manipulate symbolic data and solve constraints for test-data
generation, TorXakis uses SMT solvers (Satisfaction Modulo Theories) [23].
Currently, Z3 and CVC4 are used via the SMT-LIBv2.5 standard interface [3,
22,50]. Term rewriting is used to evaluate data expressions and functions.

The well-defined process-algebraic basis with ioco semantics makes it possi-
ble to perform optimizations and reductions based on equational reasoning with
testing equivalence, which implies ioco-semantics.

The core of TorXakis is implemented in the functional language
Haskell [37], while parts of TorXakis itself have been tested with the Haskell
MBT tool QuickCheck [21].

Innovation. Compared to other model-based testing tools TorXakis offers
support for test generation from non-deterministic models, under-specification,

On the Existence of Practical Testers 95

dealing with uncertainty, concurrency, parallelism, and abstraction, and the com-
bination of constructive modelling in transition systems with property-oriented
specification via data constraints.

3.2 Usage

In order to use TorXakis we need a system under test (sut), a model speci-
fying the allowed behaviour of the sut, and probably an adapter (test harness,
wrapper) to connect the actual sut to TorXakis.

System Under Test. The sut is the actual program or system that we wish to
test. The TorXakis view of an sut is a black-box communicating with messages
on its interfaces, i.e., on its input and output channels. An input is a message
sent by the tester to the sut on an input channel; an output is the observation
by the tester of a message from the sut on an output channel. A behaviour of
the sut is a possible sequence of input and output actions. The goal of testing
is to compare the actual behaviour that the sut exhibits with the behaviour
specified in the model.

Technically, channels are implemented as plain old sockets where messages
are line-based strings, or string-encodings of some typed data. So, the TorXakis

view of an sut is a black-box communicating strings on a couple of sockets.
There is a caveat: sockets have asynchronous communication whereas mod-

els and test generation assume synchronous communication. This may lead to
race conditions if a model offers the choice between an input and an output. If
this occurs the asynchronous communication of the sockets must be explicitly
modelled, e.g., as queues in the model.

Model. The model is written in the TorXakis modelling language. A (collection
of) model file(s) contains all the definitions necessary for expressing the model:
channel, data-type, function, constant, and process definitions, which are all
combined in a model definition. In addition, the model file contains some testing
specific aspects: connections and en/decodings. A connection definition defines
how TorXakis is connected to the sut by specifying the binding of model
channels to sockets. En/decodings specify the mapping of abstract messages
(ADTs) to strings and vice versa. The next subsections will explain the details
of modelling using two examples.

Adapter. TorXakis communicates with the sut via sockets, so either the sut

must offer a socket interface – which a lot of real-life suts don’t do – or the
sut must be connected via an adapter, wrapper, or test harness that interfaces
the sut to TorXakis, and that transforms the native communication of the
sut to the socket communication that TorXakis requires. Usually, such an
adapter must be manually developed. Sometimes it is simple, e.g., transforming
standard IO into socket communication using standard (Unix) tools like netcat
or socat, as the example below shows. Sometimes, building an adapter can be
quite cumbersome, e.g., when the sut provides a GUI. In this case tools like

96 J. Tretmans

Selenium [54] or Sikuli [55] may be used to adapt a GUI or a web interface to
socket communication. An adapter is not specific for MBT but is required for
any form of automated test execution. If traditional test automation is in place
then this infrastructure can quite often be reused as adapter for MBT.

Testing. Once we have an sut, a model, and an adapter, we can use TorXakis

to run tests. The tool performs on-the-fly testing of the sut by automatically
generating test steps from the model and immediately executing these test steps
on the sut, while observing and checking the responses from the sut. A test
case may consist of thousands of such test steps, which makes it also suitable
for reliability testing, and it will eventually lead to a verdict for the test case.

Other functionality of TorXakis includes calculation of data values, con-
straint solving for data variables, exploration of a model without connecting to
an sut (closed simulation), and simulation of a model in an environment, i.e.,
simulation while connected to the outside world (open simulation).

3.3 Hello World!

Traditionally, the first program, in this case the first model, made in a new lan-
guage is the famous Hello World! program. Here, we take a slight variation of
Hello World! : our system first gets a name as input and then outputs “Hello
〈name〉!”, repeating these two actions indefinitely. Our sut is an executable pro-
gram claiming to show this behaviour. Our task is to test whether the sut indeed
behaves as prescribed. So, the first task is to express the required behaviour in
a model; see Fig. 1 for the TorXakis model.

The model contains 4 definitions. First, CHANDEF defines two channels with
messages of type String.

Secondly, the PROCDEF defines a process, named helloName, which has two
channels of type String and no parameters. Process helloName specifies the fol-
lowing behaviour: first there is an action on channel Inp, followed by an action on
channel Outp, followed by a recursive call of helloName to express the indefinite
repetition. The operator >-> denotes sequencing of actions. In the action on Inp,
a message with name name is communicated, which must be of type String, the
type of Inp. Moreover, the message must satisfy the constraint given between
[[and]]. This regular expression constraint requires that name starts with a
capital letter followed by one or more small letters. The following action on chan-
nel Outp is uniquely constructed from the concatenation "Hello" ++ name ++
"!", where name refers to the value that name obtained in the preceding action.

Thirdly, the complete model is defined in MODELDEF. It specifies which chan-
nels are inputs, which are outputs, and the behaviour of the model using the
process helloName defined earlier.

The CNECTDEF specifies that the tester connects as client to the sut (the
server) via sockets. It binds the channel Input, which is an input of the model
and of the sut, thus an output of TorXakis, to the socket 〈localhost, 7890〉.
Moreover, an encoding of actions to strings on the socket can be defined, but in

On the Existence of Practical Testers 97

Fig. 1. TorXakis model of Hello World!

this case, the encoding is trivial. Analogously, outputs from the sut, i.e., inputs
to TorXakis, are read from socket 〈localhost, 7891〉 and decoded.

The next step is to develop an adapter. This is not part of the TorXakis

model. Assuming that our sut is called helloWorld, and that it communicates
on standard input/output, this means that we have to convert input/output
communication to socket communication. In a Linux-like environment this may
be done using utilities like netcat nc or socat, like:

$ nc -l 7890 | ./helloWorld | nc -l 7891
Now we can perform a test by running the sut with its adapter and TorX-

akis as two separate processes; see Fig. 2 for a run of TorXakis. User inputs
in TorXakis are marked <<; responses from TorXakis are marked >>.

After having started TorXakis, we start the tester with tester Hello Sut,
expressing that we wish to test with model Hello and sut connection Sut,
shown in the model file in Fig. 1. Then we can test 6 test steps with test 6
and, indeed, after 6 test steps it stops with verdict PASS. A test run of 6 steps is
rather small; we could have run for 100,000 steps or more. TorXakis generates
inputs to the sut, such as (Input, ["Zp"]), with names satisfying the regular
expression constraint. These input names are generated from the constraint by
the SMT solver. Some extra functionality has been added in TorXakis in order
to generate quasi-random inputs, which is not normally provided by an SMT
solver. Moreover, it is checked that the outputs, such as (Output, ["Hello Zp
!"]), are correct.

98 J. Tretmans

Fig. 2. TorXakis test run of Hello World!

3.4 Example: Job Dispatcher

The Job-Dispatcher is a system that distributes jobs over available processors.
Jobs arrive in a dispatcher, are queued, and when a processor is available, the
job is forwarded to that processor. When job processing is finished, the job is
delivered. The TorXakis model is given in Figs. 3 and 4. We explain some
aspects of the model.

The Job-Dispatcher has two typed channels for communication with the out-
side world. The types are user-defined algebraic data types. A value of type
JobOut is either a JobOut with 3 fields, or an Error (which is not further used
in this example). Type JobList defines a list of JobData in the standard recur-
sive way. It is used in process dispatcher to queue the Job requests.

Functions can be defined in a standard, functional style, with recursion. Func-
tions and expressions are strongly typed and overloading is allowed. The function
isValidJob defines a constraint on JobData which is used when messages of type
JobData are communicated to restrict the domain of valid messages.

Process dispatcher uses the choice process operator ## to specify the choice
between receiving a new job request, which is then added to the queue, or dis-
patching the first element of the queue to one of the processors if the queue is not
empty. A processor processes a job by calculating the greatest common divisor
using the function gcd. Process processors starts pnum processor-instances
by ‘forking’ them. This is achieved by the parallel operator |||: a processor is
started in parallel with more processors with decreased pnum until pnum == 1.

Finally, the behaviour of model Disp is defined as a dispatcher with empty
initial queue in parallel with 4 processors. These communicate via channel
Job2Proc: the dispatcher sends the jobs via this channel non-deterministically
to one of the processors, but the dispatcher cannot influence which processor
will take the job. By using the HIDE constructor, the channel Job2Proc is hidden
for the outside world, i.e., actions on this channel are abstracted away. From the
outside, it can only be observed that after some time the job appears on channel
Finish.

On the Existence of Practical Testers 99

Fig. 3. The Job-Dispatcher model: channels, types, and functions.

In the sut connection the predefined functions toString and fromString
are used to convert between the abstract data types on the model channels
Job and Finish and a standard String representation on the socket. The user

100 J. Tretmans

Fig. 4. The Job-Dispatcher model: processes, model, and sut connection.

can also define her own converting functions or use the standard to/ fromXML
functions.

Figure 5 gives the first 16 steps of a TorXakis test run with the Job-
Dispatcher on an sut not shown here. The first parameter of both JobData
and JobOut gives the JobId. It is clear that the jobs are not processed in order
of arrival, and that sometimes there is no job being processed (e.g., after step 2
and after step 16), and sometimes there are 4 (e.g., after step 10).

On the Existence of Practical Testers 101

Fig. 5. TorXakis test run of Job-Dispatcher.

4 Concluding Remarks

From Canonical to Practical Testers. We have shown the developments from
testing equivalences, via canonical testers, conf , ioconf , ioco, sioco, and
TorXakis, to practical testers, i.e., how formal theory from the eighties con-
stitutes the foundation for practical approaches to model-based testing that are
now being introduced in the daily practice of testing. In addition, models for
MBT are expressed using the principles of process algebra also investigated dur-
ing that era. Thus, the road from theory to practical applications may take a
while.

It should be noted that, apart from the developments described in this paper,
MBT tool development also benefited a lot from other developments, in partic-
ular from the availability of powerful tools supporting symbolic methods, such
as SMT solvers [23].

TorXakis. The main features of the MBT tool TorXakis were illustrated using
two simple examples. TorXakis implements ioco-test generation for symbolic
transition systems, and it supports state-based control flow together with com-
plex data structures, on-the-fly testing, partial and under-specification, non-
determinism, abstraction, random test selection, concurrency, and model com-
positionality. TorXakis is an experimental MBT tool, used in applied research,
education, case studies, and experiments in the (embedded systems) industry.
TorXakis currently misses good usability, scalability does not always match
the requirements of complex systems-of-systems, and test selection is still only
random, but more sophisticated test selection strategies are being investigated
[8]. TorXakis supports state & data but no probabilities, real-time, or hybrid
systems, yet.

102 J. Tretmans

Future Theory. Current MBT algorithms and tools can potentially generate
many more tests from a model than can ever be executed. Consequently, test
selection is one of the major research issues in model-based testing. Test selection
concerns the problem of finding criteria for selecting from the astronomical num-
ber of potential test cases those tests that have the largest chance of detecting
most, and the most important bugs, with the least effort.

Random approaches, which are often used for small systems, do not suffice
for large and complex systems: the probability of completely randomly selecting
an important test case within the space of all possible behaviours converges to
zero. At the other end from random there is the explicit specification of test
purposes, i.e., a tester specifies explicitly what (s)he wishes to test, but that
requires a lot of manual effort, and, moreover, how should the tester know what
to test. Different approaches have been identified for determining what the “most
important behaviours” are, such as testing based on system requirements, code
coverage, model coverage, risk analysis, error-impact analysis, or expected user
behaviour (operational profiles).

A framework for formalizing test selection can be given using measure the-
oretic approaches and introducing abstract test-cost and error-weight functions
[10,13,19]. However, it turns out to be a major challenge to give concrete
instances of such cost and weight functions that satisfy the abstract require-
ments, reflect human intuition of what important errors are, and are practically
computable.

Related to apriori test selection, is aposteriori coverage, quality, and confi-
dence in the tested system. Since exhaustive testing is practically impossible,
the question pops up what has been achieved after testing: can the coverage of
testing, the quality of the tested sut, or the confidence in correct functioning of
the sut, somehow be formalized and quantified? It is not to be expected that
these fundamental research questions will soon be completely solved.

Future Practice. New software testing methodologies are needed if testing shall
keep up with software development and meet the challenges imposed on it, oth-
erwise we may not be able to test future generations of systems. Model-based
testing looks like a promising candidate, but if it is not MBT, what else?

MBT is an interesting technique once a model of the sut is available. Avail-
ability of behavioural models, however, is one of the issues that currently pro-
hibits the widespread application of MBT. In the first place there is the question
of making and investing in models: there is reluctance against investing in making
models, being considered as yet another software artifact. Secondly, mastering
the art of behavioural modeling requires education and experience that is not
always available. Thirdly, the information necessary to construct a model, in
particular for legacy, third-party, or out-sourced systems or components, is not
always (easily) available.

These issues lead to the question whether models can be generated automati-
cally, e.g., for use in regression testing or testing systems after refactoring. Model
generation from an sut, a kind of black-box reverse engineering, (re)constructs a
model by observing the behaviour of the sut, either passively from system logs,

On the Existence of Practical Testers 103

or actively by performing special tests. This activity is called model learning, also
known as test-based modeling, automata learning, or grammatical inference, and
it is currently a popular research topic [63].

Acknowledgements. I wish to thank Piërre van de Laar for many discussions and for
co-developing TorXakis. Piërre van de Laar, Petra van den Bos, and Ramon Janssen
are thanked for proofreading this paper.

This contribution was written in honour of Ed Brinksma for the Festschrift on the
occasion of his 60th birthday. It gives a survey of the developments in formal approaches
to testing, showing the important role of Ed’s work and ideas in shaping this area of
scientific as well as applied research: the definition and application of formal methods,
process-algebraic modelling, the formalization of testing concepts, and the canonical
tester theory as its theoretical foundation. Also my own work on model-based testing
is for an important part inspired and influenced by Ed’s work. I wish to thank Ed
Brinksma for his inspiration, guidance, and support during many years, both at the
University of Twente and at ESI. Ed, thank you, and congratulations with your 60th
birthday.

References

1. Abramsky, S.: Observational equivalence as a testing equivalence. Theoret. Com-
put. Sci. 53(3), 225–241 (1987)

2. Axini: Testautomatisering. http://www.axini.com
3. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanović, D., King, T.,

Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

4. Belinfante, A.: JTorX: a tool for on-line model-driven test derivation and execution.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 21

5. Belinfante, A., Feenstra, J., de Vries, R., Tretmans, J., Goga, N., Feijs, L., Mauw,
S., Heerink, L.: Formal test automation: a simple experiment. In: Csopaki, G.,
Dibuz, S., Tarnay, K. (eds.) International Workshop on Testing of Communicating
Systems, vol. 12, pp. 179–196. Kluwer Academic Publishers, Dordrecht (1999)

6. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24617-6 7

7. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. ISDN Syst. 14, 25–59 (1987)

8. van den Bos, P., Janssen, R., Moerman, J.: n-complete test suites for ioco. In:
Cavalli, A., Yenigün, H., Yevtushenko, N. (eds.) IFIP International Conference on
Testing Software and Systems - ICTSS 2017. LNCS, Springer, Heidelberg (2017).
To be published

9. Brandán Briones, L., Brinksma, E.: A test generation framework for quiescent real-
time systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 64–78. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 5

10. Briones, L.B., Brinksma, E., Stoelinga, M.: A semantic framework for test coverage.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 399–414. Springer,
Heidelberg (2006). doi:10.1007/11901914 30

http://www.axini.com
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-12002-2_21
http://dx.doi.org/10.1007/978-3-540-24617-6_7
http://dx.doi.org/10.1007/978-3-540-31848-4_5
http://dx.doi.org/10.1007/11901914_30

104 J. Tretmans

11. Brinksma, E.: On the existence of canonical testers. Memorandum INF-87-5, Uni-
versity of Twente, Enschede (1987)

12. Brinksma, E.: A theory for the derivation of tests. In: Aggarwal, S., Sabnani, K.
(eds.) Protocol Specification, Testing, and Verification VIII, pp. 63–74. North-
Holland (1988)

13. Brinksma, E.: On the coverage of partial validations. In: Nivat, M., Rattray, C.,
Rus, T., Scollo, G. (eds.) AMAST1993. Workshops in Computing, pp. 245–252.
Springer, London (1994). doi:10.1007/978-1-4471-3227-1 25

14. Brinksma, E.: Formal methods for conformance testing: theory can be practical. In:
Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 44–46. Springer,
Heidelberg (1999). doi:10.1007/3-540-48683-6 6

15. Brinksma, E., Alderden, R., Langerak, R., van de Lagemaat, J., Tretmans, J.: A
formal approach to conformance testing. In: de Meer, J., Mackert, L., Effelsberg,
W. (eds.) Second International Workshop on Protocol Test Systems, pp. 349–363.
North-Holland (1990)

16. Brinksma, E., Karjoth, G.: A specification of the OSI transport service in LOTOS.
In: Protocol Specification, Testing, and Verification IV. North-Holland (1984)

17. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implemen-
tations and their tests. In: van Bochmann, G., Sarikaya, B. (eds.) Protocol Speci-
fication, Testing, and Verification VI, pp. 349–360. North-Holland (1987)

18. Brinksma, E., Tretmans, J.: Testing transition systems: an annotated bibliography.
In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.D. (eds.) MOVEP 2000. LNCS, vol.
2067, pp. 187–195. Springer, Heidelberg (2001). doi:10.1007/3-540-45510-8 9

19. Brinksma, E., Tretmans, J., Verhaard, L.: A framework for test selection. In: Jon-
sson, B., Parrow, J., Pehrson, B. (eds.) Protocol Specification, Testing, and Veri-
fication XI, pp. 233–248. North-Holland (1991)

20. Chow, T.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

21. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: International Conference on Functional Programming 2000.
ACM Press (2000)

22. Cok, D.: The SMT-LIBv2 Language and Tools: A Tutorial. GrammaTech Inc.,
Ithaca (2011)

23. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

24. De Nicola, R.: Extensional equivalences for transition systems. Acta Informatica
24, 211–237 (1987)

25. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret. Comput.
Sci. 34, 83–133 (1984)

26. Dijkstra, E.W.: Notes On Structured Programming – EWD249. Technische
Hogeschool Eindhoven, Eindhoven, The Netherlands, T.H. Report, 70-WSK-03
(1969)

27. Eertink, H.: Executing LOTOS specifications: the SMILE tool. In: Bolognesi, T.,
van de Lagemaat, J., Vissers, C. (eds.) LOTOSphere: Software Development with
LOTOS, pp. 221–234. Kluwer Academic Publishers, Dordrecht (1995)

28. van Eijk, P.: Software tools for the specification language LOTOS. Ph.D. thesis,
University of Twente, Enschede, The Netherlands (1988)

29. Engelfriet, J.: Determinacy → (observation equivalence = trace equivalence). The-
oret. Comput. Sci. 36(1), 21–25 (1985)

http://dx.doi.org/10.1007/978-1-4471-3227-1_25
http://dx.doi.org/10.1007/3-540-48683-6_6
http://dx.doi.org/10.1007/3-540-45510-8_9

On the Existence of Practical Testers 105

30. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 1

31. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV
-2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006). doi:10.1007/
11940197 3

32. Gaudel, M.C.: Testing can be formal, too. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 82–96. Springer, Hei-
delberg (1995). doi:10.1007/3-540-59293-8 188

33. van Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidel-
berg (1990). doi:10.1007/BFb0039066

34. Glabbeek, R.J.: The linear time – branching time spectrum II (the semantics of
sequential systems with silent moves). In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 66–81. Springer, Heidelberg (1993). doi:10.1007/3-540-57208-2 6

35. Groote, J., Mousavi, M.: Modeling and Analysis of Communicating Systems. MIT
Press, Cambridge (2014)

36. Hartman, A., Nagin, K.: The AGEDIS tools for model based testing. In: Interna-
tional Symposium on Software Testing and Analysis – ISSTA 2004, pp, 129–132.
ACM Press, New York (2004)

37. Haskell: an advanced, purely functional programming language. https://www.
haskell.org

38. Heerink, A.: A bounded queue model relating synchronous and asynchronous com-
munication. Master’s thesis, University of Twente, Enschede, The Netherlands
(1993)

39. Heerink, L.: Ins and outs in refusal testing. Ph.D. thesis, University of Twente,
Enschede, The Netherlands (1998)

40. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78917-8 3

41. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

42. ISO: Information Processing Systems, Open Systems Interconnection, LOTOS - A
Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour. International Standard IS-8807, ISO, Geneve (1989)

43. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: a tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Softw. Tools Technol. Transf. 7(4), 297–315 (2005)

44. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24732-6 8

45. Langerak, R.: A testing theory for LOTOS using deadlock detection. In: Brinksma,
E., Scollo, G., Vissers, C.A. (eds.) Protocol Specification, Testing, and Verification
IX, pp. 87–98. North-Holland (1990)

46. Lee, D., Yannakakis, M.: Principles and methods for testing finite state machines
- a survey. Proc. IEEE 84(8), 1090–1123 (1996). August

47. Lynch, N., Tuttle, M.: An introduction to input, output automata. CWI Q. 2(3),
219–246 (1989). Technical report MIT/LCS/TM-373 (TM-351 revised), Massa-
chusetts Institute of Technology, Cambridge, USA (1988)

http://dx.doi.org/10.1007/978-3-540-31848-4_1
http://dx.doi.org/10.1007/11940197_3
http://dx.doi.org/10.1007/11940197_3
http://dx.doi.org/10.1007/3-540-59293-8_188
http://dx.doi.org/10.1007/BFb0039066
http://dx.doi.org/10.1007/3-540-57208-2_6
https://www.haskell.org
https://www.haskell.org
http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://dx.doi.org/10.1007/978-3-540-24732-6_8

106 J. Tretmans

48. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

49. Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-
based testing of electronic passports. In: Alpuente, M., Cook, B., Joubert, C. (eds.)
FMICS 2009. LNCS, vol. 5825, pp. 207–209. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04570-7 19

50. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

51. Petrenko, A.: Fault model-driven test derivation from finite state models: anno-
tated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.D. (eds.) MOVEP
2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001). doi:10.1007/
3-540-45510-8 10

52. Phalippou, M.: Relations d’Implantation et Hypothèses de Test sur des Automates
à Entrées et Sorties. Ph.D. thesis, L’Université de Bordeaux I, France (1994)

53. Phillips, I.: Refusal testing. Theoret. Comput. Sci. 50(2), 241–284 (1987)
54. Selenium - Browser Automation. http://www.seleniumhq.org
55. Sikuli Script. http://www.sikuli.org
56. TorXakis. https://github.com/torxakis
57. Tretmans, J.: HIPPO: a LOTOS simulator. In: van Eijk, P., Vissers, C., Diaz,

M. (eds.) The Formal Description Technique LOTOS, pp. 391–396. North-Holland
(1989)

58. Tretmans, J.: Test generation with inputs, outputs, and quiescence. In: Margaria,
T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 127–146. Springer, Hei-
delberg (1996). doi:10.1007/3-540-61042-1 42

59. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Softw. Concepts Tools 17(3), 103–120 (1996)

60. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78917-8 1

61. Tretmans, J., Verhaard, L.: A queue model relating synchronous and asynchronous
communication. In: Linn, R., Uyar, M. (eds.) Protocol Specification, Testing, and
Verification XII, pp. 131–145. No. C-8 in IFIP Transactions, North-Holland (1992)

62. Vaandrager, F.: On the relationship between process algebra and input/output
automata. In: Sixth Annual IEEE Symposium on Logic in Computer Science, pp.
387–398. IEEE Computer Society Press (1991)

63. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
64. Volpato, M., Tretmans, J.: Towards quality of model-based testing in the ioco

framework. In: International Workshop on Joining AcadeMiA and Industry Con-
tributions to Testing Automation - JAMAICA 2013, pp. 41–46. ACM, New York
(2013)

http://dx.doi.org/10.1007/978-3-642-04570-7_19
http://dx.doi.org/10.1007/978-3-642-04570-7_19
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-45510-8_10
http://dx.doi.org/10.1007/3-540-45510-8_10
http://www.seleniumhq.org
http://www.sikuli.org
https://github.com/torxakis
http://dx.doi.org/10.1007/3-540-61042-1_42
http://dx.doi.org/10.1007/978-3-540-78917-8_1

Compositional Testing of Real-Time Systems

Kim G. Larsen1(B), Axel Legay2, Marius Mikučionis1, Brian Nielsen1,
and Ulrik Nyman1

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
{kgl,marius}@cs.aau.dk
2 INRIA, Rennes, France

Abstract. In this paper we revisit the notion of compositional testing
in the setting of real-time systems. In particular, we introduce crucial
notions of real-time conformance testing and compositional verification
of real-time systems. We illustrate these notions on a Small University
example, and show how the tools Uppaal Tron, Uppaal Ecdar and
Uppaal SMC provide strong support for an efficient compositional test-
ing methodology.

1 Introduction

The goal of testing is to gain confidence in a physical computer based system by
means of executing it. More than one third of typical project resources is spent
on testing embedded and real-time systems, but still it remains ad-hoc, based
on heuristics, and error-prone. Therefore systematic, theoretically well-founded
and effective automated real-time testing techniques are of great practical value
had have been received great attention over the years.

Model-Based Testing. In this paper we make a small investigation of model-
based testing for real-time systems. In general testing conceptually consists of
three activities: test case generation, test case execution and verdict assignment.
Using model based testing, a behavioral model can be interpreted as a specifi-
cation S that defines the required and allowed observable (real-time) behavior
of the implementation I. It can therefore be used for generation of sound and
(theoretically) complete test suites. In this setting, the notion of input/output
conformance testing [26] has been particular successful as a notion of correct
behaviour of an implementation with respect to a given specification.

On-Line Testing. Test cases can be generated off-line from the specification
model S, i.e. the complete set of test scenarios and verdicts are computed apri-
ori and before execution. Another approach is online (on-the-fly) testing that
combines test generation and execution: only a single test primitive is gener-
ated from the model S at a time which is then immediately executed on the
implementation I under test. Then the produced output by I as well as its time
of occurrence are checked against S, a new test primitive is produced and so

Three methods for managing a small university.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 107–124, 2017.
DOI: 10.1007/978-3-319-68270-9 6

108 K.G. Larsen et al.

forth until it is decided to end the test, or an error is detected. An observed test
run is a trace consisting of an alternating sequence of (input or output) actions
and time delays. There are several advantages of online testing: (1) testing may
potentially continue for a long time (hours or even days), and therefore long,
intricate, and stressful test cases may be executed; (2) the state-space-explosion
problem experienced by many offline test generation tools is reduced because
only a limited part of the state-space needs to be stored at any point in time;
(3) online test generators often allow more expressive specification languages,
especially wrt. allowed non-determinism in real-time models. In particular for
real-time system on-line testing of timed input/output conformance (rtioco) with
respect to (networks of) timed automata specifications is supported by the tool
Uppaal Tron.

Compositional Testing. On-line conformance testing is applicable to both indi-
vidual components (unit-testing) as well as to composite systems (integration
testing). Now for composite systems, where it is possible to test the components
in isolation, the notion of compositional testing has been considered and recently
reinvestigated.

In [27] it is stated that: “compositional testing concerns the testing of sys-
tems that consist of communicating components which can also be tested in
isolation. Examples are component based testing and interoperability testing.
We show that, with certain restrictions, the ioco-test theory for conformance
testing is suitable for compositional testing, in the sense that the integration
of fully conformant components is guaranteed to be correct. As a consequence,
there is no need to re-test the integrated system for conformance.”

In [9] the authors show that “exploiting the compositional structure of system
specifications considerably reduce the effort in model-based testing. Moreover,
inferring properties about the system from testing its individual components
allows the designer to reduce the amount of integration testing.”

Most recently Ken McMillan1 investigated a compositional testing framework
for hardware systems: “In this methodology each component of a system is given
a formal specification and it is proved formally that these specifications guaran-
tee system-level correctness. The components are then rigorously tested against
their formal specifications. This approach has the advantages of unit testing in
covering component behaviors, while at the same time exposing all system-level
errors to testing. Moreover, it can expose latent bugs in components that are not
stimulated in the given system but may occur when the component is re-used in
a different environment.”

Within the family of Uppaal tools, the branch Uppaal Ecdar supports
compositional development and stepwise refinement of real-time systems using
timed input/output automata as the underlying specification theory. Now in
combination with Uppaal Tron for online conformance testing and Uppaal

SMC for statistical model checking, we shall in the following present a tool-
supported methodology for compositional testing and verification of real-time
systems.
1 Invited tutorial at ETAPS 2017.

Compositional Testing of Real-Time Systems 109

Fig. 1. Compositional testing

2 Methodology

As stated, the goal of compositional model-based testing is to enable the devel-
oper to prove from testing of the individual components against their component
models that the composed system satisfies the system requirements model, see
Fig. 1.

Formally, given a number of implementation components I1 . . . Ii, . . . In, the
associated component sub-specifications S1 . . . Si, . . . Sn, and an overall system
specification S, the compositional testing methodology can be formulated as
follows:

I1 � S1 . . . Ii � Si . . . In � Sn ∧ (S1 ‖ . . . Si . . . ‖ Sn) � S

=⇒ (I1 ‖ . . . Ii . . . ‖ In) � S

Here, � denotes that a refinement holds between two system models, and
‖ denotes parallel composition of two system models. These ingredients will be
formalised in Sect. 4.

Normally, implementations Ii are black-box physical artefacts, and conse-
quently, the refinement Ii � Si must be established using testing techniques
involving execution, simulation, and observation of Ii. In contrast, the models
of the components Si and system S are known formal objects, and determining
refinement among such artefacts are amenable to a variety of formal verifica-
tion or heuristic simulation based techniques. This will be further described and
exemplified in Sects. 6 and 7.

Hence, system test may be conducted by, in principle, two easier steps: com-
ponent testing and system specification verification.

Compositional testing methods thereby potentially have several advantages.
First, compositionality is a key technique for scaling up testing to large systems.

110 K.G. Larsen et al.

Automated test case generation usually employs different kinds of static analy-
sis (reachability analysis, constraint solving, etc.) of the specification model.
For models with large state-spaces, this computation may become infeasible or
cause impractically slow or incomplete test case generation. Second, with smaller
components, it is easier to ensure that a test suite will satisfy a given coverage
criterion of the model and/or source code. Third, it becomes possible to make
re-use of testing effort as components are modified or added; testing can focus on
the changed components and possible its integration, and thereby avoid retest-
ing the whole system. Worse, all manually written system-wide test cases must
be reviewed and possibly updated to reflect the change. Fourth, diagnosis and
debugging caused by a failed test run becomes easier because the search space for
the problem becomes smaller, i.e., smaller model, smaller code-base, or shorter
test cases. Finally, the tester’s ability to control the component is typically better
when the component can be accessed directly rather than through a big context
of other system components. This should not be underestimated for embedded
real-time cyber-physical systems, where sensor and timing uncertainties often
arise.

We see three main limiting factors for the deployment of compositional test-
ing. One is that the system should be constructed from well-defined identifiable
components. However, many systems are not developed with a rigorous compo-
nent architecture in mind, or have a big non-component based legacy. In net-
worked protocol applications, components are often easier to identify and isolate.

Another potential limiting factor is the lack of available models for the system
and component models: it is well-known from model-based development and
verification that these models are not systematically created a priori, and may
be hard to come by afterwards.

Finally, there is a lack of available effective tools with solid theoretical foun-
dations. The tools need to enable specification, refinement check, composition,
component testing, and should further be integrated around the same sufficiently
expressive specification language.

2.1 Related Work

Whilst the overall idea of compositional testing is often used in an ad-hoc way,
formal compositional testing is still far from state-of-the-art.

A compositional testing theory were first proposed by [27]. Here it is pre-
sented how labelled transition systems and the IoCo relation used with certain
restrictions on the involved specifications, and hiding and composition operators.

This work was later expanded on by Nickovic et al. in [9]. Inspired by game
and interface theory, they defined two alternative composition and hiding oper-
ations that address the limitations of the basic IoCo theory. We share the use
of concepts from games and interface theory, but we focus on adding real-time.
A co-algebraic characterization of compositional testing with IoCo is presented
in [1].

The problems of compositionality of real-time io-conformance was discussed
by Tripakis in [22], and by Briones in [5]. Supporting composition and testing

Compositional Testing of Real-Time Systems 111

re-use, Larsen et al. developed the relativized real-time conformance relation in
[20]. In context of finite state machines compositional testing has been investi-
gated in [3].

In the present work, we not only discuss theoretical properties of real-time
conformance relations, but also demonstrate an end-to-end tool testing and ver-
ification tool suite.

3 Timed I/O Automata

In the branches Uppaal Tron, Uppaal Ecdar and Uppaal SMC, we have
introduced Timed I/O Automata as the foundation for a compositional spec-
ification formalism, with semantics given in terms of (stochastic) Time I/O
Transition Systems. In particular, we have introduced notions and constructs
for conformance, refinement, consistency, logical and structural composition, all
indispencial ingredients of a testing and a compositional design methodology.

In the following we give an informal description of the specification formalism
of Timed I/O Automata through a small (but important) example: A Small
University. For complete and formal definitions we refer to [18].

Small University. Universities operate under increasing pressure and competi-
tion. One of the popular factors used in determining the level of national funding
is that of societal impact, which is approximated by the number of patent appli-
cations filed. Clearly one would expect that the number (and size) of grants given
to a university has a (positive) influence on the amount of patents filed for.

Figure 2 gives the insight as to the organisation of a very Small Univer-
sity comprising three components Administration, Machine and Researcher.

Administration

ResearcherMachine

pubcoin

cof

tea

patentgrant

Fig. 2. Overview of a Small University

112 K.G. Larsen et al.

The Administration is responsible for interaction with society in terms of aquir-
ing grants (grant) and filing patents (patent). However, the other components
are necessary for patents to be obtained. The Researcher will produce the cru-
cial publications (pub) within given time intervals, provided timely stimuli in
terms of coffee (cof) or tea (tea). Here coffee is clearly prefered over tea. The
beverage is provided by a Machine, which given a coin (coin) will provide either
coffee or tea within some time interval, or even the possibility of free tea after
some time.

In more detail, the Machine specification is a timed (input/output) automa-
ton [2] (TIOA), with a single clock y and two locations I and B. A distinguishing
property of a TIOA is that it is input-enabled reflected by coin? transitions in
both locations. Having accepted a coin?, the B location has an invariant y<=6
which ensures that some beverage will be produced within 6 s. The guard y>=4
on the cof! transition insists that coffee will only be available after at least 4 s.
Similarly the absence of a guard on the tea! transitions reflects that in a valid
implementation of Machine, tea could be ready at any point.

Specification

patentgrant

Fig. 3. Specification for Small
University.

In Fig. 2, the three components are specifi-
cations each allowing for a multitude of incom-
parable, actual implementations differing with
respect to exact timing behavior (e.g. at what
time are publications actually produced by the
Researcher given a coffee) and exact output pro-
duced (e.g. does the Machine offer tea or coffee
given a coin).

As a main property, we may want to show
that the composition of arbitrary implementa-
tions conforming to respective component specifi-
cation is guaranteed to satisfy some overall spec-
ification. Here Fig. 3 provides an overall specifi-
cation Spec – essentially saying that whenever
grants are given to the University sufficiently
often then patents are also guaranteed within a certain upper time-bound.
Checking this property amounts to establishing a refinement between the com-
position of the three component specifications and the overall specification.

4 Timed Transition Systems, Composition and
Conformance

Timed Transition Systems Semantics. As described in Sect. 3, we are using
TIOA as a mean of syntactically expressing specifications. Semantically a TIOA
describes a timed labelled transition systems, with states being pairs (�, ν), where
� is a location of the TIOA and ν is a valuation for the clocks of the TIOA. E.g. in
our Small University example (B,y = 3.2) will be a state of the TIOA Machine.
As usual for timed automata transitions are either delay transitions or action
transitions. Thus, the following transition sequence is possible in Machine:

Compositional Testing of Real-Time Systems 113

(B,y = 3.2) 2.3→ (B,y = 5.5) cof!→ (I,y = 5.5).

Within Uppaal Ecdar and Uppaal SMC, the assumption is that TIOA are
deterministic and input-enabled. Also, specifications are assumed to have satisfy
the property of independent progress, i.e. in any reachable state s = (�, ν) either
s

d→ for any non-negative delay d, or s
d→ o→ for some delay d and output o.

Independent progress is one of the central properties in our specification theory:
it reflects that an implementation cannot ever get stuck in a state where it is up to
the environment to guarantee progress by providing an input. So in every state,
there is either an output transition (which is controlled by the implementation)
or an ability to delay until an output is possible. Otherwise a state can delay
indefinitely. An implementation cannot wait for an input from the environment
without letting time pass. One can easily check that all three components of the
Small University satisfy these properties.

Composition. The parallel composition S1 ‖S2 of two TIOA specifications S1

and S2 is essentially a classical product construction, where the two components
synchronize on corresponding inputs/outputs (in a broadcast manner) as well as
on delay. In our Small University example the composition Machine‖Researcher
will have the following transition sequence:

[
(B,y = 3.2), (I,x = 0)

] 2.3→ [
(B,y = 5.5), (I,x = 2.3)

] cof!→ [
(I,y = 5.5), (C,x = 0)

]
.

In Fig. 4 Uppaal SMC provides a sample simulation of the Small University
for 100 s. Here the states of the three components Machine, Researcher and
Administration are given as time-dependent functions. E.g. at time 50, the
Machine is in the B (brewing) state (having the value 1), the Researcher is the
I (idle) state (having value 4) and the Administration is in the C (having just
offered a coin) state (having value 10).

Fig. 4. Simulation of Small University for 100 s. Machine: (I= 1, B= 2). Researcher:
(I= 4, C= 5, T= 6, ERR= 7). Administration: (I= 8, G= 9, C= 10, P= 11)

114 K.G. Larsen et al.

Conformance. Conformance or refinement between TIOA specifications is the
crucial part of our specification theory. Refinement between specifications S1

and S2 should reflect an inclusion between the corresponding two sets of imple-
mentations. In our specification theory, implementations are essentially specifica-
tions that cannot be refined any further. As an example, consider the alternative
specification Machine’ in Fig. 5.

Fig. 5. Machine’.

It should be obvious, that Machine’ must be a
refinement of the original specification Machine
in Fig. 2 in that it allows less behaviour of a
potential implementation: free tea is now only
allowed after 4 time-units; after insertion of a
coin the only option for beverage is coffee and
in a much more narrow time-interval (between
4 and 5 s compared with between 4 and 6 s). In
general, the refinement between two TIOA’s is
similar to an alternating game, but for deter-
ministic TIOA refinement it simplifies to that
of timed language inclusion, i.e.:

S1 � S2
Δ= TTr(S1) ⊆ TTr(S2)

where TTr(S) = {ω ∈ (R ∪ I ∪ O)∗ |S ω→}, i.e. TTr(S) are all timed words for
which S has a transition sequence. Given this definition, it is easy to see that
indeed Machine’ � Machine.

Clearly, timed refinement (conformance) � is transitive. Most importantly,
� is a precongruence with respect to parallel composition of specifications. Thus
if Si � Ti (i = 1, 2), then also S1‖S2 � T1‖T2.

5 Component Test

In 2004 the branch Uppaal Tron was introduced offering the possibility of
performing on-line conformance testing of real real-time systems with respect
to timed input-output automata [24,25]. Uppaal Tron implements a sound
and (theoretically) complete randomized testing algorithm, and uses a formally
defined notion of correctness to assign verdicts: i.e. – as presented in the pre-
vious Sect. 4 – (relativized) timed input/output conformance providing a timed
generalization of Jan Tretmans ioco [26]. Using online testing, events are simul-
taneously generated, executed on the system under test and the correctness of
the responses are checked against the timed automata model. Uppaal Tron

has been successfully applied to a number of industrial case studies including an
advanced electronic thermostat regulator sold world-wide in high volume by the
Danish company Danfoss [23].

Now continuing our Small University example, Fig. 6 shows a coffee machine
prototype, where a controller is connected to a sensor and an actuator. The
sensor senses the coin presence and provides inputs to the controller, whereas
the controller produces outputs “coffee” or “tea” displayed on the LED screen.

Compositional Testing of Real-Time Systems 115

Fig. 6. A coffee machine prototype from https://youtu.be/rnwF0aB7mJA. (Color
figure online)

Fig. 7. Coffee machine C code.

The display in picture shows deposit as one golden light at the bottom and 5 out
of 8 lights of progress on the right for producing coffee. The display can show
a similar green progress on the left for tea outputs. For testing purposes, the
inputs and outputs are multiplexed with a serial line over USB port.

Figure 7 shows an excerpt from the implementation code. The main loop
consists of a simple code of waiting for a coin and then producing coffee or tea.

https://youtu.be/rnwF0aB7mJA

116 K.G. Larsen et al.

(a) Requirements. (b) Assumptions. (c) Signal.

Fig. 8. Online test specification.

The wait for coin has a 7 s timeout to purge the water and preserve the energy.
The makeCoffee() procedure displays the 8-step progress of 500 ms each and
finally produces coffee signal when done. The waitForCoin(d) function moni-
tors the coin sensor which returns HIGH when the coin is inserted and LOW when
dropped. The function returns true if the coin is inserted and false if no coin
was registered and the specified time-out d has elapsed.

We have connected our coffee machine to Uppaal Tron via USB inter-
face and successfully tested its conformance against the Machine model shown
in Fig. 8a using the test environment shown in Fig. 8b. The coffee machine in
Fig. 8a differs from the Machine in Fig. 2 by an extra location P which allows
the machine to commit producing tea without being interrupted by coin inserts
in case tea and coin are produced at the very same time. In general, the input
and output interleaving may happen in between the tester and the implemen-
tation and thus they might disagree on the order of events, therefore such pos-
sibility needs to be reflected in the specification. Adding the signal traveling
processes (e.g. template in Fig. 8c) is a systematic way of modeling the communi-
cation delay and interleaving. The requirement specification also has annotations
e[X]=1 which track the test coverage of the edge X.

Once we are confident with our implementation, we inspect the fault detec-
tion capability by mutating the coffee production step delay from 500 ms to
800 ms, which will produce coffee only after 8 · 0.8 s = 6.4 s hence stressing the
invariant u<=6. Figure 9 shows a log from the resulting online test. The log
consists of initialization details, a configuration, a sequence of test events, diag-
nostics and final verdict.

The test event lines are prefixed by “TEST” and tell that Uppaal Tron

received tea at 7488303µs, which is at (7;8) in model time units, i.e. some time
between 7 and 8 time units. Uppaal Tron then chose to offer a coin at (9;10),
and received cof somewhere at (16;17) time units. Notice that the time delay
between the second coin and cof is strictly between 6 and 8, which makes it
strictly greater than 6, and thus may potentially violate the invariant u<=6 in B
(provided that the implementation was indeed in this location). After observing
cof Uppaal Tron announced diagnostics and the “test failed” verdict. The diag-
nostics includes the last symbolic state estimate implying that the specification

Compositional Testing of Real-Time Systems 117

Fig. 9. Failed online test of a mutated coffee machine.

was expecting tea at (9;25) or cof at (13;16) which is earlier than observation at
(16;17), alternatively it could have also accepted another tea if machine moved
to P and ignored the coins, but that was not what has been observed. The state
estimate also includes the values of coverage variables e[] which encode the
information about the traversed edges. The two symbolic states agree that the
tea!-edge has been covered (e[3]==1 and e[4]==1), but disagree if coin?
has been handled (state of e[0]). Uppaal Tron matched the observation of
cof with the possible event cof! but with differing timing and thus concluded
that this output was issued too late.

We have run 100 online tests and 95 terminated with the failed verdict exactly
like in Fig. 9, while the remaining 5 tests failed with “Observed unacceptable

118 K.G. Larsen et al.

duration, s

nu
m

be
r

of
 te

st
s

20 40 60 80 100

0
10

20
30

(a) Distribution of test duration.

number of coins

nu
m

be
r

of
 te

st
s

0 200 400 600

0
20

40
60

80

(b) Distribution of used coins.

Fig. 10. Online tests statistics.

output” cof because Uppaal Tron was offering more coins at a point where
y<=6 was already violated (location P was the only candidate) and hence cof
was not among possible outputs, but tea was.

Figure 10 shows the distribution of time duration and the number of coins
used in online tests. On average tests took 26.5 s and 92.7 coins. Most (over 80)
tests were very short of up to 30 s and took up to 10 coins, but Uppaal Tron

also tried some 12 extreme runs flooding with more than 600 coins which just
prolonged testing (there were no tests in between). We conclude that Uppaal

Tron is fast and efficient at finding timing errors.

6 Compositional Verification

In 2010 the branch Uppaal Ecdar was introduced supporting a scalable
methodology for compositional development and stepwise refinement of real-
time systems [17,18]. The underlying specification theory is that of timed I/O
automata being essentially timed games (with inputs being controllable, and
outputs being uncontrollable) equipped with suitable methods for refinement
checking (in terms of an alternating simulation between two timed game spec-
ifications), consistency checking, logical as well as structural composition. The
Uppaal Ecdar branch relies heavily on the Uppaal Tiga engine to solve vari-
ous games that arise in the computing of the various composition operators and
refinements. For a full account of Uppaal Ecdar we refer the reader to the
tutorial [16].

In the setting of our running example, we apply Uppaal Ecdar to validate
whether our component specifications working in parallel will satisfy the overall
specification of the system. We check the following refinement using Uppaal

Ecdar:

refinement: (Administration || Machine || Researcher) <= Spec

This refinement check examines if the parallel composition of the three com-
ponents Administration, Machine and Researcher conforms to the university
specification Spec. But much to our surprise when first constructing the running
example this turned out not to be the case.

Compositional Testing of Real-Time Systems 119

Fig. 11. Screenshot showing a longer counterexample generated by Uppaal Ecdar.

Figure 11 shows the counter example strategy, which proves that there is a
way in which the parallel components can violate the specification. The surpris-
ing fact is that it is a rather simple counterexample.

The shortest trace to disprove the refinement consists of three steps. The
Machine can produce tea by just waiting 2 time units, which will enable the
Researcher to produce a publication which is communicated on the pub! chan-
nel. This can in turn allow the Administration to produce a patent!. This is
in violation of the specification, Spec, as it does not allow the productions of
patents from the initial location.

120 K.G. Larsen et al.

Fig. 12. Modified version SpecFixed of Spec.

Fortunately the solution to fixing the refinement is rather straight forward.
We just need to ad a single patent! self-loop to the initial location of Spec as
seen in Fig. 12.

7 Conformance Checking via Simulation

One of most recent branches of the Uppaal tool suite – Uppaal SMC intro-
duced in 2011 – allows for performance evaluation the much richer formalisms
of stochastic hybrid automata and games [14,15] and has by now been widely
applied to analysis of a variety of case studies ranging from biological examples
[13], schedulability for mixed-critical systems [4,11], evaluation of controllers for
energy-aware buildings [10], social-technical attacks in security [19] as well as
performance evaluation of a variety of wireless communication protocols [28].
Also the statistical model checking engine of Uppaal SMC is supported by a
distributed implementation [8], and allows for the statistical model checking of
a large subset of MITL [6,7]. For a full account of Uppaal SMC we refer the
reader to the recent tutorial [12].

The modeling formalism of Uppaal SMC is based on a stochastic interpreta-
tion and extension of the timed automata formalism used in the classical model
checking version of Uppaal. For individual components the stochastic interpre-
tation replaces the nondeterministic choices between multiple enabled transitions
by probabilistic choices (that may or may not be user-defined). Similarly, the
non-deterministic choices of time-delays are refined by probability distributions,
which at the component level are given either uniform distributions in cases
with time-bounded delays or exponential distributions (with user-defined rates)
in cases of unbounded delays.

In the setting of real-time conformance (refinement) checking between spec-
ifications, Uppaal SMC may be used as inexpective, simulation-based alterna-
tive to the considerably more expensive symbolic and game-based conformance
checking offered by Uppaal Ecdar as we described and applied in the previous
Sect. 6.

To illustrate this, we reconsider our running Small University Example. First
we construct in Fig. 13(a) a TIOA SpecComp which will be used to monitor an
arbitrary behaviour and detect when it violates the original university specifica-
tion Spec. Essentially (as indicated by the name) SpecComp is the complement of

Compositional Testing of Real-Time Systems 121

grant

patent

SpecComp

Grantee
grant

Fig. 13. (a) complement of Spec and (b) stochastic environment component Grantee

Fig. 14. A concrete run demonstrating that the Small University is not a refinement
of Spec. Machine: (I= 1, B= 2, T= 3), Researcher: (I= 5, C= 6, T= 7, ERR= 8);
Administration: (I= 10, G= 11, C= 12, P= 13); SpecComp: (I= 15, G= 16, L= 17,
ERR1= 18, ERR2= 19).

Spec with the two locations ERR1 and ERR2 serving as error states to be reached
upon violation2.

Now we combine the Small University, i.e.

Machine | Researcher | Administration

with SpecComp form Fig. 13(a) as a monitor, and additionally with the compo-
nent Grantee from Fig. 13(b) for stochastically generating grant’s (here accord-
ing to an exponential distribution with rate 1

10). Figure 14 illustrates a random
run of the complete composition obtained by Uppaal SMC. As can be seen,
this run provides a counter-example to the desired conformance between the
Small University and Spec. In fact this failing run was found already after
26 random runs, and Uppaal SMC estimates the probability of reaching an

2 In contrast to general timed automata, complementation is possible due to the
assumption that TIOA’s are deterministic.

122 K.G. Larsen et al.

error-state within 200 s to be within the confidence interval [0.000973288,
0.19637] with 95% confidence. This indicates that the simulation-based method
for conformance checking between specification may be highly efficient.

8 Future Directions and Challenges

There are several theoretical and practical challenges ahead for compositional
testing. On the theory side, the formal foundation and refinement relations are
still mostly concerned with basic functionality. These must be extended to cope
with various quantitative properties, e.g., performance, soft real-time, hybrid dis-
crete/continuous behavior, and security. They must be able to capture the under-
lying assumptions and guarantees. We believe that relativized io-conformance
testing is a good foundation for further development. Component based and
model-based development techniques should match better. Model-based tools
and techniques need to support both architectural and behavioral models explic-
itly that match real component models and software development. In contrast,
these should be enhanced with solid theoretical semantics, clean execution model,
and a formal notion of interfaces.

Industrial take-up is another challenge. Industrial engineers are often not
aware of the available techniques and tools, and their full potential. There is
a big element of training, where engineers need to be educated to think more
in terms of components and composability. They often lack the skills needed to
design and implement systems with “nice” composability properties that match
the underlying theory. In particular, it is a challenge to create the abstractions
needed to break the overall system model into several sub-specification models
(or conversely, to find and model the requirements for a system model composed
from components). With current state-of-art, these specification models must
be crafted manually. On the other hand, the tools should be packaged in such a
way that well-skilled and well-trained industrial engineers will able to apply them
without too often encountering the idiosyncrasies of the underlying formalisms
and analysis tools. The formal analysis tools too often under-performs when not
applied by expert users. In these respects, Uppaal Ecdar needs further devel-
opment. In contrast, approximate simulation based techniques are often more
directly applicable, as exemplified by the refinement check computed by Uppaal

SMC in Sect. 7. In particular, in the first early development cycles of non-highly
critical systems, a fast statistical check may be preferred to the potentially time
consuming full analysis.

As mentioned, it is often difficult for companies to develop software with
a clean component model because of a large legacy. At the same time, how-
ever, many distributed systems are becoming increasingly service-oriented and
increasingly constructed by composing these services. This is especially true in
the Internet-of-things domains. A particular theoretical challenge here will be to
support the dynamic binding that takes place in the brokerage phase.

A compositional method for verification and testing for the future applica-
tions is thus very necessary, and further research and dissemination to industrial
practice is indispensable.

Compositional Testing of Real-Time Systems 123

References

1. Aiguier, M., Boulanger, F., Kanso, B.: A formal abstract framework for modelling
and testing complex software systems. Theoret. Comput. Sci. 455, 66–97 (2012).
International Colloquium on Theoretical Aspects of Computing (2010)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Kanso, B., Chebaro, O.: Compositional testing for FSM-based models. Int. J.
Softw. Eng. Appl. (IJSEA) 5(3) (2014)

4. Boudjadar, A., David, A., Kim, J.H., Larsen, K.G., Mikucionis, M., Nyman, U.,
Skou, A.: Degree of schedulability of mixed-criticality real-time systems with prob-
abilistic sporadic tasks. In: 2014 Theoretical Aspects of Software Engineering Con-
ference, TASE 2014, Changsha, China, 1–3 September 2014, pp. 126–130. IEEE
Computer Society (2014)

5. Briones, L.B.: Assume-guarantee reasoning with ioco testing relation. In: Proceed-
ings of the 22nd IFIP International Conference on Testing Software and Systems
(2010)

6. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-
based statistical model checking of WMTL. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 260–275. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 25

7. Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Li, G., Bøgsted Poulsen,
D., Stainer, A.: Monitor-based statistical model checking for weighted metric tem-
poral logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp.
168–182. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6 15

8. Bulychev, P., David, A., Guldstrand Larsen, K., Legay, A., Mikučionis, M., Bøgsted
Poulsen, D.: Checking and distributing statistical model checking. In: Goodloe,
A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 449–463. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-28891-3 39

9. Daca, P., Henzinger, T.A., Krenn, W., Nickovic, D.: Compositional specifications
for ioco testing. In: Seventh IEEE International Conference on Software Testing,
Verification and Validation, ICST, 31 March 2014–4 April 2014, Cleveland, Ohio,
USA, pp. 373–382. IEEE Computer Society (2014)

10. David, A., Du, D., Larsen, K.G., Mikucionis, M., Skou, A.: An evaluation frame-
work for energy aware buildings using statistical model checking. Sci. China Inf.
Sci. 55(12), 2694–2707 (2012)

11. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of herschel-
planck revisited using statistical model checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34032-1 28

12. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015)

13. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. STTT 17(3), 351–367 (2015)

14. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24310-3 7

http://dx.doi.org/10.1007/978-3-642-35632-2_25
http://dx.doi.org/10.1007/978-3-642-35632-2_25
http://dx.doi.org/10.1007/978-3-642-28717-6_15
http://dx.doi.org/10.1007/978-3-642-28891-3_39
http://dx.doi.org/10.1007/978-3-642-34032-1_28
http://dx.doi.org/10.1007/978-3-642-34032-1_28
http://dx.doi.org/10.1007/978-3-642-24310-3_7

124 K.G. Larsen et al.

15. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22110-1 27

16. David, A., Larsen, K.G., Legay, A., Nyman, U., Traonouez, L., Wasowski, A.:
Real-time specifications. STTT 17(1), 17–45 (2015)

17. David, A., Larsen, K.G., Legay, A., Nyman, U., W ↪asowski, A.: ECDAR: An Envi-
ronment for Compositional Design and Analysis of Real Time Systems. In: Boua-
jjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15643-4 29

18. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Johansson
and Yi [21], pp. 91–100

19. David, N., David, A., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Probst,
C.W.: Modelling social-technical attacks with timed automata. In: Bertino, E.,
You, I. (eds.) Proceedings of the 7th ACM CCS International Workshop on Man-
aging Insider Security Threats, MIST 2015, Denver, Colorado, USA, 16 October
2015, pp. 21–28. ACM (2015)

20. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78917-8 3

21. Johansson, K.H., Yi, W. (eds.): Proceedings of the 13th ACM International Con-
ference on Hybrid Systems: Computation and Control, HSCC 2010, Stockholm,
Sweden, 12–15 April 2010. ACM (2010)

22. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Meth-
ods Syst. Des. 34(3), 238–304 (2009)

23. Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embedded
software using uppaal-tron: an industrial case study. In: Proceedings of the 5th
ACM International Conference on Embedded Software, EMSOFT 2005, pp. 299–
306. ACM, New York (2005)

24. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 6

25. Mikučionis, M., Larsen, K.G., Nielsen, B.: T-uppaal: online model-based testing
of real-time systems. In: Proceedings of the 19th IEEE International Conference
on Automated Software Engineering, ASE 2004, pp. 396–397. IEEE Computer
Society, Washington, DC, USA (2004)

26. Tretmans, J.: A formal approach to conformance testing. In: Rafiq, O. (ed.) Pro-
tocol Test Systems, VI, Proceedings of the IFIP TC6/WG6.1 Sixth International
Workshop on Protocol Test Systems, Pau, France, 28–30 September 1993. IFIP
Transactions, vol. C-19, pp. 257–276. North-Holland (1993)

27. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In:
Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24617-6 7

28. van Glabbeek, R.J., Höfner, P., Portmann, M., Tan, W.L.: Modelling and verifying
the AODV routing protocol. Distrib. Comput. 29(4), 279–315 (2016)

http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-15643-4_29
http://dx.doi.org/10.1007/978-3-540-78917-8_3
http://dx.doi.org/10.1007/978-3-540-31848-4_6
http://dx.doi.org/10.1007/978-3-540-24617-6_7

Model-Based Testing Without Models:
The TodoMVC Case Study

Alexander Bainczyk(B), Alexander Schieweck(B), Bernhard Steffen,
and Falk Howar

Dortmund University of Technology, Dortmund, Germany
{alexander.bainczyk,alexander.schieweck,bernhard.steffen,

falk.howar}@tu-dortmund.de

Abstract. Web applications define the interface to many of the busi-
nesses and services that we interact with and use on a daily basis. The
technology stack enabling these applications is constantly changing and
applications are accessed from a plethora of different devices. Automated
testing of the behavior of applications is a promising strategy for reduc-
ing the manual effort that has to be spent on ensuring a consistent user
experience across devices. Unfortunately, specifications or models of the
desired behavior often do not exist. Model-based testing without models
(aka learning-based testing) tries to overcome this hurdle by integrat-
ing model learning and model-based testing. In this paper, we sketch
the ALEX tool [1,11] for learning-based testing of web application and
demonstrate its operation on benchmarks from the TodoMVC project.
Our learning-based conformance analysis reveals that 7 of 27 Todo-apps
exhibit behavior that differs from the majority of implementations.

Keywords: Active automata learning · Model-based testing · Specifi-
cation mining · Conformance testing

1 Introduction

Web applications define the interface to many of the businesses and services that
we interact with and use on a daily basis. The technology stack enabling these
applications is constantly changing and steadily growing — for more than two
decades by now — forcing developers and operators to adapt to new technologies
and replace old ones frequently. At the same time, applications are accessed
from a plethora of different devices, running different browsers in many different
versions. Application developers have to work very hard in order to maintain a
consistent user experience on different platforms and with changing underlying
technology.

Different browsers with various implementations of HTML, CSS and Java-
Script [21] interpretations require special care and turn the barrier-free imple-
mentation even of comparatively simple web applications into a challenge. Hun-
dreds of JavaScript frameworks have been developed to ease the life of developers

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 125–144, 2017.
DOI: 10.1007/978-3-319-68270-9 7

126 A. Bainczyk et al.

and to provide a more structured way to deal with those hurdles. While these
frameworks often aim at unique behavior across different client platforms, this
remains a vision for the most part to this day. Companies have to employ testers
who ensure the consistency of the user experience.

Automated testing of the behavior of applications in different browsers is a
promising strategy for reducing the manual effort that has to be spent in this
area. There exist testing frameworks that allow record-and-replay testing of web
applications. Selenium [10] probably is the most widely known such tool. Web-
testing often relies on information and structure in the DOM-trees of web pages
(i.e., the tree-structure of nested HTML elements in the corresponding HTML
document) for navigating pages and applying test inputs. While this works well
for pages produced in one technology stack, in many instances it can not be used
for testing regressions between different stacks.

What is needed, is an approach to testing web applications at a behavioral
level and that can scale across many client platforms as well as across many back-
end technologies. Since the user interface of many web applications is stateful
(login from a landing page, then sequences of dialogues realize use cases, etc.),
model-based testing seems to be a natural candidate formal method. Unfortu-
nately, unlike in more classic infrastructure domains (e.g., telephony), interfaces
of web applications are not strongly regulated or standardized. Specifications or
models of the desired behavior do not exist.

Model-based testing without models (aka learning-based testing) tries to
overcome this hurdle by integrating model learning [43] and model-based test-
ing [15]. A model of the application under testing is learned from test cases
and then becomes the basis for model-based testing. Divergences of the modeled
behavior can be used to refine the initial learned model. Such an approach is
directly applicable in settings where multiple models are being learned, either
across many client platforms or for many consecutive versions of an applica-
tions. In such a scenario, models can be used to identify behavioral outliers and
regressions.

In this paper, we demonstrate the ALEX tool [1,11] for learning-based testing
— using a set of web applications as benchmarks. The ALEX tool aims at
automating learning-based testing. It provides a graphical user interface in which
users can simply define (model-level) actions from atomic operations on a web-
page (e.g., filling a field in a form, clicking a button, or following a link). The
ALEX tool then uses those actions as a basis for generating test cases (i.e.,
sequences of actions) and inferring a model of the application.

We use applications from the TodoMVC project [2] as benchmarks. The
TodoMVC project invites developers to provide implementations in their favorite
framework for a quite simple, standardized todo application whose requirements
are given by a textual requirements document and 30 test cases. A “todo appli-
cation” allows users to manage a simple list of todo items. The project’s name is
TodoMVC as developers are encouraged to use the model-view-controller (MVC)
pattern. Currently, the TodoMVC website lists 71 corresponding TodoMVC
implementations, 27 of which are client-side JavaScript implementations which

Model-Based Testing Without Models: The TodoMVC Case Study 127

can be operated using Selenium [10] and are classified stable. This repository of
slightly different implementations is a perfect basis for simulating the application
of learning-based testing over the lifetime of a web application. We use learning-
based testing to analyze to which extent these 27 Todo implementations coincide
in their user-level behavior, and whether they satisfy the TodoMVC require-
ments. Our learning-based examination reveals that 7 of the 27 implementations
differ from the majority regarding the user-level behavior.

Key to our approach is a common behavioral language of inputs that is shared
between all applications. This common language then is mapped to 27 different
implementations. ALEX simplifies this style of comparative conformance testing
of web applications, in particular, by easing construction of mappings to differ-
ent concrete implementations. It can be done in a web browser almost without
programming. We have made ALEX and the entire setup of this case study
openly available on the web [1], so readers can easily replay, modify or extend
the experiments, or even design her own new learning-based testing setups.

Our main contribution is a small qualitative study of the effectiveness and
efficiency of automated and tool-supported learning-based testing for ensuring
the consistent behavior of a web application over time and in different browsers.
We analyze the effort spent on test automation using the ALEX tool and report
on discovered divergences in the behavior of the analyzed applications.

Related Work. Learning-based testing relies on model learning and model-
based testing. Model learning is based on active automata learning [8]. Testing
is based on methods for testing transition systems [15]. Used testing methods
range from simplistic random sampling, over model-based methods [40] to proper
conformance tests [18]. Basis for the integration of the two approaches is the
insight that both are merely different sides of the same coin as has been observed
in multiple publications [13,41]; central to both worlds are access sequences and
distinguishing sequences that allow entering and discriminating states. ALEX
is based on active learning for Mealy machines [39], which allows to capture
input/output behavior, and can be configured to use different testing strategies
in the spectrum sketched above.

Model-based testing without models (aka learning-based testing) is devel-
oped by different sets of authors using different concrete techniques in varying
settings. One of the earliest practical applications of active automata learning
was testing of telecommunication systems [23,24] and web applications [36]. In
recent years this line of application has been continued for several different types
of systems. Argyros et al. [9] use automata learning techniques to infer models
of regular expressions behind HTML encoders from different programming lan-
guages and websites in order to check them for equivalence and idempotence.
Dinca and co authors develop an approach for generating test-suites for event-b
models through active automata learning [19]. Choi et al. use active automata
learning for testing the behavior of the graphical user interfaces of android appli-
cations [17]. Shahbaz and Groz infer models of embedded components and use
these models as a basis for test case generation [38]. Meinke and Sindhu present
LBTest, a tool for learning-based testing of reactive systems, integrating model

128 A. Bainczyk et al.

checking, active automata learning, and random testing [34]. Windmüller and
co-authors and the Active Continuous Quality Control presented in [44], which
aims at controlling the impact of version change. The authors of [6] evaluate
different combinations of learning and testing on a set of slightly different imple-
mentations of the bounded retransmission protocol.

We have developed in ALEX in the spirit of such testing tools as TorX [42] or
its successor JTorX [12] that are underpinned by a sound theoretic framework but
make the theory easily applicable. From a user’s perspective, the big difference to
these tools is that in ALEX no specification has to be provided. Instead, a model
of the observed behavior of a system is learned from (automatically generated)
tests.

Outline. We start by describing learning-based testing and the ALEX tool in
the next section. Section 3 presents the TodoMVC project, some requirements
and use cases of the tested applications, and the common behavioral language
which we use during testing. In Sect. 4, we provide detailed results of the case
study, before concluding in Sect. 5.

2 Background

Learning-based testing is based on active automata learning and model-based
testing. We provide a brief introduction to automata learning here and describe
how model-based testing methods are integrated. We also briefly describe how
ALEX uses this theoretic framework for testing web applications.

2.1 Model Learning

Active automata learning [8,39] aims to reveal exactly the states of a reactive
system by building a model, or to be more precise a Mealy machine [33] of a reac-
tive system. This is done automatically by posing carefully constructed test cases
to a system under learning (SUL) and observing the output behavior. In this
process, three different parties are involved (cf. Fig. 1). A learner passes input

Fig. 1. Active automata learning of a language L with alphabet Σ = {a, b}.

Model-Based Testing Without Models: The TodoMVC Case Study 129

sequences to a membership oracle which executes them on the SUL and returns
the output behavior. From these observations the learner builds a hypothesis (cf.
e.g. Fig. 5) which aims to reflect the behavior of the SUL. To verify whether the
hypothesis represents the actual behavior of the SUL, an equivalence oracle is
asked. In theory, this oracle either answers with yes or no and in the latter case
delivers a counterexample which is used by the learner to refine the hypothesis.

In practice however, due to the nature of black-box systems, such an oracle
does not exist. Thus, one typically has to approximate equivalence queries by
posing multiple membership queries, i.e., via testing. LearnLib1 [30,35,37], an
open source learning framework provides various alternatives for this kind of
approximation, ranging from techniques using random test generation to confor-
mance tests [4,5,18,22]. So-called “lifelong learning” has been proposed for appli-
cations in which counterexamples can be obtained through monitoring [14,29].
In learning-based testing, equivalence queries are simply used to switch from
model learning to model-based testing and back.

2.2 Model-Based Testing Without Models

The tool ALEX (Automata Learning EXperience)2, presented in [11], can be
understood as a graphical user interface to LearnLib that allows users to infer
Mealy machines of web applications and HTTP based web APIs at ease. ALEX
allows users to define a set of model-level input actions from atomic operations
on a web page (e.g., filling forms or clicking on elements). These input actions are
then used by learning and testing algorithms in LearnLib as a basis for learning
a model of a web application.

For the alphabet modeling, a user first defines an abstract input alphabet
(cf. Fig. 2a) via a simple web form. Then, for each abstract input symbol, he
models the concrete logic as a sequence of parametrized Selenium3-based actions
(cf. Fig. 2b) that are executed in a real browser during the learning process.
Therefore, a broad range of atomic interactions with the browser-based user
interface of a web application is provided.

In the experiment setup, a user selects the symbols that should be included in
the input alphabet, chooses one of several learning algorithms, a strategy to find
counterexamples and the web browser in which the tests should be executed in.
With these specifications, ALEX will then automatically generate tests based on
these inputs and produce a model of the tested web application. The generated
tests form a conformance test suite as is discussed in [13]. Then, the tool allows
investigations such as the calculation of the symmetric difference between two
models and the manual specification of counterexamples. Further, statistical val-
ues that are characteristic for a learning experiment are gathered automatically
(cf. Table 2) in the learning process.

1 http://learnlib.de/.
2 http://learnlib.github.io/alex/.
3 http://www.seleniumhq.org/.

http://learnlib.de/
http://learnlib.github.io/alex/
http://www.seleniumhq.org/

130 A. Bainczyk et al.

(a) Defining the abstract input alphabet (b) Exemplary modeling of the concrete
input symbol “Create ToDo”

Fig. 2. Specifying test inputs with ALEX [11].

3 A Language for Testing TodoMVC

TodoMVC4 is a project consisting of several JavaScript implementations of a
simple todo application that should look the same and behave according to a
given textual specification [3]. Independent developers can provide implemen-
tations of TodoMVC in their favorite JavaScript framework. The catch of the
project is that a different JavaScript framework is used for every implementation
with the goal to allow developers to easily compare and choose a framework for
their own next project.

In January of 2017, there were 36 implementations considered stable and
35 versions that were denoted beta. Moreover, all these implementations have
been developed with a different frontend library. The remainder of this section
describes the different TodoMVC implementations that we used as a basis for
our study as well as the common behavioral language that was used as a basis
for testing.

3.1 TodoMVC Implementations

The simple todo applications share a common user interface shown in Figure 3
which is also provided by TodoMVC. It allows to create new tasks, edit and
delete them. Furthermore, tasks can be marked as completed and it is possible
to show only active or completed tasks. Also there is a button to mark all tasks

4 http://todomvc.com/.

http://todomvc.com/

Model-Based Testing Without Models: The TodoMVC Case Study 131

Fig. 3. The common UI of TodoMVC.

as completed and another one to delete all completed tasks. A specification [3]
describes all the visual elements and their behavior as well as the expected work
flow in the application.

For our study, we have selected 27 out of the 36 stable versions of TodoMVC,
modeled, learned and analyzed them with ALEX in order to find possible devia-
tions from the specification. It has to be noted that we skipped some applications:
Ember.js, TroopJS+RequireJS, GWT, Elm, Regent and AngularDart. The first
because it is not accessible, the others because there have been problems with
Selenium when learning models. Those problems are also known issues of the
TodoMVC project. Furthermore we skipped SocketStream, Firebase + Angu-
larJS and Express + gcloud-node because they are the only implementations
that rely on a backend server and they automatically connect to a global acces-
sible server. This means that it is not easily possible to learn those variants in
an isolated test environment. The complete list of learned variants can be seen
in Table 1.

3.2 Common Behavioral Language for TodoMVC

We define an abstract alphabet based on the use cases of the TodoMVC project
that are given in the specification [3].

Inputs. For the inputs to an applications this results in the following 12 alphabet
symbols:

{Create, Read, Update, Delete} Todo. A todo item can be created, updated
and deleted. Further, one can check if the todo item is displayed in the list of
all visible todos.

132 A. Bainczyk et al.

Table 1. Todo implementations and modeling time for test inputs.

No. Framework Modeling based on Modeling time No. of changes

1 AngularJS - 2 h 56min 22 s -

2 Backbone AngularJS 6min 47 s 11/13

3 Ampersand AngularJS 3min 13 s 1/13

4 Vue Backbone 1min 48 s 0/13

5 Polymer AngularJS 2min 12 s 1/13

6 React Backbone 1min 52s 0/13

7 VanillaJS Backbone 1min 59 s 0/13

8 JQuery Polymer 1min 17s 0/13

9 KnockoutJS Polymer 1min 25 s 0/13

10 Mithril Polymer 1min 27s 0/13

11 Knockback Backbone 1min 13 s 0/13

12 CanJS Polymer 0min 57 s 0/13

13 Dojo Angular 1min 41 s 1/13

14 Marionette Polymer 0min 59 s 0/13

15 Dart Backbone 1min 24 s 1/13

16 Flight Polymer 1min 21 s 1/13

17 VanillaES6 Backbone 3min 24 s 3/13

18 Spine Polymer 0min 57 s 0/13

19 Closure Polymer 1min 2 s 0/13

20 ScalaJS+React Backbone 1min 15 s 0/13

21 ScalaJS+Scala.bind Backbone 1min 1 s 0/13

22 Seranade Angular 1min 15 s 3/13

23 TypeScript+React Backbone 1min 8 s 0/13

24 TypeScript+Angular Backbone 1min 3 s 0/13

25 TypeScript+Backbone Backbone 0min 57 s 0/13

26 js of ocaml Backbone 0min 59 s 0/13

27 Humble+GopherJS Backbone 1min 2 s 0/13

Toggle Done. A todo item is either marked as active or as done, this symbol
toggles the state of the todo item.

Toggle Done All. With a single click, the status of all visible todo items is
toggled.

Clear Done. Delete all todo items that are marked as done at once.
View {All, Active, Done}. The user can display all todo items or filter items

based on their state.
{0 items, 1 item} Left. There is a counter that displays how many todo

items are active. We differentiate between zero and one item because we only
operate on a single item.

Model-Based Testing Without Models: The TodoMVC Case Study 133

These 12 symbols are sufficient to capture all the requirements in the specifi-
cation except for data persistence, which is, in fact, a non-regular property and
can therefore not be modeled by Mealy machines. In addition it should be noted
that ALEX requires an additional symbol for a system reset leading to an overall
size of the learning alphabet of 13. In order to test different implementations,
these abstract inputs have to be mapped to (implemented as) concrete sequences
of actions on a DOM-tree as is described below.

Outputs. Further, we capture the output behavior of the web application using
two symbols: OK indicates that all actions, that an input symbol consists of,
could be executed on the system without throwing an error. An error might
e.g. occur if a button, that can be accessed by a unique CSS selector, should
be clicked on, but due to the current state of the system, is not visible. In such
a case we encode the output as FAILED(n) where n ≥ 1 points to the n-th
action in the concrete mapped implementation of the previously executed input
symbol.

3.3 Mapping the Behavioral Language to Implementations

We have implemented concrete versions of the abstract test inputs for 27 applica-
tions. For one, these 27 applications became the basis for our testing experiments.
But, the implementation allowed us to also evaluate the software engineering
aspect of our approach: In the envisioned scenario of learning-based regression
testing and user experience testing, the behavioral language has to be imple-
mented and adapted multiple times (using ALEX).

In order to study the complexity of this task, we have picked a single
TodoMVC application, namely AngularJS, and have started modeling the first
input alphabet implementation with our tool ALEX. After this first alphabet
was modeled and a first learning run against the AngularJS implementation
was performed, we validated that the model and the implementation works as
intended. Afterwards we went on with the second application: Backbone but did
not start from scratch implementing another input alphabet. Instead, we reused
the alphabet we obtained from AngularJS and only modified those parts where
the two applications differ. During the successive treatment of the 27 alphabet
implementations the number of adaptations grew, thus enlarging the pool from
which future adaptation could profit, which results in the hierarchy depicted in
Fig. 4.

Remark. The differences meant here are not of behavioral nature, but have a
structural background. An HTML document is structured as a document object
model (DOM) where the relationship between two elements can be expressed
with a parent- child or sibling relation. In this tree, each element can be accessed
via a CSS selector (a unique identifier, which represents the path from the root
node to the specific element). Although TodoMVC provides a common HTML
template that the libraries should use, some developers modified the selectors
to their own will. This does not result in a different user interface, but how
each element is accessed by a selector. So, for example, the same element that

134 A. Bainczyk et al.

AngularJS

Backbone

Vue, React VanillaJS,
Knockback, ScalaJS
ScalaJs+Scala.bind,
Typescript+Angular,
Typescript+React,

Typescript+Backbone,
js of ocaml,

Humble + GopherJS

0

Dart

1

VanillaES6

3

11

Ampersand

1

Dojo

1

Serenade

3

Polymer

JQuery,
KnockoutJS,

Mithril, CanJS,
Marionette,

Spine, Closure

0

Flight

1

1

Fig. 4. The hierarchy of derived input alphabets. The edge labels denote the number
symbols that had to be modified.

is accessed in AngularJS with a unique ID via #todo-list > li:nth-child(1) (the
first item in the list) is accessed via .todo-list > li:nth-child(1) in Backbone. As
a result, the selectors have to be adjusted accordingly in the new input alphabet
implementation. All required adaptations of the alphabet implementations were
of this kind: they only concerned the selectors, and not the action itself.

3.4 Analysis of Implementation Effort

In order to analyze the reuse effect, the two main developers of ALEX carefully
measured the manual effort for these adaptations using a stopwatch. The corre-
sponding measurements and the order in which implementations were realized
can be seen in Table 1.

The initial task of modeling the input alphabet for AngularJS took the devel-
opers about three hours, which includes the familiarization with the TodoMVC
specification, modeling alphabet implementation itself, testing and debugging
our modeling. Backbone, which was treated next, required to adjust the selec-
tors of eleven (out of 13) symbols, which was possible in less than 7 min using
ALEX. As one goes down the rows of the table, one can see that with time and
the growing pool of alphabets to choose from, we have gotten more and more
practice selecting and adjusting the alphabets to the corresponding applications.
As a result, it only took the developers about one to one and a half minutes for
a new application in the end.

The choice of which available alphabet was used as a basis for a new appli-
cation was made by a short check of the source code of the targeted application
to determine as basis the existing alphabet of an application with structural
similarities. The required time is also included in the measurements.

Model-Based Testing Without Models: The TodoMVC Case Study 135

The information given in Table 1 directly translates to an alphabet reuse-
hierarchy that is shown in Fig. 4. As you can see there, two of the nodes represent
implementations that did not require any change. Thus we ended up having only
nine different alphabet implementations in total.

4 Testing the Behavior of Todo MVC Apps

We have used the implementation of the behavioral language to apply learning-
based testing to 27 todo applications. The experiments reveal several behavioral
outliers and violations of the specification.

4.1 Experimental Setup

Our experiments are conducted in two series. In the first series, we establish a
common input alphabet that covers the use cases of the TodoMVC specification
for our 27 candidates. In order to guarantee a regular behavior, we sequentialize
create, read, update and delete operations by learning models that at most one
task at any given time may exist per state.5 Then, we examine the automatically
inferred models in order to reveal possible differences in the user-level behavior
of the applications.

In the second series, we extend and refine the set of test inputs to allow the
presence of up to two todo items at the same time. The point of the second series
is to provide a feeling of the impact of the restriction to disallow the concurrent
treatment of todo items. For this series, we analyze a representative sample of
applications that behave identically in the first series.

All experiments have been executed on a machine with an Intel Core i5 6600k
(4 × 3.50 GHz), 16 GB of main memory and a 128 GB SSD. For the operating
system, Linux Mint 18.1 64bit has been used. Furthermore, the tests have been
executed in Google Chrome v55 in combination with the Chromedriver v2.276.

ALEX offers a user to choose from a variety of learning-based algorithms.
In this study we use the TTT algorithm [29] which had the best performance
profile.

On our homepage7 we provide all the material that is required to replay our
experiments and step-by-step instructions that guides a user through the first
learn process.

Originally, we had planned to end the learning-based testing process for each
of the 27 TodoMVC implementations with a W-method conformance test [18]
that could identify a maximum of three additional states. However, already a
test suite that assumed a maximum of two additional states turned out to be
impractical in terms of the execution time: The testing of a single TodoMVC
5 This has been enforced by adding code to the implementations of test inputs that

checks whether a task is absent or created, but currently not visible — similar to a
test purpose.

6 https://sites.google.com/a/chromium.org/chromedriver/.
7 http://learnlib.github.io/alex/book/1.2.1/contents/examples/todomvc/index.html.

https://sites.google.com/a/chromium.org/chromedriver/
http://learnlib.github.io/alex/book/1.2.1/contents/examples/todomvc/index.html

136 A. Bainczyk et al.

implementation finished after about two days, without finding new states. We
therefore decided to continue with an extended random test, which we config-
ured, depending on the phase, to take about 30–60 min for each of the learning
processes. We considered this as sufficient, as it constitutes about 90% of the
overall time taken for equivalence queries in each of the learning experiments.
Indeed, the equivalence queries providing a new counterexample typically only
ran for less than half a minute. Of course, there is no guarantee that we succeeded
to infer the entire behavior.

4.2 Results of Testing with Sequential Tasks

The results of our learning-based evaluation with ALEX are presented in Table 2.
For each implementation, we measured the execution time, the number of system

Table 2. Statistics of testing TodoMVC implementations. The table shows results for
both series. Highlighted rows mark outliers within a series.

No. Framework Runtimes [hh:mm:ss] Resets Inputs EQs States

MG MBT Total MG MBT Total MG MBT Total

1 AngularJS 00:18:45 00:36:11 00:54:56 476 102 578 3372 5772 9144 5 9
2 Backbone 00:21:29 00:38:44 01:00:14 510 76 586 3454 4339 7793 4 9
3 Ampersand 00:19:50 00:35:46 00:55:36 509 100 609 3569 5662 9231 5 9
4 Vue 00:18:06 00:35:58 00:54:04 476 102 578 3372 5772 9144 5 9
5 Polymer 00:20:13 00:35:53 00:56:06 509 100 609 3597 5662 9259 5 9
6 React 00:19:11 00:37:10 00:56:21 447 76 553 3253 4270 7523 5 9
7 VanillaJS 00:19:50 00:35:44 00:55:35 509 100 609 3569 5662 9231 5 9
8 JQuery 00:43:46 00:36:41 01:20:27 854 223 1077 7102 12596 19698 6 13
9 KnockoutJS 00:17:53 00:36:42 00:54:35 447 76 553 3253 4270 7523 5 9
10 Mithril 00:20:13 00:36:03 00:56:16 509 100 609 3569 5662 9231 5 9
11 Knockback 00:18:18 00:36:47 00:55:06 447 76 553 3253 4270 7523 5 9
12 CanJS 00:13:15 00:35:52 00:49:07 354 70 424 2384 3928 6312 4 7
13 Dojo 02:57:58 00:40:47 03:38:46 2329 216 2545 19128 12160 31288 12 31
14 Marionette 00:24:01 00:37:00 01:01:01 689 147 836 5115 8384 13499 7 12
15 Dart 00:20:48 00:35:50 00:56:38 509 100 609 3569 5662 9231 5 9
16 Flight 00:59:39 00:37:37 01:37:17 1469 229 1698 10660 13053 23713 11 22
17 VanillaES6 00:24:31 00:36:43 01:01:14 508 113 621 3585 6376 9961 6 9
18 Spine 00:18:09 00:36:00 00:54:09 476 102 578 3372 5772 9144 5 9
19 Closure 00:18:03 00:36:00 00:54:03 476 102 578 3372 5772 9144 5 9
20 ScalaJS+React 00:19:55 00:36:47 00:56:42 506 76 582 3532 4351 7883 4 9
21 ScalaJS+Scala.bind 00:18:12 00:36:42 00:54:56 477 76 553 3253 4270 7523 5 9
22 Seranade 00:17:57 00:36:56 00:54:53 477 76 553 3253 4270 7523 5 9
23 TypeScript+React 00:20:22 00:36:01 00:56:24 509 100 609 3569 5662 9231 5 9
24 TypeScript+Angular 00:18:10 00:36:40 00:54:51 477 76 553 3253 4270 7523 5 9
25 TypeScript+Backbone 00:20:08 00:35:51 00:55:59 509 100 609 3569 5662 9231 5 9
26 js of ocaml 00:17:41 00:36:45 00:54:27 477 76 553 3253 4270 7523 5 9
27 Humble+GopherJS 00:22:46 00:36:09 00:58:55 509 100 609 3569 5662 9231 5 9

With determinized hashing policy

1 AngularJS 00:58:44 00:57:22 01:56:06 1317 110 1427 10924 6186 17110 7 20
2 Backbone 00:59:09 00:57:57 01:57:07 1317 110 1427 10924 6186 17110 7 20
3 Ampersand 00:57:57 00:57:23 01:55:21 1317 110 1427 10924 6186 17110 7 20
9 KnockoutJS 01:02:08 01:00:20 02:02:29 1317 110 1427 10924 6186 17110 7 20
15 Dart 00:59:22 00:57:32 01:56:54 1317 110 1427 10924 6186 17110 7 20
17 VanillaES6 00:57:27 00:57:18 01:54:46 1317 110 1427 10924 6186 17110 7 20
22 Seranade 02:57:39 01:42:09 04:39:49 3567 164 3731 36728 9235 45963 10 43

Model-Based Testing Without Models: The TodoMVC Case Study 137

Fig. 5. Reference hypothesis of TodoMVC.

resets as well as the number of inputs that have been posed to the system
during the model generation (MG) and the model based testing (MBT). In
nearly all cases, with Polymer being the exception, the outliers within a series
can be identified directly by looking at the state space of the resulting model.
22 of the 27 learned implementations of TodoMVC resulted in a model with
nine states, and, indeed, all but Polymer have the same final hypothesis which
is depicted in Fig. 5. We consider these 21 implementations of TodoMVC as
reference implementations, because they do not only satisfy the specification [3]
but are also state minimal. Besides Polymer, the 22nd 9-state implementation,
also JQuery, CanJS, Dojo, Marionette and Flight deviate from this reference
behavior. This does, however, not automatically imply that they do not satisfy
the specification.

Strictly speaking, CanJS is the specification-conforming implementation
with the smallest model and would therefore be the candidate of choice according
to the Occam’s razor principle. The 21 correct implementations with 9 states sat-
isfy an additional constraint which can be regarded as a convention: one should
not accidentally change the status of the view. We took their behavioral model as
reference, and considered the omission of this additional constraint as a typical
problem of incomplete specifications.

138 A. Bainczyk et al.

In order to reveal potential violations of the specification [3], we investigated
the symmetric difference between these 6 models and the reference model. It
turned out that, indeed, all the 6 corresponding implementations allow behaviors
that differ from the specification and can possibly be reduced to programming
bugs. By our observations, we can categorize applications that do not behave
like the majority in two groups which are presented and discussed in the follow-
ing. For each application, its deviation from our standard model is documented.
The input sequence is the shortest separating word, i.e. the easiest way to repro-
duce the issue. Then, the expected behavior of the input sequence according to
the specification is presented. And because the here listed inputs lead to some
violation of the specification, the actual behavior is described as well.

Violation of the Specification. In this group, we list those four applications
that violate the specification. We define that the specification is violated, if, at
some point during the interaction with the user interface, a certain action, e.g.
an operation on a todo item, is not possible, although it should be (according
to the input/output behavior of the manually validated reference model) or vice
versa.

Dojo

Input Sequence: Create Todo, View Active, Update Todo, Toggle Done, Clear
Done, Create Todo, Toggle Done All, Clear Done.

Expected Behavior: One should be able to delete all completed tasks.
Actual Behavior: The ‘Clear completed’ link is not displayed and therefore

one can not delete the task. Additionally, the counter that displays the number
of open tasks shows that there is still one entry left.

Flight

Input Sequence: Create Todo, View Active, Update Todo, View Active, Read
Todo

Expected Behavior: Clicking on the ‘active’ filter link multiple times should
be idempotent and thus reading the entry again should be possible.

Actual Behavior: The todo item disappears. Also, the item does not appear
in any other view, even after a browser refresh.

Marionette

Input Sequence: Create Todo, View Done, Toggle Done All, View Active,
Toggle Done All, 1 Item Left.

Expected Behavior: The counter of open tasks should display that still one
entry is open.

Actual Behavior: The last ‘Toggle Done All’ action is not performed and the
counter still shows ‘0 items left’. The action is only fired when clicking the
button twice. All other states result from that misbehavior.

Model-Based Testing Without Models: The TodoMVC Case Study 139

Polymer

Input Sequence: Create Todo, Toggle Done, 0 Items left.
Expected Behavior: The counter should show the string ‘0 items left’.
Actual Behavior: The actual text of the counter is ‘0 item left’ should be ‘0

items left’.

Let us now discuss these observations in more detail from an observational per-
spective starting with the most severe bug. This bug, which is found in Flight,
is severe for two reasons. First, after the second ‘View Active’ action all visible
todo items disappear, irreversibly. Even future created todo items disappear per-
manently. By playing around with the application in this state, we found that
this behavior persists even after a browser restart. The only way to get back to
the initial state of Flight is to remove all client side storage in the web browser
manually, which is a long-winded process for non-expert end users. Second, even
putting the first aspect aside, the specification [3] is clearly violated in many
other cases as well, as required create, read, update and delete operations on the
todo items are not possible after there sudden disappearance.

As one can read from the description of the actual behavior above, all erro-
neous applications except Polymer come in a state where an action should be
executable but is not. For Dojo, after the input sequence, a completed todo item
is present on the page, but the ‘Clear completed’-button is not visible although
it should be according to the specification. For Marionette the first toggle action
switches the state from active to completed, the second reverses this. Still, the
counter is not updated. These errors can be resolved by further interaction with
the applications, by refreshing the page or restarting the browser.

Finally, Polymer seems to just have a spelling error.

Other Behavioral Outliers. Besides the applications that directly violate
the specification by our means at some point, two applications show a differ-
ent behavior than the majority, although they do not contradict the specifica-
tion. The description of the expected behavior therefore only states what other
TodoMVC implementations do given the corresponding input sequence and what
a user would expect after working with other implementations:

CanJS

Input Sequence: Create Todo, Toggle Done, View Done, Delete Todo, Create
Todo, Read Todo.

Expected Behavior: One should not be able to read the new todo item,
because the application should still only show completed tasks.

Actual Behavior: The new todo item is visible in the list. The implementation
switches from the ‘active’ or ‘completed’ view to the ‘all’ view as soon as one
creates a new todo item.

JQuery

Input Sequence: Create Todo, Toggle Done, View Done, Clear Done, Create
Todo, Read Todo.

140 A. Bainczyk et al.

Expected Behavior: One should not be able to read the new entry, because
the application should still only show completed tasks.

Actual Behavior: The new task is readable. This implementation switches
from the completed view to the all view as soon as a new entry is created.

Input Sequence: Create Todo, View Active, Toggle Done, Toggle Done All.
Expected Behavior: The button to toggle all todo items should be visible.
Actual Behavior: The button is not displayed and therefore can not be clicked

in case the task list is empty.

In CanJS, if the user creates a new todo item, the routing mechanism auto-
matically switches to the view where all todo items are listed, no matter which
filter is currently active. Since the specification does not draw a connection
between creating todo items and the filter functionality and the application
behaves consistently in this behavior, this seems to be a matter of the devel-
opers dedicated choice of implementation. So technically, the model of CanJS
with its seven states is the minimal specification conforming solution. One may
argue, however, that this solution does not conform to unspoken conventions.

JQuery has, in fact, the same anomaly as CanJS, and it additionally deviates
form the reference behavior concerning toggling. Here, the specification states
that there has to be a button to toggle the state of all todo items at once, but
not that the button has to be displayed also if the todo item list is empty. The
other applications implemented this differently by making this action available
in all possible use cases.

4.3 Results of Testing with Concurrent Tasks

In the second series, we took 7 of the 21 TodoMVC implementations that proved
to have equivalent models in the first series and extended their input alphabets
in a way that they allow a maximum of two todo items to be present at the same
time instead of just one. This refinement serves the purpose of learning models
of the applications that better approximate their actual behavior.

The results of the second series are listed at the bottom of Table 2. As indi-
cated by the corresponding headline, they were obtained using an updated ver-
sion of ALEX which now better supports repeatability of learning experiments
by determinizing the access of elements in a hash map where the mapping of
abstract to concrete input symbols is defined. The (by default random) order in
which elements are read from that mapping influences the total amount of resets
and inputs the learner has to make.

As one can see, only the numbers of Serenade deviate from the others. Inves-
tigating the corresponding symmetric differences reveals that the behavior of
Serenade deviates from the other implementations essentially because of the
following error:

Serenade

Input Sequence: Create Todo, Toggle Done, Create Todo, View Active, Delete
Todo, 0 Items Left.

Model-Based Testing Without Models: The TodoMVC Case Study 141

Expected Behavior: The view that displays all active todo items should be
empty.

Actual Behavior: The todo item that has been created as a second is still in
the list.

The misbehavior that Serenade shows would not have been detected if we did
not conduct the second phase. It presents a clear violation against the TodoMVC
specification, since the todo item is not deleted correctly. It is also the only
application that actually throws an internal error. A closer look at the developer
console of the web browser reveals the following message: “Uncaught TypeError:
Cannot read property ‘length’ of undefined”. This indicates that an access to the
underlying todo item array happens although the array has not been initialized
at the time of the access. Luckily for the user, the application does not transition
into an application breaking error state, but works as intended after switching
between the todo item filters.

5 Conclusion

We have shown how to systematically compare technologically different Todo list
implementations via learning-based testing. Our two phase learning-based exam-
ination of the 27 stable, Selenium-accessible, client-side implementations of the
TodoMVC collection has revealed seven behavioral outliers. Enabler for this com-
parison was the underlying abstract common behavioral language which made
their technical difference transparent. Our learning-based approach to validating
that different implementations of the same functionality are in fact behaviorally
equivalent has a wide range of applications: most mobile “apps” come in numer-
ous implementations to cover the market of smart phones/watches and tablets
and change the underpinning framework once at times.

A major goal of ALEX is simplicity [32]: Using ALEX, much of the usual
manual quality assurance effort can be automated. We are planning to further
increase automation using techniques like [20,25,27,31] for automatically infer-
ring optimal alphabet abstractions. We also plan to evaluate, how much produc-
tivity of domain experts can be increased by using ALEX during testing.

ALEX currently only supports the inference of regular models. In future
work, we plan to investigate Isberner’s technology for learning visibly pushdown
automata [7,26] (e.g., to capture repetitive task treatment). An extension of
ALEX that uses learning of extended finite state machines [16,28] is also foreseen
(e.g., for treating data persistence).

References

1. Automata learning experience (2016). http://learnlib.github.io/alex/. Accessed 23
Oct 2016

2. Todomvc (2016). http://todomvc.com/. Accessed 23 Oct 2016
3. Todomvc specification (2016). https://github.com/tastejs/todomvc/blob/master/

app-spec.md. Accessed 21 Oct 2016

http://learnlib.github.io/alex/
http://todomvc.com/
https://github.com/tastejs/todomvc/blob/master/app-spec.md
https://github.com/tastejs/todomvc/blob/master/app-spec.md

142 A. Bainczyk et al.

4. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16573-3 14

5. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F., Verwer, S.: Improving active
mealy machine learning for protocol conformance testing. Mach. Learn. 96(1), 189–
224 (2014)

6. Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F.W., Verwer, S.: Learning and
testing the bounded retransmission protocol. In: Proceedings of the Eleventh Inter-
national Conference on Grammatical Inference, ICGI 2012. University of Maryland,
College Park, USA, 5–8 September 2012, pp. 4–18 (2012)

7. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp.
202–211. ACM, New York, NY, USA (2004)

8. Angluin, D.: Learning regular sets from queries and counter examples. Inf. Comput.
75(2), 87–106 (1987)

9. Argyros, G., Stais, I., Kiayias, A., Keromytis, A.D.: Back in black: towards formal,
black box analysis of sanitizers and filters. In: 2016 IEEE Symposium on Security
and Privacy (SP), pp. 91–109, May 2016

10. Avasarala, S.: Selenium WebDriver Practical Guide. Packt Publishing, Birming-
ham (2014). ISBN 9781782168850

11. Bainczyk, A., Schieweck, A., Isberner, M., Margaria, T., Neubauer, J., Steffen, B.:
ALEX: mixed-mode learning of web applications at ease. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 655–671. Springer, Cham (2016). doi:10.
1007/978-3-319-47169-3 51

12. Belinfante, A.: JTorX: a tool for on-line model-driven test derivation and execution.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 21

13. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-31984-9 14

14. Bertolino, A., Calabrò, A., Merten, M., Steffen, B.: Never-stop learning: continuous
validation of learned models for evolving systems through monitoring. ERCIM
News 2012(88), 28–29 (2012)

15. Brinksma, E., Tretmans, J.: Testing transition systems: an annotated bibliography.
In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.D. (eds.) MOVEP 2000. LNCS, vol.
2067, pp. 187–195. Springer, Heidelberg (2001). doi:10.1007/3-540-45510-8 9

16. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Aspects Comput. 28(2), 233–263 (2016)

17. Choi, W., Necula, G., Sen, K.: Guided GUI testing of android apps with minimal
restart and approximate learning. SIGPLAN Not. 48(10), 623–640 (2013)

18. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. SE–4(3), 178–187 (1978)

19. Dinca, I., Ipate, F., Mierla, L., Stefanescu, A.: Learn and test for event-B – A
rodin plugin. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M.,
Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 361–364. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30885-7 32

20. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).
doi:10.1007/978-3-662-54577-5 10

http://dx.doi.org/10.1007/978-3-642-16573-3_14
http://dx.doi.org/10.1007/978-3-319-47169-3_51
http://dx.doi.org/10.1007/978-3-319-47169-3_51
http://dx.doi.org/10.1007/978-3-642-12002-2_21
http://dx.doi.org/10.1007/978-3-540-31984-9_14
http://dx.doi.org/10.1007/3-540-45510-8_9
http://dx.doi.org/10.1007/978-3-642-30885-7_32
http://dx.doi.org/10.1007/978-3-662-54577-5_10

Model-Based Testing Without Models: The TodoMVC Case Study 143

21. Flanagan, D.: JavaScript: The Definitive Guide: Activate Your Web Pages (Defin-
itive Guides), 6th edn. O’Reilly Media, Sebastopol (2011)

22. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603
(1991)

23. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol.
2306, pp. 80–95. Springer, Heidelberg (2002). doi:10.1007/3-540-45923-5 6

24. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.-D.: Efficient
regression testing of CTI-systems: testing a complex call-center solution. Ann. Rev.
Commun. Int. Eng. Consortium (IEC) 55, 1033–1040 (2001)

25. Howar, F., Steffen, B., Merten, M.: Automata learning with automated alphabet
abstraction refinement. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol.
6538, pp. 263–277. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18275-4 19

26. Isberner, M.: Foundations of active automata learning: an algorithmic perspective.
Ph.D. thesis. TU Dortmund University, October 2015

27. Isberner, M., Howar, F., Steffen, B.: Inferring automata with state-local alphabet
abstractions. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol.
7871, pp. 124–138. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38088-4 9

28. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96, 1–34 (2013)

29. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.)
RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). doi:10.1007/
978-3-319-11164-3 26

30. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). doi:10.1007/978-3-319-21690-4 32

31. Maler, O., Mens, I.-E.: Learning regular languages over large alphabets. In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 485–499.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 41

32. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90–92 (2010)

33. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J.
34(5), 1045–1079 (1955)

34. Meinke, K., Sindhu, M.A.: Lbtest: a learning-based testing tool for reactive sys-
tems. In: Sixth IEEE International Conference on Software Testing, Verification
and Validation, ICST 2013, Luxembourg, 18–22 March 2013, pp. 447–454 (2013)

35. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnlib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9 18

36. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. Int. J. Softw. Tools Technol. Trans. (STTT) 11(4), 307–324 (2009)

37. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. Int. J. Softw. Tools Technol. Trans. (STTT) 11(5),
393–407 (2009)

38. Shahbaz, M., Groz, R.: Analysis and testing of black-box component-based systems
by inferring partial models. Softw. Test. Verif. Reliab. 24(4), 253–288 (2014)

39. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol.
6659, pp. 256–296. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21455-4 8

http://dx.doi.org/10.1007/3-540-45923-5_6
http://dx.doi.org/10.1007/978-3-642-18275-4_19
http://dx.doi.org/10.1007/978-3-642-38088-4_9
http://dx.doi.org/10.1007/978-3-319-11164-3_26
http://dx.doi.org/10.1007/978-3-319-11164-3_26
http://dx.doi.org/10.1007/978-3-319-21690-4_32
http://dx.doi.org/10.1007/978-3-642-54862-8_41
http://dx.doi.org/10.1007/978-3-642-19835-9_18
http://dx.doi.org/10.1007/978-3-642-21455-4_8

144 A. Bainczyk et al.

40. Timmer, M., Brinksma, E., Stoelinga, M.: Model-based testing. In: Software and
Systems Safety - Specification and Verification, pp. 1–32. IOS Press (2011)

41. Tretmans, J.: Model-based testing and some steps towards test-based modelling.
In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21455-4 9

42. Tretmans, J., Brinksma, E.: Torx: automated model-based testing. In: Hartman,
A., Dussa-Ziegler, K. (ed.) First European Conference on Model-Driven Software
Engineering, pp. 31–43, December 2003

43. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
44. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous

quality control. In: Proceedings of the 16th International ACM Sigsoft Symposium
on Component-based Software Engineering, CBSE 2013, pp. 111–120. ACM New
York, NY, USA (2013)

http://dx.doi.org/10.1007/978-3-642-21455-4_9

Diagnosis and Testing: How is Their Relation?
Can They Be Combined?

Laura Brandán Briones1(B) and Agnes Madalinski2

1 CONICET and Fa.M.A.F., Universidad Nacional de Córdoba, Córdoba, Argentina
lbrandan@famaf.unc.edu.ar

2 Chair of Software Engineering, Otto-von-Guericke-University Magdeburg,
Magdeburg, Germany
amadalin@gmail.com

Abstract. Diagnosis and testing have coexisted for a long time, even
though they have not been combined, mostly because they consider errors
in a different manner. In this paper we present a novel framework that
combines fault diagnosis with ioco-passive testing. To do so in a proper
manner we initially present a formal definition of testability for transi-
tion system models, as well as for model-based testing. Later, we enrich
our framework so that it captures possible attacks from malicious users.
Finally, we consider a weighted failure model that can inform about the
severity of a failure. We conclude that diagnosis and testing can be com-
bined in a profitable manner.

1 Introduction

Today, we are facing a smart world where embedded devices with electronic and
software functions, making systems more and more complex. Many of these sys-
tems are critical and require the highest dependability standards since a system
failure might cause injuries or even deaths. A real challenge is to ensure that
a system operates properly during its functioning, i.e. according to its specifi-
cation. To identify any dysfunction due to an error occurrence is a demanding
task. Therefore, early fault detection is the key to support system performances,
ensuring system safety, and increasing system life.

Fault diagnosis deals with unobservable faults that are considered inherent
to the system [1]. Such faults cannot be ruled out at design time and normally
we only desire to know about their existence to at least deploy some prevention
mechanism to handle them. The word diagnosis comes from the medical context
where a diagnosis is the process of identifying a disease by its symptoms. Thus,
diagnosis is performed by analyzing observed event sequences of the system. To
be able to do correct diagnosis without ambiguity, faults should be diagnosable.
The diagnosability property describes the system ability to determine whether
a given fault has effectively occurred based on system observations in a finite
time. The seminal work of Sampath et al. in [2] copes with the identification
of such anticipated but unobservable faults. These can be explained by a given
observable sequence of events based on the system model, which includes both
c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 145–165, 2017.
DOI: 10.1007/978-3-319-68270-9 8

146 L. Brandán Briones and A. Madalinski

normal and expected faulty behavior. Therefore, a system is diagnosable if it
is always possible to determine whether a fault occurred in finite time without
ambiguity.

Testing is a well known practice in industry as well as in research. The aim
of testing is to execute a system implementation to find failures (a manifestation
of a fault in the implementation), i.e. to find a discrepancy between the actual
behavior and the intended behavior described by a specification. In particular,
the model-based testing approach formally describes the system to be tested
with a specification model that expresses its correct behavior. Two advantages
are achieved with this practice: first, formal techniques can be applied to the
model and second, the testing process can be automated. There are two com-
plementary approaches to test implementations: (a) active testing, where test
cases are derived from the specification and then executed in its implementa-
tion checking if the implementation conforms to (w.r.t. a given relation) the
specification; and (b) passive testing, where a monitor passively observes the
implementation without disturbing it and checks if the sequences of observed
events conform to (again, w.r.t. a given relation) the specification. These two
approaches are usually applied in different states of the implementation process.
Normally active testing is performed before the implementation is delivered, in
order to realize if some changes should be done on it. While passive testing is
done when the implementation is already in use, because testing infinitely is
impossible or because the system is already in use. Particularly, our research is
based on model-based testing (MBT), i.e. the research area that comprises the
usage of models to automate test activities and generate tests from the model [3].

Model checking and testing have been combined several times, but these
approaches operate over different types of systems. Model checking operates over
models while testing operates over the real systems that are functioning (imple-
mentation), of course, each of them have their benefits. In this paper we try to
combine diagnosis with testing, which are two approaches that operate over the
same type of systems, i.e. implementations. However, little consideration is given
in the literature to the fact that both testing and diagnosis have similar objec-
tives and methods even though they are, normally, done in separate domains.
Although they are complementary, both can be model-based approaches (using
a specification model, a correct and a faulty model of the system, an obser-
vation model, etc.) and commonly rely on model-checking techniques ensuring
formally that some given properties are satisfied by the model. Both diagnosis
and passive testing try to realize if the behavior of a system is correct, based on
the system observations. This is a crucial and challenging task, both approaches
have similar properties, albeit complementary in their application. They both
require the systematic exploration of the system being analyzed, and they both
reason about single traces of events.

In this paper we first establish a formal definition for testability over tran-
sition system models. Normally, in testing the testability hypothesis is used in
order to be able to perform tests, meaning that, the word testability is used
to describe when and how a test can be executed in a system. However, our

Diagnosis and Testing: How is Their Relation? 147

concern in this paper is how testability of a fault is defined to ensure that a fail-
ure is produced. Preliminary insights were presented in our paper [4] where the
manifestability property is presented. Fault manifestability represents a weak
requirement on faults occurrences and observations for having a chance to be
identified on-line. This property can be verified at the design stage. Later, we
analyze fault testability for model-based testing.

We present a novel framework that integrates fault diagnosis with pas-
sive testing identifying fault conditions to be caught. While testing failures
we are simultaneously performing fault diagnosis with a common engine called
Advanced-proxy. We focus on ioco model-based testing theory [5,6]. Recall that
complete test suites are infinite, and thus, not practically executable. Hence,
possibly some incorrect implementations are not discovered by the testing per-
formed before delivering. Yet, these failures, when they occur, can be detected
by the Advanced-proxy. This gives an extensive inside of the erroneous behav-
ior of the monitored system. Moreover, we show that the set of faults that we
can expose is larger than normally is done in diagnosis, because we combine the
diagnosable faults caught usually by diagnosis with the testable faults that are
not diagnosable.

Finally, we expand our framework to also involve a weighted fault model. We
use this model to represent the severity of an unexpected event. This, in turn,
gives a clue about the gravity of the occurred errors, i.e. what impact such a
failure has on the system and the urgency on fixing it.

The Paper is Organized as Follows. Following Sect. 2 with some related
work, Sect. 3 presents our motivation. In Sect. 4 we present a theoretical back-
ground where we introduce the faulty input-output transition system (FIOTS)
and some notions related to our approach. Later, we make a short introduc-
tion to diagnosis in Sect. 5 and testing in Sect. 6, where we define the testability
property for FIOTS and for MBT. In Sect. 7 the Advanced-proxy is defined, and
we prove several properties for our proposal framework. Moreover, in Sect. 8 we
present an extended model with weighted failures. Finally, in Sect. 9 conclusions
are drawn and future works are presented. Throughout the paper we illustrate
the presented notions with examples.

2 Related Work

Fault diagnosis of discrete event systems has become an active research area
in recent years. A formal foundation for fault diagnosis based on models that
include both nominal and faulty behavior was introduced in [1,2] (which also
included a diagnosability analysis). The system is modeled by a classical automa-
ton with observable and unobservable events. Intuitively, its observable events
correspond to controller commands and sensor readings, while the unobservable
ones correspond to internal activity that is not recorded by sensors. The faults
are also unobservable otherwise it would be trivial to detect them. The diagnosis
problem deals with identifying which unobservable faults, if any, explain a given

148 L. Brandán Briones and A. Madalinski

observed sequence of events based on the model of the system. If a system is
diagnosable, it is always possible to determine whether some fault occurred in
finite time without ambiguity.

Many extensions of [2] have been adopted and further developed by many
groups. For example, to improve efficiency the twin plant approach has been
introduced in [7,8]. Many modeling formalisms have been used such as automata,
timed automata [9], its probability extensions [10] and Petri nets [11–13]. Addi-
tionally modular and distributed approaches have been proposed [14–16]. For a
review on this topic refer to [17].

A weaker property, called manifestability has been presented in [4], which
describes the capability of a system to manifest (i.e. to be distinguishable from
any non faulty behavior) a fault occurrence in at least one context (i.e. one
future behavior). This is in contrast to diagnosability, where all future behaviors
of all fault occurrences should be distinguishable from all normal behaviors.
Manifestability is the weakest property that requires the system to have a chance
of identify the fault occurrence under fairness assumption over the branching
chosen.

The theory of testing has become a strong subject of research, in particular,
the application of formal methods in the area of model-driven testing has led to a
better understanding of the notion of conformance between implementations and
specifications. Automated generation methods for test suites from specifications
have been developed [3,5,18,19], which have led to a new generation of powerful
test generation and execution tools such as SpecExplorer [20], TorX [21] and
TGV [22].

A clear advantage of a formal approach for testing is the provable soundness
of the generated test suites, i.e. the property that each generated test suite will
only reject implementations that do not conform to the given specification. In
many cases an exhaustiveness result is obtained, i.e. the property that for each
non-conforming implementation a test case can be generated that will expose
all errors (cf. [5]). In practice, the above notion of exhaustiveness is usually
problematic, since exhaustive test suites will contain infinitely many tests. This
raises the question of test selection, i.e. the selection of well chosen, finite test
suites that can be generated (and executed) within the available resources [23].
However, it is clear that some tests will not be executed before product delivery
(maybe the longer ones or the non common ones, etc.).

On the other hand passive testing offers a continuous monitoring for systems
under test without disturbing them while they are in operation. The ioco passive
testing approach was introduced in [6], where traces are extracted by means
of a proxy-tester which represents an intermediary between client applications
and the implementation (i.e. without running in the same environment as the
implementation). A combination of ioco passive testing and runtime verification
was presented in [24].

The testability and diagnosability metrics standard (IEEE Std 1522) has
been introduced in [25] to provide a formal foundation to the test community.
A purpose of this standard is to provide a common basis for discussing and

Diagnosis and Testing: How is Their Relation? 149

comparing testability/diagnosability characteristics of a given system. Although,
there is not any formal definition of fault testability.

3 Motivation

Our research arose from the fact that diagnosis and testing consider faults in a
different manner. As a starting point both consider faults as unobservable events.
However, diagnosis considers expected faults, i.e. it considers that faults belong
to the specification, while testing does not. Diagnosability (what is done before
a diagnosis can be done) studies how do we have to modify the specification of
a system in a way that these unobservable expected faults become diagnosable
(meaning it does not look at the cause of a failure, but it considers that some
observations imply that a fault occurred). On the other side, testing considers
unexpected faults and it studies how we can realize that a fault occurred by
observing the manifestation (i.e. failure) of that unexpected fault.

Fig. 1. Motivation

The idea behind our proposed framework is illustrated in Fig. 1. Suppose a
client orders a system to be diagnosable for a set of faults already known that
can occur (Why? Because the customer needs a means to check for possible
problems to avoid major crashes). A company builds such a system from the
given specification. Note that, if necessary, the specification has to be modified
(by adding more observation, i.e. sensors) to satisfy the diagnosability property
in order to achieve a correct diagnosis. This is followed by the testing phase,
where a set of tests is derived but only a finite subset can be executed. Meanwhile,
an Advanced-proxy (the passive Testing engine and the Diagnoser) is derived.
Finally, after testing has been successfully performed the implemented system
and the Advanced-proxy are delivered to the client. With the Advanced-proxy

150 L. Brandán Briones and A. Madalinski

the client is able to perform, tests for failures from an incorrect implementation
(which had not been caught in the inherently incomplete testing) and to diagnose
inherent unobservable faults.

The famous m-consecutive-k-out-of-n system can benefit from our approach.
This system consists of a sequence of n ordered components along a line such
that the system works if and only if less than k consecutive components in the
system fail [26], but if more than k consecutive components do fail, the system
stops working. A real-life example of this kind of system is a gas pipe going
upward with several pumps.

Therefore, in the specification of this system, the failing of k consecutive
components is a diagnosable fault, however, if a larger number of consecutive
components fails then a failure is observed and the system stops working.

4 Preliminaries

We use standard definitions for labeled transition systems. Let Σ be a finite
set of events. Then, with Σ∗ and Σω we denote the set of all finite and infinite
sequences over Σ. With σ � ρ we denote that σ ∈ Σ∗ is a prefix of ρ ∈ Σ∗.

A faulty input-output transition system is a FIOTS with the set of observable
events, Σobs, subdivided into input events ΣI and output events ΣO; and a set
of unobservable events Σ¬obs with a subset of faulty events ΣF . In this paper, to
simplify our presentation we consider that there is only one type of fault denoted
f , i.e. ΣF = {f}, as in [2] this restriction can be extended to multiple types of
faults. Formally:

Definition 1 (FIOTS). A faulty input-output transition system, denoted
FIOTS, is a tuple L = 〈Q, q0, Σobs, Σ¬obs, T 〉, where
• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• T ⊆ Q × Σ × Q is a finite branching transition relation;
• Σ is a finite set of events partitioned into: a set of observable events Σobs,
subdivided in a set of input events ΣI and output events ΣO (i.e. Σobs =
ΣI ∪ΣO & ΣI ∩ΣO = ∅); and a set of unobservable events Σ¬obs containing
a subset of fault events ΣF (i.e. ΣF ⊆ Σ¬obs). With Σ = Σobs ∪ Σ¬obs and
Σobs ∩ Σ¬obs = ∅.
We use ‘?’ to denote input events (a? ∈ ΣI) and ‘!’ to denote outputs events

(a! ∈ ΣO). With τ we denote the unobservable events and in case we like to
specify that it is a fault we denote it by f .

Figure 2(a) depicts an example FIOTS = 〈{q1, q2, q3, q4, q5, q6, q7, q8}, q1,
{a?, c?, b!, c!}, {f}, {(q1, a?, q2), (q2, a?, q5), (q5, b!, q2), (q1, f, q3), (q3, a?, q6), (q6,
a?, q7), (q7, c!, q6), (q3, c?, q8), (q8, c!, q8), (q8, c!, q4), (q4, c!, q4), (q1, c?, q4)}〉, which
will be used throughout this paper as a running example.

Diagnosis and Testing: How is Their Relation? 151

Definition 2. Let L = 〈Q, q0, Σobs, Σ¬obs, T 〉 be a FIOTS, then

– A path in L is a sequence ρ = q0a0q1a1 . . . such that for all i we have
(qi, ai, qi+1) ∈ T . We denote by paths(q) the set of paths starting in q. The
set cycle(L) is the set of all cycle that occur in L, where a cycle is a paths
starting and ending in the same state. The trace σ of a path ρ, is the sequence
σ = a0a1 . . . of events in Σ occurring in ρ, so σ ∈ Σ∗;

– We write q
a→ q′ in case (q, a, q′) ∈ T , we use q

a→ to denote that there exists
a state q′ such that q

a→ q′, and we use q → to denote that there exists event
a and a state q′ such that q

a→ q′;
– We write q

ε⇒q′ in case q = q′ or there exist states q1, · · · , qn−1 and unobserv-
able events a1, · · · , an ∈ Σ¬obs such that q

a1−→q1, · · · , qn−1
an−→q′ (note that

ai can be a f). For a given an event a ∈ Σ we write q
a⇒q′ if there exist

q1, q2 such that q
ε⇒q1, q1

a−→q2, q2
ε⇒q′. And also, for a given observable event

a ∈ Σobs we write q
a⇒F q′ if there exist q1, q2 such that q

ε⇒q1, q1
f−→q2, q2

a⇒q′.
Moreover, given a trace σ = a1 . . . an we write q

σ⇒q′ if exist states q1 · · · qn−1

such that q
a1⇒q1 . . . qn−1

an⇒q′;
– In case σ is finite, with |σ| we denote the length of the trace σ. Given n ∈ N

and a trace σ ∈ traces(L) with n ≤ |σ|, we denote by σn the initial n sequence
a0a1 . . . an of events in Σ occurring in σ;

– The observable trace of a trace σ, denoted obs(σ), is the sequence a0a1 . . . of
events in Σobs occurring in σ;

– We denote by tracesF (L) the set of traces in L that end with a fault, i.e.
tracesF (L) = {σ ∈ traces(L) | σ ∈ Σ∗ΣF }, tracesωF (L) the set of all infinite
traces in L with at least one fault, i.e. tracesωF (L) = {σ ∈ traces(L) | σ ∈
Σω ∧ ∃ σ′ ∈ tracesF (L) ∧ σ′ � σ}, tracesω¬F (L) the set of all infinite traces in
L without any fault, i.e. tracesω¬F (L) = {σ ∈ traces(L) | σ ∈ Σω ∧ f /∈ σ};

– Given a natural number k ∈ N we denote by tracesF,k(L), the set of all traces
σ such that there exists another trace σ′ that ends in a fault and σ extends
σ′ with at least |σ′| + k events, i.e. tracesF,k(L) = {σ ∈ traces(L) | ∃ σ′ ∈
tracesF (L) ∧ |σ′| + k ≤ |σ| ∧ σ′ � σ};

– Given a trace σ ∈ traces(L), we write L after σ to denote all the states that
we can reach after the observable events of σ, i.e. L after σ = {q ∈ Q|q0 σ⇒q}.
For example, in Fig. 2(a), π1 = q1a?q2a?q5b!q2 is a path, π2 = q2a?q5b!q2 is

a cycle, trace(π1) = a?a?b! and |trace(π1)| = 3. Moreover, if σ = fa?a?c!a?c!
then its initial sequence until 3 is σ3 = fa?a?, its observable trace is obs(σ) =
a?a?c!a?c! and f ∈ σ denotes that there is an error event in this trace.

We restrict our work to convergent and live FIOTS, meaning that for all L ∈
FIOTS, each cycle has at least one observable event and for all states there exists
a transition initiated in that state, i.e.

∀ π ∈ cycle(L) : ∃ a ∈ Σobs : a ∈ π (1)

∀ q ∈ Q : q → (2)

152 L. Brandán Briones and A. Madalinski

c!

c?

a?
a?

5
b!

2

1 3

8

c!

a?
76

4

f a?

c?

c!
c!

c?

a?
a?

5
b!

2

1 3

8

c!

a?
76

4

f a?

c?

c!

δ

δ

δ(a) (b)

Fig. 2. (a) Faulty input-output transition system, (b) FIOTS with δ-transitions

5 Diagnosis and Diagnosability

Diagnosis is the process of observing the system in order to recognize if a fault
occurred. This is based on the assumption that to be able to do diagnosis the
observations that assure a fault existence are known [1,2]. The fact that in
this paper we consider only one type of fault, does not imply that systems can
have only one fault, systems can have several instances of that type of fault. To
perform a correct fault diagnosis (without ambiguity) faults must be diagnosable.
The fault diagnosability property determines which observation sequence of a
system, if any, explains a given anticipated fault (modeled us an unobservable
event). The idea is that, if the system is diagnosable, each fault occurrence
generates a unique sequence of observable events that explains that fault. The
notion of diagnosability was introduced in [2]. Informally, a fault f is diagnosable
if it is possible to detect it using a record of observed events, in a finite delay.
On the contrary, a fault is not diagnosable if there exist two infinite paths from
the initial state with the same infinite sequence of observable events but only
one of them contains the fault and the other does not. In such a case it cannot
be concluded whether a fault has or has not occurred.

Definition 3 (Diagnosability). Let L be a FIOTS, then L is diagnosable if
and only if the following holds, ∀ f ∈ ΣF : ∃ n ∈ N : ∀ ρ ∈ tracesF,n(L):

∀ α ∈ traces(L) : obs(ρ) = obs(α) : f ∈ α

To verify the diagnosability property the twin-plant method was presented
in [7], where a polynomial check is done in contrast to the initial exponential
approach [2]. The verification of diagnosability is done by putting two observers
of the system in parallel. An observer is a non-deterministic system with the
same set of observable traces as the initial system with states which estimate
the possible system states. The states of an observer are reached by taking only
observable transitions.

In order to perform a correct fault diagnosis (without ambiguity) the fault
system specification (given as FIOTS) must be diagnosable. Once we ensure
that all faults in a system are diagnosable (if it is necessary some sensors are

Diagnosis and Testing: How is Their Relation? 153

added [1]) the idea is to build a Diagnoser, a system that recognizes whether
some traces happen, that imply a fault occurrence. Following the ideas presented
in [2], given a fault diagnosable system the diagnosis will be without ambiguity,
i.e. it gives a correct explanation of fault occurrence.

Let L be a FIOTS, then a Diagnoser of L is a deterministic FIOTS that
can be seen as an extension of a deterministic observer of L, which gives: (1)
an estimate of the current state of the system after the occurrence of every
observable event; (2) an information on potential past fault occurrences in the
form of fault labels attached to the state estimation. Label F is used to denote
states that can be reached by a trace containing some event f ∈ ΣF , whereas
label N is used for states that can be reached by a trace that does not contain
any event in ΣF .

Definition 4 (Diagnoser). Given S = 〈QS , qS
0 , ΣS

obs, Σ
S
¬obs, T

S〉 a FIOTS, its
Diagnoser D = 〈QD, qD

0 , ΣD
obs, Σ

D
¬obs, T

D〉 is defined as follows

• QD ⊆ P(QS × {N,F});
• qD

0 = {(qS
0 , N)};

• ΣD
obs = ΣS

obs;
• ΣD

¬obs = ∅;
• TD = {(Q, a,Q′)| ∃ q1, q2 ∈ QS : (q1, l) ∈ Q : ∀ (q2, l′) ∈ Q′:

(q1
a⇒F q2 ∈ TS ∧ l′ = F)∨ (q1

a⇒q2 ∈ TS ∧ (l = F ∧ l′ = F))
∨(q1

a⇒q2 ∈ TS ∧ q1
a

�⇒F q2 ∈ TS ∧ (l = N ∧ l′ = N))}
Particularly, if a state Q is reached in a Diagnoser D after a trace σ, i.e.

Q = (D after σ), such that for a diagnosable f with n the number that makes
f diagnosable, i.e. σ ∈ tracesF,n(S), then

� ∃ q′ ∈ QS : (q′, N) ∈ Q.

Figure 3 presents a Diagnoser for our example from Fig. 2(a). The Diagnoser
performs diagnosis while it observes on-line the behavior of the system. Faults
are diagnosed by comparing the labels associated with the state estimation. For
example in Fig. 2(a) observing a?a?c! we can conclude that a fault occurred,
because the reached state has only a label F . Note that observing just a?a? we
are not certain yet if some fault occurred or not, because we have label N and
label F .

1N

5N,7F2N,6F

2N 5N
a?

b!

6F 7F
a?

c!

b!

c!

4N,8F 4N,4F
c!

c?
c!

a?a?

Fig. 3. Diagnoser for our running example

154 L. Brandán Briones and A. Madalinski

Generally, diagnosability is a very strong property that requires a high num-
ber of sensors. Consequently, it is not rare that developing a diagnosable system
is too expensive.

6 Testing and Testability

Testing is the process of executing an implementation trying to realize if a fail-
ure occurred. Testing should produce observable, unambiguous and consistent
results. If a failure occurred it is assumed that there exists a fault that produced
that failure. Following this idea, we treat faults as unobservable and failures as
observations that tell us that an unobservable fault occurred.

As an example consider the system in Fig. 2(a), clearly the fault f is not
diagnosable, because for any k value some traces with k events after a f occur-
rence we are not able to realize if the fault occurred or not. However if we
observe a?

�

a?c! we can be sure that fault f occurred. Therefore, we try to define
testability as the property that describes this type of situations.

Testability. We consider that a failure is the manifestation of a fault occurrence.
So, if a testing procedure is not able to contemplate a given failures then the
fault that produces it is not testable with that procedure. For example, if a
testing procedure only contemplates events and not timing, it can not test a
delay. Then, we consider fault testability as the fault ability to be tested.

We formally define the testability property over FIOTS as the property a
fault has to have such that its existence can be detected. Thus, we consider a
fault f testable if there exists an observation (a failure) that tells us that each
time we see that observation we can be sure that f occurs.

Definition 5 (Testability). Let L be a FIOTS we say that a fault f is testable
in L if and only if

∃ σ ∈ tracesF (L) : ∃ σ′ ∈ traces(L) : σ � σ′ : ∀ σ′′ ∈ traces(L) :
if obs(σ′) = obs(σ′′) then f ∈ σ′′

Moreover we call σ′ the failure that denotes the presence of f .

It may be advantageous to realize which faults we can not test, i.e. when a
fault f is not testable. A fault f is not testable if and only if

∀ σ ∈ tracesF (L) : ∀ σ′ ∈ traces(L) : σ � σ′ : ∃ σ′′ ∈ traces(L) : obs(σ′)
= obs(σ′′) ∧ f /∈ σ′′

This means that there exists a fault that, for all traces that contain that fault
those traces always have another trace, with the same observability, that does
not contain that fault. In other words it is not possible to observe a behavior that
shows that a fault occurred, without ambiguity; then that fault is not testable.

Diagnosis and Testing: How is Their Relation? 155

Theorem 1. If fault f is diagnosable in FIOTSL, then it is testable in L.

Proof. Because f is diagnosable lets k be the natural number that makes f diag-
nosable in L. So, we know from diagnosability definition that ∀ σ ∈ tracesF,k(L) :
∀ σ′ ∈ traces(L) : obs(σ) = obs(σ′) : f ∈ σ′ then we know that at least one trace
has all its continuations with f , what is exactly the requirement for the testa-
bility definition. �

6.1 Model-Based Testing

Model-based testing (MBT) relies on models of the system under test and its
specification to automate test case derivation, test verdict, etc. The idea is that
the testing process tries to find a discrepancy between the specification model
and the implementation.

We redefine testability but now in MBT. We consider that there exists an
unobservable fault in the implementation that produces an observable failure
and it shows a discrepancy with respect to the specification, i.e. there is no trace
observably equivalent in the specification, we consider this discrepancy a failure.

Definition 6 (MB-testability). Let S be a specification and P an implemen-
tation both in FIOTS then we say that a fault f is MBtestable in P if and only
if

∃ σ ∈ tracesF (P) : ∃ σ′ ∈ traces(P) : σ � σ′ :� ∃ σ′′ ∈ traces(S) : obs(σ′) = obs(σ′′)

Moreover we call σ′ the failure that denotes the presence of f .

The biggest difference here is that fault testability concerns the observability
of the implementation and the model specification.

Lemma 1. Given a specification S ∈ FIOTS and an implementation P ∈
FIOTS then if f is MBtestable in P then there exists a failure in P .

Proof. Because f is MBtestable we know that there exists a trace σ ∈ tracesF

(P) : ∃ σ′ ∈ traces(P) with σ � σ′ such that does not exist σS ∈ traces(S)
with obs(σ′) = obs(σS). Therefore σ′ is the failure, because it proves that the
implementation shows a behavior not specified. �

6.2 The ioco Model-Based Testing

We recall the basic theory about test derivation from faulty input-output tran-
sition systems similarly as it was initially defined in [5] for input-output transi-
tion systems. Although, our approach follows the ioco testing theory, it can be
applied to any testing relation with tree-shape tests.

An important contribution of the ioco testing theory is the quiescence con-
cept, i.e. the absence of outputs events in a given state. Trace inclusion with
the quiescence concept is more powerful than simple trace inclusion. Thus, we

156 L. Brandán Briones and A. Madalinski

incorporate quiescence in specifications, by adding a self-loop q
δ−→q labeled with

a special label δ to each quiescent state q, i.e.

∀ q ∈ Q with ∀ a ∈ ΣO,τ : q
a

�→ (3)

and consider δ as an output event. From now on we assume that FIOTS can
perform a δ event as an output event, i.e. for a given system L we consider
δ is in ΣL

O. In cases we need to denote that a FIOTS is not extended with
δ transitions, we specially denoted as S¬δ. Note that because faults are not
observable we consider them as τ transitions.

So, from now on we assume that systems can perform a δ event as an output
event, and we consider our systems extended with δ-transitions as in Fig. 2(b).
Moreover, we lift all concepts and notations (e.g. traces, etc.) that have been
defined for FIOTSs to FIOTSs extended with δ-events. Then σ = a?δa? is a
trace in our example from Fig. 2(b).

Definition 7. Let L = 〈Q, q0, Σobs, Σ¬obs, T 〉 be a FIOTS, then given a set of
states Q′ ⊆ Q, we write out(Q′) to the set of output events that are allowed in all
states of the set Q′, i.e. out(Q′) = {a! ∈ ΣO|∃ q ∈ Q′ : q

a!⇒}∪{δ|∃ q ∈ Q′ : q
δ⇒}.

As normally is done in model-based testing, we restrict our work to input-
enabling FIOTS implementations, meaning that for every P implementation all
inputs are accepted in all states, i.e.

∀ q ∈ Q : ∀ a? ∈ ΣI : q
a?⇒ (4)

We adapt the ioco testing relation to relate an input-enabled implementation
with a specification modeled as FIOTS, where the output of the implementation
should be a subset of the allowed specification outputs.

Definition 8. Given a specification S ∈ FIOTS and an input-enabled imple-
mentation P ∈ FIOTS then:

P iocoS if and only if ∀ σ ∈ traces(S) : out(P after σ) ⊆ out(S after σ)

In this definition we consider that traces can contain δ, which are called
δ-Straces (meaning that δ is considered as a normal event). Note, that as in
the initial ioco definition in [5] our traces contain: observable events (ΣI,O),
unobservable events (τ and f) and δ-events (δ included in ΣO).

The ioco test cases are adaptive, that is, the next event to be performed
(observe the system, stimulate the system or stop the test) may depend on the
test history, i.e. the trace observed so far. If, after a trace σ, the Tester decides
to stimulate the system with an input a?, then the new test history becomes
σa?. If, after a trace σ, the Tester decides for an observation, the test accounts
for all possible continuations σb! with b! ∈ ΣO an output event (again including
quiescent event). The Tester contains two special states pass and fail, pass �=
fail, so that a Tester can stop the recursion using the pass state, and in case that
an output event is not accepted by the specification the Tester uses the fail state

Diagnosis and Testing: How is Their Relation? 157

to denote it. The ioco theory requires that tests are fail fast, i.e. stop after the
discovery of the first failure, and never fail immediately after an input. Formally,
a test case consists of the set of all possible test histories obtained in this way.

Definition 9

– A test case (or test) t for an FIOTS L is a finite, prefix-closed subset of Σ∗

such that
• if σa? ∈ t ∧ a? ∈ ΣI , then σb /∈ t for any b ∈ Σ with a? �= b;
• if σa! ∈ t ∧ a! ∈ ΣO, then σb! ∈ t for all b! ∈ ΣO;
• if σ /∈ traces(L), then no proper extension of σ is contained in t.

– The length |t| of test t is the length of the longest trace in t, i.e. |t| =
maxσ∈t |σ|.
Note that in this definition we consider that δ belongs to ΣO.

Figure 4 shows tree different tests of the specification presented in Fig. 2(b).
The failure states are represented as an octagon with a cross meaning that the
system is in a failure if it arrives to that state, we call them error-states.

δ

pass

c!b!
δ

!b !c

δ b!
c!

δ b! c!

c!b!δ

pass

c?
δ

a?

c!
b!

a?

pass pass

c!
b!

δ

Fig. 4. Tests

Because ioco-testing is proven [5] to be sound and exhaustive we know that
all failures can be exposed by its tests. This means that if a fault is testable then
it can be detected by the ioco-testing.

7 Advanced-Proxy

The idea of our Advanced-proxy is to combine diagnosis checking of modeled
faults with testing of failures. We propose to augment the Diagnoser with error
transitions that will end up in failure states. In a sense we treat all kinds of
errors, i.e. expected unobservable faults and failures from unexpected unobserv-
able faults. One of the main advantages of our method is that we extend the
testing phase, approaching us to exhaustive testing.

Since we propose to do passive testing in a proxy style, we do not interfere
with the normal behavior of the system. We only require logs of the observable
information to conclude if an expected fault or an unexpected failure happens.
Following some ideas from passive testing of [6], we observe the system to be
checked without any interaction with it.

158 L. Brandán Briones and A. Madalinski

Given that the Diagnoser is a deterministic model of the system with more
information in their states, we can augment it with the information of where to
go (to an error-state) when a unexpected event comes, i.e. an output event not
allowed by the implementation or an input event not expected by the specifi-
cation. First, we add to the Diagnoser an error-state that subsumes all outputs
events that were not allowed by the specification. Second, we add another state,
called M -state, that subsumes all input events that were not expected by the
specification. Note that, because we consider implementations as input-enabled
our second M -state will inform us about an input event that is allowed by the
implementation but should not be there, meaning that the implementation is
used incorrectly. The following definition explains our augmented procedure to
create the Advanced-proxy. It is important to note that the Diagnoser used in
our construction of the Advanced-proxy is the Diagnoser from the specification
before its δ-extension, i.e. D(S¬δ). But to build the proxy-tester part we consider
that specifications are extended with δ-events.

Definition 10 (Advanced-proxy).Given D(S¬δ)=〈QD, qD
0 , ΣD

obs, Σ
D
¬obs, T

D〉
a Diagnoser checker of the specification S = 〈QS , qS

0 , ΣS
obs, Σ

S
¬obs, T

S〉, then its
Advanced-proxy A = 〈QA, qA

0 , ΣA
obs, Σ

A
¬obs, T

A〉 is defined as follows:

• QA = QD ∪ {E} ∪ {M};
• qA

0 = qD
0 ;

• ΣA
obs = ΣD

obs;
• ΣA

¬obs = ΣD
¬obs = ∅;

• TA = TD ∪
{(Q, a!,E)| ∀ a! ∈ ΣS

O ∪ {δ} : ∀ Q ∈ QD : ∀ q′ ∈ QS : q′ ∈ Q ∧ q′ a!

�→}∪
{(Q, a?,M)| ∀ a? ∈ ΣS

I : ∀ Q ∈ QD : ∀ q′ ∈ QS : q′ ∈ Q ∧ q′ a?

�→}

b!c!

c!δ
b!δ

b!c!

b!δ b!δ

b!c!

 δb!c!

4N,8F c!

1N

c!
4N,4F

5N,7F2N,6F a?
2N 5N

a?

b!

6F 7F
a?

c!
a?

c!

b!

c?

c?

a?c?a?c?

a?c?

a?c?

c?

a?c?

c?

M

E

Fig. 5. Diagnoser(S¬δ) + Tester(S) = Advanced-proxy

Diagnosis and Testing: How is Their Relation? 159

Figure 5 shows the Advanced-proxy for our running example. The idea of
considering the M -state becomes interesting when we think that implementa-
tions can interact with a malicious user that is trying to take advantage of the
implementation input-enabled property.

Given that we consider the δ extension of our specification an interesting
question arises: why we do not consider that after observing a δ event in the
first state (q1) we can be sure that a fault occurred? Even this is right, in this
case we are doing diagnosis where we suppose we only diagnose faults that are
diagnosable as in Definition 3, and in this case f is not diagnosable. This situation
is very similar to the one considered in our previous paper [4] where we do not
consider all futures but only some of them to be sure a fault occurred.

Corollary 1. Given S = 〈QS , qS
0 , ΣS

obs, Σ
S
¬obs, T

S〉 a FIOTS specification, with
the Advanced-proxy A = 〈QA, qA

0 , ΣA
obs, Σ

A
¬obs, T

A〉 of S and f is a diagnosable
fault in S, then

∃ σ ∈ traces(S) : ∃ Q ∈ QA : Q = (A after σ) and � ∃ q′ ∈ S : (q′, N) ∈ Q

Proof. Suppose σ ∈ tracesF,n(S) with n be the number that makes f diagnos-
able in S. Given D = 〈QD, qD

0 , ΣD
obs, Σ

D
¬obs, T

D〉 the Diagnoser for S¬δ, then by
Definition 4 we know that σ is in traces(D). Moreover, we have that for any state
Q ∈ QD such that Q = (D after σ) then does not exists any state q′ in the
specification S such that (q′, N) is in Q.

Now, by Definition 10 we know that A has the same transition as D plus
some new transition going to states M and E. So we know that if σ is in D then
σ is in A. Moreover because system A do not modify labels on states we can be
sure that for all state Q ∈ QA such that Q = (A after σ) then does not exists
any state q′ in the specification S such that (q′, N) is in Q. �

Corollary 1 proves that if a specification has a diagnosable fault it could be
caught by the Advanced-proxy by arriving to a state where all the labels will be
with F .

Lemma 2. Given P = 〈QP , qP
0 , ΣP

obs, Σ
P
¬obs, T

P 〉 be a FIOTS implementation
of S = 〈QS , qS

0 , ΣS
obs, Σ

S
¬obs, T

S〉 a FIOTS specification, with the Advanced-proxy
A = 〈QA, qA

0 , ΣA
obs, Σ

A
¬obs, T

A〉 of S, and P i� oco S then

∃ σ ∈ traces(P) : σ = σ′a ∧ σ′ ∈ traces(S)∧
σ /∈ traces(S) ∧ σ ∈ traces(A) ∧ E = (A after σ)

Proof. Given that the ioco testing theory is proven to be sound and exhaus-
tive [5] to prove this lemma it is enough to prove that given any test t derived
from S with the ioco algorithm then for any trace σ that ends in a fail state in
that test t this trace is in A and E = (A after σ).

Now because σ in not a specification trace it means that σ = σ′a with
a ∈ ΣO(S), σ′ ∈ traces(S) and a /∈ out(S after σ′). By Definition 10 we know
that if σ′ is in traces(S) then σ′ ∈ traces(A) and because a /∈ out(S after σ′)
then E = (A after σ). �

160 L. Brandán Briones and A. Madalinski

Lemma 2 shows that if a system implementation is ioco incorrect with respect
to a specification then it could be caught by the Advanced-proxy by arriving to
the E state.

Lemma 3. Given S = 〈QS , qS
0 , ΣS

obs, Σ
S
¬obs, T

S〉 a FIOTS specification, with
the Advanced-proxy A = 〈QA, qA

0 , ΣA
obs, Σ

A
¬obs, T

A〉 of S, and ∃ σ ∈ traces(S) :
∃ a? ∈ ΣS

I : σa? /∈ traces(S) then

σa? ∈ traces(A) ∧ M = (A after σa?)

Proof. Because σ ∈ traces(S) we know that σ ∈ traces(A) and because σa? /∈
traces(S) using Definition 10 we know that for all inputs that are not specified
the Advance-proxy will end up in the M state, i.e. M = (A after σa?). �

Lemma 3 proves that for inputs that are not specified in the specification the
Advanced-proxy will manifest them by arriving to the M state.

Composition. The integration of an implementation with our Advanced-proxy
can be modeled by putting the components in parallel while synchronizing on
their common events. Note that here we do not relate inputs with outputs and
we do not make them outputs as normally it is done in the literature. Instead we
relate the same events, inputs with inputs and outputs with outputs. We take
this decision with the idea to be as transparent as we can be with the proxy,
so that a user of the implementation does not notice the proxy presence. This
is done in that way so that the existence of this proxy does not interrupt the
normal behavior of our system. The synchronization between an implementation
P and an Advanced-proxy A is denoted by P ||A.

Definition 11 (composition). Given P = 〈QP , qP
0 , ΣP

obs, Σ
P
¬obs, T

P 〉 be a
FIOTS implementation of S = 〈QS , qS

0 , ΣS
obs, Σ

S
¬obs, T

S〉 a FIOTS specification
and A = 〈QA, qA

0 , ΣA
obs, Σ

A
¬obs, T

A〉 the Advanced-proxy of S, the parallel compo-
sition P ||A = 〈QP ||A, q

P ||A
0 , Σ

P ||A
obs , Σ

P ||A
¬obs , TP ||A〉 is defined as follows:

• QP ||A = {q1||Q2 : q1 ∈ QP ∧ Q2 ∈ QA};
• q

P ||A
0 = qP

0 ||qA
0 ;

• ΣP ||A = ΣP ;
• TP ||A is the minimal set satisfying the following inference rules (a ∈ Σ

P ||A
I,O,τ):

q1
a→ q′

1, a /∈ ΣA
I,O � q1||Q2

a→ q′
1||Q2

q1
a→ q′

1, Q2 = {E} � q1||Q2
a→ q′

1||Q2

q1
a→ q′

1, Q2 = {M} � q1||Q2
a→ q′

1||Q2

Q2
a→ Q′

2, a /∈ ΣP
I,O � q1||Q2

a→ q1||Q′
2

q1
a→ q′

1, Q2
a→ Q′

2, a �= τ � q1||Q2
a→ q′

1||Q′
2

Note that, because our Advanced-proxy does not have internal transitions,
i.e. τ , it is output enabled and the implementation is input-enabled then (Q2

a→
Q′

2) does not happen. Another important part of this definition is that if the
Advanced-proxy arrives to states E or M it does not block the implementation
but it stays in the same state.

Diagnosis and Testing: How is Their Relation? 161

8 Advanced-Proxy over Weighted Fault Model

We can extend our Advanced-proxy with the idea that specifications are models
that, not only, provide the expected behaviour but also they can provide the
unexpected behaviour. Moreover, they can give a severity of the unexpected
events. Following the ideas from [23] we present the weighted fault models.

Definition 12 (WFM). A weighted fault model over Σobs is a function w :
Σ∗

obs → R
≥0 such that

0 ≤
∑

σ∈Σ∗
obs

w(σ)

Thus, a WFM w assigns a non-negative error weight to each trace σ ∈ Σ∗
obs.

If w(σ) = 0, then σ represents a correct system behaviour; if w(σ) > 0, then
σ represents an incorrect behaviour and w(σ) denotes the severity of the error.
The higher w(σ), the worse that error. We sometimes refer to traces σ ∈ Σ∗

obs

with w(σ) > 0 as error traces and traces with w(σ) = 0 as correct traces.
An Enriched Specification is a FIOTS L augmented with a state weight func-

tion r. The FIOTS L is the behavioral specification of the system, i.e. its traces
represent the correct system behaviours. Hence, these traces will be assigned
error weight 0; traces not in L are erroneous and get an error weight through r,
as explained below.

Definition 13 (ES). An Enriched Specification E is a pair (S, r), where S =
〈QS , qS

0 , ΣS
obs, Σ

S
¬obs, T

S〉 is a FIOTS and r : QS × ΣO → R
≥0. We require that,

if r(q, a) > 0, then there is no a-successor of q in E, i.e. there is no q′ ∈ QS

such that (q, a, q′) ∈ T .
We denote the components of E by SE and rE and leave out the subscript

E if it is clear from the context. We lift all concepts and notations (e.g. traces,
paths, etc.) that have been defined for FIOTSs to Es.

We wish to create a WFM from the ES E, using r to assign weights to traces
not in L. If there is no outgoing a-transition in q, then the idea is that, for a
trace σ ending in q, the (incorrect) trace σa gets weight r(q, a).

c! δ

b! δb! δ

b! δ

c!
c!

c?

a?
5

b!
2

1
f 3

8

c!

a?
6

4

7

I

IV

IIIII
b!c!

a?

c?

b!c!

a?

δ

δ

δ

b!c!

b!c!

Fig. 6. Spec + faults + failures + weights = Enriched Spec

162 L. Brandán Briones and A. Madalinski

Definition 14 (wE). Given an enriched specification E = (S, r) we define the
function wE : Σ∗ → R

≥0 by

wE(ε) = 0 wE(σa) =

{
min{r(q, a) | q0 σ⇒q} if ∃ r(q, a)
0 otherwise

It is proven that given an enriched specification E then, if wE(σa) > 0, then
σ ∈ traces(E), but σa /∈ traces(E). So, we create our Enriched-advanced-proxy
similarly as we did the Advanced-proxy but for all erroneous outputs from the
specification instead of going to the E-state now they go to a state that represents
the severity of producing that output accordingly with the specification.

Figure 6 shows the Enriched Specification for our running example, where
to simplify the figure we use roman numbers, so r(q1, c!) = 2, r(q1, b!) = 2,
r(q5, δ) = 3, etc. It consists of the specification of expected behavior and the
severity of unexpected output events.

Definition 15 (Enriched-advanced-proxy). Given a Diagnoser checker
D = 〈QD, qD

0 , ΣD
obs, Σ

D
¬obs, T

D〉 of a system S = 〈QS , qS
0 , ΣS

obs, Σ
S
¬obs, T

S〉 and
E = (S, r) a enriched specification, A = 〈QA, qA

0 , ΣA
obs, Σ

A
¬obs, T

A〉 the Enriched-
advanced-proxy is defined as follows:

• QA = ∪∀ r(q,a)=kk ∪ QD ∪ {M};
• qA

0 = qD
0 ;

• ΣA
obs = ΣD

obs;
• ΣA

¬obs = ΣD
¬obs = ∅;

• TA = TD ∪
{(Q, a!, k)|∀ a! ∈ ΣS

O ∪ {δ} : ∀ Q ∈ QD : ∀ q′ ∈ QS : q′ ∈ Q : k = min
{r(q′, a!)|q′ a!

�→}}
∪ {(Q, a?,M)|∀ Q ∈ QD : ∀ a? ∈ ΣS

I : ∀ q′ ∈ QS : q′ ∈ Q ∧ q′ a?

�→}

b!c!
b!c!

b!δ δb!

b!c!δ

b!δ

δc!

b!c!

4N,8F

c?

c!

1N

4N,4F

5N,7F2N,6F a?
2N 5N

b!

6F 7F
a?

c!

III

II

c!
a?

I

c!

a?

M

c? a?c?
c? a?c?

a?c?

c?

a?c?

b!

a?c?

IV

Fig. 7. Enriched Advanced-proxy

Diagnosis and Testing: How is Their Relation? 163

Figure 7 shows the Enriched-advanced-proxy for our running example. Note
that if an output δ event is observed in state [5N, 7F] then the severity of that
error is the minimum between the severity of doing δ in state 5 and doing it in
state 7 from our enriched specification from Fig. 6.

In our Enriched-advanced-proxy we have a diagnoser for predictable faults,
an informer that tells us when the implementation is trying to be used differently
as it was expected, plus a tester that informs us not only when an output was
not expected but also the severity of producing that output.

Our Enriched advanced-proxy has the same power of a normal Diagnoser,
with the power of a passive Tester, plus the power to know the severity of
a possible ioco testing error. With the Diagnoser we expect to catch all the
unobservable faults to be able to react and prevent major problems. With the
Tester we expect to be able to be as close as we can to infinite nature of the
formal testing approach, and moreover, with the severity knowledge we expect
to be able to inform not only when a error happens but also to quantified how
many problems this error makes.

9 Conclusions

The activities of diagnosis and testing are complementary: diagnosis tries to
check for anomalies that show the presence of faults (inherent to the system)
in order to take measures about it; while testing tries to detect failures, i.e.
discrepancies between the actual behavior and the intended one described by
the specification. In this paper we presented a formal definition of testability
in general, as well as in the model-based context. Then, we presented a moni-
toring engine called Advanced-proxy, where we combine diagnosis and passive
testing so that they can be performed simultaneously. Thus we can identify pre-
dictable faults of the system and failures from incorrect implementations (which
had been missed by the inherently incomplete testing). Also, we can capture if
a malicious user is triggering the implementation with an input that was not
specified. Moreover, we consider a weighted failure model that can inform about
the severity of a failure and extended our Advanced-proxy with this resource.

Referring to the questions in our title we conclude that the relation between
diagnosis and testing is very robust and that they can be combined as in our
Advanced-proxy, where we profit from both manners of considering errors.

We thank the anonymous reviewers and Joost-Pieter Katoen for their careful
reading of our manuscript and their many insightful comments and suggestions.

References

1. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.: Failure diagnosis
using discrete-event models. IEEE Trans. Control Syst. Technol. 4(2), 105–124
(1996)

2. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete events systems. IEEE Trans. Autom. Control 40(9),
1555–1575 (1995)

164 L. Brandán Briones and A. Madalinski

3. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoret. Com-
put. Sci. 34, 83–133 (1984)

4. Ye, L., Dague, P., Longuet, D., Brandán Briones, L., Madalinski, A.: Fault man-
ifestability verification for discrete event systems. In: ECAI 2016, pp. 1718–1719
(2016)

5. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. In:
TR-CTIT-96-26, CTIT Technical Report Series. Centre for Telematics and Infor-
mation Technology (CTIT), University of Twente, Enschede, The Netherlands
(1996)

6. Salva, S.: Passive testing with proxy-testers. Int. J. Softw. Eng. Appl. 5(4), 1–16
(2011)

7. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing
diagnosability of discrete event systems. IEEE Trans. Autom. Control 46, 1318–
1321 (2000)

8. Tae-Sic, Y., Lafortune, S.: Polynomial-time verification of diagnosability of par-
tially observed discrete-event systems. IEEE Trans. Autom. Control 47(9), 1491–
1495 (2002)

9. Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata.
In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 219–233. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31982-5 14

10. Barigozzi, A., Magni, L., Scattolini, R.: A probabilistic approach to fault diagnosis
of industrial systems. IEEE Trans. Control Syst. Technol. 12(6), 950–955 (2004)

11. Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed monitoring of concurrent
and asynchronous systems*. Discrete Event Dyn. Syst. 15(1), 33–84 (2005)

12. Genc, S., Lafortune, S.: Distributed diagnosis of place-bordered Petri nets. IEEE
Trans. Autom. Sci. Eng. 4(2), 206–219 (2007)

13. Madalinski, A., Khomenko, V.: Diagnosability verification with parallel LTL-X
model checking based on Petri net unfoldings. In: 2010 Conference on Control and
Fault-Tolerant Systems (SysTol), pp. 398–403. October 2010

14. Brandán Briones, L., Madalinski, A. Ponce de León, H.: Distributed diagnosability
analysis with Petri nets. CoRR, abs/1502.07744 (2015)

15. Pencolé, Y., Cordier, M.-O.: A formal framework for the decentralised diagnosis
of large scale discrete event systems and its application to telecommunication net-
works. Artif. Intell. 164(1–2), 121–170 (2005)

16. Schumann, A., Pencolé, Y., Thiébaux, S.: A decentralised symbolic diagnosis app-
roach. In: Proceedings of 19th European Conference on Artificial Intelligence, ECAI
2010, Lisbon, Portugal, 16–20 August 2010, pp. 99–104 (2010)

17. Zaytoon, J., Lafortune, S.: Overview of fault diagnosis methods for discrete event
systems. Annu. Rev. Control 37(2), 308–320 (2013)

18. Tretmans, J., Brinksma, E.: TorX: automated model-based testing. In: Hartman,
A., Dussa-Ziegler, V. (eds.) First European Conference on Model-Driven Software
Engineering, pp. 31–43, December 2003

19. Briones, L.B., Brinksma, E.: A test generation framework for quiescent real-time
systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
64–78. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 5

20. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nach-
manson, L.: Model-based testing of object-oriented reactive systems with spec
explorer. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and
Testing. LNCS, vol. 4949, pp. 39–76. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78917-8 2

http://dx.doi.org/10.1007/978-3-540-31982-5_14
http://dx.doi.org/10.1007/978-3-540-31848-4_5
http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://dx.doi.org/10.1007/978-3-540-78917-8_2

Diagnosis and Testing: How is Their Relation? 165

21. Belinfante, A., Frantzen, L., Schallhart, C.: Tools for test case generation. In:
Model-Based Testing of Reactive Systems, pp. 391–438 (2004)

22. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: a tool for the auto-
matic synthesis of conformance test cases for non- deterministic reactive systems.
Int. J. Softw. Tools Technol. Transf. 7, 297–315 (2005)

23. Briones, L.B., Brinksma, E., Stoelinga, M.: A semantic framework for test coverage.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 399–414. Springer,
Heidelberg (2006). doi:10.1007/11901914 30

24. Salva, S., Cao, T.D.: A model-based testing approach combining passive confor-
mance testing and runtime verification application to web service compositions
deployed in clouds. In: Lee, R. (ed.) Software Engineering Research, Management
and Applications. SCI, vol. 496, pp. 99–116. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-00948-3 7

25. Sheppard, J.W., Kaufman, M.: Formal specification of testability metrics in IEEE
P1522. In: IEEE AUTOTESTCON, Pennsylvania (2001)

26. Kontoleon, J.: Reliability determination of r-successive-out-of-n: F system. Trans.
Reliab. 29(5), 600–602 (1980). IEEE

http://dx.doi.org/10.1007/11901914_30
http://dx.doi.org/10.1007/978-3-319-00948-3_7
http://dx.doi.org/10.1007/978-3-319-00948-3_7

Analysis

Verifying Properties of Systems Relying
on Attribute-Based Communication

Rocco De Nicola1(B), Tan Duong2, Omar Inverso2, and Franco Mazzanti3

1 IMT School for Advanced Studies Lucca, Lucca, Italy
rocco.denicola@imtlucca.it

2 Gran Sasso Science Institute, L’aquila, Italy
{tan.duong,omar.inverso}@gssi.it

3 ISTI CNR, Pisa, Italy
franco.mazzanti@isti.cnr.it

Abstract. AbC is a process calculus designed for describing collec-
tive adaptive systems, whose distinguishing feature is the communica-
tion mechanism relying on predicates over attributes exposed by compo-
nents. A novel approach to the analysis of concurrent systems modelled
as AbC terms is presented that relies on the UMC model checker, a
tool based on modelling concurrent systems as communicating UML-like
state machines. A structural translation from AbC specifications to the
UMC internal format is provided and used as the basis for the analysis.
Three different algorithmic solutions of the well studied stable marriage
problem are described in AbC and their translations are analysed with
UMC. It is shown how the proposed approach can be exploited to identify
emerging properties of systems and unwanted behaviour.

1 Introduction

In the eighties much work was devoted to formalisms for the specification and
verification of concurrent systems. It was already clear that this class of systems
was going to become more and more important even if the Internet, as we know
it today, was not yet available1. In that period in Twente University there was
a group of researchers working on the theory of concurrent systems. That the-
ory was based on the explicit synchronization and message passing primitives
proposed by Milner [25] and Hoare [19], and the researchers wanted to improve
its usability. Indeed, they gave a great contribution to the development of the
language LOTOS that in [8] is introduced as “a specification language that has
been specifically developed for the formal description of the OSI (Open systems
Interconnection) architecture, although it is applicable to distributed, concur-
rent systems in general. In LOTOS a system is seen as a set of processes which
interact and exchange data with each other and with their environment.”

1 Just consider that the email address(es) of the friend to whom this vol-
ume is dedicated were something like uucp: mcvax!utinu1!infed and earn:

hiddink@hentht5.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 169–190, 2017.
DOI: 10.1007/978-3-319-68270-9 9

170 R. De Nicola et al.

The main actor behind the effort was Ed Brinskma, who contributed to both
the definition of the language and to the proof techniques to verify conformance
of communication network protocols implementations with their abstract speci-
fications [9,15].

Since then, communication networks have dramatically changed our world
and we are now working with autonomous agents that roam over the Internet,
adapt to changing situations and environments, interact with other agents or
humans and control essential components of our daily life. It is more and more
common that such autonomous agents interact anonymously and form groups of
peers dynamically according to specific features, or attributes, that the different
peers expose. For instance, members of a social network interested in language
exchange activities can use their own location and favourite languages to find
suitable people nearby.

Thus, the old formalisms and especially their communication primitives,
based on broadcast or direct one-to-one, communication are not appropriate
anymore for selecting partners and programming so called collective adaptive sys-
tems. New formalisms based on alternative communication paradigms and sup-
ported by new proof techniques are on demand for dealing with them. Prompted
by the needs outlined above, we have defined AbC [4] a novel process calcu-
lus that relies on attribute-based communication and formalises the above intu-
ition by combining actor-style concurrency with one-to-many message passing.
Traditional linguistic approaches struggle in the presence of highly-dynamical
environments often seen in real-world situations, from social networks to stock
exchanges. AbC can instead cope with these systems quite naturally, usually
keeping the specifications compact and intuitively easy to follow [11].

The effectiveness of this new formalism has so far been assessed mostly from a
programming standpoint, with prototype implementations of the proposed inter-
action mechanisms in Java [5] and Erlang [11]. However, the potential benefits of
AbC when reasoning about system properties have only been hinted at, through
proof-of-concept verification of simple properties of formal models manually built
from AbC specifications [10].

In this paper, we report our first attempt to the systematic analysis and
verification of attribute-based communication systems. The initial step in our
verification approach consists in mechanically translating the AbC specification
of a given system into a UML-like state machine. In AbC the supported com-
munications primitives require some kind of global view of the attributes of all
the components of a system. The most direct way to model this global status is
to see it as the internal status of a nondeterministic state machine, in which the
behaviour of a single process term is captured by one or more state machine tran-
sitions. In this way, each process can have access to the values of the attributes of
the other processes to effectuate AbC-style communication. In order to preserve
the structure of the AbC process, we explicitly keep track of the execution point
of each process and use to guard the transitions. Depending on the properties
of interest, relevant structural and behavioural aspects of the state machine can
be made observable and accessible to the logical verification engine, through the
definition of specific abstractions rules.

Verifying Properties of Systems Relying on Attribute-Based Communication 171

For system analysis, our approach relies on the UMC verification frame-
work [20]. UMC is specifically oriented towards the early analysis of (likely
wrong) initial system designs, that trades the capacity of dealing with very large
systems with the capacity of helping users to easily understand the source of
design errors. This is achieved, among the other things, by providing interactive
explanations of the results of the evaluations and by allowing the user to observe
and reason on systems at a high level of abstraction without being distracted, if
not overwhelmed, by all the details of the specification.

We illustrate the impact of our approach by considering three variants of the
well studied stable marriage problem (SMP) [17] that can be naturally expressed
in terms of partners’ attributes. Solving the SMP problem amounts to finding
a stable matching between two equally sized sets of elements given an ordering
of preferences for each element. Thus, one has to find an algorithm for pairing
each element in one set to an element in the other set in such a way that there
are no two elements of different pairs which both would rather have each other
than their current partners. When no such pair of elements exists, the set of
pairs is deemed stable. The classical algorithm of [17] goes through a sequence
of proposals initiated by members of one group (the initiators) according to
their preferences. Members of the other group (the responders) after receiving a
proposal, do choose the best initiator between their current partner and the one
making advances. It can be proved that such an algorithm guarantees existence
of a unique stable matching.

Our variants of SMP allow initiators and responders to express their inter-
ests in potential partners by using their attributes rather than their identities
ordered by means of an explicit preference list. Member’s preferences are repre-
sented as predicates over the attributes of potential partners. For one variant,
we follow the classical algorithm where initiators first propose to the responder
they prefer most and then relax their expectations if no partner is willing to
accept their proposal. In the other variant, initiators start proposing with the
lowest requirements, to make sure to get a partner, and gradually increase their
expectations hoping to find better partners.

We experimented our verification methodology on the three above mentioned
algorithmic solutions to SMP by considering a number of properties of interest,
such as stability of the matching and its completeness, existence of a unique solu-
tion, level of satisfaction of the components. These properties are first described
informally and then rendered as logical formulae to be formally checked against
the generated models. The outcome of our verification allows us to make some
considerations both on the different algorithms and on the used tools.

Indeed, the results of our experiments have shown that systems relying
on attribute-based communications can be particularly complex to design and
analyse. However, by exhaustively verifying a specification over all possible
inputs, despite the small problem size considered, we have experienced that many
non-trivial emerging properties and potential problems can indeed be discovered
by following our methodology.

172 R. De Nicola et al.

The rest of the paper is organised as follows. We briefly introduce the AbC
process calculus and the UMC model checker in Sect. 2. We describe our trans-
lation from AbC process terms into UMC textual description of UML-like state
machines in Sect. 3. In Sect. 4, we show how to specify in AbC solutions for both
classical SMP and its attribute-based variants, and then present fragments of
the result of our verification and discuss their outcomes. Finally, Sect. 5 contains
some concluding remarks.

2 Background

The AbC Calculus. AbC [4] is a process calculus centered on the attribute-
based communication paradigm. Its core syntax is reported in Fig. 1. An AbC
system consists of independent components (C). A component can be either
a process (P) and an attribute environment (Γ) or a parallel composition of
components C1 ‖ C2. The behaviour of a component is modeled by process P
executing actions in the style of process algebra, while its attributes are used to
encode some domain aspects (e.g. battery level, component role, identity, . . .) and
are stored in the component’s environment Γ which is a partial mapping from
attribute names to their values. Since attributes play a key role in interactions,
AbC assumes that their names are agreed in advance among components [4].

(Components) C ::= Γ : P | C1 ‖ C2

(Processes) P ::= 0 | (E)@Π.P | Π(x).P | [a := E]P | 〈Π〉P
| P1 + P2 | P1|P2 | K | Π?P1 P2

(Expressions) E ::= v | x | a | this.a

(Predicates) Π ::= tt | E1 �� E2 | Π1 ∧ Π2 | ¬Π

Fig. 1. AbC syntax

A process P can be either an inactive process 0, a prefixing process α.P , an
update process [a := E]P , an awareness process 〈Π〉P , a choice process P1 +P2,
a parallel process P1|P2, or a process call K (under the assumption that each
process has a unique definition K � P).

We often omit the inactive process for convenience. The prefixing process
executes the action α and continues as P . The update process sets the attribute
a to the value of expression E and behaves like P . The awareness process blocks
the execution of process P until predicate Π becomes true. The choice process
can behave either like P1 or P2. The parallel process interleaves the executions
of P1 and P2. For modelling communication AbC relies on two prefixing actions:

(E)@Π is the attribute-based output that is used to send the value of expression
E to those components whose attributes satisfy predicate Π;

Verifying Properties of Systems Relying on Attribute-Based Communication 173

Π(x) is the attribute-based input that binds to the variable x the message
received from any component whose attributes, and possibly the commu-
nicated values, satisfy the receiving predicate Π.

The semantics of output actions are asynchronous and non-blocking while that of
input actions are blocking. The receiving predicates can also be specified over the
message content, in addition to the attributes of sending components. Parallel
components communicate using these two primitives, while parallel processes
within a component simply interleave their executions. An update operation is
performed atomically with the following action, given that the component under
the updated environment can perform that action. In some cases, to model an
update operation alone [a := E], we exploit an empty send action ()@(ff) to obtain
[a := E]()@(ff).

An expression E may be a constant value v, a variable x, an attribute name a,
or a reference this.a to attribute a in the local environment. Predicate Π can be
either tt, a comparison between two expressions E1 �� E2, a logical conjunction
of two predicates Π1 ∧ Π2 or a negation of a predicate ¬Π. We write Γ |= Π to
state that predicate Π holds in environment Γ .

All the above mentioned constructs have already been introduced in [4], and
we refer the interested reader to this paper for the definition of the operational
semantics of the full calculus.

There is however a new operator that we introduce for the first time in this
paper and is very important to support processes in taking decisions depending
on the conditions of the context they are operating in. We have called the new
operator, the awareness operator :

Π?P1 P2

relies on a sort of global awareness and allows the executing system to proceed as
P1 if the environment contains at least one component whose attributes satisfy
predicate Π, and as P2 otherwise. Its operational semantics is modelled by the
following inference rules:

∃ C : Γ (C) |= Π P1
α−→ P ′

1

Π?P1 P2
α−→ P ′

1

� C : Γ (C) |= Π P2
α−→ P ′

2

Π?P1 P2
α−→ P ′

2

The main difference between the local awareness operator and the global one is
that the predicate appearing in the latter can refer to the attributes of external
components.

In fact, the attribute-based communication primitives have been introduced
while abstracting from the selection mechanism of communication partners, e.g.,
ignoring how predicates are evaluated and how components address each other.
When it comes to practical settings, both for programming and verifying AbC
systems, one has to take into consideration those issues which in turn raise the
problem of designing a communication infrastructure. Existing implementations
of AbC paradigm [5,10] do rest on a centralized component which plays the role
of a global registration and a message forwarder. This component has global

174 R. De Nicola et al.

knowledge of the system while other components are not aware of each other
and only interact with this centralized one. In this paper, we also assume that
there is a such global component in an AbC system. While this assumption
guides our translation strategy which will be presented in Sect. 3, one important
benefit is that it allows implementing operators like Π?P1 P2, needing global
awareness.

The UMC Model Checker. UMC [20] is one of the model checkers belonging
to the KandISTI [6] formal verification framework used for analyzing functional
properties of concurrent systems. In UMC, a system is represented as a set of
communicating UML-like state machines, each associated with an active object
in the system. UMC adopts doubly-labelled transition systems (L2TS) [14] as
semantic model of the system behaviour. A L2TS is essentially a directed graph
in which nodes and edges are labelled with sets of predicates and of events,
respectively. The model checker allows to interactively explore this graph and
to verify behavioral properties specified in the state-event based UCTL [16]
logics. UCTL allows to express state predicates over (the labelling of) system
states, event predicates over (the labelling of) single-step system evolutions, and
combine these with temporal and boolean operators in the style of CTL and
ACTL. A UML-like state machine is described in UMC in the form of a class
declaration structured as below:

class Name is

Signals:

-- asynchronous signals accepted by this class

Vars:

-- local variables of this object

Transitions:

-- transitions that determine the behaviour of the class

end Name

where a list of Signals summarises the set of events to which an active
object may react2. A signal denotes an asynchronous event that may trigger
the transitions of an object. An object can send signals to itself by executing
self.signal name. The Vars section contains the private, non statically-typed,
local variables of the class and optionally their initial value. Values can denote
object names, boolean values, integer values or, recursively, (dynamically sized)
sequences of values. The Transitions section declares a set of transition rules
which describe the behaviour of the class and have the following general form:

source -> target {trigger [guard] / actions}

to denote a state transition from state source to state target. The transition
is triggered by a suitable trigger event trigger (which is a signal name) and
if the guard expression is satisfied, all actions inside the transition body are
executed. The execution of actions may in turn change the state of the object or

2 UMC also supports an Operations section for the definition of synchronous events,
which is however not relevant in our study.

Verifying Properties of Systems Relying on Attribute-Based Communication 175

trigger other transitions. In fact, UMC supports a fairly rich language to specify
actions and guards. For more details we refer to the UMC website [2] and the
documentation therein.

While the structure of the semantic in terms of L2TS of an UMC specification
is directly defined by the system behaviour, the labels associated to nodes and
edges of the graph are specified by abstraction rules that allow the designer to
define the relevant internal aspects of the system. These rules are defined inside
the Abstractions section:

Abstractions {

Action: <internal event> -> <edge label>

...

State: <internal system state> -> <node label>

...

}

The possibility of obtaining an L2TS which focuses only the aspects of
the system that are considered relevant is particularly useful in many cases.
For example one can visualize a compact summary of the computation trees,
factorized via appropriate behavioural equivalence notions. Or he can model
check abstract L2TS (without any knowledge of the underlying UMC), and
reason on systems without a detailed knowledge of the underlying concrete
implementation.

3 Transforming AbC Models into UMC Models

In this section we describe a mechanical translation from AbC specifications
into to UML-like state machines. The main effort in this part lays in the care-
ful modelling of the attributes and of their visibility, which implicitly require
some sort of global view of the the system. In fact, since our target modelling
language has no concept of global data, a simple solution would require at least
implementing shared states and appropriate synchronisation. We avoid that by
gathering all the processes in the initial system along with their attributes into
a unique object in the translated model, where the behaviour described by a
single process term is captured by one or more transitions. This successfully
provides a direct access to attributes to every process. However, some ingenuity
is required to respect the process structure of the input system and its precise
semantics. We thus introduce an explicit tracking mechanism for the execution
points of the processes. This amounts to dynamically labelling new terms while
visiting the process structure, and to introducing appropriate guards for the
transitions, to guarantee that at any point of the evolution of the system only
feasible transitions are allowed. Labels and guards can be combined to model
sequentialisation, non-deterministic choice, and parallel composition.

We now describe the translation in detail. Our input system is a collection of
AbC components, where the specification for the i-th component, denoted with

Ci ::= Γi : 〈Di, Piniti
〉

176 R. De Nicola et al.

includes an attribute environment Γi, a set Di of process declarations, and an
initial behaviour Piniti

which refers to the processes defined in Di. We adopt the
following notational conventions. Expressions can be vectors with relevant oper-
ators in the UMC style [3], e.g., given a vector v, we can write v.head, v.tail, v[i]
for the first element, the rest and the ith element of v, respectively. Predicates can
contain tests of membership relation between an element and a vector (denoted
by ∈, /∈). We further assume that the specified system consists of a fixed number
of components, and that the parallel operator does not occur inside a recursive
definition. The only allowed exception is the definition of a process of the form
P := Q|P , where | is replaced by its bounded version |m, i.e. the number of par-
allel instances to be created. For example: P := Q |2 P is interpreted as three
processes P := Q1 | Q2 | Q3.

The output of our translation is a UMC class whose general structure is
depicted in Fig. 2. It includes fixed code snippets such as the necessary signals
and data structures to model AbC input and output actions. It also contains
vectors to model attribute environments, one for each attribute.

Fig. 2. Translation of AbC specifications.

The system state is a UML parallel state (SYS), where each component is
modelled by its own region (Ck). Attribute input and output semantics are mod-
elled with the help of unique events. The bcast(tgt,msg,j) event,which triggers
all the receive actions in all components and contains the actual set tgt of com-
ponents allowed to receive the message, the actual message msg, and the index j

Verifying Properties of Systems Relying on Attribute-Based Communication 177

of the sending component. The allowsend(i) event, where i denotes a compo-
nent index used to schedule the components through interleaving when sending
messages. According to the semantics of AbC, receive actions are blocking and
executed together, and send actions of all the components should be handled in
an interleaved way. To accommodate this, we use the event queue of the state
machine to store a set of allowsend(i) signals, one for each AbC component i.
These signals are declared in the top state of the system as Defers, to prevent
them from being removed from the events queue when they do not trigger any
transition. Moreover, the queue is defined as random so that the relative ordering
of signals is not considered relevant. In this way, at each step in which an AbC
send operation has to be performed, a single allowsend signal is nondetermin-
istically selected from the queue, allowing a single component to proceed.

The Transitions section collects all the transitions generated from the
process terms while visiting the process structure. Transitions have the following
form:

SYS.Ck.s0 -> Ck.s0 {Trigger[... & pc[k][p]=CNT]/

-- transition body

pc[k][p]:=CNT + 1;

}

where CNT is a program counter initially set to 1 and incremented as new transi-
tions are produced. This provides a unique label associated with the transition,
its entry point. Additionally, pc[k][p] is the execution point of process p in com-
ponent k. The guard on the transitions makes sure that its entry point matches
the execution point of the corresponding component and process. At the end of
a transition, pc[k][p] is assigned a new value, referred to as its exit point, in
order to correctly enable the next set of feasible transitions. The values of k,
p, CNT, and the full guards are worked out according to the structural mapping
procedure described below.

Structural Mapping. Let us denote with S�P �k,p,v
ρ the function that maps a

process term P into a set of UMC transitions, where k is the component index, p
the process index, and v the entry value. At the beginning, P is the init behaviour
of the component and p, v are both initialised with 1. The information carried
while traversing the process structure is stored in ρ. Figure 3 presents our transla-
tion rules from AbC process terms to UMC transitions, while Fig. 4(b)–(d) gives
an idea of how transitions are glued together according to the process struc-
ture. The translation maintains two variables: the current number of processes
procs and a program counter cnt[p] for a process with index p, both calculated
dynamically while visiting the input.

Inaction. An inaction process is translated into nothing.

Update. The translation of [a := E]P accumulates the update expression
[a := E] into variable upd of ρ and returns the translation of P under the new
environment.

Awareness. The translation of 〈Π〉P accumulates predicate Π into variable
aware of ρ and returns the translation of P under the new environment.

178 R. De Nicola et al.

Fig. 3. Structural translation of processes: semicolon (;) denotes the completion of a
left translation before starting a new one, ρ(x) is the value of variable x in ρ

body

[CNT] CNT+1

entry exit

(a)

α P

[CNT] [CNT+1]

.

(b)

P2

P1

+

[CNT]

[CNT]

(c)

P2

P1

|

[CNT ∧ CNT1]

[CNT ∧ CNT2]

(d)

Fig. 4. Structural mapping to combine generated UMC transitions: (a) graphical rep-
resentation of a transition; (b) an action prefixing process α.P has the entry point of
α as CNT, and the entry point of P as CNT + 1; (c) a choice process P1 + P2 has the
same entry point on both sub-processes P1, P2; (d) the entry points of sub-processes
P1, P2 in a parallel process P1|P2 contain also the exit point of P1|P2

Verifying Properties of Systems Relying on Attribute-Based Communication 179

Nondeterministic Choice. The translation of P1+P2 is a sequence of two transla-
tions of sub-processes with the same set of parameters and the same environment.

Parallel Composition. The translation of P1|P2 is a sequence of two translations
of the sub-processes. It generates two new processes indices p1 and p2 which are
calculated from the current number of processes procs, and initialises two new
global counters cnt[p1], cnt[p2]. In the case of parallel composition, the entry
points of sub-processes P1, P2 does contain not only their own counters but also
the counter of the spawning process P1|P2. Therefore, the translations of P1, P2

store the exit point of the parent process (p, v) in variable parent which will be
used as an additional guard for prefixing actions of P1 and of P2.

Process Call. The translation of a process call K looks up its definition P in the
process declarations Dk and returns a translation of P . If process K is already
translated, function B generates a dummy transition whose exit point is equal to
the entry point of K. Otherwise, it remembers K is visited and stores this fact
together with the entry point value of K into ρ for (possibly) later recursions.

Action-Prefixing. The translation of α.P is a behavioural translation of α and a
translation of the continuation process P . The translation of α is done by the
function B, as it will be presented shortly. The translation of P is parameterised
with a new environment where the previous accumulated information is reset,
and a new entry value v′, calculated from the value of program counter cnt[p],
is added. In fact, we need two UMC transitions for an output action, thus the
value of cnt[p] is increased by two.

Accumulated Information. In the above generated transitions, guards may
include the accumulated awareness predicates and the transition body may
include accumulated update commands. We omit the details for conciseness.

Global Awareness. Finally, the global awareness construct Π?P1 P2 is treated as
a process whose structure is β.(P1+P2) where the transition of β simply evaluates
the global predicate Π to enable transitions of P1 and P2 (via additional guards)
appropriately.

Behavioural Mapping. We now describe the function B�α�k,p,v
ρ which gener-

ates the actual UMC code for a specific action α according to the information
accumulated in the environment ρ and the parameter set.

We model the output action in two steps that are forced to occur in a strict
sequence: the sending to self of the bcast event that dispatches to all the parallel
components and the discarding of this very message, as illustrated by the code
snippet below. Variable receiving works as a lock, to guarantee the correct
ordering of the two transitions. Here the (main) transition is guarded by con-
ditions on the execution point of the action and by awareness predicates, while
the transition body includes update commands, the computation of potential
receivers and a sending operation.

180 R. De Nicola et al.

B�(E)@Π�k,p,v
ρ =

SYS.Ck.s0 -> Ck.s0 {
allowsend(i)[i=k & receiving=false & pc[k][p]=v & �ρ(parent)�] & �ρ(aware)�]/
�ρ(update)�;
for j in 0..pc.length-1 {

if (�Π�) then {tgt[j]:=1;} else {tgt[j]:=0;}
};
receiving:=true;
self.bcast(tgt,�E�,k);
pc[k][p] = v + 1;

}
SYS.Ck.s0 -> Ck.s0 {

bcast(tgt,msg,j)[pc[k][p] = v + 1]/
receiving:=false;
self.allowsend(k);
pc[k][p] = v + 2;

}

An input action is translated into the following transition, triggered by signal
bcast(tgt,msg,j) from some sender. It is enabled, for a component k, if the
message is for it, the receiving predicate Π and, possibly, the preceding aware-
ness predicates are satisfied. Variable binding is done by assigning the received
message msg to vector bound. Similarly to the output action, the transition guard
might contain awareness predicates; the transition body might contain update
commands.
B�Π(x)�k,p,v

ρ =

SYS.Ck.s0 -> Ck.s0 {
bcast(tgt,msg,j)[tgt[k]=1 & pc[k][p]=v & �ρ(parent)�] & �ρ(aware)� & �Π�]/
�ρ(update)�;
bound[k][p] = msg;
pc[k][p] = v + 1;

}

4 A Case Study

The Stable Marriage Problem (SMP) [17] is a well studied problem that has
applications in a variety of real-world situations, such as assigning students to
colleges or appointing graduating medical students to their first hospital. SMP
that has been initially formulated in terms of peers that make offer to potential
partners by taking into account a preference list is easily adaptable to a context
in which partners are selected according to their attributes. Indeed, due to its
simple formulation and its intrinsically concurrent nature, SMP has been already
used to show the advantages of AbC as a very high-level formalism to describe
complex systems [10,11]. In this section, we use it to show how our framework
can be used to reason about properties of attribute based systems.

We apply our verification methodology to three possible algorithmic solutions
of stable marriage in order to check a selection of properties of interest. For
each solution, we provide a short informal description along with the resulting
formal specifications in AbC. Similarly, we present a number of properties first
informally and then as a precise logical property of the state machines generated
(see Sect. 3) from the formal specifications. We show how to instrument these
state machines for property checking. As we go along, we also consider a few
additional program-specific properties that we used as a guidance to refine the
formal specifications themselves.

Verifying Properties of Systems Relying on Attribute-Based Communication 181

The idea of stable marriage is to find a stable matching between two equally
sized sets of elements (men and women in the original formulation, whence the
word marriage) given an ordering of preferences for each element. Providing a
solution to SMP amounts to devising an algorithm for pairing each element in
one set to an element in the other set in such a way that there are no two elements
of different pairs which both would rather have each other than their current
partners. When no such pair of elements exists, the set of pairs is deemed stable.
The classical algorithm of [17] goes through a sequence of proposals initiated by
members of one group (the initiators) according to their preference lists. Mem-
bers of the other group (the responders) after receiving a proposal, do choose
the best initiator between their current partner and the one making advances.
Our first algorithm implements the classical solution, where preferences are rep-
resented as complete ordered lists of identifiers. Initiators and responders are
programmed as individual processes that interact using their local preference
lists in a point-to-point fashion using their identity. The other two programs
adapt the classical solution to the context of attribute-based communication,
where partners are selected by considering predicates over the attributes of the
potential partners. The two new solutions differ for the way initiators choose their
potential partners. They can start by either making proposals to the responder
they prefer most and then relax their expectations or making proposals with the
lowest requirements, to make sure to get a partner, and gradually increase their
expectations.

4.1 Specifications

Classical Stable Marriage. In the classical solution to stable marriage, each
initiator actively proposes himself to the most favourite responder according to
its preference list. In case it gets a refusal or is dropped, it tries again with the
next element in the list. A responder waits for incoming proposals, accepting
any proposal when single, or choosing between its current partner and the new
proposer according to its preferences. The algorithm terminates when there is
no more activity.

AbC Specification. Our first AbC program is based on the idea presented in [5].
Initiators and responders are AbC components whose attributes are the identi-
fier id, the preference list prefs, and the current partner. The behaviour of an
individual initiator is specified by process M. It updates attribute partner to the
first element of prefs, and then sends a propose message to components whose
id equals to partner. The continuation process Wait waits for a no message to
reset the partner, before restarting with M:

M � [this.partner := this.prefs.head, this.prefs := this.prefs.tail]
(propose, this.id)@(id = this.partner).Wait

Wait � [this.partner := 0]($msg = no)($msg).M

The behaviour of a responder is specified by process W. In process Handle a
responder waits for incoming proposals, and behaves either like A if the responder

182 R. De Nicola et al.

finds the new initiator is better or like R otherwise. W is composed in parallel
with n instances (where n is the problem size) so that it can receive new messages
while processing the current one. Notice that both R and A use a reversed form
of preference lists to compare the current partner with a new initiator:

W � Handle |n W

Handle �($msg = propose)($msg, $id).(A($id) + R($id))

A(id) �〈this.prefs[this.partner] < this.prefs[$id]〉
[$ex := this.partner, this.partner := $id](no)@(id = $ex)

R(id) �〈this.prefs[this.partner] > this.prefs[$id]〉(no)@(id = $id)

Top-Down Stable Marriage. In this case preferences are expressed as pred-
icates over the attributes of partners rather than as lists of people. For exam-
ple, a person might be interested in finding a partner from a specific country
who speaks a specific language. A suitable communication predicate would be
country = this.favcountry ∧ language = this.favlanguage, where language
and country are two attributes of initiators and responders, and favcountry
and favlanguage are used to express preferences.

Following the above idea, in the top-down solution to SMP the initiator starts
by making offers to responders that satisfy its highest requirements, i.e., have all
wanted attributes. In case nobody satisfy these requirements, the initiator retries
after weakening the predicate by eliminating one of the preferred attributes and
waits for a reaction. The system then evolves as follows.

A single initiator that receives a yes considers himself engaged and sends out
a confirm message; it keeps proposing if a no is received. An engaged initiator
that receives a yes notifies the interested responder that meanwhile another part-
ner has been found by sending a toolate message. An engaged initiator dropped
by its current partner with a bye message restarts immediately proposing.

An engaged responder reacts upon receiving a proposal by comparing the
new initiator with the current partner. If the new proposer is not better, it will
receive a no message. Otherwise, the responder sends a yes to notify the proposer
her availability, and waits for a reply. Upon receiving a confirm, the responder
changes partner and sends bye to the ex partner; in case a toolate message is
received the responder continues without changes.

AbC Specification. We model a scenario where each participant exposes two
characteristics besides their identifiers: {id, w, b} for proposers and {id, e, h} for
responders. Furthermore, participants have their own preferences on which are
modeled by {pe, ph} and {pw, pb}. The behaviour of a proposer is modeled as
process P, used to make proposals, composed in parallel with process MHandle

for handling replies.

M � P | MHandle

P � 〈this.partner = 0 ∧ this.proposed = 0〉[this.proposed := 1]P1

P1 � Π{¬bl,pe,ph}?(ṽ)@Π{¬bl,pe,ph}.P (Π{¬bl,pe}?(ṽ)@Π{¬bl,pe}.P (ṽ)@Π{¬bl}.P)

Verifying Properties of Systems Relying on Attribute-Based Communication 183

Process P, guarded by two conditions this.partner = 0 and this.proposed = 0,
becomes actives when a single proposer has not yet sent a proposal. After that,
it sets the flag proposed and continues as P1. To model the adaptive behaviour
of proposers needed to relax their preferences, we use the new global awareness
operator (see Sect. 2) in the definition of P1 where we use Π{¬a1,a2,a3} to denote
the predicate in the form id /∈ a1∧e = a2∧h = a3 and ṽ denotes the sent message,
i.e., {propose, this.id, this.w, this.b}. It is important to add an attribute bl which
is a list of responders that the proposer does not want to contact. The list is
updated when a proposer receives a no or a bye message. This allows them to
know when to relax their requirements.

A proposer may receive multiple replies; process MHandle takes care of this
according to the message type: Wait is used to handle bye and no messages while
Yes handles yes messages.

MHandle � Yes | Wait Yes � Loop |n Yes Wait � Loop1 |n Wait

Loop � ($msg = yes)($msg, $id).Ans($id)

Ans(id) �〈this.partner = 0〉[this.partner := $id, this.bl := this.bl + [$id]]

(confirm)@(id = this.partner).Loop

+ 〈this.partner �= 0〉(toolate)@(id = $id).Loop

Loop1 � [this.partner := 0, this.proposed := 0]($msg = bye)($msg, $id).Loop1

+ ($msg = no)($msg, $id).

[this.proposed := 0, this.bl := this.bl + [$id]]()@(ff).Loop1

The behaviour of a responder is specified by WHandle. On receiving a proposal,
a responder can behave like A (accept), R (reject) or D (discard). The local
attribute bl is updated in A and R while D uses it to avoid unnecessary process-
ing. Acceptance and rejection of a proposal are dealt with similarly as in the clas-
sical case, except that the extra message acknowledgement requires an attribute
lock, to process sequentially possibly parallel messages.

WHandle � ($msg = propose)($msg, $id, $w, $b).

(R($id, $w, $b) + A($id, $w, $b) + D($id))

R(id, w, b) � 〈$id /∈ this.bl ∧ (new init is not better)〉
[this.bl := this.bl + [$id]](no, this.id)@(id = $id).WHandle

A(id, w, b) � 〈$id /∈ this.bl ∧ this.lock = 0 ∧ (new init is better)〉
[this.lock := 1, this.bl := this.bl + [$id]]

(yes, this.id)@(id = $id).Wait($id, $w, $b)

Wait(id, w, b) � [this.ex := this.partner, this.partner := $id,

this.cw := $w, this.cb := $b]($msg = confirm)($msg).

[this.lock := 0](bye)@(id = this.ex).WHandle

+ [this.lock := 0, this.bl := this.bl − [$id]]

($msg = toolate)($msg).WHandle

D(id) � 〈$id ∈ this.bl〉()@(ff).WHandle

184 R. De Nicola et al.

In the above specifications, the pair (cw,cb) denotes the characteristics of current
partner, which is used by the responder to compare him with a new proposer.
For example, predicate new init is better is encoded as:

(this.partner = 0) ∨ ($w = this.pw ∧ this.cw �= this.pw) ∨
($w = this.cw ∧ $b = this.pb ∧ this.cb �= this.pb)

Bottom-Up Stable Marriage. We have also experimented with another app-
roach to SMP, where proposers start looking for the less-liked partner and try
to incrementally improve their level of satisfaction by continuously proposing
themselves even after finding a partner in the attempt to find someone they like
more then their current one. In this case both proposers and responders can be
dropped by their current partner if a more appreciated option pops up.

We have implemented this protocol in AbC using a slightly different app-
roach. We used an extra process in components Proposer and Responder that
plays the role of a message queue manager. This process appends every incom-
ing messages to the tail of queue, while another process implementing the main
behaviour retrieves messages from the queue and processes them sequentially.

Due to space limit, we omit the presentation of this specification. The inter-
ested reader can refer to [1] for full specifications of case studies.

4.2 Formal Analysis

UMC Models and Annotations. We have developed a tool [1] to implement
the translation rules presented in Sect. 3. This tool has been used to translate
the three AbC solutions for SMP into UMC models. The number of UMC code
lines varies depending on specification and on the input instances. For example,
in the classical case, the number of UMC lines are the same for component M,
while it increases proportionally with the size of the problem for component W
due to the use of operator |n.

The actual UMC model used for the analysis is composed by two objects: an
object, triggered by a start(<inputdata>) event, modelling the behaviour of the
AbC specification with the given input data, and an object which generates all
the possible input data and activates the AbC model with them. For checking
the generic (i.e. for all inputs) validity of a formula φ we in practice evaluate
the formula A[{not start} W {start} φ], which says that φ holds in the initial
state of any of the possible scenarios. The number of generated system states
reported in the rest of this section refers to the cumulative data over the whole
input domain.

In order to verify our properties of interests, we have annotated the generated
UMC models with abstraction rules to make observable labels on states and
actions.

Verifying Properties of Systems Relying on Attribute-Based Communication 185

Abstractions {

State id[0]=$1 and partner[0]=$2 -> haspartner($1,$2)

State id[1]=$1 and partner[1]=$2 -> haspartner($1,$2)

...

Action sending($1,$2) -> send($1,$2)

Action received($1,$2,$3) -> received($1,$2,$3)

-- Other instrument

Action m_decr -> m_decr

Action w_decr -> w_decr

}

Here rules starting with States expose labels haspartner($1, $2) in all system
states, where $1 is the identifier of a component (proposer or responder) and
$2 is the matching partner. We assume that the identifiers of initiators and
responders are in the ranges [1 . . . n] and [n+ 1 . . . 2n] respectively, with n being
the problem size. Rules starting with Actions instead expose send and receive
labels on all transitions denoting attribute send and receive actions.

We have additionally instrumented the models with more involved annota-
tions. In particular, we store the current level of satisfaction of people, computed
when a component updates its partner. In classical SMP, the level of satisfaction
of initiators and responders is determined by the position of the current partner
in the preference list. In the attribute-based variant, this number is calculated
based on the similarity between one’s own preferences and the characteristics of
partners. The procedure issues a signal decr if the current computed satisfaction
level is smaller than the previous one.

Solution-Independent Properties. For all the three AbC specifications, we
are interested in checking the following properties:

F1 (convergence) The system converges to final states:
AF FINAL 3

F2a (completeness of matching) Everybody has a partner:
AF (FINAL implies not haspartner(*,0))

F2b (uniqueness of matching) There exists only one final matching:
AG (((EF(FINAL and haspartner(1,4))) implies AF (FINAL and haspartner(1,4)))

and ((EF(FINAL and haspartner(1,5))) implies AF(FINAL and haspartner(1,5)))

and ((EF(FINAL and haspartner(1,6))) implies AF(FINAL and haspartner(1,6))))

F2c (symmetry of matching) The matchings are symmetric:
AG (FINAL implies ((haspartner(1,4) implies haspartner(4,1))

and (haspartner(1,5) implies haspartner(5,1))

and (haspartner(1,6) implies haspartner(6,1)))

F3 (satisf. of responders) The level of satisfaction of responders always
increases:
A[{not w decr} U FINAL]

F4 (satisf. of proposers) The level of satisfaction of proposers always increases:
A[{not m decr} U FINAL].

3 FINAL is a shortcut for “not EX {true} true”.

186 R. De Nicola et al.

Table 1. Verification results of three algorithmic solutions

Property F1 F2a F2b F2c F3 F4

Classical � � � � � ×
Top-down � � × � � ×
Bottom-up × × × � × ×

We performed the analysis for the three proposed solutions on the whole input
space using a machine with an Intel Core i5 2.6 GHz, 8 GB RAM, running OS
X and UMC v4.4. For the classical case, we considered problems of 3 (i.e., three
proposers and three responders). For the attribute-based variants we considered
problems of size 2, where each person has four attributes (two for expressing their
preferences about partners, and two for modelling their features), each having
two possible values. The results of our verification are reported in Table 1. A [�]
means that the formula is satisfied by all possible inputs, while a [×] means that
the formula does not hold for at least one input.

By looking at these results we can attempt some considerations:

Classical. Formulae F1, F2a, F2b, F2c do hold, confirming that the classical algo-
rithm always returns a unique and complete matching. The fact that formula F3

holds while F4 does not hold further reflects that a responder keeps trading up
its partners for better ones, while proposers can be dropped at any time.

Top-Down. Since formula F2a does hold and F2b does not, we can conclude that
the top-down strategy will in general return multiple but complete matchings.
This is not surprising, since attribute-based stable marriage is a general case of
stable marriage with ties and incomplete list (SMTI) [11], and it is known that
one instance of SMTI may have multiple matchings [23]. When verifying F3 and
F4, we obtain the same results of the classical case.

Bottom-Up. F1 does not hold indicating that this approach is not guaranteed to
converge. This happens in any configuration containing a cycle in the preferences
which makes partners chasing each other. Formula F2b does not hold because
there might be two proposers competing for one responder w.r.t. their lowest
requirements, thus one of the two remains single. We also verified that both
formulas F3, and F4 do not hold. This reflects that the satisfaction levels of
components may decrease because partners from both sides may drop them for
better ones at any moment.

Solution-Dependent Properties. In addition to previous properties, we also
considered a few protocol-related properties to increase to double check the cor-
rectness of the specifications derived from informal requirements.

In particular, we verified the following property of the classical solution:

Verifying Properties of Systems Relying on Attribute-Based Communication 187

F5. After a proposer receives a no, it will eventually send a new proposal4:
AG ([received($1,no,*)] AF {send(%1,propose)} true)

As expected, UMC answered true when verifying F5. This guarantees that the
proposer will send a proposal again, thus confirming that our specification in
that regard meets the informal requirements.

As we have specified a communication protocol for matching entities, the
following properties of the top-down solution are important to determine whether
the implementation conforms to the requirements:

F6. If a proposer receives a bye, it will always eventually send a new proposal:
AG([received($1, bye, ∗)] AF{send(%1, propose)} true)

F7. If a responder sends yes it will eventually receive a toolate or confirm:
AG[send($1, yes)] AF{received(%1, confirm, ∗) or received(%1, toolate, ∗)}

F8. After sending a proposal an initiator does not send further proposals until
it receives a no:
AG[send($1, propose)] A[{not send(%1, propose)} W{received(%1, no, ∗)}]

By verifying the above properties, we have found out that F7 holds, while
F6 and F8 do not. Formula F8 can be false, because, after sending a proposal,
an initiator may receive a yes, and then a bye message which forces it to send a
new proposal. F6 does not always hold because a initiator after receiving a bye
message from his partner, may immediately receive a yes message from another
responder. In this case, it can confirm the new responder without the needs of
sending new proposals.

Notice that the informal description of the top-down strategy is not quite
rigorous. We have two statements somewhat in contrast, one statement saying
that after a yes an initiator without a partner should send a confirm, and
another statement saying that after a bye an initiator should send a new proposal.
When a bye and a confirm arrive in sequence, the informal description is not
clear in describing the intended behaviour. The formalisation of this requirement
in terms of a logical formula, its verification w.r.t. the formal specification of the
system, and the observation of the generated counter-example has allowed us to
detect and understand this kind of ambiguities.

State Space. Among others, the top-down solution requires the largest number
of states with almost 18 millions in the worst case, compared with 0.5 and 4
millions states of the classical and of the bottom-up solution, respectively.

One of the main reasons for this is in the different size of the input space. The
attribute-based variant of stable marriage used four attributes with two possible
values for each, the space of problems of size 2 has 164 = 65536 configurations.
In the classical solution, each agent is characterised by its preference list and
thus the space of problems of size 3 only has 36 = 729 configurations.

The complexity of the top-down specification is also a reason for its state
explosion, which stems from the use of attribute-based send. In fact, initiators

4 $id and %id are used to match the identities of the sending and receiving components.

188 R. De Nicola et al.

and responders consist of parallel components performing more actions than
their classical counterparts: after sending a proposal message, a proposer needs
extra acknowledgment messages for selecting his partner. This greatly increases
the interleaving of actions by the sub-processes of the components and thus the
state space.

5 Concluding Remarks

We have presented a model-checking approach to the verification of attribute-
based communication systems. Starting from informal requirements, we have
devised formal specifications in AbC. We have then shown how to systematically
translate these into verifiable models accepted by UMC. We have exploited the
approach for analysis of an algorithmic solution to the classical stable matching
problem, as well as for two variants that extend the problem by introducing
attribute-based communication among components. We have considered a set of
interesting properties for the above programs and described them first informally
and then as explicit properties of the generated models.

The results of our experiments have shown that systems relying on attribute-
based communications can be particularly complex to design and analyse. How-
ever, by exhaustively verifying a specification over all possible inputs, despite
the small size of the problem considered, we have experienced that many non-
trivial emerging properties and potential problems can indeed be discovered by
following our methodology. This confirms once more that concurrency bugs can
be detected by only considering a very small number of processes [22].

Experiments with different implementations of SMP in AErlang, an attribute-
based extension of Erlang, have been presented in [11]. Also in some previous
work [10], we modeled and verified an example instance of stable marriage using
attributes. However there the translation was done manually and the verification
considered only one configuration.

The analysis of concurrent systems modelled by process algebras has been
thoroughly investigated in [18] by relying on powerful abstractions techniques.
Other research groups [13,24,26] have taken an approach similar to ours and
perform verification by translating a specification formalism into a verifiable one
that could make use of existing model checkers.

Techniques for constructing a model for stable marriage and analyzing its
convergence has been presented in [7]. There, the authors encoded classical SMP
in a DTMC model and analyzed it with the tools provided by PRISM to study
different instances of stochastic matching markets.

There are interesting future directions for this work. An extensive experimen-
tation with additional case studies would certainly contribute to refine our app-
roach [21]. Extending AbC with new constructs to model the spatial and mobil-
ity aspects of components would allow handling larger classes of systems [12].
Extending our verification approach to quantitative reasoning will improve use-
fulness, while investigating state reduction techniques will improve tractability.

Verifying Properties of Systems Relying on Attribute-Based Communication 189

References

1. AbC2UMC. http://github.com/ArBITRAL/AbC2UMC
2. UMC. http://fmt.isti.cnr.it/umc
3. UMC Docs. http://fmt.isti.cnr.it/umc/DOCS
4. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the power of attribute-based

communication. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688,
pp. 1–18. Springer, Cham (2016). doi:10.1007/978-3-319-39570-8 1

5. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming of CAS systems by
relying on attribute-based communication. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 539–553. Springer, Cham (2016). doi:10.1007/
978-3-319-47166-2 38

6. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of
model checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and
Systems. LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). doi:10.1007/
978-3-319-15545-6 20

7. Biró, P., Norman, G.: Analysis of stochastic matching markets. Int. J. Game Theo.
42(4), 1021–1040 (2013)

8. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. 14, 25–59 (1987). https://doi.org/10.1016/0169-7552(87)
90085–7

9. Brinksma, E.: On the design of extended LOTOS, Doctoral Dissertation. University
of Twente (1988)

10. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang at work. In: Stef-
fen, B., Baier, C., Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOF-
SEM 2017. LNCS, vol. 10139, pp. 485–497. Springer, Cham (2017). doi:10.1007/
978-3-319-51963-0 38

11. De Nicola, R., Duong, T., Inverso, O., Trubiani, C.: AErlang: empowering erlang
with attribute-based communication. In: Jacquet, J.-M., Massink, M. (eds.)
COORDINATION 2017. LNCS, vol. 10319, pp. 21–39. Springer, Cham (2017).
doi:10.1007/978-3-319-59746-1 2

12. De Nicola, R., Gorla, D., Pugliese, R.: On the expressive power of KLAIM-based
calculi. Theor. Comput. Sci. 356(3), 387–421 (2006)

13. De Nicola, R., Lluch Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and verifying component ensembles. In: Bensalem, S.,
Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 69–83. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54848-2 5

14. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). http://doi.acm.org/10.1145/201019.201032

15. Brinksma, E., Giuseppe Scollo, C.S.: LOTOS specifications, their implementations
and their tests. In: Proceedings of IFIP WG6.1, Protocol Specification, Testing,
and Verification VI, pp. 349–360 (1987)

16. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
logical verification methodology for service-oriented computing. ACM Transactions
on Software Engineering and Methodology (TOSEM) (2012)

17. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

18. Groote, J.F., Reniers, M.A.: Algebraic process verification. Eindhoven University
of Technology, Department of Mathematics and Computing Science (2000)

http://github.com/ArBITRAL/AbC2UMC
http://fmt.isti.cnr.it/umc
http://fmt.isti.cnr.it/umc/DOCS
http://dx.doi.org/10.1007/978-3-319-39570-8_1
http://dx.doi.org/10.1007/978-3-319-47166-2_38
http://dx.doi.org/10.1007/978-3-319-47166-2_38
http://dx.doi.org/10.1007/978-3-319-15545-6_20
http://dx.doi.org/10.1007/978-3-319-15545-6_20
https://doi.org/10.1016/0169-7552(87)90085--7
https://doi.org/10.1016/0169-7552(87)90085--7
http://dx.doi.org/10.1007/978-3-319-51963-0_38
http://dx.doi.org/10.1007/978-3-319-51963-0_38
http://dx.doi.org/10.1007/978-3-319-59746-1_2
http://dx.doi.org/10.1007/978-3-642-54848-2_5
http://doi.acm.org/10.1145/201019.201032

190 R. De Nicola et al.

19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

20. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

21. Kümmel, M., Busch, F., Wang, D.Z.: Taxi dispatching and stable marriage. Proc.
Comput. Sci. 83, 163–170 (2016)

22. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ACM Sigplan Notices, vol. 43,
pp. 329–339. ACM (2008)

23. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theor. Comput. Sci. 276(1–2), 261–279 (2002)

24. Mateescu, R., Salaün, G.: Translating Pi-calculus into LOTOS NT. In: Méry, D.,
Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 229–244. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16265-7 17

25. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

26. Song, H., Compton, K.J.: Verifying π-calculus processes by promela translation.
Technical report CSE-TR-472-03 (2003)

http://dx.doi.org/10.1007/978-3-642-16265-7_17

How Much Are Your Geraniums?
Taking Graph Conditions Beyond First Order

Arend Rensink(B)

University of Twente, Enschede, The Netherlands
arend.rensink@utwente.nl

Abstract. Previous work has shown how first-order logic can equiva-
lently be expressed through nested graph conditions, also called con-
dition trees, with surprisingly few ingredients. In this paper, we extend
condition trees by adding set-based operators such as sums and products,
calculated over operands that are themselves characterised by first-order
logic formulas. This provides a greatly improved way to specify compu-
tations such as: given that the price of a geranium plant equals 2 per
flower petal, return the average price of all geraniums with at least one
flower .

We claim the same level of expressive equivalence as before between
(extended) condition trees and a certain class of logic formulas; we show
that the latter go beyond what can be expressed in first-order logic.

On the practical side, we evaluate the performance and usability of
set-based operators by specifying and comparing the example geranium
property, with and without set-based operators, in the graph transfor-
mation tool groove.

1 Introduction

Graph transformation is a formalism that can be used for different purposes: to
define graph languages (as a generalisation of string grammars; see for instance
[8]), to define binary relations and functions over graphs (as a generalisation of
term rewriting; see for instance [22]) or as a rule-based formalism to describe the
behviour of a system (as a generalisation of, for instance, Petri nets; see [18]).
In each of these settings, it is of interest how powerful the graph transformation
rules are. Here a balance must be struck between sticking to the simplest kind of
rules, which have very well-defined properties but provide only low-level building
blocks, and allowing more elaborate, powerful rules, which enable one to specify
the language, relation or dynamic system at hand more directly and concisely
but whose effect is correspondingly harder to analyze.

In this paper, we follow the algebraic approach to graph transformation pio-
neered by the late Hartmut Ehrig.1 A good reference work for the theoretical
1 Ehrig was also a leading researcher in algebraic data specification, i.e. [7]; in that

capacity he was one of the founders of ACT-ONE, the data type specification lan-
guage of LOTOS, the standardisation of which in [20] was one of Ed Brinksma’s
early scientific achievements.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 191–213, 2017.
DOI: 10.1007/978-3-319-68270-9 10

192 A. Rensink

background of the approach in general is the book [5]. The simplest kind of rules,
working on the simplest kind of graphs, consist only of a left hand side and a
right hand side, both of which are graphs. Applying such a rule to a given host
graph roughly consists of the following two steps:

– Finding a match of the left hand side to the host graph, in the form of a
graph morphism;

– Replacing the image of the left hand side in the host graph that was identified
by the match by a copy of the right hand side, while preserving some context.

From the point of view of analyzability, one of the advantages of these simple
rules is that the condition for their applicability as well as the scope of their
application are fixed by the left hand side: the rule tests for the presence of
a certain substructure in the host graph, and all ensuing changes are applied
within this substructure. This, however, is simultaneously a disadvantage when
one wants to specify a transformation consisting of an a priori unknown number
of small, identical changes. A good example is the effect of firing a transition
in a Petri net: in this situation, all input places should contain a token which,
moreover, should be consumed; and all output places should receive a token.
There is no bound on the number of input places or output places a transition
in an actual Petri net may have; so to achieve the desired effect using only
simple graph transformation rules, one has to take refuge to one of the following
solutions:

– Devise a fairly complicated protocol of simple rule applications in which the
input places are individually tested for the presence of a token, after which
those are also individually removed and tokens are placed on the individual
output places.

– Create one rule for every combination of m input places and n output places.
However, apart from the fact that this gives rise to an infinitary family of
rules, one also has to ensure that the rule for i × j input/output places is
not applicable to a transition with m × n input/output places with m > i
or n > j. This requires a test for the absence, rather than the presence, of
certain structures in the host graph, which in itself is beyond our simple rules
as well.

Because limitations of this kind were found to severely hamper the practical use
of graph transformation in practice, mechanisms to generalise and extend both
the applicability condition of rules as well as their effect have been studied for
quite some time. For instance:

– [14] proposes to enrich rules with so-called negative application conditions
(NACs) that test for the absence of structure, nullifying one of the obstacles
to the second solution discussed above.

– [6,23] generalise NACs to nested graph conditions, using which any first-order
property of graphs can be used as a rule applicability condition. In particular,
the nesting structure mimics the concept of alternating quantifiers.

Taking Graph Conditions Beyond First Order 193

– [12,26] study the concept of amalgamation of rules, which is a composition
mechanism that allows building complex rules such as the Petri net firing rule
out of arbitrarily many copies of small “simple” rules. Such composed rules
are sometimes called multi-rules.

– [24,25] present nested rules, which can be seen as a marriage of nested graph
conditions and amalgamation: in terms of [26], the proof of the nested graph
condition serves as the amalgamation scheme. A nested rule can contain
universal quantification not only within its applicability condition, but also
within sub-rules, which then have an effect wherever in the host graph the
corresponding applicability sub-condition is satisfied.

However, first-order logic has its limitations, and there are in fact applicability
conditions and multi-rules that can still not easily be expressed using any of the
above techniques. For instance, there are cases where it is relevant to know or
compute a collective value for a set of sub-graphs characterised by some property.
This is where the current paper comes in. As an example, consider the following
task:

Given that the price of a geranium plant equals 2 per flower petal, compute
the average price of all geraniums with at least one flower.

In mathematical notation, this can be expressed as follows:

(
∑

g∈G

price(g))/|G| where price : g �→ ∑
f∈Fg

2 ∗ petals(f)
G = {g |Geranium(g) ∧ Fg �= ∅}
Fg = {f |Flower(f) ∧ has(g, f)}

(1)

This has the following noteworthy features:

– Geranium(x), Flower(y) and has(x, y) are predefined predicates expressing,
respectively, that x is a geranium, y is a flower, and y is a flower of x,

– petals(x) is a predefined partial function returning the number of petals of x,
if x is a Flower.

– G and Fg (for g ∈ G) are defined as sets of, respectively, all geraniums and
all flowers of geranium g;

– price(g) is the price of geranium g, defined as twice the number of petals of
all flowers of g.

The need to use sets of entities (G and Fg) and set-based operators (
∑

and
the cardinality |G|) take this beyond what can be expressed in first-order logic.
Consequently, the computation of a formula such as the above is essentially as
tricky to specify using graph transformation, even with nested rules as in [25],
as the firing of a Petri net transition is with only simple rules: again, one has to
sum up first the flower petals and subsequently the individual geranium prices
one by one.
This paper proposes a way to directly support set-based operators. We present
this in three aspects: 1. a generalisation of nested graph conditions; 2. an exten-
sion of first-order logic; 3. an experiment showing the performance and concise-
ness gain with respect to the encoding of (1) using simple rules. We claim that

194 A. Rensink

this extension is not just theoretically interesting but also practically useful: in
the course of time, we have received multiple feature requests for our graph trans-
formation tool groove [11] to support functionality of this kind, most lately in
the context of [16].

The remainder of this paper is structured as follows: in Sect. 2 we present
the necessary background from algebra and graph theory; in Sect. 3 we recall
the theory behind nested graph conditions. Section 4 contains the main technical
contribution, viz. the extension to set-based operators. In Sect. 5 we report on
the experiment of encoding formula (1) above in terms of set-based operators;
and in Sect. 6 we summarise the findings and present related and future work.

2 Definitions

In this section, we set the stage by recalling some basic notions from algebra,
graph theory and logic that we need to present our contribution.

2.1 Algebra

We restrict ourselves to the domain of integers. This means we work with a fixed
signature Σ with consisting of the standard arithmetic operators, such as add
(addition), mul (multiplication) and div (division). Each operator has an arity
ν(o) ∈ N. Constants are included as nullary operators. We also use a universe
of variables V. From these ingredients, we define terms through the following
grammar:

t ::= x | o(t1, . . . , tν(o)) (2)
where x ∈ V and o ∈ Σ. The set of terms over a given set of variables V ⊆ V is
denoted T(V).

Definition 1 (algebra, homomorphism). An algebra is a tuple A =
〈D, (F o)o∈Σ〉 consisting of
– a value domain D;
– a partial function F o : Dν(o) → D for each o ∈ Σ.

Given two algebras A1, A2, a homomorphism h : A1 → A2 is a partial function
h : D1 → D2 such that for all operators o ∈ O and all vi ∈ D (1 ≤ i ≤ ν(o)):

h(F o
1 (v1, . . . , vν(o))) = F o

2 (h(v1), . . . , h(vν(o)))

provided that all function applications are defined.

The functions F o are allowed to be partial so that division by zero can be
accounted for. Henceforth we identify an algebra A with its value domain and
just talk about the values of A, rather than of the domain of A. In fact, in this
paper we restrict ourselves to two particular (families of) algebras:
– The term algebra T(V) for arbitrary finite sets of variables V ⊆ V, where each

function F o is total and constructs a new term by applying the corresponding
operator o to the operand terms.

– The natural algebra I consisting of the “actual” integers and the “actual”
functions for addition, multiplication, etc. (and division by 0 is undefined).

Taking Graph Conditions Beyond First Order 195

2.2 Attributed Graphs

In the following, N denotes a universe of nodes, and L a universe of graph (edge)
labels.

Definition 2 (graph, morphism). A graph is a tuple G = 〈N,E〉 where

– N ⊆ N is a set of nodes;
– E ⊆ N × L × N is a set of edges.

Graph G is called attributed over an algebra A if A ⊆ NG. The class of all
graphs is denoted Graph and the subclass of attributed graphs GraphA.

Given two graphs G1, G2, a morphism f : G1 → G2 is a function f : N1 → N2

such that:
f : (n1, a, n2) �→ (f(n1), a, f(n2)).

Morphism f is called attributed if the Gi are attributed over Ai (i = 1, 2) and
f � A1 is a homomorphism from A1 to A2. The class of all morphism is denoted
Morph.

Morphism f is called injective if f(n1) = f(n2) implies n1 = n2.

We use src(e), lab(e) and tgt(e) to denote the source, label and target of an edge
e, and dom(f), cod(f) to denote the domain and codomain of a morphism f .
If G is attributed over A, we call the elements of A ⊆ NG data nodes and the
elements of NG \ A pure nodes. We also refer to a graph that is not attributed
as a pure graph.

Note that the node set of an attributed graph is typically infinite, because
algebra domains are. The only data nodes of such a graph we are usually inter-
ested in (and that are included in figures) are those that are connected by some
edge to a pure node.

In practice, the only attributed morphisms f we will consider are such that
either dom(f) and cod(f) are graphs over T(V1) and T(V2) for some V1 ⊆ V2 ⊆ V
and f � T(V1) is the identity homomorphism, or such that dom(f) is attributed
over T(V) for some V ⊆ V and cod(f) is attributed over I.

2.3 First-Order Logic

In its purest form, first-order logic (FOL) reasons about arbitrary structures,
using formulas composed from some predefined set of n-ary predicates. Here
we restrict to binary predicates, which coincide with the set of edge labels L
introduced above.

Furthermore, we also use a set of variables X , which for now is not connected
to the data variables V used above. The grammar of FOL is then given by:

φ ::= a(x, y) | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ | ∀x : φ | ∃x : φ (3)

for arbitrary a ∈ L and x, y ∈ X . We also use the notation Q X : φ with
Q ∈ {∃,∀} and finite X ⊆ X to denote the simultaneous existential or universal

196 A. Rensink

quantification over all variables in X. We use fv(φ) to denote the free variables
of a formula φ, defined in the usual way; we call formula φ closed if fv(φ) = ∅.

Formulas are evaluated over interpretations, which define a domain of dis-
course as well as actual relations for all predicate symbols. In our setting, inter-
pretations coincide with graphs, although in keeping with tradition we will
denote them I rather than G: for a given predicate symbol a ∈ L, the actual
binary relation as defined by a given interpretation (i.e., graph) I is nothing but
the set of pairs (src(e), tgt(e)) for all edges e ∈ EI with lab(e) = a.

We also need the concept of an assignment α, which is a partial mapping
α : X → NG mapping at least all free variables of φ to nodes in the interpretation.
For given assignments α, β, we use the following constructions:

α[x ← n] :y �→
{

n if x = y

α(y) otherwise.
α[β] :y �→

{
β(y) if y ∈ dom(β)
α(y) otherwise.

The semantics of FOL is given by a relation I, α � φ expressing “I satisfies φ
under α,” defined as follows:

I, α � a(x, y) if (α(x), a, α(y)) ∈ EI

I, α � φ1 ∧ φ2 if I, α � φ1 and I, α � φ2

I, α � φ1 ∨ φ2 if I, α � φ1 or I, α � φ2

I, α � ¬φ if not I, α � φ
I, α � ∀x : φ if I, α[x ← n] � φ for all n ∈ NI

I, α � ∃x : φ if there is a n ∈ NI such that I, α[x ← n] � φ.

α may be omitted if φ is closed.

3 Nested Graph Conditions

In this section, we recall nested graph conditions and their equivalence (in expres-
sive power) to FOL.

3.1 Conditions as Graphs

In order to understand in what sense a graph can represent a property also
expressible in FOL, consider that any graph C can be seen as a pattern that
occurs or does not occur in another graph G—where “occurring in” means that
there exists a morphism γ : C → G. For an equivalent FOL formula, we first
have to establish a correspondence of nodes (of C) to variables (in X). For this
purpose, we fix a mapping ξ : N → X that associates a variable with every node.

Definition 3 (condition graph). A condition graph is a graph C such that ξ
is injective on NC .

We use ξC = ξ �NC to denote the restriction of ξ to the nodes of condition graph
C (hence ξ−1

C is well-defined). We also denote xn = ξ(n).

Taking Graph Conditions Beyond First Order 197

Fig. 1. Example graph condition with satisfying morphism γ (The dotted lines indicate
the node mapping)

Whether or not a function γ : NC → NG is a morphism from C to G is a
property of G that is equivalently expressed by the following formula, evaluated
over I = G with assignment α = γ ◦ ξ−1

C :

φC :=
∧

e∈EC
lab(e)(xsrc(e), xtgt(e)) (4)

This equivalence is formally stated by the following proposition.

Proposition 1. Let C be a condition graph, G a graph and α an assignment
to NC .

1. α ◦ ξC is a morphism from C to G if and only if G,α � φC .
2. There exists a morphism from C to G if and only if G � ∃ ξ(NC) : φC .

Clearly, morphisms in the satisfaction of condition graphs take over the role of
assignments in the satisfaction of FOL formulas, viz., to bind nodes of the target
graph [the interpretation] to nodes [variables] of the source graph [the formula].

Example 1. As an example, consider the graphs C and G in Fig. 1. Inscribed
node labels are syntactic sugar for self-edges with that label. C specifies that
there is a flowering geranium, which is equivalently expressed by

∃x, y : Geranium(x, x) ∧ Flower(y, y) ∧ has(x, y).

(In keeping with the decision to restrict FOL to binary predicates, this uses
Geranium(x, x) rather than Geranium(x) as in (1) to express that x is a
geranium; however, there is no conceptual difference between the two.) G actu-
ally has 3 pairs of Geranium-Flower-pairs that satisfy this condition, one of
which is identified by the morphism γ in the figure.

The compositional definition of � over FOL gradually builds up the assign-
ment α. To also take pre-existing bindings into account in the case of graphs, we
will use graph morphisms, rather than graphs, both for the conditions themselves
and for the combination of interpretation and assignment.

198 A. Rensink

3.2 Morphisms as Conditions

In the following we consider morphisms g : B → G, where B stands for the bound
graph, which can be seen as a sub-pattern of a condition graph that has already
been “found”. The nodes of B will turn out to correspond to free variables in
the formula to be checked. Accordingly, rather than just condition graphs C, we
consider condition morphisms.

Definition 4 (condition morphism). A condition morphism is an injective
morphism c : B → C between condition graphs, such that ξB = ξC ◦ c.

Morphism g : B → C satisfies condition morphism c : C → D if (just as in
the case of condition graphs, see Proposition 1) a third morphism γ : C → G
exists, which however (in addition) satisfies γ ◦ c = g; in other words, γ has to
respect the image of the bound graph. This is represented by the commuting
diagram.

Notationally, this is expressed by the (overloaded) relation �:

g � c if there is some γ : cod(c) → cod(g) such that γ ◦ c = g. (5)

In fact, γ is a witness or proof that c exists in (the codomain of) g. We also use
[[c]] to denote the semantic function of c that maps any g : B → G to the set of
proofs of c on g, thus:

[[c]] : g �→ {γ ∈ Morph | γ ◦ c = g}. (6)

A condition morphism c : B → C is equivalent to the following formula:

φc := ∃ ξ(NC \ c(NB)) : φC (7)

The equivalence is formally stated by the following proposition:

Proposition 2 (condition morphism equivalence). Let c : B → C be a
condition morphism and g : B → G a morphism; then g � c if and only if
G, g ◦ ξ−1

B � φc.

It should be noted that the injectivity of c is required for this to work: if
there were distinct n1, n2 ∈ NB such that c(n1) = c(n2), then φc would have
to include a predicate equating xn1 and xn2 . For simplicity we have chosen to
omit equality from the version of FOL used in this paper and restrict condition
morphisms to injective ones; in the conclusions we briefly discuss what would be
required to generalise the setup.

Vice versa, (we claim without proof that) any formula φ from the following
fragment of FOL can be easily encoded into an equivalent graph condition:

φ ::= a(x, y) | φ1 ∧ φ2 | ∃x : φ.

Taking Graph Conditions Beyond First Order 199

Fig. 2. Example condition morphism with satisfying morphism: g � c

Example 2. Figure 2 is a variation on Fig. 1 where the bound graph B pre-
identifies the particular Geranium of which we want to know whether it has a
Flower. A proof γ of the satisfaction of c on g is drawn in.

3.3 Trees as Conditions

In the following, we use diagrams, which are special kinds of graphs, of which
the nodes are labelled with elements of Graph and the edges are labelled with
elements of Morph with domain and codomain corresponding to the edge source
and target. We will apply the usual trick of identifying diagram nodes and edges
with their labels; in the context of this paper this will not give rise to ambiguities.
If G is a node in a diagram D, outD(G) = {f ∈ D|dom(f) = G} denotes the
set of morphisms in D with domain G. Such a diagram D is tree-shaped if it is
acyclic and has a single node rt(D) with no incoming edges, whereas all other
nodes have precisely one incoming edge. If D is tree-shaped, then for any node
G of D we use D[G] to denote the subtree of D rooted in G.

Definition 5 (condition tree). A condition tree C is a tree-shaped diagram
consisting of condition graphs and condition morphisms, in which, moreover,
every graph C is labelled with a boolean operator OC ∈ {∨,

∧} and every mor-
phism c with a quantor Qc ∈ {∀,∃}.

C is called closed if rt(C) is the empty graph.

Satisfaction of a condition tree is once more expressed by a relation C � g, where
dom(g) = rt(C), recursively defined as follows:

g � C if Ort(C)
c∈outC(rt(C)) Qc γ ∈ [[c]](g) : γ � C[cod(c)]. (8)

In this definition, we use a notational trick by which the quantors Q and logical
connectives O are actually used in their natural-language meanings.

200 A. Rensink

Fig. 3. Example condition tree C and morphism g such that g � C

We call a FOL formula φ and a condition tree C equivalent if for any graph
morphism g : rt(C) → G:

G, g ◦ ξ−1
rt(C) � φ if and only if g � C. (9)

Example 3. Figure 3 shows a condition tree C that expresses the property “all
geraniums either have a flower or are fresh”, and a morphism g for which C is
satisfied. Note that C2 and C3, which are childless in C, are labelled

∧
: this

specifies that all their outgoing morphisms must be covered, which is vacuously
satisfied. An equivalent FOL formula is:

∀x : Geranium(x, x) → ((∃y : Flower(y, y) ∧ has(x, y)) ∨ fresh(x, x)).

A key result, reformulated from [25], is that conditions trees and FOL for-
mulas are expressively equivalent. This generalises Proposition 2 to condition
trees.

Theorem 1 (condition tree equivalence).

1. For every FOL formula φ, there is an equivalent condition tree Cφ;
2. For every condition tree C, there is an equivalent FOL formula φC .

3.4 Proof Trees

For the extension to set-based operators in the next section, it is useful to present
an alternative characterisation of the satisfaction of condition trees defined in
(8). Given a morphism g : B → G and a condition morphism c : B → C in a
condition tree C, a set of morphisms Γ ⊆ (C → G) is said to cover c if Qc = ∃
and |Γ ∩ [[c]](g)| > 0, or Qc = ∀ and [[c]](g) ⊆ Γ .

A proof of a condition tree C on a morphism g : rt(C) → G is itself a
tree-shaped diagram P , with a mapping π to C that preserves all graphs and
morphisms of P , and for every graph P a morphism γP : P → G, such that

Taking Graph Conditions Beyond First Order 201

Fig. 4. Proof for g � C in Fig. 3. G is the Geranium-node in C1 and F the Flower-
node in C2

(i) γrt(P) = g
(ii) γcod(p) ◦ p = γdom(p) for all edges p in P

(iii) If Oπ(P) =
∨

for P in P , then outP (P) covers some c ∈ outC(π(P));
(iv) If Oπ(P) =

∧
for P in P , then outP (P) covers all c ∈ outC(π(P)).

P is called a minimal proof if it is no longer a proof when a single branch is
removed. In practice, we always use minimal proofs.

Example 4. Figure 4 shows a proof P of the satisfaction g � C in Example 3.
The morphisms γi for the nodes Pi of P are constructed step by step, starting
with the empty morphism (γ0 = g) and adding images along the way. Note that
this is not the only proof of C on g: from P1, another mapping from F exists
to the other flower n3 of Geranium-node n0, whereas from P2, the fact that
Geranium-node n1 is fresh means that it is also possible to cover c2 rather
than c3.

The following proposition states that a condition tree is satisfied by a morphism
g if and only if there exists a proof of this kind. In other words, proofs are
witnesses of the satisfaction of a condition tree.

Proposition 3. Let C be a condition tree and g a morphism with dom(g) =
rt(C); then g � C if and only if there exists a proof P for C on g.

4 Set-Based Operators

All of the theory in Sect. 3 can be extended without any problem whatsoever to
attributed graphs, with the understanding that condition graphs C are always
attributed over TΣ(VC) for some fixed VC ⊆ V and host graphs are attributed
over I, that V ⊆ X (all data variables are logical variables) and that ξ is the
identity over V (hence every algebra variable stands for itself). To re-establish the
connection to FOL (Theorem 1), all that is required is to extend basic predicates

202 A. Rensink

Fig. 5. Flowering geraniums, subject to the price computation sum(mul(2, x) | x, f0 :
has(g0, f0) ∧ petals(f0, x))

to range over terms rather than just variables, i.e., so that they are of the form
a(t1, t2), and to extend the semantics accordingly to

I, α � a(t1, t2) if (hα(t1), a, hα(t2)) ∈ EI

where hα : T(VI) → I is uniquely determined by the assignment α.
This sets the stage for the introduction of set-based operators. Essentially,

these arise from commutative and associative binary operators in Σ; essentially,
they are operators that can be applied to arbitrary finite (in some case only non-
empty) multisets of operands without regard for their ordering. Examples are:

– card, which just returns the number of operands;
– sum and mul, which compute the product, respectively sum;
– max and min, which compute the maximum, respectively minimum.

We use ΣO, ranged over by O, to denote the collection of set-based operators.
Clearly, each of the O has a corresponding operation FO : 2I → I. The core idea
of this paper is that the operands can be computed over sets of graphs that
are themselves characterised through universal quantification. This gives rise to
terms of the form O(t | X : φ), which computes t for all assignments to the
(hitherto free) variables in X that cause φ to be satisfied.

Example 5. Let t = sum(mul(2, x) | x, f0 : has(g0, f0) ∧ petals(f0, x)) be a term,
to be computed over the graph in Fig. 5. Note that g0 is a free variable in t, which
should be assigned one of the Geranium-nodes in the graph before the term
can be evaluated. If α : g0 �→ n0, then has(g0, f0) ∧ petals(f0, x) can be satisfied
by assigning n3 to f0 and 5 to x, or by assigning n4 to f0 and 2 to x; hence t
evaluates to 2 ∗ 5 + 2 ∗ 2 = 14. Alternatively, if α : g0 �→ n1 then t evaluates to
8, and if g0 �→ n2 then t becomes 0.

To formalise this, we extend and combine the term grammar (2) and the FOL
grammar (3):

t ::= x | o(t1, . . . , tν(o)) | O(t | X : φ)
φ ::= a(t1, t2) | | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ | ∀x : φ | ∃x : φ. (10)

Taking Graph Conditions Beyond First Order 203

The function fv is extended with fv(O(t | X : φ)) = fv(t) \ X . We use S to
denote the set of terms according to this grammar, and S(V) for those terms
that take their free variables from V ; and we call the resulting logic set-based
operator logic (SBOL).

Note that (10) has a recursive dependency between the rules for t and φ;
hence, to interpret SBOL, we need to simultaneously extend the notion of homo-
morphism as well as the semantics of FOL. Clearly, to evaluate a set-based
operator application, we need to have an interpretation available; hence we use
“extended homomorphisms” hI,α to map S to I, where I is an interpretation and
α an assignment:

hI,α : O(t | X : φ) �→ FO|hI,α[β](t)β : X → I, I, α[β] � φ.

Here, β may assign any of the elements of the interpretation I to the variables
in X. This should be compared to the semantics of universal quantification as
in ∀X : φ, where the assignment is likewise extended to all variables in X before
φ is evaluated. The SBOL semantic rule for predicates is then straightforward:

I, α � a(t1, t2) if (hI,α(t1), a, hI,α(t2)) ∈ EI .

O-terms are encoded in condition trees by treating them as data variables with
additional constraints, namely that the value they are assigned equals the out-
come of the corresponding set-based operation. The tricky part is that the sub-
term t in an O-term O(t | X : φ) must be evaluated in the same context as
φ, which corresponds to a child of the condition tree node in which the O-term
itself appears. This is illustrated by the following example.

Example 6. Consider the following predicate, based on the term t from
Example 5:

φ = price(g0, sum(mul(2, x) | x, f0 : has(g0, f0) ∧ petals(f0, x))).

This formula is satisfied by a graph G if the node assigned to g0 has a price-
labelled edge to the value of the sum-term. However, the subterm mul(2, x) used
in computing the sum must be evaluated in a child of the condition graph encod-
ing φ itself, with a corresponding universal quantification of the variables x and
f0. This dependency is encoded by the additional, sum-labelled dotted line in
the condition tree of Fig. 6.

Definition 6 (extended condition tree). An extended condition tree X is
a condition tree C with, for every ∧-labelled graph C in C, a partial mapping
τC : VC → (ΣO × T × Morph) mapping some of the variables in VC to triples
〈O, t, c〉, where c ∈ outC(C) is ∀-labelled and t ∈ Ncod(c).

Thus, τC identifies which data nodes in C encode terms of the form O(t |X : φ),
indicating what is the operator O, what is the term t and which child in the
condition tree corresponds to the subformula φ. For instance, in Fig. 6, τB maps
node p ∈ NB to 〈sum,mul(2, x), c〉.

204 A. Rensink

Fig. 6. Extended condition tree for price(g0, sum(mul(2, x) | x, f0 : has(g0, f0) ∧ petals
(f0, x)))

The satisfaction of an extended condition tree X by a morphism g is deter-
mined by a minimal proof P of the condition tree C underlying X which should
satisfy conditions (i)–(iv) in Sect. 3.4 and in addition

(v) For all nodes P in P and x ∈ NP such that τπ(P)(x) = 〈O, t, c〉, if Γ ⊆
outP (P) covers c then γP (x) = FO|γcod(p)(t)p ∈ Γ .

In other words, to evaluate a set-based operator node x in a given proof tree node
P , where x is labelled by τπ(P) as 〈O, t, c〉, we collect the outgoing morphisms
of P that cover (i.e., prove) the ∀-quantified condition morphism c, and for all
of these we look up the value of t in the concrete host graph. The concrete
operation FO is applied to the resulting (multi)set. Thus, x effectively encodes
the term O(t | X : φX[cod(c)]), where X = ξ(Ncod(c) \ NP) is the set of variables
fresh in cod(c).

Example 7. Figure 7 shows a proof tree for the extended condition tree of Fig. 6.
The two children of the root, P1 and P2, assign n3, resp. n4 to f0, and accordingly,
5 resp. 2 to x; the term mul(2, x) hence evaluates to 10, resp. 4. Now condition
(v) above kicks in, emposing the constraint

γ0(p) = F sum{γ1(mul(2, x)), γ2(mul(2, x))} = F sum{10, 4} = 14.

It is interesting to note that where proof trees are ordinarily built from parents
to children, condition (v) has a dependency in the other direction: the value of
a set-based operation can only be computed after a covering set of children has
been established.

This is the core ingredient in the following main theorem of this paper,
extending Theorem 1, which we present here without proof.

Theorem 2 (extended condition tree equivalence).

1. For every SBOL formula φ, there is an equivalent extended condition tree Xφ;
2. For every extended condition tree X, there is an equivalent SBOL formula

φX .

Taking Graph Conditions Beyond First Order 205

Fig. 7. Proof for the extended condition tree of Fig. 6

Both directions can be proved by induction, on (respectively) the structure of
SBOL formulas and the depth of extended condition trees. The interesting case
for Clause 1 is, obviously, how to deal with terms of the form O(t | X : φ): this
requires the introduction of a ∀-labelled child which a τ -mapping. Vice versa,
for Clause 2, every τ -mapping gives rise to an O-term.

5 The Geranium Experiment

The original motivation of this paper was not to develope a new theoretical
concept but to extend the existing tool groove [11] with a feature allowing the
use of set-based operators. We will now illustrate the capabilities of the tool.
It should be noted that, because the implementation preceded the theoretical
foundation exposed in this paper, notations in the tool are not identical to the
ones in the previous sections.

5.1 Two-Step Computation

Figure 8 shows two rules in groove that specify, successively, the simultaneous
computation of the price of all geraniums in the world, and the computation
of the average price of geraniums with at least one flower. The applicability
condition of these rules is given by condition trees with set-based operators.

The figure shows two nested rules in groove syntax, the complete explana-
tion of which is out of scope here. An important aspect is that the condition tree
is flattened in that all graphs are combined; the structure of the tree is recovered
through quantifier nodes.

– The root of the condition tree is always the empty graph—i.e., condition trees
are always closed;

– The root has only a single child, called the base, which is existentially quan-
tified and consists of all nodes without @-connector to any quantifier node,
plus all edges between them;

206 A. Rensink

Fig. 8. Two-step computation of average geranium prices using multi-rules. (Color
figure online)

– Quantifier nodes point to their parents in the condition tree through in-
connectors; quantifier nodes without outgoing in-connectors are children of
the base;

– Except for the base, every level of the condition tree consists of the nodes
linked by @-connectors to the corresponding quantifier node or one of its
ancestors, plus all edges between them;

– As an additional feature, not formalised in Definition 5, one of the quantifier
nodes in Fig. 8b is labelled ∀>0 rather than ∀. This indicates that, in a proof
tree, a covering of this level should contain at least one element (corresponding
to the fact that, in (1), we only want the average price of flower-bearing
geraniums).

The green nodes and edges in Fig. 8 (the Price-node in Fig. 8a and the Global-
node in Fig. 8b) are created when the rule is applied; if, as in the case of Fig. 8a,
there is also a @-connector from such a creator node to a quantifier, that means
an instance is that node is created for every match of the corresponding condition
tree level.

The computation of the average price consists of applying these two rules
in succession. Figure 9 shows an example computation, starting with the host
graph in Fig. 9a; the application of the rule in Fig. 8a results in Fig. 9b, after
which the rule in Fig. 8b results in Fig. 9c.

5.2 One-Step Computation

The above solution still does not actually express the whole expression (1) in a
single go: instead, the function price is first computed, then used. A single rule
that encodes the entire condition is given in Fig. 10.

Taking Graph Conditions Beyond First Order 207

Fig. 9. Example average price computation

Fig. 10. One-step computation of average geranium prices

This rule uses more primitive syntax for expressions, which requires some
further explanation.2 Elliptical nodes are data nodes, which can be either data
values or variables. Diamond-shaped ones correspond to operations: their out-
going πi-labelled edges collect a list of arguments, and the remaining outgoing
edge applies an operator to that list, depositing the result in its target node.
Examples of such operators are: mul, which stands for multiplication (in this
case, the multiplication of 2 to the number of petals of a Flower), 2 instances of
sum, which is the set-based summation, and div, which divides the summed-up
geranium prices by the number of geraniums involved—the latter being made
available through an outgoing count-edge of the universally quantified level.

2 The reason for reverting to more primitive syntax is simply that the groove’s
expression parser cannot yet cope with the nested set-based operators used in this
rule.

208 A. Rensink

In terms of Fig. 9, the rule in Fig. 10 can be applied to the start graph Fig. 9a,
directly leading to a graph that corresponds to Fig. 9c without the Price-labelled
nodes.

5.3 Iterative Computation

In the absence of set operators, one would have to encode the computation of
the individual geranium prices as well as their average price using a sequence of
simple rules that iteratively add up the numbers of petals of each geranium to get
the correct value of price, and the prices and count of the flowering geraniums to
compute the average. Besides requiring more rules as well as a way to schedule
them, this also introduces bookkeeping into the graph to keep track of which
flowers or geraniums were already counted. We do not show the solution here,
as this would entail explaining much more about the groove tool; however, it
is packaged together with the others and available online.3

5.4 Experimental Results

Table 1 reports the performance of the three implemented solutions: one-step
(Sect. 5.2), two-step (Sect. 5.1) and iterative (Sect. 5.3). The computation has
been applied on host graphs ranging in size from 60 nodes (essentially 10 disjoint
copies of the start graph in Fig. 9a) to 600 nodes (100 disjoint copies of that same
graph), by running the relevant rules 1000 times and taking the average time for a
single computation. groove is written in Java; to ged rid of some of the known
issues in measuring the performance of Java programs, we started all experi-
ments with a “warm-up run” to allow the Just-In-Time compilation to kick in.

Table 1. Performance of the geranium experiment

Graph size
(#nodes)

One-step
(ms)

Two-step
(ms)

Iterative
(ms)

60 0.59 0.72 5

120 0.99 1.29 17

180 1.32 1.57 37

240 1.44 2.40 67

300 1.48 2.90 108

360 1.71 3.18 140

420 1.96 3.52 190

480 1.90 3.99 249

540 2.11 4.64 316

600 2.39 5.15 395

3 See groove.cs.utwente.nl/downloads/grammars/.

http://groove.cs.utwente.nl/downloads/grammars/

Taking Graph Conditions Beyond First Order 209

1E-01

1E+00

1E+01

1E+02

1E+03

60 120 180 240 300 360 420 480 540 600

Ti
m

e
(m

s)

Graph size (#nodes)

One step Two-step Itera ve

0.0

1.0

2.0

3.0

4.0

5.0

6.0

60 120 180 240 300 360 420 480 540 600

Ti
m

e
(m

s)

Graph size (#nodes)

One-step Two-step

Fig. 11. Relative performance and scaling of the three implemented solutions

Even so, the precise run-time figures deviate within a margin of about 10% when
repeating the same experiment, without, however, affecting the qualitative out-
come and conclusions in any meaningful way.

The experiment has been conducted on a laptop with an Intel i5-6300U CPU
running at 2.40 GHz, using Java 8 with sufficient memory to avoid major garbage
collections. The groove rule system used is available online and can be run in
the newest version of the tool groove.4

The results are shown graphically in Fig. 11. The left hand side compares all
three approaches on a logarithmic scale, the second is limited to the one-step
and two-step solutions that use the set operators and uses a linear time scale.

5.5 Evaluation

It can be seen from the data provided that not only are the one-step and two-step,
set operator-based solutions several orders of magnitude faster than the iterative
solution, they also scale much better: on the sample size of our experiment, the
trend seems linear for the set operator-based solutions whereas the degradation
in performance is clearly worse for the iterative solution.

A second observation is that the one-step solution performs better than the
two-step solution, even at small problem sizes; the difference becomes more pro-
nounced at larger sizes, seeing that the slope of the approximately linear trend
is shallower for the former.

Both of these observations can be explained by a superficial analysis of the
run-time effort involved. There are two effects in play when the graph size grows:
matching becomes harder and transformation sequences become longer.

– For the set operator-based solutions: the number of matches remains the same
(all rules have exactly 1 match) but the size of that match—which is noth-
ing else than a proof tree—grows linearly. The length of the transformation
sequence is not affected: it is always 1 for the one-step solution and 2 for
the two-step solution. All in all, it makes sense that the running time of the
computation increases linearly with the size of the host graph.

4 See sf.net/projects/groove.

http://sf.net/projects/groove

210 A. Rensink

– For the iterative solution: here the numer of matches grows linearly with the
size of the host graph, but the size of each match is constant. Since (for the
purpose of this experiment) the exploration is set to linear (meaning that
there is no backtracking in the exploration of the rule system), only 1 of the
n matches is selected each time; however, the total number of steps grows
linearly in the size of the graph. Concretely, in our solution, computing the
solution for the largest graph (size 600) takes 703 steps. All in all, based on
these observations, one may expect the running time to increase (at least)
quadratically with the size of the host graph.

Besides a difference in performance, there is also a clear difference in conciseness
of our three solutions: the single rule of Fig. 10 is (somewhat) smaller than the
two rules of Fig. 8, whereas our iterative solution consists of 5 (smaller) rules
plus a control program that schedules them. Moreover, all solutions except the
one-step need to add elements for the graph for bookkeeping purposes: in the
case of the two-step solution, this consists of the Price-nodes created by Fig. 8a
and used by Fig. 8b, whereas the iterative solution does not only use such Price-
nodes but also counted-markers for those flowers and geraniums that have already
been taken into account.

Finally, we claim that there is also a difference in understandability. Though
the primitive syntax of Fig. 10 is not ideal, this is a matter of supporting further
syntactic sugar. The main difficulty in understanding the set-operator based
solutions lies in the concept of condition trees, which can admittedly be tricky
in practice, but once mastered is (to our opinion) quite usable. In contrast, the
iterative solution requires an understanding of the way the 5 smaller rules work
together, which is far from straightforward.

6 Conclusion

To summarise: the contribution reported in this paper consists of

– The extension of nested graph conditions to set-based operators such as sum,
product and cardinality, increasing their expressiveness beyond first-order
logic;

– The extension of first-order logic to set-based operator logic SBOL, which we
claim to be expressively equivalent to the extended graph conditions;

– The implementation of set-based operators in groove, leading to a clear
gain in performance, conciseness and understandability in rule systems where
set-based operators play a major role, as illustrated by a single case study.

6.1 Related Work

Within graph transformation, patterns and techniques to specify multi-rules have
been studied for some time, leading to concepts such as star operators [19],
subgraph operators [3], collection operators [13], cloning rules [15] and set-valued
transformations [10]. More recently, pattern rewriting [17] has been developed

Taking Graph Conditions Beyond First Order 211

and applied in the context of chemical reactions [1]. We believe that all these
concepts can be seen as special forms of amalgamation as proposed first in [26]
and generalised later in [12], as can our own nested rules from [24,25]. However,
the treatment of set-based operators presented in this paper, though inspired by
the mechanisms of amalgamation, goes beyond it in expressiveness.

On the tool front, many of the graph transformation tools that are currently
being maintained support some form of multi-rules. Examples are fujaba [21]
which features set nodes, and henshin [2] which knows the concept of an amal-
gamation unit. Again, we believe that these are limited to (essentially) the first-
order level and cannot directly express set-based operators.

It should also be recognised that there are alternative ways to achieve the
effect of multi-rules. For instance, viatra2 [4] allows the specification of recur-
sive patterns through the control language, and fujaba can specify some degree
of parallel rule application through storyboards.

6.2 Future Work

In the theoretical exposition in this paper, we have kept things simple wherever
we could. In particular, we have restricted our algebra to integers only, and
our condition morphisms to injective ones. On the first count, we foresee no
difficulty to extend to other datatypes, using multi-sorted algebras to ensure
well-typedness. On the second count, we have already shown in [23] that allowing
condition morphisms to be non-injective corresponds to introducing equality
as a basic predicate in the logic; we have no reason to believe that the same
correspondence fails to hold in the extended case of this paper.

On the logic side, it would be interesting to know whether SBOL as intro-
duced in (10) actually corresponds to a known fragment of logic. Clearly it is
well within monadic second-order logic, since all that can be done with sets in
SBOL is applying set-based operators to them; this is far less than the ability
to use sets as first-class values. As one reviewer suggested, the fact that the
effect of set-based operators can be mimicked by an iterative solution justifies
a hypothesis that the introduction of fixpoints of some kind into FOL may be
sufficient to cover SBOL—although we feel that this will quite likely be more
powerful, maybe even quite a bit so.

On the implementation side, the support of set-based operators in groove
can certainly be further improved, especially by providing further syntactic sugar
for nested set-based operators as used in Fig. 10 (see Footnote 2). It should be
noted that groove does support other datatypes besides integers, and also
supports non-injectivity in condition morphisms.

Acknowledgement. My scientific career got underway under the inspiring supervi-
sion of Ed Brinksma, who instilled and shared a fascination with the maths behind it
all, without losing sight of intuition and pragmatics. Even if I do remember throwing a
frustrated pen at him at one occasion, I am glad to have had Ed as mentor and friend.

212 A. Rensink

References

1. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction
patterns using rule composition in graph grammars. CoRR abs/1208.3153 (2012).
http://arxiv.org/abs/1208.3153

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2 9

3. Balasubramanian, D., Narayanan, A., Neema, S., Shi, F., Thibodeaux, R., Karsai,
G.: A subgraph operator for graph transformation languages. In: Ehrig and Giese
[9]. http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/72

4. Balogh, A., Varró, D.: Advanced model transformation language constructs in the
VIATRA2 framework. In: Haddad, H. (ed.) Proceedings of the 2006 ACM Sympo-
sium on Applied Computing (SAC), pp. 1280–1287. ACM (2006)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006). doi:10.1007/3-540-31188-2

6. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.: Theory of constraints and appli-
cation conditions: from graphs to high-level structures. Fundam. Inform. 74(1),
135–166 (2006). http://content.iospress.com/articles/fundamenta-informaticae/
fi74-1-07

7. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification, Part I and II.
Monographs in Theoretical Computer Science. An EATCS Series, vols. 6 and
21. Springer, Heidelberg (1985, 1990). doi:10.1007/978-3-642-69962-7, doi:10.1007/
978-3-642-61284-8

8. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: Symposium on Switching and Automata Theory, pp. 167–180. IEEE Computer
Society (1973). https://doi.org/10.1109/SWAT.1973.11

9. Ehrig, K., Giese, H. (eds.): Graph Transformation and Visual Modeling Techniques
(GT-VMT). Electronic Communications of the EASST, vol. 6 (2007)

10. Fuss, C., Tuttlies, V.E.: Simulating set-valued transformations with algorithmic
graph transformation languages. In: Schürr, A., Nagl, M., Zündorf, A. (eds.)
AGTIVE 2007. LNCS, vol. 5088, pp. 442–455. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-89020-1 30

11. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

12. Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 346–361. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15928-2 23

13. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for
graph transformation. Softw. Syst. Model. 12(1), 121–144 (2013). doi:10.1007/
s10270-011-0190-3

14. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996). doi:10.3233/FI-1996-263404

15. Hoffmann, B., Janssens, D., Eetvelde, N.V.: Cloning and expanding graph transfor-
mation rules for refactoring. In: Karsai, G., Taentzer, G. (eds.) Graph and Model
Transformation (GraMoT). Electronic Notes in Theoretical Computer Science, vol.
152, pp. 53–67 (2006). https://doi.org/10.1016/j.entcs.2006.01.014

http://arxiv.org/abs/1208.3153
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/72
http://dx.doi.org/10.1007/3-540-31188-2
http://content.iospress.com/articles/fundamenta-informaticae/fi74-1-07
http://content.iospress.com/articles/fundamenta-informaticae/fi74-1-07
http://dx.doi.org/10.1007/978-3-642-69962-7
http://dx.doi.org/10.1007/978-3-642-61284-8
http://dx.doi.org/10.1007/978-3-642-61284-8
https://doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1007/978-3-540-89020-1_30
http://dx.doi.org/10.1007/978-3-540-89020-1_30
http://dx.doi.org/10.1007/978-3-642-15928-2_23
http://dx.doi.org/10.1007/s10270-011-0190-3
http://dx.doi.org/10.1007/s10270-011-0190-3
http://dx.doi.org/10.3233/FI-1996-263404
https://doi.org/10.1016/j.entcs.2006.01.014

Taking Graph Conditions Beyond First Order 213

16. Junges, S., Guck, D., Katoen, J., Rensink, A., Stoelinga, M.: Fault trees on a diet:
automated reduction by graph rewriting. Formal Asp. Comput. 29(4), 651–703
(2017). doi:10.1007/s00165-016-0412-0

17. Kissinger, A., Merry, A., Soloviev, M.: Pattern graph rewrite systems. In: Löwe,
B., Winskel, G. (eds.) International Workshop on Developments in Computational
Models. EPTCS, vol. 143, pp. 54–66 (2014)

18. Kreowski, H.-J.: A comparison between petri-nets and graph grammars. In: Nolte-
meier, H. (ed.) WG 1980. LNCS, vol. 100, pp. 306–317. Springer, Heidelberg (1981).
doi:10.1007/3-540-10291-4 22

19. Lindqvist, J., Lundkvist, T., Porres, I.: A query language with the star operator.
In: Ehrig and Giese [9]. http://journal.ub.tu-berlin.de/index.php/eceasst/article/
view/55

20. LOTOS: A formal description technique based on the temporal ordering of obser-
vational behaviour. ISO/IEC Infernational Standard 8807, International Organi-
zation for Standardization (1989). https://www.iso.org/standard/16258.html

21. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Ghezzi, C., Jazay-
eri, M., Wolf, A.L. (eds.) 22nd International Conference on on Software Engineering
(ICSE), pp. 742–745. ACM (2000)

22. Plump, D.: Essentials of term graph rewriting. In: GETGRATS Closing Workshop.
Electronic Notes in Theoretical Computer Science, vol. 51, pp. 277–289 (2001).
https://doi.org/10.1016/S1571-0661(04)80210-X

23. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30203-2 23

24. Rensink, A.: Nested quantification in graph transformation rules. In: Corradini,
A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS,
vol. 4178, pp. 1–13. Springer, Heidelberg (2006). doi:10.1007/11841883 1

25. Rensink, A., Kuperus, J.: Repotting the geraniums: on nested graph transformation
rules. In: Boronat, A., Heckel, R. (eds.) Graph Transformation and Visual Modeling
Techniques (GT-VMT). Electronic Communications of the EASST, vol. 18 (2009).
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/260

26. Taentzer, G.: Parallel high-level replacement systems. Theor. Comput. Sci. 186(1–
2), 43–81 (1997). doi:10.1016/S0304-3975(96)00215-0

http://dx.doi.org/10.1007/s00165-016-0412-0
http://dx.doi.org/10.1007/3-540-10291-4_22
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/55
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/55
https://www.iso.org/standard/16258.html
https://doi.org/10.1016/S1571-0661(04)80210-X
http://dx.doi.org/10.1007/978-3-540-30203-2_23
http://dx.doi.org/10.1007/11841883_1
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/260
http://dx.doi.org/10.1016/S0304-3975(96)00215-0

iDSL: Automated Performance Evaluation
of Service-Oriented Systems

Freek van den Berg1(B), Boudewijn R. Haverkort1, and Jozef Hooman2,3

1 Design and Analysis of Communication Systems,
University of Twente, Enschede, The Netherlands

{f.g.b.vandenberg,b.r.h.m.haverkort}@utwente.nl
2 TNO-ESI, Eindhoven, The Netherlands

3 Radboud University, Nijmegen, The Netherlands
j.hooman@cs.ru.nl

Abstract. Service-oriented systems interconnect with other systems in
a time critical manner, making their performance vital. For this pur-
pose, we propose an automated performance evaluation approach for
service-oriented systems which includes both performance measurement
and prediction. The approach makes use of the iDSL language, a domain
specific language tailored to modeling service-oriented systems, and the
iDSL toolchain to evaluate iDSL models, as follows. First, discrete-event
simulation yields many performance artifacts, e.g., latency breakdown
charts, cumulative distribution graphs, and latency bar charts. Second,
timed automata-based model checking yields absolute latency bounds.
Third, probabilistic timed automata-based model checking leads to exact
latency distributions for each service. We successfully validated our app-
roach; several case studies on interventional X-ray systems displayed sim-
ilar measured and predicted outcomes.

1 Introduction

An embedded system is a computer system that has a dedicated function within
a larger system, often with real-time computing constraints [16,27]. Today, the
majority of the commonly used devices are embedded systems, ranging from
simple digital watches, to complex medical machines [19]. An embedded system
is frequently used to perform safety critical tasks, which makes their malfunc-
tioning prone to serious injury and fatalities, such as with medical systems. An
embedded system interacts with its environments in a time critical way. Its safety
is therefore predominantly determined by its performance, which is expressed in
terms of response times, resource utilizations and queue sizes.

Many current practices only address the performance at the end of the devel-
opment trajectory and only resort to tuning of the performance until the system
is “good enough” [21]. Contrarily, we advocate that each design decision dur-
ing system development should be evaluated for performance immediately, as
it can have an increasing impact on performance later on. This prevents unex-
pected performance issues that are hard and costly to fix, especially the ones
c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 214–236, 2017.
DOI: 10.1007/978-3-319-68270-9 11

iDSL: Automated Performance Evaluation of Service-Oriented Systems 215

that are detected late. On top of that, it is recommended to make use of per-
formance predictions, which can provide early insight in the performance of
different design alternatives, without having to realize an actual system yet. We
claim that prediction-based performance evaluation should be an integral part
of the design of complex embedded systems [18].

Good performance is hard to achieve, because embedded systems come with
increasingly heterogeneous, parallel and distributed architectures [18]. At the
same time, they are designed for many product lines and different configurations,
which gives rise to many potential designs. Moreover, accurately predicting per-
formance characteristics of embedded systems is hard, since the real system does
not exist yet. Once the system has been built, measurements to gain insight in
the performance tend to be expensive, because they require the system to run
for quite some time, e.g., to detect rare performance outliers.

To narrow our scope, we constrain ourselves to so-called service-oriented sys-
tems [15,23–26], a special class of embedded systems that have the following
four properties. First, service-oriented systems provide services to their environ-
ment, accessible via so-called service requests. Second, a service request leads
to exactly one service response. Third, individual service requests are isolated
from each other in a service-oriented system and do, therefore, not affect each
other’s functionality. Fourth, service requests may negatively affect each other’s
performance by competing for the same resource in the service-oriented system.

Toolchain

System design +
use cases

High-level
Performance model

Realized
system

Performance
results

realiza on

performance
modelling

measuring

Valida on

calibra on
Underlying

Performance model

requirement
analysis

Performance
model evalua on

Transforma on
1

2

3

4

Simplifica on
2

1

3

4

Fig. 1. System development including performance measurement and prediction.

We propose a framework for the performance evaluation of service-oriented
systems (see Fig. 1), comprising performance measurement and prediction.

Performance measurement starts with the realization of a “system design +
use cases”, a blueprint of the system to be realized, resulting into a “realized
system” via a realization. Performing measurements on this system then yield
“performance results”. Performance measurement comes with two downsides:
(i) realizing a system is (often) very costly, let alone realizing many different

216 F. van den Berg et al.

systems only for testing purposes; and, (ii) since exhaustive performance mea-
surement is impossible, assessing the performance of rare but important events
is difficult.

Performance prediction starts with modeling the performance of a “system
design + use cases”, which may include the use of existing “performance results”,
i.e., measurements, for model calibration. The resulting “high-level performance
model” enters the “toolchain” in which it is transformed into a “underlying per-
formance model”, and subsequently evaluated for performance, yielding “per-
formance results”. In this paper, performance prediction relies on measurements
and can therefore only be used in addition to performance measurement. Also, it
is model-based and thus inherently inaccurate. On the upside, however, a “high-
level performance model” may represent many system designs and performing
measurements on them can often be done at high speed. Hence, performance
prediction is suitable for quickly evaluating the performance of many designs
and thus enables design space exploration [5,11].

In this paper, we focus on performance prediction only. We do thereby assume
that measurements for calibration purposes are readily available.

In the following, we address four requirements that a performance predic-
tion approach should meet. For this purpose, Fig. 1 has been augmented with
labels R1, R2, R3 and R4, respectively. We elaborate on them, as follows:

R1 A high-level performance model should be expressive, yet concise. The model
should allow for the use of different evaluation techniques. An integrated
Development Environment (IDE) and/or graphical user interface (GUI)
should be provided to ease modeling. The model should support calibration
based on measurements and the Y-chart philosophy by supporting, and sepa-
rating, the applications, platforms, and mappings. Finally, mechanisms such
as compositionality, layers and hierarchies, and/or classes, are called for.

R2 The underlying performance model should make it easy to analyze complex
high-level performance models and also support the enabling and disabling
of different properties, such as nondeterministic choices.

R3 The performance evaluation process should be fully automated; a system
designer creates a model, which is evaluated without any user interaction,
and results are automatically returned. This includes Design Space Explo-
ration [5,11] and post-processsing steps, e.g., visualizations. Also, multiple
modes of analysis should be supported for models of reasonable complexity.
Besides discrete-event simulations for quick results, model checking should
be supported for more accurate results. Finally, evaluating the model should
take a limited amount of time and scale well for models of complex systems.

R4 Performance evaluations should lead to various results types, e.g., utiliza-
tions, latency breakdown charts, and latency distributions. Whenever possi-
ble, the results should be presented visually for easy human interpretation.

In previous work [22], many toolsets that support the performance evaluation
process have been compared regarding these requirements; often their level of
automation is limited, their models tend to be at a lower level of abstraction as
called for, only one way of analysis is supported, and results are not visualized.

iDSL: Automated Performance Evaluation of Service-Oriented Systems 217

This paper’s remainder is organized, as follows. Section 2 reveals so-called
interventional X-ray systems, which are medical systems. Section 3 introduces
the high-level iDSL language, followed by the iDSL tool chain in Sect. 4. Section 5
provides an extensive case study. Finally, Sect. 6 concludes the paper.

2 Interventional X-ray Systems

For a running example, we introduce interventional X-ray (iXR) systems, which
are medical imaging systems that enable minimally-invasive surgeries.

An iXR system consist of a number of parts (as depicted in Fig. 2), as follows.
It is used to assist a surgeon while performing surgery, during which a patient lies
on a table. The iXR system displays a continuous stream of images of (the inside
of) a patient on a display. These images are based on X-ray beams, generated in
the arc and caught by the detector, whose task it is to extract raw images from
X-ray beams. Via the control panel, the surgeon can move the arc and table in
various ways and thereby change the angle of the recorded images of the patient,
which are shown continuously on the display.

An iXR system needs to support different settings so that it can be cus-
tomized for a specific patient, surgeon and procedure, for instance: (i) mono- or
biplane, i.e., using either one or two X-Ray beams to generate and detect images,
yielding 2D or 3D images; (ii) image resolution, e.g., images of 5122, 10242 or
20482 pixels; and, (iii) image frame-rate, e.g., 5, 10 or 25 images per second.

Image Processing (IP) is an important subsystem of an iXR system. It turns
raw X-ray images into high quality ones, in real-time; IP retrieves unprocessed
images from the X-ray detector, processes them to enhance their quality, and
delivers them to the display to be seen by the surgeon (see Fig. 2). IP comprises
different kinds of operations, e.g., detecting so-called dead pixels, reducing spatial
and temporal noise, and preparing an image for a particular display.

Fig. 2. The main parts that constitute an interventional X-ray system

218 F. van den Berg et al.

IP is a trade-off between (i) constant quality and frame-rate of the images,
(ii) average throughput, latency and jitter of individual images, (iii) amount
of X-Ray a patient and surgeon get exposed to during a treatment, and (iv)
required computational resources to process images.

The safety of IP is mainly determined by performance, viz., a surgeon needs
to continuously receive high quality images to perform surgery on a patient.
Hence, the image latency, the time between an image arriving on the detector
and appearing on the display, needs to meet a strict requirement. Literature
suggests an average latency below 165 ms for proper hand-eye coordination [12].

3 The iDSL Language

In this section, the iDSL language, which forms a conceptual model of a service-
oriented systems, is defined [22,25]. It comprises six sections (see Fig. 3).

Study
space

Service-oriented System

request

response

request

response

Service1

Process Resource

Service2

Process Resource

Measures of interest

Service delay

Scenario

Service
consumer

mapping

mappingA B

C

D

F

E

Average
queue size

Resource
u liza on

Fig. 3. A conceptual model of a service system.

A service-oriented system (see Fig. 3-C) provides one or more services to one
or more service users (exterior to the service-oriented system), viz., a service
user sends a request for a specific service at a given time, after which the system
responds with some delay. A service is an entity that performs functions ranging
from simple requests to computationally expensive processes.

Service-oriented systems do not only need to return the right answers to
requests, but also face stringent performance constraints, e.g., the system has
to reply to a request within a certain time, often referred to as latency. Service-
oriented systems can particularly be hard to analyze when they handle many
service requests in parallel, for multiple kinds of services, in a real-time manner.

A service is decomposed into one or more processes, resources and a mapping,
in line with the Y-chart philosophy [14]. A process (see Fig. 3-A) decomposes

iDSL: Automated Performance Evaluation of Service-Oriented Systems 219

high-level service requests into atomic tasks, each assigned to a resource via the
mapping (not shown in the figure). Hence, the mapping connects the process
to resource it relies on. A resource (see Fig. 3-B) is capable of performing one
atomic task at a time. When multiple services are invoked of which the resources
they rely on overlap, contention may occur, making performance analysis hard.

A scenario (see Fig. 3-D) comprises a number of invoked service requests
over time to observe the performance behavior of the service system in specific
circumstances over time. Service requests are functionally independent of each
other, i.e., service requests do not affect each other’s functional outcomes, but
may affect each other’s performance negatively due to contention.

A study (see Fig. 3-E) is a set of scenarios to be evaluated, so as to derive the
system’s underlying characteristics. Within a study, a design space is an efficient
way to describe a large number of similar scenarios.

Finally, a measure of interest (see Fig. 3-F) defines an interesting performance
metric, given a system and scenario, e.g., latencies and queue sizes.

In this section’s remainder, we illustrate the meaning of the iDSL language
via a running example of a so-called biplane iXR system (see Sect. 2).

The high-level Process decomposes a service into several atomic tasks, repre-
sented by a recursive data structure with layers of sub-processes. At the lowest
abstraction level, an atomic task specifies a workload, e.g., some CPU cycles.

The example process of Table 1 combines hierarchies (curly brackets), sequen-
tial compositions (seq) and atomic tasks (atom). At its highest level, it consists
of a sequential task “image processing seq” that decomposes into an atomic task
“pre-processing” with (fixed) load 50, a sequential task “image processing” and
an atomic task “post-processing” with load 25. In turn, the sequential task
“image processing” decomposes into three atomic tasks named “motion com-
pensation” with load 44, “noise reduction”, and “contrast” with load 134. The
load of “noise reduction” is drawn from a uniform distribution on [80, 140].

As in [3], iDSL also supports process algebra constructs for parallelism (par),
nondeterministic (alt) and probabilistic choice (palt), mutual exclusion (mutex)
to permit only one process instance to enter a certain subprocess at a time, and
design alternative (desalt) to implement a subprocess that varies across designs.

Table 1. The code of an iDSL process

Section Process
ProcessModel image_processing_application

seq image_processing_seq {
atom image_pre_processing load 50
seq image_processing {

atom motion_compensation load 44
atom noise_reduction load uniform(80:140)
atom contrast load 134 }

atom image_post_processing load 25 }

220 F. van den Berg et al.

The high-level Resource is decomposed into a number of atomic resources
(atom) via different layers of decomposable resources (decomp). Each atomic
resource has a constant rate that specifies how much load it can process per
time unit, e.g., the number of CPU cycles per second. The example resource
“image processing -decomp” of Table 2 is a composite resource which consists of
two atomic resources, i.e., a “CPU” with rate 2 and a “GPU” with rate 5.

Table 2. The code of an iDSL resource

Section Resource
ResourceModel image_processing_PC decomp

image_processing_decomp { atom CPU rate 2, atom GPU rate 5 }

Table 3. The code of an iDSL system

Section System
Service image_processing_service

Process image_processing_application
Resource image_processing_PC
Mapping assign (image_pre_processing, CPU)

(motion_compensation, CPU)(noise_reduction, CPU)
(contrast, CPU)(image_post_processing, GPU)

Table 4. The code of an iDSL scenario

Section Scenario
Scenario image_processing_run

ServiceRequest image_processing_service at time 0, 400, ...
ServiceRequest image_processing_service

at time dspace("offset"), (dspace("offset")+400), ...

The high-level System provides one or more services to its environment.
The example system of Table 3 comprises one service which decomposes into a
process (see Table 1), resource (see Table 2) and a mapping. This decomposition
makes it easy to change a process and/or resource part of a service, e.g., to
apply Design Space Exploration (DSE). Finally, the mapping assigns atomic
task “image post processing” to “GPU”, and the other atomic tasks to “CPU”.

The high-level Scenario comprises several service requests to a system, each
for a given service and at a certain time. The example biplane iXR system of
Table 4 has two services types, viz., for frontal and lateral IP. They are modeled
similarly, i.e., using the example service of Table 3. Frontal IP requests occur
with fixed inter-arrival times of 400, without an initial delay. Lateral IP requests
also have inter-arrival times of 400, but the initial delay is design dependent,

iDSL: Automated Performance Evaluation of Service-Oriented Systems 221

Table 5. The code of an iDSL study

Section Study
Scenario image_processing_run

DesignSpace ("offset" "0" "20" "40" "80" "120" "160" "260")

Table 6. The code of an iDSL measure

Section Measure
Measure ServiceResponseTimes using 1 run of 250 requests
Measure ServiceResponseTimes absolute

viz., the dspace operator with parameter “offset” refers to dimension “offset” in
the design space (see Table 5), which varies from 0 till 260.

The high-level Study characterizes a set of designs to compare. A design space
is a shorthand way to specify many designs; it consist one or more dimensions
that each have several possible values. A design provides a unique valuation for
each dimension. The example study of Table 5 encompasses a design space with
one dimension “offset” that comprises seven values. The dimension is used to
vary the degree of concurrency between both services in Table 4.

The high-level Measure defines, given a system and scenario, the metrics the
system designer is interested in and how they are obtained.

The example measure of Table 6 consists of two measures that both return
service response times. To this end, the first measure uses 1 discrete-event simula-
tion run of 250 requests (see Sect. 4.4, discrete-event simulation) which provides
insight in resource utilizations and latency breakdowns in one go. The second
measure employs an iterative model checking approach (see Sect. 4.4).

4 The iDSL Toolchain

1

(n-1)/n

2/n

1/n

0
0 M1 M2 Mn-1 Mn

execu on me

…

…

Cu
m

ul
a

ve
 p

ro
ba

bi
lit

y

Fig. 4. The Empirical Distribution Func-
tion for n numerically-sorted measurements
m1, m2, . . . , mn−1, mn

The iDSL toolchain takes an iDSL
model (of Sect. 3) as input and auto-
matically generates a wide array
of performance artifacts. For this
purpose, the iDSL toolchain subse-
quently executes the following four
steps: (i) calibrate the model on the
basis of measurements (see Sect. 4.1);
(ii) simplify the model (see Sect. 4.2);
(iii) transform the model into a low-
level Modest model (see Sect. 4.3,
[8–10]); and, (iv) evaluate the perfor-
mance of the model (see Sect. 4.4). In
Fig. 1, these steps are labeled T 1, T 2,
T 3 and T 4, respectively.

222 F. van den Berg et al.

4.1 Calibrating the Model on the Basis of Measurements

In Sect. 3, an atomic task load in a iDSL process (see Table 1) is either fixed
or uniformly drawn from a certain interval. Next, we propose an Empirical Dis-
tribution Function (EDF) as a third possibility to enable model calibration on
the basis of measurements. In Table 7, we observe that an EDF load has one
parameter and comes in two flavors. Atomic task “edf values” is initiated with
a sequence of measurements values, whereas “edf files” refers to an external file
containing measurements.

The EDF for n numerically-sorted measurements m1,m2, . . . ,mn−1,mn (see
Fig. 4) is a step function that jumps up by 1

n at each of the n data points.
Optionally, iDSL provides EDF prediction during which EDFs are predicted for
designs for which no measurements have been performed, on the basis of existing
EDFs. This is carefully explained in [22,26], but beyond the scope of this paper.

Next, we show how model simplification is applied to an atomic task with
an EDF load (in Sect. 4.2), after which it is transformed into a palt-construct as
part of the transformation to Modest (in Sect. 4.3).

Table 7. The code of a small iDSL process with an EDF

Section Process
ProcessModel image_processing_application seq {

atom edf_values load EDF with values 6 8 10
atom edf_files load EDF from file "measurements.dat"

4.2 Simplifying the Model

Generally, an iDSL model is often too hard to analyze, especially when the
iDSL processes have variable loads. To this end, iDSL comes with two model
simplification techniques for EDFs in the iDSL process, viz., the clustering of
loads and changing the model time unit.

The clustering of loads is applied to atomic processes that are defined as
an EDF. Measurements are clustered into a number of clusters using K-means
clustering [13]. Each cluster is summarized by the smallest interval of nondeter-
ministic time containing all its measurements. These intervals are combined via
a probabilistic choice, thereby reducing the number of probabilistic alternatives.

Figure 5 presents a small example based on three measurement values 6, 7
and 18. Figure 5(a) shows the original EDF, which assigns an equal weight of 1

3
to each of the 3 measurements. When the number of given clusters is at least the
number of measurements, this original EDF is returned since each measurement
is assigned to its individual cluster. Figure 5(b) displays the result of K-means
clustering with 2 clusters, viz., measurements 6 and 7 are grouped in one cluster
due to their proximity, and 18 in the other. Hence, 6 and 7 are represented by
a nondeterministic time interval, graphically depicted as a grey area covering

iDSL: Automated Performance Evaluation of Service-Oriented Systems 223

0

1

Time

Pr
ob

ab
ili

ty

6 7 18

(a) 3 clusters

0

1

Time

Pr
ob

ab
ili

ty

6 7 18

(b) 2 clusters

0

1

Time

Pr
ob

ab
ili

ty

6 7 18

(c) 1 cluster

Fig. 5. EDFs based on measurements 6µs, 7µs and 18µs that are simplified using
K-means clustering.

time range [6 : 7], and probability range [0 : 2
3]. This grey area represents an

ambiguity, viz., all distributions that go through this area are possible. The
result is accurate, which means that the real distribution goes through this area.
[23] quantifies this ambiguity. Finally, Fig. 5(c) shows the one cluster case. All
measurements end up in one cluster, yielding a nondeterministic time range
[6 : 18] and probability range [0 : 1].

Changing the model time unit increases the global time unit of the iDSL
model. It is, among others, applied to all EDF functions in the model: (i) the
measurements are divided by the chosen time unit and rounded to the nearest
integer value; (ii) performance evaluation is applied; and, (iii) the results are
multiplied by the time unit again. Bigger time steps reduce the model complexity,
whereas rounding reduces precision. In [23], this loss of precision is quantified.
Note that rounding can both lead to conservative or overestimated results.

Figure 6 shows an example, again for measurements 6, 7 and 18. Figure 6(a)
shows the case of time unit = 1, i.e., dividing measurements by 1 does not intro-
duce rounding errors. Figure 6(b) highlights the case for time unit = 6. Measure-
ments 6 and 18 are not rounded by being multiples of 6, but measurement 7
induces a rounding error, viz., an integer division of 7 by 6 followed by a multi-
plication by 6 yields 6 instead of 7. Effectively, measurement 7 is replaced by a 6,

0

1

Time

Pr
ob

ab
ili

ty

6 7 18

(a) time unit=1

0

1

Time

Pr
ob

ab
ili

ty

6 18

(b) time unit=6

0

1

Time

Pr
ob

ab
ili

ty

15

(c) time unit=15

Fig. 6. EDFs based on measurements 6µs, 7µs and 18µs that are simplified by increas-
ing the time unit.

224 F. van den Berg et al.

yielding two 6 and one 18 values. Figure 6(c) the shows case for time unit = 15.
Measurements 6 and 7 are both rounded to 0, and measurement 18 becomes 15.

Finding the right abstraction level of the model is achieved by systemati-
cally benchmarking iterations of MCSTA for models with different combinations
of clusters and time units. It is the objective to find a model that computes fast
enough and at the same contains enough level of detail. [22,23] describes the
algorithm in detail.

4.3 Transforming the iDSL Model into Equivalent Modest Models

We explain how an iDSL model transforms into a set of Modest models
[8–10] (as graphically depicted in Fig. 7). [25] provides a concrete example. On
top, a Modest model comprises a parallel execution of interacting processes,
i.e., services, resources and generators, implemented using a par-construct. This
similar to a system in LOTOS [3].

For each ProcessModel in the iDSL process, a similar Modest process is
generated. To this end, there are two types of processes. First, a compound
process contains one operator, e.g., par, seq, alt and palt, and recursively refers to
subprocesses. Furthermore, an atomic process with an EDF load is transformed
into a palt-construct: an alternative is created for each jump in the cumulative
distribution function with a weight corresponding to the jump size. For instance,
Fig. 4 conveys a jump from 1

n to 2
n at time M2, which translates to a palt-

alternative with weight 2
n − 1

n = 1
n and time M2. Note that each alternative is

an atomic process. Second, atomic processes signal their ID and a load to a fixed
resource queue, viz., the one defined in the mapping, and wait for a result.

For each ResourceModel in the iDSL resource, a Modest resource queue and
resource process are generated, which both repeat forever (as indicated by the
repeat symbol) for FIFO scheduling. A resource queue either receives an ID and
load from a atomic process (a buffer addition), or forwards an ID and load to its
resource (a buffer removal), each iteration. In turn, a Modest resource waits for a
resource queue to provide an ID and load, processes it using a delay (as indicated
by the stopwatch), and returns the result to the atomic process with the given
ID. A resource queue is not generated in case of nondeterministic scheduling,
since the order at which requests arrive is not relevant. In this case, the ID and
a load an atomic process signals is directly connected to the resource process.
We stress that other scheduling methods are not yet supported.

For each Service in the iDSL system, one or more Modest services are gener-
ated. Each service alternately waits for an incoming request trigger and activates
the process that corresponds to the service. The number of created Modest ser-
vices decide how many service instances the system can handle simultaneously,
which is one by default to have a simple model. However, it can be overridden by
the “numinstances” keyword. Moreover, the service mapping is used to connect
the atomic processes and resource queues (see the green circle in Fig. 7).

For each ServiceRequest in the iDSL Scenario, a Modest init generator is
generated that generates an initial delay, followed by a call to a Modest generator
process that forever triggers a service at fixed inter-arrival times.

iDSL: Automated Performance Evaluation of Service-Oriented Systems 225

main

par{
service1()
…
servicen()

resource1()
…
resourcen()

generator1()
…
generatorn()

}

start

atomic process

add!
result?

generator

incoming_request!
inter-arrival_delay

resource_queue

alt{
:: add?
:: remove!

}

resource

remove?
task_delay
result!

compound process

par/seq/alt/palt/…{
process1
…
processn

}

process
service

Incoming_request?
process()

service mapping

ini al_delay
generator()

Init_generator

design instance

measure

Fig. 7. The Modest processes that are generated given an iDSL model. (Color figure
online)

Finally, similar Modest models are created for each design in the iDSL study
and for each measure in the iDSL measure, as follows. First, a design instance
provides a valuation for each dimension. It is used, among others, to replace the
dspace operator by the actual value of the respective dimension in arithmetic
expressions, e.g., the service request times in Table 4. Second, a measure specifies
how a Modest model is analyzed. This requires measure specific adjustments to
be made to the model (see Sect. 4.4), e.g., turning real values into integers.

4.4 Evaluating a Modest Model to Yield Performance Artifacts

In this section, Modest models of the previous section are evaluated for each
design, using different evaluation techniques. Besides discrete-event simulation,
there are four ways of model checking, viz., TA-based, PTA-based, and efficient
PTA-based, and efficient & scalable PTA-based. Each technique comprises three
execution steps: (i) the Modest model is modified to be compatible with the
given technique; (ii) a Modest tool is applied to the Modest model at least once
yielding performance numbers; and, (iii) post-processing turns the performance
numbers into artifacts. Next, we explain these steps for each technique.

226 F. van den Berg et al.

Discrete-event simulation yields latencies of services, subprocesses and
resource utilizations. Latencies are obtained by enclosing each service and sub-
process with stopwatches. An additional service counter and properties for each
subsequent request of a given service then make it possible to retrieve individual
latencies for a service. A resource utilization is obtained by adding a counter to
a resource that keeps track of the total time it is processing. This counter value
is divided by the total running time of the system, which is implemented as a
global counter. For each run, MODES of the Modest toolset [10] is used once to
perform a discrete-event simulation on the Modest model. MODES is instructed
to use an as soon as possible (ASAP) scheduler for time, and uniform resolution
for nondeterminism choice. This is a pragmatic and commonly used choice that
does not need to reflect the real underlying structure [4].

Post-processing yields three performance artifacts. First, a latency bar chart
(see Fig. 11(c)) is generated using GNUplot [20], which visually displays succeed-
ing latency times.

Second, a latency breakdown chart (see Fig. 11(a)) conveys the static process
structure of a service extended with its dynamics, i.e., latencies and utilizations.
The graph structure is derived by recursively traversing the iDSL process and
resource. It is augmented with placeholders in one go wherever performance num-
bers are needed. Next, these placeholders are replaced by the relevance Modest
properties, after which GraphViz [6] renders the visualization.

Third, a cumulative distribution graph (see Fig. 11(b)) displays latency times
for different designs. Hence, they are convenient to get insight in the consequences
of certain design decisions. To this end, the latency values of the different designs
are gathered, combined, and turned into a plot using GNUplot [20].

TA-based model checking yields absolute service latencies. To make the
model finite, real values that concern time (including loads and rates) are
rounded to their nearest integer values. Additionally, probabilistic choices and
infinite distributions are replaced by nondeterministic choices. Latencies of ser-
vices are obtained by enclosing each service with stopwatches that reset after
registering one latency. To reduce the state space size, no service counter is
added; we do not retrieve which latency is the maximum one. Combined, this
leads to a finite, decidable model. TA-based model checking is performed using
MCTAU [1]. Via a binary search algorithm of [25], i.e., recursive function lb (in
Table 8), an initial range of possible values is halved iteratively until one value

Table 8. Function lb: compute lower bounds, pseudo code

lb ([lbound:ubound]){
if (abs(ubound-lbound)<=1) return lbound // case a
check_value=(lbound+ubound)/2
UPPAAL (p = probability(latency<check_value))
if (p=0) lb (check_value,ubound) // case b
else lb (lbound,check_value) } // case c

iDSL: Automated Performance Evaluation of Service-Oriented Systems 227

remains. This initial range is [0 : n], where n is a deliberate overestimation of
the latency. Each iteration, one of the following three cases occur: (a) there is
only one possible value left, which is returned; (b) model checking conveys that
the probability that the value is in the lower half of the values is 0 in which case
the upper half of the values is returned; or, (c) the lower half of the values is
returned. The complexity of the algorithm is O(log(n)), where n is the chosen
overestimation.

PTA-based model checking yields exact service latency distributions for each
service; a Modest model is created for each service and both the minimum and
maximum probability to compute the latency distribution of that particular
service. In each Modest model, only the process of the given service is enclosed
by stopwatches that record latencies of the service requests. The Modest models
have one parameter time t ∈ R≥0, and return a probability p: the probability
that the service completes within time t.

In iDSL, however, a service leads to an infinite stream of service requests,
each with its individual latency. Ideally, the average of this infinite stream of
latencies is a measure for the performance of the whole service. Put formally:

PΩ(t) = lim
k→∞

1
k

k∑

n=1

Pn(t), (1)

where PΩ(t) is the combined probability, n the service request number, t the
latency time, Pn(t) the probability that service request n finishes within time t.

This infinite sum cannot be directly computed. Instead, the computable geo-
metric distribution [17] is proposed that is capable of detecting an absolute
maximum latency, weighing service requests in an exponentially decreasing way:

PΩ(t) =
∞∑

n=1

(1 − ρ)n−1 ρ Pn(t), (2)

where ρ ∈ (0 : 1) is the geometric distribution parameter. The distribution is
similar to (1), for ρ ≈ 0 and capable of finding the absolute latencies.

In Modest, the geometric distribution is implemented as a binary probabilis-
tic choice every time a service request completes (as depicted in Fig. 8(a)): either
the currently measured latency is returned, with probability ρ (1

10 in the figure),
or the next service request is evaluated, with probability 1−ρ (9

10 in the figure).

9/10

Service
Request 1

Service
Response 1

Service
Request 2

Service
Response 2

Service
Request 3

Service
Response 3

Latency 1 Latency 2 Latency 3

1/10 1/10 1/10

9/10

return
Latency 3

return
Latency 2

return
Latency 1

9/10

(a) with a service request counter

9/10

Service
Request

Service
Response

Latency

1/10

return
Latency

(b) without a counter

Fig. 8. Binary probabilistic choices induce the geometric distribution

228 F. van den Berg et al.

The geometric distribution is memoryless, i.e., the binary choice does not rely
on the service request number. It can thus be represented as a single reoccurring
service request (as depicted in Fig. 8(b)). The figure conveys that a lower ρ-value
yields a more complex model and more precise results, viz., for small values of ρ,
the probability that state “Service Response” is followed by many occurrences
of “Service Request” increases. In this paper, we empirically choose ρ = 1

10 ; it
leads to a state space that is large enough to deliver a reasonable amount of
accuracy and which is moreover practically handleable.

The algorithm to compute a latency distribution of a service [22,24] comprises
three steps in which MCSTA, the explicit-state model checker for STA of the
Modest toolset, is iteratively applied, as follows. First, the initial scan is used to
obtain an upper bound on the latency. Second, the binary lower & upper bound
search are binary searches, similar to TA-based model checking, to obtain a exact
lower an upper bound. Third, the whole distribution is obtained by computing
all values between the bounds in a brute force way.

Efficient PTA-based model checking provides the same functionality as its
inefficient counterpart, but in a more efficient manner [22,23]. The efficiency gain
is the result of executing three lightweight techniques initially as shown in Fig. 9.
Besides a so-called basic estimate function, we reuse the already introduced
discrete-event simulation and four TA-based model checking techniques.

TA-based model checking

Tmin

Tmax

Tmin

Tmax

Basic es mates

Best case

Worst case

Discrete-event
simula ons Minimum

Maximum

Min

Max

Min

Max

Out

Out

Min

Max

Min

Max
Out

Out

∞

A

B

C

D

F

G
H

I

max

E

47

51

99

110

97

97

110
110

lb

ublb

ub

Fig. 9. The dataflow of three lightweight techniques. On the edges, execution times for
service Frontal IP and offset = 0 are shown.

A basic estimate function returns, given a iDSL process, an optimistic but
possibly inaccurate bound of either the minimum (maximum) latency. It is easy
to compute. The result is optimistic because the concurrency between services
and processing steps for resources are not taken into account. Hence, the best
case can be used as a minimum for T lb

min (A), a lower bound for Tmin, and
the worst case for Tub

max (B), an upper bound for Tmax. Table 9 conveys the
recursive definition of the best case, as follows: (i) for an atomic process, the
taskload is returned; (ii) for a (probabilistic) alternative process, the minimum

iDSL: Automated Performance Evaluation of Service-Oriented Systems 229

of all recursively evaluated children processes is returned; (iii) for a parallel
process, the maximum of the evaluated children processes is returned; and, (iv)
for a sequential process, the sum of the evaluated children is returned. The worst
case is defined analogously, but returns the maximum in case of a (probabilistic)
alternative process.

Table 9. The recursive definition of the basic estimate (best case) function

BE: Basic estimate (best case) function

BE atom{p_1} = p_1.taskload

BE alt{p_1,...,p_n} = MIN { BE x | x in {p_1,...,p_n} }

BE palt{p_1,...,p_n} = MIN { BE x | x in {p_1,...,p_n} }

BE par{p_1,...,p_n} = MAX { BE x | x in {p_1,...,p_n} }

BE seq{p_1,...,p_n} = BE p_1 + BE p_2 + ... + BE p_n

Discrete-event simulations display average behavior, which means that the
minimum outcome of all runs can be used as a maximum for T lb

min (C), and the
maximum outcome as a minimum for Tub

max (D). Using the maximum of B and
D for the minimum of Tub

max, makes the range of Tub
max as small as possible.

TA-based model checking T lb
min and Tub

max provide an absolute minimum and
maximum, i.e., regardless of how nondeterminism is resolved, respectively. They
are used as a minimum (F+G) and maximum (H+I) for tub

min and tlbmax.
Efficient PTA-based model checking comprises five steps: (i) compute the

basic estimates; (ii) perform multiple discrete-event simulation runs; (iii) perform
TA-based model checking tlbmin and tub

max; (iv) perform TA-based model checking
tub
min and tlbmax; and, (v) execute brute force PTA-based model checking.

Efficient and scalable PTA-based model checking is similar to the previous
technique, but is applied to a model that is simplified using the algorithm of the
Sect. 4.2. Overall, it aims to deliver a practical compromise between the amount
of needed memory, amount of wall clock time, and quality of the results. In
Sect. 5.2 (results), we illustrate the concrete efficiency gain.

5 Case Study on Interventional X-ray Systems

This section conveys two experiments in which various performance artifacts are
returned (in Sect. 5.1) and exact results are computed (in Sect. 5.2).

5.1 Experiment I: Retrieving a Wide Array of Performance
Artifacts

Experiment I focuses on generating many performance artifacts. This takes its
toll on the high-level model quality which is simple, and moreover limits perfor-
mance evaluation, viz., primarily discrete-event simulations are performed. For
the sake of efficiency, the running example as introduced in Sect. 3 is reused.

230 F. van den Berg et al.

Transformation. The resulting Modest code comprises a parallel process at
its highest level, which contains service “image processing service”, resources
“CPU” and “GPU” that run forever, and two generators that call “image -
processing service”. The service waits for incoming requests of either of the gen-
erators and triggers the process, similar to the iDSL process, in return. Atomic
processes in the process call the respective resources, which perform a delay.
Since nondeterministic scheduling is employed, the resources have no queues.

Evaluation. The iDSL measure (see Table 6) contains two measures, as follows.
First, discrete-event simulation yields a single MODES execution that leads to
latencies and utilizations in one go.

Second, TA-based model checking includes rounding the real values to inte-
gers. Since all but one values of the loads and rates are integers already, the model
is not affected by this step. The uniform choice of atomic task “noise reduction”,
however, is turned into a nondeterministic equivalent. Stopwatches are added
to measure latencies. Given this model, a lower and upper bound latency
are obtained via the binary search algorithm of Sect. 4.4 (TA-based model
checking).

Results come in various kinds, as follows. First, the latency bar chart for off-
set = 0 of Fig. 11(c) conveys that the latencies vary much, i.e., between 200 and
380, as a result of extreme concurrency. This variation is less for other offsets.

Second, the latency breakdown chart for offset = 0 of Fig. 11(a) illustrates how
the overall latency is dispersed over its subprocesses. Tasks “Noise reduction”
and “Contrast” account for 71% of the total latency. The utilization of “CPU”
of 0.83 is high, but not alarming. The utilization of “GPU” is low, viz., 0.025.

Third, the cumulative distribution graph of Fig. 11(b) displays the cumula-
tive latency functions for seven designs with offsets varying from 0 to 200. As
anticipated, the offsets and latency times are negatively correlated, i.e., a smaller
offset induces that the execution of services overlap more (see Table 13) and thus
display more concurrency. In turn, this leads to a higher latency.

Fig. 10. The absolute lower and upper bound

Fourth, Fig. 10 conveys, for
a system with one service and
obtained via TA-based model
checking, the minimum and
maximum absolute latency, viz.,
159 and 189, respectively. It also
shows a CDF of the same system
based on discrete-event simula-
tion. We observe that the bounds
are valid, i.e., s(159) = 0 and
s(189) = 1, and strict, i.e.,
s(159 + ε) > 0 and s(189 − ε)<1,
where ε > 0 and s(n) is the probability that a latency equal to or below n based
on discrete-event simulation.

iDSL: Automated Performance Evaluation of Service-Oriented Systems 231

Fig. 11. Three ways of representing latencies, generated from the iDSL code

5.2 Experiment II: Retrieving Exact Latency Distributions

Experiment II concerns generating exact latency distributions; the results gen-
erated using the model have to match the true values. This is accomplished by
applying exhaustive methods based on model checking. Consequently, the model
must be simple enough to deal with much complexity.

iDSL Model. The system (see Table 12) consists of two similar image process-
ing services, a so-called frontal and lateral one. They are built up of the same
process (see Table 10) and resource (see Table 11). The process encompasses
successive high-level tasks “Noise reduction” and “Refinement”, which decom-
pose into atomic tasks with EDF loads resulting from measurements. Notably,
subprocess “Refinement” contains a nondeterministic choice, viz., atomic task
“Refine” is executed either once or twice, which depends on the number of mon-
itors connected to the iXR system. The resource (see Table 11) contains atomic
resource “CPU” with rate 1 and buffersize 10 for FIFO scheduling, to which all
atomic tasks are mapped. In the scenario (of Table 13), both frontal and lateral
image processing are called with fixed inter-arrival times 40000. The offset of
frontal is 0, the one of lateral depends on the “offset” dimension in the study
(see Table 14).

232 F. van den Berg et al.

Table 10. The code of an iDSL process with abstract loads

Section Process
ProcessModel Image_Processing seq {

seq Noise_reduction {
atom Pre_processing load EDF from file "pproc"
atom Decompose load EDF from file "dcomp"
atom Spatial_noise_red load EDF from file "snr"
atom Temporal_noise_red load EDF from file "tnr"
atom Compose load EDF from file "comp" }

seq Refinement { alt {
atom Refine load EDF from file "ref"

seq { atom Refine load EDF from file "ref"
atom Refine load EDF from file "ref" } } } }

Table 11. The code of an iDSL resource

Section Resource
ResourceModel Image_PC decomp { atom CPU rate 1 buffersize 10}

Table 12. The code of an iDSL system comprising two services

Section System
Service Frontal_Image_Processing_Service

Process Image_Processing
Resource Image_PC
Mapping assign (a11,CPU) scheduling policy (CPU, FIFO)

Service Latera1_Image_Processing_Service
Process Image_Processing
Resource Image_PC
Mapping assign (all,CPU) scheduling policy (CPU, FIFO)

Table 13. The code of an iDSL scenario with two concurrent services

Section Scenario
Scenario BiPlane_Image_Processing_run

ServiceRequest FPontal_Image_Pnocessing_Serice
at time 0, 40000, ...

ServiceRequest Lateral_Image_Processing_Senvice
at time dspace("offset"), 40000+dspace("offset"), ...

iDSL: Automated Performance Evaluation of Service-Oriented Systems 233

Table 14. The code of an iDSL study

Section Study
Scenario BiPlane_Image_Processing_run

DesignSpace (offset {"0" "10000" "20000" "30000"})

Table 15. The code of an iDSL measure

Section Measure
Measure ServiceResponseTimes PTA scalable
Measure ServiceResponseTimes PTA scalable efficient

ServiceResponseTimes using 1 run of 1000 requests

Transformation. The Modest code comprises a parallel process at its highest
level, with services “Frontal Image Processing Service” and a lateral equivalent,
a resource “CPU”, a resource queue “CPU queue”, and two generators that each
call a different service. The two services alternately wait for incoming requests
from different generators and call the same process. Atomic processes all call
“CPU queue”, providing taskloads that Resource “CPU” processes.

Fig. 12. The lower (in purple) and upper bound CDF (in red), the simulation average
(in blue), and α = 0.95 confidence interval (in black) for two designs. (Color figure
online)

234 F. van den Berg et al.

Evaluation. The iSDL measure (of Table 15) encompasses two scalable Proba-
bilistic Timed Automata measures, viz., an inefficient and efficient variant. The
model is simplified using 256 cluster segments and time unit 4 (see Sect. 4.2).
Additionally, a discrete-event simulation measure is added for validation.

Results. We compare the efficient approach with the inefficient one. The execu-
tion of basic estimates and discrete-event simulation takes only 27 s (<2%), but
yields fairly tight bounds for model checking (as graphically depicted in Fig. 9),
viz., [47 : 99], [110 : ∞], [97 : 110] and [97 : 110]. Hence, in return for little
time, many expensive PTA-based model checking calls can be saved. Averagely,
a TA-based model checking call takes 28 s and a PTA-based one 44 s. TA-based
model checking is thus useful for the binary lower & upper bound search. Overall,
the efficient approach takes (for offset = 0) 1589 s (50 calls), opposed to 1937 s
(61 calls) for the inefficient one.

Validation is successful; the simulation confidence intervals (in black) are
located between the lower (in purple) and upper bound (in red) in Fig. 12 for
two offsets, despite the application of model simplifications (of Sect. 4.2).

6 Conclusion

This paper presents a method for performance evaluation of service-oriented
systems which has been put into practice using two experiments, as follows.

The Performance Evaluation Process. To gain insight in the performance
of embedded systems, we have proposed a framework for performance evaluation
of service-oriented systems: A high-level performance model is obtained by mod-
eling the performance of a system. Optionally, this model is simplified to make
it scalable, after which it is transformed into a underlying performance model
that adheres to a widespread formalism, e.g., Stochastic Timed Automata (STA,
[2,7]). Applying performance evaluation yields performance results.

Two experiments have been conducted which exemplified a performance evalu-
ation approach that: (i) provides a domain specific, high-level modeling language;
(ii) allows for the automatic evaluation of a large number of complex designs;
(iii) supports different ways of performance evaluation; and, (iv) presents its
results intuitively via visualizations.

References

1. Bogdoll, J., David, A., Hartmanns, A., Hermanns, H.: MCTAU: bridging the
gap between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) SPIN
2012. LNCS, vol. 7385, pp. 227–233. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31759-0 16

2. Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: Modest: a compo-
sitional modeling formalism for hard and softly timed systems. IEEE Trans. Softw.
Eng. 32(10), 812–830 (2006)

http://dx.doi.org/10.1007/978-3-642-31759-0_16
http://dx.doi.org/10.1007/978-3-642-31759-0_16

iDSL: Automated Performance Evaluation of Service-Oriented Systems 235

3. Brinksma, H., Katoen, J.-P., Langerak, R., Latella, D.: Partial order models for
quantitative extensions of LOTOS. Comput. Netw. ISDN Syst. 30(9), 925–950
(1998)

4. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). doi:10.
1007/978-3-319-33693-0 7

5. de Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study of
performance and cost design space exploration. In: Proceedings of the 3rd Inter-
national Conference on Performance Engineering, pp. 205–216. WOSP/SIPEW,
ACM (2012)

6. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.)
GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). doi:10.1007/
3-540-45848-4 57

7. Hahn, E., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. Electron. Commun. Eur. Assoc. Softw. Sci. Technol.
70, 125–140 (2014)

8. Hahn, E., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des.
43(2), 191–232 (2012)

9. Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In:
Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol.
6957, pp. 372–391. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25271-6 20

10. Hartmanns, A., Hermanns, H.: The Modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 51

11. Haveman, S., Bonnema, M.: Requirements for high level models supporting design
space exploration in model-based systems engineering. In: Procedia Computer Sci-
ence, vol. 16, pp. 293–302. Elsevier (2013)

12. Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding
User Interface Design Rules. Elsevier, Amsterdam (2010)

13. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An
efficient K-means clustering algorithm: analysis and implementation. IEEE Trans.
Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

14. Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.: A methodology to
design programmable embedded systems. In: Deprettere, E.F., Teich, J., Vassil-
iadis, S. (eds.) SAMOS 2001. LNCS, vol. 2268, pp. 18–37. Springer, Heidelberg
(2002). doi:10.1007/3-540-45874-3 2

15. Kontogiannis, K., Lewis, G., Smith, D., Litoiu, M., Muller, H., Schuster, S., Strou-
lia, E.: The landscape of service-oriented systems: a research perspective. In: Pro-
ceedings of the International Workshop on Systems Development in SOA Environ-
ments. IEEE Computer Society (2007)

16. Lee, I., Leung, J.Y., Son, S.H.: Handbook of Real-Time and Embedded Systems.
CRC Press, Boca Raton (2007)

17. Philippou, A., Georghiou, C., Philippou, G.: A generalized geometric distribution
and some of its properties. Stat. Probab. Lett. 1(4), 171–175 (1983)

18. Pimentel, A., Hertzberger, L., Lieverse, P., van der Wolf, P., Deprettere, E.: Explor-
ing embedded-systems architectures with Artemis. IEEE Comput. 34(11), 57–63
(2001)

http://dx.doi.org/10.1007/978-3-319-33693-0_7
http://dx.doi.org/10.1007/978-3-319-33693-0_7
http://dx.doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1007/978-3-642-25271-6_20
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/3-540-45874-3_2

236 F. van den Berg et al.

19. Prince, J., Links, J.: Medical Imaging Signals and Systems. Pearson Prentice Hall,
Upper Saddle River (2006)

20. Racine, J.: GNUplot 4.0: a portable interactive plotting utility. J. Appl. Econom.
21(1), 133–141 (2006)

21. Rosso, C.D.: Software performance tuning of software product family architectures:
two case studies in the real-time embedded systems domain. J. Syst. Softw. 81(1),
1–19 (2008)

22. van den Berg, F.: Automated performance evaluation of service-oriented systems.
Ph.D. thesis, University of Twente (2017)

23. van den Berg, F., Haverkort, B.R., Hooman, J.: Efficiently computing latency dis-
tributions by combined performance evaluation techniques. In: Proceedings of the
9th EAI International Conference on Performance Evaluation Methodologies and
Tools, VALUETOOLS 2015, pp. 158–163. ICST (2015)

24. van den Berg, F., Hooman, J., Hartmanns, A., Haverkort, B.R., Remke, A.: Com-
puting response time distributions using iterative probabilistic model checking. In:
Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272,
pp. 208–224. Springer, Cham (2015). doi:10.1007/978-3-319-23267-6 14

25. van den Berg, F., Remke, A., Haverkort, B.R.: A domain specific language for
performance evaluation of medical imaging systems. In: 5th Workshop on Medical
Cyber-Physical Systems. OpenAccess Series in Informatics, vol. 36, pp. 80–93.
Schloss Dagstuhl (2014)

26. van den Berg, F., Remke, A., Haverkort, B.R.: iDSL: automated performance pre-
diction and analysis of medical imaging systems. In: Beltrán, M., Knottenbelt, W.,
Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 227–242. Springer, Cham
(2015). doi:10.1007/978-3-319-23267-6 15

27. Zurawski, R.: Embedded Systems Handbook. CRC Press, Boca Raton (2005)

http://dx.doi.org/10.1007/978-3-319-23267-6_14
http://dx.doi.org/10.1007/978-3-319-23267-6_15

Probabilities

Against All Odds:
When Logic Meets Probability

Johan van Benthem1,2,3(B)

1 Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands

2 Department of Philosophy, Stanford University, Stanford, USA
3 Changjiang Professors Program, Tsinghua University, Beijing, China

johan.vanbenthem@uva.nl

Abstract. This paper is a light walk along interfaces between logic and
probability, triggered by a chance encounter with Ed Brinksma. It is not
a research paper, or a literature survey, but a pointer to issues. I discuss
both direct combinations of logic and probability and structured ways
in which logic can be seen as a qualitative version of probability theory.
I end by sketching a concrete program for classifying qualitative scenarios
that would lend themselves to simple logical reasoning methods, but
I also acknowledge a challenge: the ‘unreasonable effective of probability’.

1 Introduction

When I met Ed Brinksma recently in the “Glazen Zaal” in Den Haag, old mem-
ories came back of a very special student in Groningen, clearly ‘a cut above the
crowd’, who wrote a pioneering thesis on interpolation in dynamic logic (still a
live topic even today), and who turned my lecture notes on mathematical logic
into a highly effective didactic manual that attracted many students over the
years. I have followed Ed’s career ever since, and find traces of encounters in my
archive, such as our contributions printed side by side in a volume of the popular
magazine “De Automatiseringsgids” in 1993, when, to some, computer science
seemed to be in crisis, just as it was making a giant leap toward transforming
our world. And there is of course his blazing trajectory as a Rector at the Uni-
versity of Twente, which I followed in the press, with, I confess, a tinge of pride
in having contributed my bit to this higher flight.

But our conversation was about something else, namely, Ed’s ideas on ‘reso-
nance’ as a basis for communication, rather than elaborate logical models. This
struck me since I had been thinking on similar lines, inspired by an introduction
to cognitive science, [32], that made a distinction between two aspects of com-
munication: ‘transfer’ of message content, and ‘resonance’ between the actors.
The latter seems a precondition for the former to succeed.

I have thought a lot about this distinction, which seems real to me. I always
tell my students who get a job interview that now is not the time to do still more
transfer of information about how clever they are. It is not about touting their

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 239–253, 2017.
DOI: 10.1007/978-3-319-68270-9 12

240 J. van Benthem

latest papers, and their brilliant new projects, but rather, about establishing
resonance with a committee trying to decide whether this (perhaps too) clever
young person is someone they would like to have as a colleague.

But how to model resonance, real as it is? I can list many topics in my environ-
ment of logics of agency and philosophy of action that go a bit in this direction,
such as common knowledge, opinion aggregation, or network dynamics, but they
never seem to jell into one coherent picture, so all I have are accumulated notes
in closed drawers. Now Ed seemed to think (it was a noisy reception, resonance
by eye contact was easier than transfer) that all this presented a challenge to
logic, and that we would need probabilistic models. So, here is my topic.

2 Logic and Probability

These are days of tension, or armed neutrality, between logical and statistical
approaches to communication, language, and cognition. On the classical logical
model of deliberative agents that communicate or interact, reasoning plays an
important role, including complex ‘theory of mind’: what I believe about your
beliefs about my beliefs, and upward. Much of my own work has been in this line,
[34,36], and the resulting logics of agency – also those by colleagues in computer
science – are ever more sophisticated, but also, I am unhappy to say: ever more
complex. It becomes a miracle that human interaction works at all. So, here is an
alternative approach. We look for simple statistical patterns in human language
and interaction, and explain observed behavior in terms of these. This contrast is
sometimes cast in terms of ‘high rationality’ versus ‘low rationality’, [30]. Simple
statistical models often explain emergent stable patterns in behavior just as well
as complex logical theories with highly baroque sets of notions.

This is not just the usual sniping between competing academic disciplines.
These issues are also potentially radical in their consequences for our daily lives.
Take ethics and how we should behave. Classical ethical theory is reason-based,
and the reasons why we engage in moral behavior toward others are cemented
by complex logical and game-theoretic scenarios, a form of high rationality in
the normative realm bequeathed to us by great minds like Immanuel Kant or
John Rawls. Of course, there are people who do not play by the rules: criminals,
or profiteers that play the system. But on the whole, society is in equilibrium.
Now consider a low-rationality alternative without deep reasoning. There just
happen to be two types of humans: predators (who do not follow the rules), and
prey (those who do). Then a simple biological model for their encounters leads
to an evolutionary game with probabilistic equilibria having stable percentages
of predators and prey in the long run. Thus, stability has been explained in much
simpler, and also less fragile, terms. And incidentally, those biological models do
work on simple resonance (whether positive or negative) in terms of what the
two types of beast do in their encounters.

The mathematics of the low rationality approach is statistics, dynamical
systems, and evolutionary rather than classical game theory. And so a question
arises, at least for someone like me. Is there any place left for logic? Well, the

Against All Odds: When Logic Meets Probability 241

interface of logic and dynamical systems is an exciting new topic with old roots
that I have discussed elsewhere, [37], and we are only at the beginning, [20].

But in this paper, I want to strike out in an even more general direction,
focusing on just one aspect of dynamical systems. The rest of this little piece
will try to paint a light picture of actual encounters between logic and probability,
not in hostile or plaintive mode, but as serious paradigms treated on a par.

3 A Shared History

Qualitative deductive logic produces absolute certainty, but in a limited range,
with its greatest triumphs perhaps in mathematics or automated deduction. In
contrast, quantitative probability produces less certain conclusions, but it applies
to all of life around us. But this way of phrasing the divide may create a spurious
tension. It is important to realize that there is a good deal of harmony as well,
and this section provides a few pointers.

Clearly, in our ordinary reasoning, probabilistic and logical steps proceed in
tandem. One takes over where the other seems less appropriate. And indeed,
this harmony can also be observed in the history of logic. Great logicians of the
19th century did not make sharp distinctions here. John Stuart Mill’s highly
influential “System of Logic” presents both logical and probabilistic rules for
good reasoning, and it seems odd to say that he was confused between logic
and probability theory, or between logic and methodology. Bernard Bolzano’s
“Wissenschaftslehre”, another classical gem, even says that the task of logic is to
chart all natural styles of human reasoning, which can be task-dependent, and he
includes probabilistic reasoning among these. Similar views occur with Charles
Saunders Peirce on the entanglement of deduction, induction (more probabilis-
tic), and abduction (reasoning to the best explanation). And here is a title which
says it all: George Boole’s “An Investigation of the Laws of Thought on Which are
Founded the Mathematical Theories of Logic and Probabilities”. It is only with
the birth of modern mathematical logic in Frege’s “Begriffsschrift” that prob-
ability drops out, presumably because probability spaces live somewhere inside
the set-theoretic universe, and thus have been ‘dealt with’ at the stratospheric
abstraction level of the foundations of mathematics.

But even in a beginning modern logic course, numbers and probability come
in naturally on top of the base structure. We normally give binary judgments of
validity and non-validity for proposed inference patterns, say,

¬B,A → B =⇒ ¬A (valid) versus ¬A, A → B =⇒ ¬B (invalid)

But there is more: among the non-validities, some seem worse than others. For
instance, the inference ¬A,A → B =⇒ ¬B gets things wrong in half of the
cases, but the invalid A∨B =⇒ ¬(A∧B) only in one of three cases. This is not
yet probability, but it is natural numerical structure right inside logic.

This link continues into probability theory. A probabilistic axiom such as

P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

looks very much like propositional logic ‘continued by other means’.

242 J. van Benthem

In fact, similar comments can be made about the simple almost propositional
reasoning leading toward something as ubiquitous as Bayes’ Rule:

P (A | B) = (P (B | A) ∗ P (A))/P (B) if P (B) �= 0

Not surprisingly then, one of my favorite textbooks as a student (not on the
official curriculum, but not on the Index either) was Suppes’ “Introduction to
Logic” from the 1950s which also included quantitative topics as a matter of
course. It offers not just Venn Diagrams for syllogisms, but also Venn diagrams
with numerical information about their regions – not just deductive logic, but
also probability. And the same combinations can be seen in the creative work
of major philosophical logicians. Carnap created ‘inductive logic’, [4], Hintikka
developed numerical confirmation theory, [15], and Lewis moved happily from
qualitative theories of conditionals to the principles of probabilistic update over
time, [25]. This combination of interests is just natural, it will not go away.

With this in mind, let’s now explore other encounters of logic and probability.

4 Logical Foundations of Probability

Here is an obvious first encounter that still may still need stating. One place
where logic and probability can meet without conflict is at a meta-level, in the
foundations of probability. Theorems in probability theory have standard math-
ematical proofs, and so there is a deductive logic to the theory of non-deductive
reasoning. In this sense, Frege and the other founding fathers of mathematical
logic were right. But there are also more intimate foundational contacts.

Consider our national classic, Johan De Witt’s “Waerdije”, [7], the found-
ing document of modern insurance mathematics. At the start, the author gives
an explanation of the laws of probability – which he may have learnt from a
pamphlet by Christiaan Huygens – in terms of rational betting behavior. The
betting connection is standard by now, and a famous version is the Dutch Book
Theorem, [19]. This says that obeying the standard laws of probability is the only
guarantee against having a ‘Dutch book’ made against you: that is, a system of
bets that is systematically unfavorable to you. (This link between probability
theory and financial gain is a pioneering instance of the ‘valorization’ so prized
by our university leaders today.) There is more to be found in this line, witness
[18] on justifications for qualitative probability. Indeed, I believe that one can
also profitably give Dutch Book theorems for laws of logic, in terms of avoiding
unsuccessful planning, but this theme would take me too far here.

And there is a deeper connection with logic as well. Pioneers of modern
probability, such as De Finetti, [6], believed that probability rests on a qualitative
notion, namely, a comparative binary connective between propositions:

A ≤ B B is more probable (more likely to be true) than A

De Finetti then proceeded to give axioms for this notion that allow for qualitative
reasoning. In addition to obvious properties of a reflexive transitive order, these
include intuitive laws of probability such as (with − for set complement)

Against All Odds: When Logic Meets Probability 243

A ≤ B if and only if (A − B) ≤ (B − A)

From these, other natural principles follow, such as the propositional monotonic-
ity law saying that A ≤ B implies A ∧ D ≤ B ∨ C.

The aim of this approach was a set of intuitive qualitative laws of reasoning
that would force the existence of a standard probability measure P such that

A ≤ B iff P (A) ≤ P (B), for all propositions A,B

Eventually, de Finetti’s set of principles did not work out, as was shown in a
famous technical counterexample in [21], a paper which also proposed necessary
and sufficient qualitative principles for probabilistic representation. An accessible
modern explanation of these matters can be found in [16].

Later on, Dana Scott gave a better-known streamlined version of necessary
and sufficient logical principles for probability, [29], but still, their very complex-
ity suggested by and large that this approach was a dead end. Much better to
just calculate with probability values directly, and drop logical purism!

However, De Finetti’s paradigm is not a closed chapter at the interface of
logic and probability, and we will return to it in Sects. 6 and 7 below.

5 Probabilistic Patterns in Logic

Instead of looking for logical foundations for probability, we can also turn the
tables, and look for probabilistic patterns in the foundations of logic. Here are
a few strands that belong to this direction.

By the 1960s, the properties of first-order predicate logic, the logician’s tool
par excellence, had pretty much been discovered – and in 1969, Lindström’s
Theorem, [26], even stated a precise sense in which we had found a complete set
that captured the essence of this system. History seemed at its end.

But in the 1970s, a striking discovery was the Zero-One Law, [9], and inde-
pendently a Soviet team, which says the following. Take any first-order formula
A, and compute the probability Pn(A) of its being true on finite models of size
n (there are only finitely many such models up to isomorphism). As n goes to
infinity, the probability of Pn(A) will go toward either 1 or 0. It is even decidable
from the shape of the assertion A which of the two cases obtains. Many further
such results have been discovered. In other words, underneath qualitative logical
model theory, deep global statistical regularities have come to light – and in that
sense, we probably do not know the meta-theory of classical logic at all yet.

Other examples of significant statistical behavior have been discovered as
theorem provers started producing logs and outputs, making a vast store of
experience available in how logical systems actually perform. One striking dis-
covery were physical ‘phase transitions’ in computation time for propositional
satisfiability problems, [27]: the average time toward an answer “satisfiable” or
“not satisfiability” first increases with input size qua number of formulas, even-
tually it decreases, but the change is sharp for certain input sizes. These exper-
iments have been replicated, also with other measures of input complexity, and

244 J. van Benthem

the phenomenon seems robust: complexity of performance of logical systems has
significant cliffs. Much progress has been made with analytical or logical expla-
nations, but I am not aware of any definitive theory. Even so, we may conclude
that the bulk behavior of proof systems, too, seems to hide important statistical
structure for whose study we need to combine logic and probability.

My final example goes further, but is also more speculative. The great meta-
theorems of classical logic all have a limitative character. Basic problems are
undefinable, non-axiomatizable, or undecidable. But how bad is this news really?
The undecidability of first-order logic says that no single effective algorithm can
decide validity correctly for arbitrary first-order formulas. But maybe there are
methods that decide most first-order formulas, or even almost all of them except
for a set of measure zero. Indeed, some results like this circulated in 2013, when
a Bay Area-based group of computer scientists proposed a truth definition for
arithmetic in a probabilistic first-order logic, [5], something that cannot be done
classically by Tarski’s Theorem. Of course, there is an all-important issue what
sort of probability measure we are talking about, and I doubt that there is a
consensus on the viability of these approaches. But there are versions which
seem bona fide, witness the earlier paper [13] on the decidability of the Halting
Problem on a set of asymptotic probability one. What I take from these results
is that probability might make sense as a means of enriching results even in the
heartland of mathematical logic. Even so, just in case: for a non-speculative and
authoritative survey of established uses of probability in logic, cf. [23].

There are many further serious contacts between logic and probability than
those enumerated here, starting from the 1960s until right today, in seminal work
by Haim Gaifman, Jens Erik Fenstad, Jeff Paris, Michiel van Lambalgen, and
many others. It would be tedious to bore the reader (and even worse, Ed) with
huge bibliographies containing all of this work, so instead, I continue with just
a few recent strands that I would like to highlight.

6 Mixed Practices in Language and Reasoning

Leaving polemics aside, there are good reasons for connecting up numerical prob-
abilities and qualitative notions. In fact, this can be done in different ways.

One approach is modest, showing merely how logic and probability are not
at odds, but can co-exist fruitfully in systems combining virtues of both. One
such system is the ‘probabilistic dynamic-epistemic logic’ of [38], which has a
logical component dealing with update of agents’ knowledge and beliefs, and a
probabilistic component providing fine-structure to the logical part. This is not
just a case of living apart together. In the process of combining, perspectives
enter from both sides, and in this particular combined system, the logic suggests
new rules for update with new information, which distinguish three intuitively
different sorts of probability: prior probabilities representing the agents’ expe-
rience so far, occurrence probability representing what agents believe about the
current process they are observing, and observation probabilities recording the
quality, or the trust agents place in the new observation just made.

Against All Odds: When Logic Meets Probability 245

A more ambitious approach to our interface would establish some deeper
functional connection between logical and probabilistic components in reasoning
and problem solving. Perhaps the most obvious way of thinking about this is a
division of labor: the logic is a qualitative counterpart for the probabilistic part,
to which it stands in some precise definable relation.

This is not just a theorist’s concern, there are indications that actual rea-
soning works in exactly this way. One such case rests on the fact that we use
natural language all the time in phrasing our daily decisions, arguing for them,
and even as academics, for explaining complex mathematical results, say quan-
titative insights about probability in more intelligible general terms.

Now the vocabulary of natural language has many notions that seem related
to probability. The most striking examples are words like “probable” or “likely”,
though it would be naive, at least in my view, to suppose that these ordinary
words stand directly for probabilistic notions. But even words that do not sound
like this have been construed as having probabilistic content.

One famous example is that of natural language conditional statements

“if A, then B”

The influential book [1] proposed that these can be read as saying that the prob-
ability of the conditional equals the conditional probability P (B | A), provided
that P (A) �= 0. There has been a spate of work on refining this intuition and res-
cuing it from counterexamples, and this perspective on natural language is very
much alive, witness the relevant entry in the Stanford On-Line Encyclopedia
of Philosophy: https://plato.stanford.edu/entries/logic-conditionals/. (Inciden-
tally, the latter is also a great source for many other topics in this article.)
Further probabilistic semantics have been given for so-called ‘epistemic modals’,
such as the above words “probable” and “likely”, or even “must” and “may” – cf.
[17] for a modern take. Thinking in this way, many common expressions in nat-
ural language are surface manifestations of an underlying probabilistic reality,
or probabilistic view of reality.

Here is another such line, this time not linguistic, but going back to philosoph-
ical epistemology in the 18th century. When we think about beliefs of humans
(clearly, “know” and “believe” are typical natural language expressions that we
use constantly to describe epistemic states of ourselves and others), probabilis-
tic versions make sense, as these even allow for finer numerical degrees of belief.
But at the same time, just speaking in terms of qualitative belief has never gone
away, since it represents a stable and useful way of describing agents and their
actions. But what is the connection with quantitative probability?

It has been proposed early on by Locke and Hume that belief in a proposition
A would have an underlying probabilistic meaning

P (A) ≥ k, where k is some threshold in the interval (0, 1)

But there are well-known counterexamples to this view, which seems in conflict
with the fact, usually assumed by philosophers, that beliefs of ideal agents are
closed under conjunction. Now the recent study [24] has proposed an entirely
new way to proceed here, by showing how each finite discrete probability space

https://plato.stanford.edu/entries/logic-conditionals/

246 J. van Benthem

has a unique set of stable propositions whose probability remains above the given
threshold when we get new consistent information. These propositions are a good
candidate for our qualitative beliefs, as a stable core inside the probabilistic facts.
At the same time, Leitgeb’s analysis also provides an entirely new solution to
the well-known Lottery Paradox, which I cannot go into here.

Finally, let us return to the foundations of probability. The discussion about
De Finetti-style qualitative laws of reasoning with ordinary language expres-
sions underpinning probability has been reopened recently in [16], whose authors
show how a modified natural definition of qualitative comparative probability fits
quite elegantly with representation in terms of sets of probability measures. The
resulting logic is a subsystem of the original Scott-style qualitative probabilistic
logic with independent interest as a means of drawing qualitative conclusions
from qualitative premises that admit of probabilistic interpretation. Interest-
ingly, this new analysis makes essential use of logics of qualitative probability in
philosophy, [10] and in theories of agency in computer science [40].

These recent connections also suggest a more refined picture. We are not
just investigating whether qualitative reasoning in logic fits with probabilistic
reasoning by the precise canons of probability theory. One can look for a whole
spectrum of numerical representations. Basic logical laws for comparative prob-
ability A ≤ B are valid if we just assume that propositions have numerical
‘scores’ that can be added and subtracted, cf. [31]. Other modes of reasoning,
however, assume the probabilistic modus of normalizing everything to values in
the interval [0, 1] and allowing further numerical operations such as multiplica-
tion and division. We do not have to choose, but can see what fits the intended
applications best. We will return to theses issues briefly in Sect. 7 below.

So, we live in exciting times. Old debates about the interface of qualitative
reasoning and probability are being reopened, and boundaries seem less sharp
and more flowing than before. I could add many more examples of this new phase
of research, such as connections between probability and qualitative ‘plausibility
orders’ for the semantics of belief, a popular tool in my own logical community,
[39]. Also, a new wave of topological models for belief, evidence and learning
is entering the fray, [2]. For a survey of the literature up to around 2000, and
striking innovations far beyond my own community and including such powerful
mixed probabilistic-qualitative calculi as Dempster-Shafer theory or Bayesian
nets, I recommend Halpern’s monograph “Reasoning about Uncertainty”, [12].

I conclude with stating my own view on the matter. To me, it is a basic fact
about cognition that we can approach language and reasoning at various levels of
detail. Logical and mathematical languages ‘zoom in’, providing deep detail, and
this has great virtues for utmost precision and computation. Natural language,
on the other hand, ‘zooms out’, providing high-level qualitative descriptions that
we can use to summarize our decisions and actions, and argue for or against
them. Of course, traditional logicians tended to distrust natural language, as a
cesspool of bad reasoning habits and naive or sloppy formulations. But I myself
think in terms of harmony: both high zoom and low zoom seem important, and
the real scientific task ahead is getting to grips with their constant interplay.

Against All Odds: When Logic Meets Probability 247

7 A Concrete Encounter

Finally, to complement the general picture painted in this paper, here is a con-
crete case for interfacing logic and probability. My starting point is a psycholog-
ical study of patterns in natural language use, but I will also raise issues coming
from other directions as we go along.

Here is an interesting psychological experiment, simplified a bit from [11].

Three Faces. People are shown three faces, one with a hat and glasses (1), one
with glasses only (2), and one with neither (3). Now someone says: “My friend
wears glasses.” When asked who is that friend, most people say it is 2. Why?

Here is an explanation in terms of pragmatics using Grice’s well-known max-
ims for conversation: “The friend must be 1 or 2. But if she were 1, there would
be a more informative way of communicating this fact: namely, by saying “My
friend has a hat”. Therefore, the friend is 2.” However, this style of analysis
assumes that people are always maximally cooperative, so that the statement
identifies the unique possibility of ‘glasses only’. But this need not be the case
in ordinary discourse, and we are merely talking tendencies, not certainty.

Accordingly, the analysis in the cited paper was probabilistic. To demonstrate
this way of thinking, assume that all three possibilities are equally likely at
the start. Now, qua empirical content the assertion “My friend wears glasses”
rules out Case 3, leaving only Cases 1 and 2. But crucially, more information
is available, viz. the fact that this particular assertion was used. We get at this
surplus by assigning probabilities for two possible assertions to occur in Case 1.
With any non-zero probability for “My friend has a hat”, the sequence (Case 1,
“Wears glasses”) is less probable than (Case 2, “Wears glasses”) (just compute
the product of the prior probability of the case and the occurrence probability
of the assertion), and this explains why we are more likely to be in Case 2.

Of course, there is freedom here in setting the occurrence probabilities for
the two assertions in case 1. In fact, we can choose them so as to match the
precise observed percentages of people choosing the ‘correct’ answer. But we can
also view them as subjective probabilities that people have concerning linguistic
behavior in the relevant community: the computation does not say.

Now for a logician’s qualitative perspective. The probabilistic analysis given
here seems overly specific. Agents do not have precise values for the probabili-
ties of either statement in Case 1, and frankly, I am also somewhat suspicious
of the statistics about respondents presented in these experiments, for various
reasons that I will not go into here. In any case, the practical question at issue is
qualitative about who is the friend, no finer measure is called for. Indeed, there
seems to be a simple pattern at work here. The person hears that the friend
wears glasses, which is still compatible with two faces: of persons 1 and 2. But
she thinks it is more plausible that it is the face of person 2. Many decisions in
daily life are driven by such simple judgments of comparative plausibility. How
do these work, and can they be made to work simply and qualitatively?

There are two issues here. What, in fact, is the abstract underlying pattern of
the Faces, and what sort of reasoning is appropriate to practical scenarios whose
specifications are qualitative and so are the issues that need to be resolved?

248 J. van Benthem

Classifying the Structure of Problems. The above is not just one particular puzzle.
Consider the much-discussed Monty Hall problem, [28]:

“A car has been placed behind one of three doors. The car will be mine if
I guess correctly where it is. Say, Door 1 is my guess. Now the quizmaster
opens a door different from the one I chose and reveals there is no car
behind it: say, he opens Door 3. He then asks if I want to switch my guess
from Door 1 to Door 2. Should I?”

Many people, including professionals, have said I need not, since after the open-
ing, the remaining two doors have equal probability. But again the point is that
the quizmaster’s opening Door 3 has surplus information: it is more likely that
he did this with the car behind Door 2, where it was his only option, than with
the car behind Door 1, where he had two options. And once more, the final issue
is a qualitative “Yes/No”: should I switch? Finally, I may not know the exact
protocol followed by the quizmaster in opening doors when he has a choice. So,
the core for this practical decision seems qualitative once more.

In fact, the key reasoning point of the Monty Hall scenario is exactly that of
the Three Faces, as can be seen by drawing a diagram of the decision tree. This
similarity can be made precise, and it raises an important general issue.

Many puzzles with probability seem to have the same structure, or at least,
there are recurring general genres. This is seldom discussed in detail, but one
often has a suspicion that different publications and communities discuss the
same problem in different guises. This does not mean that there might not be
differences in emphasis in such cases, say, in setting up the right probability space
versus reasoning from a given probability space. But still, what would be very
helpful here, for both theoretical and practical reasons, is having a classification
from a higher standpoint. I believe that a good way to proceed here uses a known
notion from the world of logic and computing, viz. bisimulation, of course in a
version that fits a probabilistic setting, [22,38]. This could be the basis for a
more systematic classification of probabilistic reasoning problems.

What Sort of Reasoning Fits Qualitative Problems? How can we do the reason-
ing in the Three Faces, or Monty Hall, qualitatively? One obvious candidate, in
terms of our earlier discussion, are the earlier-mentioned logics for qualitative
probability by Harrison-Trainor, Holiday & Icard. The most perspicuous formu-
lation of this approach for our purposes in what follows may be that in [14].

There are three relevant histories of events: (friend is Person 1,“wears a
hat”), (friend is Person 1, “wears glasses”), (friend is Person 2,“wears
glasses”). We know from the problem specification that the sets {(friend
is Person 1,“wears a hat”), (friend is Person 1, “wears glasses”)} and
{(friend is Person 2,“wears glasses”)} are equiprobable. We also know,
or rather assume, that {(friend is Person 1,“wears a hat”)} has non-zero
probability, i.e., it is not equiprobable with the empty set. But then it
follows, for instance in the probabilistic base logic of [16], that {(friend is
Person 1, “wears glasses”)} < {(friend is Person 2,“wears glasses”)}.

Against All Odds: When Logic Meets Probability 249

Simple though this looks, there is an interesting problem here. In general, a
qualitative specification of a probabilistic problem need not settle a comparative
question. This is easy to see by varying on the Faces.

If we allow two assertions, say e, f , both if the friend is Person 1 (Case 1)
and if she is Person 2 (Case 2), where we assume the two cases are equiprob-
able, and we observe event e, then it all depends on what we know about
the relative plausibility of the events. Say, if we have {(1, e)} > {(1, f)}
and {(2, e) > {(2, f)}, then we cannot conclusively compare the histories
(1, e) and (2, e) unless we have more precise quantitative information.
However, things are subtle. If we have {(1, e)} > {(1, f)} and {(2, e)} <
{(2, f)}, it follows necessarily that {(1, e)} > {(2, e)}.

A Numerical Calculus. I believe there is a simple numerical calculus behind
the preceding observations, which acts as an intermediate level between full-
fledged probabilistic computation and purely qualitative reasoning with binary
comparative propositions. I will only sketch the idea, details are left to later work.

We merely need to assign variables to the relevant histories in some system-
atic way, and then use sums of such variables to describe relevant coherent sets
of histories such as the ones that occurred in Monty Hall or the Faces. Then
the available qualitative information in the problem at hand comes in the form
of equalities and inequalities between terms that are sums of variables, with a
constant 1 added for proper inequalities. And what we are asking is whether a
particular inequality between relevant variables follows from the given informa-
tion. I will not give concrete numerical examples here, but is easy to formulate
the earlier problems and similar ones in this way.

Using standard ways of replacing inequalities by equations with additional
variables as needed, this becomes an exercise in a small fragment of Pres-
burger Arithmetic, namely, a satisfaction problem for algebraic terms, solvable
by Gaussian elimination. The above examples represent very simple cases of such
problems, driven by obvious properties such as monotonicity of addition, plus
some slightly less obvious arithmetical inferences.

This numerical perspective on qualitative probability may be no more than
an alternative notation for the more laborious formulations in [14] involving
multisets, and it also seems related to the approach taken in [8,29]. Even so, I
believe that analyzing the equational solution algorithm in the above manner
might throw additional light on existing qualitative axiomatizations. Moreover,
and much more ambitiously, I believe that we should look for such very simple
(and often, simplistic) methods as the basis for a calculus of real practical use.

Of course, a more general issue remains, related to our earlier point about
classification. Which kinds of qualitative problem can be solved in this way,
and what makes them different from more complex scenarios where there is no
alternative to biting the bullet, and doing the full probabilistic math?

Further Logical Features. There are also other logical perspectives on the exam-
ples discussed here. For instance, [35] analyzes the Faces in terms of information

250 J. van Benthem

update and model-checking rather than inference. We have an initial probabil-
ity space with equiprobable alternatives, events can occur which have different
occurrence probabilities, and we want to know the relative probabilities of the
resulting histories, perhaps after observing some particular event. This dynamics
of constructing probability spaces seems important in clarifying puzzles in prob-
abilistic reasoning, and [38] provides a mechanism for systematic construction.

But then, the issue of making qualitative comparisons in the final space
becomes one of finding the right ‘order merge’ between prior plausibility order
and plausibility order among events. And one difficulty for most current rules
of order merge is the relevance of the eliminated history: in the Faces scenario,
event (1, f) did not occur, but it still influences our judgment of the relative
plausibility of the case (1, e) and (2, e). As far as I know, no definitive update
mechanism for qualitative probability has been found along these lines.

There are many further aspects to making probabilistic reasoning qualita-
tive. What also seems relevant is the difference between plausibility, where we
go for most prominent alternatives, an elitist epistemic perspective, versus prob-
ability, where many implausible possibilities may add up to one high-probability
zone, a more democratic perspective. These are two valid styles of representing
information in human reasoning. To see this co-existence in natural language, a
sentence like “the candidate got most votes” can mean that she got more than
half (the probabilistic view) but also that among the candidates, she received
the largest vote (the plausibilistic view). Thus, we also need to disentangle the
varieties of qualitative reasoning that are around in our daily practice.

The conclusion of my discussion is that natural qualitative viewpoints can
be found on probabilistic reasoning toward qualitative conclusions, and that
these may even have some chance of being practical, once we truly understand
the mechanisms at work. I have made some concrete proposals to this effect,
continuing on some recent literature, and pointing out further ways to go.

These concerns are not just a matter of purism but of practical importance.
It is often said that ‘people are bad at probabilistic reasoning’. Maybe this is
just because they are performing other, more qualitative kinds of reasoning?
This point is of course well-known, cf. [33], but I may have added some fuel.

Coda. Still, most of this is programmatic intentions, not proven achievements.
Sometimes, one also has an opposite feeling. What we encounter in many sce-
narios is the ‘unreasonable effectiveness of probability’. The numbers in one and
the same probabilistic formula play distressingly different roles from a logician’s
point of view. A prior probability may record our accumulated experience in
situations of similar kinds, or the strength of our prejudices unaffected by expe-
rience, while other probabilities measure features of an ongoing process such as
likelihood of occurrence of events in certain states, there may also be numbers
measuring the quality of our new observations, and so on. All these numbers,
despite their different origins and meanings, are squashed together by numerical
weights, and we freely apply arithmetical operations such as multiplication and
division, even when these make little sense if we were to translate back to the
intuitive meaning of the diversity notions involved. And yet it works!

Against All Odds: When Logic Meets Probability 251

8 Conclusion

I hope to have shown that the logic probability interface is very much alive. Even
so, I have only scratched the surface. Innovative mixtures of probabilistic meth-
ods and more qualitative ones are everywhere today once you open your eyes,
with some of them bubbling up right inside my own Amsterdam institute, such
as the paradigm of data-oriented parsing, [3]. More generally, I think that, even
in the current world of big data and deep learning, logic interfaces remain essen-
tial – and much more needs to be understood in general terms about productive
mixtures of logic with probability and their general properties.

As for logic proper, I find it undeniable that my discipline has its place in
the meta-theory of every scientific endeavor, including probability theory. But
I would go further than this safe abstract sphere. Logic also has its place at
object-level, so to speak, in our daily practices of deliberating, giving reasons,
arguing, and making decisions. However, all this practice of our conscious minds
takes place in a thin zone of rationality under our conscious control, hemmed
in by sometimes turbulent seas of statistics on each side. There is the statistical
behavior of society around us, and the statistical behavior of the neurons inside
us. Logic finds itself surrounded by probability, but it holds it own. How?

I am not sure that the topics discussed in this light essay are anything like
what Ed Brinksma had in mind in de Glazen Zaal. But I am sure that he will
have interesting things to say about all of them once we meet again.

Acknowledgment. I thank Thomas Icard and two referees for helpful comments.

References

1. Adams, E.: The Logic of Conditionals. Reidel, Dordrecht (1975)
2. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: The topology of belief, belief

revision and defeasible knowledge. In: Grossi, D., Roy, O., Huang, H. (eds.)
LORI 2013. LNCS, vol. 8196, pp. 27–40. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40948-6 3

3. Bod, R., Scha, R., Sima’an, K. (eds.): Data-Oriented Parsing. CSLI Publications,
Stanford (2003)

4. Carnap, R.: The Continuum of Inductive Methods. University of Chicago Press,
Chicago (1952)

5. Christiano, P., Yudkowsky, E., Herreshoff, M., Barasz, M.: Definability of “truth”
in probabilistic logic. UC Berkeley and Google (2013)

6. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Annales de
l’Institut Henri Poincaré 7, 1–68 (1937)

7. de Witt, J.: Waerdije van lijfrenten naer proportie van losrenten. Letters to the
Staten Generael, Den Haag (1671)

8. Delgrande, J., Renne, B.: The logic of qualitative probability. In: Yang, Q.,
Wooldridge, M. (eds.) Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015), pp. 2904–2910. AAAI Press, Buenos Aires,
Argentina (2015)

9. Fagin, R.: Probabilities on finite models. J. Symbolic Logic 41(1), 50–58 (1976)

http://dx.doi.org/10.1007/978-3-642-40948-6_3
http://dx.doi.org/10.1007/978-3-642-40948-6_3

252 J. van Benthem

10. Gaerdenfors, P.: Qualitative probability as an intensional notion. J. Philos. Logic
4, 171–185 (1975)

11. Goodman, N., Frank, M.: Predicting pragmatic reasoning in language games. Sci-
ence 336, 998 (2012)

12. Halpern, J.: Reasoning About Uncertainty. The MIT Press, Cambridge (2003)
13. Hamkins, J., Miasnikov, A.: The halting problem is decidable on a set of asymptotic

probability one. Notre Dame J. Formal Logic 47(4), 515–524 (2006)
14. Harrison-Trainor, M., Holliday, W.H., Icard, T.: Inferring probability comparisons.

Mathematical Social Sciences, to appear
15. Hintikka, J.: Towards a theory of inductive generalization. In: Bar-Hillel, Y. (ed.)

Proceedings of the 1964 Congress for Logic, Methodology and Philosophy of Sci-
ence, pp. 274–288 (1965)

16. Holliday, W., Harrison-Trainor, M., Icard, T.: Preferential structures for compara-
tive probabilistic reasoning. In: Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pp. 1135–1141 (2017)

17. Holliday, W., Icard, T.: Measure semantics and qualitative semantics for epistemic
modals. In: Proceedings of SALT, vol. 23, pp. 514–534 (2013)

18. Icard, T.: Pragmatic considerations on comparative probability. Philos. Sci. 83(3),
348–370 (2016)

19. Kemeny, J.: Fair bets and inductive probabilities. J. Symbolic Logic 20(3), 263–273
(1955)

20. Klein, D., Rendsvig, R.: Convergence, continuity and recurrence in dynamic-
epistemic logic. University of Bamberg & University of Copenhagen (2017)

21. Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets. Ann. Math.
Stat. 30(2), 408–419 (1959)

22. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

23. Leitgeb, H.: Probability in logic. In: Hajék, A., Hitchcock, C. (eds.) The Oxford
Handbook of Probability and Philosophy. Oxford University Press, Oxford (2014)

24. Leitgeb, H.: The stability theory of belief. Philos. Rev. 123(2), 131–171 (2014)
25. Lewis, D.: A subjectivist’s guide to objective chance. In: Studies in Inductive Logic

and Probability, pp. 263–293. University of California Press, Berkeley (1980)
26. Lindström, P.: On extensions of elementary logic. Theoria 35, 1–11 (1969)
27. Mézard, M., Montanari, A.: Information Physics and Computation. Oxford Uni-

versity Press, Oxford (2009)
28. Vos Savant, M.: The Power of Logical Thinking. St. Martin’s Press, New York

(1996)
29. Scott, D.: Measurement structures and linear inequalities. J. Math. Psychol. 1(2),

233–247 (1964)
30. Skyrms, B.: The Dynamics of Rational Deliberation. Harvard University Press,

Cambridge (1990)
31. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In:

Harper, W., Skyrms, B. (eds.) Causation in Decision. Belief Change, and Statistics,
vol. II, pp. 105–134. Kluwer, Dordrecht (1988)

32. Stenning, K., Lascarides, A., Calder, J.: Introduction to Cognition and Communi-
cation. The MIT Press, Cambridge (2006)

33. Tversky, A., Kahneman, D.: Probabilistic reasoning. In: Goldman, A. (ed.) Read-
ings in Philosophy and Cognitive Science, pp. 43–68. The MIT Press, Cambridge
(1993)

34. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press, Cambridge (2011)

Against All Odds: When Logic Meets Probability 253

35. van Benthem, J.: A problem concerning qualitative probabilistic update, Unpub-
lished manuscript, ILLC, University of Amsterdam (2012)

36. van Benthem, J.: Logic in Games. The MIT Press, Cambridge (2014)
37. van Benthem, J.: Oscillations, logic and dynamical systems. In: Ghosh, S., Szy-

manik, J. (eds.) The Facts Matter, pp. 9–22. College Publications, London (2015)
38. van Benthem, J., Gerbrandy, J., Kooi, B.: Dynamic update with probabilities.

Stud. Logica. 93(1), 67–96 (2009)
39. van Benthem, J., Smets, S.: Dynamic logics of belief change. In: van Ditmarsch, H.,

Halpern, J., van der Hoek, W., Kooi, B. (eds.) Handbook of Logics of Knowledge
and Belief, pp. 313–393. College Publications, London (2015)

40. van der Hoek, W.: Qualitative modalities. Int. J. Uncertainty Fuzziness Knowl.-
Based Syst. 4(1), 45–59 (1996)

FlyFast: A Scalable Approach to Probabilistic
Model-Checking Based on Mean-Field

Approximation

Diego Latella1, Michele Loreti2(B), and Mieke Massink1

1 CNR-ISTI, Pisa, Italy
{D.Latella,M.Massink}@cnr.it

2 Università di Firenze, Firenze, Italy
michele.loreti@unifi.it

Abstract. Model-checking is an effective formal verification technique
that has also been extended to quantitative logics and models such as
PCTL and DTMCs as well as CSL and CTMCs/CTMDPs. Unfortu-
nately, the state-space explosion problem of classical model-checking
algorithms affects also quantitative extensions. Mean-field techniques
provide approximations of the mean behaviour of large population mod-
els. These approximations are deterministic: a unique value of the frac-
tions of agents in each state is computed for each time instant. A drastic
reduction of the size of the model is obtained enabling the definition of
an efficient model-checking algorithm. This paper is a survey of work
we have done in the last few years in the area of mean-field approxi-
mated probabilistic model-checking. We start with a brief description
of FlyFast, an on-the-fly model checker we have developed for approxi-
mated bounded PCTL model-checking, based on mean-field population
DTMC approximation. Then we show an example of use of FlyFast in
the context of Collective Adaptive Systems. We also discuss two addi-
tional interesting front-ends for FlyFast; the first one is a translation from
CTMC-based population models and (a fragment of) CSL that allows
for approximate probabilistic model-checking in the continuous stochas-
tic time setting; the second one is a translation from a predicate-based
process interaction language that allows for probabilistic model-checking
of models based on components equipped both with behaviour and with
attributes, on which predicates are defined that can be used in compo-
nent interaction primitives.

Keywords: Probabilistic on-the-fly model-checking · Mean-field
approximation · Discrete time Markov chains · Time bounded proba-
bilistic computation tree logic · Collective Adaptive Systems

1 Introduction and Related Work

Model-checking is an effective, powerful, and successful formal verification tech-
nique for concurrent and distributed systems that has also been extended to
c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 254–275, 2017.
DOI: 10.1007/978-3-319-68270-9 13

FlyFast: A Scalable Approach to Probabilistic Model-Checking 255

quantitative logics and models. It consists of an efficient procedure that, given a
model M of the system, typically composed of system states and related tran-
sitions, decides whether M satisfies a logical formula Φ, typically drawn from
a temporal logic. Traditionally, model-checking approaches are divided into two
broad categories: global approaches and local approaches.

In global model-checking approaches, the procedure determines the set of
all states in M that satisfy Φ. Global model-checking algorithms are popular
because of their computational efficiency and can be found in many model-
checkers, both in a qualitative and in a probabilistic setting (see e.g. [2,3,11,
16,36]). The set of states that satisfy a formula is constructed recursively in a
bottom-up fashion following the syntactic structure of the formula. Moreover, for
stochastic model-checking, the global model-checking algorithm relies on exist-
ing and well-known algorithms for Markov Chains, such as those for transient
and steady-state analysis (see e.g. [2]). Despite their success, the scalability of
model-checking algorithms has always remained a concern due to the potential
combinatorial explosion of the state space that needs to be searched.

This is unfortunate since current trends in information technology, like the
Internet of Things (IoT), include specifically systems composed of a large num-
ber of components, often acting collectively and adapting to changing conditions,
the so called Collective Adaptive Systems1 (CAS), like, for instance gossip pro-
tocols, self-organised collective decision making, computer epidemic and smart
urban transportation systems and decentralised control strategies for smart
grids [4,10,12,49]. Given that large portions of the IoT are intrinsically (part of)
critical infrastructures, with safety, security, and, in general, high dependability
requirements, it is of great importance that system designers have the possibility
to perform formal analysis before developing and deploying them.

In order to mitigate the state space explosion problem, in the qualitative
analysis domain, local model-checking algorithms have been proposed that, given
a state s in M, determine whether s satisfies Φ. Local model-checking approaches
use the so called ‘on-the-fly’ paradigm (see e.g. [5,17,26,32]) and follow a top-
down approach that does not require global knowledge of the complete state
space. For each state that is encountered, starting from a given state, the out-
going transitions are followed to adjacent states, constructing step by step local
knowledge of the state space until it is possible to decide whether the given
state satisfies the formula. For qualitative model-checking, local model-checking
algorithms have been shown to have the same worst-case complexity as the best
existing global procedures for the above mentioned logics. However, in practice,
they have better performance when only a subset of the system states need to be
analysed to determine whether a system satisfies a formula. Furthermore, local
model-checking may still provide some results in case of systems with a very
large or even infinite state space where global model-checking approaches would
be impossible to use.

In the context of probabilistic model-checking several on-the-fly appro-
aches have been proposed, among which [21,29,40]. In [21], a probabilistic

1 See, e.g. www.focas.eu/adaptive-collective-systems.

www.focas.eu/adaptive-collective-systems

256 D. Latella et al.

model-checker is shown for the time bounded fragment of the Probabilistic Com-
putation Tree Logic (PCTL) [30]. An on-the-fly approach for full PCTL model-
checking is proposed in [40] where, actually, a specific instantiation is presented
of an algorithm which is parametric with respect to the specific probabilistic
processes modelling language and logic, and their specific semantics. Finally,
in [29] an on-the-fly approach is used for detecting a maximal relevant search
depth in an infinite state space and then a global model-checking approach is
used for verifying bounded Continuous Stochastic Logic (CSL) [1,2] formulas in
a continuous time setting on the selected subset of states.

An on-the-fly approach by itself however, does not solve the challenging
scalability problems that arise in truly large parallel systems, such as CAS.
To address this type of scalability challenges in probabilistic model-checking,
recently, several approaches have been proposed. In [28,31] approximate proba-
bilistic model-checking is introduced. This is a form of statistical model-checking
that consists in the generation of random executions of an a priori established
maximal length [37]. On each execution the property of interest is checked and
statistics are performed over the outcomes. The number of executions required
for a reliable result depends on the maximal error-margin of interest. The app-
roach relies on the analysis of individual execution traces rather than a full state
space exploration and is therefore memory-efficient. However, the number of exe-
cution traces that may be required to reach a desired accuracy may be large and
therefore time-consuming. The approach works for general models, i.e. models
where stochastic behaviour can also be non Markovian and that do not neces-
sarily model populations of similar objects. On the other hand, the approach is
not independent from the number of objects involved.

In [38], we presented a scalable model-checking algorithm, based on mean-
field approximation, for the verification of time bounded PCTL properties of an
individual2 in the context of a system consisting of a large number of interact-
ing objects. Also this algorithm is actually an instantiation of the above men-
tioned parametric algorithm for (exact) probabilistic model-checking [40]. In this
case, the parametric algorithm is instantiated on (time bounded PCTL and) the
approximate, mean-field, semantics of a population process modelling language.
The approach is based on the idea of fast simulation, as introduced in [46]. More
specifically, the behaviour of a generic agent with S states in a clock-synchronous
system with a large number N of instances of the agent at given step (i.e. time)
t is approximated by K(µ(t)) where K(m) is the S × S probability transition
matrix of a (inhomogeneous) DTMC and µ(t) is a vector of size S approximating
the mean behaviour of the global system at t; each element of µ(t) is associated
with a distinct state of the agent, say C, and gives an approximation of (the
average of) the fraction of the instances of the agent that are in state C in the

2 The technique can be applied also to a finite selection of individuals; in addition,
systems with several distinct types of individuals can be dealt with. For the sake of
simplicity, in the present paper we consider systems with many instances of a single
individual only and we focus in the model-checking a single individual in such a
context.

FlyFast: A Scalable Approach to Probabilistic Model-Checking 257

global system, at step t. Note that such an approximation is deterministic, i.e.
µ is a function of the step t, computed iteratively, using (again) matrix K(m);
the exact behaviour of the rest of the system would instead be a large DTMC
in turn. Note furthermore, that K(m) does not depend on N ; in other words,
the cost of the analysis is independent from the number of objects involved, but
only depends on the number of states of the single individual object. Our work
is based on mean-field approximation in the discrete time setting; approximated
mean-field model-checking in the continuous time setting has been presented in
the literature as well. In the latter case, the deterministic approximation of the
global system behaviour is formalised as an initial value problem using a set of
differential equations. Preliminary ideas on the exploitation of mean-field con-
vergence in continuous time for model-checking were informally sketched in a
presentation at QAPL 20123 [34], but no model-checking algorithms were pre-
sented. Follow-up work on the above mentioned approach can be found in [33]
which relies on earlier results on fluid model-checking by Bortolussi and Hill-
ston [7], later published in [8]. Bortolussi and Hillston propose a global CSL
model-checking procedure for the verification of properties of a selection of indi-
viduals in a population. The procedure relies on mean-field convergence and fast
simulation results in a continuous time setting (see also [9,18,25] and references
therein). The approach in [7,8] is based on an interleaving model of computa-
tion, rather than a clock-synchronous one. Furthermore, a global model-checking
approach, rather than an on-the-fly approach is adopted; it is also worth not-
ing that the treatment of nested formulas, whose truth value may change over
time, turns out to be much more difficult in the interleaving, continuous time,
global model-checking approach than in the clock-synchronous, discrete time,
on-the-fly one.

We conclude this brief overview on related work by mentioning the app-
roach of using techniques and tools developed for continuous signal monitoring
as means for performing approximated global model checking of probabilistic
models. In this approach, a deterministic, continuous, approximation of a pop-
ulation system model is first computed [9], and then monitoring techniques are
applied on the resulting function of continuous time [23,24]. Recently, this app-
roach has been extended in order to include also spatial features [50], as originally
proposed in [13].

We finally note that one should keep in mind that mean-field/fluid procedures
are based on approximations of the global behaviour of a system. Consequently,
the techniques should be considered as complementary to other, more accurate
analysis techniques for CAS, primarily those based on stochastic simulation, like
for example statistical model-checking. In practice, given the high computational
cost of simulation based techniques, especially when compared with the very low
cost of the mean-field based techniques, the latter are more suitable for getting
first ideas on the main features of the models at hand and a first screening

3 Tenth Workshop on Quantitative Aspects of Programming Languages, March 31 -
April 1, 2012, Tallinn, Estonia.

258 D. Latella et al.

thereof. Then, when only a few options are left, more detailed analyses could be
performed and more accurate techniques would be recommended.

In this paper, we present a survey of work we have carried out recently
within the context of the EU project QUANTICOL4 in the area of mean-field
approximated probabilistic model-checking. We start with a brief description, in
Sect. 2, of FlyFast, the on-the-fly model checker which implements the procedure
we proposed in [38,42,43]. Then, in Sect. 3 we show a complete example of use
of FlyFast in the context of Collective Adaptive Systems, taken from [39]. In
Sect. 4 we discuss two additional interesting front-ends for FlyFast; the first one,
originally presented in [41], is a translation to FlyFast from CTMC-based popu-
lation models and (a fragment of) CSL that allows for approximate probabilistic
model-checking in the continuous stochastic time setting; the second one, origi-
nally presented in [15], is a translation to FlyFast from a predicate-based process
interaction language that allows for probabilistic model-checking of bounded
PCTL formulas on models based on components equipped both with behav-
iour and with attributes; component interaction takes place via communication
primitives using predicates over attributes for expressing the set of partners in
multi-cast communication. We finally draw some conclusions in Sect. 5.

2 A Brief Overview of FlyFast

In this section we recall the main features of FlyFast.5 The reader interested in
details is referred to [38,42,43]. A FlyFast model specification characterises a sys-
tem consisting of the clock-synchronous product of a (large) number of instances
of a probabilistic process. Systems with several distinct types of processes can
be specified as well; here we consider only the case of a single process type
for the sake of simplicity. The size of the system is assumed constant during
system evolution; FlyFast does not support explicit dynamic creation/deletion
of processes. The behaviour of the probabilistic process is specified by a set Δ
of state and action probability definitions. A state definition has the following
syntax: state C {a1.C1 + . . . + ar.Cr} where ai ∈ A—the set of FlyFast actions—
C, Ci ∈ —the set of FlyFast states—and, for i, j = 1, . . . , r ai �= aj if i �= j; note
that Ci = Cj with i �= j is allowed instead. The informal meaning of the above
definition is that, when in state C, the process can jump to state C1, by executing
(atomic) action a1, or to state C2, by executing (atomic) action a2, and so on.
Each action has a probability assigned by means of an action probability defin-
ition of the form action a : exp where exp is an expression involving constants
and frc (C) terms. Constants are floating point values or names associated to
such values using the construct const name = value—we let A denote the set
of such auxiliary definitions; frc (C) denotes the element associated to state C

4 http://www.quanticol.eu.
5 FlyFast (https://quanticol.github.io/jSAM/flyfast.html) is provided within the

jSAM (java StochAstic Model Checker) framework which is an open source Eclipse
plugin (https://quanticol.github.io/jSAM/).

http://www.quanticol.eu
https://quanticol.github.io/jSAM/flyfast.html
https://quanticol.github.io/jSAM/

FlyFast: A Scalable Approach to Probabilistic Model-Checking 259

in the current occupancy measure vector—o.m.v. in the sequel—that is a vec-
tor with as many elements as the number of states of the individual process;
the element associated to a specific state gives the fraction of the subpopula-
tion currently in that state over the size of the overall population; the o.m.v.
is a compact abstract representation of the system global state, where process
identity is lost. Thus, the probability of executing a transition of a process in
the system may depend on the global distribution of the processes in their local
states within the system; process interaction is thus probabilistic and indirect,
via transition probabilities, i.e. functions of the o.m.v.. Note that, whenever the
exit probability p of a state is smaller than 1, FlyFast implicitly inserts a self-
loop in the state, associated with the residual probability 1−p. The initial state
of the system is specified by means of the system construct, followed by the
name of the system model, and the vector C0 of the names of the initial state of
all other instances, which implicitly specifies also the size N of the system. By
convention, the first element C0[1] of vector C0 refers to the individual process
to analyse. In general more then one process can be specified for analysis; here
we consider only the case of the single process for the sake of simplicity.

const N = 2000
const alpha e = 0.1
const alpha i = 0.2
const alpha r = 0.2
const alpha a = 0.4
const alpha l = 0.1
action inf ext : alpha e
action inf int : alpha i ∗ frc (I)
action activate : alpha a
action recover : alpha r
action loss : alpha l

state S {inf ext.E + inf int.E}
state E {activate.I}
state I {recover.R}
state R {loss.S}

system SEIR = 〈S[N], E[0], I[0], R[0]〉

Fig. 1. A FlyFast specification of an epidemic model

Example 1 (An epidemic system model). In Fig. 1 the FlyFast specification of
the epidemic model discussed in [38] is shown. The system is composed of 2000
instances of a process with four states; when in state S (susceptible) the process
can become exposed (state E) either via an external infection, with probability
alpha e, or via internal infection, with a probability that is proportional to
the fraction of processes in the system that are already infected, i.e. alpha i ∗
frc (I). The infection activates in an exposed process with probability alpha a,
leading to state I. An infected process may recover with probability alpha r
and then loose immunity with probability alpha l. Initially, all 2000 instances
are in state S6.

Given specification 〈Δ,A,C0〉 for a system model of size N , FlyFast gener-
ates a transition probability matrix K(m) such that K(m)c,c′ is the probability
for the (individual) probabilistic process to jump from state C to C′, given the
6 In FlyFast, the notation C[n] is used for indicating n copies of state C.

260 D. Latella et al.

current o.m.v. m. Thus, K(m) is a function of the o.m.v. m; strictly speaking,
Δ characterises an inhomogeneous DTMC. In [38,42] the details of the formal
operational semantics definition for the model specification language are pro-
vided as well as the procedure for generating K(m); in the sequel we recall
only the main steps. Let Δ be the set of states defined in Δ, with |Δ| = S,
US = {(m1, . . . ,mS) ∈ [0, 1]S |m1 + . . . + mS = 1} denote the unit simplex
of dimension S, and I : Δ → {1, . . . , S} be a bijection. For state C ∈ Δ,
with I(C) = c, the interpretation [[frc (C)]]m of frc (C) in the current o.m.v.
m = (m1, . . . ,mS) is defined as expected: [[frc (C)]]m = mc, i.e. frc (C) is the
fraction of the subpopulation currently in state C over the size of the overall
population, which, by definition of the o.m.v., is exactly the element mc of
m. The probability associated with an action a by action probability definition
action a : E is a function πa(m) of the o.m.v. m, defined as πa(m) = [[E]]m,
where the interpretation function [[·]] is defined recursively on arithmetic expres-
sions E involving frc and constants, in the obvious way. More precisely, letting
C

a� C′ represent an a-labelled transition in the operational semantics of the
FlyFast modelling language and assuming c = I(C) �= c′ = I(C′), the proba-
bility matrix function K : US × {1, . . . , S} × {1, . . . , S} → [0, 1] is defined as
follows: K(m)c,c′ =

∑
a:C

a�C′
πa(m) and K(m)c,c = 1−∑

j∈{1,...,S}\{c} K(m)c,j .
In other words, K(m)c,c′ is the cumulative probability of jumping from C to C′,
abstracting from the specific action performed by the process in the jump; this
abstraction choice is typical of probabilistic, PCTL/DTMC-based approaches.
Finally, note that, by construction, K(m) does not depend on N .

Example 2. It is easy to see that, for the model of Example 1, the resulting
matrix is the following one, with m = (ms,me,mi,mr) where ms is the fraction
of processes in state S, me is the fraction in state E, mi is the fraction in state
I, and mr is the fraction in state R:

K(ms,me,mi,mr) =

⎛

⎜
⎜
⎝

1 − (0.1 + 0.2mi) 0.1 + 0.2mi 0 0
0 0.6 0.4 0
0 0 0.8 0.2

0.1 0 0 0.9

⎞

⎟
⎟
⎠

The exact probabilistic semantics of the complete system model is easily given
as product of N instances of K with appropriate o.m.v. parameter and argu-
ment states. In other words, the transitions of different processes are intended
as stochastically independent7. More precisely, for global system state C ∈ ΔN ,
let the associated o.m.v. M(C) be defined as M(C) = (M1, . . . ,MS) with
Mi = 1

N

∑N
n=1 1{C[n]=I−1(i)} where 1{α=β} is 1, if α = β, and 0 otherwise. The

probabilistic semantics of the system is the DTMC X(N)(t) with one-step transi-
tion probability SN × SN matrix P with PC,C′ =

∏N
n=1 K(M(C))I(C[n]),I(C′

[n])

7 It is worth stressing here that in the model of process interaction presented in [46],
which FlyFast is based on, processes do not synchronize on actions explicitly (i.e.
there is no notion of randez-vous here). Process interaction is only indirect, by means
of the impact of the o.m.v. on individual transition probabilities.

FlyFast: A Scalable Approach to Probabilistic Model-Checking 261

and initial probability mass all in C0. FlyFast provides a standard stochastic sim-
ulation functionality based on the exact probabilistic semantics, namely matrix
P. In particular one can execute single runs or get averages of a user-specified
number of runs. The output is given in the form of traces of the o.m.v. DTMC
M(N)(t) = M(X(N)(t)). In addition, the tool can perform exact, on-the-fly (full)
PCTL model checking using P. FlyFast accepts state formulas built out of atomic
propositions, negations, disjunctions and probabilistic quantification over path-
formulas; the latter are next and until formulas. Of course, as opposed to approx-
imate model-checking, exact PCTL model-checking of a formula can be used only
if the portion of the state-space which needs to be generated and analysed for
deciding satisfaction of the formula is not too large.

Example 3. For the epidemic model of Example 1, but with constant N set to 8,
for a system with only 8 processes, we consider the following properties, where
tt stands for true, LowInf is defined, using the formula construct of FlyFast,
as follows: formula LowInf : (frc I) < 0.25, and I (E, respectively) labels all
system states the first element of which is process state I (E, respectively):

P1 the worm will be active in the first component within k steps with a proba-
bility that is at most p: P≤p(tt U≤k I);

P2 the probability that the first component is infected, but latent, in the next
k steps while the worm is active on less then 25% of the components is at
most p: P≤p(LowInfU≤k E);

P3 the probability to reach, within k steps, a configuration where the first com-
ponent is not infected but the worm will be activated with probability greater
than 0.3 within 5 steps is at most p:

P≤p(tt U≤k (!E∧ !I ∧ P>0.3(tt U≤5 I))).

In Fig. 2 the result of exact PCTL model-checking of Example 1 is reported. On
the left the probability of the set of paths that satisfy the path-formulae used
in the three formulae above is shown for k from 0 to 70. On the right the time
needed to perform the analysis using PRISM [36] and using FlyFast exact PCTL
model checking are presented8.

More interestingly, FlyFast can compute the deterministic limit of the o.m.v.
DTMC, for N → ∞, and execute time bounded PCTL model-checking using
such a deterministic approximation. The approach has been inspired by Fast
Simulation, proposed in [46] and is based on Theorem 4.1 of [46], actually on a
simplified version of the theorem, thanks to the specific syntax of the expressions
used in FlyFast action probability definitions. Informally, let C0

(N) be the ini-
tial state of the FlyFast specification of a system with N processes and assume
there exists µ0 ∈ US such that almost surely limN→∞ M(C0

(N)) = µ0. Let
8 We used a 1.86 GHz Intel Core 2 Duo with 4 GB. State space generation time of

PRISM is not counted. The experiments are available in the FlyFast web site, show-
ing that the latter has comparable performance. Worst-case complexity of both algo-
rithms are also comparable.

262 D. Latella et al.

0 20 40 60

Time bound (k)

0

0.2

0.4

0.6

0.8

1

P
at

h
se

t p
ro

ba
bi

lit
y

P1
P2
P3

PRISM Exact on-the-fly

P1 108.479s 29.587s
P2 51.816s 3.409s
P3 216.952s 85.579s

Model parameter values:
αe = 0.1, αi = 0.2, αr = 0.2
αa = 0.4, αl = 0.1

Fig. 2. Exact model-checking results (left) and verification time (right).

function µ(t) be defined as follows: µ(0) = µ0 and µ(t + 1) = µ(t)T · K(µ(t)),
where, as usual, mT is the transpose of vector m. Then, for any fixed time
τ , almost surely limN→∞ M(N)(τ) = µ(τ)—cfr. Theorem 4.1 of [46]. So, the
matrix K(m) generated by FlyFast can be conveniently (re)used also for approx-
imating the o.m.v., which, we recall, is an abstract representation of the global
system state; it is important to stress here that the o.m.v. M(N)(t) is a sto-
chastic process, whereas the approximation we use, µ(t), is deterministic, i.e.
just a function of the step (time) t. We consider now the stochastic process
H(t) the generic state of which, at time t, is a pair (C,µ(t)). The first com-
ponent C is the current state of the selected process in the system we are
interested in, and the second component µ(t) represents the current global
system state. It is easy to see that H(t) is a DTMC and that the prob-
ability of a jump from state (C,µ(t)) to (C′,µ(t + 1)) is K(µ(t))I(C),I(C′).
H(t) is the approximated probabilistic semantics of the system model. By per-
forming on-the-fly model-checking on H(t)—where state labels of the selected
process are exported to pair states (C,µ)—FlyFast provides an approximated,
mean-field based, efficient time bounded PCTL model-checking functionality. In
other words, for any fixed time τ , sample C of X(t) at time τ and safe for-
mula9 Φ the following holds: C |=X(t) Φ if and only if (C[1],µ(τ)) |=H(t) Φ.
In the case of mean-field model-checking, the set of atomic propositions is the
set of states of the single agent or assertions on the components of the o.m.v.;
in addition one can assign a name to a formula and use it in larger formulas.
Finally, note that FlyFast can provide, as a by-product, the plot of µ(τ) for τ
ranging in a user-specified range.

Example 4. Figure 3 shows the result of mean-field, approximated model-
checking by FlyFast on the model of Example 1 with formulas as in Example 3,
for the first object of a large population of 2000 objects, each initially in state S.
In Fig. 3 (left) the same properties are considered as in Example 3. The analysis
takes less than a second and is insensitive to the total population size. Figure 3
(right) shows how the probability measure of the set of paths satisfying the

9 We refer to [38,42] for the characterisation of safe formulas and a related discussion.

FlyFast: A Scalable Approach to Probabilistic Model-Checking 263

formula tt U≤k (!E ∧!I ∧ P>0.3(tt U≤5 I)) of property P3 on page 8, (for
k = 3), changes for initial time t0 varying from 0 to 10.

0 20 40 60

Time bound (k)

0

0.2

0.4

0.6

0.8

1

P
at

h
se

t p
ro

ba
bi

lit
y

P1
P2
P3

0 2 4 6 8 10

Starting time (t0)

0

0.2

0.4

0.6

0.8

1

S
at

is
fa

ct
io

n
P

ro
ba

bi
lit

y

Fig. 3. Mean-field model-checking results.

We close this section by stressing that the exact full PCTL model-checker
and the approximated mean-field time bounded PCTL model-checker are both
instances of the same parametric implementation of an on-the-fly model-checking
algorithm. Furthermore, the computation of the set of states to be analysed
at the next step is a key operation of the on-the-fly procedure and, for exact
model-checking, in the worst case the step returns SN states, whereas for mean-
field model-checking, the number of states returned in the worst case drops
dramatically to S.

3 Predator-Prey Model of Lotka-Volterra in FlyFast

The next example we consider is a widely studied model for ecological compe-
tition, first independently investigated by the biophysicist Alfred Lotka and the
Italian mathematician and physicist Vito Volterra in the twenties of the 19th
century [48,51]. Since then, the model has been studied extensively by numerous
other scientists and some of its elements are still at the basis of many popula-
tion models that have been developed in the course of time, both in continuous
time, e.g. [19,27] and references therein, and in discrete time settings, e.g. [22].
In its simplest form the model can be interpreted as a simplified and idealised
description of two species in an ecosystem, often indicated as predator and prey,
or foxes and rabbits for a concrete example.

In the variant we consider here we assume that each element of the two
species can be in one of two states; it is either alive, or it is somehow ‘dormant’
waiting to get born again. We do this because the language we use does not
provide explicit constructs for the dynamic creation of objects and is implicitly
assuming that the total population size of all species remains constant. If we
choose the size of the ‘dormant’ part of the population of each species large

264 D. Latella et al.

enough, this should not have any effect on the part of the population that is
alive, since there are always enough dormant rabbits and foxes to get born.

As in the original version, we assume that the model depends on four para-
meters:

– The net probability ‘a’ of an increase in the size of the rabbit population
which is the difference between the natural birth and death probabilities.

– The probability ‘b’ of rabbits that die because they are eaten by foxes
– The probability ‘e’ of extra foxes being born and surviving because they eat

rabbits (efficiency).
– The net probability ‘c’ of the natural decrease in the population of foxes.

Since the life of a fox depends on the availability of rabbits, there is a natural
tendency of foxes to die when there a few or no rabbits.

A model in terms of difference equations of the populations of foxes and rabbits
can then be given by:

RD(t + 1) = RD(t) + b · h · RL(t) · FL(t) − a · h · RL(t)
RL(t + 1) = RL(t) + a · h · RL(t) − b · h · RL(t) · FL(t) (1)
FD(t + 1) = FD(t) − e · h · RL(t) · FL(t) + c · h · FL(t)
FL(t + 1) = FL(t) + e · h · RL(t) · FL(t) − c · h · FL(t)

where t ranges over the set of the natural numbers, RD and RL are the fractions
of ‘dormant’ and ‘alive’ rabbits, respectively, and FD and FL the fractions of
‘dormant’ and ‘alive’ foxes, respectively. The factor h is a rescaling factor for
the duration of steps and 0 < h < 1. The smaller the value of h the smaller the
relative probabilities of the different events and the more accurate the results,
but at the cost of an increase of the number of steps per time-unit in the model-
checking procedure, which takes more time. For the model in this section we
chose h = 0.125. Note that when this discrete model is interpreted as an approx-
imation of the well-known continuous time model, i.e. in terms of differential
equations, this approximation is not perfect, in the sense that the solution of
the differential equations would give a perfect oscillating behaviour, whereas the
solution of the difference equations will result in a small error in each step. This
error has a cumulative effect resulting in oscillations with ever higher peaks, as
can easily be observed in the results. A better approximation of the continu-
ous model could be reached by using a more sophisticated integration method
instead of the Euler method that is used implicitly in this case study.

The FlyFast specification of the Lotka-Volterra model is shown in Fig. 4.
Assuming I(RD) = 1, I(RL) = 2, I(FD) = 3, I(FL) = 4, the 4 × 4 matrix
K : U4 × {1, . . . , 4} × {1, . . . , 4} → [0, 1] generated by FlyFast is shown below,
noting that the matrix is stochastic for the time interval of interest (and in
particular m1 �= 0 �= m3):

K(m1,m2,m3,m4) =

⎛

⎜
⎜
⎝

1 − a·h· m2
m1

a·h· m2
m1

0 0
b·h·m4 1 − b·h·m4 0 0

0 0 1 − e·h·m2 · m4
m3

e·h·m2
m4
m3

0 0 c·h 1 − c·h

⎞

⎟
⎟
⎠

FlyFast: A Scalable Approach to Probabilistic Model-Checking 265

const a = 0.04
const b = 0.5
const c = 0.05
const e = 0.2
const h = 0.125
action rborn : a ∗ h ∗ frc (RL)/frc (RD)
action rdies : b ∗ h ∗ frc (FL)
action fborn : e ∗ h ∗ frc (RL) ∗ frc (FL)/frc (FD)
action fdies : c ∗ h

state RD {rborn.RL}
state RL {rdies.RD}
state FD {fborn.FL}
state FL {fdies.FD}

system LoVo = 〈RD[5000], RL[1000], FD[3000], FL[1000]〉

Fig. 4. A FlyFast specification of the Lotka-Volterra model

It is easy to see that by computing µ(t + 1) as µ(t + 1) = µ(t)T · K(µ(t)),
where µ(t) = (μ1(t), μ2(t), μ3(t), μ4(t)), one obtains again the difference Eq. (1)
of page 11, where, of course, μ1(t) stands for RD(t), μ2(t) for RL(t), μ3(t) for
FD(t), and μ4(t) for FL(t).

As it is well known, the global behaviour of the (idealised) model shows
oscillations in the populations of rabbits and foxes for certain values of the model
parameters. In fact, the model has very interesting behaviour and is therefore
widely studied, but in this paper we focus mainly on the illustration of the
application of fast mean field model checking of an individual rabbit or fox in
the context of the overall oscillating behaviour. For example, for the values of the
parameters and initial state as in Fig. 4, we obtain the results for the occupancy
measure varying over time shown in Fig. 5, which is the plot of the limit o.m.v.
µ(τ) produded by FlyFast.

0 1000 2000 3000 4000 5000

Time steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
cc

up
an

cy
 m

ea
su

re

Foxes
Rabbits

Fig. 5. Fraction of rabbit and fox populations.

In the predator-prey model one could furthermore be interested to know what
is the probability that a rabbit survives for a certain amount of time, and how
this probability changes over time with the oscillation of the population of foxes.
Figure 6 shows the probability that a fox gets born or dies within time bound t

266 D. Latella et al.

ranging from 0 to 3000 time steps. It also shows the results for a rabbit getting
born or dying. The formula for the probability that a rabbit gets born within t
time steps is P=?(RD U≤t RL). The other formulas are similar. Figure 6 shows
that both foxes and rabbits eventually get born and die when given enough time
and starting from the initial state of the overall system. The curves also reflect
the oscillations in the populations over time and consequently the change in
probability to get born or die.

0 500 1000 1500 2000 2500 3000

Time bound in steps

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y Fox is born

Fox dies
Rabbit is born
Rabbit dies

Fig. 6. Probability that a fox (rabbit) gets born or dies within time bound t ranging
from 0 to 3000 time steps.

Figure 7 shows the time-dependent probability of a fox and a rabbit to get
born or die in the next 10 time steps, starting from initial times ranging from
0 to 5000. The probability that a rabbit dies within 10 time units is obtained by
evaluating the property P=?(RL U≤10 RD), for different initial times. The other
formulas are similar. In this oscillating system the time-dependence of these
probabilities can be observed very well. The probabilities of a rabbit getting born
(dying respectively) within 10 time units and a fox getting born follow closely
the oscillations in the respective population sizes. The probability that a fox dies
in this model is constant. The amplitude of the oscillations is slowly increasing.
This is likely due to the accumulation of small errors in the computation due
to the constant step size used in the computations. In fact it is well-known
that a mean-field approximation may become less accurate on the longer run,
in a discrete time setting. See e.g. [19] for a study of this aspect of the Lotka-
Volterra model in the continuous time setting. We will come back to these issues
in Sect. 4.1.

Finally, Fig. 8 shows the time dependent probability of reaching a state,
within 100 time steps, in which the probability of an individual rabbit to die
within 10 time steps is higher than 0.2. This probability is shown for different

FlyFast: A Scalable Approach to Probabilistic Model-Checking 267

0 1000 2000 3000 4000 5000

Time

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

Fox is born within 10 time units
Fox dies within 10 time units
Rabbit is born within 10 time units
Rabbit dies within 10 time units

Fig. 7. Time dependent probability to get born or die in the next 10 time steps for
different initial times from 0 to 5000.

initial times ranging from 0 to 5000. This is a typical example of a ‘nested’
formula involving two occurrences of the until operator. The formula is:

P=?(tt U≤100 (RL ∧ P>0.2(RL U≤10 RD)))

The figure shows that there are indeed relatively short periods in which such
states can be reached within 100 time steps. Nested formulas are relatively easy
to handle due to the iterative and recursive way in which the FlyFast model-
checker works.

4 Extending the Applicability of FlyFast

In the previous sections we have shown examples of the expected use of FlyFast,
namely the development of a probabilistic, discrete time, population model of the
system of interest and its analysis, mainly via bounded PCTL model-checking
based on mean-field semantics. In this section we briefly describe two exten-
sions of the applicability of the tool, both designed as additional front-ends for
FlyFast, so that no modifications are required of the tool itself. The first exten-
sion concerns on-the-fly fluid CSL model-checking of continuous time population
models; the second extends the FlyFast modelling language, and its underlying
agent interaction paradigm, by adding predicate based communication primi-
tives. Details on the first extension can be found in [41] while the second front
end is described in detail in [15,44].

4.1 FlyFast Front-end for Fluid Model-checking of Continuous Time
Population Models

Fluid model checking [7,8,33] relies on a global model checking approach for
time-inhomogeneous Continuous Time Markov Chains (ICTMC) representing

268 D. Latella et al.

0 1000 2000 3000 4000 5000

Time

0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

P=?{ tt U{<=100} (RL and P>0.2 { RL U{<=10} RD})}

Fig. 8. Time dependent probability of reaching a state, within 100 time steps, in which
the probability of an individual rabbit to die within 10 time steps is less than 0.2 for
different initial times ranging from 0 to 5000.

an individual object in the context of a large CTMC population model. The
rates of the individual may depend on the fraction of the population that is in
a particular state. The algorithm relies on the deterministic approximation of
the average stochastic behaviour of the system in continuous time, i.e. a fluid
approximation [9,35]. Although the technical and mathematical foundations of
the continuous time case are obviously different from those in the discrete case,
at the intuitive/conceptual level, the two cases are similar.

Suppose you have system of N agents, each modelled by a ICTMC with
states in {1, . . . , S}, and S × S infinitesimal generator matrix Q(N)(x) that
may depend on the current o.m.v. x ∈ US ; the o.m.v. process is a CTMC on
the space [0, 1]S with initial state x

(N)
0 equal to the fraction of agents in each

local state, in the initial global state. The average infinitesimal variation of the
o.m.v. process, given that it is in state x is F (N)(x) = xT · Q(N)(x). If, for
N → ∞, Q(N)(x) converges uniformly to the Lipschitz continuous generator
matrix Q(x), and x

(N)
0 to x0, and, furthermore, if x(t) is the solution of the

ODE dx
dt = F (x) = xT · Q(x) for initial condition x(0) = x0, then, almost

surely, in the limit, the o.m.v. process behaves the same as x(t), for any finite
time horizon T [18,35].

This fundamental result has given rise to a fast simulation approach also in
the continuous case. Assuming, again by convention and without loss of gen-
erality, that we are interested in the first of the N agents, let Z(N)(t) be the
ICTMC on space {1, . . . , S} modelling the behaviour of such an agent. Let us
furthermore consider the ICTMC on {1, . . . , S} z(t) such that Pr{z(t + dt) =
j|z(t) = i} = qi,j(x(t))dt, and let Qz(x(t)) = (qi,j(x(t))). We then have that for
any finite horizon T and t ≤ T the behaviour of the single object Z(N)(t) tends
to the behaviour of the object that senses the rest of the system only through

FlyFast: A Scalable Approach to Probabilistic Model-Checking 269

its limit behaviour given by x, i.e. z(t). On the basis of these results, in [7,8] a
model-checking algorithm has been proposed for CSL robust10 formulas.

In [41] we took an alternative approach, showing that, under suitable con-
vergence and scaling assumptions11, and for models that are not too stiff12,
fluid model checking can be performed exploiting on-the-fly mean field model
checking. In particular, in [41] a mechanical translation is defined which derives
a time-inhomogeneous DTMC and a bounded PCTL formula from the input
ICTMC model and bounded CSL formula. FlyFast can then be used for perform-
ing on-the-fly mean-field model-checking of the derived formula on the derived
IDTMC.

Our approach starts from the idea that we can interpret the difference equa-
tions obtained from a discrete time population model as an instance of the
Euler forward method for approximating the solution of a set of ODEs. The
set of ODEs we are interested in solving are those of a corresponding contin-
uous population model. This, in turn, means that we need to derive suitable
values for the probabilities from the rates in the continuous model. What we
are actually interested in is to transform an ICTMC model of an individual
(from which the ODEs can be derived) into an IDTMC model, with the same
local states and jump structure as the ICTMC; from this IDTMC we get the
set of difference equations that can be used to approximate the solution of the
ODEs. Intuitively, the IDTMC is obtained from the ICTMC using an approach
which is similar to CTMC uniformisation13; we define a probability matrix K
such that K = I + 1

q · Q, where Q is the infinitesimal rate matrix—which is
a function of x(t)—and q must not only satisfy the standard requirements for
uniformisation, but also be such that absolute stability of the method as well as
acceptable accuracy are guaranteed [47]. This procedure produces a discretisa-
tion of the continuous-time model; of course, also the logical formulas must be
translated by consistently discretising them—and in particular the time bound
of the bounded until operator.

We refer to [41] for the detailed definition of the translations and their correct-
ness proof. Here we point out that such global fluid model checking algorithms,
as described in [7,8], require the a priori calculation of discontinuity points, i.e.
points in time in which the truth values of time-dependent (sub)-formulas of an
until formula change. This is a non-trivial task and consists in finding all zeros of
an analytic function. In the on-the-fly setting, instead, such points are detected
automatically during the computation of the probabilities, up to a difference that
is in the order of a small discrete step size; moreover, on-the-fly approaches are
particularly efficient when verifying conditional reachability properties because
in that case much fewer states need to be generated.

10 We refer to [7,8] for the definition of formula robustness.
11 See Theorem 5 of [7].
12 Stiff models are those whose rates differ several orders of magnitude.
13 More specifically, we use only the discretisation phase of uniformisation, and not

the transient analysis part, that would require a further composition with a Poisson
process.

270 D. Latella et al.

On the other hand, our approach is ultimately based on an Euler forward
method to solve differential equations. This poses certain limitations on the
continuous time models that can be analysed efficiently this way, in particular
they should not be too stiff. For non stiff models the results are promising as
shown in [41] for the available benchmark models for which also some results for
global fluid model checking and statistical model checking are available in the
literature.

4.2 FlyFast Front-End for Predicate-Based Coordination

Recent proposals for CAS modelling and programming languages, like [6,20],
typically assume any such a system be composed of a set of independent compo-
nents where a component is a process equipped also with a set of attributes
describing features of the component. Attributes can be used in predicates
appearing in the language input/output primitives. Predicate-based output/input
multicast, originally proposed in [45], forms the basis of interaction schemes
in languages like SCEL [20] and Carma [6]. In [15] we proposed PiFF—
Predicate-based Interaction for FlyFast—a front-end modelling language for Fly-
Fast inspired by Carma, that provides predicate-based input/output multicast
actions.

In PiFF, each component consists of a behaviour—modelled, like in Fly-
Fast, as a DTMC-like agent—and a set of attributes. The attribute name-value
correspondence is kept in the current store of the component. Associated to
each action there is also an (atomic) probabilistic store-update. For instance,
assume components have an attribute named loc which takes values in the set
of points of a space, thus recording the current location of the component. The
following action models a multi-cast via channel α to all components in the
same location as the sender, making the latter change its location randomly:
α∗[loc = my.loc]〈〉Jump. Here Jump is assumed to randomly update the store
and, in particular attribute loc. The computational model of PiFF is clock-
synchronous, as in FlyFast, but at the component level. In addition, each compo-
nent is equipped with a local outbox. The effect of an output action α∗[πr]〈〉σ is
to deliver output label α〈〉 to the local outbox, together with the predicate πr,
which (the store of) the receiver components will be required to satisfy, as well
as the current store of the component executing the action; the current store is
then updated according to update σ. Note that output actions are non-blocking
and that successive output actions of the same component overwrite its outbox.
An input action α∗[πs]()σ by a component will be executed with a probability
which is proportional to the fraction of all those components whose outboxes
currently contain the label α〈〉, a predicate πr which is satisfied by the compo-
nent, and a store which satisfies predicate πs in turn. If such a fraction is zero,
then the input action will not take place (input is blocking), otherwise the action
takes place, the store of the component is updated via σ, and its outbox cleared.

A PiFF model specification is compiled into a FlyFast model specification by
means of a (purely mechanical) translation and related bounded PCTL formulas
are mechanically translated as well. For the sake of simplicity, we do not describe

FlyFast: A Scalable Approach to Probabilistic Model-Checking 271

the translation here; the interested reader can find its definition in [15], where
the formal stochastic semantics of PiFF are also given and the translation is
shown correct with respect to such semantics; optimisation of the translation
is dealt with in [44]. In particular, in [44], a bisimilarity based state-reduction
strategy for the target model specification is proposed.

5 Conclusions

Model-checking has proven to be an effective and successful formal verifica-
tion technique. Initially developed for qualitative models and logics, it has been
extended also to quantitative models and logics such as DTMCs and PCTL as
well as CTMCs and CSL. It is well known that model-checking suffers from
the state-space explosion problem, which makes the technique non-scalable and
thus poorly applicable to large scale systems. On the other hand, current trends
in information technology, like the Internet of Things, include systems com-
posed of a large number of components, often acting collectively and adapting
to changing conditions, the so called Collective Adaptive Systems. In this paper
we have briefly described the work we have been carrying out in the area of
approximated bounded PCTL model-checking of Population DTMC models. In
particular we have given an introductory description of FlyFast, a mean-field,
on-the-fly bounded PCTL model-checker, including an overview of its theoret-
ical foundation, its main functionalities and a detailed example of application.
A couple of extensions of the applicability of the tool have been shown as well,
in the form of specific additional front-ends to the original tool; thus, the tool
applicability is extended without actually modifying the tool.

There are several lines of future work of our interest. First of all, following
approaches similar to those presented in [46], we plan to investigate the extension
of the model-checking technique to systems with memory/rewards. Space and
the spatial distribution of agents play a major role in CAS and, consequently, it
should be a “first class” component of the modelling language and the underlying
framework. For this reason, we have investigated Closure Spaces, a generalisation
of Topological Spaces that includes discrete, graph-like, space structures, for
which we have developed the Spatial Logic for Closure Spaces, SLCS and a
specific model-checking algorithm [13,14]. A subject for future research is thus to
incorporate a notion of space in the FlyFast modelling language and to integrate
FlyFast and topochecker, the spatial model-checker for SLCS and its extensions.
The investigation of different classes of interaction probability specifications in
the FlyFast modelling language and of their implications on issues like model-
reduction (see e.g. [44]) is also a promising subject for future research.

Acknowledgments. In the late 80’s of the previous century, Diego met Ed, who was
chairing a Work Package of the EU Lotosphere project, in which Diego participated
as well. At that time, Diego was fascinated by the early work on probabilistic process
algebras by Scott Smolka, Kim Larsen and others and he was applying similar ideas to
LOTOS, together with Paola Quaglia. At the same time, he was loving the work of Rom,
supervised by Ed, on Bundle Event Structures as a mathematical model underlying

272 D. Latella et al.

a truly concurrent semantics for LOTOS. The obvious step was to start thinking of
probabilistic extensions of Bundle Event Structures. Accidentally, Diego and Mieke
had met at a Lotosphere workshop in The Hague and they found themselves nicely
synchronised in their professional interests, and beyond . . .

Not surprisingly, Diego moved to Twente where he spent 12 months, from july 1992
to june 1993, and together with Ed, Rom and Joost-Pieter, started investigating prob-
abilistic, deterministically timed and stochastically timed Bundle Event Structures.
This was the start of a lively friendship of the four of them as well as of a series of
headaches when trying to find finite graph-like representations of such structures suit-
able for analysis. They have been struggling together for years, searching for cut-off
events in those slippery structures. Eventually, Mieke moved to Italy and joined the
group of cut-off events hunters. It was fun! Maybe we did not manage to completely
master the analysis of quantitative Bundle Event Structures, but we are aware of a
couple of things: our current work on probabilistic systems is rooted back to those
days (and headaches . . .) and our friendship too. All this thanks to Ed, who accepted
having Diego around in Twente in 1992–93.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time
Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. IEEE CS 29(6), 524–
541 (2003)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

4. Bernardo, M., De Nicola, R., Hillston, J. (eds.): Formal Methods for the Quan-
titative Evaluation of Collective Adaptive Systems. LNCS, vol. 9700. Springer,
Heidelberg (2016). ISBN 978-3-319-34095-1 (print), 978-3-319-34096-8 (online),
ISSN 0302-9743(2016)

5. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL*. In: LICS, pp. 388–397. IEEE Computer Society (1995)

6. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing Markovian
agents. In: Bertrand, N., Tribastone, M. (eds.) Proceedings Thirteenth Workshop
on Quantitative Aspects of Programming Languages and Systems, QAPL 2015,
London, UK, 11th–12th April 2015, EPTCS, vol. 194, pp. 16–31 (2015). http://
dx.doi.org/10.4204/EPTCS.194.2

7. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32940-1 24

8. Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approx-
imation. Inf. Comput. 242, 183–226 (2015)

9. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation
of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013).
http://www.sciencedirect.com/science/article/pii/S0166531613000023

10. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm
attacks using continuous state-space approximation of process algebra models. J.
Comput. Syst. Sci. 74(6), 1013–1032 (2008)

http://dx.doi.org/10.4204/EPTCS.194.2
http://dx.doi.org/10.4204/EPTCS.194.2
http://dx.doi.org/10.1007/978-3-642-32940-1_24
http://www.sciencedirect.com/science/article/pii/S0166531613000023

FlyFast: A Scalable Approach to Probabilistic Model-Checking 273

11. Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms
for CTMDPs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 225–242. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 19

12. Chaintreau, A., Le Boudec, J.Y., Ristanovic, N.: The age of gossip: spatial mean
field regime. In: Douceur, J.R., Greenberg, A.G., Bonald, T., Nieh, J. (eds.) SIG-
METRICS/Performance, pp. 109–120. ACM (2009)

13. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol.
8705, pp. 222–235. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7 18.
ISBN 978-3-662-44601-0 (print), 978-3-662-44602-7 (online), ISSN 0302-9743

14. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics
for closure spaces. Log. Methods Comput. Sci. 12(4), 1–51 (2016). doi:10.2168/
LMCS-12(4:2)2016. Published online: 11 October 2016. ISSN 1860-5974

15. Ciancia, V., Latella, D., Massink, M.: On-the-fly mean-field model-checking for
attribute-based coordination. In: Lluch Lafuente, A., Proença, J. (eds.) COORDI-
NATION 2016. LNCS, vol. 9686, pp. 67–83. Springer, Cham (2016). doi:10.1007/
978-3-319-39519-7 5. ISSN 0302-9743, ISBN 978-3-319-39518-0 (print), 978-3-319-
39519-7 (online)

16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

17. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algo-
rithms for the verification of temporal properties. Form. Methods Syst. Des. 1(2–3),
275–288 (1992)

18. Darling, R., Norris, J.: Differential equation approximations for Markov chains.
Probab. Surv. 5, 37–79 (2008)

19. Dayar, T., Mikeev, L., Wolf, V.: On the numerical analysis of stochastic Lotka-
Volterra models. In: IMCSIT, pp. 289–296 (2010)

20. De Nicola, R., et al.: The SCEL language: design, implementation, verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering
for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham
(2015). doi:10.1007/978-3-319-16310-9 1. ISBN 978-3-319-16309-3 (print), 978-3-
319-16310-9 (online), ISSN 0302-9743

21. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Bounded proba-
bilistic model checking with the Murα verifier. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 214–229. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30494-4 16

22. Din, Q.: Dynamics of a discrete Lotka-Volterra model. Adv. Diff. Equ. 95, 1–13
(2013)

23. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 19

24. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15297-9 9

25. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems.
In: Misra, V., Barford, P., Squillante, M.S. (eds.) SIGMETRICS, pp. 13–24. ACM
(2010)

http://dx.doi.org/10.1007/978-3-642-22110-1_19
http://dx.doi.org/10.1007/978-3-662-44602-7_18
http://dx.doi.org/10.2168/LMCS-12(4:2)2016
http://dx.doi.org/10.2168/LMCS-12(4:2)2016
http://dx.doi.org/10.1007/978-3-319-39519-7_5
http://dx.doi.org/10.1007/978-3-319-39519-7_5
http://dx.doi.org/10.1007/978-3-319-16310-9_1
http://dx.doi.org/10.1007/978-3-540-30494-4_16
http://dx.doi.org/10.1007/978-3-540-30494-4_16
http://dx.doi.org/10.1007/978-3-642-39799-8_19
http://dx.doi.org/10.1007/978-3-642-15297-9_9

274 D. Latella et al.

26. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification
of service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) Rigorous Software
Engineering for Service-Oriented Systems. LNCS, vol. 6582, pp. 390–407. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-20401-2 18

27. Goel, N.S., Maitra, S.C., Montroll, E.W.: On the volterra and other nonlinear
models of interacting populations. Rev. Mod. Phys. 43, 231–276 (1971). http://
link.aps.org/doi/10.1103/RevModPhys.43.231

28. Guirado, G., Hérault, T., Lassaigne, R., Peyronnet, S.: Distribution, approximation
and probabilistic model checking. In: PDMC 2005. LNCS, vol. 135. pp. 19–30.
Springer, Heidelberg (2006)

29. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state
Markov model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 641–647. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 49

30. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Comput. 6, 512–535 (1994)

31. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
Model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
73–84. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24622-0 8

32. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

33. Kolesnichenko, A., de Boer, P.T., Remke, A., Haverkort, B.R.: A logic for model-
checking mean-field models. In: DSN13 (2013)

34. Kolesnichenko, A.V., Remke, A.K.I., de Boer, P.T., Haverkort, B.: A logic for
model-checking of mean-field models. Technical report TR-CTIT-12-11 (2012).
http://doc.utwente.nl/80267/

35. Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. J. Appl. Probab. 7, 49–58 (1970)

36. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
using PRISM: a hybrid approach. STTT 6(2), 128–142 (2004)

37. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer,
Cham (2016). doi:10.1007/978-3-319-47166-2 1

38. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314.
Springer, Cham (2014). doi:10.1007/978-3-319-05119-2 17

39. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field model-
checking for self-organising coordination - preliminary version. Technical report
TR-QC-01-2013, QUANTICOL (2013)

40. Latella, D., Loreti, M., Massink, M.: On-the-fly probabilistic model checking. In:
Lanese, I., Sokolova, A. (eds.) Proceedings of the 7th Interaction and Concurrency
Experience (ICE 2014), 6 June 2014, Berlin, Germany. EPTCS, vol. 166, pp. 45–59
(2014). doi:10.4204/EPTCS.166.6, http://cgi.cse.unsw.edu.au/∼rvg/eptcs/, ISSN
2075-2180

41. Latella, D., Loreti, M., Massink, M.: On-the-fly fluid model checking via dis-
crete time population models. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.)
EPEW 2015. LNCS, vol. 9272, pp. 193–207. Springer, Cham (2015). doi:10.1007/
978-3-319-23267-6 13. ISSN 0302-9743

42. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approx-
imated model-checking for self-organising coordination. Sci. Comput. Program.
110, 23–50 (2015). doi:10.1016/j.scico.2015.06.009, ISSN 0167-6423

http://dx.doi.org/10.1007/978-3-642-20401-2_18
http://link.aps.org/doi/10.1103/RevModPhys.43.231
http://link.aps.org/doi/10.1103/RevModPhys.43.231
http://dx.doi.org/10.1007/978-3-642-02658-4_49
http://dx.doi.org/10.1007/978-3-540-24622-0_8
http://doc.utwente.nl/80267/
http://dx.doi.org/10.1007/978-3-319-47166-2_1
http://dx.doi.org/10.1007/978-3-319-05119-2_17
http://dx.doi.org/10.4204/EPTCS.166.6
http://cgi.cse.unsw.edu.au/~rvg/eptcs/
http://dx.doi.org/10.1007/978-3-319-23267-6_13
http://dx.doi.org/10.1007/978-3-319-23267-6_13
http://dx.doi.org/10.1016/j.scico.2015.06.009

FlyFast: A Scalable Approach to Probabilistic Model-Checking 275

43. Latella, D., Loreti, M., Massink, M.: FlyFast: a mean field model checker. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 303–309. Springer,
Heidelberg (2017). doi:10.1007/978-3-662-54580-5 18. ISSN 0302-9743

44. Latella, D., Massink, M.: Design and optimisation of the FlyFast front-end for
attribute-based coordination. In: de Vink, E.P., Wiklicky, H. (eds.) Proceedings
of the Fifteenth Workshop on Quantitative Aspects of Programming Languages
(QAPL 2017). Electronic Proceedings in Theoretical Computer Science, EPTCS
(2017, to appear). Available also as QUANTICOL Technical report TR-QC-01-
2017 (2017)

45. Latella, D.: Comunicazione basata su proprietà nei sistemi decentralizzati
[property-based inter-process communication in decentralized systems], December
1983. Graduation thesis. Istituto di Scienze dell’Informazione. Univ. of Pisa (in
italian)

46. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: QEST07, pp. 3–18. IEEE Computer
Society Press (2007). ISBN 978-0-7695-2883-0

47. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential
Equations. SIAM, Philadelphia (2007)

48. Lotka, A.J.: Elements of Mathematical Biology. Williams and Wilkins Company,
Philadelphia (1924)

49. de Oca, M.A.M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo,
M.: Majority-rule opinion dynamics with differential latency: a mechanism for self-
organized collective decision-making. Swarm Intell. 5(3–4), 305–327 (2011)

50. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). doi:10.
1007/978-3-319-23820-3 2

51. Volterra, V.: Fluctuations in the abundance of a species considered mathematically.
Nature 118, 558–560 (1926)

http://dx.doi.org/10.1007/978-3-662-54580-5_18
http://dx.doi.org/10.1007/978-3-319-23820-3_2
http://dx.doi.org/10.1007/978-3-319-23820-3_2

The Road from Stochastic Automata
to the Simulation of Rare Events

Pedro R. D’Argenio1,2,3(B), Carlos E. Budde4, Matias David Lee1,
Raúl E. Monti1,2, Leonardo Rodŕıguez1, and Nicolás Wolovick1

1 Universidad Nacional de Córdoba, Córdoba, Argentina
dargenio@famaf.unc.edu.ar

2 CONICET, Córdoba, Argentina
3 Saarland University, Saarbrücken, Germany

4 University of Twente, Enschede, The Netherlands

Abstract. We report in the advances on stochastic automata and its
use on rare event simulation. We review and introduce an extension of
IOSA, an input/output variant of stochastic automata that under mild
constraints can be ensured to contain non-determinism only in a spuri-
ous manner. That is, the model can be regarded as fully probabilistic
and hence amenable for simulation. We also report on our latest work
on fully automatizing the technique of rare event simulation. Using the
structure of the model given in terms a network of IOSAs allows us to
automatically derive the importance function, which is crucial for the
importance splitting technique of rare event simulation. We conclude
with experimental results that show how promising our technique is.

1 Introduction

Stochastic automata were introduced by D’Argenio et al. in [10] as the semantics
basis for the compositional modeling of stochastically timed systems where the
occurrence time of events responds to continuous distributions. They can be
seen as a variant of timed automata [1] where clocks are initialized randomly
and run backwards, enabling transitions as soon as their value become 0. Based
on LOTOS [2] and other process algebras, the first ideas for compositionality
for stochastic automata were introduced through the process algebra . Thus,
stochastic automata and provide a natural generalization of generalized semi-
Markov processes (GSMP) oriented to compositional modeling.

However, this framework came with the usually unavoidable non-determinism
introduced by concurrency. This is a drawback, since, when deterministic, this
type of general models could be only analyzed through discrete event simula-
tion for the big majority of quantitative or even qualitative properties. (Model
checking stochastic automata can only provide a rough over approximation and
even though, with the usual limitation given by the state space explosion [19].)
Unfortunately, simulation and non-determinism are incompatible since simula-
tion requires that all possible execution choices are resolve through randomiza-
tion. This is partly solved in stochastic automata by the races on random clocks
c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 276–294, 2017.
DOI: 10.1007/978-3-319-68270-9 14

The Road from Stochastic Automata to the Simulation of Rare Events 277

enabling the transitions. Yet situations like the same clock enabling two different
transitions may happen which yields a non-deterministic choice. Notwithstand-
ing this situation, [12] presented a first approach to the simulation of stochas-
tic automata where a scheduler indicating how the non-determinism should be
resolved is explicitly required as input.

Notice however that the scheduler is an artifact that becomes part of the
model and should be provided by an expert that understands the intricacies of
the model. This task is clearly prone to error. Therefore, we sought instead for a
way to ensure that the model is fully probabilistic (or deterministic, meaning here
that all choices are resolved randomly) by construction. In [13] we introduced
input/output stochastic automata (IOSA), a variant of stochastic automata that
splits actions into inputs and outputs and let them behave in a reactive and gen-
erative manner respectively (see [18] for the concepts of reactive and generative
transitions), following ideas proposed in [33]. Since outputs behave generatively,
we let their occurrence time be controlled by a random variable (encoded in a
clock). As inputs are reactive, they are passive and hence their occurrence time
can only depend on their interaction with outputs. Thus, IOSA combines in a
single model the two interpretations of stochastic automata (either as open or as
closed systems [8,9].) It turns out that after all components are synchronized and
the system is closed (i.e. all interactions are resolved), the whole model becomes
fully probabilistic (i.e., it does not contain non-determinism).

This variant, however, turned to be a little too restricting for modeling.
Decoupling stochastic behavior and synchronization as in [20] may simplify con-
siderably compositional modeling. Thus, in this paper we extend IOSA by allow-
ing certain non-determinism so that we can easily check whether it is spurious,
that is, any possible path on the non-deterministic choice will converge to the
same state without changing the value of the property. We do this by including
urgent or committed transitions that do not take time, allowing that they are
non-deterministic, but requesting that they are also confluent (with the standard
notion of confluence in concurrency theory [24]). Having obtained a deterministic
model, we are in conditions to simulate a closed IOSA with committed actions.

Since, nowadays, systems are required to have a high degree of resilience and
dependability, determining properties that fail with extremely small probability
in complex models can be computationally very demanding. However, standard
Monte Carlo simulation is impractical when the probability of the event under
analysis is extremely low: it will easily require an enormous amount of sampling
to obtain an acceptable confidence level of the estimated probability, in order to
compensate for the high variance induced by the rare occurrences of such event.

To reduce this considerable need for simulation runs, efficient Monte Carlo
simulation techniques have been tailored to deal with rare events. These can be
largely divided into two conceptually different techniques: importance sampling
and importance splitting methods. We focus on importance splitting techniques,
see e.g. [23,29,30]. Importance splitting works by decomposing the state space in
multiple levels where, ideally, the rare event is at the top level and the probability
of (reaching) the rare event increases for each increasing level. The estimation

278 P.R. D’Argenio et al.

of the rare probability is obtained as the product of the estimates of the (not
so rare) conditional probabilities of moving one level up. As a consequence,
the effectiveness of this technique crucially depends on an adequate grouping
of states into levels. Importance functions are the means to assign a value to
each state so that, if perfect, such value is directly related to the likelihood
of reaching the rare event. It is desirable that a state in the rare set receives
the highest importance and the importance of a state decreases according to
the probability of reaching a rare state from it. Usually, an expert in the area
of the system provides the importance function in an ad-hoc manner. A badly
chosen function can deteriorate the effectiveness of the technique. With some
notable exceptions [4,16,21,25], automatic derivation of importance functions
has received scarce attention.

In the same way that we eliminate the need for an expertise in the modeling
of a scheduler, we have looked for techniques to automatically derive such impor-
tance functions. The overall aim thus is that the task of rare event simulation
becomes a single push button technique after the modeling of the system and
the property under study. In [4] we presented preliminary results on an effective
technique to derive automatically an importance function. The algorithm works
by applying inverse breadth first search (BFS) on the underlying graph of the
stochastic process, labeling each state with the shortest distance to a rare state.
The importance of each state is then defined as the difference between the maxi-
mum distance and its actual distance. This technique still requires a finite graph
which fits in the computer memory. Unfortunately such graph grows exponen-
tially with the number of components in the model of the system. To overcome
this problem, in [5] we improve on this technique by obtaining the importance
function in a compositional manner. We consider the system modeled as a net-
work of IOSAs. The technique then works by applying the previous method
per component, previous analysis on how the local states relate to the property
under study, and the final importance function is obtained by composing the
modular functions. Contrarily to the first technique, this way of calculating the
importance function grows linearly with the number of modules that conform
the system model. In this paper, we also report on these techniques and show
experimental studies that demonstrate how promising our ideas are.

2 Input/Output Stochastic Automata

Stochastic automata [8–10] use continuous random variables called clocks to
observe the passage of time and control the occurrence of events. This variables
are set to a value according to their associated probability distribution, and as
time evolves, they count down at the same rate. When a clock reaches zero, it
may trigger some action. This allows the modeling of systems where events occur
at random continuous time stamps.

Following ideas from [33], input/output stochastic automata (IOSA for short)
restrict stochastic automata by splitting actions into input and output actions
which will act in a reactive and generative way respectively [18]. This splitting

The Road from Stochastic Automata to the Simulation of Rare Events 279

reflects the fact that input actions are considered to be controlled externally,
while output actions are locally controlled. Therefore, we consider the system
input enabled. Moreover, output actions could be stochastically controlled or
instantaneous. In the first case output actions are controlled by the expiration
of a single clock while in the second case the output actions take place as soon as
the enabling state is reached. We called these instantaneous actions committed.
A set of restrictions over IOSA will ensure that, almost surely, no two non
committed outputs are enabled at the same time.

Definition 1. An input/output stochastic automaton with committed actions
(IOSA for short) is a structure (S,A, C,−→, C0, s0), where S is a (denumerable)
set of states, A is a (denumerable) set of labels partitioned into disjoint sets of
input labels AI and output labels AO, from which a subset Aco of them are marked
as committed, C is a (finite) set of clocks where each x ∈ C has associated a con-
tinuous probability measure μx on R s.t. μx(R>0) = 1, −→ ⊆ S × 2C × A × 2C × S
is a transition function, C0 is the set of clocks that are initialized in the initial
state, and s0 ∈ S is the initial state.

In addition, a IOSA should satisfy the following constraints, where we write

s
C,a,C′

−−−−−→ s′ instead of (s, C, a, C ′, s′) ∈ −→:

(a) If s
C,a,C′

−−−−−→ s′ and a ∈ AI ∪ Aco, then C = ∅.
(b) If s

C,a,C′
−−−−−→ s′ and a ∈ AO \ Aco, then C is a singleton set.

(c) If s
{x},a1,C1−−−−−−−→ s1 and s

{x},a2,C2−−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) If s
{x},a,C−−−−−→ s′ then x ∈

⋃
safe(s), where safe is the least fixed point of F

defined as:

F(X)(s) = {C0 | s = s0} ∪ {C′ ∪ ({y | ŝ {y}, ,−−−−−→ } \ C) | ŝ C,a,C′
−−−−−→ s ∧ a /∈ Aco}

∪ {C ∪ C′ | ŝ ∅,a,C−−−−→ s ∧ a ∈ Aco ∧ C′ ∈ X(ŝ)}

(e) For every a ∈ AI and state s, there exists a transition s
∅,a,C−−−−→ s′.

(f) For every a ∈ AI , if s
∅,a,C′

1−−−−−→ s1 and s
∅,a,C′

2−−−−−→ s2, C ′
1 = C ′

2 and s1 = s2.

The occurrence of a transition is controlled by the expiration of clocks.

s
C,a,C′

−−−−−→ s′ indicates that there is a transition from state s to state s′ that
can be taken only when all clocks in C have expired and, when taken, it triggers
action a and sets all clocks in C ′ to a value sampled from their associated proba-
bility distribution. We write to replace parameters when they are not relevant.

These restrictions ensure that any closed IOSA without committed actions
is deterministic [13]. An IOSA is closed if all its synchronizations have been
resolved, that is, the IOSA resulting from a composition does not have input
actions (AI = ∅).

Restriction (a) is two-folded: on the one hand, it specifies that input actions
are reactive and their time occurrence can only depend on the interaction with
an output, on the other hand, committed output actions must occur as soon as

280 P.R. D’Argenio et al.

the state enables them. The difference will be more clear when we define the
concrete semantics. Restriction (b) specifies that each non-committed output is
locally controlled and has a single associated clock which controls its occurrence.
Restriction (c) ensures that different non-committed output actions leaving the
same state cannot be controlled by the same clock. Restriction (e) ensures input
enabling. Restriction (f) determines that IOSAs are input deterministic. There-
fore, the same input action in the same state can not jump to different states,
nor set different clocks.

Finally, restriction (d) restricts enabling clock x to clocks that have not yet
expired when reaching s. That is, either x has been reset during the transition
to s, or during a path of committed transitions reaching s, or x is not used as
enabling clock of a transition to s but it is an enabling clock on the immediately
preceding state. By means of the least fixed point of F we are able to accumulate
clocks that are reset along paths of committed transitions. Furthermore, this
restriction allows a clock x to be an enabling clock at an initial state s if x is an
initial clock, i.e. x ∈ C0.

Note that since clocks are set by sampling from a continuous random vari-
ables, the probability that the values of two different clocks are equal is 0. This
fact along with restriction (c) and (d) guarantees that almost never two different
non-committed output transitions are enabled at the same time.

In the following we define parallel composition of IOSAs. Since we intend
outputs to be autonomous (or locally controlled), we do not allow synchroniza-
tion between them. Besides, we need to avoid name clashes on the clocks, so
that the intended behavior of each component is preserved and moreover, to
ensure that the resulting composed automaton is indeed an IOSA. Furthermore,
synchronizing IOSAs should agree on committed actions in order to ensure their
immediate occurrence. Thus we require to compose only compatible IOSAs.

Definition 2. Two IOSAs I1 and I2 are said to be compatible if they do not
share output actions nor clocks, i.e. AO

1 ∩AO
2 = ∅ and C1∩C2 = ∅, and moreover

they agree on committed actions, i.e. A1 ∩ Aco
2 = A2 ∩ Aco

1 .

Definition 3. Given two compatible IOSAs I1 and I2, the parallel composition
I1||I2 is a new IOSA (S1 × S2,A, C,−→, C0, s

1
0||s20) where (i) AO = AO

1 ∪ AO
2 ,

(ii) AI = (AI
1 ∪ AI

2) \ AO, (iii) Aco = Aco
1 ∪ Aco

2 , (iv) C = C1 ∪ C2, and (v)
C0 = C1

0 ∪ C2
0 , and −→ is the smallest relation defined by rules in Table 1 where

we annotate s||t instead of (s, t).

Table 1. Parallel composition on IOSA

The Road from Stochastic Automata to the Simulation of Rare Events 281

It can be proven that the parallel composition preserves IOSAs. That is, the
parallel composition of two IOSAs is also an IOSA.

Fig. 1. Confluence in IOSA.

Following ideas from Milner [24] we say that an
IOSA is confluent with respect to actions a and b
if the occurrence of one of them does not prevent
the other one from occurring in the future. More
precisely, an IOSA I is confluent with respect to
committed actions a and b in A if for every state s
in S we can complete the diagram from Fig. 1.

Notice that confluent actions do not alter the
stochastic behavior of the system: by considering a
and b silent actions (i.e. a = b = τ with τ interpreted as in Milner’s work [24])

the IOSA of Fig. 1 behaves like the single transition s0
∅,τ,C1∪C2−−−−−−−→ s3. Thus, the

non-determinism introduced by confluent committed actions is spurious.
It can be shown that parallel composition preserves confluence. Thus, if all

IOSA components are confluent for all committed action, so is their parallel
composition.

3 Semantics of IOSA

The semantics of IOSA is defined in terms of non-deterministic labeled Markov
processes (NLMP) [14,32]. A NLMP is a generalization of probabilistic transition
systems with continuous domain. In particular, it extends LMP [15] with internal
non-determinism.

The foundations of NLMP is strongly rooted in measure theory, hence we
recall first some basic definitions. Given a set S and a collection Σ of sub-
sets of S, we call Σ a σ-algebra iff S ∈ Σ and Σ is closed under complement
and denumerable union. We call the pair (S,Σ) a measurable space. A func-
tion μ : Σ → [0, 1] is a probability measure if (i) μ(

⋃
i∈N

Qi) =
∑

i∈N
μ(Qi)

for all countable family of pairwise disjoint measurable sets {Qi}i∈N ⊆ Σ, and
(ii) μ(S) = 1. In particular, for s ∈ S, δs denotes the Dirac measure so that
δs({s}) = 1. Let Δ(S) denote the set of all probability measures over (S,Σ).
Let (S1,Σ1) and (S2,Σ2) be two measurable spaces. A function f : S1 → S2 is
said to be measurable if for all Q2 ∈ Σ2, f−1(Q2) ∈ Σ1. There is a standard
construction by Giry [17] to endow Δ(S) with a σ-algebra as follows: Δ(Σ) is
defined as the smallest σ-algebra containing the sets ΔB(Q) .= {μ | μ(Q) ∈ B},
with Q ∈ Σ and B ∈ B([0, 1]), where B([0, 1]) is the usual Borel σ-algebra on
the interval [0, 1]. Finally, we define the hit σ-algebra H(Δ(Σ)) as the minimal
σ-algebra containing all sets Hξ = {ζ ∈ Δ(Σ) | ζ ∩ ξ �= ∅} with ξ ∈ Δ(Σ).

Definition 4. A non-deterministic labeled Markov process (NLMP for short)
is a structure (S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S,
and for each label a ∈ L we have that Ta : S → Δ(Σ) is measurable from Σ to
H(Δ(Σ)).

282 P.R. D’Argenio et al.

The formal semantics of an IOSA is defined by a NLMP with two classes of
transitions: one that encodes the discrete steps and contains all the probabilistic
information introduced by the sampling of clocks, and another describing the
time steps, that only records the passage of time synchronously decreasing the
value of all clocks. For simplicity, we assume that the set of clocks has a particular
order and their current values follow the same order in a vector.

Definition 5. Given an IOSA I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN},
its semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

– S = (S ∪ {init}) × R
N , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

– Tinit(init,v) = {δs0 ×
∏N

i=1 μxi
},

– Ta(s,v) = {μv,C′,s′ | s
C,a,C′

−−−−−→ s′,
∧

xi∈C v(i) ≤ 0}, for all a ∈ A, where
μv,C′,s′ = δs′ ×

∏N
i=1 μxi

with μxi
= μxi

if xi ∈ C ′ and μxi
= δv(i) otherwise,

and
– Td(s,v) = {δs ×

∏N
i=1 δv(i)−d} if s �b−→ for all committed b ∈ AO ∩ Aco and

0 < d ≤ min{v(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′}, and Td(s,v) = ∅
otherwise, for all d ∈ R≥0.

The state space is the product space of the states of the IOSA with all
possible clock valuations. A distinguished initial state init is added to encode the
random initialization of all clocks (it would be sufficient to initialize clocks in
C0 but we decided for this simplification). Such encoding is done by transition
Tinit. The state space is structured with the usual Borel σ-algebra. The discrete
step is encoded by Ta , with a ∈ A. Notice that, at state (s,v), the transition

s
C,a,C′

−−−−−→ s′ will only take place if
∧

xi∈C v(i) ≤ 0, that is, if the current values of
all clocks in C are not positive. For the particular case of the input or committed
actions this will always be true. The next actual state would be determined
randomly as follows: the symbolic state will be s′ (this corresponds to δs′ in
μv,C′,s′ = δs′ ×

∏N
i=1 μxi

), any clock not in C ′ preserves the current value (hence
μxi

= δv(i) if xi /∈ C ′), and any clock in C ′ is set randomly according to its
respective associated distribution (hence μxi

= μxi
if xi ∈ C ′). The time step

is encoded by Td(s,v) with d ∈ R≥0. It can only take place at d units of time
if there is no output transition enabled at the current state within the next d
time units (this is verified by condition 0 < d ≤ min{v(i) | ∃a∈AO, C ′⊆C, s′∈S :

s
{xi},a,C′

−−−−−−→ s′}). In this case, the system remains in the same symbolic state
(this corresponds to δs in δ−d

(s,v) = δs ×
∏N

i=1 δv(i)−d), and all clock values are
decreased by d units of time (represented by δv(i)−d in the same formula). Note
the difference from the timed transitions semantics of pure IOSA [13]. This
is due to the maximal progress assumption, which forces to take committed
transition as soon as they get enabled. We encode this by not allowing to make
time transitions in presence of committed actions, i.e. s �b−→ for all committed

b ∈ AO ∩ Aco (thus Td(s,v) = ∅ whenever s
C,b,C′

−−−−−→ s′ with b ∈ AO ∩ Aco.)
Instead, notice the patient nature of a state (s,v) that has no output enabled.

The Road from Stochastic Automata to the Simulation of Rare Events 283

That is, Td(s,v) = {δs ×
∏N

i=1 δv(i)−d} for all d > 0 whenever s �b−→ for all output
action b ∈ AO.

In a similar way to [13], it is possible to show that P(I) is indeed a NLMP,
i.e. that Ta maps into measurable sets in Δ(B(S)), and that Ta is a measurable
function for every a ∈ L.

4 Rare Event Simulation

Assuming that the IOSA is closed and confluent on all committed actions and
it does not contain loops of only committed transitions, from the semantics of
IOSA (Definition 5) we can extract an algorithm for discrete event simulation
which we give in Fig. 2.

Given that the IOSA is confluent for committed actions, the arbitrary choice
of a committed transition in line 6 is irrelevant since, after finishing the while
loop of line 5, the same set of clocks will be sampled whichever path of committed
transitions is taken. Moreover, the while loop is ensured to finish since no loop
of committed transition is allowed. Also, the restrictions imposed by Definition 1
guarantee the uniqueness of the transition in line 11 [13].

When a parameter is estimated using the usual Monte Carlo simulation (as
described in Fig. 2), the speed and overall efficiency of the method is highly
dependent on the precision required for the estimate. Confidence intervals are
commonly used to convey a notion of how far the produced estimate may be
from the actual value. As a general rule, whichever the confidence interval con-
struction method, the simulations “length” grows with the tightness desired for

Fig. 2. Simulation of a closed confluent IOSA

284 P.R. D’Argenio et al.

the interval. In particular several rare event scenarios are known to require a
number of samples which grows exponentially on the model size [22].

Importance splitting (IS for short) aims to speed up the occurrence of a rare
event without modifications on the system dynamics (see [23] and references
therein.) The general idea in IS is to favor the “promising runs” that approach
the rare event by saving the states they visit at certain predefined checkpoints.
Replicas of these runs are created from those checkpoint states, which continue
evolving independently from then on. Contrarily, simulation runs deemed to
steer away from the rare event are identified and killed, avoiding the use of
computational power in fruitless calculi. The likelihood of visiting a goal state
from any other state s is called the importance of s. Variations in such importance
determine when should a simulation run be split or killed, as the importance
value crosses some given thresholds up or down, respectively.

We focus on the RESTART method, a version of IS with multiple thresholds,
fixed splitting and deterministic discards of unpromising simulations [26,28–31].
A RESTART run can be depicted as in Fig. 3 where the horizontal axis represents
the simulation progress and the vertical axis the importance value of the current
state. The run starts from an initial state and evolves until the first threshold
T1 is crossed upwards. This takes the path from zone Z0 below threshold T1

into zone Z1 between T1 and T2. As this happens the state is saved and s1 − 1
replicas or offsprings of the path are created. See A in Fig. 3, where the splitting
for T1 is s1 = 3. This follows the idea of rewarding promising simulations: up-
crossing a threshold suggests the path heads towards a goal state. From then
on the s1 simulations will evolve independently. As they continue, one of them
may hit the upper threshold T2, activating the same procedure: s2 −1 offsprings
are generated from it and set to evolve independently. See B in Fig. 3; here, the
splitting is s2 = 2.

Fig. 3. RESTART importance splitting

However, it could also happen that
some simulation hits T1 again, mean-
ing the path is leading downwards. This
simulation steers away from the goal set
and RESTART deals with it discarding
the run right away (see C in Fig. 3). In
each zone Zi there exists nonetheless
an original simulation, which crossed
threshold Ti upwards generating the
si − 1 offsprings. This run is allowed to
survive a down-crossing of threshold Ti

(see D in Fig. 3).
In this setting all simulations reaching a goal state went through the repli-

cation procedure, which stacked up on every threshold crossed. Simply counting
these hits would introduce a bias, because the relative weight of the runs in
upper zones decreases by an amount equivalent to the splitting of the thresh-
olds. In consequence, each rare event observed is pondered by the relative weight
of the simulation from which it stemmed. If all the goal states exist beyond the

The Road from Stochastic Automata to the Simulation of Rare Events 285

uppermost threshold like in Fig. 3, then it suffices to divide the observed quan-
tity of rare events by SPLITMAX

.=
∏n

i=1 si. Otherwise more involved labeling
mechanisms are needed.

In this work we study transient and long run properties. Transient properties
are used to calculate the probability of reaching a set G of goal states before
visiting any reset state from the (disjoint) set R. (For simulation purposes the
probability of reaching a state in G�R has to be 1.) Following PCTL, we denote
this probability by P(¬RUG). Long run analysis focuses on the quantification
of a property once the system has reached an equilibrium. In particular, the
steady state probability of a set G of goal states is the portion of time in which
any state in G is visited in the long run. Using CSL notation, we write S(G).

5 Automatic Derivation of the Importance Function

Notice that a simulation using importance splitting is entirely guided by the
importance function which defines the importance of each state. This function
conveys the states where the simulation effort should be intensified. Importance
functions are defined in most situations in an ad-hoc fashion by an expert in
the field of the particular system model. With a few exceptions in some specific
areas [16,21,25,35] automatic derivation of importance functions is still a novel
field for general systems and this has been our later concern [3–5].

Fig. 4. Basic importance function derivation

Consider a single IOSA and
any of the properties P(¬RUG) or
S(G). The rare event is precisely the
set G of goal states. In [4], we pro-
pose a distance based on the length
of the shortest path on the IOSA
leading to a state in G: a state s is
more important than other state s′

if its shortest path to a state in G is
shorter than the shortest path of s′.
This can be implemented with the
help of a breadth-first search algo-
rithm that follows the backwards
direction of the transitions in the
given IOSA. The algorithm, which
is given in Fig. 4, has complexity
O(n · k), where n is the size of the
state space and k is the branching
degree of the underlying graph of
the IOSA.

Using this strategy one can indeed obtain in very short computational time a
good importance function to use with the IS technique of choice [4]. The thresh-
olds can then be selected either arbitrarily, using e.g. some fixed approach (“set
one every three importance values”), or adaptively by means of an algorithm
that exercises the model dynamics [6,7].

286 P.R. D’Argenio et al.

However, this approach does not scale. The BFS algorithm requires an
explicit representation of the state space of the composed IOSA (and actually
of the whole adjacency matrix), which grows exponentially with the number of
modules involved in the composition. This is clearly not in the spirit of simula-
tion which scales nicely since it only requires to save only the current state been
explored.

Taking advantage of the compositional nature of IOSA, in [5] we presented
a compositional approach to automatically produce importance functions. The
solution reuses our previous idea:

(i) identify the set Gi of local states in each IOSA component Ii that are part
of the global set G of goal states,

(ii) apply the algorithm of Fig. 4 in each component Ii to obtain a local impor-
tance function fi, and

(iii) compose the family of functions {fi}i to obtain the (global) importance
function f .

This brings two challenges: obtaining the local goal states sets Gi and composing
the family of functions {fi}i to obtain the importance function f .

For the first challenge, we require that the set G of goal states is given in terms
of a propositional formula in disjunctive normal form (DNF), i.e. a disjunction
of clauses, each of which is a conjunction of literals (i.e. of atomic propositions
or negated atomic propositions). As a restriction, we impose that each atomic
proposition can only be changed or tested in a single IOSA component. This
approach imposes no restriction on the description of the rare event, since any
propositional formula can be equivalently written in DNF.

To obtain the set Gi of local goal states for component Ii, we “project” the
DNF formula

∨
n∈N

∧
m∈Mn

�nm defining G as follows. For each n ∈ N define
Ln = {�nm | m ∈ Mn and �nm contains a proposition in Ii}. Then, define the
local goal DNF formula by

∨
{
∧

Ln | n ∈ N and Ln �= ∅} which defines the set
Gi of states of Ii in which such a formula is valid.

For composing the family of functions {fi}i into the importance function f ,
we have experimented with several proposals. One option is to let the user settle
the matter via an ad-hoc choice. He would have to provide an algebraic expression
using the local importance which would be used at every step of the simulation
to combine the local importance values. For example, consider a system of three
IOSAs composed in parallel. If s|i denotes the projection of the global state s into
the local state of component Ii, possible definitions for f are f(s) = f1(s|1) +
f2(s|2) + f3(s|3) or f(s) = max (0.3f1(s|1) + 0.7f2(s|2), f3(s|3)).

Since we request the properties to be expressed in DNF, we could exploit the
structure of the formula to identify specific arithmetical operands or even alge-
braic structures to associate to each logical operand. We are currently investigat-
ing a way to automatically map the disjunctions and conjunctions to their best-
match arithmetical counterparts. Our last studies are leading us towards the use
of semi-rings such as (max,+) and (+,*), which could be thought of as naturally
corresponding to the (∨, ∧) structure of DNF formulas. For example, consider a
system of three IOSAs composed in parallel, where pi is a propositional formula

The Road from Stochastic Automata to the Simulation of Rare Events 287

in the component Ii. If the goal DNF formula is (p1 ∧ p2)∨ (p1 ∧ p3), the impor-
tance function could be defined by f(s) = (f1(s|1) ∗ f2(s|2)) + (f1(s|1) ∗ f3(s|3))
or f(s) = max((f1(s|1) + f2(s|2)), (f1(s|1) + f3(s|3))).

As a final remark notice that using the product to combine local importance
functions could lead to problems whenever a null importance value is encoun-
tered. As a workaround in such cases the functions where updated after construc-
tion, replacing every importance value i with 2i (e.g. the values 0, 1, 2, . . . map
into 1, 2, 4, . . .) This solved the issue and set the computed importance values
further apart, with interesting consequences in the IS simulations.

6 Experimental Results

We have developed the software tool FIG, which implements the compositional
approach to multilevel splitting described above. It is written in C++ and is a
standalone software. FIG stands for Finite Improbability Generator as a homage
to Douglas Adam’s masterpiece and it is freely available at http://dsg.famaf.
unc.edu.ar/fig.

In the following we report several case studies that validate our approach.
All experiments were run in a computer with a 12-cores 2.40 GHz Intel Xeon E5-
2620v3 processor, and 128 GiB 2133 MHz of available DDR4 RAM. More details
of these and other case studies can be found in [3].

Tandem Queue. This system consists of a Jackson tandem network with two
sequentially connected queues, where the rates of arrival, first service and second
service are respectively (λ, μ1, μ2) = (3, 2, 6), and for which transient and steady-
state properties were evaluated.

Notice this tandem queue is Markovian. Therefore, we were able to validate
that the results yielded by FIG because the IOSA model agree with those yielded
by PRISM for an equivalent model written in the PRISM language. (We remark
that the FIG input language is very much alike the PRISM input language.)

For this case study, we have performed transient and steady state analysis.
For the transient analysis, the property of interest is P(q2 > 0U q2 = C), i.e. the
likelihood of observing a saturated second queue before it becomes empty, which
we estimate starting from the state (q1, q2) = (0, 1). We tested maximum queue
capacities C ∈ {8, 10, 12, 14}, for which the values calculated with PRISM are
respectively 5.62e−6, 3.14e−7, 1.86e−8, and 1.14e−9. Estimations were set to
achieve 90% confidence interval with 20% of relative error. The execution time-
out was 2.5 h, which FIG converged for each configuration producing intervals
containing the values reported by PRISM.

The average of the wall times measured in three experiments are shown in
Fig. 5. Three different importance functions were tested in the importance split-
ting simulations. The function denoted amono was automatically built by FIG
using the monolithic approach of [4]. Instead, acomp stands for the function built
following the compositional strategy, which in this case employed summation
as composition operand (i.e., the global function is the summation of the local
functions). The third importance function tested with RESTART was one of the

http://dsg.famaf.unc.edu.ar/fig
http://dsg.famaf.unc.edu.ar/fig

288 P.R. D’Argenio et al.

Fig. 5. Times for the transient analysis of the tandem queue

best known ad-hoc candidates viz. counting the number of packets in the sec-
ond queue, which we denote q2. Standard Monte Carlo simulations are denoted
nosplit. In Fig. 5, we display one chart per splitting value, with the outcomes of
the nosplit simulations repeated in all four charts. The maximum queue capacity
C, tuned to variate the rarity of the event, spans along the x-axis.

Regarding long run simulations we are interested in the property S(q2 = C),
i.e. the proportion of time that the second queue spends in a saturated state. We
tested maximum queue capacities C ∈ {10, 13, 16, 18, 21}, for which the values
calculated with PRISM are respectively 7.25e−6, 2.86e−7, 1.12e−8, 1.28e−9,
and 4.94e−11.

Estimations were set to achieve 90% confidence with 20% of relative error and
expected to converge within 6 h of wall time execution. Again we corroborated
that these estimations converged to the values yielded by PRISM. The same
importance functions than in the transient case were employed.

The results obtained from an average among three experiments are presented
in Fig. 6, following the same format than in the transient case.

Triple Tandem Queue. Consider a non-Markovian tandem network operating
under the same principles than the previous tandem queue, but consisting of
three queues with Erlang-distributed service times. The shape parameter α is
the same for all servers, but the scale parameters {μi}3i=1 differ from one queue
to the next. Arrivals into the system are exponential with rate λ = 1.

The Road from Stochastic Automata to the Simulation of Rare Events 289

Fig. 6. Times for the steady-state analysis of the tandem queue

The long run behavior of this non-Markovian triple tandem queue was studied
in [26] starting from an empty system. The shape parameter is α ∈ {2, 3} in all
queues and the load at the third queue is kept at 1/3. This means that the scale
parameter μ3 in the third queue takes the values 1/6 and 1/9 when α is 2 and
3 respectively. The scale parameters μ1 and μ2 of the first and second servers,
as well as the thresholds capacity C at the third queue, are chosen to keep the
steady-state probability in the same order of magnitude for all case studies.

The property of interest is the steady-state probability of a saturation in the
third queue, i.e. S(q3 = C). Following the same approach from [26] we choose
the parameters so that the estimated value is in the order of 5 · 10−9. Thus the
values of (α, μ1, μ2, C) for the six case studies i–vi are respectively (2, 1/3, 1/4, 10),
(3, 2/3, 1/6, 7), (2, 1/6, 1/4, 11), (3, 1/9, 1/6, 9), (2, 1/10, 1/8, 14), and (3, 1/15, 1/12, 12).

Estimations were set to achieve 90% confidence interval with 20% of rel-
ative error and expected to converge within 4 h of wall time execution. Four
importance functions were tested in the importance splitting simulations: the
monolithic (amono) and compositional (acomp) functions which FIG can build
automatically, using summation as composition operand for acomp; an ad-hoc
function which just counted occupation in the third queue (q3); and the ad-hoc
approach from [26] (denoted jva), which also considers the occupancy in the
other queues with weight coefficients specific to each case, taking values in the
interval [0.2, 0.9].

290 P.R. D’Argenio et al.

Fig. 7. Times for the steady-state analysis of the triple tandem queue

Results are presented in Fig. 7. This experiment was also run three times; the
values in the plots show the average of the convergence times measured. Case
studies i–vi span along the x-axis of each plot.

Oil Pipeline. Consider a consecutive-k-out-of-n: F system (C(k, n : F)). This
consists of a sequence of n components ordered sequentially, so that the whole
system fails if k or more consecutive components are in a failed state. For a more
down-to-earth mental picture consider an oil pipeline where there are n equally
spaced pressure pumps. Each pump can transport oil as far as the distance of k
pumps and no further. Thus if k > 1, the system has certain resilience to failure
and remains operational as long as no k consecutive pumps have failed.

Several generalizations exist to the original setting; we are interested in the
non-Markovian and repairable systems analyzed in e.g. [27,34]. Those works
assume the existence of a repairman which can take one failed component at a
time and leave it “as good as new”, after a log-normal distributed repair time
has elapsed [34]. In particular [27] consider also the existence of non-Markovian
failure times (namely, sampled from the Rayleigh—or Weibull—distribution)
and measure the steady-state unavailability of the system.

We will limit here to the oil pipeline of the type C(5, 20 : F), i.e. where
there is a total of n = 20 pressure pumps, and k = 5 consecutive failed pumps
cause a general system failure. This was the most difficult case we run, where the
estimated probability are in the order of 2.62e−9 and 7.49e−9 for the exponen-
tial and Rayleigh, case respectively. Other parameters are studied in [3]. In this

The Road from Stochastic Automata to the Simulation of Rare Events 291

Fig. 8. Exponential-failures oil pipeline; intervals precision for 3 h timeout

Fig. 9. Rayleigh-failures oil pipeline; intervals precision for 3 h timeout

setting, the steady-state system unavailability is given by the property query:
S(

∨15
i=1(bi ∧ bi+1 ∧ bi+2 ∧ bi+3 ∧ bi+4)), where bi indicates that component i is

broken.
Also, we present a variation of the original model by changing the policy of

repair, since the policy used in [27] is quite singular and cannot be modeled with
FIG input language. Instead, we chose a priority policy where lower numbered
components have more priority than higher numbered components.

The large number of components of this model prevents us to use the mono-
lithic approach to derive the important function. Therefore the automatic impor-
tance functions tested are only compositional. The näıve strategy of compos-
ing the local functions with summation as composition operand is denoted ac1.
Similarly, ac2 uses product as composition operand and an exponentiation post-
processing. Taking advantage that the propositional formula is in DNF, we use
the (max,+) and (+, ∗) semirings composition strategies and we denote them
by ac3 and ac4 respectively. Last, ah implements an ad-hoc function with the
(max,+) semiring, using the variables of the modules rather than the local
importance functions which the tool could compute if requested. This is the
approach followed in [27] and denoted Φ(t) .= cl − oc(t) in that work.

Due to the fact that this model takes too long to simulate, we decided to run
it for 3 h and compare the resulting precision of the intervals for a confidence of
90%. We run three independent experiments. The results are presented in Figs. 8

292 P.R. D’Argenio et al.

and 9. These values are the average of the precision of the intervals obtained from
the three experiments run; the deviation is shown as whiskers on top of the bars.
We observe that, in this case study, the normal Monte Carlo was still competitive
and postpone further discussions for the next section.

7 Concluding Remarks

In this paper we have reported on the continuation of the work on stochastic
automata and its analysis that took place under Ed Brinksma’s supervision
during the late 90s [8,10–12]. We presented here a new variant of stochastic
automata, named IOSA, amenable for simulation, and moreover, we reported
on our efforts on obtaining a fully automatic implementation of the importance
splitting technique for rare event simulation.

Our technique on automatically deriving importance function has proven
highly competitive when compared with known good ad-hoc importance func-
tions. This is evident in all experimental results reported in the previous section
as well as in [3–5]. Yet, we know that we need to improve the FIG tool. Particu-
larly, we need a better automatic construction of the thresholds where splitting
is produced. We are currently using known techniques [6,7] that are not always
producing good results when combined with our method of deriving importance
function and the RESTART method. This is evident in the oil pipeline case
study. We are currently busy on a new technique for the automatic derivation
of thresholds that we expect to report soon.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Bolognesi, T., Brinksma, E.: Introduction to the ISO speci-
fication language LOTOS. Comput. Netw. 14, 25–59 (1987).
https://doi.org/10.1016/0169-7552(87)90085-7

3. Budde, C.E.: Automation of importance splitting techniques for rare event simu-
lation. Ph.D. thesis. Universidad Nacional de Córdoba, Argentina (2017)

4. Budde, C.E., D’Argenio, P.R., Hermanns, H.: Rare event simulation with fully
automated importance splitting. In: Beltrán, M., Knottenbelt, W., Bradley, J.
(eds.) EPEW 2015. LNCS, vol. 9272, pp. 275–290. Springer, Cham (2015). doi:10.
1007/978-3-319-23267-6 18

5. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of impor-
tance functions in fully automated importance splitting. In: Puliafito, A., Trivedi,
K.S., Tuffin, B., Scarpa, M., Machida, F., Alonso, J. (eds.) Proceedigns of VALUE-
TOOLS 2016. ACM (2017). https://dx.doi.org/10.4108/eai.25-10-2016.2266501

6. Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Sequential Monte
Carlo for rare event estimation. Stat. Comput. 22(3), 795–808 (2012).
https://dx.doi.org/10.1007/s11222-011-9231-6

7. Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch.
Anal. Appl. 25(2), 417–443 (2007)

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0169-7552(87)90085-7
http://dx.doi.org/10.1007/978-3-319-23267-6_18
http://dx.doi.org/10.1007/978-3-319-23267-6_18
https://dx.doi.org/10.4108/eai.25-10-2016.2266501
https://dx.doi.org/10.1007/s11222-011-9231-6

The Road from Stochastic Automata to the Simulation of Rare Events 293

8. D’Argenio, P.R.: Algebras and automata for timed and stochastic systems. Ph.D.
thesis. University of Twente, Enschede (1999)

9. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: Stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

10. D’Argenio, P.R., Katoen, J., Brinksma, E.: An algebraic approach to the specifi-
cation of stochastic systems. In: Gries, D., de Roever, W.P. (eds.) PROCOMET
1998. IFIP Conference Proceedings, vol. 125, pp. 126–147. Chapman & Hall (1998)

11. D’Argenio, P.R., Katoen, J.P., Brinksma, E.: A compositional approach to gener-
alised semi-Markov processes. In: Proceedings of WODES 1998, pp. 391–387. IEE
(1998)

12. D’Argenio, P.R., Katoen, J., Brinksma, E.: Specification and analysis of soft real-
time systems: quantity and quality. In: Proceedings of 20th RTSS, pp. 104–114.
IEEE Computer Society (1999). https://doi.org/10.1109/REAL.1999.818832

13. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/output stochastic automata. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 53–68.
Springer, Cham (2016). doi:10.1007/978-3-319-44878-7 4

14. D’Argenio, P.R., Sánchez Terraf, P., Wolovick, N.: Bisimulations for non-
deterministic labelled Markov processes. Math. Struct. Comput. Sci. 22(1), 43–68
(2012)

15. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov
processes. Inf. Comput. 179(2), 163–193 (2002)

16. Garvels, M.J.J., Van Ommeren, J.K.C.W., Kroese, D.P.: On the importance func-
tion in splitting simulation. Eur. Trans. Telecommun. 13(4), 363–371 (2002).
https://dx.doi.org/10.1002/ett.4460130408

17. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). doi:10.1007/BFb0092872

18. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)

19. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. ECEASST, vol. 70 (2014). http://journal.ub.tu-berlin.
de/eceasst/article/view/968

20. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Hei-
delberg (2002). doi:10.1007/3-540-45804-2

21. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 38

22. Kroese, D.P., Nicola, V.F.: Efficient estimation of overflow probabilities in queues
with breakdowns. Performance Eval. 36, 471–484 (1999)

23. L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Splitting techniques. In: Rare
Event Simulation using Monte Carlo Methods, pp. 39–61. Wiley (2009). http://
dx.doi.org/10.1002/9780470745403.ch3

24. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

25. Reijsbergen, D., de Boer, P.-T., Scheinhardt, W., Haverkort, B.: Automated rare
event simulation for stochastic petri nets. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 372–388. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40196-1 31

26. Villén-Altamirano, J.: RESTART simulation of networks of queues with Erlang
service times. In: Winter Simulation Conference (2009), WSC 2009, pp. 1146–1154
(2009). http://dl.acm.org/citation.cfm?id=1995456.1995616

https://doi.org/10.1109/REAL.1999.818832
http://dx.doi.org/10.1007/978-3-319-44878-7_4
https://dx.doi.org/10.1002/ett.4460130408
http://dx.doi.org/10.1007/BFb0092872
http://journal.ub.tu-berlin.de/eceasst/article/view/968
http://journal.ub.tu-berlin.de/eceasst/article/view/968
http://dx.doi.org/10.1007/3-540-45804-2
http://dx.doi.org/10.1007/978-3-642-39799-8_38
http://dx.doi.org/10.1002/9780470745403.ch3
http://dx.doi.org/10.1002/9780470745403.ch3
http://dx.doi.org/10.1007/978-3-642-40196-1_31
http://dl.acm.org/citation.cfm?id=1995456.1995616

294 P.R. D’Argenio et al.

27. Villén-Altamirano, J.: RESTART simulation of non-Markov consecutive-k-out-
of-n: F repairable systems. Rel. Eng. Sys. Safety 95(3), 247–254 (2010).
https://dx.doi.org/10.1016/j.ress.2009.10.005

28. Villén-Altamirano, M., Mart́ınez-Marrón, A., Gamo, J., Fernández-Cuesta, F.:
Enhancement of the accelerated simulation method restart by considering mul-
tiple thresholds. In: Proceedings of 14th International Teletraffic Congress, pp.
797–810 (1994)

29. Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for accelerat-
ing rare event simulations. In: Queueing, Performance and Control in ATM (ITC-
13), pp. 71–76. Elsevier (1991)

30. Villén-Altamirano, M., Villén-Altamirano, J.: The rare event simulation method
RESTART: efficiency analysis and guidelines for its application. In: Kouvatsos,
D.D. (ed.) Network Performance Engineering. LNCS, vol. 5233, pp. 509–547.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-02742-0 22

31. Villén-Altamirano, J.: Asymptotic optimality of RESTART estimators in
highly dependable systems. Reliab. Eng. Syst. Saf. 130, 115–124 (2014).
www.sciencedirect.com/science/article/pii/S0951832014001227

32. Wolovick, N.: Continuous probability and nondeterminism in labeled transition
systems. Ph.D. thesis. Universidad Nacional de Córdoba, Argentina (2012)

33. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997)

34. Xiao, G., Li, Z., Li, T.: Dependability estimation for non-Markov consecutive-k-
out-of-n: F repairable systems by fast simulation. Reliab. Eng. Syst. Saf. 92(3),
293–299 (2007). https://dx.doi.org/10.1016/j.ress.2006.04.004

35. Zimmermann, A., Maciel, P.: Importance function derivation for RESTART sim-
ulations of Petri nets. In: RESIM, pp. 8–15 (2012)

https://dx.doi.org/10.1016/j.ress.2009.10.005
http://dx.doi.org/10.1007/978-3-642-02742-0_22
http://www.sciencedirect.com/science/article/pii/S0951832014001227
https://dx.doi.org/10.1016/j.ress.2006.04.004

System Dynamics

Discretization of Continuous Dynamical Systems
Using UPPAAL

Stefano Schivo and Rom Langerak(B)

Formal Methods and Tools Group, Faculty of EEMCS,
University of Twente, Enschede, The Netherlands

r.langerak@utwente.nl

Abstract. We want to enable the analysis of continuous dynamical sys-
tems (where the evolution of a vector of continuous state variables is
described by differential equations) by model checking. We do this by
showing how such a dynamical system can be translated into a discrete
model of communicating timed automata that can be analyzed by the
UPPAAL tool. The basis of the translation is the well-known Euler app-
roach for solving differential equations where we use fixed discrete value
steps instead of fixed time steps. Each state variable is represented by
a timed automaton in which the delay for taking the next value is cal-
culated on the fly using the differential equations. The state variable
automata proceed independently but may notify each other when a value
step has been completed; this leads to a recalculation of delays. The app-
roach has been implemented in the tool ANIMO for analyzing biological
kinase networks in cells. This tool has been used in actual biological
research on osteoarthritis dealing with systems where the dimension of
the state vector (the number of nodes in the network) is in the order of
one hundred.

Keywords: Discretization · Euler method · Model checking · Timed
automata · Systems biology

1 Introduction

In this introduction we first motivate our interest in discretizing continuous
systems using UPPAAL, then we give a short characterization of our approach,
and finally we give an overview of the paper.

Many important and interesting phenomena in nature and technology can
be adequately modeled as continuous dynamical systems where the evolution
of a vector of real state variables is governed by differential equations. The
mathematical theory of continuous dynamical systems is a mature field with a
history of centuries, and occupies a firm position in any science or engineering
curriculum.

The last decades have seen a great interest in the analysis of continuous
dynamical systems using techniques from computer science developed in the
context of discrete systems. A prominent example of such a technique is model
c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 297–315, 2017.
DOI: 10.1007/978-3-319-68270-9 15

298 S. Schivo and R. Langerak

checking as originated in the 80’s [10,15], where properties (often given in some
kind of logical formalism) are checked against a model of a system, usually
in the form of a discrete state transition system. The attractiveness of model
checking lies in the fact that large and complex systems can be automatically
and exhaustively checked. Model checking has fruitful applications to scheduling
and control synthesis: reachability analysis may yield witness traces that contain
the relevant information for a schedule or a control strategy. Our interest in
model checking dynamical systems theory is aimed at biological applications; we
refer to [5,25] for an overview of model checking biological systems.

Systems where timing aspects are critical can be modeled by enhancing state
transition systems by real time clocks, leading to the timed automata model [1].
The application of symbolic techniques to (networks of) timed automata has led
to effective model checking tools, most notably UPPAAL [22]. The UPPAAL
website [38] contains an ample collection of applications of UPPAAL to e.g.
protocol analysis, hardware verification and model checking, controller design,
and scheduling. The fact that UPPAAL is a mature and powerful tool that is
widely used makes it an attractive infrastructure for model checking continuous
dynamical systems.

When modeling continuous dynamical systems by timed automata two prob-
lems have to be addressed. Firstly, timed automata can directly model only very
simple dynamics: clock variables with a slope of 1. And secondly, timed automata
are basically a discrete model. So some abstraction technique has to be found in
order to represent continuous dynamics and values by using simple clocks and
discrete values. The literature on abstractions of continuous dynamics is too vast
to be dealt with here (we refer to [2] for an early overview); moreover, here we
are primarily interested in those approaches that aim at timed automata as a
target model. We identify two possible types of approaches.

One type of approach is to exploit knowledge of special properties of the
dynamics (possibly restricted to a special class of dynamics) in order to obtain
a discrete abstraction of the dynamical system. An example of this approach
is given by [35,36,40] where the state space is partitioned by level sets of a
kind of Lyapunov function. Another recent example is [4] where an abstraction
technique based on time-varying regions of invariance (so-called control funnels)
is applied to linear systems.

A second type of approach takes as a starting point a partitioning of the
state space into rectangular cells and uses the differential equations to obtain
information about reachability between cells. Examples of this approach are [6,
9,17,24,34] (they will be discussed in Sect. 2 of this paper). The approach in this
paper falls in this category: we assume a discretization of a bounded part of the
state space, even if we do not explicitly create cells in our approach. Conceptually
our approach is just a slight modification of the well-known Euler approach for
solving differential equations, where we take fixed value steps instead of fixed
time steps. This leads to an arbitrary precision approximation of the dynamical
system.

Discretization of Continuous Dynamical Systems Using UPPAAL 299

Our approach originated in the context of a biological application, viz. the
analysis of kinase networks in living cells [31,32,39]. This means that we should
be able to model check dynamical systems with dimensions in the order of 50–
100. We do not just want to use model checking for the purpose of analyzing our
systems (along the lines of e.g. [25]) but we also want to use generated coun-
terexamples for extracting useful information (similar to the schedule synthesis
of [16]). Suppose we model a network with all possible stimuli on the network,
and we express a certain therapy target as a property on the network. Now
model checking that the target cannot be reached may lead to a counterexam-
ple, representing exactly the stimuli leading to the desired target. In this way
model checking is being used for drug synthesis, which is becoming even more
important in the context of personalized therapies. Prerequisite for this is that
our models are amenable to model checking in an efficient way. Many of the
existing approaches in the literature are mathematically sophisticated but do
not (yet) scale up to systems where the state vector has a high dimension. Our
approach is conceptually simple, but has proven to be very efficient for a range
of biological network models.

The field of nonlinear dynamical systems is complex and challenging. We
would like to stress that our aim is not primarily to develop theory leading to a
better understanding of this field. Instead, we obtain a discretization of a system
using the Euler method, after which UPPAAL does most of the work. This tool–
based approach works for an interesting application area (biological networks);
it will be interesting to see whether it will work for other applications as well.

This paper is structured as follows. In Sect. 2 we describe the problem and
discuss related approaches. In Sect. 3 we discuss the Euler method and our adap-
tation of it. In Sect. 4 we implement our version of the Euler method using timed
automata and show an example. In Sect. 5 we discuss the correctness and make
our implementation efficient. In Sect. 6 we describe how our approach has been
implemented into the tool ANIMO that has already been used in biological
research [28–30,33], and Sect. 7 contains conclusions and directions for further
research.

2 Problem Statement and Related Work

We assume a dynamical system has a state vector x ∈ R
n, with x = (x1, . . . , xn);

xi (1 ≤ i ≤ n) is called a component of x. We consider x as a function of time,
and assume the dynamics of x to be governed by the differential equation

dx
dt

= f(x) (∗)

The function f : R
n → R

n defines a vector field, i.e. it associates a vector
f(x) = (f1(x), . . . , fn(x)) to each point in R

n (note that f does not explicitly
depend on t).

A trajectory of the dynamical system starting in initial state x0 is a function
x(t) : R≥0 → R

n such that x(0) = x0 and dx(t)
dt = f(x(t)) for all t ≥ 0.

300 S. Schivo and R. Langerak

In this paper we are only interested in a bounded (and closed) part M of
R

n; for convenience we assume M = [0,max1] × . . . × [0,maxn]. This restricts
trajectories to remain within M, which means that the time domain on which a
trajectory is defined may be restricted: if a trajectory tries to leave M it has to
be truncated (but we will show in Sect. 4 a pragmatic way of dealing with this).

We assume f is continuously differentiable on M, which is sufficient to guar-
antee the existence of a unique solution of the differential equation (∗) for each
initial value in M.

We define a grid on M by defining a grid step di for each component of the
state. We assume that maxi/di = mi is an integer. Let k = (k1, . . . , kn) be a
vector of integers with 0 ≤ ki ≤ mi for all i; we denote a cell in the grid by

C(k1, . . . , kn) = [k1 · d1, (k1 + 1) · d1] × . . . × [kn · dn, (kn + 1) · dn]

The possibility to have different grid steps for different components is quite
convenient (and this is what we have implemented); however, for ease of expo-
sition we assume we have a step size di = 1 for all components. By a slight
abuse of notation we denote a cell C(k1, . . . , kn) by (k1, . . . , kn) or k. Two cells
are called neighbors if their difference is 1 in exactly one component, so e.g.
(k1, . . . , ki, . . . , kn) and (k1, . . . , ki + 1, . . . , kn) are neighbors.

Fig. 1. A simple dynamical system with naive abstraction

Now the most simple idea for a discrete abstraction of the dynamical sys-
tem would be to create a transition system with cells as locations, and tran-
sitions kp → kq between neighboring cells if there is a trajectory going from
cell kp to cell kq. A simple example (taken from [24]) shows that this naive
abstraction contains too much spurious behavior (i.e. behavior that does not
correspond to behavior in the original dynamical system) to be useful. Consider
the simple dynamical system in Fig. 1 with state in R

2 and dynamics given by
dx
dt = (1, 1). Trajectories starting in cell (0, 0) may only reach the gray area, but
in the abstracted transition system all cells are reachable from (0, 0).

Moreover, this is independent from the granularity of the grid: no matter
how small the grid step, the entire state space will always be reachable from
cell (0, 0). The reason for this inherent spurious behavior is that time has been
completely disregarded in the abstraction. For instance, when going from cell

Discretization of Continuous Dynamical Systems Using UPPAAL 301

(0, 0) to (0, 100) at least 99 grid steps are taken in the vertical direction, and
not even 1 grid step in the horizontal direction, which is impossible since the
horizontal and vertical speeds are the same. This observation lies at the basis
of [24]. In order to solve the problem, to each dimension of a cell a maximum
dwell time is associated. This maximum dwell time is obtained by calculating
the extremal values of the components of the derivative function (which can be
efficiently calculated for the class of functions considered in [24]), an idea already
presented in [37]. This may considerably reduce spurious behavior; however, as
the authors remark, problems may arise when components of the derivatives
are zero. In that case no bound on dwell times can be given, which still allows
spurious behavior. Some of these problems have been solved in [9] in the context
of inevitability analysis, but only for linear systems and low dimensions.

A different approach is presented in [6] where an analysis is made on the
facets of a cell: by analyzing from which parts of facets other facets are reachable
(taking the dynamics into account) cells are refined and spurious behavior is
greatly reduced. The method is sophisticated but scaling it to our intended
applications (with cells having dimensions in the order of 100) would lead to an
explosion of refined cells. Using reachability between facets is also the basis of
[12] where control theory is used in order to influence the reachability of facets
from other facets as studied in [18,19].

In our approach we do not explicitly create cells or transition relations
between cells. Instead, we create a network of timed automata implementing
the Euler approach for approximating a solution of a differential equation, and
leave it to the UPPAAL tool to create a finite transition system as the underly-
ing symbolic UPPAAL semantics. This approach has evolved from the IKNAT
tool in [3] which models biological signaling networks. The timed automata cre-
ated by IKNAT used a priori calculated delays between discrete activity levels of
enzymes (a similar idea (but only for a one-dimensional system) has been used in
[20] in the context of modeling battery lifetime). The IKNAT approach has been
used by [17] in order to improve the quantitative modeling of gene regulatory
networks in [34], thereby solving some instability problems of IKNAT. However,
that approach is tied to a specific application and rather ad-hoc, conceptually
not very clear, and the resulting timed automata are complicated and not effi-
cient enough for effective model checking. The Euler-based approach we present
in the next sections does not have these drawbacks.

3 The Euler Method for Solving Differential Equations

The Euler method is a well–known numerical procedure for solving differential
equations. It can be found in most introductory books on calculus; for an exten-
sive treatment we refer to [7].

The idea behind the Euler method is best illustrated on the one-dimensional
case. Suppose we have a differential equation dx

dt = f(x) and suppose we take
time steps of size h. If at time tn we have an approximation xn of x(tn) we
obtain the next approximation at time tn+1 = tn + h by xn+1 = h · f(xn), see
Fig. 2 (left).

302 S. Schivo and R. Langerak

tn tn+1

h

xn

xn+1 = h · f(xn)

x(tn+1)

tn tn+1

T

kn

kn+1

T = 1
|f(kn)|

Fig. 2. The Euler method for a fixed time step (left) and for a fixed value step (right).

Starting at some initial value x0 and then repeating this procedure yields
a piecewise linear approximation of a trajectory of the dynamical system. The
approximation error |x(tn+1)−xn+1| goes to zero if the time step h goes to zero,
so this is an arbitrary precision approximation.

We use a variant of the Euler method where we take a fixed value step, and
then calculate the time T needed to arrive at this next value. This is illustrated
in Fig. 2 (right).

If the starting point is the discrete value kn, then the next discrete value is
kn + 1 if f(kn) > 0, and kn − 1 if f(kn) < 0; in both cases T = 1/|f(kn)|.

We explain the procedure in higher dimensions on the case R
2 (since it is

easiest to depict), so we have equation dx
dt = (f1(x), f2(x)):

– suppose we start at point (p, q) with p and q integers
– the time T to reach the next cell: T = min{1/|f1(p, q)|, 1/|f2(p, q)|}
– if T = 1/|f1(p, q)| the next cell (p′, q′) reached will be (p ± 1, q) (depending

on the sign of f1(p, q)); otherwise (p, q±1) (depending on the sign of f2(p, q))
– now repeat this from the point where the next cell is entered, with vector
f(p′, q′)

This is illustrated in Fig. 3. Note that when the procedure starts from a point
x that has just been reached on the cell boundary of cell k we use the vector value
f(k) instead of the value of f(x), since we also want to obtain a discretization of
the state space. When the step size tends towards zero, f(x) tends towards f(k),
so this does not harm the arbitrary precision property of our approximation.

This version of the Euler method easily generalizes to dimension n:

Initialization:
Suppose we start at point k. The waiting time for each component i:
Ti = 1/|fi(k)| (the time needed for reaching the next value ki ±1, depending

on the sign of fi(k)). Note that if fi(k) = 0, Ti = ∞.

Discretization of Continuous Dynamical Systems Using UPPAAL 303

k2 + 1

k1 + 1
f(k1 + 2, k2)

f(k1 + 1, k2)
f(k1, k2)

k = (k1, k2)

Fig. 3. Example of the Euler-based method in two dimension

t

T ′
i

ki

ki+1

(Ti − t) · | fi(k) |

ki−1

T ′
i

Fig. 4. Calculating a new delay time

Repeat Step:
begin

For all j for which Tj = min{T1, . . . , Tn} = t:
– k′

j = kj + 1 if fi(k) > 0
– k′

j = kj − 1 if fi(k) < 0
Update all waiting times, based on t and k′, as indicated below.

end
Each waiting time Ti is updated in one of the following ways:

– if Ti = min{T1, . . . , Tn} or fi(k) = 0 or fi(k′) = 0:
T ′

i = 1/|fi(k′)|
– otherwise, if fi(k′) and fi(k) have the same sign:

This situation is represented in Fig. 4 for a positive fi(k). At time t a distance
(Ti − t) · |fi(k)| still needs to be covered before reaching ki + 1, so the new
delay time becomes T ′

i = (Ti − t) · |fi(k)|/|fi(k′)|. Similar reasoning leads to
the same formula if fi(k) is negative.

– otherwise, if fi(k′) and fi(k) have opposite sign: Suppose fi(k) is positive (see
Fig. 4). At time t a distance (Ti−t)·|fi(k)| would still have to be covered before
reaching ki+1. But now the direction is changed, so an extra 1−(Ti−t)·|fi(k)|
has to be covered before ki − 1 is reached, so a total of 2 − (Ti − t) · |fi(k)|.

304 S. Schivo and R. Langerak

So the new delay time becomes T ′
i = (2 − (Ti − t) · |fi(k)|)/|fi(k′)|. Similar

reasoning leads to the same formula if fi(k) is negative.

4 Translation into Timed Automata

We implement the Euler method of the previous section by a network of commu-
nicating timed automata. We first describe this implementation in an abstract
way using pseudo-code and without worrying about syntactical and semantical
issues. Then we show how to concretely implement this in UPPAAL, taking into
account syntactical, semantical, and performance issues.

For each dimension i of the state space we create a timed automaton Ai

containing a discrete state component ki and a clock variable ci. Clock ci counts
up to time Ti = 1/|fi(k)| which is the delay time for reaching next integer value
ki ± 1, depending on the sign of fi(k). If fi(k) = 0 the component is for the
time being quiescent, so Ti = ∞. While an automaton is waiting, two things
may happen:

1. ci = Ti, so the component has reached the new integer grid value k′
i =

ki ± 1 (we call this reaching). Now all other automata are notified of this
fact, and a new delay time T ′

i is calculated for reaching the next grid value:
T ′

i = 1/|fi(k1, . . . , k′
i, . . . , kn)|, and clock ci is reset.

2. a notification is received from automaton Aj that it has reached a new grid
value k′

j . Now a new delay T ′
i has to be calculated, based on the new value

fi(k1, . . . , k′
j , . . . , kn) and the time that has already been waited, i.e. the cur-

rent value of clock ci, in exactly the same way as in the Euler algorithm in
the previous section. The clock ci is reset.

An abstract version of automaton Ai with pseudo-code is given in Fig. 5.

ci := 0,

“calculate Ti”

ci ≤ Ti

ci := 0,

“update Ti”

“receive notification

of reaching of T.A. j”

ci := 0,

“update Ti”

“notify other T.A.

of new value of ki”

ci ≥ Ti

Fig. 5. Automaton Ai in pseudo code

We now change the abstract timed automaton with pseudo-code of Fig. 5 into
a concrete UPPAAL automaton. The result is given in Fig. 6; from now on we
assume the automaton Ai corresponding to component xi has id i (and we often
blur the distinction between components and their corresponding automata).

We explain step by step the various issues in this automaton.

Notifying When Reaching. When automaton Ai reaches the grid-point, it is
not the case that all other automata have to be notified. Only those components

Discretization of Continuous Dynamical Systems Using UPPAAL 305

xj have to be notified whose derivate fj may change as a result of a change in
xi, i.e. ∂fj(x)

∂xi
�= 0 for some value of x. This can usually be detected at syntactic

level: if variable xi does not occur in the mathematical formula for fj , then xj

is not dependent on xi.

Fig. 6. The resulting UPPAAL automaton with id = 1

In Fig. 6 the depicted automaton A1 is dependent on A2 and A3 so there
are transitions from location waiting labeled reached[2]? and reached[3]?.
Note that these transitions have been depicted in an overlapping fashion to
enhance readability of the picture. These transitions then reach urgent location
responding from which a transition is taken to update the delay time T1.

Multiple Automata Reaching. It may happen that several automata reach
a new grid-point at the same time. In order to guarantee a consistent resulting
update of the global state we want the resulting sequence of updates to be atomic.
To achieve this we synchronize all reaching transitions from location waiting by
having two transitions labeled with reaching! and reaching? (again these two
transitions are depicted overlappingly). Then a committed location is reached
from which a transition reached[id]! is performed to notify the dependent
automata. Note that this location is committed so the transition takes precedence
over transitions in automata leaving urgent location responding.

If an automaton has just performed a reached[id]! transition and reached
location waiting we do not want it to receive to a notification of another automa-
ton that has just reached. Therefore we add predicate c>0 to the guard on the
transitions leaving location waiting.

Calculating the Clock Time. We saw in the last section that the value of clock
ci needs to be known at the moment the delay time Ti needs to be updated. How-
ever, UPPAAL does not allow the clock time to be read. Therefore we perform
some global time administration in order to extract the clock time. We introduce
a global variable currentTime that records the global time. Each automaton has

306 S. Schivo and R. Langerak

a local variable lastUpdate that records the global time at the last delay update.
Now if an automaton Ai reaches a new grid value this means it has waited the full
delay time Ti. Therefore the variable currentTime is set to lastUpdate + Ti;
this happens in function set time(). When a notification is received, the cur-
rent clock time is currentTime - lastUpdate; this is calculated in function
get time().

The reach() Function. When an automaton has reached a new grid value
this value should be communicated to the dependent automata. Since UPPAAL
does not enable value passing in synchronizations this is done by writing the new
value in a global variable that can be used by an update() function elsewhere.
This happens in the function reach(). When the new grid value has reached
one of the extremal values 0 or maxi the automaton Ai enters a quiescent mode
by setting Ti to infinite. It may leave this quiescent mode when changes in other
components make the component move away from the extremal value (so we
do not need to truncate the trajectory by stopping time). This is a pragmatic
solution that makes sense in many applications (e.g. the biological application in
Sect. 6), but needs to be evaluated in the light of each specific application area.

The update() Function. The function update calculates the new time delay
for reaching the next grid value, as described in the previous section. It is used
in different contexts: when initializing, after reaching, and after having received
a notification. In the latter case it has to make use of the old delay time, in the
other two cases (characterized by the clock value being 0) it does not need the
old delay time.

Dealing with Infinite Waiting Times. When the derivative of a component
is 0 the waiting time is infinite. This could be modeled by a very large number,
but it is not a good idea to put very large numbers in UPPAAL clock guards.
Therefore a boolean function infinite delay() has been defined that is true
when the waiting time is (conceptually) infinite. This function is updated by
function update().

Numerical Representations. Our real number computations would require
floating-point precision. Since UPPAAL only provides integer variables and oper-
ators, we use a significand-and-exponent notation with 4 significant figures,
which allows for an error in the order of 0.1% while avoiding integer overflow in
UPPAAL’s engine. For example, the floating point number a = 1.23456 will be
represented as the pair 〈1235,−3〉, which is translated back as a = 1235×10−3 =
1.235. The interested reader can find the UPPAAL definitions and functions
needed to compute rate and time values together with all other functions such
as update() and react(), inside any UPPAAL model file generated by ANIMO 1.

This completes our explanation of our UPPAAL implementation. The result-
ing UPPAAL specification can be used for simulation.

1 Models generated by ANIMO are saved in the system’s temporary directory. Further
details are available in the ANIMO manual at http://fmt.cs.utwente.nl/tools/animo/
content/Manual.pdf.

http://fmt.cs.utwente.nl/tools/animo/content/Manual.pdf
http://fmt.cs.utwente.nl/tools/animo/content/Manual.pdf

Discretization of Continuous Dynamical Systems Using UPPAAL 307

Fig. 7. Phase plane (x vs y plot) of the system in (1) obtained with the model from
Fig. 6 on the intervals [0, 100] (left) and [0, 1000] (right), consequently adapting the
equations to fit the R

2 subsets. Starting values for x and y are defined on the [0, 100]
interval by the equations x0 = 5 + 10 · j, y0 = 5 + 10 · k, with j, k = {0, 1, . . . , 9}.

In Fig. 7 we show a phase plane representation of a simulation of following
non-linear system with two unstable equilibrium points:{

dx
dt = x − y
dy
dt = 1 − 16(x − 0.5)2

(1)

We produced the graphs in Fig. 7 directly in ANIMO, by translating the equa-
tions back into relations between nodes and edges in ANIMO’s user interface and
analyzing them with multiple initial values for x and y. Computing the resulting
100 simulation runs took about 11 s for the first graph in Fig. 7 and 17 s for the
second.

For comparison we show in Fig. 8 the phase-plane representation of the same
system obtained using the pplane software [26]. Note that the UPPAAL simu-
lation succeeds in faithfully capturing the qualitative behavior.

Fig. 8. Phase plane of the system in (1) obtained using the pplane software.

It is difficult to say something a priori about the accuracy of the Euler approx-
imation; theoretical bounds on the truncation errors are not very helpful for this
(as they depend on properties of the differential equation that may be hard to
establish). What these theoretical bounds do show is that the approximation
error is linear in the step size [7]. However, rounding errors caused by the rep-
resentation of numbers further complicate the picture. As a pragmatic way of

308 S. Schivo and R. Langerak

dealing with the problem of accuracy we propose to experiment with different
step sizes, and plot the resulting simulations, until one is sufficiently satisfied
(when the plots do not change significantly anymore).

5 Correctness and Efficiency

The translation of the previous section yields a set of n timed automata (one
for each component of the state vector) that synchronize via channels. We first
discuss the correctness of this translation by showing how one step of the Euler
algorithm in Sect. 3 relates to a sequence of transitions in the product of the
timed automata.

We assume each automaton is in state waiting. Suppose an automa-
ton Aj has waited the allowed waiting time Tj in state waiting, so Tj =
min{T1, . . . , Tn}. Note that this may happen for several automata at the same
moment; we call these automata the reaching automata.

Now the following sequence of transitions is performed (this is illustrated in
Fig. 9):

Fig. 9. Relation between timed automata transitions and Euler step.

– all the reaching automata synchronize on the reaching channel. Nonde-
terministically one of them performs reaching! and the others perform
reaching?, leading to several possible transitions that all end up in the same
global state. In this global state all the reaching automata are in a committed
state, and all non-reaching automata are still in state waiting. The value of
k has been updated via the reach() function.

Discretization of Continuous Dynamical Systems Using UPPAAL 309

– then all transitions from the committed states are executed in an inter-
leaved way. These transitions may synchronize via channel reached with
non-reaching automata, while updating the waiting times of the reaching
automata. When all reached transitions are finished each reaching automa-
ton is in state waiting, and each non-reaching automaton is in the urgent
state responding.

– finally all transitions from the urgent states responding are performed in
an interleaved way, thereby updating the waiting times in the non-reaching
automata. After this each automaton is in the state waiting.

So the three phases of transitions in Fig. 9 taken together correspond to one
step of the Euler algorithm in Sect. 3, showing the correctness of the translation.

The automaton in Fig. 6 has all the required functionality and can satisfac-
torily be used for simulation. However, it is not yet suitable for model checking
(especially for higher dimensional systems): because of interleavings of transi-
tions in different automata, the resulting system would contain too many states.
If in each automaton there is one transition that interleaves with the corre-
sponding transitions in the other automata, and if the system is n-dimensional,
then just that transition generates 2n interleavings. Since it is our ambition to
deal with systems where n is in the order of 100, it is important to solve these
problems. The problems, together with their remedies, are the following:

– from the start location: all update transitions interleave.
Remedy: all update transitions are synchronized. The automaton with id 1
performs do update! and all the other automata do update?.

– from the responding location: all update transitions interleave.
Remedy: all update transitions are synchronized. The automaton with the
smallest id performs do update! and all the other automata do update?. The
smallest responding id is established by enter responding() and written
into global variable minIDresponding. The automaton with the smallest id
performs do update! and all the other automata do update?.

– all transitions from the committed location interleave.
Remedy: all reaching transitions are enqueued in a priority queue (imple-
mented by a boolean array) by the function enqueue(id). The reached[i]!
transitions are performed by always choosing the minimum id in the queue,
and removing the id from the queue by the function exit queue(id). In this
way one interleaving is picked out of the exponentially many.

The resulting timed automaton is given in Fig. 10. We will show in Sect. 6
that this model is amenable to model checking even for higher dimensions.

In many applications (like the biological application we deal with in Sect. 6)
it is desirable to inject some imprecision in a model. This may be because of
inherent nondeterminism in the modeled phenomena, it may be because model
parameters are not precisely known, or it may be because we want our model
checking results to be robust against small perturbations in the behavior.

A simple pragmatic way of doing this is by turning the calculated delay times
Ti into intervals of possible delay times [TLi, TUi] (where L stands for Lower

310 S. Schivo and R. Langerak

Fig. 10. Timed automaton with efficiency optimizations

and U stands for Upper). One might interpret such an interval as a uniform
distribution of delay times (this approach was used for performance analysis in
[41]). In the ANIMO tool in Sect. 6 such intervals are created by asking the user
to specify an uncertainty percentage, say 10%, and then defining TL = 0.9 · T
and TU = 1.1 · T .

6 Application: ANIMO, a Tool for Analyzing Kinase
Pathways

In this section we show how the approach has been implemented in the biological
research tool ANIMO.

A signaling network in a biological cell describes the chain of reactions occur-
ring between the reception of a signal and the response with which the cell reacts
to such signal. The target of a signaling pathway is usually a transcription factor,
a molecule with the task of controlling the production of some protein. Active
molecules relay the signal inside the cell by activating other molecules until a
target is reached. We define the activity level to represent the percentage of
active molecules over an entire molecular species.

ANIMO (Analysis of Networks with Interactive MOdeling) [28–30,33] is a
software tool that supports the modeling of biological signaling pathways by
adding a dynamic component to traditional static representations of signaling
networks. ANIMO allows to compare the behavior of a model with wet-lab data,
and to explore such behavior in a user-friendly way. In order to achieve a good
level of user-friendliness for a public of biologists ANIMO is accessible via the
Cytoscape [11,21] user interface (see Fig. 11). A user may insert a node for each
molecular species and an edge for each reaction. The occurrence of a reaction
modifies the activity level of its target reactant; the rate with which a reaction

Discretization of Continuous Dynamical Systems Using UPPAAL 311

Fig. 11. The Cytoscape 3 interface for ANIMO

occurs depends on a formula selected by the user. For a more precise explanation
on how reaction rates are computed in ANIMO, we refer to [29], for parameter
setting in ANIMO to [27].

Once the user has created a model, this model is transformed into an
UPPAAL model applying the discretizations described in the previous sections
to the system of differential equations derived from the ANIMO network model.
This model can then be analyzed via the Cytoscape/ANIMO interface that has
facilities for model checking templates. ANIMO has also been used as a front-end
for statistical model checking [13].

The ANIMO tool has been validated on several realistic biological case studies
for which experimental data was available in the literature, and it has been
demonstrated how to create models that faithfully fit experimental data [28–
30,33]. Moreover, ANIMO is being used in on-going research on chondrocyte
signaling in relation to osteoarthritis, where the final objective is to enhance
cartilage tissue engineering strategies [31,32,39].

Table 1 shows a comparison between some variants of the timed automata
model when performing model checking on the model from [32] in UPPAAL.
All the timed automata model variants contain 82 automata, i.e. they are a dis-
cretization of an 82-dimensional continuous dynamical system. “Approx. ±5%”
is the approximated variant with a setting of 5% uncertainty level in the original
ANIMO model.

The model was initially configured so that a large change in the node activ-
ities on the whole network would take place. We then asked a query to under-
stand whether such change is inevitable. In the UPPAAL query language, this
is written as A<> R77 >= 80 (R77 being the most interesting readout in the
particular experiment). The answer was positive, except for the non-optimized
models where the computation could not terminate after several hours.

312 S. Schivo and R. Langerak

Table 1. Performance comparison of different model versions

Model version Time (s) Memory (peak KB)

Standard - -

Approx. ±5% - -

Standard + optimizations 139.61 3 880 040

Approx. ±5% + optimizations 63.13 1 107 552

7 Conclusions and Future Work

We have presented an arbitrary precision discretization of a continuous dynam-
ical system as a network of UPPAAL timed automata. The implementation is
conceptually based on the Euler method for solving differential equations. Math-
ematically this method is less sophisticated than many other discretizations in
the literature; the main contribution of our approach is that is has been able
to handle systems with dimensions in the order of 100. This efficiency is a pre-
requisite for the use of model checking of biological systems, especially with the
objective of using the generation of counterexamples as a tool for aiding drug
synthesis.

The approach has been used in the tool ANIMO for biological signal network
analysis. ANIMO has been (and currently is being) used by biologists in actual
biological research. The user interface (based on the tool Cytoscape) enables
biologists to create their own models, perform analysis and interpret the results,
all without intervention from computer scientists. Current research concentrates
on automatic model generation from libraries, on analyzing parameter sensi-
tivity, and on generating model improvements automatically from experimental
data.

Our approach is based on an arbitrary precision approximation. However,
the approximation error is hard to quantify, and it seems hard to qualify the
approximation as an abstraction (in terms of either an over or under approxi-
mation). A CEGAR [23] type approach seems recommended: if model checking
produces a trace, then this trace should be checked against a refined version of
the model, i.e. an approximation with a smaller step size. In addition, it would
be interesting to try to apply error estimation techniques like the one in [14].

The Euler method is known to have potential stability problems, especially
for so-called stiff equations. The analysis of stiffness properties is a notorious
difficult problem in mathematics; in the future we would like to evaluate (and
possibly improve) the stability properties of our implementation, possibly by
using more advanced versions of the Euler method. In addition we would like to
try to optimize the number of differential equations using a form of preprocessing
proposed in [8].

We certainly do not expect our approach to be applicable to the whole
universe of nonlinear dynamical systems. The biological applications we have
encountered so far could be described by multiaffine systems that posed no

Discretization of Continuous Dynamical Systems Using UPPAAL 313

difficulties to our tools. In the future we would like to see whether our approach
can be applied succesfully to other application areas. In addition we would like
to obtain a better idea of the apriori limitations of our method.

Acknowledgements. We thank Arend Rensink for an important comment on an ear-
lier version of this work. We thank Wim Bos, Liesbeth Geris, Marcel Karperien, Johan
Kerkhofs, Jaco van de Pol, Janine Post, Jetse Scholma, Ricardo Urquidi Camacho, Paul
van der Vet, and Brend Wanders for the fruitful and pleasant collaboration leading to
ANIMO.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

2. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. In: Proceedings of the IEEE, pp. 971–984 (2000)

3. Bos, W.: Interactive signaling network analysis tool. Master’s thesis, University of
Twente (2009)

4. Bouyer, P., Markey, N., Perrin, N., Schlehuber-Caissier, P.: Timed-automata
abstraction of switched dynamical systems using control funnels. In: Sankara-
narayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 60–75.
Springer, Cham (2015). doi:10.1007/978-3-319-22975-1 5

5. Brim, L., Češka, M., Šafránek, D.: Model checking of biological systems. In:
Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol.
7938, pp. 63–112. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38874-3 3

6. Brim, L., Fabriková, J., Drazan, S., Safránek, D.: Reachability in biochemical
dynamical systems by quantitative discrete approximation. CoRR, abs/1107.5924
(2011)

7. Butcher, J.: Numerical Methods for Ordinary Differential Equations, 2nd edn.
Wiley, Chichester (2008)

8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
doi:10.1007/978-3-662-54580-5 19

9. Carter, R., Navarro-López, E.M.: Dynamically-driven timed automaton abstrac-
tions for proving liveness of continuous systems. In: Jurdziński, M., Ničković, D.
(eds.) FORMATS 2012. LNCS, vol. 7595, pp. 59–74. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33365-1 6

10. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997.
LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997). doi:10.1007/BFb0058022

11. Cytoscape 3 ANIMO app. http://apps.cytoscape.org/apps/animo
12. David, A., Grunnet, J.D., Jessen, J.J., Larsen, K.G., Rasmussen, J.I.: Application

of model-checking technology to controller synthesis. In: Aichernig, B.K., de Boer,
F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 336–351. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 18

13. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. Int. J. Softw. Tools Technol.
Transfer 17(3), 351–367 (2015)

http://dx.doi.org/10.1007/978-3-319-22975-1_5
http://dx.doi.org/10.1007/978-3-642-38874-3_3
http://dx.doi.org/10.1007/978-3-662-54580-5_19
http://dx.doi.org/10.1007/978-3-642-33365-1_6
http://dx.doi.org/10.1007/BFb0058022
http://apps.cytoscape.org/apps/animo
http://dx.doi.org/10.1007/978-3-642-25271-6_18

314 S. Schivo and R. Langerak

14. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with
an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC
2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00602-9 12

15. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel pro-
grams using fixpoints. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS,
vol. 85, pp. 169–181. Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2 69

16. Fehnker, A.: Scheduling a steel plant with timed automata. In: Proceedings of the
Sixth International Conference on Real-Time Computing Systems and Applica-
tions, RTCSA 1999, p. 280. IEEE Computer Society, Washington, DC (1999)

17. Goethem, S.V., Jacquet, J.-M., Brim, L., Šafránek, D.: Timed modelling of gene
networks with arbitrarily precise expression discretization. Electron. Notes Theo-
ret. Comput. Sci. 293, 67–81 (2013). Proceedings of the Third International Work-
shop on Interactions Between Computer Science and Biology (CS2Bio 2012)

18. Habets, L.C.G.J.M., van Schuppen, J.H.: Control of piecewise-linear hybrid sys-
tems on simplices and rectangles. In: Di Benedetto, M.D., Sangiovanni-Vincentelli,
A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 261–274. Springer, Heidelberg (2001).
doi:10.1007/3-540-45351-2 23

19. Habets, L.C.G.J.M., van Schuppen, J.H.: Control to facet problems for affine sys-
tems on simplices and polytopes - with applications to control of hybrid systems.
In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4175–
4180, December 2005

20. Jongerden, M., Haverkort, B., Bohnenkamp, H., Katoen, J.: Maximizing system
lifetime by battery scheduling. In: 39th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN 2009, Los Alamitos. IEEE
Computer Society Press, June 2009

21. Killcoyne, S., Carter, G.W., Smith, J., Boyle, J.: Cytoscape: a community-based
framework for network modeling. Methods Mol. Biol. (Clifton, N.J.) 563, 219–239
(2009)

22. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. (STTT) 1, 134–152 (1997)

23. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

24. Maler, O., Batt, G.: Approximating continuous systems by timed automata. In:
Fisher, J. (ed.) FMSB 2008. LNCS, vol. 5054, pp. 77–89. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-68413-8 6

25. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Temporal
logic patterns for querying dynamic models of cellular interaction networks. Bioin-
formatics 24(16), i227–i233 (2008)

26. PPlane. http://math.rice.edu/∼dfield/dfpp.html
27. Schivo, S., Scholma, J., Karperien, H.B.J., Post, J.N., van de Pol, J.C., Langerak,

R.: Setting parameters for biological models with ANIMO. In: André, E., Frehse,
G. (eds.) Proceedings 1st International Workshop on Synthesis of Continuous Para-
meters, Grenoble, France. Electronic Proceedings in Theoretical Computer Science,
vol. 145, pp. 35–47. Open Publishing Association, April 2014

28. Schivo, S., Scholma, J., van der Vet, P.E., Karperien, M., Post, J.N., van de Pol,
J., Langerak, R.: Modelling with ANIMO: between fuzzy logic and differential
equations. BMC Syst. Biol. 10(1), 56 (2016)

http://dx.doi.org/10.1007/978-3-642-00602-9_12
http://dx.doi.org/10.1007/978-3-642-00602-9_12
http://dx.doi.org/10.1007/3-540-10003-2_69
http://dx.doi.org/10.1007/3-540-45351-2_23
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-540-68413-8_6
http://math.rice.edu/~dfield/dfpp.html

Discretization of Continuous Dynamical Systems Using UPPAAL 315

29. Schivo, S., Scholma, J., Wanders, B., Urquidi Camacho, R., van der Vet, P., Karpe-
rien, M., Langerak, R., van de Pol, J., Post, J.: Modelling biological pathway
dynamics with Timed Automata. IEEE J. Biomed. Health Inform. 18(3), 832–839
(2013)

30. Schivo, S., Scholma, J., Wanders, B., Urquidi Camacho, R.A., van der Vet, P.E.,
Karperien, H.B.J., Langerak, R., van de Pol, J.C., Post, J.N.: Modelling biolog-
ical pathway dynamics with timed automata. In: 12th IC on Bioinformatics and
Bioengineering (BIBE 2012), pp. 447–453. IEEE Computer Society (2012)

31. Scholma, J., Kerkhofs, J., Schivo, S., Langerak, R., van der Vet, P.E., Karperien,
H.B.J., van de Pol, J.C., Geris, L., Post, J.N.: Mathematical modeling of signaling-
pathways in osteoarthritis. In: Lohmander, S. (ed.) 2013 Osteoarthritis Research
Society International (OARSI) World Congress, Philadelphia, USA, vol. 21, Sup-
plement, p. S123. Elsevier, Amsterdam, April 2013

32. Scholma, J., Schivo, S., Kerkhofs, J., Langerak, R., Karperien, H.B.J., van de
Pol, J.C., Geris, L., Post, J.N.: ECHO: the executable chondrocyte. In: Tissue
Engineering & Regenerative Medicine International Society, European Chapter
Meeting, Genova, Italy, vol. 8, p. 54. Wiley, Malden, June 2014

33. Scholma, J., Schivo, S., Urquidi Camacho, R., van de Pol, J., Karperien, M., Post,
J.: Biological networks 101: computational modeling for molecular biologists. Gene
533(1), 379–384 (2014)

34. Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regula-
tory networks. Theoret. Comput. Sci. 391(3), 258–275 (2008). Converging Sciences:
Informatics and Biology

35. Sloth, C., Wisniewski, R.: Verification of continuous dynamical systems by timed
automata. Formal Methods Syst. Des. 39(1), 47–82 (2011)

36. Sloth, C., Wisniewski, R.: Complete abstractions of dynamical systems by timed
automata. Nonlinear Anal.: Hybrid Syst. 7(1), 80–100 (2013). (IFAC) World
Congress 2011

37. Stursberg, O., Kowalewski, S., Engell, S.: On the generation of timed discrete
approximations for continuous systems. Math. Comput. Modell. Dyn. Syst. 6(1),
51–70 (2000)

38. UPPAAL. www.uppaal.org
39. Urquidi Camacho, R.: Modeling osteoarthritic cartilage with ANIMO: an exe-

cutable biology approach to osteoarthritic signaling and gene expression. Master’s
thesis, University of Twente, The Netherlands, July 2013

40. Wisniewski, R., Sloth, C.: Abstraction of dynamical systems by timed automata.
Model. Ident. Control 32(2), 79 (2011)

41. Xing, J., Theelen, B.D., Langerak, R., van de Pol, J., Tretmans, J., Voeten, J.P.M.:
UPPAAL in practice: quantitative verification of a RapidIO network. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 160–174. Springer, Heidel-
berg (2010). doi:10.1007/978-3-642-16561-0 20

www.uppaal.org
http://dx.doi.org/10.1007/978-3-642-16561-0_20

Analysis and Design of Interconnected Systems:
A Systems and Control Perspective

Arjan van der Schaft(B)

Jan C. Willems Center for Systems and Control,
Johann Bernoulli Institute for Mathematics and Computer Science,

University of Groningen, Groningen, The Netherlands
a.j.van.der.schaft@rug.nl

http://www.math.rug.nl/~arjan/

Abstract. Hybrid and cyber-physical systems are at the intersection of
the theory of concurrent processes and of systems and control theory.
This paper reviews some ideas from systems and control theory, which
can be considered to be fruitful for the study of such systems. Particular
emphasis is on the use of dissipative systems theory for the analysis of
interconnected systems, and on the ‘control by interconnection’ problem
using an extension of the notion of (bi-)simulation to the realm of con-
tinuous dynamics. Furthermore, the paper surveys a definition of hybrid
systems, which treats the continuous and discrete dynamics on an equal
footing.

Keywords: Interconnected systems · Dissipative systems · Control by
interconnection · Bisimulation

1 Introduction

The theories of ‘concurrent processes’ and of ‘systems and control’ are both con-
cerned with the modelling, analysis, control and design of interconnected systems.
Despite conceptual similarities, these two areas have evolved rather indepen-
dently of each other. One of the reasons for this was the difference in employed
mathematical concepts and tools: from logic and automata theory in concurrent
processes, to differential equations and transfer functions in systems and control
theory. More abstractly, the distinction was between the use of discrete mathe-
matics versus the use of continuous mathematics, both in variables and time.

At the end of the 1990s, stimulated among others by the theory of embed-
ded systems in computer science and digital complexity in control, there was a
strong move towards approachment of both areas, under the heading of ‘hybrid
systems’ (‘hybrid’ referring to the combination of ‘discrete’ and ‘continuous’).
From the systems and control theory perspective this has led to new develop-
ments incorporating ideas from the formal methods realm into the theory of
analysis and control of hybrid systems, and even of purely continuous systems.
Further momentum was gained with the rise of the notion of cyber-physical
c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 316–332, 2017.
DOI: 10.1007/978-3-319-68270-9 16

Analysis and Design of Interconnected Systems 317

systems, where next to the hybrid system aspects the complexity and network
aspects are emphasized.

In this paper I will briefly review some techniques from systems and control
theory for interconnected systems analysis and design, whose extension to hybrid
systems seems promising. One is the theory of dissipative systems, which is at
the core of robust feedback control as well as of physical system modeling and
control, including port-Hamiltonian systems theory. The other is the theory of
control by interconnection, and its resulting necessary and sufficient conditions
for achievable system behavior.

2 Dissipative Systems Theory

Dissipative systems theory was developed in the 1960/70s motivated by, among
others, input-output stability theory and electrical network synthesis. A key step
in the development was the two-part paper by Willems in 1972 [21], which still
provides stimulating reading. One way of looking at the theory of dissipative
systems is to consider it as a generalization of Lyapunov function theory for
investigating the stability of dynamical systems. In this latter theory one wants
to find scalar-valued functions of the state vector of the dynamical system that
are monotonously decreasing (more precisely, non-increasing) along each solu-
tion trajectory of the system, for any initial condition. Under certain conditions
this provides a guarantee for stability, possibly asymptotic, of equilibria of the
system. Extensions to stability of periodic orbits, or of invariant sets, and to
instability statements, are also possible. Thus in some sense Lyapunov function
theory aims at abstracting the dynamics of the whole state vector to a scalar
dynamics (the value of the Lyapunov function), in order to assess its stability.
(We will briefly return to the abstraction interpretation in Sect. 5.)

The strength of Lyapunov function theory is that one does not need to
compute the solutions of the differential or difference equations describing the
dynamics of the system (which in the nonlinear case is usually not possible ana-
lytically). Instead one needs to verify algebraic inequalities in terms of the partial
derivatives of the Lyapunov function and the right-hand sides of the differential
(respectively, difference) equations.

The main weakness of Lyapunov function theory, on the other hand, is two-
fold. First, constructing a Lyapunov function is in many cases some kind of
art (although in physical examples the total energy of the system and/or other
conserved quantities are often guiding). Secondly, Lyapunov function theory is
confined to closed dynamical systems (no interaction with other systems), and
there is no clear way to build up the Lyapunov function from functions of sub-
vectors of the full state vector.

Dissipative systems theory comes in to remedy this second weakness, and,
eventually, will address the first weakness as well. Dissipativity of an open system
entails the construction of a function of the state vector, now called a storage
function, together with the construction of a function of the external interaction
variables (e.g., inputs and outputs), called a supply rate, and verifying that along

318 A. van der Schaft

all solutions of the open system the rate of increase of the storage function at
any moment of time is bounded from above by the value of the supply rate at
this moment of time. Formally, for an input-state-output system the definition
is as follows.

Definition 1 [21]. Consider an input-state-output system

Σ :
ẋ = f(x, u), u ∈ U
y = h(x, u), y ∈ Y (1)

where x = (x1, . . . , xn) are local coordinates for an n-dimensional state space
manifold X , and U and Y are the linear input and output spaces, of dimension
m, respectively p. Consider on the total space U × Y of external variables a
function

s : U × Y → R, (2)

called the supply rate. Denote R
+ = [0,∞). The system Σ is said to be dissi-

pative with respect to the supply rate s if there exists a function S : X → R
+,

called the storage function, such that for all x ∈ X and u ∈ U
d

dt
S(x) = Sx(x)f(x, u) ≤ s(u, h(x, u)), (3)

where Sx(x) denotes the row vector of partial derivatives of S.

Note that dissipativity depends on the choice of the supply rate s. The two most
common choices for s will be discussed below. The inequality (3) is called the
dissipation inequality. In case the external variables u, y are absent (a closed sys-
tem), the dissipation inequality reduces to the requirement Sx(x)f(x)≤0, x∈X ,
which means that the storage function is a Lyapunov function for the closed
dynamical system ẋ = f(x).

Remark 1. In many cases of complex systems modeling the system is not of
the input-state-output form (1), but more generally described by differential-
algebraic equations F (x, ẋ, w) = 0, with w the total vector of external variables
(not necessarily split into inputs and outputs). Definition 1 is directly general-
ized to this case by requiring that Sx(x)ẋ ≤ s(w) for all x, ẋ, w satisfying the
equations F (x, ẋ, w) = 0. Furthermore, dissipativity can be also defined for sta-
tic systems F (w) = 0 by simply requiring that s(w) ≥ 0 for all w satisfying
F (w) = 0.

Like for Lyapunov functions the search for storage functions may seem to
be an art. However, we have the following variational characterization of dis-
sipativity and existence of a storage function for a given supply rate [16,21].

Theorem 1. Consider the system Σ with supply rate s(u, y). Then Σ is dissi-
pative with respect to s if and only if

Sa(x) := sup
u(·)
T≥0

−
∫ T

0

s(u(t), y(t))dt, x(0) = x, (4)

Analysis and Design of Interconnected Systems 319

is finite for all x ∈ X . Furthermore, if Sa is finite for all x ∈ X and differentiable
then it defines a storage function, called the available storage. All other possible
storage functions S satisfy

Sa(x) ≤ S(x) − inf
x

S(x), x ∈ X (5)

Thus the presence of input and output variables (u, y) and the choice of a sup-
ply rate s(u, y) leads immediately to the characterization of dissipativity and the
construction of the minimal storage function (although the actual computation
of Sa may be hard). Without giving any details we note that, under additional
assumptions, there also exists a variational characterization of the maximal stor-
age function; cf. [16,21] for details.

Dissipative systems theory leads to a modular construction of Lyapunov func-
tions by variations of the following basic idea. Consider k systems Σi of the form
(1) with state, input, and output spaces Xi,Ui,Yi, i = 1, · · · , k. Suppose Σi are
dissipative with respect to the supply rates

si(ui, yi), ui ∈ Ui, yi ∈ Yi, (6)

and storage functions Si(xi), i = 1, · · · , k. Now consider an interconnection of
Σi, i = 1, · · · , k, defined through an interconnection subset

I ⊂ U1 × Y1 × · · · × Uk × Yk × Ue × Ye, (7)

where Ue,Ye are spaces of external input and output variables ue, ye. This defines
an interconnected system ΣI with state space X1×· · ·×Xk and external variables
ue, ye, by imposing the interconnection equations

((u1, y1), · · · , (uk, yk), (ue, ye)) ∈ I (8)

A special case occurs when the interconnection equations amount to setting
the inputs of each i-th system equal to the outputs of another system. In physical
network modeling this is, however, not the most common type of interconnection.
As a consequence, the interconnected system ΣI is often a differential-algebraic
equation system; that is, a mixture of differential and algebraic equations.

The following result is immediate.

Proposition 1. Suppose the supply rates s1, · · · , sk and the interconnection
subset I are such that there exists a supply rate se : Ue × Ye → R for which

s1(u1, y1) + · · · + sk(uk, yk) ≤ se(ue, ye),
for all ((u1, y1), · · · , (uk, yk), (ue, ye)) ∈ I

(9)

Then the interconnected system ΣI is dissipative with respect to the supply rate
se, with storage function

S(x1, · · · , xk) := S1(x1) + · · · + Sk(xk) (10)

320 A. van der Schaft

An extra degree of freedom results from noting that if Σi is dissipative with
respect to the supply rate si(ui, yi) with storage function Si(xi), then so it is
with respect to the supply rate αisi(ui, yi) and storage function αiSi(xi), for
any αi > 0.

The two most commonly employed choices for the supply rate s(u, y) are
the following; see [16] for more information. For simplicity of exposition identify
throughout the linear input and output spaces U and Y with R

m, respectively
R

p, equipped with the standard Euclidean inner product and norm.

Definition 2. A state space system Σ with U = Y = R
m is passive if it is

dissipative with respect to the supply rate s(u, y) = uT y.
A state space system Σ with U = R

m, Y = R
p has L2-gain ≤ γ for a certain

γ ≥ 0 if it is dissipative with respect to the supply rate s(u, y) = 1
2γ2||u||2− 1

2 ||y||2.
These definitions take a particularly explicit form for systems which are affine
in the input u (as is often the case in applications)

Σa :
ẋ = f(x) + g(x)u
y = h(x), (11)

with g(x) an n × m matrix. In case of the passivity supply rate s(u, y) = uT y
the dissipation inequality then takes the form

Sx(x)[f(x) + g(x)u] ≤ uT h(x), x ∈ X , u ∈ U , (12)

which can be seen to be equivalent to the conditions

Sx(x)f(x) ≤ 0, hT (x) = Sx(x)g(x), x ∈ X (13)

This implies that S is a Lyapunov function for the uncontrolled system, while
the output map is determined by the input matrix g together with the stor-
age function. The passivity supply rate has a strong physical background, with
s(u, y) = uT y denoting the external power supplied to the system, and S the
energy stored in the system. This can be further generalized to the theory of
port-Hamiltonian systems; see e.g. [16,17].

In case of L2-gain ≤ γ the dissipation inequality becomes

Sx(x)[f(x) + g(x)u] − 1
2
γ2||u||2 +

1
2
||h(x)||2 ≤ 0, x ∈ X , u ∈ U (14)

This can be simplified by computing the maximizing u∗ (as a function of x) for
the left-hand side, i.e., u∗ = 1

γ2 gT (x)ST
x (x), and substituting this into (14) to

obtain the Hamilton-Jacobi inequality

Sx(x)f(x) +
1
2

1
γ2

Sx(x)g(x)gT (x)ST
x (x) +

1
2
hT (x)h(x) ≤ 0, x ∈ X (15)

The L2-gain supply rate underlies much of robust control theory, while mathe-
matically it is related to contraction theory.

Analysis and Design of Interconnected Systems 321

Actually, these two classical supply rates are closely connected by what
is called the scattering transformation. Start from the passivity supply rate
s(u, y) = uT y, and define the new set of external vectors (sometimes called
wave vectors)

s+ =
1√
2
(u + y), s− =

1√
2
(−u + y) (16)

Then ‖s+‖2 −‖s−‖2 = uT y. Hence, if the system with inputs u and outputs y is
passive, then the system with inputs s+ and outputs s− has L2-gain ≤ 1. This
obviously generalizes to L2-gains ≤ γ for any γ > 0.

An interesting application of the scattering transformation is the following
passivity interpretation of pure time-delays. Consider two pairs of equally dimen-
sioned input-output vectors u0, y0 and u1, y1. Consider as above the wave vectors

s+0 = 1√
2
(u0 + y0), s−

0 = 1√
2
(−u0 + y0)

s+1 = 1√
2
(u1 + y1), s−

1 = 1√
2
(−u1 + y1)

(17)

Then ‖s+0 ‖2 − ‖s−
0 ‖2 = uT

0 y0 and ‖s+1 ‖2 − ‖s−
1 ‖2 = uT

1 y1. Consider now the
time-delay systems

s−
1 (t) = s+0 (t − Δ0)

s−
0 (t) = s+1 (t − Δ1)

(18)

with Δ0,Δ1 arbitrary nonnegative time-delays. Then for any T ≥ max(Δ0,Δ1)

− ∫ T

0
[uT

0 (t)y0(t) + uT
1 (t)y1(t)]dt

=
∫ T

0
(‖s−

0 (t)‖2 − ‖s+0 (t)‖2 + ‖s−
1 (t)‖2 − ‖s+1 (t)‖2)dt

=
∫ T

0
(‖s+0 (t − Δ0)‖2 − ‖s+0 (t)‖2)dt +

∫ T

0
(‖s+1 (t − Δ1)‖2 − ‖s+1 (t)‖2)dt

=
∫ 0

−Δ0
‖s+0 (t)‖2dt − ∫ T

T−Δ0
‖s+0 (t)‖2dt

+
∫ 0

−Δ1
‖s+1 (t)‖2dt − ∫ T

T−Δ1
‖s+0 (t)‖2dt

≤ ∫ 0

−Δ0
‖s+0 (t)‖2dt +

∫ 0

−Δ1
‖s+1 (t)‖2dt,

where the terms in the last line are independent of the behavior on [0,∞) (and
can be interpreted as the initial state of the infinite-dimensional system of the
time-delay system). Hence the map (u0, u1) to (y0, y1) is passive! This observa-
tion has been used in the literature in a number of contexts, see e.g. [6] and the
references quoted therein.

2.1 Network Versions of Passivity and Small-Gain Theorems

An important specialization of the above interconnection theory of dissipative
systems concerns the interconnection of passive or finite L2-gain systems via
a network defined by a graph. In the passivity case a powerful scenario is the
following, cf. [16] for more details and other possibilities. Consider a directed
graph with N vertices and M edges, specified by its N ×M incidence matrix [2],

322 A. van der Schaft

and associate passive systems both to its vertices, as well as to its edges. Thus
to each i-th vertex of the graph there corresponds a passive system with scalar
input and output (see Remark 2 for generalizations)

ẋv
i = fv

i (xv
i , uv

i), xv
i ∈ X v

i , uv
i ∈ R

yv
i = hv

i (xv
i), yv

i ∈ R
(19)

with storage function Sv
i , i = 1, · · · , N , and to each j-th edge of the graph there

corresponds a passive single-input single-output system

ẋb
i = f b

i (xb
i , u

b
i), xb

i ∈ X b
i , ub

i ∈ R

yb
i = hb

i (x
b
i , u

b
i), yb

i ∈ R
(20)

with storage function Sb
i , i = 1, · · · ,M . Also static passive systems can be con-

sidered. Collecting the scalar inputs and outputs into vectors

uv =
[
uv
1, · · · , uv

N

]T
, yv =

[
yv
1 , · · · , yv

N

]T

ub =
[
ub
1, · · · , ub

M

]T
, yb =

[
yb
1, · · · , yb

M

]T
(21)

these passive systems are interconnected to each other by the interconnection
equations

uv = −Dyb + ev

ub = DT yv + eb (22)

where ev ∈ R
N and eb ∈ R

M are external inputs, and D is the N × M incidence
matrix. Since the interconnection (22) satisfies the power conservation property

(uv)T yv + (ub)T yb = (ev)T yv + (eb)T yb

the following result is immediate.

Proposition 2. Consider a graph with incidence matrix D, with passive systems
(19) with storage functions Sv

i associated to the vertices and passive systems (20)
with storage functions Sb

i associated to the edges, interconnected by (22). Then
the interconnected system is again passive, with inputs ev, eb and outputs yv, yb,
and total storage function

Sv
1 (xv

1) + · · · + Sv
N (xv

N) + Sb
1(x

b
1) + · · · + Sb

1(x
b
M) (23)

This interconnection scenario of passive systems occurs abundantly in physical
networks, from classical mass-spring-damper systems, multi-body systems, to
power networks; see [16]. A further ‘geometrization’ of the network interconnec-
tion structure can be obtained within the theory of port-Hamiltonian systems;
see again [16,17].

Remark 2. The set-up is easily generalized to multi-input multi-output systems
with uv

i , yv
i , ub

j , y
b
j all in R

m by simply replacing the incidence matrix D by the
Kronecker product D ⊗ Im and DT by DT ⊗ Im, with Im denoting the m × m
identity matrix.

Analysis and Design of Interconnected Systems 323

In the L2-gain one may formulate the following network result [4,16]. Con-
sider a multi-agent system, corresponding to a directed graph with N vertices
and input-state-output systems Σi, i = 1, · · · , N, associated to these vertices.
Furthermore, assume that the edges of the graph are specified by an N × N
adjacency matrix [2] A with elements 0, 1, corresponding to interconnections

ui = yj (24)

if and only if the (i, j)-th element of A is equal to 1, with each row in the A
matrix containing only one 1. Now assume that the systems Σi have L2-gain
≤ γi, i = 1, · · · , N . This means that there exist storage functions Si : Xi → R

+

such that
Ṡi ≤ 1

2
γ2

i ‖ui‖2 − 1
2
‖yi‖2, i = 1, · · · , N (25)

Then define the following weighted adjacency matrix

Γ = diag(γ2
1 , · · · , γ2

N)A (26)

Using the Perron-Frobenius theorem we obtain the following network version of
the classical small-gain theorem [16], extending [4].

Theorem 2. Consider a directed graph G and associated to its vertices systems
Σi, which have L2-gains ≤ γi with storage functions Si, i = 1, · · · , N , and
which are interconnected through the adjacency matrix A defined by (24). Define
the matrix Γ given by (26). Then if the spectral radius r(Γ) < 1, there exists
μ > 0 such that μT Γ < μ and the non-negative function S(x1, · · · , xN) :=∑N

i=1 μiSi(xi) satisfies along trajectories of the interconnected system

Ṡ ≤ −ε1‖y1‖2 − ε2‖y2‖2 · · · − εN‖yN‖2 (27)

for certain positive constants ε1, · · · , εN .

In case of the feedback interconnection u1 = y2, u2 = y1 of two systems Σ1, Σ2

with L2-gain ≤ γ1, respectively ≤ γ2, application of Theorem2 leads to the
consideration of the matrix

Γ =
[

0 γ2
1

γ2
2 0

]
, (28)

which has spectral radius < 1 if and only if γ1 · γ2 < 1; thus recovering the
classical small-gain theorem [16].

2.2 Converse Passivity and Small-Gain Theorems

Dissipative systems theory can be also used as some sort of contract-based design
in the following sense. Consider for simplicity two systems Σi, i = 1, 2, in negative
feedback interconnection u1 = −y2, u2 = y1. Now, let Σ1 be the system under
consideration, and Σ2 an unknown environment. Suppose one wants to guaran-
tee stability of the interconnected system for such unknown Σ2. An attractive

324 A. van der Schaft

theorem is the following. Suppose that Σ2 is unknown but passive. Then, under
suitable conditions, it can be shown [7,8,19] that the interconnected system is
stable if and only if Σ1 is passive. The ‘if’ direction of this theorem just follows
from the interconnection theory of passive systems discussed before, but the
‘only if’ direction is new (see [3] for an earlier result). This theorem has inter-
esting applications e.g. in robotics, with Σ1 being the controlled robot, and Σ2

the unknown, but supposedly passive, environment. It implies that in order to
guarantee stable operation with an unknown environment the controlled robot
seen from the interaction port with the environment should be a passive system;
see [3,19].

A similar statement holds in the L2-gain case: the interconnection of the
given system Σ1 with an unknown perturbation system Σ2 with L2-gain ≤ γ is
stable if and only the L2-gain of Σ1 is ≤ 1

γ ; see e.g. [24]. This converse small-gain
theorem quantifies the maximal allowable uncertainty in the feedback loop.

3 Control by Interconnection and Bisimulation

In this section we briefly discuss the control by interconnection problem as a
‘correct by design’ approach from control theory. Given a system, traditionally
called the plant, and a specification system, describing the desired behavior, when
does there exist a controller system, such that the plant system interconnected
with the controller system is equivalent to the specification system?

Here ‘equivalence’ will be understood in the sense of bisimulation of continu-
ous systems, as extended in [10,13] from concurrent processes to the continuous
dynamics realm. Consider two linear input-state-output systems Σi, i = 1, 2,
given as

ẋi = Aixi + Biui + Gifi, xi ∈ Xi, fi ∈ F
zi = Hixi, zi ∈ Z (29)

with fi denoting external input functions, while ui are internal input functions,
modeling for example non-determinism.

Definition 3. A bisimulation relation between Σ1 and Σ2 is a linear subspace
R ⊂ X1 ×X2 with the following property. Take any (x10, x20) ∈ R and any joint
input function f1 = f2. Then, for any input function u1 there should exist an
input function u2 such that the resulting state trajectories x1(·) with x1(0) = x10

and x2(·) with x2(0) = x20 satisfy

(x1(t), x2(t)) ∈ R, z1(t) = z2(t), for all t ≥ 0, (30)

and conversely, for any input function u2 there should exist a function u1 such
that the state trajectories x1(·) and x2(·) satisfy (30).

Σ1 and Σ2 are said to be bisimilar, denoted Σ1 ≈ Σ2, if there exists a bisim-
ulation relation R ⊂ X1 × X2 such that π1(R) = X1 and π2(R) = X2, where
πi : X1 × X2 → Xi, i = 1, 2, denote the canonical projections.

A bisimulation relation can be characterized by the following linear-algebraic
conditions on the matrices describing the two systems [13].

Analysis and Design of Interconnected Systems 325

Proposition 3. A subspace R ⊂ X1 × X2 is a bisimulation relation between Σ1

and Σ2 if and only if

R + im
[
B1

0

]
= R + im

[
0

B2

]
=def Re[

A1 0
0 A2

]
R ⊂ Re

im
[
G1

G2

]
⊂ Re

R ⊂ ker
[
H1 −H2

]

(31)

It is important to emphasize that bisimulation is thus fully characterized by
the equations of the system, and no solution trajectories need to be computed.
(This even extends to nonlinear input-state-output systems [12].) Furthermore,
there is an effective linear-algebraic algorithm [13] for computing the maximal
bisimulation relation between Σ1 and Σ2, and thus for checking bisimilarity.

The one-sided version, called ‘simulation’, is defined as follows [13].

Definition 4. A simulation relation of Σ1 by Σ2 is a linear subspace S ⊂ X1 ×
X2 with the following property. Take any (x10, x20) ∈ S and any joint input
function f1 = f2. Then, for any input function u1 there should exist an input
function u2 such that the resulting state trajectories x1(·) with x1(0) = x10 and
x2(·) with x2(0) = x20 satisfy

(x1(t), x2(t)) ∈ S, z1(t) = z2(t), for all t ≥ 0 (32)

System Σ1 is said to be simulated by system Σ2, denoted Σ1 � Σ2, if there exists
a simulation relation S of Σ1 by Σ2 such that π1(S) = X1.

Analogous to the linear-algebraic conditions for bisimulation, a subspace S ⊆
X1 × X2 is a simulation relation of Σ1 by Σ2 if and only if [13]

S + im
[
B1

0

]
⊂ S + im

[
0

B2

]
=def Se[

A1 0
0 A2

]
S ⊂ Se

im
[
G1

G2

]
⊂ Se

S ⊂ ker
[
H1 −H2

]

(33)

Again, this also yields a linear-algebraic algorithm for computing the maximal
simulation relation of Σ1 by Σ2.

All this theory has been generalized from input-state-output systems (29) to
linear differential-algebraic equation systems in [9]; see also [15].

The control by interconnection problem can now be formulated as follows.
Let P denote the plant system with inputs fP , uP , outputs zP and yP , and state
xP . Let S denote the specification system, with inputs fS , outputs zS and state
xS . Furthermore, consider controller systems C with state xC , which share the
variables uC and yC with the inputs and outputs uP , yP of the plant, leading to

326 A. van der Schaft

an interconnected system P ‖ C with inputs fP and outputs zP . Given P and S,
the problem is now to give necessary and sufficient conditions for the existence,
and explicit construction, of a C such that P‖C is bisimilar to S.

The plant system P is thus represented as

ẋP = AP xP + BP uP + GP fP[
yP

zP

]
=

[
CP

HP

]
xP

(34)

and the specification system S as

ẋS = ASxS + GSfS

zS = HSxS
(35)

Finally, a controller system is taken to be of the form

ẋC = ACxC + BCuC

yC = CCxC
(36)

In the solution of the control by interconnection problem an important role is
played by the following system, which is derived from the plant system P by
setting uP and yP to zero. The resulting system, denoted by NP , is thus given
by the differential-algebraic equations

ẋP = AP xP + GP fP[
0
zP

]
=

[
CP

HP

]
xP

(37)

Sharing of the external variables (uP , yP) of the plant and (uC , yC) of the con-
troller is defined by [

uP

yP

]
= Π

[
uC

yC

]
(38)

where Π is a permutation matrix to be chosen. The equations for P ‖Π C are
thus given by the differential-algebraic equations

ẋP = AP xP + BP uP + GP fP

ẋC = ACxC + BCuC[
uP

CP xP

]
= Π

[
uC

CCxC

]

zP = HP xP

(39)

We are now ready to formally state the control by interconnection problem and
its solution [20].

Control by Interconnection Problem: Given P and S, find necessary and
sufficient conditions for the existence of a controller C and permutation matrix
Π such that P ‖Π C ≈ S.

Theorem 3. ∃C,Π such that P ‖Π C ≈ S ⇔ NP � S � P .

Analysis and Design of Interconnected Systems 327

The necessary and sufficient conditions on the righthand side are referred to as
sandwich conditions (like in the behavioral version of this problem [22,23]): the
specification system S should be ‘sandwiched’ between NP and P . The condition
S � P is rather obvious, while the condition NP � S stems from the fact that
by linearity NP is the part of P that will not be influenced by any controller C.

A key ingredient in proving the ⇐ direction in Theorem 3 is the notion of the
canonical controller as introduced in [14] in a behavioral setting. This canonical
controller is simply defined as Ccan := P ‖ S where the interconnection is with
respect to the variables f and z. In fact, the ⇐ direction of Theorem 3 is proved
by taking C = Ccan and Π equal to the identity matrix.

As noted before, the conditions NP � S and S � P can be checked without
too much difficulty by a linear-algebraic algorithm. On the other hand we note
that the condition NP � S does not easily generalize to a nonlinear system
context; see also the discussion in the behavioral context provided in [14].

4 Hybrid Systems

In this section we will indicate the extension of the theory of bisimulation to a
hybrid system context. Let us start from the definition of a hybrid system as given
in [18], modifying the definition of a hybrid automaton in [1] by symmetrizing
the role of continuous and discrete dynamics.

Definition 5. A hybrid system Σhyb is defined as a six-tuple (L,X ,A,W, E, F),
where

– L is a discrete set, called the set of discrete states (or, locations).

– X is a finite-dimensional manifold called the continuous state space.

– A is a discrete set of symbols called the set of discrete communication vari-
ables (or, actions).

– W is a finite-dimensional linear space called the space of continuous commu-
nication variables. Often the vector w ∈ W can be partitioned into an input
u and an output vector y.

– E is a subset of L×X ×A×L×X specifying the event conditions. A typical
element of E is denoted by (l−, x−, a, l+, x+), with − denoting the value just
before and + denoting the value just after the event.

– F is a subset L × TX × W specifying the flow conditions.Here TX is the
tangent bundle of X . A typical element of F is denoted by (l, x, ẋ, w).

A hybrid trajectory or run of the hybrid system Σhyb on the time-interval [0, T]
consists of the following ingredients. First, such a trajectory involves a discrete
set E ⊂ [0, T] denoting the set of event times t ∈ [0, T] associated with the

328 A. van der Schaft

trajectory. Secondly1, there is a function l : [0, T] → L which is constant on
every subinterval between subsequent event times ta, tb ∈ E , and which specifies
the location of the hybrid system for t ∈ (ta, tb). Thirdly, the trajectory involves
admissible time-functions x : [0, T] → X , w : [0, T] → W, satisfying for all t �∈ E
the dynamics

(l, x(t), ẋ(t), w(t)) ∈ F (40)

with l the location between subsequent event times ta, tb ∈ E . Finally, the tra-
jectory includes a discrete function a : E → A such that for all t ∈ E

(l(t−), x(t−), a(t), l(t+), x(t+)) ∈ E (41)

Here x(t−) and x(t+) denote the limit values of the variables x when approaching
t from the left, respectively from the right. (Thus we throughout assume that the
class of admissible functions x is chosen in such a way that these left and right
limits are defined.) Furthermore, l(t−) and l(t+) denote the values of l before
and after the event time t. Hence a hybrid run r is specified by a five-tuple

r = (E , l, x, a, w) (42)

with l, x, a, w time-functions defined on E , as specified above.
Note that the subset F (the flow conditions) specifies the continuous dynam-

ics of the hybrid system depending on the location the system is in. On the other
hand, E (the event conditions) stands for the event behavior at the event times,
entailing the discrete state variables l ∈ L and the discrete communication vari-
ables a ∈ A, together with a possible reset of the continuous state variables x.
Furthermore, the flow conditions F incorporate the notion of location invariant,
while the event conditions E include the notion of guard.

In terms of the hybrid runs a natural definition of hybrid bisimulation can
be given as follows, cf. [12]:

Definition 6. Consider two hybrid systems Σhyb
i = (Li,Xi,Ai,Wi, Ei, Fi), i =

1, 2, as above. A hybrid bisimulation relation between Σhyb
1 and Σhyb

2 is a subset

R ⊂ (L1 × X1) × (L2 × X2)

with the following property. Take any (l10, x10, l20, x20) ∈ R. Then for every
hybrid run r1 = (E1, l1, x1, a1, w1) of Σhyb

1 with (l1(0), x1(0)) = (l10, x10) there
should exist a hybrid run r2 = (E2, l2, x2, a2, w2) of Σhyb

1 with (l2(0), x2(0)) =
(l20, x20) such that for all times t for which the hybrid run r1 is defined

– E1 = E2 =: E

– w1(t) = w2(t) for all t ≥ 0 with t �∈ E

1 Note that in the sequel we will also use the notations l, x, a, w for time-functions,
mapping for each time instant t to elements l(t) ∈ L, x(t) ∈ X , a(t) ∈ A, w(t) ∈ W,
respectively.

Analysis and Design of Interconnected Systems 329

– a1(t) = a2(t) for all t ≥ 0 with t ∈ E

– (l1(t), x1(t), l2(t), x2(t)) ∈ R for all t ≥ 0 with t �∈ E ,

and conversely for every hybrid run r2 of Σhyb
2 there should exist a hybrid run

r1 of Σhyb
1 with the same properties.

A more checkable version of hybrid bisimulation is obtained [12] by merging
the algebraic characterization of bisimulation relations for dynamical systems as
discussed in the previous section with the common notion of bisimulation for
concurrent processes. Hereto we throughout assume that the continuous state
space parts of the bisimulation relation R, namely all sets

Rl1l2 := {(x1, x2) | (l1, x1, l2, x2) ∈ R} ⊂ X1 × X2 (43)

are submanifolds.

Definition 7. Consider two systems Σhyb
i = (Li,Xi,Ai,Wi, Ei, Fi), i = 1, 2,

as above. A structural hybrid bisimulation relation between Σhyb
1 and Σhyb

2 is a
subset

R ⊂ (L1 × X1) × (L2 × X2)

with the following property. Take any (l−1 , x−
1 , l−2 , x−

2) ∈ R. Then for every
l+1 , x+

1 , a for which
(l−1 , x−

1 , a, l+1 , x+
1) ∈ E1,

there should exist l+2 , x+
2 such that

(l−2 , x−
2 , a, l+2 , x+

2) ∈ E2

while (l+1 , x+
1 , l+2 , x+

2) ∈ R, and conversely.
Furthermore, take any (l1, x1, l2, x2) ∈ R. Then for every ẋ1, w for which

(l1, x1, ẋ1, w) ∈ F1

there should exist ẋ2 such that

(l2, x2, ẋ2, w) ∈ F2

while (ẋ1, ẋ2) ∈ T(x1,x2)Rl1l2 , and conversely.

It is easily seen that any structural hybrid bisimulation relation is a hybrid
bisimulation relation in the sense of Definition 6. The basic observation is that
the invariance condition (ẋ1(t), ẋ2(t)) ∈ T(x1(t),x2(t))Rl1l2 for all t ≥ 0 implies
that the trajectory (l1, l2, x1(t), x2(t)), t ≥ 0 remains in R. For the converse
statement (a hybrid bisimulation relation is a structural hybrid bisimulation
relation) additional conditions are necessary. For the specific case of switching
linear systems see [11].

A logical next step for further research is to extend the control by intercon-
nection problem as studied in the previous section to hybrid systems as defined
above.

330 A. van der Schaft

5 Conclusions and Outlook

In this paper we have discussed two approaches from systems and control theory
to the analysis and design of interconnected systems. The first one is the the-
ory of dissipative systems, which is primarily aimed at addressing stability and
robustness problems. The second one is the control by interconnection problem,
formulated through the extension of (bi-)simulation theory to continuous linear
systems.

Abstractly, these two approaches are linked as follows. Given an input-state-
output system Σ, the dissipation inequality d

dtS(x) ≤ s(u, y), with storage func-
tion S and supply rate s, can be interpreted as an abstraction of Σ in the
following sense. Define, based on the storage function S and the supply rate s,
the mapping

z = S(x), v = s(u, y),

from the product of the state space X and the total space of inputs and outputs
U × Y to the product of a scalar state space z ∈ Z = R

+ and a scalar space
of external variables v ∈ R. This mapping can be seen to define a simulation
relation in the following, generalized, sense. Dissipativity of Σ is equivalent to
the pair (z, v) satisfying the differential inequality

Σs : ż ≤ v

Thus, the system Σs can be regarded as a (generalized) specification system,
and the mapping (z, v) = (S(x), s(u, y)) as a generalized simulation relation
between Σ and Σs. ‘Generalized’ in the sense that apart from the mapping
z = S(x) between the state spaces of Σ and Σs (as in the common definition
of a simulation relation) also the additional mapping v = s(u, y) between the
external variables of both systems is considered. From a future research point
of view this motivates the exploration of a theory of control by interconnection
where the specification system is of a more general type than (35); at least
including inequalities.

Finally in Sect. 4 we have reviewed a general definition of hybrid system,
which places the continuous and discrete dynamics on a more equal footing than
the definition of a hybrid automaton [1], or, alternatively, the definition of a
hybrid system in [5]. This more general definition could serve as a useful start-
ing point for further developments; e.g. concerning the control by interconnection
problem for hybrid systems. In general, we believe that the combination of con-
cepts from, one the one hand, systems and control theory, and, on the other hand,
concurrent processes, may lead to promising developments; especially when it
comes to hybrid systems.

Acknowledgements. After my collaboration with Hans Schumacher at the CWI on
the topic of hybrid systems, I was very fortunate to be close to the Formal Methods and
Tools group at the Computer Science department of the University of Twente, headed
by Ed Brinksma. I happily remember the enjoyable and very stimulating conversations
with especially Ed Brinksma, Rom Langerak and Joost-Pieter Katoen, also involving

Analysis and Design of Interconnected Systems 331

Jan Willem Polderman from the mathematics side. Among others this led to the cel-
ebrated NWO-CASH project. I still regard this collaboration as an exemplary case of
open and fruitful collaboration. It is a great pleasure to dedicate this paper, which
is heavily inspired by this collaboration, to Ed at the occasion of his 60th birthday.
Happy birthday Ed!

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algo-
rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991–1992. LNCS, vol.
736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6 30

2. Bollobas, B.: Modern Graph Theory, Graduate Texts in Mathematics, vol. 184.
Springer, Heidelberg (1998). doi:10.1007/978-1-4612-0619-4

3. Colgate, J.E., Hogan, N.: Robust control of dynamically interacting systems. Int.
J. Control 48(1), 65–88 (1988)

4. Dashkovskiy, S., Ito, H., Wirth, F.: On a small-gain theorem for ISS networks in
dissipative Lyapunov form. Eur. J. Control 17(4), 357–365 (2011)

5. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press, Princeton (2012)

6. Hatanaka, T., Chopra, N., Fujita, M., Spong, M.W.: Passivity-Based Control and
Estimation in Networked Robotics. Springer, Heidelberg (2011)

7. Khong, S.Z., van der Schaft, A.J.: Converse passivity theorems. In: Proceedings of
the IFAC World Congress, pp. 9983–9986, Toulouse (2017)

8. Khong, S.Z., van der Schaft, A.J.: The converse of the passivity and small-
gain theorem for nonlinear input-output maps. Submitted for publication (2017).
arXiv:1707.00148

9. Megawati, N.Y., van der Schaft, A.J.: Bisimulation equivalence of differential-
algebraic systems. Int. J. Control (2016). doi:10.1080/00207179.2016.1266519

10. Pappas, G.J.: Bisimilar linear systems. Automatica 39, 2035–2047 (2003)
11. Pola, G., van der Schaft, A.J., Di Benedetto, M.D.: Equivalence of switching linear

systems by bisimulation. Int. J. Control 79, 74–92 (2006)
12. van der Schaft, A.: Bisimulation of dynamical systems. In: Alur, R., Pappas, G.J.

(eds.) HSCC 2004. LNCS, vol. 2993, pp. 555–569. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24743-2 37

13. van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE
Trans. Autom. Control 49, 2160–2172 (2004)

14. van der Schaft, A.J.: Achievable behavior of general systems. Syst. Control Lett.
49, 141–149 (2003)

15. van der Schaft, A.J.: Equivalence of hybrid dynamical systems. In: Proceedings
of the 16th International Symposium on Mathematical Theory of Networks and
Systems (MTNS 2004), Leuven, Belgium, July 2004

16. van der Schaft, A.: L2-Gain and Passivity Techniques in Nonlinear Control.
Springer, Cham (2017). doi:10.1007/978-3-319-49992-5. 3rd Revised and Enlarged
edn. (1st edn. (1996), 2nd edn. (2000)), p. xviii + 321

17. van der Schaft, A.J., Jeltsema, D.: Port-Hamiltonian systems theory: an introduc-
tory overview. Found. Trends Syst. Control 1(2–3), 173–378 (2014). Now Publish-
ers, Boston-Delft

18. van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical
Systems. LNCIS, vol. 251. Springer, London (2000). doi:10.1007/BFb0109998

http://dx.doi.org/10.1007/3-540-57318-6_30
http://dx.doi.org/10.1007/978-1-4612-0619-4
http://arxiv.org/abs/1707.00148
http://dx.doi.org/10.1080/00207179.2016.1266519
http://dx.doi.org/10.1007/978-3-540-24743-2_37
http://dx.doi.org/10.1007/978-3-319-49992-5
http://dx.doi.org/10.1007/BFb0109998

332 A. van der Schaft

19. Stramigioli, S.: Energy-aware robotics. In: Camlibel, M.K., Julius, A.A.,
Pasumarthy, R., Scherpen, J.M.A. (eds.) Mathematical Control Theory I. LNCIS,
vol. 461, pp. 37–50. Springer, Cham (2015). doi:10.1007/978-3-319-20988-3 3

20. Vinjamoor, H., van der Schaft, A.J.: The achievable dynamics via control by inter-
connection. IEEE Trans. Autom. Control 56(5), 1110–1117 (2011)

21. Willems, J.C.: Dissipative dynamical systems, part I: general theory. Arch. Ration.
Mech. Anal. 45(5), 321–351 (1972)

22. Willems, J.C.: On interconnections, control, and feedback. IEEE Trans. Autom.
Control 42, 326–339 (1997)

23. Willems, J.C., Trentelman, H.L.: Synthesis of dissipative systems using quadratic
differential forms, part I. IEEE Trans. Autom. Control 47, 53–69 (2002)

24. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall,
Englewood Cliffs (1996)

http://dx.doi.org/10.1007/978-3-319-20988-3_3

Applications

Runtime Monitoring Based on Interface
Specifications

Ivan Kurtev1, Jozef Hooman2,3(B), and Mathijs Schuts4

1 Altran, Eindhoven, The Netherlands
2 Embedded Systems Innovation by TNO, Eindhoven, The Netherlands

jozef.hooman@tno.nl
3 Radboud University, Nijmegen, The Netherlands

4 Philips, Best, The Netherlands

Abstract. Unclear descriptions of software interfaces between compo-
nents often lead to integration issues during development and mainte-
nance. To address this, we have developed a framework named ComMA
(Component Modeling and Analysis) that supports model-based engi-
neering of components. ComMA is a combination of Domain Specific
Languages (DSLs) for the specification of interface signatures, state
machines to express the allowed interaction behaviour, and constraints
on data and timing. From ComMA models a number of artefacts can
be generated automatically such as proxy code, visualizations, tests, and
simulation models. In this paper, the focus is on the generation of runtime
monitors to check interface conformance, including the state machine
behaviour and the specified data and time constraints. We report about
the development of this approach in close collaboration with the devel-
opment of medical applications at Philips.

1 Introduction

Precise interface descriptions are crucial in the development of complex sys-
tems with many components, including third-party components. Unclarity about
interfaces is a frequent source of errors. This does not only concern the signature
of messages exchanged between components, but also the expected order of mes-
sages, assumptions on timing behaviour, and constraints on the exchanged data
values. During system development, proper interface definitions are essential to
prevent integration issues. During later phases of the system life cycle, contin-
uous monitoring of interfaces is important to prevent system failures due to
component changes. For instance, a supplier might deliver an improved version
of a component which, however, has different timing characteristics.

The focus of this paper is on the automatic generation of monitoring support
from interface specifications. This is done in the context of the development of
minimally-invasive interventional X-ray systems of Philips. An example of such
a system is depicted in Fig. 1.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 335–356, 2017.
DOI: 10.1007/978-3-319-68270-9 17

336 I. Kurtev et al.

Fig. 1. Interventional X-ray system

In order to support the development and usage of precise interface
specifications we proposed a framework named ComMA (Component Modeling
and Analysis). ComMA enables model-based engineering of high-tech systems
by formalizing interface specifications. It provides a family of domain-specific
languages (DSLs) that integrates existing techniques from formal behavioural
and time modeling and is easily extensible. The most important analysis tool in
ComMA allows monitoring and checking of component executions against inter-
face specifications. The monitoring can be performed for already existing logs
with execution traces or by monitoring executions at runtime.

While developing ComMA and its monitoring capabilities we used the
industry-as-laboratory approach [12]. This means that tools and techniques are
developed in close interaction (e.g. on a daily basis) with real industrial projects.
A similar approach has been applied in an earlier industry-as-lab project on run-
time awareness [2].

The first version of ComMA was a basic domain-specific language and a few
generators for glue code, visualisations and very basic monitoring. This pro-
vided immediate benefits for the industrial projects and created interest for
further applications. It also led to a stream of feature requests which have been
incorporated based on user priorities. For instance, inspired by the usefulness
of monitoring timing constraints, users asked for monitoring of advanced data
constraints. We also added document generation based on requests of users. By
gradually increasing the number of generators and features, we incrementally
add more value to the projects using the ComMA framework.

As part of our industry-as-lab approach, we had to refactor ComMA based
on new insights we obtained while executing industrial cases. In addition, we
refactored the framework to improve maintainability. The initial monolithic

Runtime Monitoring Based on Interface Specifications 337

language has been split into a composition of DSLs for types, expressions, state
machines, etc.

The initial component monitoring supported checking of conformance
between interfaces and their implementations and checking timing constraints
expressed as rules. The rules give the admissible time intervals between events
in different contexts. Apart from timing behaviour, users were also interested in
monitoring data values. For example, client requests for a given system mode
with certain parameters have to match the parameters communicated later by
the system. We developed a new small DSL for expressing only data constraints.
It is known from the literature on runtime verification that time information
in the form of event timestamps can be treated in the same way as the data
values carried by events; they are just data fields associated to events. This
observation motivated the unification of data and timing constraints into an
underlying generic language which is used to generate the monitoring infrastruc-
ture. These changes in the DSLs infrastructure were executed iteratively and
remained invisible for the users. Users could keep using the basic front-end nota-
tions for data and timing constraints and stayed isolated from the changes in
the implementation.

The main contribution of this paper is the description of the syntax and
semantics of the generic constraints language. In addition, we also present how
the two existing languages for time and data constraints relate to the generic
language.

This paper is organized as follows. Section 2 gives an overview of the related
work. An industrial case that provided a motivation and insights for our work
is presented in Sect. 3. Examples from the case are used to explain the DSLs
in ComMA (Sect. 4), and the support for monitoring time and data constraints
(Sect. 5). Section 6 presents the syntax and semantics of the generic constraints
language. Section 7 concludes the paper.

2 Related Work

Runtime verification [7,9] is a technique for monitoring the behaviour of software
during its execution and checking if the behaviour conforms to a specification.
The literature contains a large number of methods to annotate programs with
specifications and the use of these annotations for runtime checks. Examples are
design by contract in Eiffel [10] and the Java Modeling Language (JML) [4]. As
a unifying approach, monitor-oriented programming [6] supports runtime moni-
toring by integrating specifications in the program via logical annotations, where
a particular specification formalism can be added as a logic plug-in. Actual mon-
itoring code is automatically synthesized from these annotations and integrated
at appropriate places in the program, according to user-defined configuration
attributes of the monitor.

The approach of ComMA is independent of the hardware or software imple-
mentation of a component. In our working context, the implementation of many
third-party components is not directly available. The properties are specified

338 I. Kurtev et al.

over traces of component executions. Traces can be obtained via sniffing the
network traffic or from logs (if available).

Properties checked during monitoring can be expressed in various formalisms.
Examples are logic formulas, automata, and context free grammars. The con-
straint languages in ComMA are inspired by constructs available in Linear Tem-
poral Logic (LTL) and its real-time extension Metric Temporal Logic (MTL)
[11]. Furthermore, our framework follows the ideas behind the languages RuleR
and Eagle [1] with respect to formulating properties as a set of rules and it
adapts the algorithms from the same work.

Interface signatures and behaviour can be defined in general-purpose model-
ing languages like UML and SysML [8] for which many commercial tools exist.
Engineers usually need only a subset of these rich languages. In addition, tools
require tailoring for a given problem area via profiles which is in effect a domain-
specific extension. ComMA provides a set of standalone DSLs instead of extend-
ing an existing modeling language.

3 Industrial Case

With the interventional X-ray systems of Philips, X-ray movies of a patient’s
body can be made in real-time while executing a medical procedure. An example
procedure is placing a stent into the aorta of a patient. The physician uses the
system to navigate the stent through the patient’s arteries to the target position.
The arteries can be made visible by injecting a contrast medium. The physician
positions the X-ray beam with respect to the patient in such a way that she/he
can see the region of interest. This can be done by moving the table on which
the patient lies, and by moving the C-arm which holds the X-ray generator and
the X-ray detector. The table and C-arm can be maneuvered by means of a user
interface.

A patient table has multiple axes of movement that can be controlled by a
software interface. An example is the vertical movement that changes the height
of the table with respect to the table base. During movements, the patient and
the table can get in close proximity to the C-arm. This is controlled by safety
mechanisms to prevent hitting the patient. Examples of these mechanisms are
limiting the movement speed when the distance between table and C-arm is
reduced and to stop all movements when the communication between table and
system is lost.

Figure 1 shows an example of the system with a table developed at Philips.
Besides Philips tables, the system also supports tables of third-party vendors.
We applied ComMA to model a new interface between the interventional X-ray
system and a third-party table. The communication between the system and the
table uses an Ethernet connection and a proprietary protocol. The table has its
own User Interface (UI) that can be used to change the positions. The X-ray
system is treated as another UI for the table. From the perspective of the X-ray
system this means that movements can originate from other sources. Thus, the
system needs to observe the position of the table and to act when the distance
between table and C-arm becomes too close.

Runtime Monitoring Based on Interface Specifications 339

Table movements are controlled by a joystick. The joystick has to be con-
stantly leaned to a certain direction during the movement until the target posi-
tion is reached. If the joystick is released the movement stops. While moving, the
table notifies the system about its position and the movement status (moving,
position is reached, position is not reached).

ComMA was used to model the software interface of the table by defining
the signatures of the messages and the behaviour of the table by means of a
state machine. In addition, several time and data constraints related to safety
mechanisms were specified and checked.

In the following sections we explain the ComMA framework with a focus on
support for monitoring time and data constraints. The presentation is based on
simplified examples derived from the industrial case.

4 Overview of ComMA

4.1 ComMA Framework: Languages and Tools

The ComMA framework is based on a family of DSLs and allows users to specify
the interface of a server towards its clients by two main ingredients:

– The interface signature, consisting of groups of synchronous & asynchronous
calls and asynchronous notifications.

– The interface behaviour which is defined by:
• State machines that describe the allowed interactions between clients and

server, e.g., the allowed order of calls of clients and the allowed notifica-
tions by the server in any state.

• Constraints on data and time, such as the allowed response time, the
periodicity of notifications, and data relations between the parameters of
subsequent calls.

Based on a ComMA model, the framework supports a number of generators, as
shown in Fig. 2:

– Visualization and documentation. ComMA generates PlantUML1 files that
visualize state machines. In addition, constraints can be intuitively repre-
sented as annotated UML sequence diagrams. Also MS Word documents that
are compliant with the company standard can be generated, based on the
M2Doc framework2. This transformation extracts definitions and comments
from models and inserts them in a document template. This process also
utilizes the diagrams obtained from state machines and constraint rules.

– Interface proxy code. Interface signatures can be transformed to interface
proxy code (C++ and C#) that can be incorporated in the company-specific
platform for transparent component deployment.

1 http://plantuml.com/.
2 https://github.com/ObeoNetwork/M2Doc.

http://plantuml.com/
https://github.com/ObeoNetwork/M2Doc

340 I. Kurtev et al.

Fig. 2. Overview of ComMA and generators

– Model-based testing. Based on the state machines, models can be generated
for various model-based testing tools such as SpecExplorer3. This allows test
generation and on-line testing.

– Simulation. Simulation of a model helps in receiving an early feedback and
detecting errors. State machine models are transformed to POOSL programs
(Parallel Object Oriented Specification Language) [14]. Engineers can use the
step-by-step visual execution facilities of POOSL4.

– Runtime monitoring. A modified version of the transformation to POOSL pro-
duces an executable monitor for runtime verification. This feature is explained
in details in Sect. 5.

4.2 Specifying Component Interfaces with ComMA

ComMA provides a DSL for defining interface signatures. Here we present a
simplified version of the interface of the operating table.

interface ITable{
types
enum Status {PosReached PosNotReached InMove}

commands
bool start
void stop

3 https://www.microsoft.com/en-us/research/project/model-based-testing-with-spec
explorer/.

4 http://poosl.esi.nl/.

https://www.microsoft.com/en-us/research/project/model-based-testing-with-specexplorer/
https://www.microsoft.com/en-us/research/project/model-based-testing-with-specexplorer/
http://poosl.esi.nl/

Runtime Monitoring Based on Interface Specifications 341

signals
alive
moveVertical(int moveId , int pos)

notifications
verticalPosition (int pos , Status moveStatus)

}

We distinguish between two types of calls: commands that may be called
synchronously and always reply a result and asynchronous signals. Notifications
are asynchronous messages sent from a server to the clients. Commands, signals,
replies and notifications are referred to as events.

The interface above defines commands for starting and stopping the table
operational mode and a signal for moving the table in the vertical axis. Every
movement has an unique identifier (parameter moveId) and a target position
(parameter pos). The table can notify the system about its current position in
the vertical axis and the movement status. The status is encoded as a value
of an enumeration and denotes if the table is moving, has reached the target
position or the movement is interrupted and the target position is not reached.
Once the table is operational, the X-ray system has to send periodic signals to
it to indicate that the client side is alive. A signal is either a move request or an
alive signal (if no move is needed).

In ComMA, the behaviour of interfaces is specified by state machines. A state
machine is associated with at least one provided interface. Commands and signals
are triggers for state transitions. The machines have disjoint sets of transition
triggers and may share variables. Only one transition can be fired at a given
moment across all machines. The DSL allows only flat machines: nested states
are forbidden. All state transitions must be observable: either a transition is
triggered by a command/signal or the transition effect is observable, for example,
by sending a notification.

The following listing is a simplified specification of the externally visible
behaviour of the table interface.

machine Main provides ITable {

variables

int currentMoveId

init

currentMoveId := 0

initial state Inactive {

transition trigger: start

do: reply(true) next state: PositionReached

OR

do: reply(false) next state: Inactive

}

342 I. Kurtev et al.

state PositionReached {

transition trigger: moveVertical(int moveId , int target)

guard: moveId != currentMoveId

do: currentMoveId := moveId

next state: Moving

transition trigger: moveVertical(int moveId , int target)

guard: moveId == currentMoveId

next state: PositionReached

transition trigger: alive next state: PositionReached

transition

do: verticalPosition (*, Status :: PosReached)

next state: PositionReached

transition trigger: stop do: reply

next state: Inactive

}

state PositionNotReached {

...

}

state Moving {

transition trigger: moveVertical(int moveId , int target)

do: currentMoveId := moveId

next state: Moving

transition

do: verticalPosition (*, Status :: PosReached)

next state: PositionReached

transition

do: verticalPosition (*, Status :: PosNotReached)

next state: PositionNotReached

transition

do: verticalPosition (*, Status :: InMove)

next state: Moving

}

}

The command start tries to activate the table. The result is indicated in the
return value. If the activation is successful, the table assumes a reached position
state. It can receive a move request with a given identifier (signal moveVertical
with a positive integer as identifier and a target position). If it is a new move
request, the table starts moving (represented by state Moving). The table is mov-
ing as long as it receives move requests. The movement status is continuously

Runtime Monitoring Based on Interface Specifications 343

reported via notifications verticalPosition. The listing shows three different tran-
sitions that send verticalPosition as a notification: one for each possible status.
The notation ‘*’ denotes a value that is unknown in the state machine. The state
PositionNotReached is not elaborated. It is similar to state PositionReached.

If the table stops receiving the signal moveVertical, the movement is inter-
rupted and a notification for ‘position not reached’ status is sent. The machine
then moves to PositionNotReached state. The machine above does not capture
this logic. It just states that at any moment a transition to a non-moving state
is possible. The described behaviour is captured in a timing constraint explained
in the next section.

5 Monitoring of Time and Data Constraints

Issues at system level are often traced back to issues related to the conformance
of components (possibly supplied by a third party) to their interface specifica-
tions. Many issues of this kind are manifested during the interaction of several
components and it is difficult to detect them if a component is tested in isola-
tion. Monitoring and checking component interactions can reveal the problems
at an earlier phase and help in analyzing logs harvested from systems in the field.
We applied available runtime verification techniques (mainly inspired by [1]) to
support specification and monitoring of interface behaviour and constraints on
timing and data.

5.1 General Scheme for Component Monitoring

Generally, runtime verification is a technique for checking system behaviour
against a property during the execution of the system. The general scheme [7]
is given in Fig. 3.

The property may be given in a formal specification language (automata,
logic formula, grammar), as a set of rules or a program. A monitor is derived

Fig. 3. General scheme of runtime verification

344 I. Kurtev et al.

from a set of properties. The task of the monitor is to observe the execution
of the system and to produce a verdict, that is, a statement if the observation
satisfies the properties. The observation may be a series of system states or a
series of input and output events. Monitoring is executed either step by step
along with the system execution or over a log that contains the observations.

Figure 4 shows how this general approach is applied in ComMA. The behav-
ioral model of the interfaces (state machines, timing and data rules) plays the
role of properties. The monitor processes events observed during component
executions. Currently the events are obtained in two ways: by logging during
executions or by monitoring network traffic when the component is deployed on
the company-specific middleware. It should be noted that currently the execution
trace is checked after it is finished, that is, the check does not happen at run-
time. The implementation of the monitor, however, is agnostic about the exact
moment when events are supplied (during or after component execution). Moni-
toring at runtime can be performed if instrumentation is applied to components
or to the middleware layer.

Fig. 4. Monitoring in ComMA

The monitor is a POOSL program that is partially synthesized from the
constraint rules. It receives the events in the execution trace and sends them to
an executable model (also a POOSL program) derived from the state machines.
The state machine responds with events that are compared to the events in the
trace. The monitor also checks if the constraints hold for the trace. Verdicts
can be errors and warnings. Errors are violations of the state machine logic.
Warnings are violations of constraints. Errors stop the monitoring process, after
a warning the monitoring continues.

In the following subsections we elaborate on the support for specifying and
monitoring constraints.

Runtime Monitoring Based on Interface Specifications 345

5.2 Timing Constraints

The first type of constraints are timing constraints defined as timing rules. They
give the admissible intervals between events in different contexts. There are four
rule types.

Interval rules constrain the allowed time interval for observing an event if a
given preceding event was observed. The example rule named timeForReply states
that if the command stop is observed then the reply must be observed between
10 and 20 ms after the command. The rule is checked on the first occurrence of
reply after the command. Before checking timing rules, static checks ensure that
every command is properly matched by a reply. Pairs of commands/replies are
reconstructed in the order of their handling by the component.

timeForReply
command stop -[10.0 ms .. 20.0 ms] -> reply

The second rule type is called conditional interval. It states that if two events
are observed without observing the first event in between then the interval
between them lies within a certain boundary. The next example states that
the interval between start and a positive reply is 30 ms. The rule will not be
applied if the reply is false.

intervalBetweenEvents
command start
and
reply(true)
-> [.. 30.0 ms] between events

The third rule type allows specifications of periodic events. The following
rule states that after starting the system the connection should be kept alive by
sending signals every 100 ms. It is also possible to specify a jitter for the expected
period.

continousCommunication
reply(true) to command start then
any signal with period 100.0 ms jitter 10.0 ms
until
command stop

The fourth rule type allows stating that if a certain event is observed then
another event must be absent during a given interval after the observation. The
four types of rules can be combined in groups that form a scenario. Scenarios
and the rule for absence of an event are illustrated in the following example.
It is based on the safety mechanisms implemented in the table control. One
of them states that if a move request is delayed for more than 200 ms during
movement, the table must stop moving. The time for stopping after detecting
the delay is also constrained. The scenario specifies this constraint. The first rule
acts as a precondition: it detects if a move request is absent within 200 ms after
receiving the previous move request. If this happens then the table must stop

346 I. Kurtev et al.

within 1 s after the delay is detected. The stop is manifested by the notification
verticalPosition with the corresponding status value.

group intervalForStopping
in state Moving signal moveVertical
-> absent signal moveVertical in [.. 200.0 ms]
- [.. 1000.0 ms] ->
notification verticalPosition (*, Status :: PosNotReached)
end group

This rule illustrates also the possibility to specify state information in timing
rules. The rule will be triggered only if the signals are received in state Moving.
This is possible because the rules are evaluated over events that are already
accepted by the state machine, that is, state information is available.

5.3 Data Constraints

Apart from detecting delayed requests, other safety mechanisms in our industrial
case check the distance that the table is allowed to move after detecting the
absence of move requests. The distance should not exceed a certain value. This
is schematically given below by showing the expected sequence of events when
the table stops if move requests are no longer received:

verticalPosition (X, InMove)
moveVertical //The last moveVertical
... no more moveVertical signals ...
...
verticalPosition (Y, PosNotReached)

In order to check the distance we need to identify the last reported ver-
tical position (say X) in the verticalPosition notification just before the last
moveVertical signal. The fact that the table stops is indicated by a notification
verticalPosition with status PosNotReached and position Y. The absolute value
of Y-X must not exceed a certain limit.

We introduced a simple language for specifying data constraints. At an intu-
itive level, the meaning of a data constraint rule is: if a certain sequence of
events is observed then the observed data values must satisfy a given condition.
The monitoring algorithm should allow the observed data values to be bound
to variables and then used in conditions. The specification of an expected event
sequence can be done by using a regular expression-like notation. It should be
possible to assert both the presence and the absence of events.

The following example shows the constraint expressed in the data constraints
language.

stoppingDistance //name of the constraint
notification verticalPosition (X, Status :: InMove);
in state Moving signal moveVertical;
no [signal moveVertical]

Runtime Monitoring Based on Interface Specifications 347

until
notification verticalPosition (Y, Status :: PosNotReached)
where abs(X-Y) <= 100

The rule is checked as follows. Given a sequence of observed events, the
following sub-sequence is searched:

– notification verticalPosition with status InMove. The reported position (as
the first parameter) is kept as value of variable X;

– signal moveVertical that follows immediately after the previously observed
notification;

– a sequence of events that do not contain moveVertical and the event specified
in the until clause. In this way we capture the fact that move requests are
no longer received;

– notification verticalPosition with status PosNotReached. This event marks
the end of the sequence to be matched. The position is kept in variable Y.

If such a sequence in the trace is detected then the condition in the where
clause is checked. It states that the distance should be less than 100 units. If the
sequence is not detected then the rule precondition is not fulfilled and the rule
holds for the given trace.

Considering the implementation options for checking the data constraints,
several factors played a role. First, we were aware that time and data constraints
can be treated uniformly: timestamps are just data fields associated to events.
This brought the option to replace the existing dedicated engine for checking time
rules with a more generic engine applicable to both types of constraints. Second,
there exist formalisms for expressing properties used in runtime monitoring.
However, these formalisms are complex and it is preferable to shield the engineers
from directly using complex notations.

We decided to define a generic constraints language and engine while keeping
two separate ‘surface’ languages: for time rules and for data constraints. Specifi-
cations in these languages are transparently translated to the underlying generic
language. In this way, the surface languages can be kept simple and easily exten-
sible if needed. Extensions would require only a syntactical translation to the
more expressive generic language and no changes in the engine.

The language for generic constraints is the main contribution of this paper
and is explained in the following section.

6 Language for Generic Constraints

The main construct in our solution allows specifying patterns for sequences
of timestamped events observed in execution traces. Sequence patterns (called
here just sequence) are used to construct formulas which are evaluated during
monitoring.

A sequence is a concatenation of steps. Each step matches one or more
observed events in a trace. There are three kinds of steps: event selector, a dis-
junction of event selectors, and two until operators (weak and strong) inspired by

348 I. Kurtev et al.

the similar constructs in LTL. Informally, the matching process starts from the
first step in a sequence and tries to match it with the first event in a given trace.
If successful, the process continues with the next steps that are matched against
the remaining events in the trace. During this process free variables in the pat-
tern are bound to matched values and become available in the next steps. The
following example shows the formulation of the stoppingDistance data constraint
rule of Sect. 5.3 in the generic language.

stoppingDistance
<t1 , in state Moving

notification verticalPosition (X, InMove)>;
<t2 , in state Moving signal moveVertical >;
<t3 , not [signal moveVertical]>
until
<t4 , notification verticalPosition (Y, PosNotReached)>
where
abs(X-Y) <= 100

This rule has a name and a formula. The formula specifies a sequence (the
part before the where keyword) and a condition that uses variables in the
sequence (the part after where). The main difference with the syntax of the
same rule expressed in the data constraints language is the presence of timestamp
variables (t1, t2, . . .).

The first step in the example sequence is an event selector. It has a variable
named t1 that is bound to the event timestamp. The until construct with a
general form Selector1 until Selector2 matches a sequence of events in which
the last event matches Selector2 and all the preceding events match Selector1.
As can be seen in the example, event patterns can be negated. Selectors may
also have a boolean condition that is evaluated if the event pattern matches (this
is shown in the following examples). The remaining part of this section defines
the syntax and semantics of the generic constraints language.

6.1 Language Syntax

The syntax rules of the language are given in Table 1. In these rules some non-
terminals are left undefined: S is a set of states, Cond is a Boolean expression
defined by the ComMA grammar, Var denotes a variable, and P̄ (event para-
meters) is a vector of variables and constants of types supported by ComMA.
States, conditions and parameters can be omitted. For simplicity, the type of the
event (command, signal, etc.) is skipped and in state is abbreviated to in. We
assume that every variable appears at most once in all event selectors. The usage
of variables in conditions has to be well-formed: no forward variable references
are allowed.

From the rules it can be seen that event selectors have two forms. The first
one was already explained by the example rule stoppingDistance. The second
one has an extra variable called occurrence counter. The value of the variable is

Runtime Monitoring Based on Interface Specifications 349

Table 1. Syntax of the generic constraints language

Formula F ::= Seq | Seq and Cond | Seq cf F | not F | F or F

Sequence Seq ::= Step | Step until Step | Stepwuntil Step | Seq ; Seq
Step Step ::= ES | ES or ... or ES

Event Selector ES ::= 〈V ar,E,Cond〉| 〈V ar, V ar,E,Cond〉
Event Pattern E ::= in S EvDes(P̄) | not [in S EvDes(P̄)]

Event Designator EvDes ::= eventName | ∗

incremented every time the event selector is successfully matched in a sequence.
Consider the following example that uses an occurrence counter:

<t1 , i, in state s A>
or
<t2 , not[in state s A]>
until
<t3 , B>

If this sequence is evaluated against a trace, the counter i will be incremented
every time an event A is observed in state s until event B is observed. The usage
of counters is exemplified further in the context of periodic time rules.

Operator cf stands for conditional follow and expresses a common case in
which the match of a sequence is a precondition for checking a formula over the
remaining part of the trace. For example, the formula:

<t1 , A>;
<t2 , not[in state s B]>
until
<t3 , C>
cf
<t4 , D>

is used to check if all sequences of events that start with A, end with C and do
not contain event B occurring in state s, are immediately followed by event D.

Some useful logical operations are defined as the following abbreviations:

– F1 and F2 ≡ not (not F1 or not F2)
– F1 implies F2 ≡ not F1 or F2
– Seq where Cond ≡ not Seq or (Seq and Cond)

6.2 Language Semantics

Formulas are evaluated on traces of events. An event Ev is a tuple 〈t, s, e(D̄)〉
where

– t is a non-negative real number denoting the timestamp of the event.
Timestamps form an increasing sequence;

350 I. Kurtev et al.

– s is the state in which the event occurs. The event occurs in exactly one state
due to the constraints on the state machine syntax and semantics;

– e is event name and D̄ = (d1, . . . , dn) is a possibly empty vector of constants
(event parameters).

A trace is obtained from a monitored sequence of timestamped events that
satisfies the state machine behaviour. The process of monitoring adds state infor-
mation to the events. Trace T is a sequence of events Ev0, Ev1, . . . , Evi, For
an integer i ≥ 0, we denote T i = Evi, Evi+1, . . . and T (i) = Evi = 〈ti, si, ei(D̄i)〉.

Bindings of variables in event selectors are captured in environments. We
define an environment Γ = {[v1 �→ d1], . . .} as a set of mappings from variables
to values. Γ [Γ ′] is the familiar operation of updating Γ with the mappings in Γ ′

and Γ (v) gives the value of v in Γ .
For an environment Γ and a boolean expression Cond, we denote Γ |= Cond

if Cond evaluates to true for the valuations in Γ .
When a sequence is matched in a trace, the environment with bound variables

and the remaining part of the trace are propagated to the possible next steps.
This is formalized as a partial function Cont : Trace×Env×Seq → Trace×Env.
Env is a set of environments and Trace is a set of traces.

We define a satisfaction relation between events, environments and event
patterns as follows:

– (〈t, s, e(D̄)〉, Γ) |= in S EvDes(P̄) iff EvDes = e or EvDes = ∗, s ∈ S, for
every constant ci in P̄ , ci = di and for the list of variables v1 . . . vk in P̄ we
have Γ = {[v1 �→ d1], . . . , [vk �→ dk]}

– (〈t, s, e(D̄)〉, ∅) |= not[in S EvDes(P̄)] iff for all Γ ,
(〈t, s, e(D̄)〉, Γ) � in S EvDes(P̄)

If the set of states S and parameters P̄ are not used in the event pattern,
the corresponding checks are skipped.

The semantics of formulas is defined as satisfaction relation between formulas,
traces and environments. We start with the semantics of sequences.

– (T, Γ) |= 〈V ar,E,Cond〉 iff (T (0), Γm) |= E and Γ ′ |= Cond, where Γ ′ =
Γ [Γm][V ar �→ t0]
Cont(T, Γ, 〈V ar,E,Cond〉) = 〈T 1, Γ ′〉

– (T, Γ) |= 〈V ar1, V ar2, E,Cond〉 iff (T, Γ) |= 〈V ar1, E,Cond〉
Cont(T, Γ, 〈V ar1, V ar2, E,Cond〉) = 〈T 1, Γ ′[V ar2 �→ Γ (V ar2) + 1]〉 where
Cont(T, Γ, 〈V ar1, E,Cond〉) = 〈T 1, Γ ′〉. Every occurrence counter takes ini-
tial value 0 before a formula is evaluated on a trace.

– (T, Γ) |= ES1 or . . .or ESn iff there exist i such that 1 ≤ i ≤ n, (T, Γ) |=
ESi Cont(T, Γ,ES1 or . . .or ESn) = 〈T 1, Γ [

⋃

k

(Γk \ Γ)]〉, for all k such that

(T, Γ) |= ESk and Cont(T, Γ,ESk) = 〈T 1, Γk〉
It should be noted that

⋃

k

(Γk \ Γ) cannot contain two different bindings for

the same variable because a variable can occur at most once in all ESk.

Runtime Monitoring Based on Interface Specifications 351

– (T, Γ) |= Step1 until Step2 iff there exist i such that i ≥ 0, (T i, Γ i) |= Step2
and for each k, 0 ≤ k<i, (T k, Γ k) |= Step1 and (T k, Γ k) � Step2 where
environments are defined as:

• Γ 0 = Γ
• Cont(T k, Γ k, Step1) = 〈T k+1, Γ k+1〉 for all k, 0 ≤ k < i Cont(T, Γ, Step1
until Step2) = Cont(T i, Γ i, Step2)

– (T, Γ) |= Step1 wuntil Step2 iff:
• (T, Γ) |= Step1 until Step2

Cont(T, Γ, Step1 wuntil Step2) = Cont(T, Γ, Step1 until Step2)
or

• (T i, Γ i) |= Step1, for all i ≥ 0 and Γ i defined as in the case of until.
Cont is undefined

– (T, Γ) |= Seq1;Seq2 iff (T, Γ) |= Seq1, Cont(T, Γ, Seq1) is defined and has
value 〈T i, Γ ′〉 for some i ≥ 1, and (T i, Γ ′) |= Seq2
Cont(T, Γ, Seq1;Seq2) = Cont(T i, Γ ′, Seq2)

– (T, Γ) |= Seq and Cond iff (T, Γ) |= Seq, Cont(T, Γ, Seq) is defined and has
value 〈T i, Γ ′〉 and Γ ′ |= Cond

– (T, Γ) |= Seq cf F iff
• (T, Γ) |= not Seq

or
• (T, Γ) |= Seq, Cont(T, Γ, Seq) = 〈T i, Γ ′〉 is defined and (T i, Γ ′) |= F

– (T, Γ) |= not F if (T, Γ) � F
– (T, Γ) |= F1 or F2 if (T, Γ) |= F1 or (T, Γ) |= F2

We state that a formula F holds in a trace T and an initial environment Γ
if for every i ≥ 0, (T i, Γ) |= F . The initial environment gives 0 as a value of
all occurrence counter variables. For the other variables the user can supply an
initial value or a default value is assumed.

During monitoring, time and data constraints are translated to formulas in
the presented generic language. The translation is automatic and transparent
to the users. Hence, the users do not need to work directly with the generic
formulas which are often more verbose and more difficult to grasp than the
source constraints. We first show how time rules are translated.

6.3 Translation of Timing Constraints

In this section we show how different types of timing rules are translated into
formulas in the generic constraints language.

Timing rules use a simplified event selectors of the form inSe(P̄), where P̄ is
a possibly empty vector of constants. The set of states S and the parameters can
be omitted. The translation of event selectors in timing rules to the selectors in
the generic language is trivial and will not be discussed. Selectors will be given
in capital letters A, B,. . .

352 I. Kurtev et al.

Interval Rule. The general form is:

A -[p..q] -> B

A and B are selectors, [p..q] denotes a time interval with an obvious constraint
0 ≤ p < q. q may be infinity. The interval rule is translated to the following
formula:

<t1 , A>
cf
<t2 , not[B]>
until
<t3 , B, (t3-t1) in [p..q]>

The formula states that if a match of A is observed then there must be an
occurrence of event that matches B and the first such occurrence is in the interval
[p, q].

Conditional Interval Rule. The rule gives two events as a premise of the rule
and an expected interval.

A and B -> [p..q] between events

The rule is translated to:

<t1 , A>; <t2 , not[A]> until <t3 , B>
where (t3 -t1) in [p..q]

Absence of Event. The rule specifies an event that is a condition for not
observing a follow up event in a certain interval.

A -> absent B in [p..q]

The corresponding formula is:

not
(<t1 , A>;
<t2 , *, t2 -t1 <= q>
until
<t3 , B, (t3-t1) in [p..q]>)

Periodic Event Rule. The rule specifies a triggering event A as a condition
for a periodic observation of B with a period p and jitter j until a stop event C
is observed.

A then B with period p and jitter j until C

The meaning of the rule is that if an event A is observed at time t then the
i-th occurrence of event B after A and before C must be in the time interval
[t + i ∗ p − j, t + i ∗ p + j]. The formula for this rule is:

Runtime Monitoring Based on Interface Specifications 353

<t, A>

cf

(<t1 , i, B, t1 in [t + (i + 1)*p -j, t + (i + 1)*p + j]>

or

<t2, not[B], t2 <= t + (i + 1)*p + j>)

wuntil

<t3, C, t3 <= t + (i + 1)*p + j>

The rule uses an event selector with occurrence counter i. If an event A is
observed then we check if the formula after ‘cf’ is satisfied for the events following
A. The timestamp of A is bound to the variable t. There are three cases:

– we observe event B with timestamp t1. The condition of the first step in the
disjunction checks if t1 is in the allowed interval. If it is not, the formula is
not satisfied. If the condition is true (i.e. the occurrence is in the expected
interval) the value of i is incremented and used to calculate the time interval
of the eventual next occurrence of B ;

– we observe an event different from B and C. In this case, the second compo-
nent of the disjunction matches the event and we check the condition. If the
condition is false this means that after the last occurrence of B we have not
observed an event B and we have just observed an event that is already after
the allowed interval. Therefore the formula is not satisfied;

– we observe event C. The condition checks if C is observed within the expected
time upper bound for the event B. If the condition is false we have the
situation in the previous case: B is not found in the expected interval and we
have an event after this interval.

The semantics of the rule admits the case when C is never observed. wuntil
is used to handle this.

The translation of periodic time rules illustrates that the resulting generic
formulas may be more complex and more difficult to read than the original time
constraint. We recall that users do not work with generic formulas directly. They
use the more compact syntax of the surface languages.

Group Time Rule. This rule type allows specifying a rule that is a precon-
dition for a series of interval rules thus allowing a scenario of several events.
We will only show the case when an absence of event may be followed by other
events with given time intervals. An example was shown in the previous section.
The general form is:

group
A -> absent B in [0 .. p]
- [p1 .. q1] -> C
- [p2 .. q2] -> D
...
end group

354 I. Kurtev et al.

This rule is translated to the formula:

<t1 , A>;
<t2 , not[B], (t2 -t1) <= p>
wuntil
<t3 , *, (t3-t1) > p>

implies

<t4 , A>; <t5 , *> until <t6 , C, t6 -t4 -p in [p1..q1]>;
<t7 , not[D]> until <t8 , D, t8 -t6 in [p2..q2]>;
....

6.4 Translation of Data Constraints

The grammar for data constraints rules is in Table 2. This language is as a subset
of the generic constraints language following the same semantics.

Table 2. Syntax of data constraints language

Data Constraint DConstraint ::= Seq where Cond

Sequence Seq ::= Step | Step until Step | Seq ; Seq
Step Step ::= in S EvDes(P̄) | not [in S EvDes(P̄)]

Event Designator EvDes ::= eventName | ∗

6.5 Implementation Considerations

The definition of semantics for the generic constraints allows a proof that the
initial semantics of time rules is preserved by the translation to the generic
language. Generally, the development of the formalization enabled better under-
standing of the subtle details and greatly supported the software implementation.

An important aspect of the implementation is the fact that in a practical
setting we deal with finite traces whereas the semantics of the formulas is given
over infinite traces. This affects the evaluation of formulas. Consider an interval
timing rule. In the trace we may observe the first event and according to the rule
we must observe the second event within certain period of time. If the trace ends
before passing this period and no event is observed the rule evaluates to false.
However, we cannot conclude if the second event will never appear because the
information is not complete (monitoring has stopped). For situations like this
we do not give a yes/no verdict for the rule. Instead, a warning is produced that
states the rule has not been fully evaluated due to the termination of monitoring.
As an alternative, the semantics can be defined for finite traces. This is a subject
of future investigation.

Runtime Monitoring Based on Interface Specifications 355

6.6 Application of Monitoring on the Industrial Case

Component monitoring was applied during the development of the client soft-
ware for the operating table. The examples shown here are simplifications of the
actual models. The real model and constraints are more complex and take into
account the complete interface and its behaviour. Several issues were revealed.
For instance, movement requests with negative identifiers were sent by the client
and accepted by the component. This was detected as a violation of the model
and corrections were implemented in the software. The availability of explicit
timing constraints allowed to experiment with different values for the allowed
delays. The experiments revealed situations in which some events occur earlier
than expected.

Generally, the process of modeling the intended behaviour of the interface
based on textual documentation supported the engineers to explore cases in
which the documentation was missing or the interpretation of the information
was not clear. We also faced situations when the data constraints language was
not expressive enough. In these cases, the constraints were successfully expressed
in the generic language.

7 Concluding Remarks

The availability of precise component interface specifications enables early detec-
tion of defects and ultimately supports the development of software with higher
quality. In this paper we presented ComMA, a framework for interface behaviour
specification and focused on the support for runtime monitoring of timing and
data constraints. The DSLs in ComMA integrate techniques and results from
different research areas and provide a single entry point for engineers to specify
and develop component interfaces.

The development of ComMA follows the industry-as-laboratory approach.
DSLs are based on the concrete needs of the engineers and evolve following these
needs. The developed languages are not business-specific and are not restricted
to the medical domain. They are aimed at problems that are found in other
domains as well and utilize general techniques thus making the framework easily
generalizable.

Acknowledgements. The anonymous reviewers are thanked for useful suggestions
for improvement. We would like to thank Dirk-Jan Swagerman for his support and the
collaborating teams at Philips for constructive feedback.

The second author is grateful to Ed Brinksma for the very pleasant collaboration
when Ed was the scientific director of the Embedded Systems Institute (currently TNO-
ESI). With his very broad knowledge he was able to discuss any topic with experts and
he created an excellent environment for productive industry-as-lab projects. Moreover,
Ed is thanked for the stimulating role in the career development of the second author.

References

1. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. In: Sokolsky and Taşıran [13], pp. 111–125

356 I. Kurtev et al.

2. Brinksma, E., Hooman, J.: Dependability for high-tech systems: an industry-as-
laboratory approach. In: Design, Automation & Test in Europe (DATE 2008), pp.
1226–1231. European Design and Automation Association (EDAA) (2008)

3. Broy, M., Peled, D.A., Kalus, G. (eds.): Engineering Dependable Software Systems.
NATO Science for Peace and Security Series, D: Information and Communication
Security, vol. 34. IOS Press (2013)

4. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. STTT 7(3), 212–232
(2005)

5. Cassez, F., Jard, C. (eds.): FORMATS 2008. LNCS, vol. 5215. Springer, Heidelberg
(2008)

6. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based framework for
software development and analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30482-1 31

7. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy
et al. [3], pp. 141–175

8. Kim, H., Fried, D., Menegay, P., Soremekun, G., Oster, C.: Application of inte-
grated modeling and analysis to development of complex systems. Procedia Com-
put. Sci. 16, 98–107 (2013)

9. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

10. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall Inc.,
Upper Saddle River (1988)

11. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez
and Jard [5], pp. 1–13

12. Potts, C.: Software-engineering research revisited. IEEE Softw. 19(9), 19–28 (1993)
13. Sokolsky, O., Taşıran, S. (eds.): RV 2007. LNCS, vol. 4839. Springer, Heidelberg

(2007)
14. Theelen, B., Florescu, O., Geilen, M., Huang, J., van der Putten, P., Voeten, J.:

Software/hardware engineering with the parallel object-oriented specification lan-
guage. In: Proceedings of MEMOCODE 2007, pp. 139–148. IEEE (2007)

http://dx.doi.org/10.1007/978-3-540-30482-1_31
http://dx.doi.org/10.1007/978-3-540-30482-1_31

From Lotosphere to Thermosphere

Holger Hermanns(B)

Saarland University – Computer Science,
Saarland Informatics Campus, Saarbrücken, Germany

hermanns@cs.uni-saarland.de

Abstract. This paper reflects on the influential nature of some of the
many scientific achievements linked to Ed Brinksma on the occasion
of his 60th birthday. We in particular discuss pioneering contributions
in the contexts of constraint-oriented specification, model-based testing,
and cost-optimal timed reachability, as well as with respect to tools and
algorithms for the construction and analysis of systems. We shed light
on these achievements by linking a historical perspective with recent and
very applied research directly rooted in these contributions.

1 Introduction

The scientific œuvre of Ed Brinksma has many facets. We here focus on four
of them, since we consider those to be characteristic cornerstones of his work
and because we do feel they have notable impact on the world we live in. We
discuss how the pioneering work of Ed Brinksma on (i) model-based testing,
on (ii) constraint-oriented specification, and on (iii) cost-optimal reachability
analysis is having impact on today’s scientific forefront. We conclude by putting
them into the greater context of his dedication to (iv) tools and algorithms
for the construction and analysis of systems. The selection of facets considered
naturally has a personal bias.

2 Model-Based Testing

This section reviews how model-based testing has made its way from the uni-
versity labs in Twente to customer appliances that assist in everyday life.

Testing Theory. Formal theories for testing were pioneered by Rocco De Nicola
and Matthew Hennessy [12], originally motivated by the desire to characterise
interesting formalisations of the notion of observable behaviour for transition sys-
tems, using an idealised but intuitive formalisation of testing. The first attempts
to use this theory for automatic test derivation from formal specifications were
made by Ed Brinksma in [7], and further developed in Twente jointly with Kars,
Tretmans and coworkers [25]. This work was the nucleus for what is nowadays
known as model-based testing, a technique with manifold and very practical
applications.

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 357–367, 2017.
DOI: 10.1007/978-3-319-68270-9 18

358 H. Hermanns

Input-Output Conformance. Using a formal model as the specification of desired
behaviour, model-based testing provides means to generate and carry out a suit-
able set of experiments on the implementation under test (IUT). This is done
in an automated manner, with the goal to assert some notion of conformance of
the IUT with respect to the model. The most prominent conformance relation
in use is input-output conformance [24], developed by Jan Tretmans under the
guidance of Ed Brinksma. It is defined for systems interacting synchronously
with their environment, and especially with the model-based testing tool. The
models are represented as input-output transitions systems (IOTS). In IOTS the
transitions between states have a certain structure: each of them carries a name
of an action occurring and an identifier whether it is to be interpreted as an input
(stimulus) to the implementation or an output (response) of the implementation
(or an internal step).

Test Case Execution. A model-based testing tool performs automated inspection
of the possible inputs and outputs while stepping through the states of a model.
In each state of such a test case it either provides an input to or records an output
from the IUT and accordingly updates its knowledge of what the current state of
the model is. The test cases are executed on the actual software, system or device
to be tested by translating the abstract transitions to concrete interactions with
the IUT. Such a concrete execution of a test case (or of several test cases) ends
in a test verdict of the form “pass”, respectively “fail”. Specifically, whenever an
unexpected output of the IUT occurs, i.e. an output which is not foreseen by the
current knowledge of the model state, the IUT is refuted with the verdict “fail”.

Embedded Energy Managment Software. Embedded control software has become
a major driver of industrial innovation, encompassing many critical, and some-
times safety-critical, application domains. A particularly delicate domain is the
management of electric power: Embedded power management software has been
traced to be the root of unintended and partly dangerous malfunctionings of
laptops [27], smart phones [28], smart watches [29], pacemakers [30], and light
electric vehicles [31]. The proper handling of electric power by software is obvi-
ously intricate. At the same time, electric power is the base commodity needed
to innovate formerly all-mechanical systems.

EnergyBus. The EnergyBus is an emerging industrial standard for electric
power transmission and management tailored to light electric mobility. At its
core is an open specification for interoperability of the electrical components
of e-bikes and other light electric vehicles, encompassing batteries, chargers,
motors, sensors, and the human interface. The specification is based on the
CANopen field bus. Its development is driven by EnergyBus e.V., an association
formed by major industrial stakeholders in the e-bike domain. The Energy-
Bus specification itself is the nucleus for the joint IEC/ISO standardisation
IEC/IS/TC69/JPT61851-3 and European Norm (EN) 50604, aiming at eventu-
ally enabling a single charger to be used across all light electric vehicles. By mid
2018, this safety standard is scheduled to become a binding standard in Europe,
thereby enabling effective public charging infrastructures for light electric
mobility.

From Lotosphere to Thermosphere 359

Applying Model-Based Testing. State-of-the-art formal methods and tools have
been and are being applied in the EnergyBus context to assure the general
correctness and safety of EnergyBus protocol specifications [16], as well as to
support implementers of EnergyBus in designing correct and safe implemen-
tations. For the latter, we have lately developed a tool platform for automated
conformance testing of EnergyBus implementations against their formal speci-
fication. The tool platform is based on the Modest modelling language [17] and
its accompanying Modest Toolset [18], which we extended with support for
effective model-based testing against the EnergyBus protocol specification.

Asynchrony in Conformance Testing. The EnergyBus testing process itself
motivated us to extend the supported conformance relation to asynchronous
testing, especially in order to eliminate spurious errors. This is because the
EnergyBus protocol uses CAN-based communication primitives. This setting
however violates the synchrony hypothesis, just as many other settings do. In
order to nevertheless provide testing facilities we were required to come up with
a new and effective approach to model-based testing under asynchrony. By waiv-
ing the need to guess the possible output state of the IUT, we indeed manage to
reduce the computational effort of the test generation algorithm while preserving
soundness and conceptual completeness of the testing procedures. In addition,
no restrictions on the specification model need to be imposed [14].

Industrial Uptake and Integration. In order to foster both, the application of for-
mal methods in industry, as well as the quality and interoperability of Energy-
Bus devices reaching the consumer market, we have made our testing platform
available to all industrial members of EnergyBus e.V. free-of-charge. This means
that EnergyBus members can freely operate with the tool, so as to test con-
formance of their implementations directly against the formal specification of
the EnergyBus protocol [15]. At the same time, we are ourselves performing
tests of prototype devices, as soon as they are made available to us by mem-
bers of the association. Our contributions in the context of the EnergyBus

standardization efforts support the entire process from specification, modelling,
verification and certification including both traditional test case programming
and model-based testing. Specification inaccuracies as well as programming bugs
have been found in tested prototype and retail devices. Based on our insights,
documentation and implementations have been improved. We are not aware of
any other standardization procedure with a similarly tight integration of formal
methods.

3 Constraint-Oriented Specification

This section discusses the constraint-oriented specification style, originally
coined by Ed Brinksma, in the light of constraints on real-time behaviour. What
may look like a surprising angle at first sight, is actually a natural and useful
extension.

360 H. Hermanns

Behavioural Constraints by Composition. In the late 80ies of the last century,
Ed Brinksma introduced constraint-oriented specification [8]. This specification
style harvests features of multiway parallel composition operators as they are
found in process languages such as LOTOS or CSP. Indeed, these operators
can “implement” the power of logical conjunction with respect to sets of traces.
The constraint-oriented specification style has shown its merits as an extremely
useful tool in realistic applications, where it is used to carry out successive steps
of logical refinement in specifications [13].

Timing by Composition. One particular manifestation of its usefulness is its
adoption to the time domain, in the form of time constraints. Together with
multiway synchronisation, time constraints can gradually turn a untimed spec-
ification into one where certain occurrences of actions are to be delayed. These
constraints are added by composition. In the context of timed automata, this
idea is implicitly present for instance in some of the modelling work related to
the Bang & Olufsen audio/video power control protocol [19]. A full proposal has
been developed in [21] in the context of interactive Markov chains [20]. There, it
has been used to turn an untimed specification of a plain-old telephone system
protocol into a timed specification, solely by the use of composition with time
constraints. We here sketch the essence of time constraints recast into the setting
of timed automata [1].

Timed Automata. Timed automata are a standard modelling formalism for real
time systems. A timed automaton is an extension of finite state machines with
non-negative real valued variables called clocks in order to capture timing con-
straints. Thus, a timed automaton is an annotated directed graph over a set of
clocks C where vertices (called locations) are connected by edges, and both are
decorated with conjunctions of clock constraints of the form c ≤ k or c ≥ k with
c being a clock and k ∈ N. For edges such constraints are called guards, for loca-
tions they are called invariants. Edges are additionally decorated with reset sets
of clocks. Intuitively, taking an edge causes an instantaneous change of location
and a reset to 0 for each clock in the reset set. However an edge may only be
taken if its guard and the target location’s invariant evaluate to true. It does not
have to be taken however. As long as permitted by the invariant of the current
location, time can advance there, meaning that all clocks increase continuously
with their assigned rates, thus modelling the passing of time. Figure 1 depicts a
small example of a timed automaton.

�0
c ≤ tmax

�1
true

c ≥ tmin, d, ∅

Fig. 1. A simple timed automaton TA. The invariant c ≤ tmax in location �0 and the
guard c ≥ tmin on the edge together impose a nondeterministic delay of at least tmin

and at most tmax before action d may occur. No clocks are reset, due to the reset set
being ∅.

From Lotosphere to Thermosphere 361

�0
c ≤ tmax

�1
truec ≥ tmin, d, ∅

true, s, {c}

true, i, ∅

true, d, ∅true, s, {c}

true, i, ∅

Fig. 2. A time constraint TC for S = {s}, I = {i}, and D = {d} extending the timed
automaton TA from Fig. 1. The delay on action d is started upon occurrence of action
s and can be interrupted by action i.

Time Constraints. Now assume we are given a (possibly entirely untimed) sys-
tem, which encompasses (not necessarily disjoint) sets of actions S, D, and I.
Furthermore assume that we want to ensure a delay of some duration for occur-
rences of actions in D (to be delayed) after occurrence of any action in S (starting
the delay), unless an action of I (interrupting the delay) occurs in the mean-
while. The delay we want to ensure has a duration of at least tmin and at most
tmax. So, we concretely assume

– an interval [tmin, tmax] ⊂ R
≥0 of real time that determines the possible dura-

tion of the time constraint,
– a set of actions S (start) that determines when a delay starts,
– a set of actions D (delay) that are to be delayed, and
– a set of actions I (interrupt) each of which may interrupt the delay.

Based on this information, a simple two-location timed automaton needs to be
constructed which operates with a single fresh clock c. The locations are �1 and
�0. The invariant of �1 is true, the one of �0 is c ≤ tmax (as already seen in Fig. 1).
Location �1 serves as initial location. Furthermore,

– for each s ∈ S we have �1
true,s,{c}−−−−−−→ �0 and �0

true,s,{c}−−−−−−→ �0;
– for each d ∈ D we have �1

true,d,∅−−−−−→ �1 and �0
c≥tmin,d,∅−−−−−−−→ �1;

– for each i ∈ I we have �1
true,i,∅−−−−−→ �1 and �0

true,i,∅−−−−−→ �1.

For singleton sets S, D, and I the result of the above construction is sketched
in Fig. 2. The construction needs slight adjustments if the three sets are not
disjoint [20, 5.5].1 The main functionality of the above construction is that it
does insert a delay for actions of D, but otherwise does not interfere with actions
of S ∪ D ∪ I.

Incorporating Time Constraints. It is precisely the constraint-oriented specifica-
tion style originally proposed by Ed Brinksma [8] that enables us to incorporate
such a constraint TC into a system SY by composition. All that is needed is

1 Notably, choosing the reset set to include c in �0
true,s,{c}−−−−−−→ �0 makes the delay restart

should another action s occur while the delay is running. Another option would be
to drop c from this set. This might be preferable dependent on the context.

362 H. Hermanns

a multiway parallel composition operator ||A which synchronizes precisely the
actions in A and otherwise lets actions proceed independently [6,9]. With this
operator the time-constrained system is expressed as

SY ||S∪D∪I TC.

This system behaves just as SY behaves, except that whenever an action from
S occurs in SY , all actions from D in SY are assured to be delayed at least by
an amount of time that lies in the interval [tmin, tmax] unless an action from I
occurs in SY in the meanwhile. Further time constraints can be added to the
system in the very same manner, as in

(· · · ((SY ||S1∪D1∪I1 TC1) ||S2∪D2∪I2 TC2) · · · ||Sn∪Dn∪In TCn).

Analysis. Overall, this approach can turn an untimed specification into a timed
specification in a compositional manner. This makes the final system amenable
to quantitative analysis, including real-time model checking and the like. A com-
plete case study in this regard has been carried out in a setting with soft real-
time [21]. It can also be combined with induction and data independence [11].

4 Cost-Optimal Timed Reachability

This section elaborates on the concepts of cost-optimal scheduling, originally co-
developed by Ed Brinksma, and how they are finding their way into tiny objects
orbiting the earth.

Priced Timed Automata. In order to reason about resource consumption, Ed
Brinksma and his collaborators have enriched timed automata with non-negative
integer costs and non-negative cost rates in the form of annotations for edges
and locations respectively [22]. The result are priced timed automata (PTA).
The intuition is that cost accumulates continuously in a proportional manner
to the sojourn time of locations and increases in a step upon taking an edge as
specified by the respective annotations.

Cost-Optimal Reachability. The original problem considered in the context of
PTA is that of computing the minimum cost to reach a certain target location
in a given PTA. This so-called cost-optimal reachability analysis (CORA) has
received dedicated attention and is implemented in a number of tools, most
prominently Uppaal Cora [26]. As input Uppaal Cora accepts networks of
PTAs extended by discrete variables, and thus allows for modular formalisation
of individual components. The set of goal states is characterised by formulae
over the variables in the network of PTAs.

Schedule Synthesis. One of the most prominent applications of this technique,
explored in particular within the EU-funded AMETIST project, is schedule syn-
thesis. The main strength of this approach is that the expressiveness of timed
automata allows - unlike many classical approaches - the modelling of schedul-
ing problems of very different kinds. Furthermore, the models are robust against

From Lotosphere to Thermosphere 363

changes in the parameter setting and against changes in the problem specifi-
cation. A milestone in practical applicabilitly of this technique is a case study
originally provided by AXXOM: an intricate scheduling problem for lacquer pro-
duction [2]. A number of problems needed to be addressed for the modelling task,
including information transfer from the industrial partner, the derivation of a
timed automaton model for the case study, and the heuristics that have to be
added in order to reduce the search space.

Robustness of Schedules. This analysis had to ignore two dimensions of the orig-
inal problem specification as provided by AXXOM. These relate to quantitative
stochastic influences due to failures, repairs, cleaning periods and other unfore-
seeable (and thus unplannable) events. To attack thesem the timed automata
model of the production units has been refined into a stochastic timed automata
model [4] in order to faithfully represent the stochastic perturbations and to
assess the robustness of the system in light of these perturbations. The robust-
ness of the schedules is assessed on the basis of estimates obtained by a discrete-
event simulation-based analysis [5,23]. This two-step analysis approach, which
combines timed automata-based verification with stochastic robustness analysis
is a very striking and effective way to exploit the benefits of formal verification.

Scheduling in Thermosphere. Lately, we have applied this very same approach
to a very challenging domain, the domain of low-earth orbiting satellites. This
work was coined as part of the EU-funded SENSATION project, and continues
as part of the ERC Advanced grant POWVER. For a satellite in low orbit all
resources are sparse and the most critical resource of all is power. It is therefore
crucial to have detailed knowledge on how much power is available for an energy
harvesting satellite in orbit at every time – especially when in eclipse, where it
draws its power from onboard batteries.

GomX–3 Mission. The GomX–3 CubeSat was a 3 l (30×10×10 cm, 3 kg) nano-
satellite designed, delivered, and operated by Danish sector leader GomSpace.
GomX–3 was the first ever In-Orbit Demonstration (IOD) CubeSat commis-
sioned by ESA. The GomX–3 system used Commercial-off-the-shelf (COTS)
base subsystems to reduce cost, enabling fast delivery so as to focus on payload
development and testing. GomX–3 was launched from Japan aboard the HTV–5
on August 19, 2015. It successfully berthed to the ISS a few days later. GomX–3

was deployed from the ISS into thermosphere on October 5, 2015, it deorbited
in October 2016. Figure 3(left) shows the satellite at the time of deployment
from ISS.

In-Orbit Scheduling. The heterogeneous timing aspects and the experimental
nature of this application domain pose great challenges, making it impossible to
use traditional scheduling approaches for periodic tasks. Our approach harvests
work on schedulability analysis with (priced) timed automata, and is distin-
guished by the following features: (i) The timed automata modelling is very
flexible, adaptive to changing requirements, and particularly well-suited for dis-
cussion with space engineers, since easy-to-grasp; (ii) A dynamic approach to
the use of cost decorations and constraints allows for a split scheduling approach

364 H. Hermanns

UHF
X

Fig. 3. The GomX–3 nanosatellite deployment from the ISS (left, picture taken by
Astronaut Scott Kelly), and schedule effectuated March 20, 2016 7 AM to March 22,
2016 7 PM (right).

optimising over intervals, at the (acceptable) price of potential sub-optimality
of the resulting overall schedules; (iii) A linear battery model is employed while
computing scheduling, but prior to shipping any computed schedule is subjected
to a quantitative validation on the vastly more accurate stochastic kinetic bat-
tery model, and possibly rejected. This last aspect is very close in spirit to the
robust scheduling approach [23] discussed above. The stochastic validation step
however is not based on simulation, but instead is exact (or conservative) up to
discretisation. The procedure has been in use for the automatic and resource-
optimal day-ahead scheduling of GomX–3. One of the schedules computed by
the approach, and effectuated in by GomX–3 is displayed in Fig. 3(right).

Results. The GomX–3 in-orbit experiments have demonstrated an indeed great
fit between the technology developed and the needs of the LEO satellite sector.
The schedules generated are of unmatched quality: It became apparent that rela-
tive to a comparative manual scheduling approach, better quality schedules with
respect to (i) number of experiments performed, (ii) avoidance of planning mis-
takes, (iii) scheduling workload, and (iv) battery depletion risk are provided. At
the same time, the availability of scheduling tool support flexibilises the satellite
design process considerably, since it allows the GomSpace engineers to obtain
answers to what-if questions, in combination with their in-house tools. This
helps shortening development times and thus time-to-orbit. In fact, GomSpace
will launch a constellation consisting of two spacecrafts (GomX–4 A and B)
soon and is actively pursuing several projects with much larger constellations.
Deploying constellations of a large number of satellites (2 to 1000) brings a new
level of complexity to the game. The need to operate a large number of satel-
lites asks for a larger level of automation to be used than has previously been
the case in the space industry. For larger constellations tools for optimization,
automation and validation are not only a benefit, but an absolutely necessity for
proper operations.

From Lotosphere to Thermosphere 365

5 Conclusion

This paper has reviewed high-impact pioneering contributions of Ed Brinksma
in the contexts of constraint-oriented specification, of model-based testing, and
of cost-optimal timed reachability. These are manifestations of a general theme
overarching his scientific work, namely software tools supporting the applica-
tion of formal methods. Before being promoted to Rector Magnificus at Uni-
versiteit Twente he for many years held the Chair for Formal Methods and
Tools (“Formele Methoden en Gereedschappen”). During this period, he heav-
ily invested in tool support for formal methods, including tools for formal
testing, verification of soft- and hard-real time systems, algebraic specifica-
tions, and many more. And very many of his projects of national, European
and international scale have had a distinguished focus on the advancements
on the software support side, notably including LOTOSPHERE, SVC, VHS,
ARTIST, AMETIST, and QUASIMODO. Together with Kim Larsen (co-founder
of UPPAAL [3]), Bernhard Steffen, and Rance Cleaveland (co-founders of the
Concurrency Workbench [10]) he founded an international conference on tools
and algorithms for the construction and analysis of systems (TACAS). This
conference is nowadays simply the conference on tools and algorithms for the
construction and analysis of systems.

Acknowledgments. We gratefully acknowledge insightful comments by Sadie Creese
(University of Oxford) on an early draft of this paper. This work is supported by the
ERC Advanced Investigators Grant 695614 (POWVER), and has profited from the
EU-funded projects SENSATION, QUASIMODO, and AMETIST.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

2. Behrmann, G., Brinksma, E., Hendriks, M., Mader, A.: Production scheduling by
reachability analysis - a case study. In: 19th International Parallel and Distributed
Processing Symposium (IPDPS 2005), CD-ROM/Abstracts Proceedings, Denver,
CO, USA, 4–8 April 2005. IEEE Computer Society (2005)

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). doi:10.1007/BFb0020949

4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

5. Bohnenkamp, H.C., Hermanns, H., Klaren, R., Mader, A., Usenko, Y.S.: Synthesis
and stochastic assessment of schedules for lacquer production. In: 1st International
Conference on Quantitative Evaluation of Systems (QEST 2004), Enschede, The
Netherlands, 27–30 September 2004, pp. 28–37. IEEE Computer Society (2004)

6. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language
LOTOS. Comput. Netw. 14, 25–59 (1987)

http://dx.doi.org/10.1007/BFb0020949

366 H. Hermanns

7. Brinksma, E.: A theory for the derivation of tests. In: Aggarwal, S., Sabnani, K.K.
(eds.) Protocol Specification, Testing and Verification V, Proceedings of the IFIP
WG6.1 Eighth International Conference on Protocol Specification, Testing and
Verification, pp. 171–194. North-Holland (1988)

8. Brinksma, E.: Constraint-oriented specification in a constructive formal descrip-
tion technique. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX
1989. LNCS, vol. 430, pp. 130–152. Springer, Heidelberg (1990). doi:10.1007/
3-540-52559-9 63

9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

10. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993)

11. Creese, S.J., Roscoe, A.W.: Verifying an infinite family of inductions simultane-
ously using data independence and FDR. In: Wu, J., Chanson, S.T., Gao, Q.
(eds.) Formal Methods for Protocol Engineering and Distributed Systems, FORTE
XII/PSTV XIX 1999, IFIP TC6 WG6.1 Joint International Conference on For-
mal Description Techniques for Distributed Systems and Communication Proto-
cols (FORTE XII) and Protocol Specification, Testing and Verification (PSTV
XIX), IFIP Conference Proceedings, Beijing, China, 5–8 October 1999, vol. 156,
pp. 437–452. Kluwer (1999)

12. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret. Comput.
Sci. 34, 83–133 (1984)

13. Garavel, H., Serwe,W.: The unheralded value of the multiway rendezvous: illus-
tration with the production cell benchmark. In: Hermanns, H., Höfner, P. (eds.)
Proceedings 2nd Workshop on Models for Formal Analysis of Real Systems,
MARS@ETAPS 2017, EPTCS, Uppsala, Sweden, 29 April 2017, vol. 244, pp. 230–
270 (2017)

14. Graf-Brill, A., Hermanns, H.: Model-based testing for asynchronous systems. In:
Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.) FMICS 2017, AVoCS 2017. LNCS,
vol. 10471, pp. 66–82. Springer, Cham (2017). doi:10.1007/978-3-319-67113-0 5

15. Graf-Brill, A., Hartmanns, A., Hermanns, H., Rose, S.: Modelling and certifica-
tion for electric mobility. In: 15th IEEE International Conference on Industrial
Informatics, INDIN 2017, Emden, Germany, 24–26 July 2017. IEEE (2017)

16. Graf-Brill, A., Hermanns, H., Garavel, H.: A model-based certification framework
for the EnergyBus standard. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 84–99. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43613-4 6

17. Hahn, M.E., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013)

18. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 51

19. Havelund, K., Larsen, K.G., Skou, A.: Formal verification of a power con-
troller using the real-time model checker Uppaal. In: Katoen, J.-P. (ed.) ARTS
1999. LNCS, vol. 1601, pp. 277–298. Springer, Heidelberg (1999). doi:10.1007/
3-540-48778-6 17

20. Hermanns, H.: Interactive Markov Chains: And the Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002). doi:10.1007/3-540-45804-2

http://dx.doi.org/10.1007/3-540-52559-9_63
http://dx.doi.org/10.1007/3-540-52559-9_63
http://dx.doi.org/10.1007/978-3-319-67113-0_5
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-662-43613-4_6
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/978-3-642-54862-8_51
http://dx.doi.org/10.1007/3-540-48778-6_17
http://dx.doi.org/10.1007/3-540-48778-6_17
http://dx.doi.org/10.1007/3-540-45804-2

From Lotosphere to Thermosphere 367

21. Hermanns, H., Katoen, J.-P.: Automated compositional Markov chain generation
for a plain-old telephone system. Sci. Comput. Program. 36(1), 97–127 (2000)

22. Larsen, K., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P.,
Romijn, J.: As cheap as possible: effcient cost-optimal reachability for priced timed
automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 493–505. Springer, Heidelberg (2001). doi:10.1007/3-540-44585-4 47

23. Mader, A., Bohnenkamp, H.C., Usenko, Y.S., Jansen, D.N., Hurink, J., Hermanns,
H.: Synthesis and stochastic assessment of cost-optimal schedules. STTT 12(5),
305–318 (2010)

24. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78917-8 1

25. Tretmans, J., Kars, P., Brinksma, E.: Protocol conformance testing: a formal per-
spective on ISO IS-9646. In: Kroon, J., Heijink, R.J., Brinksma, E. (eds.) Protocol
Test Systems IV, Proceedings of the IFIP TC6/WG6.1 Fourth International Work-
shop on Protocol Test Systems, IFIP Transactions, Leidschendam, The Nether-
lands, 15–17 October 1991, vol. C-3, pp. 131–142. North-Holland (1991)

26. Uppaal Cora (2005). http://people.cs.aau.dk/∼adavid/cora/introduction.html.
Accessed 31 July 2017

27. Catastrophic Surface Pro 3 battery life finally has its firmware fix (2016). http://
arstechnica.com/?p=945575. Accessed 31 July 2017

28. Samsung recalls Galaxy Note 7 worldwide due to exploding battery fears (2016).
http://theverge.com/2016/9/2/12767670. Accessed 31 July 2017

29. Basis Peak watches recalled (2016). http://techcrunch.com/2016/08/03/basis-
peak-watches-recalled-due-to-overheating/. Accessed 31 July 2017

30. Important: Medical device correction, EnRhythm pacemakers (2010). http://
www.medtronic.com/enrhythm-advisory/downloads/enrhythm-battery-issues phy
sician-letter.pdf. Accessed 31 July 2017

31. Qualitätsprobleme bei E-Bikes: Schlappe Akkus, anfällige Elektronik (2011).
http://www.spiegel.de/auto/aktuell/a-790142.html. Accessed 31 July 2017

http://dx.doi.org/10.1007/3-540-44585-4_47
http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://people.cs.aau.dk/~adavid/cora/introduction.html
http://arstechnica.com/?p=945575
http://arstechnica.com/?p=945575
http://theverge.com/2016/9/2/12767670
http://techcrunch.com/2016/08/03/basis-peak-watches-recalled-due-to-overheating/
http://techcrunch.com/2016/08/03/basis-peak-watches-recalled-due-to-overheating/
http://www.medtronic.com/enrhythm-advisory/downloads/enrhythm-battery-issues_physician-letter.pdf
http://www.medtronic.com/enrhythm-advisory/downloads/enrhythm-battery-issues_physician-letter.pdf
http://www.medtronic.com/enrhythm-advisory/downloads/enrhythm-battery-issues_physician-letter.pdf
http://www.spiegel.de/auto/aktuell/a-790142.html

Boosting Fault Tree Analysis by Formal Methods

Joost-Pieter Katoen1,2(B) and Mariëlle Stoelinga2

1 RWTH Aachen University, Aachen, Germany
katoen@cs.rwth-aachen.de

2 University of Twente, Enschede, The Netherlands

Abstract. Fault trees are a key technique in safety and reliability engi-
neering. Their application includes aerospace, nuclear power, car, and
process engineering industries. Various fault tree extensions exist that
increase expressiveness while yielding succinct models. Their analysis is
a main bottleneck: techniques do not scale and require manual effort.
Formal methods have an enormous potential to solve these issues. We
discuss a mixture of formal method techniques resulting in a fully auto-
mated and scalable approach to analyze Dugan’s dynamic fault trees.

1 Introduction

Fault Trees are Ubiquitous. Fault trees were developed in 1961 at Bell Labs. A
few years later Boeing started to use fault tree analysis (FTA, for short) for
civil aircraft design. The U.S. Nuclear Regulatory Commission published the
NRC Fault Tree Handbook in 1981. Several other industries followed later with
their FTA standards. Since the Challenger accident in 1986, NASA considers
FTA as a key system reliability and safety analysis technique. The U.S. Federal
Aviation Administration’s System Safety Handbook (2000) advocates the use of
FTA. Fault trees are used on a daily basis by millions of engineers around the
world. For example, after the explosion of the (unmanned) Falcon-9 rocket in
2015, the SpaceX CEO posted the following on Twitter [42]:

“That’s all we can say with confidence right now. Will have more to say
following a thorough fault tree analysis.”

What are Fault Trees? They are directed acyclic graphs. Leaves model indi-
vidual component failures or human errors. As errors in FTA are assumed to
happen randomly, leaves are equipped with a continuous probability distribu-
tion. Internal vertices (a.k.a.: nodes), commonly referred to as gates, model how
component failures lead to system failures. Gates are like logical elements in cir-
cuits such as AND and OR (but no inverters). FTA amounts to determine the
failure probability of the root of the fault tree, called the top-level event. Fault
trees that only contain logical gates such as AND and OR are called static. Sta-
tic fault tree analysis can be efficiently done using binary decision diagrams1.
1 BDDs are succinct representations for switching functions. In 1990, their use in

formal methods, in particular formal verification, has been introduced [11].

c© Springer International Publishing AG 2017
J.-P. Katoen et al. (Eds.): Brinksma Festschrift, LNCS 10500, pp. 368–389, 2017.
DOI: 10.1007/978-3-319-68270-9 19

Boosting Fault Tree Analysis by Formal Methods 369

The key step in the analysis is determining a minimal cut set. This is a set of
leaves of minimal cardinality whose failures together causes the top-level event
to fail. The analysis of static fault trees is simple as the ordering of failure is
irrelevant; it only matters whether a leaf has failed or not.

Dynamic Fault Trees. Static fault trees are too simple for practical systems. This
has led to several extensions; for a recent survey see [49]. Dugan’s dynamic fault
trees [16] (DFTs, for short) are the most well-known and commonly used. The
behaviour of a DFT not only depends on the set of failed leaves, but also on
their order. Thus, DFTs have a richer set of gates and are more expressive than
static fault trees. This, however, comes at a price. Their analysis can no longer be
done using minimal cut sets. Instead, their behaviour is state-dependent. DFT
analysis is typically done by distilling a stochastic process, mostly a continuous-
time Markov chain (CTMC, for short), from the DFT. Markov chain analysis is
used to obtain information about the probability of the top-level event to fail.

The Challenge. Conceptually, this sounds simple. In practice it is not. This leads
to the belief that DFT analysis is a difficult problem. For instance, [54] and [43]
argue that a state-based approach for dynamic gates is not “realistic” due to
the state-space explosion on increasing the DFT size. Indeed, DFTs in practice
are large. Hundreds of nodes is not an exception. Their Markov chains consist of
millions or even billions of states. State-space generation is a major bottleneck
in DFT analysis. This complicates their analysis considerably. As [20] argues:

“Although DFTs are powerful in modeling systems with dynamic failure
behaviors, their quantitative analyses are pretty much troublesome, espe-
cially for large scale and complex DFTs.”

Or, in the most recent survey paper on fault tree analysis [32]:

“Although many extensions of fault trees have been proposed, they suffer
from a variety of shortcomings. In particular, even where software tool
support exists, these analyses require a lot of manual effort.”

Model Checking. In our opinion, this common belief is way too pessimistic! We
know that formal methods are not a panacea. However, we argue in this paper
that probabilistic and statistical model checking can alleviate the above men-
tioned “problems” and “shortcomings” to a very large extent. Model checking [4]
is a systematic way to analyze the state space with powerful algorithms. It is
heavily used in hardware industry to verify IC designs, and the founding fathers
of model checking won the prestigious ACM Turing award in 2007.

Probabilistic model checking combines standard model checking techniques
with clever stochastic methods to obtain efficient numerical algorithms. Statis-
tical model checking, a state-of-the-art Monte Carlo simulation technique, is
more widely applicable and is far less dependent on the state space size. How-
ever, it is not an exhaustive technique and requires special treatment of rare
events and nondeterminism. In this paper, we show that due to unremitting
improvements of state-space generation techniques in the field of probabilistic

370 J.-P. Katoen and M. Stoelinga

and statistical model checking, extremely large state spaces can nowadays be
treated, both numerically and statistically. In particular, we show how techniques
like compositionality, abstraction, partial order reduction, graph rewriting, and
abstraction-refinement can be exploited to analyse large DFTs in a matter of
minutes.

Take-Home Message. As such, this paper argues that FTA is a playground par
excellence for formal methods. Formal methods boost dynamic fault tree analysis
significantly and result in a fully automated and software-supported approach.

2 Dynamic Fault Trees in a Nutshell

What are DFTs? Dynamic fault trees (DFTs) [16] are directed acyclic graphs
consisting of gates and leaves. A DFT has a distinguished root node, called the
top-level event (TLE, for short). DFT leaves represent component failures, called
basic events (BEs, for short). DFTs describe how component failures propagate
through the system. Gates, depicted in Fig. 1, model failure propagation. The
static gates OR, AND, VOT(k) fail if respectively one, all or k (out of n ≥ k)
of their inputs fail. The PAND, SPARE, and FDEP are dynamic gates. A PAND-
gate fails if the inputs fail from left to right; if the components fail in any other
order, then no failure occurs. A SPARE-gate contains one primary, and one or
more spare inputs. If the primary input fails, then the leftmost dormant spare
takes over its functionality, putting the spare from dormant into active mode.
If all spares have failed too, then the SPARE-gate fails. Primary and spares
can be entire DFTs, and spares can be shared among several gates. An FDEP-
gate contains a trigger input, which instantaneously triggers the failure of all its
dependent events.

inputs

output

(a) OR

inputs

output

(b) AND

k/n

inputs

output

(c) VOTING

inputs

output

(d) PAND

output

Primary
Spares

(e) SPARE

dummy output

trigger

Dependent events

(f) FDEP

Fig. 1. Gates in dynamic fault trees

DFT leaves can be either dormant, active, or failed. Component failures are
governed by continuous distribution functions, e.g., exponential probability dis-
tributions. Dormant leaves fail less frequently as they are not in use. Their failure
rate λ is reduced by a dormancy factor d in the interval [0, 1]. The probability
for an active component to fail within time t is 1 − e−λ·t and 1 − e−d·λ·t for a
dormant component. Figure 2(a) depicts a simple sample DFT.

The DFT’s Markov Chain. DFTs have an internal state, e.g., the order in which
failures occur influences the internal state, and thus whether the designated top

Boosting Fault Tree Analysis by Formal Methods 371

T

SP

α β γ

(a)

B

A

C

BA

AC

CA

F

d·γ

β

α

d·γ

β
β

α

α

γ

γ
β

β

d := dormancy factor

(b)

Fig. 2. A (a) sample DFT with three leaves, an OR-gate (top-level event T) and a
PAND-gate P and a SPARE-gate S (T’s children), and (b) its CTMC.

event has failed. The behaviour of DFTs can be naturally described by CTMCs,
where transitions correspond to the failure of a basic event. Figure 2(b) depicts
the CTMC of our sample DFT. Initially, any of the leaves can fail with failure
rates α, β, and γ, respectively. As the rightmost leaf is dormant, its failure rate
is reduced by d. Once this leaf becomes active, e.g., in CTMC state B, its failure
rate becomes γ. In the rightmost CTMC state F, the TLE and thus the entire
DFT has failed. Due to the expressive power of DFTs, their interpretation is not
always clear; an in-depth discussion on this can be found in [31].

Nondeterminism. Most DFTs are fully probabilistic. They do not exhibit any
nondeterminism. Their behaviour can adequately be described by CTMCs. Some
DFTs give rise to nondeterminism. An example is provided in Fig. 3(a). The two
SPARE gates share a spare. Once the rightmost leaf fails first, the primary child

α β

γ

(a)

F

α

d · γ

β

β

τ

γ

τ
γ

β

α

β

β

d := dormancy factor

(b)

Fig. 3. A (a) sample DFT with three leaves, a PAND-gate (top-level event), two SPARE-
gates, and an OR-gate, arranged to create nondeterminism, (b) its IMC (assuming the
PAND fails on simultaneous failures of its children). (Color figure online)

372 J.-P. Katoen and M. Stoelinga

of each SPARE fails. A “race” occurs between the left and right SPARE to use the
middle leaf (in blue). This race is nondeterministic. It fundamentally differs from
a probabilistic choice as there is no quantitative information available about how
to resolve this race. As a result, the underlying model for a DFT is a CTMC
with nondeterminism, a so-called interactive Markov chain (IMC, for short) [28,
29]. Figure 3(b) depicts the IMC of the DFT in Fig. 3(a). The nondeterministic
choice occurs after the occurrence of the β-transition in the initial state. The
two nondeterministic transitions, one for each possible resolution of the race, are
labeled with τ . Note that if the race is resolved in favor of the left SPARE-gate,
the right SPARE-gate fails, and due to the top-most PAND-gate, the DFT can
never fail.

3 Compositional State-Space Generation

A crucial step in DFT analysis is to generate the state space underlying a DFT.
Each state records for each BE its status, i.e., whether it is up or down and
whether it is operational or not. Key result in [6,7] is to perform this via com-
positional aggregation, a.k.a. iterative minimization. Rather than generating the
whole state space at once—leading to a procedure that is difficult to understand
and modify—[6,7] generate a Markov model for each DFT element. Recently,
Ammar et al. [1] advocated the use of compositional model generation combined
with probabilistic model checking for DFTs using Markov decision processes
(MDPs). The whole state space is then obtained by composing these Markov
models in a smart way.

IOIMCs. Standard Markov models cannot be composed in a natural way; i.e.,
there are no adequate notions to build a larger Markov model from smaller ones.
Hence, [5–7] use input/output interactive Markov chains (IOIMCs) [5]. IOIMCs
combine CTMCs and labeled transition systems, see Fig. 4 for an example. They
feature two types of transitions: Markovian transitions are labeled with the para-
meter λ (a.k.a.: rate) of an exponential distribution. Such a transition can be
taken after an exponential waiting time, i.e., the probability to take this transi-
tion before time t is given by 1 − e−λ·t. Interactive transitions are labeled with
action labels and can be used to synchronize two or more IOIMCs. Interactive
transitions feature three types of action labels: transitions labeled with input
labels a? indicate that the IOIMC waits for another component to provide a cor-
responding output label a!. Transitions labeled with input actions are delayable,
meaning that the IOIMC can wait as long as needed to take this transition.
Output actions a! are immediate; i.e., as soon as the output action a! is enabled,
it has to be taken. In particular, this means that whenever a state enables both
an output action and a Markovian action, the Markovian action is never taken
as its probability to be taken immediately is zero. Internal transitions are like
output actions, and hence immediate, with the difference being that the action
label is not visible to the environment. Thus, internal actions are used to model
steps that are internal to the component.

Boosting Fault Tree Analysis by Formal Methods 373

act?

λ

fail!

Dormant

Active

Failing

Failed

(a) cold BE

act?

λ

fail!

μ

Dormant

Active

Failing

Failed

(b) warm BE

failA?failB?

failB?failA?

fail!

Initial

A failedB failed

Failing

Failed

(c) AND-gate

failA?failB?

failB?

fail!

Initial

A failed

Failing

Failed

Cannot
fail

(d) PAND-gate

Fig. 4. Examples of the IOIMCs underlying DFTs.

Example 1. Figure 4(a) depicts the IOIMC underlying a cold BE, a basic event
that cannot fail in dormant mode. In the initial state, the IOIMC waits to be
activated, i.e., it waits until it has received an input signal act? from its envi-
ronment. If so, it moves to the state named Active. This state has a Markovian
transition labeled with λ, indicating that the BE’s failure rate is exponentially
distributed with parameter λ. After failing, the IOIMC moves to state Failing,
which has an outgoing transition labeled with fail!. As soon as the BE has failed,
the IOIMC sends out a fail! signal, so that other components can update their
state.

Figure 4(b) depicts the IOIMC of a warm BE, i.e., a basic event that can
fail in dormant mode, but with a reduced rate μ = d·λ. Now, in the initial
state, two things may happen: Either the component is activated, and moves to
state Active and the behavior is as before. Alternatively, the component fails
before activation, which happens with a reduced failure rate μ, as modeled by
the transition Dormant

μ−→ Failing.
The IOIMC for an AND-gate C with children A and B is given in Fig. 4(c).

When it has received failure signals from both its children, the IOIMC sends out
a fail! signal. Finally, the IOIMC for the PAND-gate is given in Fig. 4(d): if the
IOIMC receives a failure signal from A first, and then from B, then the IOIMC
sends out a fail! signal; otherwise it moves to a sink state (indicated by X) from
which it can never fail.

The IOIMCs for the other gates are similar, but more complex.

Smart Composition. The CTMC underlying a DFT is obtained by composing all
DFT-element IOIMCs via composition aggregation. That is, rather than compos-
ing all IOIMCs in one shot, all DFT-element models are composed one-by-one,
in an iterative way. After each step, the models are reduced. Thus, the com-
positional aggregation procedure iteratively performs the following three steps:
(1) Pick two IOIMCs and compose these. (2) Hide all actions that are not rele-
vant for other components; i.e., actions that are not used for synchronization by

374 J.-P. Katoen and M. Stoelinga

Table 1. Results of CORAL and Galileo (taken from [7]).

Case
study

Approach Max #
of states

Max # of
transitions

Unreliability Run time
(sec)

CPS Galileo 4,113 24,608 0.00135 490

CORAL 133 465 0.00135 67

CPS Galileo 8 10 0.65790 1

CORAL 36 119 0.65790 94

CAS-PH CORAL 40,052 265,442 0.112826 231

FTPP-4 Galileo 32,757 426,826 0.01922 13111

CORAL 1,325 13,642 0.01922 65

FTPP-5 CORAL 43,105 643,339 0.00306 309

FTPP-6 CORAL 1,180,565 22,147,378 0.000453 1989

FTPP-C CORAL 653,303 12,220,653 0.02136 1806

FTPP-A Galileo 32,757 426,826 0.0167 13111

CORAL 19,367 154,566 0.0167 240

NDPS CORAL 61 169 [0.00586, 0.00598] 266

other IOIMCs are made internal. (3) Reduce the model just obtained via mini-
mization techniques such as weak bisimulation [5] or confluence reduction [51].
Action hiding makes that more states are equivalent, enabling stronger reduc-
tions. Minimization means that one replaces the model by an equivalent one that
is smaller, for instance by grouping states that exhibit the same behavior. The
order in which the models are composed does not matter for the end result; how-
ever, it impacts the memory footprint, i.e., the size of the intermediate Markov
models. Heuristics have been developed to obtain a low peak memory usage [13].

This procedure has been implemented in the tool CORAL and its successor
DFTCalc [2]. An advantage of this technique is its flexibility: adding new gates
for instance, is easy, since one only has to provide the IOIMC for that new gate.
For example, cyber attacks can easily be incorporated in this way [3,36], and
the same holds for maintenance strategies [24,25]. A further improvement over
existing methods is that the compositional approach is more liberal on the DFTs
it can analyze. Earlier methods make rather severe assumptions on the DFTs
to analyze, which limits the ability to model and analyze realistic systems. For
example, dependent events of FDEP-gates could only be BEs, and the same holds
for the spare inputs of a SPARE-gate. CORAL was the first tool to alleviate these
restrictions.

Experiments. Several experiments have been carried out comparing DFTCalc’s
predecessor CORAL to Galileo [50], the state-of-the-art tool at that time. The
following case studies were used: Cascaded PAND system (CPS), Cardiac assist
system (CAS), fault tolerant parallel processors (FTPP) [16], and a pump sys-
tem with inherent nondeterminism (NDPS). Table 1 shows the benchmark results

Boosting Fault Tree Analysis by Formal Methods 375

in terms of memory footprint (i.e., maximum number of states and transitions
encountered during the analysis process) and in terms or running time. It also
indicates the DFT’s unreliability of the DFT, i.e., the probability that the DFT
fails within a deadline. Except for the CAS system which has a very small state
space, compositional analysis outperforms Galileo, both in time and memory
usage. CORAL could analyze several variants of the FTPP case where Galileo
ran out of memory. Note that the NDPS system cannot be modeled in Galileo,
since it does not support nondeterminism. Due to the nondeterminism, the unre-
liability of the NPDS system is an interval and not a single value as for the other
cases.

4 Reduce, Reduce, and Reduce More

The previous section described a compositional approach for distilling a CTMC
from a DFT. Its main advantage is that each DFT gate and leaf results in
a relatively simple CTMC. These CTMCs can be reduced individually and in
a pairwise fashion after being put in parallel. This reduces the peak memory
consumption. The price is that the CTMC of a DFT gate needs to be equipped
with extra transitions to enable its parallel composition with CTMCs of other
DFT gates. They thus are slightly more complex due to the fact that they need
to be composed. Another drawback is that the CTMCs of each DFT gate are
“context free”. That is to say, their behaviour does not take into account the
context in which they are put. This is good on the one hand, as it means equal
gates yield equal CTMCs, which can be exploited. On the other hand, it is bad
as certain parts of the CTMCs might not be reachable if the context would be
taken into account. For instance, if a given sub-tree can only become active once
other parts of the DFT have failed, then parts of the sub-tree might not be
relevant any more.

Revive the Original Approach. An alternative is to take the original Galileo [50]
approach—the first tool for DFT analysis; it treats a DFT as monolithic entity—
and modernise it using techniques to shrink the state space prior or during its
generation. Techniques that can be adopted are: symmetry reduction, partial-
order reduction, and don’t care detection. Symmetry reduction recognises iso-
morphic sub-trees and stochastic independences among sub-trees by a static
analysis of the DFT. It thus is not a symmetry reduction at state-space level,
but rather at the DFT level. Sub-trees that become obsolete (don’t care) after
the occurrence of some failures in the DFT are pruned. Finally, one can detect
superfluous nondeterminism such that certain failure orderings are irrelevant.
A detailed account of this approach is given in [52,53].

Monolithic State-Space Generation with Don’t Care Propagation. The principle
is rather straightforward. Each gate and leaf in the DFT is provided with a
status such as e.g., operational (OP), failed (F), fail-safe (FS), or don’t care (X).
For each SPARE-gate, one has to do some extra bookkeeping. One needs to keep
track of the currently used child (a.k.a.: spare) (CUC). In addition, for each

376 J.-P. Katoen and M. Stoelinga

spare one needs information about whether it is active (A) or dormant (D). All
this information together constitutes the state space of a DFT. A state is thus
the status of each gate and leaf, plus some extra information for each SPARE-
gate and its spares. State changes originate from the failure of one of the DFT
leaves2. These state changes not only involve a status change of the just failed
BE. It may affect the CUC of a SPARE-gate, may give rise to gates to become
fail-safe (FS) as they cannot fail in the future anymore, and involves don’t care
propagation—a top-down pass over the DFT determining whether nodes have
become don’t care (X) as all their parents are F or FS.

Partial-Order Reduction. In many DFTs, the actual order in which subsets of
leaves fail is not crucial. This is exploited for FDEP-gates, where instead of
exploring all interleavings over the triggered events one aims to only explore a
single order. This can be done applying static partial order reduction [4, Ch.
8.2.4] to DFTs. A static analysis of the DFT identifies which dependencies can
be executed in arbitrary order. If so, only a canonical order is expanded.

Symmetry Reduction. The symmetry in a DFT, i.e., the presence of isomorphic
sub-trees, can be exploited [12]. Faults in isomorphic sub-trees have the same
effect if they are only connected to the remaining DFT via a single static node,
i.e., an AND, OR, or a VOT(−) gate. The states of symmetric sub-trees can then
be swapped. Thus it is not important to administer which nodes in symmetric
sub-trees have failed, but only how many and reduces the number of states.

Experiments. Together with compact bit-level state representations and manipu-
lations, bisimulation minimisation of the resulting CTMC, and modularisation,
the above approach results in a well-performing modern version of Galileo.
Modularisation [26] is a DFT technique that identifies independent sub-trees in
the DFT, analyses them separately, and combines the results to a final result.
Experiments show that intermediate state spaces are often ten times smaller
compared to the compositional approach. This results in boosting the state-space
generation by up to several orders of magnitude3. For some case studies, the
compositional approach yields a smaller peak memory usage. For 164 problem
instances, this approach solved 11% more cases (for analysing the DFT’s relia-
bility) than the compositional approach. Plots indicating the difference between
the compositional and the revived Galileo approach are provided in Fig. 5.
These are log-log scale plots. Figure 5(a) compares the time consumption (which
includes state-space generation and analysis). The lower dashed line indicates an
advantage of our tool by a factor ten, the upper of a factor 100. The outer lines
indicate time-outs (TO) and memory-outs (MO), respectively. Figure 5(b) indi-
cates the peak memory consumption. Here one sees that for several benchmarks

2 As failure probabilities are continuous probability distributions, the probability that
two or more leaves fail simultaneously is zero.

3 It is fair to say, that some of these effects are also due to a different implementation of
the state-space generation process; the compositional approach as realised in the tool
DFTCalc [2] is based on the CADP tool-box [19], whereas the monolithic approach
is implemented [52] on top of the storm model checker [15].

Boosting Fault Tree Analysis by Formal Methods 377

1 6
0

6
0
0

3
6
0
0

1

60

600

3600

T
O

M
O

TO
MO

monolithic+reduction approach

co
m
po
si
ti
o
n
a
l
a
p
p
ro
a
ch

HECS

MCS

RC

SF

(a) run time (seconds)

1 1
0

1
0
0

1
0
0
0

1

10

100

1000

T
O

M
O

TO
MO

monolithic+reduction approach

co
m
po
si
ti
o
n
a
l
a
p
p
ro
a
ch

HECS

MCS

RC

SF

(b) memory footprint (MB)

Fig. 5. Overview of the experimental results on four different benchmark sets (taken
from [52,53]).

it is beneficial to employ compositional state-space generation and reduction,
whereas for others it is not. The following benchmarks were used: Hypothetical
Example Computer System (HECS) from the NASA FT handbook, Multiproces-
sor Computing System (MCS) [40], Railway Crossing (RC) [24] and the Sensor
Filter (SF) [8]. The sizes of the corresponding CTMCs vary to up to one million
states.

5 Fault Tree Rewriting and All That

Whereas the previous reductions work on the underlying CTMC or IOIMC,
one can also reduce the DFT before any state is generated, thus obtaining a
“slim” fault tree. This is the idea behind the paper Fault trees on a diet [30]: one
rewrites a DFT into another one that is equivalent—in the sense that important
measures-of-interest such as reliability and mean time-to-failure are preserved,
but whose state space is much smaller. Note that this does not necessarily mean
that the fault tree itself is smaller.

Since fault trees are graphs, it is natural to use graph transformation systems
for that. Graph transformation systems rewrite one graph into another one via
transformation rules. These rules look for patterns in a graph, and if such a
pattern is found, then it can be replaced by another pattern. In this way, nodes
and edges can be removed or added, and attributes such as failure rates can be
changed. For example, if two OR-gates are stacked on top of each other, then
these gates can be glued into one large OR-gate as depicted as follows: In total,
[30] has developed a set of 29 transformation rules, which have been implemented
in the graph transformation tool GROOVE [22], and can be used in combination
with any DFT analysis tool.

378 J.-P. Katoen and M. Stoelinga

A

AND,OR,PAND �

C1

. . .

CmB

Tp(A)

. . .

D1 Dk

A′

Tp(A)

B′

Tp(B)

C′
1

. . .

C′
mD′

k

. . .

D′
1

Input: {Ci �→ C′
i}m

i=1 ∪ {Di �→ D′
i}k

i=1

Output: {A �→ A′, B �→ B′}

Rewrite rule 1: Left-flattening of AND-/OR-/PAND-gates

Experiments. The effect of rewriting was analyzed on 183 benchmarks, obtained
by instantiating seven different, mostly industrial, case studies with different
parameter values [30]. We investigated the influence of rewriting on (1) the

6
0

6
0
0

3
6
0
0

7
2
0
0

60

600

3600

7200
T
O

M
O

TO

MO

with rewriting

w
it

h
o
u
t

re
w

ri
ti

n
g

RC

MCS

HECS

SF

(a) run time (seconds)

1 1
0
0

5
0
0

1

100

500

T
O

M
O

TO
MO

with rewriting

w
it

h
o
u
t

re
w

ri
ti

n
g

RC

MCS

HECS

SF

(b) memory footprint (MB)

1
0 3

1
0 4

1
0 6

103

104

106

T
O

M
O

TO
MO

with rewriting

w
it

h
o
u
t

re
w

ri
ti

n
g

RC

MCS

HECS

SF

(c) # states in MC

solved Σ time (h) red.

bs rw bs rw(1) rw(2) |Vrw|
|Vbs|

HECS(44) 34 43 11.8 3.3 9.1 1.4
MCS(44) 30 43 9.3 3.7 8.2 1.1
RC(36) 15 31 7.3 5.1 9.3 2.1
SF(39) 31 38 10.1 5.3 7.1 1.5
MOV(8) 3 7 2.3 0.6 0.7 3.4
HCAS(8) 8 8 0.4 0.3 0.3 1.2
SAP(4) 4 4 0.1 0.1 0.1 1.7

total(183) 125 174 41.3 18.4 34.8 1.6
(1) time on instances solved by all.
(2) time on all instances solved.

(d) timing (bs = base)

Fig. 6. Overview of the experimental results on four different benchmark sets (taken
from [30]). (Color figure online)

Boosting Fault Tree Analysis by Formal Methods 379

number of nodes in the DFT, (2) the peak memory consumption, (3) the total
analysis time (including model generation, rewriting, and analysis), as well as (4)
the size of the resulting Markov chain, see Fig. 6(a)–(d). The base setting is the
compositional minimization approach as realised in the tool DFTCalc without
rewriting. These plots clearly show that rewriting DFTs improves the perfor-
mance for all these criteria in almost all cases. Improvements of upto several
orders of magnitude were obtained. In particular, 49 cases could be analysed
that yielded a time-out (TO, two hours) or out-of-memory (MO, 8000 MB) in
the base setting without rewriting. A more detailed analysis reveals that the
graph rewriting with GROOVE is very fast, typically between 7 and 12 s. Most
time is devoted to the Markov chain construction and bisimulation minimisa-
tion. The analysis time of the resulting Markov chain using probabilistic model
checking (see Sect. 3) is negligible.

6 Abstract, Check, and Refine

Partial State-Space Generation. The approaches so far focused on the analysis
of the DFT after the entire CTMC has been generated. This has the advantage
that all information is available to get an exact4 account of the DFT’s measures-
of-interest. In many cases, however, one is not interested in the exact mean time
to failure (MTTF) or the exact probability that the top-level event fails within a
certain time deadline (a.k.a.: reliability). Instead, in practice one often wants to
know whether the reliability is below a given threshold or, similarly, whether the
MTTF is beyond a certain value. To answer these queries, it suffices to analyse
DFTs by considering their partial state space only. The simple idea is to generate
only a—hopefully small—fragment of the DFT’s CTMC. This goes along the way
described in Sect. 4 except that one stops the state-space generation at a certain
point, e.g., if a certain fraction of the DFT has been considered, a certain size
of the CTMC has been reached, or similar. Inspired by the ISO 26262 standard
where “high-order” failures are ignored, bounded depth exploration is a good
possible termination criterion: any states encoding up to k-point failures are
considered. This CTMC fragment is now used to obtain lower and upper bounds
on the measure-of-interest, say MTTF. A detailed account of this approach can
be found in [53].

Pessimistic Abstraction. To obtain a lower bound on the MTTF, the DFTs fail-
ure probability is overestimated. Correspondingly, it is assumed that the failure
of any additional leaf results in a TLE failure. This is easily realised by mildly
adapting the state space fragment: a transition is added in the CTMC from each
unexplored state to a failed state on the failure of any additional DFT leaf. The
rate of such transition is the sum of the failure rates of the operational leaves.
The resulting CTMC can be viewed as a pessimistic abstraction of the DFT. This
results in a lower bound on the MTTF as it corresponds to the worst possible
scenario. The true MTTF can not be worse. The lower bound thus is safe.

4 Up to some numerical or simulative evidence.

380 J.-P. Katoen and M. Stoelinga

Optimistic Abstraction. Symmetrically, an optimistic view is obtained by assum-
ing that all of the unconsidered DFT leaves have to fail to cause the TLE to fail.
This uses the mild assumption that the TLE always fails if all (fallible) leaves
fail regardless of the order in which they fail5. This yields a safe upper bound, as
the true MTTF can not be larger. The realisation of this optimistic perspective
is somewhat more involved though. The failure rate of the DFT is given by the
maximum of all failure rates of the operational leaves. We add a transition to
each state in the CTMC fragment. Its rate μ is chosen such that the expected
time of an exponential distribution with rate μ equals the expected time of the
maximum over the failure distributions of the operational leaves. The resulting
CTMC can be viewed as an optimistic abstraction of the DFT.

Refinement. So far, so good. Assume now the DFT’s MTTF is required to exceed
some threshold M , say. If the lower bound lb is at most M , the DFT satisfies
the requirement; if the upper bound ub is below M , it refutes. In all other cases,
the result is inconclusive. In that case, a heuristic can be employed to refine
the two abstractions. This can be done such that earlier analysis results can be
partially re-used. The MTTF analysis by means of probabilistic model checking
(see Sect. 7), provides bounds on the MTTF for each state. This can be exploited
in a simple heuristic: states that are reachable with a high probability and whose
gap between lower and upper bound is wide, are explored first.

Abstract-Reduce-Refine. Altogether, this results in an iterative abstraction-
refinement approach. It stops whenever it can be decided whether the MTTF is
beyond or below M . Or, if one is nonetheless interested in more precise infor-
mation about the MTTF, one can also terminate the abstraction-refinement
process whenever the gap between lower and upper bound is sufficiently tight.
While obtaining the partial state spaces, symmetry and partial-order reduction,
as well as don’t care propagation (see Sect. 4) can be exploited.

Experiments. This approach works very well for larger models: some DFTs which
result in an out-of-memory for the monolithic approach of Sect. 4 are now solved
within minutes. Results are provided in Fig. 7a where a precision of 10% is used.
That is to say, the abstract-reduce-refine algorithm terminates with lower bound
lb and upper bound ub if ub− lb < 0.1 · ub+lb

2 . The approximation comes at some
overhead. It requires some internal bookkeeping for the state-space generation
and constructing the upper bound is costly. Whenever the upper bound is too
pessimistic, an almost complete state space is required leading to a decreased
performance. Lower bounds are easier to estimate and are not really influenced
by low probability paths. The on-the-fly algorithm updates the approximation
after each iteration, and the lower bounds quickly becomes accurate. Let x be the
true MTTF: For Fig. 7b the runtime until the (unchanged) procedure certified
that the MTTF was at least 0.95 ·x is given. This is always very fast. Thus, 90%
to 99% of the computation time is spent making the upper bound tighter.

5 It can be automatically checked whether a DFT satisfies this assumption by encoding
it in difference logic, a fragment of linear integer arithmetic, and check this encoding
using SMT solvers; for further details see [53].

Boosting Fault Tree Analysis by Formal Methods 381

1 6
0

6
0
0

3
6
0
0

1

60

600

3600

T
O

M
O

TO
MO

Approximation

M
o
n
o
li
th

ic

HECS

MCS

RC

SF

(a) run time (seconds)

1 6
0

6
0
0

3
6
0
0

1

60

600

3600

T
O

M
O

TO
MO

Approximation (lower bound)

M
o
n
o
li
th

ic

HECS

MCS

RC

SF

(b) run time (seconds)

Fig. 7. Abstract-reduce-refine versus the monolitic approach on four different bench-
mark sets (taken from [53]).

7 Probabilistic Model Checking

The quantitative analysis of the resulting DFT’s CTMC can be done using prob-
abilistic model checking [34,37]. This is not the branch of computer-aided veri-
fication that exploits randomized algorithms for verification but rather the area
that focuses on the model checking of probabilistic models such as Markov chains
and variations thereof. This field is not new. Soon after the birth of model check-
ing in 1981, the first papers on probabilistic model checking (though not called
that way) appeared. Whereas initial works focused on almost-sure events – does
a phenomenon happen with probability one? – later quantitative queries could be
handled by combining model-checking algorithms with algorithms from numer-
ical mathematics and operations research. Powerful tools such as Prism [38],
MRMC [35] and storm [15] together with the development of various efficient ver-
ification algorithms have led to an enormous impulse to the field. It is fair to
say that probabilistic model checking extends and complements long-standing
analysis techniques for Markov processes.

Model Checking DFTs. Probabilistic model checking can be directly applied to
the CTMCs underlying DFTs. This does not require any additional means. It
can be used as a black box. Measures-of-interest such as MTTF and reliability
can be readily cast as formulas in stochastic temporal logics such as some form
of probabilistic CTL. Alternatively, automata can be used. In fact, this is not
quite right. Logics allow for specifying constraints on such measures. Examples
are e.g., the MTTF is at least M , or the probability that the TLE fails is below
10−9. Verifying these logical formulas is typically very fast and requires a neg-
ligible amount of time compared to the state-space generation for DFTs. The
aforementioned tools enable the automated verification of models with several
millions of states within a couple of minutes.

The Benefits of Probabilistic Model Checking DFTs. Is that all? Not quite. Given
the rich plethora of functional correctness properties that can be described in

382 J.-P. Katoen and M. Stoelinga

temporal logics, the functional correctness of DFTs can be checked as well. Prop-
erties such as: can it ever happen that gates A and B both fail? or: if the leaves
fail in a certain order, does that cause a TLE failure? can be automatically
checked using model checking too. No dedicated algorithms are needed for that.
Using the same machinery for validating the measures of interest, many func-
tional properties can be checked.

The use of logics and automata for specifying DFT’s properties offers, in
addition, a high degree of expressiveness and flexibility. Most standard measures
such as MTTF, reliability, and availability are readily covered. Nesting formulas
yields a simple mechanism to specify complex measures in a succinct manner.
A complex property like “the probability that once a certain set of gates have
failed soon with high probability (say, within 10 time units with at least proba-
bility 0.99), the TLE will fail within 1,000 time units when in addition gates A
and B have failed is low” can be captured by a succinct formula. The main ben-
efit though is the use of model checking as a fully algorithmic approach toward
measure evaluation. Even better, it provides a single computational technique for
any possible measure that can be written. This applies from simple properties
to complicated, nested, and possibly hard-to-grasp formulas. This is radically
different from common practice in DFT evaluation where tailored and new algo-
rithms are developed for “new” measures.

Measure-Specific Computation. All algorithmic details, all detailed and non-
trivial numerical computation steps are hidden to the user. Without any expert
knowledge on, say, numerical analysis techniques for CTMCs, measure evalua-
tion is possible. Even better: the algorithmic analysis is measure-driven. That is
to say, the stochastic process can be tailored to the measure of interest prior to
any computation, avoiding the consideration of parts of the state space that are
irrelevant for the property of interest. In this way, computations must be carried
out only on the fragments of the state space that are relevant to the property of
interest.

Nondeterminism. Finally, probabilistic model checking is applicable to models
with nondeterminism. This is relevant for DFTs too, as some DFTs may give
rise to nondeterminism, see Fig. 3 (left). In these models the future behaviour
is not always determined by a unique probability distribution, but by selecting
one from a set of them. Rather than providing exact probabilities, the measures
are subject to the resolution of the nondeterminism. As a result, bounds on the
measures are obtained: lower bounds typically correspond to the “worst” possi-
ble resolution of nondeterminism, whilst upper bounds correspond to the most
favourable resolution of the nondeterminism. For DFTs, the recent advances
in model checking of Markov automata [17], a nondeterministic extension of
CTMCs is of relevance. Efficient algorithms have been developed for objectives
such as expected reward (and time, a.k.a.: MTTF), long-run rewards, timed
reachability, and combinations of such objectives; for algorithmic details we refer
to [23].

Boosting Fault Tree Analysis by Formal Methods 383

8 Statistical Model Checking

Statistical model checking [39] relies on Monte Carlo simulation, and can be
seen as a modern form of discrete event simulation. Rather than exploring the
whole state space and numerically computing the probability on a certain event,
statistical model checking takes (a large number of) random samples from a
statistical model and estimates the metric of interest.

Advantages. Statistical model checking has two important advantages over
numerical model checking. First, it can handle very large state spaces, enabling
the analysis of DFTs with many and/or complex elements, which cannot be
tackled with numerical methods due to the size of the underlying state space.
The memory footprint of statistical techniques is extremely low, and this method
can trivially be parallelized on multi-core computer clusters.

Second, statistical methods can handle (almost) any probability distribu-
tion. Numerical computations of models with non-exponential probability dis-
tributions is difficult, especially when various types of distributions are com-
bined. One can however, approximate arbitrary distributions with combinations
of exponentials, using (acyclic) phase type distributions, but this comes at the
cost of a larger state space. This is particularly true for the frequently occur-
ring deterministic distributions and Gaussian distributions. Statistical methods
do not suffer from this problem of combining different probability distributions.
Therefore, they have been fruitfully applied in a number of case studies. These
include the evaluation of complex maintenance strategies and their effect on sys-
tem reliability [44–46]. Here, the failure rates are Erlang-distributed, whereas
repair times and inspection frequencies are deterministic.

Drawbacks and Remediations. Statistical methods have also their drawbacks.
First, they yield a stochastic estimate upto a certain confidence level, rather
than an exact value. It is, however, a subject of debate whether this is a true
disadvantage, since the failure rates and other numerical values appearing in
DFTs are often estimates themselves, obtained via measurements or expert opin-
ions. Second, statistical methods have a hard time supporting nondeterminism,
however, recent progress has been made in [14].

Finally, statistical methods require many samples for rare events, i.e., events
whose probability is low, which is typically the case for safety-critical systems.
For example, if the probability for a failure to happen is 1

1000 , we need 1,000
samples on average to see the event once, and for statistically significant results,
even more samples are needed, e.g., 10,000. To remedy this problem, rare event
simulation techniques have been invented [33]. These techniques increase the
probability for the rare events to happen, and then compensate the end result
for it. Two major classes of rare event simulation exist: importance sampling
[27] and importance splitting [41], and both have also been applied to DFTs,
respectively in [47] and [10].

384 J.-P. Katoen and M. Stoelinga

9 Industrial Applications

Railway Engineering. We have conducted a series of case studies [24,44,46,48]
in close collaboration with stakeholders from railroad engineering, namely asset
manager ProRail, rolling stock maintenance company NS/NedTrain, and consul-
tancy firm Movares. All these case studies focussed on maintenance and studied
the effect of different maintenance policies in terms of their performance benefits
(i.e., increased availability or reliability) and costs (broken down into cost for
planned and unplanned downtime, and corrective and preventive maintenance).

More specifically, the maintenance strategies were modeled in the leaves of
the fault trees, leading to fault maintenance trees [45]. Both probabilistic and
statistical model checking were deployed.

The paper [24] analyzed a railway safety system of a railroad trajectory a
major crossing-points in the Netherlands. The goal of the analysis is to verify
that the rail trajectory fulfils the railway system specifications. Here, the focus
lies on the availability of the systems on the rail trajectory, defined by three
failure categories: Severe disruption in both directions, such that no train can
ride; severe disruption in one direction, such that no train can ride; and minor
disruption which leads to dispunctuality. These yield fault trees containing 25
to 350 BEs.

The paper considers two different repair strategies: a dedicated repair pro-
cedure for each component, i.e., each component can be repaired at any time.
This is the strategy Movares has considered for their analysis. A second strategy
considers one repair per group of components, which is more realistic in practice.

The paper [44] studies the effect of different maintenance strategies on a
pneumatic compressor, which produces compressed air used to operate, among
other things, the doors and brakes of trains. This compressor is critical to the
operation of the train, and a failure can lead to a lengthy and expensive disrup-
tion. Within the rolling stock maintenance company NedTrain, [44] modelled this
compressor as a fault maintenance tree (FMT), i.e., a fault tree augmented with
maintenance aspects. We have shown how this FMT naturally models complex
maintenance plans including condition-based maintenance with regular inspec-
tions. The analysis demonstrates that FMTs can be used to model the compres-
sor, a practical system used in industry, including its maintenance policy. We
validate this model against experiences in the field, compute the importance of
performing minor services at a reasonable frequency, and find that the currently
scheduled overhaul may not always be cost-effective.

The paper [46] studies the effect of different maintenance strategies on the
electrically insulated railway joint (EI-joint), a critical asset in railroad tracks for
train detection, and a relative frequent cause for train disruptions. Together with
experts in maintenance engineering, [46] modeled the EI-joint as a fault main-
tenance tree (FMT). Again, complex maintenance concepts, such as condition-
based maintenance with periodic inspections, were naturally modeled by FMTs,
and several key performance indicators, such as the system reliability, number
of failures, and costs, can easily be analysed.

Boosting Fault Tree Analysis by Formal Methods 385

The analysis shows that the current maintenance policy is close to cost-
optimal. It is possible to increase joint reliability, e.g., by performing more
inspections, but the additional maintenance costs outweigh the reduced cost
of failures.

The faithfulness of quantitative analyses heavily depends on the accuracy of
the parameter values in the models. Here, we have been in the unique situation
that extensive data could be collected, both from incident registration databases,
as well as from interviews with domain experts from several companies. This
made that we could construct a model that faithfully predicts the expected
number of failures at system level.

Automotive Industry. For the car manufacturer BMW, we have carried out a
large case study on the design-phase safety analysis of vehicle guidance sys-
tems [21]. Its aim is to model a variety of safety concepts and E/E architectures
for drive automation. Several DFTs have been automatically generated from
system descriptions and combined (in an automated manner) with hardware
failure models for several mappings of functions on hardware. The DFT state-
space generation has been done according to the monolithic approach using
abstraction-refinement to obtain bounds. The DFT analysis focused on investi-
gating the effect of different hardware partitionings on a range of metrics. These
metrics include e.g., the mean time from degradation to failure and the mini-
mal degraded reliability. DFTs with more than 300 nodes resulting in a CTMC
of about 4 million states and 66 million transitions have been generated and
successfully analysed in a matter of minutes.

Aerospace Industry. This paper focused on exploiting formal methods in state-
space generation and DFT analysis. Formal methods can however also help
to synthesise fault trees from system description languages such as AADL or
SysML, see the recent survey [32]. The key idea here is to exploit the structure
of the system architecture so as to generate a fault tree in a fully automated
manner. In a case study with ESA [18], this technique has been successfully
applied to obtain a (static) fault tree of 66 nodes explaining the behaviour of
a severe failure in a complex satellite. The interesting aspect here is that the
satellite design team developed this FT manually, whereas using the compass
tool-set [8] that supports AADL, it could be generated in a fully automated
manner within two hours. The FT generation algorithm is described in detail
in [9].

10 Epilogue

Summary. This paper concentrated on the analysis of (dynamic) fault trees.
This includes the generation of stochastic state-based models from DFTs as well
as their quantitative analysis. We argued why formal methods can substantially
boost this. In a nutshell, the main benefits are: (1) probabilistic model checking
is mostly faster than competitive DFT analyses especially when several dynamic
gates are involved; (2) it enables the treatment of a larger class of DFT, namely

386 J.-P. Katoen and M. Stoelinga

also those giving rise to nondeterminism; (3) it supports a large set of measures
of interest that go beyond the classical DFT measures; (4) compositionality,
abstraction, and reduction techniques improve the scalability of DFT analysis;
and (5) flexibility: attack trees can be treated in a similar way, extensions with
maintenance aspects, and other DFT elements are possible.

Future Work. This paper concentrated on state-space generation for DFTs and
the analysis of the resulting stochastic (decision) processes. Open research chal-
lenges are to improve the process of obtaining DFTs for systems at hand. There
are effective ways to obtain fault trees from architecture description languages
such as AADL and SysML in an automated manner. Formal methods play an
important role here too as recently surveyed in [32]. The current approaches do
however not support the full expressiveness of DFTs but rather concentrate on a
subclass of DFTs. More importantly though is how to obtain trustworthy infor-
mation about the system at hand, such as failure rates, repair strategies and so
on. We believe that big data analysis can be exploited to help out. An alternative
direction is to consider parametric DFTs in which rates or even the redundancy
of components is left open. The key issue is then to synthesize parameter values
for which the resulting DFT ensures to satisfy a given reliability.

Acknowledgement. We thank the anonymous reviewers for their valuable feedback.
A big thanks goes to our co-workers on fault trees in academia: Hichem Boudali,
Pepijn Crouzen, Dennis Guck, Sebastian Junges, Viet Yen Nguyen, Bart Postma,
Enno Ruijters, and Matthias Volk, and to our industrial partners: Peter Drolenga
(NS/NedTrain), Jaap van Ekris (Delta Pi), Bob Huisman (NS), Madji Ghadhab
(BMW), Gea Kolk (Movares), Matthias Kuntz (BMW), Martijn van Noort (Pro-
Rail), Margot Peters (NS/NedTrain), Wietske Postma (Nuclear Research Group), Judi
Romijn (Movares), and Yuri Yushstein (ESA).

We thank Ed Brinksma for his guidance and inspiration over the many years. This
survey paper is a birthday salute to him. His belief in formal methods, especially the
elegance of compositionality and his strong view on narrowing the gap between formal
methods and industrial practice have influenced our work to an enormous extent. About
25 years ago, Ed was one of the creative minds to aim at developing a framework for
the integrated modelling and analysis of functional and performance aspects of reactive
systems. This survey gives a short account about what one can achieve along these lines
in a by tradition completely different research field—reliability analysis. Last but not
least, we thank Ed for his eloquence, his view on culture, art, books, and good food.
And, as a Rector Magnificus of the University of Twente, his role in establishing a
branch of Starbucks on campus, almost next to our offices.

References

1. Ammar, M., Hamad, G.B., Mohamed, O.A., Savaria, Y.: Efficient probabilistic
fault tree analysis of safety critical systems via probabilistic model checking. In:
Proceedins of FDL. IEEE (2016)

2. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40793-2 27

http://dx.doi.org/10.1007/978-3-642-40793-2_27

Boosting Fault Tree Analysis by Formal Methods 387

3. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack tree
modelling. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol.
9338, pp. 291–299. Springer, Cham (2015). doi:10.1007/978-3-319-24249-1 25

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75596-8 31

6. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: Dynamic fault tree analysis using
input/output interactive Markov chains. In Proceedings of DSN, pp. 708–717
(2007)

7. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and exten-
sible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secure
Comput. 7(2), 128–143 (2010)

8. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J. 54,
754–775 (2011)

9. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic fault tree analysis for reactive
systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75596-8 13

10. Budde, C.E., D’Argenio, P.R., Hermanns, H.: Rare event simulation with fully
automated importance splitting. In: Beltrán, M., Knottenbelt, W., Bradley, J.
(eds.) EPEW 2015. LNCS, vol. 9272, pp. 275–290. Springer, Cham (2015). doi:10.
1007/978-3-319-23267-6 18

11. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: Proceedings of LICS, pp. 428–439. IEEE
Computer Society (1990)

12. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998). doi:10.1007/BFb0028741

13. Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19811-3 9

14. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation
of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman,
M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). doi:10.
1007/978-3-319-33693-0 7

15. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunĉak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). doi:10.1007/
978-3-319-63390-9 31

16. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

17. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of LICS, pp. 342–351. IEEE CS (2010)

18. Esteve, M.-A., Katoen, J.-P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal
correctness, safety, dependability, and performance analysis of a satellite. In: Pro-
ceedings of ICSE, pp. 1022–1031. IEEE Computer Society (2012)

http://dx.doi.org/10.1007/978-3-319-24249-1_25
http://dx.doi.org/10.1007/978-3-540-75596-8_31
http://dx.doi.org/10.1007/978-3-540-75596-8_13
http://dx.doi.org/10.1007/978-3-540-75596-8_13
http://dx.doi.org/10.1007/978-3-319-23267-6_18
http://dx.doi.org/10.1007/978-3-319-23267-6_18
http://dx.doi.org/10.1007/BFb0028741
http://dx.doi.org/10.1007/978-3-642-19811-3_9
http://dx.doi.org/10.1007/978-3-642-19811-3_9
http://dx.doi.org/10.1007/978-3-319-33693-0_7
http://dx.doi.org/10.1007/978-3-319-33693-0_7
http://dx.doi.org/10.1007/978-3-319-63390-9_31
http://dx.doi.org/10.1007/978-3-319-63390-9_31

388 J.-P. Katoen and M. Stoelinga

19. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transfer 15(2), 89–107 (2013)

20. Ge, D., Lin, M., Yang, Y., Zhang, R., Chou, Q.: Quantitative analysis of dynamic
fault trees using improved sequential binary decision diagrams. Reliab. Eng. Syst.
Safe 142, 289–299 (2015)

21. Ghadhab, M., Junges, S., Katoen, J.P., Kuntz, M., Volk, M.: Model-based safety
analysis for vehicle guidance systems. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 3–19. Springer, Cham (2017).
doi:10.1007/978-3-319-66266-4 1

22. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

23. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. LMCS, 10(3) (2014)

24. Guck, D., Katoen, J.-P., Stoelinga, M.I.A., Luiten, T., Romijn, J.: Smart railroad
maintenance engineering with stochastic model checking. In: Proceedings of RAIL-
WAYS. Civil-Comp Proceedings, vol. 104, pp. 299–314. Civil-Comp Press (2014)

25. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via
fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). doi:10.1007/
978-3-319-25423-4 19

26. Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic
fault trees. In: Proceedings of RAMS, pp. 57–63 (1997)

27. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.
ACM Trans. Model. Comput. Simul. 5(1), 43–85 (1995)

28. Hermanns, H.: Interactive Markov Chains: The Quest for Quantied Quality. LNCS,
vol. 2428. Springer, Heidelberg (2002)

29. Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains.
In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO
2009. LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17071-3 16

30. Junges, S., Guck, D., Katoen, J.-P., Rensink, A., Stoelinga, M.: Fault trees on a
diet: automated reduction by graph rewriting. Formal Asp. Comput. 29(4), 651–
703 (2017)

31. Junges, S., Guck, D., Katoen, J.-P., Stoelinga, M.I.A.: Uncovering dynamic fault
trees. In: Proceedings of DSN, pp. 299–310. IEEE CS (2016)

32. Kabir, S.: An overview of fault tree analysis and its application in model based
dependability analysis. Expert Syst. Appl. 77, 114–135 (2017)

33. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
In: Monte Carlo Method; Proceedings of the Symposium National Bureau of Stan-
dards Applied Mathematics Series, 29, 30 June and 1 July 1949, vol. 12, pp. 27–30
(1951)

34. Katoen, J.-P.: The probabilistic model checking landscape. In: Proceedings of
LICS, pp. 31–45. ACM (2016)

35. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

36. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: Proceedings of HASE, pp. 25–32. IEEE (2017)

37. Kwiatkowska, M.Z.: Model checking for probability and time: from theory to prac-
tice. In: Proceedings of LICS, pp. 351–360. IEEE Computer Society (2003)

http://dx.doi.org/10.1007/978-3-319-66266-4_1
http://dx.doi.org/10.1007/978-3-319-25423-4_19
http://dx.doi.org/10.1007/978-3-319-25423-4_19
http://dx.doi.org/10.1007/978-3-642-17071-3_16
http://dx.doi.org/10.1007/978-3-642-17071-3_16

Boosting Fault Tree Analysis by Formal Methods 389

38. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

39. Larsen, K.G., Legay, A.: On the power of statistical model checking. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 843–862. Springer, Cham
(2016). doi:10.1007/978-3-319-47169-3 62

40. Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: Automatically trans-
lating dynamic fault trees into dynamic Bayesian networks by means of a software
tool. In: Proceedings of ARES, pp. 804–809 (2006)

41. Morio, J., Pastel, R., Le Gland, F.: An overview of importance splitting for rare
event simulation. Eur. J. Phys. 31(5), 1295–1303 (2010)

42. Musk, E.: (2015). https://twitter.com/elonmusk/status/615185689999765504
43. Durga Rao, K., Gopika, V., Sanyasi Rao, V.V.S., Kushwaha, H.S., Verma, A.K.,

Srividya, A.: Dynamic fault tree analysis using Monte Carlo simulation in proba-
bilistic safety assessment. Reliab. Eng. Syst. Safe 94(4), 872–883 (2009)

44. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance analy-
sis and optimization via statistical model checking. In: Agha, G., Van Houdt, B.
(eds.) QEST 2016. LNCS, vol. 9826, pp. 331–347. Springer, Cham (2016). doi:10.
1007/978-3-319-43425-4 22

45. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reli-
ability centered maintenance via statistical model checking. In: Proceedings of
RAMS. IEEE (2016)

46. Ruijters, E., Guck, D., van Noort, M., Stoelinga, M.: Reliability-centered mainte-
nance of the electrically insulated railway joint via fault tree analysis: a practical
experience report. In: Proceedings of DSN, pp. 662–669. IEEE (2016)

47. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFE-
COMP 2017. LNCS, vol. 10488, pp. 20–35. Springer, Cham (2017). doi:10.1007/
978-3-319-66266-4 2

48. Ruijters, E., Stoelinga, M.: Better railway engineering through statistical model
checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp.
151–165. Springer, Cham (2016). doi:10.1007/978-3-319-47166-2 10

49. Ruijters, E., Stoelinga, M.I.A.: Fault tree analysis: a survey of the state-of-the-art
in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

50. Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In:
Proceedings of FTCS, pp. 232–235 (1999)

51. Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.: Confluence reduction for
Markov automata. Theoret. Comput. Sci. 655, 193–219 (2016)

52. Volk, M., Junges, S., Katoen, J.-P.: Advancing dynamic fault tree analysis - get
succinct state spaces fast and synthesise failure rates. In: Skavhaug, A., Guiochet,
J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 253–265. Springer,
Cham (2016). doi:10.1007/978-3-319-45477-1 20

53. Volk, M., Junges, S., Katoen, J.-P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. (2017 to appear). doi:10.1109/TII.
2017.2710316

54. Yuge, T., Yanagi, S.: Quantitative analysis of a fault tree with priority AND gates.
Reliab. Eng. Syst. Safe 93(11), 1577–1583 (2008)

http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-319-47169-3_62
https://twitter.com/elonmusk/status/615185689999765504
http://dx.doi.org/10.1007/978-3-319-43425-4_22
http://dx.doi.org/10.1007/978-3-319-43425-4_22
http://dx.doi.org/10.1007/978-3-319-66266-4_2
http://dx.doi.org/10.1007/978-3-319-66266-4_2
http://dx.doi.org/10.1007/978-3-319-47166-2_10
http://dx.doi.org/10.1007/978-3-319-45477-1_20
http://dx.doi.org/10.1109/TII.2017.2710316
http://dx.doi.org/10.1109/TII.2017.2710316

Author Index

Baier, Christel 64
Bainczyk, Alexander 125
Bolognesi, Tommaso 27
Brandán Briones, Laura 145
Budde, Carlos E. 276

D’Argenio, Pedro R. 276
De Nicola, Rocco 169
de Vink, Erik P. 48
Dubslaff, Clemens 64
Duong, Tan 169

Garavel, Hubert 3
Groote, Jan Friso 48

Haverkort, Boudewijn R. 214
Hermanns, Holger 357
Hooman, Jozef 214, 335
Howar, Falk 125

Inverso, Omar 169

Katoen, Joost-Pieter 368
Kurtev, Ivan 335

Lang, Frédéric 3
Langerak, Rom 297
Larsen, Kim G. 107
Latella, Diego 254
Lee, Matias David 276

Legay, Axel 107
Loreti, Michele 254

Madalinski, Agnes 145
Massink, Mieke 254
Mazzanti, Franco 169
Mikučionis, Marius 107
Monti, Raúl E. 276

Nielsen, Brian 107
Nyman, Ulrik 107

Rensink, Arend 191
Rodríguez, Leonardo 276

Schieweck, Alexander 125
Schivo, Stefano 297
Schuts, Mathijs 335
Serwe, Wendelin 3
Steffen, Bernhard 125
Stoelinga, Mariëlle 368

Tretmans, Jan 87

van Benthem, Johan 239
van den Berg, Freek 214
van der Schaft, Arjan 316

Wolovick, Nicolás 276

	Foreword
	Contents
	Modeling and Semantics
	From LOTOS to LNT
	1 Introduction
	2 LOTOS
	3 Extended LOTOS
	4 Modular LOTOS
	5 E-LOTOS
	6 LOTOS NT
	6.1 Design of LOTOS NT
	6.2 Implementation of LOTOS NT
	6.3 Applications of LOTOS NT

	7 LNT
	7.1 Design of LNT
	7.2 Implementation of LNT
	7.3 Applications of LNT

	8 Conclusion
	References

	LOTOS-Like Composition of Boolean Nets and Causal Set Construction
	1 Introduction
	2 Boolean Networks: Sync and Async Execution
	2.1 The Model
	2.2 Global Graphs

	3 Stochastic vs. Deterministic Causets
	4 Causets from Async Bool Nets
	5 Causets from Parallel Compositions of Bool Nets
	5.1 Composing Bool Nets
	5.2 Derived Causets

	6 Conclusions
	References

	Problem Solving Using Process Algebra Considered Insightful
	1 Introduction
	2 The Problem of the Wolf, Goat, and Cabbage
	3 Crossing a Rope Bridge in the Dark
	4 A Winning Strategy in Tic-tac-toe
	5 The Monty Hall Problem
	6 The Problem of the Lost Boarding Pass
	7 Concluding Remarks
	References

	Delayed-Choice Semantics for Pomset Families and Message Sequence Graphs
	1 Introduction
	2 Preliminaries
	2.1 Models for Concurrency
	2.2 Relations Between Models for Concurrency
	2.3 Modeling Communication Systems

	3 Transition Systems for Pomset Families
	3.1 Suffix Transition Systems
	3.2 Prefix Transition Systems
	3.3 Comparison and Discussion

	4 An Event Structure for Pomset Families
	4.1 Properties of Pomset Event Structures
	4.2 Pomset Event Structures for MSGs

	5 Conclusion
	References

	Testing
	On the Existence of Practical Testers
	1 Model-Based Testing
	2 Testing Transition Systems
	3 A Practical Tester: TorXakis
	3.1 Theory
	3.2 Usage
	3.3 Hello World!
	3.4 Example: Job Dispatcher

	4 Concluding Remarks
	References

	Compositional Testing of Real-Time Systems
	1 Introduction
	2 Methodology
	2.1 Related Work

	3 Timed I/O Automata
	4 Timed Transition Systems, Composition and Conformance
	5 Component Test
	6 Compositional Verification
	7 Conformance Checking via Simulation
	8 Future Directions and Challenges
	References

	Model-Based Testing Without Models: The TodoMVC Case Study
	1 Introduction
	2 Background
	2.1 Model Learning
	2.2 Model-Based Testing Without Models

	3 A Language for Testing TodoMVC
	3.1 TodoMVC Implementations
	3.2 Common Behavioral Language for TodoMVC
	3.3 Mapping the Behavioral Language to Implementations
	3.4 Analysis of Implementation Effort

	4 Testing the Behavior of Todo MVC Apps
	4.1 Experimental Setup
	4.2 Results of Testing with Sequential Tasks
	4.3 Results of Testing with Concurrent Tasks

	5 Conclusion
	References

	Diagnosis and Testing: How is Their Relation? Can They Be Combined?
	1 Introduction
	2 Related Work
	3 Motivation
	4 Preliminaries
	5 Diagnosis and Diagnosability
	6 Testing and Testability
	6.1 Model-Based Testing
	6.2 The ioco Model-Based Testing

	7 Advanced-Proxy
	8 Advanced-Proxy over Weighted Fault Model
	9 Conclusions
	References

	Analysis
	Verifying Properties of Systems Relying on Attribute-Based Communication
	1 Introduction
	2 Background
	3 Transforming AbC Models into UMC Models
	4 A Case Study
	4.1 Specifications
	4.2 Formal Analysis

	5 Concluding Remarks
	References

	How Much Are Your Geraniums? Taking Graph Conditions Beyond First Order
	1 Introduction
	2 Definitions
	2.1 Algebra
	2.2 Attributed Graphs
	2.3 First-Order Logic

	3 Nested Graph Conditions
	3.1 Conditions as Graphs
	3.2 Morphisms as Conditions
	3.3 Trees as Conditions
	3.4 Proof Trees

	4 Set-Based Operators
	5 The Geranium Experiment
	5.1 Two-Step Computation
	5.2 One-Step Computation
	5.3 Iterative Computation
	5.4 Experimental Results
	5.5 Evaluation

	6 Conclusion
	6.1 Related Work
	6.2 Future Work

	References

	iDSL: Automated Performance Evaluation of Service-Oriented Systems
	1 Introduction
	2 Interventional X-ray Systems
	3 The iDSL Language
	4 The iDSL Toolchain
	4.1 Calibrating the Model on the Basis of Measurements
	4.2 Simplifying the Model
	4.3 Transforming the iDSL Model into Equivalent Modest Models
	4.4 Evaluating a Modest Model to Yield Performance Artifacts

	5 Case Study on Interventional X-ray Systems
	5.1 Experiment I: Retrieving a Wide Array of Performance Artifacts
	5.2 Experiment II: Retrieving Exact Latency Distributions

	6 Conclusion
	References

	Probabilities
	Against All Odds: When Logic Meets Probability
	1 Introduction
	2 Logic and Probability
	3 A Shared History
	4 Logical Foundations of Probability
	5 Probabilistic Patterns in Logic
	6 Mixed Practices in Language and Reasoning
	7 A Concrete Encounter
	8 Conclusion
	References

	FlyFast: A Scalable Approach to Probabilistic Model-Checking Based on Mean-Field Approximation
	1 Introduction and Related Work
	2 A Brief Overview of FlyFast
	3 Predator-Prey Model of Lotka-Volterra in FlyFast
	4 Extending the Applicability of FlyFast
	4.1 FlyFast Front-end for Fluid Model-checking of Continuous Time Population Models
	4.2 FlyFast Front-End for Predicate-Based Coordination

	5 Conclusions
	References

	The Road from Stochastic Automata to the Simulation of Rare Events
	1 Introduction
	2 Input/Output Stochastic Automata
	3 Semantics of IOSA
	4 Rare Event Simulation
	5 Automatic Derivation of the Importance Function
	6 Experimental Results
	7 Concluding Remarks
	References

	System Dynamics
	Discretization of Continuous Dynamical Systems Using UPPAAL
	1 Introduction
	2 Problem Statement and Related Work
	3 The Euler Method for Solving Differential Equations
	4 Translation into Timed Automata
	5 Correctness and Efficiency
	6 Application: ANIMO, a Tool for Analyzing Kinase Pathways
	7 Conclusions and Future Work
	References

	Analysis and Design of Interconnected Systems: A Systems and Control Perspective
	1 Introduction
	2 Dissipative Systems Theory
	2.1 Network Versions of Passivity and Small-Gain Theorems
	2.2 Converse Passivity and Small-Gain Theorems

	3 Control by Interconnection and Bisimulation
	4 Hybrid Systems
	5 Conclusions and Outlook
	References

	Applications
	Runtime Monitoring Based on Interface Specifications
	1 Introduction
	2 Related Work
	3 Industrial Case
	4 Overview of ComMA
	4.1 ComMA Framework: Languages and Tools
	4.2 Specifying Component Interfaces with ComMA

	5 Monitoring of Time and Data Constraints
	5.1 General Scheme for Component Monitoring
	5.2 Timing Constraints
	5.3 Data Constraints

	6 Language for Generic Constraints
	6.1 Language Syntax
	6.2 Language Semantics
	6.3 Translation of Timing Constraints
	6.4 Translation of Data Constraints
	6.5 Implementation Considerations
	6.6 Application of Monitoring on the Industrial Case

	7 Concluding Remarks
	References

	From Lotosphere to Thermosphere
	1 Introduction
	2 Model-Based Testing
	3 Constraint-Oriented Specification
	4 Cost-Optimal Timed Reachability
	5 Conclusion
	References

	Boosting Fault Tree Analysis by Formal Methods
	1 Introduction
	2 Dynamic Fault Trees in a Nutshell
	3 Compositional State-Space Generation
	4 Reduce, Reduce, and Reduce More
	5 Fault Tree Rewriting and All That
	6 Abstract, Check, and Refine
	7 Probabilistic Model Checking
	8 Statistical Model Checking
	9 Industrial Applications
	10 Epilogue
	References

	Author Index

