
Chapter 13
Clustering

Clustering is used to classify the n cases into k groups. Unlike discriminant
analysis, it is not known to which group the cases in the training data belong,
and often the number of clusters k is unknown. Discriminant analysis is a
type of supervised classification while clustering is a type of unsupervised
classification. Factor analysis grouped highly correlated variables Xj together
(columns of the data matrix W ). Clustering groups cases xi together (rows
of the data matrix).

13.1 Hierarchical and k-Means Clustering

Two common methods of clustering are k-means clustering and hierarchical
clustering. A wide variety of distances or similarities have been suggested.
We will focus on Euclidean distances.

For the simplest version of k-means clustering, there are four steps.
1) Partition the n cases into k initial groups and find the means of each

group. Alternatively, choose k initial seed points. These are groups of size 1
so the mean is equal to the seed point.

2) Compute distances between each case and each mean. Assign each case
to the cluster whose mean is the nearest.

3) Recalculate the mean of each cluster.
4) Go to 2) and repeat until no more reassignments occur.

Two problems with k-means clustering are i) there could be more or less
than k clusters, and ii) two initial means could belong to the same cluster.
Then the resulting clusters may be poorly differentiated. It is often useful to
run the k-means clustering program with several randomly drawn partitions
or seeds, and to use several values of k.
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Hierarchical clustering also has several steps. A distance is needed. Single
linkage (or nearest neighbor) is the minimum distance between cases in cluster
i and cases in cluster j. Complete linkage is the maximum distance between
cases in cluster i and cases in cluster j. The average distance between clusters
is also sometimes used.

1) Start with m = n clusters. Each case forms a cluster. Compute the
distance matrix for the n clusters. Let dU,V be the smallest distance. Combine
clusters U and V into a single cluster and set m = n− 1.

2) Repeat step 1) with the new m. Continue until there is a single cluster.
3) Plot the resulting clusters as a dendrogram. Use the dendrogram to

select k reasonable clusters of cases.
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Fig. 13.1 Two clusters from k-means clustering with k = 2

Example 13.1. Often the clean data and outliers form two clusters. The R
function kmeans was used on the Buxton (1920) data to produce Figure
13.1. See the R commands below. The DD plot of the Buxton data shown in
Figure 5.10 also suggests a cluster of outliers and a cluster of clean data.

x <- cbind(buxx,buxy)

out<-kmeans(x,2,nstart=25)

plot(x, col = out$cluster)

points(out$centers, col = 1:2, pch = 8, cex=2)

Using five clusters does not change the appearance of the plot much. Try
the commands below.

http://dx.doi.org/10.1007/978-3-319-68253-2_5
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out5<-kmeans(x,5,nstart=25)

plot(x, col = out5$cluster)

points(out5$centers, col = 1:5, pch = 8, cex=2)

Removing the outliers and trying five clusters seem to show one cluster.
Try the commands below.

xc <-x[-c(61,62,63,64,65),]

out<-kmeans(xc,5,nstart=25)

plot(xc, col = out$cluster)

points(out$centers, col = 1:5, pch = 8, cex=2)

The following commands suggest that the clustering was done using values
of buxy = height.

plot(xc[,c(1,5)],col = out$cluster)

points(out$centers[,c(1,5)],col=1:5,pch=8,cex=2)

Example 13.2. R functions for hierarchical clustering include hclust and
agnes. See MathSoft (1999b, ch. 4) and Kaufman and Rousseeuw (1990,
ch. 5). One problem with hierarchical clustering is that it can be hard to
read the labels on the dendrogram unless n is small. The dendrogram for the
Buxton (1920) data is shown in Figure 13.2. The very top of the dendrogram
is a cluster containing all of the data. Then two clusters are formed, one
containing the five outlying cases (the five cases furthest to the left on the
bottom of the plot) and one cluster containing all of the remaining cases.
Outliers often appear among the last clusters formed in the dendrogram,
corresponding to the clusters near the top of the dendrogram.

x <- cbind(buxx,buxy)

out <- hclust(dist(x),"complete")

#complete is the default

plot(out)

plot(out,hang=-1)

Following James et al. (2014, pp. 391–392), to interpret the dendrogram,
each leaf on the bottom of Figure 13.2 represents one of the 87 cases of the
Buxton data. As we move up the tree, some leaves begin to fuse into branches
corresponding to cases that are similar to each other. Moving further up the
tree causes branches to fuse with other branches or leaves. The lower in the
tree that the fusions occur, the more similar the group of cases are to each
other. Cases that fuse near the top of the tree can be quite different. The
outliers fused together quickly, and the clean cases fused together quickly.
The outliers and clean cases fused together last since the outliers and clean
cases are quite different.
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Fig. 13.2 Dendrogram for Buxton (1920) data

Example 13.3. Following James et al. (2014, pp. 392–393), observations
that are close together horizontally are not necessarily similar. Case 5 and 7
are similar and cases 1 and 6 are similar since they fuse together at the lowest
points in the dendrogram shown in Figure 13.3. Cases 9 and 2 are located
close together horizontally, cases 2, 5, 7, and 8 fuse with case 9 at the same
height. Hence case 9 is about as similar to cases 5, 7, and 8 as case 9 is to
case 2. Plot the raw data to help see this. See Problem 13.3. The height of
the fusion determines similarity. A horizontal line at 1.5 gives two clusters,
while a horizontal line at 1.0 gives five clusters: i) 1, 6, and 4; ii) 3; iii) 2; iv)
5, 7, and 8; and v) 9. See the R code shown below to produce Figure 13.3.
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Fig. 13.3 9 and 2 are close in horizontal distance, but 2, 5, 7, and 8 fuse with 9 at the
same height

x1 <- c(-0.6,0.1,-1.5,-1.4,1.1,-0.9,1.4,0.6,0)

x2 <- c(-1,-0.75,-0.4,-1.6,-0.3,-1.2,0,-0.2,0.7)

x <- cbind(x1,x2)

##out<-hclust(x) #errors

out <- hclust(dist(x))

plot(out)

plot(x[,1],x[,2])

library(cluster)

out<-agnes(x)

plot(out) #right click twice
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13.2 Complements

Atkinson et al. (2004, ch. 7) gave some interesting ideas. Also see Kaufman
and Rousseeuw (1990), and Farcomeni and Greco (2015), and Ritter (2014).
A good review for robust methods is Garćıa-Escudero et al. (2010). For high
dimensional clustering, see Jin and Wang (2016).

13.3 Problems

R Problems
For some of the following problems, the R commands can be copied and

pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.
13.1. Enter the commands for Example 13.1 to reproduce Figure 13.1.
13.2. Enter the commands for Example 13.2 to reproduce Figure 13.2.
13.3. Enter the commands for Example 13.3 to reproduce Figure 13.3.

Also plot X1 versus X2 to see that case 9 is about as similar to case 2 as
case 9 is to cases 5, 7, and 8.

13.4. a) Obtain the file mbb1415.csv from (http://lagrange.math.siu.
edu/Olive/multbk.htm), and save it on a flash drive (F, say). This file con-
tains comma-separated variables. The commands for this problem show how
to read the file into R.

The file, obtained and analyzed by Nicole Staples and Philip Kains, con-
tains variables on male basketball players from the Missouri Valley conference
2014–2015 season. The first variable x1 = position where 0 means position is
unknown, 1 for guard, 2 for guard-forward, 3 for forward, 4 for forward-center,
and 5 for center. The variable x2 is games played, x3 is number of minutes
played, x4 is sst (an efficiency rating), x5 is sst.ex.pts (an efficiency rating
excluding points), x6 is points, x7 is assists, x8 is turnovers, x9 is assists to
turn over ratio, x10 is steals, x11 is stl.pos (stolen possessions, a ball handling
rating), x12 is blocks, x13 is rebounds, x14 is offensive rebounds, x15 is defen-
sive rebounds, x16 is games played = x2, x17 is field goal (FG) attempts,
x18 is field goals made, x19 is FGs missed, x20 is field goal percentage, x21

is adjusted field goal percentage, x22 is two point field goal attempts, x23 is
two point field goals made, x24 is two point FGs missed, x25 is two point
field goal percentage, x26 is three point field goal attempts, x27 is three point
field goals made, x28 is three point FGs missed, x29 is three point field goal
percentage, x30 is free throws attempted, x31 is free throws made, x32 is free
throws missed, x33 is free throw percentage, x34 is related to the number of
“and one plays” (free throw after a made shot), x35 is personal fouls taken,
and x36 is personal fouls committed.

http://lagrange.math.siu.edu/Olive/mrsashw.txt
http://lagrange.math.siu.edu/Olive/multbk.htm
http://lagrange.math.siu.edu/Olive/multbk.htm
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Note that X will not be full rank since, for example x16 = x2, and offensive
rebounds + defensive rebounds = rebounds.

b) Sometimes the classes are known and you want to see how well clustering
works. The commands for this problem use assists and rebounds to form the
clusters. The second dendrogram uses positions as labels. We would like each
cluster to have one position or neighboring positions (all labels are i’s or all
labels are i’s and (i + 1)’s). Include the second plot in Word.

c) Many basketball players do not play much so all of their statistics are
near zero (and could be regarded as near point mass outliers). The commands
for this problem delete about 25% of the players who had the fewest minutes
and then uses assists and rebounds to form the clusters. Include the plot in
Word.

13.5. a) Obtain the file wbb1415.csv from (http://lagrange.math.siu.
edu/Olive/multbk.htm), and save it on a flash drive (F, say). This file con-
tains comma-separated variables. The commands for this problem show how
to read the file into R.

The file, obtained and analyzed by Nicole Staples and Philip Kains, con-
tains variables on female basketball players from the Missouri Valley confer-
ence 2014–2015 season.

The variables are almost the same as those in Problem 13.4. The only
difference is that this file does not have two games played variables. Hence
variables x1, ..., x15 are the same, but xi for the wbb1415 data set are vari-
ables xi+1 for the mbb1415 data set for i = 16, ..., 35.

b) Sometimes the classes are known and you want to see how well clustering
works. The commands for this problem use assists and rebounds to form the
clusters. The second dendrogram uses positions as labels. We would like each
cluster to have one position or neighboring positions (all labels are i’s or all
labels are i’s and (i + 1)’s). Include the second plot in Word.

c) Many basketball players do not play much so all of their statistics are
near zero (and could be regarded as near point mass outliers). The commands
for this problem delete about 25% of the players who had the fewest minutes
and then uses assists and rebounds to form the clusters. Include the plot in
Word.

http://lagrange.math.siu.edu/Olive/multbk.htm
http://lagrange.math.siu.edu/Olive/multbk.htm
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