
Chapter 1
Introduction

This chapter gives a brief introduction to multivariate analysis, including
some matrix optimization results, mixture distributions, and the special case
of the location model. Section 1.2 gives an overview of the book along with
a table of abbreviations. Truncated distributions, covered in Section 1.7, will
be useful for large sample theory for the location model and for the regression
model. See Chapter 14.

1.1 Introduction

Multivariate analysis is a set of statistical techniques used to analyze possibly
correlated data containing observations on p ≥ 2 random variables measured
on a set of n cases. Let x = (x1, ..., xp)T where x1, ..., xp are p random
variables. Usually context will be used to decide whether x is a random vector
or the observed random vector. For multivariate location and dispersion, the
ith case is xi = (xi,1, ..., xi,p)T = (xi1, ..., xip)T .

Definition 1.1. A case or observation consists of p random variables
measured for one person or thing. The ith case xi = (xi1, ..., xip)T .

Notation: Typically lowercase boldface letters such as x denote column
vectors, while uppercase boldface letters such as S denote matrices with two
or more columns. An exception may occur for random vectors which are
usually denoted by x, y, or z: if context is not enough to determine whether
x is a random vector or an observed random vector, then X = (X1, ...,Xp)T

and Y will be used for the random vectors, and x = (x1, ..., xp)T for the
observed value of the random vector. This notation is used in Chapter 3
in order to study the conditional distribution of Y |X = x. An uppercase
letter such as Y will usually be a random variable. A lowercase letter such
as x1 will also often be a random variable. An exception to this notation is
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2 1 Introduction

the generic multivariate location and dispersion estimator (T,C) where the
location estimator T is a p× 1 vector such as T = x. C is a p× p dispersion
estimator and conforms to the above notation.

Assume that the data xi has been observed and stored in an n× p matrix

W =

⎡
⎢⎣

xT
1
...

xT
n

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤
⎥⎥⎥⎦ =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable xj for j = 1, ..., p.
Often the n rows corresponding to the n cases are assumed to be inde-

pendent and identically distributed (iid): a random sample from some mul-
tivariate distribution. The p columns correspond to n measurements on the
p correlated random variables x1, ..., xp. The n cases are p × 1 vectors, while
the p columns are n × 1 vectors.

Some techniques have a vector of response variables (Y1, ..., Ym)T that is
predicted with a vector of predictor variables (x1, ..., xp)T . See Chapters 10
and 12. Methods involving one response variable will not be covered in depth
in this text. Such models include multiple linear regression, many experi-
mental design models, and generalized linear models. Discrete multivariate
analysis = categorical data analysis will also not be covered. Robust regres-
sion is briefly covered in Chapter 14.

Most of the multivariate techniques studied in this book will use estimators
of multivariate location and dispersion. Typically the data will be assumed
to come from a continuous distribution with a joint probability distribution
function (pdf). Multivariate techniques that examine correlations among the
p random variables x1, ..., xp include principal component analysis, canonical
correlation analysis, and factor analysis. Multivariate techniques that com-
pare the n cases x1, ...,xn include discriminant analysis and cluster analy-
sis. Data reduction attempts to simplify the multivariate data without losing
important information. Since the data matrix W has np terms, data reduction
is an important technique. Prediction and hypothesis testing are also impor-
tant techniques. Hypothesis testing is important for multivariate regression,
Hotelling’s T 2 test, and MANOVA. See Section 1.2 for a table of acronyms.

Robust multivariate analysis consists of i) techniques that are robust
to non-normality or ii) techniques that are robust to outliers. Techniques that
are robust to outliers tend to have some robustness to non-normality. The
classical sample mean x and covariance matrix S, defined in Section 2.2, are
very robust to non-normality, but are not robust to outliers. Large sample
theory is useful for both robust techniques. See Section 3.4.

Statistical Learning could be defined as the statistical analysis of mul-
tivariate data. Machine learning, data mining, Big Data, analytics, business
analytics, data analytics, and predictive analytics are synonymous terms. The
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1.2 Overview and Acronyms 3

techniques are useful for Data Science and Statistics, the science of extracting
information from data. Often Statistical Learning methods are useful when
n is large, but n/p is not large. Most of the methods in this text are for n/p
large, but Section 4.7 shows how to detect outliers when n/p is not large.
The outlier detection method gives a covmb2 set B of at least n/2 cases. If x
is a matrix of predictor variables and Y is a vector of response variables, the
following R commands produce cleaned data that can be used in Statistical
Learning techniques, such as lasso, even if p > n. Section 8.9 uses a similar
technique for discriminant analysis.

tem <- getB(x)
Yc <- Y[tem$indx]
xc <- x[tem$indx,]

Statistical Learning problems are supervised or unsupervised. For super-
vised learning, the goal is to predict a response variable given predictors.
Discriminant analysis and regression are important examples. See Chapters
8 and 14. For unsupervised learning, the goal is to describe associations and
patterns among the p variables. Clustering, described in Chapter 13, is an
important example. Excellent texts for Statistical Learning are Efron and
Hastie (2016), Hair et al. (2009), Hastie et al. (2015), and James et al.
(2013). Also see Olive (2017c).

1.2 Overview and Acronyms

Chapters 1, 2, and 3 present some results useful for multivariate analy-
sis, including matrix optimization results, the sample mean and covariance
matrix, Mahalanobis distances, the multivariate normal distribution, and
elliptically contoured distributions. This material is essential for any first
course in multivariate analysis. Some of the sections of Chapter 1 are useful
for robust regression which is covered in Chapter 14.

Chapters 4 and 5 are the most important chapters in the book and are
needed for the following chapters except Chapter 13 on clustering. Chapter 4
discusses classical and outlier resistant methods of multivariate location and
dispersion (MLD). Chapter 5 shows how to use the DD plot to detect outliers
and gives a prediction region for multivariate data. Applying this prediction
region on bootstrapped data gives a confidence region that can be used for
hypothesis testing. This “prediction region method” will be used to perform
inference on outlier resistant methods of multivariate analysis. There is a
subset U that is used to compute the robust MLD estimator. Often applying
a standard method, such as principal components, on the subset U results in
a robust version of the standard method.

Most of the remaining chapters focus on standard methods of multivariate
analysis such as principal component analysis, canonical correlation analysis,
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Table 1.1 Acronyms

Acronym Description

CCA canonical correlation analysis

cdf cumulative distribution function

cf characteristic function

CI confidence interval

CLT central limit theorem

DA discriminant analysis

Det-MCD practical approximate MCD estimator not backed by theory

DGK an MLD estimator (DGK are the initials of the paper’s authors)

EC elliptically contoured

ESP estimated sufficient predictor

ESSP estimated sufficient summary plot = response plot

Fast-MCD a slow FMCD estimator

FCH name of a fast, consistent, highly outlier resistant MLD estimator

FDA Fisher’s discriminant analysis

FLTS practical approximate LTS estimator not backed by theory

FMCD practical approximate MCD estimator not backed by theory

GAM generalized additive model

GLM generalized linear model

HB high breakdown

hbreg practical high breakdown regression estimator backed by theory

iid independent and identically distributed

KNN K-nearest neighbors discriminant analysis

LDA linear discriminant analysis

LMS least median of squares (robust regression)

LR logistic regression

LTA least trimmed sum of absolute deviations (robust regression)

LTS least trimmed sum of squares (robust regression)

MAD median absolute deviation

MANOVA multivariate analysis of variance

MB median ball estimator

MBA an MLD estimator made obsolete by FCH

MBA or the median ball algorithm is the mbareg estimator

mbareg a resistant regression estimator backed by theory

MCD the impractical minimum covariance determinant estimator

MCLT multivariate central limit theorem

MED the median

mgf moment generating function

MLD multivariate location and dispersion

MLR multiple linear regression

MVE the impractical minimum volume ellipsoid estimator

MVN multivariate normal

(continued)
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Table 1.1 (continued)

Acronym Description

OGK an MLD estimator not backed by theory

OLS ordinary least squares

PCA principal component analysis

pdf probability density function

PI prediction interval

pmf probability mass function

QDA quadratic discriminant analysis

RFCH the reweighted FCH estimator

RMVN a reweighted FCH estimator that works well for MVN data

SE standard error

SSP sufficient summary plot

SUR seemingly unrelated regressions

TVREG a resistant “trimmed views” regression estimator

discriminant analysis, MANOVA, factor analysis, and multivariate linear
regression. Emphasis is on methods that are robust to normality: the methods
have large sample theory that shows that the methods work on a large class
of distributions. Of secondary importance is how to make outlier resistant
methods that are backed by large sample theory. Chapter 14 considers other
techniques, including robust regression.

Acronyms are widely used in robust statistics and multivariate analysis,
and some of the more important acronyms are in Table 1.1 Also see the text’s
index. The letter “R” tends to stand for “robust” (RPCA) or “reweighted”
(RFCH). The letter “F” before a brand-name robust estimator (FMCD)
tends to mean a practical estimator that used a fixed number of trial fits,
where the criterion of the brand-name estimator was used to select the trial
fit used in the final estimator. The letter “C” before a brand-name estima-
tor (CLTS) tends to mean a concentration algorithm that was used for the
F-brand-name estimator. The letter “A,” standing for “algorithm,” was also
used for concentration algorithms (ALTS). These acronyms (with A, C, F,
or R) are often omitted from Table 1.1.

1.3 Some Things That Can Go Wrong with
a Multivariate Analysis

In multivariate analysis, there is often a training data set used to predict or
classify data in a future test data set. Many things can go wrong. For class-
ification and prediction, it is usually assumed that the data in the training
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6 1 Introduction

set is from the same distribution as the data in the test set. Following Hand
(2006), this crucial assumption is often not justified.

Population drift is a common reason why the above assumption, which
assumes that the various distributions involved do not change over time,
is violated. Population drift occurs when the population distribution does
change over time. As an example, perhaps pot shards are classified after being
sent to a laboratory for analysis. It is often the case that even if the shards are
sent to the same laboratory twice, the two sets of laboratory measurements
differ greatly. As another example, suppose there are several variables being
used to produce greater yield of a crop or a chemical. If one journal paper
out of 50 (the training set) finds a set of variables and variable levels that
successfully increases yield, then the next 25 papers (the test set) are more
likely to use variables and variable levels similar to the one successful paper
than variables and variable levels of the 49 papers that did not succeed. Hand
(2006) noted that classification rules used to predict whether applicants are
likely to default on loans are updated every few months in the banking and
credit scoring industries.

A second thing that can go wrong is that the training or test data set is
distorted away from the population distribution. This could occur if outliers
are present or if one of the data sets is not a random sample from the popula-
tion. For example, the training data set could be drawn from three hospitals,
and the test data set could be drawn from two more hospitals. These two
data sets may not represent random samples from the same population of
hospitals.

Often problems specific to the multivariate method can occur. Often sim-
pler techniques can outperform sophisticated multivariate techniques because
the user of the multivariate method does not have the expertise to get the
most out of the sophisticated techniques. For supervised classification, Hand
(2006) noted that there can be error in class labels, arbitrariness in class
definitions, and data sets where different optimization criteria lead to very
different classification rules. Hand (2006) suggested that simple rules, such
as linear discriminant analysis, may perform almost as well or better than
sophisticated classification rules because of all of the possible problems. See
Chapter 8.

1.4 Some Matrix Optimization Results

The following results will be used throughout the text and are useful for
principal component analysis, canonical correlation analysis, Fisher’s discrim-
inant analysis, and the Hotelling’s T 2 test. Let B > 0 denote that B is a
positive definite matrix. The generalized eigenvalue problem finds eigenvalue
eigenvector pairs (λ, g) such that C−1Ag = λg which are also solutions to
the equation Ag = λCg. Then the pairs are used to maximize or minimize

http://dx.doi.org/10.1007/978-3-319-68253-2_8
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the Rayleigh quotient
aT Aa

aT Ca
. Results from linear algebra show that if C > 0

and A are both symmetric, then the p eigenvalues of C−1A are real, and the
number of nonzero eigenvalues of C−1A is equal to rank(C−1A) = rank(A).
Note that if a1 = c1g1 is the maximizer and ap = cpgp is the minimizer of
the Rayleigh quotient for any nonzero constants c1 and cp, then there is a
vector β that is the maximizer or minimizer such that ‖β‖ = 1.

Theorem 1.1. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1,e1), ..., (λp,ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i �= j. Let d

be a given p × 1 vector, and let a be an arbitrary nonzero p × 1 vector. See
Johnson and Wichern (1988, pp. 64–65, 184).

a) max
a �=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c �= 0. Note that the numerator = (aT d)2.

b) max
a�=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a�=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p − 1.
e) Let (x,S) be the observed sample mean and sample covariance matrix

where S > 0. Then max
a�=0

naT (x − μ)(x − μ)T a

aT Sa
= n(x−μ)T S−1(x−μ) = T 2

where the max is attained for a = cS−1(x − μ) for any constant c �= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a�=0

aT Aa

aT Ca
= λ1(C−1A), the largest eigenvalue of C−1A. The

value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C−1A). Similarly, min
a �=0

aT Aa

aT Ca
= λp(C−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C−1A).

Proof Sketch. For a), note that rank(C−1A) = 1, where C = B and
A = ddT , since rank(C−1A) = rank(A) = rank(d) = 1. Hence C−1A has
one nonzero eigenvalue eigenvector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A and λ1 > 0, the result
follows by f).
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Note that b) and c) are special cases of f) with A = B and C = I.
Note that e) is a special case of a) with d = (x − μ) and B = S.
(Also note that (λ1 = (x−μ)T S−1(x−μ), g1 = S−1(x−μ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − μ)(x − μ)T .)

For f), see Mardia et al. (1979, p. 480). �
Suppose A > 0 and C > 0 are p×p symmetric matrices, and let C−1Aa =

λa. Then Aa = λCa, or A−1Ca =
1
λ

a. Hence if (λi(C−1A),a) are eigen-

value eigenvector pairs of C−1A, then
(

λi(A−1C) =
1

λi(C−1A)
,a

)
are

eigenvalue eigenvector pairs of A−1C. Thus we can maximize
aT Aa

aT Ca
with

the eigenvector a corresponding to the smallest eigenvalue of A−1C and min-

imize
aT Aa

aT Ca
with the eigenvector a corresponding to the largest eigenvalue

of A−1C.

Remark 1.1. Suppose A and C are symmetric p× p matrices, A > 0, C

is singular, and it is desired to make
aT Aa

aT Ca
large but finite. Hence

aT Ca

aT Aa
should be made small but nonzero. The above result suggests that the eigen-
vector a corresponding to the smallest nonzero eigenvalue of A−1C may be

useful. Similarly, suppose it is desired to make
aT Aa

aT Ca
small but nonzero.

Hence
aT Ca

aT Aa
should be made large but finite. Then the eigenvector a cor-

responding to the largest eigenvalue of A−1C may be useful.

1.5 The Location Model

The location model is used when there is one variable Y , such as height, of
interest. The location model is a special case of the multivariate location and
dispersion model, where there are p variables x1, ..., xp of interest, such as
height and weight if p = 2. See Chapter 2.

The location model is

Yi = μ + ei, i = 1, . . . , n (1.1)

where e1, ..., en are error random variables, often independent and identically
distributed (iid) with zero mean. For example, if the Yi are iid from a normal
distribution with mean μ and variance σ2, written Yi ∼ N(μ, σ2), then the
ei are iid with ei ∼ N(0, σ2). The location model is often summarized by

http://dx.doi.org/10.1007/978-3-319-68253-2_2
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obtaining point estimates and confidence intervals for a location parameter
and a scale parameter. Assume that there is a sample Y1, . . . , Yn of size n
where the Yi are iid from a distribution with median MED(Y ), mean E(Y ),
and variance V (Y ) if they exist. Also assume that the Yi have a cumula-
tive distribution function (cdf) F that is known up to a few parameters. For
example, Yi could be normal, exponential, or double exponential. The loca-
tion parameter μ is often the population mean or median, while the scale
parameter is often the population standard deviation

√
V (Y ). The ith case

is Yi.
Point estimation is one of the oldest problems in statistics, and four impor-

tant statistics for the location model are the sample mean, median, variance,
and the median absolute deviation (MAD). Let Y1, . . . , Yn be the random
sample; i.e., assume that Y1, ..., Yn are iid.

Definition 1.2. The sample mean

Y =
∑n

i=1 Yi

n
. (1.2)

The sample mean is a measure of location and estimates the population
mean (expected value) μ = E(Y ). The sample mean is often described as
the “balance point” of the data. The following alternative description is also
useful. For any value m, consider the data values Yi ≤ m, and the values Yi >
m. Suppose that there are n rods where rod i has length |ri(m)| = |Yi − m|
where ri(m) is the ith residual of m. Since

∑n
i=1(Yi − Y ) = 0, Y is the value

of m such that the sum of the lengths of the rods corresponding to Yi ≤ m is
equal to the sum of the lengths of the rods corresponding to Yi > m. If the
rods have the same diameter, then the weight of a rod is proportional to its
length, and the weight of the rods corresponding to the Yi ≤ Y is equal to
the weight of the rods corresponding to Yi > Y . The sample mean is drawn
toward an outlier since the absolute residual corresponding to a single outlier
is large.

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. Using this notation, the median

MEDc(n) = Y((n+1)/2) if n is odd,

and
MEDc(n) = (1 − c)Y(n/2) + cY((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median. For example, if
the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for
i = 1, ..., 5 and MEDc(n) = 3 where the sample size n = 5.
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Definition 1.3. The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 1.4. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
, (1.4)

and the sample standard deviation Sn =
√

S2
n.

The sample median is a measure of location, while the sample standard
deviation is a measure of scale. In terms of the “rod analogy,” the median is
a value m such that at least half of the rods are to the left of m and at least
half of the rods are to the right of m. Hence the number of rods to the left and
right of m rather than the lengths of the rods determines the sample median.
The sample standard deviation is vulnerable to outliers and is a measure of
the average value of the rod lengths |ri(Y )|. The sample MAD, defined below,
is a measure of the median value of the rod lengths |ri(MED(n))|.
Definition 1.5. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (1.5)

Since MAD(n) is the median of n distances, at least half of the observations
are within a distance MAD(n) of MED(n) and at least half of the observations
are a distance of MAD(n) or more away from MED(n).

Example 1.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.

The following confidence interval provides considerable resistance to gross
outliers while being very simple to compute. See Olive (2008, pp. 238,
261–262). The standard error SE(MED(n)) is due to Bloch and Gastwirth
(1968), but the degrees of freedom p is motivated by the confidence interval
for the trimmed mean. Let �x	 denote the “greatest integer function” (e.g.,
�7.7	 = 7). Let 
x� denote the smallest integer greater than or equal to x
(e.g., 
7.7� = 8).
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Application 1.1: inference with the sample median. Let Un = n−Ln

where Ln = �n/2	 − 
√n/4 � and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un−Ln−1 (so p ≈ 
 √n �). Then a 100(1−α)% confidence interval
for the population median is

MED(n) ± tp,1−α/2SE(MED(n)). (1.6)

Example 1.2. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data came
from a symmetric distribution with mean μ, and find a 95% CI for μ.

Solution. When computing small examples by hand, the steps are to
sort the data from smallest to largest value and find n, Ln, Un, Y(Ln+1),
Y(Un), p, MED(n), and SE(MED(n)). After finding tp,1−α/2, plug the relevant
quantities into the formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9,
9, 9. Thus MED(n) = (8 + 9)/2 = 8.5. Since n = 8, Ln = �4	 − 
√2� =
4−
1.414� = 4−2 = 2 and Un = n−Ln = 8−2 = 6. Hence SE(MED(n)) =
0.5(Y(6)−Y(3)) = 0.5∗ (9−7) = 1. The degrees of freedom p = Un −Ln −1 =
6 − 2 − 1 = 3. The cutoff t3,0.975 = 3.182. Thus the 95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5 ± 3.182(1) = [5.318, 11.682]. The classical t-interval uses Y = (6 + 7 +
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y 2
i ) − 8(82)] = (1/7)[(522 −

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for μ is
8 ± 2.365(

√
1.4286/8) = [7.001, 8.999]. Notice that the t-cutoff = 2.365 for

the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)). The parameter μ is between 1 and 9 since
the test scores are integers between 1 and 9. Hence for this example, the
t-interval is considerably superior to the overly long median interval.

Example 1.3. In the last example, what happens if the 6 becomes 66 and
a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they
take the same values as in the previous example and SE(MED(n)) =
0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is
MED(n) ± t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = [7.409, 10.591]. Notice
that with discrete data, it is possible to drive SE(MED(n)) to 0 with a few
outliers if n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows

up and is equal to [−2.955, 56.455].

Example 1.4. The Buxton (1920) data contains 87 heights of men, but
five of the men were recorded to be about 0.75 inches tall! The mean height



12 1 Introduction

is Y = 1598.862, and the classical 95% CI is [1514.206, 1683.518]. MED(n) =
1693.0, and the resistant 95% CI based on the median is [1678.517, 1707.483].

The heights for the five men were recorded under their head lengths, so
the outliers can be corrected. Then Y = 1692.356, and the classical 95% CI
is [1678.595, 1706.118]. Now MED(n) = 1694.0, and the 95% CI based on the
median is [1678.403, 1709.597]. Notice that when the outliers are corrected,
the two intervals are very similar although the classical interval length is
slightly shorter. Also notice that the outliers roughly shifted the median
confidence interval by about 1 mm, while the outliers greatly increased the
length of the classical t-interval. See Problem 1.3 for mpack software.

1.6 Mixture Distributions

Mixture distributions are often used as outlier models, and certain mixtures of
elliptically contoured distributions have an elliptically contoured distribution.
See Problem 3.4. The following two definitions and proposition are useful for
finding the mean and variance of a mixture distribution. Parts a) and b)
of Proposition 1.2 below show that the definition of expectation given in
Definition 1.7 is the same as the usual definition for expectation if Y is a
discrete or continuous random variable. The two definitions and proposition
can be extended to random vectors.

Definition 1.6. The distribution of a random variable Y is a mixture
distribution if the cdf of Y has the form

FY (y) =
k∑

i=1

αiFWi
(y) (1.7)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi
(y) is the cdf of a continuous

or discrete random variable Wi, i = 1, ..., k.

Definition 1.7. Let Y be a random variable with cdf F (y) = FY (y). Let
h be a function such that the expected value Eh(Y ) = E[h(Y )] exists. Then

E[h(Y )] =
∫ ∞

−∞
h(y)dF (y). (1.8)

Proposition 1.2. a) If Y is a discrete random variable that has a prob-
ability mass function (pmf) f(y) with support Y, then

Eh(Y ) =
∫ ∞

−∞
h(y)dF (y) =

∑
y∈Y

h(y)f(y).
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b) If Y is a continuous random variable that has a probability distribution
function (pdf) f(y), then

Eh(Y ) =
∫ ∞

−∞
h(y)dF (y) =

∫ ∞

−∞
h(y)f(y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =∑k
i=1 αiFWi

(y), then

Eh(Y ) =
∫ ∞

−∞
h(y)dF (y) =

k∑
i=1

αiEWi
[h(Wi)]

where EWi
[h(Wi)] =

∫ ∞
−∞ h(y)dFWi

(y).

Example 1.5. Proposition 1.2c implies that the pmf or pdf of Wi is used
to compute EWi

[h(Wi)]. As an example, suppose the cdf of Y is F (y) =
(1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of W1 ∼ N(0, 1).
Then Φ(y/k) is the cdf of W2 ∼ N(0, k2). To find EY , use h(y) = y. Then

EY = (1 − ε)EW1 + εEW2 = (1 − ε)0 + ε0 = 0.

To find EY 2, use h(y) = y2. Then

EY 2 = (1 − ε)EW 2
1 + εEW 2

2 = (1 − ε)1 + εk2 = 1 − ε + εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε + εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

To generate a random variable Y with the above mixture distribution,
generate a uniform (0,1) random variable U which is independent of the Wi. If
U ≤ 1−ε, then generate W1 and take Y = W1. If U > 1−ε, then generate W2

and take Y = W2. Note that the cdf of Y is FY (y) = (1−ε)FW1(y)+εFW2(y).

Remark 1.2. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where W1 and W2 are independent random variables and 0 < ε < 1. Then
the random variable W is a linear combination of W1 and W2, and W can
be generated by generating two independent random variables W1 and W2.
Then take W = (1 − ε)W1 + εW2.

If W1 and W2 are as in the previous example, then the random variable
W is a linear combination that has a normal distribution with mean
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EW = (1 − ε)EW1 + εEW2 = 0

and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal normal
distribution, while Y does not follow a normal distribution. In fact, if X1 ∼
N(0, 1), X2 ∼ N(10, 1), and X1 and X2 are independent, then (X1+X2)/2 ∼
N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FX1(y) + 0.5FX2(y) = 0.5Φ(y) + 0.5Φ(y − 10),

then the pdf of Y is bimodal.

1.7 Truncated Distributions

Truncated and Winsorized random variables are important because they sim-
plify the asymptotic theory of robust estimators. See Section 14.7. Let Y be
a random variable with continuous cdf F , and let α = F (a) < F (b) = β.
Then α is the left trimming proportion and 1 − β is the right trimming pro-
portion. Let F (a−) = P (Y < a). (Refer to Proposition 1.2 for the notation
used below.)

Definition 1.8. The truncated random variable YT ≡ YT (a, b) with trun-
cation points a and b has cdf

FYT
(y|a, b) = G(y) =

F (y) − F (a−)
F (b) − F (a−)

(1.9)

for a ≤ y ≤ b. Also G is 0 for y < a, and G is 1 for y > b. The mean and
variance of YT are

μT = μT (a, b) =
∫ ∞

−∞
ydG(y) =

∫ b

a
ydF (y)
β − α

(1.10)

and

σ2
T = σ2

T (a, b) =
∫ ∞

−∞
(y − μT )2dG(y) =

∫ b

a
y2dF (y)
β − α

− μ2
T .

See Cramér (1946, p. 247).

http://dx.doi.org/10.1007/978-3-319-68253-2_14
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Definition 1.9. The Winsorized random variable

YW = YW (a, b) =

⎧
⎨
⎩

a, Y ≤ a
Y, a ≤ Y ≤ b
b, Y ≥ b.

If the cdf of YW (a, b) = YW is FW , then

FW (y) =

⎧
⎪⎪⎨
⎪⎪⎩

0, y < a
F (a), y = a
F (y), a < y < b

1, y ≥ b.

Since YW is a mixture distribution with a point mass at a and at b, the mean
and variance of YW are

μW = μW (a, b) = αa + (1 − β)b +
∫ b

a

ydF (y)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +
∫ b

a

y2dF (y) − μ2
W .

Truncated distributions can be used to simplify the asymptotic theory
of robust estimators of location and regression. The following four subsec-
tions will be useful when the underlying distribution is exponential, dou-
ble exponential, normal, or Cauchy. If Y has an exponential distribution,
Y ∼ EXP(λ), then the pdf of Y is

f(y) =
1
λ

exp
(−y

λ

)
I(y ≥ 0)

where λ > 0 and the indicator I(y ≥ 0) is one if y ≥ 0 and zero otherwise.
If Y has a double exponential distribution (or Laplace distribution), Y ∼
DE(θ, λ), then the pdf of Y is

f(y) =
1
2λ

exp
(−|y − θ|

λ

)

where y is real and λ > 0. If Y has a normal distribution (or Gaussian
distribution), Y ∼ N(μ, σ2), then the pdf of Y is

f(y) =
1√

2πσ2
exp

(−(y − μ)2

2σ2

)
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where σ > 0 and μ and y are real. If Y has a Cauchy distribution, Y ∼
C(μ, σ), then the pdf of Y is

f(y) =
σ

π

1
σ2 + (y − μ)2

=
1

πσ[1 + (y−μ
σ )2]

where y and μ are real numbers and σ > 0.
Definitions 1.8 and 1.9 defined the truncated random variable YT (a, b)

and the Winsorized random variable YW (a, b). Let Y have cdf F , and let the
truncated random variable YT (a, b) have the cdf FT (a,b). The following lemma
illustrates the relationship between the means and variances of YT (a, b) and
YW (a, b). Note that YW (a, b) is a mixture of YT (a, b) and two point masses
at a and b. Let c = μT (a, b) − a and d = b − μT (a, b).

Lemma 1.3. Let a = μT (a, b) − c and b = μT (a, b) + d. Then
a) μW (a, b) = μT (a, b) − αc + (1 − β)d, and
b) σ2

W (a, b) = (β−α)σ2
T (a, b)+(α−α2)c2+[(1−β)−(1−β)2]d2+2α(1−β)cd.

c) If α = 1 − β then

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + (α − α2)(c2 + d2) + 2α2cd.

d) If c = d then

σ2
W (a, b) = (β − α)σ2

T (a, b) + [α − α2 + 1 − β − (1 − β)2 + 2α(1 − β)]d2.

e) If α = 1 − β and c = d, then μW (a, b) = μT (a, b) and

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + 2αd2.

Proof. We will prove b) since its proof contains the most algebra. Now

σ2
W = α(μT − c)2 + (β − α)(σ2

T + μ2
T ) + (1 − β)(μT + d)2 − μ2

W .

Collecting terms shows that

σ2
W = (β − α)σ2

T + (β − α + α + 1 − β)μ2
T + 2[(1 − β)d − αc]μT

+αc2 + (1 − β)d2 − μ2
W .

From a),

μ2
W = μ2

T + 2[(1 − β)d − αc]μT + α2c2 + (1 − β)2d2 − 2α(1 − β)cd,
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and we find that

σ2
W = (β − α)σ2

T + (α − α2)c2 + [(1 − β) − (1 − β)2]d2 + 2α(1 − β)cd. �

1.7.1 The Truncated Exponential Distribution

Let Y be a (one sided) truncated exponential TEXP (λ, b) random variable.
Then the pdf of Y is

fY (y|λ, b) =
1
λe−y/λ

1 − exp(− b
λ )

for 0 < y ≤ b where λ > 0. Let b = kλ, and let

ck =
∫ kλ

0

1
λ

e−y/λdy = 1 − e−k.

Next, we will find the first two moments of Y ∼ TEXP (λ, b = kλ) for k > 0.

Lemma 1.4. If Y is TEXP (λ, b = kλ) for k > 0, then

a) E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
,

and

b) E(Y 2) = 2λ2

[
1 − 1

2 (k2 + 2k + 2)e−k

1 − e−k

]
.

Proof. a) Note that

ckE(Y ) =
∫ kλ

0

y

λ
e−y/λdy = −ye−y/λ|kλ

0 +
∫ kλ

0

e−y/λdy

(use integration by parts). So

ckE(Y ) = −kλe−k + (−λe−y/λ)|kλ
0 = −kλe−k + λ(1 − e−k).

Hence

E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
.
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b) Note that

ckE(Y 2) =
∫ kλ

0

y2

λ
e−y/λdy.

Since

d

dy
[−(y2 + 2λy + 2λ2)e−y/λ] =

1
λ

e−y/λ(y2 + 2λy + 2λ2) − e−y/λ(2y + 2λ)

= y2 1
λ

e−y/λ,

we have ckE(Y 2) = [−(y2 + 2λy + 2λ2)e−y/λ]kλ
0 =

− (k2λ2 + 2λ2k + 2λ2)e−k + 2λ2. So the result follows. �
Since as k → ∞, E(Y ) → λ, and E(Y 2) → 2λ2, we have VAR(Y ) → λ2.

If k = 9 log(2) ≈ 6.24, then E(Y ) ≈ .998λ, and E(Y 2) ≈ 0.95(2λ2).

1.7.2 The Truncated Double Exponential Distribution

Suppose that X is a double exponential DE(μ, λ) random variable. Then
MED(X) = μ and MAD(X) = log(2)λ. Let c = k log(2), and let the trunca-
tion points a = μ−kMAD(X) = μ−cλ and b = μ+kMAD(X) = μ+cλ. Let
XT (a, b) ≡ Y be the truncated double exponential TDE(μ, λ, a, b) random
variable. Then for a ≤ y ≤ b, the pdf of Y is

fY (y|μ, λ, a, b) =
1

2λ(1 − exp(−c))
exp(−|y − μ|/λ).

Lemma 1.5. a) E(Y ) = μ.

b) VAR(Y ) = 2λ2

[
1 − 1

2 (c2 + 2c + 2)e−c

1 − e−c

]
.

Proof. a) follows by symmetry and b) follows from Lemma 1.4 b) since
VAR(Y ) = E[(Y − μ)2] = E(W 2

T ) where WT is TEXP (λ, b = cλ). �
As c → ∞, VAR(Y ) → 2λ2. If k = 9, then c = 9 log(2) ≈ 6.24 and

VAR(Y ) ≈ 0.95(2λ2).
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1.7.3 The Truncated Normal Distribution

Now if X is N(μ, σ2), then let Y be a truncated normal TN(μ, σ2, a, b) ran-
dom variable. Then

fY (y) =
1√

2πσ2 exp (−(y−μ)2

2σ2 )

Φ( b−μ
σ ) − Φ(a−μ

σ )
I[a,b](y)

where Φ is the standard normal cdf. The indicator function

I[a,b](y) = 1 if a ≤ y ≤ b

and is zero otherwise. Let φ be the standard normal pdf.

Lemma 1.6. E(Y ) = μ +

[
φ(a−μ

σ ) − φ( b−μ
σ )

Φ( b−μ
σ ) − Φ(a−μ

σ )

]
σ, and

V (Y ) = σ2

[
1 +

(a−μ
σ )φ(a−μ

σ ) − ( b−μ
σ )φ( b−μ

σ )

Φ( b−μ
σ ) − Φ(a−μ

σ )

]
− σ2

[
φ(a−μ

σ ) − φ( b−μ
σ )

Φ( b−μ
σ ) − Φ(a−μ

σ )

]2

.

(See Johnson and Kotz 1970a, p. 83.)

Proof. Let c =
1

Φ( b−μ
σ ) − Φ(a−μ

σ )
.

Then E(Y ) =
∫ b

a
yfY (y)dy. Hence

1
c
E(Y ) =

∫ b

a

y√
2πσ2

exp
(−(y − μ)2

2σ2

)
dy

=
∫ b

a

(
y − μ

σ

)
1√
2π

exp
(−(y − μ)2

2σ2

)
dy +

μ

σ

1√
2π

∫ b

a

exp
(−(y − μ)2

2σ2

)
dy

=

∫ b

a

(y − μ

σ

) 1√
2π

exp

(−(y − μ)2

2σ2

)
dy + μ

∫ b

a

1√
2πσ2

exp

(−(y − μ)2

2σ2

)
dy.

Note that the integrand of the last integral is the pdf of a N(μ, σ2) distribu-
tion. Let z = (y − μ)/σ. Thus dz = dy/σ, and E(Y )/c =

∫ b−μ
σ

a−μ
σ

σ
z√
2π

e−z2/2dz +
μ

c
=

σ√
2π

(−e−z2/2)|
b−μ

σ
a−μ

σ

+
μ

c
.
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Multiplying both sides by c gives the expectation result.

E(Y 2) =
∫ b

a

y2fY (y)dy.

Hence
1
c
E(Y 2) =

∫ b

a

y2

√
2πσ2

exp
(−(y − μ)2

2σ2

)
dy

= σ

∫ b

a

(
y2

σ2
− 2μy

σ2
+

μ2

σ2

)
1√
2π

exp
(−(y − μ)2

2σ2

)
dy

+σ

∫ b

a

2yμ − μ2

σ2

1√
2π

exp
(−(y − μ)2

2σ2

)
dy

= σ

∫ b

a

(
y − μ

σ

)2 1√
2π

exp
(−(y − μ)2

2σ2

)
dy + 2

μ

c
E(Y ) − μ2

c
.

Let z = (y − μ)/σ. Then dz = dy/σ, dy = σdz, and y = σz + μ. Hence

E(Y 2)
c

= 2
μ

c
E(Y ) − μ2

c
+ σ

∫ b−μ
σ

a−μ
σ

σ
z2√
2π

e−z2/2dz.

Next integrate by parts with w = z and dv = ze−z2/2dz. Then E(Y 2)/c =

2
μ

c
E(Y ) − μ2

c
+

σ2

√
2π

[(−ze−z2/2)|
b−μ

σ
a−μ

σ

+
∫ b−μ

σ

a−μ
σ

e−z2/2dz]

= 2
μ

c
E(Y ) − μ2

c
+ σ2

[(
a − μ

σ

)
φ

(
a − μ

σ

)
−

(
b − μ

σ

)
φ

(
b − μ

σ

)
+

1
c

]
.

Using

VAR(Y ) = c
1
c
E(Y 2) − (E(Y ))2

gives the result. �

Corollary 1.7. Let Y be TN(μ, σ2, a = μ−kσ, b = μ+kσ). Then E(Y ) =

μ and V (Y ) = σ2

[
1 − 2kφ(k)

2Φ(k) − 1

]
.

Proof. Use the symmetry of φ, the fact that Φ(−x) = 1 − Φ(x), and the
above lemma to get the result. �
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Examining V (Y ) for several values of k shows that the TN(μ, σ2, a =
μ − kσ, b = μ + kσ) distribution does not change much for k > 3.0. See
Table 1.2.

1.7.4 The Truncated Cauchy Distribution

If X is a Cauchy C(μ, σ) random variable, then MED(X) = μ and MAD(X) =
σ. If Y is a truncated Cauchy TC(μ, σ, μ− aσ, μ+ bσ) random variable, then

Table 1.2 Variances for several truncated normal distributions

k V (Y )

2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

fY (y) =
1

tan−1(b) + tan−1(a)
1

σ[1 + (y−μ
σ )2]

for μ − aσ < y < μ + bσ. Moreover,

E(Y ) = μ + σ

(
log(1 + b2) − log(1 + a2)
2[tan−1(b) + tan−1(a)]

)
, and

V (Y ) = σ2

[
b + a − tan−1(b) − tan−1(a)

tan−1(b) + tan−1(a)
−

(
log(1 + b2) − log(1 + a2)

tan−1(b) + tan−1(a)

)2
]

.

Lemma 1.8. If a = b, then E(Y ) = μ, and V (Y ) = σ2

[
b − tan−1(b)

tan−1(b)

]
.

See Johnson and Kotz (1970a, p. 162) and Dahiya et al. (2001).

1.8 Summary

1) Given a small data set, find Y , S, MED(n), and MAD(n). Recall that

Y =
∑n

i=1 Yi

n
and the sample variance
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VAR(n) = S2 = S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
,

and the sample standard deviation (SD) S = Sn =
√

S2
n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statistics.
The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. To find the sam-
ple median, sort the data from smallest to largest and find the middle value
or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi −MED(n)|, and then find the sample median
of the Di by ordering them from smallest to largest and finding the middle
value or values.

1.9 Complements

Olive (2008, chapters 2–4) covered robust estimators for the location model,
including alternatives to the Olive (2005b) confidence interval for the median
given in Application 1.1.

Riani et al. (2009) found the population mean and covariance matrix of
an elliptically trimmed (truncated) multivariate normal distribution, using
Tallis (1963).

1.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

1.1. Consider the data set 6, 3, 8, 5, and 2. Show work.
a) Find the sample mean Y .
b) Find the standard deviation S
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c) Find the sample median MED(n).
d) Find the sample median absolute deviation MAD(n).
1.2∗. The Cushny and Peebles data set (see Staudte and Sheather 1990,

p. 97) is listed below.

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

a) Find the sample mean Y .

b) Find the sample standard deviation S.
c) Find the sample median MED(n).
d) Find the sample median absolute deviation MAD(n).
e) Plot the data. Are any observations unusually large or unusually small?

R Problem
Warning: Use the command source(“G:/mpack.txt”) to download

the programs. See Preface or Section 15.2. Typing the name of the
mpack function, e.g., medci, will display the code for the function. Use the
args command, e.g., args(medci), to display the needed arguments for the
function.

1.3. a) Use the commands

height <- rnorm(87, mean=1692, sd = 65)
height[61:65] <- 19.0

to simulate data similar to the Buxton heights.
Download the mpack functions, cci and medci, which produce a classical

CI, and a CI using the median and the Bloch and Gastwirth (1968) SE. The
default is a 95% CI.

b) Compute a 95% CI for the artificial height data set with the command
cci(height).

c) Compute a 95% CI for the artificial height data set with the command
medci(height).
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