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Abstract
Polyhydroxyalcanoates (PHAs) are biodegradable polyesters produced by many
bacteria that accumulate them as intracellular storage material in the cytoplasm.
These polymers are potential candidate for substitution of petrochemical non-
renewable plastics for their biodegradable and nontoxic properties.

Polyhydroxyalkanoate (PHA) can be synthesized by different strategies, such as
microbial production by wild type or recombinant microorganisms, in vitro produc-
tion via PHA synthase-mediated catalysis, or using genetically engineered plants.

PHA accumulation in natural strains is favored by high availability of carbon
source and a limited amount of macrocomponents (nitrogen, phosphate, oxygen)
or microcomponents (sulfate, magnesium ions, and other trace elements).

PHAs are applied in many fields, such as packaging, medicine, or agriculture,
but the extensive application of the bioplastics is constrained by high production
costs, especially for raw material, downstream processing, and polymer recovery.

In this chapter, the progresses in production of PHA in natural strains and in
engineered E. coli, Pseudomonas spp., Bacillus, Aeromonas, and other bacteria,
such as the halotolerant Halomonas spp., are presented.

In addition, the constrains on purification steps and the potential of high value
applications are presented.

Abbreviations
PHBHHx poly-3-hydroxybutyrate-co-hydroxyhexanoate
P(3/4HB) poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
PHB-co-HV poly-3-hydroxybutyrate-co-3-hydroxyvalerate
PHBHV poly(3-hydroxybutyrate-cohydroxyvalerate)

Introduction

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by bacteria
such as Cupriavidus necator (Ralstonia eutropha), as well as other Gram-negative
and Gram-positive bacteria. PHAs is accumulated in response to stress conditions.
The carbon/nitrogen (C:N) ratio may be determinant for some species, while other
bacterial species have growth-associated PHA production which is independent of
C:N ratio. Poly(3-hydroxybutyrate) (PHB) is the prototype polymer for biodegrad-
able polymers, appearing a tough, brittle plastic-like material, with good toughness
and stiffness, which may be made more fluid by the addition of plasticizers, adapting
its mechanical properties by the addition of other fibers and compounding materials.
Applications of PHA are various, such as in coating materials and bioplastic com-
ponents, packaging films and bottling, in drug delivery, and medical devices [1].
PHAs-based bioplastics possess good mechanical properties and are easily molded
into various shapes and materials for bottles, inks, sealants, packaging for consumer
goods and food films, and agriculture sheets.
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Bioderived, biodegradable polymers are suitable for different kind of applica-
tions, in electronics, cosmetics, biomedical sector, aerospace, consumer goods,
agriculture, packaging industries, and active packaging. It can also act as bioplastic
material for soft biocomposition, conductive bioplastics, high-tech electronic
devices, disposable tableware, toys, golf tees, bags, automotive components, light-
weight structural composites for the buildings industry, textiles, elastomeric plastics,
disposable materials and fibers, performance additives, transparent films, high-
strength fibers, fertilizer mulches, and pellet for soil application.

Due to its biocompatibility and resorption qualities, PHA polymers have been
exploited in devices for minimally invasive delivery, microparticles in drug
delivery, for cardiac valves and surgical sutures, in regenerative medicine, arti-
ficial skin, tissue engineering such as scaffolds for tendon and fractured bones,
artificial organ reconstruction, in matrices for nerve repair as support of cell
growth [2, 3]. The FDA has delivered its approval for P4HB applied to clinics
and human therapies; therefore, PHA applications in the medical fields will
continue to grow.

PHA Industrial Production: Feed Costs

PHAs costs may also vary depending on the type of application, since materials for
drug delivery and medical device components have high value [1]. The main
problem is the cost of the feedstock, with incidence of 50% of the costs, in addition
to biofermentor and personnel costs, the costs for extraction and purification.

As a raw material for the fermentation, in addition to carbohydrates and
sugarcane molasses (Nikel et al. 2006; Naheed and Jamil 2014), vegetable oil
or glycerol can be used (Kumar et al. 2015). With the aim to improve the
sustainable use of feed materials, wastes and nonfood-competing sources have
been used in production of PHA polymers. Therefore, methods to exploit by-
products as feedstock have been developed (Kumar et al. 2016). High production
of PHA in fermentation process has been obtained using C1 carbon sources (CH4,
syngas) [4], sugarcane molasses [5, 6, 7, 8, 9], soy molasses, agroindustrial
wastes [10–12], glycerol from diesel waste [13, 14]; animal and vegetable fats
[11, 15, 16, 17], and biorefinery byproducts [9, 14, 18, 19, 20, 132, 137]. New
approaches of bioprocessing domestic kitchen waste, municipal solid waste
(MSW), and organic biowastes [133, 137], using adapted bacterial strains, with
possibility of hydrogen (H2) and methane coproduction, have been shown feasi-
ble (Patel et al. 2015; Kumar et al. 2013, 2016), pushing forward the applications
in the biorefineries sector [163–165].

Global demand for biodegradable plastics has reached the value of 700,000 tonnes.
Envisioned trends of production sum up to 270,000 tonn/year. Table 1 describes the
companies producing PHB and its copolymers, P2HB4HB, PHBHV, and PHBHHx.
In 2016, Metabolix has closed its activities in the PHA field, and patents were acquired
by Cheil Jedang, based in Seoul.
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Table 1 Main type of PHA polymers produced industrially, with details on methods and feed type

Bacteria spp.
Polymer
type Capacity Company Trademark

R. eutropha + sugarcane
molasses

PHBV 2000 tonn/
year

Tianan Biol. Mat.,
China

www.
tianan-
enmat.com
Enmat

Chromobact phaC recomb C.
necator + palm oil kernel
effluents

PHBHV,
PHB4HB

Automated
system

SIRIM, Malaysia

R. eutropha + sugarcane
molasses

PHBV 10,000 tonn/
year

PHB Industrial,
Brazil Copersucar/
Biocycle

www.
biocycle.
com.br
Biocycle

P. putida + vegetable oil PHBV
copolymer
PHBHHx

25,000 tonn/
year

Kaneka, Japan
Kaneka/P&G

Nodax,
other mixed
PHAs

R. eutropha – – Tepha TephaElast

R. eutropha + methanol PHB – Mitsubishi gas
chemicals Japan

Biogreen

P. putida PHBV 25,000 tonn/
year
Automated
system

Telles, USA
ADM

Mirel,
Mvera

– – 10 tonn/year Jiangsu Nantian,
Tsinghua Univ.,
China

R. eutropha + propionic acid PHBV 50,000 tonn/
year

Cheil Jidang South
Korea

Biopol

A. hydrophila 4AK4 + lauric
acid

PHBHHx 20,000 tonn/
year

Procter & Gamble/
Meredian US,
Tsinghua Univ.
Jiangmen Biotech

– PHBHHx Pilot scale Tiangzhu

– PHBHHx 10,000 tonn/
year

Lianyi Biotech
China

A. hydrophila + lauric acid PHBHHx Pilot scale
3000 tonn/
year

ShanDong Lukang

E. coli
P. putida

P3HB4HB 10,000 tonn/
year

Tianjin Green Bio.
Tepha,
DSM Netherlands

GreenBio

– PHBV,
PHBH,
PHBO

Pilot scale Biomer Biotechnol.,
Germany

Biomer

– – 10,000 tonn/
year

Bio-on, Italy/Europe Minerv-
PHA

– PHBV
copolymer

Polyferm, Canada Versamer

– – 100 tonn/
year

Biomatera, Canada –
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Types of PHA

While some species producemainly 3PHBpolymers, other species can synthesize PHAs,
depending on availability of intermediate precursors, such as citrate [103]. PHA syn-
thases can polymerize short-chain-length PHAs (scl-3PHAs), or medium-chain-length
PHAs (mcl-3PHAs), depending on the class of enzymes and the species and genetic
background [21]. Among the short-chain-length PHA (scl-PHA) types produced are
copolymers containing hydroxypropionate (3HB-co-HP), 4-hydroxybutyrate (3HB-co-
4HB), hydroxyvalerate (3HB-co-HV) [22], and 3-hydroxyhexanoate (3HB-co-HH),
depending on the availability of precursors (propionate, valerate, hexanoate); as for the
medium-chain-length PHA (mcl-PHA) types produced are copolymers containing
hydroxyhexanoate, hydroxyeptanoate, hydroxyoctanoate, hydroxydecanoate, and
hydroxydodecanoate [19, 23–27]. The synthesis of polyhydroxyalkanoate copolymers
with controlled composition of hydroxyalkanes has been reported [25]. Until today,
around 150 different compounds have been identified as the monomeric units within
the PHA polymer. Randomly ordered copolymers, such as poly 3-hydroxybutyrate-co-
3-hydroxyhexanoate (P3HB3HH) containing functional groups, i.e., olefin groups,
branched alkyl chains, halogen atoms, aromatic groups, and cyano groups have been
described [28]. NewP(LA-co-3HB-co-3HP) terpolyesters incorporating polylactate have
also been described [29]. The flexibility of PHA biosynthesis favors the design and
production of biopolymers having particular physical properties, such as stiffness,
elasticity, durability, resistance, or rubbery properties.

Homopolymers

Several homopolymers for bioplastics have been produced in bacteria, such as poly-
lactic acid (PLA), and, for PHA, the reference polymer P3HB, 3PHB in sizes up to
ultrahigh molecular weight (hmw-PHB) [30, 31], poly 4-hydroxybutyrate (P4HB)
[143], poly 3-hydroxypropionate (P3HP) [13], poly 3-hydroxyvalerate (PHV) [32];
poly 3-hydroxy-4-pentenoate (P3H4P), poly hydroxyhexanoate (P3HH) [33, 34],
poly 3-hydroxyheptanoate (P3HH), poly 3-hydroxyoctanoate (P3HO) [35], poly
3-hydroxydecanoate (P3HD) [36], poly 3-hydroxy-10-undecenoate (3H10U),
poly 3-hydroxydodecanoate (P3HDD) [37], poly 3-hydroxytetradecanoate (P3HTD),
poly 3-hydroxy-5-phenylvalerate P(3HPhV), 3-hydroxy-6-phenylhexanoate
(3H6PhHs), and functionalized mcl-PHA [38, 142]. With the engineering of the
β-oxidation pathway, additional homopolymers can be made available [39–41].

Random Copolymers

Poly(3HB-co-mcl-3HA) has been produced by P&G on industrial scale, under the
NODEX trademark. The wide range of commercially produced PHA as random
copolymers include poly(3HP-co-4HB), poly(3HB-co-3HP) [42], poly(3HB-co-
3HV) (PHBV) [15, 43–46], poly(3HB-co-4HB) (P3HB4HB) [47, 143], and poly
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(3HB-co-3HHx) (PHBHHx) [22, 48–51]. Using Aeromonas hydrophila expressing
phaPCJ synthase, mutations in the enoyl coenzyme A hydratase enhanced the
3-hydroxyhexanoate availability for the synthesis of poly 3-hydroxybutyrate-co-3-
hydroxyhexanoate (PHBHHs) [48, 49, 52]. Copolymers of P(3HHx-co-3HO-co-
3HD-co-3HDD) can be produced using Pseudomonas spp. but possess a too soft
consistence. Mixed polyesters such as poly-lactate-co-glycolate and poly(LA-co-
3HB-co-3HP) have also been produced [29, 53]. Copolymers of poly(3HB-co-3MP)
and poly(3HB-co-LA) have been produced using recombinant Escherichia coli;
these copolymers demonstrated improved characteristics.

Block Copolymers

Block copolymerization allows to modify the thermodynamic property of polymers
that resist ageing processes. PHA block copolymers of PHB-b-PHBV, a material
more resistant to ageing process, were obtained by feeding alternated carbon sources
during fermentation process [54]. Various researchers produced different diblock
copolymers, such as PHB-b-P3HVHHp, PHB-b-P4HB [29]), PHB-b-PHHx [55],
P3HB-b-P3HP [42], P3HP-b-P4HB, and P3HHx-b-P(3HD-co-3HDD) [37, 39, 40].
The addition in sequence of two carbon substrates can lead to the incorporation into
the PHA of the block copolymer [42, 51]. By adding 1,3-propanediol followed by
1,4-butanediol, E. coli cells synthesized P3HP-b-P4HB block copolymers. These
copolymers show optimized properties. Various diblock copolymers can be obtained
regulating the availability of fed substrates.

Graft Polymers

Graft copolymers are synthesized by chemical modification, introducing a functional
group into PHA chains, through insertion of small molecules (double bonds, triple
bonds, epoxy groups, carbonyl, cyano, phenyl groups, or halogens) into the PHA
side chain, with improved property and characteristics. Presently, PHA derivatives
obtained are: poly(styrene peroxide)-g-PHA (PS-g-PHA), poly(methyl methacrylate
peroxide)-g-PHA (PMMA-g-PHA), PHA-g-polyacrylic acid (PHA-g-PAA), PHA-
g-cellulose, PHB-g-acrylic acid-starch (PHB-g-AA/starch), PHA-g-AA-chitosan
(PHA-g-AA-COS), polyethylene glycol-g-PHA (PEG-g-PHA), monoacrylate-poly-
ethylene glycol-g-PHO (PEGMA-g-PHO), polylactic acid-g-PHA (PLA-g-PHA),
glycerol-1,3-diglycerol diacrylate-g-PHO (GDD-g-PHO), vinylimidazole-g-PHO
(VI-g-PHO), PHBV-g-poly(phenyl vinyl ketone) (PHBV-g-PVK), PHBV-g-poly-
acrylamide (PHBV-g-PA), among others.

Bacterial Species Producing PHAs

Many bacteria produce polyhydroxyalkanoates (PHAs) polymers and store them in
intracellular organelles. Among the chemolytotrophic bacteria are Cupriavidus necator
(Ralstonia eutropha), Cupriavidus metallidurans, and Alcaligenes latus [12, 56, 57, 58];
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producing PHB from simple carbon sources. Among Gram-negative bacteria, Pseudo-
monas spp. [16, 156], has attracted the interest for their metabolism of oil wastes, such
asP. oleovorans [15], P. putida [26, 59, 60, 151], P. aeruginosa [17], P. pseudoflava [61],
Thermus thermophilus, Azotobacter vinelandii [62] a diazothroph bacterium,
Enterobacter spp.,Burkholderia spp. [61, 162] and halophilic, alkaliphilic, denitrifying
species, such asHalomonas campisalis [43], that, being halophile, can be fed with fish
industry wastes, with reduced needs to sterilize the feed and the biofermentors.

Among Gram-positive bacteria are Bacillus spp. [163–165], B. subtilis [7], Bacillus
thuringiensis [7, 63, 163], and B. cereus [64, 65]. PHAs are produced by bacteria under
stress conditions (pressure, N or P limitation) increasing the synthesis of PHAs [60, 66];
the bacteria perceive the signals, such as Guanosyl diphosphoguanosine (GppG) or
dicyclic GTP alarmones and produce energy-storing polymers. Bacterial cells respond
to environmental stress by PHA production has been found to be growth associated as
well as nongrowth associated depending on the bacterial species and culture conditions
[141, 146, 147]. In the production of PHA in biofermentors, one-stage culture [53, 67],
two-stage batch culture [62, 67], fed-batch [16, 68]; high-cell density cultures [10, 18];
and mixed cultures [6, 134], as well as submerged and solid state fermentation
processes [69] have shown potential to be exploited to produce PHAs [70]. Carbohy-
drates and feed stocks can be added in continuous or at determined time points (fed-
batch), thus providing the required substrates for PHA polymers [8, 71, 72, 73].

Various factors (type of feed, aeration) influence the biomass growth, synthesis of
PHA and its molecular weight [129, 149, 151, 152, 153]. Some author described
higher PHA production in E. coli by increasing the oxygen dissolved into the
medium [14], using high rate sparging and aeration [74]. Other authors choose to
grow metabolically engineered E. coli in a microaerobic environment, exploiting
metabolic pathways associated to anaerobic metabolism [75]. Several bacterial
species have been genetically modified through gene engineering, in addition to
the E. coli system; Aeromonas hydrophila and Halomonas spp. [76] can be genet-
ically modified; mutants of Pseudomonas putida [77], P. aeruginosa [17], and
Bacillus spp. have been obtained using biotechnology approaches [163]. In partic-
ular, interest has been linked to ability of bacteria to use as feeds vegetal oils and
glycerol from biodiesel industry, or lignocellulose feedstock such as xylose [132],
and halophytic species that can be repeatedly grown in high salt medium from one
cycle to the next one with saving on the cost for sterilization of feed and
biofermentor. Though genetic engineering helped a lot in broadening the substrate
range to be metabolized into PHA as well as the polymer composition, it has been of
limited success since mostly wild-type strains could produce higher PHA. Moreover,
changing the culture conditions may enhance the overall PHA yield.

PHA Synthases and PhaCAB Operons

PHA synthases (PhaC) are grouped into four classes based on the kinetics and
mechanisms of reaction. The PhaCs in Alcaligenes eutrophus synthesizes scl-
3PHAs with monomer units oxidized at positions other than the third carbon; the
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Pseudomonas oleovorans PhaCs synthesize mcl-3PHAs with monomer units
oxidized at the third position [28], with few exceptions. The grouping of PhaC
enzymes into four classes is dependent on substrate specificity, according to
the preference in forming scl- or mcl-polymers: class I, class II, class III,
and class IV PHA synthases have been characterized, determining catalysis
properties, substrate recognition, and affinity [78]. Class I PhaC enzymes accept
3-hydroxyalkanes preferably forming short-chain-length PHAs utilizing CoA
thioesters with a limited number of carbons [79]. Class I Cupriavidus necator
PHA synthase structure of catalytic domain has been described. Class I phaC
enzymes were N-terminally truncated, with different range of truncations, show-
ing how the length of sequences affect the polymer length and product specificity
[80, 81]. The enzymes belonging to class III, made of two 40 kDa subunits, PhaC
and PhaE, have been recently reviewed [82]. The phaC catalytic site possesses a
typical PhaC box sequence ([GS]-X-C-X-[GA]-G). Class III phaC are structured
as tetramers, such as phaEC from Allochromatium vinosum, of phaE and phaC
monomers of 40 kDa. Trapping of intermediates with substrate analogues showed
that class III PHA synthases slow the rate of catalysis depending on cycling of
reacylation and hydrolysis [39, 140]. In addition, class IV PHA synthases, in
Bacillus spp., B. megaterium and B. cereus [82–84], are formed by the subunits
PhaC and phaR (similar to phaE) [78].

Furthermore, chemically modified compounds have been developed as inhib-
itors of phaC, to study the synthesis mechanism and reaction kinetics [3]. The
crystal structure of the catalytic domain of PhaC from Chromobacterium sp.
USM2, Cs-CAT [83] was recently reported. Chromobacterium USM2 strain
phaC(Cs) was found highly active, with fast polymerization rate, and preferring
hydroxyvalerate, 3-hydroxyhexanoate (3HHx), in addition to 3HB [85]. The
studies on PhaCs from Chromobacterium sp. USM2 were aimed to increase
the activity and broaden substrate specificity of PhaC(Cs) [83]. PhaC(Cs)
showed utilization of 3HB, 3HV, and 3HH, with high 3-hydroxybutyryl-coen-
zyme A activity.

Enzymatic activity has been determined on PhaC for PHA synthesis, studying the
specificities for medium-chain-length monomers as 3-hydroxyhexanoate, on the
enzymes from Chromobacterium sp., Allochromatium vinosum, and Caulobacter
crescentus (PhaCCs, PhaCCc, A479S-PhaCCs, PhaECAv) [86], displaying varying
preference for the alkyl side-chain length. Several point mutations, in particular at
the position 479, are reported to increase PhaCCc substrate preference for 3HHx
[86]. The Chromobacterium sp. PhaC synthase having a catalytic site Cs-CAT
containing Cys291, Asp447, and His477 was studied, determining that the sub-
strate-binding site is hidden by a partially disordered protein domain [85]. The
structure has peculiar properties, differing from the catalytic domain from
Cupriavidus necator (PhaC Cn-CAT). PhaC Cn-CAT adopts a partially open form
maintaining a narrow substrate access to the active site, that needs PhaM for
activation. Recently, studies have been focused on PHB synthases with mutations
enabling the enzymes to accelerate the reaction kinetics [87, 88] and the catalytic site
to accept bulk substrates as precursors for the production of mcl-PHAs and grafted
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copolymers. R. euthopha, Aeromonas caviae, and A. punctata phaCs were modified
by mutagenesis, for example, in S477X and Q481X, for efficient production of 3HB
copolymers [50, 89–91].

Class IV phaCs, such as PHA synthase PhaC1 and PhaC2 from Pseudomonas
stutzeri [92] has been exploited in polymerization of mcl-PHAs in engineered
bacteria [82]. PhaC2P with four point mutations, at E130D, S325T, S477G, and
Q481K [93] was used to accommodate substrates with various shapes and structures,
to produce mcl-PHAs and block copolymers, and tolerate modifications of side
chains, i.e., unsaturated bonds or azide groups [51]. These studies have the potential
to enlarge the range of various copolymers and their larger physicochemical prop-
erties [27, 88, 94, 95]. Phasins, PhaPs are PHB granule-associated proteins, attached
to the surface of PHA granules, with structural and regulatory functions, as reviewed
in Ralstonia eutropha H16 [96]. Structure of PhaP from Aeromonas hydrophila has
been described, while PhaM, the physiological activator of PHB synthase (PhaC1),
has been analyzed in Ralstonia eutropha [97]. PhaM is a natural primer of phaC1
activity, decreasing the time of polymerization and increasing PhaC1 specific activ-
ity. Several authors reported that, rearranging the order of integration of PhaCAB
operon genes, it is possible to synthesize P3HB-co-4HB [47], P3HP [13], P4HB
[98], ultrahigh molecular weight P3HB [30, 163], PHA-containing hydroxyl groups
[99], and copolyesters of 3-HB and mcl-3-PHA using an optimized PHA synthase
gene [94].

Engineering Bacteria for Optimized PHA Synthesis

Through up-to-date gene engineering systems, researchers showed that PHB
content and molecular weight are directly related to PhaC activity. PHA has
been produced in E. coli, using genetic engineering [8, 13, 14, 30, 66, 100, 101]
and through bacterial cell factories. The E. coli system overcomes fermentation
problems [47, 73, 132], can grow rapidly, accumulate PHA up to 60% of dry
weight [102, 103], and can be fed with various intermediate compounds [14,
103]. Chromosome integration of PHA synthase genes (phbCAB operon) and
expression of metabolism regulating genes in recombinant E. coli was shown to
increase the PHA yield [144]; for instance, NAD kinase gene yfiB was shown to
improve PHB production for the efficiency to supply NADPH. E. coli engineered
to synthesize various types of PHA have been obtained through sleeping beauty
mutase, to modulate the synthesis of P(3HB-co-3HV) polymers [135, 161]
through expression of β-ketothiolases, to condense acetyl-CoA or acetyl-CoA
and propionyl-CoA to form acetoacetyl-CoA and 3-ketovaleryl-CoA, followed
by expression of acetoacetyl-CoA reductase (PhaB) for thioester reduction and
PHA synthase (PhaC) for copolymer synthesis [44].

E. coli was metabolically engineered to synthesize poly(3-hydroxybutyrate-co-
3-hydroxyvalerate) (3HB-co-3 HV) [45] through propionyl-CoA produced from
2-ketobutyrate, which is generated via 2-hydroxy-2-methylbutanedioate through
an enzyme involved in isoleucine synthesis from acetyl-CoA and pyruvate. Two
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approaches have been pursued for changing metabolic pathways to the synthesis of
propionyl-CoA. In the first case, 2-ketobutyrate oxidase produces propionic acid,
used to form propionyl-CoA. The other pathway relays on the conversion of 2-
ketobutyrate into propionyl-CoA through pyruvate formate lyase. E. coli metabolic
fluxes were modified to block succinate production and increase the carbon flux
towards P4HB biosynthesis. The recombinant and metabolically improved E. coli
can produce poly(3HB-co-4HB), and the presence of α-ketoglutarate or citrate can
increase the content of 4HB up to 20% [47]. Also, threonine and serine metabolism
can increase the availability of acetyl-CoA and utilization of the CO2 derived from
pyruvate dehydrogenase reaction [73]. The conversion of threonine into acetyl-CoA
and glycine relies on threonine availability. During phosphoenolpyruvate carboxyl-
ase (PPC)-mediated carboxylation of phosphoenolpyruvate (PEP) into oxaloacetate
(OAA), two Acetyl-CoA are produced through CO2 fixation, with consumption of
NADH and ATP.

In the Lin et al. study [73], enzymes for PHB synthesis were coexpressed with
enzymes for threonine synthesis and degradation (Fig. 1).

Bacterial shape is a factor limiting the space and the potential accumulation of
high amounts of PHA granules. Several scientists studied the suppression of
filamentation to increase the synthesis of PHA. Subsequently, E. coli mutants in
genes regulating cell division, FtsL, FtsN, FtsQ, FtsW, FtsZ, or the over-
expression of SulA, an FtsZ inhibiting protein, have made possible an increase
in yield and dry cell mass with increased recovery of PHA [104]. Multiple,
dividing E. coli cells [105] with deleted genes minC and minD, and cell shape
controlling, actin-like gene mreB, show formation of several fission rings and the
elongated shaped cells divide into multiple daughter cells. The creation of new
PHA synthesis pathways has been made possible by recent advancements and
genetic modification in various species. Remarkably, the weakening of β-oxida-
tion cycle in Pseudomonas putida and Pseudomonas entomophila has allowed
production of different PHA polymers, with varying monomer ratios, forming
either random and/or block copolymers when fatty acids (hexanoic, octanoic, and
dodecanoic acids) are made available as PHA precursors [40]. When fatty acids
containing functional groups are fed and taken up by the bacteria, PHA poly-
merization occurs with the functional groups incorporated into the PHA. The
functional PHA polymer may be then processed with other reactive molecules to
allow formation of grafted polymers.

Other factors influencing the heterogeneity of polymers are consequence of
controlled synthesis of homopolymers, random copolymers, block copolymers,
and grafted polymers.

Engineering Pathways for scl-PHA Synthesis

Metabolic engineering has been applied to microbial synthesis of PHAs.
Synthetic biology approaches to regulate metabolic fluxes can be exploited to
control PHA composition [130]. The PhaC recombinant E. coli inactivated in
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the succinate semialdehyde dehydrogenase and expressing a more efficient
succinate semialdehyde dehydrogenase, enhancing the carbon flux toward
P4HB production.

Poly 3-hydroxypropionate (P3HP) was produced in E. coli containing four
heterologous genes, propionyl-CoA ligase, dehydratase, aldehyde dehydrogenase,
and 4-hydroxybutyrate-coenzyme A transferase, with bacteria producing 3HP4HB
when fed by 1,3-propanediol and 1,4-butanediol added in sequence. The pathways
were combined together, implementing the E. coli with glycerol dehydratase, pro-
pionaldehyde dehydrogenase, beta-ketothiolase A, and acetoacetyl-CoA reductase,
the bacteria synthesized 3HP3HB with various content of 3HP, or block copolymers
depending on the feeding method used.

Engineering the b-Oxidation Pathway mcl-PHA Synthesis

Many Pseudomonas spp. utilize fatty acids through β-oxidation to produce energy
and feed to sustain their growth. The β-oxidation pathway produces alkanes with
shortened carbon chain, that when incorporated into PHA lead to the production of
random PHA copolymers. To make available fatty acid substrates of various length,
several genes involved in β-oxidation were deleted to make ß-oxidation weakened,
engineering a mutated P. putida KTQQ20 strain.

P. putida KTQQ20 strain was able to produce homopolymer PHD as well as the
copolymer P(3HD-co-3HDD) by feeding sequentially decanoate and dodecanoate
[39]. P. putida KTQQ20 grown on hexanoate plus decanoate, synthesized random
copolymers of (HH-HD) with composition depending on hexanoate/decanoate ratio,
or diblock copolymer -P(3HD-co-3HDD), when the two substrates were added in
succession. The β-oxidation pathway was knocked down also in P. entomophila, to
produce mcl-PHA. P. entomophila LAC26 strain produced PHA in high amounts.
Homopolymers of 3HDD were synthesized, as well as other types of polymers,
depending on the source of fatty acid added. The P. putida KTOY08DGC was able
to produce the block copolymer P3HB-b-P4HB.

Recombinant Aeromonas hydrophila 4AK4 fatty acid β-oxidation impaired
mutant expressing a bacterial hemoglobin and acyl-CoA synthase, produced
PHBHV and PHBHHx copolyesters, using undecanoate as feedant, and supplying
3-hydroxyvalerate through threonine catabolism. Recently, the production of PHA
containing 2-hydroxybutyrate and 3-hydroxypropionate was shown feasible. P3HP
has been produced starting from 1,3-propandiol or from glycerol [39].

Engineering Pathways for Scl- and mcl-PHA Copolymers

P. putidaKTOYO6wasmutated in the fatty acid β-oxidation enzymes 3-ketoacyl-CoA
thiolase and 3-hydroxyacyl-CoA dehydrogenase, to increase PHA synthesis.When the
strain was transformed with a less specific PHA synthase, the P. putida KTOYO6DC
strain synthesized both scl- and mcl-PHAs, such as copolymers of PHB-b-PHVHHp,
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obtained through feed regulation, at first by addition of sodium butyrate, followed by
sodium heptanoate [55].Whenmixtures of butyrate and hexanoate were added as feed,
bacteria produced P(3HB-co-3HHx) polymers in which the percentage of monomer
contents depended on C4/C6 feed [33, 48, 49, 106].

Fig. 1 Glycolysis flux and TCS cycle leading to Acetyl-CoA and threonine bypass scheme. Acronyms
of metabolites: AKB 2-amino-3-ketobutyrate, AKG 2-oxoglutarate, Asp aspartate, ASA aspartate semi-
aldehyde, A4P aspartyl-4-phosphate, ATP adenine trinucleotide phosphate, DHAP dihydroxyacetone
phosphate, F6P fructose 6-phosphate, FBP fructose 1,6-bisphosphate, GAP d-Glyceraldehyde-3-phos-
phate, Glu glutamate, Gly glycine, Hser homoserine, MTHF methyltetrahydrofolate, NADH nicotin-
amide adenine dinucleotide, OAA oxaloacetate, PEP phosphoenolpyruvate, PHS phosphorylated
homoserine, Pyr pyruvate, Ser serine, Thr threonine, TCA tricarboxylic acids cycle
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Engineering Pathways for Functional PHA

When P. putida KTQQ20 or P. entomophila LAC23 were cultivated in presence
of fatty acids containing functional groups (double or triple bonds, epoxy groups,
carbonyl, cyano, phenyl, and halogen groups), the resulting PHA contained the
functional groups on side chains, exploited for chemical grafting on the reactive
residues. Homopolymers, random copolymers, or a blend of both have been pro-
duced containing aromatic groups. PHAs containing alkoxy, acetoxy, or hydroxyl
groups are important for their hydrophilicity, high solubility, and versatility of use.

P. entomophila LAC23 accumulated PHA containing phenyl groups on the side
chain, while P. putidaKT2442 accumulated diblock copolymer PHB-co-PHHx [55].
These strains, grown in presence of 5-phenylvaleric acid, accumulated poly(3-
hydroxy-5-phenylvalerate) homopolymer. P. entomophila LAC23 cultured using
phenylvaleric acid/dodecanoic acid as feed accumulated the copolymer containing
3-hydroxy-5-phenylvalerate (3HPhV) and 3-hydroxydodecanoate (3HDD). The
content of 3HPhV in P(3HPhV-co-3HDD) was regulated by the ratio of
dodecanoate/5-phenylvalerate [41, 106].

Fermentation in Biofermentors: Industrial Optimization of
Costs/Yield

The principal bottleneck in production costs are the costs of feed substrates, oper-
ational cost of fermentors, extraction and purification costs. Therefore, producers
have optimized bioreactor use and protocols for scaling up of the processing capacity
of fermentors, the use of cheaper feeds, and high bacterial cell density to increase the
yield of PHAs [157, 158, 159]. PHA determination in bacteria have relied on
spectrophotometric techniques or on chromatographic methods. RAMAN spectra
were acquired from marine bacteria mixed cultures [107]. Several dyes have been
used, with most of them not specific for PHA, but binding also to membrane lipids.
The most common methods are based on Nile Red (λ excitation: 543 nm, λ emission:
560–710) [108] and Nile Blue stain (Spiekermann et al. 1999; Oshiki et al. 2011;
Weissgram et al. 2015). New quantitative methods have been based on fluorometry
combined with a flow cell to evaluate PHB in bacteria stained with Nile Blue [56]
[148, 166, 167], while other methods were based on fluorescence [108] and laser
scanner quantification (λexc 460 nm/λem 550 nm) of bacteria stained with Nile Blue,
determined end point PHA accumulation [103].

Biosensors and enzymatic methods for the evaluation of feed consumption have
been described [109] and their applicability and usefulness validated [103].
Recently, a metabolic modeling system has been applied to control nutritional and
aeration conditions for biomass and PHA production optimization. Also, sensors can
determine bacterial concentration, and whole-cell bacterial detection has been shown
feasible [102, 110]. A second critical point for the scale up of the process is the lysis
of cells and the extraction of granules of PHAs. Several approaches have been
proposed to make the process economically advantageous, from the single cell
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protein method, to make fermentation and recovery of granules in a single passage
[111], to various lysis systems [112, 113], to alkaline treatment for PHA recovery
[114]. All these methods show economical advantage and are environmentally
friendly, since they do not require the use of solvents such as chloroform.

Industrial Applications of PHA Polymers

Polyhydroxyalkanoates (PHAs) are a great opportunity for the polymer industry due
to their property of high biodegradability and processing versatility, and the potential
to replace fossil fuel-based plastics. Presently marketed PHAs originate from micro-
bial cultures fed with renewable feedstocks (i.e., glucose) following sterilization
[115]. The main properties of PHAs are: water insolubility and resistance to ultra-
violet rays; low tendency to hydrolysis; degraded by acids and bases; solubility in
chloroform and chlorinated solvents; biocompatibility with biological fluids and
tissues; degradable anaerobically in sediments; nontoxic; and non“sticky” when
melted in respect to other polymers. Polyhydroxybutyrate is brittle, fragile, and
stiff, with low elongation ability, and a break point below 15%. Main problems
from PHB ageing at room temperature is recrystallization and consequently mechan-
ical properties changing with time. mcl-PHAs are elastomers, have low melting
point, and a relatively low degree of crystallinity. PHB and other PHAs are degraded
by exposure to temperatures above PHA melting point, that is 170 �C.

PHA tendency to thermal degradation is a serious problem in the PHB industry
and its applications. An exposure to 180 �C induces PHB degradation with produc-
tion of crotonic acid and shorter chain polymers. PHA is processed by extrusion,
producing various rigid and flexible plastics for goods molded to the various shapes
needed, coatings, fabrics, packaging films, films for agriculture, adhesives, additives,
and medical applications. Based on the properties of the different types of PHAs,
there are aspects related to the processing, commercial availability, challenges, and
opportunities that need to be approached.

Compounding PHB

Plasticizers can be added to modify the thermal and mechanical properties of PHAs,
to control and retard the crystallization process, and optimize flexibility and elon-
gation ability of polymers.

Blending PHA polymers with plasticizers and nucleating agents modifies the
physical properties of polymers, decreasing the processing temperature and lowering
the crystallinity, for the formation of small and numerous crystallites.

During the processing, PHB may not tolerate high temperatures; therefore, a
lubricant is added to prevent the degradation of the chains, and the process may be
carried on at 170–180 �C. This leads to a decrease in the molecular weight and to a
reduced melt viscosity. The temperature of crystallization (Tc) decreases and lowers,
allowing crystallization to endure for longer times.
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The mechanical properties of PHB are improved by its blending with P(3/4HB),
increasing the elongation at break.

The plasticizers mostly used are cheap materials easily available on the market,
such as glycerol, tributyrin, triacetin, acetyltriethylcitrate, acetyltributylcitrate,
oxypropylated glycerol (or laprol), soybean oil, epoxidized soybean oil, fatty alco-
hols with glycerol fatty esters, triethyl citrate, triacetine, acetyl tributyl citrate,
salicylic ester, acetylsalicylic acid ester, dioctyl sebacate (ATBC), polyethylene
glycol (PEG), oligohydroxybutyrate, and triethylene glycol-bis-2-ethylhexanoate.

The use of glycerol, tributyrin, triacetin, acetyl triethyl citrate, acetyl tributyl
citrate as plasticizers has been reported, and saccharin has been used as nucleation
agent. Glycerol monostearate, various triglycerids, and 12-hydroxystearate have
been used as lubricants.

Acetyl tributyl citrate has been used as PHB plasticizer. It influences PHB thermal
properties during melting, while PHB needs to be rapidly cooled to reach the degree
of crystallization required.

Blends obtained adding polyethylene glycol (2–5%) are compatible with PHB,
with good miscibility, as shown by DSC analysis. PEG 400 is a good PHB plasti-
cizer, able to reduce melting temperature of PHB. The blends of PHB with PEG 400
show that elongation at break is increased, but the tensile strength is reduced. The
PEG plasticizing effect is ascribed to weakening of intermolecular force between the
PHB chains, which leads to a change in free volume and to a decreased temperature
of melting.

In the production of PHB composites with wood fibers, PEG 400 is added by
extrusion and injection molding, with a lubricant effect on melted PHB/wood
formulations, making the processing easier. However, PEG is not completely
blended with PHB and leaches to the outside after some time, with a loss of
plasticizing power.

The adhesion of PEG to the natural fibers is the main reason of its plasticizing
effect in the manufacture of composites made of PHB and natural fibers. Organo-
modified montmorillonite (OMMT) clay is a nanofiller used in PHB/V blends. The
nanobiocomposites possess an intercalated/exfoliated structure and show good
mechanical properties. The OMMT filler acts as a nucleating agent, enhancing the
crystallization, and improves thermal stability of the polymer.

Blending of PHB with Other Polymers

Blending PHB with other polymers improve processability and reduce the brittleness
of PHA bioplastics. Several blends containing PHA have been developed and
various plasticizers have been used.

PHB-co-HV possesses higher temperature of crystallization (Tc). An increase in
the HV fraction to 20 mol% in PHB-co-HV decreases the melting temperature (Tm)
of the copolymer to 168.5 �C in respect to the initial value of 175.4 �C. Further
increase in the HV fraction shows an isodimorphic relationship. The nucleating
agent ULTRATALC 609 was used to obtain higher temperature of crystallization (Tc),
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while reducing crystallization time required for injection molding [115]. Temperature
of decomposition (Tdec) of homopolymer and copolymers mixed with ULTRA-
TALC_609 resulted increased.

Poly(3-hydrobutyrate) mixed with dioctyl sebacate (ATBC) as plasticizer, shows
a lowering of glass transition temperature (Tg), with improvement of thermal
characteristics, without changes in mechanical properties. PHBHHx and/or P(3/
4HB) with ATBC and antioxidant 1010 as stabilizer show improvement of PHB
thermal stability and stabilization of the melt flow index (MFI), widening the
application range of PHB processing methods.

Vinyl acetate polymer as well as polyvinyl alcohol have been used to strengthen
PHAs blends. Different contents of the fillers have been shown to improve PHB
tensile properties (modulus and strength).

Mixed PHA Copolymers

One approach to widen the properties of PHA-based bioplastics is the synthesis of
copolymers, such as PHBHV or PHBHHx, with different molar ratios of
hydroxycarboxylic acids, improving the mechanical properties and lowering the
melting point, slowing down the degradation during processing. In addition,
blends with other biodegradable polymers and composites are convenient as
materials for industrial applications.

A largely used approach in PHA polymers with improved properties is blending
the polymer with a second thermoplastic polymer. The degree of crystallinity is
modified, and production costs can be lowered.

P(3HB) is miscible with poly(ethylene oxide), poly(epichlorohydrin), poly(vinyl
acetate), highly substituted cellulose esters and trisubstituted cellulose butyrate and
caprolactone, among others.

The blends with P(3HB) with immiscible polymers are important in the control of
biodegradation profile. Binary blends, such as P(3HB)/poly(propiolactone), P(3HB)/
poly(ethylene adipate), and P(3HB)/poly(3-hydroxybutyric acid-co-hydroxyvaleric
acid) degrade more rapidly, and the acceleration depends on the phase separation of
the two structures.

Wood flour and lignin have been used as fillers in composite materials. Fibers derived
from renewable resources on conventional reinforcements such as glass and aramidfibers
are convenient, cheap, recyclable, and competitive as strength per weight of material.

Processing of PHA Copolymers: Challenges and Opportunities

Depending on the molecular weight of the polymer and on the content of comono-
mer, different processing techniques have been developed.

Powdered PHB is blended with additives by mixing in a kneader at 170–180 �C
in an extruder at temperatures in the range of 160 �C and 170 �C. The thread is
cooled in water and a pelletizer allows the cutting into pieces.
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Then, the granulates can be compressed and molded in a hydraulic press, heated
at temperature of 170–180 �C between sheets of Teflon. After that, samples are
cooled to room temperature.

Melting Behaviour of PHB

PHB is a linear polymer with elevated level of crystallinity (60–70%). The crystallization
speed is slow below 60 �C and above 130 �C, behaving as an amorphous and sticky
material. The rapidfluid/solid transition is exploited to obtain fast speed in the processing.
The material is melted in proximity of the filling zone, lowering the temperature during
the die-casting. The viscosity of PHB plastics is similar to polypropylene.

Processing Techniques and Conditions

PHAs can be extruded by injection molding and various types of extrusion protocols,
into films and hollow bodies. The thermal, rheological, mechanical, and barrier
properties of PHBV with different valerate contents and molecular weights have
been characterized. The use of copolymers is very frequent, since they improve the
plastics flexibility and lower the glass transition temperature (Tg) and the melting
temperature (Tm).

The presence of HV in the copolymer enlarges and improves the processing
parameters, thanks to higher melt stability at lower processing temperatures. The
processing of copolymer below 160 �C is beneficial with low screw speed. PHBV
shows good mechanical property, high elastic modulus and flexibility strength, low
tensile strength, and low elongation at break. PHBV polymers are unstable at
temperatures over 160 �C, possibly because of polymer breakdown due to random
chain scission process, which leads to decreased molecular weight and lower
viscosity. The PHBV plastics are brittle, elastic and with low tensile strength.
P3HB4HB polymers and conventional thermoplastic used for packaging instead
show high tensile strength and higher elongation at break. The PHBHV subjected to
injection molding at temperatures from 135 to 160 �C, show low degradation and
only for a small extent [115].

Although the incorporation of nanoclay improves the properties of PHB and its
copolymers, thermo-mechanical degradation of the PHB and PHBV, in the presence
of ammonium surfactants, used as clay organo-modifiers, has been reported. The
surfactants affect polymer degradation.

The use of surfactants in PHBV processing is optimal. The surfactants improve
the characteristics of PHBV-based nanocomposites with organomodified clays,
exhibiting good thermo-mechanical properties, high shear rate, good level of exfo-
liation of layered silicates, and stabilization of the bioplastic products. The PHB
blend with poly(vinyl acetate) (PVAc) in the amorphous state was characterized,
showing that the two polymers are miscible. Overall, polymer blends containing
PHA show good properties and high biodegradability [115].
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Industrial Applications of PHAs

The bioplastics have a wide range of applications for the industry [27, 138, 139, 145,
154, 160] PHA is biodegradable, highly deformable, has high heat resistance and
good resistance to hydrolysis, balancing both the degree of toughness and the degree
of stiffness. PHA shows for many aspects similarity with linear low-density poly-
ethylene (LLDPE). This makes PHA versatile enough to be made into a wide range
of molded items, fiber and film. Manufacturers of hard-line consumer goods showed
the potential many PHA uses due to its flexibility and its resemblance to LLDPE. In
addition to furniture, tools, and sports equipment, PHA can be used in the molded
parts of household appliances, such as covers, filters, housings, fasteners, and clips.
The bioplastics have been used in cables, connectors, and housings of consumer
electronic devices. The developing trend of use of bioplastics has been seen in
electronics manufacturers: Samsung, NEC, Sony, Fujitsu, and Nokia make use of
bioplastics in their goods. Consumers have shown increasing interest and support
for green product content even at a higher, premium price, such as in packaging
materials for cosmetics and personal care products. The products are marketed
stressing their environmentally friendly qualities. PHA’s flexibility makes it a
natural bioplastic material for caps, bottles, blister packs, and other containers for
the industry of consumer goods. It can also be used for packaging applications for
articles in the food industry, such as bottles, laminated foils, fishnets, flowerpots,
sanitary goods, fast foods, disposable cups, agricultural foils, and fibers in textiles.

The properties of various copolymers and block polymers, and their processability,
enlarge the potential in their applications. Similarly to PVC and PET, PHA exhibits good
barrier properties and can be used in the packaging industry as a bioplastic, contributing
to solve environmental pollution problems. Due to these properties, PHB is a good
candidate to substitute PP and PE but also PET. Poly(vinyl acetate)-based resins enhance
the physical properties of the material containing PHB, which significantly simplifies the
processing. This, combined with the high heat resistance of PHB, allows the possible use
of this material in applications such as hot filling.

Compounders found PHA having great potential as a modifier for PVC as it can
improve toughness and plasticization without affecting transparency or UV stability.
As PHA has high miscibility with PVC, it is easy to handle and process in the same
conditions as PVC.

Overall, PHA is a promising polymer for a wide range of applications. For
example, it has better barrier properties and mechanical strength than other more
widespread bioplastics such as polylactic acid. In spite of its intrinsic brittleness, a lot
of progress has been made through the formulation of PHAs with tailored additives
and blends, leading to greatly improved mechanical profiles, as well as suitable
processability via extrusion or injection molding. This makes PHA versatile enough
to be made into a wide range of molded items, fibers for textiles and biofilms. Blow-
molded bottles and injection-molded hair caps are two main industrial products that
benefited from the easiness to process the PHA polymer into a vast range of shapes.
These advances will improve its capacity to penetrate markets such as packaging
foils for the storage of food products.
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PHA is a very versatile polymer, that is well suited in a wide range of applica-
tions. For example, it has good barrier properties, good oxygen transmission rate
(OTR) and water vapor transmission rate (WVTR), and good mechanical strength, in
respect to other bioplastics such as PLA. In spite of its brittleness, a lot of progress
has been made through the formulation of PHB with tailored additives and blends
leading to greatly improved mechanical profiles, as well as suitable processability
via extrusion or injection molding. These advances will improve its capacity to
penetrate markets and find new application at industrial level. Finally, further
improvements (new block polymers, varying monomer percentage in copolymers,
grafted polymers) could allow even more flexible grades of PHAs or transparent
ones through the control of its crystallization.

PHA has a great potential for applications in agriculture, being a biodegradable
plastic, having a controlled-release mechanism, and as fertilizer. Pellets made of
PHA can be placed on field to the soil, gradually degraded and contents released over
a prolonged period, reducing fertilizer and labor costs. The use of natural fillers with
high availability and low cost will allow the production of biocomposite more suited
for their application in packaging, such as consumer goods and in food packaging.

Automotive industry, under the recycle directive of plastic components, are
driving the next development in components for cars and buildings. The EU End-
of-Life Vehicle Directive requires reuse and recycling content rates of 85% in
passenger vehicles and light commercial vehicles from 1 January 2015 onwards.
As a consequence, automotive manufacturers are developing applications of
bioplastics and other biobased materials in their products.

Presently, Hyundai and Toyota carmakers incorporate bioplastics in their vehicles.
Because of its physical properties, PHA could serve as a more environmentally
friendly material for automotive tubing, seat materials, interior panels, and trim parts.

However, in case the of PHAwill bemore competitive and affordable at cost level, and
PHAwill become comparable to the cheaper, nondegradable plastics, and similar in costs
to polymers originated from petrochemicals (whose availability is estimated to decrease
with time), it is envisaged that also the packaging industry will see an increase of the
requests for PHA-based films and molded forms, and in fiber reinforced material for
textiles, bioplastic composites for aerospace, automotive industries.

Sustainability of materials is a necessary aspect that need to be kept into account,
needing to meet current and future regulatory requirements in many markets. The
consumers will support a premium cost for products and services with positive social
and environmental impact. Biobased products are set to capture an increasingly large
share of the consume market.

PHA in Medical Applications

The most promising field of applications due to the high competitivity of products
and high prize of the instruments is in the high-tech electronic devices and in the
biomedical sector. PHA polymers, depending on the properties of the copolymer
used, have been applied to development of medical devices, surgical sutures, stents,
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cardiac valves, in tissue repair and regenerative medicine applications [116–118],
bone and tendon repair [119–121], titanium bone implants with enhanced anti-
bacterial power [122], tissue engineering [2, 123], artificial organ reconstruction
such as artificial esophagus replacement, in drug delivery for nutritional/therapeutic
uses, such as nanoparticles-releasing bioactive drugs. In pharmacology, PHB can be
used as microcapsules in therapy or as materials for cell and tablet packaging, for
encapsulation of Langerhans cells to restore insulin production and release [124,
125], and for coupling the bioplastics with arginine-glycine-aspartate (RGD) cell
adhesion motif [126] or in microbeads for targeted drug release [127].

Antibacterial PHAs coating for titanium implants have been developed through
the incorporation of antibiotics into the PHA polymer [122].

In biomedical applications, PHB is compatible with human cells and tissues. The
hydroxybutyrate is present in the human body and is metabolized. Since PHB is
reabsorbed in the body, it could be incorporated in implants in surgery, in sutures, in
seam threads, as wound healing and blood vessel reconstruction. At Massachusetts
Institute of Technology, several applications of bioplastics with slow release of
chemotherapeutics implanted in the brain have been produced and patented. This,
together with the effect of blood-brain barrier, encloses spatially and temporally the
chemotherapeutics for a local and prolonged bioactivity.

Biomedical applications have been described in the last 5 years. Scaffold from
poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly-(3-hydroxybutyrate)
mixed to type-I collagen have been tested for tissue engineering [45, 116].

Long bone fractures, bone fragility, and osteoporosis problems have been med-
icated using bioresorbable materials based on PHAs [128]. Osteoblast cells were
shown to grow at high density on nanocomposite scaffold of hydroxyapatite/titania
coated with poly hydroxybutyrate [121], making bone implants to be realized at high
success rate.

Furthermore, PHA scaffolds for bone tissue engineering and orthotopic bone
implants based on a hybrid construction from poly(3-Hydroxybutyrate) have been
tested and applied in preclinical studies [3]. There are also studies to apply poly-3-
hydroxyoctanoate as peripheral nerve graft. In general, the technological readiness
level of these prototypes is at research and development level, so there is a need to
push the advancements in this field to a preindustrial and demonstration level.

Conclusions

The PHAs have shown their potential as low-cost biodegradable plastics. Presently,
there are still some bottlenecks in their wide use and applications, since the high
costs of production, in respect to other nonbiodegradable plastics, and to the
problems in controlling the ratio of monomers that influences the PHA properties.
In order to lower costs of PHA production, agricultural byproducts, industrial
wastes, and biorefinery byproducts have been successfully used as feedstock. One
of the main bottlenecks in the application of PHB for the production of single-use
items is based on its relatively high cost (7–10 Euro/kg) when compared to other
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polymers. In this respect, the use of waste feedstock for the culture of the microor-
ganisms accumulating PHAs is a way to lead to their greater economic viability and
sustainability. Presently, different research studies are ongoing regarding the
improvement of the yield of PHA by genetic modification of the bacteria or the
use of waste for their growth. The β-oxidation weakened Pseudomonas strains newly
developed have increased the range of polymers and copolymers that can be
produced, allowing to obtain PHA with controlled mechanical and thermal proper-
ties. The possibility to introduce various functional groups into the PHA side chains
and side chain grafting has made possible to enlarge the multiplicity of polymers
available for industrial applications, with high value-added functionalities. Further
investigations and efforts will allow reducing the production costs of PHA polymers,
increasing the industrial sustainability and commercialization of PHAs.
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