
Chapter 9
Hotelling’s T 2 Test

The Hotelling’s T 2 test is used to test H0 : μ = μ0 when there is one sample,
and H0 : μ1 = μ2 when there are two samples. Other applications include
the multivariate matched pairs test and a test in the repeated measurements
setting. These tests are robust to nonnormality.

The one-sample Hotelling’s T 2 test, multivariate matched pairs test, and
two-sample Hotelling’s T 2 test are analogs of the univariate one-sample t test,
matched pairs t test, and two-sample t test, respectively. For the multivariate
Hotelling’s T 2 tests, there are p > 1 variables and their correlations are
important.

9.1 One Sample

The one-sample Hotelling’s T 2 test is used to test H0 : μ = μ0 versus HA :
μ �= μ0. The test rejects H0 if

T 2
H = n(x − μ0)

T S−1(x − μ0) >
(n − 1)p
n − p

Fp,n−p,1−α

where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.
If a multivariate location estimator T satisfies

√
n(T − μ) D→ Np(0,D),

then a competing test rejects H0 if

T 2
C = n(T − μ0)

T D̂
−1

(T − μ0) >
(n − 1)p
n − p

Fp,n−p,1−α
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where D̂ is a consistent estimator of D. The scaled F cutoff can be used
since T 2

C
D→ χ2

p if H0 holds, and

(n − 1)p
n − p

Fp,n−p,1−α → χ2
p,1−α

as n → ∞. This idea is used for small p by Srivastava and Mudholkar (2001)
where T is the coordinatewise trimmed mean. The one-sample Hotelling’s T 2

test uses T = x, D = Σx, and D̂ = S.
The Hotelling’s T 2 test is a large sample level α test in that if x1, ...,xn

are iid from a distribution with mean μ0 and nonsingular covariance matrix
Σx, then the type I error = P(reject H0 when H0 is true) → α as n → ∞. We
want n ≥ 10p if the DD plot is linear through the origin and subplots in the
scatterplot matrix all look ellipsoidal. For any n, there are distributions with
nonsingular covariance matrix where the χ2

p approximation to T 2
H is poor.

Let pval be an estimate of the pvalue. We typically use T 2
C = T 2

H in the
following four-step test. i) State the hypotheses H0 : μ = μ0 H1 : μ �= μ0.
ii) Find the test statistic T 2

C = n(T − μ0)T D̂
−1

(T − μ0).
iii) Find pval =

P

(
T 2

C <
(n − 1)p
n − p

Fp,n−p

)
= P

(
n − p

(n − 1)p
T 2

C < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then con-
clude that μ �= μ0 while if you fail to reject H0 conclude that the population
mean μ = μ0 or that there is not enough evidence to conclude that μ �= μ0.
Reject H0 if pval ≤ α and fail to reject H0 if pval > α. As a benchmark for
this text, use α = 0.05 if α is not given.

If W is the data matrix, then R(W ) is a large sample 100(1 − α)% con-
fidence region for μ if P [μ ∈ R(W )] → 1 − α as n → ∞. If x1, ...,xn are
iid from a distribution with mean μ and nonsingular covariance matrix Σx,
then

R(W ) = {w|n(x − w)T S−1(x − w) ≤ (n − 1)p
n − p

Fp,n−p,1−α}

is a large sample 100(1−α)% confidence region for μ. This region is a hyper-
ellipsoid centered at x. Note that the estimated covariance matrix for x is
S/n and n(x−μ)T S−1(x−μ) = D2

μ(x,S/n). If μ is close to x with respect
to the Mahalanobis distance based on dispersion matrix S/n, then μ will be
in the confidence region.

Recall from Theorem 1.1e that max
a�=0

aT (x − μ)(x − μ)T a

aT Sa
=

n(x−μ)T S−1(x−μ) = T 2. This fact can be used to derive large sample simul-
taneous confidence intervals for aT μ in that separate confidence statements
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using different choices of a all hold simultaneously with probability tending
to 1 − α. Let x1, ...,xn be iid with mean μ and covariance matrix Σx > 0.
Then simultaneously for all a �= 0, P (La ≤ aT μ ≤ Ua) → 1 − α as n → ∞
where

[La, Ua] = aT x ±
√

p(n − 1)
n(n − p)

Fp,n−p,1−αaT Sa.

Simultaneous confidence intervals (CIs) can be made after collecting data
and hence are useful for “data snooping.” Following Johnson and Wichern
(1988, pp. 184–5), the p confidence intervals (CIs) for μi and the p(p − 1)/2
CIs for μi−μk can be made such that for each of the two types of CI, they all
hold simultaneously with confidence → 1−α. Hence if α = 0.05, then in 100
samples, we expect all p CIs to contain μi about 95 times, and we expect all
p(p − 1)/2 CIs to contain μi − μk about 95 times. For each of the two types
of CI, about 5 times at least one of the CIs will fail to contain its parameter
(μi or μi − μk). The simultaneous CIs for μi are

[L,U ] = xi ±
√

p(n − 1)
(n − p)

Fp,n−p,1−α

√
Sii

n

while the simultaneous CIs for μi − μk are

[L,U ] = xi − xk ±
√

p(n − 1)
(n − p)

Fp,n−p,1−α

√
Sii − 2Sik + Skk

n
.

Example 9.1. Following Mardia et al. (1979, p. 126), data for first and
second adult sons had n = 25 and variables X1 = head length of first son and
X2 = head length of second son. Suppose μ0 = (182, 182)T and T 2

C = 1.28.
Perform the one-sample Hotelling’s T 2 test.

Solution: i) H0 : μ = μ0 H1 : μ �= μ0

ii) T 2
C = 1.28

iii)
n − p

(n − 1)p
T 2

C =
25 − 2
(24(2)

1.28 = 0.6133, and pval = P (0.613 < F2,23) >

0.05
iv) Fail to reject H0, so μ = (182, 182)T .

9.1.1 A Diagnostic for the Hotelling’s T 2 Test

Now the RMVN estimator is asymptotically equivalent to a scaled DGK esti-
mator that uses k = 5 concentration steps and two “reweight for efficiency”
steps. Lopuhaä (1999, pp. 1651–1652) showed that if (E1) holds, then the clas-
sical estimator applied to cases with Di(x, S) ≤ h is asymptotically normal
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with √
n(T0,D − μ) D→ Np(0, κpΣ).

Here h is some fixed positive number, such as h = χ2
p,0.975, so this estimator

is not quite the DGK estimator after one concentration step.
We conjecture that a similar result holds after concentration:

√
n(TRMV N − μ) D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. Since the “test” is based on a
conjecture, it is ad hoc and should be used as an outlier diagnostic rather
than for inference.

For MVN data, simulations suggest that τp is close to 1. The ad hoc test
that rejects H0 if

T 2
R

fn,p
= n(TRMV N −μ0)

T Ĉ
−1

RMV N (TRMV N −μ0)/fn,p >
(n − 1)p
n − p

Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n gave fair results in the simulations
described later in this subsection for n ≥ 15p and 2 ≤ p ≤ 100.

Table 9.1 Hotelling simulation

p n=15p hcv rhcv n=20p hcv rhcv n=30p hcv rhcv

10 150 0.0476 0.0300 200 0.0516 0.0304 300 0.0498 0.0286

15 225 0.0474 0.0318 300 0.0506 0.0308 450 0.0492 0.0320

20 300 0.0540 0.0368 400 0.0548 0.0314 600 0.0520 0.0354

25 375 0.0444 0.0334 500 0.0462 0.0296 750 0.0456 0.0288

30 450 0.0472 0.0324 600 0.0516 0.0358 900 0.0484 0.0342

35 525 0.0490 0.0384 700 0.0522 0.0358 1050 0.0502 0.0374

40 600 0.0534 0.0440 800 0.0486 0.0354 1200 0.0526 0.0336

45 675 0.0406 0.0390 900 0.0544 0.0390 1350 0.0512 0.0366

50 750 0.0498 0.0430 1000 0.0522 0.0394 1500 0.0512 0.0364

55 825 0.0504 0.0502 1100 0.0496 0.0392 1650 0.0510 0.0374

60 900 0.0482 0.0514 1200 0.0488 0.0404 1800 0.0474 0.0376

65 975 0.0568 0.0602 1300 0.0524 0.0414 1950 0.0548 0.0410

70 1050 0.0462 0.0530 1400 0.0558 0.0432 2100 0.0522 0.0424

75 1125 0.0474 0.0632 1500 0.0502 0.0486 2250 0.0490 0.0370

80 1200 0.0524 0.0620 1600 0.0524 0.0432 2400 0.0468 0.0356

85 1275 0.0482 0.0758 1700 0.0496 0.0456 2550 0.0520 0.0404

90 1350 0.0504 0.0746 1800 0.0484 0.0454 2700 0.0484 0.0398

95 1425 0.0524 0.0892 1900 0.0472 0.0506 2850 0.0538 0.0424

100 1500 0.0554 0.0808 2000 0.0452 0.0506 3000 0.0488 0.0392
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The correction factor fn,p was found by simulating the “robust” and clas-
sical test statistics for 100 runs, plotting the test statistics, then finding a
correction factor so that the identity line passed through the data. The fol-
lowing R commands were used to make Figure 9.1, which shows that the
plotted points of the scaled “robust” test statistic versus the classical test
statistic scatter about the identity line.

Table 9.2 Hotelling power simulation

p n hcv rhcv δ n hcv rhcv δ n hcv rhcv δ

5 75 0.459 0.245 0.20 100 0.366 0.184 0.15 150 0.333 0.208 0.12

5 75 0.682 0.416 0.25 100 0.599 0.368 0.20 150 0.577 0.394 0.16

5 75 0.840 0.588 0.30 100 0.816 0.587 0.30 150 0.860 0.708 0.40

10 150 0.221 0.113 0.10 200 0.312 0.182 0.10 300 0.469 0.340 0.10

10 150 0.621 0.400 0.17 200 0.655 0.467 0.15 300 0.647 0.504 0.12

10 150 0.888 0.729 0.22 200 0.848 0.692 0.18 300 0.872 0.767 0.15

15 225 0.314 0.188 0.10 300 0.442 0.294 0.10 450 0.317 0.228 0.07

15 225 0.714 0.543 0.15 300 0.623 0.449 0.12 450 0.648 0.522 0.10

15 225 0.881 0.738 0.18 300 0.858 0.755 0.15 450 0.853 0.762 0.12

20 300 0.408 0.276 0.10 400 0.341 0.230 0.08 600 0.291 0.216 0.06

20 300 0.691 0.525 0.13 400 0.674 0.534 0.11 600 0.554 0.433 0.08

20 300 0.935 0.852 0.17 400 0.858 0.742 0.13 600 0.790 0.701 0.10

25 375 0.304 0.214 0.08 500 0.434 0.319 0.08 750 0.354 0.266 0.06

25 375 0.728 0.580 0.12 500 0.676 0.531 0.10 750 0.660 0.556 0.08

25 375 0.926 0.837 0.15 500 0.868 0.771 0.12 750 0.887 0.815 0.10

30 450 0.374 0.264 0.08 600 0.395 0.290 0.07 900 0.290 0.217 0.05

30 450 0.602 0.467 0.10 600 0.639 0.517 0.09 900 0.743 0.642 0.08

30 450 0.883 0.763 0.13 600 0.867 0.770 0.11 900 0.876 0.808 0.09

n<-4000; p <- 30 #May take a few minutes.

zout <- rhotsim(n=4000,p=30)

SRHOT <- zout$rhot/(1.04 + 0.12/p + (40+p)/n)

HOT <- zout$hot

plot(SRHOT,HOT)

abline(0,1)
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Fig. 9.1 Scaled “Robust” Statistic Versus T 2
H Statistic

For the Hotelling’s T 2
H simulation, the data is Np(δ1, diag(1, 2, ..., p))

where H0 : μ = 0 is being tested with 5000 runs at a nominal level of
0.05. In Table 9.1, δ = 0 so H0 is true, while hcv and rhcv are the proportion
of rejections by the T 2

H test and by the ad hoc robust test. Sample sizes are
n = 15p, 20p, and 30p. The robust test is not recommended for n < 15p
and appears to be conservative (the proportion of rejections is less than the
nominal 0.05) except when n = 15p and 75 ≤ p ≤ 100. See Zhang (2011).

If δ > 0, then H0 is false and the proportion of rejections estimates the
power of the test. Table 9.2 shows that T 2

H has more power than the robust
test, but suggests that the power of both tests rapidly increases to one as δ
increases.

9.1.2 Bootstrapping Hotelling’s T 2 Type Tests

The prediction region method of Section 5.3 is useful for bootstrapping the
test H0 : μT = μ0 versus HA : μT �= μ0 where the test statistic T esti-
mates the parameter μT . Take a sample of size n with replacement from
the cases x1, ...,xn to make the bootstrap statistic T ∗

1 . Repeat to get the
bootstrap sample T ∗

1 , ..., T ∗
B . Apply the nonparametric prediction region to

the bootstrap sample and see if μ0 is in the region. Equivalently, apply the
nonparametric prediction region to wi = T ∗

i − μ0, i = 1, ..., B, and fail to
reject H0 if 0 is in the region, otherwise reject H0.

The mpack function rhotboot bootstraps T where T is the coordinate-
wise median or T is the RMVN location estimator. The function medhotsim
simulates the test with μ0 = 0 when T is the coordinatewise median. The
simulated data are as in Section 6.3, with x = Az, except that z = u − 1
was used for the multivariate lognormal distribution with ui = exp(wi) and

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_6
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wi ∼ N(0, 1), so that the population coordinatewise median of x and z was
0 when H0 is true. When H0 was false, μ0 = δ1 with δ > 0.

The term hotcov was the proportion of times the bootstrap test rejected
H0 with a nominal level of 0.05. With n = 100 and p = 2, hotcov was near
0.05 when H0 was true. The test usually had good power if μ = (0.5, 0.5)T .
See output below where 1000 runs were used.

medhotsim(xtype=1,nruns=1000)

0.046 #MVN((0,0)^T, diag(1,2)) data

medhotsim(xtype=1,nruns=1000,delta=0.5)

0.995 #MVN((0.5,0.5)^T, diag(1,2)) data

9.2 Matched Pairs

Assume that there are k = 2 treatments, and both treatments are given to the
same n cases or units. Then p measurements are taken for both treatments.
For example, systolic and diastolic blood pressure could be compared before
and after the patient (case) receives blood pressure medication. Then p = 2.
Alternatively use n correlated pairs, for example, pairs of animals from the
same litter or neighboring farm fields. Then use randomization to decide
whether the first member of the pair gets treatment 1 or treatment 2. Let
n1 = n2 = n and assume n − p is large.

Let yi = (Yi1, Yi2, ..., Yip)T denotes the p measurements from the 1st treat-
ment, and zi = (Zi1, Zi2, ..., Zip)T denotes the p measurements from the 2nd
treatment. Let di ≡ xi = yi − zi for i = 1, ..., n. Assume that the xi are iid
with mean μ and covariance matrix Σx. Let T 2 = n(x − μ)T S−1(x − μ).
Then T 2 P→ χ2

p and pFp,n−p
P→ χ2

p. Let P (Fp,n ≤ Fp,n,δ) = δ. Then the one-
sample Hotelling’s T 2 inference is done on the differences xi using μ0 = 0. If
the p random variables are continuous, make three DD plots: one for the xi,
one for the yi, and one for the zi to detect outliers.

Let pval be an estimate of the pvalue. The large sample multivariate
matched pairs test has four steps.
i) State the hypotheses H0 : μ = 0 H1 : μ �= 0.
ii) Find the test statistic T 2

M = nxT S−1x.
iii) Find pval =

P

(
T 2

M <
(n − 1)p
n − p

Fp,n−p

)
= P

(
n − p

(n − 1)p
T 2

M < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μ �= 0 while if you fail to reject H0 conclude that the population
mean μ = 0 or that there is not enough evidence to conclude that μ �= 0.
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Reject H0 if pval ≤ α and fail to reject H0 if pval > α. As a benchmark for
this text, use α = 0.05 if α is not given.

A large sample 100(1 − α)% confidence region for μ is

{w| n(x − w)T S−1(x − w) ≤ (n − 1)p
n − p

Fp,n−p,1−α},

and the p large sample simultaneous confidence intervals (CIs) for μi are

[L,U ] = xi ±
√

p(n − 1)
(n − p)

Fp,n−p,1−α

√
Sii

n

where Sii = S2
i is the ith diagonal element of S.

Example 9.2. Following Johnson and Wichern (1988, pp. 213–214),
wastewater from a sewage treatment plant was sent to two labs for measure-
ments of biochemical demand (BOD) and suspended solids (SS). Suppose
n = 11, p = 2, and T 2

M = 13.6. Perform the appropriate test.
Solution: i) H0 : μ = 0 H1 : μ �= 0
ii) T 2

M = 13.6

iii)
n − p

(n − 1)p
T 2

M =
11 − 2

(11 − 1)2
13.6 = 6.12, and pval = P (6.12 < F2,9) < 0.05

iv) Reject H0. Hence μ �= (0, 0)T , and the two labs are giving different
mean measurements for (μBOD, μSS)T .

To get a bootstrap analog of this test, bootstrap the di = xi as in Section
9.1.2 where usually H0 : μ ≡ μT = 0. Again robust location estimators, such
as the coordinatewise median or RMVN location estimator TRMV N , could
be used on the xi.

9.3 Repeated Measurements

Repeated measurements = longitudinal data analysis. Take p measurements
on the same unit, often the same measurement, e.g., blood pressure, at several
time periods. Hence each unit or individual is measured repeatedly over time.
The variables are X1, ..., Xp where often Xk is the measurement at the
kth time period. Then E(x) = (μ1, ..., μp)T = (μ + τ1, ..., μ + τp)T . Let the
(p− 1)× 1 vector yj = (x1j −x2j , x2j −x3j , ..., xp−1,j −xpj)T for j = 1, ..., n.
Hence yij = xij − xi+1,j for j = 1, ..., n and i = 1, ..., p − 1. Then y =
(x1 − x2,x2 − x3, ...,xp−1 − xp)T . If μy = E(yi), then μy = 0 is equivalent
to μ1 = · · · = μp where E(Xk) = μk. Let Sy be the sample covariance matrix
of the yi.
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The large sample repeated measurements test has four steps.
i) State the hypotheses H0 : μy = 0 H1 : μy �= 0.
ii) Find the test statistic T 2

R = nyT S−1
y y.

iii) Find pval =

P

(
n − p + 1

(n − 1)(p − 1)
T 2

R < Fp−1,n−p+1

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μy �= 0 so not all p of the μi are equal, while if you fail to
reject H0 conclude that the population mean μy = 0 or that there is not
enough evidence to conclude that μy �= 0. Reject H0 if pval ≤ α and fail to
reject H0 if pval > α. Give a nontechnical sentence, if possible.

Example 9.3. Following Morrison (1967, pp. 139–141), reaction times to
visual stimuli were obtained for n = 20 normal young men under conditions
A, B, and C of stimulus display. Let xA = 21.05, xB = 21.65, and xC = 28.95.
Test whether μA = μB = μC if T 2

R = 882.8.
Solution: i) H0 : μy = 0 H1 : μy �= 0
ii) T 2

R = 882.8

iii)
n − p + 1

(n − 1)(p − 1)
T 2

R =
20 − 3 + 1

(20 − 1)(3 − 1)
882.8 = 418.168, and

pval = P (418.168 < F2,18) ≈ 0
iv) Reject H0. The three mean reaction times are different.

An alternative test would use a statistic T , such as the coordinatewise
median or RMVN location estimator, on the yj , and the bootstrap method
of Section 9.1.2 can be applied with μy = 0. This test is equivalent to H0 :
μ1 = · · · = μp where μk is a population location parameter for the kth
measurement. Hence if the coordiatewise median is being used, then μk is
the population median of the kth measurement.

9.4 Two Samples

Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from populations with mean and covariance matrices (μi,Σxi)
for i = 1, 2. Assume the Σxi

are positive definite and that it is desired to test
H0 : μ1 = μ2 versus H1 : μ1 �= μ2 where the μi are p×1 vectors. To simplify
large sample theory, assume n1 = kn2 for some positive real number k.
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By the multivariate central limit theorem,

(√
n1 (x1 − μ1)√
n2 (x2 − μ2)

)
D→ N2p

[(
0
0

)
,

(
Σx1 0
0 Σx2

)]
,

or
(√

n2 (x1 − μ1)√
n2 (x2 − μ2)

)
D→ N2p

[(
0
0

)
,

(
Σx1

k 0
0 Σx2

)]
.

Hence

√
n2 [(x1 − x2) − (μ1 − μ2)]

D→ Np(0,
Σx1

k
+ Σx2).

Using nB−1 =
(

B

n

)−1

and n2k = n1, if μ1 = μ2, then

n2(x1 − x2)T

(
Σx1

k
+ Σx2

)−1

(x1 − x2) =

(x1 − x2)T

(
Σx1

n1
+

Σx2

n2

)−1

(x1 − x2)
D→ χ2

p.

Hence

T 2
0 = (x1 − x2)T

(
S1

n1
+

S2

n2

)−1

(x1 − x2)
D→ χ2

p.

The above result is easily generalized to other statistics. See Rupasinghe
Arachchige Don and Pelawa Watagoda (2017). If the sequence of positive
integers dn → ∞ and Yn ∼ Fp,dn

, then Yn
D→ χ2

p/p. Using an Fp,dn
distribu-

tion instead of a χ2
p distribution is similar to using a tdn

distribution instead
of a standard normal N(0, 1) distribution for inference. Instead of rejecting
H0 when T 2

0 > χ2
p,1−α, reject H0 when

T 2
0 > pFp,dn,1−α =

pFp,dn,1−α

χ2
p,1−α

χ2
p,1−α.

The term
pFp,dn,1−α

χ2
p,1−α

can be regarded as a small sample correction factor

that improves the test’s performance for small samples. We will use dn =
min(n1 − p, n2 − p). Here P (Yn ≤ χ2

p,α) = α if Yn has a χ2
p distribution, and

P (Yn ≤ Fp,dn,α) = α if Yn has an Fp,dn
distribution.
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Let pval denote the estimated pvalue. The four-step test is
i) State the hypotheses H0 : μ1 = μ2 H1 : μ1 �= μ2.
ii) Find the test statistic t0 = T 2

0 /p.
iii) Find pval = P (t0 < Fp,dn

).
iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject
H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval ≤ α
and fail to reject H0 if pval > α. Give a nontechnical sentence if possible. As
a benchmark for this text, use α = 0.05 if α is not given.

Example 9.4. Following Mardia et al. (1979, p. 153), cranial length and
breadth (X1 and X2) were measured on n1 = 35 female frogs and n2 = 14
male frogs with x1 = (22.86, 24.397)T and x2 = (21.821, 22.442)T . Test μ1 =
μ2 if T 2

0 = 2.550.
Solution: i) H0 : μ1 = μ2 H1 : μ1 �= μ2

ii) t0 = T 2
0 /p = 2.550/2 = 1.275

iii) pval = P (1.275 < F2,14−2) > 0.05
iv) Fail to reject H0. There is not enough evidence to conclude that the

mean lengths and breadths differ for the male and female frogs.

The plots for the one way MANOVA model in Section 10.2 are also useful
for the two-sample Hotelling’s T 2 test. An alternative to the above test is to
used the pooled covariance matrix. This Hotelling’s T 2 test is a special case
of the one way MANOVA model with two groups covered in Section 10.3.

9.4.1 Bootstrapping Two-Sample Tests

Bootstrapping the two-sample test is similar to bootstrapping discriminant
analysis and one way MANOVA models. Take a sample of size ni with replace-
ment from random sample i for i = 1, 2, and compute T ∗

11 − T ∗
21. Repeat B

times to get the bootstrap sample w1 = T ∗
11−T ∗

21, ...,wB = T ∗
1B−T ∗

2B . Apply
the nonparametric prediction region on the wi, and fail to reject H0 : μ1 = μ2

if 0 is in the prediction region, and reject H0, otherwise. See Rupasinghe
Arachchige Don and Pelawa Watagoda (2017).

Some R output is below for the Gladstone (1905) data where several infants
are outliers. We first tested the first 133 cases versus the last 134 cases. It
turned out that the first group was younger and had all of the infants, so
H0 was rejected. Then a random sample of 133 was used as the first group
and the remaining 134 as the second group. Then the test failed to reject H0.
Using the nominal level α = 0.05 of the large sample bootstrap test, reject
H0 if the test statistic is larger than the cutoff, where 4.102 was the cutoff
for the first test which used RMVN.

http://dx.doi.org/10.1007/978-3-319-68253-2_10
http://dx.doi.org/10.1007/978-3-319-68253-2_10
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zz <- cbrainx[,c(1,3,5,6,7,8,9,11)]

#get rid of qualitative variables

zx <- zz[1:133,]

zy <- zz[134:267,]

out<-rhot2boot(zx,zy,med=F) #RMVN takes a while.

tem<-predreg(out$mus)

> tem$cuplim

95.4%

4.101788

> tem$D0

[1] 7.529998 #> 4.102 so reject Ho

out<-rhot2boot(zx,zy,med=T) #coord. median is fast

tem<-predreg(out$mus)

> tem$cuplim

95.4%

4.046958

> tem$D0

[1] 12.87506 #> 4.05 so reject Ho

plot(zx[,1],zy[-134,1])

#zx people tend to be older, infants are in zy

indx <- sample(1:267,133)#random sample for zx and zy

zx <- zz[indx,]

zy <- zz[-indx,]

out<-rhot2boot(zx,zy,med=F)

tem<-predreg(out$mus) #RMVN

> tem$cuplim

95.4%

4.065357

> tem$D0

[1] 2.94968 #< 4.07 so fail to reject Ho

out<-rhot2boot(zx,zy,med=T)

tem<-predreg(out$mus) #coord. median

> tem$cuplim

95.4%

3.915687

> tem$D0

[1] 2.802046 #< 3.92 so fail to reject Ho
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9.5 Summary

1) The one-sample Hotelling’s T 2 test is used to test H0 : μ = μ0 versus
HA : μ �= μ0. The test rejects H0 if T 2

H = n(x − μ0)
T S−1(x − μ0) >

(n − 1)p
n − p

Fp,n−p,1−α where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.

If a multivariate location estimator T satisfies
√

n(T − μ) D→ Np(0,D),

then a competing test rejects H0 if T 2
C = n(T − μ0)

T D̂
−1

(T − μ0) >
(n − 1)p
n − p

Fp,n−p,1−α where D̂ is a consistent estimator of D. The scaled F cut-

off can be used since T 2
C

D→ χ2
p if H0 holds, and

(n − 1)p
n − p

Fp,n−p,1−α → χ2
p,1−α

as n → ∞.
2) Let pval be an estimate of the pvalue. As a benchmark for hypothesis

testing, use α = 0.05 if α is not given.
3) Typically, use T 2

C = T 2
H in the following four-step one-sample

Hotelling’s T 2
C test. i) State the hypotheses H0 : μ = μ0 H1 : μ �= μ0.

ii) Find the test statistic T 2
C = n(T − μ0)T D̂

−1
(T − μ0).

iii) Find pval =

P

(
n − p

(n − 1)p
T 2

C < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μ �= μ0 while if you fail to reject H0 conclude that the pop-
ulation mean μ = μ0 or that there is not enough evidence to conclude that
μ �= μ0. Reject H0 if pval ≤ α and fail to reject H0 if pval > α.

4) The multivariate matched pairs test is used when there are k = 2
treatments applied to the same n cases with the same p variables used for
each treatment. Let yi be the p variables measured for treatment 1 and zi be
the p variables measured for treatment 2. Let xi = yi − zi. Let μ = E(x) =
E(y) − E(z). We want to test if μ = 0, so E(y) = E(z). The test can also
be used if (yi,zi) are matched (highly dependent) in some way. For example,
if identical twins are in the study, yi and zi could be the measurements on
each twin. Let (x,Sx) be the sample mean and covariance matrix of the xi.

5) The large sample multivariate matched pairs test has four steps.
i) State the hypotheses H0 : μ = 0 H1 : μ �= 0.
ii) Find the test statistic T 2

M = nxT S−1
x x.

iii) Find pval =

P

(
n − p

(n − 1)p
T 2

M < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μ �= 0 while if you fail to reject H0 conclude that the population
mean μ = 0 or that there is not enough evidence to conclude that μ �= 0.
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Reject H0 if pval ≤ α and fail to reject H0 if pval > α. Give a nontechnical
sentence if possible.

6) Repeated measurements = longitudinal data analysis. Take p measure-
ments on the same unit, often the same measurement, e.g., blood pressure,
at several time periods. The variables are X1, ..., Xp where often Xk is
the measurement at the kth time period. Then E(x) = (μ1, ..., μp)T =
(μ + τ1, ..., μ + τp)T . Let yj = (x1j − x2j , x2j − x3j , ..., xp−1,j − xpj)T for
j = 1, ..., n. Then y = (x1 − x2, x2 − x3, ..., xp−1 − xp)T . If μy = E(yi), then
μY = 0 is equivalent to μ1 = · · · = μp where E(Xk) = μk. Let Sy be the
sample covariance matrix of the yi.

7) The large sample repeated measurements test has four steps.
i) State the hypotheses H0 : μy = 0 H1 : μy �= 0.
ii) Find the test statistic T 2

R = nyT S−1
y y.

iii) Find pval =

P

(
n − p + 1

(n − 1)(p − 1)
T 2

R < Fp−1,n−p+1

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then con-
clude that μy �= 0 while if you fail to reject H0 conclude that the population
mean μy = 0 or that there is not enough evidence to conclude that μy �= 0.
Reject H0 if pval ≤ α and fail to reject H0 if pval > α. Give a nontechnical
sentence, if possible.

8) The F tables give left tail area and the pval is a right tail area. The

Section 15.5 table gives Fk,d,0.95. If α = 0.05 and
n − p

(n − 1)p
T 2

C < Fk,d,0.95,

then fail to reject H0. If
n − p

(n − 1)p
T 2

C ≥ Fk,d,0.95, then reject H0.

a) For the one-sample Hotelling’s T 2
C test and the matched pairs T 2

M test,
k = p and d = n − p.

b) For the repeated measures T 2
R test, k = p − 1 and d = n − p + 1.

9) If n ≥ 10p, the tests in 3), 5), and 7) are robust to nonnormality. For the
one-sample Hotelling’s T 2

C test and the repeated measurements test, make a
DD plot. For the multivariate matched pairs test, make a DD plot of the xi,
of the yi, and of the zi.

10) Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from populations with mean and covariance matrices (μi,Σxi

)
for i = 1, 2 where the μi are p× 1 vectors. Let dn = min(n1 − p, n2 − p). The
large sample two-sample Hotelling’s T 2

0 test is a four-step test:
i) State the hypotheses H0 : μ1 = μ2 H1 : μ1 �= μ2.
ii) Find the test statistic t0 = T 2

0 /p.
iii) Find pval = P (t0 < Fp,dn

).
iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject

http://dx.doi.org/10.1007/978-3-319-68253-2_15
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H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval ≤ α
and fail to reject H0 if pval > α. Give a nontechnical sentence if possible.

9.6 Complements

The mpack function rhotsim is useful for simulating the robust diagnostic
for the one-sample Hotelling’s T 2 test. See Zhang (2011) for more simulations.
Willems et al. (2002) used similar reasoning to present a diagnostic based on
the FMCD estimator.

Yao (1965) suggested a more complicated denominator degrees of freedom
than dn = min(n1 − p, n2 − p) for the two-sample Hotelling’s T 2 test. Good
(2012, pp. 55–57), which provides randomization tests as competitors for the
two-sample Hotelling’s T 2 test. Bootstrapping the tests with robust estima-
tors seems to be effective. For bootstrapping the two-sample Hotelling’s T 2

test, see Rupasinghe Arachchige Don and Pelawa Watagoda (2017). Gregory
et al. (2015) and Feng and Sun (2015) considered the two-sample test when
p ≥ n.

9.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY
USEFUL.

9.1. Following Morrison (1967, pp. 122–123), the Wechsler Adult Intelli-
gence Scale scores of n = 101 subjects aged 60 to 64 were recorded, giving
a verbal score (X1) and performance score (X2) for each subject. Suppose
μ0 = (60, 50)T and T 2

C = 357.43. Perform the one-sample Hotelling’s T 2 test.

9.2. Following Morrison (1967, pp. 137–138), the levels of free fatty acid
(FFA) in the blood were measured in n = 15 hypnotized normal volunteers
who had been asked to experience fear, depression, and anger effects while in
the hypnotic state. The mean FFA changes were x1 = 2.669, x2 = 2.178, and
x3 = 2.558. Let μF = μ+τ1, μD = μ+τ2, and μA = μ+τ3. We want to know
if the mean stress FFA changes were equal. So test whether μF = μD = μF

if T 2
R = 2.68.

9.3. Data is taken or modified from Johnson and Wichern (1988, pp. 185,
224).

a) Suppose S2
2 = S22 = 126.05, x2 = 54.69, n = 87, and p = 3. Find a

large sample simultaneous 95% CI for μ2.
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b) Suppose a random sample of 50 bars of soap from method 1 and a
random sample of 50 bars of soap from method 2 are obtained. Let X1 =
lather and X2 = mildness with x1 = (8.4, 4.1)T and x2 = (10.2, 3.9)T . Test
μ1 = μ2 if T 2

0 = 52.4722.

R Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2 Typing the name of the
mpack function, e.g., rhotsim, will display the code for the function. Use the
args command, e.g., args(rhotsim), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

9.4∗. Use the R commands in Subsection 9.1.1 to make a plot similar to
Figure 9.1. The program may take a minute to run.

9.5. Conjecture:

√
n(TRMV N − μ) D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. The following “test” is based
on a conjecture and should be used as an outlier diagnostic rather than for
inference. The ad hoc “test” that rejects H0 if

T 2
R

fn,p
= n(TRMV N −μ0)

T Ĉ
−1

RMV N (TRMV N −μ0)/fn,p >
(n − 1)p
n − p

Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n. The simulations use n = 150 and
p = 10.

a) The R commands for this part use simulated data is

xi ∼ Np(0, diag(1, 2, ..., p))

where H0 : μ = 0 is being tested with 5000 runs at a nominal level of 0.05.
So H0 is true, and hcv and rhcv are the proportion of rejections by the T 2

H

test and by the ad hoc robust test. We want hcv and rhcv near 0.05. THIS
SIMULATION MAY TAKE A FEW MINUTES. Record hcv and rhcv. Were
hcv and rhcv near 0.05?

b) The R commands for this part use simulated data

xi ∼ Np(δ1, diag(1, 2, ..., p))

where H0 : μ = 0 is being tested with 5000 runs at a nominal level of 0.05. In
the simulation, δ = 0.2, so H0 is false, and hcv and rhcv are the proportion

http://dx.doi.org/10.1007/978-3-319-68253-2_15
http://lagrange.math.siu.edu/Olive/mrsashw.txt
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of rejections by the T 2
H test and by the ad hoc robust test. We want hcv and

rhcv near 1 so that the power is high. Paste the output into Word. THIS
SIMULATION MAY TAKE A FEW MINUTES. Record hcv and rhcv. Were
hcv and rhcv near 1?
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