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Preface

Statistics is, or should be, about scientific investigation and how to do it
better ….
Box (1990)

Statistics is the science of extracting useful information from data, and a
statistical model is used to provide a useful approximation to some of the
important characteristics of the population which generated the data.

A case or observation consists of the random variables measured for one
person or thing. For multivariate location and dispersion, the ith case is
xi ¼ ðxi;1; . . .; xi;pÞT . There are n cases.

This book could be the primary text for at least two courses: a course in
multivariate statistical analysis at the level of Johnson and Wichern (2007) or
a course in Robust Statistics. I) For a course on multivariate statistical
analysis, cover Chapters 1–13, omitting much of Chapter 4. The emphasis for
this course is on multivariate statistical methods that work well for a large
class of underlying distributions. Exact theory for the multivariate normal
distribution is usually omitted, but is often replaced by simpler and more
applicable large sample theory. II) For a course on Robust Statistics, cover
Chapters 1–14, where Chapters 4 and 14 are the most important chapters.
This course emphasizes methods that work well for a large class of distri-
butions as well as multivariate statistical methods that are robust to certain
types of outliers: observations that lie far from the bulk of the data. Outliers
can ruin a classical analysis. The text tends to cover the classical method that
is not robust to outliers, and then gives a practical outlier robust analog of the
classical method that has some large sample theory, and often the robust
method can be used in tandem with the classical method. This course on
Robust Statistics covers the univariate location model very briefly compared
to texts like Huber and Ronchetti (2009) and Wilcox (2017).

I have taught topic courses on I) Robust Statistics using Olive (2008)
where I cover a lot of material on the univariate location model, robust
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multivariate location and dispersion (Chapter 4), and robust regression
(Chapter 14), and II) Robust Multivariate Analysis using an earlier version
of this text where I cover Chapters 1–13 but omit Chapter 14.

There are many texts on multivariate statistical analysis that are based on
rather difficult multivariate normal theory. This text uses simpler and more
applicable large sample theory for classical methods of multivariate statis-
tical analysis and provides good practical outlier resistant methods that are
backed by theory.

Prediction regions are developed for the multivariate location and disper-
sion model as well as the multivariate linear regression model. A relationship
between the new prediction regions and confidence regions provides a simple
way to bootstrap confidence regions. These confidence regions often provide a
practical method for testing hypotheses. See Chapter 5.

This book covers robust multivariate analysis. There are two uses of the
word “robust.” First, a method is robust to the assumption of multivariate
normality if the method gives good results for a large class of underlying
distributions. Such methods have good large sample theory. Some of the
methods in this text work well, asymptotically, if the data are independent
and identically distributed from a population that has a nonsingular
covariance matrix. Other methods have large sample theory for a large class
of elliptically contoured distributions. Second, the text develops methods
that are robust to certain types of outliers.

This book presents classical methods that are robust to the assumption of
multivariate normality, and often uses an outlier robust estimator of multi-
variate location and dispersion to develop an outlier robust method that can
be used in tandem with the classical method. The new technique for boot-
strapping confidence regions can often be used to perform inference for the
outlier robust method. These techniques are illustrated for methods such as
principal component analysis, canonical correlation analysis, and factor
analysis. More importantly, the technique for making a good robust version
of a classical method can be extended to many classical methods. Prediction
regions are developed that have good large sample theory, recent large
sample theory for multivariate linear regression is presented, and plots for
detecting outliers and for checking the model are presented.

Many of the most used estimators in statistics are semiparametric. For
multivariate location and dispersion (MLD), the classical estimator is the
sample mean and sample covariance matrix. Many classical procedures
originally meant for the multivariate normal (MVN) distribution are semi-
parametric in that the procedures also perform well on a much larger class of
elliptically contoured (EC) distributions. This book uses many acronyms. See
Table 1.1.

An important goal of robust multivariate analysis is to produce easily
computed semiparametric MLD estimators that perform well when the
classical estimators perform well, but are also useful for detecting some
important types of outliers.
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Two paradigms appear in the outlier robust literature. The “perfect
classification paradigm” assumes that diagnostics or robust statistics can be
used to perfectly classify the data into a “clean” subset and a subset of
outliers. Then classical methods are applied to the clean data. These methods
tend to be inconsistent, but this paradigm is widely used and can be very
useful for a fixed data set that contains outliers.

The “asymptotic paradigm” assumes that the data are independent and
identically distributed (iid) and develops the large sample properties of the
estimators. Unfortunately, many robust estimators that have rigorously
proven asymptotic theory are impractical to compute. In the robust literature
for multivariate location and dispersion, often no distinction is made between
the two paradigms: frequently, the large sample properties for an impractical
estimator are derived, but the examples and software use an inconsistent
“perfect classification” procedure. In this text, some practical MLD estima-
tors that have good statistical properties are developed (see Section 4.4), and
some effort has been made to state whether the “perfect classification” or
“asymptotic” paradigm is being used.

What is in the Book?
This book examines robust statistics for multivariate analysis. Robust

statistics can be used to improve many of the most used statistical proce-
dures. Often, practical robust outlier resistant alternatives backed by large
sample theory are also given and may be used in tandem with the classical
method. Emphasis is on the following topics. I) The practical robust

ffiffiffi
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consistent multivariate location and dispersion FCH estimator is developed,
along with reweighted versions RFCH and RMVN. These estimators are
useful for creating robust multivariate procedures such as robust principal
components, for outlier detection, and for determining whether the data is
from a multivariate normal distribution or some other elliptically contoured
distribution. II) Practical asymptotically optimal prediction regions are
developed. One of the prediction regions can be applied to a bootstrap sample
to make a confidence region.

Chapter 1 provides an introduction and some results that will be used later
in the text. Some univariate location model results are also given. The
material on truncated distributions will be useful for simplifying the large
sample theory of robust regression estimators in Chapter 14. Chapters 2 and
3 cover multivariate distributions and limit theorems including the multi-
variate normal distribution, elliptically contoured distributions, and the
multivariate central limit theorem. Chapter 4 considers classical and easily
computed highly outlier resistant
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consistent robust estimators of multi-
variate location and dispersion such as the FCH, RFCH, and RMVN esti-
mators. Chapter 5 considers DD plots and robust prediction regions, and
shows how to bootstrap hypothesis tests by making a confidence region using
a prediction region applied to the bootstrap sample of the test statistic.
Chapters 6 through 13 consider principal component analysis, canonical
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correlation analysis, discriminant analysis, Hotelling’s T2 test, MANOVA,
factor analysis, multivariate regression, and clustering, respectively. Chapter
14 discusses other techniques, including robust regression, while Chapter 15
provides information on software and suggests some projects for the students.

The text can be used for supplementary reading for courses in multivariate
analysis, statistical learning, and pattern recognition. See Duda et al. (2000),
James et al. (2013), and Bishop (2006). The text can also be used to present
many statistical methods to students running a statistical consulting
laboratory.

Some of the applications in this text include the following.
1) The first practical highly outlier resistant robust estimators of multi-

variate location and dispersion that are backed by large sample and break-
down theory are given with proofs. Section 4.4 provides the easily computed
robust

ffiffiffi
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consistent highly outlier resistant FCH, RFCH, and RMVN
estimators of multivariate location and dispersion. Applications are numer-
ous, and R software for computing the estimators is provided.

2) Practical asymptotically optimal prediction regions are developed in
Section 5.2 and are competitors for parametric prediction regions, which tend
to be far too small when the parametric distribution is misspecified, and
competitors for bootstrap intervals, especially if the bootstrap intervals take
too long to compute. These prediction regions are extended to multivariate
regression in Section 12.3.

3) Throughout the book, there are goodness of fit and lack of fit plots for
examining the model. The main tool is the DD plot, and Section 5.1 shows
that the DD plot can be used to detect multivariate outliers and as a diag-
nostic for whether the data is multivariate normal or from some other
elliptically contoured distribution with second moments.

4) Applications for robust and resistant estimators are given. The basic idea
is to replace the classical estimator or the inconsistent zero breakdown esti-
mators (such as cov.mcd) used in the “robust procedure” with the easily
computed

ffiffiffi
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consistent robust RFCH or RMVN estimators from Section 4.4.
The resistant trimmed views methods for visualizing 1D regression models
graphically are discussed in Section 14.6.

5) Applying a prediction region to a bootstrap sample results in a confidence
region that can be used for hypothesis tests based on classical or robust esti-
mators. For example, the bootstrap prediction region method may be useful
for testing statistical hypotheses after variable selection. See Section 5.3.

Much of the research on robust multivariate analysis in this book is being
published for the first time and will not appear in a journal. Some of the
research is also quite recent, and further research and development is likely.
See, for example, Olive (2017a, b) and Rupasinghe Arachchige Don and
Pelawa Watagoda (2017).
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The website (http://lagrange.math.siu.edu/Olive/multbk.htm) for this
book provides over 130 R programs in the file mpack.txt and several R data
sets in the file mrobdata.txt. Section 15.2 discusses how to get the data sets
and programs into the software, but the following commands will work.

Downloading the book’s R functions mpack.txt and data files mrobdata.
txt into R: The commands

source("http://lagrange.math.siu.edu/Olive/mpack.txt")

source("http://lagrange.math.siu.edu/Olive/mrobdata.txt")

can be used to download theR functions and data sets intoR. (Copy and paste
these two commands into R from near the top of the file (http://lagrange.
math.siu.edu/Olive/mrsashw.txt), which contains commands that are useful
for doing many of theR homework problems.) Type ls(). Over 130R functions
frommpack.txt should appear. InR, enter the command q(). A window asking
“Save workspace image? ” will appear. Click on No to remove the functions
from the computer (clicking on Yes saves the functions onR, but the functions
and data are easily obtained with the source commands).

Background
This course assumes that the student has had considerable exposure to

statistics, but is at a much lower level than most texts on Robust Statistics.
Calculus and a course in linear algebra are essential.

There are two target audiences for a Master’s level course in a Statistics
department if students have had only one calculus-based course in statistics
(e.g., Wackerly et al. 2008). The text can be used for a course in I) Robust
Statistics or for II) a course in multivariate analysis at a level similar to that
of Johnson and Wichern (2007), Mardia et al. (1979), Press (2005), and
Rencher and Christensen (2012). Anderson (2003) is at a much higher level.

The text is higher than Master’s level for students in an applied field like
quantitative psychology. Lower level texts on multivariate analysis include
Flury and Riedwyl (1988), Grimm and Yarnold (1995, 2000), Hair et al.
(2009), Kachigan (1991), Lattin et al. (2003), and Tabachnick and Fidell
(2012).

For the two Master’s level courses, consider skipping the proofs of the
theorems. Chapter 2, Sections 3.1–3.3, and Chapter 5 are important. Then
topics from the remaining chapters can be chosen. For a course in Robust
Statistics, Chapter 4 and robust regression from Chapter 14 are important.
An advanced course in statistical inference, especially one that covered
convergence in probability and distribution, is needed for several sections
of the text. Casella and Berger (2002), Olive (2014), Poor (1988), and White
(1984) meet this requirement.

A third target audience consists of those who want to do research in
robust statistics or multivariate analysis. The text could be used as a refer-
ence or the primary text in a reading course for Ph.D. students.
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For robust multivariate analysis, see Atkinson et al. (2004), Farcomeni
and Greco (2015), Oja (2010), Shevlyakov and Oja (2016), and Wilcox
(2017). Also see Aggarwal (2017). Most work on robust multivariate analysis
follows the dominant robust statistics paradigm, described after the next
paragraph. See Maronna et al. (2006).

Need for the book:
As a book on robust multivariate analysis, this book is an alternative to

the dominant robust statistics paradigm and attempts to find practical robust
estimators that are backed by theory. As a book on multivariate analysis, this
book provides large sample theory for the classical methods, showing that
many of the methods are robust to non-normality and work well on large
classes of distributions. A new bootstrap method is used for hypothesis tests
based on classical and robust estimators.

The dominant robust statistics paradigm for high breakdownmultivariate
robust statistics is to approximate an impractical brand-name estimator by
computing a fixed number of easily computed trial fits and then use the
brand-nameestimator criterion to select the trial fit tobeused in thefinal robust
estimator. The resulting estimator will be called an F-brand-name estimator
where the F indicates that a fixed number of trial fits was used. For example,
generate 500 easily computed estimators of multivariate location and disper-
sion as trial fits. Then choose the trial fit with the dispersion estimator that has
the smallest determinant. Since the minimum covariance determinant (MCD)
criterion is used, call the resulting estimator the FMCD estimator. These
practical estimators are typically not yet backed by large sample or breakdown
theory. Most of the literature follows the dominant robust statistics paradigm,
using estimators like FMCD, FLTS, FMVE, F-S, FLMS, F-s, F-Stahel–
Donoho, F-projection, F-MM, FLTA, F-constrained M, ltsreg, lmsreg,
cov.mcd, cov.mve, orOGKthat are not backedby theory.Maronna et al. (2006,
ch. 2, 6) and Hubert et al. (2008) provided references for the above estimators.

The best papers from this paradigm either give large sample theory for
impractical brand-name estimators that take too long to compute, or give
practical outlier resistant methods that could possibly be used as diagnostics
but have not yet been shown to be both consistent and high breakdown. As a
rule of thumb, if p[ 2 then the brand-name estimators take too long to
compute, so researchers who claim to be using a practical implementation of
an impractical brand-name estimator are actually using an F-brand-name
estimator.

Some Theory and Conjectures for F-Brand-Name Estimators
Some widely used F-brand-name estimators are easily shown to be zero

breakdown and inconsistent, but it is also easy to derive F-brand-name esti-
mators that have good theory. For example, suppose that the only trial fit is the
classical estimator ð�x;SÞ where �x is the sample mean and S is the sample
covariance matrix. Computing the determinant of S does not change the
classical estimator, so the resulting FMCD estimator is the classical estimator,
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which is
ffiffiffi
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p

consistent on a large class of distributions. Now suppose there are
two trial fits ð�x;SÞ and ð0; IpÞwherex is a p� 1 vector, 0 is the zero vector, and
Ip is the p� p identity matrix. Since the determinant detðIpÞ ¼ 1, the fit with
the smallest determinant will not be the classical estimator if detðSÞ[ 1.
Hence this FMCD estimator is only consistent on a rather small class of dis-
tributions. Another FMCD estimator might use 500 trial fits, where each trial
fit is the classical estimator applied to a subset of size n=2d e where n is the
sample size and 7:7d e ¼ 8. If the subsets are randomly selected cases, then each
trial fit is

ffiffiffi

n
p

consistent, so the resulting FMCD estimator is
ffiffiffi

n
p

consistent, but
has little outlier resistance. Choosing trial fits so that the resulting estimator
can be shown to be both consistent and outlier resistant is a very challenging
problem.

Some theory for the F-brand-name estimators actually used will be given
after some notation. Let p ¼ the number of predictors. The elemental con-
centration and elemental resampling algorithms use K elemental fits where K
is a fixed number that does not depend on the sample size n, e.g., K ¼ 500. To
produce an elemental fit, randomly select h cases and compute the classical
estimator ðTi;CiÞ (or Ti ¼ fl̂i for regression) for these cases, where h ¼ pþ 1
for multivariate location and dispersion (and h ¼ p for multiple linear
regression). The elemental resampling algorithm uses one of the K elemental
fits as the estimator, while the elemental concentration algorithm refines the
K elemental fits using all n cases. See Chapter 4, Section 14.4, and Olive and
Hawkins (2010, 2011) for more details.

Breakdown is computed by determining the smallest number of cases dn
that can be replaced by arbitrarily bad contaminated cases in order to make
Tk k (or k k) arbitrarily large or to drive the smallest or largest eigenvalues

of the dispersion estimator C to 0 or 1. High breakdown estimators have
�n ¼ dn=n ! 0:5 and zero breakdown estimators have �n ! 0 as n ! 1.

Note that an estimator cannot be consistent for h unless the number of
randomly selected cases goes to 1, except in degenerate situations. The
following theorem shows the widely used elemental estimators are zero
breakdown estimators. (If K ¼ Kn ! 1, then the elemental estimator is zero
breakdown if Kn ¼ oðnÞ. A necessary condition for the elemental basic
resampling estimator to be consistent is Kn ! 1.)

Theorem P.1: a) The elemental basic resampling algorithm estimators are
inconsistent. b) The elemental concentration and elemental basic resampling
algorithm estimators are zero breakdown.

Proof: a) Note that you can not get a consistent estimator by using Kh
randomly selected cases since the number of cases Kh needs to go to 1 for
consistency except in degenerate situations.

b) Contaminating all Kh cases in the K elemental sets shows that the
breakdown value is bounded by Kh=n ! 0, so the estimator is zero break-
down. □
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Theorem P.1 shows that the elemental basic resampling PROGRESS
estimators of Rousseeuw (1984), Rousseeuw and Leroy (1987), and Rousseeuw
and van Zomeren (1990) are zero breakdown and inconsistent. Yohai’s
two-stage estimators, such as MM, need initial consistent high breakdown
estimators such as LMS, MCD, or MVE, but were implemented with the
inconsistent zero breakdown elemental estimators such as lmsreg, FLMS,
FMCD, or FMVE. See Hawkins and Olive (2002, p. 157). You can get con-
sistent estimators if K ¼ Kn ! 1 or h ¼ hn ! 1 as n ! 1. You can get
high breakdown estimators and avoid singular starts if all K ¼ Kn ¼ C ðn; hÞ
elemental sets are used, but such an estimator is impractical.

Researchers are starting to use intelligently chosen trial fits. Maronna and
Yohai (2015) used 500 elemental sets plus the classical estimator to produce
an FS estimator used as the initial estimator for an FMM estimator.
However, choosing from a fixed number of elemental sets and the classical
estimator results in a zero breakdown initial FS estimator, and the FMM
estimator has the same breakdown as the initial estimator. Hence the FMM
estimator is zero breakdown. For regression, they show that the FS estimator
is consistent on a class of symmetric error distributions, so the FMM esti-
mator is asymptotically equivalent to the MM estimator that has the smallest
criterion value. This FMM estimator is asymptotically equivalent to the
FMM estimator that uses OLS as the initial estimator. See Section 14.7.1 for
more on this regression estimator. For multivariate location and dispersion,
suppose the algorithm uses elemental sets and the sample covariance matrix:
These trial fits are unbiased estimators of the population covariance esti-
mator CovðxÞ ¼ cx§§ for elliptically contoured distributions. But for S esti-
mators, the global minimizer is estimating dx§§ asymptotically, where the
constant cx 6¼ dx . Hence the probability that the initial estimator is an ele-
mental set is likely bounded away from 0, and the zero breakdown FMM
estimator is likely inconsistent.
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Chapter 1
Introduction

This chapter gives a brief introduction to multivariate analysis, including
some matrix optimization results, mixture distributions, and the special case
of the location model. Section 1.2 gives an overview of the book along with
a table of abbreviations. Truncated distributions, covered in Section 1.7, will
be useful for large sample theory for the location model and for the regression
model. See Chapter 14.

1.1 Introduction

Multivariate analysis is a set of statistical techniques used to analyze possibly
correlated data containing observations on p ≥ 2 random variables measured
on a set of n cases. Let x = (x1, ..., xp)T where x1, ..., xp are p random
variables. Usually context will be used to decide whether x is a random vector
or the observed random vector. For multivariate location and dispersion, the
ith case is xi = (xi,1, ..., xi,p)T = (xi1, ..., xip)T .

Definition 1.1. A case or observation consists of p random variables
measured for one person or thing. The ith case xi = (xi1, ..., xip)T .

Notation: Typically lowercase boldface letters such as x denote column
vectors, while uppercase boldface letters such as S denote matrices with two
or more columns. An exception may occur for random vectors which are
usually denoted by x, y, or z: if context is not enough to determine whether
x is a random vector or an observed random vector, then X = (X1, ...,Xp)T

and Y will be used for the random vectors, and x = (x1, ..., xp)T for the
observed value of the random vector. This notation is used in Chapter 3
in order to study the conditional distribution of Y |X = x. An uppercase
letter such as Y will usually be a random variable. A lowercase letter such
as x1 will also often be a random variable. An exception to this notation is
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2 1 Introduction

the generic multivariate location and dispersion estimator (T,C) where the
location estimator T is a p× 1 vector such as T = x. C is a p× p dispersion
estimator and conforms to the above notation.

Assume that the data xi has been observed and stored in an n× p matrix

W =

⎡
⎢⎣

xT
1
...

xT
n

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤
⎥⎥⎥⎦ =

[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable xj for j = 1, ..., p.
Often the n rows corresponding to the n cases are assumed to be inde-

pendent and identically distributed (iid): a random sample from some mul-
tivariate distribution. The p columns correspond to n measurements on the
p correlated random variables x1, ..., xp. The n cases are p × 1 vectors, while
the p columns are n × 1 vectors.

Some techniques have a vector of response variables (Y1, ..., Ym)T that is
predicted with a vector of predictor variables (x1, ..., xp)T . See Chapters 10
and 12. Methods involving one response variable will not be covered in depth
in this text. Such models include multiple linear regression, many experi-
mental design models, and generalized linear models. Discrete multivariate
analysis = categorical data analysis will also not be covered. Robust regres-
sion is briefly covered in Chapter 14.

Most of the multivariate techniques studied in this book will use estimators
of multivariate location and dispersion. Typically the data will be assumed
to come from a continuous distribution with a joint probability distribution
function (pdf). Multivariate techniques that examine correlations among the
p random variables x1, ..., xp include principal component analysis, canonical
correlation analysis, and factor analysis. Multivariate techniques that com-
pare the n cases x1, ...,xn include discriminant analysis and cluster analy-
sis. Data reduction attempts to simplify the multivariate data without losing
important information. Since the data matrix W has np terms, data reduction
is an important technique. Prediction and hypothesis testing are also impor-
tant techniques. Hypothesis testing is important for multivariate regression,
Hotelling’s T 2 test, and MANOVA. See Section 1.2 for a table of acronyms.

Robust multivariate analysis consists of i) techniques that are robust
to non-normality or ii) techniques that are robust to outliers. Techniques that
are robust to outliers tend to have some robustness to non-normality. The
classical sample mean x and covariance matrix S, defined in Section 2.2, are
very robust to non-normality, but are not robust to outliers. Large sample
theory is useful for both robust techniques. See Section 3.4.

Statistical Learning could be defined as the statistical analysis of mul-
tivariate data. Machine learning, data mining, Big Data, analytics, business
analytics, data analytics, and predictive analytics are synonymous terms. The
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1.2 Overview and Acronyms 3

techniques are useful for Data Science and Statistics, the science of extracting
information from data. Often Statistical Learning methods are useful when
n is large, but n/p is not large. Most of the methods in this text are for n/p
large, but Section 4.7 shows how to detect outliers when n/p is not large.
The outlier detection method gives a covmb2 set B of at least n/2 cases. If x
is a matrix of predictor variables and Y is a vector of response variables, the
following R commands produce cleaned data that can be used in Statistical
Learning techniques, such as lasso, even if p > n. Section 8.9 uses a similar
technique for discriminant analysis.

tem <- getB(x)
Yc <- Y[tem$indx]
xc <- x[tem$indx,]

Statistical Learning problems are supervised or unsupervised. For super-
vised learning, the goal is to predict a response variable given predictors.
Discriminant analysis and regression are important examples. See Chapters
8 and 14. For unsupervised learning, the goal is to describe associations and
patterns among the p variables. Clustering, described in Chapter 13, is an
important example. Excellent texts for Statistical Learning are Efron and
Hastie (2016), Hair et al. (2009), Hastie et al. (2015), and James et al.
(2013). Also see Olive (2017c).

1.2 Overview and Acronyms

Chapters 1, 2, and 3 present some results useful for multivariate analy-
sis, including matrix optimization results, the sample mean and covariance
matrix, Mahalanobis distances, the multivariate normal distribution, and
elliptically contoured distributions. This material is essential for any first
course in multivariate analysis. Some of the sections of Chapter 1 are useful
for robust regression which is covered in Chapter 14.

Chapters 4 and 5 are the most important chapters in the book and are
needed for the following chapters except Chapter 13 on clustering. Chapter 4
discusses classical and outlier resistant methods of multivariate location and
dispersion (MLD). Chapter 5 shows how to use the DD plot to detect outliers
and gives a prediction region for multivariate data. Applying this prediction
region on bootstrapped data gives a confidence region that can be used for
hypothesis testing. This “prediction region method” will be used to perform
inference on outlier resistant methods of multivariate analysis. There is a
subset U that is used to compute the robust MLD estimator. Often applying
a standard method, such as principal components, on the subset U results in
a robust version of the standard method.

Most of the remaining chapters focus on standard methods of multivariate
analysis such as principal component analysis, canonical correlation analysis,

http://dx.doi.org/10.1007/978-3-319-68253-2_4
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Table 1.1 Acronyms

Acronym Description

CCA canonical correlation analysis

cdf cumulative distribution function

cf characteristic function

CI confidence interval

CLT central limit theorem

DA discriminant analysis

Det-MCD practical approximate MCD estimator not backed by theory

DGK an MLD estimator (DGK are the initials of the paper’s authors)

EC elliptically contoured

ESP estimated sufficient predictor

ESSP estimated sufficient summary plot = response plot

Fast-MCD a slow FMCD estimator

FCH name of a fast, consistent, highly outlier resistant MLD estimator

FDA Fisher’s discriminant analysis

FLTS practical approximate LTS estimator not backed by theory

FMCD practical approximate MCD estimator not backed by theory

GAM generalized additive model

GLM generalized linear model

HB high breakdown

hbreg practical high breakdown regression estimator backed by theory

iid independent and identically distributed

KNN K-nearest neighbors discriminant analysis

LDA linear discriminant analysis

LMS least median of squares (robust regression)

LR logistic regression

LTA least trimmed sum of absolute deviations (robust regression)

LTS least trimmed sum of squares (robust regression)

MAD median absolute deviation

MANOVA multivariate analysis of variance

MB median ball estimator

MBA an MLD estimator made obsolete by FCH

MBA or the median ball algorithm is the mbareg estimator

mbareg a resistant regression estimator backed by theory

MCD the impractical minimum covariance determinant estimator

MCLT multivariate central limit theorem

MED the median

mgf moment generating function

MLD multivariate location and dispersion

MLR multiple linear regression

MVE the impractical minimum volume ellipsoid estimator

MVN multivariate normal

(continued)
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Table 1.1 (continued)

Acronym Description

OGK an MLD estimator not backed by theory

OLS ordinary least squares

PCA principal component analysis

pdf probability density function

PI prediction interval

pmf probability mass function

QDA quadratic discriminant analysis

RFCH the reweighted FCH estimator

RMVN a reweighted FCH estimator that works well for MVN data

SE standard error

SSP sufficient summary plot

SUR seemingly unrelated regressions

TVREG a resistant “trimmed views” regression estimator

discriminant analysis, MANOVA, factor analysis, and multivariate linear
regression. Emphasis is on methods that are robust to normality: the methods
have large sample theory that shows that the methods work on a large class
of distributions. Of secondary importance is how to make outlier resistant
methods that are backed by large sample theory. Chapter 14 considers other
techniques, including robust regression.

Acronyms are widely used in robust statistics and multivariate analysis,
and some of the more important acronyms are in Table 1.1 Also see the text’s
index. The letter “R” tends to stand for “robust” (RPCA) or “reweighted”
(RFCH). The letter “F” before a brand-name robust estimator (FMCD)
tends to mean a practical estimator that used a fixed number of trial fits,
where the criterion of the brand-name estimator was used to select the trial
fit used in the final estimator. The letter “C” before a brand-name estima-
tor (CLTS) tends to mean a concentration algorithm that was used for the
F-brand-name estimator. The letter “A,” standing for “algorithm,” was also
used for concentration algorithms (ALTS). These acronyms (with A, C, F,
or R) are often omitted from Table 1.1.

1.3 Some Things That Can Go Wrong with
a Multivariate Analysis

In multivariate analysis, there is often a training data set used to predict or
classify data in a future test data set. Many things can go wrong. For class-
ification and prediction, it is usually assumed that the data in the training

http://dx.doi.org/10.1007/978-3-319-68253-2_14


6 1 Introduction

set is from the same distribution as the data in the test set. Following Hand
(2006), this crucial assumption is often not justified.

Population drift is a common reason why the above assumption, which
assumes that the various distributions involved do not change over time,
is violated. Population drift occurs when the population distribution does
change over time. As an example, perhaps pot shards are classified after being
sent to a laboratory for analysis. It is often the case that even if the shards are
sent to the same laboratory twice, the two sets of laboratory measurements
differ greatly. As another example, suppose there are several variables being
used to produce greater yield of a crop or a chemical. If one journal paper
out of 50 (the training set) finds a set of variables and variable levels that
successfully increases yield, then the next 25 papers (the test set) are more
likely to use variables and variable levels similar to the one successful paper
than variables and variable levels of the 49 papers that did not succeed. Hand
(2006) noted that classification rules used to predict whether applicants are
likely to default on loans are updated every few months in the banking and
credit scoring industries.

A second thing that can go wrong is that the training or test data set is
distorted away from the population distribution. This could occur if outliers
are present or if one of the data sets is not a random sample from the popula-
tion. For example, the training data set could be drawn from three hospitals,
and the test data set could be drawn from two more hospitals. These two
data sets may not represent random samples from the same population of
hospitals.

Often problems specific to the multivariate method can occur. Often sim-
pler techniques can outperform sophisticated multivariate techniques because
the user of the multivariate method does not have the expertise to get the
most out of the sophisticated techniques. For supervised classification, Hand
(2006) noted that there can be error in class labels, arbitrariness in class
definitions, and data sets where different optimization criteria lead to very
different classification rules. Hand (2006) suggested that simple rules, such
as linear discriminant analysis, may perform almost as well or better than
sophisticated classification rules because of all of the possible problems. See
Chapter 8.

1.4 Some Matrix Optimization Results

The following results will be used throughout the text and are useful for
principal component analysis, canonical correlation analysis, Fisher’s discrim-
inant analysis, and the Hotelling’s T 2 test. Let B > 0 denote that B is a
positive definite matrix. The generalized eigenvalue problem finds eigenvalue
eigenvector pairs (λ, g) such that C−1Ag = λg which are also solutions to
the equation Ag = λCg. Then the pairs are used to maximize or minimize

http://dx.doi.org/10.1007/978-3-319-68253-2_8
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the Rayleigh quotient
aT Aa

aT Ca
. Results from linear algebra show that if C > 0

and A are both symmetric, then the p eigenvalues of C−1A are real, and the
number of nonzero eigenvalues of C−1A is equal to rank(C−1A) = rank(A).
Note that if a1 = c1g1 is the maximizer and ap = cpgp is the minimizer of
the Rayleigh quotient for any nonzero constants c1 and cp, then there is a
vector β that is the maximizer or minimizer such that ‖β‖ = 1.

Theorem 1.1. Let B > 0 be a p × p symmetric matrix with eigenvalue
eigenvector pairs (λ1,e1), ..., (λp,ep) where λ1 ≥ λ2 · · · ≥ λp > 0 and the
orthonormal eigenvectors satisfy eT

i ei = 1 while eT
i ej = 0 for i �= j. Let d

be a given p × 1 vector, and let a be an arbitrary nonzero p × 1 vector. See
Johnson and Wichern (1988, pp. 64–65, 184).

a) max
a �=0

aT ddT a

aT Ba
= dT B−1d where the max is attained for a = cB−1d

for any constant c �= 0. Note that the numerator = (aT d)2.

b) max
a�=0

aT Ba

aT a
= max

‖a‖=1
aT Ba = λ1 where the max is attained for a = e1.

c) min
a�=0

aT Ba

aT a
= min

‖a‖=1
aT Ba = λp where the min is attained for a = ep.

d) max
a⊥e1,...,ek

aT Ba

aT a
= max

‖a‖=1,a⊥e1,...,ek

aT Ba = λk+1 where the max is

attained for a = ek+1 for k = 1, 2, ..., p − 1.
e) Let (x,S) be the observed sample mean and sample covariance matrix

where S > 0. Then max
a�=0

naT (x − μ)(x − μ)T a

aT Sa
= n(x−μ)T S−1(x−μ) = T 2

where the max is attained for a = cS−1(x − μ) for any constant c �= 0.
f) Let A be a p × p symmetric matrix. Let C > 0 be a p × p symmetric

matrix. Then max
a�=0

aT Aa

aT Ca
= λ1(C−1A), the largest eigenvalue of C−1A. The

value of a that achieves the max is the eigenvector g1 of C−1A corresponding

to λ1(C−1A). Similarly, min
a �=0

aT Aa

aT Ca
= λp(C−1A), the smallest eigenvalue of

C−1A. The value of a that achieves the min is the eigenvector gp of C−1A

corresponding to λp(C−1A).

Proof Sketch. For a), note that rank(C−1A) = 1, where C = B and
A = ddT , since rank(C−1A) = rank(A) = rank(d) = 1. Hence C−1A has
one nonzero eigenvalue eigenvector pair (λ1, g1). Since

(λ1 = dT B−1d, g1 = B−1d)

is a nonzero eigenvalue eigenvector pair for C−1A and λ1 > 0, the result
follows by f).
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Note that b) and c) are special cases of f) with A = B and C = I.
Note that e) is a special case of a) with d = (x − μ) and B = S.
(Also note that (λ1 = (x−μ)T S−1(x−μ), g1 = S−1(x−μ)) is a nonzero

eigenvalue eigenvector pair for the rank 1 matrix C−1A where C = S and
A = (x − μ)(x − μ)T .)

For f), see Mardia et al. (1979, p. 480). �
Suppose A > 0 and C > 0 are p×p symmetric matrices, and let C−1Aa =

λa. Then Aa = λCa, or A−1Ca =
1
λ

a. Hence if (λi(C−1A),a) are eigen-

value eigenvector pairs of C−1A, then
(

λi(A−1C) =
1

λi(C−1A)
,a

)
are

eigenvalue eigenvector pairs of A−1C. Thus we can maximize
aT Aa

aT Ca
with

the eigenvector a corresponding to the smallest eigenvalue of A−1C and min-

imize
aT Aa

aT Ca
with the eigenvector a corresponding to the largest eigenvalue

of A−1C.

Remark 1.1. Suppose A and C are symmetric p× p matrices, A > 0, C

is singular, and it is desired to make
aT Aa

aT Ca
large but finite. Hence

aT Ca

aT Aa
should be made small but nonzero. The above result suggests that the eigen-
vector a corresponding to the smallest nonzero eigenvalue of A−1C may be

useful. Similarly, suppose it is desired to make
aT Aa

aT Ca
small but nonzero.

Hence
aT Ca

aT Aa
should be made large but finite. Then the eigenvector a cor-

responding to the largest eigenvalue of A−1C may be useful.

1.5 The Location Model

The location model is used when there is one variable Y , such as height, of
interest. The location model is a special case of the multivariate location and
dispersion model, where there are p variables x1, ..., xp of interest, such as
height and weight if p = 2. See Chapter 2.

The location model is

Yi = μ + ei, i = 1, . . . , n (1.1)

where e1, ..., en are error random variables, often independent and identically
distributed (iid) with zero mean. For example, if the Yi are iid from a normal
distribution with mean μ and variance σ2, written Yi ∼ N(μ, σ2), then the
ei are iid with ei ∼ N(0, σ2). The location model is often summarized by

http://dx.doi.org/10.1007/978-3-319-68253-2_2
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obtaining point estimates and confidence intervals for a location parameter
and a scale parameter. Assume that there is a sample Y1, . . . , Yn of size n
where the Yi are iid from a distribution with median MED(Y ), mean E(Y ),
and variance V (Y ) if they exist. Also assume that the Yi have a cumula-
tive distribution function (cdf) F that is known up to a few parameters. For
example, Yi could be normal, exponential, or double exponential. The loca-
tion parameter μ is often the population mean or median, while the scale
parameter is often the population standard deviation

√
V (Y ). The ith case

is Yi.
Point estimation is one of the oldest problems in statistics, and four impor-

tant statistics for the location model are the sample mean, median, variance,
and the median absolute deviation (MAD). Let Y1, . . . , Yn be the random
sample; i.e., assume that Y1, ..., Yn are iid.

Definition 1.2. The sample mean

Y =
∑n

i=1 Yi

n
. (1.2)

The sample mean is a measure of location and estimates the population
mean (expected value) μ = E(Y ). The sample mean is often described as
the “balance point” of the data. The following alternative description is also
useful. For any value m, consider the data values Yi ≤ m, and the values Yi >
m. Suppose that there are n rods where rod i has length |ri(m)| = |Yi − m|
where ri(m) is the ith residual of m. Since

∑n
i=1(Yi − Y ) = 0, Y is the value

of m such that the sum of the lengths of the rods corresponding to Yi ≤ m is
equal to the sum of the lengths of the rods corresponding to Yi > m. If the
rods have the same diameter, then the weight of a rod is proportional to its
length, and the weight of the rods corresponding to the Yi ≤ Y is equal to
the weight of the rods corresponding to Yi > Y . The sample mean is drawn
toward an outlier since the absolute residual corresponding to a single outlier
is large.

If the data set Y1, ..., Yn is arranged in ascending order from smallest to
largest and written as Y(1) ≤ · · · ≤ Y(n), then Y(i) is the ith order statistic
and the Y(i)’s are called the order statistics. Using this notation, the median

MEDc(n) = Y((n+1)/2) if n is odd,

and
MEDc(n) = (1 − c)Y(n/2) + cY((n/2)+1) if n is even

for c ∈ [0, 1]. Note that since a statistic is a function, c needs to be fixed.
The low median corresponds to c = 0, and the high median corresponds to
c = 1. The choice of c = 0.5 will yield the sample median. For example, if
the data Y1 = 1, Y2 = 4, Y3 = 2, Y4 = 5, and Y5 = 3, then Y = 3, Y(i) = i for
i = 1, ..., 5 and MEDc(n) = 3 where the sample size n = 5.
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Definition 1.3. The sample median

MED(n) = Y((n+1)/2) if n is odd, (1.3)

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used.

Definition 1.4. The sample variance

S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
, (1.4)

and the sample standard deviation Sn =
√

S2
n.

The sample median is a measure of location, while the sample standard
deviation is a measure of scale. In terms of the “rod analogy,” the median is
a value m such that at least half of the rods are to the left of m and at least
half of the rods are to the right of m. Hence the number of rods to the left and
right of m rather than the lengths of the rods determines the sample median.
The sample standard deviation is vulnerable to outliers and is a measure of
the average value of the rod lengths |ri(Y )|. The sample MAD, defined below,
is a measure of the median value of the rod lengths |ri(MED(n))|.
Definition 1.5. The sample median absolute deviation is

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n). (1.5)

Since MAD(n) is the median of n distances, at least half of the observations
are within a distance MAD(n) of MED(n) and at least half of the observations
are a distance of MAD(n) or more away from MED(n).

Example 1.1. Let the data be 1, 2, 3, 4, 5, 6, 7, 8, 9. Then MED(n) = 5
and MAD(n) = 2 = MED{0, 1, 1, 2, 2, 3, 3, 4, 4}.

Since these estimators are nonparametric estimators of the corresponding
population quantities, they are useful for a very wide range of distributions.

The following confidence interval provides considerable resistance to gross
outliers while being very simple to compute. See Olive (2008, pp. 238,
261–262). The standard error SE(MED(n)) is due to Bloch and Gastwirth
(1968), but the degrees of freedom p is motivated by the confidence interval
for the trimmed mean. Let �x	 denote the “greatest integer function” (e.g.,
�7.7	 = 7). Let 
x� denote the smallest integer greater than or equal to x
(e.g., 
7.7� = 8).
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Application 1.1: inference with the sample median. Let Un = n−Ln

where Ln = �n/2	 − 
√n/4 � and use

SE(MED(n)) = 0.5(Y(Un) − Y(Ln+1)).

Let p = Un−Ln−1 (so p ≈ 
 √n �). Then a 100(1−α)% confidence interval
for the population median is

MED(n) ± tp,1−α/2SE(MED(n)). (1.6)

Example 1.2. Let the data be 6, 9, 9, 7, 8, 9, 9, 7. Assume the data came
from a symmetric distribution with mean μ, and find a 95% CI for μ.

Solution. When computing small examples by hand, the steps are to
sort the data from smallest to largest value and find n, Ln, Un, Y(Ln+1),
Y(Un), p, MED(n), and SE(MED(n)). After finding tp,1−α/2, plug the relevant
quantities into the formula for the CI. The sorted data are 6, 7, 7, 8, 9, 9,
9, 9. Thus MED(n) = (8 + 9)/2 = 8.5. Since n = 8, Ln = �4	 − 
√2� =
4−
1.414� = 4−2 = 2 and Un = n−Ln = 8−2 = 6. Hence SE(MED(n)) =
0.5(Y(6)−Y(3)) = 0.5∗ (9−7) = 1. The degrees of freedom p = Un −Ln −1 =
6 − 2 − 1 = 3. The cutoff t3,0.975 = 3.182. Thus the 95% CI for MED(Y ) is

MED(n) ± t3,0.975SE(MED(n))

= 8.5 ± 3.182(1) = [5.318, 11.682]. The classical t-interval uses Y = (6 + 7 +
7 + 8 + 9 + 9 + 9 + 9)/8 and S2

n = (1/7)[(
∑n

i=1 Y 2
i ) − 8(82)] = (1/7)[(522 −

8(64)] = 10/7 ≈ 1.4286, and t7,0.975 ≈ 2.365. Hence the 95% CI for μ is
8 ± 2.365(

√
1.4286/8) = [7.001, 8.999]. Notice that the t-cutoff = 2.365 for

the classical interval is less than the t-cutoff = 3.182 for the median interval
and that SE(Y ) < SE(MED(n)). The parameter μ is between 1 and 9 since
the test scores are integers between 1 and 9. Hence for this example, the
t-interval is considerably superior to the overly long median interval.

Example 1.3. In the last example, what happens if the 6 becomes 66 and
a 9 becomes 99?

Solution. Then the ordered data are 7, 7, 8, 9, 9, 9, 66, 99. Hence
MED(n) = 9. Since Ln and Un only depend on the sample size, they
take the same values as in the previous example and SE(MED(n)) =
0.5(Y(6) − Y(3)) = 0.5 ∗ (9 − 8) = 0.5. Hence the 95% CI for MED(Y ) is
MED(n) ± t3,0.975SE(MED(n)) = 9 ± 3.182(0.5) = [7.409, 10.591]. Notice
that with discrete data, it is possible to drive SE(MED(n)) to 0 with a few
outliers if n is small. The classical confidence interval Y ± t7,0.975S/

√
n blows

up and is equal to [−2.955, 56.455].

Example 1.4. The Buxton (1920) data contains 87 heights of men, but
five of the men were recorded to be about 0.75 inches tall! The mean height



12 1 Introduction

is Y = 1598.862, and the classical 95% CI is [1514.206, 1683.518]. MED(n) =
1693.0, and the resistant 95% CI based on the median is [1678.517, 1707.483].

The heights for the five men were recorded under their head lengths, so
the outliers can be corrected. Then Y = 1692.356, and the classical 95% CI
is [1678.595, 1706.118]. Now MED(n) = 1694.0, and the 95% CI based on the
median is [1678.403, 1709.597]. Notice that when the outliers are corrected,
the two intervals are very similar although the classical interval length is
slightly shorter. Also notice that the outliers roughly shifted the median
confidence interval by about 1 mm, while the outliers greatly increased the
length of the classical t-interval. See Problem 1.3 for mpack software.

1.6 Mixture Distributions

Mixture distributions are often used as outlier models, and certain mixtures of
elliptically contoured distributions have an elliptically contoured distribution.
See Problem 3.4. The following two definitions and proposition are useful for
finding the mean and variance of a mixture distribution. Parts a) and b)
of Proposition 1.2 below show that the definition of expectation given in
Definition 1.7 is the same as the usual definition for expectation if Y is a
discrete or continuous random variable. The two definitions and proposition
can be extended to random vectors.

Definition 1.6. The distribution of a random variable Y is a mixture
distribution if the cdf of Y has the form

FY (y) =
k∑

i=1

αiFWi
(y) (1.7)

where 0 < αi < 1,
∑k

i=1 αi = 1, k ≥ 2, and FWi
(y) is the cdf of a continuous

or discrete random variable Wi, i = 1, ..., k.

Definition 1.7. Let Y be a random variable with cdf F (y) = FY (y). Let
h be a function such that the expected value Eh(Y ) = E[h(Y )] exists. Then

E[h(Y )] =
∫ ∞

−∞
h(y)dF (y). (1.8)

Proposition 1.2. a) If Y is a discrete random variable that has a prob-
ability mass function (pmf) f(y) with support Y, then

Eh(Y ) =
∫ ∞

−∞
h(y)dF (y) =

∑
y∈Y

h(y)f(y).
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b) If Y is a continuous random variable that has a probability distribution
function (pdf) f(y), then

Eh(Y ) =
∫ ∞

−∞
h(y)dF (y) =

∫ ∞

−∞
h(y)f(y)dy.

c) If Y is a random variable that has a mixture distribution with cdf FY (y) =∑k
i=1 αiFWi

(y), then

Eh(Y ) =
∫ ∞

−∞
h(y)dF (y) =

k∑
i=1

αiEWi
[h(Wi)]

where EWi
[h(Wi)] =

∫ ∞
−∞ h(y)dFWi

(y).

Example 1.5. Proposition 1.2c implies that the pmf or pdf of Wi is used
to compute EWi

[h(Wi)]. As an example, suppose the cdf of Y is F (y) =
(1 − ε)Φ(y) + εΦ(y/k) where 0 < ε < 1 and Φ(y) is the cdf of W1 ∼ N(0, 1).
Then Φ(y/k) is the cdf of W2 ∼ N(0, k2). To find EY , use h(y) = y. Then

EY = (1 − ε)EW1 + εEW2 = (1 − ε)0 + ε0 = 0.

To find EY 2, use h(y) = y2. Then

EY 2 = (1 − ε)EW 2
1 + εEW 2

2 = (1 − ε)1 + εk2 = 1 − ε + εk2.

Thus VAR(Y ) = E[Y 2] − (E[Y ])2 = 1 − ε + εk2. If ε = 0.1 and k = 10, then
EY = 0, and VAR(Y ) = 10.9.

To generate a random variable Y with the above mixture distribution,
generate a uniform (0,1) random variable U which is independent of the Wi. If
U ≤ 1−ε, then generate W1 and take Y = W1. If U > 1−ε, then generate W2

and take Y = W2. Note that the cdf of Y is FY (y) = (1−ε)FW1(y)+εFW2(y).

Remark 1.2. Warning: Mixture distributions and linear combinations
of random variables are very different quantities. As an example, let

W = (1 − ε)W1 + εW2

where W1 and W2 are independent random variables and 0 < ε < 1. Then
the random variable W is a linear combination of W1 and W2, and W can
be generated by generating two independent random variables W1 and W2.
Then take W = (1 − ε)W1 + εW2.

If W1 and W2 are as in the previous example, then the random variable
W is a linear combination that has a normal distribution with mean
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EW = (1 − ε)EW1 + εEW2 = 0

and variance

VAR(W ) = (1 − ε)2VAR(W1) + ε2VAR(W2) = (1 − ε)2 + ε2k2 < VAR(Y )

where Y is given in the example above. Moreover, W has a unimodal normal
distribution, while Y does not follow a normal distribution. In fact, if X1 ∼
N(0, 1), X2 ∼ N(10, 1), and X1 and X2 are independent, then (X1+X2)/2 ∼
N(5, 0.5); however, if Y has a mixture distribution with cdf

FY (y) = 0.5FX1(y) + 0.5FX2(y) = 0.5Φ(y) + 0.5Φ(y − 10),

then the pdf of Y is bimodal.

1.7 Truncated Distributions

Truncated and Winsorized random variables are important because they sim-
plify the asymptotic theory of robust estimators. See Section 14.7. Let Y be
a random variable with continuous cdf F , and let α = F (a) < F (b) = β.
Then α is the left trimming proportion and 1 − β is the right trimming pro-
portion. Let F (a−) = P (Y < a). (Refer to Proposition 1.2 for the notation
used below.)

Definition 1.8. The truncated random variable YT ≡ YT (a, b) with trun-
cation points a and b has cdf

FYT
(y|a, b) = G(y) =

F (y) − F (a−)
F (b) − F (a−)

(1.9)

for a ≤ y ≤ b. Also G is 0 for y < a, and G is 1 for y > b. The mean and
variance of YT are

μT = μT (a, b) =
∫ ∞

−∞
ydG(y) =

∫ b

a
ydF (y)
β − α

(1.10)

and

σ2
T = σ2

T (a, b) =
∫ ∞

−∞
(y − μT )2dG(y) =

∫ b

a
y2dF (y)
β − α

− μ2
T .

See Cramér (1946, p. 247).

http://dx.doi.org/10.1007/978-3-319-68253-2_14


1.7 Truncated Distributions 15

Definition 1.9. The Winsorized random variable

YW = YW (a, b) =

⎧
⎨
⎩

a, Y ≤ a
Y, a ≤ Y ≤ b
b, Y ≥ b.

If the cdf of YW (a, b) = YW is FW , then

FW (y) =

⎧
⎪⎪⎨
⎪⎪⎩

0, y < a
F (a), y = a
F (y), a < y < b

1, y ≥ b.

Since YW is a mixture distribution with a point mass at a and at b, the mean
and variance of YW are

μW = μW (a, b) = αa + (1 − β)b +
∫ b

a

ydF (y)

and

σ2
W = σ2

W (a, b) = αa2 + (1 − β)b2 +
∫ b

a

y2dF (y) − μ2
W .

Truncated distributions can be used to simplify the asymptotic theory
of robust estimators of location and regression. The following four subsec-
tions will be useful when the underlying distribution is exponential, dou-
ble exponential, normal, or Cauchy. If Y has an exponential distribution,
Y ∼ EXP(λ), then the pdf of Y is

f(y) =
1
λ

exp
(−y

λ

)
I(y ≥ 0)

where λ > 0 and the indicator I(y ≥ 0) is one if y ≥ 0 and zero otherwise.
If Y has a double exponential distribution (or Laplace distribution), Y ∼
DE(θ, λ), then the pdf of Y is

f(y) =
1
2λ

exp
(−|y − θ|

λ

)

where y is real and λ > 0. If Y has a normal distribution (or Gaussian
distribution), Y ∼ N(μ, σ2), then the pdf of Y is

f(y) =
1√

2πσ2
exp

(−(y − μ)2

2σ2

)
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where σ > 0 and μ and y are real. If Y has a Cauchy distribution, Y ∼
C(μ, σ), then the pdf of Y is

f(y) =
σ

π

1
σ2 + (y − μ)2

=
1

πσ[1 + (y−μ
σ )2]

where y and μ are real numbers and σ > 0.
Definitions 1.8 and 1.9 defined the truncated random variable YT (a, b)

and the Winsorized random variable YW (a, b). Let Y have cdf F , and let the
truncated random variable YT (a, b) have the cdf FT (a,b). The following lemma
illustrates the relationship between the means and variances of YT (a, b) and
YW (a, b). Note that YW (a, b) is a mixture of YT (a, b) and two point masses
at a and b. Let c = μT (a, b) − a and d = b − μT (a, b).

Lemma 1.3. Let a = μT (a, b) − c and b = μT (a, b) + d. Then
a) μW (a, b) = μT (a, b) − αc + (1 − β)d, and
b) σ2

W (a, b) = (β−α)σ2
T (a, b)+(α−α2)c2+[(1−β)−(1−β)2]d2+2α(1−β)cd.

c) If α = 1 − β then

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + (α − α2)(c2 + d2) + 2α2cd.

d) If c = d then

σ2
W (a, b) = (β − α)σ2

T (a, b) + [α − α2 + 1 − β − (1 − β)2 + 2α(1 − β)]d2.

e) If α = 1 − β and c = d, then μW (a, b) = μT (a, b) and

σ2
W (a, b) = (1 − 2α)σ2

T (a, b) + 2αd2.

Proof. We will prove b) since its proof contains the most algebra. Now

σ2
W = α(μT − c)2 + (β − α)(σ2

T + μ2
T ) + (1 − β)(μT + d)2 − μ2

W .

Collecting terms shows that

σ2
W = (β − α)σ2

T + (β − α + α + 1 − β)μ2
T + 2[(1 − β)d − αc]μT

+αc2 + (1 − β)d2 − μ2
W .

From a),

μ2
W = μ2

T + 2[(1 − β)d − αc]μT + α2c2 + (1 − β)2d2 − 2α(1 − β)cd,
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and we find that

σ2
W = (β − α)σ2

T + (α − α2)c2 + [(1 − β) − (1 − β)2]d2 + 2α(1 − β)cd. �

1.7.1 The Truncated Exponential Distribution

Let Y be a (one sided) truncated exponential TEXP (λ, b) random variable.
Then the pdf of Y is

fY (y|λ, b) =
1
λe−y/λ

1 − exp(− b
λ )

for 0 < y ≤ b where λ > 0. Let b = kλ, and let

ck =
∫ kλ

0

1
λ

e−y/λdy = 1 − e−k.

Next, we will find the first two moments of Y ∼ TEXP (λ, b = kλ) for k > 0.

Lemma 1.4. If Y is TEXP (λ, b = kλ) for k > 0, then

a) E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
,

and

b) E(Y 2) = 2λ2

[
1 − 1

2 (k2 + 2k + 2)e−k

1 − e−k

]
.

Proof. a) Note that

ckE(Y ) =
∫ kλ

0

y

λ
e−y/λdy = −ye−y/λ|kλ

0 +
∫ kλ

0

e−y/λdy

(use integration by parts). So

ckE(Y ) = −kλe−k + (−λe−y/λ)|kλ
0 = −kλe−k + λ(1 − e−k).

Hence

E(Y ) = λ

[
1 − (k + 1)e−k

1 − e−k

]
.
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b) Note that

ckE(Y 2) =
∫ kλ

0

y2

λ
e−y/λdy.

Since

d

dy
[−(y2 + 2λy + 2λ2)e−y/λ] =

1
λ

e−y/λ(y2 + 2λy + 2λ2) − e−y/λ(2y + 2λ)

= y2 1
λ

e−y/λ,

we have ckE(Y 2) = [−(y2 + 2λy + 2λ2)e−y/λ]kλ
0 =

− (k2λ2 + 2λ2k + 2λ2)e−k + 2λ2. So the result follows. �
Since as k → ∞, E(Y ) → λ, and E(Y 2) → 2λ2, we have VAR(Y ) → λ2.

If k = 9 log(2) ≈ 6.24, then E(Y ) ≈ .998λ, and E(Y 2) ≈ 0.95(2λ2).

1.7.2 The Truncated Double Exponential Distribution

Suppose that X is a double exponential DE(μ, λ) random variable. Then
MED(X) = μ and MAD(X) = log(2)λ. Let c = k log(2), and let the trunca-
tion points a = μ−kMAD(X) = μ−cλ and b = μ+kMAD(X) = μ+cλ. Let
XT (a, b) ≡ Y be the truncated double exponential TDE(μ, λ, a, b) random
variable. Then for a ≤ y ≤ b, the pdf of Y is

fY (y|μ, λ, a, b) =
1

2λ(1 − exp(−c))
exp(−|y − μ|/λ).

Lemma 1.5. a) E(Y ) = μ.

b) VAR(Y ) = 2λ2

[
1 − 1

2 (c2 + 2c + 2)e−c

1 − e−c

]
.

Proof. a) follows by symmetry and b) follows from Lemma 1.4 b) since
VAR(Y ) = E[(Y − μ)2] = E(W 2

T ) where WT is TEXP (λ, b = cλ). �
As c → ∞, VAR(Y ) → 2λ2. If k = 9, then c = 9 log(2) ≈ 6.24 and

VAR(Y ) ≈ 0.95(2λ2).
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1.7.3 The Truncated Normal Distribution

Now if X is N(μ, σ2), then let Y be a truncated normal TN(μ, σ2, a, b) ran-
dom variable. Then

fY (y) =
1√

2πσ2 exp (−(y−μ)2

2σ2 )

Φ( b−μ
σ ) − Φ(a−μ

σ )
I[a,b](y)

where Φ is the standard normal cdf. The indicator function

I[a,b](y) = 1 if a ≤ y ≤ b

and is zero otherwise. Let φ be the standard normal pdf.

Lemma 1.6. E(Y ) = μ +

[
φ(a−μ

σ ) − φ( b−μ
σ )

Φ( b−μ
σ ) − Φ(a−μ

σ )

]
σ, and

V (Y ) = σ2

[
1 +

(a−μ
σ )φ(a−μ

σ ) − ( b−μ
σ )φ( b−μ

σ )

Φ( b−μ
σ ) − Φ(a−μ

σ )

]
− σ2

[
φ(a−μ

σ ) − φ( b−μ
σ )

Φ( b−μ
σ ) − Φ(a−μ

σ )

]2

.

(See Johnson and Kotz 1970a, p. 83.)

Proof. Let c =
1

Φ( b−μ
σ ) − Φ(a−μ

σ )
.

Then E(Y ) =
∫ b

a
yfY (y)dy. Hence

1
c
E(Y ) =

∫ b

a

y√
2πσ2

exp
(−(y − μ)2

2σ2

)
dy

=
∫ b

a

(
y − μ

σ

)
1√
2π

exp
(−(y − μ)2

2σ2

)
dy +

μ

σ

1√
2π

∫ b

a

exp
(−(y − μ)2

2σ2

)
dy

=

∫ b

a

(y − μ

σ

) 1√
2π

exp

(−(y − μ)2

2σ2

)
dy + μ

∫ b

a

1√
2πσ2

exp

(−(y − μ)2

2σ2

)
dy.

Note that the integrand of the last integral is the pdf of a N(μ, σ2) distribu-
tion. Let z = (y − μ)/σ. Thus dz = dy/σ, and E(Y )/c =

∫ b−μ
σ

a−μ
σ

σ
z√
2π

e−z2/2dz +
μ

c
=

σ√
2π

(−e−z2/2)|
b−μ

σ
a−μ

σ

+
μ

c
.
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Multiplying both sides by c gives the expectation result.

E(Y 2) =
∫ b

a

y2fY (y)dy.

Hence
1
c
E(Y 2) =

∫ b

a

y2

√
2πσ2

exp
(−(y − μ)2

2σ2

)
dy

= σ

∫ b

a

(
y2

σ2
− 2μy

σ2
+

μ2

σ2

)
1√
2π

exp
(−(y − μ)2

2σ2

)
dy

+σ

∫ b

a

2yμ − μ2

σ2

1√
2π

exp
(−(y − μ)2

2σ2

)
dy

= σ

∫ b

a

(
y − μ

σ

)2 1√
2π

exp
(−(y − μ)2

2σ2

)
dy + 2

μ

c
E(Y ) − μ2

c
.

Let z = (y − μ)/σ. Then dz = dy/σ, dy = σdz, and y = σz + μ. Hence

E(Y 2)
c

= 2
μ

c
E(Y ) − μ2

c
+ σ

∫ b−μ
σ

a−μ
σ

σ
z2√
2π

e−z2/2dz.

Next integrate by parts with w = z and dv = ze−z2/2dz. Then E(Y 2)/c =

2
μ

c
E(Y ) − μ2

c
+

σ2

√
2π

[(−ze−z2/2)|
b−μ

σ
a−μ

σ

+
∫ b−μ

σ

a−μ
σ

e−z2/2dz]

= 2
μ

c
E(Y ) − μ2

c
+ σ2

[(
a − μ

σ

)
φ

(
a − μ

σ

)
−

(
b − μ

σ

)
φ

(
b − μ

σ

)
+

1
c

]
.

Using

VAR(Y ) = c
1
c
E(Y 2) − (E(Y ))2

gives the result. �

Corollary 1.7. Let Y be TN(μ, σ2, a = μ−kσ, b = μ+kσ). Then E(Y ) =

μ and V (Y ) = σ2

[
1 − 2kφ(k)

2Φ(k) − 1

]
.

Proof. Use the symmetry of φ, the fact that Φ(−x) = 1 − Φ(x), and the
above lemma to get the result. �
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Examining V (Y ) for several values of k shows that the TN(μ, σ2, a =
μ − kσ, b = μ + kσ) distribution does not change much for k > 3.0. See
Table 1.2.

1.7.4 The Truncated Cauchy Distribution

If X is a Cauchy C(μ, σ) random variable, then MED(X) = μ and MAD(X) =
σ. If Y is a truncated Cauchy TC(μ, σ, μ− aσ, μ+ bσ) random variable, then

Table 1.2 Variances for several truncated normal distributions

k V (Y )

2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

fY (y) =
1

tan−1(b) + tan−1(a)
1

σ[1 + (y−μ
σ )2]

for μ − aσ < y < μ + bσ. Moreover,

E(Y ) = μ + σ

(
log(1 + b2) − log(1 + a2)
2[tan−1(b) + tan−1(a)]

)
, and

V (Y ) = σ2

[
b + a − tan−1(b) − tan−1(a)

tan−1(b) + tan−1(a)
−

(
log(1 + b2) − log(1 + a2)

tan−1(b) + tan−1(a)

)2
]

.

Lemma 1.8. If a = b, then E(Y ) = μ, and V (Y ) = σ2

[
b − tan−1(b)

tan−1(b)

]
.

See Johnson and Kotz (1970a, p. 162) and Dahiya et al. (2001).

1.8 Summary

1) Given a small data set, find Y , S, MED(n), and MAD(n). Recall that

Y =
∑n

i=1 Yi

n
and the sample variance
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VAR(n) = S2 = S2
n =

∑n
i=1(Yi − Y )2

n − 1
=

∑n
i=1 Y 2

i − n(Y )2

n − 1
,

and the sample standard deviation (SD) S = Sn =
√

S2
n.

If the data Y1, ..., Yn is arranged in ascending order from smallest to largest
and written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statistics.
The sample median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. To find the sam-
ple median, sort the data from smallest to largest and find the middle value
or values.

The sample median absolute deviation

MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).

To find MAD(n), find Di = |Yi −MED(n)|, and then find the sample median
of the Di by ordering them from smallest to largest and finding the middle
value or values.

1.9 Complements

Olive (2008, chapters 2–4) covered robust estimators for the location model,
including alternatives to the Olive (2005b) confidence interval for the median
given in Application 1.1.

Riani et al. (2009) found the population mean and covariance matrix of
an elliptically trimmed (truncated) multivariate normal distribution, using
Tallis (1963).

1.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

1.1. Consider the data set 6, 3, 8, 5, and 2. Show work.
a) Find the sample mean Y .
b) Find the standard deviation S
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c) Find the sample median MED(n).
d) Find the sample median absolute deviation MAD(n).
1.2∗. The Cushny and Peebles data set (see Staudte and Sheather 1990,

p. 97) is listed below.

1.2 2.4 1.3 1.3 0.0 1.0 1.8 0.8 4.6 1.4

a) Find the sample mean Y .

b) Find the sample standard deviation S.
c) Find the sample median MED(n).
d) Find the sample median absolute deviation MAD(n).
e) Plot the data. Are any observations unusually large or unusually small?

R Problem
Warning: Use the command source(“G:/mpack.txt”) to download

the programs. See Preface or Section 15.2. Typing the name of the
mpack function, e.g., medci, will display the code for the function. Use the
args command, e.g., args(medci), to display the needed arguments for the
function.

1.3. a) Use the commands

height <- rnorm(87, mean=1692, sd = 65)
height[61:65] <- 19.0

to simulate data similar to the Buxton heights.
Download the mpack functions, cci and medci, which produce a classical

CI, and a CI using the median and the Bloch and Gastwirth (1968) SE. The
default is a 95% CI.

b) Compute a 95% CI for the artificial height data set with the command
cci(height).

c) Compute a 95% CI for the artificial height data set with the command
medci(height).



Chapter 2
Multivariate Distributions

This chapter describes the multivariate location and dispersion (MLD) model,
random vectors, the population mean, the population covariance matrix, and
the classical MLD estimators: the sample mean and the sample covariance
matrix. Some important results on Mahalanobis distances and the volume of
a hyperellipsoid are given. Often methods of multivariate analysis work best
when the variables x1, ..., xp are linearly related. Section 2.4 discusses power
transformations to remove gross linearities from the variables.

2.1 Introduction

Definition 2.1. An important multivariate location and dispersion model is
a joint distribution with joint probability density function (pdf)

f(z|μ,Σ)

for a p×1 random vector x that is completely specified by a p×1 population
location vector μ and a p×p symmetric positive definite population dispersion
matrix Σ. Thus P (x ∈ A) =

∫
A

f(z)dz for suitable sets A.

Notation: Usually a vector x will be column vector, and a row vector xT

will be the transpose of the vector x. However,
∫

A

f(z)dz =
∫

A

f(z1, ..., zp)dz1 · · · dzp.

The notation f(z1, ..., zp) will be used to write out the components zi of a
joint pdf f(z) although in the formula for the pdf, e.g., f(z) = c exp(zT z),
z is a column vector.
c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 2
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Definition 2.2. A p × 1 random vector x = (x1, ..., xp)T = (X1, ...,Xp)T

where X1, ...,Xp are p random variables. A case or observation consists of
the p random variables measured for one person or thing. For multivariate
location and dispersion, the ith case is xi = (xi,1, ..., xi,p)T . There are n
cases, and context will be used to determine whether x is the random vector
or the observed value of the random vector. Outliers are cases that lie far
away from the bulk of the data, and they can ruin a classical analysis.

Assume that x1, ...,xn are n iid p × 1 random vectors and that the joint
pdf of xi is f(z|μ,Σ). Also assume that the data xi has been observed and
stored in an n × p matrix

W =

⎡

⎢
⎣

xT
1
...

xT
n

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤

⎥
⎥
⎥
⎦

=
[
v1 v2 . . . vp

]

where the ith row of W is the ith case xT
i and the jth column vj of W

corresponds to n measurements of the jth random variable Xj for j = 1, ..., p.
Hence the n rows of the data matrix W correspond to the n cases, while the
p columns correspond to measurements on the p random variables X1, ...,Xp.
For example, the data may consist of n visitors to a hospital where the p = 2
variables height and weight of each individual were measured.

Notation: In the theoretical sections of this text, xi will sometimes
be a random vector and sometimes the observed data. Some texts, for
example Johnson and Wichern (1988, pp. 7, 53), use X to denote the
n × p data matrix and an n × 1 random vector, relying on the context to
indicate whether X is a random vector or data matrix. Software tends to use
different notation. For example, R will use commands such as

var(x)

to compute the sample covariance matrix of the data. Hence x corresponds
to W , x[,1] is the first column of x, and x[4, ] is the 4th row of x.

2.2 The Sample Mean and Sample Covariance Matrix

The population location vector μ need not be the population mean, but often
the population mean is denoted by μ. For elliptically contoured distributions,
such as the multivariate normal distribution, μ is usually the point of sym-
metry for the population distribution. See Chapter 3.

Definition 2.3. If the second moments exist, the population mean of a
random p × 1 vector x = (X1, ...,Xp)T is

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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E(x) = μ = (E(X1), ..., E(Xp))T ,

and the p × p population covariance matrix

Cov(x) = E[(x − E(x))(x − E(x))T ] = E[(x − E(x))xT ] =

E(xxT ) − E(x)[E(x)]T = (σij) = (σi,j) = Σx.

That is, the ij entry of Cov(x) is Cov(Xi,Xj) = σij = E([Xi −E(Xi)][Xj −
E(Xj)]). The p×p population correlation matrix Cor(x) = ρx = (ρij). That
is, the ij entry of Cor(x) is Cor(Xi,Xj) =

σij

σiσj
=

σij√
σiiσjj

.

Let the p × p population standard deviation matrix

Δ = diag(
√

σ11, ...,
√

σpp).

Then
Σx = ΔρxΔ, (2.1)

and
ρx = Δ−1ΣxΔ−1. (2.2)

Let the population standardized random variables

Zi =
Xi − E(Xi)√

σii

for i = 1, ..., p. Then Cor(x) = ρx = Cov(z) is the covariance matrix of
z = (Z1, ..., Zp)T .

Definition 2.4. Let random vectors x be p × 1 and y be q × 1. The
population covariance matrix of x with y is the p × q matrix

Cov(x,y) = E[(x − E(x))(y − E(y))T ] =

E[(x − E(x))yT ] = E(xyT ) − E(x)[E(y)]T = Σx,y

assuming the expected values exist. Note that the q × p matrix Cov(y,x) =
Σy,x = ΣT

x,y , and Cov(x) = Cov(x,x).

A p×1 random vector x has an elliptically contoured distribution, if x has
pdf

f(z) = kp|Σ|−1/2g[(z − μ)T Σ−1(z − μ)], (2.3)
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and we say x has an elliptically contoured ECp(μ,Σ, g) distribution. See
Chapter 3. If second moments exist for this distribution, then

E(x) = μ and Cov(x) = cxΣ = Σx

for some constant cx > 0 where the ij entry is Cov(Xi,Xj) = σi,j .

Definition 2.5. Let x1j , ..., xnj be measurements on the jth random vari-
able Xj corresponding to the jth column of the data matrix W . The

jth sample mean is xj =
1
n

n∑

k=1

xkj . The sample covariance Sij estimates

Cov(Xi,Xj) = σij , and

Sij =
1

n − 1

n∑

k=1

(xki − xi)(xkj − xj).

Sii = S2
i is the sample variance that estimates the population variance

σii = σ2
i . The sample correlation rij estimates the population correlation

Cor(Xi,Xj) = ρij , and

rij =
Sij

SiSj
=

Sij√
SiiSjj

=
∑n

k=1(xki − xi)(xkj − xj)√∑n
k=1(xki − xi)2

√∑n
k=1(xkj − xj)2

.

Definition 2.6. The sample mean or sample mean vector

x =
1
n

n∑

i=1

xi = (x1, ..., xp)T =
1
n

W T1

where 1 is the n × 1 vector of ones. The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator
of multivariate location and dispersion is (x,S).

It can be shown that (n − 1)S =
∑n

i=1 xix
T
i − x xT =

W T W − 1
n

W T11T W .

Hence if the centering matrix H = I − 1
n
11T , then (n − 1)S = W T HW .

Definition 2.7. The sample correlation matrix
R = (rij).

That is, the ij entry of R is the sample correlation rij .

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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Let the standardized random variables

Zj =
xj − xj√

Sjj

for j = 1, ..., p. Then the sample correlation matrix R is the sample covariance
matrix of the zi = (Zi1, ..., Zip)T where i = 1, ..., n.

Often it is useful to standardize variables with a robust location estimator
and a robust scale estimator. The R function scale is useful. The R code
below shows how to standardize using

Zj =
xj − MED(xj)

MAD(xj)

for j = 1, ..., p. Here MED(xj) = MED(x1j , ..., xnj) and MAD(xj) =
MAD(x1j , ..., xnj) are the sample median and sample median absolute devi-
ation of the data for the jth variable: x1j , ..., xnj . See Definitions 1.3 and 1.5.
Some of these results are illustrated with the following R code.

x <- buxx[,1:3]; cov(x)
len nasal bigonal

len 118299.9257 -191.084603 -104.718925
nasal -191.0846 18.793905 -1.967121
bigonal -104.7189 -1.967121 36.796311

cor(x)
len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157
nasal -0.12815187 1.00000000 -0.07480324
bigonal -0.05019157 -0.07480324 1.00000000
z <- scale(x)
cov(z)

len nasal bigonal
len 1.00000000 -0.12815187 -0.05019157
nasal -0.12815187 1.00000000 -0.07480324
bigonal -0.05019157 -0.07480324 1.00000000

medd <- apply(x,2,median)
madd <- apply(x,2,mad)/1.4826
z <- scale(x,center=medd,scale=madd)
ddplot4(z)#scaled data still has 5 outliers
cov(z) #in the length variable

len nasal bigonal
len 4731.997028 -12.738974 -6.981262
nasal -12.738974 2.088212 -0.218569

http://dx.doi.org/10.1007/978-3-319-68253-2_1
http://dx.doi.org/10.1007/978-3-319-68253-2_1
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bigonal -6.981262 -0.218569 4.088479

cor(z)
len nasal bigonal

len 1.00000000 -0.12815187 -0.05019157
nasal -0.12815187 1.00000000 -0.07480324
bigonal -0.05019157 -0.07480324 1.00000000

apply(z,2,median)
len nasal bigonal
0 0 0
#scaled data has coord. median = (0,0,0)^T
apply(z,2,mad)/1.4826
len nasal bigonal
1 1 1 #scaled data has unit MAD

Notation. A rule of thumb is a rule that often but not always works well
in practice.

Rule of thumb 2.1. Multivariate procedures start to give good results for
n ≥ 10p, especially if the distribution is close to multivariate normal. In par-
ticular, we want n ≥ 10p for the sample covariance and correlation matrices.
For procedures with large sample theory on a large class of distributions, for
any value of n, there are always distributions where the results will be poor,
but will eventually be good for larger sample sizes. Norman and Streiner
(1986, pp. 122, 130, 157) gave this rule of thumb and note that some authors
recommend n ≥ 30p. This rule of thumb is much like the rule of thumb that
says the central limit theorem normal approximation for Y starts to be good
for many distributions for n ≥ 30. See the paragraph below Theorem 3.7.

The population and sample correlation are measures of the strength of a
linear relationship between two random variables, satisfying −1 ≤ ρij ≤ 1
and −1 ≤ rij ≤ 1. Let the p × p sample standard deviation matrix

D = diag(
√

S11, ...,
√

Spp).

Then
S = DRD, (2.4)

and
R = D−1SD−1. (2.5)

The inverse covariance matrix or inverse correlation matrix can be used
to find the partial correlation rij,x(ij) between xi and xj where x(ij) is
the vector of predictors with xi and xj deleted where i �= j. This partial
correlation is the correlation of xi and xj after eliminating the linear effects

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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of x(ij) from both variables: regress xi and xj on x(ij) and get the two sets
of residuals, and then find the correlation of the two sets of residuals. If p ≥ 3
and S−1 = (Sij), then

rij,x(ij) =
−Sij

(SiiSjj)1/2
=

−rij

(riirjj)1/2
.

Srivastava and Khatri(1979, p. 53) proved this result. The second equality
holds since R−1 = DS−1D = (rij) = (Sij

√
Sii

√
Sjj).

Some R code illustrating this result is shown below. The function lsfit is
used to regress x1 on x3 and then regress x2 on x3. Note that x(i = 1, j =
2) = x3 once x1 and x2 have been deleted since p = 3.

x <- buxx[,1:3]; z<-solve(cor(x))
z #inverse correlation matrix

len nasal bigonal
len 1.02042523 0.13535798 0.06134196
nasal 0.13535798 1.02358206 0.08336109
bigonal 0.06134196 0.08336109 1.00931453

out1 <- lsfit(x[,3],x[,1])$resid
out2 <- lsfit(x[,3],x[,2])$resid
cor(out1,out2)
[1] -0.1324439

-z[1,2]/sqrt(z[1,1]*z[2,2])
[1] -0.1324439

zz <- solve(var(x)) #inverse covariance matrix
-zz[1,2]/sqrt(zz[1,1]*zz[2,2])
[1] -0.1324439

2.3 Mahalanobis Distances

Definition 2.8. Let A be a positive definite symmetric matrix. Then the
Mahalanobis distance of x from the vector μ is

Dx(μ,A) =
√

(x − μ)T A−1(x − μ).

Typically A is a dispersion matrix. The population squared Mahalanobis
distance

D2
x(μ,Σ) = (x − μ)T Σ−1(x − μ). (2.6)
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Estimators of multivariate location and dispersion (μ̂, Σ̂) are of interest.
The sample squared Mahalanobis distance

D2
x(μ̂, Σ̂) = (x − μ̂)T Σ̂

−1
(x − μ̂). (2.7)

Notation: Recall that a square symmetric p × p matrix A has an eigen-
value λ with corresponding eigenvector x �= 0 if

Ax = λx. (2.8)

The eigenvalues of A are real since A is symmetric. Note that if constant
c �= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖ =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1,e1), (λ2,e2), ..., (λp,ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthogonal: eT

i ej = 0 for i �= j. The symmetric
matrix A is positive definite iff all of its eigenvalues are positive, and pos-
itive semidefinite iff all of its eigenvalues are nonnegative. If A is positive
semidefinite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive definite, then
λp > 0.

Theorem 2.1. Let A be a p×p symmetric matrix with eigenvector eigen-
value pairs (λ1,e1), (λ2,e2), ..., (λp,ep) where eT

i ei = 1 and eT
i ej = 0 if i �= j

for i = 1, ..., p. Then the spectral decomposition of A is

A =
p∑

i=1

λieie
T
i = λ1e1e

T
1 + · · · + λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50–51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column
ei. Then PP T = P T P = I. Let Λ = diag(λ1, ..., λp) and let Λ1/2 =
diag(

√
λ1, ...,

√
λp). If A is a positive definite p × p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = PΛP T and

A−1 = PΛ−1P T =
p∑

i=1

1
λi

eie
T
i .

Theorem 2.2. Let A be a positive definite p × p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.

Points x with the same distance Dx(μ,A−1) lie on a hyperellipsoid. Let
matrix A have determinant det(A) = |A|. Recall that
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|A−1| =
1
|A| = |A|−1.

See Johnson and Wichern (1988, pp. 49–50, 102–103) for the following
theorem.

Theorem 2.3. Let h > 0 be a constant, and let A be a positive definite
p×p symmetric matrix with spectral decomposition A =

∑p
i=1 λieie

T
i where

λ1 ≥ λ2 ≥ · · · ≥ λp > 0. Then {x : (x − μ)T A(x − μ) ≤ h2} =

{x : D2
x(μ,A−1) ≤ h2} = {x : Dx(μ,A−1) ≤ h}

defines a hyperellipsoid centered at μ with volume

2πp/2

pΓ (p/2)
|A|−1/2hp.

Let μ = 0. Then the axes of the hyperellipsoid are given by the eigenvectors
ei of A with half length in the direction of ei equal to h/

√
λi for i = 1, ..., p.

In the following theorem, the shape of the hyperellipsoid is determined by
the eigenvectors and eigenvalues of Σ: (λ1,e1), ..., (λp,ep) where λ1 ≥ λ2 ≥
· · · ≥ λp > 0. Note Σ−1 has the same eigenvectors as Σ but eigenvalues
equal to 1/λi since Σe = λe iff Σ−1Σe = e = Σ−1λe. Then divide both
sides by λ > 0 since Σ > 0 and is symmetric. Let w = x − μ. Then points
at squared distance wT Σ−1w = h2 from the origin lie on the hyperellipsoid
centered at the origin whose axes are given by the eigenvectors of Σ where
the half length in the direction of ei is h

√
λi. Taking A = Σ−1 or A = S−1

in Theorem 2.3 gives the volume results for the following two theorems.

Theorem 2.4. Let Σ be a positive definite symmetric matrix, e.g., a
dispersion matrix. Let U = D2

x = D2
x(μ,Σ). The hyperellipsoid

{x|D2
x ≤ h2} = {x : (x − μ)T Σ−1(x − μ) ≤ h2},

where h2 = u1−α and P (U ≤ u1−α) = 1 − α, is the highest density region
covering 1 − α of the mass for an elliptically contoured ECp(μ,Σ, g) distri-
bution (see Definitions 3.2 and 3.3) if g is continuous and decreasing. Let
w = x − μ. Then points at a squared distance wT S−1w = h2 from the
origin lie on the hyperellipsoid centered at the origin whose axes are given by
the eigenvectors ei where the half length in the direction of ei is h

√
λi. The

volume of the hyperellipsoid is

2πp/2

pΓ (p/2)
|Σ|1/2hp.

http://dx.doi.org/10.1007/978-3-319-68253-2_3
http://dx.doi.org/10.1007/978-3-319-68253-2_3
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Theorem 2.5. Let the symmetric sample covariance matrix S be positive
definite with eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p >
0. The hyperellipsoid

{x|D2
x(x,S) ≤ h2} = {x : (x − x)T S−1(x − x) ≤ h2}

is centered at x. The volume of the hyperellipsoid is

2πp/2

pΓ (p/2)
|S|1/2hp.

Let w = x − x. Then points at a squared distance wT S−1w = h2 from the
origin lie on the hyperellipsoid centered at the origin whose axes are given
by the eigenvectors êi where the half length in the direction of êi is h

√
λ̂i.

From Theorem 2.5, the volume of the hyperellipsoid {x|D2
x ≤ h2} is pro-

portional to |S|1/2 so the squared volume is proportional to |S|. Large |S|
corresponds to large volume while small |S| corresponds to small volume.

Definition 2.9. The generalized sample variance = |S| = det(S).

Following Johnson and Wichern (1988, pp. 103–106), a generalized vari-
ance of zero is indicative of extreme degeneracy, and |S| = 0 implies that at
least one variable Xi is not needed given the other p − 1 variables are in the
multivariate model. Two necessary conditions for |S| �= 0 are n > p and that
S has full rank p. If 1 is an n × 1 vector of ones, then

(n − 1)S = (W − 1xT )T (W − 1xT ),

and S is of full rank p iff W − 1xT is of full rank p.
If X and Z have dispersion matrices Σ and cΣ where c > 0, then the

dispersion matrices have the same shape. The dispersion matrices determine
the shape of the hyperellipsoid {x : (x − μ)T Σ−1(x − μ) ≤ h2}. Figure 2.1
was made with the Arc software of Cook and Weisberg (1999a). The 10%,
30%, 50%, 70%, 90%, and 98% highest density regions are shown for two
multivariate normal (MVN) distributions. Both distributions have μ = 0. In
Figure 2.1a),

Σ =
(

1 0.9
0.9 4

)

.

Note that the ellipsoids are narrow with high positive correlation. In Figure
2.1b),

Σ =
(

1 −0.4
−0.4 1

)

.
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Note that the ellipsoids are wide with negative correlation. The highest den-
sity ellipsoids are superimposed on a scatterplot of a sample of size 100 from
each distribution.

Fig. 2.1 Highest Density Regions for 2 MVN Distributions



36 2 Multivariate Distributions

2.4 Predictor Transformations

In regression, there is a response variable w1 = Y of interest, and predic-
tor variables w2, ..., wp are used to predict Y . In multivariate analysis, all p
random variables x1, ..., xp are of interest.

Predictor transformations are used to remove gross nonlinearities in the
predictors wi or the random variables xi, and this technique is often very
useful. Power transformations are particularly effective, and the techniques
of this section are often useful for general regression problems, not just for
multivariate analysis. A power transformation has the form x = tλ(w) =
wλ for λ �= 0 and x = t0(w) = log(w) for λ = 0. The modified power
transformation also has x = t0(w) = log(w), but for λ �= 0,

x = tλ(w) =
wλ − 1

λ
.

For both the power and modified power transformations, often λ ∈ ΛL

where
ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} (2.9)

is called the ladder of powers. Often when a power transformation is needed,
a transformation that goes “down the ladder,” e.g., from λ = 1 to λ = 0 will
be useful. If the transformation goes too far down the ladder, e.g., if λ = 0
is selected when λ = 1/2 is needed, then it will be necessary to go back “up
the ladder.” Additional powers such as ±2 and ±3 can always be added.

Definition 2.10. A scatterplot of x versus Y is used to visualize the
conditional distribution of Y |x. A scatterplot matrix is an array of scat-
terplots. It is used to examine the marginal bivariate relationships between
the random variables.

Often nine or ten variables can be placed in a scatterplot matrix. The
names of the variables appear on the diagonal of the scatterplot matrix. The
software Arc gives two numbers, the minimum and maximum of the variable,
along with the name of the variable. The software R labels the values of each
variable in two places; see Example 2.2 below. Let one of the variables be
W . All of the marginal plots above and below W have W on the horizontal
axis. All of the marginal plots to the left and the right of W have W on the
vertical axis.

If n is large and the p random variables come from an elliptically con-
toured distribution, then the subplots in the scatterplot matrix should be
linear. Nonlinearities suggest that the data does not come from an ellipti-
cally contoured distribution. There are several rules of thumb that are useful
for visually selecting a power transformation to remove nonlinearities from
the random variables.
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Rule of thumb 2.2. a) If strong nonlinearities are apparent in the scat-
terplot matrix of the random variables x1, ..., xp, it is often useful to remove
the nonlinearities by transforming the random variables using power trans-
formations.

b) Use theory if available.

c) Suppose that variable X2 is on the vertical axis and X1 is on the hori-
zontal axis and that the plot of X1 versus X2 is nonlinear. The unit rule says
that if X1 and X2 have the same units, then try the same transformation for
both X1 and X2.

Assume that all values of X1 and X2 are positive. Then the following six
rules are often used.

d) The log rule states that a positive predictor that has the ratio between
the largest and smallest values greater than ten should be transformed to logs.
So X > 0 and max(X)/min(X) > 10 suggests using log(X).

e) The range rule states that a positive predictor that has the ratio
between the largest and smallest values less than two should not be trans-
formed. So X > 0 and max(X)/min(X) < 2 suggests keeping X.

f) The bulging rule states that changes to the power of X2 and the power
of X1 can be determined by the direction that the bulging side of the curve
points. If the curve is hollow up (the bulge points down), decrease the power
of X2. If the curve is hollow down (the bulge points up), increase the power
of X2. If the curve bulges toward large values of X1, increase the power of
X1. If the curve bulges toward small values of X1, decrease the power of X1.
See Tukey (1977, pp. 173–176).

g) The ladder rule appears in Cook and Weisberg (1999a, p. 86).
To spread small values of a variable, make λ smaller.
To spread large values of a variable, make λ larger.

h) If it is known that X2 ≈ Xλ
1 and the ranges of X1 and X2 are such that

this relationship is one to one, then

Xλ
1 ≈ X2 and X

1/λ
2 ≈ X1.

Hence either the transformation Xλ
1 or X

1/λ
2 will linearize the plot. Note

that log(X2) ≈ λ log(X1), so taking logs of both variables will also linearize
the plot. This relationship frequently occurs if there is a volume present. For
example, let X2 be the volume of a sphere and let X1 be the circumference
of a sphere.

i) The cube root rule says that if X is a volume measurement, then the
cube root transformation X1/3 may be useful.

Theory, if available, should be used to select a transformation. Frequently,
more than one transformation will work. For example, if W = weight and X1
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= volume = (X2)(X3)(X4), then W versus X
1/3
1 and log(W ) versus log(X1) =

log(X2)+log(X3)+log(X4) may both work. Also if W is linearly related with
X2,X3,X4 and these three variables all have length units mm, say, then the
units of X1 are (mm)3. Hence the units of X

1/3
1 are mm.

Suppose that all values of the variable w to be transformed are positive.
The log rule says use log(w) if max(wi)/min(wi) > 10. This rule often works
wonders on the data, and the log transformation is the most used (modified)
power transformation. If the variable w can take on the value of 0, use
log(w + c) where c is a small constant like 1, 1/2, or 3/8.

To use the ladder rule, suppose you have a scatterplot of two variables
xλ1
1 versus xλ2

2 where both x1 > 0 and x2 > 0. Also assume that the plotted
points follow a nonlinear one to one function. Consider the ladder of powers

ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.

To spread small values of the variable, make λi smaller. To spread large
values of the variable, make λi larger. For example, if both variables are right
skewed, then there will be many more cases in the lower left of the plot than
in the upper right. Hence small values of both variables need spreading.

Consider the ladder of powers. Often no transformation (λ = 1) is best,
then the log transformation, then the square root transformation, then the
reciprocal transformation.

Example 2.1. Examine Figure 2.2. Let X1 = w and X2 = x. Since w
is on the horizontal axis, mentally add a narrow vertical slice to the plot. If
a large amount of data falls in the slice at the left of the plot, then small
values need spreading. Similarly, if a large amount of data falls in the slice
at the right of the plot (compared to the middle and left of the plot), then
large values need spreading. For the variable on the vertical axis, make a
narrow horizontal slice. If the plot looks roughly like the northwest corner
of a square, then small values of the horizontal and large values of the ver-
tical variable need spreading. Hence in Figure 2.2a, small values of w need
spreading. Notice that the plotted points bulge up toward small values of the
horizontal variable. If the plot looks roughly like the northeast corner of a
square, then large values of both variables need spreading. Hence in Figure
2.2b, large values of x need spreading. Notice that the plotted points bulge
up toward large values of the horizontal variable. If the plot looks roughly
like the southwest corner of a square, as in Figure 2.2c, then small values
of both variables need spreading. Notice that the plotted points bulge down
toward small values of the horizontal variable. If the plot looks roughly like
the southeast corner of a square, then large values of the horizontal and small
values of the vertical variable need spreading. Hence in Figure 2.2d, small val-
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Fig. 2.2 Plots to Illustrate the Bulging and Ladder Rules

ues of x need spreading. Notice that the plotted points bulge down toward
large values of the horizontal variable.

Example 2.2. Mussel Data. Cook and Weisberg (1999a, pp. 351, 433,
447) gave a data set on 82 mussels sampled off the coast of New Zealand. The
response is muscle mass M in grams, and the predictors are a constant, the
length L, height H, and the width W of the shell in mm, and the shell mass
S. Figure 2.3 shows the scatterplot matrix of the predictors L, H, W , and S.
Examine the variable length. Length is on the vertical axis on the three top
plots, and the right of the scatterplot matrix labels this axis from 150 to 300.
Length is on the horizontal axis on the three leftmost marginal plots, and this
axis is labeled from 150 to 300 on the bottom of the scatterplot matrix. The
marginal plot in the bottom left corner has length on the horizontal and shell
on the vertical axis. The marginal plot that is second from the top and second
from the right has height on the horizontal and width on the vertical axis.
If the data is stored in x, the plot can be made with the following command
in R.

pairs(x,labels=c("length",‘"width","height","shell"))

Nonlinearity is present in several of the plots. For example, width and
length seem to be linearly related while length and shell have a nonlinear
relationship. The minimum value of shell is 10 while the max is 350. Since
350/10 = 35 > 10, the log rule suggests that log S may be useful. If log S
replaces S in the scatterplot matrix, then there may be some nonlinearity
present in the plot of log S versus W with small values of W needing spread-
ing. Hence the ladder rule suggests reducing λ from 1, and we tried log(W ).
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Fig. 2.3 Scatterplot Matrix for Original Mussel Data Predictors
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Fig. 2.4 Scatterplot Matrix for Transformed Mussel Data Predictors

Figure 2.4 shows that taking the log transformations of W and S results in
a scatterplot matrix that is much more linear than the scatterplot matrix of
Figure 2.3. Notice that the plot of W versus L and the plot of log(W ) versus
L both appear linear. This plot can be made with the following commands.
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z <- x; z[,2] <- log(z[,2]); z[,4] <- log(z[,4])
pairs(z,labels=c("length","Log W","height","Log S"))

The plot of shell versus height in Figure 2.3 is nonlinear, and small values
of shell need spreading since if the plotted points were projected on the
horizontal axis, there would be too many points at values of shell near 0.
Similarly, large values of height need spreading.

2.5 Summary

The following three quantities are important.
1) E(x) = μ = (E(x1), ..., E(xp))T .
2) The p × p population covariance matrix

Cov(x) = E(x − E(x))(x − E(x))T = (σij) = Σx.
3) The p × p population correlation matrix Cor(x) = ρx = (ρij).
4) The population covariance matrix of x with y is Cov(x,y) = Σx,y =

E[(x − E(x))(y − E(y))T ].
5) Let the p × p matrix Δ = diag(

√
σ11, ...,

√
σpp). Then Σx = ΔρxΔ,

and ρx = Δ−1ΣxΔ−1.
6) The n × p data matrix

W =

⎡

⎢
⎣

xT
1
...

xT
n

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤

⎥
⎥
⎥
⎦

=
[
v1 v2 . . . vp

]
.

7) The sample mean or sample mean vector

x =
1
n

n∑

i=1

xi = (x1, ..., xp)T =
1
n

W T1

where 1 is the p × 1 vector of ones.
8) The sample covariance matrix

S =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T = (Sij).
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9) (n − 1)S =
n∑

i=1

xix
T
i − x xT = (W − 1xT )T (W − 1xT ) = W T W −

1
n

W T11T W . Hence if the centering matrix H = I− 1
n
11T , then (n−1)S =

W T HW .
10) The sample correlation matrix R = (rij).
11) Let the p × p sample standard deviation matrix D = diag(

√
S11, ...,√

Spp). Then S = DRD, and R = D−1SD−1.
12) The spectral decomposition of the symmetric matrix A =∑p
i=1 λieie

T
i = λ1e1e

T
1 + · · · + λpepe

T
p .

13) Let A =
∑p

i=1 λieie
T
i be a positive definite p × p symmetric matrix.

Let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column ei.
Let Λ1/2 = diag(

√
λ1, ...,

√
λp). The square root matrix A1/2 = PΛ1/2P T is

a positive definite symmetric matrix such that A1/2A1/2 = A.
14) The population squared Mahalanobis distance

D2
x(μ,Σ) = (x − μ)T Σ−1(x − μ).
15) The sample squared Mahalanobis distance

D2
x(μ̂, Σ̂) = (x − μ̂)T Σ̂

−1
(x − μ̂).

16) The generalized sample variance = |S| = det(S).
17) The hyperellipsoid {x|D2

x ≤ h2} = {x : (x−x)T S−1(x−x) ≤ h2} is
centered at x and has volume equal to

2πp/2

pΓ (p/2)
|S|1/2hp.

Let S have eigenvalue eigenvector pairs (λ̂i, êi) where λ̂1 ≥ · · · ≥ λ̂p. If
x = 0, the axes are given by the eigenvectors êi where the half length in the
direction of êi is h

√
λ̂i. Here êT

i êj = 0 for i �= j while êT
i êi = 1.

18) A scatterplot of x versus y is used to visualize the conditional distri-
bution of y|x. A scatterplot matrix is an array of scatterplots. It is used
to examine the bivariate relationships of the p random variables.

19) There are several guidelines for choosing power transformations.
First, suppose you have a scatterplot of two variables xλ1

1 versus xλ2
2 where

both x1 > 0 and x2 > 0. Also assume that the plotted points follow a
nonlinear one to one function. The ladder rule: consider the ladder of
powers

−1,−0.5,−1/3, 0, 1/3, 0.5, and 1.

To spread small values of the variable, make λi smaller. To spread large values
of the variable, make λi larger.

20) Suppose that all values of the variable w to be transformed are positive.
The log rule says use log(w) if max(wi)/min(wi) > 10.
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21) If p random variables come from an elliptically contoured distribution,
then the subplots in the scatterplot matrix should be linear.

22) For multivariate procedures with p variables, we want n ≥ 10p. This
rule of thumb will be used for the sample covariance matrix S, the sam-
ple correlation matrix R, and procedures that use these matrices such as
principal component analysis, factor analysis, canonical correlation analysis,
Hotelling’s T 2, discriminant analysis for each group, and one way MANOVA
for each group.

2.6 Complements

Section 2.3 will be useful for principal component analysis and for prediction
regions. Fan (2017) gave a useful one-number summary of the correlation
matrix that acts like a squared correlation.

2.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

2.1. Assuming all relevant expectations exist, show
Cov(Xi,Xj) = E(XiXj) − E(Xi)E(Xj).

2.2. Suppose Zi =
Xi − E(Xi)√

σii
. Show Cov(Zi, Zj) = Cor(Xi,Xj).

2.3. Let Σ be a p×p matrix with eigenvalue eigenvector pair (λ,x). Show
that cx is also an eigenvector of Σ where c �= 0 is a real number.

2.4. i) Let Σ be a p × p matrix with eigenvalue eigenvector pair (λ,x).
Show that cx is also an eigenvector of Σ where c �= 0 is a real number.

ii) Let Σ be a p×p matrix with the eigenvalue eigenvector pairs (λ1,e1), ...,
(λp,ep). Find the eigenvalue eigenvector pairs of A = cΣ where c �= 0 is a
real number.

2.5. Suppose A is a symmetric positive definite matrix with eigenvalue
eigenvector pair (λ,e). Then Ae = λe so A2e = AAe = Aλe. Find an
eigenvalue eigenvector pair for A2.

2.6. Suppose A is a symmetric positive definite matrix with eigenvalue
eigenvector pair (λ,e). Then Ae = λe so A−1Ae = A−1λe. Find an eigen-
value eigenvector pair for A−1.
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Problems using ARC

2.7∗. This problem makes plots similar to Figure 2.1. Data sets of n = 100
cases from two multivariate normal N2(0,Σi) distributions are generated and
plotted in a scatterplot along with the 10%, 30%, 50%, 70%, 90%, and 98%
highest density regions where

Σ1 =
(

1 0.9
0.9 4

)

and Σ2 =
(

1 −0.4
−0.4 1

)

.

Activate Arc (Cook and Weisberg 1999a). Generally this will be done by
finding the icon for Arc or the executable file for Arc. Using the mouse, move
the pointer (cursor) to the icon and press the leftmost mouse button twice,
rapidly. This procedure is known as double clicking on the icon. A window
should appear with a “greater than” > prompt. The menu File should be in
the upper left corner of the window. Move the pointer to File and hold the
leftmost mouse button down. Then the menu will appear. Drag the pointer
down to the menu command load. Then click on data and then click on demo-
bn.lsp. (You may need to use the slider bar in the middle of the screen to
see the file demo-bn.lsp: click on the arrow pointing to the right until the file
appears.) In the future, these menu commands will be denoted by “File >
Load > Data > demo-bn.lsp.” These are the commands needed to activate
the file demo-bn.lsp.

a) In the Arc dialog window, enter the numbers
0 0 1 4 0.9 and 100. Then click on OK.

The graph can be printed with the menu commands “File>Print,” but it
will generally save paper by placing the plots in the Word editor.

Activate Word (often by double clicking on the Word icon). Click on
the screen and type “Problem 2.7a.” In Arc, use the menu commands
“Edit>Copy.” In Word, click on the Paste icon near the upper left corner
of Word and hold down the leftmost mouse button. This will cause a menu
to appear. Drag the pointer down to Paste. The plot should appear on the
screen. (Older versions of Word, use the menu commands “Edit>Paste.”) In
the future, “paste the output into Word” will refer to these mouse com-
mands.

b) Either click on new graph on the current plot in Arc or reload demo-
bn.lsp. In the Arc dialog window, enter the numbers
0 0 1 1 −0.4 and 100. Then place the plot in Word.

After editing your Word document, get a printout by clicking on the upper
left icon, select “Print” then select “Print.” (Older versions of Word use the
menu commands “File>Print.”)

To save your output on your flash drive G, click on the icon in the upper
left corner of Word. Then drag the pointer to “Save as.” A window will
appear, click on the Word Document icon. A “Save as” screen appears. Click
on the right “check” on the top bar, and then click on “Removable Disk
(G:).” Change the file name to HW2d7.docx, and then click on “Save.”
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To exit from Word and Arc, click on the “X” in the upper right corner of
the screen. In Word, a screen will appear and ask whether you want to save
changes made in your document. Click on No. In Arc, click on OK.

2.8∗. In Arc enter the menu commands “File>Load>Data” and open the
file mussels.lsp. Use the commands “Graph&Fit>Scatterplot Matrix of.” In
the dialog window, select H, L, S, W, and M (so select M last). Click on
“OK” and include the scatterplot matrix in Word. The response M is the
edible part of the mussel while the 4 predictors are shell measurements. Are
any of the marginal predictor relationships nonlinear? Is E(M |H) linear or
nonlinear?

2.9∗. Activate the McDonald and Schwing (1973) pollution.lsp data set
with the menu commands “File > Load > Removable Disk (G:) > pollu-
tion.lsp.” Scroll up the screen to read the data description. Often simply
using the log rule on the predictors with max(x)/min(x) > 10 works won-
ders.

a) Make a scatterplot matrix of the first nine predictor variables and Mort.
The commands “Graph&Fit > Scatterplot-Matrix of” will bring down a Dia-
log menu. Select DENS, EDUC, HC, HOUS, HUMID, JANT, JULT, NONW,
NOX, and MORT. Then click on OK.

A scatterplot matrix with slider bars will appear. Move the slider bars for
NOX, NONW, and HC to 0, providing the log transformation. In Arc, the
diagonals have the min and max of each variable, and these were the three
predictor variables satisfying the log rule. Open Word.

In Arc, use the menu commands “Edit > Copy.” In Word, use the menu
commands “Edit > Paste.” This should copy the scatterplot matrix into the
Word document. Print the graph.

b) Make a scatterplot matrix of the last six predictor variables. The com-
mands “Graph&Fit > Scatterplot-Matrix of” will bring down a Dialog menu.
Select OVR65, POOR, POPN, PREC, SO, WWDRK, and MORT. Then click
on OK. Move the slider bar of SO to 0 and copy the plot into Word. Print
the plot as described in a).

R Problem

Note: For the following problem, the R commands can be copied and
pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

2.10. Use the following R commands to make 100 multivariate normal
(MVN) N3(0, I3) cases and 100 trivariate non-EC lognormal cases.

n3x <- matrix(rnorm(300),nrow=100,ncol=3)
ln3x <- exp(n3x)

In R, type the command library(MASS).

http://lagrange.math.siu.edu/Olive/mrsashw.txt
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Using the commands pairs(n3x) and pairs(ln3x) and include both scatter-
plot matrices in Word. (Click on the plot and hit Ctrl and c at the same time.
Then go to file in the Word menu and select paste.) Are strong nonlineari-
ties present among the MVN predictors? How about the non-EC predictors?
(Hint: a box- or ball-shaped plot is linear.)



Chapter 3
Elliptically Contoured Distributions

This chapter considers elliptically contoured distributions, including the mul-
tivariate normal distribution. These distributions are important models for
multivariate data. Sample Mahalanobis distances and a brief review of large
sample theory are also covered.

The multivariate location and dispersion model of Definition 2.1 is in many
ways similar to the multiple linear regression model. The data are iid vectors
from some distribution such as the multivariate normal (MVN) distribu-
tion. The location parameter μ of interest may be the mean or the center
of symmetry of an elliptically contoured distribution. Hyperellipsoids will be
estimated instead of hyperplanes, and Mahalanobis distances will be used
instead of absolute residuals to determine if an observation is a potential
outlier. Review Section 2.1 for important notation.

Although usually random vectors in this text are denoted by x, y, or z,
this chapter will usually use the notation X = (X1, ...,Xp)T and Y for the
random vectors, and x = (x1, ..., xp)T for the observed value of the random
vector. This notation will be useful to avoid confusion when studying condi-
tional distributions such as Y |X = x.

3.1 The Multivariate Normal Distribution

Definition 3.1: Rao (1965, p. 437) A p × 1 random vector X has a
p−dimensional multivariate normal distribution Np(μ,Σ) iff tT X has a
univariate normal distribution for any p × 1 vector t.

If Σ is positive definite, then X has a pdf
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f(z) =
1

(2π)p/2|Σ|1/2
e−(1/2)(z−μ)T Σ−1(z−μ) (3.1)

where |Σ|1/2 is the square root of the determinant of Σ. Note that if p = 1,
then the quadratic form in the exponent is (z − μ)(σ2)−1(z − μ) and X has
the univariate N(μ, σ2) pdf. If Σ is positive semidefinite but not positive
definite, then X has a degenerate distribution. For example, the univariate
N(0, 02) distribution is degenerate (the point mass at 0).

From Definition 2.3, recall that the population mean of a random p × 1
vector X = (X1, ...,Xp)T is

E(X) = (E(X1), ..., E(Xp))T

and the p × p population covariance matrix

Cov(X) = Σx = E(X − E(X))(X − E(X))T = (σij).

The covariance matrix is also called the variance–covariance matrix and
variance matrix. Sometimes the notation Var(X) is used. Note that Cov(X)
is a symmetric positive semidefinite matrix. If X and Y are p × 1 random
vectors, a a conformable constant vector, and A and B are conformable
constant matrices, then

E(a + X) = a + E(X) and E(X + Y ) = E(X) + E(Y ) (3.2)

and
E(AX) = AE(X) and E(AXB) = AE(X)B. (3.3)

Thus
Cov(a + AX) = Cov(AX) = ACov(X)AT . (3.4)

Some important properties of MVN distributions are given in the following
three propositions. These propositions can be proved using results from
Johnson and Wichern (1988, pp. 127-132) or Severini (2005, ch. 8).

Proposition 3.1. a) If X ∼ Np(μ,Σ), then E(X) = μ and

Cov(X) = Σx = Σ.

b) If X ∼ Np(μ,Σ), then any linear combination tT X = t1X1 + · · · +
tpXp ∼ N1(tT μ, tT Σt). Conversely, if tT X ∼ N1(tT μ, tT Σt) for every p× 1
vector t, then x ∼ Np(μ,Σ).

http://dx.doi.org/10.1007/978-3-319-68253-2_2
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c) The joint distribution of independent normal random variables
is MVN. If X1, ...,Xp are independent univariate normal N(μi, σ

2
i ) random

vectors, then X = (X1, ...,Xp)T is Np(μ,Σ) where μ = (μ1, ..., μp)T and
Σ = diag(σ2

1 , ..., σ
2
p) (so the off-diagonal entries σij = 0 while the diagonal

entries of Σ are σii = σ2
i ).

d) If X ∼ Np(μ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aμ,

AΣAT ). If a is a p×1 vector of constants and b is a constant, then a+bX ∼
Np(a + bμ, b2Σ). (Note that bX = bIpX with A = bIp.)

It will be useful to partition X, μ, and Σ. Let X1 and μ1 be q×1 vectors,
let X2 and μ2 be (p − q) × 1 vectors, let Σ11 be a q × q matrix, let Σ12

be a q × (p − q) matrix, let Σ21 be a (p − q) × q matrix, and let Σ22 be a
(p − q) × (p − q) matrix. Then

X =
(

X1

X2

)
, μ =

(
μ1

μ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Proposition 3.2. a) All subsets of a MVN are MVN: (Xk1 , ...,Xkq
)T

∼ Nq(μ̃, Σ̃) where μ̃i = E(Xki
) and Σ̃ij = Cov(Xki

,Xkj
). In particular,

X1 ∼ Nq(μ1,Σ11) and X2 ∼ Np−q(μ2,Σ22).
b) If X1 and X2 are independent, then Cov(X1,X2) = Σ12 = E[(X1 −

E(X1))(X2 − E(X2))T ] = 0, a q × (p − q) matrix of zeroes.
c) If X ∼ Np(μ,Σ), then X1 and X2 are independent iff Σ12 = 0.

d) If X1 ∼ Nq(μ1,Σ11) and X2 ∼ Np−q(μ2,Σ22) are independent, then

(
X1

X2

)
∼ Np

((
μ1

μ2

)
,

(
Σ11 0
0 Σ22

))
.

Proposition 3.3. The conditional distribution of a MVN is MVN.
If X ∼ Np(μ,Σ), then the conditional distribution of X1 given that X2 =
x2 is multivariate normal with mean μ1 + Σ12Σ

−1
22 (x2 −μ2) and covariance

matrix Σ11 − Σ12Σ
−1
22 Σ21. That is,

X1|X2 = x2 ∼ Nq(μ1 + Σ12Σ
−1
22 (x2 − μ2),Σ11 − Σ12Σ

−1
22 Σ21).

Example 3.1. Let p = 2 and let (Y,X)T have a bivariate normal distri-
bution. That is,

(
Y
X

)
∼ N2

((
μY

μX

)
,

(
σ2

Y Cov(Y,X)
Cov(X,Y ) σ2

X

))
.

Also, recall that the population correlation between X and Y is given by
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ρ(X,Y ) =
Cov(X,Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0, then Y |X = x ∼ N(E(Y |X = x),VAR(Y |X = x))
where the conditional mean

E(Y |X = x) = μY + Cov(Y,X)
1

σ2
X

(x − μX) = μY + ρ(X,Y )

√
σ2

Y

σ2
X

(x − μX)

and the conditional variance

VAR(Y |X = x) = σ2
Y − Cov(X,Y )

1
σ2

X

Cov(X,Y )

= σ2
Y − ρ(X,Y )

√
σ2

Y

σ2
X

ρ(X,Y )
√

σ2
X

√
σ2

Y

= σ2
Y − ρ2(X,Y )σ2

Y = σ2
Y [1 − ρ2(X,Y )].

Also aX + bY is univariate normal with mean aμX + bμY and variance

a2σ2
X + b2σ2

Y + 2ab Cov(X,Y ).

Remark 3.1. There are several common misconceptions. First, it is not
true that every linear combination tT X of normal random variables
is a normal random variable, and it is not true that all uncorrelated
normal random variables are independent. The key condition in Propo-
sition 3.1b and Proposition 3.2c is that the joint distribution of X is MVN.
It is possible that X1,X2, ...,Xp each has a marginal distribution that is
univariate normal, but the joint distribution of X is not MVN. See Seber
and Lee (2003, p. 23), Kowalski (1973), and examine the following example
from Rohatgi (1976, p. 229). Suppose that the joint pdf of X and Y is a
mixture of two bivariate normal distributions both with EX = EY = 0 and
VAR(X) = VAR(Y ) = 1, but Cov(X,Y ) = ±ρ. Hence f(x, y) =

1
2

1

2π
√

1 − ρ2
exp
( −1

2(1 − ρ2)
(x2 − 2ρxy + y2)

)
+

1
2

1

2π
√

1 − ρ2
exp
( −1

2(1 − ρ2)
(x2 + 2ρxy + y2)

)
≡ 1

2
f1(x, y) +

1
2
f2(x, y)

where x and y are real and 0 < ρ < 1. Since both marginal distributions
of fi(x, y) are N(0,1) for i = 1 and 2 by Proposition 3.2 a), the marginal
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distributions of X and Y are N(0,1). Since
∫ ∫

xyfi(x, y)dxdy = ρ for i = 1
and −ρ for i = 2, X and Y are uncorrelated, but X and Y are not independent
since f(x, y) �= fX(x)fY (y).

Remark 3.2. In Proposition 3.3, suppose that X = (Y,X2, ...,Xp)T . Let
X1 = Y and X2 = (X2, ...,Xp)T . Then E[Y |X2] = β1 + β2X2 + · · · + βpXp

and VAR[Y |X2] is a constant that does not depend on X2. Hence Y |X2 =
β1 + β2X2 + · · · + βpXp + e follows the multiple linear regression model.

3.2 Elliptically Contoured Distributions

Definition 3.2: Johnson (1987, pp. 107–108). A p×1 random vector X
has an elliptically contoured distribution, also called an elliptically symmetric
distribution, if X has joint pdf

f(z) = kp|Σ|−1/2g[(z − μ)T Σ−1(z − μ)], (3.5)

and we say X has an elliptically contoured ECp(μ,Σ, g) distribution.

If X has an elliptically contoured (EC) distribution, then the characteristic
function of X is

φX(t) = exp(itT μ)ψ(tT Σt) (3.6)

for some function ψ. If the second moments exist, then

E(X) = μ (3.7)

and
Cov(X) = cXΣ (3.8)

where
cX = −2ψ′(0).

Definition 3.3. The population squared Mahalanobis distance

U ≡ D2 = D2(μ,Σ) = (X − μ)T Σ−1(X − μ). (3.9)

For elliptically contoured distributions, U has pdf
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h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (3.10)

For c > 0, an ECp(μ, cI, g) distribution is spherical about μ where I is
the p×p identity matrix. The multivariate normal distribution Np(μ,Σ) has
kp = (2π)−p/2, ψ(u) = g(u) = exp(−u/2), and h(u) is the χ2

p pdf.

The following lemma is useful for proving properties of EC distributions
without using the characteristic function (3.6). See Eaton (1986) and Cook
(1998, pp. 57, 130).

Lemma 3.4. Let X be a p × 1 random vector with 1st moments; i.e.,
E(X) exists. Let B be any constant full rank p× r matrix where 1 ≤ r ≤ p.
Then X is elliptically contoured iff for all such conforming matrices B,

E(X|BT X) = μ + MBBT (X − μ) = aB + MBBT X (3.11)

where the p× 1 constant vector aB and the p× r constant matrix MB both
depend on B.

A useful fact is that aB and MB do not depend on g:

aB = μ − MBBT μ = (Ip − MBBT )μ,

and
MB = ΣB(BT ΣB)−1.

See Problem 3.11. Notice that in the formula for MB , Σ can be replaced by
cΣ where c > 0 is a constant. In particular, if the EC distribution has second
moments, Cov(X) can be used instead of Σ.

To use Lemma 3.4 to prove interesting properties, partition X, μ, and Σ.
Let X1 and μ1 be q × 1 vectors, let X2 and μ2 be (p − q) × 1 vectors. Let
Σ11 be a q×q matrix, let Σ12 be a q× (p−q) matrix, let Σ21 be a (p−q)×q
matrix, and let Σ22 be a (p − q) × (p − q) matrix. Then

X =
(

X1

X2

)
, μ =

(
μ1

μ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Also assume that the (p + 1) × 1 vector (Y,XT )T is ECp+1(μ,Σ, g) where
Y is a random variable, X is a p × 1 vector, and use

(
Y
X

)
, μ =

(
μY

μX

)
, and Σ =

(
ΣY Y ΣY X

ΣXY ΣXX

)
.
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Proposition 3.5. Let X ∼ ECp(μ,Σ, g) and assume that E(X) exists.
a) Any subset of X is EC, in particular X1 is EC.
b) (Cook, 1998 p. 131; Kelker, 1970). If Cov(X) is nonsingular,

Cov(X|BT X) = dg(BT X)[Σ − ΣB(BT ΣB)−1BT Σ]

where the real-valued function dg(BT X) is constant iff X is MVN.

Proof of a). Let A be an arbitrary full rank q×r matrix where 1 ≤ r ≤ q.
Let

B =
(

A
0

)
.

Then BT X = AT X1, and

E[X|BT X] = E

[(
X1

X2

)
|AT X1

]
=

(
μ1

μ2

)
+
(

M1B

M2B

) (
AT 0T

) (X1 − μ1

X2 − μ2

)

by Lemma 3.4. Hence E[X1|AT X1] = μ1+M1BAT (X1−μ1). Since A was
arbitrary, X1 is EC by Lemma 3.4. Notice that MB = ΣB(BT ΣB)−1 =

(
Σ11 Σ12

Σ21 Σ22

) (
A
0

) [(
AT 0T

)(Σ11 Σ12

Σ21 Σ22

)(
A
0

)]−1

=
(

M1B

M2B

)
.

Hence
M1B = Σ11A(AT Σ11A)−1

and X1 is EC with location and dispersion parameters μ1 and Σ11. �

Proposition 3.6. Let (Y,XT )T be ECp+1(μ,Σ, g) where Y is a random
variable.

a) Assume that E[(Y,XT )T ] exists. Then E(Y |X) = α + βT X where
α = μY − βT μX and

β = Σ−1
XXΣXY .

b) Even if the first moment does not exist, the conditional median

MED(Y |X) = α + βT X
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where α and β are given in a).

Proof. a) The trick is to choose B so that Lemma 3.4 applies. Let

B =
(
0T

Ip

)
.

Then BT ΣB = ΣXX and

ΣB =
(

ΣY X

ΣXX

)
.

Now

E

[(
Y
X

)
| X

]
= E

[(
Y
X

)
| BT

(
Y
X

)]

= μ + ΣB(BT ΣB)−1BT

(
Y − μY

X − μX

)

by Lemma 3.4. The right-hand side of the last equation is equal to

μ +
(

ΣY X

ΣXX

)
Σ−1

XX(X − μX) =
(

μY − ΣY XΣ−1
XXμX + ΣY XΣ−1

XXX
X

)

and the result follows since

βT = ΣY XΣ−1
XX .

b) See Croux et al. (2001) for references.

Example 3.2. This example illustrates another application of Lemma 3.4.
Suppose that X comes from a mixture of two multivariate normals with the
same mean and proportional covariance matrices. That is, let

X ∼ (1 − γ)Np(μ,Σ) + γNp(μ, cΣ)

where c > 0 and 0 < γ < 1. Since the multivariate normal distribution is
elliptically contoured (and see Proposition 1.2c),

E(X|BT X) = (1 − γ)[μ + M1B
T (X − μ)] + γ[μ + M2B

T (X − μ)]

= μ + [(1 − γ)M1 + γM2]BT (X − μ) ≡ μ + MBT (X − μ).

http://dx.doi.org/10.1007/978-3-319-68253-2_1
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Since MB only depends on B and Σ, it follows that M1 = M2 = M =
MB . Hence X has an elliptically contoured distribution by Lemma 3.4. See
Problem 3.4 for a related result.

Let x ∼ Np(μ,Σ) and y ∼ χ2
d be independent. Let wi = xi/(y/d)1/2 for

i = 1, ..., p. Then w has a multivariate t-distribution with parameters μ and
Σ and degrees of freedom d, an important elliptically contoured distribution.

Cornish (1954) showed that the covariance matrix of w is Cov(w) =
d

d − 2
Σ

for d > 2. The case d = 1 is known as a multivariate Cauchy distribution.
The joint pdf of w is

f(z) =
Γ ((d + p)/2)) |Σ|−1/2

(πd)p/2Γ (d/2)
[1 + d−1(z − μ)T Σ−1(z − μ)]−(d+p)/2.

See Mardia et al. (1979, pp. 43, 57). See Johnson and Kotz (1972, p. 134) for
the special case where the xi ∼ N(0, 1).

The following EC(μ,Σ, g) distribution for a p × 1 random vector x is
the uniform distribution on a hyperellipsoid where f(z) = c for z in the
hyperellipsoid where c is the reciprocal of the volume of the hyperellipsoid.
The pdf of the distribution is

f(z) =
Γ (p

2 + 1)
[(p + 2)π]p/2

|Σ|−1/2I[(z − μ)T Σ−1(z − μ) ≤ p + 2].

See Theorem 2.4 or Equation (5.16) where h2 = p + 2. Then E(x) = μ by
symmetry and is can be shown that Cov(x) = Σ.

If x ∼ Np(μ,Σ) and ui = exp(xi) for i = 1, ..., p, then u has a multivariate
lognormal distribution with parameters μ and Σ. This distribution is not an
elliptically contoured distribution. See Problem 3.24.

3.3 Sample Mahalanobis Distances

In the multivariate location and dispersion model, sample Mahalanobis dis-
tances play a role similar to that of residuals in multiple linear regression.
The observed data Xi = xi for i = 1, ..., n is collected in an n× p matrix W
with n rows xT

1 , ...,xT
n . Let the p × 1 column vector T (W ) be a multivari-

ate location estimator, and let the p × p symmetric positive definite matrix
C(W ) be a dispersion estimator.

Definition 3.4. The ith squared Mahalanobis distance is

D2
i = D2

i (T (W ),C(W )) = (Xi − T (W ))T C−1(W )(Xi − T (W )) (3.12)

http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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for each point Xi. Notice that D2
i is a random variable (scalar valued).

Notice that the population squared Mahalanobis distance is

D2
X(μ,Σ) = (X − μ)T Σ−1(X − μ) (3.13)

and that the term Σ−1/2(X − μ) is the p−dimensional analog to the z-
score used to transform a univariate N(μ, σ2) random variable into a N(0, 1)
random variable. Hence the sample Mahalanobis distance Di =

√
D2

i is an
analog of the absolute value |Zi| of the sample Z-score Zi = (Xi−X)/σ̂. Also
notice that the Euclidean distance of xi from the estimate of center T (W )
is Di(T (W ), Ip) where Ip is the p × p identity matrix.

Example 3.3. The contours of constant density for the Np(μ,Σ) distri-
bution are hyperellipsoid boundaries of the form (x−μ)T Σ−1(x−μ) = a2.
An α−density region Rα is a set such that P (X ∈ Rα) = α, and for the
Np(μ,Σ) distribution, the regions of highest density are sets of the form

{x : (x − μ)T Σ−1(x − μ) ≤ χ2
p(α)} = {x : D2

x(μ,Σ) ≤ χ2
p(α)}

where P (W ≤ χ2
p(α)) = α if W ∼ χ2

p. If the Xi are n iid random vectors
each with a Np(μ,Σ) pdf, then a scatterplot of Xi,k versus Xi,j should be
ellipsoidal for k �= j. Similar statements hold if X is ECp(μ,Σ, g), but the
α-density region will use a constant Uα obtained from Equation (3.10).

The classical Mahalanobis distance corresponds to the sample mean and
sample covariance matrix

T (W ) = X =
1
n

n∑
i=1

Xi,

and

C(W ) = S =
1

n − 1

n∑
i=1

(Xi − X)(Xi − X)T

and will be denoted by MDi. When T (W ) and C(W ) are estimators other
than the sample mean and covariance, Di =

√
D2

i will sometimes be denoted
by RDi.
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3.4 Large Sample Theory

The first three subsections will review large sample theory for the univariate
case, then multivariate theory will be given.

3.4.1 The CLT and the Delta Method

Large sample theory, also called asymptotic theory, is used to approximate
the distribution of an estimator when the sample size n is large. This the-
ory is extremely useful if the exact sampling distribution of the estimator is
complicated or unknown. To use this theory, one must determine what the
estimator is estimating, the rate of convergence, the asymptotic distribution,
and how large n must be for the approximation to be useful. Moreover, the
(asymptotic) standard error (SE), an estimator of the asymptotic standard
deviation, must be computable if the estimator is to be useful for inference.
Often the bootstrap can be used to compute the SE. See Section 5.3.

Theorem 3.7: the Central Limit Theorem (CLT). Let Y1, ..., Yn be
iid with E(Y ) = μ and VAR(Y ) = σ2. Let the sample mean Y n = 1

n

∑n
i=1 Yi.

Then √
n(Y n − μ) D→ N(0, σ2).

Hence
√

n

(
Y n − μ

σ

)
=

√
n

(∑n
i=1 Yi − nμ

nσ

)
D→ N(0, 1).

Note that the sample mean is estimating the population mean μ with a
√

n
convergence rate, the asymptotic distribution is normal, and the SE = S/

√
n

where S is the sample standard deviation. For distributions “close” to the
normal distribution, the central limit theorem provides a good approximation
if the sample size n ≥ 30. Hesterberg (2014, pp. 41, 66) suggests n ≥ 5000
is needed for moderately skewed distributions. A special case of the CLT is
proven after Theorem 3.20.

Notation. The notation X ∼ Y and X
D= Y both mean that the random

variables X and Y have the same distribution. Hence FX(x) = FY (y) for all
real y. The notation Yn

D→ X means that for large n, we can approximate the
cdf of Yn by the cdf of X. The distribution of X is the limiting distribution
or asymptotic distribution of Yn. For the CLT, notice that

http://dx.doi.org/10.1007/978-3-319-68253-2_5
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Zn =
√

n

(
Y n − μ

σ

)
=
(

Y n − μ

σ/
√

n

)

is the z–score of Y . If Zn
D→ N(0, 1), then the notation Zn ≈ N(0, 1), also

written as Zn ∼ AN(0, 1), means approximate the cdf of Zn by the standard
normal cdf. See Definition 3.5. Similarly, the notation

Y n ≈ N(μ, σ2/n),

also written as Y n ∼ AN(μ, σ2/n), means approximate the cdf of Y n as if
Y n ∼ N(μ, σ2/n).

The two main applications of the CLT are to give the limiting distribution
of

√
n(Y n −μ) and the limiting distribution of

√
n(Yn/n−μX) for a random

variable Yn such that Yn =
∑n

i=1 Xi where the Xi are iid with E(X) = μX

and VAR(X) = σ2
X .

Example 3.4. a) Let Y1, ..., Yn be iid Ber(ρ). Then E(Y ) = ρ and
VAR(Y ) = ρ(1 − ρ). (The Bernoulli (ρ) distribution is the binomial (1,ρ)
distribution.) Hence

√
n(Y n − ρ) D→ N(0, ρ(1 − ρ))

by the CLT.
b) Now suppose that Yn ∼ BIN(n, ρ). Then Yn

D=
∑n

i=1 Xi where
X1, ...,Xn are iid Ber(ρ). Hence

√
n

(
Yn

n
− ρ

)
D→ N(0, ρ(1 − ρ))

since √
n

(
Yn

n
− ρ

)
D=

√
n(Xn − ρ) D→ N(0, ρ(1 − ρ))

by a).
c) Now suppose that Yn ∼ BIN(kn, ρ) where kn → ∞ as n → ∞. Then

√
kn

(
Yn

kn
− ρ

)
≈ N(0, ρ(1 − ρ))

or
Yn

kn
≈ N

(
ρ,

ρ(1 − ρ)
kn

)
or Yn ≈ N(knρ, knρ(1 − ρ)) .
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Theorem 3.8: the Delta Method. If g does not depend on n, g′(θ) �= 0,
and √

n(Tn − θ) D→ N(0, σ2),

then √
n(g(Tn) − g(θ)) D→ N(0, σ2[g′(θ)]2).

Example 3.5. Let Y1, ..., Yn be iid with E(Y ) = μ and VAR(Y ) = σ2.
Then by the CLT, √

n(Y n − μ) D→ N(0, σ2).

Let g(μ) = μ2. Then g′(μ) = 2μ �= 0 for μ �= 0. Hence

√
n((Y n)2 − μ2) D→ N(0, 4σ2μ2)

for μ �= 0 by the delta method.

Example 3.6. Let X ∼ Binomial(n, p) where the positive integer n is

large and 0 < p < 1. Find the limiting distribution of
√

n

[ (
X

n

)2

− p2

]
.

Solution. Example 3.4b gives the limiting distribution of
√

n(X
n − p). Let

g(p) = p2. Then g′(p) = 2p and by the delta method,

√
n

[ (
X

n

)2

− p2

]
=

√
n

(
g

(
X

n

)
− g(p)

)
D→

N(0, p(1 − p)(g′(p))2) = N(0, p(1 − p)4p2) = N(0, 4p3(1 − p)).

Example 3.7. Let Xn ∼ Poisson(nλ) where the positive integer n is large
and λ > 0.

a) Find the limiting distribution of
√

n

(
Xn

n
− λ

)
.

b) Find the limiting distribution of
√

n

[ √
Xn

n
−

√
λ

]
.

Solution. a) Xn
D=
∑n

i=1 Yi where the Yi are iid Poisson(λ). Hence E(Y ) =
λ = V ar(Y ). Thus by the CLT,

√
n

(
Xn

n
− λ

)
D=

√
n

( ∑n
i=1 Yi

n
− λ

)
D→ N(0, λ).
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b) Let g(λ) =
√

λ. Then g′(λ) = 1
2
√

λ
and by the delta method,

√
n

[ √
Xn

n
−

√
λ

]
=

√
n

(
g

(
Xn

n

)
− g(λ)

)
D→

N(0, λ (g′(λ))2) = N

(
0, λ

1
4λ

)
= N

(
0,

1
4

)
.

Example 3.8. Let Y1, ..., Yn be independent and identically distributed
(iid) from a Gamma(α, β) distribution.

a) Find the limiting distribution of
√

n
(

Y − αβ
)
.

b) Find the limiting distribution of
√

n
(

(Y )2 − c
)

for appropriate con-
stant c.

Solution: a) Since E(Y ) = αβ and V (Y ) = αβ2, by the CLT√
n
(

Y − αβ
) D→ N(0, αβ2).

b) Let μ = αβ and σ2 = αβ2. Let g(μ) = μ2 so g′(μ) = 2μ and
[g′(μ)]2 = 4μ2 = 4α2β2. Then by the delta method,

√
n
(

(Y )2 − c
) D→

N(0, σ2[g′(μ)]2) = N(0, 4α3β4) where c = μ2 = α2β2.

3.4.2 Modes of Convergence and Consistency

Definition 3.5. Let {Zn, n = 1, 2, ...} be a sequence of random variables
with cdfs Fn, and let X be a random variable with cdf F . Then Zn converges
in distribution to X, written

Zn
D→ X,

or Zn converges in law to X, written Zn
L→ X, if

lim
n→∞Fn(t) = F (t)

at each continuity point t of F . The distribution of X is called the limiting
distribution or the asymptotic distribution of Zn.

An important fact is that the limiting distribution does not depend
on the sample size n. Notice that the CLT and delta method give the
limiting distributions of Zn =

√
n(Y n − μ) and Zn =

√
n(g(Tn) − g(θ)),

respectively.
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Convergence in distribution is useful if the distribution of Xn is unknown
or complicated and the distribution of X is easy to use. Then for large n, we
can approximate the probability that Xn is in an interval by the probability
that X is in the interval. To see this, notice that if Xn

D→ X, then P (a <
Xn ≤ b) = Fn(b) − Fn(a) → F (b) − F (a) = P (a < X ≤ b) if F is continuous
at a and b.

Warning: convergence in distribution says that the cdf Fn(t) of Xn gets
close to the cdf of F (t) of X as n → ∞ provided that t is a continuity
point of F . Hence for any ε > 0, there exists Nt such that if n > Nt, then
|Fn(t)− F (t)| < ε. Notice that Nt depends on the value of t. Convergence in
distribution does not imply that the random variables Xn ≡ Xn(ω) converge
to the random variable X ≡ X(ω) for all ω.

Example 3.9. Suppose that Xn ∼ U(−1/n, 1/n). Then the cdf Fn(x) of
Xn is

Fn(x) =

⎧⎨
⎩

0, x ≤ −1
n

nx
2 + 1

2 , −1
n ≤ x ≤ 1

n
1, x ≥ 1

n .

Sketching Fn(x) shows that it has a line segment rising from 0 at x = −1/n
to 1 at x = 1/n and that Fn(0) = 0.5 for all n ≥ 1. Examining the cases
x < 0, x = 0, and x > 0 shows that as n → ∞,

Fn(x) →
⎧⎨
⎩

0, x < 0
1
2 x = 0
1, x > 0.

Notice that if X is a random variable such that P (X = 0) = 1, then X has
cdf

FX(x) =
{

0, x < 0
1, x ≥ 0.

Since x = 0 is the only discontinuity point of FX(x) and since Fn(x) → FX(x)
for all continuity points of FX(x) (i.e., for x �= 0),

Xn
D→ X.

Example 3.10. Suppose Yn ∼ U(0, n). Then Fn(t) = t/n for 0 < t ≤ n
and Fn(t) = 0 for t ≤ 0. Hence limn→∞ Fn(t) = 0 for t ≤ 0. If t > 0 and
n > t, then Fn(t) = t/n → 0 as n → ∞. Thus limn→∞ Fn(t) = 0 for all
t, and Yn does not converge in distribution to any random variable Y since
H(t) ≡ 0 is not a cdf.
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Definition 3.6. A sequence of random variables Xn converges in distrib-
ution to a constant τ(θ), written

Xn
D→ τ(θ), if Xn

D→ X

where P (X = τ(θ)) = 1. The distribution of the random variable X is said
to be degenerate at τ(θ) or to be a point mass at τ(θ).

Definition 3.7. A sequence of random variables Xn converges in proba-
bility to a constant τ(θ), written

Xn
P→ τ(θ),

if for every ε > 0,

lim
n→∞P (|Xn − τ(θ)| < ε) = 1 or, equivalently, lim

n→∞P(|Xn − τ(θ)| ≥ ε) = 0.

The sequence Xn converges in probability to X, written

Xn
P→ X,

if Xn − X
P→ 0.

Notice that Xn
P→ X if for every ε > 0,

lim
n→∞P (|Xn − X| < ε) = 1, or, equivalently, lim

n→∞P(|Xn − X| ≥ ε) = 0.

Definition 3.8. Let the parameter space Θ be the set of possible values
of θ. A sequence of estimators Tn of τ(θ) is consistent for τ(θ) if

Tn
P→ τ(θ)

for every θ ∈ Θ. If Tn is consistent for τ(θ), then Tn is a consistent esti-
mator of τ(θ).

Consistency is a weak property that is usually satisfied by good estimators.
Tn is a consistent estimator for τ(θ) if the probability that Tn falls in any
neighborhood of τ(θ) goes to one, regardless of the value of θ ∈ Θ.

Definition 3.9. For a real number r > 0, Yn converges in rth mean to a
random variable Y , written
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Yn
r→ Y,

if
E(|Yn − Y |r) → 0

as n → ∞. In particular, if r = 2, Yn converges in quadratic mean to Y ,
written

Yn
2→ Y or Yn

qm→ Y,

if
E[(Yn − Y )2] → 0

as n → ∞.

Lemma 3.9: Generalized Chebyshev’s Inequality. Let u : R →
[0,∞) be a nonnegative function. If E[u(Y )] exists then for any c > 0,

P [u(Y ) ≥ c] ≤ E[u(Y )]
c

.

If μ = E(Y ) exists, then taking u(y) = |y − μ|r and c̃ = cr gives
Markov’s Inequality: for r > 0 and any c > 0,

P [|Y − μ| ≥ c] = P [|Y − μ|r ≥ cr] ≤ E[|Y − μ|r]
cr

.

If r = 2 and σ2 = VAR(Y ) exists, then we obtain
Chebyshev’s Inequality:

P [|Y − μ| ≥ c] ≤ VAR(Y )
c2

.

Proof. The proof is given for pdfs. For pmfs, replace the integrals by sums.
Now

E[u(Y )] =
∫
R

u(y)f(y)dy =
∫
{y:u(y)≥c}

u(y)f(y)dy +
∫
{y:u(y)<c}

u(y)f(y)dy

≥
∫
{y:u(y)≥c}

u(y)f(y)dy

since the integrand u(y)f(y) ≥ 0. Hence

E[u(Y )] ≥ c

∫
{y:u(y)≥c}

f(y)dy = cP [u(Y ) ≥ c]. �
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The following proposition gives sufficient conditions for Tn to be a consis-
tent estimator of τ(θ). Notice that Eθ[(Tn − τ(θ))2] = MSEτ(θ)(Tn) → 0 for
all θ ∈ Θ is equivalent to Tn

qm→ τ(θ) for all θ ∈ Θ.

Proposition 3.10. a) If

lim
n→∞MSEτ(θ)(Tn) = 0

for all θ ∈ Θ, then Tn is a consistent estimator of τ(θ).
b) If

lim
n→∞VARθ(Tn) = 0 and lim

n→∞Eθ(Tn) = τ(θ)

for all θ ∈ Θ, then Tn is a consistent estimator of τ(θ).

Proof. a) Using Lemma 3.9 with Y = Tn, u(Tn) = (Tn−τ(θ))2 and c = ε2

shows that for any ε > 0,

Pθ(|Tn − τ(θ)| ≥ ε) = Pθ[(Tn − τ(θ))2 ≥ ε2] ≤ Eθ[(Tn − τ(θ))2]
ε2

.

Hence
lim

n→∞Eθ[(Tn − τ(θ))2] = lim
n→∞MSEτ(θ)(Tn) → 0

is a sufficient condition for Tn to be a consistent estimator of τ(θ).
b) Recall that

MSEτ(θ)(Tn) = VARθ(Tn) + [Biasτ(θ)(Tn)]2

where Biasτ(θ)(Tn) = Eθ(Tn) − τ(θ). Since MSEτ(θ)(Tn) → 0 if both
VARθ(Tn) → 0 and Biasτ(θ)(Tn) = Eθ(Tn) − τ(θ) → 0, the result follows
from a). �

The following result shows estimators that converge at a
√

n rate are con-
sistent. Use this result and the delta method to show that g(Tn) is a consistent
estimator of g(θ). Note that b) follows from a) with Xθ ∼ N(0, v(θ)). The
WLLN shows that Y is a consistent estimator of E(Y ) = μ if E(Y ) exists.

Proposition 3.11. a) Let Xθ be a random variable with distribution
depending on θ, and 0 < δ ≤ 1. If

nδ(Tn − τ(θ)) D→ Xθ,
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then Tn
P→ τ(θ).

b) If √
n(Tn − τ(θ)) D→ N(0, v(θ))

for all θ ∈ Θ, then Tn is a consistent estimator of τ(θ).

Definition 3.10. A sequence of random variables Xn converges almost
everywhere (or almost surely, or with probability 1) to X if

P ( lim
n→∞Xn = X) = 1.

This type of convergence will be denoted by

Xn
ae→ X.

Notation such as “Xn converges to X ae” will also be used. Sometimes “ae”
will be replaced with “as” or “wp1.” We say that Xn converges almost every-
where to τ(θ), written

Xn
ae→ τ(θ),

if P (limn→∞ Xn = τ(θ)) = 1.

Theorem 3.12. Let Yn be a sequence of iid random variables with
E(Yi) = μ. Then

a) Strong Law of Large Numbers (SLLN): Y n
ae→ μ, and

b) Weak Law of Large Numbers (WLLN): Y n
P→ μ.

Proof of WLLN when V (Yi) = σ2: By Chebyshev’s inequality, for every
ε > 0,

P (|Y n − μ| ≥ ε) ≤ V (Y n)
ε2

=
σ2

nε2
→ 0

as n → ∞. �

In proving consistency results, there is an infinite sequence of estimators
that depend on the sample size n. Hence the subscript n will be added to the
estimators.

Definition 3.11. Lehmann (1999, pp. 53–54): a) A sequence of random
variables Wn is tight or bounded in probability, written Wn = OP (1), if for
every ε > 0 there exist positive constants Dε and Nε such that

P (|Wn| ≤ Dε) ≥ 1 − ε
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for all n ≥ Nε. Also Wn = OP (Xn) if |Wn/Xn| = OP (1).
b) The sequence Wn = oP (n−δ) if nδWn = oP (1) which means that

nδWn
P→ 0.

c) Wn has the same order as Xn in probability, written Wn �P Xn, if for
every ε > 0 there exist positive constants Nε and 0 < dε < Dε such that

P

(
dε ≤

∣∣∣∣Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣Xn

Wn

∣∣∣∣ ≤ 1
d ε

)
≥ 1 − ε

for all n ≥ Nε.
d) Similar notation is used for a k × r matrix An = A = [ai,j(n)] if each

element ai,j(n) has the desired property. For example, A = OP (n−1/2) if
each ai,j(n) = OP (n−1/2).

Definition 3.12. Let Wn = ‖μ̂n − μ‖.
a) If Wn �P n−δ for some δ > 0, then both Wn and μ̂n have (tightness)

rate nδ.
b) If there exists a constant κ such that

nδ(Wn − κ) D→ X

for some nondegenerate random variable X, then both Wn and μ̂n have
convergence rate nδ.

Proposition 3.13. Suppose there exists a constant κ such that

nδ(Wn − κ) D→ X.

a) Then Wn = OP (n−δ).
b) If X is not degenerate, then Wn �P n−δ.

The above result implies that if Wn has convergence rate nδ, then Wn has
tightness rate nδ, and the term “tightness” will often be omitted. Part a) is
proved, for example, in Lehmann (1999, p. 67).

The following result shows that if Wn �P Xn, then Xn �P Wn, Wn =
OP (Xn), and Xn = OP (Wn). Notice that if Wn = OP (n−δ), then nδ is
a lower bound on the rate of Wn. As an example, if the CLT holds then
Y n = OP (n−1/3), but Y n �P n−1/2.
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Proposition 3.14. a) If Wn �P Xn, then Xn �P Wn.
b) If Wn �P Xn, then Wn = OP (Xn).
c) If Wn �P Xn, then Xn = OP (Wn).
d) Wn �P Xn iff Wn = OP (Xn) and Xn = OP (Wn).

Proof. a) Since Wn �P Xn,

P

(
dε ≤

∣∣∣∣Wn

Xn

∣∣∣∣ ≤ Dε

)
= P

(
1

Dε
≤
∣∣∣∣Xn

Wn

∣∣∣∣ ≤ 1
d ε

)
≥ 1 − ε

for all n ≥ Nε. Hence Xn �P Wn.
b) Since Wn �P Xn,

P (|Wn| ≤ |XnDε|) ≥ P

(
dε ≤

∣∣∣∣Wn

Xn

∣∣∣∣ ≤ Dε

)
≥ 1 − ε

for all n ≥ Nε. Hence Wn = OP (Xn).
c) Follows by a) and b).
d) If Wn �P Xn, then Wn = OP (Xn) and Xn = OP (Wn) by b) and c).

Now suppose Wn = OP (Xn) and Xn = OP (Wn). Then

P (|Wn| ≤ |Xn|Dε/2) ≥ 1 − ε/2

for all n ≥ N1, and

P (|Xn| ≤ |Wn|1/dε/2) ≥ 1 − ε/2

for all n ≥ N2. Hence

P (A) ≡ P

(∣∣∣∣Wn

Xn

∣∣∣∣ ≤ Dε/2

)
≥ 1 − ε/2

and

P (B) ≡ P

(
dε/2 ≤

∣∣∣∣Wn

Xn

∣∣∣∣
)

≥ 1 − ε/2

for all n ≥ N = max(N1, N2). Since P (A∩B) = P (A)+P (B)−P (A∪B) ≥
P (A) + P (B) − 1,

P (A ∩ B) = P (dε/2 ≤
∣∣∣∣Wn

Xn

∣∣∣∣ ≤ Dε/2) ≥ 1 − ε/2 + 1 − ε/2 − 1 = 1 − ε

for all n ≥ N. Hence Wn �P Xn. �
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The following result is used to prove the following Theorem 3.16 which says
that if there are K estimators Tj,n of a parameter β, such that ‖Tj,n −β‖ =
OP (n−δ) where 0 < δ ≤ 1, and if T ∗

n picks one of these estimators, then
‖T ∗

n − β‖ = OP (n−δ).

Proposition 3.15: Pratt (1959). Let X1,n, ...,XK,n each be OP (1)
where K is fixed. Suppose Wn = Xin,n for some in ∈ {1, ...,K}. Then

Wn = OP (1). (3.14)

Proof.

P (max{X1,n, ...,XK,n} ≤ x) = P (X1,n ≤ x, ...,XK,n ≤ x) ≤

FWn
(x) ≤ P (min{X1,n, ...,XK,n} ≤ x) = 1 − P (X1,n > x, ...,XK,n > x).

Since K is finite, there exists B > 0 and N such that P (Xi,n ≤ B) > 1−ε/2K
and P (Xi,n > −B) > 1 − ε/2K for all n > N and i = 1, ...,K. Bonferroni’s
inequality states that P (∩K

i=1Ai) ≥
∑K

i=1 P (Ai) − (K − 1). Thus

FWn
(B) ≥ P (X1,n ≤ B, ...,XK,n ≤ B) ≥

K(1 − ε/2K) − (K − 1) = K − ε/2 − K + 1 = 1 − ε/2

and
−FWn

(−B) ≥ −1 + P (X1,n > −B, ...,XK,n > −B) ≥

−1 + K(1 − ε/2K) − (K − 1) = −1 + K − ε/2 − K + 1 = −ε/2.

Hence
FWn

(B) − FWn
(−B) ≥ 1 − ε for n > N. �

Theorem 3.16. Suppose ‖Tj,n − β‖ = OP (n−δ) for j = 1, ...,K where
0 < δ ≤ 1. Let T ∗

n = Tin,n for some in ∈ {1, ...,K} where, for example, Tin,n

is the Tj,n that minimized some criterion function. Then

‖T ∗
n − β‖ = OP (n−δ). (3.15)

Proof. Let Xj,n = nδ‖Tj,n − β‖. Then Xj,n = OP (1) so by Proposition
3.15, nδ‖T ∗

n − β‖ = OP (1). Hence ‖T ∗
n − β‖ = OP (n−δ). �



3.4 Large Sample Theory 69

3.4.3 Slutsky’s Theorem and Related Results

Theorem 3.17: Slutsky’s Theorem. Suppose Yn
D→ Y and Wn

P→ w for
some constant w. Then

a) Yn + Wn
D→ Y + w,

b) YnWn
D→ wY, and

c) Yn/Wn
D→ Y/w if w �= 0.

Theorem 3.18. a) If Xn
P→ X, then Xn

D→ X.
b) If Xn

ae→ X, then Xn
P→ X and Xn

D→ X.
c) If Xn

r→ X, then Xn
P→ X and Xn

D→ X.
d) Xn

P→ τ(θ) iff Xn
D→ τ(θ).

e) If Xn
P→ θ and τ is continuous at θ, then τ(Xn) P→ τ(θ).

f) If Xn
D→ θ and τ is continuous at θ, then τ(Xn) D→ τ(θ).

Suppose that for all θ ∈ Θ, Tn
D→ τ(θ), Tn

r→ τ(θ), or Tn
ae→ τ(θ). Then Tn

is a consistent estimator of τ(θ) by Theorem 3.18. We are assuming that the
function τ does not depend on n.

Example 3.11. Let Y1, ..., Yn be iid with mean E(Yi) = μ and variance
V (Yi) = σ2. Then the sample mean Y n is a consistent estimator of μ since i)
the SLLN holds (use Theorems 3.12 and 3.18), ii) the WLLN holds, and iii)
the CLT holds (use Proposition 3.11). Since

lim
n→∞VARμ(Y n) = lim

n→∞σ2/n = 0 and lim
n→∞Eμ(Y n) = μ,

Y n is also a consistent estimator of μ by Proposition 3.10b. By the delta
method and Proposition 3.11b, Tn = g(Y n) is a consistent estimator of g(μ)
if g′(μ) �= 0 for all μ ∈ Θ. By Theorem 3.18e, g(Y n) is a consistent estimator
of g(μ) if g is continuous at μ for all μ ∈ Θ.

Theorem 3.19. Assume that the function g does not depend on n.
a) Generalized Continuous Mapping Theorem: If Xn

D→ X and the
function g is such that P [X ∈ C(g)] = 1 where C(g) is the set of points
where g is continuous, then g(Xn) D→ g(X).

b) Continuous Mapping Theorem: If Xn
D→ X and the function g is

continuous, then g(Xn) D→ g(X).
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Remark 3.3. For Theorem 3.18, a) follows from Slutsky’s Theorem by
taking Yn ≡ X = Y and Wn = Xn − X. Then Yn

D→ Y = X and Wn
P→ 0.

Hence Xn = Yn +Wn
D→ Y +0 = X. The convergence in distribution parts of

b) and c) follow from a). Part f) follows from d) and e). Part e) implies that
if Tn is a consistent estimator of θ and τ is a continuous function, then τ(Tn)
is a consistent estimator of τ(θ). Theorem 3.19 says that convergence in dis-
tribution is preserved by continuous functions, and even some discontinuities
are allowed as long as the set of continuity points is assigned probability 1
by the asymptotic distribution. Equivalently, the set of discontinuity points
is assigned probability 0.

Example 3.12. (Ferguson 1996, p. 40): If Xn
D→ X, then 1/Xn

D→ 1/X
if X is a continuous random variable since P (X = 0) = 0 and x = 0 is the
only discontinuity point of g(x) = 1/x.

Example 3.13. Show that if Yn ∼ tn, a t distribution with n degrees of
freedom, then Yn

D→ Z where Z ∼ N(0, 1).
Solution: Yn

D= Z/
√

Vn/n where Z Vn ∼ χ2
n. If Wn =

√
Vn/n

P→ 1,

then the result follows by Slutsky’s Theorem. But Vn
D=
∑n

i=1 Xi where the

iid Xi ∼ χ2
1. Hence Vn/n

P→ 1 by the WLLN and
√

Vn/n
P→ 1 by Theorem

3.18e.

Theorem 3.20: Continuity Theorem. Let Yn be sequence of random
variables with characteristic functions φn(t). Let Y be a random variable
with characteristic function (cf) φ(t).

a)
Yn

D→ Y iff φn(t) → φ(t) ∀t ∈ R.

b) Also assume that Yn has moment generating function (mgf) mn and Y
has mgf m. Assume that all of the mgfs mn and m are defined on |t| ≤ d for
some d > 0. Then if mn(t) → m(t) as n → ∞ for all |t| < c where 0 < c < d,
then Yn

D→ Y .

Application: Proof of a Special Case of the CLT. Following
Rohatgi (1984, pp. 569-9), let Y1, ..., Yn be iid with mean μ, variance σ2, and
mgf mY (t) for |t| < to. Then

Zi =
Yi − μ

σ

has mean 0, variance 1, and mgf mZ(t) = exp(−tμ/σ)mY (t/σ) for |t| < σto.
We want to show that
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Wn =
√

n

(
Y n − μ

σ

)
D→ N(0, 1).

Notice that Wn =

n−1/2
n∑

i=1

Zi = n−1/2
n∑

i=1

(
Yi − μ

σ

)
= n−1/2

∑n
i=1 Yi − nμ

σ
=

n−1/2

1
n

Y n − μ

σ
.

Thus

mWn
(t) = E(etWn) = E

[
exp

(
tn−1/2

n∑
i=1

Zi

)]
= E

[
exp

(
n∑

i=1

tZi/
√

n

)]

=
n∏

i=1

E[etZi/
√

n] =
n∏

i=1

mZ(t/
√

n) = [mZ(t/
√

n)]n.

Set ψ(x) = log(mZ(x)). Then

log[mWn
(t)] = n log[mZ(t/

√
n)] = nψ(t/

√
n) =

ψ(t/
√

n)
1
n

.

Now ψ(0) = log[mZ(0)] = log(1) = 0. Thus by L’Hôpital’s rule (where the
derivative is with respect to n), limn→∞ log[mWn

(t)] =

lim
n→∞

ψ(t/
√

n )
1
n

= lim
n→∞

ψ′(t/
√

n )[−t/2
n3/2 ]

(−1
n2 )

=
t

2
lim

n→∞
ψ′(t/

√
n )

1√
n

.

Now

ψ′(0) =
m′

Z(0)
mZ(0)

= E(Zi)/1 = 0,

so L’Hôpital’s rule can be applied again, giving limn→∞ log[mWn
(t)] =

t

2
lim

n→∞
ψ′′(t/

√
n )[ −t

2n3/2 ]
( −1
2n3/2 )

=
t2

2
lim

n→∞ψ′′(t/
√

n ) =
t2

2
ψ′′(0).

Now

ψ′′(t) =
d

dt

m′
Z(t)

mZ(t)
=

m′′
Z(t)mZ(t) − (m′

Z(t))2

[mZ(t)]2
.

So
ψ′′(0) = m′′

Z(0) − [m′
Z(0)]2 = E(Z2

i ) − [E(Zi)]2 = 1.
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Hence limn→∞ log[mWn
(t)] = t2/2 and

lim
n→∞mWn

(t) = exp(t2/2)

which is the N(0,1) mgf. Thus by the continuity theorem,

Wn =
√

n

(
Y n − μ

σ

)
D→ N(0, 1). �

3.4.4 Multivariate Limit Theorems

Many of the univariate results of the previous three subsections can be
extended to random vectors. For the limit theorems, the vector X is typically
a k× 1 column vector and XT is a row vector. Let ‖x‖ =

√
x2
1 + · · · + x2

k be
the Euclidean norm of x.

Definition 3.13. Let Xn be a sequence of random vectors with joint cdfs
Fn(x) and let X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n → ∞.
c) Let r > 0 be a real number. Then Xn converges in rth mean to X,

written Xn
r→ X, if E(‖Xn − X‖r) → 0 as n → ∞.

d) Xn converges almost everywhere to X, written Xn
ae→ X, if

P (limn→∞ Xn = X) = 1.

Theorems 3.21 and 3.22 below are the multivariate extensions of the
limit theorems in subsection 3.4.1. When the limiting distribution of Zn =√

n(g(T n) − g(θ)) is multivariate normal Nk(0,Σ), approximate the joint
cdf of Zn with the joint cdf of the Nk(0,Σ) distribution. Thus to find proba-
bilities, manipulate Zn as if Zn ≈ Nk(0,Σ). To see that the CLT is a special
case of the MCLT below, let k = 1, E(X) = μ, and V (X) = Σx = σ2.

Theorem 3.21: the Multivariate Central Limit Theorem
(MCLT). If X1, ...,Xn are iid k × 1 random vectors with E(X) = μ and
Cov(X) = Σx, then

√
n(Xn − μ) D→ Nk(0,Σx)
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where the sample mean

Xn =
1
n

n∑
i=1

Xi.

To see that the delta method is a special case of the multivariate delta
method, note that if Tn and parameter θ are real valued, then Dg(θ) = g′(θ).

Theorem 3.22: the Multivariate Delta Method. If g does not depend
on n and √

n(T n − θ) D→ Nk(0,Σ),

then √
n(g(T n) − g(θ)) D→ Nd(0,Dg(θ)ΣDT

g(θ))

where the d × k Jacobian matrix of partial derivatives

Dg(θ) =

⎡
⎢⎣

∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)
...

...
∂

∂θ1
gd(θ) . . . ∂

∂θk
gd(θ)

⎤
⎥⎦ .

Here the mapping g : Rk → R
d needs to be differentiable in a neighborhood

of θ ∈ R
k.

Definition 3.14. If the estimator g(T n) P→ g(θ) for all θ ∈ Θ, then
g(T n) is a consistent estimator of g(θ).

Proposition 3.23. If 0 < δ ≤ 1, X is a random vector, and

nδ(g(T n) − g(θ)) D→ X,

then g(T n) P→ g(θ).

Theorem 3.24. If X1, ...,Xn are iid, E(‖X‖) < ∞, and E(X) = μ,
then

a) WLLN: Xn
P→ μ and

b) SLLN: Xn
ae→ μ.
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Theorem 3.25: Continuity Theorem. Let Xn be a sequence of k × 1
random vectors with characteristic functions φn(t), and let X be a k × 1
random vector with cf φ(t). Then

Xn
D→ X iff φn(t) → φ(t)

for all t ∈ R
k.

Theorem 3.26. Cramér Wold Device. Let Xn be a sequence of k × 1
random vectors, and let X be a k × 1 random vector. Then

Xn
D→ X iff tTXn

D→ tTX

for all t ∈ R
k.

Application: Proof of the MCLT Theorem 3.21. Note that for fixed
t, the tT Xi are iid random variables with mean tT μ and variance tT Σt.
Hence by the CLT, tT√n(Xn − μ) D→ N(0, tT Σt). The right-hand side has
distribution tT X where X ∼ Nk(0,Σ). Hence by the Cramér Wold Device,√

n(Xn − μ) D→ Nk(0,Σ). �

Theorem 3.27: a) If Xn
P→ X, then Xn

D→ X.
b)

Xn
P→ g(θ) iff Xn

D→ g(θ).

Let g(n) ≥ 1 be an increasing function of the sample size n: g(n) ↑ ∞, e.g.,
g(n) =

√
n. See White (1984, p. 15). If a k×1 random vector T n−μ converges

to a nondegenerate multivariate normal distribution with convergence rate√
n, then T n has (tightness) rate

√
n.

Definition 3.15. Let An = [ai,j(n)] be an r × c random matrix.
a) An = OP (Xn) if ai,j(n) = OP (Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
b) An = op(Xn) if ai,j(n) = op(Xn) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
c) An �P (1/(g(n)) if ai,j(n) �P (1/(g(n)) for 1 ≤ i ≤ r and 1 ≤ j ≤ c.
d) Let A1,n = T n − μ and A2,n = Cn − cΣ for some constant c > 0. If
A1,n �P (1/(g(n)) and A2,n �P (1/(g(n)), then (T n,Cn) has (tightness)
rate g(n).
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Theorem 3.28: Continuous Mapping Theorem. Let Xn ∈ R
k. If

Xn
D→ X and if the function g : Rk → R

j is continuous, then
g(Xn) D→ g(X).

The following two theorems are taken from Severini (2005, pp. 345–349,
354).

Theorem 3.29: Let Xn = (X1n, ...,Xkn)T be a sequence of k × 1 ran-
dom vectors, let Y n be a sequence of k × 1 random vectors, and let
X = (X1, ...,Xk)T be a k × 1 random vector. Let W n be a sequence of
k× k nonsingular random matrices, and let C be a k× k constant nonsingu-
lar matrix.

a) Xn
P→ X iff Xin

P→ Xi for i = 1, ..., k.
b) Slutsky’s Theorem: If Xn

D→ X and Y n
P→ c for some constant k×1

vector c, then i) Xn + Y n
D→ X + c and

ii) Y T
nXn

D→ cT X.

c) If Xn
D→ X and W n

P→ C, then W nXn
D→ CX, XT

nW n
D→ XT C,

W−1
n Xn

D→ C−1X, and XT
nW−1

n
D→ XT C−1.

Theorem 3.30: Let Wn, Xn, Yn, and Zn be sequences of random vari-
ables such that Yn > 0 and Zn > 0. (Often Yn and Zn are deterministic, e.g.,
Yn = n−1/2.)

a) If Wn = OP (1) and Xn = OP (1), then Wn +Xn = OP (1) and WnXn =
OP (1), thus OP (1) + OP (1) = OP (1) and OP (1)OP (1) = OP (1).

b) If Wn = OP (1) and Xn = oP (1), then Wn +Xn = OP (1) and WnXn =
oP (1), thus OP (1) + oP (1) = OP (1) and OP (1)oP (1) = oP (1).

c) If Wn = OP (Yn) and Xn = OP (Zn), then Wn +Xn = OP (max(Yn, Zn))
and WnXn = OP (YnZn), thus OP (Yn) + OP (Zn) = OP (max(Yn, Zn)) and
OP (Yn)OP (Zn) = OP (YnZn).

Theorem 3.31. i) Suppose
√

n(Tn − μ) D→ Np(θ,Σ). Let A be a q × p

constant matrix. Then A
√

n(Tn −μ) =
√

n(ATn −Aμ) D→ Nq(Aθ,AΣAT ).
ii) Let Σ > 0. If (T,C) is a consistent estimator of (μ, s Σ) where s > 0

is some constant, then D2
x(T,C) = (x− T )T C−1(x− T ) = s−1D2

x(μ,Σ) +
oP (1), so D2

x(T,C) is a consistent estimator of s−1D2
x(μ,Σ).

iii) Let Σ > 0. If
√

n(T −μ) D→ Np(0,Σ) and if C is a consistent estimator

of Σ, then n(T − μ)T C−1(T − μ) D→ χ2
p. In particular,

n(x − μ)T S−1(x − μ) D→ χ2
p.
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Proof. ii) D2
x(T,C) = (x − T )T C−1(x − T ) =

(x − μ + μ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x − μ + μ − T )
= (x − μ)T [s−1Σ−1](x − μ) + (x − T )T [C−1 − s−1Σ−1](x − T )
+(x − μ)T [s−1Σ−1](μ − T ) + (μ − T )T [s−1Σ−1](x − μ)
+(μ − T )T [s−1Σ−1](μ − T ) = s−1D2

x(μ,Σ) + OP (1).
(Note that D2

x(T,C) = s−1D2
x(μ,Σ) + OP (n−δ) if (T,C) is a consistent

estimator of (μ, s Σ) with rate nδ where 0 < δ ≤ 0.5 if [C−1 − s−1Σ−1] =
OP (n−δ).)

Alternatively, D2
x(T,C) is a continuous function of (T,C) if C > 0 for

n > 10p. Hence D2
x(T,C) P→ D2

x(μ, sΣ).
iii) Note that Zn =

√
n Σ−1/2(T − μ) D→ Np(0, Ip). Thus ZT

nZn =

n(T −μ)T Σ−1(T −μ) D→ χ2
p. Now n(T −μ)T C−1(T −μ) = n(T −μ)T [C−1−

Σ−1+Σ−1](T−μ) = n(T−μ)T Σ−1(T−μ)+n(T−μ)T [C−1−Σ−1](T−μ) =
n(T −μ)T Σ−1(T −μ)+ oP (1) D→ χ2

p since
√

n(T −μ)T [C−1 −Σ−1]
√

n(T −
μ) = OP (1)oP (1)OP (1) = oP (1). �

3.5 Summary

1) If X and Y are p × 1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then

E(X+Y ) = E(X)+E(Y ), E(a+Y ) = a+E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
2) If X ∼ Np(μ,Σ), then E(X) = μ and Cov(X) = Σ.
3) If X ∼ Np(μ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aμ,

AΣAT ). If a is a p × 1 vector of constants, then X + a ∼ Np(μ + a,Σ).

Let X =
(

X1

X2

)
, μ =

(
μ1

μ2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

4) All subsets of a MVN are MVN: (Xk1 , ...,Xkq
)T ∼ Nq(μ̃, Σ̃) where

μ̃i = E(Xki
) and Σ̃ij = Cov(Xki

,Xkj
). In particular, X1 ∼ Nq(μ1,Σ11)

and X2 ∼ Np−q(μ2,Σ22). If X ∼ Np(μ,Σ), then X1 and X2 are indepen-
dent iff Σ12 = 0.

5)

Let
(

Y
X

)
∼ N2

((
μY

μX

)
,

(
σ2

Y Cov(Y,X)
Cov(X,Y ) σ2

X

))
.



3.5 Summary 77

Also recall that the population correlation between X and Y is given by

ρ(X,Y ) =
Cov(X,Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
6) The conditional distribution of a MVN is MVN. If X ∼ Np(μ,Σ), then

the conditional distribution of X1 given that X2 = x2 is multivariate normal
with mean μ1+Σ12Σ

−1
22 (x2−μ2) and covariance matrix Σ11−Σ12Σ

−1
22 Σ21.

That is,

X1|X2 = x2 ∼ Nq(μ1 + Σ12Σ
−1
22 (x2 − μ2),Σ11 − Σ12Σ

−1
22 Σ21).

7) Notation:

X1|X2 ∼ Nq(μ1 + Σ12Σ
−1
22 (X2 − μ2),Σ11 − Σ12Σ

−1
22 Σ21).

8) Be able to compute the above quantities if X1 and X2 are scalars.
9) A p × 1 random vector X has an elliptically contoured distribution, if

X has joint pdf

f(z) = kp|Σ|−1/2g[(z − μ)T Σ−1(z − μ)], (3.16)

and we say X has an elliptically contoured ECp(μ,Σ, g) distribution. If the
second moments exist, then

E(X) = μ (3.17)

and
Cov(X) = cXΣ (3.18)

for some constant cX > 0.
10) The population squared Mahalanobis distance

U ≡ D2 = D2(μ,Σ) = (X − μ)T Σ−1(X − μ). (3.19)

For elliptically contoured distributions, U has pdf

h(u) =
πp/2

Γ (p/2)
kpu

p/2−1g(u). (3.20)

U ∼ χ2
p if X has a multivariate normal Np(μ,Σ) distribution.

11) The classical estimator (x,S) of multivariate location and dispersion
is the sample mean and sample covariance matrix where
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x =
1
n

n∑
i=1

xi and S =
1

n − 1

n∑
i=1

(xi − x)(xi − x)T.

12) Let the p×1 column vector T (W ) be a multivariate location estimator,
and let the p × p symmetric positive definite matrix C(W ) be a dispersion
estimator. Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T (W ),C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )) (3.21)

for each observation xi. Notice that the Euclidean distance of xi from the
estimate of center T (W ) is Di(T (W ), Ip). The classical Mahalanobis dis-
tance uses (T,C) = (x,S).

13) If p random variables come from an elliptically contoured distribution,
then the subplots in the scatterplot matrix should be linear if n >> p.

14) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let
X be a random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) →

F (x) as n → ∞ for all points x at which F (x) is continuous. The distribution
of X is the limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every

ε > 0, P (‖Xn − X‖ > ε) → 0 as n → ∞.
15) Multivariate Central Limit Theorem (MCLT): If X1, ...,Xn are iid

k × 1 random vectors with E(X) = μ and Cov(X) = Σx, then

√
n(Xn − μ) D→ Nk(0,Σx)

where the sample mean

Xn =
1
n

n∑
i=1

Xi.

16) Suppose
√

n(Tn − μ) D→ Np(θ,Σ). Let A be a q × p constant matrix.

Then A
√

n(Tn − μ) =
√

n(ATn − Aμ) D→ Nq(Aθ,AΣAT ).

17) Suppose A is a conformable constant matrix and Xn
D→ X. Then

AXn
D→ AX.

3.6 Complements

Johnson and Wichern (1988) and Mardia et al. (1979) are good refer-
ences for multivariate statistical analysis based on the multivariate normal
distribution. The elliptically contoured distributions generalize the multi-
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variate normal distribution and are discussed (in increasing order of diffi-
culty) in Johnson (1987), Fang et al. (1990), Fang and Anderson (1990),
and Gupta et al. (2013). Fang et al. (1990) sketched the history of elliptically
contoured distributions while Gupta et al. (2013) discussed matrix valued
elliptically contoured distributions. Cambanis et al. (1981), Chmielewski
(1981), and Eaton (1986) are also important references. Also see Muirhead
(1982, pp. 30–42).

Section 3.4 followed Olive (2014, ch. 8) closely, which is a good master’s
level treatment of large sample theory. There are several PhD level texts
on large sample theory including, in roughly increasing order of difficulty,
Lehmann (1999), Ferguson (1996), Sen and Singer (1993), and Serfling
(1980). Cramér (1946) is also an important reference, and White (1984)
considered asymptotic theory for econometric applications. Also see Das-
Gupta (2008), Davidson (1994), Jiang (2010), Polansky (2011), Sen et al.
(2010), and van der Vaart (1998).

In analysis, convergence in probability is a special case of convergence in
measure, and convergence in distribution is a special case of weak convergence.
See (Ash (1972), p. 322) and Sen and Singer (1993, p. 39). Almost sure con-
vergence is also known as strong convergence. See Sen and Singer (1993, p.4).
Since Y

P→ μ iff Y
D→ μ, the WLLN refers to weak convergence. Technically,

the Xn and X need to share a common probability space for convergence in
probability and almost sure convergence.

3.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

3.1∗. Suppose that

⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ ∼ N4

⎛
⎜⎜⎝

⎛
⎜⎜⎝

49
100
17
7

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

3 1 −1 0
1 6 1 −1
−1 1 4 0
0 −1 0 2

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

a) Find the distribution of X2.

b) Find the distribution of (X1,X3)T .

c) Which pairs of random variables Xi and Xj are independent?

d) Find the correlation ρ(X1,X3).
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3.2∗. Recall that if X ∼ Np(μ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean μ1+Σ12Σ
−1
22 (x2−μ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21.

Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
49
100

)
,

(
16 σ12

σ12 25

))
.

a) If σ12 = 0, find Y |X. Explain your reasoning.

b) If σ12 = 10, find E(Y |X).

c) If σ12 = 10, find Var(Y |X).

3.3. Let σ12 = Cov(Y,X) and suppose Y and X follow a bivariate normal
distribution (

Y
X

)
∼ N2

((
15
20

)
,

(
64 σ12

σ12 81

))
.

a) If σ12 = 10, find E(Y |X).

b) If σ12 = 10, find Var(Y |X).

c) If σ12 = 10, find ρ(Y,X), the correlation between Y and X.

3.4. Suppose that

X ∼ (1 − γ)ECp(μ,Σ, g1) + γECp(μ, cΣ, g2)

where c > 0 and 0 < γ < 1. Following Example 3.2, show that X has
an elliptically contoured distribution assuming that all relevant expectations
exist.

3.5. In Proposition 3.5b, show that if the second moments exist, then Σ
can be replaced by Cov(X).

3.6∗. The table (W ) below represents three head measurements on six
people and one ape. Let X1 = cranial capacity, X2 = head length, and X3 =
head height. Let x = (X1,X2,X3)T . Several multivariate location estimators,
including the coordinatewise median and sample mean, are found by applying
a univariate location estimator to each random variable and then collecting
the results into a vector. a) Find the coordinatewise median MED(W ).

b) Find the sample mean x.
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crancap hdlen hdht Data for 3.6
1485 175 132
1450 191 117
1460 186 122
1425 191 125
1430 178 120
1290 180 117

90 75 51

3.7. Using the notation in Proposition 3.6, show that if the second
moments exist, then

Σ−1
XXΣXY = [Cov(X)]−1Cov(X, Y ).

3.8. Using the notation under Lemma 3.4, show that if X is elliptically
contoured, then the conditional distribution of X1 given that X2 = x2 is
also elliptically contoured.

3.9∗. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of
(XT X)−1XT Y if X is an n × p full rank constant matrix, and β is a p × 1
constant vector.

3.10. Recall that Cov(X,Y ) = E[(X − E(X))(Y − E(Y ))T ]. Using the
notation of Proposition 3.6, let (Y,XT )T be ECp+1(μ,Σ, g) where Y is a
random variable. Let the covariance matrix of (Y,XT ) be

Cov((Y,XT )T ) = c

(
ΣY Y ΣY X

ΣXY ΣXX

)
=
(

VAR(Y ) Cov(Y,X)
Cov(X, Y ) Cov(X)

)

where c is some positive constant. Show that E(Y |X) = α + βT X where

α = μY − βT μX and

β = [Cov(X)]−1Cov(X, Y ).

3.11. (Due to R.D. Cook.) Let X be a p×1 random vector with E(X) = 0
and Cov(X) = Σ. Let B be any constant full rank p × r matrix where
1 ≤ r ≤ p. Suppose that for all such conforming matrices B,

E(X|BT X) = MBBT X

where MB a p × r constant matrix that depends on B.
Using the fact that ΣB = Cov(X,BTX) = E(XXTB) =

E[E(XXTB|BTX)], compute ΣB and show that MB = ΣB(BT ΣB)−1.
Hint: what acts as a constant in the inner expectation?
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3.12. Let x be a p× 1 random vector with covariance matrix Cov(x). Let
A be an r × p constant matrix and let B be a q × p constant matrix. Find
Cov(Ax,Bx) in terms of A,B, and Cov(x).

3.13. The table W shown below represents four measurements on five
people.

age breadth cephalic size
39.00 149.5 81.9 3738
35.00 152.5 75.9 4261
35.00 145.5 75.4 3777
19.00 146.0 78.1 3904
0.06 88.5 77.6 933

a) Find the sample mean x.
b) Find the coordinatewise median MED(W ).

3.14. Suppose x1, ...,xn are iid p× 1 random vectors from a multivariate
t-distribution with parameters μ and Σ with d degrees of freedom. Then

E(xi) = μ and Cov(x) =
d

d − 2
Σ for d > 2. Assuming d > 2, find the

limiting distribution of
√

n(x − c) for appropriate vector c.

3.15. Suppose that

⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ ∼ N4

⎛
⎜⎜⎝

⎛
⎜⎜⎝

9
16
4
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0.8 −0.4 0
0.8 1 −0.56 0
−0.4 −0.56 1 0

0 0 0 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

a) Find the distribution of X3.
b) Find the distribution of (X2,X4)T .

c) Which pairs of random variables Xi and Xj are independent?
d) Find the correlation ρ(X1,X3).
3.16. Suppose x1, ...,xn are iid p × 1 random vectors where

xi ∼ (1 − γ)Np(μ,Σ) + γNp(μ, cΣ)

with 0 < γ < 1 and c > 0. Then E(xi) = μ and Cov(xi) = [1 + γ(c − 1)]Σ.
Find the limiting distribution of

√
n(x − d) for appropriate vector d.

3.17. Let X be an n × p constant matrix and let β be a p × 1 constant
vector. Suppose Y ∼ Nn(Xβ, σ2I). Find the distribution of HY if HT =
H = H2 is an n × n matrix and if HX = X. Simplify.
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3.18. Recall that if X ∼ Np(μ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean μ1+Σ12Σ
−1
22 (x2−μ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate

normal distribution
(

Y
X

)
∼ N2

((
134
96

)
,

(
24.5 1.1
1.1 23.0

))
.

a) Find E(Y |X).

b) Find Var(Y |X).
3.19. Suppose that

⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ ∼ N4

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1
7
3
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

4 0 2 1
0 1 0 0
2 0 3 1
1 0 1 5

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

a) Find the distribution of (X1,X4)T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1,X4).

3.20. Suppose that

⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ ∼ N4

⎛
⎜⎜⎝

⎛
⎜⎜⎝

3
4
2
3

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

3 2 1 1
2 4 1 0
1 1 2 0
1 0 0 3

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

a) Find the distribution of (X1,X3)T .

b) Which pairs of random variables Xi and Xj are independent?

c) Find the correlation ρ(X1,X3).

3.21. Suppose x1, ...,xn are iid p×1 random vectors where E(xi) = e0.51
and Cov(xi) = (e2 − e)Ip. Find the limiting distribution of

√
n(x − c) for

appropriate vector c.
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3.22. Suppose that

⎛
⎜⎜⎝

X1

X2

X3

X4

⎞
⎟⎟⎠ ∼ N4

⎛
⎜⎜⎝

⎛
⎜⎜⎝

49
25
9
4

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

2 −1 3 0
−1 5 −3 0
3 −3 5 0
0 0 0 4

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

a) Find the distribution of (X1,X3)T .

b) Which pairs of random variables Xi and Xj are independent?
c) Find the correlation ρ(X1,X3).
3.23. Recall that if X ∼ Np(μ,Σ), then the conditional distribution of X1

given that X2 = x2 is multivariate normal with mean μ1+Σ12Σ
−1
22 (x2−μ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21. Let Y and X follow a bivariate

normal distribution
(

Y
X

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

a) Find E(Y |X).
b) Find Var(Y |X).
3.24. Suppose x1, ...,xn are iid 2× 1 random vectors from a multivariate

lognormal LN(μ, Σ) distribution. Let xi = (Xi1,Xi2)T . Following Press
(2005, pp. 149-150), E(Xij) = exp(μj + σ2

j /2),
V (Xij) = exp(σ2

j )[exp(σ2
j ) − 1] exp(2μj) for j = 1, 2, and

Cov(Xi1,Xi2) = exp[μ1 + μ2 + 0.5(σ2
1 + σ2

2) + σ12][exp(σ12) − 1]. Find the
limiting distribution of

√
n(x − c) for appropriate vector c.

3.25. Following Srivastava and Khatri (2001, p. 47), let

X =
(

X1

X2

)
∼ Np

[(
μ1

μ2

)
,

(
Σ11 Σ12

Σ21 Σ22

)]
.

a) Show that the nonsingular linear transformation

(
I −Σ12Σ

−1
22

0 I

)(
X1

X2

)
=
(

X1 − Σ12Σ
−1
22 X2

X2

)
∼

Np

[(
μ1 − Σ12Σ

−1
22 μ2

μ2

)
,

(
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

)]
.

b) Then X1 − Σ12Σ
−1
22 X2 X2, and
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X1 − Σ12Σ
−1
22 X2 ∼ Nq(μ1 − Σ12Σ

−1
22 μ2,Σ11 − Σ12Σ

−1
22 Σ21).

By independence, X1 − Σ12Σ
−1
22 X2 has the same distribution as

(X1−Σ12Σ
−1
22 X2)|X2, and the term −Σ12Σ

−1
22 X2 is a constant, given X2.

Use this result to show that

X1|X2 ∼ Nq(μ1 + Σ12Σ
−1
22 (X2 − μ2),Σ11 − Σ12Σ

−1
22 Σ21).



Chapter 4
MLD Estimators

This chapter is the most important chapter for outlier robust statistics and
covers robust estimators of multivariate location and dispersion. The prac-
tical, highly outlier resistant,

√
n consistent FCH, RFCH, and RMVN esti-

mators of (μ, cΣ) are developed along with proofs. The RFCH and RMVN
estimators are reweighted versions of the FCH estimator. It is shown why
competing “robust estimators” fail to work, are impractical, or are not yet
backed by theory. The RMVN and RFCH sets are defined and will be used to
create practical robust methods of principal component analysis, canonical
correlation analysis, discriminant analysis, factor analysis, and multivariate
linear regression in the following chapters.

Warning: This chapter contains many acronyms, abbreviations, and
estimator names such as FCH, RFCH, and RMVN. See Section 1.2 and
Table 1.1 for many of the acronyms and for the acronyms that start with
the added letter A, C, F, or R: A stands for algorithm, C for concentration,
F for estimators that use a fixed number of trial fits, and R for reweighted.

Let μ be a p×1 location vector and Σ a p×p symmetric dispersion matrix.
Because of symmetry, the first row of Σ has p distinct unknown parameters,
the second row has p−1 distinct unknown parameters, the third row has p−2
distinct unknown parameters, ..., and the pth row has one distinct unknown
parameter for a total of 1+2+· · ·+p = p(p+1)/2 unknown parameters. Since
μ has p unknown parameters, an estimator (T,C) of multivariate location
and dispersion (MLD), needs to estimate p(p + 3)/2 unknown parameters
when there are p random variables. If the p variables can be transformed
into an uncorrelated set then there are only 2p parameters, the means and
variances, while if the dimension can be reduced from p to p− 1, the number
of parameters is reduced by p(p + 3)/2 − (p − 1)(p + 2)/2 = p + 1.

The sample covariance or sample correlation matrices estimate these para-
meters very efficiently since Σ = (σij) where σij is a population covariance
or correlation. These quantities can be estimated with the sample covariance
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or correlation taking two variables Xi and Xj at a time. Note that there are
p(p + 1)/2 pairs that can be chosen from p random variables X1, ...,Xp.

Rule of thumb 4.1. For the classical estimators of multivariate location
and dispersion, (x,S) or (z = 0,R), we want n ≥ 10p. We want n ≥ 20p for
the robust MLD estimators (FCH, RFCH, or RMVN) described later in this
chapter.

4.1 Affine Equivariance

Before defining an important equivariance property, some notation is needed.
Again assume that the data is collected in an n × p data matrix W . Let
B = 1bT where 1 is an n × 1 vector of ones and b is a p × 1 constant
vector. Hence the ith row of B is bT

i ≡ bT for i = 1, ..., n. For such a
matrix B, consider the affine transformation Z = WAT +B where A is any
nonsingular p×p matrix. An affine transformation changes xi to zi = Axi+b
for i = 1, ..., n, and affine equivariant multivariate location and dispersion
estimators change in natural ways.

Definition 4.1. The multivariate location and dispersion estimator (T,C)
is affine equivariant if

T (Z) = T (WAT + B) = AT (W ) + b, (4.1)

and C(Z) = C(WAT + B) = AC(W )AT . (4.2)

The following proposition shows that the Mahalanobis distances are
invariant under affine transformations. See Rousseeuw and Leroy (1987,
pp. 252–262) for similar results. Thus if (T,C) is affine equivariant, so is
(T,D2

(cn)
(T,C) C) where D2

(j)(T,C) is the jth order statistic of the D2
i .

Proposition 4.1. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) = D2
i (T (Z),C(Z)) ≡ D2

i (Z). (4.3)

Proof. Since Z = WAT + B has ith row zT
i = xT

i AT + bT ,

D2
i (Z) = [zi − T (Z)]T C−1(Z)[zi − T (Z)]

= [A(xi − T (W ))]T [AC(W )AT ]−1[A(xi − T (W ))]

= [xi − T (W )]T C−1(W )[xi − T (W )] = D2
i (W ). �
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Warning: Estimators that use randomly chosen elemental sets or projec-
tions are not affine equivariant since these estimators often change when they
are computed several times (corresponding to the identity transformation
A = Ip). Such estimators can sometimes be made pseudo-affine equivariant
by using the same fixed random number seed and random number genera-
tor each time the estimator is used. Then the pseudo-affine equivariance of
the estimator depends on the random number seed and the random num-
ber generator, and such estimators are not as attractive as affine equivariant
estimators that do not depend on a fixed random number seed and random
number generator.

4.2 Breakdown

This section gives a standard definition of breakdown for estimators of mul-
tivariate location and dispersion. The following notation will be useful. Let
W denote the n × p data matrix with ith row xT

i corresponding to the ith
case. Let w1, ...wn be the contaminated data after dn of the xi have been
replaced by arbitrarily bad contaminated cases. Let W n

d denote the n×p data
matrix with ith row wT

i . Then the contamination fraction is γn = dn/n. Let
(T (W ),C(W )) denote an estimator of multivariate location and dispersion
where the p×1 vector T (W ) is an estimator of location and the p×p symmet-
ric positive semidefinite matrix C(W ) is an estimator of dispersion. Recall
from Theorem 1.1 that if C(W n

d ) > 0, then max
‖a‖=1

aT C(W n
d )a = λ1 and

min
‖a‖=1

aT C(W n
d )a = λp. A high breakdown dispersion estimator C is posi-

tive definite if the amount of contamination is less than the breakdown value.
Since aT Ca =

∑p
i=1

∑p
j=1 cijaiaj , the largest eigenvalue λ1 is bounded as

W n
d varies iff C(W n

d ) is bounded as W n
d varies.

Definition 4.2. The breakdown value of the multivariate location estima-
tor T at W is

B(T,W ) = min

{
dn

n
: sup
Wn

d

‖T (W n
d )‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d and 1 ≤

dn ≤ n. Let λ1(C(W )) ≥ · · · ≥ λp(C(W )) ≥ 0 denote the eigenvalues of the
dispersion estimator applied to data W . The estimator C breaks down if the
smallest eigenvalue can be driven to zero or if the largest eigenvalue can be
driven to ∞. Hence the breakdown value of the dispersion estimator is

B(C,W ) = min

{
dn

n
: sup
Wn

d

max
[

1
λp(C(W n

d ))
, λ1(C(W n

d ))
]

= ∞
}

.
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Definition 4.3. Let γn be the breakdown value of (T,C). High breakdown
(HB) statistics have γn → 0.5 as n → ∞ if the (uncontaminated) clean data
are in general position: no more than p points of the clean data lie on any
(p−1)-dimensional hyperplane. Estimators are zero breakdown if γn → 0 and
positive breakdown if γn → γ > 0 as n → ∞.

Note that if the number of outliers is less than the number needed to cause
breakdown, then ‖T‖ is bounded and the eigenvalues are bounded away from
0 and ∞. Also, the bounds do not depend on the outliers but do depend on
the estimator (T,C) and on the clean data W .

The following result shows that a multivariate location estimator T basi-
cally “breaks down” if the d outliers can make the median Euclidean distance
MED(‖wi−T (W n

d )‖) arbitrarily large where wT
i is the ith row of W n

d . Thus
a multivariate location estimator T will not break down if T can not be driven
out of some ball of (possibly huge) radius r about the origin. For an affine
equivariant estimator, the largest possible breakdown value is n/2 or (n+1)/2
for n even or odd, respectively. Hence in the proof of the following result, we
could replace dn < dT by dn < min(n/2, dT ).

Proposition 4.2. Fix n. If nonequivariant estimators (that may have a
breakdown value of greater than 1/2) are excluded, then a multivariate loca-
tion estimator has a breakdown value of dT /n iff dT = dT,n is the smallest
number of arbitrarily bad cases that can make the median Euclidean distance
MED(‖wi − T (W n

d )‖) arbitrarily large.

Proof. Suppose the multivariate location estimator T satisfies ‖T (W n
d )‖ ≤

M for some constant M if dn < dT . Note that for a fixed data set W n
d

with ith row wi, the median Euclidean distance MED(‖wi − T (W n
d )‖) ≤

maxi=1,...,n ‖xi − T (W n
d )‖ ≤ maxi=1,...,n ‖xi‖ + M if dn < dT . Similarly,

suppose MED(‖wi − T (W n
d )‖) ≤ M for some constant M if dn < dT , then

‖T (W n
d )‖ is bounded if dn < dT . �

Since the coordinatewise median MED(W ) is a HB estimator of multi-
variate location, it is also true that a multivariate location estimator T will
not break down if T cannot be driven out of some ball of radius r about
MED(W ). Hence (MED(W ), Ip) is a HB estimator of MLD.

If a high breakdown estimator (T,C) ≡ (T (W n
d ),C(W n

d )) is evaluated
on the contaminated data W n

d , then the location estimator T is contained in
some ball about the origin of radius r, and 0 < a < λp ≤ λ1 < b where the
constants a, r, and b depend on the clean data and (T,C), but not on W n

d if
the number of outliers dn satisfies 0 ≤ dn < nγn < n/2 where the breakdown
value γn → 0.5 as n → ∞.

The following lemma will be used to show that if the classical estimator
(XB ,SB) is applied to cn ≈ n/2 cases contained in a ball about the origin of
radius r where r depends on the clean data but not on W n

d , then (XB ,SB)
is a high breakdown estimator.
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Lemma 4.3. If the classical estimator (XB ,SB) is applied to cn cases
that are contained in some bounded region where p + 1 ≤ cn ≤ n, then the
maximum eigenvalue λ1 of SB is bounded.

Proof. The largest eigenvalue of a p × p matrix A is bounded above by
p max |ai,j | where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote
the cn cases by z1, ...,zcn . Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn∑

m=1

(zi,m − zi)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded. �

The determinant det(S) = |S| of S is known as the generalized sample
variance. Consider the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ D2
(cn)

} (4.4)

where D2
(cn)

is the cnth smallest squared Mahalanobis distance based on
(T,C). This hyperellipsoid contains the cn cases with the smallest D2

i . Sup-
pose (T,C) = (xM , b SM ) is the sample mean and scaled sample covariance
matrix applied to some subset of the data where b > 0. The classical, RFCH,
and RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h}

has volume equal to

2πp/2

pΓ (p/2)
hp

√
det(C) =

2πp/2

pΓ (p/2)
hpbp/2

√
det(SM ).

If h2 = D2
(cn)

, then the volume is proportional to the square root of the deter-
minant |SM |1/2, and this volume will be positive unless extreme degeneracy
is present among the cn cases. See Johnson and Wichern (1988, pp. 103–104).

4.3 The Concentration Algorithm

Concentration algorithms are widely used since impractical brand name esti-
mators, such as the MCD estimator given in Definition 4.4, take too long
to compute. The concentration algorithm, defined in Definition 4.5, use K
starts and attractors. A start is an initial estimator, and an attractor is an
estimator obtained by refining the start. For example, let the start be the
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classical estimator (x,S). Then the attractor could be the classical estima-
tor (T1,C1) applied to the half set of cases with the smallest Mahalanobis
distances. This concentration algorithm uses one concentration step, but the
process could be iterated for k concentration steps, producing an estimator
(Tk,Ck).

If more than one attractor is used, then some criterion is needed to select
which of the K attractors is to be used in the final estimator. If each attractor
(Tk,j ,Ck,j) is the classical estimator applied to cn ≈ n/2 cases, then the
minimum covariance determinant (MCD) criterion is often used: choose the
attractor that has the minimum value of det(Ck,j) where j = 1, ...,K.

The remainder of this chapter will explain the concentration algorithm,
explain why the MCD criterion is useful but can be improved, provide some
theory for practical robust multivariate location and dispersion estimators,
and show how the set of cases used to compute the recommended RMVN or
RFCH estimator can be used to create robust multivariate analogs of methods
such as principal component analysis and canonical correlation analysis. The
RMVN and RFCH estimators are reweighted versions of the practical FCH
estimator, given in Definition 4.8.

Definition 4.4. Consider the subset Jo of cn ≈ n/2 observations whose
sample covariance matrix has the lowest determinant among all C(n, cn) sub-
sets of size cn. Let TMCD and CMCD denote the sample mean and sample
covariance matrix of the cn cases in Jo. Then the minimum covariance deter-
minant MCD(cn) estimator is (TMCD(W ),CMCD(W )).

Here

C(n, i) =
(

n

i

)

=
n!

i! (n − i)!

is the binomial coefficient.
The MCD estimator is a high breakdown (HB) estimator, and the value

cn = 
(n + p + 1)/2� is often used as the default. The MCD estimator is the
pair

(β̂LTS , QLTS(β̂LTS)/(cn − 1))

in the location model where LTS stands for the least trimmed sum of squares
estimator. See Chapter 14. The population analog of the MCD estimator is
closely related to the hyperellipsoid of highest concentration that contains
cn/n ≈ half of the mass. The MCD estimator is a

√
n consistent HB asymp-

totically normal estimator for (μ, aMCDΣ) where aMCD is some positive
constant when the data xi are iid from a large class of distributions. See
Cator and Lopuhaä (2010, 2012) who extended some results of Butler et al.
(1993).

Computing robust covariance estimators can be very expensive. For exam-
ple, to compute the exact MCD(cn) estimator (TMCD, CMCD), we need to
consider the C(n, cn) subsets of size cn. Woodruff and Rocke (1994, p. 893)

http://dx.doi.org/10.1007/978-3-319-68253-2_14
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noted that if 1 billion subsets of size 101 could be evaluated per second, it
would require 1033 millenia to search through all C(200, 101) subsets if the
sample size n = 200.

Hence algorithm estimators will be used to approximate the robust esti-
mators. Elemental sets are the key ingredient for both basic resampling and
concentration algorithms.

Definition 4.5. Suppose that x1, ...,xn are p×1 vectors of observed data.
For the multivariate location and dispersion model, an elemental set J is
a set of p + 1 cases. An elemental start is the sample mean and sample
covariance matrix of the data corresponding to J. In a concentration algo-
rithm, let (T−1,j ,C−1,j) be the jth start (not necessarily elemental) and
compute all n Mahalanobis distances Di(T−1,j ,C−1,j). At the next iter-
ation, the classical estimator (T0,j ,C0,j) = (x0,j ,S0,j) is computed from
the cn ≈ n/2 cases corresponding to the smallest distances. This itera-
tion can be continued for k concentration steps resulting in the sequence of
estimators (T−1,j ,C−1,j), (T0,j ,C0,j), ..., (Tk,j ,Ck,j). The result of the iter-
ation (Tk,j ,Ck,j) is called the jth attractor. If Kn starts are used, then
j = 1, ...,Kn. The concentration attractor, (TA,CA), is the attractor cho-
sen by the algorithm. The attractor is used to obtain the final estimator. A
common choice is the attractor that has the smallest determinant det(Ck,j).
The basic resampling algorithm estimator is a special case where k = −1 so
that the attractor is the start: (xk,j ,Sk,j) = (x−1,j ,S−1,j).

This concentration algorithm is a simplified version of the algorithms given
by Rousseeuw and Van Driessen (1999) and Hawkins and Olive (1999a). Using
k = 10 concentration steps often works well. The following proposition is
useful and shows that det(S0,j) tends to be greater than the determinant of
the attractor det(Sk,j).

Proposition 4.4: Rousseeuw and Van Driessen (1999, p. 214).
Suppose that the classical estimator (xt,j ,St,j) is computed from cn cases
and that the n Mahalanobis distances Di ≡ Di(xt,j ,St,j) are computed. If
(xt+1,j ,St+1,j) is the classical estimator computed from the cn cases with
the smallest Mahalanobis distances Di, then det(St+1,j) ≤ det(St,j) with
equality iff (xt+1,j ,St+1,j) = (xt,j ,St,j).

Starts that use a consistent initial estimator could be used. Kn is the
number of starts, and k is the number of concentration steps used in the
algorithm. Suppose the algorithm estimator uses some criterion to choose an
attractor as the final estimator where there are K attractors and K is fixed,
e.g., K = 500, so K does not depend on n. A crucial observation is that the
theory of the algorithm estimator depends on the theory of the attractors,
not on the estimator corresponding to the criterion.

For example, let (0, Ip) and (1, diag(1, 3, ..., p)) be the high breakdown
attractors where 0 and 1 are the p × 1 vectors of zeroes and ones. If the
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minimum determinant criterion is used, then the final estimator is (0, Ip).
Although the MCD criterion is used, the algorithm estimator does not have
the same properties as the MCD estimator.

Hawkins and Olive (2002) showed that if K randomly selected elemental
starts are used with concentration to produce the attractors, then the result-
ing estimator is inconsistent and zero breakdown if K and k are fixed and free
of n. Note that each elemental start can be made to breakdown by changing
one case. Hence the breakdown value of the final estimator is bounded by
K/n → 0 as n → ∞. Note that the classical estimator computed from hn

randomly drawn cases is an inconsistent estimator unless hn → ∞ as n → ∞.
Thus the classical estimator applied to a randomly drawn elemental set of
hn ≡ p + 1 cases is an inconsistent estimator, so the K starts and the K
attractors are inconsistent.

This theory shows that the Maronna et al. (2006, pp. 198–199) estima-
tors that use K = 500 and one concentration step (k = 0) are inconsis-
tent and zero breakdown. The following theorem is useful because it does
not depend on the criterion used to choose the attractor. If the algorithm
needs to use many attractors to achieve outlier resistance, then the individ-
ual attractors have little outlier resistance. Such estimators include elemen-
tal concentration algorithms, heuristic and genetic algorithms, and projec-
tion algorithms. Algorithms where all K of the attractors are inconsistent,
such as elemental concentration algorithms that use k concentration steps,
are especially untrustworthy. As another example, Stahel–Donoho algorithms
use randomly chosen projections and the attractor is a weighted mean and
covariance matrix computed for each projection. If randomly chosen projec-
tions result in inconsistent attractors, then the Stahel–Donoho algorithm is
likely inconsistent.

Suppose there are K consistent estimators (Tj ,Cj) of (μ, a Σ) for some
constant a > 0, each with the same rate nδ. If (TA,CA) is an estimator
obtained by choosing one of the K estimators, then (TA,CA) is a consistent
estimator of (μ, a Σ) with rate nδ by Pratt (1959). See Theorem 3.16.

Theorem 4.5. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent estimators of (μ, a Σ), then the
algorithm estimator is a consistent estimator of (μ, a Σ).

ii) If all of the attractors are consistent estimators of (μ, a Σ) with the
same rate, e.g., nδ where 0 < δ ≤ 0.5, then the algorithm estimator is a
consistent estimator of (μ, a Σ) with the same rate as the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

iv) Suppose the data x1, ...,xn are iid and P (xi = μ) < 1. The elemental
basic resampling algorithm estimator (k = −1) is inconsistent.

v) The elemental concentration algorithm is zero breakdown.

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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Proof. i) Choosing from K consistent estimators for (μ, a Σ) results in a
consistent estimator for of (μ, a Σ), and ii) follows from Pratt (1959). iii) Let
γn,i be the breakdown value of the ith attractor if the clean data x1, ...,xn are
in general position. The breakdown value γn of the algorithm estimator can
be no lower than that of the worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5
as n → ∞.

iv) Let (x−1,j ,S−1,j) be the classical estimator applied to a randomly
drawn elemental set. Then x−1,j is the sample mean applied to p + 1 iid
cases. Hence E(Sj) = Σx, E[x−1,j ] = E(x) = μ, and Cov(x−1,j) =
Cov(x)/(p+1) = Σx/(p+1) assuming second moments. So the (x−1,j ,S−1,j)
are identically distributed and inconsistent estimators of (μ,Σx). Even with-
out second moments, there exists ε > 0 such that P (‖x−1,j−μ‖ > ε) = δε > 0
where the probability, ε, and δε do not depend on n since the distribution
of x−1,j only depends on the distribution of the iid xi, not on n. Then
P (minj ‖x−1,j − μ‖ > ε) = P (all |x−1,j − μ‖ > ε) → δKε > 0 as n → ∞
where equality would hold if the x−1,j were iid. Hence the “best start” that
minimizes ‖x−1,j − μ‖ is inconsistent.

v) The classical estimator with breakdown 1/n is applied to each elemental
start. Hence γn ≤ K/n → 0 as n → ∞. �

Since the FMCD estimator is a zero breakdown elemental concentration
algorithm, the Hubert et al. (2008) claim that “MCD can be efficiently com-
puted with the FAST-MCD estimator” is false. Suppose K is fixed, but at
least one randomly drawn start is iterated to convergence so that k is not
fixed. Then it is not known whether the attractors are inconsistent or consis-
tent estimators, so it is not known whether FMCD is consistent. It is possible
to produce consistent estimators if K ≡ Kn is allowed to increase to ∞.

Remark 4.1. Let γo be the highest percentage of large outliers that an
elemental concentration algorithm can detect reliably. For many data sets,

γo ≈ min
(

n − cn

n
, 1 − [1 − (0.2)1/K ]1/h

)

100% (4.5)

if n is large, cn ≥ n/2 and h = p + 1.

Proof. Suppose that the data set contains n cases with d outliers and
n − d clean cases. Suppose K elemental sets are chosen with replacement.
If Wi is the number of outliers in the ith elemental set, then the Wi are
iid hypergeometric(d, n − d, h) random variables. Suppose that it is desired
to find K such that the probability P(that at least one of the elemental
sets is clean) ≡ P1 ≈ 1 − α where 0 < α < 1. Then P1 = 1− P(none of
the K elemental sets is clean) ≈ 1 − [1 − (1 − γ)h]K by independence. If the
contamination proportion γ is fixed, then the probability of obtaining at least
one clean subset of size h with high probability (say 1− α = 0.8) is given by
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0.8 = 1− [1− (1− γ)h]K . Fix the number of starts K and solve this equation
for γ. �

Equation (4.5) agrees very well with the Rousseeuw and Van Driessen
(1999) simulation performed on the hybrid FMCD algorithm that uses both
concentration and partitioning. Section 4.4 will provide theory for the useful
practical algorithms and will show that there exists a useful class of data sets
where the elemental concentration algorithm can tolerate up to 25% massive
outliers.

4.4 Theory for Practical Estimators

It is convenient to let the xi be random vectors for large sample theory, but
the xi are fixed clean observed data vectors when discussing breakdown. This
section presents the FCH estimator to be used along with the classical and
FMCD estimators. Recall from Definition 4.5 that a concentration algorithm
uses Kn starts (T−1,j ,C−1,j). After finding (T0,j ,C0,j), each start is refined
with k concentration steps, resulting in Kn attractors (Tk,j ,Ck,j), and the
concentration attractor (TA,CA) is the attractor that optimizes the criterion.

Concentration algorithms include the basic resampling algorithm as a spe-
cial case with k = −1. Using k = 10 concentration steps works well, and
iterating until convergence is usually fast. The DGK estimator (Devlin et
al. 1975, 1981) defined below is one example. Gnanadesikan and Ketten-
ring (1972, pp. 94–95) provided a similar algorithm. The DGK estimator is
affine equivariant since the classical estimator is affine equivariant and Maha-
lanobis distances are invariant under affine transformations by Proposition
4.1. This section will show that the Olive (2004a) MB estimator is a high
breakdown estimator and that the DGK estimator is a

√
n consistent esti-

mator of (μ, aMCDΣ), the same quantity estimated by the MCD estimator.
Both estimators use the classical estimator computed from cn ≈ n/2 cases.
The breakdown point of the DGK estimator has been conjectured to be “at
most 1/p.” See Rousseeuw and Leroy (1987, p. 254). Gnanadesikan (1977, p.
134) provided an estimator somewhat similar to the MB estimator.

Definition 4.6. The DGK estimator (Tk,D,Ck,D) = (TDGK ,CDGK) uses
the classical estimator (T−1,D,C−1,D) = (x,S) as the only start.

Definition 4.7. The median ball (MB) estimator (Tk,M ,Ck,M ) = (TMB ,
CMB) uses (T−1,M ,C−1,M ) = (MED(W ), Ip) as the only start where
MED(W ) is the coordinatewise median. So (T0,M ,C0,M ) is the classical esti-
mator applied to the “half set” of data closest to MED(W ) in Euclidean
distance.
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The proof of the following theorem implies that a high breakdown estima-
tor (T,C) has MED(D2

i ) ≤ V and that the hyperellipsoid {x|D2
x ≤ D2

(cn)
}

that contains cn ≈ n/2 of the cases is in some ball about the origin of radius
r, where V and r do not depend on the outliers even if the number of outliers
is close to n/2. Also the attractor of a high breakdown estimator is a high
breakdown estimator if the number of concentration steps k is fixed, e.g.,
k = 10. The theorem implies that the MB estimator (TMB ,CMB) is high
breakdown.

Theorem 4.6. Suppose (T,C) is a high breakdown estimator where C is
a symmetric, positive definite p × p matrix if the contamination proportion
dn/n is less than the breakdown value. Then the concentration attractor
(Tk,Ck) is a high breakdown estimator if the coverage cn ≈ n/2 and the
data are in general position.
Proof. Following Leon (1986, p. 280), if A is a symmetric positive definite

matrix with eigenvalues τ1 ≥ · · · ≥ τp, then for any nonzero vector x,

0 < ‖x‖2 τp ≤ xT Ax ≤ ‖x‖2 τ1. (4.6)

Let λ1 ≥ · · · ≥ λp be the eigenvalues of C. By (4.6),

1
λ1

‖x − T‖2 ≤ (x − T )T C−1(x − T ) ≤ 1
λp

‖x − T‖2. (4.7)

By (4.7), if the D2
(i) are the order statistics of the D2

i (T,C), then D2
(i) < V

for some constant V that depends on the clean data but not on the outliers
even if i and dn are near n/2. (Note that 1/λp and MED(‖xi−T‖2) are both
bounded for high breakdown estimators even for dn near n/2.)

Following Johnson and Wichern (1988, pp. 50, 103), the boundary of
the set {x|D2

x ≤ h2} = {x|(x − T )T C−1(x − T ) ≤ h2} is a hyperel-
lipsoid centered at T with axes of length 2h

√
λi. Hence {x|D2

x ≤ D2
(cn)

}
is contained in some ball about the origin of radius r where r does not
depend on the number of outliers even for dn near n/2. This is the set con-
taining the cases used to compute (T0,C0). Since the set is bounded, T0

is bounded and the largest eigenvalue λ1,0 of C0 is bounded by Lemma
4.3. The determinant det(CMCD) of the HB minimum covariance deter-
minant estimator satisfies 0 < det(CMCD) ≤ det(C0) = λ1,0 · · ·λp,0, and
λp,0 > inf det(CMCD)/λp−1

1,0 > 0 where the infimum is over all possible data
sets with n−dn clean cases and dn outliers. Since these bounds do not depend
on the outliers even for dn near n/2, (T0,C0) is a high breakdown estimator.
Now repeat the argument with (T0,C0) in place of (T,C) and (T1,C1) in
place of (T0,C0). Then (T1,C1) is high breakdown. Repeating the argument
iteratively shows (Tk,Ck) is high breakdown. �
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The following corollary shows that it is easy to find a subset J of cn ≈ n/2
cases such that the classical estimator (xJ ,SJ) applied to J is a HB estimator
of MLD.

Corollary 4.7. Let J consist of the cn cases xi such that ‖xi−MED(W )‖
≤ MED(‖xi −MED(W )‖). Then the classical estimator (xJ ,SJ) applied to
J is a HB estimator of MLD.

To investigate the consistency and rate of robust estimators of multivariate
location and dispersion, review Definitions 3.14 and 3.15.

The following assumption (E1) gives a class of distributions where we can
prove that the new robust estimators are

√
n consistent. Cator and Lop-

uhaä (2010, 2012) showed that MCD is consistent provided that the MCD
functional is unique. Distributions where the functional is unique are called
“unimodal,” and rule out, for example, a spherically symmetric uniform dis-
tribution. Theorem 4.8 is crucial for theory, and Theorem 4.9 shows that
under (E1), both MCD and DGK are estimating (μ, aMCDΣ).

Assumption (E1): The x1, ...,xn are iid from a “unimodal” ECp(μ,Σ, g)
distribution with nonsingular covariance matrix Cov(xi) where g is contin-
uously differentiable with finite fourth moment:

∫
(xT x)2g(xT x)dx < ∞.

Lopuhaä (1999) showed that if a start (T,C) is a consistent affine equivari-
ant estimator of (μ, sΣ), then the classical estimator applied to the cases with
D2

i (T,C) ≤ h2 is a consistent estimator of (μ, aΣ) where a, s > 0 are some
constants. Affine equivariance is not used for Σ = Ip. Also, the attractor
and the start have the same rate. If the start is inconsistent, then so is the
attractor. The weight function I(D2

i (T,C) ≤ h2) is an indicator that is 1 if
D2

i (T,C) ≤ h2 and 0 otherwise.

Theorem 4.8, Lopuhaä (1999). Assume the number of concentration
steps k is fixed. a) If the start (T,C) is inconsistent, then so is the attractor.

b) Suppose (T,C) is a consistent estimator of (μ, sIp) with rate nδ where
s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds and Σ = Ip. Then the classical
estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a consistent
estimator of (μ, aIp) with the same rate nδ where a > 0.

c) Suppose (T,C) is a consistent affine equivariant estimator of (μ, sΣ)
with rate nδ where s > 0 and 0 < δ ≤ 0.5. Assume (E1) holds. Then the
classical estimator (T0,C0) applied to the cases with D2

i (T,C) ≤ h2 is a
consistent affine equivariant estimator of (μ, aΣ) with the same rate nδ where
a > 0. The constant a depends on the positive constants s, h, p, and the
elliptically contoured distribution, but does not otherwise depend on the
consistent start (T,C).

Let δ = 0.5. Applying Theorem 4.8c) iteratively for a fixed number k of
steps produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where (Tj ,Cj)

http://dx.doi.org/10.1007/978-3-319-68253-2_3
http://dx.doi.org/10.1007/978-3-319-68253-2_3
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is a
√

n consistent affine equivariant estimator of (μ, ajΣ) where the con-
stants aj > 0 depend on s, h, p, and the elliptically contoured distribution,
but do not otherwise depend on the consistent start (T,C) ≡ (T−1,C−1).

The 4th moment assumption was used to simplify theory, but likely holds
under 2nd moments. Affine equivariance is needed so that the attractor is
affine equivariant, but probably is not needed to prove consistency.

Conjecture 4.1. Change the finite 4th moments assumption to a finite
2nd moments in assumption E1). Suppose (T,C) is a consistent estimator
of (μ, sΣ) with rate nδ where s > 0 and 0 < δ ≤ 0.5. Then the classical
estimator applied to the cases with D2

i (T,C) ≤ h2 is a consistent estimator
of (μ, aΣ) with the same rate nδ where a > 0.

Remark 4.2. To see that the Lopuhaä (1999) theory extends to con-
centration where the weight function uses h2 = D2

(cn)
(T,C), note that

(T, C̃) ≡ (T,D2
(cn)

(T,C) C) is a consistent estimator of (μ, bΣ) where b > 0
is derived in (4.9), and weight function I(D2

i (T, C̃) ≤ 1) is equivalent to the
concentration weight function I(D2

i (T,C) ≤ D2
(cn)

(T,C)). As noted above,
Proposition 4.1, (T, C̃) is affine equivariant if (T,C) is affine equivariant.
Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent to
theory applied to affine equivariant (T,C) with h2 = D2

(cn)
(T,C).

If (T,C) is a consistent estimator of (μ, s Σ) with rate nδ where 0 < δ ≤
0.5, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − μ + μ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x − μ + μ − T )

= s−1D2(μ,Σ) + OP (n−δ). (4.8)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of s−1D2(μ,Σ). Suppose cn/n → ξ ∈ (0, 1) as n → ∞, and let
D2

ξ(μ,Σ) be the 100ξth percentile of the population squared distances. Then

D2
(cn)

(T,C) P→ s−1D2
ξ(μ,Σ) and bΣ = s−1D2

ξ(μ,Σ)sΣ = D2
ξ(μ,Σ)Σ.

Thus
b = D2

ξ(μ,Σ) (4.9)

does not depend on s > 0 or δ ∈ (0, 0.5]. �

Concentration applies the classical estimator to cases with D2
i (T,C) ≤

D2
(cn)

(T,C). Let cn ≈ n/2 and

b = D2
0.5(μ,Σ)

be the population median of the population squared distances. By Remark
4.2, if (T,C) is a

√
n consistent affine equivariant estimator of (μ, sΣ) then
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(T, C̃) ≡ (T,D2
(cn)

(T,C) C) is a
√

n consistent affine equivariant estimator
of (μ, bΣ), and D2

i (T, C̃) ≤ 1 is equivalent to D2
i (T,C) ≤ D2

(cn)
(T,C)).

Hence Lopuhaä (1999) theory applied to (T, C̃) with h = 1 is equivalent
to theory applied to the concentration estimator using the affine equivariant
estimator (T,C) ≡ (T−1,C−1) as the start. Since b does not depend on s,
concentration produces a sequence of estimators (T0,C0), ..., (Tk,Ck) where
(Tj ,Cj) is a

√
n consistent affine equivariant estimator of (μ, aΣ) where the

constant a > 0 is the same for j = 0, 1, ..., k.
Theorem 4.9 shows that a = aMCD where ξ = 0.5. Hence concentration

with a consistent affine equivariant estimator of (μ, sΣ) with rate nδ as a start
results in a consistent affine equivariant estimator of (μ, aMCDΣ) with rate
nδ. This result can be applied iteratively for a finite number of concentration
steps. Hence DGK is a

√
n consistent affine equivariant estimator of the

same quantity that MCD is estimating. It is not known if the results hold
if concentration is iterated to convergence. For multivariate normal data,
D2(μ,Σ) ∼ χ2

p.

Theorem 4.9. Assume that (E1) holds and that (T,C) is a consistent
affine equivariant estimator of (μ, sΣ) with rate nδ where the constants s > 0
and 0 < δ ≤ 0.5. Then the classical estimator (xt,j ,St,j) computed from the
cn ≈ n/2 of cases with the smallest distances Di(T,C) is a consistent affine
equivariant estimator of (μ, aMCDΣ) with the same rate nδ.

Proof. By Remark 4.2, the estimator is a consistent affine equivariant esti-
mator of (μ, aΣ) with rate nδ. By the remarks above, a will be the same for
any consistent affine equivariant estimator of (μ, sΣ) and a does not depend
on s > 0 or δ ∈ (0, 0.5]. Hence the result follows if a = aMCD. The MCD
estimator is a

√
n consistent affine equivariant estimator of (μ, aMCDΣ) by

Cator and Lopuhaä (2010, 2012). If the MCD estimator is the start, then it
is also the attractor by Rousseeuw and Van Driessen (1999) who show that
concentration does not increase the MCD criterion. Hence a = aMCD. �

Next we define the easily computed robust
√

n consistent FCH estima-
tor, so named since it is fast, consistent and uses a high breakdown attrac-
tor. The FCH and MBA estimators use the

√
n consistent DGK estima-

tor (TDGK ,CDGK) and the high breakdown MB estimator (TMB ,CMB) as
attractors.

Definition 4.8. Let the “median ball” be the hypersphere containing the
“half set” of data closest to MED(W ) in Euclidean distance. The FCH esti-
mator uses the MB attractor if the DGK location estimator TDGK is outside
of the median ball, and the attractor with the smallest determinant, other-
wise. Let (TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH)
takes TFCH = TA and

CFCH =
MED(D2

i (TA,CA))
χ2

p,0.5

CA (4.10)
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where χ2
p,0.5 is the 50th percentile of a chi-square distribution with p degrees

of freedom.

Remark 4.3. The MBA estimator (TMBA,CMBA) uses the attractor
(TA,CA) with the smallest determinant. Hence the DGK estimator is used
as the attractor if det(CDGK) ≤ det(CMB), and the MB estimator is used as
the attractor, otherwise. Then TMBA = TA and CMBA are computed using
the right-hand side of (4.10). The difference between the FCH and MBA esti-
mators is that the FCH estimator also uses a location criterion to choose the
attractor: if the DGK location estimator TDGK has a greater Euclidean dis-
tance from MED(W ) than half the data, then FCH uses the MB attractor.
The FCH estimator only uses the attractor with the smallest determinant if
‖TDGK − MED(W )‖ ≤ MED(Di(MED(W ), Ip)). Using the location crite-
rion increases the outlier resistance of the FCH estimator for certain types of
outliers, as will be seen in Section 4.5.

The following theorem shows the FCH estimator has good statistical prop-
erties. We conjecture that FCH is high breakdown. Note that the location
estimator TFCH is high breakdown and that det(CFCH) is bounded away
from 0 and ∞ if the data is in general position, even if nearly half of the
cases are outliers.

Theorem 4.10. TFCH is high breakdown if the clean data are in gen-
eral position. Suppose (E1) holds. If (TA,CA) is the DGK or MB attractor
with the smallest determinant, then (TA,CA) is a

√
n consistent estimator

of (μ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant√
n consistent estimators of (μ, cΣ) where c = u0.5/χ2

p,0.5 and c = 1 for
multivariate normal data.

Proof. TFCH is high breakdown since it is a bounded distance from
MED(W ) even if the number of outliers is close to n/2. Under (E1), the
FCH and MBA estimators are asymptotically equivalent since ‖TDGK −
MED(W )‖ → 0 in probability. The estimator satisfies 0 < det(CMCD) ≤
det(CA) ≤ det(C0,M ) < ∞ by Theorem 4.6 if up to nearly 50% of the cases
are outliers. If the distribution is spherical about μ, then the result follows
from Pratt (1959) and Proposition 4.4 since both starts are

√
n consistent.

Otherwise, the MB estimator CMB is a biased estimator of aMCDΣ. But the
DGK estimator CDGK is a

√
n consistent estimator of aMCDΣ by Theorem

4.9 and ‖CMCD−CDGK‖ = OP (n−1/2). Thus the probability that the DGK
attractor minimizes the determinant goes to one as n → ∞, and (TA,CA) is
asymptotically equivalent to the DGK estimator (TDGK ,CDGK).

Let CF = CFCH or CF = CMBA. Let P (U ≤ uα) = α where U is given
by (3.9). Then the scaling in (4.10) makes CF a consistent estimator of cΣ
where c = u0.5/χ2

p,0.5, and c = 1 for multivariate normal data. �
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Many variants of the FCH and MBA estimators can be given where the
algorithm gives a

√
n consistent estimator of (μ, cΣ). One such variant uses

K starts (T−1,j ,C−1,j) that are affine equivariant
√

n consistent estimators
of (μ, sjΣ) where sj > 0. The MCD criterion is used to choose the final
attractor, and scaling is done as in (4.10). A second variant is the same
as the first, but the Kth attractor is replaced by the MB estimator, and for
j < K the jth attractor (Tk,j ,Ck,j) is not used if Tk,j has a greater Euclidean
distance from MED(X) than half the data. Then the location estimator of
the algorithm is high breakdown.

Suppose the attractor is (xk,j ,Sk,j) computed from a subset of cn cases.
The MCD(cn) criterion is the determinant det(Sk,j). The volume of the
hyperellipsoid {z : (z − xk,j)T S−1

k,j(z − xk,j) ≤ h2} is equal to

2πp/2

pΓ (p/2)
hp

√
det(Sk,j), (4.11)

see Johnson and Wichern (1988, pp. 103–104). The “MVE(cn)” criterion is
hp

√
det(Sk,j) where h = D(cn)(xk,j ,Sk,j) (but does not actually correspond

to the minimum volume ellipsoid (MVE) estimator).
We also considered several estimators that use the MB and DGK esti-

mators as attractors. CMVE is a concentration algorithm like FCH, but the
“MVE” criterion is used in place of the MCD criterion. A standard method
of reweighting can be used to produce the RMBA, RFCH, and RCMVE
estimators. RMVN uses a slightly modified method of reweighting so that
RMVN gives good estimates of (μ,Σ) for multivariate normal data, even
when certain types of outliers are present.

Definition 4.9. The RFCH estimator uses two standard reweighting
steps. Let (μ̂1, Σ̃1) be the classical estimator applied to the n1 cases with
D2

i (TFCH ,CFCH) ≤ χ2
p,0.975, and let

Σ̂1 =
MED(D2

i (μ̂1, Σ̃1))
χ2

p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with
D2

i (μ̂1, Σ̂1) ≤ χ2
p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))
χ2

p,0.5

Σ̃2.

RMBA and RFCH are
√

n consistent estimators of (μ, cΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975, but the two estimators
use nearly 97.5% of the cases if the data is multivariate normal. We conjecture
CMVE and RMVE are also

√
n consistent estimators of (μ, cΣ).
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Definition 4.10. The RMVN estimator uses (μ̂1, Σ̃1) and n1 as above.
Let q1 = min{0.5(0.975)n/n1, 0.995}, and

Σ̂1 =
MED(D2

i (μ̂1, Σ̃1))
χ2

p,q1

Σ̃1.

Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with
D2

i (μ̂1, Σ̂1)) ≤ χ2
p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))
χ2

p,q2

Σ̃2.

Definition 4.11. Let the n2 cases in Definition 4.10 be known as the
RMVN set U . Hence (TRMV N , Σ̃2) = (xU ,SU ) is the classical estimator
applied to the RMVN set U , which can be regarded as the untrimmed data
(the data not trimmed by ellipsoidal trimming) or the cleaned data. Also
SU is the unscaled estimated dispersion matrix while CRMV N is the scaled
estimated dispersion matrix.

Remark 4.4. Classical methods will be applied to the RMVN subset
U to make robust methods throughout this text. Under (E1), (xU ,SU )
is a

√
n consistent estimator of (μ, cUΣ) for some constant cU > 0 that

depends on the underlying distribution of the iid xi. For a general estima-
tor of multivariate location and dispersion (TA,CA), typically a reweight
for efficiency step is performed, resulting in a set U such that the classi-
cal estimator (xU ,SU ) is the classical estimator applied to a set U . For
example, use U = {xi|D2

i (TA,CA) ≤ χ2
p,0.975}. Then the final estimator

is (TF ,CF ) = (xU , aSU ) where scaling is done as in Equation (4.10) in
an attempt to make CF a good estimator of Σ if the iid data are from a
Np(μ,Σ) distribution. Then (xU ,SU ) can be shown to be a

√
n consistent

estimator of (μ, cUΣ) for a large class of distributions for the RMVN set, for
the RFCH set, or if (TA,CA) is an affine equivariant

√
n consistent estimator

of (μ, cAΣ) on a large class of distributions. The necessary theory is not yet
available for other practical robust reweighted estimators such as OGK and
Det-MCD.

Table 4.1 Average Dispersion Matrices for Near Point Mass Outliers

RMVN FMCD OGK MB[
1.002 −0.014

−0.014 2.024

] [
0.055 0.685

0.685 122.5

] [
0.185 0.089

0.089 36.24

] [
2.570 −0.082

−0.082 5.241

]



104 4 MLD Estimators

Table 4.2 Average Dispersion Matrices for Mean Shift Outliers

RMVN FMCD OGK MB[
0.990 0.004

0.004 2.014

] [
2.530 0.003

0.003 5.146

] [
19.67 12.88

12.88 39.72

] [
2.552 0.003

0.003 5.118

]

The RMVN estimator is a
√

n consistent estimator of (μ, dΣ) by Lopuhaä
(1999) where the weight function uses h2 = χ2

p,0.975 and d = u0.5/χ2
p,q where

q2 → q in probability as n → ∞. Here 0.5 ≤ q < 1 depends on the elliptically
contoured distribution, but q = 0.5 and d = 1 for multivariate normal data.

If the bulk of the data is Np(μ,Σ), the RMVN estimator can give useful
estimates of (μ,Σ) for certain types of outliers where FCH and RFCH esti-
mate (μ, dEΣ) for dE > 1. To see this claim, let 0 ≤ γ < 0.5 be the outlier
proportion. If γ = 0, then ni/n

P→ 0.975 and qi
P→ 0.5. If γ > 0, suppose

the outlier configuration is such that the D2
i (TFCH ,CFCH) are roughly χ2

p

for the clean cases, and the outliers have larger D2
i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1 − γ). For example, if n = 100 and
γ = 0.4, then there are 60 clean cases, q = 5/6, and the quantile χ2

p,q is
being estimated instead of χ2

p,0.5. Now ni ≈ n(1 − γ)0.975, and qi estimates
q. Thus CRMV N ≈ Σ. Of course consistency cannot generally be claimed
when outliers are present.

Simulations suggested (TRMV N ,CRMV N ) gives useful estimates of (μ,Σ)
for a variety of outlier configurations. Using 20 runs and n = 1000, the aver-
ages of the dispersion matrices were computed when the bulk of the data are
iid N2(0,Σ) where Σ = diag(1, 2). For clean data, FCH, RFCH, and RMVN
give

√
n consistent estimators of Σ, while FMCD and the Maronna and

Zamar (2002) OGK estimator seem to be approximately unbiased for Σ. The
median ball estimator was scaled using (4.10) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)T , 0.0001I2),
a near point mass at the major axis. FCH, MB, and RFCH estimated 2.6Σ
while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note
that χ2

2,5/6/χ2
2,0.5 = 2.585. See Table 4.1. The following R commands were

used where mldsim is from mpack.

qchisq(5/6,2)/qchisq(.5,2) = 2.584963
mldsim(n=1000,p=2,outliers=6,pm=15)

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)T ,Σ), a
mean shift with the same covariance matrix as the clean cases. Rocke and
Woodruff (1996) suggest that outliers with mean shift are hard to detect.
FCH, FMCD, MB, and RFCH estimated 2.6Σ while RMVN estimated Σ,
and OGK failed. See Table 4.2. The R command is shown below.

mldsim(n=1000,p=2,outliers=3,pm=20)
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Remark 4.5. The RFCH and RMVN estimators are recommended. If
these estimators are too slow and outlier detection is of interest, try the
RMB estimator, the reweighted MB estimator. If RMB is too slow or if
n < 2(p + 1), the Euclidean distances Di(MED(W ), I) of xi from the coor-
dinatewise median MED(W ) may be useful. A DD plot of Di(x, I) versus
Di(MED(W ), I) is also useful for outlier detection and for whether x and
MED(W ) are giving similar estimates of multivariate location. See Section
4.7.

Example 4.1. Tremearne (1911) recorded height = x[,1] and height while
kneeling = x[,2] of 112 people. Figure 4.1a shows a scatterplot of the data.
Case 3 has the largest Euclidean distance of 214.767 from MED(W ) =
(1680, 1240)T , but if the distances correspond to the contours of a cover-
ing ellipsoid, then case 44 has the largest distance. For k = 0, (T0,M ,C0,M )
is the classical estimator applied to the “half set” of cases closest to MED(W )
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Fig. 4.1 Plots for Major Data

in Euclidean distance. The hypersphere (circle) centered at MED(W ) that
covers half the data is small because the data density is high near MED(W ).
The median Euclidean distance is 59.661, and case 44 has Euclidean distance
77.987. Hence the intersection of the sphere and the data is a highly corre-
lated clean ellipsoidal region. Figure 4.1b shows the DD plot of the classical
distances versus the MB distances. Notice that both the classical and MB
estimators give the largest distances to cases 3 and 44. Notice that case 44
could not be detected using marginal methods.
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As the dimension p gets larger, outliers that cannot be detected by mar-
ginal methods (case 44 in Example 4.1) become harder to detect. When p = 3
imagine that the clean data is a baseball bat or stick with one end at the
SW corner of the bottom of the box (corresponding to the coordinate axes)
and one end at the NE corner of the top of the box. If the outliers are a ball,
there is much more room to hide them in the box than in a covering rectangle
when p = 2.

Example 4.2. The estimators can be useful when the data is not ellipti-
cally contoured. The Gladstone (1905) data has 11 variables on 267 persons
after death. Head measurements were breadth, circumference, head height,
length, and size as well as cephalic index and brain weight. Age, height, and
two categorical variables ageclass (0: under 20, 1: 20–45, 2: over 45) and
sex were also given. Figure 4.2 shows the DD plots for the FCH, RMVN,
cov.mcd, and MB estimators. The DD plots from the DGK, MBA, CMVE,
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Fig. 4.2 DD Plots for Gladstone Data

RCMVE, and RFCH estimators were similar, and the six outliers in Figure
4.2 correspond to the six infants in the data set.

Chapter 5 shows that if a consistent robust estimator is scaled as in (4.10),
then the plotted points in the DD plot will cluster about the identity line
with unit slope and zero intercept if the data is multivariate normal, and
about some other line through the origin if the data is from some other
elliptically contoured distribution with a nonsingular covariance matrix. Since

http://dx.doi.org/10.1007/978-3-319-68253-2_5
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multivariate procedures tend to perform well for elliptically contoured data,
the DD plot is useful even if outliers are not present.

4.5 Outlier Resistance and Simulations

RMVN FMCD
0.996 0.014 0.002 -0.001 0.931 0.017 0.011 0.000
0.014 2.012 -0.001 0.029 0.017 1.885 -0.003 0.022
0.002 -0.001 2.984 0.003 0.011 -0.003 2.803 0.010

-0.001 0.029 0.003 3.994 0.000 0.022 0.010 3.752

Simulations were used to compare (TFCH ,CFCH), (TRFCH ,CRFCH),
(TRMV N ,CRMV N ), and (TFMCD,CFMCD). Shown above are the averages,
using 20 runs and n = 1000, of the dispersion matrices when the bulk of the
data are iid N4(0,Σ) where Σ = diag(1, 2, 3, 4). The first pair of matrices
used γ = 0. Here the FCH, RFCH, and RMVN estimators are

√
n consis-

tent estimators of Σ, while CFMCD seems to be approximately unbiased for
0.94Σ.

Next the data had γ = 0.4 and the outliers had x ∼ N4((0, 0, 0, 15)T ,
0.0001 I4), a near point mass at the major axis. FCH and RFCH estimated
1.93Σ while RMVN estimated Σ. The FMCD estimator failed to estimate
d Σ. Note that χ2

4,5/6/χ2
4,0.5 = 1.9276.

RMVN FMCD
0.988 -0.023 -0.007 0.021 0.227 -0.016 0.002 0.049

-0.023 1.964 -0.022 -0.002 -0.016 0.435 -0.014 0.013
-0.007 -0.022 3.053 0.007 0.002 -0.014 0.673 0.179
0.021 -0.002 0.007 3.870 0.049 0.013 0.179 55.65

Next the data had γ = 0.4 and the outliers had x ∼ N4(15 1,Σ), a mean
shift with the same covariance matrix as the clean cases. Again FCH and
RFCH estimated 1.93Σ while RMVN and FMCD estimated Σ.

RMVN FMCD
1.013 0.008 0.006 -0.026 1.024 0.002 0.003 -0.025
0.008 1.975 -0.022 -0.016 0.002 2.000 -0.034 -0.017
0.006 -0.022 2.870 0.004 0.003 -0.034 2.931 0.005
-0.026 -0.016 0.004 3.976 -0.025 -0.017 0.005 4.046

If Win ∼ N(0, τ2/n) for i = 1, ..., r and if S2
W is the sample variance

of the Win, then E(nS2
W ) = τ2 and V (nS2

W ) = 2τ4/(r − 1). So nS2
W ±√

5SE(nS2
W ) ≈ τ2 ± √

10τ2/
√

r − 1. So for r = 1000 runs, we expect nS2
W

to be between τ2−0.1τ2 and τ2 +0.1τ2 with high confidence. Similar results
hold for many estimators if Win is

√
n consistent and asymptotically normal

and if n is large enough. If Win has less than
√

n rate, e.g., n1/3 rate, then
the scaled sample variance nS2

W → ∞ as n → ∞.
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Table 4.3 Scaled Variance nS2(Tp) and nS2(Cp,p)

p n V FCH RFCH RMVN DGK OGK CLAS FMCD MB

5 50 C 216.0 72.4 75.1 209.3 55.8 47.12 153.9 145.8

5 50 T 12.14 6.50 6.88 10.56 6.70 4.83 8.38 13.23

5 5000 C 307.6 64.1 68.6 325.7 59.3 48.5 60.4 309.5

5 5000 T 18.6 5.34 5.33 19.33 6.61 4.98 5.40 20.20

10 100 C 817.3 276.4 286.0 725.4 229.5 198.9 459.6 610.4

10 100 T 21.40 11.42 11.68 20.13 12.75 9.69 14.05 24.13

10 5000 C 955.5 237.9 243.8 966.2 235.8 202.4 233.6 975.0

10 5000 T 29.12 10.08 10.09 29.35 12.81 9.48 10.06 30.20

Table 4.3 considers W = Tp and W = Cp,p for eight estimators, p = 5
and 10, and n = 10p and 5000, when x ∼ Np(0, diag(1, ..., p)). For the clas-
sical estimator, denoted by CLAS, Tp = xp ∼ N(0, p/n), and nS2(Tp) ≈ p
while Cp,p is the sample variance of n iid N(0, p) random variables. Hence
nS2(Cp,p) ≈ 2p2. RFCH, RMVN, FMCD, and OGK use a “reweight for
efficiency” concentration step that uses a random number of cases with per-
centage close to 97.5%. These four estimators had similar behavior. DGK,
FCH, and MB used about 50% of the cases and had similar behavior. By
Lopuhaä (1999), estimators with less than

√
n rate still have zero efficiency

after the reweighting. Although FMCD, MB, and OGK have not been proven
to be

√
n consistent, their values did not blow up even for n = 5000.

Geometrical arguments suggest that the MB estimator has considerable
outlier resistance. Suppose the outliers are far from the bulk of the data. Let
the “median ball” correspond to the half set of data closest to MED(W ) in
Euclidean distance. If the outliers are outside of the median ball, then the
initial half set in the iteration leading to the MB estimator will be clean. Thus
the MB estimator will tend to give the outliers the largest MB distances unless
the initial clean half set has very high correlation in a direction about which
the outliers lie. This property holds for very general outlier configurations.
The FCH estimator tries to use the DGK attractor if the det(CDGK) is small
and the DGK location estimator TDGK is in the median ball. Distant outliers
that make det(CDGK) small also drag TDGK outside of the median ball. Then
FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
that lie within the median ball. If the bulk of the data is highly correlated
with the major axis of a hyperellipsoidal region, then the distances based on
the clean data can be very large for outliers that fall within the median ball.
The outlier resistance of the MB estimator decreases as p increases since the
volume of the median ball rapidly increases with p.



4.5 Outlier Resistance and Simulations 109

A simple simulation for outlier resistance is to count the number of times
the minimum distance of the outliers is larger than the maximum distance
of the clean cases. The simulation used 100 runs. If the count was 97, then
in 97 data sets the outliers can be separated from the clean cases with a
horizontal line in the DD plot, but in three data sets the robust distances did
not achieve complete separation. In Spring 2015, Det-MCD simulated much
like FMCD, but was more likely to cause an error in R.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the
mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T and x ∼
Np((0, ..., 0, pm)T , 0.0001Ip), a near point mass at the major axis. Notice that
the clean data can be transformed to a Np(0, Ip) distribution by multiplying
xi by diag(1, 1/

√
2, ..., 1/

√
p), and this transformation changes the location

of the near point mass to (0, ..., 0, pm/
√

p)T .
For near point mass outliers, a hyperellipsoid with very small volume can

cover half of the data if the outliers are at one end of the hyperellipsoid and
some of the clean data are at the other end. This half set will produce a
classical estimator with very small determinant by (4.11). In the simulations
for large γ, as the near point mass is moved very far away from the bulk of
the data, only the classical, MB, and OGK estimators did not have numerical

Table 4.4 Number of Times Mean Shift Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB

10 .1 100 4 49 49 85 84 38 76 57

10 .1 100 5 91 91 99 99 93 98 91

10 .4 100 7 90 90 90 90 0 48 100

40 .1 100 5 3 3 3 3 76 3 17

40 .1 100 8 36 36 37 37 100 49 86

40 .25 100 20 62 62 62 62 100 0 100

40 .4 100 20 20 20 20 20 0 0 100

40 .4 100 35 44 98 98 98 95 0 100

60 .1 200 10 49 49 49 52 100 30 100

60 .1 200 20 97 97 97 97 100 35 100

60 .25 200 25 60 60 60 60 100 0 100

60 .4 200 30 11 21 21 21 17 0 100

60 .4 200 40 21 100 100 100 100 0 100

difficulties. Since the MCD estimator has smaller determinant than DGK
while MVE has smaller volume than DGK, estimators like FMCD and MBA
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that use the MVE or MCD criterion without using location information will
be vulnerable to these outliers. FMCD is also vulnerable to outliers if γ is
slightly larger than γo given by (4.5).

Table 4.5 Number of Times Near Point Mass Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB

10 .1 100 40 73 92 92 92 100 95 100

10 .25 100 25 0 99 99 90 0 0 99

10 .4 100 25 0 100 100 100 0 0 100

40 .1 100 80 0 0 0 0 79 0 80

40 .1 100 150 0 65 65 65 100 0 99

40 .25 100 90 0 88 87 87 0 0 88

40 .4 100 90 0 91 91 91 0 0 91

60 .1 200 100 0 0 0 0 13 0 91

60 .25 200 150 0 100 100 100 0 0 100

60 .4 200 150 0 100 100 100 0 0 100

60 .4 200 20000 0 100 100 100 64 0 100

Tables 4.4 and 4.5 help illustrate the results for the simulation. Large
counts and small pm for fixed γ suggest greater ability to detect outliers.
Values of p were 5, 10, 15, ..., 60. First consider the mean shift outliers and
Table 4.4. For γ = 0.25 and 0.4, MB usually had the highest counts. For
5 ≤ p ≤ 20 and the mean shift, the OGK estimator often had the smallest
counts, and FMCD could not handle 40% outliers for p = 20. For 25 ≤ p ≤ 60,
OGK usually had the highest counts for γ = 0.05 and 0.1. For p ≥ 30, FMCD
could not handle 25% outliers even for enormous values of pm.

In Table 4.5, FCH greatly outperformed MBA although the only difference
between the two estimators is that FCH uses a location criterion as well as
the MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60 (not
tabled). For large γ, OGK often has large bias for cΣ. Then the outliers may
need to be enormous before OGK can detect them. Also see Table 4.2, where
OGK gave the outliers the largest distances for all runs, but COGK does not
give a good estimate of cΣ = c diag(1, 2).



4.5 Outlier Resistance and Simulations 111

MD

R
D

1.5 2.0 2.5 3.0 3.5 4.0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

72

19

34

32

44

50

FMCD DD Plot

Fig. 4.3 The FMCD Estimator Failed

The DD plot of MDi versus RDi is useful for detecting outliers. The
resistant estimator will be useful if (T,C) ≈ (μ, cΣ) where c > 0 since scaling
by c affects the vertical labels of the RDi but not the shape of the DD plot.
For the outlier data, the MBA estimator is biased, but the mean shift outliers
in the MBA DD plot will have large RDi since CMBA ≈ 2CFMCD ≈ 2Σ.

In an older mean shift simulation, when p was 8 or larger, the cov.mcd
estimator was usually not useful for detecting the mean shift outliers. Figure
4.3 shows that now the FMCD RDi are highly correlated with the MDi. The
DD plot based on the MBA estimator detects the outliers. See Figure 4.4.

For many data sets, Equation (4.5) gives a rough approximation for the
number of large outliers that concentration algorithms using K starts each
consisting of h cases can handle. However, if the data set is multivariate and
the bulk of the data falls in one compact hyperellipsoid while the outliers
fall in another hugely distant compact hyperellipsoid, then a concentration
algorithm using a single start can sometimes tolerate nearly 25% outliers.
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Fig. 4.4 The Outliers are Large in the MBA DD Plot

For example, suppose that all p + 1 cases in the elemental start are outliers
but the covariance matrix is nonsingular so that the Mahalanobis distances
can be computed. Then the classical estimator is applied to the cn ≈ n/2
cases with the smallest distances. Suppose the percentage of outliers is less
than 25% and that all of the outliers are in this “half set.” Then the sample
mean applied to the cn cases should be closer to the bulk of the data than
to the cluster of outliers. Hence after a concentration step, the percentage
of outliers will be reduced if the outliers are very far away. After the next
concentration step the percentage of outliers will be further reduced and after
several iterations, all cn cases will be clean.

In a small simulation study, 20% outliers were planted for various values of
p. If the outliers were distant enough, then the minimum DGK distance for
the outliers was larger than the maximum DGK distance for the nonoutliers.
Hence the outliers would be separated from the bulk of the data in a DD plot
of classical versus robust distances. For example, when the clean data comes
from the Np(0, Ip) distribution and the outliers come from the Np(2000 1, Ip)
distribution, the DGK estimator with 10 concentration steps was able to
separate the outliers in 17 out of 20 runs when n = 9000 and p = 30. With
10% outliers, a shift of 40, n = 600, and p = 50, 18 out of 20 runs worked.
Olive (2004a) showed similar results for the Rousseeuw and Van Driessen
(1999) FMCD algorithm and that the MBA estimator could often correctly
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classify up to 49% distant outliers. The following proposition shows that it
is very difficult to drive the determinant of the dispersion estimator from a
concentration algorithm to zero.

Proposition 4.11. Consider the concentration and MCD estimators that
both cover cn cases. For multivariate data, if at least one of the starts is
nonsingular, then the concentration attractor CA is less likely to be singular
than the high breakdown MCD estimator CMCD.

Proof. If all of the starts are singular, then the Mahalanobis distances
cannot be computed and the classical estimator cannot be applied to cn

cases. Suppose that at least one start was nonsingular. Then CA and CMCD

are both sample covariance matrices applied to cn cases, but by definition
CMCD minimizes the determinant of such matrices. Hence 0 ≤ det(CMCD) ≤
det(CA). �

Software

The robustbase library was downloaded from (www.r-project.org/#
doc).

∮
15.2 explains how to use the source command to get the mpack

functions in R and how to download a library from R. Type the commands
library(MASS) and library(robustbase) to compute the FMCD and
OGK estimators with the cov.mcd and covOGK functions. To use Det-MCD
instead of FMCD, change

out <- covMcd(x) to out <- covMcd(x,nsamp=‘‘deterministic’’),

but in Spring 2015, this change was more likely to cause errors.
The mpack function

mldsim(n=200,p=5,gam=.2,runs=100,outliers=1,pm=15)
can be used to produce Tables 4.1–4.5. Change outliers to 0 to examine the
average of μ̂ and Σ̂. The function mldsim6 is similar but does not need the
library command since it compares the FCH, RFCH, CMVE, RCMVE,
MB estimators, and the covmb2 estimator of Section 4.7. The command
sctplt(n=200,p=10,gam=.2,outliers=3, pm=5)
will make an outlier data set. Then the FCH and MB DD plots are made
(click on the right mouse button and highlight stop to go to the next plot) and
then the scatterplot matrix. The scatterplot matrix can be used to determine
whether the outliers are hard to detect with bivariate or univariate methods.
If p > 10 the bivariate plots may be too small. See Zhang (2011) for more
simulations.

The function covsim2 can be modified to show that the R implementation
of FCH is usually much faster than OGK which is much faster than FMCD.
The function corrsim can be used to simulate the correlations of robust dis-
tances with classical distances. RCMVE, RMBA, and RFCH are reweighted
versions of CMVE, MBA, and FCH that may perform better for small n. For
MVN data, the command

www.r-project.org/#doc
www.r-project.org/#doc
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corrsim(n=200,p=20,nruns=100,type=5)
suggests that the correlation of the RFCH distances with the classical dis-
tances is about 0.97. Changing type to 4 suggests that FCH needs n = 800
before the correlation is about 0.97. The function corrsim2 uses a wider
variety of EC distributions. See Zhang (2011) for simulations.
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Fig. 4.5 highlighted cases = half set with smallest RD = (T0,C0)

The function cmve computes CMVE and RCMVE, function covfch com-
putes FCH and RFCH, while covrmvn computes the RMVN and MB esti-
mators. The function covrmb computes MB and RMB where RMB is like
RMVN except the MB estimator is reweighted instead of FCH. Functions
covdgk, covmba, and rmba compute the scaled DGK, MBA, and RMBA esti-
mators. Better programs would use MB if DGK causes an error.

The concmv function described in Problem 4.5 illustrates concentration
where the start is (MED(W ), diag([MAD(Xi)]2)). In Figures 4.5, 4.6, and
4.7, the highlighted cases are the half set with the smallest distances, and
the initial half set shown in Figure 4.5 is not clean, where n = 100 and there
are 40 outliers. The attractor shown in Figure 4.7 is clean. This type of data
set has too many outliers for DGK while the MB starts and attractors are
almost always clean.

The ddmv function in Problem 4.6 illustrates concentration for the DGK
estimator where the start is the classical estimator. Now n = 100, p = 4,
and there are 25 outliers. A DD plot of classical distances MD versus robust
distances RD is shown. See Figures 4.8, 4.9, 4.10, and 4.11. The half set of
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Fig. 4.9 highlighted cases = outliers, RD = (T1,D,C1,D)
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Fig. 4.10 highlighted cases = outliers, RD = (T2,D,C2,D)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
5

10
15

20

MD

rd

Fig. 4.11 highlighted cases = outliers, RD = (T3,D,C3,D)

cases with the smallest RDs is used, and the initial half set shown in Figure
4.8 is not clean. The attractor in Figure 4.11 is the DGK estimator which
uses a clean half set. The clean cases xi ∼ N4(0, diag(1, 2, 3, 4)) while the
outliers xi ∼ N4((10, 10

√
2, 10

√
3, 20)T , diag(1, 2, 3, 4)).
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4.6 The RMVN and RFCH Sets

Both the RMVN and RFCH estimators compute the classical estimator
(xU ,SU ) on some set U containing nU ≥ n/2 of the cases. Referring to
Definition 4.9, for the RFCH estimator, (xU ,SU ) = (TRFCH , Σ̃2), and then
SU is scaled to form CRFCH . Referring to Definition 4.10, for the RMVN
estimator, (xU ,SU ) = (TRMV N , Σ̃2), and then SU is scaled to form CRMV N .
See Definition 4.11.

The two main ways to handle outliers are i) apply the multivariate method
to the cleaned data and ii) plug in robust estimators for classical estimators.
Subjectively cleaned data may work well for a single data set, but we can’t
get large sample theory since sometimes too many cases are deleted (delete
outliers and some nonoutliers) and sometimes too few (do not get all of the
outliers). Practical plug in robust estimators have rarely been shown to be√

n consistent and highly outlier resistant.
Using the RMVN or RFCH, set U is simultaneously a plug in method and

an objective way to clean the data such that the resulting robust method is
often backed by theory. This result is extremely useful computationally: find
the RMVN set or RFCH set U , then apply the classical method to the cases
in the set U . This procedure is often equivalent to using (xU ,SU ) as plug in
estimators. The method can be applied if n > 2(p+1) but may not work well
unless n > 20p. The mpack function getu gets the RMVN set U as well as
the case numbers corresponding to the cases in U .

The set U is a small volume hyperellipsoid containing at least half of the
cases since concentration is used. The set U can also be regarded as the
“untrimmed data”: the data that was not trimmed by ellipsoidal trimming.
Theory has been proved for a large class of elliptically contoured distributions,
but it is conjectured that theory holds for a much wider class of distributions.
See Conjectures 4.2 and 4.3 in Section 4.9. In simulations, RFCH and RMVN
seem to estimate cΣx if x = Az + μ where z = (z1, ..., zp)T and the zi are
iid from a continuous distribution with variance σ2. Here Σx = Cov(x) =
σ2AAT . The bias for the MB estimator seemed to be small. It is known
that affine equivariant estimators give unbiased estimators of cΣx if the
distribution of zi is also symmetric. DGK is affine equivariant, and RFCH
and RMVN are asymptotically equivalent to a scaled DGK estimator. But
in the simulations the results also held for skewed distributions.

In this text, usually the RMVN set U will be used. Several illustrative
applications are given next, where the theory usually assumes that the cases
are iid from a large class of elliptically contoured distributions. There are
many other “robust methods” in the literature that use plug in estimators
like FMCD. Replacing the plug in estimator by RMVN or RFCH will often
greatly improve the robust method. See Chapter 14, and in Section 5.2, note
that the prediction regions using RMVN performed much like the prediction
regions using (x,S).

http://dx.doi.org/10.1007/978-3-319-68253-2_14
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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i) The classical estimator of multivariate location and dispersion applied
to the cases in U gives (xU ,SU ), a

√
n consistent estimator of (μ, cΣ) for

some constant c > 0. See Remark 4.4.
ii) The classical estimator of the correlation matrix applied to the cases in

U gives RU , a consistent estimator of the population correlation matrix ρx.
iii) For principal component analysis (PCA), RPCA is the classical PCA

method applied to the set U . See Theorems 6.1, 6.2, 6.3, and Section 6.2.
iv) For canonical correlation analysis (CCA), RCCA is the classical CCA

method applied to the set U . See Theorem 7.1 and Section 7.2.
v) Let Ui be the RMVN or RFCH subset applied to the ni cases from

group i for i = 1, ..., G. Let (xUi
,SUi

) be the sample mean and covariance
applied to the cases in Ui. Let Y = i for cases in Ui which are from group
i. Let Ubig = U1 ∪ U2 ∪ · · · ∪ UG be the combined sample. Then apply the
discriminant analysis method to Ubig with the corresponding labels Y . For
example, RFDA consists of applying classical FDA on Ubig. See Section 8.9.

vi) For factor analysis, apply the factor analysis method to the set U .
This method can be used as a diagnostic for methods such as the maximum
likelihood method of factor analysis, but is backed by theory for principal
component factor analysis. See Section 11.2.

vii) For multiple linear regression, let Y be the response variable, x1 = 1
and x2, ..., xp be the predictor variables. Let zi = (Yi, xi2, ..., xip)T . Let U
be the RMVN or RFCH set formed using the zi. Then a classical regression
estimator applied to the set U results in a robust regression estimator. For
least squares, this is implemented with the mpack function rmreg2.

viii) For multivariate linear regression, let Y1, ..., Ym be the response vari-
ables, x1 = 1 and x2, ..., xp be the predictor variables. Let

zi = (Yi1, ...Yim, xi2, ..., xip)T .

Let U be the RMVN or RFCH set formed using the zi. Then a classical least
squares multivariate linear regression estimator applied to the set U results
in a robust multivariate linear regression estimator. For least squares, this
is implemented with the mpack function rmreg2. The method for multiple
linear regression in vii) corresponds to m = 1. See Section 12.6.2.

There are also several variants on the method. Suppose there are tentative
predictors Z1, ..., ZJ . After transformations assume that predictors X1, ...,Xk

are linearly related. Assume the set U used cases i1, i2, ..., inU
. To add vari-

ables like Xk+1 = X2
1 , Xk+2 = X3X4, Xk+3 = gender, ..., Xp, augment

U with the variables Xk+1, ...,Xp corresponding to cases i1, ..., inU
. Adding

variables results in cleaned data that is more likely to contain outliers.
If there are g groups (g = G for discriminant analysis, g = 2 for binary

regression, and g = p for one way MANOVA), the function getubig gets
the RMVN set Ui for each group and combines the g RMVN sets into one
large set Ubig = U1 ∪ U2 ∪ · · · ∪ Ug.

http://dx.doi.org/10.1007/978-3-319-68253-2_6
http://dx.doi.org/10.1007/978-3-319-68253-2_6
http://dx.doi.org/10.1007/978-3-319-68253-2_6
http://dx.doi.org/10.1007/978-3-319-68253-2_6
http://dx.doi.org/10.1007/978-3-319-68253-2_7
http://dx.doi.org/10.1007/978-3-319-68253-2_7
http://dx.doi.org/10.1007/978-3-319-68253-2_8
http://dx.doi.org/10.1007/978-3-319-68253-2_11
http://dx.doi.org/10.1007/978-3-319-68253-2_12
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4.7 What if p > n?

Most of the methods in this text work best if n ≥ 20p, but often data
sets have p > n, and outliers are a major problem. Usually the popula-
tion covariance matrix is singular when p > n, but the sample covariance
matrix, MB estimator with no concentration steps, and the sign covariance
matrix can be computed. Weighted versions of the last two estimators are use-
ful since concentration steps need nonsingular dispersion matrices. Compute
the squared Euclidean distances of the xi from the coordinatewise median
D2

i = D2
i (MED(W ), Ip). Concentration type steps compute the weighted

median MEDj : the coordinatewise median computed from the cases xi with
D2

i ≤ MED(D2
i (MEDj−1, Ip)) where MED0 = MED(W ). We often used

j = 0 (no concentration type steps) or j = 9. Let Di = Di(MEDj , Ip). Let
Wi = 1 if Di ≤ MED(D1, ...,Dn)+kMAD(D1, ...,Dn) where k ≥ 0 and k = 5
is the default choice. Let Wi = 0, otherwise. This weighting corresponds to
the weighting that would be used in a one sided metrically trimmed mean
(Huber type skipped mean) of the distances. Just as classical methods can be
applied to the set RMVN set U to create a robust estimator, classical meth-
ods for the p > n case, such as PLS (partial least squares), can be applied to
the covmb2 set B defined below.

Definition 4.12. Let the covmb2 set B of at least n/2 cases correspond
to the cases with weight 1. Then the covmb2 estimator (T,C) is the sample
mean and sample covariance matrix applied to the cases in set B. Hence

T =
∑n

i=1 Wixi∑n
i=1 Wi

and C =
∑n

i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

The covmb2 estimator attempts to give a robust dispersion estimator
that reduces the bias by using a big ball about the coordinatewise median
instead of a ball that contains half of the cases. The weighting is the default
method, but you can also plot the squared Euclidean distances and estimate
the number m ≥ n/2 of cases with the smallest distances to be used. The
mpack function medout makes the plot, and the mpack function getB gives
the set B of cases that got weight 1 along with the index indx of the case
numbers that got weight 1. The function vecw stacks the columns of the
dispersion matrix C into a vector. Then the elements of the matrix can be
plotted.

The function ddplot5 plots the Euclidean distances from the coordi-
natewise median versus the Euclidean distances from the covmb2 location
estimator. Typically, the plotted points in this DD plot cluster about the
identity line, and outliers appear in the upper right corner of the plot with
a gap between the bulk of the data and the outliers. An alternative for out-
lier detection is to replace C by Cd = diag(σ̂11, ..., σ̂pp). For example, use
σ̂ii = Cii. See Ro et al. (2015) and Tarr et al. (2016) for references.
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Fig. 4.12 Elements of C for outlier data

Example 4.3. This example helps illustrate the effect of outliers on clas-
sical methods. The artificial data set had n = 50, p = 100, and the clean data
was iid Np(0, Ip). Hence the diagonal elements of the population covariance
matrix are 0, and the diagonal elements are 1. Plots of the elements of the
sample covariance matrix S and the covmb2 estimator C are not shown,
but were similar to Figure 4.12. Then the first ten cases were contaminated:
xi ∼ Np(μ, 100Ip) where μ = (10, 0, ..., 0)T . Figure 4.12 shows that the
covmb2 dispersion matrix C was not much effected by the outliers. The
diagonal elements are near 1 and the off-diagonal elements are near 0. Figure
4.13 shows that the sample covariance matrix S was greatly effected by the
outliers. Several sample covariances are less than −20, and several sample
variances are over 40.
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Fig. 4.13 Elements of the classical covariance matrix S for outlier data

R code to used to produce Figures 4.12 and 4.13 is shown below.

#n = 50, p = 100
x<-matrix(rnorm(5000),nrow=50,ncol=100)
out<-medout(x) #no outliers, try ddplot5(x)
out <- covmb2(x,msteps=0)
z<-out$cov
plot(diag(z)) #plot the diagonal elements of C
plot(out$center) #plot the elements of T
vecz <- vecw(z)$vecz
plot(vecz)

out<-covmb2(x,m=45)
plot(out$center)
plot(diag(out$cov))

#outliers
x[1:10,] <- 10*x[1:10,]
x[1:10,1] <- x[1:10]+10
medout(x) #The 10 outliers are easily detected in
#the plot of the distances from the MED(X).
ddplot5(x) #two widely separated clusters of data
tem <- getB(x,msteps=0)
tem$indx #all 40 clean cases were used
dim(tem$B) #40 by 100
out<-covmb2(x,msteps=0)
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z<-out$cov
plot(diag(z))
plot(out$center)
vecz <- vecw(z)$vecz
plot(vecz) #plot the elements of C
#Figure 4.12

#examine the sample covariance matrix and mean
plot(diag(var(x)))
plot(apply(x,2,mean)) #plot elements of xbar
zc <- var(x)
vecz <- vecw(zc)$vecz
plot(vecz) #plot the elements of S
#Figure 4.13

out<-medout(x) #10 outliers
out<-covmb2(x,m=40)
plot(out$center)
plot(diag(out$cov))

The covmb2 estimator can also be used for n > p. The mpack function
mldsim6 suggests that for 40% outliers, the outliers need to be further away
from the bulk of the data (covmb2(k=5) needs a larger value of pm) than
for the other six estimators if n ≥ 20p. With outlier types like those in Tables
4.4 and 4.5, covmb2(k=5) was often near best. Try the following commands.
The other estimators need n > 2p, and as n gets close to 2p, covmb2 may
outperform the other estimators.

#near point mass on major axis
mldsim6(n=100,p=10,outliers=1,gam=0.25,pm=25)
mldsim6(n=100,p=10,outliers=1,gam=0.4,pm=25) #bad
mldsim6(n=100,p=40,outliers=1,gam=0.1,pm=100)
mldsim6(n=200,p=60,outliers=1,gam=0.1,pm=100)
#mean shift outliers
mldsim6(n=100,p=40,outliers=3,gam=0.1,pm=10)
mldsim6(n=100,p=40,outliers=3,gam=0.25,pm=20)
mldsim6(n=200,p=60,outliers=3,gam=0.1,pm=10)
#concentration steps can help
mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=0)
mldsim6(n=100,p=10,outliers=3,gam=0.4,pm=10,osteps=9)

The following estimator can also be used if p > n, but improvements are
needed, and suggested in the following paragraphs. For other estimators that
can be used when p > n, see Boudt et al. (2017).
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Definition 4.13. The Sign Covariance Matrix

Σ̂S =
1
n

n∑

i=1

(xi − μ̂n)(xi − μ̂n)T

‖xi − μ̂n‖2
=

1
n

n∑

i=1

ziz
T
i .

This estimator is similar to the classical covariance estimator computed from

zi =
xi − μ̂n

‖xi − μ̂n‖
, assuming zi ≈ 0. Note that ‖zi‖ = 1, so the zi lie on

the unit hypersphere centered at μ̂n. Here μ̂n is the L1-median or spatial
median, defined as

μ̂n = argminµ

1
n

n∑

i=1

‖xi − μ‖,

and μ̂n is a fairly practical high breakdown estimator of multivariate location.
An argument similar to the proof of Lemma 4.3 can be used to show that the
maximum eigenvalue of Σ̂S is bounded.

Draw a circle and then ellipsoidal data centered at the center of the circle.
Project the data on the circle. Unless the data is spherical, the projection
severely distorts the shape of the data. Hence Σ̂S is not a consistent estimator
of cΣ for nonspherical elliptically contoured data. Suppose p = 2 and the
highest density region is a ellipse with the x-axis as the major axis and the y-
axis as the minor axis. Assume the data projected on the x-axis has standard
deviation 3, and the data projected on the y-axis has standard deviation 0.3.
Then we expect that Σ̂S will underestimate the variability about the major
axis and overestimate the variability about the minor axis.

Suppose p is fixed and n → ∞. Croux et al. (2010) showed that the
Sign Covariance Matrix is a high breakdown estimator, and the minimum
eigenvalue can be driven to zero if more than half of the cases are outliers.
They also claim, that under regularity conditions, that for clean data, the Sign
Covariance Matrix consistently estimates the orientation of the dispersion
matrix: for a class of elliptically contoured distributions, the eigenvectors êi

estimate the population eigenvectors ei.

Remark 4.6. Suppose the êi estimate the dispersion matrix orientation,
but the eigenvalues are severely biased. Let Li = MAD(êT

i x1, ..., ê
T
i xn) for

i = 1, ..., p. Note that êT
i x1, ..., ê

T
i xn are the data projected onto the line in

the direction of the ith orthonormal eigenvector êi. Let λ̂1 = L(p) ≥ λ̂2 =
L(p−1) ≥ · · · ≥ λ̂p−1 = L(2) ≥ λ̂p = L(1). If necessary, relabel the êi so
that λ̂i corresponds to eigenvector êi. Then let Σ̂ =

∑p
i=1 λ̂iêiê

T
i . (Compare

Theorem 2.1.) Then on a class of elliptically contoured distributions, Σ̂ may
be a better estimator of cΣ for some c > 0.
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Outliers can still severely bias the estimator since they have the same
weight as the clean data. For example, draw a circle centered at the origin.
Suppose the data xi is tightly clustered about the horizontal axis. Then the
projected data zi tightly clusters about the points (−1, 0) and (1,0). Placing
outliers with zi at (0,1) or (0,−1) will inflate the minor axis.

To examine breakdown, suppose that more than half of the xi = xo, so
there is a point mass at xo. Because of the exact fit property, the spatial
median is equal to xo. Draw a cloud for the clean data and put xo far to
the right of the cloud. Draw a unit circle around xo and a left opening cone
with vertex at xo that just contains the data cloud. Then the clean data gets
projected on an arc where the cone intersects the left of the circle. As xo

is moved further to the right, the arc length goes to zero, so the projected
data form a near point mass. Hence the Sign Covariance Matrix is roughly
the covariance matrix of a point mass (it is not clear what zi is if xi = μ̂n)
and a near point mass, which will have smallest eigenvalue → 0 as x0 gets
further away from the clean data cloud.

To examine the effect of outliers on the eigenvectors, assume the proportion
of outliers xo is 40%. Then the spatial median gets dragged to the right of
the data cloud. Draw a unit circle around the spherical median and project
the data onto the unit circle. Most of the data is projected onto the left half
of the circle, so the eigenvectors êi no longer estimate the orientation of the
dispersion matrix.

A simple solution is to compute the spatial median on the covmb2 set
B, perhaps using the spatial median instead of the coordinatewise median to
form the Di, but it seems that applying the classical estimator on the data
in set B makes more sense.

The median ball estimator and covmb2 put a hypersphere, centered at
the coordinatewise median, about the data and gives zero weight to data
outside the hypersphere. The Sign Covariance Matrix projects the data onto
a unit hypersphere centered at the spherical median. We conjecture that
the median ball and covbm2 estimators also estimate the orientation of
the dispersion matrix for a class of elliptically contoured distributions. The
reweighted median ball estimator with five concentration steps seems to esti-
mate the cΣ with very small bias for many elliptically contoured distributions
when n >> p. When p > n and covmb2 is used, using Remark 4.6 to find
the Li and λ̂i may be useful.

4.8 Summary

1) Given a table of data W for variables X1, ...,Xp, be able to find the
coordinatewise median MED(W ) and the sample mean x. If x =
(X1,X2, ...,Xp)T where Xj corresponds to the jth column of W , then MED
(W ) = (MEDX1(n), ...,MEDXp

(n))T where MEDXj
(n) = MED(Xj,1, ...,
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Xj,n) is the sample median of the data in the jth column. Similarly, x =
(X1, ...,Xp)T where Xj is the sample mean of the data in the jth column.

2) A DD plot is a plot of classical vs. robust Mahalanobis distances. The
DD plot is used to check i) if the data is MVN (plotted points follow the
identity line), ii) if the data is EC but not MVN (plotted points follow a line
through the origin with slope > 1), iii) if the data is not EC (plotted points
do not follow a line through the origin), iv) if multivariate outliers are present
(e.g., some plotted points are far from the bulk of the data or the plotted
points follow two lines).

3) Many practical “robust estimators” generate a sequence of K trial fits
called attractors: (T1,C1), ..., (TK ,CK). Then the attractor (TA,CA) that
minimizes some criterion is used to obtain the final estimator. One way to
obtain attractors is to generate trial fits called starts, and then use the con-
centration technique. Let (T−1,j ,C−1,j) be the jth start and compute all n
Mahalanobis distances Di(T−1,j ,C−1,j). At the next iteration, the classical
estimator (T0,j ,C0,j) is computed from the cn ≈ n/2 cases corresponding to
the smallest distances. This iteration can be continued for k steps resulting
in the sequence of estimators (T−1,j ,C−1,j), (T0,j ,C0,j), ..., (Tk,j ,Ck,j). Then
(Tk,j ,Ck,j) is the jth attractor for j = 1, ...,K. Using k = 10 often works
well, and the basic resampling algorithm is a special case k = −1 where the
attractors are the starts.

4) The DGK estimator (TDGK ,CDGK) uses the classical estimator
(T−1,D,C−1,D) = (x,S) as the only start.

5) The median ball (MB) estimator (TMB ,CMB) uses (T−1,M ,C−1,M ) =
(MED(W ), Ip) as the only start where MED(W ) is the coordinatewise
median. Hence (T0,M ,C0,M ) is the classical estimator applied to the “half
set” of data closest to MED(W ) in Euclidean distance.

6) Elemental concentration algorithms use elemental starts: (T−1,j ,
C−1,j) = (xj ,Sj) is the classical estimator applied to a randomly selected
“elemental set” of p + 1 cases. If the xi are iid with covariance matrix Σx,
then the starts (xj ,Sj) are identically distributed with E(xj) = E(xi),
Cov(xj) = Σx/(p + 1), and E(Sj) = Σx.

7) Let the “median ball” be the hypersphere containing the half set of
data closest to MED(W ) in Euclidean distance. The FCH estimator uses the
MB attractor if the DGK location estimator TDGK = Tk,D is outside of the
median ball, and the attractor with the smallest determinant, otherwise. Let
(TA,CA) be the attractor used. Then the estimator (TFCH ,CFCH) takes
TFCH = TA and

CFCH =
MED(D2

i (TA,CA))
χ2

p,0.5

CA (4.12)

where χ2
p,0.5 is the 50th percentile of a chi-square distribution with p degrees

of freedom. The RFCH estimator uses two standard “reweight for efficiency
steps” while the RMVN estimator uses a modified method for reweighting.
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8) For a large class of elliptically contoured distributions, FCH, RFCH,
and RMVN are

√
n consistent estimators of (μ, ciΣ) for c1, c2, c3 > 0 where

ci = 1 for Np(μ,Σ) data.
9) An estimator (T,C) of multivariate location and dispersion (MLD)

needs to estimate p(p + 3)/2 unknown parameters when there are p random
variables. For (x,S) or (z,R), we want n ≥ 10p. We want n ≥ 20p for FCH,
RFCH, or RMVN.

10) Brand-name robust MLD estimators from the dominant robust statis-
tics paradigm take too long to compute: F-brand-name estimators that are
not backed by breakdown or large sample theory are actually used. FMCD,
F-MVE, F-S, F-MM, F-τ , F-constrained-M, and F-Stahel–Donoho are espe-
cially common.

4.9 Complements

Most of this chapter focused on robust estimators where n ≥ 10p. Dispersion
estimators for n < 10p are discussed in Section 4.7, Pourahmadi (2013), and
Yao et al. (2015). Tiao and Tsay (1983) gave an interesting bound on the
determinant.

For concentration algorithms, note that (Tt,j ,Ct,j) = (xt,j ,St,j) is the
classical estimator applied to the “half set” of cases satisfying {xi : D2

i (xt−1,j ,
St−1,j) ≤ D2

(cn)
(xt−1,j ,St−1,j)} for t ≥ 0. Hence (Tt,j ,Ct,j) is estimating

(μt,Σt), the population mean and covariance matrix of the truncated distri-
bution covering half of the mass corresponding to {x : (x−μt−1)T Σ−1

t−1(x−
μt−1) ≤ D2

0.5(μt−1,Σt−1)} where D2
0.5(μt−1,Σt−1) is the population median

of the population squared distances D2(μt−1,Σt−1). Here (μ−1,Σ−1) is the
population analog of (T−1,j ,C−1,j).

The DGK estimator (Tk,D,Ck,D) uses the classical estimator (x,S) =
(T−1,D,C−1,D) as the only start. Thus (μ−1,D,Σ−1,D) is the population
mean and covariance matrix. For a large class of elliptically contoured dis-
tributions with a nonsingular covariance matrix and for t ≥ 0, (μt,D,Σt,D)
is the population mean and covariance matrix of the truncated distribution
corresponding to the highest density region covering half the mass. Hence
μt,D = μ and Σt,D = cΣ for some c > 0. Riani et al. (2009) found the popu-
lation mean and covariance matrices for such truncated multivariate normal
distributions, using results from Tallis (1963).

Conjecture 4.2. The DGK estimator is a
√

n consistent estimator of
(μk,D,Σk,D) under mild conditions.

The median ball (MB) estimator (Tk,M ,Ck,M ) uses (T−1,M ,C−1,M ) =
(MED(W ), Ip) as the only start where MED(W ) is the coordinatewise
median. Hence (T0,M ,C0,M ) is the classical estimator applied to the “half
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set” of data closest to MED(W ) in Euclidean distance while (μ0,M ,Σ0,M )
is the population mean and covariance matrix of the truncated distribution
corresponding to the hypersphere centered at the population median that
contains half the mass. For a distribution that is spherical about μ and for
t ≥ 0, (μt,M ,Σt,M ) = (μ, cIp) for some c > 0. For nonspherical elliptically
contoured distributions, Σt,M �= cΣ. However, the bias seems to be small
even for t = 0, and to get smaller as k increases. If the median ball estimator
is iterated to convergence, we do not know whether Σ∞,M = cΣ.

Conjecture 4.3. The MB estimator is a high breakdown
√

n consistent
estimator of (μk,M ,Σk,M ) under mild conditions. For elliptically contoured
distributions, μk,M = μ.

The covmb2 estimator is also a natural estimator of a population mean
and covariance matrix (μj,B ,Σj,B) corresponding to a truncated distri-
bution, and we conjecture that covmb2 is

√
n consistent estimator of

(μj,B ,Σj,B) under mild conditions.
Arcones (1995) and Kim (2000) showed that x0,M is a HB

√
n consistent

estimator of μ. Olive (2004a) showed that (x0,M ,S0,M ) = (T0,M ,C0,M ) is a
high breakdown estimator. If the data distribution is EC but not spherical
about μ, then for k ≥ 0, Sk,M = CMB underestimates the major axis and
overestimates the minor axis of the highest density region. Concentration
reduces but fails to eliminate this bias. Hence the estimated highest density
region based on the attractor is “shorter” in the direction of the major axis
and “fatter” in the direction of the minor axis than estimated regions based
on consistent estimators.

Recall that the sample median MED(Yi) = Y ((n + 1)/2) is the middle
order statistic if n is odd. Thus if n = m + d where m is the number of
clean cases and d = m − 1 is the number of outliers so γ ≈ 0.5, then the
sample median can be driven to the max or min of the clean cases. The
jth element of MED(W ) is the sample median of the jth predictor. Hence
with m−1 outliers, MED(W ) can be driven to the “coordinatewise covering
box” of the m clean cases. The boundaries of this box are at the min and
max of the clean cases from each predictor, and the lengths of the box edges
equal the ranges Ri of the clean cases for the ith variable. If d ≈ m/2 so
that γ ≈ 1/3, then the MED(W ) can be moved to the boundary of the
much smaller “coordinatewise IQR box” corresponding the 25th and 75th
percentiles of the clean date. Then the edge lengths are approximately equal
to the interquartile ranges of the clean cases.

Note that Di(MED(W ), Ip) = ‖xi−MED(W )‖ is the Euclidean distance
of xi from MED(W ). Let C denote the set of m clean cases. If d ≤ m−1, then
the minimum distance of the outliers is larger than the maximum distance
of the clean cases if the distances for the outliers satisfy Di > B where

B2 = max
i∈C

‖xi − MED(W )‖2 ≤
p∑

i=1

R2
i ≤ p(max R2

i ).
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One of the most effective methods for detecting outliers for large data sets or
if p > n is to use Di(MED(W ), Ip). See the mpack function medout. Section
4.7 suggests more useful techniques.

The MB estimator has outlier resistance similar to (MED(W ), Ip) for
distant outliers but, as shown in Example 4.1, can be much more effective for
detecting certain types of outliers that cannot be found by marginal methods.
For EC data, the MB estimator is best if the data is spherical about μ or if
the data is highly correlated with the major axis of the highest density region
{xi : D2

i (μ,Σ) ≤ d2}.
If the DGK estimator is used by itself, we recommend k = 10 in the

concentration algorithm. We use k = 5 when the DGK and MB estimators
are used as attractors for the FCH, CMVE, and MBA estimators. The scaling
(4.10) makes CFCH a better estimate of Σ if the data is multivariate normal
MVN.

Concentration for the MB estimator begins with the “half set” of data
closest to the coordinatewise median in Euclidean distance, resulting in
the estimator (T0,M ,C0,M ) that uses 50% trimming. (T0,M ,C0,M ) is a
high breakdown estimator by Corollary 4.7. Since only cases xi such that
‖xi −MED(W )‖ ≤ MED(‖xi −MED(W )‖) are used, the largest eigenvalue
of C0,50 is bounded if fewer than half of the cases are outliers by Lemma 4.3.

The geometric behavior of (T0,M ,C0,M ) is simple. If the data xi are MVN
(or EC with continuous decreasing g) then the highest density regions of the
data are hyperellipsoids. The set of x closest to the coordinatewise median
in Euclidean distance is a hypersphere. For EC data, the highest density
hyperellipsoid will have approximately the same center as the hypersphere,
and the hypersphere will be drawn toward the longest axis of the hyperellip-
soid. Hence too much data will be trimmed in that direction. For example,
if the data are MVN with Σ = diag(1, 2, ..., p) then C0,M will underesti-
mate the largest variance and overestimate the smallest variance. Taking k
concentration steps can greatly reduce but not eliminate the bias of the MB
estimator Ck,M if the data is EC, and the determinant |Ck,M | < |C0,M |
unless the attractor is equal (T0,M ,C0,M ) by Proposition 4.4. The MB esti-
mator (Tk,M ,Ck,M ) is not affine equivariant but is resistant to gross outliers
in that they will initially be given weight zero if they are further than the
median Euclidean distance from the coordinatewise median. Gnanadesikan
and Kettenring (1972, p. 94) suggested an estimator similar to the MB esti-
mator, also see Croux and Van Aelst (2002). Another estimator similar to
MB was suggested by Wilk et al. (1962). See Gnanadesikan (1977, p. 134).

Recall that the population squared Mahalanobis distance

U ≡ D2(μ,Σ) = (x − μ)T Σ−1(x − μ). (4.13)

For elliptically contoured distributions, U has pdf given by (3.10), and if g is
continuous and decreasing, then the 50% highest density region has the form
of the hyperellipsoid

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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{z : (z − μ)T Σ−1(z − μ) ≤ u0.5}

where u0.5 is the median of the distribution of U . For example, if the x are
MVN, then U has the χ2

p distribution. Concentration estimators attempt to
estimate the population mean and covariance matrix of the mass in this 50%
highest density region. So it should not be surprising that good concentration
attractors estimate the same quantity (μ, aMCDΣ). See Theorem 4.9.

In regression, if the start is a consistent estimator for β, then so is the
attractor. Hence all attractors are estimating the same parameter β. Theorem
4.9 showed that MLD concentration attractors with k ≥ 0 are estimating
the same parameter (μ, aMCDΣ) even if the affine equivariant starts are
estimating (μ, siΣ) where the si > 0 can differ for i = 1, ...,K.

Olive (2002) showed the following result. Assume (Ti,Ci) are consistent
estimators for (μ, aiΣ) where ai > 0 for i = 1, 2. Let Di,1 and Di,2 be
the corresponding distances and let R be the set of cases with distances
Di(T1,C1) ≤ MED(Di(T1,C1)). Let rn be the correlation between Di,1 and
Di,2 for the cases in R. Then rn → 1 in probability as n → ∞.

The theory for concentration algorithms is due to Hawkins and Olive
(2002) and Olive and Hawkins (2010). The MBA estimator is due to Olive
Olive (2004a). The computational and theoretical simplicity of the FCH esti-
mator makes it interesting. An important application of the robust algorithm
estimators and of case diagnostics is to detect outliers. Sometimes it can be
assumed that the analysis for influential cases and outliers was completely
successful in classifying the cases into outliers and good or “clean” cases.
Then classical procedures can be performed on the good cases. This assump-
tion of perfect classification is often unreasonable, and it is useful to have
robust procedures, such as the FCH estimator, that have rigorous asymp-
totic theory and are practical to compute.

The recommended estimators are the RFCH and RMVN estimators. These
two estimators are about an order of magnitude faster than most alternative
robust estimators, but take slightly longer to compute than the FCH esti-
mator, and may have slightly less resistance to outliers. RFCH and RMVN
appear to have much less variability than FCH when there are no outliers.
These three estimators are in Zhang et al. (2012). Also see Zhang and Olive
(2009).

In addition to concentration and randomly selecting elemental sets, three
other algorithm techniques are important. He and Wang (1996) suggested
computing the classical estimator and a consistent robust estimator. The
final cross checking estimator is the classical estimator if both estimators
are “close,” otherwise the final estimator is the robust estimator. The second
technique was proposed by Gnanadesikan and Kettenring (1972, p. 90). They
suggest using the dispersion matrix C = (ci,j) where ci,j is a robust estimator
of the covariance of Xi and Xj . Computing the classical estimator on a subset
of the data results in an estimator of this form. The identity
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ci,j = Cov(Xi,Xj) = [VAR(Xi + Xj) − VAR(Xi − Xj)]/4

where VAR(X) = σ2(X) suggests that a robust estimator of dispersion can be
created by replacing the sample standard deviation σ̂ by a robust estimator
of scale. (This idea seems best if the outlying cases have outliers that can be
detected if projected on two of the p coordinate axes. It is possible to have
outliers that do not appear in one- or two-dimensional projections. Hence the
method may not perform well compared to methods that use Mahalanobis
or Euclidean distances like FCH and covmb2.) Maronna and Zamar (2002)
modified this idea to create a fairly fast (possibly high breakdown consistent)
OGK estimator of multivariate location and dispersion. Also see Alqallaf
et al. (2002) and Mehrotra (1995). Woodruff and Rocke (1994) introduced
the third technique, partitioning, which evaluates a start on a subset of the
cases. Poor starts are discarded, and L of the best starts are evaluated on
the entire data set. This idea is also used by Rocke and Woodruff (1996) and
by Rousseeuw and Van Driessen (1999).

Billor et al. (2000) proposed a BACON algorithm that uses m0 = 4p or
m0 = 5p cases, computes the sample mean and covariance matrix of these
cases, finds the m1 cases with Mahalanobis distances less than some cutoff,
then iterates until the subset of cases no longer changes. Version V1 uses the
m0 cases with the smallest classical Mahalanobis distances while version V2
uses the m0 cases closest to the coordinatewise median.

There certainly exist types of outlier configurations where the FMCD esti-
mator outperforms the robust RFCH estimator. The RFCH estimator is vul-
nerable to certain types of outliers that lie inside the hypersphere based on
the median Euclidean distance from the coordinatewise median. The FMCD
estimator should be modified so that it is backed by theory. Until this mod-
ification appears in the software, both estimators can be used for outlier
detection by making a scatterplot matrix of the Mahalanobis distances from
the FMCD, RFCH, and classical estimators.

The simplest version of the MBA estimator only has two starts. A simple
modification would be to add additional starts as in Problem 4.7. The Det-
MCD estimator of Hubert et al. (2002) is very similar, uses 6 starts, but is
not yet backed by theory.

Rousseeuw (1984) introduced the MCD and the minimum volume ellip-
soid MVE(cn) estimator. For the MVE estimator, T (W ) is the center of
the minimum volume ellipsoid covering cn of the observations and C(W )
is determined from the same ellipsoid. TMV E has a cube root rate, and the
limiting distribution is not Gaussian. See Davies (1992).

Rocke and Woodruff (1996, p. 1050) claimed that any affine equivari-
ant location and shape estimation method gives an unbiased location esti-
mator and a shape estimator that has an expectation that is a multiple
of the true shape for elliptically contoured distributions. Hence there are
many candidate robust estimators of multivariate location and dispersion.
See Cook et al. (1993) for an exact algorithm for the MVE. Other papers on
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robust algorithms include Hawkins (1993, 1994), Hawkins and Olive (1999a),
Hawkins and Simonoff (1993), He and Wang (1996), Olive (2004a), Olive
and Hawkins (2007b, 2008), Rousseeuw and Van Driessen (1999), Rousseeuw
and van Zomeren (1990), Ruppert (1992), and Woodruff and Rocke (1993).
Rousseeuw and Leroy (1987,

∮
7.1) also described many methods.

The discussion by Rocke and Woodruff (2001) and by Hubert (2001) of
Peña and Prieto (2001) stressed the fact that no one estimator can dominate
all others for every outlier configuration. These papers and Wisnowski et al.
(2002) gave outlier configurations that can cause problems for the FMCD
estimator.

Papers on robust distances include Olive (2002) and Garćıa-Escudero and
Gordaliza (2005).

Huber and Ronchetti (2009, pp. 214, 233) noted that theory for M esti-
mators of multivariate location and dispersion is “not entirely satisfactory
with regard to joint estimation of” (μ, aΣ) and that “so far we have nei-
ther a really fast, nor a demonstrably convergent, procedure for calculating
simultaneous M -estimates of location and scatter.”

If an exact algorithm exists but an approximate algorithm is also used,
the two estimators should be distinguished in some manner. For example,
(TMCD,CMCD) could denote the estimator from the exact algorithm while
(TFMCD,CFMCD) could denote the estimator from the approximate algo-
rithm. In the literature, this distinction is too seldomly made, but there are
a few outliers. Cook and Hawkins (1990, p. 640) pointed out that the FMVE
is not the minimum volume ellipsoid (MVE) estimator.

Where the Dominant Robust Statistics Paradigm Goes Wrong
i) Estimators from this paradigm that have been shown to be both high

breakdown and consistent take too long to compute.
Let the ith case xi be a p× 1 random vector, and suppose the n cases are

collected in an n × p matrix W with rows xT
1 , ...,xT

n . The fastest estimators
of multivariate location and dispersion that have been shown to be both con-
sistent and high breakdown are the minimum covariance determinant (MCD)
estimator with O(nv) complexity where v = 1+p(p+3)/2 and possibly an all
elemental subset estimator of He and Wang (1997). See Bernholt and Fischer
(2004). The minimum volume ellipsoid complexity is far higher, and for p > 2
there may be no known method for computing S, τ , projection based,
and constrained M estimators. For some depth estimators, like the Stahel–
Donoho estimator, the exact algorithm of Liu and Zuo (2014) appears to take
too long if p ≥ 6 and n ≥ 100, and simulations may need p ≤ 3.

It is possible to compute the MCD and MVE estimators for p = 4 and
n = 100 in a few hours using branch and bound algorithms (like estimators
with O(1004) complexity). See Agulló (1996, 1998) and Pesch (1999). These
algorithms take too long if both p ≥ 5 and n ≥ 100. Simulations may need
p ≤ 2. Two-stage estimators such as the MM estimator, that need an initial
high breakdown consistent estimator, take longer to compute than the initial
estimator. See Maronna et al. (2006, ch. 6) for descriptions and references.
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Estimators with complexity higher than O[(n3+n2p+np2+p3) log(n)] take
too long to compute and will rarely be used. Reyen et al. (2009) simulated
the OGK and the Olive (2004a) median ball algorithm (MBA) estimators
for p = 100 and n up to 50000 and noted that the OGK complexity is
O[p3+np2 log(n)] while that of MBA is O[p3+np2+np log(n)]. FCH, RMBA,
RMVN, CMVE, and RCMVE have the same complexity as MBA. FMCD has
the same complexity as FCH, but FCH is roughly 100 to 200 times faster.

ii) No practical useful “high breakdown” estimator of multivariate loca-
tion and dispersion (MLD) from this paradigm has been shown to be both
consistent and high breakdown: to my knowledge, if the complexity of the
estimator is less than O(n4) for general p, and if the estimator has
been claimed in the published literature to be both high break-
down and consistent, then the MLD estimator has not been shown
to be both high breakdown and consistent. Also Hawkins and Olive
(2002) showed that elemental concentration estimators using K starts are
zero breakdown estimators, and these estimators are inconsistent if they use
k concentration steps where k is fixed.

The main competitors for the Olive and Hawkins (2010) multivariate
location and dispersion FCH, RFCH, and RMVN estimators are the Maronna
and Zamar (2002) OGK estimator, the Hubert et al. (2012) Det-MCD esti-
mator which have not been proven to be consistent or positive breakdown,
and the Sign Covariance Matrix shown to be high breakdown by Croux et al.
(2010). Also see Taskinen et al. (2012). Croux et al. (2010) showed that the
practical Sign Covariance Matrix and k-step Spatial Sign Covariance Matrix
are high breakdown. They claimed that under regularity conditions, these
two estimators consistently estimate the orientation of the scatter matrix.
Sections 4.5 and 4.7 suggest that a tight cluster of outliers severely bias these
competing estimators, unless the outlier proportion is small.

Papers with titles like Rousseeuw and Van Driessen (1999) “A Fast Algo-
rithm for the Minimum Covariance Determinant Estimator” and Hubert
et al. (2008) “High Breakdown Multivariate Methods” where the zero break-
down estimators have not been shown to be consistent are common, and very
misleading to researchers who are not experts in robust statistics.

iii) Many papers give theory for an impractical estimator such as MCD,
then replace the estimator by a zero breakdown practical estimator such as
FMCD.

It may be reasonable to call an estimator a brand-name high breakdown
estimator (e.g., S estimator or MCD estimator) if a) the estimator is high
breakdown and b) the estimator has the same asymptotic distribution as the
brand-name estimator.

Since the brand-name estimators are impractical to compute, practical
algorithm estimators that use a fixed number of trial fits are used. If a)
and b) have not been proven for the practical estimator, call the practical
estimator an F-brand-name estimator (e.g., FS or FMCD), where F denotes

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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that the criterion of the brand-name estimator was used to select a trial fit
to be used in the F-brand-name estimator from a fixed number of trial fits.

The F-brand-name estimators can have a wide variety of theory. Suppose
the final estimator is one of the trial fits. a) If K elemental sets are used as
the trial fits then the final estimator is inconsistent and zero breakdown by
Theorem P.1 in the preface. b) If there is only one trial fit, computing the
criterion does not change the trial fit. Then the final estimator is the trial fit.
So if the classical estimator is the trial fit, then the classical estimator is the
final estimator. c) If K trial fits are used and each trial fit is a

√
n consistent

estimator of (μ, cΣ), then the final estimator is a
√

n consistent estimator of
(μ, cΣ).

A necessary condition for a practical estimator to be the global minimizer
of a brand-name criterion is that the practical estimator has a criterion value
at least as small as any other estimator used. So if the FMCD estimator is
the MCD estimator, det(CFMCD) ≤ det(CA) for any other estimator CA

that is the sample covariance matrix applied to the same number of cases c
as the FMCD estimator. Hubert et al. (2012) claimed the Fast-MCD is the
MCD estimator, but sometimes Fast-MCD has the smallest determinant and
sometimes Det-MCD has the smallest determinant. This result proves that
neither Fast-MCD nor Det-MCD is computing MCD. Similarly, permuting
the data should not change the criterion if the global minimizer is being
computed. See Problem 4.9.

To get theory for Det-MCD, we need breakdown results when the concen-
tration steps are iterated to convergence, and we need a result like Theorem
4.9 when the initial estimator is consistent but not necessarily affine equivari-
ant, and the initial estimator is iterated to convergence.

iv) Papers on breakdown and maximal bias are not useful.
Both these properties are weaker than asymptotic unbiasedness. Also the

properties are derived for estimators that take far too long to compute.
Breakdown is a very weak property: having ‖T‖ bounded and eigenvalues

of C bounded away from 0 and ∞ does not mean that the estimator is good.
All too often claims are made that “high breakdown estimators make outliers
have large distances.”

Sometimes the literature gives a claim similar to “the fact that FMCD
is not the MCD estimator is unimportant since the algorithm that uses all
elemental sets has the same high breakdown value as MCD.” FMCD is not
the MCD estimator and FMCD is not the estimator that uses all elemental
sets. FMCD only uses a fixed number of elemental sets, hence FMCD is zero
breakdown.

v) Too much emphasis is given on the property of affine equivariance since
typically this is the only property that can be shown for a practical estimator
of MLD.

Huber and Ronchetti (2009, pp. 200, 283) noted that “one ought to be
aware that affine equivariance is a requirement deriving from mathematical
aesthetics; it is hardly ever dictated by the scientific content of the underly-
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ing problem,” and the lack of affine equivariance “may be less of a disadvan-
tage than it first seems, since in statistics problems possessing genuine affine
equivariance are quite rare.” Also see the warning at the end of Section 4.1.

Being a
√

n consistent estimator of (μ, cΣ) is an important property, and
the FCH estimator is asymptotically equivalent to the scaled DGK estimator,
which is affine equivariant.

The major algorithm producers are now using intelligently chosen starts
or trial fits, such as the classical estimator, in their F-brand-name estimators.
These estimators are typically not affine equivariant. See Hawkins and Olive
(2002), Olive (2004a), Olive and Hawkins (2010), Hubert et al. (2012), and
Maronna and Yohai (2015).

vi) The literature implies that the breakdown value is a measure of the
global reliability of the estimator and is a lower bound on the amount of
contamination needed to destroy an estimator.

These interpretations are not correct since the complement of complete and
total failure is not global reliability. The breakdown value dn/n is actually an
upper bound on the amount of contamination that the estimator can tolerate
since the estimator can be made arbitrarily bad with dn maliciously placed
cases. In particular, the breakdown value of an estimator tells nothing about
more important properties such as consistency or asymptotic normality.

4.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

R Problems
Use the command source(“G:/mpack.txt”) to download the functions
and the command source(“G:/mrobdata.txt”) to download the data. See
Preface or Section 15.2. Typing the name of the mpack function, e.g.,
covmba, will display the code for the function. Use the args command, e.g.,
args(covmba), to display the needed arguments for the function. For some
of the following problems, the R commands can be copied and pasted from
(http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

4.1. a) Download the maha function that creates the classical Mahalanobis
distances.

b) Copy and paste the commands for this problem and check whether
observations 1–40 look like outliers.

4.2. Download the rmaha function that creates the robust Mahalanobis
distances using cov.mcd (FMCD). Obtain outx2 as in Problem 4.1b). Enter
the R command library(MASS). Enter the command rmaha(outx2) and check
whether observations 1–40 look like outliers.

4.3. a) Download the covmba function.
b) Download the program rcovsim.

http://dx.doi.org/10.1007/978-3-319-68253-2_15
http://lagrange.math.siu.edu/Olive/mrsashw.txt
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c) Enter the command rcovsim(100) three times and include the output
in Word.

d) Explain what the output is showing.
4.4∗. a) Assuming that you have done the two source commands above

Problem 4.1 (and the R command library(MASS)), type the command
ddcomp(buxx). This will make 4 DD plots based on the DGK, FCH, FMCD,
and median ball estimators. The DGK and median ball estimators are the
two attractors used by the FCH estimator. With the leftmost mouse button,
move the cursor to an outlier and click. This data is the Buxton (1920) data
and cases with numbers 61, 62, 63, 64, and 65 were the outliers with head
lengths near 5 feet. After identifying at least three outliers in each plot, hold
the rightmost mouse button down (and in R click on Stop) to advance to the
next plot. When done, hold down the Ctrl and c keys to make a copy of the
plot. Then paste the plot in Word.

b) Repeat a) but use the command ddcomp(cbrainx). This data is the
Gladstone (1905) data and some infants are multivariate outliers.

c) Repeat a) but use the command ddcomp(museum[,-1]). This data is the
Schaaffhausen (1878) skull measurements and cases 48–60 were apes while
the first 47 cases were humans.

4.5∗. (Perform the source(“G:/mpack.txt”) command if you have not
already done so.) The concmv function illustrates concentration with p = 2
and a scatterplot of X1 versus X2. The outliers are such that the robust esti-
mators cannot always detect them. Type the command concmv(). Hold the
rightmost mouse button down (and in R click on Stop) to see the DD plot
after one concentration step. The start uses the coordinatewise median and
diag([MAD(Xi)]2). Repeat four more times to see the DD plot based on the
attractor. The outliers have large values of X2 and the highlighted cases have
the smallest distances. Repeat the command concmv() several times. Some-
times the start will contain outliers but the attractor will be clean (none of
the highlighted cases will be outliers), but sometimes concentration causes
more and more of the highlighted cases to be outliers, so that the attractor
is worse than the start. Copy one of the DD plots where none of the outliers
are highlighted into Word.

4.6∗. (Perform the source(“G:/mpack.txt”) command if you have not
already done so.) The ddmv function illustrates concentration with the DD
plot. The outliers are highlighted. The first graph is the DD plot after one
concentration step. Hold the rightmost mouse button down (and in R click
on Stop) to see the DD plot after two concentration steps. Repeat four more
times to see the DD plot based on the attractor. In this problem, try to deter-
mine the proportion of outliers gam that the DGK estimator can detect for
p = 2, 4, 10, and 20. Make a table of p and gam. For example, the command
ddmv(p=2,gam=.4) suggests that the DGK estimator can tolerate nearly 40%
outliers with p = 2, but the command ddmv(p=4,gam=.4) suggest that gam
needs to be lowered (perhaps by 0.1 or 0.05). Try to make 0 < gam < 0.5 as
large as possible.
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4.7. (Perform the source(“G:/mpack.txt”) command if you have not
already done so.) A simple modification of the MBA estimator adds starts
trimming M% of cases furthest from the coordinatewise median MED(x).
For example, use M ∈ {98, 95, 90, 80, 70, 60, 50}. Obtain the program cmba2
from mpack.txt and try the MBA estimator on the data sets in Problem
4.4. You need to right click Stop on the plot 7 times.

4.8. The mpack function covesim compares various ways to robustly
estimate the covariance matrix. The estimators used are ccov: the classical
estimator applied to the clean cases, RFCH, and RMVN. The average dis-
persion matrix is reported over nruns = 20. Let diag(A) be the diagonal of
the average dispersion matrix. Then diagdiff = diag(ccov) - diag(rmvne) and
abssumd = sum(abs(diagdiff)). The clean data ∼ Np(0, diag(1, ..., p)).

a) The R command covesim(n=100,p=4) gives output when there are no
outliers. Copy and paste the output into Word.

b) The command covesim(n=100,p=4,outliers=1,pm=15) uses 40% out-
liers that are a tight cluster at major axis with mean (0, ..., 0, pm)T . Hence
pm determines how far the outliers are from the bulk of the data. Copy and
paste the output into Word. The average dispersion matrices should be ≈ c
diag(1, 2, 3, 4) for this type of outlier configuration. What is c for RFCH and
RMVN?

4.9. The R function cov.mcd is an FMCD estimator. If cov.mcd com-
puted the minimum covariance determinant estimator, then the log determi-
nant of the dispersion matrix would be a minimum and would not change
when the rows of the data matrix are permuted. The R commands for this
problem permute the rows of the Gladstone (1905) data matrix seven times.
The log determinant is given for each of the resulting cov.mcd estimators.

a) Paste the output into Word.
b) How many distinct values of the log determinant were produced? (Only

one if the MCD estimator is being computed.)



Chapter 5
DD Plots and Prediction Regions

This chapter examines the DD plot of classical versus robust Mahalanobis
distances, and develops practical prediction regions for a future test obser-
vation xf that work even if the iid training data x1, ...,xn come from an
unknown distribution. The prediction regions can be visualized with the DD
plot. The classical prediction region assumes that the data are iid from a
multivariate normal distribution, and the region tends to have too small of a
volume if the MVN assumption is violated. The undercoverage of the volume
of the classical region becomes worse as the number of variables p increases
since the volume of the region {x : Dx(x,S) ≤ h} ∝ hp. The classical region
uses hc =

√
χ2

p,1−δ, which tends to be much smaller than the value of h that
gives correct coverage.

A relationship between confidence regions and prediction regions is used
to derive bootstrap tests for H0 : μ = c versus H1 : μ �= c where c is
some constant vector. Using μ = Aβ may be useful for testing after variable
selection.

5.1 DD Plots

A basic way of designing a graphical display is to arrange for reference
situations to correspond to straight lines in the plot.

Chambers, Cleveland, Kleiner, and Tukey (1983, p. 322)

Definition 5.1: Rousseeuw and Van Driessen (1999). The DD plot
is a plot of the classical Mahalanobis distances MDi versus robust Maha-
lanobis distances RDi.

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 5
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The DD plot is used as a diagnostic for multivariate normality, elliptical
symmetry, and for outliers. Assume that the data set consists of iid vectors
from an ECp(μ,Σ, g) distribution with second moments. Then the classi-
cal sample mean and covariance matrix (TM ,CM ) = (x,S) is a consistent
estimator for (μ, cxΣ) = (E(x),Cov(x)). Assume that an alternative algo-
rithm estimator (TA,CA) is a consistent estimator for (μ, aAΣ) for some
constant aA > 0. By scaling the algorithm estimator, the DD plot can be
constructed to follow the identity line with unit slope and zero intercept. Let
(TR,CR) = (TA,CA/τ2) denote the scaled algorithm estimator where τ > 0
is a constant to be determined. Notice that (TR,CR) is a valid estimator of
location and dispersion. Hence the robust distances used in the DD plot are
given by

RDi = RDi(TR,CR) =
√

(xi − TR(W ))T [CR(W )]−1(xi − TR(W ))

= τ Di(TA,CA) for i = 1, ..., n.
The following proposition shows that if consistent estimators are used to

construct the distances, then the DD plot will tend to cluster tightly about the
line segment through (0, 0) and (MDn,α,RDn,α) where 0 < α < 1 and MDn,α

is the 100αth sample percentile of the MDi. Nevertheless, the variability in
the DD plot may increase with the distances. Let K > 0 be a constant, e.g.,
the 99th percentile of the χ2

p distribution.

Proposition 5.1. Assume that x1, ...,xn are iid observations from a dis-
tribution with parameters (μ,Σ) where Σ is a symmetric positive definite
matrix. Let aj > 0 and assume that (μ̂j,n, Σ̂j,n) are consistent estimators of
(μ, ajΣ) for j = 1, 2.

a) D2
x(μ̂j , Σ̂j) − 1

aj
D2

x(μ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (μ̂j , Σ̂j)−(μ, ajΣ) = Op(n−δ) and ajΣ̂
−1

j −Σ−1 =
OP (n−δ), then

D2
x(μ̂j , Σ̂j) − 1

aj
D2

x(μ,Σ) = OP (n−δ).

c) Let Di,j ≡ Di(μ̂j,n, Σ̂j,n) be the ith Mahalanobis distance computed
from (μ̂j,n, Σ̂j,n). Consider the cases in the region R = {i|0 ≤ Di,j ≤ K, j =
1, 2}. Let rn denote the correlation between Di,1 and Di,2 for the cases in R
(Thus rn is the correlation of the distances in the “lower left corner” of the
DD plot). Then rn → 1 in probability as n → ∞.

Proof. Let Bn denote the subset of the sample space on which both Σ̂1,n

and Σ̂2,n have inverses. Then P (Bn) → 1 as n → ∞.

a) and b): D2
x(μ̂j , Σ̂j) = (x − μ̂j)T Σ̂

−1

j (x − μ̂j) =
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(x − μ̂j)
T

(
Σ−1

aj
− Σ−1

aj
+ Σ̂

−1

j

)
(x − μ̂j)

= (x − μ̂j)
T

(−Σ−1

aj
+ Σ̂

−1

j

)
(x − μ̂j) + (x − μ̂j)

T

(
Σ−1

aj

)
(x − μ̂j)

=
1
aj

(x − μ̂j)
T (−Σ−1 + aj Σ̂

−1

j )(x − μ̂j) +

(x − μ + μ − μ̂j)
T

(
Σ−1

aj

)
(x − μ + μ − μ̂j)

=
1
aj

(x − μ)T Σ−1(x − μ)

+
2
aj

(x − μ)T Σ−1(μ − μ̂j) +
1
aj

(μ − μ̂j)
T Σ−1(μ − μ̂j)

+
1
aj

(x − μ̂j)
T [ajΣ̂

−1

j − Σ−1](x − μ̂j) (5.1)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).
c) Following the proof of a), D2

j ≡ D2
x(μ̂j , Σ̂j)

P→ (x−μ)T Σ−1(x−μ)/aj

for fixed x, and the result follows. �

The above result implies that a plot of the MDi versus the Di(TA,CA) ≡
Di(A) will follow a line through the origin with some positive slope since if
x = μ, then both the classical and the algorithm distances should be close to
zero. We want to find τ such that RDi = τ Di(TA,CA), and the DD plot of
MDi versus RDi follows the identity line. By Proposition 5.1, the plot of MDi

versus Di(A) will follow the line segment defined by the origin (0, 0) and the
point of observed median Mahalanobis distances, (med(MDi),med(Di(A))).
This line segment has slope

med(Di(A))/med(MDi)

which is generally not one. By taking τ = med(MDi)/med(Di(A)), the plot
will follow the identity line if (x,S) is a consistent estimator of (μ, cxΣ)
and if (TA,CA) is a consistent estimator of (μ, aAΣ). (Using the notation
from Proposition 5.1, let (a1, a2) = (cx, aA).) The classical estimator is con-
sistent if the population has a nonsingular covariance matrix. The algorithm
estimators (TA,CA) from Theorem 4.10 are consistent on a large class of
EC distributions that have a nonsingular covariance matrix, but tend to be
biased for non-EC distributions.
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By replacing the observed median med(MDi) of the classical Mahalanobis
distances with the target population analog, say MED, τ can be chosen so
that the DD plot is simultaneously a diagnostic for elliptical symmetry and a
diagnostic for the target EC distribution. That is, the plotted points follow
the identity line if the data arise from a target EC distribution such as the
multivariate normal distribution, but the points follow a line with nonunit
slope if the data arise from an alternative EC distribution. In addition, the
DD plot can often detect departures from elliptical symmetry such as outliers,
the presence of two groups, or the presence of a mixture distribution. These
facts make the DD plot a useful alternative to other graphical diagnostics for
target distributions. See Easton and McCulloch (1990), Li et al. (1997), and
Liu et al. (1999) for references.

Example 5.1. Rousseeuw and Van Driessen (1999) chose the multivari-
ate normal Np(μ,Σ) distribution as the target. If the data are indeed iid
MVN vectors, then the (MDi)2 are asymptotically χ2

p random variables, and

MED =
√

χ2
p,0.5 where χ2

p,0.5 is the median of the χ2
p distribution. Since the

target distribution is Gaussian, let

RDi =

√
χ2

p,0.5

med(Di(A))
Di(A) so that τ =

√
χ2
p,0.5

med(Di(A))
. (5.2)

Note that the DD plot can be tailored to follow the identity line if the data
are iid observations from any target elliptically contoured distribution that
has nonsingular covariance matrix. If it is known that med(MDi) ≈ MED
where MED is the target population analog (obtained, e.g., via simulation,
or from the actual target distribution as in Equation 3.10), then use

RDi = τ Di(A) =
MED

med(Di(A))
Di(A). (5.3)

We recommend using RFCH or RMVN as the robust estimators in DD
plots. The cov.mcd estimator should be modified by adding the FCH starts
to the 500 elemental starts. There exist data sets with outliers or two
groups such that both the classical and robust estimators produce hyper-
ellipsoids that are nearly concentric. We suspect that the situation worsens
as p increases. The cov.mcd estimator is basically an implementation of the
elemental FMCD concentration algorithm described in the previous chapter.
The number of starts used was K = max(500, n/10) (the default is K = 500,
so the default can be used if n ≤ 5000).

Conjecture 5.1. If x1, ...,xn are iid ECp(μ,Σ, g) and an elemental
FMCD concentration algorithm is used to produce the estimator (TA,n,CA,n),
then under mild regularity conditions this algorithm estimator is consistent

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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for (μ, aΣ) for some constant a > 0 (that depends on g) if the number of
starts K = K(n) → ∞ as the sample size n → ∞.

Notice that if this conjecture is true, and if the data is EC with 2nd
moments, then [

med(Di(A))
med(MDi)

]2

CA (5.4)

Table 5.1 Corr(RDi, MDi) for Np(0, Ip) Data, 100 Runs.

p n mean min % < 0.95 % < 0.8

3 44 0.866 0.541 81 20

3 100 0.967 0.908 24 0

7 76 0.843 0.622 97 26

10 100 0.866 0.481 98 12

15 140 0.874 0.675 100 6

15 200 0.945 0.870 41 0

20 180 0.889 0.777 100 2

20 1000 0.998 0.996 0 0

50 420 0.894 0.846 100 0

estimates Cov(x). For the DD plot, consistency is desirable but not neces-
sary. It is necessary that the correlation of the smallest 99% of the MDi and
RDi be very high. This correlation goes to 1 by Proposition 5.1 if consistent
estimators are used.

In a simulation study, Np(0, Ip) data were generated and cov.mcd was
used to compute first the Di(A), and then the RDi using Equation (5.2). The
results are shown in Table 5.1. Each choice of n and p used 100 runs, and the
100 correlations between the RDi and the MDi were computed. The mean
and minimum of these correlations are reported along with the percentage
of correlations that were less than 0.95 and 0.80. The simulation shows that
small data sets (of roughly size n < 8p + 20) yield plotted points that may
not cluster tightly about the identity line even if the data distribution is
Gaussian.

Since every nonsingular estimator of multivariate location and dispersion
defines a hyperellipsoid, the DD plot can be used to examine which points
are in the robust hyperellipsoid

{x : (x − TR)T C−1
R (x − TR) ≤ RD2

(h)} (5.5)

where RD2
(h) is the hth smallest squared robust Mahalanobis distance, and

which points are in a classical hyperellipsoid

{x : (x − x)T S−1(x − x) ≤ MD2
(h)}. (5.6)
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In the DD plot, points below RD(h) correspond to cases that are in the
hyperellipsoid given by Equation (5.5) while points to the left of MD(h) are
in a hyperellipsoid determined by Equation (5.6).

The DD plot will follow a line through the origin closely if the two hyperel-
lipsoids are nearly concentric, e.g., if the data is EC. The DD plot will follow
the identity line closely if med(MDi) ≈ MED, and RD2

i =

(xi−TA)T

[(
MED

med(Di(A))

)2

C−1
A

]
(xi−TA) ≈ (xi−x)T S−1(xi−x) = MD2

i

for i = 1, ..., n. When the distribution is not EC, the RMVN (or RFCH or
FMCD) estimator and (x,S) will often produce hyperellipsoids that are far
from concentric.

Application 5.1. The DD plot can be used simultaneously as a diagnostic
for whether the data arise from a multivariate normal (MVN or Gaussian)
distribution or from another EC distribution with nonsingular covariance
matrix. EC data will cluster about a straight line through the origin; MVN
data in particular will cluster about the identity line. Thus the DD plot can
be used to assess the success of numerical transformations toward ellipti-
cal symmetry. This application is important since many statistical methods
assume that the underlying data distribution is MVN or EC.
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Fig. 5.1 4 DD Plots
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For this application, the RFCH and RMVN estimators may be best. For
MVN data, the RDi from the RFCH estimator tend to have a higher correla-
tion with the MDi from the classical estimator than the RDi from the FCH
estimator, and the cov.mcd estimator may be inconsistent.

Figure 5.1 shows the DD plots for 3 artificial data sets using cov.mcd. The
DD plot for 200 N3(0, I3) points shown in Figure 5.1a resembles the identity
line. The DD plot for 200 points from the elliptically contoured distribution
0.6N3(0, I3) + 0.4N3(0, 25 I3) in Figure 5.1b clusters about a line through
the origin with a slope close to 2.0.

A weighted DD plot magnifies the lower left corner of the DD plot by
omitting the cases with RDi ≥

√
χ2

p,.975. This technique can magnify features
that are obscured when large RDi’s are present. If the distribution of x is
EC with nonsingular Σ, Proposition 5.1 implies that the correlation of the
points in the weighted DD plot will tend to one and that the points will
cluster about a line passing through the origin. For example, the plotted
points in the weighted DD plot (not shown) for the non-MVN EC data of
Figure 5.1b are highly correlated and still follow a line through the origin
with a slope close to 2.0.

Figures 5.1c and 5.1d illustrate how to use the weighted DD plot. The
ith case in Figure 5.1c is (exp(xi,1), exp(xi,2), exp(xi,3))T where xi is the
ith case in Figure 5.1a; i.e., the marginals follow a lognormal distribution.
The plot does not resemble the identity line, correctly suggesting that the
distribution of the data is not MVN; however, the correlation of the plotted
points is rather high. Figure 5.1d is the weighted DD plot where cases with
RDi ≥

√
χ2
3,.975 ≈ 3.06 have been removed. Notice that the correlation of the

plotted points is not close to one and that the best fitting line in Figure 5.1d
may not pass through the origin. These results suggest that the distribution
of x is not EC.

It is easier to use the DD plot as a diagnostic for a target distribution
such as the MVN distribution than as a diagnostic for elliptical symmetry.
If the data arise from the target distribution, then the DD plot will tend
to be a useful diagnostic when the sample size n is such that the sample
correlation coefficient in the DD plot is at least 0.80 with high probability.
As a diagnostic for elliptical symmetry, it may be useful to add the OLS line
to the DD plot and weighted DD plot as a visual aid, along with numerical
quantities such as the OLS slope and the correlation of the plotted points.

Numerical methods for transforming data toward a target EC distribution
have been developed. Generalizations of the Box–Cox transformation toward
a multivariate normal distribution are described in Velilla (1993). Alterna-
tively, Cook and Nachtsheim (1994) gave a two-step numerical procedure for
transforming data toward a target EC distribution. The first step simply gives
zero weight to a fixed percentage of cases that have the largest robust Maha-
lanobis distances, and the second step uses Monte Carlo case reweighting
with Voronoi weights.
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Fig. 5.2 DD Plots for the Buxton Data

Example 5.2. Buxton (1920, pp. 232–5) gave 20 measurements of 88
men. We will examine whether the multivariate normal distribution is a
reasonable model for the measurements head length, nasal height, bigonal
breadth, and cephalic index where one case has been deleted due to missing
values. Figure 5.2a shows the DD plot. Five head lengths were recorded to be
around 5 feet and are massive outliers. Figure 5.2b is the DD plot computed
after deleting these points and suggests that the multivariate normal distrib-
ution is reasonable. (The recomputation of the DD plot means that the plot
is not a weighted DD plot which would simply omit the outliers, and then
rescale the vertical axis.)

The DD plot complements rather than replaces the numerical procedures.
For example, if the goal of the transformation is to achieve a multivariate
normal distribution and if the data points cluster tightly about the identity
line, as in Figure 5.1a, then perhaps no transformation is needed. For the data
in Figure 5.1c, a good numerical procedure should suggest coordinatewise log
transforms. Following this transformation, the resulting plot shown in Figure
5.1a indicates that the transformation to normality was successful.
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Fig. 5.3 DD Plot With One Outlier in the Upper Right Corner

Application 5.2. The DD plot can be used to detect multivariate out-
liers. See Figures 4.2, 4.4, 5.2a, and 5.3.

Warning: It is important to know that plots fill space. If there is a single
outlier, then often it will appear in the upper left or upper right corner of
the DD plot, where RD is large, since the plot has to cover the outlier. The
rest of the data will often appear to be tightly clustered about the identity
line. Beginners sometimes fail to spot the single outlier because they do not
know that the plot will fill space. There is a lot of blank space because of the
outlier. If the outlier was not present, then the box would not extend much
above the identity line in the upper right corner of the plot. For example,
suppose all of the outliers except point 63 were deleted from the Buxton data.
Then compare the DD plot in Figure 5.2 b) where all of the outliers have
been deleted, with the DD plot in Figure 5.3 where the single outlier is in the
upper right corner. R commands to produce Figures 5.2 and 5.3 are shown
below.

library(MASS)
x <- cbind(buxy,buxx)
ddplot(x,type=3) #Figure 5.2a), right click Stop

zx <- x[-c(61:65),]
ddplot(zx,type=3) #Figure 5.2b), right click Stop

zz <- x[-c(61,62,64,65),]
ddplot(zz,type=3) #Figure 5.3, right click Stop

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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5.2 Prediction Regions

Consider predicting a future test value xf , given past training data x1, ...,xn

where x1, ...,xn,xf are iid. Much as confidence regions and intervals give a
measure of precision for the point estimator θ̂ of the parameter θ, prediction
regions and intervals give a measure of precision of the point estimator T = x̂f

of the future random vector xf . The material in this section will be useful for
Section 5.3 and for developing practical prediction regions for multivariate
linear regression. See Section 12.3.

Definition 5.2. A large sample 100(1 − δ)% prediction region is a set
An such that P (xf ∈ An) → 1 − δ as n → ∞. A prediction region is
asymptotically optimal if its volume converges in probability to the volume
of the minimum volume covering region or the highest density region of the
distribution of xf .

Some researchers define a large sample prediction region An such that
P (xf ∈ An) ≥ 1 − δ, asymptotically. As an example for p = 1, a large
sample 100(1 − δ)% prediction interval (PI) has the form [L̂n, Ûn] where
P (L̂n ≤ Yf ≤ Ûn) → 1 − δ as the sample size n → ∞. Open intervals are
often used. If the highest density region is an interval, then a PI is asymptot-
ically optimal if it has the shortest asymptotic length that gives the desired
asymptotic coverage. The following definition makes sense when the highest
density region is unique. If p = 1, nonzero flat spots in the pdf can cause
the region to have higher than nominal coverage. For example, the highest
density region of a uniform(θ1, θ2) random variable is not unique.

Definition 5.3. When unique, the 100(1 − δ)% highest density region
R(f1−δ) = {z : f(z) ≥ fδ} where fδ is the largest constant such that
P [x ∈ R(f1−δ)] ≥ 1−δ and f(z) is the probability density function (pdf) of x.

For elliptically contoured distributions with continuous decreasing g, the
highest density region is the hyperellipsoid

{z : (z − μ)T Σ−1(z − μ) ≤ u1−δ} = {z : D2
z(μ,Σ) ≤ u1−δ} (5.7)

where P (U ≤ u1−δ) = 1 − δ, and U is given by (3.9). If HDRY (1 − δ) is
the 100(1 − δ)% highest density region for a random variable Y , and X ∼
U(0, θ) Y (meaning X is independent of Y ), then the 100(1 − δ)% highest
density region for (Xf , Yf ) is

{(x, y) : x ∈ (0, θ), y ∈ HDRY (1 − δ)}.

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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Fig. 5.4 Highest 36.8% Density Region is (0,1)

To illustrate the highest density region, first let p = 1. Suppose X1, ...,Xn

are iid from a unimodal pdf that has interval support, and that the pdf f(z)
decreases rapidly as z moves away from the mode. Let (a, b) be the shortest
interval such that F (b) − F (a) = 1 − δ where the cumulative distribution
function F (x) = P (X ≤ x). Then the interval is the highest density region
containing 1−δ of the mass. To find the (1−δ)100% highest density region of
a pdf, move a horizontal line down from the top of the pdf. The line will inter-
sect the pdf or the boundaries of the support of the pdf at (a1, b1), ..., (ak, bk)
for some k ≥ 1. Stop moving the line when the area under the pdf correspond-
ing to the intervals is equal to 1 − δ. See Figure 5.4 where the area under
the pdf from 0 to 1 gives the 36.8% highest density region. The region will
often have f(a) = f(b), e.g., if the support where f(z) > 0 is (−∞,∞). For
p = 2, a horizontal plane is moved up and down the joint pdf until the area
under the “intersection” of the plane and the joint pdf (or the boundaries of
the support of the pdf) equals 1 − δ. (For a joint pmf f(z) = P (x = z), the
sum of the f(z) such that f(z) ≥ fδ is ≥ 1− δ.) Figure 2.1 shows the highest
density regions for two bivariate normal distributions.

There is a moderate amount of literature for prediction regions that
may perform well for small p. Let f̂(1), ..., f̂(n) be the order statistics of
f̂(x1), ..., f̂(xn). Hyndman (1996) used the estimated highest density region

R̂(f1−δ) = {z : df̂(z) ≥ df̂(h)} (5.8)

where d > 0 can be any constant, h = max(1, �nδ), and �x is the integer
part of x. Also see Lei et al. (2013), who estimated f(z) with a kernel density
estimator, for references. See Section 8.6 for kernel density estimators.

http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_8
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For p = 1 and positive integer c, the shorth(c) estimator is a useful esti-
mator of the highest density region when the region is an interval.

Definition 5.4. Let Z(1), ..., Z(n) be the order statistics of Z1, ..., Zn. Con-
sider intervals that contain c cases: [Z(1), Z(c)], [Z(2), Z(c+1)], ..., [Z(n−c+1),
Z(n)]. Compute Z(c) − Z(1), Z(c+1) − Z(2), ..., Z(n) − Z(n−c+1). Then let the
shortest closed interval containing at least c of the Zi be

shorth(c) = [Z(s),Z(s+c−1)]. (5.9)

Let
kn = �n(1 − δ)� (5.10)

where �x� is the smallest integer ≥ x, e.g., �7.7� = 8. Frey (2013) showed that
for large nδ and iid data, the shorth(kn) PI has undercoverage that depends
on the distribution of the data with maximum undercoverage ≈ 1.12

√
δ/n,

and used the shorth(c) estimator as the large sample 100(1 − δ)% PI where

c = min(n, �n[1 − δ + 1.12
√

δ/n ] �). (5.11)

Example 5.3. Given below were votes for preseason 1A basketball poll
from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value
was 78. As shown below, finding shorth(3) from the ordered data is simple.
If the outlier was corrected, shorth(3) = [76,78].

111 89 778 78 76

order data: 76 78 89 111 778

13 = 89 - 76

33 = 111 - 78

689 = 778 - 89
shorth(3) = [76,89]

Let D2
(c) be the cth order statistic of D2

1, ...,D
2
n, and consider the hyper-

ellipsoid

An = {x : D2
x(x,S) ≤ D2

(c)} = {x : Dx(x,S) ≤ D(c)}. (5.12)

If n is large, we can use c = kn = �n(1 − δ)�. If n is not large, using c = Un

where Un decreases to kn can improve small sample performance. Un will
be defined in the paragraph below Equation (5.16). Olive (2013a) showed
that (5.12) is a large sample 100(1− δ)% prediction region under mild condi-
tions, although regions with smaller volumes may exist. Note that the result
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follows since if Σx and S are nonsingular, then the Mahalanobis distance
is a continuous function of (x,S). Let D = D(μ,Σx). Then Di

D→ D and
D2

i
D→ D2. Hence the sample percentiles of the Di are consistent estimators

of the population percentiles of D at continuity points of the cumulative
distribution function (cdf) of D. The prediction region (5.12) estimates the
highest density region for a large class of elliptically contoured distributions.

A problem with the prediction regions that cover ≈ 100(1 − δ)% of the
training data cases xi (such as (5.8), (5.9), and (5.12) for appropriate h or
c) is that they have coverage lower than the nominal coverage of 1 − δ for
moderate n. This result is not surprising since empirically statistical methods
perform worse on test data than on training data. Increasing c will improve
the coverage for moderate samples. Then empirically for many distributions,
for n ≈ 20p, the two prediction regions (5.9) and (5.12) applied to iid data
or pseudodata using kn = �n(1 − δ)� tend to have undercoverage as high as
5%. The undercoverage decreases rapidly as n increases. Let
qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (5.13)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Using

c = �nqn� (5.14)

in (5.12) decreased the undercoverage.
If (T,C) is a

√
n consistent estimator of (μ, d Σ) for some constant d > 0

where Σ is nonsingular, then D2(T,C) = (x − T )T C−1(x − T ) =

(x − μ + μ − T )T [C−1 − d−1Σ−1 + d−1Σ−1](x − μ + μ − T )

= d−1D2(μ,Σ) + op(1).

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the per-

centiles of d−1D2(μ,Σ) (at continuity points D1−δ of the cdf of D2(μ,Σ)).
If x ∼ Nm(μ,Σ), then D2

x(μ,Σ) = D2(μ,Σ) ∼ χ2
m.

Suppose (T,C) = (xM , b SM ) is the sample mean and scaled sample
covariance matrix applied to some subset of the data. The classical and
RMVN estimators satisfy this assumption. For h > 0, the hyperellipsoid

{z : (z − T )T C−1(z − T ) ≤ h2} = {z : D2
z ≤ h2} = {z : Dz ≤ h} (5.15)

has volume equal to

2πp/2

pΓ(p/2)
hp

√
det(C) =

2πp/2

pΓ(p/2)
hpbp/2

√
det(SM ). (5.16)
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A future observation (random vector) xf is in the region (5.15) if Dxf
≤ h.

If (T,C) is a consistent estimator of (μ, dΣ) for some constant d > 0 where
Σ is nonsingular, then (5.15) is a large sample 100(1− δ)% prediction region
if h = D(Un) where D(Un) is the 100qnth sample quantile of the Di where qn

is defined above (5.14). For example, use Un = c = �nqn�. If x1, ...,xn and
xf are iid, then region (5.15) is asymptotically optimal on a large class of
elliptically contoured distributions in that the region’s volume converges in
probability to the volume of the highest density region (5.7).

The Olive (2013a) nonparametric prediction region uses (T,C) = (x,S).
For the classical prediction region, see Chew (1966) and Johnson and Wichern
(1988, pp. 134, 151). Refer to the above paragraph for D(Un).

Definition 5.5. The large sample 100(1 − δ)% nonparametric prediction
region for a future value xf given iid data x1, ..., ,xn is

{z : D2
z(x,S) ≤ D2

(Un)
}, (5.17)

while the large sample 100(1 − δ)% classical prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ}. (5.18)

If p is small, Mahalanobis distances tend to be right skewed with a pop-
ulation shorth that discards the right tail. For p = 1 and n ≥ 20, the finite
sample correction factors c/n for c given by (5.11) and (5.14) do not differ
by much more than 3% for 0.01 ≤ δ ≤ 0.5. See Figure 5.5 where ol = (eq.
5.14)/n is plotted versus fr = (eq. 5.11)/n for n = 20, 21, ..., 500. The top
plot is for δ = 0.01, while the bottom plot is for δ = 0.3. The identity line is
added to each plot as a visual aid. The value of n increases from 20 to 500
from the right of the plot to the left of the plot. Examining the axes of each
plot shows that the correction factors do not differ greatly. R code to create
Figure 5.5 is shown below.

cmar <- par("mar"); par(mfrow = c(2, 1))
par(mar=c(4.0,4.0,2.0,0.5))
frey(0.01); frey(0.3)
par(mfrow = c(1, 1)); par(mar=cmar)

Remark 5.1. The nonparametric prediction region (5.17) is useful if
x1, ...,xn,xf are iid from a distribution with a nonsingular covariance matrix,
and the sample size n is large enough. The distribution could be continuous,
discrete, or a mixture. The asymptotic coverage is 1 − δ if the 100(1 − δ)th
percentile D1−δ of D is a continuity point of the distribution of D, although
prediction regions with smaller volume may exist. If D1−δ is not a continu-
ity point of the distribution of D, then the asymptotic coverage tends to be
≥ 1−δ since a sample percentile with cutoff qn that decreases to 1−δ is used
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Fig. 5.5 Correction Factor Comparison when δ = 0.01 (Top Plot) and δ = 0.3 (Bottom
Plot)

and a closed region is used. Often D has a continuous distribution and hence
has no discontinuity points for 0 < δ < 1. (If there is a jump in the distrib-
ution from 0.9 to 0.96 at discontinuity point a, and the nominal coverage is
0.95, we want 0.96 coverage instead of 0.9. So we want the sample percentile
to decrease to a.) The nonparametric prediction region (5.17) contains Un of
the training data cases xi provided that S is nonsingular, even if the model
is wrong. For many distributions, the coverage started to be close to 1 − δ
for n ≥ 10p where the coverage is the simulated percentage of times that the
prediction region contained xf .

Remark 5.2. The most used prediction regions assume that the error vec-
tors are iid from a multivariate normal distribution. The ratio of the volumes
of regions (5.18) and (5.17) is
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(
χ2

p,1−δ

D2
(Un)

)p/2

,

which can become close to zero rapidly as p gets large if the xi are not
from the light-tailed multivariate normal distribution. For example, suppose
χ2
4,0.5 ≈ 3.33 and D2

(Un)
≈ D2

x,0.5 = 6. Then the ratio is (3.33/6)2 ≈ 0.308.
Hence if the data is not multivariate normal, severe undercoverage can occur
if the classical prediction region is used, and the undercoverage tends to get
worse as the dimension p increases. The coverage need not to go to 0, since by
the multivariate Chebyshev’s inequality, P (D2

x(μ,Σx) ≤ γ) ≥ 1 − p/γ > 0
for γ > p where the population covariance matrix Σx = Cov(x). See Budny
(2014), Chen (2011), and Navarro (2014, 2016). Using γ = h2 = p/δ in
(5.15) usually results in prediction regions with volume and coverage that is
too large.

Remark 5.3. There may not yet be any practical competing prediction
regions that do not have the form of (5.15) if p is much larger than two and
the distribution of the xi is unknown. Remark 5.1 suggests that the nonpara-
metric prediction region (5.17) starts to have good coverage for n ≥ 10p for
a large class of distributions. Of course for any n, there are error distribu-
tions that will have severe undercoverage. Prediction regions that estimate
the pdf f(z) with a kernel density estimator quickly become impractical as
p increases since large sample sizes are needed for good estimates. A simi-
lar problem occurs when using a kernel density estimator for discriminant
analysis. See Silverman (1986, p. 129).

For example, the Hyndman nominal 95% prediction region (5.8) was com-
puted for iid Np(0, I) data with 1000 runs. Let the coverage be the observed
proportion of prediction regions that contained the future value xf . For p = 1,
the coverage was 0.933 for n = 40. For p = 2, the coverage was 0.911 for
n = 50 and 0.930 for n = 150. For p = 4, the coverage was 0.920 for n = 250.
For p = 5, the coverage was 0.866 for n = 200 and 0.934 for n = 2000.
For p = 8, the coverage was 0.735 for n = 125. For the multivariate lognor-
mal distribution with n = 20p, the Olive (2013a) large sample nonparamet-
ric 95% prediction region (5.17) had coverages 0.970, 0.959, and 0.964 for
p = 100, 200, and 500. Some R code is below.

nruns=1000 #p = 1
count<-0
for(i in 1:nruns){
x <- rnorm(40)
xff <- rnorm(1)
count <- count + hdr2(x,xf=xff)$inr}
count #933/1000
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count<-0 #p = 5
for(i in 1:nruns){
x <- matrix(rnorm(1000),ncol=5,nrow=200)
xff <- as.vector(rnorm(5))
count <- count + hdr2(x,xf=xff)$inr}
count #886/1000

#lognormal, p = 100
count<-0
for(i in 1:nruns){
x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))
xff <- exp(as.vector(rnorm(100)))
count <- count + predrgn(x,xf=xff)$inr}
count #970/1000

Olive (2013a) used three prediction regions (5.15) that can be displayed
with the DD plot. The nonparametric prediction region (5.17) uses the clas-
sical estimator (T,C) = (x,S) and h = D(Un). The other two prediction
regions are defined below.

Definition 5.6. The semiparametric prediction region uses (T,C) =
(TRMV N ,CRMV N ) and h = D(Un). The parametric MVN prediction region
uses (T,C) = (TRMV N ,CRMV N ) and h2 = χ2

p,qn where P (W ≤ χ2
p,δ) = δ if

W ∼ χ2
p.

All three prediction regions are asymptotically optimal for MVN distribu-
tions with nonsingular Σ. The first two prediction regions are asymptotically
optimal for a large class of EC(μ,Σ, g) distributions given by Assumption
(E1) used in Theorem 4.8, provided g is continuous and decreasing. For distri-
butions with nonsingular covariance matrix cXΣ, the nonparametric region
is a large sample (1−δ)100% prediction region (provided D1−δ is a continuity
point of the cdf of D), but regions with smaller volume may exist.

Notice that for the training data x1, ...,xn, if C−1 exists, then c ≈ 100qn%
of the n cases are in the prediction regions for xf = xi, and qn → 1−δ even if
(T,C) is not a good estimator. Hence the coverage qn of the training data is
robust to model assumptions. Of course the volume of the prediction region
could be large if a poor estimator (T,C) is used or if the xi do not come
from an elliptically contoured distribution. Also notice that qn = 1 − δ/2
or qn = 1 − δ + 0.05 for n ≤ 20p and qn → 1 − δ as n → ∞. If qn ≡
1 − δ and (T,C) is a consistent estimator of (μ, dΣ) where d > 0 and Σ
is nonsingular, then (5.15) is a large sample prediction region, but taking
qn given by (5.13) improves the finite sample performance of the prediction
region. Taking qn ≡ 1 − δ does not take into account variability of (T,C),
and for small n, the resulting prediction region tended to have undercoverage
as high as min(0.05, δ/2). Using (5.13) helped reduce undercoverage for small
n due to the unknown variability of (T,C).
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Fig. 5.6 Artificial Bivariate Data
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Fig. 5.7 Artificial Data
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Example 5.4. An artificial data set consisting of 100 iid cases from a

N2

((
0
0

)
,

(
1.49 1.4
1.4 1.49

))

distribution and 40 iid cases from a bivariate normal distribution with mean
(0,−3)T and covariance I2. Figure 5.6 shows the classical ellipsoid (with

MD ≤
√

χ2
2,0.95) that uses (T,C) = (x,S). The symbol “1” denotes the data

while the symbol “2” is on the border of the covering ellipse. There is an R
package that makes an ellipse. Notice that the classical parametric ellipsoid
covers almost all of the data. Figure 5.7 displays the robust ellipsoid (using

RD ≤
√

χ2
2,0.95) which contains most of the 100 “clean” cases and excludes

the 40 outliers. Problem 5.5 recreates similar figures with the classical and
RMVN estimators using qn = 0.95.
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Fig. 5.8 Ellipsoid is Inflated by Outliers

Example 5.5. Buxton (1920) gave various measurements on 87 men
including height, head length, nasal height, bigonal breadth, and cephalic index.
Five heights were recorded to be about 19mm (and the actual heights for these
cases were recorded as the head lengths) and are massive outliers. First height
and nasal height were used with qn = 0.95. Figure 5.8 shows that the classical
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Fig. 5.9 Ellipsoid Ignores Outliers

parametric prediction region (using MD ≤
√

χ2
2,.95) is quite large but does

not include any of the outliers. Figure 5.9 shows that the parametric MVN
prediction region (using RD ≤

√
χ2
2,.95) is not inflated by the outliers.

Next all 87 cases and 5 predictors were used. Figure 5.10 shows the RMVN
DD plot with the identity line added as a visual aid. Points to the left of the
vertical line are in the nonparametric large sample 90% prediction region.
Points below the horizontal line are in the semiparametric region. The hori-
zontal line at RD = 3.33 corresponding to the parametric MVN 90% region
is obscured by the identity line. This region contains 78 of the cases. Since
n = 87, the nonparametric and semiparametric regions used the 95th quan-
tile. Since there were 5 outliers, this quantile was a linear combination of the
largest clean distance and the smallest outlier distance. The nonparamet-
ric and semiparametric 90% regions blow up unless the outlier proportion is
small.

Figure 5.10 can be made with the following R commands, assuming source
commands for mpack and mrobdata have been performed. See the Preface
or Section 15.2. Right click Stop to get the cursor.

x <- cbind(buxy,buxx)
ddplot4(x) #right click Stop

http://dx.doi.org/10.1007/978-3-319-68253-2_15
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Figure 5.11 shows the DD plot and 3 prediction regions after the 5 outliers
were removed. The classical and robust distances cluster about the identity
line and the three regions are similar, with the parametric MVN region cutoff
again at 3.33, slightly below the semiparametric region cutoff of 3.44. Cases
to the left of the vertical line MD = 3.33 (not shown since you can mentally
drop down a vertical line where the horizontal line ends at the identity line)
correspond to a (modified) classical prediction region.

Figure 5.11 can be made with the following R commands. Right click Stop
to get the cursor and the output following the two commands.

zx <- x[-c(61:65),]
ddplot4(zx) #right click Stop
$cuplim

95%
3.086005
$ruplim

95%
3.438821
$mvnlim
[1] 3.327236
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Fig. 5.10 Prediction Regions for Buxton Data
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Fig. 5.11 Prediction Regions for Buxton Data without Outliers

Simulations for the prediction regions used x = Aw where
A = diag(

√
1, ...,

√
p), w ∼ Np(0, Ip) (MVN), w ∼ LN(0, Ip) where the

marginals are iid lognormal(0,1), or w ∼ MV Tp(1), a multivariate t distri-
bution with 1 degree of freedom so the marginals are iid Cauchy(0,1). All
simulations used 5000 runs and δ = 0.1.

Often the coverage for the semiparametric region was better than that of
the nonparametric region for n near 10p. The nonparametric covering region
{z : (z − x)T S−1(z − x) ≤ D2

(n)(x,S)} uses all of the data, but for small
n, data is sparse, and the covering region overfits and hence the volume is
too small. The nonparametric prediction region is a hyperellipsoid that is
concentric with the covering region (that replaces D2

(Un)
with D2

(n)). The
semiparametric region is based on the RMVN half set of data. This region
is not a good estimator of the population 50% covering region for small n.
Hence when it is blown up to cover 95% of the training data, the region is
quite large, so it is likely that a future xf is in the region.

For large n, the semiparametric and nonparametric regions are likely to
have coverage near 0.90 because the coverage on the training sample is slightly
larger than 0.9 and xf comes from the same distribution as the xi. For
n = 10p and 2 ≤ p ≤ 40, the semiparametric region had coverage near 0.9.
The ratio of the volumes

hp
i

√
det(Ci)

hp
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semi-
parametric region, and i = 3 was the parametric MVN region. The volume
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ratio converges in probability to 1 for Np(μ,Σ) data, and the ratio converges
to 1 for i = 1 if Assumption (E1) holds. The parametric MVN region often
had coverage much lower than 0.9 with a volume ratio near 0, recorded as
0+. The volume ratio tends to be tiny when the coverage is much less than
the nominal value 0.9. For 10p ≤ n ≤ 20p, the nonparametric region often
had good coverage (and volume ratio near 0.5 for MVN data).

Table 5.2 Coverages for 90% Prediction Regions

w dist n p ncov scov mcov voln volm

MVN 600 30 0.906 0.919 0.902 0.503 0.512

MVN 1500 30 0.899 0.899 0.900 1.014 1.027

LN 1000 10 0.903 0.906 0.567 0.659 0+

MVT(1) 1000 10 0.914 0.914 0.541 22634.3 0+

Simulations and Table 5.2 suggest that for MVN data, the coverages (ncov,
scov, and mcov) for the 3 regions are near 90% for n = 20p and that the
volume ratios voln and volm are near 1 for n = 50p. With fewer than 5000
runs, this result held for 2 ≤ p ≤ 80. For the nonelliptically contoured LN
data, the nonparametric region had voln well under 1, but the volume ratio
blew up for w ∼ MV Tp(1).

5.3 Bootstrapping Hypothesis Tests and Confidence
Regions

This section shows that, under regularity conditions, applying the nonpara-
metric prediction region of Section 5.2 to a bootstrap sample results in a
confidence region. When teaching confidence intervals, it is often noted that
by the central limit theorem, the probability that Y n is within two standard
deviations (2SD(Y n) = 2σ/

√
n) of μ is about 95%. Hence the probabil-

ity that μ is within two standard deviations of Y n is about 95%. Thus the
interval [μ − 1.96S/

√
n, μ + 1.96S/

√
n ] is a large sample 95% prediction

interval for a future value of the sample mean Y n,f if μ is known, while
[Y n − 1.96S/

√
n, Y n + 1.96S/

√
n ] is a large sample 95% confidence interval

for the population mean μ. Note that the lengths of the two intervals are
the same. Where the interval is centered determines whether the interval is
a confidence or a prediction interval.

Definition 5.7. A large sample 100(1−δ)% confidence region for a vector
of parameters μ is a set An such that P (μ ∈ An) → 1 − δ as n → ∞.

Some researchers define a large sample confidence region An such that
P (μ ∈ An) ≥ 1 − δ, asymptotically. The following theorem shows that the
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hyperellipsoid Rc centered at the statistic Tn is a large sample 100(1 − δ)%
confidence region for μ, but the hyperellipsoid Rp centered at known μ is a
large sample 100(1 − δ)% prediction region for a future value of the statistic
Tf,n. The result uses the fact that the squared distance of μ from a statistic
Tn in a hyperellipsoid Rc centered at Tn is equal to the squared distance of
Tn from a parameter μ in a hyperellipsoid Rp centered at μ:

D2
µ(Tn, Σ̂T ) = (μ − Tn)T Σ̂

−1

T (μ − Tn) =

(Tn − μ)T Σ̂
−1

T (Tn − μ) = D2
Tn

(μ, Σ̂T ).

As in Remark 5.1, if the 100(1−δ)th percentile of D2 is not a continuity point
of the distribution of D2, then the asymptotic coverage tends to be ≥ 1 − δ
if a sample percentile with cutoff qn that decreases to 1 − δ is used, since a
closed region is used. Often D2 has a continuous distribution and hence has
no discontinuity points for 0 < δ < 1.

Theorem 5.2. Let the 100(1−δ)th percentile D2
1−δ be a continuity point

of the distribution of D2. Assume that D2
µ(Tn,ΣT ) D→ D2, D2

µ(Tn, Σ̂T ) D→
D2, and D̂2

1−δ
P→ D2

1−δ where P (D2 ≤ D2
1−δ) = 1 − δ. i) Then Rc = {w :

D2
w(Tn, Σ̂T ) ≤ D̂2

1−δ} is a large sample 100(1− δ)% confidence region for μ,
and if μ is known, then Rp = {w : D2

w(μ, Σ̂T ) ≤ D̂2
1−δ} is a large sample

100(1−δ)% prediction region for a future value of the statistic Tf,n. ii) Region
Rc contains μ iff region Rp contains Tn.

Proof. i) From the discussion above, D2
µ(Tn, Σ̂T ) = D2

Tn
(μ, Σ̂T ). Thus

the probability that Rc contains μ is P (D2
µ(Tn, Σ̂T ) ≤ D̂2

1−δ) → 1 − δ, and
the probability that Rp contains Tf,n is P (D2

µ(Tf,n, Σ̂T ) ≤ D̂2
1−δ) → 1 − δ,

as n → ∞.
ii) D2

µ(Tn, Σ̂T ) ≤ D̂2
1−δ iff D2

Tn
(μ, Σ̂T ) ≤ D̂2

1−δ since D2
µ(Tn, Σ̂T ) =

D2
Tn

(μ, Σ̂T ). �
Hence if there was an iid sample T1,n, ..., TB,n of the statistic, the large

sample 100(1−δ)% nonparametric prediction region {w : D2(T ,ST ) ≤ D2
(c)}

for Tf,n contains E(Tn) = μ with asymptotic coverage ≥ 1− δ. To make the
asymptotic coverage equal to 1−δ, use the large sample 100(1−δ)% confidence
region {w : D2(T1,n,ST ) ≤ D2

(c)}. The prediction region method bootstraps
this procedure by using a bootstrap sample of the statistic T ∗

1,n, ..., T ∗
B,n.

Centering the region at T ∗
1,n instead of T ∗ is not needed since the bootstrap

sample is centered near Tn: the distribution of
√

n(Tn − μ) is approximated
by the distribution of

√
n(T ∗ − Tn) or by the distribution of

√
n(T ∗ − T ∗).

See Equations (5.20), (5.25), and (5.26). Also note that if Tn = t(w1, ...,wn),
T ∗

in = t(w∗
i1, ...,w

∗
in), and w∗

i1, ...,w
∗
in is permutation of w1, ...,wn, then

T ∗
in = Tn if t is permutation invariant.
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A bootstrap sample is a sample from the empirical distribution: there are n
cases, and a sample of size n of the cases is drawn with replacement, and each
case is equally likely to be drawn. The residual bootstrap draws a bootstrap
sample from the residuals. The following subsection will help clarify ideas.

5.3.1 The Bootstrap

Definition 5.8. Suppose that data x1, ...,xn has been collected and
observed. Often the data is a random sample (iid) from a distribution with
cdf F . The empirical distribution is a discrete distribution where the xi are
the possible values, and each value is equally likely. If w is a random variable
having the empirical distribution, then pi = P (w = xi) = 1/n for i = 1, ..., n.
The cdf of the empirical distribution is denoted by Fn.

Example 5.6. Let w be a random variable having the empirical distri-
bution given by Definition 5.8. Show that E(w) = x ≡ xn and Cov(w) =
n − 1

n
S ≡ n − 1

n
Sn.

Solution: Recall that for a discrete random vector, the population expected
value E(w) =

∑
xipi where xi are the values that w takes with positive

probability pi. Similarly, the population covariance matrix

Cov(w) = E[(w − E(w))(w − E(w))T ] =
∑

(xi − E(w))(xi − E(w))T pi.

Hence

E(w) =
n∑

i=1

xi
1
n

= x,

and

Cov(w) =
n∑

i=1

(xi − x)(xi − x)T 1
n

=
n − 1

n
S. �

Example 5.7. If W1, ...,Wn are iid from a distribution with cdf FW , then
the empirical cdf Fn corresponding to FW is given by

Fn(y) =
1
n

n∑
i=1

I(Wi ≤ y)

where the indicator I(Wi ≤ y) = 1 if Wi ≤ y and I(Wi ≤ y) = 0 if Wi > y.
Fix n and y. Then nFn(y) ∼ binomial (n, FW (y)). Thus E[Fn(y)] = FW (y)
and V [Fn(y)] = FW (y)[1 − FW (y)]/n. By the central limit theorem,
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√
n(Fn(y) − FW (y)) D→ N(0, FW (y)[1 − FW (y)]).

Thus Fn(y) − FW (y) = OP (n−1/2), and Fn is a reasonable estimator of FW

if the sample size n is large.
Suppose there is data w1, ...,wn collected into an n × p matrix W . Let

the statistic Tn = t(W ) = T (Fn) be computed from the data. Suppose
the statistic estimates μ = T (F ), and let t(W ∗) = t(F ∗

n) = T ∗
n indicate

that t was computed from an iid sample from the empirical distribution
Fn: a sample w∗

1, ...,w
∗
n of size n was drawn with replacement from the

observed sample w1, ...,wn. This notation is used for von Mises differentiable
statistical functions in large sample theory. See Serfling (1980, ch. 6). The
empirical distribution is also important for the influence function (widely
used in robust statistics). The empirical bootstrap or nonparametric bootstrap
or naive bootstrap draws B samples of size n from the rows of W , e.g., from
the empirical distribution of w1, ...,wn. Then T ∗

jn is computed from the jth
bootstrap sample for j = 1, ..., B.

Example 5.8. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the
sample median Tn is 4. Using R, we drew B = 2 bootstrap samples (samples
of size n drawn with replacement from the original data) and computed the
sample median T ∗

1,n = 3 and T ∗
2,n = 4.

b1 <- sample(1:7,replace=T)
b1
[1] 3 2 3 2 5 2 6
median(b1)
[1] 3
b2 <- sample(1:7,replace=T)
b2
[1] 3 5 3 4 3 5 7
median(b2)
[1] 4

The bootstrap has been widely used to estimate the population covariance
matrix of the statistic Cov(Tn), for testing hypotheses, and for obtaining
confidence regions (often confidence intervals). An iid sample T1n, ..., TBn of
size B of the statistic would be very useful for inference, but typically we
only have one sample of data and one value Tn = T1n of the statistic. Often
Tn = t(w1, ...,wn), and the bootstrap sample T ∗

1n, ..., T ∗
Bn is formed where

T ∗
jn = t(w∗

j1, ...,w
∗
jn). Section 5.3.3 will show that T ∗

1n − Tn, ..., T ∗
Bn − Tn is

pseudodata for T1n − μ, ..., TBn − μ when n is large.
The residual bootstrap is often useful for additive error regression models

of the form Yi = m(xi) + ei = m̂(xi) + ri = Ŷi + ri for i = 1, ..., n where
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the ith residual ri = Yi − Ŷi. Let Y = (Y1, ..., Yn)T , r = (r1, ..., rn)T , and let
X be an n × p matrix with ith row xT

i . Then the fitted values Ŷi = m̂(xi)
and the residuals are obtained by regressing Y on X. Here the errors ei are
iid, and it would be useful to be able to generate B iid samples e1j , ..., enj

from the distribution of ei where j = 1, ..., B. If the m(xi) were known, then
we could form a vector Y j where the ith element Yij = m(xi) + eij for
i = 1, ..., n. Then regress Y j on X. Instead, draw samples r∗1j , ..., r

∗
nj with

replacement from the residuals, then form a vector Y ∗
j where the ith element

Y ∗
ij = m̂(xi) + r∗ij for i = 1, ..., n. Then regress Y ∗

j on X.

Example 5.9. For multiple linear regression, Yi = xT
i β + ei is written in

matrix form as Y = Xβ+e. (This model is a special case of the multivariate
linear regression model in Chapter 12 where there is m = 1 response variable
Yi. Outlier resistant methods are discussed in Chapter 14.) Regress Y on X

to obtain β̂, r, and Ŷ with ith element Ŷi = m̂(xi) = xT
i β̂. For j = 1, ..., B,

regress Y ∗
j on X to form β̂

∗
1,n, ..., β̂

∗
B,n using the residual bootstrap.

Consider the residual bootstrap, and let rW denote an n×1 random vector
of elements selected with replacement from the n residuals r1, ..., rn. Then
there are K = nn possible values for rW . Let rW

1 , ..., rW
K be the possible

values of rW . These values are equally likely, so are selected with probability
= 1/K. Note that the random vector rW has a discrete distribution. Then

E(rW
j ) =

⎛
⎜⎝

E(r∗1j)
...

E(r∗nj)

⎞
⎟⎠ .

Now the marginal distribution of r∗ij takes on the n values r1, ..., rn with
the same probability 1/n. So each of the n marginal distributions is the
empirical distribution of the residuals. Hence E(r∗ij) =

∑n
i=1 ri/n = r, and

r = 0 for least squares residuals for multiple linear regression when there
is a constant in the model. So for least squares, E(rW

j ) = 0, and E(β̂
∗
j ) =

(XT X)−1XT E(Ŷ + rW
j ) = (XT X)−1XT Ŷ = (XT X)−1XT HY =

(XT X)−1XT Y = β̂ = β̂n

since HX = X and XT H = XT . Here, H = X(XT X)−1XT , and j =
1, ..., B. Also, the expectation is with respect to the bootstrap distribution
where Ŷ acts as a constant.

For the (ordinary) least squares estimator β̂ = β̂OLS , the estimated
covariance matrix of β̂OLS is Ĉov(β̂OLS) = MSE(XT X)−1. Efron (1982,
p. 36) noted that for the residual bootstrap, E(β̂

∗
) = β̂ = β̂n and

Cov(β̂
∗
) =

n − p

n
MSE(XT X)−1, where expectations are taken with respect

http://dx.doi.org/10.1007/978-3-319-68253-2_14
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to the bootstrap distribution. The sample covariance matrix of the β̂
∗
j is esti-

mating Cov(β̂
∗
) as B → ∞. Hence the residual bootstrap standard error

SE(β̂∗
i ) ≈

√
n − p

n
SE(β̂i) for i = 1, ..., p where β̂OLS = β̂ = (β̂1, ..., β̂p)T .

Example 5.10. Suppose there is training data (yi,xi) for the model yi =
m(xi) + εi for i = 1, ..., n, and it is desired to predict a future test value yf

given xf and the training data. The model can be fit, and the residual vectors
are formed. One method for obtaining a prediction region for yf is to form the
pseudodata ŷf + ε̂i for i = 1, ..., n and apply the nonparametric prediction
region (5.17) to the pseudodata. See Section 12.3. The residual bootstrap
could also be used to make a bootstrap sample ŷf + ε̂∗1, ..., ŷf + ε̂∗B where the
ε̂∗j are selected with replacement from the residual vectors for j = 1, ..., B.
As B → ∞, the bootstrap sample will take on the n values ŷf + ε̂i (the
pseudodata) with probabilities converging to 1/n for i = 1, ..., n.

Suppose there is a statistic Tn that is an r × 1 vector. Let

T ∗ =
1
B

B∑
i=1

T ∗
i and S∗

T =
1

B − 1

B∑
i=1

(T ∗
i − T ∗)(T ∗

i − T ∗)T (5.19)

be the sample mean and sample covariance matrix of the bootstrap sample
T ∗
1 , ..., T ∗

B where T ∗
i = T ∗

i,n. Fix n, and let E(T ∗
i,n) = μn and Cov(T ∗

i,n) = Σn.
For example, using least squares and the residual bootstrap for the multiple

linear regression model, μn = β̂, Σn =
n − p

n
MSE(XT X)−1. Suppose the

T ∗
i = T ∗

i,n are iid from some distribution with cdf F̃n. For example, if T ∗
i,n =

t(F ∗
n) where iid samples from Fn are used, then F̃n is the cdf of t(F ∗

n). With
respect to F̃n, both μn and Σn are parameters, but with respect to F , μn is
a random vector and Σn is a random matrix. For fixed n, by the multivariate
central limit theorem,

√
B(T ∗ − μn) D→ Nr(0,Σn) and B(T∗ − μn)

T[S∗
T]−1(T∗ − μn)

D→ χ2
r

as B → ∞.

Remark 5.4. For Examples 5.6, 5.9, and 5.10, the bootstrap works but
is expensive compared to alternative methods. For Example 5.6, fix n, then
T ∗ P→ μn = x and S∗

T
P→ (n−1)S/n as B → ∞, but using (x,S) makes more

sense. For Example 5.9, using β̂ and the classical estimated covariance matrix
Ĉov(β̂) = MSE(XT X)−1 makes more sense than using the bootstrap. For
Example 5.10, use the pseudodata instead of the residual bootstrap. For these
three examples, it is known how the bootstrap sample behaves as B → ∞.
The bootstrap can be very useful when

√
n(Tn − μ) D→ Nr(0,ΣA), but it

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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not known how to estimate ΣA without using a resampling method like the
bootstrap. The bootstrap may be useful when

√
n(Tn − μ) D→ U , but the

limiting distribution (the distribution of U) is unknown.

Remark 5.5. From Example 5.9, Cov(β̂
∗
) =

n − p

n
MSE(XT X)−1 =

n − p

n
Ĉov(β̂) where Ĉov(β̂) = MSE(XT X)−1 starts to give good estimates

of Cov(β̂) = ΣT for many error distributions if n ≥ 10p and T = β̂. For
the residual bootstrap with large B, note that S∗

T ≈ 0.95Ĉov(β̂) for n = 20p

and S∗
T ≈ 0.99Ĉov(β̂) for n = 100p. Hence we may need n >> p before the

S∗
T is a good estimator of Cov(T ) = ΣT . The distribution of

√
n(Tn − μ) is

approximated by the distribution of
√

n(T ∗ − Tn) or by the distribution of√
n(T ∗ − T

∗
), but n may need to be large before the approximation is good.

Suppose the bootstrap sample mean T ∗ estimates μ, and the boot-
strap sample covariance matrix S∗

T estimates cnĈov(Tn) ≈ cnΣT where cn

increases to 1 as n → ∞. Then S∗
T is not a good estimator of Ĉov(Tn)

until cn ≈ 1 (n ≥ 100p for OLS β̂), but the squared Mahalanobis distance
D2∗

w(T ∗,S∗
T ) ≈ D2

w(μ,ΣT )/cn and D2∗
(UB) ≈ D2

1−δ/cn. Hence the prediction
region method, described below, has a cutoff D2∗

(UB) that estimates the cutoff
D2

1−δ/cn. Thus the prediction region method may give good results for much
smaller n than a bootstrap method that uses a χ2

r,1−δ cutoff when a cutoff
χ2

r,1−δ/cn should be used for moderate n.

5.3.2 The Prediction Region Method
for Hypothesis Testing

Consider testing H0 : μ = c versus H1 : μ �= c where c is a known r × 1
vector. If a confidence region can be constructed for μ− c, then fail to reject
H0 if 0 is in the confidence region, and reject H0 if 0 is not in the confidence
region. For example, let μ = Aβ where β is a p × 1 vector of parameters,
and A is a known full rank r × p matrix with 1 ≤ r ≤ p.

The prediction region method makes a bootstrap sample wi = μ̂∗
i − c

for i = 1, ..., B. Make the nonparametric prediction region (5.17) for the
wi, and reject H0 if 0 is not in the prediction region. As shown below, the
prediction region method is a special case of the percentile method, and a
special case of bootstrapping a test statistic.

For r = 1, the percentile method uses an interval that contains UB ≈
kB = �B(1− δ)� of the T ∗

i,n from a bootstrap sample T ∗
1,n, ..., T ∗

B,n where the
statistic Tn is an estimator of μ based on a sample of size n. Often the n
is suppressed in the double subscripts. Here �x� is the smallest integer ≥ x,
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e.g., �7.8� = 8. Let T ∗
(1), T

∗
(2), ..., T

∗
(B) be the order statistics of the bootstrap

sample. Then one version of the percentile method discards the largest and
smallest �Bδ/2� order statistics, resulting in an interval [L̂B , R̂B ] that is a
large sample 100(1 − δ)% confidence interval (CI) for μ, and also a large
sample 100(1−δ)% prediction interval (PI) for a future bootstrap value T ∗

f,n.
Olive (2017b, d, 2014: p. 283) recommend using the shorth(c) estimator

for the percentile method. The shorth interval tends to be shorter than the
interval that deletes the smallest and largest �Bδ/2� observations Wi = T ∗

i,n

when the Wi do not come from a symmetric distribution. Frey (2013) showed
that for large Bδ and iid data, the shorth(kB) PI has maximum undercoverage
≈ 1.12

√
δ/B.

Consider testing H0 : μ = c versus H1 : μ �= c, and the statistic Ti =
μ̂ − c. If E(Ti) = θ and Cov(Ti) = ΣT were known, then the squared
Mahalanobis distance D2

i (θ,ΣT ) = (Ti−θ)T Σ−1
T (Ti−θ) would be a natural

statistic to use if the percentile D2
1−δ(θ,ΣT ) was known. The prediction

region method bootstraps the squared Mahalanobis distances, forming the
bootstrap sample wi = T ∗

i = μ̂∗
i − c and the squared Mahalanobis distances

D2
i = D2

i (T ∗,S∗
T ) = (T ∗

i − T ∗)T [S∗
T ]−1(T ∗

i − T ∗) where (T ∗,S∗
T ) are the

sample mean and sample covariance matrix of T ∗
1 , ..., T ∗

B . See (5.19). Then
the percentile method that contains the smallest UB distances is used to
get the closed interval [0,D(UB)]. If H0 is true and E[μ̂] = c, then θ = 0.

Let D2
0 = T ∗T

[S∗
T ]−1T ∗ and fail to reject H0 if D0 ≤ D(UB) and reject

H0 if D0 > D(UB). This percentile method is equivalent to computing the
prediction region (5.17) on the wi = T ∗

i and checking whether 0 is in the
prediction region.

Remark 5.6. For r = 1, we will use the shorth(c) intervals with c =
min(B, �1 − δ + 1.12

√
δ/B�). Let qB = min(1 − δ + 0.05, 1 − δ + r/B) for

δ > 0.1. Let qB = min(1 − δ/2, 1 − δ + 10δr/B) for δ ≤ 0.1. If 1 − δ < 0.999
and qB < 1 − δ + 0.001, set qB = 1 − δ. Let

c = �BqB�.

Let D(UB) be the 100qBth percentile of the Di. We may need n ≥ 50r and
B ≥ max(100, n, 50r). If d is the model degrees of freedom, we also want
n ≥ 20d. Sometimes much larger n is needed to avoid undercoverage.

Note that the percentile method makes an interval that contains UB of
the scalar-valued T ∗

i . The prediction region method makes a hyperellipsoid
that contains UB of the r × 1 vectors T ∗

i = wi, and equivalently, makes an
interval [0,D(UB)] that contains UB of the Di.

When r = 1, a hyperellipsoid is an interval. Suppose the parameter of
interest is μ, and there is a bootstrap sample T ∗

1 , ..., T ∗
B . Let ai = |T ∗

i − T ∗|.
Let T ∗ and S2∗

T be the sample mean and variance of the T ∗
i . Then the squared

Mahalanobis distance D2
μ = (μ − T ∗)2/S2∗

T ≤ D2
(UB) is equivalent to μ ∈
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[T ∗−S∗
T D(UB), T ∗+S∗

T D(UB)] = [T ∗−a(UB), T ∗+a(UB)], which is an interval
centered at T ∗ just long enough to cover UB of the T ∗

i . Hence the prediction
region method is a special case of the percentile method if r = 1. Note that
when r = 1, then S∗

T and D(UB) do not need to be computed.
Bootstrapping test statistics is well known, and the prediction region

method is a special case bootstrapping a test statistic using D2
i = D2

i (T ∗,S∗
T )

as the test statistic. See Bickel and Ren (2001).

Example 5.11, Bootstrapping Multiple Linear Regression with
the Prediction Region Method. Following Example 5.9, we suggest using
the residual bootstrap. If the zi = (Yi,x

T
i )T are iid observations from some

population, then a sample of size n can be drawn with replacement from
z1, ...,zn. Then the response and predictor variables can be formed into vec-
tor Y ∗

1 and design matrix X∗
1. Then Y ∗

1 is regressed on X∗
1 resulting in the

estimator β̂
∗
1. This process is repeated B times resulting in the estimators

β̂
∗
1, ..., β̂

∗
B . If the zi are the rows of a matrix Z, then this nonparametric

bootstrap uses the empirical distribution of the zi.
Consider testing H0 : Aβ = c where A is an r × p matrix with full

rank r and μ = Aβ. To use the prediction region method to perform the
test, suppose a bootstrap sample β̂

∗
1, ..., β̂

∗
B has been generated. Form the

prediction region (5.17) for w1 = Aβ̂
∗
1 − c, ...,wB = Aβ̂

∗
B − c. If 0 is in the

prediction region, fail to reject H0, otherwise reject H0.
Following Seber and Lee (2003, p. 100), the classical test statistic for test-

ing H0 is

FR =
(Aβ̂ − c)T [MSE A(XT X)−1AT ]−1(Aβ̂ − c)

r
,

and when H0 is true, rFR
D→ χ2

r for a large class of error distributions. The
sample covariance matrix Sw of the wi is estimating

n − p

n
MSE A(XT X)−1AT ,

and w ≈ 0 when H0 is true. Thus under H0, the squared distance D2
i =

(wi − w)T S−1
w (wi − w) ≈
n

n − p
(Aβ̂

∗ − c)T [MSE A(XT X)−1AT ]−1(Aβ̂
∗ − c),

and we expect D2
(UB) ≈

n

n − p
χ2

r,1−δ, for large n and B, and small p.
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5.3.3 Theory for the Prediction Region Method

When the bootstrap is used, a large sample 100(1 − δ)% confidence region
for an r×1 parameter vector μ is a set An,B such that P (μ ∈ An,B) → 1− δ

as n,B → ∞. Assume nS∗
T

P→ ΣA as n,B → ∞ where ΣA and S∗
T are

nonsingular r × r matrices, and Tn is an estimator of μ such that

√
n (Tn − μ) D→ U (5.20)

as n → ∞. Then

√
n Σ

−1/2
A (Tn − μ) D→ Σ

−1/2
A U = Z,

n (Tn − μ)T Σ̂
−1

A (Tn − μ) D→ ZT Z = D2

as n → ∞ where Σ̂A is a consistent estimator of ΣA, and

(Tn − μ)T [S∗
T ]−1 (Tn − μ) D→ D2 (5.21)

as n,B → ∞. Assume the cumulative distribution function (cdf) of D2 is
continuous and increasing in a neighborhood of D2

1−δ where P (D2 ≤ D2
1−δ) =

1 − δ. If the distribution of D2 is known, then a common bootstrap large
sample 100(1 − δ)% confidence region for μ is {w : D2

w(Tn,S∗
T ) ≤ D2

1−δ}

= {w : (w − Tn)T [S∗
T ]−1(w − Tn) ≤ D2

1−δ}. (5.22)

Often by a central limit theorem or the multivariate delta method,
√

n(Tn −
μ) D→ Nr(0,ΣA), and D2 ∼ χ2

r. Note that [S∗
T ]−1 could be replaced by

nΣ̂
−1

A . Machado and Parente (2005) gave sufficient conditions and references
for when nS∗

T is a consistent estimator of ΣA.
Bickel and Ren (2001) used nΣ̂

−1

A instead of [S∗
T ]−1 and replaced the

D2 cutoff in (5.22) by D2
(kB) where D2

(kB) is computed from D2
i = n(T ∗

i −
Tn)T Σ̂

−1

A (T ∗
i −Tn) for i = 1, ..., B. If nS∗

T = Σ̂A, the (modified) large sample
100(1 − δ)% confidence region for μ is {w : D2

w(Tn,S∗
T ) ≤ D2

(UB)}

= {w : (w − Tn)T [S∗
T ]−1(w − Tn) ≤ D2

(UB)} (5.23)

where D2
(UB) is computed from D2

i = (T ∗
i − Tn)T [S∗

T ]−1(T ∗
i − Tn) for i =

1, ..., B.
The prediction region method large sample 100(1− δ)% confidence region

for μ is {w : D2
w(T

∗
,S∗

T ) ≤ D2
(UB)}
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= {w : (w − T
∗
)T [S∗

T ]−1(w − T
∗
) ≤ D2

(UB)} (5.24)

where D2
(UB) is computed from D2

i = (T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) for i =

1, ..., B. Note that the corresponding test for H0 : μ = μ0 rejects H0 if (T
∗−

μ0)T [S∗
T ]−1(T

∗ − μ0) > D2
(UB). This procedure is basically the one sample

Hotelling’s T 2 test applied to the T ∗
i using S∗

T as the estimated covariance
matrix and replacing the χ2

p,1−δ cutoff by D2
(UB). See Section 9.1.

Given (5.20) and (5.21), a sufficient condition for (5.23) to be a confidence
region is √

n(T ∗
i − Tn) D→ U , (5.25)

while sufficient conditions for (5.24) to be a confidence region are

√
n(T ∗

i − T
∗
) D→ U , (5.26)

and √
n(T

∗ − μ) D→ U . (5.27)

(We could replace U by W in (5.26) and (5.27), but W ∼ U works.) Note
(5.26) and (5.27) follow from (5.25) and (5.20) if

√
n(Tn − T

∗
) P→ 0, so

Tn − T
∗

= oP (n−1/2).
Following Bickel and Ren (2001), let μ = T (F ), Tn = T (Fn), and T ∗ =

T (F ∗
n) where F ∗

n is the empirical cdf of w∗
1, ...,w

∗
n, a sample from Fn using

the nonparametric bootstrap. If
√

n(Fn − F ) D→ zF , a Gaussian random
process, and if T is sufficiently smooth (Hadamard differentiable with a well
behaved Hadamard derivative Ṫ (F )), then (5.20) and (5.25) hold with U =
Ṫ (F )zF . Note that Fn is a perfectly good cdf “F” and F ∗

n is a perfectly good
empirical cdf from Fn = “F .” Thus if n is fixed, and a sample of size m is
drawn with replacement from the empirical distribution, then

√
m(T (F ∗

m) −
Tn) D→ Ṫ (Fn)zFn

. Now let n → ∞ with m = n. Then bootstrap theory gives√
n(T ∗

i − Tn) D→ limn→∞ Ṫ (Fn)zFn
= Ṫ (F )zF ∼ U .

To justify the prediction region method, assume that (5.20) and (5.25)
hold where U ∼ Nr(0,ΣA). Use Zn ∼ ANr (μn,Σn) to indicate that a
normal approximation is used: Zn ≈ Nr(μn,Σn). Let T ∗

i = T ∗
i,n. Then

T ∗
i ∼ ANr

(
Tn,

ΣA

n

)
. Fix n temporarily and let W i =

√
n(T ∗

i − Tn).

Then with respect to the bootstrap distribution (so conditional on the data),

W 1, ...,W B are iid, and
√

n(T
∗−Tn) =

1
B

B∑
i=1

W i ∼ ANr

(
0,

ΣA

B

)
is a nor-

mal approximation. Hence
√

nB(T
∗−Tn) ∼ ANr(0,ΣA). Now unfix n. Since

http://dx.doi.org/10.1007/978-3-319-68253-2_9
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the same normal approximation holds for n and B large (and ANr(0,ΣA)
does not depend on n or B), it follows that T

∗ − Tn = oP (n−1/2).
The prediction region method should often work if E(T

∗
)−Tn = oP (n−1/2)

and the asymptotic covariance matrix of
√

nB(T
∗−Tn) is ΣA as n,B → ∞.

Following Efron (2014), T ∗ is the bagging or smoothed bootstrap estimator of
μ, which often outperforms Tn for inference. See Büchlmann and Yu (2002)
and Friedman and Hall (2007) for theory and references for the bagging
estimator.

These results suggest that under reasonable conditions, (5.20), (5.25),
(5.26), and (5.27) hold:

√
n(Tn−μ) D→ U ,

√
n(T ∗

i −Tn) D→ U ,
√

n(T ∗
i −T

∗
) D→

U , and
√

n(T
∗ − μ) D→ U . Stronger conditions are needed for nS∗

T
P→ ΣA.

The regularity conditions for the prediction region method are weaker when
r = 1, since S∗

T does not need to be computed.
The following result is also informative. Let Ti = Ti,n, and assume

T1, ..., TB are iid where

n

B

B∑
i=1

(Ti − μ)(Ti − μ)T P→ ΣA and
n
B

B∑
i=1

(T∗
i − T

∗
)(T∗

i − T
∗
)T P→ ΣA.

Then

n

B

B∑
i=1

(Ti − μ)(Ti − μ)T − n

B

B∑
i=1

(T ∗
i − T

∗
)(T ∗

i − T
∗
)T P→ 0, (5.28)

the r × r matrix of zeroes. The trace is a continuous linear function. Post
multiply both sides of (5.28) by [S∗

T ]−1, and take the trace of both sides to
get

n

B

B∑
i=1

(Ti − μ)T [S∗
T ]−1(Ti − μ) − n

B

B∑
i=1

(T ∗
i − T

∗
)T [S∗

T ]−1(T ∗
i − T

∗
) P→ 0.

(5.29)
Now (Ti −μ)T [S∗

T ]−1(Ti −μ)−n(Ti −μ)T Σ−1
A (Ti −μ) P→ 0. Hence the first

sum in (5.29) behaves like a sum of iid nonnegative terms that each converge
in distribution to D2. If n is fixed, then the T ∗

i are iid with respect to the
bootstrap distribution where T

∗ ≈ E(T ∗
i ) = μn and S∗

T ≈ Cov(T ∗
i ) = Σn

with respect to the bootstrap distribution. Hence the second sum in (5.29)
behaves like a sum of iid nonnegative terms with respect to the bootstrap
distribution.

The prediction region method will often simulate well even if B is rather
small. Figure 2.1 shows 10%, 30%, 50%, 70%, 90%, and 98% prediction
regions for a future value of Tf for two multivariate normal statistics. The
plotted points are iid T1, ..., TB . If the T ∗

i are iid from the bootstrap distri-

http://dx.doi.org/10.1007/978-3-319-68253-2_2
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bution, then Cov(T
∗
) ≈ Cov(T )/B ≈ ΣA/(nB). Consider the 90% region.

Suppose many iid samples are generated to produce T
∗
. By Theorem 5.2,

if T
∗

is in the 90% prediction region with probability near 90%, then the
confidence region should give simulated coverage near 90% and the volume
of the confidence region should be near that of the 90% prediction region. If
B = 100, then T

∗
falls in a covering region of the same shape as the pre-

diction region, but centered near Tn and the lengths of the axes are divided
by

√
B. Hence if B = 100, then the axes lengths are about one tenth of

those in Figure 2.1. Hence when Tn falls within the 70% prediction region,
the probability that T

∗
falls in the 90% prediction region is near one. If Tn

is just within or just without the boundary of the 90% prediction region, T
∗

tends to be just within or just without of the 90% prediction region. Hence
the coverage and volume of prediction region confidence region is near that of
the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough
so that S∗

T ≈ Cov(T ∗) ≈ ΣA/n. If n is large, the sample covariance matrix
starts to be a good estimator of the population covariance matrix when B ≥
Jr where J = 20 or 50. For small r, using B = 1000 often led to good
simulations, but B = max(50r, 100) may work well.

Often D2 is unknown, and we use D2
(UB) to estimate D2

1−δ instead of
assuming D2 ∼ χ2

r. For r = 1, Efron (2014) used confidence intervals
T ∗ ± z1−δSE(T ∗) where P (Z ≤ z1−δ) = 1 − δ if Z ∼ N(0, 1). Efron used a
delta method estimate of SE(T ∗) to avoid using the computationally expen-
sive double bootstrap. The prediction region method, T

∗ ± S∗
T D(UB), avoids

assuming a normal limiting distribution and estimates the cutoff using quan-
tiles of the Mahalanobis distances of the T ∗

i,n from T ∗. The shorth(c) estima-
tor is recommended since it can be much shorter.

The following theorem will provide some intuition for why the percentile
method works if Tn has a central limit theorem. Let Zδ be the 100δth per-
centile of Z: P (Z ≤ Zδ) = δ, and let P (ZδL ≤ Z ≤ ZδU ) = 1 − δ. Let Tn,δ

be the 100δth percentile of (the sampling distribution of) Tn. Then a pop-
ulation prediction interval for Tf,n is [Tn,δL , Tn,δU ] which can be estimated
by the sample percentiles [T(cL), T(cU )] when there is an iid sample T1, ..., Tn.
The shortest such interval can be estimated by the shorth.

Theorem 5.3. Suppose r = 1 and
√

n(Tn − μ) D→ X and
√

n(Tn − μ)
σ

D→
1
σ

X = W. If the percentiles are continuity points of the distribution of W ,

then for each large sample 100(1 − δ)% PI [T(cL), T(cU )] for Tf,n, there is

a large sample 100(1 − δ)% CI
[
Tn − WδU

σ̂√
n

, Tn − WδL

σ̂√
n

]
for μ with

approximately the same length.

http://dx.doi.org/10.1007/978-3-319-68253-2_2


174 5 DD Plots and Prediction Regions

Proof. Note that 1 − δ = P (Tn,δL ≤ Tn ≤ Tn,δU ] ≈ P (T(cL) ≤ Tn ≤
T(cU )) ≈ P (WδL ≤

√
n(Tn − μ)

σ
≤ WδU ) = P (Tn − WδU

σ√
n

≤ μ ≤ Tn −
WδL

σ√
n

) = P (WδL

σ√
n

+μ ≤ Tn ≤ WδU

σ√
n

+μ). Hence Tn,δL ≈ WδL

σ√
n

+μ

and Tn,δU ≈ WδU

σ√
n

+ μ. Thus T(cU ) − T(cL) ≈ σ√
n

(WδU − WδL) ≈ Tn,δU −
Tn,δL . �

Theorem 5.3 suggests that the Frey (2013) shorth(c) interval applied to
the bootstrap sample estimates the shortest large sample 100(1 − δ)% CI[
Tn − WδU

σ̂√
n

, Tn − WδL

σ̂√
n

]
based on the asymptotic pivot. Note that if

Zi = Tn + μ − Ti for i = 1, ..., n, then P (Z(cL) ≤ μ ≤ Z(cU )) ≈ P (Tn +
μ − Tn,δU ≤ μ ≤ Tn + μ − Tn,δL) = P (Tn,δL ≤ Tn ≤ Tn,δU ) = 1 − δ.
Then the Zi are centered at Tn with deviations equal to μ−Ti. Note that the
distribution of Tn−μ is the same as the distribution of Ti−μ: Ti−μ

D= Tn−μ.
Now the bootstrap approximation says that the distribution of Tn−μ can be
approximated by the distribution of T ∗

i −Tn. Thus Ti−μ
D= Tn−μ ≈ T ∗

i −Tn,
or T ∗

i ≈ Ti +Tn−μ. If the distribution of Tn−μ is approximately the same as
the distribution of μ−Tn (asymptotic symmetry), then the percentile method
should work. Since

√
n(Tn −μ) D→ X, we have nγ(Tn −μ) D→ 0 if 0 < γ < 0.5.

The point mass at 0 is a symmetric distribution, and nγ(Ti + Tn − μ) ≈ nγμ
for large n.

Remark 5.7. Remark 5.5 suggests that even if the statistic Tn is asymp-
totically normal so the Mahalanobis distances are asymptotically χ2

r, the
prediction region method can give better results for moderate n by using the
cutoff D2

(UB) instead of the cutoff χ2
r,1−δ. Theorem 5.2 says that the hyper-

ellipsoidal prediction and confidence regions have exactly the same volume.
We compensate for the prediction region undercoverage when n is moderate
by using D2

(Un)
. If n is large, by using D2

(UB), the prediction region method
confidence region compensates for undercoverage when B is moderate, say
B ≥ Jr where J = 20 or 50. See Remark 5.6. This result can be useful if a
simulation with B = 1000 or B = 10000 is much slower than a simulation
with B = Jr. The price to pay is that the prediction region method confidence
region is inflated to have better coverage, so the power of the hypothesis test
is decreased if moderate B is used instead of larger B.

Software. The prediction region method will be used several times in the
text, sometimes as an “exploratory test.” The mpack functions corboot and
corbootsim are used to bootstrap the correlation matrix as described in
Section 5.3.5. The function predrgn makes the nonparametric prediction
region and determines whether xf is in the region. The function predreg
also makes the nonparametric prediction region and determines if 0 is in the
region. For multiple linear regression, the function regboot does the residual
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bootstrap for multiple linear regression, regbootsim simulates the residual
bootstrap for regression, and the function rowboot does the empirical non-
parametric bootstrap. The function vsbootsim simulates the bootstrap for
all subsets variable selection, so needs p small, while vsbootsim2 simulates
the prediction region method for forward selection. The functions fselboot
and vselboot bootstrap the forward selection and all subsets variable selec-
tion estimators that minimize Cp. See Examples 5.12 and 5.13.

The functions rhotboot and rhotsim2 are used to bootstrap and sim-
ulate a Hotelling’s type T 2 test based on the RMVN estimator. See Section
9.1. The functions rmregboot and rmregbootsim are used to bootstrap
and simulate the robust regression estimator rmreg2. See Chapter 14. The
shorth3 function computes the shorth(c) intervals with the Frey (2013)
correction used when r = 1. See Remark 5.6.

5.3.4 Bootstrapping Variable Selection

Variable selection, also called subset or model selection, is the search for a
subset of predictor variables that can be deleted without important loss of
information. A model for variable selection in multiple linear regression can
be described by

Y = xT β + e = βT x + e = xT
SβS + xT

EβE + e = xT
SβS + e (5.30)

where e is an error, Y is the response variable, x = (xT
S ,xT

E)T is a p × 1
vector of predictors, xS is a kS × 1 vector, and xE is a (p − kS) × 1 vector.
Given that xS is in the model, βE = 0 and E denotes the subset of terms
that can be eliminated given that the subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let xI be the
vector of k terms from a candidate subset indexed by I, and let xO be the
vector of the remaining predictors (out of the candidate submodel). Then

Y = xT
I βI + xT

OβO + e. (5.31)

Suppose that S is a subset of I and that model (5.30) holds. Then

xT β = xT
SβS = xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI (5.32)

where xI/S denotes the predictors in I that are not in S.
The model Y = xT β + e that uses all of the predictors is called the full

model. A model Y = xT
I βI + e that only uses a subset xI of the predictors is

called a submodel. Criteria such as Cp(I) and AIC(I) are often used to select
a subset. See Olive and Hawkins (2005) and Olive (2017a, Section 3.4).

http://dx.doi.org/10.1007/978-3-319-68253-2_9
http://dx.doi.org/10.1007/978-3-319-68253-2_14
http://dx.doi.org/10.1007/978-3-319-68253-2_3
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Suppose model I is selected after variable selection. Then least squares
output for the model Y = XIβI + e can be obtained, but the least squares
output is not correct for inference. In particular, MSE(I)(XT

I XI)−1 is not
the correct estimated covariance matrix of β̂I . The selected model tends to fit
the data too well, so SE(β̂i) from the incorrect estimated covariance matrix
tends to be too small. Hence the confidence intervals for βi are too short, and
hypothesis tests reject H0 : βi = 0 too often.

Hastie et al. (2009, p. 57) noted that variable selection is a shrinkage
estimator: the coefficients are shrunk to 0 for the omitted variables. Suppose
n ≥ 10p. If β̂I is k × 1, form β̂I,0 from β̂I by adding 0s corresponding
to the omitted variables. Then β̂I,0 is a nonlinear estimator of β, and the
residual bootstrap method can be applied. For example, suppose β̂ = β̂Imin,0

is formed from model Imin that minimizes Cp from some variable selection
method such as forward selection, backward elimination, stepwise selection, or
all subsets variable selection. Instead of computing the least squares estimator
from regressing Y ∗

i on X, perform variable selection on Y ∗
i and X, fit the

model that minimizes the criterion, and add 0s corresponding to the omitted
variables, resulting in estimators β̂

∗
1, ..., β̂

∗
B where β̂

∗
i = β̂

∗
Imin,0,i.

Suppose the variable selection method, such as forward selection or all
subsets, produces K models. Let model Imin be the model that minimizes
the criterion, e.g., Cp(I) or AIC(I). Following Seber and Lee (2003, p. 448)
and Nishi (1984), the probability that model Imin from Cp or AIC underfits
goes to zero as n → ∞. Since there are a finite number of regression models
I that contain the true model, and each model gives a consistent estimator
β̂I,0 of β, the probability that Imin picks one of these models goes to one as
n → ∞. Hence β̂Imin,0 is a consistent estimator of β under model (5.30).

Note that if S ⊆ I, and Y = XIβI + eI , then
√

n(β̂I − βI)
D→

Nk(0, σ2
IW I) under mild regularity conditions where n(XT

I XI)−1 → W I .

Hence
√

n(β̂I,0 − β) D→ Np(0, σ2
IW I,0) where the W I,0 has a column and

row of zeroes added for each variable not in I. Note that W I,0 is singular
unless I corresponds to the full model. For example, if p = 3 and model I
uses a constant x1 ≡ 1 and x3 with

W I =
[

W11 W12

W21 W22

]
, then W I,0 =

⎡
⎣

W11 0 W12

0 0 0
W21 0 W22

⎤
⎦ .

Hence it is reasonable to conjecture that
√

n(β̂Imin,0 − β) D→ U where

U =
K∑

i=1

πiNp(0, σ2
IiW Ii,0),
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0 ≤ πi ≤ 1,
∑K

i=1 πi = 1, and K is the number of subsets Ii that contain S.
Inference techniques for the variable selection model have not had much

success. Efron (2014) let t(Z) be a scalar-valued statistic, based on all of the
data Z, that estimates a parameter of interest μ. Form a bootstrap sample

Z∗
i and t(Z∗

i ) for i = 1, ..., B. Then μ̃ = s(Z) =
1
B

B∑
i=1

t(Z∗
i ), a “boot-

strap smoothing” or “bagging” estimator. In the regression setting with vari-
able selection, Z∗

i can be formed with the nonparametric or residual boot-
strap using the full model. The prediction region method can also be applied
to t(Z). For example, when A is 1 × p, the prediction region method uses
μ = Aβ − c, t(Z) = Aβ̂ − c and T ∗ = μ̃. Efron (2014) used the confidence
interval T ∗±z1−δSE(T ∗) which is symmetric about T ∗. The prediction region
method uses T ∗ ± S∗

T D(UB) which is also a symmetric interval centered at
T ∗. If both the prediction region method and Efron’s method are large sam-
ple confidence intervals for μ, then they have the same asymptotic length
(scaled by multiplying by

√
n), since otherwise the shorter interval will have

lower asymptotic coverage. Since the prediction region interval is a percentile
interval, the shorth(c) interval could have much shorter length than the Efron
interval and the prediction region interval if the bootstrap distribution is not
symmetric.

The prediction region method can be used for vector-valued statistics and
parameters and may not need the statistic to be asymptotically normal. These
features are likely useful for variable selection models. Prediction intervals and
regions can have higher than the nominal coverage 1− δ if the distribution is
discrete or a mixture of a discrete distribution and some other distribution.
In particular, coverage can be high if the wi distribution is a mixture of a
point mass at 0, and the method checks whether 0 is in the prediction region.
Such a mixture often occurs for variable selection methods. The bootstrap
sample for the Wi = β̂

∗
ij can contain many zeroes and be highly skewed if

the jth predictor is weak. Then the computer program may fail because Sw
is singular, but if all or nearly all of the β̂

∗
ij = 0, then there may be strong

evidence that the jth predictor is not needed given that the other predictors
are in the variable selection method if n and B are large.

As an extreme simulation case, suppose β̂
∗
ij = 0 for i = 1, ..., B and for

each run in the simulation. Consider testing H0 : βj = 0. Then regardless of
the nominal coverage 1 − δ, the closed interval [0,0] will contain 0 for each
run and the observed coverage will be 1 > 1 − δ. Using the open interval
(0,0) would give observed coverage 0. Also intervals [0, b] and [a, 0] correctly
suggest failing to reject βj = 0, while intervals (0, b) and (a, 0) incorrectly
suggest rejecting H0 : βj = 0. Hence closed regions and intervals make sense.

Warning: The bootstrap tests for variable selection are exploratory tests:
for variable selection, the prediction region method has not yet been
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proven to be a large sample test, and it is only conjectured that the shorth
intervals are large sample CIs for βi. The sufficient conditions in Section 5.3.3
needed asymptotic normality. The prediction region method fails if Sw is sin-
gular. Singularity will occur if a β̂∗

ij = 0 for j = 1, ..., B. (Such a result may
give strong evidence that the predictor xi is not needed in the model given
the other predictors are in the model.) Singularity is likely if many βi = 0.

Example 5.12. Cook and Weisberg (1999a, pp. 351, 433, 447) gave a data
set on 82 mussels sampled off the coast of New Zealand. Let the response
variable be the logarithm log(M) of the muscle mass, and the predictors are
the length L and height H of the shell in mm, the logarithm log(W ) of the shell
width W, the logarithm log(S) of the shell mass S, and a constant. Inference
for the full model is shown below along with the shorth(c) nominal 95%
confidence intervals for βi computed using the nonparametric and residual
bootstraps. As expected, the residual bootstrap intervals are close to the
classical least squares confidence intervals ≈ β̂i ± 2SE(β̂i).

The minimum Cp model from all subsets variable selection uses a constant,
H, and log(S). The shorth(c) nominal 95% confidence intervals for βi using
the residual bootstrap are shown. Note that the interval for H is right skewed
and contains 0 when closed intervals are used instead of open intervals. The
least squares output is also shown, but should only be used for inference if
the model was selected before looking at the data.

large sample full model inference
Est. SE t Pr(>|t|) nparboot 95% shorth CI

i -1.249 0.838 -1.49 0.14 [-2.93,-0.048][-3.138,0.194]
L -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]
W 0.130 0.374 0.35 0.73 [-0.384,0.827][-0.555,0.971]
H 0.008 0.005 1.50 0.14 [-0.002,0.018][-0.003,0.017]
S 0.640 0.169 3.80 0.00 [ 0.188,1.001][ 0.276,0.955]
output and shorth intervals for the min Cp submodel

Est. SE t Pr(>|t|) 95% shorth CI
int -0.9573 0.1519 -6.3018 0.0000 [-2.769, 0.460]
L 0 [-0.004, 0.004]
W 0 [-0.595, 0.869]
H 0.0072 0.0047 1.5490 0.1254 [ 0.000, 0.016]
S 0.6530 0.1160 5.6297 0.0000 [ 0.324, 0.913]

It was expected that log(S) may be the only predictor needed, along with
a constant, since log(S) and log(M) are both log(mass) measurements and
likely highly correlated. Hence we want to test H0 : β2 = β3 = β4 = 0 with
the Imin model selected by all subsets variable selection. (Of course, this test
would be easy to do with the full model using least squares theory.) Then
H0 : Aβ = (β2, β3, β4)T = 0. Using the prediction region method with the
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full model gave an interval [0,2.930] with D0 = 1.641. Note that
√

χ2
3,0.95 =

2.795. So fail to reject H0. Using the prediction region method with the Imin

variable selection model had [0,D(UB)] = [0, 3.293] while D0 = 1.134. So fail
to reject H0. The R code used to produce the above output is shown below.

library(leaps)
y <- log(mussels[,5]); x <- mussels[,1:4]
x[,4] <- log(x[,4]); x[,2] <- log(x[,2])
out <- regboot(x,y,B=1000)
tem <- rowboot(x,y,B=1000)
outvs <- vselboot(x,y,B=1000) #get bootstrap CIs,
apply(out$betas,2,shorth3);
apply(tem$betas,2,shorth3);
apply(outvs$betas,2,shorth3)
ls.print(outvs$full)
ls.print(outvs$sub)
#test if beta_2 = beta_3 = beta_4 = 0
Abeta <- out$betas[,2:4]
#prediction region method with residual bootstrap
predreg(Abeta)
Abeta <- outvs$betas[,2:4]
#prediction region method with Imin
predreg(Abeta)

Example 5.13. Consider the Gladstone (1905) data set where the
response variable is brain weight and the predictor variables are as in Example
4.2. Output is shown below for the full model and the bootstrapped minimum
Cp forward selection estimator. Note that the shorth intervals for length and
sex are quite long. These variables are often in and often deleted from the
bootstrap forward selection. Model II is the model with the fewest predictors
such that CP (II) ≤ CP (Imin)+1. For this data set, II = Imin. The bootstrap
CIs differ due to different random seeds.

large sample full model inference for Ex. 5.12
Estimate SE t Pr(>|t|) 95% shorth CI

Int -3021.255 1701.070 -1.77 0.077 [-6549.8,322.79]
age -1.656 0.314 -5.27 0.000 [ -2.304,-1.050]
breadth -8.717 12.025 -0.72 0.469 [-34.229,14.458]
cephalic 21.876 22.029 0.99 0.322 [-20.911,67.705]
circum 0.852 0.529 1.61 0.109 [ -0.065, 1.879]
headht 7.385 1.225 6.03 0.000 [ 5.138, 9.794]
height -0.407 0.942 -0.43 0.666 [ -2.211, 1.565]
len 13.475 9.422 1.43 0.154 [ -5.519,32.605]
sex 25.130 10.015 2.51 0.013 [ 6.717,44.19]
output and shorth intervals for the min Cp submodel

http://dx.doi.org/10.1007/978-3-319-68253-2_4
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Estimate SE t Pr(>|t|) 95% shorth CI
Int -1764.516 186.046 -9.48 0.000 [-6151.6,-415.4]
age -1.708 0.285 -5.99 0.000 [ -2.299,-1.068]
breadth 0 [-32.992, 8.148]
cephalic 5.958 2.089 2.85 0.005 [-10.859,62.679]
circum 0.757 0.512 1.48 0.140 [ 0.000, 1.817]
headht 7.424 1.161 6.39 0.000 [ 5.028, 9.732]
height 0 [ -2.859, 0.000]
len 6.716 1.466 4.58 0.000 [ 0.000,30.508]
sex 25.313 9.920 2.55 0.011 [ 0.000,42.144]
output and shorth for I_I model

Estimate SE t Pr(>|t|) 95% shorth CI
Int -1764.516 186.046 -9.48 0.000 [-6104.9,-778.2]
age -1.708 0.285 -5.99 0.000 [ -2.259,-1.003]
breadth 0 [-31.012, 6.567]
cephalic 5.958 2.089 2.85 0.005 [ -6.700,61.265]
circum 0.757 0.512 1.48 0.140 [ 0.000, 1.866]
headht 7.424 1.161 6.39 0.000 [ 5.221,10.090]
height 0 [ -2.173, 0.000]
len 6.716 1.466 4.58 0.000 [ 0.000,28.819]
sex 25.313 9.920 2.55 0.011 [ 0.000,42.847]

The R code used to produce the above output is shown below. The last
four commands are useful for examining the variable selection output.

x<-cbrainx[,c(1,3,5,6,7,8,9,10)]
y<-cbrainy
library(leaps)
out <- regboot(x,y,B=1000)
outvs <- fselboot(x,cbrainy) #get bootstrap CIs,
apply(out$betas,2,shorth3)
apply(outvs$betas,2,shorth3)
ls.print(outvs$full)
ls.print(outvs$sub)
outvs <- modIboot(x,cbrainy) #get bootstrap CIs,
apply(outvs$betas,2,shorth3)
ls.print(outvs$sub)
tem<-regsubsets(x,y,method="forward")
tem2<-summary(tem)
tem2$which
tem2$cp

A small simulation study was done in R using B = max(1000, n, 20p) and
5000 runs. The regression model used β = (1, 1, 0, 0)T with n = 100, p = 4,
and various zero mean iid error distributions. The design matrix X consisted
of iid N(0,1) random variables. Hence the full model least squares confidence
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intervals for βi should have length near 2t96,0.975σ/
√

n ≈ 2(1.96)σ/10 =
0.392σ when the iid zero mean errors have variance σ2. The simulation com-
puted the shorth(c) interval for each βi and used the prediction region method
to test H0 : β3 = β4 = 0. See Remark 5.6. The nominal coverage was 0.95
with δ = 0.05. Observed coverage between 0.94 and 0.96 would suggest cov-
erage is close to the nominal value.

The regression models used the residual bootstrap on the full model least
squares estimator and on the all subsets variable selection estimator for the
model Imin. The residuals were from least squares applied to the full model
in both cases. Results are shown for when the iid errors ei ∼ N(0, 1). Table
5.3 shows two rows for each model giving the observed confidence interval
coverages and average lengths of the confidence intervals. The term “reg”
is for the full model regression, and the term “vs” is for the all subsets
variable selection. The column for the “test” gives the length and coverage
= P(fail to reject H0) for the interval [0,D(UB)] where D(UB) is the cutoff
for the confidence region. The volume of the confidence region will decrease
to 0 as n → ∞. The cutoff will often be near

√
χ2

r,0.95 if the statistic T is

asymptotically normal. Note that
√

χ2
2,0.95 = 2.448 is very close to 2.449 for

the full model regression bootstrap test. The coverages were near 0.95 for the
regression bootstrap on the full model. For Imin, the coverages were near 0.95
for β1 and β2, but higher for the other 3 tests since zeroes often occurred for
β̂∗

j for j = 3, 4. The average lengths and coverages were similar for the full
model and all subsets variable selection Imin for β1 and β2, but the lengths
were shorter for Imin for β3 and β4. Since the predictor variables are iid, they
are nearly orthogonal. Hence the active variables with nonzero coefficients
should have β̂i that are similar for the least squares models that contain
the active predictors. The full model contains the active predictors and the
probability that Imin contains the active predictors goes to 1 as n → ∞.

Table 5.3 Bootstrapping Regression and Variable Selection

model cov/len β1 β2 β3 β4 test

reg cov 0.9496 0.9430 0.9440 0.9454 0.9414

len 0.3967 0.3996 0.3997 0.3997 2.4493

vs cov 0.9482 0.9486 0.9974 0.9974 0.9896

len 0.3965 0.3990 0.3241 0.3257 2.6901

The R code for the simulation is shown below.

regbootsim(nruns=5000) #takes a while
library(leaps)
vsbootsim(nruns=5000) #takes a long while
vsbootsim2(nruns=5000) #bootstraps forwards selection
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5.3.5 Bootstrapping the Correlation Matrix

Table 5.4 Bootstrapping the Correlation Matrix

n ψ cov/len ρ12 ρ13 ρ14 ρ23 ρ24 ρ34 test

100 0 cov 0.943 0.939 0.942 0.937 0.940 0.941 0.848

len 0.391 0.391 0.391 0.391 0.392 0.392 3.549

400 0 cov 0.944 0.948 0.943 0.946 0.950 0.952 0.923

len 0.199 0.199 0.199 0.199 0.199 0.199 3.559

400 0.03 cov 0.950 0.950 0.948 0.949 0.948 0.951 0.441

len 0.198 0.198 0.198 0.198 0.198 0.198 3.558

400 0.1 cov 0.947 0.949 0.952 0.949 0.952 0.951 0.000

len 0.190 0.190 0.189 0.190 0.189 0.189 3.561

Larger sample sizes n are needed as r increases. Section 5.2 suggested that
for iid elliptically contoured data xi where xi is p × 1, the nonparametric
prediction region (5.17) coverage for a future value xf started to get close
to the nominal coverage when n ≥ 20p, but volume ratios needed n ≥ 50p.
Hence we may need B ≥ 50r for the volume of the confidence region to
be good. Remark 5.6 suggests that the bootstrap may need n >> r for
many problems: if d is the model degrees of freedom, we may need n ≥
max(50r, 20d) and B ≥ max(100, 50r) if the test statistic has an approximate
multivariate normal distribution. Sample sizes may need to be much larger
for other limiting distributions.

Consider testing whether correlations in a correlation matrix are 0. There
are r = p(p − 1)/2 correlations ρi,j = cor(Xi,Xj) where i < j. There are
better ways to do this test than the prediction region method, but large sam-
ple sizes tend to be needed when the raw correlations are used. (A graphical
technique is given in Remark 5.8 after Problem 5.10.)

The simulation simulated iid data w with x = Aw and Aij = ψ for i �= j
and Aii = 1. Hence cor(Xi,Xj) = [2ψ + (p − 2)ψ2]/[1 + (p − 1)ψ2]. Let
μ = (ρ12, ..., ρ1p, ρ23, ..., ρ2p, ..., ρp−1,p)T .

Table 5.4 shows the results for multivariate normal data with p = 4 so
r = 6 for testing H0 : μ = 0. The nominal coverage was 0.95. For n = 100
and ψ = 0, the test failed to reject H0 85% of the time, but 92% of the time
for n = 400. Note that

√
χ2
6,0.95 = 3.548. With n = 400 and ψ > 0, for the

test the coverage = 1 − power. For ψ = 0.03, the simulated power was 0.56,
but 1.0 for ψ = 0.1. Some R code is shown below.

corbootsim(type=1,n=100,nruns=5000)
corbootsim(type=1,n=400,nruns=5000) #takes a while
corbootsim(type=1,n=400,psi=0.03,nruns=5000)
corbootsim(type=1,n=400,psi=0.1,nruns=5000)
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5.4 Summary

1) For h > 0, the hyperellipsoid {z : (z − T )T C−1(z − T ) ≤ h2} = {z :
D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is in
this region if Dxf

≤ h. A large sample 100(1− δ)% prediction region is a set

An such that P (xf ∈ An) P→ 1 − δ where 0 < δ < 1.
2) The classical 100(1 − δ)% large sample prediction region is

{z : D2
z(x,S) ≤ χ2

p,1−δ} and works well if n is large and the data are iid
MVN.

3) Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and qn = min(1 −
δ/2, 1−δ+10δp/n), otherwise. If qn < 1−δ+0.001, set qn = 1−δ. If (T,C)
is a consistent estimator of (μ, dΣ), then {z : Dz ≤ h} is a large sample
100(1−δ)% prediction regions if h = D(Un) where D(Un) is the 100qnth sample
quantile of the Di. The nonparametric prediction region uses (T,C) = (x,S)
and the semiparametric prediction region uses (T,C) = (TRMV N ,CRMV N ).
The parametric MVN prediction region
{z : D2

z(T,C) ≤ χ2
p,qn} also uses (T,C) = (TRMV N ,CRMV N ).

4) These 3 regions can be displayed in an RMVN DD plot with cases in the
nonparametric region corresponding to points to the left of the vertical line
corresponding to D(Un)(x,S). Cases in the semiparametric region correspond
to points below the horizontal line corresponding to D(Un)(TRMV N ,CRMV N )
while cases in the parametric MVN region correspond to points below the
horizontal line corresponding to

√
χ2

p,qn . Suppose x1, ...,xn,xf are iid with
nonsingular covariance matrix Σx. The three prediction regions are asymp-
totically optimal if the data is MVN. The semiparametric and nonparametric
prediction regions are asymptotically optimal on a large class of EC distribu-
tions, and the nonparametric prediction region is a large sample 100(1− δ)%
prediction region (if D1−δ is a continuity point of the cdf of D) for distribu-
tions with a nonsingular covariance matrix, although large sample prediction
regions with smaller volume may exist.

5) Suppose m independent large sample 100(1−δ)% prediction regions are
made where x1, ...,xn,xf are iid from the same distribution for each of the
m runs. Let Y count the number of times xf is in the prediction region. Then
Y ∼ binomial (m, 1−δn) where 1−δn is the true coverage and 1−δn → 1−δ
as n → ∞. Simulation can be used to see if the true or actual coverage 1− δn

is close to the nominal coverage 1−δ. A prediction region with 1−δn < 1−δ
is liberal, and a region with 1 − δn > 1 − δ is conservative. It is better to be
conservative by 5% than liberal by 5%. Parametric prediction regions tend
to have large undercoverage and so are too liberal.

6) For prediction regions, we want n ≥ 10p for the nonparametric predic-
tion region and n ≥ 20p for the semiparametric prediction region.
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7) Consider testing H0 : μ = c versus H1 : μ �= c where c is a known
r × 1 vector. The prediction region method makes a bootstrap sample
wi = μ̂∗

i − c for i = 1, ..., B. Make the nonparametric prediction region
(5.17) for the wi, and reject H0 if 0 is not in the prediction region.

5.5 Complements

The first section of this chapter followed Olive (2002) closely. The DD plot
can be used to diagnose elliptical symmetry, to detect outliers, and to assess
the success of numerical methods for transforming data toward an ellipti-
cally contoured distribution. Since many statistical methods assume that the
underlying data distribution is Gaussian or EC, there is an enormous lit-
erature on numerical tests for elliptical symmetry. Bogdan (1999), Czörgö
(1986), and Thode (2002) provided references for tests for multivariate nor-
mality while Bianco et al. (2017), Koltchinskii and Li (1998), and Manzotti
et al. (2002) gave references for tests for elliptically contoured distributions.

There are few practical competitors for the Olive (2013a) prediction
regions in Section 5.2 if p is larger than 2. The mpack function ddplot4
can be used to make plots similar to Figures 5.10 and 5.11. Another use of
the DD plot is to display the nonparametric and semiparametric prediction
regions. Parametric regions such as the classical region for multivariate nor-
mal data tend to have severe undercoverage because the data rarely follows
the parametric distribution. Procedures that use brand name high breakdown
multivariate location and dispersion estimators take too long to compute for
p > 2. Lei et al. (2013) estimated highest density prediction regions using
nonparametric kernel density estimators, and the method may work well for
very small p. Similar methods are used for discriminant analysis. See Silver-
man (1986, pp. 120–130). The multivariate Chebyshev’s inequality is due to
Chen (2011).

Section 5.3 followed Olive (2017b, d) closely. Good references for the boot-
strap include Efron (1982) and Efron and Tibshirani (1993). Janssen and
Pauls (2003) and Mammen (1992) suggested that the bootstrap works if
there is a central limit theorem for the statistic Tn. Also see Beran (1988),
Bickel and Freedman (1981), Horowitz (2001), Machado and Parente (2005),
and MacKinnon (2009). The shorth interval given by Remark 5.6 is a prac-
tical implementation of the Hall (1988) shortest bootstrap interval based on
all bootstrap samples.

We want the bootstrap to produce pseudodata that resembles the data
actually collected. For bootstrapping multiple linear regression (Y = Xβ+e)
methods with n ≥ 10p, we suggest using the residual bootstrap using full
model OLS residuals since OLS is well behaved for a large class of error distri-
butions (see, e.g., Theorem 12.7). When n >> p, we conjecture that the pre-
diction region method, using the residual bootstrap with the full model OLS
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residuals, can be used to bootstrap several methods, including forward selec-
tion. Inference (such as prediction intervals and bootstrap hypothesis tests)
for other variable selection methods such as lasso, partial least squares, princi-
pal component regression, and ridge regression, is given in Pelawa Watagoda
(2017), Olive (2017c), and Pelawa Watagoda and Olive (2017).

For survival regression, often the response and predictors xi are measure-
ments taken on the ith person. Hence the nonparametric bootstrap combined
with the prediction region method may be useful to examine forward selection
or backward elimination variable selection that minimizes AIC.

Let Tn = T1,n where
√

n(Tn − μ) D→ U , and suppose there was an iid
sample T1,n, ..., TB,n. Then standard inference techniques could be used to
examine how the statistic Tn behaves. Usually there is only one sample and
one value of the statistic Tn, but if the empirical distribution is well behaved,
and if the statistic Tn is sufficiently smooth, then a bootstrap sample of the
statistic T ∗

1 , ..., T ∗
B is useful under regularity conditions: T ∗

1 − Tn, ..., T ∗
B − Tn

is pseudodata for T1,n −μ, ..., TB,n −μ, and applying the Olive (2013a) large
sample 100(1−δ)% prediction region to the T ∗

1 , ..., T ∗
B results in a large sample

100(1 − δ)% confidence region for μ. If Tn is asymptotically normal, then
under regularity conditions, the large sample confidence region and equivalent
hypothesis test are closely related to applying the Hotelling’s T 2 test statistic
and confidence region to the T ∗

1 , ..., T ∗
B . See Section 9.1.

A technique similar to the prediction region method can be used to
estimate the 100(1 − δ)% Bayesian credible region for θ. Generate B =
max(100000, n) values of θi from the posterior distribution, and compute
the prediction region (5.17). See Olive (2017b). Olive (2014, p. 364) used the
shorth estimator to estimate Bayesian credible intervals.

5.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

5.1∗. If X and Y are random variables, show that

Cov(X,Y) = [Var(X + Y) − Var(X − Y)]/4.

R Problems
Warning: Use the command source(“G:/mpack.txt”) to download

the programs. See Preface or Section 15.2. Typing the name of the
mpack function, e.g., ddplot, will display the code for the function. Use the
args command, e.g., args(ddplot), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

5.2. a) Download the program ddsim. (In R, type the command library
(MASS).)

http://dx.doi.org/10.1007/978-3-319-68253-2_9
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b) Using the function ddsim for p = 2, 3, 4, determine how large the sample
size n should be in order for the RFCH DD plot of n Np(0, Ip) cases to cluster
tightly about the identity line with high probability. Table your results. (Hint:
type the command ddsim(n=20,p=2) and increase n by 10 until most of the
20 plots look linear. Then repeat for p = 3 with the n that worked for p = 2.
Then repeat for p = 4 with the n that worked for p = 3.)

5.3. a) Download the program corrsim. (In R, type the command
library(MASS).)

b) A numerical quantity of interest is the correlation between the MDi

and RDi in a RFCH DD plot that uses n Np(0, Ip) cases. Using the function
corrsim for p = 2, 3, 4, determine how large the sample size n should be in
order for 9 out of 10 correlations to be greater than 0.9. (Try to make n small.)
Table your results. (Hint: type the command corrsim(n=20,p=2,nruns=10)
and increase n by 10 until 9 or 10 of the correlations are greater than 0.9.
Then repeat for p = 3 with the n that worked for p = 2. Then repeat for
p = 4 with the n that worked for p = 3.)

5.4∗. a) Download the ddplot function. (In R, type the command
library(MASS).)

b) Using the following commands to make generate data from the EC
distribution (1 − ε)Np(0, Ip) + εNp(0, 25 Ip) where p = 3 and ε = 0.4.

n <- 400
p <- 3
eps <- 0.4
x <- matrix(rnorm(n * p), ncol = p, nrow = n)
zu <- runif(n)
x[zu < eps,] <- x[zu < eps,]*5

c) Use the command ddplot(x) to make a DD plot and include the plot
in Word. What is the slope of the line followed by the plotted points? (Right
click Stop once on the plot.)

5.5. a) Download the ellipse function.
b) Use the following commands to create a bivariate data set with outliers

and to obtain a classical and robust RMVN covering ellipsoid. Include the
two plots in Word.

simx2 <- matrix(rnorm(200),nrow=100,ncol=2)
outx2 <- matrix(10 + rnorm(80),nrow=40,ncol=2)
outx2 <- rbind(outx2,simx2)
ellipse(outx2)

zout <- covrmvn(outx2)
ellipse(outx2,center=zout$center,cov=zout$cov)

5.6. a) Download the function mplot.
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b) Enter the commands in Problem 5.4b to obtain a data set x. The
function mplot makes a plot without the RDi and the slope of the resulting
line is of interest.

c) Use the command mplot(x) and place the resulting plot in Word.
(Right click Stop once on the plot.)

d) Do you prefer the DD plot or the mplot? Explain.
5.7 a) Download the function wddplot.
b) Enter the commands in Problem 5.4b to obtain a data set x.
c) Use the command wddplot(x) and place the resulting plot in Word.
5.8. Use the R command source(“G:/mrobdata.txt”) then ddplot4(buxx,

alpha=0.2) and put the plot in Word. The Buxton data has 5 outliers, p = 4,
and n = 87, so the 80% prediction region uses the 100(1 − δ + p/n) =
84.6th percentile. The output shows that the cutoffs are 2.527, 2.734, and
2.583 for the nonparametric, semiparametric, and robust parametric predic-
tion regions. The two horizontal lines that correspond to the robust distances
are obscured by the identity line. (Right click Stop once on the plot.)

5.9. Type the R command predsim() and paste the output into Word.
This program computes xi ∼ N4(0, diag(1, 2, 3, 4)) for i = 1, ..., 100 and

xf = x101. One hundred such data sets are made, and ncvr, scvr, and mcvr
count the number of times xf was in the nonparametric, semiparametric,
and parametric MVN 90% prediction regions. The volumes of the prediction
regions are computed and voln, vols, and volm are the average ratio of the
volume of the ith prediction region over that of the semiparametric region.
Hence vols is always equal to 1. For multivariate normal data, these ratios
should converge to 1 as n → ∞. Were the three coverages near 90%?

5.10. Tests for covariance matrices tend to be very nonrobust to non-
normality. Let a plot of x versus y have x on the horizontal axis and y on
the vertical axis. A good diagnostic is to use the DD plot. So a diagnostic
for H0 : Σx = Σ0 for known Σ0 is to plot Di(x,S) versus Di(x,Σ0) for
i = 1, ..., n. If n ≥ 10p and H0 is true, then the plotted points in the DD plot
should start to cluster tightly about the identity line.

a) A test for sphericity is a test of H0 : Σx = σ2Ip for some unknown
constant σ2 > 0. Make a “D2 plot” of D2

i (x,S) versus D2
i (x, Ip). If n ≥ 10p

and H0 is true, then the plotted points in the D2 plot should cluster tightly
about the line through the origin with slope σ2. Use the R commands for
this part and paste the plot into Word. The simulated data set has xi ∼
N10(0, 100I10) where n = 100 and p = 10. Do the plotted points follow a line
through the origin with slope 100?

b) Now suppose there are k samples, and we want to test H0 : Σx1 =
· · · = Σxk

, that is, all k populations have the same covariance matrix. As
a diagnostic, consider a DD plot of Di(xj ,Sj) versus Di(xj ,Spool) for j =
1, ..., k and i = 1, ..., ni. If each ni ≥ 10p and H0 is true, what line will the
plotted points cluster about in each of the k DD plots? (See Equation (8.2)
for Spool.)
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Remark 5.8. Lots of other diagnostic DD plots can be made. Suppose
known parts of Σx are hypothesized to be 0. Let SZ be the sample covariance
matrix with the known parts set to 0. Then plot Di(x,S) versus Di(x,SZ).
For example, a diagnostic for H0 : Σx = diag(Σ11, ...,Σkk) where the Σii

are unknown block matrices is the above plot with SZ = diag(S11, ...,Skk).
A diagnostic for H0 : Σx = diag(σ11, ..., σpp) where the σii are unknown
would use SZ = diag(s11, ..., spp) if S = (sij). Another diagnostic would
check whether the population correlation matrix ρx = Ip. See the following
paragraph.

Similar diagnostic DD plots can be made for the population correlation
matrix ρx where scaled data zi is used in the Di such that the sample mean
of the scaled data is z = 0 and the sample covariance matrix of the scaled
data is Sz = R = (rij). If the data matrix is x with rows xT

i , then the R
command

z <- scale(x)

will make a data matrix z with rows zT
i . For example, consider H0 : ρx =

ρ0 = (ρij) where ρij = ρ for i �= j where −1 < ρ < 1 is unknown, and
ρii = 1 for i = 1, ..., p. Let ρ̂ be the average of the rij where i < j. Let
Rr = (pij) where pij = ρ̂ for i �= j and pii = 1 for i = 1, ..., p. Then make a
DD plot of Di(0,R) versus Di(0,Rr).

The RMVN matrix CRMV N could be used in place of S in some of the
plots if CRMV N

P→ cΣx for some constant c > 0. Then for some of the plots,
the plotted points might scatter about some line through the origin instead
of the identity line.



Chapter 6
Principal Component Analysis

This chapter considers classical and robust principal component analysis
(PCA). Principal component analysis is used to explain the dispersion struc-
ture with a few linear combinations of the original variables, called principal
components. These linear combinations are uncorrelated if S or R is used as
the dispersion matrix. The analysis is used for data reduction and interpre-
tation. The notation ej will be used for orthonormal eigenvectors: eT

j ej = 1
and eT

j ek = 0 for j �= k. The eigenvalue eigenvector pairs of a matrix Σ will
be (λ1,e1), ..., (λp,ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. The eigenvalue eigenvector
pairs of a matrix Σ̂ will be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p.
The generalized correlation matrix ρ defined below is the correlation matrix
ρx when second moments exist if Σ = c Cov(x) for some constant c > 0.

Definition 6.1. Let Σ = (σij) be a positive definite symmetric p × p

dispersion matrix. A generalized correlation matrix ρ = (ρij) where

ρij =
σij√
σiiσjj

.

6.1 Introduction

The following theorem holds since the eigenvalues and generalized correlation
matrix are continuous functions of Σ. Also see Theorem 3.29. When the
distribution of the xi is unknown, then a good dispersion estimator estimates
cΣ on a large class of distributions where c > 0 depends on the unknown
distribution of xi. For example, if the xi ∼ ECp(μ,Σ, g), then the sample
covariance matrix S estimates Cov(x) = cXΣ.

Theorem 6.1. Suppose the positive definite dispersion matrix Σ has
eigenvalue eigenvector pairs (λ1,e1), ..., (λp,ep) where λ1 ≥ λ2 ≥ · · · ≥ λp.

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 6
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Suppose Σ̂
P→ cΣ for some constant c > 0. Let the eigenvalue eigenvec-

tor pairs of Σ̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then

λ̂j(Σ̂) P→ cλj(Σ) = cλj , ρ̂ P→ ρ, and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the
jth eigenvalue of A for j = 1, ..., p.

Eigenvectors ej are not continuous functions of Σ, and if ej is an eigenvec-
tor of Σ then so is −ej . The software produces êj which sometimes approx-
imates ej and sometimes approximates −ej if the eigenvalue λj is unique,
since then the set of eigenvectors corresponding to λj has the form aej for
any nonzero constant a. The situation becomes worse if some of the eigenval-
ues are equal, since the possible eigenvectors then span a space of dimension
equal to the multiplicity of the eigenvalue. Hence if the multiplicity is two
and both ej and ek are eigenvectors corresponding to the eigenvalue λi, then
ei = gi/‖gi‖ is also an eigenvector corresponding to λi where gi = ajej+akek

for constants aj and ak which are not both equal to 0. The software produces
êj and êk that are approximately in the span of ej and ek for large n by the
following theorem, which also shows that êi is asymptotically an eigenvector
of Σ in that (Σ − λi)êi

P→ 0. It is possible that êi,n is arbitrarily close to ei

for some values of n and arbitrarily close to −ei for other values of n so that
êi ≡ êi,n oscillates and does not converge in probability to either ei or −ei.

Theorem 6.2. Assume the p× p symmetric dispersion matrix Σ is posi-
tive definite.

a) If Σ̂
P→ Σ, then Σ̂ei − λ̂iei

P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.

If Σ̂ − Σ = OP (n−δ) where 0 < δ ≤ 0.5, then
c) λiei − Σ̂ei = OP (n−δ), and
d) λ̂iêi − Σêi = OP (n−δ).
e) If Σ̂

P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · >
λp > 0 of Σ are unique, then the absolute value of the correlation of êj with

ej converges to 1 in probability: |corr(êj ,ej)| P→ 1.

Proof. a) Σ̂ei − λ̂iei
P→ Σei − λiei = 0.

b) Note that (Σ−λiI)êi = [(Σ−λiI)− (Σ̂− λ̂iI)]êi = oP (1)OP (1) P→ 0.

c) λiei − Σ̂ei = Σei − Σ̂ei = OP (n−δ).
d) λ̂iêi − Σêi = Σ̂êi − Σêi = OP (n−δ).
e) Note that a) and b) hold if Σ̂

P→ Σ is replaced by Σ̂
P→ cΣ. Hence

for large n, êi ≡ êi,n is arbitrarily close to either ei or −ei, and the result
follows. �

Rule of thumb 6.1. To use PCA, assume the DD plot and subplots of
the scatterplot matrix are linear. We want n ≥ 10p for classical PCA and
n ≥ 20p for robust PCA that uses FCH, RFCH, or RMVN. For classical
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PCA, use the correlation matrix R instead of the covariance matrix S if
maxi=1,...,p S2

i /mini=1,...,p S2
i > 2. If S is used, also do a PCA using R.

The trace of a square p×p matrix A is the sum of the diagonal elements of
A, and the trace is also the sum of the eigenvalues of A: trace(A) = tr(A) =∑p

i=1 Aii =
∑p

i=1 λi. Note that tr(Cov(x)) = σ2
1 + · · ·+ σ2

p and tr(ρ̂) = p.

Definition 6.2. Let dispersion estimator Σ̂ have eigenvalue eigenvector
pairs (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then the p principal
components corresponding to the jth case xj are Zj1 = êT

1 xj , ..., Zjp = êT
p xj .

Let the vector zj = (Zj1, ..., Zjp)T . The proportion of the trace explained
by the first k principal components is

∑k
i=1 λ̂i/

∑p
j=1 λ̂j =

∑k
i=1 λ̂i/tr(Σ̂).

When a correlation or covariance matrix is being estimated, this quantity is
called the “proportion of the variance explained ” by the first k principal com-
ponents. The population analogs use the dispersion matrix Σ with eigenvalue
eigenvector pairs (λi,ei) for i = 1, ..., p. The population principal components
corresponding to the jth case are Yji = eT

i xj for i = 1, ..., p. Hence Zji = Ŷji.

Note that the principal components can be collected into an n × p data
matrix

Z =

⎡

⎢
⎢
⎢
⎣

Z1,1 Z1,2 . . . Z1,p

Z2,1 Z2,2 . . . Z2,p

...
...

. . .
...

Zn,1 Zn,2 . . . Zn,p

⎤

⎥
⎥
⎥
⎦

=
[
u1 u2 . . . up

]
=

⎡

⎢
⎣

zT
1
...

zT
n

⎤

⎥
⎦ .

Then uk corresponds to the kth principal component: the n random variables
êT

k xi = xT
i êk for i = 1, ..., n are the data xi projected onto a line in the

direction of the kth eigenvector êk.

Definition 6.3. A biplot is a plot of the jth principal component versus
the kth principal component, especially the first versus the second princi-
pal component where the plotted points are (Zi1, Zi2) = (êT

1 xi, ê
T
2 xi). The

classical biplot uses i = 1, ..., n; or uj versus uk; while the robust biplot
uses cases in some set U . Let êj = (ê1j , ê2j , ..., êpj)T . Then êmj is called the
loading of the mth variable on the jth principal component. In a biplot, an
arrow with the mth variable name is the vector from the origin (0, 0)T to the
loadings (êmj , êmk)T . So if the arrow is in the first quadrant, both loadings
are positive, etc. If the arrow is long to the right but short down, then the
loading with the jth principal component is large and positive, while the
loading with the kth principal component is small and negative.

The data matrix W corresponds to the usual axes where ei is a vector of
zeroes except for a one in the ith position. Hence the ith axis corresponds to
the ith variable Xi. The data matrix Z corresponds to axes that are parallel
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to the axes of the hyperellipsoid corresponding to the dispersion matrix Σ̂.
See Theorem 2.4. These axes are a rotation of the usual axes about the origin.

If Σ̂ = S, then the definition of the proportion of the variance explained
may make little sense if the variables are measured on different scales. Assume
the population covariance matrix is I2. Then λj/(λ1 + λ2) = 0.5, but if
xj is multiplied by 3 then V (xj) = 9 = λj , and λj/(λ1 + λ2) = 0.9.
Then xj seems much more important than the other variable just by scal-
ing. This is why rule of thumb 6.1 says R should be used instead of S if
maxi=1,...,p S2

i /mini=1,...,p S2
i > 2.

Examine Theorems 2.4, 2.5, and Figure 2.1. The hyperellipsoid
{x|D2

x ≤ h2} = {x : (x − μ)T Σ−1(x − μ) ≤ h2}, where h2 = u1−α and
P (U ≤ u1−α) = 1 − α, is the highest density region covering 1 − α of the
mass for an elliptically contoured distribution with continuous decreasing g.
The hyperellipsoid is centered at μ. If μ = 0, then points at squared distance
wT S−1w = h2 from the origin lie on the hyperellipsoid centered at the
origin whose axes are given by the eigenvectors ei where the half length in
the direction of ei is h

√
λi.

The projection vector of a vector x onto a vector e is

eeT x

eT e
.

Hence if eT e = 1, the projection vector is v = [eT x]e and ‖v‖ = |eT x|. So
eT x is the signed length of the projection vector of x onto e, and eT x is
called the (scalar) projection of x onto e.

The ei are the directions of the axes through the origin that are parallel
to the axes of the hyperellipsoid. Suppose μ = 0. Then the ith principal
component is the linear combination of the predictors that is the projection
on the ith axis of the hyperellipsoid. That is, get the projection vectors of
the xi onto ei and find their signed lengths eT

i xi from the origin. Then these
scalars form the ith principal components corresponding to the n data cases
x1, ...,xn. So the first principal component is from the projection on the
major axis, the second principal component is from the projection on the
next longest axis, ..., the pth principal component is from the projection on
the minor axis. The axes are orthogonal, so the directions ei are orthogonal.

When μ �= 0, the projections on ei are projections on the axes through
the origin that are parallel to the axes of the hyperellipsoid. Figure 2.1 shows
two ellipsoids where p = 2.

The first k principal components can be regarded as a good k-dimensional
approximation to the p dimensional data. Suppose the data cloud approxi-
mates the hyperellipsoid {x|D2

x ≤ h2} where h2 = D2
(n), the largest squared

distance, so the hyperellipsoid contains all of the data. Then a good one-
dimensional approximation is the projection on the major axis since this
captures the dimension with the greatest variability or dispersion as mea-
sured by Σ. A good two-dimensional approximation uses the projection on

http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
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the major axis and the projection on the next largest axis since these are
the two orthogonal directions where the two projections have the greatest
variability. Following Mardia et al. (1979, p. 220), if S (with centered data)
or R is used as the dispersion matrix, then the vector space spanned by the
first k principal components has smaller mean square deviation from the p
variables than any other k−dimensional subspace.

Since Z represents a new coordinate system, the ith case
xi = (xT

i êi)ê1+· · ·+(xT
i êp)êp = Zi,1ê1+· · ·+Zi,pêp. Also xi = x̃i(k)+ri(k)

where x̃i(k) =
∑k

j=1 Zi,j êj and the residual vector ri(k) =
∑p

j=k+1 Zi,j êj .

The squared length of the residual vector is ‖ri(k)‖2 = ri(k)T ri(k) =
Z2

i,k+1 + · · · + Z2
i,p.

Suppose S or R is used as the as the dispersion matrix and that T = 0 so
the hyperellipsoid is centered at the origin. Following Kendall (1980, p. 17),
the eigenvector corresponding to the largest eigenvalue determines the major
axis of the hyperellipsoid. This axis forms the line through the origin such
that the sum of squared distances from the n data points xi to this line is a
minimum. If the data points are projected onto a hyperplane perpendicular
to the major axis line, then the eigenvector corresponding to the next largest
eigenvalue determines the second longest axis of the hyperellipsoid, and this
axis is the line through the origin in the hyperplane that minimizes the sum
of squared distances, and so on.

Consider the population PCA. When the covariance matrix is used, the
first principal component eT

1 x is the linear combination gT
1 x that maximizes

Var(gT
1 x) subject to gT

1 g1 = 1, while the jth principal component is the
linear combination gT

j x that maximizes Var(gT
j x) subject to gT

j gj = 1 and
Cov(gT

j x, gT
k x) = 0 for k < j. This result can be proved using Theorem

1.1. Hence PCA is a special case of the generalized eigenvalue problem with
A = B = Σ and C = Ip. The classical PCA uses Σ = Σx = Cov(x) or the
correlation matrix ρx.

Dimension reduction involves using the first k principal components to
approximate the data matrix without losing much important information. We
want the proportion of the trace explained by the first k principal components
to be higher than 0.8, 0.9, or 0.95. The scree plot is useful for estimating k.

Definition 6.4. A scree plot is a plot of component number versus eigen-
value.

Rule of thumb 6.2. The value of k should be such that

∑k
i=1 λ̂i

∑p
i=1 λ̂i

≥ c

where c = 0.9 to explain the structure of the dispersion matrix and c = 0.95 if
the k principal components Z1, ..., Zk are to be used instead of the p variables
X1, ...,Xp in a statistical method such as regression or discriminant analysis.

http://dx.doi.org/10.1007/978-3-319-68253-2_1
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The scree plot is also useful for choosing k since often there is a sharp bend
in the scree plot when the components are no longer important. See Cattell
(1966).

Following Johnson and Wichern (1988, pp. 343, 347), let x = (X1, ...,Xp)
be a random vector such that the xi and x have the same distribution. Let
Yi = eT

i x be the population principal components based on the covariance
matrix Cov(x) = Σx. Let ei = (e1i, ..., epi)T . Then eki is proportional to the
correlation between Yi and Xk, in fact,

corr(Yi,Xk) =
eki

√
λi√

σkk

for i, k = 1, ..., p. If the correlation matrix ρx is used instead of Σx, then
corr(Yi,Xk) = eki

√
λi.

Following Johnson and Wichern (1988, pp. 352–353), some software that
uses S centers the data by using uj = xj − x. Centering does not change S

(or R), but makes the ith principal component equal to êT
i uj = êT

i (xj − x)
for observation xj .

Warning: If λ̂p ≈ 0, then Σ̂ is nearly singular, and there could be an
unnoticed linear dependency in the data set, e.g., Xp ≈ ∑p−1

i=1 ciXi. Then
one or more of the variables is redundant and should be deleted. Following
Johnson and Wichern (1988, p. 360), suppose p = 4 and X1, X2, and X3

are midterm exam scores while X4 is the total of the midterm scores so that
X4 = X1 + X2 + X3. Due to rounding, λ̂4 could be nonzero, but very close
to zero.

6.2 Robust Principal Component Analysis

Classical PCA is affected by outliers. If the clean data forms a big cluster
and the distant outliers form another cluster, then often ê1 corresponding to
the first principal component is on a line passing through the clean data and
the cluster of outliers = the major axis of the covering hyperellipsoid based
on (x,S). Good robust methods, like RPCA described below, can give good
results in the presence of certain types of outlier configurations.

A robust “plug in” method uses an analysis based on the (λ̂i, êi) computed
from a robust dispersion estimator C. The RPCA method performs the clas-
sical principal component analysis on the RMVN subset U , using either the
sample covariance matrix CU = SU or the sample correlation matrix RU

computed from the cases in U . See Definition 4.11 and Section 4.6. Under
assumption (E1) from Chapter 4, CU and RU are

√
n consistent highly outlier

resistant estimators of cΣ = dCov(x) and the population correlation matrix
DCov(x)D = ρx, respectively, where D = diag(1/

√
σ11, ..., 1/

√
σpp) and

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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the σii are the diagonal entries of Cov(x) = Σx = cXΣ. Let λi(A) be the
eigenvalues of A where λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A). Let λ̂i(Â) be the
eigenvalues of Â where λ̂1(Â) ≥ λ̂2(Â) ≥ · · · ≥ λ̂p(Â).

Theorem 6.3. Under (E1), the correlation of the eigenvalues computed
from the classical PCA and RPCA converges to 1 in probability.

Proof. The eigenvalues are continuous functions of the dispersion esti-
mator, hence consistent estimators of dispersion give consistent estimators
of the population eigenvalues. See Eaton and Tyler (1991) and Bhatia et al.
(1990). Let λi(Σ) = λi be the eigenvalues of Σ so cXλi are the eigenvalues of
Cov(x) = Σx. Under (E1), λi(S) P→ cXλi and λi(CU ) P→ cλi =

c

cX
cXλi =

d cX λi. Hence the population eigenvalues of Σx and d Σx differ by the pos-
itive multiple d, and the population correlation of the two sets of eigenvalues
is equal to one.

Now let λi(ρ) = λi. Under (E1), both R and RU converge to ρx in

probability, so λ̂i(R) P→ λi and λ̂i(RU ) P→ λi for i = 1, ..., p. Hence the
two population sets of eigenvalues are the same and thus have population
correlation equal to one. �

Note that if Σx e = λe, then

d Σx e = dλe.

Thus λ̂i(S) P→ λi(Σx) and λ̂i(CU ) P→ dλi(Σx) for i = 1, ..., p. Since plotting
software fills space, two scree plots of two sets of eigenvalues that differ by
a constant positive multiple will look nearly the same, except for the labels
of the vertical axis, and the “trace explained” by the largest k eigenvalues
will be the same for the two sets of eigenvalues. Theorems 6.2 and 6.3 imply
that for a large class of elliptically contoured distributions and for large n,
the classical and robust scree plots should be similar visually, and the “trace
explained” by the classical PCA and the robust PCA should also be similar.

The eigenvectors are not continuous functions of the dispersion estimator,
and the sample size may need to be massive before the robust and classical
eigenvectors or principal components have high absolute correlation. In the
software, sign changes in the eigenvectors are common, since Σx e = λe
implies that Σx (−e) = λ(−e).

A simulation was done to check that RMVN estimates Σ if the clean data
is MVN and γ is the percentage of outliers. The clean cases were MVN: x ∼
Np(0, diag(1, 2, ..., p)). Outlier types were x ∼ Np((0, ..., 0, pm)T , 0.0001Ip),
a near point mass at the major axis, and the mean shift x ∼ Np(pm1,
diag(1, 2, ..., p)) where 1 = (1, ..., 1)T . On clean MVN data, n ≥ 20p gave
good results for 2 ≤ p ≤ 100. For the contaminated MVN data, the first nγ
cases were outliers, and the classical estimator Sc was computed on the clean
cases. The diagonal elements of Sc and Σ̂RMV N should both be estimating
(1, 2, ..., p)T . The average diagonal elements of both matrices were computed
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Table 6.1 Estimation of Σ with γ = 0.4, n = 35p

p type n pm Q

5 1 135 16 0.153

5 2 135 6 0.213

10 1 350 21 0.326

10 2 350 6 0.326

15 1 525 26 0.856

15 2 525 7 0.675

20 1 700 33 0.798

20 2 700 8 0.792

25 1 875 39 1.014

25 2 875 10 1.867

for 20 runs, and the criterion Q was the sum of the absolute differences of the
p diagonal elements from the two averaged matrices. Since γ = 0.4 and the
initial subsets for the RMVN estimator are half sets, the simulations used
n = 35p. The values of Q shown in Table 6.1 correspond to good estimation
of the diagonal elements. Values of pm slightly smaller than the tabled values
led to poor estimation of the diagonal elements.

Remark 6.1. When R is used, the correlation of the ith variable with the
jth principal component is proportional to the ith entry of the jth eigenvector
êj . The same result holds when RU is used if the correlation is computed on
cases in the RMVN set U . To try to explain the jth principal component,
look at entries in êj that are large in magnitude and ignore entries close to
zero. Sometimes the principal component is said to load high on the variables
corresponding to entries that are large in magnitude. i) Sometimes only one
entry is large. ii) Sometimes all of the large entries have approximately the
same size and sign. Then the principal component is interpreted as an average
of these entries. iii) If exactly two entries are of similar large magnitude but
of different sign, the principal component is interpreted as a difference of
the two entrees. iv) If there are j ≥ 2 large entries that differ in magnitude,
then the principal component is interpreted as a linear combination of the
corresponding variables.

Warning: The above interpretations may not be valid if S or SU is
used, although the principal component will be a linear combination of
the variables. Let Yj = eT

j x be the jth population principal component,
where Cov(x) = Σx. Then Cov(x, Yj) = Σxej = λjej . Let ej =
(e1j , ..., eij , ..., epj)T . Let x = (X1, ...,Xp)T where Xi is the ith random vari-
able with V (Xi) = σii. Problem 6.3 c) will show that corr(Xi,Yj) =

√
λj

eij√
σii

.

Recall that the correlation matrix is the covariance matrix of standardized
variables z = (Z1, ..., Zp), with σii = 1. Hence if a correlation matrix is used
for PCA with Yj = eT

j z, then corr(Xi,Yj) = corr(Zi,Yj) =
√

λjeij, and the
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constant
√

λj is the same for Xi for i = 1, ..., p. If the covariance matrix is
used, Remark 6.1 applies to eij/

√
σii instead of the loadings eij .
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Fig. 6.1 First Two Principal Components for Buxton data
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Fig. 6.2 First Two Robust Principal Components with Outliers Omitted From Plot

Example 6.1. Buxton (1920) gave various measurements on 87 men
including height, head length, nasal height, bigonal breadth, and cephalic index.
Five heights were recorded to be about 19mm with the true heights recorded
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under head length. Performing a classical principal component analysis on
these five variables using the covariance matrix resulted in a first prin-
cipal component corresponding to a major axis that passed through the
outliers. See Figure 6.1 where the second principal component is plotted
versus the first. The robust PCA, or the classical PCA performed after
the outliers are removed, resulted in a first principal component that was
approximately − height with ê1 ≈ (−1.000, 0.002,−0.023,−0.002,−0.009)T

while the second robust principal component was based on the eigenvector
ê2 ≈ (−0.005,−0.848,−0.054,−0.048, 0.525)T that loads high on head length
and cephalic. The plot of the first two robust principal components, with
the outliers deleted, is shown in Figure 6.2. These two components “explain
about 86% of the variance.”

The R function prcomp can be used to compute output. Suppose the data
matrix is z. The commands

zz <- prcomp(z)
zz

will create and display output. The term zz$sd gives the square roots of the
eigenvalues, while the term zz$rot displays the eigenvectors using the covari-
ance matrix. Hence Figure 6.1 can be made with the following commands.

z <- cbind(buxy,buxx)
zz <- prcomp(z)
PC1 <- z%*%zz$rot[,1]
PC2 <- z%*%zz$rot[,2]
plot(PC2,PC1)

Using the commands

plot(PC1,PC2)
biplot(zz)

will give similar plots, except PC1 will be on the x-axis.
It usually makes more sense to use the correlation matrix. The mpack

function rprcomp does robust principal components. The two functions use
“scale=T” or “cor=T” to use a correlation matrix. The default for rprcomp
is the correlation matrix RU applied to subset U , while the default for
prcomp is the covariance matrix S.

zzcor <- prcomp(z,scale=T)
zrcor <- rprcomp(z,cor=T)

An equivalent way to do RPCA is to get the RMVN set U and then
perform classical PCA.

u <- getu(z)$U
zrcor <- prcomp(u,scale=T)
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Fig. 6.3 Robust Scree Plot

Then
zrcor$out$sd^2

gives the eigenvalues, and zrcor$out$rot gives the eigenvectors. Scree plots
can be made with the following commands, and Figure 6.3 shows the robust
scree plot which suggests that the last principal component can be deleted.

EIG <- zzcor$sd^2
plot(EIG)
#robust scree plot
REIG <- zrcor$out$sd^2
plot(REIG)

The summary command can be used to find the proportion of variance
explained. The output shown below suggests that the 5th principal compo-
nent can be omitted. For this example, the outliers did not affect the variance
explained much in that the cumulative proportions for PCA and RPCA are
similar. The biplots and eigenvectors do differ greatly.

summary(zzcor) #classical PCA
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.431 1.074 0.964 0.926 0.106
Proportion of Variance 0.410 0.231 0.186 0.172 0.002
Cumulative Proportion 0.410 0.640 0.826 0.998 1.000
summary(zrcor$out) #RPCA Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.332 1.155 0.999 0.818 0.473
Proportion of Variance 0.355 0.267 0.200 0.134 0.045
Cumulative Proportion 0.355 0.622 0.821 0.955 1.000
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The outliers are known from the DD plot so the robust principal compo-
nent analysis can be done with and without the outliers. The data matrix zw
is the clean data without the outliers.

From the following output, note that the square roots of the eigenval-
ues, given by “Standard deviations,” do not change much for the following
three estimators: the classical estimator applied to the clean data, and the
robust estimator applied to the full data or the clean data. The eigenvectors
sometimes differ in sign.

zw <-z[-c(61,62,63,64,65),]
zzcorc <- prcomp(zw,scale=T)
# classical PCA on clean data with corr matrix
> zzcorc
Standard deviations:
[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867
Rotation:

PC1 PC2 PC3 PC4 PC5
buxy 0.01551 0.71466 0.02247 -0.68890 -0.11806
len 0.70308 -0.06778 0.07744 -0.16901 0.68302
nasal 0.15038 0.68868 0.02042 0.70385 0.08539
bigonal 0.11646 -0.04882 0.96504 0.02261 -0.22855
cephalic -0.68502 0.08950 0.24854 -0.03071 0.67825

zrcor <- rprcomp(z,cor=T)
> zrcor #RPCA on full data with outliers
Standard deviations:
[1] 1.3323400 1.1548879 0.9988643 0.8182741 0.4730769
Rotation: PC1 PC2 PC3 PC4 PC5
buxy -0.10724 -0.69431 -0.11325 0.69184 -0.12238
len 0.69909 -0.06324 0.02560 0.17129 0.69085
nasal 0.04094 -0.70310 -0.08718 -0.70093 0.07123
bigonal 0.02638 -0.13994 0.98660 0.01120 -0.07884
cephalic -0.70527 -0.00317 0.07443 0.02432 0.70460

> zrcorc <- rprcomp(zw,cor=T)
> zrcorc #RPCA on cleaned data
Standard deviations:
[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482
Rotation: PC1 PC2 PC3 PC4 PC5
buxy -0.21306 0.67557 -0.01727 -0.68852 -0.15446
len 0.67272 0.21639 0.05560 -0.15178 0.68884
nasal -0.22213 0.66958 0.05174 0.68978 0.15441
bigonal -0.01374 -0.02995 0.99668 -0.03546 -0.06543
cephalic -0.67270 -0.21807 0.02363 -0.16076 0.68813
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The robust biplot is shown in Figure 6.4 and uses cases from the RMVN
subset U since outliers can obscure details in the plot. Note that the biplot is
similar to Figure 6.2 if the axes were interchanged. The first principal compo-
nent (eigenvector) from RPCA can be interpreted as a difference head length
− cephalic. In the biplot, the arrows corresponding to these two variables
are nearly horizontal and of the same length, but in the opposite direction.
The second principal component can be interpreted as an average of height
(buxy) and nasal height (nasal). In the biplot, the arrows corresponding to
these two variables are nearly vertical with the same length and direction.
All other arrows in the biplot have very short length. The third principal
component is highly correlated with bigonal, the fourth principal component
is roughly proportional to height − nasal, and the fifth principal component
is roughly an average of length and cephalic. The robust biplot was made
with the following command.

biplot(zrcor$out) #use biplot(zzcor) for a PCA biplot
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Fig. 6.4 Robust Biplot

In simulations for principal component analysis, FCH, RMVN, OGK, and
FMCD seem to estimate cΣx if x = Az+μ where z = (z1, ..., zp)T and the zi

are iid from a continuous distribution with variance σ2. Here Σx = Cov(x) =
σ2AAT if second moments exist. The bias for the MB estimator seemed
to be small. It is known that affine equivariant estimators give unbiased
estimators of cΣx if the distribution of zi is also symmetric. See Rocke and
Woodruff (1996, p. 1050). DGK is affine equivariant, and FMCD is pseudo-
affine equivariant (see the Warning at the end of Section 4.1). FCH and
RMVN are asymptotically equivalent to a scaled DGK estimator. But in the
simulations, the results also held for skewed distributions.
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The simulations used 1000 runs where x = Az and z ∼ Np(0, Ip),
z ∼ LN(0, Ip) where the marginals are iid lognormal(0,1), or z ∼ MV Tp(1),
a multivariate t distribution with 1 degree of freedom so the marginals
are iid Cauchy(0,1). The choice A = diag(

√
1, ...,

√
p) results in Cov(x) =

σ2diag(1, ..., p) when second moments exist. Note that the population eigen-
values will be proportional to (p, p − 1, ..., 1)T and the population “vari-
ance explained” by the ith principal component is λi/

∑p
j=1 λj = 2(p +

1 − i)/[p(p + 1)]. For p = 4, these numbers are 0.4, 0.3, and 0.2 for
the first three principal components. If the “correlation” option is used,
then the population “correlation matrix” is the identity matrix Ip, the
ith population eigenvalue is proportional to 1/p and the population “vari-
ance explained” by the ith principal component is 1/p. Use the command
pcasim(n=100,q=4,nruns=1000,corr=F,rot=F,xtype=1) for the
third and fourth lines of Table 6.2. Also see Problem 6.9.

Table 6.2 Variance Explained by PCA and RPCA, p = 4

n type M/S vexpl rvexpl a1/p1 a2/p2 a3/p3

40 N M 0.445,0.289,0.178 0.472,0.286,0.166 0.895 0.821 0.825

S 0.050,0.037,0.032 0.062,0.043,0.037 0.912 0.813 0.804

100 N M 0.419,0.295,0.191 0.425,0.293,0.189 0.952 0.926 0.963

S 0.033,0.030,0.024 0.040,0.032,0.027 0.956 0.923 0.953

400 N M 0.404,0.298,0.198 0.406,0.298,0.198 0.994 0.991 0.996

S 0.019,0.017,0.014 0.021,0.019,0.015 0.995 0.990 0.994

40 C M 0.765,0.159,0.056 0.514,0.275,0.147 0.563 0.519 0.511

S 0.165,0.112,0.051 0.078,0.055,0.040 0.776 0.383 0.239

100 C M 0.762,0.156,0.060 0.455,0.286,0.173 0.585 0.527 0.528

S 0.173,0.112,0.055 0.054,0.041,0.034 0.797 0.377 0.269

400 C M 0.756,0.162,0.060 0.413,0.296,0.194 0.608 0.562 0.575

S 0.172,0.113,0.054 0.030,0.025,0.022 0.796 0.397 0.308

40 L M 0.539,0.256,0.139 0.521,0.268,0.146 0.610 0.509 0.530

S 0.127,0.075,0.054 0.099,0.061,0.047 0.643 0.439 0.398

100 L M 0.482,0.270,0.165 0.459,0.279,0.172 0.647 0.555 0.566

S 0.180,0.063,0.052 0.077,0.047,0.041 0.654 0.492 0.474

400 L M 0.437,0.282,0.185 0.416,0.290,0.194 0.748 0.639 0.739

S 0.080,0.048,0.044 0.049,0.035,0.033 0.727 0.594 0.690

10000 L M 0.400,0.301,0.200 0.402,0.300,0.199 0.982 0.967 0.991

S 0.027,0.023,0.018 0.013,0.011,0.009 0.976 0.967 0.989

Table 6.2 shows the mean “variance explained” (M) along with the stan-
dard deviations (S) for the first three principal components. Also ai and pi

are the average absolute value of the correlation between the ith eigenvectors
or the ith principal components of the classical and robust methods. Two
rows were used for each “n–data type” combination. The ai are shown in
the top row while the pi are in the lower row. The values of ai and pi were
similar. The standard deviations were slightly smaller for the classical PCA
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for normal data. The classical method failed to estimate (0.4,0.3,0.2) for the
Cauchy data. For the lognormal data, RPCA gave better estimates, and the
pi were not high except for n = 10000.

To compare affine equivariant and nonequivariant estimators, Maronna
and Zamar (2002) suggested using Ai,i = 1 and Ai,j = ψ for i �= j and
ψ = 0, 0.5, 0.7, 0.9, and 0.99. Then Cov(x) = σ2A2 if second moments exist.
If ψ is high, or if p is high and ψ ≥ 0.5, then the data are concentrated
about the line with direction 1 = (1, ..., 1)T . For p = 50 and ψ = 0.99, the
population variance explained by the first principal component is 0.999998.
If the “correlation” option is used, then there is still one extremely dominant
principal component unless both p and ψ are small.

Table 6.3 Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50, ψ = 0.99

n type vexpl SSD rvexpl SSD a1

200 N 0.999998 1.958 0.999998 2.867 0.687

1000 N 0.999998 0.917 0.999998 0.971 0.944

1000 C 0.999996 161.3 0.999998 1.482 0.112

1000 L 0.999998 0.919 0.999998 1.508 0.175

Table 6.3 shows the mean “variance explained” along with the standard
deviations multiplied by 107 for the first principal component, denoted by
“SSD.” The a1 value is given but p1 was always 1.0 to many decimal places
even with Cauchy data. Hence the eigenvectors from the robust and classical
methods could have low absolute correlation, but the data was so tightly
clustered that the first principal components from the robust and classical
methods had absolute correlation near 1. RPCA had a much lower SSD than
PCA for the Cauchy data.

6.3 Eigenvalue Inference

We would like to test hypotheses H0 : (λp−k, λp−k−1, ..., λp−1, λp)T = 0 and
H0 : λi = 0. Waternaux (1976) and Tyler (1983) gave some large sample
theory for PCA. In particular, if the xj = (X1j , ...,Xpj)T are iid from a
multivariate distribution with fourth moments and a covariance matrix Σx
such that the eigenvalues are distinct and positive, then Waternaux (1976)
claims

√
n(λ̂i −λi)

D→ N(0, κi +2λ2
i ) where κi is the kurtosis of the marginal

distribution of Xi, for i = 1, ..., p. (Probably also need κi ≡ κ for i = 1, ..., p
or X1, ...,Xp independent with V (X1) > V (X2) > · · · > V (Xp). For example,
assume X1, ...,Xp are independent with V (Xi) = i or V (Xi) = p + 1 − i.)
For a MVN distribution, κi = 0. The limiting distribution depends on the
distribution of x, so several tests and confidence intervals are not robust to
the assumption of normality. In particular, the 100(1−δ)% confidence interval
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(CI)

λ̂i ± z1−δ

√
2
√

λ̂i/n

should not be used unless n is large and the plotted points in the DD plot
cluster tightly about the identity line. Here P (Z ≤ z1−δ) = 1 − δ if Z ∼
N(0, 1).

Also, if λi = 0, since the dispersion matrix is positive semidefinite, λ̂i ≥ 0.
Hence for j = 1, ..., B, bootstrap values λ̂∗

ij ≥ 0 and are often all positive.
So the shorth 100(1 − δ)% CI may not contain 0. Similarly, when testing
H0 : (λp−k, λp−k−1, ..., λp−1, λp)T = 0 with the prediction region method, the
prediction region may not contain 0 when H0 is true. Beran and Srivastava
(1985) also suggest methods for bootstrapping PCA.

As in the simulation that produced Table 6.2, the simulation for the shorth
CIs often used z = (z1, ..., zp)T where the zi are iid from a continuous dis-
tribution and variance σ2 if second moments exist. Then x = Az where
A = diag(

√
1, ...,

√
p) and Cov(x) = σ2diag(1, ..., p) when second moments

exist. The rows of the data matrix were sampled with replacement to boot-
strap the sample covariance matrix. Then the classical or robust PCA was
fit to find λ̂∗

1j , ..., λ̂
∗
pj for j = 1, ..., B = 1000. In addition to the shorth 95%

CIs, let Ti = λ̂∗
ij and let S∗

i =
√

S∗
ii be the sample standard deviation of the

λ̂∗
ij where S∗ is the sample covariance matrix of vectors (λ̂∗

1j , ..., λ̂
∗
pj)

T and
j = 1, ..., B. We tried the nominal large sample 95% bootstrap CIs Ti ± 2S∗

i

and λ̂i±2S∗
i . Note that the standard deviation S∗

i is not divided by
√

n since
the statistic variability is proportional to 1/

√
n. (If the statistic was X, then

the bootstrap variance would estimate σ2/n, not σ2.) The first choice seemed
to perform a bit better and was used in the simulation.

The mpack function pcabootsim determined the proportion of times the
shorth CI and bootstrap CI contained λi = i σ2. We used the multivariate
normal distribution with σ2 = 1, the MV Tp(d) distribution with σ2 = d/(d−
2) for d ≥ 3, the mixture distribution with the zi iid (1−ε)N(0, 1)+εN(0, 25)
with σ2 = 1 + 24ε where 0 < ε < 1 (see Section 1.6), and the multivariate
lognormal distribution with σ2 = e(e − 1) ≈ 4.6708.

The mpack function pcaboot produces the shorth and bootstrap CIs for
λi for PCA or RPCA. For RPCA, the eigenvalues equal λi = ci σ2 in the
simulation, where c = 1 for MVN data but is unknown otherwise. So the
simulation for RPCA could only be done for MVN data. The bootstrap CIs
and shorth CIs for λi did seem to work when the conditions for the above
PCA large sample theory hold, but large samples were needed: n ≥ 100p
for the MVN distribution and n ≥ 400p for some of the distributions in the
simulation. Fourth moments seemed important, the MV Tp(3) distribution
only has third moments, and the bootstrap and shorth CIs had coverage well
under 95%. The bootstrap CI were denoted by lsci.

Some output is shown below for the classical PCA using p = 4. The default
for pcabootsim is to use the sample covariance matrix S (coverages will be



6.3 Eigenvalue Inference 205

incorrect if R is used since then λi = 1 when second moments exist), while
the default for pcaboot is to use the sample correlation matrix R.

pcabootsim(n=400,xtype=1,nruns=100) #MVN data
$lscicv #nominal 95% coverage
[1] 0.95 0.94 0.92 0.92
$shcicv #observed coverages > 91%
[1] 0.98 0.95 0.92 0.92
pcabootsim(n=400,xtype=2,nruns=100)
$lscicv
[1] 0.97 0.92 0.91 0.91
$shcicv
[1] 0.97 0.92 0.92 0.91
pcabootsim(n=400,xtype=3,nruns=100)
$lscicv
[1] 0.98 0.96 0.94 0.92
$shcicv
[1] 0.98 0.98 0.92 0.96
pcabootsim(n=1600,xtype=4,nruns=100)
$lscicv
[1] 1.00 0.95 0.93 0.92
$shcicv
[1] 1.00 0.96 0.91 0.93
pcabootsim(n=1000,xtype=5,nruns=100)
$lscicv
[1] 0.96 0.97 0.92 0.92
$shcicv
[1] 0.95 0.97 0.92 0.93
pcabootsim(n=1600,xtype=6,nruns=100)
#third moments, might need fourth moments
$lscicv
[1] 0.87 0.67 0.71 0.64
$shcicv
[1] 0.89 0.66 0.74 0.65

pcaboot(buxx,rob=T) #Buxton data RPCA with
#(generalized) correlation matrix
#n = 87 is probably to small to have coverage
#near the nominal 95%
$shorci[[1]]$shorth
[1] 1.6409 2.2055
$shorci[[2]]$shorth
[1] 0.9424 1.3176
$shorci[[3]]$shorth
[1] 0.4523 0.9918
$shorci[[4]]$shorth
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[1] 0.1162 0.3710
$lscis

lsciL lsciU
[1,] 1.6002 2.1644
[2,] 0.8960 1.2967
[3,] 0.4860 1.0967
[4,] 0.1046 0.3555

6.4 Summary

1) Let Σ = (σij) be a positive definite symmetric p× p dispersion matrix. A
generalized correlation matrix ρ = (ρij) where

ρij =
σij√
σiiσjj

.

The generalized correlation matrix is the correlation matrix when second
moments exist if Σ = c Cov(x) for some constant c > 0.

2) Classical principal component analysis (PCA) gets the eigenvalues and
eigenvectors (λ̂i, êi) of the sample covariance matrix S or of the sample cor-
relation matrix R.

3) Let U be the subset of at least half of the cases from which the robust
estimator is computed. Let SU and RU denote the sample covariance matrix
and sample correlation matrix computed from the cases in U . The robust
PCA does classical PCA on the cases in the RMVN set U, which is equivalent
to doing the PCA using SU or RU . The robust estimator C = dSU for some
constant d > 0 and RU is the generalized correlation matrix corresponding
to C.

4) We want n ≥ 10p for the classical PCA and n ≥ 20p for the robust
PCA.

5) Both R and SAS output give the eigenvectors as shown in symbols for

the following table.
PC1 PC2 · · · PCp
ê1 ê2 · · · êp

R output shows the square roots of the eigenvalues

√

λ̂1,

√

λ̂2, ...,

√

λ̂p

under the label “standard deviations,” while SAS output gives the eigenvalues
λ̂i. Typical R output is shown below.

Standard deviations:
[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482
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Rotation: PC1 PC2 PC3 PC4 PC5
len 0.67273 -0.21639 0.05560 0.15178 -0.68884
nasal -0.22213 -0.66958 0.05174 -0.68978 -0.15441
bigonal -0.01374 0.02995 0.99668 0.03546 0.06543
cephalic -0.67270 0.21807 0.02363 0.16076 -0.68813
buxy -0.21306 -0.67557 -0.01727 0.68852 0.15447

6) Given the eigenvalues or square roots of the eigenvalues, be able to
sketch a scree plot of i versus λ̂i.

7) The trace explained or variance explained by the first k principal com-

ponents is
∑k

i=1 λ̂i
∑p

i=1 λ̂i

where the denominator is equal to p if the correlation

option R or RU is used, as recommended in point 10).
8) Use k principal components if the trace explained is bigger than some

percentage like 95%, 90%, 80%, or 70%. There is often a sharp bend in the
scree plot when the components are no longer useful.

9) When R (or RU with cases restricted to U) is used, the correlation
of the ith variable with the jth principal component is proportional to the
ith entry of the jth eigenvector êj . To try to explain the jth principal com-
ponent, look at entries in êj that are large in magnitude and ignore entries
close to zero. Sometimes only one entry is large. Sometimes all of the large
entries have approximately the same size and sign. Then the principal com-
ponent is interpreted as an average of these entries. If exactly two entries are
of similar large magnitude but of different sign, the principal component is
interpreted as a difference of the two entries. If there are j ≥ 2 large entries
that differ in magnitude, then the principal component is interpreted as a
linear combination of the corresponding variables.

10) PCA based on R or RU is easier to interpret than PCA based on S
or SU .

i) If S is used, the variance explained by the first principal component
could be large because one variable has much larger variance than the other
variables.

ii) If S is used, the correlation of the ith variable with the jth principal
component is proportional to the ith entry of the jth eigenvector êj divided
by the standard deviation of ith variable: êij/

√
Sii.

Hence PCA based on S is harder to interpret if the p random variables
do not have similar sample variances. The variances could differ if different
units are used or if some variables are transformed while others are not. Hence
PCA based on R or RU is recommended.

11) Let Σ̂ be a consistent estimator of Σ > 0. The following theorems
show that asymptotically, the eigenvalues and eigenvectors of Σ̂ act as those
of Σ and vice versa. This result is useful since eigenvectors are not continu-
ous functions of the dispersion matrix. The following theorem holds because
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eigenvalues and the generalized correlation matrix are continuous functions
of the positive definite dispersion matrix.

i) Theorem 6.1. Suppose the dispersion matrix Σ > 0 has eigenvalue
eigenvector pairs (λ1,e1), ..., (λp,ep) where λ1 ≥ λ2 ≥ · · · ≥ λp. Suppose

Σ̂
P→ cΣ for some constant c > 0. Let the eigenvalue eigenvector pairs of Σ̂ be

(λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then λ̂j(Σ̂) P→ cλj(Σ) = cλj ,

ρ̂ P→ ρ, and λ̂j (ρ̂) P→ λj (ρ) where λj(A) is the jth eigenvalue of A for
j = 1, ..., p.

ii) Theorem 6.2. Assume the p × p symmetric dispersion matrix Σ is
positive definite. a) If Σ̂

P→ Σ, then Σ̂ei − λ̂iei
P→ 0.

b) If Σ̂
P→ Σ, then Σêi − λiêi

P→ 0.

If Σ̂ − Σ = OP (n−δ) where 0 < δ ≤ 0.5, then
c) λiei − Σ̂ei = OP (n−δ), and
d) λ̂iêi − Σêi = OP (n−δ).
e) If Σ̂

P→ cΣ for some constant c > 0, and if the eigenvalues λ1 > · · · >
λp > 0 of Σ are unique, then the absolute value of the correlation of êj with

ej converges to 1 in probability: |corr(êj ,ej)| P→ 1.
iii) Theorem 6.3. Under (E1), the correlation of the eigenvalues computed

from the classical PCA and robust PCA converges to 1 in probability.
12) Centering uses wi = xi−T where T is the sample mean or the sample

mean of the standardized data for the full data set or for the set U used to
compute the robust estimator. Centering does not change S,SU ,R, or RU ,
but the jth principal component is êT

j wi = êT
j (xi − T ).

13) For PCA, the summary(out) statement shows

Importance of components: PC1 PC2 · · · PCk · · · PCp

Standard deviation
√

λ̂1

√
λ̂2 · · ·

√
λ̂k · · ·

√
λ̂p

Proportion of variance λ̂1∑p
i=1 λ̂i

λ̂2∑p
i=1 λ̂i

· · · λ̂k∑p
i=1 λ̂i

· · · λ̂p
∑p

i=1 λ̂i

Cumulative Proportion λ̂1∑p
i=1 λ̂i

∑2
j=1 λ̂j

∑p
i=1 λ̂i

· · ·
∑k

j=1 λ̂j
∑p

i=1 λ̂i
· · · 1

14) For PCA, the most important biplot is a plot of the first principal
component versus the second principal component. The plotted points are
êT

j xi for j = 1, 2 where the classical biplot uses i = 1, ..., n and the robust
plot uses cases in the RMVN set U . Let êj = (ê1j , ê2j , ..., êpj)T . Then êkj

is called the loading of the kth variable on the jth principal component. An
arrow with the kth variable name is the vector from the origin (0, 0)T to the
loadings (êk1, êk2)T . So if the arrow is in the first quadrant, both loadings
are positive, etc. If the arrow is long to the right but short down, then the
loading with the first principal component is large and positive while the
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loading with the second principal component is small and negative. Be able
to interpret the classical and robust biplots.

6.5 Complements

Jolliffe (2010) is an authoritative text on PCA. See Cook (2007) for a good dis-
cussion on dimension reduction. Cattell (1966) and Bentler and Yuan (1998)
are good references for scree plots. Møller et al. (2005) discussed PCA, prin-
cipal component regression, and drawbacks of M estimators.

x<-cbind(buxx,buxy) # data matrix
mn <- apply(x,2,mean) #sample mean
J <- 0*1:87 + 1 # vector of n ones, n = 87
J <- J%*%t(J)/87 #J%*%x has rows = mn
zc <- x-J%*%x #centered x
yc <- zc/sqrt(87-1) #t(yc) %*% yc = cov(x)
svd(yc)$v #right eigenvectors of Yc

[,1] [,2] [,3] [,4] [,5]
[1,] 0.653883 0.75596 -0.01173 0.00988 0.0268
[2,] -0.001366 0.03980 0.06800 -0.42534 -0.9016
[3,] -0.000489 -0.01276 -0.99161 -0.12775 -0.0151
[4,] -0.000714 0.00251 -0.10890 0.89588 -0.4308
[5,] -0.756594 0.65327 -0.00952 0.00854 0.0252
> svd(t(yc))$u #left eigenvectors of Yc^T

[,1] [,2] [,3] [,4] [,5]
[1,] -0.653883 -0.75596 0.01173 -0.00988 -0.0268
[2,] 0.001366 -0.03980 -0.06800 0.42534 0.9016
[3,] 0.000489 0.01276 0.99161 0.12775 0.0151
[4,] 0.000714 -0.00251 0.10890 -0.89588 0.4308
[5,] 0.756594 -0.65327 0.00952 -0.00854 -0.0252
> prcomp(x)
Standard deviations:
[1] 523.70760 42.50435 6.06073 4.39067 3.80398
Rotation:

PC1 PC2 PC3 PC4 PC5
len 0.653883 0.75596 -0.01173 0.00988 0.0268
nasal -0.001366 0.03980 0.06800 -0.42534 -0.9016
bigonal -0.000489 -0.01276 -0.99161 -0.12775 -0.0151
cephalic -0.000714 0.00251 -0.10890 0.89588 -0.4308
buxy -0.756594 0.65327 -0.00952 0.00854 0.0252
svd(yc)$d #singular values = sqrt(eigenvalues)
[1] 523.70760 42.50435 6.06073 4.39067 3.80398
svd(t(yc))$d #singular values = sqrt(eigenvalues)
[1] 523.70760 42.50435 6.06073 4.39067 3.80398
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Suppose Z is the standardized n × p data matrix and Y = Z/
√

n − 1. If
n < p, then the correlation matrix R = Y T Y = ZT Z/(n− 1) does not have
full rank. By singular value decomposition (SVD) theory, the SVD of Y is
Y = UΛV T where the positive singular values σi are square roots of the
positive eigenvalues of both Y T Y and of Y Y T . Also V = (ê1 ê2 · · · êp),
and Y T Y êi = σ2

i êi. Hence classical principal component analysis on the
standardized data can be done using êi and λ̂i = σ2

i . The SVD of Y T is
Y T = V ΛT UT , and

Y Y T =
1

n − 1

⎡

⎢
⎣

zT
1 z1 zT

1 z2 . . . zT
1 zn

...
...

. . .
...

zT
nz1 zT

nz2 . . . zT
nzn

⎤

⎥
⎦

which is the matrix of scalar products divided by (n − 1). Similarly, if Zc is
the centered data matrix (subtract the means), then Y c = Zc/

√
n − 1, and

the covariance matrix S = Y T
c Y c = ZT

c Zc/(n − 1). For more information
about the SVD, see Datta (1995, pp. 552–556) and Fogel et al. (2013).

The output on the previous page shows how to do classical PCA with S
on a data set using the SVD. The eigenvectors agree up to sign.

The literature for robust PCA is large, but the “high breakdown” com-
petitors for RPCA are impractical or not backed by theory. See Hubert et al.
(2008; 2012) and Wilcox (2008) for references. Some of these methods may
be useful as outlier diagnostics. The theory of Boente (1987) for mildly out-
lier resistant principal components is not based on DGK estimators since the
weighting function on the Di is continuous. Spherical principal component
is a mildly outlier resistant-bounded influence approach suggested by Locan-
tore et al. (1999). Boente and Fraiman (1999) claimed that the basis of the
eigenvectors is consistently estimated by spherical principal components for
elliptically contoured distributions. Also see the end of Section 4.7, Maronna
et al. (2006, pp. 212–213), and Taskinen et al. (2012). A potentially useful
method for robust principal components uses alternating robust regressions.
See Croux et al. (2007), Chen et al. (2008), and Liu et al. (2003).

It may be possible to do robust PCA when n < p by standardizing the
data with the MED(Xi) and MAD(Xi). Let the standardized data be in the
matrix Z. Then plot the Euclidean distances of the standardized data from
the coordinatewise median MED(Z) and delete outliers, leaving m cases in an
m×p matrix Y (use mpack functions medout and ddplot5). Alternatively,
find the covrmb2 subset B = Y . Then use the SVD of Y to perform a
“robust” PCA. Also see Feng and He (2014).

Sparse PCA attempts to increase the interpretability of PCA by making
many of the loading entries equal to 0. See Zou et al. (1993). Apply sparse
PCA on the RMVN subset U if n ≥ 20p, and on the covrmb2 subset B if
n is not much larger than p. Also see Croux et al. (2013). Xu et al. (2011)
suggests that sparse algorithms are not stable.
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Bali et al. (2011) gave possibly impressive theory for infinite complexity
impractical robust projection estimators, but should have given theory for
the practical F-projection estimator actually used. This error occurs far too
often in multivariate “robust statistics” papers. Hubert et al. (2008; 2012)
gave many references for methods, including PCA, where the practical plug-
in estimator is not yet backed by theory and should be replaced by RFCH
or RMVN. Also see Croux et al. (2007; 2013) for comparison of projection
estimators with other methods.

To estimate the first principal direction for principal component analysis,
the F-projection (CR) estimator uses n projections zi = wi/‖wi‖ where
wi = xi − μ̂n. Note that for p = 2, one can select 360 projections through
the origin and a point on the unit circle that are one degree apart. Then
there is a projection that is highly correlated with any projection on the unit
circle. If p = 3, then 360 projections are not nearly enough to adequately
approximate all projections through the unit sphere. Since the surface area
of a unit hypersphere is proportional to np−1, approximations rapidly get
worse as p increases.

Theory for the F-projection (CR) estimator may be simple. Suppose the
data is multivariate normal Np(0, diag(p, 1, ..., 1)). Then β = (1, 0, ..., 0)T (or
−β) is the population first direction. Heuristically, assume μ̂n = 0, although
in general μ̂n should be a good

√
n consistent estimator of μ such as the

coordinatewise median. Let bo be the “best” estimated projection zj that
minimizes ‖zi − β‖ for i = 1, ..., n. “Good” projections will have an xi that
lies in one of two “hypercones” with a vertex at the origin and centered
about a line through the origin and ±β with radius r at ±β. So for p = 2,
the two “cones” are determined by the two lines through the origin with
slopes ± r. The probability that a randomly selected xi falls in one of the
two “hypercones” is proportional to rp−1, and for bo to be consistent for β
need r → 0, P(at least one xi falls in “hypercone”) → 1, and n → ∞. If these
heuristics are correct, we need r ∝ n

−1
p−1 for ‖bo − β‖ = OP (n

1
p−1 ). Note

that bo is not an estimator since β is not known, but the rate of the “best”
projection bo gives an upper bound on the rate of the F-projection estimator
v1 since ‖v1 − β‖ ≥ ‖bo − β‖. If the scale estimator is

√
n consistent, then

for a large class of elliptically contoured distributions, a conjecture is that
‖v1 − β‖ = OP (n

1
2(p−1) ) for p > 1.

In general, some criterion is needed to pick the estimated first princi-
pal component from the n candidates z1, ...,zn. A possibility is to compute
MAD(zT

i w1, ...,z
T
i wn) for i = 1, ..., n and take the zj that maximizes the

MAD.
Simulations were done in R. The MASS library was used to compute

FMCD, and the robustbase library was used to compute OGK. The mpack
function covrmvn computes the FCH, RMVN, and MB estimators while
covfch computes the FCH, RFCH, and MB estimators. The following func-
tions were used in the first three simulations and have more outlier configu-
rations than the two configurations described in the text. Function covesim
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was used to produce Table 6.1 and pcasim for Tables 6.2 and 6.3. See Zhang
(2011) for more extensive simulations.

For a nonsingular matrix, the inverse of the matrix, the determinant of
the matrix, and the eigenvalues of the matrix are continuous functions of
the matrix. Hence if Σ̂ is a consistent estimator of Σ, then the inverse,
determinant, and eigenvalues of Σ̂ are consistent estimators of the inverse,
determinant, and eigenvalues of Σ > 0. See, for example, Bhatia et al. (1990),
Stewart (1969), and Severini (2005, pp. 348–349).

6.6 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

6.1∗. Assume the p×p dispersion matrix Σ is positive definite. If Σ̂
P→ cΣ

for some constant c > 0, prove that Σêi − λiêi
P→ 0.

rprcomp(z) #robust PCA for Problem 6.2
Standard deviations:
[1] 1.3369152 1.1466891 1.0016463 0.8123854 0.4842482
Rotation: PC1 PC2 PC3 PC4 PC5
len 0.67272 -0.21639 0.05560 0.15178 -0.68884
nasal -0.22213 -0.66958 0.05174 -0.68978 -0.15441
bigonal -0.01374 0.02995 0.99668 0.03546 0.06543
cephalic -0.67270 0.21807 0.02363 0.16076 -0.68813
buxy -0.21306 -0.67557 -0.01727 0.68852 0.15446

prcomp(z,scale=T) #classical PCA
Standard deviations:
[1] 1.3184358 1.1723991 1.0155266 0.7867349 0.4867867

Rotation: PC1 PC2 PC3 PC4 PC5
len -0.70308 -0.06778 0.07744 0.16901 0.6830
nasal -0.15038 0.68868 0.02042 -0.70385 0.0854
bigonal -0.11646 -0.04882 0.96504 -0.02261 -0.2285
cephalic 0.68502 0.08950 0.24854 0.03071 0.6782
buxy -0.01551 0.71466 0.02247 0.68890 -0.1181

6.2. Shown above is PCA output using the correlation matrix for the
Buxton data where 5 outliers were deleted. The variables were length, nasal
height, bigonal breadth, cephalic, and buxy = height/20 (to make the variabil-
ity of buxy similar to that of the other variables). The “standard deviations”
line corresponds to the square roots of the eigenvalues. The Rotation matrix
gives the five principal components.
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a) For the robust rprcomp output make a scree plot. What proportion of
the trace is explained by the first four principal components?

b) Which principal component corresponds to i) bigonal, ii) nasal + buxy,
iii) length + cephalic, iv) length − cephalic, and v) nasal − buxy?

6.3∗. Let Yj = eT
j x be the jth population principal component where

Cov(x) = Σx.
a) Using Cov(Ax,Bx) = AΣxBT , show Cov(x, Yj) = Σxej = λjej .
b) Now V (Yj) = Cov(eT

j x,eT
j x). Show that V (Yj) = λj .

c) Let x = (X1, ...,Xp)T where Xi is the ith random variable with V (Xi) =
σii and by a) Cov(Xi, Yj) = λjeij where ej = (e1j , ..., eij , ..., epj)T . Find
corr(Xi, Yj).

6.4. The classical PCA output below is for the Buxton data described in
Problem 6.2 where five cases have massive outliers in the height and length
variables. Interpret PC1 and PC2.

prcomp(z,scale=T) #Problem 6.4
[1] 1.431 1.074 0.964 0.926 0.106

PC1 PC2 PC3 PC4 PC5
len 0.685 0.037 0.004 -0.189 -0.702
nas -0.199 0.568 0.153 -0.783 0.047
big -0.049 -0.569 0.783 -0.247 -0.007
ceph -0.100 -0.594 -0.603 -0.523 0.008
ht -0.692 -0.000 -0.008 0.131 -0.710

6.5. SAS output for PCA using the correlation matrix is shown below. The
Khattree and Naik (1999, p. 11) cork data gives the weights of cork borings
in four directions for 28 trees in a block of plantations.

a) What is the variance explained by the first two principal components?

b) Interpret the first principal component.

Output for Problem 6.5.
Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative
1 3.5967 3.3431 0.8992 0.8992
2 0.2536 0.1735 0.0634 0.9626
3 0.0801 0.0107 0.0200 0.9826
4 0.0694 0.0174 1.0000

Eigenvectors
Prin1 Prin2 Prin3 Prin4

north -0.5108992 0.1267234 0.803287920 0.2786606
east -0.4829921 0.7604818 -0.328918253 -0.2831940
south -0.5082783 -0.3006659 -0.496526386 0.6361719
west -0.4973468 -0.5614345 0.001687729 -0.6613884
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6.6. The Johnson and Wichern (1988, p. 262) turtle data has X1 = length,
X2 = width, and X3 = height for painted turtle shells with 48 cases. Princi-
pal component analysis output, shown below, is based on the (robust) corre-
lation matrix.

a) How many principal components are needed?
b) Interpret the first principal component.

output for Problem 6.6
Rotation: PC1 PC2 PC3
length 0.5771831 -0.5884323 -0.5662218
width 0.5811769 -0.1910978 0.7910215
height 0.5736663 0.7856393 -0.2316848
> summary(out$out)
Importance of components:PC1 PC2 PC3
Standard deviation 1.7065 0.25601 0.14961
Proportion of Variance 0.9707 0.02185 0.00746
Cumulative Proportion 0.9707 0.99254 1.00000

6.7. The output below describes lawyers’ ratings of state judges in the US
Superior Court with 43 observations on 12 numeric variables: CONT=Number
of contacts of lawyer with judge, INTG=Judicial integrity, DMNR=Demeanor,
DILG=Diligence, CFMG=Case flow managing, DECI=Prompt decisions,
PREP=Preparation for trial, FAMI=Familiarity with law, ORAL=Sound
oral rulings, WRIT=Sound written rulings, PHYS=Physical ability, RTEN=
Worthy of retention.

a) Interpret the first principal component.
b) Interpret the second principal component.

> rprcomp(USJudgeRatings) #Problem 6.7
Standard deviations:
[1] 3.22195 1.03833 0.51050 0.41049 0.22798 0.16243
[7] 0.11156 0.09407 0.07441 0.05595 0.04492 0.03806
Rotation: PC1 PC2
CONT 0.09651014 0.90089601
INTG -0.29727192 -0.19029004
DMNR -0.28269055 -0.21697647
DILG -0.30634676 0.01963176
CFMG -0.29804314 0.19297945
DECI -0.30227359 0.18417871
PREP -0.30428044 0.10879296
FAMI -0.30144067 0.11286037
ORAL -0.30874784 0.05751148
WRIT -0.30769444 0.06085970
PHYS -0.28368257 -0.03718180
RTEN -0.30728474 -0.02411832
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6.8. From the SAS output shown below, what is the variance explained
by the second principal component?

Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative

1 154.3106 145.147647 0.9439 0.9439
2 9.1630 0.0561 1.0000

Eigenvectors
Prin1 Prin2

July 0.343532 0.939141
January 0.939141 -.343532

R Problems
Warning: Use the command source(“G:/mpack.txt”) to download

the programs. See Preface or Section 15.2. Typing the name of the
mpack function, e.g., ddplot, will display the code for the function. Use the
args command, e.g., args(pcasim), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

6.9. a) Type the R command pcasim() and paste the output into Word.

This command computes the first three eigenvalues and eigenvectors for
the classical and robust PCA using R and RU . The multivariate normal
data is such that the cases cluster tightly about the eigenvector c(1, 1, ..., 1)T

corresponding to the largest eigenvalue. The term mncor gives the mean cor-
relation between the classical and robust eigenvalues, while the terms vexpl
and rvexpl give the average variance explained by the largest three eigen-
values. The terms abscoreigvi give the absolute correlation between the ith
classical and robust eigenvectors for i = 1, ..., 3, while the term abscorpc gives
the absolute correlations of the first 3 principal components.

b) Are the robust and classical eigenvalues highly correlated? Is the
absolute correlation for first classical principal component and the robust
principal component high?

6.10. The Venables and Ripley (2003) CPU data has variables
syct = cycle time,
mmin = minimum main memory,
chmin = minimum number of channels,
chmax = maximum number of channels,
perf = published performance, and
estperf = estimated performance.

a) There are nonlinear relationships among the variables, and 1 is added
to each variable to make them positive. Read more about the data set and
make a scatterplot matrix with the R commands for this part. You can make
the help window small by clicking the box with the − in the upper right
corner. Include the scatterplot matrix in Word.
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b) The log rule suggests using the log transformation on all of the variables.
Make the log transformations, scatterplot matrix, and DD plot with the R
commands for this part. Right click “Stop” to go from the DD plot to the R
prompt. Wait until part d) to put plots in Word.

c) You might be able to get a better scatterplot matrix and DD plot by
doing alternative transformations on the last two variables. The commands
for this part give the log transformation for the first four variables and possi-
ble transformations for the last variables. Clearly state which transformations
you use for the 5th and 6th variable. For example, if you decide logs are ok,
write down the following transformations.

zz[,5] <- log(z[,5])
zz[,6] <- log(z[,6])

d) For your data set zz of transformed variables, make the scatterplot
matrix and DD plot, and put the two plots in Word.

e) Put the classical PCA output using the correlation matrix into Word
with the command for this problem.

f) Put the robust PCA output using the correlation matrix into Word with
the command for this problem.

g) Comment on the similarities or differences of the classical and robust
PCA.

6.11. The R data set USArrests contains statistics, in arrests per 100,000
residents, for assault, murder, and rape in each of the 50 US states in 1973.
The fourth variable, UrbanPop, is the percent urban population in each state.
For PCA, the R summary command can be used to get the proportion of vari-
ance explained and the cumulative proportion of variance explained, similar
to SAS output.

a) Use the R commands for this part to get the classical and robust PCA
summaries where S or SU is used. Paste the summaries into Word.

i) Are the summaries similar?
ii) Using the 0.9 threshold, how many principal components are needed?
b) Use the R commands for this part to get the classical and robust PCA

summaries where R or RU is used. Paste the summaries into Word.
i) Are the summaries similar?
ii) Using the 0.9 threshold, how many principal components are needed?

6.12. Consider the biplot of the first principal component versus the second
principal component. See Definition 6.3.

The Buxton (1920) data has a cluster of five massive outliers. The first
classical principal component tends to go right through a cluster of large
outliers.
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a) The R commands for this part make the classical scree plot and biplot.
Paste the plots into Word.

b) The R commands for this part make the robust scree plot and biplot.
Paste the plots into Word.

c) From the classical scree plot, how many principal components are
needed? From the robust scree plot, how many principal components are
needed?

d) The four variables used were len, nasal, bigonal, and cephalic. From the
classical biplot, which variable had the five massive outliers?

e) From the robust biplot, which two variables loaded highest with the
first principal component?

6.13. The Johnson (1996) STATLIB bodyfat data has n = 252 and 15
variables x1 = density determined by underwater weighing, x2 = bfat =
the person’s body fat percentage, x3 = age, x4 = weight, x5 = height, and
measurements x6 = neck, x7 = chest, x8 = abdomen, x9 = hip, x10 = thigh,
x11 = knee, x12 = ankle, x13 = biceps, x14 = forearm, and x15 = wrist.

a) The R commands for this part make the classical scree plot and biplot.
Paste the biplot into Word.

b) The R commands for this part make the robust scree plot and biplot.
Paste the biplot into Word.

c) From the robust biplot, what is the relationship between bfat and den-
sity?



Chapter 7
Canonical Correlation Analysis

This chapter covers classical and robust canonical correlation analysis (CCA).
Let x be the p×1 vector of predictors, and partition x = (wT ,yT )T where w
is m× 1 and y is q× 1 with m = p− q ≤ q and m, q ≥ 1. If m = 1 and q = 1,
then the canonical correlation is the usual correlation. Hence usually q > 1
and m > 1. The population canonical correlation analysis seeks m pairs of
linear combinations (aT

1 w, bT
1 y), ..., (aT

mw, bT
my) such that corr(aT

i w, bT
i y)

is large under some constraints on the ai and bi where i = 1, ...,m. The
first pair (aT

1 w, bT
1 y) has the largest correlation. The next pair (aT

2 w, bT
2 y)

has the largest correlation among all pairs uncorrelated with the first pair,
and the process continues so that (aT

mw, bT
my) is the pair with the largest

correlation that is uncorrelated with the first m − 1 pairs. The correlations
are called canonical correlations while the pairs of linear combinations are
called canonical variables.

7.1 Introduction

Some notation is needed to explain CCA. Let the p × p positive definite
symmetric dispersion matrix

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
.

Let J = Σ
−1/2
11 Σ12Σ

−1/2
22 . Let Σa = Σ−1

11 Σ12Σ
−1
22 Σ21, ΣA = JJT =

Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 , Σb = Σ−1

22 Σ21Σ
−1
11 Σ12, and ΣB = JT J =

Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 . Let ei and gi be sets of orthonormal eigenvec-

tors, so eT
i ei = 1, eT

i ej = 0 for i �= j, gT
i gi = 1 and gT

i gj = 0 for i �= j. Let
the ei be m × 1 while the gi are q × 1.

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 7
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Let Σa have eigenvalue eigenvector pairs (λ1,a1), ..., (λm,am) where
λ1 ≥ λ2 ≥ · · · ≥ λm. Let ΣA have eigenvalue eigenvector pairs (λi,ei)
for i = 1, ...,m. Let Σb have eigenvalue eigenvector pairs (λ1, b1), ..., (λq, bq).
Let ΣB have eigenvalue eigenvector pairs (λi, gi) for i = 1, ..., q. It can be
shown that the m largest eigenvalues of the four matrices are the same. Hence
λi(Σa) = λi(ΣA) = λi(Σb) = λi(ΣB) ≡ λi for i = 1, ...,m. It can be shown
that ai = Σ

−1/2
11 ei and bi = Σ

−1/2
22 gi. The eigenvectors ai are not necessarily

orthonormal, and the eigenvectors bi are not necessarily orthonormal.

Theorem 7.1. Assume the p × p dispersion matrix Σ is positive defi-
nite. Assume Σ11,Σ22,ΣA,Σa,ΣB , and Σb are positive definite and that
Σ̂

P→ cΣ for some constant c > 0. Let di be an eigenvector of the correspond-
ing matrix. Hence di = ai, bi,ei, or gi. Let (λ̂i, d̂i) be the ith eigenvalue
eigenvector pair of Σ̂γ .

a) Σ̂γ
P→ Σγ and λ̂i(Σ̂γ) P→ λi(Σγ) = λi where γ = A, a,B, or b.

b) Σγ d̂i − λid̂i
P→ 0 and Σ̂γdi − λ̂idi

P→ 0.
c) If the jth eigenvalue λj is unique where j ≤ m, then the absolute value of

the correlation of d̂j with dj converges to 1 in probability: |corr(d̂j ,dj)| P→ 1.

Proof. a) Σ̂γ
P→ Σγ since matrix multiplication is a continuous function of

the relevant matrices and matrix inversion is a continuous function of a pos-
itive definite matrix. Then λ̂i(Σ̂γ) P→ λi since an eigenvalue is a continuous
function of its associated matrix.

b) Note that (Σγ−λiI)d̂i = [(Σγ−λiI)−(Σ̂γ−λ̂iI)]d̂i = oP (1)OP (1) P→
0, and Σ̂γdi − λ̂idi

P→ Σγdi − λidi = 0.

c) If n is large, then d̂i ≡ d̂i,n is arbitrarily close to either di or −di, and
the result follows.

Rule of thumb 7.1. To use CCA, assume the DD plot and subplots of
the scatterplot matrix are linear. We want n ≥ 10p for classical CCA and
n ≥ 20p for robust CCA that uses FCH, RFCH, or RMVN. Also make the
DD plot for the w variables and the DD plot for the y variables.

Definition 7.1. Let the dispersion matrix be Cov(x) = Σx. Let (λi,ei)
and (λi, gi) be the eigenvalue eigenvector pairs of ΣA and ΣB . The kth pair
of population canonical variables is

Uk = aT
k w = eT

k Σ
−1/2
11 w and Vk = bT

k y = gT
k Σ

−1/2
22 y

for k = 1, ...,m. Then the population canonical correlations ρk = corr(Uk,

Vk) =
√

λk for k = 1, ...,m. The vectors ak = Σ
−1/2
11 ek and bk = Σ

−1/2
22 gk

are the kth canonical correlation coefficient vectors for w and y.
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Theorem 7.2. Johnson and Wichern (1988, pp. 440–441): Let the dis-
persion matrix be Cov(x) = Σx. Then V (Uk) = V (Vk) = 1, Cov(Ck,Dj) =
corr(Ck,Dj) = 0 for k �= j where Ck = Uk or Ck = Vk, and Dj = Uj or
Dj = Vj and j, k = 1, ...,m. That is, Uk is uncorrelated with Vj and Uj

for j �= k, and Vk is uncorrelated with Vj and Uj for j �= k. The first pair
of canonical variables is the pair of linear combinations (U, V ) having unit
variances that maximizes corr(U, V ) and this maximum is corr(U1, V1) = ρ1.
The ith pair of canonical variables is the linear combinations (U, V ) with unit
variances that maximize corr(U, V ) among all choices uncorrelated with the
previous i − 1 canonical variable pairs.

Definition 7.2. Suppose standardized data z = (wT ,yT )T is used and
the dispersion matrix is the correlation matrix Σ = ρx. Hence Σii = ρx,ii

for i = 1, 2. Let (λi,ei) and (λi, gi) be the eigenvalue eigenvector pairs of
ΣA and ΣB . The kth pair of population canonical variables is

Uk = aT
k w = eT

k Σ
−1/2
11 w and Vk = bT

k y = gT
k Σ

−1/2
22 y

for k = 1, ...,m for k = 1, ...,m. Then the population canonical correlations
ρk = corr(Uk, Vk) =

√
λk for k = 1, ...,m.

Then Theorem 7.2 holds for the standardized data, and it can be shown
that the canonical correlations are unchanged by the standardization.

Let

Σ̂ =
(

Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
.

Define estimators Σ̂a, Σ̂A, Σ̂b, and Σ̂B in the same manner as their popula-
tion analogs but using Σ̂ instead of Σ. For example, Σ̂a = Σ̂

−1

11 Σ̂12Σ̂
−1

22 Σ̂21.
Let Σ̂a have eigenvalue eigenvector pairs (λ̂i, âi), and let Σ̂A have eigen-

value eigenvector pairs (λ̂i, êi) for i = 1, ...,m. Let Σ̂b have eigenvalue eigen-
vector pairs (λ̂1, b̂1), and let Σ̂B have eigenvalue eigenvector pairs (λ̂i, ĝi)
for i = 1, ..., q. For these four matrices λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m.

Definition 7.3. Let Σ̂ = S if data x = (wT ,yT )T is used, and let Σ̂ = R
if standardized data z = (wT ,yT )T is used. The kth pair of sample canonical
variables is

Ûk = âT
k w = êT

k Σ̂
−1/2

11 w and V̂k = b̂
T

k y = ĝT
k Σ̂

−1/2

22 y

for k = 1, ...,m. Then the kth sample canonical correlation ρ̂k = corr(Ûk,

V̂k) =
√

λ̂k for k = 1, ...,m. The vectors âk = Σ̂
−1/2

11 êk and b̂k = Σ̂
−1/2

22 ĝk

are the kth sample canonical correlation vectors for w and y.
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Theorem 7.3. Under the conditions of Definition 7.3, the first pair of
canonical variables (Û1, V̂1) is the pair of linear combinations (Û , V̂ ) having
unit sample variances that maximizes the sample correlation corr(Û , V̂ ) and
this maximum is corr(Û1, V̂1) = ρ̂1. The ith pair of canonical variables (Ûi, V̂i)
is the pair of linear combinations (Û , V̂ ) with unit sample variances that
maximize the sample corr(Û , V̂ ) among all choices uncorrelated with the
previous i − 1 canonical variable pairs and corr(Ûi, V̂i) = ρ̂i.

Note that x = (wT ,yT )T are labels. The labels w = (xT ,yT )T are also
often used. The R function cancor is used to perform the classical CCA and
produces output $cor, $xcoef, and $ycoef. These are the canonical correlations
ρ̂k, the âi, and the b̂i. R output is shown in symbols for the following table,
then output is given for Example 7.1.

corr
ρ̂1 · · · ρ̂m

wcoef
w â1 · · · âm

ycoef
y b̂1 · · · b̂m · · · b̂q

Example 7.1. This example will be continued in more detail in the fol-
lowing section. The output is for the mussel data described in Example 2.2,
where the log transformation was used on the five variables. For this data
set, m = 2 canonical correlations are found. The 1st canonical correlation
ρ̂1 = 0.982, while the 2nd canonical correlation can be ignored. Note that
â1 = (0.127, 0.019)T which puts most of the weight on log(S). Note that
b̂1 = (0.157, 0.161, 0.214)T .

zm <- log(mussels); x <- zm[,c(4,5)];
y <- zm[,-c(4,5)]; out<-cancor(x,y)
out$cor
[1] 0.9818605 0.1555381 out$ycoef
out$xcoef [,1] [,2] [,3]

[,1] [,2] L 0.15675 0.72779 2.19359
S 0.126505 0.40778 W 0.16051 0.86505 -1.06764
M 0.018973 -0.48725 H 0.21438 -2.06346 -0.83039

Rule of thumb 7.2. Interpret the âi and b̂i much as êj is interpreted
for PCA. The first pair (â1, b̂1) corresponding to ρ̂1 is the most important.
Pairs with low ρ̂k can be ignored.

Interpretation of CCA output is often hard. i) If x = (wT ,yT )T and w
and y are independent: w y, then often ρ̂1 is not close to 0 until the sample
size n is quite large.

http://dx.doi.org/10.1007/978-3-319-68253-2_2
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ii) Let w = (W1, ...,Wm)T and y = (Y1, ..., Yq)T . Unlike PCA with the
correlation matrix, cor(Wi, âj) and cor(Yi, b̂j) are not proportional to âij

and b̂ij . This means the first sentence of Rule of thumb 7.2 is not very good.
Computing cor(Wi, âj) and cor(Wi, b̂j) for i = 1, ...,m can help. Similarly,
compute cor(Yi, âj) and cor(Yi, b̂j) for i = 1, ..., q.

iii) Multicollinearity occurs if some of the Wi are highly correlated and/or
some of the Yi are highly correlated. Then the canonical variates âi and b̂j

can be hard to interpret.
iv) The Wi’s should have similar variances S2

i , and the Yj ’s should have
similar variances S2

j . Otherwise, the components of âk and b̂k are hard to
interpret.

To interpret CCA, i) We want to know which Wi variables are most impor-

tant for â1, and so which Wi variables most explain b̂
T

1 y (log(S), likely due
to multicollinearity).

ii) We want to know which Yi variables are most important for b̂1, and so
which Yi variables most explain âT

1 w (all three are important, but there is
multicollinearity).

iii) Are âT
1 w and b̂

T

1 y meaningful? Sometimes the output has a “wow
factor”: the client says “wow that makes sense,” but often interpretation is
difficult.

7.2 Robust CCA

The R function cancor does classical CCA and the mpack function rcancor
does robust CCA (RCCA) by applying cancor on the RMVN set U : the
subset of the data used to compute RMVN. See Definition 4.11 and Section
4.6. Recall that the subset U is found using ellipsoidal trimming and can be
regarded as cleaned data where the cleaned data is such that the classical
estimator (x,S) applied to the data U results in the estimator (xU ,SU )
which is a

√
n consistent estimator of (μ, cΣx) for a large class of elliptically

contoured distributions. Also, (TRMV N ,CRMV N ) = (xU , aSU ). Hence SU is
the unscaled RMVN dispersion estimator.

Some theory is simple: the FCH, RFCH, RMVN, and RCCA methods of
robust CCA produce consistent estimators of the kth canonical correlation
ρk on a large class of elliptically contoured distributions.

To see this, suppose Cov(x) = cxΣ and C ≡ C(X) P→ cΣ where
cx > 0 and c > 0 are some constants. Then C−1

XXCXY C−1
Y Y CY X

P→ ΣA =
Σ−1

XXΣXY Σ−1
Y Y ΣY X , and

C−1
Y Y CY XC−1

XXCXY
P→ ΣB = Σ−1

Y Y ΣY XΣ−1
XXΣXY .

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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Note that ΣA and ΣB only depend on Σ and do not depend on the constants
c or cx.

(If C is also the classical covariance matrix applied to some subset
of the data, then the correlation matrix G ≡ RC applied to the same
subset satisfies G−1

XXGXY G−1
Y Y GY X

P→ RA = R−1
XXRXY R−1

Y Y RY X , and

G−1
Y Y GY XG−1

XXGXY
P→ RB = R−1

Y Y RY XR−1
XXRXY .)

Since eigenvalues are continuous functions of the associated positive def-
inite matrix, and the FCH, RFCH, and RMVN estimators are consistent
estimators of c1Σ, c2Σ, and c3Σ on a large class of elliptically contoured
distributions, Theorem 7.1 holds, so these three robust CCA methods and
RCCA produce consistent estimators the kth canonical correlation ρk on that
class of distributions. These remarks prove the following theorem.

Theorem 7.4. For RCCA, Theorem 7.1 holds if the xi are iid from a
large class of elliptically contoured distributions.

Example 7.1, continued. Example 2.2 describes the mussel data. Log
transformation were taken on muscle mass M , shell width W , and on the shell
mass S. Then x contained the two log mass measurements while y contains
L, H, and log(W ). The robust and classical CCAs were similar, but the
canonical coefficients were difficult to interpret since log(W ) has different
units than L and H. Hence the log transformation was taken on all five
variables, and y contains log(L), log(H), and log(W ).

The data set zm contains x and y, and the DD plot (not shown) showed
case 48 was separated from the bulk of the data, but near the identity line.
The DD plot for x (not shown) showed two cases, 8 and 48, were separated
from the bulk of the data. Also the plotted points did not cluster tightly about
the identity line. The DD plot for y (not shown) looked fine. The classical
CCA produces output $cor, $xcoef, and $ycoef. These are the canonical corre-
lations, the ai and the bi. The labels for the RCCA are $out$cor, $out$xcoef,
and $out$ycoef.

From the output shown below, note that the first correlation was about
0.98 while the second correlation was small. The RCCA is the CCA on the
RMVN data set, which is contained in a compact ellipsoidal region. The
variability of the truncated data set is less than that of the entire data set;
hence we expect the robust ai and bi to be larger in magnitude, ignoring
sign, than that of the classical ai and bi, since the variance of each canonical
variate is equal to one, and RCCA uses the truncated data. Note that a1

was roughly proportional to log(S) while b1 gave slightly higher weight for
log(H), then log(W ), and then log(L). Note that the five variables have high
pairwise correlations, so log(M) was not important given that log(S) was
in x. The second pair (a2, b2) might be ignored since the second canonical
correlation was very low.

http://dx.doi.org/10.1007/978-3-319-68253-2_2
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> zm <- log(mussels); x <- zm[,c(4,5)]
> y <- zm[,-c(4,5)]

> cancor(x,y)
$cor
[1] 0.9818605 0.1555381

$xcoef
[,1] [,2]

S 0.12650486 0.4077765
M 0.01897332 -0.4872522

$ycoef
[,1] [,2] [,3]

L 0.1567463 0.7277888 2.1935890
W 0.1605139 0.8650480 -1.0676419
H 0.2143781 -2.0634587 -0.8303862

$xcenter
S M

4.563856 2.850187

$ycenter
L W H

5.472944 3.697654 4.723295

> rcancor(x,y)
$out
$out$cor
[1] 0.98596703 0.06797587

$out$xcoef
[,1] [,2]

S 0.14966183 0.6460117
M 0.03236328 -0.8543387

$out$ycoef
[,1] [,2] [,3]

L 0.1625452 0.4237524 -2.8492678
W 0.2369692 1.5379681 0.9356495
H 0.2530324 -2.6806462 1.7785931

$out$xcenter
S M

4.651941 2.948571
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$out$ycenter
L W H

5.496255 3.728292 4.745839

The RCCA output can also be obtained by performing classical CCA on
the RMVN subset U . Try this with the following R commands.

u <- getu(zm)$U
ux <- u[,c(4,5)]
uy <- u[,-c(4,5)]
cancor(ux,uy)

7.3 Summary

1) Let x be the p × 1 vector of predictors, and partition x = (wT ,yT )T

where w is m × 1 and y is q × 1 with m = p − q ≤ q and m, q ≥ 1.
Canonical correlation analysis (CCA) seeks m pairs of linear combinations
(aT

1 w, bT
1 y), ..., (aT

mw, bT
my) such that corr(aT

i w, bT
i y) is large under some

constraints on the ai and bi where i = 1, ...,m. The first pair (aT
1 w, bT

1 y) has
the largest correlation. The next pair (aT

2 w, bT
2 y) has the largest correlation

among all pairs uncorrelated with the first pair and the process continues so
that (aT

mw, bT
my) is the pair with the largest correlation that is uncorrelated

with the first m − 1 pairs. The correlations are called canonical correlations
while the pairs of linear combinations are called canonical variables.

2) R output is shown in symbols for the following table.

corr
ρ̂1 · · · ρ̂m

wcoef
w â1 · · · âm

ycoef
y b̂1 · · · b̂m · · · b̂q

$out$cor
[1] 0.98596703 0.06797587 $out$ycoef
$out$xcoef [,1] [,2] [,3]

[,1] [,2] L 0.162545 0.423752 -2.849268
S 0.149662 0.646012 W 0.236969 1.537968 0.935650
M 0.032363 -0.854339 H 0.253032 -2.680646 1.778593
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3) Some notation is needed to explain CCA. Let the p×p positive definite
symmetric dispersion matrix

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
.

Let J = Σ
−1/2
11 Σ12Σ

−1/2
22 . Let Σa = Σ−1

11 Σ12Σ
−1
22 Σ21, ΣA = JJT =

Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11 , Σb = Σ−1

22 Σ21Σ
−1
11 Σ12, and ΣB = JT J =

Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22 . Let ei and gi be sets of orthonormal eigenvec-

tors, so eT
i ei = 1, eT

i ej = 0 for i �= j, gT
i gi = 1 and gT

i gj = 0 for i �= j. Let
the ei be m × 1 while the gi are q × 1.

Let Σa have eigenvalue eigenvector pairs (λ1,a1), ..., (λm,am) where
λ1 ≥ λ2 ≥ · · · ≥ λm. Let ΣA have eigenvalue eigenvector pairs (λi,ei) for
i = 1, ...,m. Let Σb have eigenvalue eigenvector pairs (λ1, b1), ..., (λq, bq). Let
ΣB have eigenvalue eigenvector pairs (λi, gi) for i = 1, ..., q. It can be shown
that the m largest eigenvalues of the four matrices are the same. Hence
λi(Σa) = λi(ΣA) = λi(Σb) = λi(ΣB) ≡ λi for i = 1, ...,m. It can be shown
that ai = Σ

−1/2
11 ei and bi = Σ

−1/2
22 gi. The eigenvectors ai are not necessarily

orthonormal, and the eigenvectors bi are not necessarily orthonormal.

Theorem 7.1. Assume the p × p dispersion matrix Σ is positive defi-
nite. Assume Σ11,Σ22,ΣA,Σa,ΣB , and Σb are positive definite and that
Σ̂

P→ cΣ for some constant c > 0. Let di be an eigenvector of the correspond-
ing matrix. Hence di = ai, bi,ei, or gi. Let (λ̂i, d̂i) be the ith eigenvalue
eigenvector pair of Σ̂γ .

a) Σ̂γ
P→ Σγ and λ̂i(Σ̂γ) P→ λi(Σγ) = λi where γ = A, a,B, or b.

b) Σγ d̂i − λid̂i
P→ 0 and Σ̂γdi − λ̂idi

P→ 0.
c) If the jth eigenvalue λj is unique where j ≤ m, then the absolute value of

the correlation of d̂j with dj converges to 1 in probability: |corr(d̂j ,dj)| P→ 1.

7.4 Complements

Koch (2014, p. 115) showed that CCA can be cast as a generalized eigenvec-
tor problem. Muirhead and Waternaux (1980) showed that if the population
canonical correlations ρk are distinct and if the underlying population dis-
tribution has a finite fourth moments, then the limiting joint distribution of√

n(ρ̂2k − ρ2k) is multivariate normal where the ρ̂k are the classical sample
canonical correlations and k = 1, ...,m. If the data are iid from an elliptically
contoured distribution with standardized kurtosis 3κ, then the limiting joint
distribution of √

n
ρ̂2k − ρ2k

2ρk(1 − ρ2k)
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for k = 1, ...,m is Nm(0, (κ + 1)Ip). Note that κ = 0 for multivariate normal
data. The prediction region method can be used to create shorth confidence
intervals for the ρk if the ρk are distinct, positive, and if the underlying
population distribution has finite fourth moments. See how the prediction
region method was used for eigenvalue inference for PCA in Section 6.3.

The literature for robust CCA is large, but the “high breakdown” com-
petitors for RCCA are impractical or not yet backed by theory. More work is
needed to show that Theorem 7.1 holds for other practical robust methods.
Some of these methods may be useful as outlier diagnostics. Alkenani and Yu
(2013), Zhang (2011), and Zhang et al. (2012) gave references for practical
robust CCA that is not yet backed by theory and developed robust CCA
based on FCH, RFCH, and RMVN. Alternating regressions may be a useful
method if p > n, but the practical robust methods are not yet backed by
theory. See Dehon et al. (2000).

7.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

7.1∗. Examine the R output in Example 7.1. a) What is the first canonical
correlation ρ̂1?

b) What is â1?
c) What is b̂1?

7.2. The R output below is for a canonical correlation analysis on Venables
and Ripley (2003) CPU data. The variables were syct = log(cycle time + 1),
mmin = log(minimum main memory + 1),
chmin = log(minimum number of channels + 1),
chmax = log(maximum number of channels + 1),
perf = log(published performance + 1), and
estperf = 20/

√
(estimated performance+1). These six variables had a linear

scatterplot matrix and DD plot, and similar variances. We want to compare
the two performance variables with the four remaining variables.

a) What is the first canonical correlation ρ̂1?
b) What is â1?
c) What is b̂1?
d) Interpret the second canonical variable U2 = âT

2 w.

> cancor(w,y) #Problem 7.2 output
$cor
[1] 0.8769433 0.2278554
$xcoef

http://dx.doi.org/10.1007/978-3-319-68253-2_6
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[,1] [,2]
perf 0.02536432 0.1558717
estperf -0.04121870 0.1431100
$ycoef

[,1] [,2] [,3] [,4]
syct -0.0136133 0.057004 0.0897574 -0.0114237
mmin 0.0374853 -0.018749 0.0844425 0.0058597
chmin 0.0069323 0.098436 -0.0217826 0.0907567
chmax 0.0199989 0.011597 0.0078556 -0.0941986

7.3. Edited SAS output for SAS Institute (1985, p. 146) Fitness Club Data
is given below for CCA. Three physiological and three exercise variables were
measured on 20 middle-aged men at a fitness club.

a) What is the first canonical correlation ρ̂1?
b) What is â1?
c) What is b̂1?

Canonical Correlation #Problem 7.3 output
0.7956
0.2006
0.0726

Raw Canonical Coefficients for the Physiological
Variables

PHYS1 PHYS2 PHYS3
weight -0.0314 -0.0763 -0.0077
waist 0.0493 0.3687 0.1580
pulse -0.0082 -0.0321 0.1457

Raw Canonical Coefficients for the Exercise Variables
Exer1 Exer2 Exer3

chinups -0.0661 -0.0714 -0.2428
situps -0.0168 0.0020 0.0198
jumps 0.0140 0.0207 -0.0082

7.4. The output below is for a canonical correlation analysis on the R
Seatbelts data set where y1 = drivers = number of drivers killed or seri-
ously injured, y2 = front = number of front seat passengers killed or
seriously injured, and y3 = rear = number of back seat passengers killed or
seriously injured, x1 = kms = distance driven, x2 = PetrolPrice = petrol
price, and x3 = V anKilled = number of van drivers killed. The data consists
of 192 monthly totals in Great Britain from January 1969 to December 1984.
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a) What is the first canonical correlation ρ̂1?
b) What is â1?
c) What is b̂1?
d) Let z = (xT ,yT )T . Then from the DD plot, the zi appeared to follow

a multivariate normal distribution. Sketch the DD plot.

> rcancor(x,y) #Problem 7.4 output
$out
$out$cor
[1] 0.8116953 0.5064619 0.1376399

$out$xcoef
[,1] [,2] [,3]

x.kms -2.0802e-05 -0.00002339 -2.2597e-06
x.PetrolPrice -1.8480e+00 3.71737158 5.2920e+00
x.VanKilled 1.5976e-03 -0.01684508 1.6737e-02

$out$ycoef
[,1] [,2] [,3]

y.drivers 1.6788e-06 -2.4873e-05 0.00047179
y.front 5.5947e-04 -7.7970e-05 -0.00081576
y.rear -9.9650e-04 -7.5216e-04 0.00050458

7.5. The R output below is for a canonical correlation analysis on some
iris data. An iris is a flower, and there were 50 observations with 4 variables
sepal length, sepal width, petal length, and petal width.

a) What is the first canonical correlation ρ̂1?
b) What is â1?
c) What is b̂1?

w<-iris3[,,3] #Problem 7.5 output
x <- w[,1:2]
y <- w[,3:4]
cancor(x,y)

$cor
[1] 0.8642869 0.4836991

$xcoef
[,1] [,2]

Sepal L. -0.223034210 -0.1186117
Sepal W. -0.006920448 0.4980378
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$ycoef
[,1] [,2]

Petal L. -0.257853414 -0.09094352
Petal W. -0.006108292 0.54939125

R Problem

Warning: For the following problem, the R commands can be copied and
pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

7.6. Copy and paste the R commands for this problem into R. These com-
mands make w 3×1 and y 5×1 where there are n1 = n2 ≡ ni cases for both w
and y. The eight variables w1, w2, w3, y1, ..., y5 are iid N(0, 1). Hence the pop-
ulation canonical correlations are 0. The output starts with ni = 500
and gives the first sample classical and robust correlation ρ̂1, then increases
ni by 500 and repeats. How large does ni need to be before ρ̂1 < 0.05 for the
classical estimator and for the robust estimator?

http://lagrange.math.siu.edu/Olive/mrsashw.txt


Chapter 8
Discriminant Analysis

This chapter considers discriminant analysis: given p measurements w, we
want to correctly classify w into one of G groups or populations. The max-
imum likelihood, Bayesian, and Fisher’s discriminant rules are used to show
why methods like linear and quadratic discriminant analysis can work well
for a wide variety of group distributions.

8.1 Introduction

Definition 8.1. In supervised classification, there are G known groups and
m cases. Each case is assigned to exactly one group based on its measure-
ments wi.

Suppose there are G populations or groups or classes where G ≥ 2. Assume
that for each population, there is a probability density function (pdf) fj(z)
where z is a p × 1 vector and j = 1, ..., G. Hence if the random vector
x comes from population j, then x has pdf fj(z). Assume that there is a
random sample of nj cases x1,j , ...,xnj ,j for each group. Let (xj ,Sj) denote
the sample mean and covariance matrix for each group. Let wi be a new
p × 1 (observed) random vector from one of the G groups, but the group
is unknown. Usually there are many wi, and discriminant analysis (DA)
attempts to allocate the wi to the correct groups. The w1, ...,wm are known
as the test data. Let πk = the (prior) probability that a randomly selected case
wi belongs to the kth group. If x1,1...,xnG,G are a random sample of cases
from the collection of G populations, then π̂k = nk/n where n =

∑G
i=1 ni.

Often the training data x1,1, ...,xnG,G is not collected in this manner. Often
the nk are fixed numbers such that nk/n does not estimate πk. For example,
could have G = 2 where n1 = 100 and n2 = 100 where patients in group 1
have a deadly disease and patients in group 2 are healthy, but an attempt has
been made to match the sick patients with healthy patients on p variables

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 8
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such as age, weight, height, an indicator for smoker or nonsmoker, and gender.
Then using π̂j = 0.5 does not make sense because π1 is much smaller than
π2. Here the indicator variable is qualitative, so the p variables do not have
a pdf.

Let W i be the random vector and wi be the observed random vector. Let
Y = j if wi comes from the jth group for j = 1, ..., G. Then πj = P (Y = j)
and the posterior probability that Y = k or that wi belongs to group k is

pk(wi) = P (Y = k|W i = wi) =
πkfk(wi)

∑G
j=1 πjfj(wi)

. (8.1)

Definition 8.2. a) The maximum likelihood discriminant rule allocates
case wi to group a if f̂a(wi) maximizes f̂j(wi) for j = 1, ..., G.

b) The Bayesian discriminant rule allocates case wi to group a if p̂a(wi)
maximizes

p̂k(wi) =
π̂kf̂k(wi)

∑G
j=1 π̂j f̂j(wi)

for k = 1, ..., G.
c) The (population) Bayes classifier allocates case wi to group a if pa(wi)

maximizes pk(wi) for k = 1, ..., G.

Note that the above rules are robust to nonnormality of the G groups.
Following James et al. (2013, pp. 38–39, 139), the Bayes classifier has the
lowest possible expected test error rate out of all classifiers using the same
p predictor variables w. Of course, typically, the πj and fj are unknown.
Note that the maximum likelihood rule and the Bayesian discriminant rule
are equivalent if π̂j ≡ 1/G for j = 1, ..., G. If p is large, or if there is mul-
ticollinearity among the predictors, or if some of the predictor variables are
noise variables (useless for prediction), then there is likely a subset z of d of
the p variables w such that the Bayes classifier using z has lower error rate
than the Bayes classifier using w.

Several of the discriminant rules in this chapter can be modified to incor-
porate πj and costs of correct and incorrect allocation. See Johnson and
Wichern (1988, ch. 11). We will assume that costs of correct allocation are
unknown or equal to 0, and that costs of incorrect allocation are unknown
or equal. Unless stated otherwise, assume that the probabilities πj that wi is
in group j are unknown or equal: πj = 1/G for j = 1, ..., G. Some rules can
handle discrete predictors.
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8.2 LDA and QDA

Often it is assumed that the G groups have the same covariance matrix Σx.
Then the pooled covariance matrix estimator is

Spool =
1

n − G

G∑

j=1

(nj − 1)Sj (8.2)

where n =
∑G

j=1 nj . The pooled estimator Spool can also be useful if some
of the ni are small so that the Sj are not good estimators. Let (μ̂j , Σ̂j) be
the estimator of multivariate location and dispersion for the jth group, e.g.,
the sample mean and sample covariance matrix (μ̂j , Σ̂j) = (xj ,Sj). Then a
pooled estimator of dispersion is

Σ̂pool =
1

k − G

G∑

j=1

(kj − 1)Σ̂j (8.3)

where often k =
∑G

j=1 kj and often kj is the number of cases used to com-
pute Σ̂j .

LDA is especially useful if the population dispersion matrices are equal:
Σj ≡ Σ for j = 1, ..., G. Then Σ̂pool is an estimator of cΣ for some constant
c > 0 if each Σ̂j is a consistent estimator of cjΣ where cj > 0 for j = 1, ..., G.
If LDA does not work well with predictors x = (X1, ...,Xp), try adding
squared terms X2

i and possibly two way interaction terms XiXj . If all squared
terms and two way interactions are added, LDA will often perform like QDA.

Definition 8.3. Let Σ̂pool be a pooled estimator of dispersion. Then the
linear discriminant rule is allocate w to the group with the largest value of

dj(w) = μ̂T
j Σ̂

−1

poolw − 1
2
μ̂T

j Σ̂
−1

poolμ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (μ̂j , Σ̂pool) =
(xj ,Spool).

Definition 8.4. The quadratic discriminant rule is allocate w to the
group with the largest value of

Qj(w) =
−1
2

log(|Σ̂j |) − 1
2
(w − μ̂j)

T Σ̂
−1

j (w − μ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (μ̂j , Σ̂j) =
(xj ,Sj).
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Definition 8.5. The distance discriminant rule allocates w to the group
with the smallest squared distance D2

w(μ̂j , Σ̂j) = (w − μ̂j)T Σ̂
−1

j (w − μ̂j)
where j = 1, ..., G.

Examining some of the rules for G = 2 and one predictor w is informative.
First, assume group 2 has a uniform(−10,10) distribution and group 1 has
a uniform(a − 1, a + 1) distribution. If a = 0 is known, then the maximum
likelihood discriminant rule assigns w to group 1 if −1 < w < 1 and assigns
w to group 2, otherwise. This occurs since f2(w) = 1/20 for −10 < w < 10
and f2(w) = 0, otherwise, while f1(w) = 1/2 for −1 < w < 1 and f1(w) = 0,
otherwise. For the distance rule, the distances are basically the absolute value
of the z-score. Hence D1(w) ≈ 1.732|w − a| and D2(w) ≈ 0.1732|w|. If w is
from group 1, then w will not be classified very well unless |a| ≥ 10 or if
w is very close to a. In particular, if a = 0, then expect nearly all w to be
classified to group 2 if w is used to classify the groups. On the other hand, if
a = 0, then D1(w) is small for w in group 1 but large for w in group 2. Hence
using z = D1(w) in the distance rule would result in classification with low
error rates.

Similarly, if group 2 comes from a Np(0, 10Ip) distribution and group 1
comes from a Np(μ, Ip) distribution, the maximum likelihood rule will tend to
classify w in group 1 if w is close to μ and to classify w in group 2, otherwise.
The two misclassification error rates should both be low. For the distance rule,
the distances Di have an approximate χ2

p distribution if w is from group
i. If covering hyperellipsoids from the two groups have little overlap, then
the distance rule does well. If μ = 0, then expect nearly all of the w to be
classified to group 2 with the distance rule, but D1(w) will be small for w from
group 1 and large for w from group 2, so using the single predictor z = D1(w)
in the distance rule would result in classification with low error rates. More
generally, if group 1 has a covering hyperellipsoid that has little overlap with
the observations from group 2, using the single predictor z = D1(w) in the
distance rule should result in classification with low error rates even if the
observations from group 2 do not fall in a hyperellipsoidal region.

Now suppose the G groups come from the same family of elliptically con-
toured EC(μj ,Σj , g) distributions where g is a continuous decreasing func-
tion that does not depend on j for j = 1, ..., G. For example, the jth distrib-
ution could have w ∼ Np(μj ,Σj). Using Equation (3.5), log(fj(w)) =

log(kp) − 1
2

log(|Σj)|) + log(g[(w − μj)
T Σ−1

j (w − μj)]) =

log(kp) − 1
2

log(|Σj)|) + log(g[D2
w(μj ,Σj)]).

Hence the maximum likelihood rule leads to the quadratic rule if the k groups
have Np(μj ,Σj) distributions where g(z) = exp(−z/2), and the maximum
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likelihood rule leads to the distance rule if the groups have dispersion matrices
that have the same determinant: det(Σj) = |Σj | ≡ |Σ| for j = 1, ..., k.
This result is true since then maximizing fj(w) is equivalent to minimizing
D2

w(μj ,Σj). Plugging in estimators leads to the distance rule. The same
determinant assumption is a much weaker assumption than that of equal
dispersion matrices. For example, let cXΣj be the covariance matrix of x,
and let Γ j be an orthogonal matrix. Then y = Γ jx corresponds to rotating
x, and cXΓ jΣjΓ

T
j is the covariance matrix of y with |Cov(x)| = |Cov(y)|.

Note that if the G groups come from the same family of elliptically
contoured EC(μj ,Σj , g) distributions with nonsingular covariance matrices
cXΣj , then D2

w(xj ,Sj) is a consistent estimator of D2
w(μj ,Σj)/cX . Hence

the distance rule using (xj ,Sj) is a maximum likelihood rule if the Σj have
the same determinant. The constant cX is given below Equation (3.8).

Now D2
w(μj ,Σj) = wT Σ−1

j w − wT Σ−1
j μj − μT

j Σ−1
j w + μT

j Σ−1
j μj =

wT Σ−1
j w−2μT

j Σ−1
j w+μT

j Σ−1
j μj = wT Σ−1

j w+μT
j Σ−1

j (−2w+μj). Hence
if Σj ≡ Σ for j = 1, ..., G, then we want to minimize μT

j Σ−1(−2w + μj)
or maximize μT

j Σ−1(2w − μj). Plugging in estimators leads to the linear
discriminant rule.

The maximum likelihood rule is robust to nonnormality, but it is difficult
to estimate f̂j(w) if p > 2. The linear discriminant rule and distance rule
are robust to nonnormality, as is the logistic regression discriminant rule if
G = 2. Expect the distance rule to be best when the ellipsoidal covering
regions of the G groups have little overlap. The distance rule can be very
poor if the groups overlap and have very different variability.

Rule of thumb 8.1. It is often useful to use predictor transformations
from Section 2.4 to remove nonlinearities from the predictors. The log rule is
especially useful for highly skewed predictors. After making transformations,
assume that there are 1 ≤ k ≤ p continuous predictors X1, ...,Xk where no
terms like X2 = X2

1 or X3 = X1X2 are included. If nj ≥ 10k for j = 1, ..., G,
then make the G DD plots using the k predictors from each group to check
for outliers, which could be cases that were incorrectly classified. Then use
p predictors which could include squared terms, interactions, and categorical
predictors. Try several discriminant rules. For a given rule, the error rates
computed using the training data xi,j with known groups give a lower bound
on the error rates for the test data wi. That is, the error rates computed on
the training data xi,j are optimistic. When the discriminant rule is applied
to the m wi where the groups for the test data wi are unknown, the error
rates will be higher. If equal covariance matrices are assumed, plot Di(xj ,Sj)
versus Di(xj ,Σpool) for each of the G groups, where the xi,j are used for i =
1, ..., nj . If all of the nj are large, say nj ≥ 30p, then the plotted points should
cluster tightly about the identity line in each of the G plots if the assumption
of equal covariance matrices is reasonable. The linear discriminant rule has
some robustness against the assumption of equal covariance matrices. See
Remark 8.2.

http://dx.doi.org/10.1007/978-3-319-68253-2_3
http://dx.doi.org/10.1007/978-3-319-68253-2_2
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8.3 LR

Definition 8.6. Assume that G = 2 and that there is a group 0 and a
group 1. Let ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression
(LR) estimate of ρ(w). The logistic regression discriminant rule allocates w
to group 1 if ρ̂(w) ≥ 0.5 and allocates w to group 0 if ρ̂(w) < 0.5. The
training data for logistic regression are cases (xi, Yi) where Yi = j if the ith
case is in group j for j = 0, 1 and i = 1, ..., n. Logistic regression produces an
estimated sufficient predictor ESP = α̂ + β̂

T
x. Then

ρ̂(x) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
x)

1 + exp(α̂ + β̂
T
x)

.

Then a response plot is a plot of ESP versus Yi (on the vertical axis) with
ρ̂(xi) ≡ ρ̂(ESP ) added as a visual aid where xi is the vector of predictors
for case i. Also divide the ESP into J slices with approximately the same
number of cases in each slice. Then compute the sample mean = sample
proportion in slice s: ρ̂s = Y s =

∑
s Yi/ms where ms is the number of cases

in slice s. Then plot the resulting step function as a visual aid. If n0 and n1

are the sample sizes of both groups and ni ≥ 5p, then the logistic regression
model was useful if the step function of observed slice proportions scatter
fairly closely about the logistic curve ρ̂(ESP ).

An extension of the above binary logistic regression model uses

ρ̂(w) =
eĥ(w)

1 + eĥ(w)
,

and will be discussed below after some notation. Note that ĥ(w) > 0 corre-
sponds to ρ̂(w) > 0.5 while ĥ(w) < 0 corresponds to ρ̂(w) < 0.5. LR uses
ĥ(w) = ESP , and the binary logistic GAM defined in Definition 8.9 uses
ĥ(w) = ESP = EAP . These two methods are robust to nonnormality.

Definition 8.7. In a 1D regression, Y is independent of x given the suf-
ficient predictor SP = h(x) where SP = α + βT x for a generalized linear
model (GLM). In a generalized additive model (GAM), Y is independent of
x = (x1, ..., xp)T given the additive predictor SP = AP = α +

∑p
j=1 Sj(xj)

for some (usually unknown) functions Sj . The estimated sufficient predictor
ESP = ĥ(x). For a GAM, the estimated additive predictor ESP = EAP =
α̂ +

∑p
j=1 Ŝj(xj). A response plot is a plot of ESP versus Y .

Note that a GLM is a special case of the GAM using Sj(xj) = βjxj for
j = 1, ..., p. A GLM with SP = α+β1x1 +β2x2 +β3x1x2 is a special case of a
GAM with x3 ≡ x1x2. A GLM with SP = α+β1x1 +β2x

2
1 +β3x2 is a special



8.3 LR 239

case of a GAM with S1(x1) = β1x1 + β2x
2
1 and S2(x2) = β3x2. A GLM with

p terms may be equivalent to a GAM with k terms w1, ..., wk where k < p.
The plotted points in the EE plot defined below should scatter tightly

about the identity line if the GLM is appropriate and if the sample size is
large enough so that the ESP is a good estimator of the SP and the EAP is a
good estimator of the AP. If the clustering is not tight but the GAM gives a
reasonable approximation to the data, as judged by the EAP–response plot,
then examine the Ŝj of the GAM to see if some simple terms such as x2

i can
be added to the GLM so that the modified GLM has a good ESP–response
plot. (This technique is easiest if the GLM and GAM have the same p terms
x1, ..., xp. The technique is more difficult, for example, if the GLM has terms
x1, x

2
1, and x2 while the GAM has terms x1 and x2.)

Definition 8.8. An EE plot is a plot of EAP versus ESP.

Definition 8.9. Let ρ(w) = exp(w)/[1 + exp(w)].
a) For the binary logistic GLM, Y1, ..., Yn are independent with Y |SP ∼

binomial(1, ρ(SP )) where ρ(SP ) = P (Y = 1|SP ). This model has E(Y |SP )
= ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

b) For the binary logistic GAM, Y1, ..., Yn are independent with Y |AP ∼
binomial(1, ρ(AP)) where ρ(AP ) = P (Y = 1|AP ). This model has E(Y |AP )
= ρ(AP ) and V (Y |AP ) = ρ(AP )(1−ρ(AP )). The response plot and discrim-
inant rule are similar to those of Definition 8.6, and the EAP–response plot
adds the estimated mean function ρ(EAP ) and a step function to the plot.
The logistic GAM discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5 and
allocates w to group 0 if ρ̂(w) < 0.5 where

ρ̂(w) =
eEAP

1 + eEAP

and EAP = α̂ +
∑p

j=1 Ŝj(wj).

Rule of thumb 8.2. For binary data, Kay and Little (1987) suggest
examining the two distributions x|Y = 0 and x|Y = 1. Use predictor x if
the two distributions are roughly symmetric with similar spread. Use x and
x2 if the distributions are roughly symmetric with different spread. Use x
and log(x) if one or both of the distributions are skewed. From Section 2.4,
recall that the log rule says add log(x) to the model if min(x) > 0 and
max(x)/min(x) > 10. The rules shown in Table 8.1 are used if x is an indica-
tor variable or if x is a continuous variable. Replace normality by “symmetric
with similar spreads” and “symmetric with different spreads” in the second
and third lines of the table.

Example 8.1. The ICU data is available from the text’s website and
from STATLIB (http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html). Also

http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html
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Table 8.1 Building the Logistic Regression Model

distribution of x|y = i variables to include in the model

x|y = i is an indicator x

x|y = i ∼ N(μi, σ
2) x

x|y = i ∼ N(μi, σ
2
i ) x and x2

x|y = i has a skewed distribution x and log(x)

x|y = i has support on (0,1) log(x) and log(1 − x)
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Fig. 8.1 Visualizing the ICU Data With a GLM

see, Hosmer and Lemeshow (2000, pp. 23–25) and Olive (2013b). The sur-
vival of 200 patients following admission to an intensive care unit was stud-
ied with logistic regression. The response variable was STA (0 = Lived, 1
= Died). Predictors were AGE, SEX (0 = Male, 1 = Female), RACE (1 =
White, 2 = Black, 3 = Other), SER= Service at ICU admission (0 = Medical,
1 = Surgical), CAN= Is cancer part of the present problem? (0 = No, 1 =
Yes), CRN= History of chronic renal failure (0 = No, 1 = Yes), INF= Infec-
tion probable at ICU admission (0 = No, 1 = Yes), CPR= CPR prior to
ICU admission (0 = No, 1 = Yes), SYS= Systolic blood pressure at ICU
admission (in mm Hg), HRA= Heart rate at ICU admission (beats/min),
PRE= Previous admission to an ICU within 6 months (0 = No, 1 = Yes),
TYP= Type of admission (0 = Elective, 1 = Emergency), FRA= Long
bone, multiple, neck, single area, or hip fracture (0 = No, 1 = Yes), PO2=
PO2 from initial blood gases (0 if > 60, 1 if ≤ 60), PH= PH from ini-
tial blood gases (0 if ≥ 7.25, 1 if < 7.25), PCO= PCO2 from initial blood
gases (0 if ≤ 45, 1 if > 45), Bic= Bicarbonate from initial blood gases
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(0 if ≥ 18, 1 if < 18), CRE= Creatinine from initial blood gases (0 if ≤
2.0, 1 if > 2.0), and LOC= Level of consciousness at admission (0 = no coma
or stupor, 1= deep stupor, 2 = coma).

Factors LOC and RACE had two indicator variables to model the three
levels. The response plot in Figure 8.1 shows that the logistic regression model
using the 19 predictors is useful for predicting survival, although the output
has ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases. Note that the step function
of slice proportions tracks the model logistic curve fairly well. Also note that
cases with ESP values greater that 0 get classified in group 1 (died), and in
group 0 (survived), otherwise.
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Fig. 8.2 Visualizing the ICU GAM

Next, a binary generalized additive model was fit with unspecified func-
tions for AGE, SYS, and HRA, and linear functions for the remaining sixteen
variables. Output suggested that functions for SYS and HRA are linear but
the function for AGE may be slightly curved. Several cases had ρ̂(AP ) equal
to zero or one, but the response plot in Figure 8.2 suggests that the full model
is useful for predicting survival. Note that the ten slice step function closely
tracks the logistic curve. Figure 8.3 shows the plot of EAP versus ESP from
the binary logistic regression. The plot shows that the near zero and near one
probabilities are handled differently by the GAM and GLM, but the estimated
success probabilities for the two models are similar: ρ̂(ESP ) ≈ ρ̂(EAP ).
Some R commands for producing the above figures are shown below. The
R library mgcv for fitting GAMs is described in Wood (2006). The mpack
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Fig. 8.3 GAM and GLM give Similar Success Probabilities

function lrplot3 is needed to make the response plot, and the plots may
look different due to R changes for fitting GAMs.

##ICU data from Statlib or URL
#http://lagrange.math.siu.edu/Olive/ICU.lsp
#delete header of ICU.lsp and delete last parentheses
#at the end of the file. Save the file on F drive as
#icu.txt.

icu <- read.table("F:\\icu.txt")

names(icu) <- c("ID", "STA", "AGE", "SEX", "RACE",
"SER", "CAN", "CRN", "INF", "CPR", "SYS", "HRA",
"PRE", "TYP", "FRA", "PO2", "PH", "PCO", "Bic",
"CRE", "LOC")

icu[,5] <- as.factor(icu[,5])
icu[,21] <- as.factor(icu[,21])
icu2<-icu[,-1]
outf <- glm(formula=STA~.,family=binomial,data=icu2)
ESP <- predict(outf)

library(mgcv)
outgam <- gam(STA ~ s(AGE)+SEX+RACE+SER+CAN+CRN+INF+
CPR+s(SYS)+s(HRA)+PRE+TYP+FRA+PO2+PH+PCO+Bic+CRE+LOC,
family=binomial,data=icu2)
EAP <- predict.gam(outgam)
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plot(EAP,ESP)
abline(0,1)
#Figure 8.3

Y <- icu2[,1]
lrplot3(ESP=EAP,Y,slices=18)
#Figure 8.2

lrplot3(ESP,Y,slices=18)
#Figure 8.1

8.4 KNN

The K-nearest neighbors (KNN) method identifies the K cases in the train-
ing data that are closest to w. Suppose mj of the K cases are from group
j. Then the KNN estimate of pj(w) = P (Y = j|W = w) = P (w is
from the jth group) is p̂j(w) = mj/K. (Actually, mj/K ≈ cpj(w) so
mj/mk ≈ pj(w)/pk(w). See the end of this section.) Applying the Bayesian
discriminant rule to the p̂j(w) gives the KNN discriminant rule.

Definition 8.10. The K-nearest neighbors (KNN) discriminant rule allo-
cates w to group a if ma maximizes mj for j = 1, ..., G.

A couple of examples will be useful. When K = 1, find the case in the
training data closest to w. If that training data case is from group j, then
allocate w to group j. Suppose nj is the largest nk for k = 1, ..., G. Hence
group j is the group with the most training data cases. Then if K = n, w
is always allocated to group j. The K = n rule is bad. The K = 1 rule is
surprisingly good but tends to have low bias and high variability. Generally,
values of K > 1 will have smaller test error rates.

For KNN and other discriminant analysis rules, it is often useful to stan-
dardize the data so that all variables have a sample mean of 0 and sample
standard deviation of 1. The scale function in R can be used to standardize
data.

To see why KNN might be reasonable, let Dε be a hypersphere of radius
ε centered at w. Since the pdf fj(x) is continuous, there exists ε > 0 small
enough such that fj(x) ≈ fj(w) for all x ∈ Dε and for each j = 1, ..., G. If z
is a random vector from a distribution with pdf fj(x), then Pj(z ∈ Dε) =

∫

Dε

fj(x)dx ≈ fj(w)
∫

Dε

1dx = fj(w)V ol(Dε) = fj(w)
2πp/2

pΓ (p/2)
εp.

Here Pj denotes the probability when the distribution has pdf fj(x).
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If for i = 1, ..., n, the zi are iid from a distribution with pdf fj(x), ε is
fixed, and if fj(w) > 0, then the number of zi in Dε is proportional to n.
Hence if the number of zi in Dε is proportional to nδ with 0 < δ < 1, then
ε → 0. So if K/n → 0 in KNN, then the hypersphere containing the K cases
has radius ε → 0 as n → ∞. Hence the above approximations will be valid
for large n. Note that if p = 1, then Dε is the line segment (w − ε, w + ε) and
V ol(Dε) = 2ε = length of the line segment. If p = 2, then Dε is the circle of
radius ε centered at w and V ol(Dε) = πε2 = the area of the circle. If p = 3,
then Dε is the sphere of radius ε centered at w and V ol(Dε) = 4πε3/3 = the
volume of the sphere.

Now suppose that the training data x1,1, ...,xnG,G is a random sample

from the G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Then

for ε small and K large, mj/K ≈

P (W ∈ Dε, Y = j) = P (W ∈ Dε|Y = j)P (Y = j) ≈ πjfj(w)V ol(Dε).

Now P (W ∈ Dε) =
∑G

j=1 P (W ∈ Dε, Y = j) =
∑G

j=1 P (W ∈ Dε|Y = j)P (Y = j) since the sets {Y = j} form a disjoint
partition. Hence

P (Y = k|W ∈ Dε) =
P (Y = k,W ∈ Dε)

P (W ∈ Dε)
=

P (W ∈ Dε)|Y = k)P (Y = k)
P (W ∈ Dε)

≈ πkfk(w)V ol(Dε)
∑G

j=1 πjfj(w)V ol(Dε)
,

which is the quantity used by the Bayes classifier since the constant V ol(Dε)
cancels. This argument can also be used to justify Equation (8.1). Since the
denominator is a constant, allocating w to group a with the largest ma/K,
or equivalently with the largest ma, approximates the Bayes classifier if n is
very large, K is large, and ε is very small.

This approximation likely needs unrealistically large n, especially if p is
large and w is in a region where there is a lot of group overlap. However,
KNN often works well in practice. Silverman (1986, pp. 96–100) also discusses
using KNN to find an estimator f̂(w) of f(w).

As claimed above Definition 8.10, note, for large K and small ε, that

mj/K ≈ P (W ∈ Dε, Y = j) = P (Y = j|W ∈ Dε)P (W ∈ Dε) ≈

cP (Y = j|W = w) = cpk(w)

where c = P (W ∈ Dε).
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8.5 FDA

The FDA method of discriminant analysis, a special case of the generalized
eigenvalue problem, finds eigenvalue eigenvector pairs so that the êT

1 xij have
low variability in each group, but the variability of the êT

1 xij between groups
is large. More precisely, let Ŵ be a p × p dispersion matrix used to measure
variability within groups and let B̂ be a p × p symmetric matrix used to
measure variability between classes. Let the eigenvalue eigenvector pairs of a
matrix Ŵ

−1
B̂ be (λ̂1, ê1), ..., (λ̂p, êp) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Then from

Theorem 1.1 f), max
a�=0

aT B̂a

aT Ŵa
= λ̂1, the largest eigenvalue of Ŵ

−1
B̂. The

value of a that achieves the max is the eigenvector ê1. Then ê2 will achieve
the max among all unit vectors orthogonal to ê1. Similarly, ê3 will achieve
the max among all unit vectors orthogonal to ê1 and ê2, et cetera.

Many choices of Ŵ have been suggested. Typically assume rank(Ŵ ) = p

and rank(B̂) = min(p,G − 1). Let q ≤ min(p,G − 1) be the number of
nonzero eigenvalues λ̂i of Ŵ

−1
B̂. Let (Ti,Ci) be an estimator of multivariate

location and dispersion for the ith group. Let T =
1
G

G∑

i=1

Ti. Let B̂T =

∑G
i=1(Ti−T )(Ti−T )T . Note that B̂T /(G−1) is the sample covariance matrix

of the T1, ..., TG. Let Ŵ T =
∑G

i=1 Ci. Typically (Ti,Ci) = (xi,Si) is used
where the notation T = x is used. Let B̂B =

∑G
i=1 π̂i(Ti − T )(Ti − T )T , and

Ŵ B =
∑G

i=1 π̂iCi. Let Ŵ L = GΣ̂pool. See Equation (8.3). Let A = (aij) be
a p × p matrix, and let diag(A) = diag(a11, ..., app) be the diagonal matrix
with the aii along the diagonal. Let Ŵ D = diag(Ŵ A) for any previously
defined Ŵ A, e.g., A = T . Then Ŵ D is nonsingular if all wii > 0 even if
Ŵ A = (wij) is singular. Sometimes TB =

∑
i=1 π̂iTi is used instead of T .

The rule may also use B̂ = c1B̂A and Ŵ = c2Ŵ A for positive constants c1
and c2, e.g., c1 = 1/(G − 1) and c2 = 1/(n − G).

The FDA rule finds ê1 and summarizes the group by the linear combination
êT
1 Ti. Then FDA allocates w to the group a for which êT

1 w is closest to
êT
1 Ta. (We can view êT

1 Ti as a summary of the ni linear combinations of
the predictors êT

1 xij in the ith group where j = 1, ..., ni.) The FDA method
should work well if the within group variability is small and the between
group variability is large.

Definition 8.11. For Fisher’s discriminant analysis (FDA), the FDA dis-
criminant rule allocates w to group a that minimizes |êT

1 w − êT
1 Ti| for

i = 1, ..., G.

Remark 8.1. a) Often it is suggested to use PCA for DA: find D such that
the first D principal components explain at least 95% of the variance. Then
use the D ≤ min(n, p) principal components as the variables. The problem

http://dx.doi.org/10.1007/978-3-319-68253-2_1
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with this idea is that principal components are used to explain the structure
of the dispersion matrix of the data, not as linear combinations of the data
that are good for DA. Using the J linear combinations from FDA such that

J∑

i=1

λ̂i/

p∑

i=1

λ̂i ≥ 0.95

might be a better choice for DA, especially if the number of nonzero eigen-
values q is not too small.

b) Often DA rules from the other FDA eigenvectors simply replace ê1

with êj . It might be better to consider J rules such that (êT
1 w, ..., êT

k w)T is
closest to (êT

1 Ta, ..., êT
k Ta)T for k = 1, ..., J where a ∈ {1, ..., G} and J is as

in Remark 8.1 a). Or let V̂ = [ê1 ê2 · · · êq]. Then allocate w to group a

that minimizes D2
j (w) where D2

j (w) = (w − Tj)T V̂ V̂
T
(w − Tj)T − 2 log(π̂j)

where Ŵ B and B̂B are used. See Filzmoser et al. (2006).
c) If Ŵ is singular and B̂ is nonsingular, then the eigenvalue eigenvector

pair(s) corresponding to the smallest nonzero eigenvalue(s) of B̂
−1

Ŵ may
be of interest, as argued below Theorem 1.1.

Following Koch (2014, pp. 120–124) closely, consider the population ver-
sion of FDA where the ith group has mean and covariance matrix (μi,Σxi

)
for i = 1, ..., G where xi is a random vector from the population correspond-
ing to the ith group. Let μ = 1

G

∑G
i=1 μi, B =

∑G
i=1(μi − μ)(μi − μ)T , and

W =
∑G

i=1 Σxi
. Then the between group variability

b(a) = aT Ba =
G∑

i=1

|aT (μi − μ)|, (8.4)

and the within group variability =

w(a) = aT Wa =
G∑

i=1

aT Σxi
a =

G∑

i=1

Var(aTxi) (8.5)

since Var(aT xi) = E[(aT xi−E(aT xi))2] = E[aT (xi−E(xi))(xi−E(xi))T a]
= aT Σxi

a. Then

max
a�=0

b(a)
w(a)

= max
a �=0

aT Ba

aT Wa

is achieved by a = e1, the eigenvector corresponding to the largest eigenvalue
λ1(W −1B) of W −1B. Hence b(e1) is large while w(e1) is small in that the
ratio is a max.

http://dx.doi.org/10.1007/978-3-319-68253-2_1
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FDA approximates Equations (8.4) and (8.5) by using B̂T and Ŵ T with
(Ti,Ci) = (xi,Si). Note that W /G tends not to be a good estimator of
dispersion unless the G groups have the same covariance matrix Σxi

= Σx
for i = 1, ..., G, but w(a) is a good measure of within group variability even if
the Σxi

are not equal. Also, if Ŵ A is such that aT Ŵ Aa can be made small,
then FDA will likely work well with B̂T and Ŵ A if there are no outliers.

Remark 8.2. If G = 2, (Ti,Ci) = (xi,Si), B̂ = B̂T , and Ŵ = 2Spool,
then LDA and FDA are equivalent. See Koch (2014, p. 129). This result helps
explain why LDA works well on so many data sets.

Two special cases are illustrative. First, let Ŵ = Ip and use B̂T . Then
FDA attempts to find a vector ê1 such that the êT

1 Ti are far from êT
1 T . Then

find group a such that êT
1 w is closer to êT

1 Ta than to êT
1 Ti for i 
= a. Second,

consider G = 2. Then B̂T = (T1 − T2)(T1 − T2)T /2. Using Theorem 1.1a)

with d = (T1 − T2)/
√

2 shows that ê1 =
Ŵ

−1
(T1 − T2)

‖Ŵ
−1

(T1 − T2)‖
. If the Ŵ

−1
xij

are “standardized data,” and the Ŵ
−1

Ti are standardized centers for i =
1, 2, then FDA projects w on the line between the standardized centers and
allocates w to the group with the standardized center closest to êT

1 w.

library(MASS) ##Use ?lda
out <- lda(as.matrix(iris[, 1:4]), iris$Species)
names(out); out; plot(out) #plots LD1 versus LD2
Prior probabilities of groups:

setosa versicolor virginica
0.3333333 0.3333333 0.3333333

Group means:
Sep.Len Sep.Wid Pet.Len Pet.Wid

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
Coefficients of linear discriminants:

LD1 LD2
Sepal.Length 0.8293776 0.02410215
Sepal.Width 1.5344731 2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width -2.8104603 2.83918785
Proportion of trace:

LD1 LD2
0.9912 0.0088

gp <- as.integer(iris$Species)
x <- as.matrix(iris[,1:4]) #AER 0.02
out<- lda(x,gp); 1-mean(predict(out,x)$class==gp)

http://dx.doi.org/10.1007/978-3-319-68253-2_1
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plot(out) #Get numbers in Figure 8.4.

Example 8.2. The library MASS has a function lda that does FDA. The
famous iris data set has variables x1 = sepal length, x2 = sepal width, x3 =
petal length, and x4 = petal width. There are three groups corresponding
to types of iris: setosa, versicolor, and virginica. The above R code performs
FDA. Figure 8.4 shows the plot of LD1 = ê1 versus LD2 = ê2. Since the
proportion of trace for LD2 is small, LD2 is not needed. Note that LD1
separates setosa from the other two types of iris, and versicolor and virginica
are nearly separated.

Let β̂ = ê1 = LD1 be the first eigenvector from FDA. The func-
tion FDAboot bootstraps β̂ and gives the nominal 95% shorth CIs. Also
shown below is the sample mean vector of the bootstrapped β̂

∗
i where

i = 1, ..., B = 1000. The bootstrap is performed by taking samples of size
ni with replacement from each group for i = 1, ..., G. Perform FDA on the
combined sample to get β̂

∗
j . Since β̂ is an eigenvector, the bootstrapped eigen-

vector could estimate β̂ or −β̂. Pick a β̂j that is large in magnitude, and see
how many times the β̂∗

j have the same sign as β̂j . Multiply the bootstrap vec-
tor by −1 if it has opposite sign. In the output below, all B = 1000 bootstrap
vectors had β̂∗

4 < 0.

#Sample sizes may not be large enough for the
#shorth CI coverage to be close to the nominal 95%
out<-FDAboot(x,gp)
apply(out$betas,2,mean)
[1] 0.8468 1.5807 -2.2558 -2.9180
sum(out$betas[,4]<0) #all betahat^*
[1] 1000 #estimate betahat, not -betahat
ddplot4(out$betas) #right click Stop
#covers the identity line
out$shorci[[1]]$shorth
[1] 0.3148 1.4634
out$shorci[[2]]$shorth
[1] 0.7745 2.3096
out$shorci[[3]]$shorth
[1] -2.9276 -1.6260
out$shorci[[4]]$shorth
[1] -3.8609 -1.8875

Next, R code is given for robust FDA. The function getUbig gets the
RMVN set Ui for each group for i = 1, ..., G and combines the sets into one
large data set. Then RFDA is the classical FDA applied to this cleaned data
set. See Section 8.9 and the output below. Like the robust biplot, Figure 8.5
only uses the cleaned cases since outliers could obscure the plot, and this
technique can distort the amount of group overlap.
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tem<-getubig(x,gp) ##Robust FDA
outr<-lda(tem$Ubig,tem$grp)
1-mean(predict(outr,x)$class==gp) #AER 0.03
plot(outr)
outr
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Fig. 8.4 Plot of LD1 versus LD2 for the iris data

−5 0 5 10

−5
0

5

LD1

LD
2 1

1
1

1

1

1

1
1

1 1

1
1

1

1

1

1

1 11

1

1

1
1

1
11

11

1

1
1

11

1
1

1

11

1

1

1
12

2
22
2

2

2
2

2

2

2

2

2

222

22

2

2

2

2
2

2

2

2
2 2

2

2

2

2 2

2
2

2

2
2

2 2222

3

33

3

3

3 3

33

3

3

3

3

3

3 3

3

3

3

3

3

3

3
3
33

33

3

3

3

3

3

3
3

3

3 3

3

3

3

3

3

3

3

3

Fig. 8.5 RFDA Plot of LD1 versus LD2 for the iris data
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Prior probabilities of groups:
1 2 3

0.3206107 0.3282443 0.3511450
Group means:

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.026190 3.438095 1.464286 0.2309524
2 5.923256 2.813953 4.234884 1.3093023
3 6.486957 2.950000 5.454348 2.0173913
Coefficients of linear discriminants:

LD1 LD2
Sepal.Length 0.4281837 -0.06899442
Sepal.Width 2.5221645 2.01270912
Petal.Length -2.3230167 -1.11944258
Petal.Width -3.2947263 3.25076179
Proportion of trace:

LD1 LD2
0.9942 0.0058

The covmb2 subset B can be found when p < n or p ≥ n. See Section
4.7. The function getBbig gets the set Bi for each group for i = 1, ..., G and
combines the sets into one large data set. Then a robust FDA is the classical
FDA applied to this cleaned data set. For the iris data, using covmb2 did
not discard any cases, so the robust FDA and classical FDA had identical
output. See Section 8.9 and the R code below.

#Robust FDA with covmb2 set B from each group.
#This subset of cases can be found when p > n.
tem<-getBbig(x,gp)
outr<-lda(tem$Bbig,tem$grp) #AER 0.02
plot(outr); 1-mean(predict(outr,x)$class==gp)
outr #Output is same as that for classical FDA.

8.6 The Kernel Density Estimator

Definition 8.12. Let K(z) be a joint probability density function. Then
a kernel density estimator is

f̂(z) =
1
n

1
hp

n∑

i=1

K

(
1
h

(z − xi)
)

where there are n iid cases xi that come from a population with unknown
pdf f(z).

http://dx.doi.org/10.1007/978-3-319-68253-2_4
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For example, the uniform distribution on the unit hypersphere has

K(z) =
pΓ (p/2)
2πp/2

I(zT z ≤ 1)

so

f̂(z) =
pΓ (p/2)
2πp/2

1
n

1
hp

n∑

i=1

I(‖z − xi‖2 ≤ h2).

Following Silverman (1986, pp. 84–85), we want the bias and variance of
f̂ to go to 0 as n → ∞, and this will happen if h → 0 and nhp → ∞. The
asymptotically optimal value of h satisfies

hopt ∝ 1

n
1

p+4
.

Now suppose x1, ...,xn are iid from a multivariate distribution with pdf
f and consider a hypersphere of radius r centered at w where r is small
enough so that if z is in the hypersphere, then f(z) ≈ f(w). Then the
probability that an observation xi falls in the hypersphere ≈ f(w) (volume

of the hypersphere) = f(w)
2πp/2

pΓ (p/2)
rp ∝ rp. Hence the number of xi in the

hypersphere ∝ nrp. If r = hopt, then this number is ∝ n
4

4+p . If r = h ∝ n
1
2p ,

then the number of cases that fall in the hypersphere is proportional to
√

n.
Example 8.3 in Section 8.8 will consider two toy methods of DA. To define

the kernel density estimator used in Method 2, let vj = �2√
nj� and let

r2j = ‖xi,j − xj‖2(vj)
= D2

(vj)
(xj , Ip) where the nj xi,j are in group j. Hence

the hypersphere centered at xj with radius rj contains ≈ 2√
nj of the xi,j in

group j. Then the kernel density estimator used in Method 2 is

f̂j(w) =
pΓ (p/2)
2πp/2

1
nj

1
(rj)p

nj∑

i=1

I(‖w − xi,j‖2 ≤ r2j ) (8.6)

which is equal to the number of the xi,j in the hypersphere of radius rj cen-
tered at w, divided by njVrj

where Vrj
is the volume of the hypersphere. This

kernel density estimator was also used in the hdr function for the Hyndman
(1996) large sample prediction region (5.8).

The main reasons for using this kernel density estimator are that it is
simple to explain, fast to compute, and does not use too few observations
when p > 4. Since kernel density estimators do not work well for p > 2, speed
is more important than asymptotic optimality. Also, only a crude estimator
is needed since if fa(w) is the pdf that maximizes fj(w), the method only
needs f̂a(w) to maximize the f̂j(w): hence extremely accurate estimators of
the fj(w) are not needed. Using good predictors with p small is important

http://dx.doi.org/10.1007/978-3-319-68253-2_5


252 8 Discriminant Analysis

since the performance of kernel density estimators decreases very rapidly as
the number of predictors increases. See Silverman (1986, p. 94).

8.7 Estimating the Test Error

Definition 8.13. The test error rate Ln is the population proportion of
misclassification errors made by the DA method.

The Bayes classifier has the smallest expected test error, but the Bayes
classifier generally cannot be computed used since the πk and fk are unknown.
If it was known that π1 = 0.9, a simple DA rule would be to always allocate
w to group 1. Then the test error of this rule would be Ln = 0.1.

Generally the test error Ln needs to be estimated by L̂n. A simple method
for estimating the test error is to apply the DA method to the training data
and find the proportion of classification errors made. To help see why this
method is poor, consider KNN with K = 1. Then the training data is perfectly
classified with a training error rate of 0, although the test error rate may be
quite high.

Definition 8.14. The training error rate or apparent error rate (AER) is

AER = L̂n =
1
n

nj∑

i=1

G∑

j=1

I[Ŷij 
= Yij ]

where Ŷij is the DA estimate of Yij using all n training cases x1,1, ...,xG,nG
.

Note that Yij = j since xij comes from the jth group. If mj of the nj group
j cases are correctly classified, then the apparent error rate for group j is

1 − mj/nj . If mA =
G∑

j=1

mj of the n =
G∑

j=1

nj training cases are correctly

classified, then AER = 1 − mA/n.

DA methods fit the training data better than test data, so the AER tends
to underestimate the error rate for test data. We want to use a DA method
with a low test error rate. Cross validation (CV) divides the training data
into a big part and a small part, perhaps J times. For each of the J divisions,
the DA rule is computed for the big part and applied to the small part. Hence
the small part is used as a validation set. The proportion of errors made for
the small part is recorded.

For leave one out or delete one cross validation, J = n, the big part uses
n − 1 cases from the training data while the small part uses the 1 case left
out of the big part. This case will either be correctly or incorrectly classified.
The leave one out CV rule can sometimes be rapidly computed, but usually
requires the DA method to be fit n times.
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Definition 8.15. An estimator of the test error rate is the leave one out
cross validation error rate

L̂n =
1
n

nj∑

i=1

G∑

j=1

I(Ŷij 
= Yij)

where Ŷij is the estimate of Yij when xij is deleted from the n training
cases x1,1, ...,xG,nG

. Note that L̂n is the proportion of training cases that
are misclassified by the n leave one out rules. If mC is the number of cases
correctly classified by leave one out classification, then L̂n = 1 − mC/n.

For KNN , find the K cases in the training data closest to xi,j not includ-
ing xi,j . Then compute the leave one out cross validation error rate as in
Definition 8.15.

Assume that the training data x1,1, ...,xnG,G is a random sample from the

G populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Hence nj/n

is a consistent estimator of πj . Following Devroye and Wagner (1982), when
K = 1 the test error rate Ln of KNN method converges in probability to L
where LB ≤ L ≤ 2LB and LB is the test error rate of the Bayes classifier. If
Kn → ∞ and Kn/n → 0 as n → ∞, then the KNN method converges to the
Bayes classifier in that the KNN test error rate Ln

P→ LB . Then the leave one
out cross validation error rate L̂n is a good estimator of Ln in that 2e−2nε2

was usually an upper bound on P [|L̂n − Ln| ≥ ε] for small ε > 0.

For the method below, J = 1 and the validation set or hold-out set is the
small part of the data. Typically, 10% or 20% of the data is randomly selected
to be in the validation set. Note that the DA method is only computed once
to compute the error rate.

Definition 8.16. The validation set approach has J = 1. Let the valida-
tion set contain nv cases (x1, Y1), ..., (xnv

, Ynv
), say. Then the validation set

error rate is

L̂n =
1
nv

nv∑

i=1

I(Ŷi 
= Yi)

where Ŷi is the estimate of Yi computed from the DA method applied to the
n − nv cases not in the validation set. If mL is the number of the nv cases
from the validation set correctly classified, then L̂n = 1 − mL/nv.

The k-fold CV has J = k partitions of the data into big and small sets, and
the DA method is computed k times. The values k = 5 and 10 are common
because they have been shown empirically to work well.

Definition 8.17. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
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for j = 1, ..., k. Leave out the first fold, fit the DA method to the k − 1
remaining folds, and then find the proportion of errors for the first fold.
Repeat for folds 2, ..., k. The k-fold CV error rate is

L̂n =
1
n

nj∑

i=1

G∑

j=1

I(Ŷij 
= Yij)

where Ŷij is the estimate of Yij when xij is in the deleted fold. If mk is the
number of the n training cases correctly classified, then L̂n = 1 − mk/n.

8.8 Some Examples

Example 8.3. This example derives two toy DA methods.
Assume the G groups come from G distributions where the prediction

regions from Section 5.2 are reasonable. For example, the jth group may
have nj cases that are iid ECp(μj ,Σj , gj) for j = 1, ..., G. That is, there
may be G different elliptically contoured distributions with different location
vectors and dispersion matrices.

Two toy methods of discriminant analysis will be considered. For each
group, compute Di(j) ≡ Di(xj ,Sj) and the maximum distance D(nj)(j)
where i = 1, ..., nj and j = 1, ..., G. Then {z : Dz(j) ≤ D(nj)(j)} is a covering
region for the jth group since the hyperellipsoid contains all nj cases xi,j from
the jth group.

Let w be a new case to be classified. If Dw(j) > D(nj)(j) for all j = 1, ..., G,
then both Methods 1 and 2 allocate w to the group a with the smallest
value of

Dw(j)
D(nj)(j)

. (8.7)

Now consider the groups where Dw(j) ≤ D(nj)(j) for at least one j. Hence
w is in at least one of the k covering regions.

For Method 1, allocate w to group a with the smallest Dw(a) for the
groups with Dw(j) ≤ D(nj)(j). Method 1 is very similar to the distance rule,
but when w is in at least one of the G covering regions, distances are only
computed for the groups that have covering regions that contain w. Also,
Equation (8.7) is used instead of the smallest distance if w is not in any of
the k covering regions.

Method 2 combines Method 1 with a maximum likelihood rule based on
a kernel density estimator of f̂j . For Method 2, if there is only one group a

where Dw(a) ≤ D(na)(a), allocate w to group a. Otherwise, compute f̂j(w)
using Equation (8.6) for the groups where Dw(j) ≤ D(nj)(j) and allocate w

to the group a with the largest f̂a(w).

http://dx.doi.org/10.1007/978-3-319-68253-2_5
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The mpack functions ddiscr and ddiscr2 do discriminant analysis using
Methods 1 and 2. The functions need x: the training data that has been
classified into k groups, w: the data to be classified, group: a vector of integers
where the ith element is j if the ith row of x is from group j, and xwflag
which is set equal to T if w = x and to F if w 
= x. Each row of w and x
corresponds to a case. The functions return the distances of the x and w
computed for the G groups, the classifications for the x and w, the error
rates for the x classifications for each group, and the total error rate.

Example 8.4. We generated n random Np(0, Ip) random variables xi.
Then x was put in group 1 if D2

xi
≤ χ2

p,0.5 and in group 2, otherwise. Expect
group 2 to have smaller distances than group 1 (Dw(2) < Dw(1)) so the
error rate will be near 1 for group 1 and near 0 for group 2. The out1 output
below with p = 2 shows that this was the case. Then the predictor Di(1)
was used in out2, reducing the dimension from p = 2 to 1. The error rates
were low since group 1 falls in an ellipsoidal region, so the distances are a
good predictor. Method 2 worked much better on the raw data and about
the same as Method 1 when the predictor Di(1) was used.

n <- 100
p <- 2
x <- matrix(rnorm(n*p),nrow=n,ncol=p)
group <- 1 + 0*1:n
covv <- diag(p)
mns<- apply(x, 2, mean)
md2 <- mahalanobis(x, center = mns, covv)
group[md2>qchisq(0.5,p)] <- 2

out1 <- ddiscr(x,w=x,group,xwflag=T)
out2<-ddiscr(x=out1$mdx[,1],w=out1$mdw[,1],group,
xwflag=T)
out3 <- ddiscr2(x,w=x,group,xwflag=T)
out4<-ddiscr2(x=out1$mdx[,1],w=out1$mdw[,1],group,
xwflag=T)

out1$err
[1] 0.9787234 0.0000000
out2$err
[1] 0.08510638 0.01886792
out3$err
[1] 0.0000000 0.1320755
out4$err
[1] 0.04255319 0.05660377
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out1$toterr
[1] 0.46
out2$toterr
[1] 0.05
out3$toterr
[1] 0.07
out4$toterr
[1] 0.05

Example 8.5. Now groups 1 and 2 had ni = 50, and group 1 used x ∼
Np(0, Ip) while group 2 used x ∼ Np(2 1, Ip). Output is shown below for
p = 2. Now the single predictor D2

i (1) was slightly worse than using the raw
data, and Method 1 was about as good as Method 2, which is not surprising
since both methods approximate the maximum likelihood discriminant rule
when the groups are multivariate normal with the same covariance matrix.

n <- 100
p <- 2
x <- matrix(rnorm(n*p),nrow=n,ncol=p)
group <- 1 + 0*1:n
group[1:50] <- 1
group[51:100] <- 2
x[51:100,] <- x[51:100,] + c(2,2)
out1 <- ddiscr(x,w=x,group,xwflag=T)
out2<-ddiscr(x=out1$mdx[,1],w=out1$mdw[,1],group,
xwflag=T)
out3 <- ddiscr2(x,w=x,group,xwflag=T)
out4<-ddiscr2(x=out1$mdx[,1],w=out1$mdw[,1],group,
xwflag=T)

out1$err
[1] 0.12 0.08
out2$err
[1] 0.14 0.10
out3$err
[1] 0.08 0.12
out4$err
[1] 0.14 0.10

Example 8.6. The following output illustrates crude variable selection
using the LDA function. See Problems 8.5 and 8.6. The code deletes predictors
as long as the AER does not increase if the predictor is deleted. Using all of
the data, the AER = 0.0357. Eventually the AER = 0.
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library(MASS) #Output for Example 8.6.
group <- pottery[pottery[,1]!=5,1]
group <- (as.integer(group!=1)) + 1
x <- pottery[pottery[,1]!=5,-1]

out<-lda(x,group)
1-mean(predict(out,x)$class==group)
[1] 0.03571429 #AER using all of the predictors.
out<-lda(x[,-c(1)],group)
1-mean(predict(out,x[,-c(1)])$class==group)
out<-lda(x[,-c(1,2)],group)
1-mean(predict(out,x[,-c(1,2)])$class==group)
out<-lda(x[,-c(1,2,3)],group)
1-mean(predict(out,x[,-c(1,2,3)])$class==group)
out<-lda(x[,-c(1,2,3,4)],group)
1-mean(predict(out,x[,-c(1,2,3,4)])$class==group)
out<-lda(x[,-c(1,2,3,4,5)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5)])$class==group)
[1] 0.03571429 #Can delete predictors 1-5.
out<-lda(x[,-c(1,2,3,4,5,6)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,6)])$class==group)
[1] 0.07142857 #Predictor x6 is important.
out<-lda(x[,-c(1,2,3,4,5,7)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7)])$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8)])
$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8,9)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9)])
$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10)])
$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,11)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,11)])
$class==group)
[1] 0.07142857 #Predictor x11 is important.
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12)])
$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13)])
$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,14)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,
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14)])$class==group)
[1] 0.07142857 #Predictor x14 is important.
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,
15)])$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,
15,16)])$class==group)
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17)],
group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,
15,16,17)])$class==group)
[1] 0.03571429
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,
18)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,
15,16,17,18)])$class==group)
[1] 0.07142857 #Predictor x18 is important.
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,
19)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,
15,16,17,19)])$class==group)
[1] 0.03571429
out<-lda(x[,-c(1,2,3,4,5,7,8,9,10,12,13,15,16,17,
19,20)],group)
1-mean(predict(out,x[,-c(1,2,3,4,5,7,8,9,10,12,13,
15,16,17,19,20)])$class==group)
[1] 0
#Predictors x6, x11, x14, x18 seem good for LDA.

Example 8.7. This example illustrates that the AER tends to under-
estimate the test error rate compared to the validation set approach. The
validation test error estimates can change greatly when the random number
generator seed is changed. See Definitions 8.14 and 8.16. The men’s basketball
data set mbb1415 is described in Problem 13.4, which tells how to get the
data set into R. The KNN method AER is especially poor when K is small
(K < 10, say). The KNN method also depends on a random number seed,
perhaps to handle ties. (If there are three groups and K = 3, it is possible
that the three nearest neighbors to w come from groups 1, 2, and 3. How
does KNN decide which group to allocate w?) The R commands below stan-
dardize the variables to have mean 0 and variance 1, puts guards into group
1, small forwards into group 2, centers and power forwards into group 3, and
individuals with unknown position into group 0. Then individuals who do
not play much (are in the bottom quartile in playing time) are deleted. Next,
players in group 0 are deleted, leaving a data set z with 86 cases, 3 groups,
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and 35 predictor variables. The data set z is also divided into a validation
test set ztest of 20 cases and a training set ztrain of 66 cases.

set.seed(1)
z <- mbb1415[,-1]
z <- scale(z) #standardize the variables
grp <- mbb1415[,1]
grp[grp==2]<-1
grp[grp==3]<-2
grp[grp==4]<-3
grp[grp==5]<-3
#Put guards in group 1, small forwards in group 2,
#centers and power forwards in group 3,
#unknowns in group 0.
#Get rid of players who did not play much.
z <- z[mbb1415[,3]>182,]
grp <- grp[mbb1415[,3]>182]
#Get rid of group 0, 86 cases left.
z <- z[grp>0,]
grp<-grp[grp>0]
indx<-sample(1:86,replace=F)
train <- indx[21:86]
test <- indx[1:20]
ztest <- z[test,] #20 test cases
grptest <- grp[test]
ztrain <- z[train,]
grptrain <- grp[train]

Since x1 is used as group, zi = xi+1. Below we use z7 = turnovers, z10 =
stl.pos (stolen possessions, a ball handling rating), z12 = rebounds, z13 =
offensive rebounds, z28 = three point field goal percentage, and z32 = free
throw percentage. With 2 nearest neighbors, the AER is 0.151, but (the
validation error rate) VER = 0.45. With 1 nearest neighbor, the AER = 0
since each training case is its own nearest neighbor. Hence the training cases
are perfectly classified.

#see what the variables are
z[1,c(7,10,12,13,28,32)]

library(class)
out <- knn(z[,c(7,10,12,13,28,32)],
z[,c(7,10,12,13,28,32)],grp,k=2)
mean(grp!=out) #0.151 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],
ztest[,c(7,10,12,13,28,32)],grptrain,k=2)
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mean(grptest!=out) #0.45 validation ER

out <- knn(z[,c(7,10,12,13,28,32)],
z[,c(7,10,12,13,28,32)],grp,k=1)
mean(grp!=out) #0.0 AER

out<-knn(ztrain[,c(7,10,12,13,28,32)],
ztest[,c(7,10,12,13,28,32)],grptrain,k=1)
mean(grptest!=out) #0.45 validation ER

The output below shows that VER = 0.5 and AER = 0.22 with FDA
(LDA), and VER = 0.45 and AER = 0.13 with QDA.

library(MASS) #three ways to get VER = 0.5
out <- lda(z[,c(7,10,12,13,28,32)],grp, subset=train)
1-mean(predict(out,z[-train,c(7,10,12,13,28,32)])
$class==grp[-train])
1-mean(predict(out,z[test,c(7,10,12,13,28,32)])
$class==grptest)
1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])
$class==grptest)
out<-lda(z[,c(7,10,12,13,28,32)],grp)
1-mean(predict(out,z[,c(7,10,12,13,28,32)])
$class==grp) #AER =0.22

out <- qda(z[,c(7,10,12,13,28,32)],grp, subset=train)
#VER = 0.45
1-mean(predict(out,ztest[,c(7,10,12,13,28,32)])
$class==grptest)
out<-qda(z[,c(7,10,12,13,28,32)],grp)
1-mean(predict(out,z[,c(7,10,12,13,28,32)])
$class==grp) #AER =0.13

8.9 Robust Estimators

The literature on robust DA is fairly large. See Alrawashdeh et al. (2012),
Hawkins and McLachlan (1997), Todorov and Pires (2007), and Pires and
Branco (2010) for references. Several of the discussed methods could be robus-
tified by using RMVN as the plug in estimator.

The RMVN set gives a method to objectively clean data such that the
classical method applied to the cleaned data corresponds to using robust
plug in estimators. Assume that there are tentative predictors Z1, ..., ZJ .
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After transformations assume that predictors X1, ...,Xk are linearly related.
First, consider k = p. Let Ui be the RMVN subset applied to the ni cases from
group i for i = 1, ..., G. Let (xUi

,SUi
) be the sample mean and covariance

applied to the cases in Ui. Note that Y = i for cases in Ui which are from
group i. Let Ubig = U1 ∪ U2 ∪ · · · ∪ UG be the combined sample. Then apply
the DA method to Ubig with the corresponding labels Ybig.

For example, RFDA consists of applying classical FDA on Ubig resulting in

finding ê1 that maximizes max
a�=0

aT B̂a

aT Ŵa
= λ̂1 using Ŵ = Ŵ T =

∑G
i=1 SUi

,

and B̂ = B̂T =
∑G

i=1(xUi
− xbig)(xUi

− xbig)T where xbig =
1
G

G∑

i=1

xUi
.

Remark 8.3. Modifications are simple if k < p. We can add variables like
Xk+1 = X2

1 , Xk+2 = X3X4, and Xk+3 = gender. Assume the RMVN set Ui

used cases j1,i, ..., jdi,i for i = 1, ..., G. Then augment Ui with the variables
Xk+1, ...,Xp corresponding to these cases. Adding variables results in cleaned
data that is more likely to contain outliers.

The mpack function getubig gets Ubig. If it can be assumed that the G
groups only differ by G location vectors, then getuc subtracts the group
coordinatewise median from each group, combines the centered data into one
data set z1, ...,zn, gets the case indices corresponding the centered data set,
then returns the xi corresponding to these case indices, resulting in a set Uc.
Both functions return indx, the indices of the cases in the cleaned data set
(Ubig or Uc), and also return Ybig = grp which has the group labels for each
case in the cleaned data set.

Similarly, let Bi be the covmb2 subset (see Section 4.7) applied to the ni

cases from group i for i = 1, ..., G. Let (xBi
,SBi

) be the sample mean and
covariance applied to the cases in Bi. Let Bbig = B1 ∪ B2 ∪ · · · ∪ BG be the
combined sample. Then apply the DA method to Bbig with the corresponding
labels Ybig. The function getBbig gets Bbig, the group labels, and indx.

library(MASS) #need mrobdata
x<-turtle[,1:3]
group<-turtle[,4]+1
cleanb <- getubig(x,group)
cleanc <- getuc(x,group)
cleanB <- getBbig(x,group)
outb <- lda(cleanb$Ubig,cleanb$grp)
outc <- lda(cleanc$Uc,cleanc$grp)
outB <- lda(cleanB$Bbig,cleanB$grp)
#same as lda(x,group)
1-mean(predict(outb,x)$class==group) #AER 0.083
1-mean(predict(outc,x)$class==group) #0.063
1-mean(predict(outB,x)$class==group) #0.083

http://dx.doi.org/10.1007/978-3-319-68253-2_4
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x[1:3,] <- x[1:3,] + 100 #Make 3 outliers.
cbo <- getubig(x,group)
cco <- getuc(x,group)
cBo <- getBbig(x,group)
outbo <- lda(cbo$Ubig,cbo$grp)
outco <- lda(cco$Uc,cco$grp)
outBo <- lda(cBo$Bbig,cBo$grp)
1-mean(predict(outbo,x)$class==group) #AER 0.083
1-mean(predict(outco,x)$class==group) #0.083
1-mean(predict(outBo,x)$class==group) #0.083
out<-lda(x,group)
1-mean(predict(out,x)$class==group)# 0.125
#classical LDA AER increases from 0.083 to 0.125
dim(x); dim(cco$Uc); dim(cbo$Ubig); dim(cBo$Bbig)

See Example 8.2 for how to do robust FDA using Ubig or Bbig. The Bbig

set can be used to make outlier resistant DA methods that work when p > n.
The above output gives another example where Bbig used all of the data
when there were no outliers. When three outliers were added, Bbig deleted
the three outliers but used all 45 clean cases. Care needs to be taken since we
want to know how well the resistant method works on the entire data set, not
just on the cleaned data set. More importantly, we want to know how well
the resistant method works on test data. Also theory needs to be developed
for the resistant methods.

Choosing the outliers to demonstrate that the robust method is useful
can be challenging. Consider G = 2 groups. If outliers are added to both
groups in a similar manner so that both groups are fairly well separated,
both classical and robust methods will likely do well. For example suppose
that both groups come from an elliptically contoured distribution with the
same Σ but different means μ1 
= μ2. If 20% near point mass outliers are
put on the major axis of each hyperellipsoidal highest density region of the
clean data, LDA and QDA will likely work well. Consider contamination as in
Problem 3.4: xi ∼ (1 − γ)ECp(μi,Σ, g1) + γECp(μi, cΣ, g2) where i = 1, 2,
c > 0, and 0 < γ < 1. After contamination, both groups are still elliptically
contoured with means μi, so again LDA and QDA likely work well.

Outliers can be chosen so that the robust methods are much better than
the classical methods. Let μ1 = 0 and suppose no outliers are used for group
1. For group two, a) choose the outliers so that the sample mean x2 = 0, or
b) make the outliers a near point mass at 0.

Similar problems occur for one way MANOVA models and the Hotelling’s
T 2 test, so the outlier configurations used by Rupasinghe Arachchige Don and
Olive (2017) and Rupasinghe Arachchige Don and Pelawa Watagoda (2017)
may be interesting.
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8.10 Summary

1) In supervised classification, there are G known groups or populations and
m test cases. Each case is assigned to exactly one group based on its mea-
surements wi. Assume that for each population, there is a probability density
function (pdf) fj(z) where z is a p × 1 vector and j = 1, ..., G. Hence if the
random vector x comes from population j, then x has pdf fj(z). Assume
that there is a random sample of nj cases x1,j , ...,xnj ,j for each group. The
n =

∑G
j=1 nj cases make up the training data. Let (xj ,Sj) denote the sample

mean and covariance matrix for each group. Let the ith test case wi be a new
p × 1 random vector from one of the G groups, but the group is unknown.
Discriminant analysis attempts to allocate the wi to the correct groups for
i = 1, ...,m.

2) The maximum likelihood discriminant rule allocates case w to group a

if f̂a(w) maximizes f̂j(w) for j = 1, ..., G. This rule is robust to nonnormality
and the assumption of equal population dispersion matrices, but fj is hard
to estimate for p > 2.

3) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum likeli-
hood discriminant rule.

For the following rules, assume that costs of correct and incorrect alloca-
tion are unknown or equal, and assume that the probabilities ρj(wi) that wi

is in group j are unknown or equal: ρj(wi) = 1/G for j = 1, ..., G. Often it is
assumed that the G groups have the same covariance matrix Σx. Then the
pooled covariance matrix estimator is

Spool =
1

n − G

G∑

j=1

(nj − 1)Sj

where n =
∑G

j=1 nj . Let (μ̂j , Σ̂j) be the estimator of multivariate location
and dispersion for the jth group, e.g., the sample mean and sample covariance
matrix (μ̂j , Σ̂j) = (xj ,Sj).

4) Assume the population dispersion matrices are equal: Σj ≡ Σ for
j = 1, ..., G. Let Σ̂pool be an estimator of Σ. Then the linear discriminant
rule is allocate w to the group with the largest value of

dj(w) = μ̂T
j Σ̂

−1

poolw − 1
2
μ̂T

j Σ̂
−1

poolμ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (μ̂j , Σ̂pool) =
(xj ,Spool). LDA is robust to nonnormality and somewhat robust to the
assumption of equal population covariance matrices.

5) The quadratic discriminant rule is allocate w to the group with the
largest value of
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Qj(w) =
−1
2

log(|Σ̂j |) − 1
2
(w − μ̂j)

T Σ̂
−1

j (w − μ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (μ̂j , Σ̂j) =
(xj ,Sj). QDA has some robustness to nonnormality.

6) The distance discriminant rule allocates w to the group with the small-
est squared distance D2

w(μ̂j , Σ̂j) = (w−μ̂j)T Σ̂
−1

j (w−μ̂j) where j = 1, ..., k.
This rule is robust to nonnormality and the assumption of equal Σj but needs
nj ≥ 10p for j = 1, ..., G.

7) Assume that G = 2 and that there is a group 0 and a group 1. Let
ρ(w) = P (w ∈ group 1). Let ρ̂(w) be the logistic regression (LR) estimate of
ρ(w). Logistic regression produces an estimated sufficient predictor ESP =

α̂ + β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5
and allocates w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates
w to group 1 if ESP ≥ 0 and allocates w to group 0 if ESP < 0.

8) Let Yi = j if case i is in group j for j = 0, 1. Then a response plot is a
plot of ESP versus Yi (on the vertical axis) with ρ̂(x) ≡ ρ̂(ESP ) added as
a visual aid where xi is the vector of predictors for case i. Also, divide the
ESP into J slices with approximately the same number of cases in each slice.
Then compute the sample mean = sample proportion in slice s: ρ̂s = Y s =∑

s Yi/ms where ms is the number of cases in slice s. Then plot the resulting
step function as a visual aid. If n0 and n1 are the sample sizes of both groups
and ni ≥ 5p, then the logistic regression model was useful if the step function
of observed slice proportions scatter fairly closely about the logistic curve
ρ̂(ESP ). If the LR response plot is good, n0 ≥ 5p and n1 ≥ 5p, then the
LR rule is robust to nonnormality and the assumption of equal population
dispersion matrices. Know how to tell a good LR response plot from a bad
one.

9) Given LR output, as shown below in symbols and for a real data set,
and given x to classify, be able to a) compute ESP, b) classify x in group 0
or group 1, c) compute ρ̂(x).

Label Estimate Std. Error Est/SE p value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0
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Binomial Regression Kernel mean function = Logistic
Response = Status,Terms = (Bottom Left),Trials = Ones
Coefficient Estimates
Label Estimate Std. Error Est/SE p value
Constant -389.806 104.224 -3.740 0.0002
Bottom 2.26423 0.333233 6.795 0.0000
Left 2.83356 0.795601 3.562 0.0004

10) Suppose there is training data xij for i = 1, ..., nj for group j. Hence it
is known that xij came from group j where there are G ≥ 2 groups. Use the
discriminant analysis method to classify the training data. If mj of the nj

group j cases are correctly classified, then the apparent error rate for group
j is 1 − mj/nj . If mA =

∑G
j=1 mj of the n =

∑G
j=1 nj cases were correctly

classified, then the apparent error rate AER = 1 − mA/n.
11) For the ddiscr method, get the apparent error rate for each of the G

groups with the following commands. Replace ddiscr by ddiscr2 for the
ddiscr2 method.

out1 <- ddiscr(x,w=x,group,xwflag=T)
out1$err

Get apparent error rates for ddiscr, LDA, and QDA with the following
commands.

out1 <- ddiscr(x,w=x,group,xwflag=T)
out1$toterr

out2 <- lda(x,group)
1-mean(predict(out2,x)$class==group)

out3 <- qda(x,group)
1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3, and x7 with the
following commands.

out <- ddiscr(x[,c(1,3,7)],w=x[,c(1,3,7)],group,
xwflag=T)
out$toterr

out <- lda(x[,c(1,3,7)],group)
1-mean(predict(out,x[,c(1,3,7)])$class==group)

out <- qda(x[,c(1,3,7)],group)
1-mean(predict(out,x[,c(1,3,7)])$class==group)
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Get the AERs for the methods that leave out variables x1, x4, and x5 with
the following commands.

out <- ddiscr(x[,-c(1,4,5)],w=x[,-c(1,4,5)],group,
xwflag=T)
out$toterr

out <- lda(x[,-c(1,4,5)],group)
1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)
1-mean(predict(out,x[,-c(1,4,5)])$class==group)

12) Expect the apparent error rate to be too low: the method works better
on the training data than on the new test data to be classified.

13) Cross validation (CV): for i = 1, ..., n where the training data has n
cases, compute the discriminant rule with case i left out and see if the rule
correctly classifies case i. Let mC be the number of cases correctly classified.
Then the CV error rate is 1 − mC/n.

14) Suppose the training data has n cases. Randomly select a subset L of
m cases to be left out when computing the discriminant rule. Hence n − m
cases are used to compute the discriminant rule. Let mL be the number of
cases from subset L that are correctly classified. Then the “leave a subset
out” error rate is 1 − mL/m. Here m should be large enough to get a good
rate. Often use m between 0.1n and 0.5n.

15) Variable selection is the search for a subset of variables that do a good
job of classification.

16) Forward selection: suppose X1, ...,Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model and add variable W2 that minimizes the

AER. So W1 and W2 are in the model at the end of Step 2).
Step k) Have W1, ...,Wk−1 in the model. Add variable Wk that minimizes

the AER. So W1, ...,Wk are in the model at the end of Step k).
Step p) W1, ...,Wp = X1, ...,Xp, so all p variables are in the model.
17) Backward elimination: suppose X1, ...,Xp are variables.
Step 1) W1, ...,Wp = X1, ...,Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p − 1 variables

W1, ...,Wp−1 minimizes the AER.
Step 3) Delete variable Wp−1 = Xj such that the model with p−2 variables

W1, ...,Wp−2 minimizes the AER.
Step k) W1, ...,Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj

such that the model with p − k + 1 variables W1, ...,Wp−k+1 minimizes the
AER.

Step p) Have W1 and W2 in the model. Delete variable W2 such that the
model with 1 variable W1 minimizes the AER.
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18) Other criterion can be used and proc stepdisc in SAS does variable
selection.

19) In R, using LDA, leave one variable out at a time as long as the AER
does not increase much, to find a good subset quickly.

8.11 Complements

Discriminant analysis has a massive literature. James et al. (2013) and Hastie
et al. (2009) discussed many other important methods such as trees, ran-
dom forests, boosting, and support vector machines. Koch (2014, pp. 120–
124) showed that Fisher’s discriminant analysis is a generalized eigenvalue
problem. James et al. (2013) gave useful R code for fitting KNN. Cook and
Zhang (2015) showed that envelope methods have the potential to signifi-
cantly improve standard methods of linear discriminant analysis.

For G = 2, an alternative to the logistic regression model is the discrimi-
nant function model. See Hosmer and Lemeshow (2000, pp. 43–44). Assume
that ρj = P (Y = j) and that x|Y = j ∼ Nk(μj ,Σ) for j = 0, 1. That is,
the conditional distribution of x given Y = j follows a multivariate normal
distribution with mean vector μj and covariance matrix Σ which does not
depend on j. Notice that Σ = Cov(x|Y ) 
= Cov(x). Then as for the logistic
regression model,

P (Y = 1|x) = ρ(x) =
exp(α + βT x)

1 + exp(α + βT x)
.

Definition 8.18. Under the conditions above, the discriminant func-
tion parameters are given by

β = Σ−1(μ1 − μ0) (8.8)

and

α = log
(

ρ1
ρ0

)

− 0.5(μ1 − μ0)
T Σ−1(μ1 + μ0).

To use Definition 8.18 to simulate logistic regression data, set ρ0 = ρ1 =
0.5, Σ = I, and μ0 = 0. Then α = −0.5μT

1 μ1 and β = μ1. The discriminant
function estimators α̂D and β̂D are found by replacing the population quan-
tities ρ1, ρ0, μ1, μ0, and Σ by sample quantities. Alternatively, generate n
values of the SPi = α + βT xi, then generate a binomial(1, ρ(SPi)) case for
i = 1, ..., n. This alternative method is useful since the xi need not be from
a multivariate normal distribution.



268 8 Discriminant Analysis

Huberty and Olejnik (2006) and McLachlan (2004) are useful references
for discriminant analysis. Silverman (1986,

∮
6.1) and Raveh (1989) are good

references for nonparametric discriminant analysis. Discrimination when p >
n is interesting. See Cai and Liu (2011) and Mai et al. (2012). See Friedman
(1989) for regularized discriminant analysis.

A DA method for two groups can be extended to G groups by performing
the DA method G times where Yij = 1 if xij is in the jth group and Yij = 0
if xij is not in the jth group for j = 1, ..., G. Then compute ρ̂j = P̂ (w is in
the jth) group and assign w to group a where ρ̂a is a max.

There are variable selection methods for DA, and some implementations
are needed in R, especially forward selection for when p > n. Witten and
Tibshirani (2011) gave a LASSO type FDA method useful for p > n. See
the R package penalizedLDA. An outlier resistant version can be made using
getBbig to find Bbig. See Sections 4.7 and 8.9.

Olive and Hawkins (2005) suggested that fast variable selection meth-
ods originally meant for multiple linear regression are also often effective for
logistic regression when the Cp criterion is used. Also see Todorov (2007).
See Olive (2010: ch. 10, 2013b, 2017a: ch. 13) for more information about
variable selection and response plots for logistic regression.

Hand (2006) noted that supervised classification is a research area in sta-
tistics, machine learning, pattern recognition, computational learning theory,
and data mining. Hand (2006) argued that simple classification methods,
such as linear discriminant analysis, are almost as good as more sophisti-
cated methods such as neural networks and support vector machines.

8.12 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

8.1∗. Assume the cases in each of the G groups are iid from a population
with covariance matrix Σx(j) Find E(Spool) assuming that the k groups
have the same covariance matrix Σx(j) ≡ Σx for j = 1, ..., G.

Logistic Regression Output for Problem 8.2
Response = nodal involvement, Terms = (acid size xray)
Label Estimate Std. Error Est/SE p value
Constant -3.57564 1.18002 -3.030 0.0024
acid 2.06294 1.26441 1.632 0.1028
size 1.75556 0.738348 2.378 0.0174
xray 2.06178 0.777103 2.653 0.0080

Number of cases: 53, Degrees of freedom: 49,
Deviance: 50.660

http://dx.doi.org/10.1007/978-3-319-68253-2_4
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8.2. Following Collett (1999, p. 11), treatment for prostate cancer depends
on whether the cancer has spread to the surrounding lymph nodes. Let the
response variable = group y = nodal involvement (0 for absence, 1 for pres-
ence). Let x1 = acid (serum acid phosphatase level), x2 = size (= tumor
size: 0 for small, 1 for large), and x3 = xray (xray result: 0 for negative, 1
for positive). Assume the case to be classified has x with x1 = acid = 0.65,
x2 = 0, and x3 = 0. Refer to the above output.

a) Find ESP for x.
b) Is x classified in group 0 or group 1?
c) Find ρ̂(x).

8.3. Recall that X comes from a uniform(a,b) distribution, written x ∼
U(a, b), if the pdf of x is f(x) =

1
b − a

for a < x < b and f(x) = 0, otherwise.

Suppose group 1 has X ∼ U(−3, 3), group 2 has X ∼ U(−5, 5), and group
3 has X ∼ U(−1, 1). Find the maximum likelihood discriminant rule for
classifying a new observation x.

out<-prcomp(state[,1:4],scale=T) #Problem 8.4
summary(out)
Importance of components: PC1 PC2 PC3 PC4
Standard deviation 1.6040 0.8803 0.6879 0.42318
Proportion of Variance 0.6432 0.1937 0.1183 0.04477
Cumulative Proportion 0.6432 0.8369 0.9552 1.00000

> out<-rprcomp(state[,1:4])
summary(out$out)
Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 1.6705 0.8216 0.59362 0.42645
Proportion of Variance 0.6977 0.1688 0.08809 0.04546
Cumulative Proportion 0.6977 0.8664 0.95454 1.00000

Rotation:PC1 PC2 PC3 PC4
gdp 0.4525021 0.688328888 -0.5429877 -0.1631243
povrt -0.5563898 -0.016929402 -0.2468286 -0.7932335
unins -0.4442238 0.725197372 0.5076082 0.1381588
lifexp 0.5369706 0.002347129 0.6217506 -0.5701607

out <- lda(state[,1:4],state[,5])
1-mean(predict(out,state[,1:4])$class==state[,5])
[1] 0.3
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8.4. The above PCA and LDA output is for the Minor (2012) state data
where gdp = GDP per capita, povrt = poverty rate, unins = 3 year average
uninsured rate 2007-9, and lifexp = life expectancy for the 50 states.

a) How many principal components are needed? Use a 0.9 threshold.

b) Which principal component corresponds to 9 gdp −9 unins −11 povrt
+11 lifeexp?

c) The fifth variable was a 1 if the state was not worker friendly and a 2 if
the state was worker friendly. With these two groups, what was the apparent
error rate (AER) for LDA?

> out <- lda(x,group) #Problem 8.5
> 1-mean(predict(out,x)$class==group)
[1] 0.02
>
> out<-lda(x[,-c(1)],group)
> 1-mean(predict(out,x[,-c(1)])$class==group)
[1] 0.02
> out<-lda(x[,-c(1,2)],group)
> 1-mean(predict(out,x[,-c(1,2)])$class==group)
[1] 0.04
> out<-lda(x[,-c(1,3)],group)
> 1-mean(predict(out,x[,-c(1,3)])$class==group)
[1] 0.03333333
> out<-lda(x[,-c(1,4)],group)
> 1-mean(predict(out,x[,-c(1,4)])$class==group)
[1] 0.04666667
>
> out<-lda(x[,c(2,3,4)],group)
> 1-mean(predict(out,x[,c(2,3,4)])$class==group)
[1] 0.02

8.5. The above output is for LDA on the famous iris data set. The variables
are x1 = sepal length, x2 = sepal width, x3 = petal length, and x4 = petal
width. These four predictors are in the x data matrix. There are three groups
corresponding to types of iris: setosa, versicolor, and virginica.

a) What is the AER using all 4 predictors?
b) Which variables, if any, can be deleted without increasing the AER in

a)?

R Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, e.g., ddplot, will display the code for the function. Use the
args command, e.g., args(ddplot), to display the needed arguments for the

http://dx.doi.org/10.1007/978-3-319-68253-2_15
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function. For some of the following problems, the R commands can be copied
and pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

8.6. The Wisseman et al. (1987) pottery data has 36 pottery shards of
Roman earthware produced between second century B.C. and fourth cen-
tury A.D. Often the pottery was stamped by the manufacturer. A chemical
analysis was done for 20 chemicals (variables), and 28 cases were classified as
Arrentine (group 1) or nonArrentine (group 2), while 8 cases were of ques-
tionable origin. So the training data has n = 28 and p = 20.

a) Copy and paste the R commands for this part into R to make the data
set.

b) Because of the small sample size, LDA should be used instead of QDA.
Nonetheless, variable selection using QDA will be done. Copy and paste the
R commands for this part into R. The first nine variables result in no mis-
classification errors.

c) Now use commands like those shown in Example 8.6 to delete variables
whose deletion does not result in a classification error. You should get four
variables are needed for perfect classification. What are they (e.g., X1, X2,
X3, and X4)?

8.7. Variable selection for LDA used the pottery data described in Problem
8.6, and suggested that variables X6, X11, X14, and X18 are good. Use the
R commands for this problem to get the apparent error rate AER.

8.8. The distance discriminant rule is attractive theoretically as a maxi-
mum likelihood discriminant rule, but the distance rule does not work well
for groups that have similar means. The ddiscr rule is a modification of
the distance rule, and the ddiscr2 rule tries to use the maximum likelihood
rule where the f̂j are estimated with a kernel density estimator. See Example
8.3.

The R code for this problem generates N2(0, I) data where group 1 consists
of the half set of cases closes to 0 in Mahalanobis distance (an ellipse about
the origin), and group 2 consists of the remaining cases (the covering ellipse
with inner ellipse removed).

a) Copy and paste the commands to make the data.
b) The commands for this part give the error rate for the ddiscr method

that uses x as the two predictors. Put this output in Word.
c) The commands for this part give the error rate for the ddiscr method

that uses the distances based on group 1 applied to all of the cases as the
predictor. Put this output in Word.

d) The commands for this part give the error rate for the ddiscr2 method
that uses x as the two predictors. Put this output in Word.

e) The commands for this part give the error rate for the ddiscr2 method
that uses the distances based on group 1 applied to all of the cases as the
predictor. Put this output in Word.

http://lagrange.math.siu.edu/Olive/mrsashw.txt
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f) The commands for this part get the error rate for LDA using x as the
two predictors.

g) The commands for this part get the error rate for QDA using x as the
two predictors.

h) Which method worked the best?



Chapter 9
Hotelling’s T 2 Test

The Hotelling’s T 2 test is used to test H0 : μ = μ0 when there is one sample,
and H0 : μ1 = μ2 when there are two samples. Other applications include
the multivariate matched pairs test and a test in the repeated measurements
setting. These tests are robust to nonnormality.

The one-sample Hotelling’s T 2 test, multivariate matched pairs test, and
two-sample Hotelling’s T 2 test are analogs of the univariate one-sample t test,
matched pairs t test, and two-sample t test, respectively. For the multivariate
Hotelling’s T 2 tests, there are p > 1 variables and their correlations are
important.

9.1 One Sample

The one-sample Hotelling’s T 2 test is used to test H0 : μ = μ0 versus HA :
μ �= μ0. The test rejects H0 if

T 2
H = n(x − μ0)

T S−1(x − μ0) >
(n − 1)p
n − p

Fp,n−p,1−α

where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.
If a multivariate location estimator T satisfies

√
n(T − μ) D→ Np(0,D),

then a competing test rejects H0 if

T 2
C = n(T − μ0)

T D̂
−1

(T − μ0) >
(n − 1)p
n − p

Fp,n−p,1−α

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 9
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where D̂ is a consistent estimator of D. The scaled F cutoff can be used
since T 2

C
D→ χ2

p if H0 holds, and

(n − 1)p
n − p

Fp,n−p,1−α → χ2
p,1−α

as n → ∞. This idea is used for small p by Srivastava and Mudholkar (2001)
where T is the coordinatewise trimmed mean. The one-sample Hotelling’s T 2

test uses T = x, D = Σx, and D̂ = S.
The Hotelling’s T 2 test is a large sample level α test in that if x1, ...,xn

are iid from a distribution with mean μ0 and nonsingular covariance matrix
Σx, then the type I error = P(reject H0 when H0 is true) → α as n → ∞. We
want n ≥ 10p if the DD plot is linear through the origin and subplots in the
scatterplot matrix all look ellipsoidal. For any n, there are distributions with
nonsingular covariance matrix where the χ2

p approximation to T 2
H is poor.

Let pval be an estimate of the pvalue. We typically use T 2
C = T 2

H in the
following four-step test. i) State the hypotheses H0 : μ = μ0 H1 : μ �= μ0.
ii) Find the test statistic T 2

C = n(T − μ0)T D̂
−1

(T − μ0).
iii) Find pval =

P

(
T 2

C <
(n − 1)p
n − p

Fp,n−p

)
= P

(
n − p

(n − 1)p
T 2

C < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then con-
clude that μ �= μ0 while if you fail to reject H0 conclude that the population
mean μ = μ0 or that there is not enough evidence to conclude that μ �= μ0.
Reject H0 if pval ≤ α and fail to reject H0 if pval > α. As a benchmark for
this text, use α = 0.05 if α is not given.

If W is the data matrix, then R(W ) is a large sample 100(1 − α)% con-
fidence region for μ if P [μ ∈ R(W )] → 1 − α as n → ∞. If x1, ...,xn are
iid from a distribution with mean μ and nonsingular covariance matrix Σx,
then

R(W ) = {w|n(x − w)T S−1(x − w) ≤ (n − 1)p
n − p

Fp,n−p,1−α}

is a large sample 100(1−α)% confidence region for μ. This region is a hyper-
ellipsoid centered at x. Note that the estimated covariance matrix for x is
S/n and n(x−μ)T S−1(x−μ) = D2

μ(x,S/n). If μ is close to x with respect
to the Mahalanobis distance based on dispersion matrix S/n, then μ will be
in the confidence region.

Recall from Theorem 1.1e that max
a�=0

aT (x − μ)(x − μ)T a

aT Sa
=

n(x−μ)T S−1(x−μ) = T 2. This fact can be used to derive large sample simul-
taneous confidence intervals for aT μ in that separate confidence statements
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using different choices of a all hold simultaneously with probability tending
to 1 − α. Let x1, ...,xn be iid with mean μ and covariance matrix Σx > 0.
Then simultaneously for all a �= 0, P (La ≤ aT μ ≤ Ua) → 1 − α as n → ∞
where

[La, Ua] = aT x ±
√

p(n − 1)
n(n − p)

Fp,n−p,1−αaT Sa.

Simultaneous confidence intervals (CIs) can be made after collecting data
and hence are useful for “data snooping.” Following Johnson and Wichern
(1988, pp. 184–5), the p confidence intervals (CIs) for μi and the p(p − 1)/2
CIs for μi−μk can be made such that for each of the two types of CI, they all
hold simultaneously with confidence → 1−α. Hence if α = 0.05, then in 100
samples, we expect all p CIs to contain μi about 95 times, and we expect all
p(p − 1)/2 CIs to contain μi − μk about 95 times. For each of the two types
of CI, about 5 times at least one of the CIs will fail to contain its parameter
(μi or μi − μk). The simultaneous CIs for μi are

[L,U ] = xi ±
√

p(n − 1)
(n − p)

Fp,n−p,1−α

√
Sii

n

while the simultaneous CIs for μi − μk are

[L,U ] = xi − xk ±
√

p(n − 1)
(n − p)

Fp,n−p,1−α

√
Sii − 2Sik + Skk

n
.

Example 9.1. Following Mardia et al. (1979, p. 126), data for first and
second adult sons had n = 25 and variables X1 = head length of first son and
X2 = head length of second son. Suppose μ0 = (182, 182)T and T 2

C = 1.28.
Perform the one-sample Hotelling’s T 2 test.

Solution: i) H0 : μ = μ0 H1 : μ �= μ0

ii) T 2
C = 1.28

iii)
n − p

(n − 1)p
T 2

C =
25 − 2
(24(2)

1.28 = 0.6133, and pval = P (0.613 < F2,23) >

0.05
iv) Fail to reject H0, so μ = (182, 182)T .

9.1.1 A Diagnostic for the Hotelling’s T 2 Test

Now the RMVN estimator is asymptotically equivalent to a scaled DGK esti-
mator that uses k = 5 concentration steps and two “reweight for efficiency”
steps. Lopuhaä (1999, pp. 1651–1652) showed that if (E1) holds, then the clas-
sical estimator applied to cases with Di(x, S) ≤ h is asymptotically normal
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with √
n(T0,D − μ) D→ Np(0, κpΣ).

Here h is some fixed positive number, such as h = χ2
p,0.975, so this estimator

is not quite the DGK estimator after one concentration step.
We conjecture that a similar result holds after concentration:

√
n(TRMV N − μ) D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. Since the “test” is based on a
conjecture, it is ad hoc and should be used as an outlier diagnostic rather
than for inference.

For MVN data, simulations suggest that τp is close to 1. The ad hoc test
that rejects H0 if

T 2
R

fn,p
= n(TRMV N −μ0)

T Ĉ
−1

RMV N (TRMV N −μ0)/fn,p >
(n − 1)p
n − p

Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n gave fair results in the simulations
described later in this subsection for n ≥ 15p and 2 ≤ p ≤ 100.

Table 9.1 Hotelling simulation

p n=15p hcv rhcv n=20p hcv rhcv n=30p hcv rhcv

10 150 0.0476 0.0300 200 0.0516 0.0304 300 0.0498 0.0286

15 225 0.0474 0.0318 300 0.0506 0.0308 450 0.0492 0.0320

20 300 0.0540 0.0368 400 0.0548 0.0314 600 0.0520 0.0354

25 375 0.0444 0.0334 500 0.0462 0.0296 750 0.0456 0.0288

30 450 0.0472 0.0324 600 0.0516 0.0358 900 0.0484 0.0342

35 525 0.0490 0.0384 700 0.0522 0.0358 1050 0.0502 0.0374

40 600 0.0534 0.0440 800 0.0486 0.0354 1200 0.0526 0.0336

45 675 0.0406 0.0390 900 0.0544 0.0390 1350 0.0512 0.0366

50 750 0.0498 0.0430 1000 0.0522 0.0394 1500 0.0512 0.0364

55 825 0.0504 0.0502 1100 0.0496 0.0392 1650 0.0510 0.0374

60 900 0.0482 0.0514 1200 0.0488 0.0404 1800 0.0474 0.0376

65 975 0.0568 0.0602 1300 0.0524 0.0414 1950 0.0548 0.0410

70 1050 0.0462 0.0530 1400 0.0558 0.0432 2100 0.0522 0.0424

75 1125 0.0474 0.0632 1500 0.0502 0.0486 2250 0.0490 0.0370

80 1200 0.0524 0.0620 1600 0.0524 0.0432 2400 0.0468 0.0356

85 1275 0.0482 0.0758 1700 0.0496 0.0456 2550 0.0520 0.0404

90 1350 0.0504 0.0746 1800 0.0484 0.0454 2700 0.0484 0.0398

95 1425 0.0524 0.0892 1900 0.0472 0.0506 2850 0.0538 0.0424

100 1500 0.0554 0.0808 2000 0.0452 0.0506 3000 0.0488 0.0392
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The correction factor fn,p was found by simulating the “robust” and clas-
sical test statistics for 100 runs, plotting the test statistics, then finding a
correction factor so that the identity line passed through the data. The fol-
lowing R commands were used to make Figure 9.1, which shows that the
plotted points of the scaled “robust” test statistic versus the classical test
statistic scatter about the identity line.

Table 9.2 Hotelling power simulation

p n hcv rhcv δ n hcv rhcv δ n hcv rhcv δ

5 75 0.459 0.245 0.20 100 0.366 0.184 0.15 150 0.333 0.208 0.12

5 75 0.682 0.416 0.25 100 0.599 0.368 0.20 150 0.577 0.394 0.16

5 75 0.840 0.588 0.30 100 0.816 0.587 0.30 150 0.860 0.708 0.40

10 150 0.221 0.113 0.10 200 0.312 0.182 0.10 300 0.469 0.340 0.10

10 150 0.621 0.400 0.17 200 0.655 0.467 0.15 300 0.647 0.504 0.12

10 150 0.888 0.729 0.22 200 0.848 0.692 0.18 300 0.872 0.767 0.15

15 225 0.314 0.188 0.10 300 0.442 0.294 0.10 450 0.317 0.228 0.07

15 225 0.714 0.543 0.15 300 0.623 0.449 0.12 450 0.648 0.522 0.10

15 225 0.881 0.738 0.18 300 0.858 0.755 0.15 450 0.853 0.762 0.12

20 300 0.408 0.276 0.10 400 0.341 0.230 0.08 600 0.291 0.216 0.06

20 300 0.691 0.525 0.13 400 0.674 0.534 0.11 600 0.554 0.433 0.08

20 300 0.935 0.852 0.17 400 0.858 0.742 0.13 600 0.790 0.701 0.10

25 375 0.304 0.214 0.08 500 0.434 0.319 0.08 750 0.354 0.266 0.06

25 375 0.728 0.580 0.12 500 0.676 0.531 0.10 750 0.660 0.556 0.08

25 375 0.926 0.837 0.15 500 0.868 0.771 0.12 750 0.887 0.815 0.10

30 450 0.374 0.264 0.08 600 0.395 0.290 0.07 900 0.290 0.217 0.05

30 450 0.602 0.467 0.10 600 0.639 0.517 0.09 900 0.743 0.642 0.08

30 450 0.883 0.763 0.13 600 0.867 0.770 0.11 900 0.876 0.808 0.09

n<-4000; p <- 30 #May take a few minutes.

zout <- rhotsim(n=4000,p=30)

SRHOT <- zout$rhot/(1.04 + 0.12/p + (40+p)/n)

HOT <- zout$hot

plot(SRHOT,HOT)

abline(0,1)
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Fig. 9.1 Scaled “Robust” Statistic Versus T 2
H Statistic

For the Hotelling’s T 2
H simulation, the data is Np(δ1, diag(1, 2, ..., p))

where H0 : μ = 0 is being tested with 5000 runs at a nominal level of
0.05. In Table 9.1, δ = 0 so H0 is true, while hcv and rhcv are the proportion
of rejections by the T 2

H test and by the ad hoc robust test. Sample sizes are
n = 15p, 20p, and 30p. The robust test is not recommended for n < 15p
and appears to be conservative (the proportion of rejections is less than the
nominal 0.05) except when n = 15p and 75 ≤ p ≤ 100. See Zhang (2011).

If δ > 0, then H0 is false and the proportion of rejections estimates the
power of the test. Table 9.2 shows that T 2

H has more power than the robust
test, but suggests that the power of both tests rapidly increases to one as δ
increases.

9.1.2 Bootstrapping Hotelling’s T 2 Type Tests

The prediction region method of Section 5.3 is useful for bootstrapping the
test H0 : μT = μ0 versus HA : μT �= μ0 where the test statistic T esti-
mates the parameter μT . Take a sample of size n with replacement from
the cases x1, ...,xn to make the bootstrap statistic T ∗

1 . Repeat to get the
bootstrap sample T ∗

1 , ..., T ∗
B . Apply the nonparametric prediction region to

the bootstrap sample and see if μ0 is in the region. Equivalently, apply the
nonparametric prediction region to wi = T ∗

i − μ0, i = 1, ..., B, and fail to
reject H0 if 0 is in the region, otherwise reject H0.

The mpack function rhotboot bootstraps T where T is the coordinate-
wise median or T is the RMVN location estimator. The function medhotsim
simulates the test with μ0 = 0 when T is the coordinatewise median. The
simulated data are as in Section 6.3, with x = Az, except that z = u − 1
was used for the multivariate lognormal distribution with ui = exp(wi) and

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_6
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wi ∼ N(0, 1), so that the population coordinatewise median of x and z was
0 when H0 is true. When H0 was false, μ0 = δ1 with δ > 0.

The term hotcov was the proportion of times the bootstrap test rejected
H0 with a nominal level of 0.05. With n = 100 and p = 2, hotcov was near
0.05 when H0 was true. The test usually had good power if μ = (0.5, 0.5)T .
See output below where 1000 runs were used.

medhotsim(xtype=1,nruns=1000)

0.046 #MVN((0,0)^T, diag(1,2)) data

medhotsim(xtype=1,nruns=1000,delta=0.5)

0.995 #MVN((0.5,0.5)^T, diag(1,2)) data

9.2 Matched Pairs

Assume that there are k = 2 treatments, and both treatments are given to the
same n cases or units. Then p measurements are taken for both treatments.
For example, systolic and diastolic blood pressure could be compared before
and after the patient (case) receives blood pressure medication. Then p = 2.
Alternatively use n correlated pairs, for example, pairs of animals from the
same litter or neighboring farm fields. Then use randomization to decide
whether the first member of the pair gets treatment 1 or treatment 2. Let
n1 = n2 = n and assume n − p is large.

Let yi = (Yi1, Yi2, ..., Yip)T denotes the p measurements from the 1st treat-
ment, and zi = (Zi1, Zi2, ..., Zip)T denotes the p measurements from the 2nd
treatment. Let di ≡ xi = yi − zi for i = 1, ..., n. Assume that the xi are iid
with mean μ and covariance matrix Σx. Let T 2 = n(x − μ)T S−1(x − μ).
Then T 2 P→ χ2

p and pFp,n−p
P→ χ2

p. Let P (Fp,n ≤ Fp,n,δ) = δ. Then the one-
sample Hotelling’s T 2 inference is done on the differences xi using μ0 = 0. If
the p random variables are continuous, make three DD plots: one for the xi,
one for the yi, and one for the zi to detect outliers.

Let pval be an estimate of the pvalue. The large sample multivariate
matched pairs test has four steps.
i) State the hypotheses H0 : μ = 0 H1 : μ �= 0.
ii) Find the test statistic T 2

M = nxT S−1x.
iii) Find pval =

P

(
T 2

M <
(n − 1)p
n − p

Fp,n−p

)
= P

(
n − p

(n − 1)p
T 2

M < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μ �= 0 while if you fail to reject H0 conclude that the population
mean μ = 0 or that there is not enough evidence to conclude that μ �= 0.
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Reject H0 if pval ≤ α and fail to reject H0 if pval > α. As a benchmark for
this text, use α = 0.05 if α is not given.

A large sample 100(1 − α)% confidence region for μ is

{w| n(x − w)T S−1(x − w) ≤ (n − 1)p
n − p

Fp,n−p,1−α},

and the p large sample simultaneous confidence intervals (CIs) for μi are

[L,U ] = xi ±
√

p(n − 1)
(n − p)

Fp,n−p,1−α

√
Sii

n

where Sii = S2
i is the ith diagonal element of S.

Example 9.2. Following Johnson and Wichern (1988, pp. 213–214),
wastewater from a sewage treatment plant was sent to two labs for measure-
ments of biochemical demand (BOD) and suspended solids (SS). Suppose
n = 11, p = 2, and T 2

M = 13.6. Perform the appropriate test.
Solution: i) H0 : μ = 0 H1 : μ �= 0
ii) T 2

M = 13.6

iii)
n − p

(n − 1)p
T 2

M =
11 − 2

(11 − 1)2
13.6 = 6.12, and pval = P (6.12 < F2,9) < 0.05

iv) Reject H0. Hence μ �= (0, 0)T , and the two labs are giving different
mean measurements for (μBOD, μSS)T .

To get a bootstrap analog of this test, bootstrap the di = xi as in Section
9.1.2 where usually H0 : μ ≡ μT = 0. Again robust location estimators, such
as the coordinatewise median or RMVN location estimator TRMV N , could
be used on the xi.

9.3 Repeated Measurements

Repeated measurements = longitudinal data analysis. Take p measurements
on the same unit, often the same measurement, e.g., blood pressure, at several
time periods. Hence each unit or individual is measured repeatedly over time.
The variables are X1, ..., Xp where often Xk is the measurement at the
kth time period. Then E(x) = (μ1, ..., μp)T = (μ + τ1, ..., μ + τp)T . Let the
(p− 1)× 1 vector yj = (x1j −x2j , x2j −x3j , ..., xp−1,j −xpj)T for j = 1, ..., n.
Hence yij = xij − xi+1,j for j = 1, ..., n and i = 1, ..., p − 1. Then y =
(x1 − x2,x2 − x3, ...,xp−1 − xp)T . If μy = E(yi), then μy = 0 is equivalent
to μ1 = · · · = μp where E(Xk) = μk. Let Sy be the sample covariance matrix
of the yi.
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The large sample repeated measurements test has four steps.
i) State the hypotheses H0 : μy = 0 H1 : μy �= 0.
ii) Find the test statistic T 2

R = nyT S−1
y y.

iii) Find pval =

P

(
n − p + 1

(n − 1)(p − 1)
T 2

R < Fp−1,n−p+1

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μy �= 0 so not all p of the μi are equal, while if you fail to
reject H0 conclude that the population mean μy = 0 or that there is not
enough evidence to conclude that μy �= 0. Reject H0 if pval ≤ α and fail to
reject H0 if pval > α. Give a nontechnical sentence, if possible.

Example 9.3. Following Morrison (1967, pp. 139–141), reaction times to
visual stimuli were obtained for n = 20 normal young men under conditions
A, B, and C of stimulus display. Let xA = 21.05, xB = 21.65, and xC = 28.95.
Test whether μA = μB = μC if T 2

R = 882.8.
Solution: i) H0 : μy = 0 H1 : μy �= 0
ii) T 2

R = 882.8

iii)
n − p + 1

(n − 1)(p − 1)
T 2

R =
20 − 3 + 1

(20 − 1)(3 − 1)
882.8 = 418.168, and

pval = P (418.168 < F2,18) ≈ 0
iv) Reject H0. The three mean reaction times are different.

An alternative test would use a statistic T , such as the coordinatewise
median or RMVN location estimator, on the yj , and the bootstrap method
of Section 9.1.2 can be applied with μy = 0. This test is equivalent to H0 :
μ1 = · · · = μp where μk is a population location parameter for the kth
measurement. Hence if the coordiatewise median is being used, then μk is
the population median of the kth measurement.

9.4 Two Samples

Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from populations with mean and covariance matrices (μi,Σxi)
for i = 1, 2. Assume the Σxi

are positive definite and that it is desired to test
H0 : μ1 = μ2 versus H1 : μ1 �= μ2 where the μi are p×1 vectors. To simplify
large sample theory, assume n1 = kn2 for some positive real number k.
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By the multivariate central limit theorem,

(√
n1 (x1 − μ1)√
n2 (x2 − μ2)

)
D→ N2p

[(
0
0

)
,

(
Σx1 0
0 Σx2

)]
,

or
(√

n2 (x1 − μ1)√
n2 (x2 − μ2)

)
D→ N2p

[(
0
0

)
,

(
Σx1

k 0
0 Σx2

)]
.

Hence

√
n2 [(x1 − x2) − (μ1 − μ2)]

D→ Np(0,
Σx1

k
+ Σx2).

Using nB−1 =
(

B

n

)−1

and n2k = n1, if μ1 = μ2, then

n2(x1 − x2)T

(
Σx1

k
+ Σx2

)−1

(x1 − x2) =

(x1 − x2)T

(
Σx1

n1
+

Σx2

n2

)−1

(x1 − x2)
D→ χ2

p.

Hence

T 2
0 = (x1 − x2)T

(
S1

n1
+

S2

n2

)−1

(x1 − x2)
D→ χ2

p.

The above result is easily generalized to other statistics. See Rupasinghe
Arachchige Don and Pelawa Watagoda (2017). If the sequence of positive
integers dn → ∞ and Yn ∼ Fp,dn

, then Yn
D→ χ2

p/p. Using an Fp,dn
distribu-

tion instead of a χ2
p distribution is similar to using a tdn

distribution instead
of a standard normal N(0, 1) distribution for inference. Instead of rejecting
H0 when T 2

0 > χ2
p,1−α, reject H0 when

T 2
0 > pFp,dn,1−α =

pFp,dn,1−α

χ2
p,1−α

χ2
p,1−α.

The term
pFp,dn,1−α

χ2
p,1−α

can be regarded as a small sample correction factor

that improves the test’s performance for small samples. We will use dn =
min(n1 − p, n2 − p). Here P (Yn ≤ χ2

p,α) = α if Yn has a χ2
p distribution, and

P (Yn ≤ Fp,dn,α) = α if Yn has an Fp,dn
distribution.
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Let pval denote the estimated pvalue. The four-step test is
i) State the hypotheses H0 : μ1 = μ2 H1 : μ1 �= μ2.
ii) Find the test statistic t0 = T 2

0 /p.
iii) Find pval = P (t0 < Fp,dn

).
iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject
H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval ≤ α
and fail to reject H0 if pval > α. Give a nontechnical sentence if possible. As
a benchmark for this text, use α = 0.05 if α is not given.

Example 9.4. Following Mardia et al. (1979, p. 153), cranial length and
breadth (X1 and X2) were measured on n1 = 35 female frogs and n2 = 14
male frogs with x1 = (22.86, 24.397)T and x2 = (21.821, 22.442)T . Test μ1 =
μ2 if T 2

0 = 2.550.
Solution: i) H0 : μ1 = μ2 H1 : μ1 �= μ2

ii) t0 = T 2
0 /p = 2.550/2 = 1.275

iii) pval = P (1.275 < F2,14−2) > 0.05
iv) Fail to reject H0. There is not enough evidence to conclude that the

mean lengths and breadths differ for the male and female frogs.

The plots for the one way MANOVA model in Section 10.2 are also useful
for the two-sample Hotelling’s T 2 test. An alternative to the above test is to
used the pooled covariance matrix. This Hotelling’s T 2 test is a special case
of the one way MANOVA model with two groups covered in Section 10.3.

9.4.1 Bootstrapping Two-Sample Tests

Bootstrapping the two-sample test is similar to bootstrapping discriminant
analysis and one way MANOVA models. Take a sample of size ni with replace-
ment from random sample i for i = 1, 2, and compute T ∗

11 − T ∗
21. Repeat B

times to get the bootstrap sample w1 = T ∗
11−T ∗

21, ...,wB = T ∗
1B−T ∗

2B . Apply
the nonparametric prediction region on the wi, and fail to reject H0 : μ1 = μ2

if 0 is in the prediction region, and reject H0, otherwise. See Rupasinghe
Arachchige Don and Pelawa Watagoda (2017).

Some R output is below for the Gladstone (1905) data where several infants
are outliers. We first tested the first 133 cases versus the last 134 cases. It
turned out that the first group was younger and had all of the infants, so
H0 was rejected. Then a random sample of 133 was used as the first group
and the remaining 134 as the second group. Then the test failed to reject H0.
Using the nominal level α = 0.05 of the large sample bootstrap test, reject
H0 if the test statistic is larger than the cutoff, where 4.102 was the cutoff
for the first test which used RMVN.

http://dx.doi.org/10.1007/978-3-319-68253-2_10
http://dx.doi.org/10.1007/978-3-319-68253-2_10
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zz <- cbrainx[,c(1,3,5,6,7,8,9,11)]

#get rid of qualitative variables

zx <- zz[1:133,]

zy <- zz[134:267,]

out<-rhot2boot(zx,zy,med=F) #RMVN takes a while.

tem<-predreg(out$mus)

> tem$cuplim

95.4%

4.101788

> tem$D0

[1] 7.529998 #> 4.102 so reject Ho

out<-rhot2boot(zx,zy,med=T) #coord. median is fast

tem<-predreg(out$mus)

> tem$cuplim

95.4%

4.046958

> tem$D0

[1] 12.87506 #> 4.05 so reject Ho

plot(zx[,1],zy[-134,1])

#zx people tend to be older, infants are in zy

indx <- sample(1:267,133)#random sample for zx and zy

zx <- zz[indx,]

zy <- zz[-indx,]

out<-rhot2boot(zx,zy,med=F)

tem<-predreg(out$mus) #RMVN

> tem$cuplim

95.4%

4.065357

> tem$D0

[1] 2.94968 #< 4.07 so fail to reject Ho

out<-rhot2boot(zx,zy,med=T)

tem<-predreg(out$mus) #coord. median

> tem$cuplim

95.4%

3.915687

> tem$D0

[1] 2.802046 #< 3.92 so fail to reject Ho
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9.5 Summary

1) The one-sample Hotelling’s T 2 test is used to test H0 : μ = μ0 versus
HA : μ �= μ0. The test rejects H0 if T 2

H = n(x − μ0)
T S−1(x − μ0) >

(n − 1)p
n − p

Fp,n−p,1−α where P (Y ≤ Fp,d,α) = α if Y ∼ Fp,d.

If a multivariate location estimator T satisfies
√

n(T − μ) D→ Np(0,D),

then a competing test rejects H0 if T 2
C = n(T − μ0)

T D̂
−1

(T − μ0) >
(n − 1)p
n − p

Fp,n−p,1−α where D̂ is a consistent estimator of D. The scaled F cut-

off can be used since T 2
C

D→ χ2
p if H0 holds, and

(n − 1)p
n − p

Fp,n−p,1−α → χ2
p,1−α

as n → ∞.
2) Let pval be an estimate of the pvalue. As a benchmark for hypothesis

testing, use α = 0.05 if α is not given.
3) Typically, use T 2

C = T 2
H in the following four-step one-sample

Hotelling’s T 2
C test. i) State the hypotheses H0 : μ = μ0 H1 : μ �= μ0.

ii) Find the test statistic T 2
C = n(T − μ0)T D̂

−1
(T − μ0).

iii) Find pval =

P

(
n − p

(n − 1)p
T 2

C < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μ �= μ0 while if you fail to reject H0 conclude that the pop-
ulation mean μ = μ0 or that there is not enough evidence to conclude that
μ �= μ0. Reject H0 if pval ≤ α and fail to reject H0 if pval > α.

4) The multivariate matched pairs test is used when there are k = 2
treatments applied to the same n cases with the same p variables used for
each treatment. Let yi be the p variables measured for treatment 1 and zi be
the p variables measured for treatment 2. Let xi = yi − zi. Let μ = E(x) =
E(y) − E(z). We want to test if μ = 0, so E(y) = E(z). The test can also
be used if (yi,zi) are matched (highly dependent) in some way. For example,
if identical twins are in the study, yi and zi could be the measurements on
each twin. Let (x,Sx) be the sample mean and covariance matrix of the xi.

5) The large sample multivariate matched pairs test has four steps.
i) State the hypotheses H0 : μ = 0 H1 : μ �= 0.
ii) Find the test statistic T 2

M = nxT S−1
x x.

iii) Find pval =

P

(
n − p

(n − 1)p
T 2

M < Fp,n−p

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that μ �= 0 while if you fail to reject H0 conclude that the population
mean μ = 0 or that there is not enough evidence to conclude that μ �= 0.
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Reject H0 if pval ≤ α and fail to reject H0 if pval > α. Give a nontechnical
sentence if possible.

6) Repeated measurements = longitudinal data analysis. Take p measure-
ments on the same unit, often the same measurement, e.g., blood pressure,
at several time periods. The variables are X1, ..., Xp where often Xk is
the measurement at the kth time period. Then E(x) = (μ1, ..., μp)T =
(μ + τ1, ..., μ + τp)T . Let yj = (x1j − x2j , x2j − x3j , ..., xp−1,j − xpj)T for
j = 1, ..., n. Then y = (x1 − x2, x2 − x3, ..., xp−1 − xp)T . If μy = E(yi), then
μY = 0 is equivalent to μ1 = · · · = μp where E(Xk) = μk. Let Sy be the
sample covariance matrix of the yi.

7) The large sample repeated measurements test has four steps.
i) State the hypotheses H0 : μy = 0 H1 : μy �= 0.
ii) Find the test statistic T 2

R = nyT S−1
y y.

iii) Find pval =

P

(
n − p + 1

(n − 1)(p − 1)
T 2

R < Fp−1,n−p+1

)
.

iv) State whether you fail to reject H0 or reject H0. If you reject H0 then con-
clude that μy �= 0 while if you fail to reject H0 conclude that the population
mean μy = 0 or that there is not enough evidence to conclude that μy �= 0.
Reject H0 if pval ≤ α and fail to reject H0 if pval > α. Give a nontechnical
sentence, if possible.

8) The F tables give left tail area and the pval is a right tail area. The

Section 15.5 table gives Fk,d,0.95. If α = 0.05 and
n − p

(n − 1)p
T 2

C < Fk,d,0.95,

then fail to reject H0. If
n − p

(n − 1)p
T 2

C ≥ Fk,d,0.95, then reject H0.

a) For the one-sample Hotelling’s T 2
C test and the matched pairs T 2

M test,
k = p and d = n − p.

b) For the repeated measures T 2
R test, k = p − 1 and d = n − p + 1.

9) If n ≥ 10p, the tests in 3), 5), and 7) are robust to nonnormality. For the
one-sample Hotelling’s T 2

C test and the repeated measurements test, make a
DD plot. For the multivariate matched pairs test, make a DD plot of the xi,
of the yi, and of the zi.

10) Suppose there are two independent random samples x1,1, ...,xn1,1 and
x1,2, ...,xn2,2 from populations with mean and covariance matrices (μi,Σxi

)
for i = 1, 2 where the μi are p× 1 vectors. Let dn = min(n1 − p, n2 − p). The
large sample two-sample Hotelling’s T 2

0 test is a four-step test:
i) State the hypotheses H0 : μ1 = μ2 H1 : μ1 �= μ2.
ii) Find the test statistic t0 = T 2

0 /p.
iii) Find pval = P (t0 < Fp,dn

).
iv) State whether you fail to reject H0 or reject H0. If you reject H0 then
conclude that the population means are not equal while if you fail to reject

http://dx.doi.org/10.1007/978-3-319-68253-2_15
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H0 conclude that the population means are equal or that there is not enough
evidence to conclude that the population means differ. Reject H0 if pval ≤ α
and fail to reject H0 if pval > α. Give a nontechnical sentence if possible.

9.6 Complements

The mpack function rhotsim is useful for simulating the robust diagnostic
for the one-sample Hotelling’s T 2 test. See Zhang (2011) for more simulations.
Willems et al. (2002) used similar reasoning to present a diagnostic based on
the FMCD estimator.

Yao (1965) suggested a more complicated denominator degrees of freedom
than dn = min(n1 − p, n2 − p) for the two-sample Hotelling’s T 2 test. Good
(2012, pp. 55–57), which provides randomization tests as competitors for the
two-sample Hotelling’s T 2 test. Bootstrapping the tests with robust estima-
tors seems to be effective. For bootstrapping the two-sample Hotelling’s T 2

test, see Rupasinghe Arachchige Don and Pelawa Watagoda (2017). Gregory
et al. (2015) and Feng and Sun (2015) considered the two-sample test when
p ≥ n.

9.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY
USEFUL.

9.1. Following Morrison (1967, pp. 122–123), the Wechsler Adult Intelli-
gence Scale scores of n = 101 subjects aged 60 to 64 were recorded, giving
a verbal score (X1) and performance score (X2) for each subject. Suppose
μ0 = (60, 50)T and T 2

C = 357.43. Perform the one-sample Hotelling’s T 2 test.

9.2. Following Morrison (1967, pp. 137–138), the levels of free fatty acid
(FFA) in the blood were measured in n = 15 hypnotized normal volunteers
who had been asked to experience fear, depression, and anger effects while in
the hypnotic state. The mean FFA changes were x1 = 2.669, x2 = 2.178, and
x3 = 2.558. Let μF = μ+τ1, μD = μ+τ2, and μA = μ+τ3. We want to know
if the mean stress FFA changes were equal. So test whether μF = μD = μF

if T 2
R = 2.68.

9.3. Data is taken or modified from Johnson and Wichern (1988, pp. 185,
224).

a) Suppose S2
2 = S22 = 126.05, x2 = 54.69, n = 87, and p = 3. Find a

large sample simultaneous 95% CI for μ2.
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b) Suppose a random sample of 50 bars of soap from method 1 and a
random sample of 50 bars of soap from method 2 are obtained. Let X1 =
lather and X2 = mildness with x1 = (8.4, 4.1)T and x2 = (10.2, 3.9)T . Test
μ1 = μ2 if T 2

0 = 52.4722.

R Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2 Typing the name of the
mpack function, e.g., rhotsim, will display the code for the function. Use the
args command, e.g., args(rhotsim), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

9.4∗. Use the R commands in Subsection 9.1.1 to make a plot similar to
Figure 9.1. The program may take a minute to run.

9.5. Conjecture:

√
n(TRMV N − μ) D→ Np(0, τpΣ)

for a wide variety of elliptically contoured distributions where τp depends
on both p and the underlying distribution. The following “test” is based
on a conjecture and should be used as an outlier diagnostic rather than for
inference. The ad hoc “test” that rejects H0 if

T 2
R

fn,p
= n(TRMV N −μ0)

T Ĉ
−1

RMV N (TRMV N −μ0)/fn,p >
(n − 1)p
n − p

Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + (40 + p)/n. The simulations use n = 150 and
p = 10.

a) The R commands for this part use simulated data is

xi ∼ Np(0, diag(1, 2, ..., p))

where H0 : μ = 0 is being tested with 5000 runs at a nominal level of 0.05.
So H0 is true, and hcv and rhcv are the proportion of rejections by the T 2

H

test and by the ad hoc robust test. We want hcv and rhcv near 0.05. THIS
SIMULATION MAY TAKE A FEW MINUTES. Record hcv and rhcv. Were
hcv and rhcv near 0.05?

b) The R commands for this part use simulated data

xi ∼ Np(δ1, diag(1, 2, ..., p))

where H0 : μ = 0 is being tested with 5000 runs at a nominal level of 0.05. In
the simulation, δ = 0.2, so H0 is false, and hcv and rhcv are the proportion

http://dx.doi.org/10.1007/978-3-319-68253-2_15
http://lagrange.math.siu.edu/Olive/mrsashw.txt
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of rejections by the T 2
H test and by the ad hoc robust test. We want hcv and

rhcv near 1 so that the power is high. Paste the output into Word. THIS
SIMULATION MAY TAKE A FEW MINUTES. Record hcv and rhcv. Were
hcv and rhcv near 1?



Chapter 10
MANOVA

This chapter gives the multivariate linear model which includes the following
two models. i) The multivariate linear regression model of Chapter 12 has at
least one quantitative predictor variable. ii) For the MANOVA model, the pre-
dictors are indicator variables. Often observations (Y1, ..., Ym, x1, x2, ..., xp)
are collected on the same person or thing and hence are correlated. If trans-
formations can be found such that the m response plots and residual plots
of Section 10.2 look good, and n ≥ (m + p)2 (and ni ≥ 10m if there are p
treatment groups and n =

∑m
i=1 ni), then the MANOVA model can often be

used to efficiently analyze the data. These two plots and the DD plot of the
residuals are useful for checking the model and for outlier detection.

10.1 Introduction

Definition 10.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Notation. A multivariate linear model has m ≥ 2 response variables. A
multiple linear model = univariate linear model has m = 1 response variable,
but at least two nontrivial predictors, and usually a constant (so p ≥ 3).
A simple linear model has m = 1, one nontrivial predictor, and usually a
constant (so p = 2). Multiple linear regression models and ANOVA models
are special cases of multiple linear models.

Definition 10.2. The multivariate linear model

yi = BT xi + εi

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 10
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for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor vari-
ables x1, x2, ..., xp. The ith case is (xT

i ,yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If

a constant xi1 = 1 is in the model, then xi1 could be omitted from the case.
The model is written in matrix form as Z = XB + E, where the matrices
are defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij)
for k = 1, ..., n. Then the p × m coefficient matrix B =

[
β1 β2 . . . βm

]
and

the m × m covariance matrix Σε are to be estimated, and E(Z) = XB
while E(Yij) = xT

i βj . The εi are assumed to be iid. The univariate linear
model corresponds to m = 1 response variable and is written in matrix form
as Y = Xβ + e. Subscripts are needed for the m univariate linear models
Y j = Xβj +ej for j = 1, ...,m, where E(ej) = 0. For the multivariate linear
model, Cov(ei,ej) = σij In for i, j = 1, ...,m, where In is the n×n identity
matrix.

Definition 10.3. The multivariate analysis of variance (MANOVA
model) yi = BT xi + εi for i = 1, ..., n has m ≥ 2 response variables
Y1, ..., Ym and p predictor variables X1,X2, ...,Xp. The MANOVA model is
a special case of the multivariate linear model. For the MANOVA model,
the predictors are not quantitative variables, so the predictors are indi-
cator variables. Sometimes, the trivial predictor 1 is also in the model.
In matrix form, the MANOVA model is Z = XB + E. The model has
E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also, E(ei) = 0 while
Cov(ei,ej) = σijIn for i, j = 1, ...,m. Then B and Σε are unknown matrices
of parameters to be estimated, and E(Z) = XB while E(Yij) = xT

i βj .

The data matrix W = [X Z]. If the model contains a constant, then
usually the first column of ones 1 of X is omitted from the data matrix for
software such as R and SAS. The n × m matrix

Z =

⎡

⎢
⎢
⎢
⎣

Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m

⎤

⎥
⎥
⎥
⎦

=
[
Y 1 Y 2 . . . Y m

]
=

⎡

⎢
⎣

yT
1
...

yT
n

⎤

⎥
⎦ .

The n× p design matrix X of predictor variables is not necessarily of full
rank p, and

X =

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤

⎥
⎥
⎥
⎦

=
[
v1 v2 . . . vp

]
=

⎡

⎢
⎣

xT
1
...

xT
n

⎤

⎥
⎦ ,

where often v1 = 1.
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The p × m matrix

B =

⎡

⎢
⎢
⎢
⎣

β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m

⎤

⎥
⎥
⎥
⎦

=
[
β1 β2 . . . βm

]
.

The n × m matrix

E =

⎡

⎢
⎢
⎢
⎣

ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m

⎤

⎥
⎥
⎥
⎦

=
[
e1 e2 . . . em

]
=

⎡

⎢
⎣

εT
1
...

εT
n

⎤

⎥
⎦ .

Considering the ith row of Z,X, and E shows that yT
i = xT

i B + εT
i .

Warning: The ei are error vectors, not orthonormal eigenvectors.

Definition 10.4. Models in which a single response variable Y is quanti-
tative, but all of the predictor variables are qualitative are called analysis of
variance (ANOVA) models, experimental design models, or design of experi-
ments (DOE) models. Each combination of the levels of the predictors gives
a different distribution for Y , and there are p different distributions or treat-
ments. A predictor variable W is often called a factor, and a factor level ai

is one of the categories W can take. In an ANOVA model,

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (10.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (10.2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p× 1 vector of unknown coefficients, e is an n× 1 vector of
unknown errors, and n ≥ p. Equivalently,

⎡

⎢
⎢
⎢
⎣

Y1

Y2

...
Yn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

β1

β2

...
βp

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

e1
e2
...

en

⎤

⎥
⎥
⎥
⎦

. (10.3)

The ei are iid with zero mean and variance σ2, and a linear model estimator
such as least squares is used to estimate the unknown parameters β and σ2.
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Each response variable in a MANOVA model follows an ANOVA model
Y j = Xβj + ej for j = 1, ...,m, where it is assumed that E(ej) = 0 and
Cov(ej) = σjjIn. Hence the errors corresponding to the jth response are
uncorrelated with variance σ2

j = σjj . Notice that the same design matrix
X of predictors is used for each of the m models, but the jth response variable
vector Y j , coefficient vector βj , and error vector ej change and thus depend
on j. Hence for a one-way MANOVA model, each response variable follows a
one-way ANOVA model, while for a two-way MANOVA model, each response
variable follows a two-way ANOVA model for j = 1, ...,m.

Once the ANOVA model is fixed, e.g., a one-way ANOVA model, the
design matrix X depends on the parameterization of the ANOVA model.
The fitted values and residuals are the same for each parameterization, but
the interpretation of the parameters depends on the parameterization.

Now consider the ith case (xT
i ,yT

i ) which corresponds to the ith row of Z
and the ith row of X. Then

⎡

⎢
⎢
⎢
⎢
⎣

Yi1 = β11xi1 + · · · + βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · · + βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · · + βpmxip + εim = xT

i βm + εim

⎤

⎥
⎥
⎥
⎥
⎦

or yi = E(yi) + εi, where

E(yi) = BT xi =

⎡

⎢
⎢
⎢
⎢
⎣

xT
i β1

xT
i β2

...
xT

i βm

⎤

⎥
⎥
⎥
⎥
⎦

.

The notation yi|xi and E(yi|xi) is more accurate, but usually the con-
ditioning is suppressed. Taking E(yi|xi) to be a constant, yi and εi have
the same covariance matrix. In the MANOVA model, this covariance matrix
Σε does not depend on i. Observations from different cases are uncorrelated
(often independent), but the m errors for the m different response variables
for the same case are correlated.

Let B̂ be the MANOVA estimator of B. MANOVA models are often fit
by least squares. Then the least squares estimators are

B̂ = B̂g = (XT X)−XT Z =
[
β̂1 β̂2 . . . β̂m

]

where (XT X)− is a generalized inverse of XT X. Here B̂g depends on the
generalized inverse. If X has full rank p, then (XT X)− = (XT X)−1 and B̂
is unique.
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Definition 10.5. The predicted values or fitted values

Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=

⎡

⎢
⎢
⎢
⎣

Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m

⎤

⎥
⎥
⎥
⎦

.

The residuals Ê = Z − Ẑ = Z − XB̂ =

⎡

⎢
⎢
⎢
⎢
⎣

ε̂T
1

ε̂T
2

...
ε̂T

n

⎤

⎥
⎥
⎥
⎥
⎦

=
[
r̂1 r̂2 . . . r̂m

]
=

⎡

⎢
⎢
⎢
⎣

ε̂1,1 ε̂1,2 . . . ε̂1,m

ε̂2,1 ε̂2,2 . . . ε̂2,m

...
...

. . .
...

ε̂n,1 ε̂n,2 . . . ε̂n,m

⎤

⎥
⎥
⎥
⎦

.

These quantities can be found by fitting m ANOVA models Y j = Xβj+ej to
get β̂j , Ŷ j = Xβ̂j , and r̂j = Y j−Ŷ j for j = 1, ...,m. Hence ε̂i,j = Yi,j−Ŷi,j ,
where Ŷ j = (Ŷ1,j , ..., Ŷn,j)T . Finally, Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)
n − d

=
(Z − XB̂)T (Z − XB̂)

n − d
=

Ê
T
Ê

n − d
=

1
n − d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. Let Σ̂ε be the usual estimator
of Σε for the MANOVA model. If least squares is used with a full rank X,
then Σ̂ε = Σ̂ε,d=p.

10.2 Plots for MANOVA Models

As in Chapter 12, this section suggests using residual plots, response plots,
and the DD plot to examine the multivariate linear model. The residual plots
are often used to check for lack of fit of the multivariate linear model. The
response plots are used to check linearity (and to detect influential cases and
outliers for linearity). The response and residual plots are used exactly as in
the m = 1 case corresponding to multiple linear regression and experimental
design models. See Olive (2010, 2017a), Olive and Hawkins (2005), and Cook
and Weisberg (1999a, p. 432; 1999b).

Definition 10.6. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij . The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot
corresponding to the jth response variable is a plot of Ŷij versus rij .

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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Remark 10.1. Make the m response and residual plots for any MANOVA
model. In a response plot, the vertical deviations from the identity line are the
residuals rij = Yij − Ŷij . Suppose the model is good, the error distribution is
not highly skewed, and n ≥ 10p. Then the plotted points should cluster about
the identity line in each of the m response plots. If outliers are present or if the
plot is not linear, then the current model or data need to be transformed or
corrected. If the model is good, then the each of the m residual plots should
be ellipsoidal with no trend and should be centered about the r = 0 line.
There should not be any pattern in the residual plot: as a narrow vertical
strip is moved from left to right, the behavior of the residuals within the
strip should show little change. Outliers and patterns such as curvature or a
fan-shaped plot are bad.

For some MANOVA models that do not use replication, the response
and residual plots look much like those for multivariate linear regression
in Section 12.2. The response and residual plots for the one-way MANOVA
model need some notation, and it is useful to use three subscripts. Suppose
there are independent random samples of size ni from p different popula-
tions (treatments), or ni cases are randomly assigned to p treatment groups
with n =

∑p
i=1 ni. Assume that m response variables yij = (Yij1, ..., Yijm)T

are measured for the ith treatment. Hence i = 1, ..., p and j = 1, ..., ni.
The Yijk follow different one-way ANOVA models for k = 1, ...,m. Assume
E(yij) = μi = (μi1, ..., μim)T and Cov(yij) = Σε. Hence the p treatments
have possibly different mean vectors μi, but common covariance matrix Σε.

Then for the kth response variable, the response plot is a plot of Ŷijk ≡ μ̂ik

versus Yijk and the residual plot is a plot of Ŷijk ≡ μ̂ik versus rijk, where μ̂ik is
the sample mean of the ni responses Yijk corresponding to the ith treatment
for the kth response variable. Add the identity line to the response plot and
r = 0 line to the residual plot as visual aids. The points in the response
plot scatter about the identity line and the points in the residual plot scatter
about the r = 0 line, but the scatter need not be in an evenly populated band.
A dot plot of Z1, ..., Zn consists of an axis and n points each corresponding to
the value of Zi. The response plot for the kth response variable consists of p
dot plots, one for each value of μ̂ik. The dot plot corresponding to μ̂ik is the
dot plot of Yi,1,k, ..., Yi,ni,k. Similarly, the residual plot for the kth response
variable consists of p dot plots, and the plot corresponding to μ̂ik is the dot
plot of ri,1,k, ..., ri,ni,k. Assuming the ni ≥ 10, the p dot plots for the kth
response variable should have roughly the same shape and spread in both

the response and residual plots. Note that μ̂ik = Y iok =
1
ni

ni∑

j=1

Yijk.

Assume that each ni ≥ 10. It is easier to check shape and spread in the
residual plot. If the response plot looks like the residual plot, then a horizontal
line fits the p dot plots about as well as the identity line, and there may not
be much difference in the μik. In the response plot, if the identity line fits

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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the plotted points better than any horizontal line, then conclude that at least
some of the means μik differ.

Definition 10.7. An outlier corresponds to a case that is far from the
bulk of the data. Look for a large vertical distance of the plotted point from
the identity line or the r = 0 line.

Rule of thumb 10.1. Mentally, add two lines parallel to the identity line
and two lines parallel to the r = 0 line that cover most of the cases. Then a
case is an outlier if it is well beyond these two lines.

This rule often fails for large outliers since often the identity line goes
through or near a large outlier so its residual is near zero. A response that is
far from the bulk of the data in the response plot is a “large outlier” (large
in magnitude). Look for a large gap between the bulk of the data and the
large outlier.

Suppose there is a dot plot of ni cases corresponding to treatment i with
mean μik that is far from the bulk of the data. This dot plot is probably not
a cluster of “bad outliers” if ni ≥ 4 and n ≥ 5p. If ni = 1, such a case may
be a large outlier.

Rule of thumb 10.2. Often an outlier is very good, but more often an
outlier is due to a measurement error and is very bad.

Rule of thumb 10.3. Suppose all ni ≥ 5, and consider the spreads of
the p dot plots. If the maximum spread is no more that twice the mini-
mum spread, then the one-way MANOVA model may be useful for tests
of hypotheses. This rule of thumb is used for the one-way ANOVA model
since the one-way ANOVA F test results will be approximately correct if
the response and residual plots suggest that the remaining one-way ANOVA
model assumptions are reasonable. See Moore (2000, p. 512), where standard
deviations replace the dot plot spreads. If all of the ni ≥ 5, replace the stan-
dard deviations by the ranges of the dot plots when examining the response
and residual plots.

Remark 10.2. The above rules are mainly for linearity and tend to use
marginal models. The marginal models are useful for checking linearity, but
are not very useful for checking other model violations such as outliers in the
error vector distribution. The RMVN DD plot of the residual vectors is a
global method (takes into account the correlations of Y1, ..., Ym) for checking
the error vector distribution, but is not real effective for detecting outliers
since OLS is used to find the residual vectors. A DD plot of residual vec-
tors from a robust MANOVA method might be more effective for detecting
outliers. This remark also applies to the plots used in Section 12.2 for multi-
variate linear regression.

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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The RMVN DD plot of the residual vectors ε̂i is used to check the error
vector distribution, to detect outliers, and to display the nonparametric pre-
diction region developed in Section 12.3. The DD plot suggests that the error
vector distribution is elliptically contoured if the plotted points cluster tightly
about a line through the origin as n → ∞. The plot suggests that the error
vector distribution is multivariate normal if the line is the identity line. If n
is large and the plotted points do not cluster tightly about a line through the
origin, then the error vector distribution may not be elliptically contoured.
Make a DD plot of the continuous predictor variables to check for x-outliers.
These applications of the DD plot for iid multivariate data are discussed in
Olive (2002, 2008, 2013a) and Chapter 5. The RMVN estimator has not
yet been proven to be a consistent estimator for residual vectors, but simu-
lations suggest that the RMVN DD plot of the residual vectors is a useful
diagnostic plot.

Response transformations can also be made as in Section 2.4, but also make
the response plot of Ŷ j versus Y j and use the rules of Section 2.4 on Yj to
linearize the response plot for each of the m response variables Y1, ..., Ym.

Example 10.1. Consider the one-way MANOVA model on the famous
iris data set with n = 150 and p = 3 species of iris: setosa, versicolor, and
virginica. The m = 4 variables are Y1 = sepal length, Y2 = sepal width, Y3 =
petal length, and Y4 = petal width. See Becker et al. (1988). The plots for the
m = 4 response variables look similar, and Figure 10.1 shows the response
and residual plots for Y4. Note that the spread of the three dot plots is similar.
The dot plot intersects the identity line at the sample mean of the cases in
the dot plot. The setosa cases in lowest dot plot have a sample mean of 0.246,
and the horizontal line Y4 = 0.246 is below the dot plots for versicolor and
virginica which have means of 1.326 and 2.026. Hence the mean petal widths
differ for the three species, and it is easier to see this difference in the response
plot than the residual plot. The plots for the other three variables are similar.
Figure 10.2 shows that the DD plot of the residual vectors suggests that the
error vector distribution is elliptically contoured but not multivariate normal.

The DD plot also shows the prediction regions of Section 5.2 computed
using the residual vectors ε̂i. From Section 12.3, if {ε̂|Dε̂(0,Sr) ≤ h} is
a prediction region for the residual vectors, then {y|Dy(ŷf ,Sr) ≤ h} is
a prediction region for yf . For the one-way MANOVA model, a prediction
region for yf would only be valid for an xf which was observed, i.e., for
xf = xj , since only observed values of the categorical predictor variables
make sense. The 90% nonparametric prediction region corresponds to y with
distances to the left of the vertical line MD = 3.2.

R commands for these two figures are shown below and will also show the
plots for Y1, Y2, and Y3. The mpack function manova1w makes the response
and residual plots, while ddplot4 makes the DD plot. The last command
shows that the pvalue = 0 for the one-way MANOVA test discussed in the
following section.

http://dx.doi.org/10.1007/978-3-319-68253-2_12
http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_12
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library(MASS)
y <- iris[,1:4] #m = 4 = number of response variables
group <- iris[,5]
#p = number of groups = number of dot plots
out<- manova1w(y,p=3,group=group) #right click
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Fig. 10.2 DD Plot of the Residual Vectors for Iris Data



300 10 MANOVA

#Stop 8 times
ddplot4(out$res) #right click Stop
summary(out$out) #default is Pillai’s test

10.3 One-Way MANOVA

Using double subscripts will be useful for describing the one-way MANOVA
model. Suppose there are independent random samples of size ni from p
different populations (treatments), or ni cases are randomly assigned to p
treatment groups. Then n =

∑p
i=1 ni and the group sample sizes are ni for

i = 1, ..., p. Assume that m response variables yij = (Yij1, ..., Yijm)T are
measured for the ith treatment group and the jth case (often an individual
or thing) in the group. Hence i = 1, ..., p and j = 1, ..., ni. The Yijk follow
different one-way ANOVA models for k = 1, ...,m. Assume E(yij) = μi and
Cov(yij) = Σε. Hence the p treatments have different mean vectors μi, but
common covariance matrix Σε. (The common covariance matrix assumption
can be relaxed for p = 2 with the appropriate 2 sample Hotelling’s T 2 test.)

The one-way MANOVA is used to test H0 : μ1 = μ2 = · · · = μp. Often
μi = μ + τ i, so H0 becomes H0 : τ 1 = · · · = τ p. If m = 1, the one-
way MANOVA model is the one-way ANOVA model. MANOVA is useful
since it takes into account the correlations between the m response variables.
Performing m ANOVA tests fails to account for these correlations, but can be
a useful diagnostic. The Hotelling’s T 2 test that uses a common covariance
matrix is a special case of the one-way MANOVA model with p = 2. (In
Chapter 9, the notation was different since a case was treated as if it was from
a multivariate location and dispersion model with p measurements for each
of the k = 2 treatments. Now the measurements are treated as m response
variables for a multivariate linear model and there are p treatments. Hence
k and p from Chapter 9 correspond to p to m, respectively, in this chapter.)

Let μi = μ + τ i, where
∑p

i=1 niτ i = 0. The jth case from the ith pop-
ulation or treatment group is yij = μ + τ j + εij , where εij is an error
vector, i = 1, ..., p and j = 1, ..., ni. Let y = μ̂ =

∑p
i=1

∑ni

j=1 yij/n be the
overall mean. Let yi =

∑ni

j=1 yij/ni so τ̂ i = yi − y. Let the residual vector
ε̂ij = yij−yi = yij−μ̂−τ̂ i. Then yij = y+(yi−y)+(yij−yi) = μ̂+τ̂ i+ε̂ij .

Several m × m matrices will be useful. Let Si be the sample covariance
matrix corresponding to the ith treatment group. Then the within sum of
squares and cross products matrix is W = (n1 − 1)S1 + · · · + (np − 1)Sp =
∑p

i=1

∑ni

j=1(yij − yi)(yij − yi)T . Then Σ̂ε = W /(n − p). The treatment or
between sum of squares and cross products matrix is

BT =
p∑

i=1

ni(yi − y)(yi − y)T .

http://dx.doi.org/10.1007/978-3-319-68253-2_9
http://dx.doi.org/10.1007/978-3-319-68253-2_9
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The total corrected (for the mean) sum of squares and cross products matrix
is T = BT + W =

∑p
i=1

∑ni

j=1(yij −y)(yij −y)T . Note that S = T /(n− 1)
is the usual sample covariance matrix of the yij if it is assumed that all n of
the yij are iid so that the μi ≡ μ for i = 1, ..., p.

The one-way MANOVA model is yij = μ + τ i + εij , where the εij are iid
with E(εij) = 0 and Cov(εij) = Σε. The MANOVA table is shown below.

Summary One-Way MANOVA table

Source matrix df

Treatment or Between BT p− 1
Residual or Error or Within W n− p

Total (corrected) T n− 1

If all n of the yij are iid with E(yij) = μ and Cov(yij) = Σε, it can

be shown that A/df
P→ Σε, where A = W ,BT , or T , and df is the corre-

sponding degrees of freedom. Let t0 be the test statistic. Often Pillai’s trace
statistic, the Hotelling Lawley trace statistic, or Wilks’ lambda are used.
Wilks’ lambda

Λ =
|W |

|BT + W | =
|W |
|T | =

|∑p
i=1(ni − 1)Si|
|(n − 1)S| =

|∑p
i=1

∑ni

j=1(yij − yi)(yij − yi)T |
|∑p

i=1

∑ni

j=1(yij − y)(yij − y)T | .

Then to = −[n − 0.5(m + p − 2)] log(Λ) and pval = P (χ2
m(p−1) > t0). Hence

reject H0 if t0 > χ2
m(p−1)(1 − α). See Johnson and Wichern (1988, p. 238).

The four steps of the one-way MANOVA test follow.
i) State the hypotheses H0 : μ1 = · · · = μp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means are
equal. As a textbook convention, use α = 0.05 if α is not given.

Another way to perform the one-way MANOVA test is to get R output.
The default test is Pillai’s test, but other tests can be obtained with the R
output shown below.

summary(out$out) #default is Pillai’s test
summary(out$out, test = "Wilks")
summary(out$out, test = "Hotelling-Lawley")
summary(out$out, test = "Roy")
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Example 10.1, continued. The R output for the iris data gives a Pillai’s
F statistic of 53.466 and pval = 0.
i) H0 : μ1 = · · · = μ4 H1 : not H0

ii) F = 53.466
iii) pval = 0
iv) Reject H0. The means for the three varieties of iris do differ.

Following Mardia et al. (1979, p. 335), let λ1 ≥ λ2 · · · ≥ λm be the eigen-
values of W−1BT . Then 1 + λi for i = 1, ...,m are the eigenvalues of W−1T
and Λ =

∏m
i=1(1 + λi)−1.

Following Fujikoshi (2002), let the Hotelling Lawley trace statistic U =
tr(BT W−1) = tr(W−1BT ) =

∑m
i=1 λi, and let Pillai’s trace statistic V =

tr(BT T−1) = tr(T−1BT ) =
m∑

i=1

λi

1 + λi
. If the yij −μj are iid with common

covariance matrix Σε, and if H0 is true, then under regularity conditions
−[n − 0.5(m + p − 2)] log(Λ) D→ χ2

m(p−1), (n − m − p − 1)U D→ χ2
m(p−1), and

(n − 1)V D→ χ2
m(p−1). Note that the common covariance matrix assumption

implies that each of the p treatment groups or populations has the same
covariance matrix Σi = Σε for i = 1, ..., p, an extremely strong assumption.

A possible alternative method for one-way MANOVA is to use the model
Z = XB + E or

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y111 Y112 · · · Y11m

...
... · · · ...

Y1,n1,1 Y1,n1,2 · · · Y1,n1,m

Y211 Y211 · · · Y21m

...
... · · · ...

Y2,n2,1 Y2,n2,2 · · · Y2,n2,m

...
... · · · ...

Yp,11 Yp,1m · · · Yp,1m

...
... · · · ...

Yp,np,1 Yp,np,2 · · · Yp,np,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 . . . 0
...

...
...

...
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

...
1 0 1 . . . 0
...

...
...

...
1 0 0 . . . 1
...

...
...

...
1 0 0 . . . 1
1 0 0 . . . 0
...

...
...

...
1 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m

⎤

⎥
⎥
⎥
⎦

+ E.

Then X is full rank, where the ith column of X is an indicator for group
i − 1 for i = 2, ..., p, β̂1k = Y pok = μ̂pk for k = 1, ...,m, and

β̂ik = Y i−1,ok − Y pok = μ̂i−1,k − μ̂pk
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for k = 1, ...,m and i = 2, ..., p. Thus testing H0 : μ1 = · · · = μp is equivalent
to testing H0 : LB = 0, where L = [0 Ip−1]. Such tests are discussed in
Section 12.4. Press (2005, p. 262) used the above model.

Then yij = μi + εij and

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μT
p

μT
1 − μT

p

μT
2 − μT

p

...
μT

p−2 − μT
p

μT
p−1 − μT

p

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Remark 10.3. Since the common covariance matrix assumption Cov(εk) =
Σε for k = 1, ..., n is extremely strong, using the bootstrap prediction region
method to test H0 : LB = 0 may be a useful alternative. Take a sample of
size ni with replacement from the ni cases for each group i = 1, 2, ..., p. Let
the (p − 1)m × 1 vector wi = vec(LB̂

∗
i ) = ((μ̂∗

1 − μ̂∗
p)

T , ..., (μ̂∗
p−1 − μ̂∗

p)
T )T

for i = 1, ..., B, where vec(A) is defined below Theorem 12.6. For a robust
test, use wi = ((T ∗

1 − T ∗
p )T , ..., (T ∗

p−1 − T ∗
p )T )T where Ti is a robust location

estimator, such as the coordinatewise median or RMVN location estimator,
applied to the cases in the ith treatment group. Likely need n ≥ 40mp,
n ≥ (m + p)2, and ni ≥ 40m. See Rupasinghe Arachchige Don (2017) and
Rupasinghe Arachchige Don and Olive (2017).

Large sample theory can be also be used to derive a better test. Let Σi

be the nonsingular population covariance matrix of the ith treatment group
or population. To simplify the large sample theory, assume ni = πin, where
0 < πi < 1 and

∑p
i=1 πi = 1. Assume H0 is true, and let μi = μ for i = 1, ..., p.

Then by the multivariate central limit theorem,
√

ni(yi − μ) D→ Nm(0,Σi),

and
√

n(yi − μ) D→ Nm

(

0,
Σi

πi

)

. Let

w =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1 − yp

y2 − yp
...

yp−2 − yp

yp−1 − yp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Then
√

nw
D→ Nm(p−1)(0,Σw) with Σw = (Σij), where Σij =

Cov(
√

n(yi − yp),
√

n(yj − yp)) = Σp

πp
for i �= j, and Σii =

Cov(
√

n(yi − yp)) = Σi

πi
+ Σp

πp
for i = j. Hence

http://dx.doi.org/10.1007/978-3-319-68253-2_12
http://dx.doi.org/10.1007/978-3-319-68253-2_12
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t0 = nwT Σ̂
−1

w w = wT

(
Σ̂w
n

)−1

w
D→ χ2

m(p−1)

as the ni → ∞ if H0 is true. Here

Σ̂w
n

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1

n1
+

Sp

np

Sp

np

Sp

np
. . .

Sp

np
Sp

np

S2

n2
+

Sp

np

Sp

np
. . .

Sp

np
...

...
...

...
Sp

np

Sp

np

Sp

np
. . .

Sp−1

np−1
+

Sp

np

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is a block matrix, where the off-diagonal block entries equal Sp/np and the

ith diagonal block entry is
Si

ni
+

Sp

np
for i = 1, ..., (p − 1). Reject H0 if t0 >

m(p − 1)Fm(p−1),dn
(1 − α), where dn = min(n1, ..., np). It may make sense

to relabel the groups so that np is the largest ni or Sp/np has the smallest
generalized variance of the Si/ni. This test may start to outperform the
one-way MANOVA test if n ≥ (m + p)2 and ni ≥ 20m for i = 1, ..., p.

10.4 Two-Way MANOVA

The two-way MANOVA model is the multivariate generalization of the two-
way ANOVA model. There are m response variables Y1, ..., Ym. There are two
factors A and B. Factor A has a levels, and factor B has b levels. Example
10.2 will illustrate the R output that can be generated for this model.

Definition 10.8. The main effects are A and B. The AB interaction is
not a main effect.

Remark 10.4. If A and B are factors, then there are five possible models.
i) The two-way MANOVA model has terms A, B, and AB.
ii) The additive model or main effects model has terms A and B.
iii) The one-way MANOVA model that uses factor A.
iv) The one-way MANOVA model that uses factor B.
v) The null model does not use any of the three terms A, B, or AB. If the

null model holds, then the factors have no effect on the m response variables
Y1, ..., Ym, or each combination of the ab factor levels has the same effect on
the m response variables.

Example 10.2. This example on producing plastic film is taken from
the R help files and uses data from Krzanowski (1988, p. 381). There are
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m = 3 response variables on the plastic: tear, gloss, and opacity. There are
two explanatory variables rate and additive that have two levels: low and
high. First, the R commands below fit a one-way MANOVA model using rate
as the explanatory variable. The means for the two values of rate appear to
differ, both from the plots and from the small pval of the one-way MANOVA
test.

The output for the two-way MANOVA tests suggest that the interaction
is not needed since pval = 0.3. The two-way MANOVA model is refitted
with the interaction deleted. For this competing model, both factors were
significant.

tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1,
6.3, 6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9,
9.5, 9.4, 9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7,
10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9,
1.9, 5.7, 2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9,
2.7, 1.9)
Y <- cbind(tear, gloss, opacity)
rate <- factor(gl(2,10), labels=c("Low", "High"))
additive <- factor(gl(2, 5, length=20),
labels=c("Low", "High"))

#one way MANOVA model using rate as a predictor
fit <- manova(Y ~ rate )
summary.aov(fit) #univariate ANOVA tables
summary(fit) #MANOVA table with Pillai
summary(fit, test="Wilks") #Wilks’ lambda
summary(fit,test = "Hotelling-Lawley")
summary(fit,test = "Roy")
#for one way MANOVA with df = 1 (p = 2 groups),
#the 4 tests are the same =
#two sample Hotelling’s T^2 test
grp <- as.integer(rate)
out<-manova1w(y=Y,p=2,group=grp)
summary(out$out,test="Hotelling-Lawley")
#for two way MANOVA, the 4 tests seem to be the same
#for df = 1 or p = 2 groups
#two way MANOVA model
fit <- manova(Y ~ rate * additive)
summary.aov(fit) # univariate two way ANOVA tables
summary(fit, test="Wilks") # Wilks’ lambda
summary(fit) # Pillai’s test: the default
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Df Pillai approx F numDf denDf Pr(>F)
rate 1 0.61814 7.5543 3 14 0.00303
additive 1 0.47697 4.2556 3 14 0.02475
rate:additive 1 0.22289 1.3385 3 14 0.30178

#delete the interaction to get the additive model
fit <- manova(Y ~ rate + additive)
summary.aov(fit) # univariate two way ANOVA tables
summary(fit, test="Wilks")#MANOVA with Wilks’ lambda
summary(fit) #Pillai

Df Pillai approx F num Df den Df Pr(>F)
rate 1 0.61316 7.9253 3 15 0.00212
additive 1 0.44616 4.0279 3 15 0.02753

10.5 Summary

1) The multivariate linear model yi = BT xi+εi for i = 1, ..., n has m ≥ 2
response variables Y1, ..., Ym and p predictor variables x1, x2, ..., xp. The ith
case is (xT

i ,yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim). If a constant xi1 = 1 is in

the model, then xi1 could be omitted from the case. The model is written
in matrix form as Z = XB + E. The model has E(εk) = 0 and Cov(εk) =
Σε = (σij) for k = 1, ..., n. Also E(ei) = 0 while Cov(ei,ej) = σijIn for
i, j = 1, ...,m. Then B and Σε are unknown matrices of parameters to be
estimated, and E(Z) = XB while E(Yij) = xT

i βj .
The data matrix W = [X Z] except usually the first column 1 of X is

omitted if xi,1 ≡ 1. The n × m matrix

Z =

⎡

⎢
⎢
⎢
⎣

Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m

⎤

⎥
⎥
⎥
⎦

=
[
Y 1 Y 2 . . . Y m

]
=

⎡

⎢
⎣

yT
1
...

yT
n

⎤

⎥
⎦ .

The n × p matrix

X =

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤

⎥
⎥
⎥
⎦

=
[
v1 v2 . . . vp

]
=

⎡

⎢
⎣

xT
1
...

xT
n

⎤

⎥
⎦

where often v1 = 1.
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The p × m matrix

B =

⎡

⎢
⎢
⎢
⎣

β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m

⎤

⎥
⎥
⎥
⎦

=
[
β1 β2 . . . βm

]
.

The n × m matrix

E =

⎡

⎢
⎢
⎢
⎣

ε1,1 ε1,2 . . . ε1,m

ε2,1 ε2,2 . . . ε2,m

...
...

. . .
...

εn,1 εn,2 . . . εn,m

⎤

⎥
⎥
⎥
⎦

=
[
e1 e2 . . . em

]
=

⎡

⎢
⎣

εT
1
...

εT
n

⎤

⎥
⎦ .

Warning: The ei are error vectors, not orthonormal eigenvectors.
2) The univariate linear model is Yi = xi,1β1 + xi,2β2 + · · ·+ xi,pβp + ei =

xT
i β + ei = βT xi + ei for i = 1, . . . , n. In matrix notation, these n equations

become Y = Xβ + e, where Y is an n × 1 vector of response variables, X
is an n × p matrix of predictors, β is a p × 1 vector of unknown coefficients,
and e is an n × 1 vector of unknown errors.

3) Each response variable in a multivariate linear model follows a univari-
ate linear model Y j = Xβj + ej for j = 1, ...,m, where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

4) In a MANOVA model, yk = BT xk + εk for k = 1, ..., n is written in
matrix form as Z = XB+E. The model has E(εk) = 0 and Cov(εk) = Σε =
(σij) for k = 1, ..., n. Each response variable in a MANOVA model follows
an ANOVA model Y j = Xβj + ej for j = 1, ...,m, where it is assumed that
E(ej) = 0 and Cov(ej) = σjjIn.

5) The one-way MANOVA model is as above, where Y j = Xβj + ej

is a one-way ANOVA model for j = 1, ...,m. Check the model by making m
response and residual plots and a DD plot of the residual vectors ε̂i.

6) The one-way MANOVA model is a generalization of the Hotelling’s
T 2 test from 2 groups to p ≥ 2 groups, assumed to have different means
but a common covariance matrix Σε. Want to test H0 : μ1 = · · · = μp.
This model is a multivariate linear model so there are m response variables
Y1, ..., Ym measured for each group. Each Yi follows a one-way ANOVA model
for i = 1, ...,m.

7) For the one-way MANOVA model, make a DD plot of the residual
vectors ε̂i where i = 1, ..., n. Use the plot to check whether the εi follow a
multivariate normal distribution or some other elliptically contoured distrib-
ution. We want n ≥ (m + p)2 and ni ≥ 10m.

8) For the one-way MANOVA model, write the data as Yijk, where i =
1, ..., p and j = 1, ..., ni. So k corresponds to the kth variable Yk for k =
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1, ...,m. Then Ŷijk = μ̂ik = Y iok for i = 1, ..., p. So for the kth variable, the
means μ1k, ..., μpk are of interest. The residuals are rijk = Yijk − Ŷijk. For
each variable Yk make a response plot of Y iok versus Yijk and a residual plot
of Y iok versus rijk. Both plots will consist of p dot plots of ni cases located
at the Y iok. The dot plots should follow the identity line in the response plot
and the horizontal r = 0 line in the residual plot for each of the m response
variables Y1, ..., Ym. For each variable Yk, let Rik be the range of the ith dot
plot. If each ni ≥ 5, we want max(R1k, ..., Rpk) ≤ 2min(R1k, ..., Rpk). The
one-way MANOVA model may be reasonable for the test in point 9) if the
m response and residual plots satisfy the above graphical checks.

9) The four steps of the one-way MANOVA test follow.
i) State the hypotheses H0 : μ1 = · · · = μp and H1 : not H0.
ii) Get t0 from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ α, reject H0

and conclude that not all of the p treatment means are equal. If pval > α, fail
to reject H0 and conclude that all p treatment means are equal or that there
is not enough evidence to conclude that not all of the p treatment means
are equal. Give a nontechnical sentence as the conclusion, if possible. As a
textbook convention, use α = 0.05 if α is not given.

10) The one-way MANOVA test assumes that the p treatment groups or
populations have the same covariance matrix: Σ1 = · · · = Σp, but the test
has some resistance to this assumption. See points 6) and 8).

10.6 Complements

Many other MANOVA models can be made that are multivariate general-
izations of the corresponding univariate ANOVA models, and the R func-
tion manova can likely fit several of these models. Functions to produce
the response and residual plots as well as the DD plot of the residual vec-
tors should be made. The large sample theory from the literature should be
examined to see which tests are good and robust to nonnormality. See Olive
(2010; 2017a; ch. 5-9) for references on univariate m = 1 ANOVA models.

Fujikoshi (2002) showed that the one-way MANOVA test statistics have an
asymptotic chi-square distribution for a large class of iid error distributions.
See Wakaki et al. (2002) for more results including some for the two-way
MANOVA model. Kakizawa (2009) showed that the Hotelling Lawley, Pillai’s
trace, and Wilks’ Λ tests for some MANOVA models are large sample tests for
a large class of iid error distributions. Similar tests are developed in Chapter
12 for multivariate linear regression.

Hand and Taylor (1987), Huberty and Olejnik (2006), and Khattree and
Naik (1999, ch. 4) are useful reference for MANOVA. Mardia (1971) noted

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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that the one-way MANOVA test based on Pillai’s trace V is robust to non-
normality, especially when all of the treatment sample sizes are the same:
ni ≡ h. Permutation tests offer an alternative. See, for example, Anderson
(2001). Konietschke et al. (2015) proposed bootstrap tests that appear to
perform better than the Wilks’ Λ test.

Aelst and Willems (2011) gave references for robust one-way MANOVA
tests. The FS and FMM estimators used are not yet backed by theory.

Section 9.1 gives two robust methods when p = 2 where the one-way
MANOVA model reduces to a Hotelling’s T 2 test. Two diagnostics for the
one-way MANOVA model are very similar to the robust discriminant analysis
methods of Section 8.9. As a diagnostic, run the classical one-way MANOVA
model on Ubig given in Sections 4.6 and 8.9, where the G groups for discrim-
inant analysis are replaced by the p groups for one-way MANOVA.

Alternatively, let Tj be the coordinatewise median for the jth group. Let
zij = yij − Tj for i = 1, ..., nj and j = 1, ..., p. Then find the RMVN set
Uc for all n zij and the cases in the set. Then run the classical one-way
MANOVA model on the yij corresponding to the cases in the RMVN set. It
is unlikely that the test statistics run on the cleaned data have a limiting χ2

distribution. The output below demonstrates the diagnostics based on Ubig

and Uc.

y<-turtle[,1:3] #need mrobdata
group<-turtle[,4]+1
cleanb <- getubig(y,group)
Yb <- cleanb$Ubig
grpb <- cleanb$grp #m = 3, p = 2 groups
outb <- manova1w(y=Yb,p=2,group=grpb)
#right click Stop 6 times
cleanc <- getuc(y,group)
Yc <- cleanc$Uc
grpc <- cleanc$grp
outc <- manova1w(y=Yc,p=2,group=grpc)
#right click Stop 6 times

Bootstrapping analogs of the one-way MANOVA test is useful. Consider
testing H0 : LB = 0. Take a sample of size ni with replacement from each
group. From the combined sample, find w1 = vec(LB̂

∗
1). Repeat B times to

get a bootstrap sample w1, ...,wB where wi = vec(LB̂
∗
i ). (The vec operator

is described under Theorem 12.6.) Apply the nonparametric prediction region
to the wi and see if 0 is in the region. If L is (p−1)×p, then w is m(p−1)×1,
and we likely need n ≥ 40mp, n ≥ (m+p)2, and ni ≥ 40m. See Remark 10.3,
Rupasinghe Arachchige Don (2017), and Rupasinghe Arachchige Don and
Olive (2017).

Some other tests that assume the different groups have different covariance
matrices are given by Zhang and Liu (2013), and Zhang et al. (2016).

http://dx.doi.org/10.1007/978-3-319-68253-2_9
http://dx.doi.org/10.1007/978-3-319-68253-2_8
http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_8
http://dx.doi.org/10.1007/978-3-319-68253-2_12
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10.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY
USEFUL.

10.1∗. If X is of full rank and least squares is used to fit the MANOVA
model, then β̂i = (XT X)−1XT Y i, and Y i = Xβi + ei. Treating Xβi as a
constant, Cov(Y i,Y j) = Cov(ei,ej) = σijIn. Using this information, show
Cov(β̂i, β̂j) = σij(XT X)−1.

10.2. SAS Institute (1985), pp. 498 - 501 described a one-way MANOVA
model. There are two groups for gender: female and male. There were p = 4
(skull measurements) variables X1 = length, X2 = basilar, X3 = zygomat,
and X4 = postorb. There were n1 = 18 females and n2 = 22 males measured.
Suppose t0 = 0.9567 and pvalue = 0.6566. Here, to was Wilks’ lambda, but
the other three test statistics gave the same pvalue. Do a four-step one-way
MANOVA test.

R Problems

Warning: Use the command source(“G:/mpack.txt”) to download
the programs. See Preface or Section 15.2. Typing the name of the
mpack function, e.g., ddplot, will display the code for the function. Use the
args command, e.g., args(ddplot), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

10.3. The Johnson and Wichern (1988, p. 262) turtle data gives the length,
width, and height of painted turtle shells. There is a sample of 24 female and
a sample of 24 male turtles.

a) The R command for this part makes the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the two plots into Word. Do this
three times, once for each variable. The male turtles tend to be smaller than
the female turtles.

b) The R command for this plot makes a DD plot of the residual vectors
and adds the lines corresponding to the three prediction regions of Section
5.2. The robust cutoff is larger than the semiparametric cutoff. Place the
plot in Word. Do the residual vectors appear to follow a multivariate normal
distribution? (Right click Stop once on the plot.)

Problem 10.4. Use the R commands for this problem to obtain output
for Example 10.2.

http://lagrange.math.siu.edu/Olive/mrsashw.txt
http://dx.doi.org/10.1007/978-3-319-68253-2_5


Chapter 11
Factor Analysis

Factor analysis gives an approximation of the dispersion matrix

Σ̂ ≈ L̂
T
L̂ + Ψ̂ ,

so Σ̂ ≈ L̂
T
L̂ if Ψ̂ is small. Factor analysis clusters variables into groups

called factors and suggests that the factors can explain the dispersion more
simply than X1, ...,Xp.

11.1 Introduction

Factor analysis gives an approximation of the dispersion matrix in terms
of m < p unobservable random quantities called factors. Typically, factor
analysis is useful if the p random variables can be placed into a few groups
of variables with fairly high correlation such that the variables within the
group are not highly correlated with variables outside of the group. Let m be
the number of groups. Then the hope is that the kth group can be explained
by the kth factor. For example, if the p = 6 random variables consist of
three head measurements and height, arm length, and leg length, then per-
haps the three head measurements are highly correlated and the three other
measurements are highly correlated. Then there would be m = 2 groups
corresponding to a “head measurement” factor and a “length” factor.

Sometimes candidate groups can be spotted using the correlation matrix
R = (rij): join the two variables with the highest absolute correlation |rij |
into a group, provided |rij | ≥ c. The other p− 2 variables form groups of size
1. Then add the variable with the highest |rij | ≥ c to a group. Continue the
process. If all |rij | < c, then there will be p groups each with one variable.
Use c = 0.9, 0.8, 0.7, etc.

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 11

311
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1 2 3 4 5 6

1 Classics 0.83 0.78 0.70 0.66 0.63
2 French 0.67 0.67 0.65 0.57

3 English 0.64 0.54 0.51
4 Math 0.45 0.51

5 Discrimination 0.40

6 Music

Example 11.1. Spearman (1904), the starting point of factor analysis,
gave the correlation matrix for examination scores in six subjects for 33
students, shown in the above table. See Kendall (1980, p. 47). If 0 < c ≤ 0.4,
put all six variables in one group. If c = 0.83, put Classics and French in
group 1 while all other variables have their own group. If 0.7 < c ≤ 0.78,
let group 1 = Classics, French, and English = “language factor,” group 2 =
Math, group 3 = Discrimination, and group 4 = music. If 0.67 ≤ c ≤ 0.7, let
group 1 = Classics, French, English, and Math, group 2 = Discrimination,
and group 3 = music. If c = 0.66, let group 1 be all variables except Music
and group 2 = Music.

Some notation is needed before presenting factor analysis models. When
the eigenvalue λi of Σ is unique, there are two standardized eigenvectors: ei

and −ei. The literature sometimes states that the standardized eigenvectors
are “unique up to sign.” Assume λ1 > λ2 > · · · > λp > 0. If Σ̂

P→ cΣ
for some positive constant c, then by the spectral decomposition theorem,
Σ̂ =

∑p
i=1 λ̂iêiê

T
i

P→ c
∑p

i=1 λieie
T
i = cΣ, and êiê

T
i

P→ eie
T
i for i = 1, ..., p

by Theorem 6.2 since eie
T
i = (−ei)(−ei)T .

Definition 11.1. Suppose there are p random variables, let the p × 1
random vector x = (X1, ...,Xp)T and assume that m factors are used.

a) A population factor analysis approximation of the dispersion matrix is
Σ ≈ LLT + Ψ ≡ ΣF , where the p × m matrix of factor loadings L = (lij),
and Ψ = diag(ψ1, ..., ψp) is a diagonal matrix so that the approximation is
exact for the diagonal elements: Σii = ΣF,ii.

b) A sample factor analysis approximation of the dispersion matrix is

Σ̂ ≈ L̂L̂
T

+ Ψ̂ ≡ Σ̂F , where the p × m matrix of factor loadings L̂ = (lij),
and Ψ̂ = diag(ψ̂1, ..., ψ̂p) is a diagonal matrix so that the approximation is

exact for the diagonal elements: Σ̂ii = Σ̂F,ii. Hence (L̂L̂
T
)ii + ψ̂i = Σ̂ii.

The ith estimated communality ĥ2
i = l̂2i1 + l̂2i2 + · · · + l̂2im for i = 1, ..., p.

The ψ̂i are called uniquenesses. If Γ is an orthogonal matrix, then L̂
∗

=
L̂Γ is also a matrix of estimated factor loadings, and L̂L̂

T
= L̂

∗
(L̂

∗
)T .

The estimated communalities are unaffected by the choice of Γ since ĥ2
i =

(L̂L̂
T
)ii = [L̂

∗
(L̂

∗
)T ]ii.

http://dx.doi.org/10.1007/978-3-319-68253-2_6
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Several methods of factor analysis have been proposed. The principal com-
ponent factor analysis and maximum likelihood factor analysis models are
special cases of the orthogonal factor analysis model.

Definition 11.2. For principal component factor analysis, the ith column
of the p × m matrix L̂ is

√
λ̂iêi where m < p. Then

L̂ =
[√

λ̂1ê1

√
λ̂2e2 . . .

√
λ̂mêm

]
.

Then Σ̂ =
∑m

i=1 λ̂iêiê
T
i +

∑p
i=m+1 λ̂iêiê

T
i = L̂L̂

T
+

∑p
i=m+1 λ̂iêiê

T
i ≈

L̂L̂
T

+ Ψ̂ ≡ Σ̂F where Ψ̂ = diag(ψ̂1, ..., ψ̂p) and Σ̂ii = Σ̂F,ii. Hence

(L̂L̂
T
)ii + ψ̂i = Σ̂ii. The ith column

√
λ̂iêi of L̂ gives the estimated factor

loadings for factor Fi. These estimated factor loadings do not change as m is
increased.

Definition 11.3. The orthogonal factor analysis model is x−μ = LF +ε
where the p× 1 random vector x = (X1, ...,Xp)T , the p×m matrix of factor
loadings L = (lij), the m × 1 random vector of common factors is F =
(F1, ..., Fm)T and the p × 1 error vector is ε = (ε1, ..., εp)T . The εi are called
errors or specific factors. The dispersion structure is Σ ≈ LLT + Ψ = ΣF

with equality for the diagonal elements. Hence Σii = l2i1+l2i2+· · ·+l2im+ψi =
h2

i + ψi where h2
i = l2i1 + l2i2 + · · · + l2im is called the ith communality. The

loading of the ith variable on the jth factor = lij . Note that

X1 − μ1 = l11F1 + l12F2 + · · · + l1mFm + ε1

X2 − μ2 = l21F1 + l22F2 + · · · + l2mFm + ε2

...
...

Xp − μp = lp1F1 + lp2F2 + · · · + lpmFm + εp.

Data often does not have this structure, so an important question is
whether the factor analysis structure is reasonable. Note that if Σ is the
covariance matrix, then V (Xi) = σii = Σii = h2

i + ψi. L,F , ε, and μ are
unobservable. When Σ is the covariance matrix, assume that E(F ) = 0,
Cov(F ) = Im, E(ε) = 0, Cov(ε) = Ψ , and that F and ε are independent.
Then Cov(x,F ) = L or Cov(Xi, Fj) = lij , and Σ = LLT + Ψ = ΣF .

Rule of thumb 11.1. The fact that Cov(Xi, Fj) = lij and that different
methods of factor analysis tend to give similar results means that the factor
analysis output is interpreted much like PCA output, especially when the
principal component factor analysis method is used.
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a) Factor analysis output is a lot like PCA output, but replace PC1, ...,

PCp by Factor 1, ..., Factor m.
Factor 1 Factor 2 · · · Factor m

L̂1 L̂2 · · · L̂m

b) To try to explain Factor j, look at entries in L̂j that are large in
magnitude and ignore entries close to zero. Sometimes only one entry is large.
Sometimes all of the large entries have approximately the same size and sign,
then the Factor is interpreted as an average of these entries. If all of the large
entries have approximately the same size but different signs, then the Factor
is interpreted as the sum of the variables with the positive sign − the sum
of the variables with a minus sign. Thus if exactly two entries are of similar
large magnitude but of different sign, the Factor is interpreted as a difference
of the two entrees. If there are k ≥ 2 large entrees that differ in magnitude,
then the Factor is interpreted as a linear combination of the corresponding
variables.

c) The proportion of variance explained and cumulative proportion of vari-
ance explained are interpreted as for PCA. Use the k factor model if the pro-
portion of the variance explained by the first k Factors is larger than some
percentage such as 50%, 60%, 70%, 80%, or 90%.

If Γ is an orthogonal matrix, then L̂
∗

= L̂Γ is also a matrix of estimated
factor loadings. This multiplication corresponds to a rotation. The varimax
and promax rotations seek Γ̂ such that L̂

∗
= L̂Γ̂ has loadings that are

easier to interpret than the loadings of L̂. The promax rotation attempts to
produce loading with a lot of zeroes. Then variables with nonzero loadings
are “important.” Hence Rule of thumb 11.1 is often easier to apply after
a varimax or promax rotation. The varimax rotation is orthogonal, but the
promax rotation is oblique (nonorthogonal), and thus the approximation Σ̂ ≈
L̂

T
L̂ + Ψ̂ is often not good if L̂ is from the promax rotation.

Rule of thumb 11.2. To use factor analysis, assume the DD plot and
subplots of the scatterplot matrix are linear. Typically, Σ̂ = R and stan-
dardized data are used. We want n ≥ 10p for classical factor analysis and
n ≥ 20p for robust factor analysis that uses FCH, RFCH, or RMVN. For
classical factor analysis, use the correlation matrix R instead of the covari-
ance matrix S if maxi=1,...,p S2

i /mini=1,...,p S2
i > 2. If S is used, also do a

factor analysis using R. We want the proportion of the trace explained by
the first m factors =

∑m
i=1 λ̂i/

∑p
j=1 λ̂j =

∑m
i=1 λ̂i/tr(Σ̂) > 0.7. We want

m < min(10, p). Suppose (T, Σ̂) is the estimator of multivariate location and
dispersion. Make a plot of Di(T, Σ̂F ) versus Di(T, Σ̂) with the identity line
that has unit slope and zero intercept added as a visual aid. If Σ̂F is an
adequate approximation of Σ̂, then the plotted points should cluster tightly
about the identity line. See Figure 11.1.

Definition 11.4. Principal axis factor analysis or principal factor factor
analysis replaces the correlation matrix R = (rij) by RP = R + diag(ĉ1 −
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r11, ..., ĉp − rpp) where ĉi is an estimated communality. Hence the 1s on the
diagonal of R are replaced by the ĉi on the diagonal of RP . There are three
common methods. a) Use ĉi = ĥ2

i from the principal component factor analy-
sis. b) Use the “squared multiple correlation coefficients” ĉi = R2

i = 1−1/rii

where rii is the ith diagonal element of R−1 (the rii are partial correlations:
see the second paragraph after Rule of thumb 2.1). c) The iterated principal
factor method: use a) as the starting point: the ĉi1 are the estimated commu-
nalities from the principal component factor analysis. The factorization will
produce estimated communalities ĉi2. Iterate until the estimated communal-
ities converge, usually after a few iterations.

Since R and the generalized correlation matrix based on the FCH, RFCH,
and RMVN estimator converge in distribution to the population correlation
matrix ρ, the robust and classical principal axis factor analyses should give
similar results if n is large and the data is iid from a large class of ellip-
tically contoured distributions for methods a) and b) above. This result is
conjectured to hold for method c).

Definition 11.5. Maximum likelihood factor analysis uses

Σ̂ ≈ L̂L̂
T

+ Ψ̂ ≡ Σ̂F

where L̂ and Ψ̂ are maximum likelihood estimators of L and Ψ assuming
a multivariate normal likelihood and m factors, subject to L̂

T
Ψ̂

−1
L̂ being

diagonal.

Johnson and Wichern (1988, p. 395) suggested that if Σ̂ is the correlation
matrix R, then the elements of R− Σ̂F tend to be smaller for the maximum
likelihood method than for the principal component method. If this result is
true, then the maximum likelihood method is robust to normality. In gen-
eral, factor analysis methods are used to approximate R or S, and if the
factor method was not robust to nonnormality, then the method would not
be popular since multivariate normal data sets are rather rare.

Remark 11.1. A k factor model makes sense if the degrees of freedom
d ≥ 0 where d = 0.5(p − k)2 − 0.5(p + k).

11.2 Robust Factor Analysis

Robust factor analysis can be done using the FCH, RFCH, or RMVN disper-
sion estimator as Σ̂. Under (E1) the robust factor analysis has Σ̂

P→ cΣ =
dCov(x) while S

P→ cXΣ = Cov(x). If the generalized correlation matrix

is used as Σ̂, then the classical and robust methods both satisfy Σ̂
P→ ρ.

The RMVN method is easy to program since it is a classical factor analysis
applied to the RMVN subset U . See Definition 4.11 and Section 4.6.

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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As a diagnostic, run the factor analysis method on the RMVN set U .
This method is backed by theory for the principal component factor analysis
method, and for at least two of the principal axis factor analysis methods, (a)
and b) in Definition 11.4), for a large class of elliptically contoured distribu-
tions. For the maximum likelihood factor analysis method, using the RMVN
set U is currently only backed by theory for multivariate normal data. We
need theory proving the conjecture that the maximum likelihood method
works for a large class of elliptically contoured distributions.

Example 11.2. The Venables and Ripley (2003) MASS library func-
tion factanal computes maximum likelihood factor analysis. The default
appears to use the correlation matrix. The R help files make the following
artificial data set. The plot command shows that factor 1 loads high on vari-
ables 1 and 2 as does the column under “Factor 1.” The “uniquenesses” are
the ψ̂i.

v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)

v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)

v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6)

v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)

v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)

v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)

x <- cbind(v1,v2,v3,v4,v5,v6); cor(x)

v1 v2 v3 v4 v5 v6

v1 1.0000 0.9393 0.5129 0.4320 0.4665 0.4086

v2 0.9393 1.0000 0.4124 0.4084 0.4364 0.4326

v3 0.5129 0.4124 1.0000 0.8771 0.5129 0.4320

v4 0.4320 0.4084 0.8771 1.0000 0.4320 0.4323

v5 0.4665 0.4364 0.5129 0.4320 1.0000 0.9473

v6 0.4086 0.4326 0.4320 0.4323 0.9473 1.0000

out1 <- factanal(x, factors = 3)

plot(out1$loadings[,1]); out1

Uniquenesses:v1 v2 v3 v4 v5 v6

0.005 0.101 0.005 0.224 0.084 0.005

Loadings:

Factor1 Factor2 Factor3

v1 0.944 0.182 0.267

v2 0.905 0.235 0.159

v3 0.236 0.210 0.946

v4 0.180 0.242 0.828

v5 0.242 0.881 0.286

v6 0.193 0.959 0.196

Factor1 Factor2 Factor3

SS loadings 1.893 1.886 1.797

Proportion Var 0.316 0.314 0.300
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Cumulative Var 0.316 0.630 0.929

#used varimax rotation

#factor 1 is almost an average of v1 and v2

#factor 2 is almost an average of v5 and v6

#factor 3 is almost an average of v3 and v4

out2 <- factanal(x, factors = 3, rotation = "promax")

out2

Uniquenesses: v1 v2 v3 v4 v5 v6

0.005 0.101 0.005 0.224 0.084 0.005

Loadings: Factor1 Factor2 Factor3

v1 0.985

v2 0.951

v3 1.003

v4 0.867

v5 0.910

v6 1.033

Factor1 Factor2 Factor3

SS loadings 1.903 1.876 1.772

Proportion Var 0.317 0.313 0.295

Cumulative Var 0.317 0.630 0.925

##promax rotation tries to give 0 loadings to lots of

##variables in the factor

Example 11.3. Factor analysis can also be performed by supplying a
covariance matrix or a correlation matrix. As a diagnostic, supply the RMVN
dispersion matrix or the RMVN generalized correlation matrix. The following
R covariance matrix was used. The program can be run with 1 factor, then 2,
..., k. R gives a test for whether the j factors are significant. Sometimes pvalue
< α seems to suggest that the j factors are inadequate, as in this example,
but sometimes pvalue < α seems to suggest that j factors are adequate. See
Example 11.5. Use α = 0.05 or 0.01. See output below.

out1 <- factanal(factors = 1, covmat=ability.cov)

out1

Uniquenesses:

general picture blocks maze reading vocab

0.535 0.853 0.748 0.910 0.232 0.280

Loadings: Factor1

general 0.682

picture 0.384

blocks 0.502

maze 0.300

reading 0.877

vocab 0.849
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Factor1

SS loadings 2.443

Proportion Var 0.407

Test of the hypothesis that 1 factor is sufficient.

The chi square statistic is 75.18 on 9 degrees of

freedom. The p-value is 1.46e-12

out2 <- factanal(factors = 2, covmat=ability.cov)

out2

Uniquenesses:

general picture blocks maze reading vocab

0.455 0.589 0.218 0.769 0.052 0.334

Loadings: Factor1 Factor2

general 0.499 0.543

picture 0.156 0.622

blocks 0.206 0.860

maze 0.109 0.468

reading 0.956 0.182

vocab 0.785 0.225

Factor1 Factor2

SS loadings 1.858 1.724

Proportion Var 0.310 0.287

Cumulative Var 0.310 0.597

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 6.11 on 4 degrees of

freedom. The p-value is 0.191.

##Seem to want pvalue > 0.01 to suggest that there

##are enough factors.

Example 11.4. The Buxton (1920) data has five massive outliers for the
variables len = head length and buxy = height. Supplying the RMVN dis-
persion matrix will still use all n cases. Using the RMVN set U does not use
all n cases, so the test statistic for the number of factors changes.

z <- cbind(buxx,buxy) #Outliers ruin the FA.

covhat <- var(z)

out2 <- factanal(factors = 2, covmat=covhat)

out2 #out2 <- factanal(z,factors = 2) gives

#the same result

Uniquenesses:

len nasal bigonal cephalic buxy

0.018 0.005 0.992 0.982 0.005
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Loadings:

Factor1 Factor2

len -0.983 0.123

nasal 0.251 0.965

bigonal

cephalic -0.106

buxy 0.996

Factor1 Factor2

SS loadings 2.029 0.969

Proportion Var 0.406 0.194

Cumulative Var 0.406 0.600

The degrees of freedom for the model is 1 and the fit

was 0.0125.

#The following command lets you examine a different

#rotation.

update(out2,rotation="promax")

rcovhat <- covrmvn(z)$cov #Outlier Resistant Method.

rout2 <- factanal(factors = 2, covmat=rcovhat)

rout2 #The program can make a correlation matrix

#given a scaled covariance matrix.

Uniquenesses:

len nasal bigonal cephalic buxy

0.412 0.884 0.999 0.005 0.005

Loadings:

Factor1 Factor2

len -0.760 0.102

nasal 0.338

bigonal

cephalic 0.997

buxy 0.154 0.986

Factor1 Factor2

SS loadings 1.598 1.097

Proportion Var 0.320 0.219

Cumulative Var 0.320 0.539

The degrees of freedom for the model is 1 and the fit

was 0.0197.

#Robust Factor Analysis with RMVN Subset U

u <- getu(z)$U

rout3 <- factanal(u,factors = 2)

rout3
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#The change in the output is the test statistic.

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 1.46 on 1 degree of

freedom. The p-value is 0.227.

Next the outliers are deleted, and the robust and classical maximum likeli-
hood methods gave similar results. Note that the low loadings that differ for
the two methods can likely be set to 0 when interpreting the factors. So Fac-
tor 1 loadings are roughly a difference of length and cephalic, while Factor 2
loadings are roughly buxy + 0.37 nasal. The robust method has about the
same Factor 2 loadings for the clean data and the outlier data. For Factor 1
loadings, length and cephalic both have high loadings with opposite signs for
the clean data and outlier data.

zc <- z[-c(61,62,63,64,65),] #delete outliers

uc <- getu(zc)$U #robust method on cleaned data

rout4 <- factanal(uc,factors=2); rout4

Uniquenesses:

len nasal bigonal cephalic buxy

0.005 0.858 0.999 0.437 0.005

Loadings:Factor1 Factor2

len 0.997

nasal -0.102 0.362

bigonal

cephalic -0.740 0.126

buxy 0.997

Factor1 Factor2

SS loadings 1.552 1.144

Proportion Var 0.310 0.229

Cumulative Var 0.310 0.539

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 2.36 on 1 degree of

freedom. The p-value is 0.124.

outc <- factanal(zc,factors=2)

outc #classical method on cleaned data

Uniquenesses:

len nasal bigonal cephalic buxy

0.005 0.853 0.966 0.484 0.005

Loadings:Factor1 Factor2

len 0.995

nasal 0.383

bigonal 0.185

cephalic -0.718

buxy 0.995
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Factor1 Factor2

SS loadings 1.545 1.143

Proportion Var 0.309 0.229

Cumulative Var 0.309 0.538

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 8 on 1 degree of freedom.

The p-value is 0.00468.

Example 11.5. The output below is for a factor analysis of the Hebbler
(1847) data from the 1843 Prussia census. Sometimes if the wife or husband
was not at the household, then s/he would not be counted. X1 = pop = pop-
ulation of the district in 1843, X2 = mmen= number of married civilian men
in the district, X3 = mwmn= number of women married to civilians in the
district, X4 =mmilmen= number of married military men in the district,
and X5 =milwmn= number of women married to military men in the dis-
trict.

The maximum likelihood factor analysis was run using all of the data and
the RMVN set U . Both analyses are very similar and suggest that Factor 1
is the average of the first three variables while Factor 2 is the average of the
last two variables.

library(MASS)

out<-factanal(marry,factors=2,rotation="promax")

Uniquenesses:

pop mmen mwmn mmilmen milwmn

0.010 0.005 0.005 0.005 0.005

Loadings:

Factor1 Factor2

pop 0.986

mmen 1.003

mwmn 1.003

mmilmen 0.965

milwmn 0.958

Factor1 Factor2

SS loadings 2.995 1.850

Proportion Var 0.599 0.370

Cumulative Var 0.599 0.969

Factor Correlations:

Factor1 Factor2

Factor1 1.000 -0.496

Factor2 -0.496 1.000

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 88.11 on 1 degree of

freedom. The p-value is 6.19e-21.
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u<-getu(marry)$U #Use RMVN set U.

outr<-factanal(u,factors=2,rotation="promax")

Uniquenesses:

pop mmen mwmn mmilmen milwmn

0.011 0.005 0.005 0.005 0.005

Loadings:

Factor1 Factor2

pop 1.005

mmen 0.994

mwmn 0.993

mmilmen 0.995

milwmn 0.988

Factor1 Factor2

SS loadings 2.984 1.967

Proportion Var 0.597 0.393

Cumulative Var 0.597 0.990

Factor Correlations:

Factor1 Factor2

Factor1 1.000 -0.427

Factor2 -0.427 1.000

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 41.17 on 1 degree of

freedom. The p-value is 1.39e-10.

#Now a very small pvalue seems good.

z <- scale(marry)

zu <- scale(u)

biplot(out$loadings[,1:2],z)

biplot(outr$loading[,1:2],zu)

Biplots, not shown, can also be useful. The last two R commands above
can be used to make biplots. With the varimax rotation, Σ̂F ≈ R, but
this approximation is not good for the promax oblique rotation. See Figure
11.1, the DD plot using R and Σ̂F using varimax, made with the R com-
mands below.

out<-factanal(marry,factors=2) #varimax is default

Lhat <- out$loadings[,1:2]

sigf <- Lhat

cor(marry)-sigf

center <- 0*1:dim(marry)[2]

cov <- cor(marry)
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Fig. 11.1 DD Plot of MD = Di(0,R) Versus FD = Di(0, Σ̂F )

z<-scale(marry)

MD <- sqrt(mahalanobis(z, center, cov))

FD <- sqrt(mahalanobis(z, center, sigf))

plot(MD, FD)

abline(0, 1)

11.3 Summary

1) Factor analysis is used to get Σ̂ ≈ L̂L̂
T

+ Ψ̂ = Σ̂F . Factor analysis
clusters variables into groups called factors and suggests that the m < p
factors explain the dispersion more simply than X1, ...,Xp. L̂ = [L̂1, ..., L̂m]
is the matrix of factor loadings.

2) Factor analysis output is a lot like PCA output, but replace PC1, ...,

PCp by Factor 1, ..., Factor m.
Factor 1 Factor 2 · · · Factor m

L̂1 L̂2 · · · L̂m

3) To try to explain Factor j, look at entries in L̂j that are large in
magnitude and ignore entries close to zero. Sometimes only one entry is large.
Sometimes all of the large entries have approximately the same size and sign,
then the Factor is interpreted as an average of these entrees. If all of the large
entries have approximately the same size but different signs, then the Factor
is interpreted as the sum of the variables with the positive sign − the sum
of the variables with a minus sign. Thus if exactly two entries are of similar
large magnitude but of different sign, the Factor is interpreted as a difference
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of the two entrees. If there are k ≥ 2 large entrees that differ in magnitude,
then the Factor is interpreted as a linear combination of the corresponding
variables.

4) The proportion of variance explained and cumulative proportion of
variance explained are interpreted as for PCA. Use the k factor model if the
proportion of the variance explained by the first k factors is larger than some
percentage such as 50%, 60%, 70%, 80%, or 90%.

5) For a k factor model, we want the degrees of freedom d ≥ 0 where
d = 0.5(p − k)2 − 0.5(p + k).

6) If the 1 factor model is not adequate, R will give a test for whether a k
factor model is sufficient. Perhaps a k factor model with pval < 0.05 is not
sufficient: more factors are needed, while a k factor model with pval > 0.05
is sufficient.

7) Let Γ̂ be an orthogonal matrix. Then L̂Γ L̂
T

Γ = L̂Γ̂ Γ̂
T
L̂

T
= L̂L̂

T
.

The varimax and promax rotations seek Γ̂ such that L̂
∗ ≡ L̂Γ = L̂Γ̂ has

loadings that are easier to interpret than the loadings of L̂. The promax
rotation attempts to produce loading with a lot of zeroes.

11.4 Complements

Brown et al. (2012) is a useful reference for factor analysis. Kosfeld (1996) did
factor analysis with the DGK estimator. Pison et al. (2003) gave references
for robust methods of factor analysis. The practical plug in estimators in the
literature are not yet backed by theory and should be replaced by RMVN or
RFCH.

Hastie et al. (2009, p. 560) noted that independent component analysis is
approximately factor analysis with a rotation. Nordhausen and Tyler (2015)
suggested that robust plug in estimators tend not to work for independent
component analysis.

11.5 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

out <- factanal(factors = 2, covmat=Harman23.cor,

rotation="promax")

out (Output for 11.1.)

Loadings:

Factor1 Factor2
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height 0.872

arm.span 0.973

forearm 0.938

lower.leg 0.876

weight 0.961

bitro.diameter 0.803

chest.girth 0.796

chest.width 0.125 0.611

Factor1 Factor2

SS loadings 3.375 2.589

Proportion Var 0.422 0.324

Cumulative Var 0.422 0.745

11.1∗. The above output is for the factor analysis using an R data set with
a correlation matrix of eight physical measurements on 305 girls between ages
seven and seventeen.

a) What is the cumulative variance explained by the two factors?
b) Which factor has a nonzero loading for weight?
c) Explain Factor 2.

factanal(marry,factors=2,rotation="promax")

Uniquenesses: pop mmen mwmn mmilmen milwmn

0.010 0.005 0.005 0.005 0.005

Loadings:Factor1 Factor2 (Output for 11.2.)

pop 0.986

mmen 1.003

mwmn 1.003

mmilmen 0.965

milwmn 0.958

Factor1 Factor2

SS loadings 2.995 1.850

Proportion Var 0.599 0.370

Cumulative Var 0.599 0.969

11.2. The above output is for a factor analysis of the Hebbler (1847) data
from the the 1843 Prussia census. Sometimes if the wife or husband was not
at the household, then s/he would not be counted. X1 = pop = population
of the district in 1843, X2 = mmen = number of married civilian men in
the district, X3 = mwmn = number of women married to civilians in the
district, X4 = mmilmen = number of married military men in the district,
and X5 = milwmn = number of women married to military men in the
district. a) What is the cumulative variance explained by the two factors?

b) Explain Factor 1.
c) Explain Factor 2.
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Uniquenesses: (Output for Problem 11.3)

age breadth cephalic circum headht height len

0.005 0.005 0.005 0.142 0.005 0.303 0.005

size cbrainy

0.005 0.366

Loadings:Factor1 Factor2 Factor3 Factor4

log(age) 1.026

breadth 0.874 0.461 -0.142

cephalic -0.115 1.020

circum 0.849 0.113

headht 0.965

height 0.202 0.597 0.204

len 1.109 -0.363 -0.156

size 0.805 0.231

brainwt 0.642 -0.262 0.296

Factor1 Factor2 Factor3 Factor4

SS loadings 3.833 1.491 1.389 1.161

Proportion Var 0.426 0.166 0.154 0.129

Cumulative Var 0.426 0.592 0.746 0.875

11.3. The above output is for the factor analysis of the Gladstone (1905)
data. The variables included log(age) and height and seven head measure-
ments breadth, cephalic, circum, headht, len, size, and brain weight.

a) What is the cumulative variance explained by the four factors?
b) Which factor has a nonzero loading for log(age)?
c) Explain Factor 3.

R Problem

Note: For the following problem, the R commands can be copied and
pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

11.4. The Buxton data has five massive outliers in variables len and buxy
= height.

a) The R commands for this part do a factor analysis on the Buxton
data, likely using the sample correlation matrix obtained from the sample
covariance matrix. Copy and paste the output into Word.

i) Which variables have nonzero loadings for factor 1?
ii) Which variables have nonzero loadings for factor 2?
iii) What is the cumulative variance explained by the two factors?
b) The R commands for this part do a factor analysis on the Buxton data

using the RMVN dispersion matrix, likely using a robust correlation matrix.
Copy and paste the output into Word.

i) Which variables have nonzero loadings for factor 1?
ii) Which variables have nonzero loadings for factor 2?
iii) What is the cumulative variance explained by the two factors?

http://lagrange.math.siu.edu/Olive/mrsashw.txt


Chapter 12
Multivariate Linear Regression

This chapter will show that multivariate linear regression with m ≥ 2 response
variables is nearly as easy to use, at least if m is small, as multiple linear
regression which has 1 response variable. For multivariate linear regression,
at least one predictor variable is quantitative. Plots for checking the model,
including outlier detection, are given. Prediction regions that are robust to
nonnormality are developed. For hypothesis testing, it is shown that the
Wilks’ lambda statistic, Hotelling Lawley trace statistic, and Pillai’s trace
statistic are robust to nonnormality.

12.1 Introduction

Definition 12.1. The response variables are the variables that you want
to predict. The predictor variables are the variables used to predict the
response variables.

Definition 12.2. The multivariate linear regression model

yi = BTxi + εi

for i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor vari-
ables x1, x2, ..., xp where x1 ≡ 1 is the trivial predictor. The ith case is
(xT

i ,yT
i ) = (1, xi2, ..., xip, Yi1, ..., Yim) where the 1 could be omitted. The

model is written in matrix form as Z = XB + E where the matrices are
defined below. The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for
k = 1, ..., n. Then the p × m coefficient matrix B =

[
β1 β2 . . . βm

]
and the

m × m covariance matrix Σε are to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj . The εi are assumed to be iid. Multiple linear regression
corresponds to m = 1 response variable and is written in matrix form as

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 12
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Y = Xβ + e. Subscripts are needed for the m multiple linear regression mod-
els Y j = Xβj + ej for j = 1, ...,m where E(ej) = 0. For the multivariate
linear regression model, Cov(ei,ej) = σij In for i, j = 1, ...,m where In is
the n × n identity matrix.

Notation. The multiple linear regression model uses m = 1. The
multivariate linear model yi = BTxi + εi for i = 1, ..., n has m ≥ 2, and
multivariate linear regression and MANOVA models are special cases. See
Definition 10.2. This chapter will use x1 ≡ 1 for the multivariate linear regres-
sion model. The multivariate location and dispersion model is the spe-
cial case where X = 1 and p = 1.

The data matrix W = [X Z] except usually the first column 1 of X is
omitted for software. The n × m matrix

Z =

⎡

⎢
⎢
⎢
⎣

Y1,1 Y1,2 . . . Y1,m

Y2,1 Y2,2 . . . Y2,m

...
...

. . .
...

Yn,1 Yn,2 . . . Yn,m

⎤

⎥
⎥
⎥
⎦

=
[
Y 1 Y 2 . . . Y m

]
=

⎡

⎢
⎣

yT
1
...

yT
n

⎤

⎥
⎦ .

The n × p design matrix of predictor variables is

X =

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤

⎥
⎥
⎥
⎦

=
[
v1 v2 . . . vp

]
=

⎡

⎢
⎣

xT
1
...

xT
n

⎤

⎥
⎦

where v1 = 1.
The p × m matrix

B =

⎡

⎢
⎢
⎢
⎣

β1,1 β1,2 . . . β1,m

β2,1 β2,2 . . . β2,m

...
...

. . .
...

βp,1 βp,2 . . . βp,m

⎤

⎥
⎥
⎥
⎦

=
[
β1 β2 . . . βm

]
.

The n × m matrix

E =

⎡

⎢
⎢
⎢
⎣

ε1,1 ε1,2 . . . ε1,m
ε2,1 ε2,2 . . . ε2,m
...

...
. . .

...
εn,1 εn,2 . . . εn,m

⎤

⎥
⎥
⎥
⎦

=
[
e1 e2 . . . em

]
=

⎡

⎢
⎣

εT1
...

εTn

⎤

⎥
⎦ .

Considering the ith row of Z,X, and E shows that yT
i = xT

i B + εTi .

http://dx.doi.org/10.1007/978-3-319-68253-2_10
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Warning: The ei are error vectors, not orthonormal eigenvectors.

Definition 12.3. In the multiple linear regression model, m = 1 and

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei (12.1)

for i = 1, . . . , n. In matrix notation, these n equations become

Y = Xβ + e, (12.2)

where Y is an n × 1 vector of response variables, X is an n × p matrix of
predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Equivalently,

⎡

⎢
⎢
⎢
⎣

Y1

Y2

...
Yn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

. . .
...

xn,1 xn,2 . . . xn,p

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

β1

β2

...
βp

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

e1
e2
...

en

⎤

⎥
⎥
⎥
⎦

. (12.3)

The ei are iid with zero mean and variance σ2, and multiple linear regression
is used to estimate the unknown parameters β and σ2.

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ...,m where it is
assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors correspond-
ing to the jth response are uncorrelated with variance σ2

j = σjj . Notice that
the same design matrix X of predictors is used for each of the m mod-
els, but the jth response variable vector Y j , coefficient vector βj , and error
vector ej change and thus depend on j.

Now consider the ith case (xT
i ,yT

i ) which corresponds to the ith row of Z
and the ith row of X. Then

⎡

⎢
⎢
⎢
⎣

Yi1 = β11xi1 + · · · + βp1xip + εi1 = xT
i β1 + εi1

Yi2 = β12xi1 + · · · + βp2xip + εi2 = xT
i β2 + εi2

...
Yim = β1mxi1 + · · · + βpmxip + εim = xT

i βm + εim

⎤

⎥
⎥
⎥
⎦

or yi = μxi
+ εi = E(yi) + εi where

E(yi) = μxi
= BTxi =

⎡

⎢
⎢
⎢
⎣

xT
i β1

xT
i β2
...

xT
i βm

⎤

⎥
⎥
⎥
⎦

.
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The notation yi|xi and E(yi|xi) is more accurate, but usually the condi-
tioning is suppressed. Taking μxi

to be a constant (or condition on xi if the
predictor variables are random variables), yi and εi have the same covariance
matrix. In the multivariate regression model, this covariance matrix Σε does
not depend on i. Observations from different cases are uncorrelated (often
independent), but the m errors for the m different response variables for the
same case are correlated. If X is a random matrix, then assume X and E
are independent and that expectations are conditional on X.

Example 12.1. Suppose it is desired to predict the response variables
Y1 = height and Y2 = height at shoulder of a person from partial skeletal
remains. A model for prediction can be built from nearly complete skeletons
or from living humans, depending on the population of interest (e.g., ancient
Egyptians or modern US citizens). The predictor variables might be x1 ≡ 1,
x2 = femur length, and x3 = ulna length. The two heights of individuals with
x2 = 200mm and x3 = 140mm should be shorter on average than the two
heights of individuals with x2 = 500mm and x3 = 350mm. In this example,
Y1, Y2, x2, and x3 are quantitative variables. If x4 = gender is a predictor
variable, then gender (coded as male = 1 and female = 0) is qualitative.

Definition 12.4. Least squares is the classical method for fitting multi-
variate linear regression. The least squares estimators are

B̂ = (XTX)−1XTZ =
[
β̂1 β̂2 . . . β̂m

]
.

The predicted values or fitted values

Ẑ = XB̂ =
[
Ŷ 1 Ŷ 2 . . . Ŷ m

]
=

⎡

⎢
⎢
⎢
⎣

Ŷ1,1 Ŷ1,2 . . . Ŷ1,m

Ŷ2,1 Ŷ2,2 . . . Ŷ2,m

...
...

. . .
...

Ŷn,1 Ŷn,2 . . . Ŷn,m

⎤

⎥
⎥
⎥
⎦

.

The residuals Ê = Z − Ẑ = Z − XB̂ =

⎡

⎢
⎢
⎢
⎣

ε̂T1
ε̂T2
...

ε̂Tn

⎤

⎥
⎥
⎥
⎦

=
[
r1 r2 . . . rm

]
=

⎡

⎢
⎢
⎢
⎣

ε̂1,1 ε̂1,2 . . . ε̂1,m
ε̂2,1 ε̂2,2 . . . ε̂2,m
...

...
. . .

...
ε̂n,1 ε̂n,2 . . . ε̂n,m

⎤

⎥
⎥
⎥
⎦

.

These quantities can be found from the m multiple linear regressions of Y j

on the predictors: β̂j = (XTX)−1XTY j , Ŷ j = Xβ̂j , and rj = Y j − Ŷ j
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for j = 1, ...,m. Hence ε̂i,j = Yi,j − Ŷi,j where Ŷ j = (Ŷ1,j , ..., Ŷn,j)T . Finally,
Σ̂ε,d =

(Z − Ẑ)T (Z − Ẑ)
n − d

=
(Z − XB̂)T (Z − XB̂)

n − d
=

Ê
T
Ê

n − d
=

1
n − d

n∑

i=1

ε̂iε̂
T
i .

The choices d = 0 and d = p are common. If d = 1, then Σ̂ε,d=1 = Sr, the
sample covariance matrix of the residual vectors ε̂i, since the sample mean
of the ε̂i is 0. Let Σ̂ε = Σ̂ε,p be the unbiased estimator of Σε. Also,

Σ̂ε,d = (n − d)−1ZT [I − X(XTX)−1X]Z,

and
Ê = [I − X(XTX)−1X]Z.

The following two theorems show that the least squares estimators are
fairly good. Also see Theorem 12.7 in Section 12.4. Theorem 12.2 can also be

used for Σ̂ε,d =
n − 1
n − d

Sr.

Theorem 12.1. Johnson and Wichern (1988, p. 304): Suppose X
has full rank p < n and the covariance structure of Definition 12.2 holds. Then
E(B̂) = B so E(β̂j) = βj , Cov(β̂j , β̂k) = σjk(XTX)−1 for j, k = 1, ..., p.
Also Ê and B̂ are uncorrelated, E(Ê) = 0, and

E(Σ̂ε) = E

(
Ê

T
Ê

n − p

)

= Σε.

Theorem 12.2. Sr = Σε + OP (n−1/2) and 1
n

∑n
i=1 εiε

T
i = Σε + OP

(n−1/2) if the following three conditions hold: B − B̂ = OP (n−1/2),
1
n

∑n
i=1 εix

T
i = OP (1), and 1

n

∑n
i=1 xix

T
i = OP (n1/2).

Proof. Note that yi=BTxi+εi=B̂
T
xi+ε̂i. Hence ε̂i = (B − B̂)Txi + εi.

Thus

n∑

i=1

ε̂iε̂
T
i =

n∑

i=1

(εi − εi + ε̂i)(εi − εi + ε̂i)
T =

n∑

i=1

[εiε
T
i + εi(ε̂i − εi)

T + (ε̂i − εi)ε̂
T
i ]

=

n∑

i=1

εiε
T
i + (

n∑

i=1

εix
T
i )(B − B̂) + (B − B̂)T (

n∑

i=1

xiε
T
i )+

(B − B̂)T (
n∑

i=1

xix
T
i )(B − B̂).
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Thus 1
n

∑n
i=1 ε̂iε̂

T
i = 1

n

∑n
i=1 εiε

T
i +

OP (1)OP (n−1/2) + OP (n−1/2)OP (1) + OP (n−1/2)OP (n1/2)OP (n−1/2),

and the result follows since 1
n

∑n
i=1 εiε

T
i = Σε + OP (n−1/2) and

Sr =
n

n − 1
1
n

n∑

i=1

ε̂iε̂
T
i . �

Sr and Σ̂ε are also
√

n consistent estimators of Σε by Cook (2012, p.
692). See Theorem 12.7.

12.2 Plots for the Multivariate Linear Regression Model

As in Chapter 10, this section suggests using residual plots, response plots,
and the DD plot to examine the multivariate linear model. The DD plot is
used to examine the distribution of the iid error vectors. The residual plots
are often used to check for lack of fit of the multivariate linear model. The
response plots are used to check linearity and to detect influential cases for the
linearity assumption. The response and residual plots are used exactly as in
the m = 1 case corresponding to multiple linear regression and experimental
design models. See Olive (2010, 2017a, c), Olive et al. (2015), Olive and
Hawkins (2005), and Cook and Weisberg (1999a, p. 432; 1999b). Review
Remark 10.2 which also applies to multivariate linear regression.

Notation. Plots will be used to simplify the regression analysis, and in
this text, a plot of W versus Z uses W on the horizontal axis and Z on the
vertical axis.

Definition 12.5. A response plot for the jth response variable is a plot
of the fitted values Ŷij versus the response Yij . The identity line with slope
one and zero intercept is added to the plot as a visual aid. A residual plot
corresponding to the jth response variable is a plot of Ŷij versus rij .

http://dx.doi.org/10.1007/978-3-319-68253-2_10
http://dx.doi.org/10.1007/978-3-319-68253-2_10
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Remark 12.1. Make the m response and residual plots for any multi-
variate linear regression. In a response plot, the vertical deviations from the
identity line are the residuals rij = Yij − Ŷij . Suppose the model is good,
the jth error distribution is unimodal and not highly skewed for j = 1, ...,m,
and n ≥ 10p. Then the plotted points should cluster about the identity line
in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from
left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan-shaped plot are bad.

Rule of thumb 12.1. Use multivariate linear regression if

n ≥ max((m + p)2,mp + 30, 10p))

provided that the m response and residual plots all look good. Make the DD
plot of the ε̂i. If a residual plot would look good after several points have
been deleted, and if these deleted points were not gross outliers (points far
from the point cloud formed by the bulk of the data), then the residual plot
is probably good. Beginners often find too many things wrong with a good
model. For practice, use the computer to generate several multivariate linear
regression data sets and make the m response and residual plots for these
data sets. This exercise will help show that the plots can have considerable
variability even when the multivariate linear regression model is good. The
mpack function MLRsim simulates response and residual plots for various
distributions when m = 1.

Rule of thumb 12.2. If the plotted points in the residual plot look like
a left- or right-opening megaphone, the first model violation to check is the
assumption of nonconstant variance. (This is a rule of thumb because it is
possible that such a residual plot results from another model violation such
as nonlinearity, but nonconstant variance is much more common.)

Remark 12.2. Residual plots magnify departures from the model while
the response plots emphasize how well the multivariate linear regression model
fits the data.

Definition 12.6. An RR plot is a scatterplot matrix of the m sets of
residuals r1, ..., rm.
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Definition 12.7. An FF plot is a scatterplot matrix of the m sets of
fitted values of response variables Ŷ 1, ..., Ŷ m. The m response variables
Y 1, ...,Y m can be added to the plot.

Remark 12.3. Some applications for multivariate linear regression need
the m error vectors to be linearly related, and larger sample sizes may be
needed if the error vectors are not linearly related. For example, the asymp-
totic optimality of the prediction regions of Section 12.3 needs the error
vectors to be iid from an elliptically contoured distribution. Make the RR
plot and a DD plot of the residual vectors ε̂i to check that the error vectors
are linearly related. Make a DD plot of the continuous predictor variables to
check for x-outliers. Make a DD plot of Y1, ...., Ym to check for outliers, espe-
cially if it is assumed that the response variables come from an elliptically
contoured distribution.

The RMVN DD plot of the residual vectors ε̂i is used to check the error
vector distribution, to detect outliers, and to display the nonparametric pre-
diction region developed in Section 12.3. The DD plot suggests that the error
vector distribution is elliptically contoured if the plotted points cluster tightly
about a line through the origin as n → ∞. The plot suggests that the error
vector distribution is multivariate normal if the line is the identity line. If n
is large and the plotted points do not cluster tightly about a line through the
origin, then the error vector distribution may not be elliptically contoured.
These applications of the DD plot for iid multivariate data are discussed in
Olive (2002, 2008, 2013a) and Chapter 5. The RMVN estimator has not yet
been proven to be a consistent estimator when computed from residual vec-
tors, but simulations suggest that the RMVN DD plot of the residual vectors
is a useful diagnostic plot. The mpack function mregddsim can be used to
simulate the DD plots for various distributions.

Predictor transformations for the continuous predictors can be made
exactly as in Section 2.4.

Warning: The Rule of thumb 2.1 does not always work. For example, the
log rule may fail. If the relationships in the scatterplot matrix are already
linear or if taking the transformation does not increase the linearity, then
no transformation may be better than taking a transformation. For the Arc
data set evaporat.lsp with m = 1, the log rule suggests transforming the
response variable Evap, but no transformation works better.

Response transformations can also be made as in Section 2.4, but also
make the response plot of Ŷ j versus Y j , and use the rules of Section 2.4
on Yj to linearize the response plot for each of the m response variables
Y1, ..., Ym.

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_2
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12.3 Asymptotically Optimal Prediction Regions

In this section, we will consider a more general multivariate regression model
and then consider the multivariate linear model as a special case. Given n
cases of training or past data (x1,y1), ..., (xn,yn) and a vector of predictors
xf , suppose it is desired to predict a future test vector yf .

Definition 12.8. A large sample 100(1 − δ)% prediction region is a set
An such that P (yf ∈ An) → 1 − δ as n → ∞ and is asymptotically optimal
if the volume of the region converges in probability to the volume of the
population minimum volume covering region.

The classical large sample 100(1 − δ)% prediction region for a future value
xf given iid data x1, ..., ,xn is {x : D2

x(x,S) ≤ χ2
p,1−δ}, while for multi-

variate linear regression, the classical large sample 100(1 − δ)% prediction
region for a future value yf given xf and past data (x1,yi), ..., (xn,yn)
is {y : D2

y(ŷf , Σ̂ε) ≤ χ2
m,1−δ}. See Wichern (1988, pp. 134, 151, 312). By

Equation (3.10), these regions may work for multivariate normal xi or εi, but
otherwise tend to have undercoverage. Section 5.2 and Olive (2013a) replaced
χ2
p,1−δ by the order statistic D2

(Un)
where Un decreases to 	n(1 − δ)
. This

section will use a similar technique from Olive (2017b) to develop possibly
the first practical large sample prediction region for the multivariate linear
model with unknown error distribution. The following technical theorem will
be needed to prove Theorem 12.4.

Theorem 12.3. Let a > 0 and assume that (μ̂n, Σ̂n) is a consistent esti-
mator of (μ, aΣ).

a) D2
x(μ̂n, Σ̂n) − 1

aD2
x(μ,Σ) = oP (1).

b) Let 0 < δ ≤ 0.5. If (μ̂n, Σ̂n) − (μ, aΣ) = Op(n−δ) and aΣ̂
−1

n − Σ−1 =
OP (n−δ), then

D2
x(μ̂n, Σ̂n) − 1

a
D2

x(μ,Σ) = OP (n−δ).

Proof. Let Bn denote the subset of the sample space on which Σ̂n has an
inverse. Then P (Bn) → 1 as n → ∞. Now

D2
x(μ̂n, Σ̂n) = (x − μ̂n)T Σ̂

−1

n (x − μ̂n) =

(x − μ̂n)T
(

Σ−1

a
− Σ−1

a
+ Σ̂

−1

n

)
(x − μ̂n) =

http://dx.doi.org/10.1007/978-3-319-68253-2_3
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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(x − μ̂n)T
(−Σ−1

a
+ Σ̂

−1

n

)
(x − μ̂n) + (x − μ̂n)T

(
Σ−1

a

)
(x − μ̂n) =

1
a
(x − μ̂n)T (−Σ−1 + a Σ̂

−1

n )(x − μ̂n) +

(x − μ + μ − μ̂n)T
(

Σ−1

a

)
(x − μ + μ − μ̂n)

=
1
a
(x − μ)TΣ−1(x − μ) +

2
a
(x − μ)TΣ−1(μ − μ̂n)+

1
a
(μ − μ̂n)TΣ−1(μ − μ̂n) +

1
a
(x − μ̂n)T [aΣ̂

−1

n − Σ−1](x − μ̂n)

on Bn, and the last three terms are oP (1) under a) and OP (n−δ) under b).
�

Now suppose a prediction region for an m × 1 random vector yf given a
vector of predictors xf is desired for the multivariate linear model. If we had
many cases zi = BTxf + εi, then we could use the multivariate prediction
region for m variables from Section 5.2. Instead, Theorem 12.4 will use the
prediction region from Section 5.2 on the pseudodata ẑi = B̂

T
xf + ε̂i = ŷf +

ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors ε̂i and
centers the cloud at ŷf . Note that ẑi = (B − B + B̂)Txf + (εi − εi + ε̂i) =
zi + (B̂ − B)Txf + ε̂i − εi = zi + (B̂ − B)Txf − (B̂ − B)Txi = zi +
OP (n−1/2). Hence the distances based on the zi and the distances based
on the ẑi have the same quantiles, asymptotically (for quantiles that are
continuity points of the distribution of zi).

If the εi are iid from an ECm(0,Σ, g) distribution with continuous
decreasing g and nonsingular covariance matrix Σε = cΣ for some con-
stant c > 0, then the population asymptotically optimal prediction region
is {y : Dy(BTxf ,Σε) ≤ D1−δ} where P (Dy(BTxf ,Σε) ≤ D1−δ) = 1 − δ.

For example, if the iid εi ∼ Nm(0,Σε), then D1−δ =
√

χ2
m,1−δ. If the error

distribution is not elliptically contoured, then the above region still has
100(1 − δ)% coverage, but prediction regions with smaller volume may exist.

A natural way to make a large sample prediction region is to estimate the
target population minimum volume covering region, but for moderate samples
and many error distributions, the natural estimator that covers 	n(1 − δ)
 of
the cases tends to have undercoverage as high as min(0.05, δ/2). This empir-
ical result is not too surprising since it is well known that the performance
of a prediction region on the training data is superior to the performance on
future test data, due in part to the unknown variability of the estimator. To
compensate for the undercoverage, let qn be as in Theorem 12.4.

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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Theorem 12.4. Suppose yi = E(yi|xi) + εi = ŷi + ε̂i where Cov(εi) =
Σε > 0, and where the zero mean εf and the εi are iid for i = 1, ..., n. Given
xf , suppose the fitted model produces ŷf and nonsingular Σ̂ε. Let ẑi =
ŷf + ε̂i and

D2
i ≡ D2

i (ŷf , Σ̂ε) = (ẑi − ŷf )T Σ̂
−1

ε (ẑi − ŷf )

for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1 − δ + m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the 100 qnth sample quantile of the Mahalanobis distances Di. Let
the nominal 100(1 − δ)% prediction region for yf be given by

{z : (z − ŷf )T Σ̂
−1

ε (z − ŷf ) ≤ D2
(Un)

} =

{z : D2
z(ŷf , Σ̂ε) ≤ D2

(Un)
} = {z : Dz(ŷf , Σ̂ε) ≤ D(Un)}. (12.4)

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n → 1 − δ as n → ∞.

b) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), then (12.4) is a
large sample 100(1 − δ)% prediction region for yf .

c) If (ŷf , Σ̂ε) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {z : Dz(0,Σε) ≤ D1−δ}, then the prediction region (12.4) is
asymptotically optimal.

Proof. a) Suppose (xf ,yf ) = (xi,yi). Then

D2
yi

(ŷi, Σ̂ε) = (yi − ŷi)
T Σ̂

−1

ε (yi − ŷi) = ε̂Ti Σ̂
−1

ε ε̂i = D2
ε̂i

(0, Σ̂ε).

Hence yi is in the ith prediction region {z : Dz(ŷi, Σ̂ε) ≤ D(Un)(ŷi, Σ̂ε)} iff
ε̂i is in prediction region {z : Dz(0, Σ̂ε) ≤ D(Un)(0, Σ̂ε)}, but exactly Un of
the ε̂i are in the latter region by construction, if D(Un) is unique. Since D(Un)

is the 100(1 − δ)th percentile of the Di asymptotically, Un/n → 1 − δ.
b) Let P [Dz(E(yf ),Σε) ≤ D1−δ(E(yf ),Σε)] = 1 − δ. Since Σε > 0, The-

orem 12.3 shows that if (ŷf , Σ̂ε) P→ (E(yf ),Σε) then D(ŷf , Σ̂ε) D→ Dz

(E(yf ),Σε). Hence the percentiles of the distances converge in distribu-
tion, and the probability that yf is in {z : Dz(ŷf , Σ̂ε) ≤ D1−δ(ŷf , Σ̂ε)}
converges to 1 − δ = the probability that yf is in {z : Dz(E(yf ),Σε) ≤
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D1−δ(E(yf ),Σε)} at continuity points D1−δ of the distribution of
D(E(yf ),Σε).

c) The asymptotically optimal prediction region is the region with the
smallest volume (hence highest density) such that the coverage is 1 − δ,
as n → ∞. This region is {z : Dz(E(yf ),Σε) ≤ D1−δ(E(yf ),Σε)} if the
asymptotically optimal region for the εi is {z : Dz(0,Σε) ≤ D1−δ(0,Σε)}.
Hence the result follows by b). �

Notice that if Σ̂
−1

ε exists, then 100qn% of the n training data yi are in
their corresponding prediction region with xf = xi, and qn → 1 − δ even if
(ŷi, Σ̂ε) is not a good estimator or if the regression model is misspecified.
Hence the coverage qn of the training data is robust to model assumptions. Of
course the volume of the prediction region could be large if a poor estimator
(ŷi, Σ̂ε) is used or if the εi do not come from an elliptically contoured dis-
tribution. The response, residual, and DD plots can be used to check model
assumptions. If the plotted points in the RMVN DD plot cluster tightly about
some line through the origin and if n ≥ max[3(m + p)2,mp + 30], we expect
the volume of the prediction region may be fairly low for the least squares
estimators.

If n is too small, then multivariate data is sparse and the covering ellipsoid
for the training data may be far too small for future data, resulting in severe
undercoverage. Also notice that qn = 1 − δ/2 or qn = 1 − δ + 0.05 for n ≤
20p. At the training data, the coverage qn ≥ 1 − δ, and qn converges to the
nominal coverage 1 − δ as n → ∞. Suppose n ≤ 20p. Then the nominal 95%
prediction region uses qn = 0.975 while the nominal 50% prediction region
uses qn = 0.55. Prediction distributions depend both on the error distribution
and on the variability of the estimator (ŷf , Σ̂ε). This variability is typically
unknown but converges to 0 as n → ∞. Also, residuals tend to underestimate
errors for small n. For moderate n, ignoring estimator variability and using
qn = 1 − δ resulted in undercoverage as high as min(0.05, δ/2). Letting the
“coverage” qn decrease to the nominal coverage 1 − δ inflates the volume of
the prediction region for small n, compensating for the unknown variability
of (ŷf , Σ̂ε).

Consider the multivariate linear regression model. The semiparametric
and parametric regions are only conjectured to be large sample prediction
regions, but are useful as diagnostics. Let Σ̂ε = Σ̂ε,d=p, ẑi = ŷf + ε̂i, and
D2

i (ŷf ,Sr) = (ẑi − ŷf )TS−1
r (ẑi − ŷf ) for i = 1, ..., n. Then the large sample

nonparametric 100(1 − δ)% prediction region is

{z : D2
z(ŷf ,Sr) ≤ D2

(Un)
} = {z : Dz(ŷf ,Sr) ≤ D(Un)}, (12.5)

while the (Johnson and Wichern (1988, p. 312) classical large sample 100(1 −
δ)% prediction region is
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{z : D2
z(ŷf , Σ̂ε) ≤ χ2

m,1−δ} = {z : Dz(ŷf , Σ̂ε) ≤
√

χ2
m,1−δ}. (12.6)

Theorem 12.5 will show that this prediction region (12.5) can also be found
by applying the nonparametric prediction region (5.17) on the ẑi. Recall that
Sr defined in Definition 12.4 is the sample covariance matrix of the resid-
ual vectors ε̂i. Section 5.2 describes the nonparametric, semiparametric, and
parametric MVN prediction regions. Similar regions are used for multivariate
linear regression. For the multivariate linear regression model, if D1−δ is a
continuity point of the distribution of D, Assumption D1 above Theorem 12.7
holds, and the εi have a nonsingular covariance matrix, then (12.5) is a large
sample 100(1 − δ)% prediction region for yf .

Theorem 12.5. For multivariate linear regression, when least squares is
used to compute ŷf , Sr, and the pseudodata ẑi, prediction region (12.5) is
the Section 5.2 nonparametric prediction region applied to the ẑi.

Proof. Multivariate linear regression with least squares satisfies Theorem
12.4 by Su and Cook (2012). (See Theorem 12.7.) Let (T,C) be the sample
mean and sample covariance matrix (see Definition 2.6) applied to the ẑi.
The sample mean and sample covariance matrix of the residual vectors is
(0,Sr) since least squares was used. Hence the ẑi = ŷf + ε̂i have sample
covariance matrix Sr, and sample mean ŷf . Hence (T,C) = (ŷf ,Sr), and
the Di(ŷf ,Sr) are used to compute D(Un). �

The RMVN DD plot of the residual vectors will be used to display
the prediction regions for multivariate linear regression. See Example 12.3.
The nonparametric prediction region for multivariate linear regression of
Theorem 12.5 uses (T,C) = (ŷf ,Sr) in (12.4) and has simple geometry. Let
Rr be the nonparametric prediction region (12.5) applied to the residuals ε̂i
with ŷf = 0. Then Rr is a hyperellipsoid with center 0, and the nonparamet-
ric prediction region is the hyperellipsoid Rr translated to have center ŷf .
Hence in a DD plot, all points to the left of the line MD = D(Un) correspond
to yi that are in their prediction region, while points to the right of the line
are not in their prediction region.

The nonparametric prediction region has some interesting properties. This
prediction region is asymptotically optimal if the εi are iid for a large class
of elliptically contoured ECm(0,Σ, g) distributions. Also, if there are 100
different values (xjf ,yjf ) to be predicted, we only need to update ŷjf for
j = 1, ..., 100, we do not need to update the covariance matrix Sr.

It is common practice to examine how well the prediction regions work
on the training data. That is, for i = 1, ..., n, set xf = xi and see if yi is in
the region with probability near to 1 − δ with a simulation study. Note that
ŷf = ŷi if xf = xi. Simulation is not needed for the nonparametric prediction
region (12.5) for the data since the prediction region (12.5) centered at ŷi

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_2
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contains yi iff Rr, the prediction region centered at 0, contains ε̂i since ε̂i =
yi − ŷi. Thus 100qn% of prediction regions corresponding to the data (yi,xi)
contain yi, and 100qn% → 100(1 − δ)%. Hence the prediction regions work
well on the training data and should work well on (xf ,yf ) similar to the
training data. Of course simulation should be done for (xf ,yf ) that are not
equal to training data cases. See Section 12.5.

This training data result holds provided that the multivariate linear regres-
sion using least squares is such that the sample covariance matrix Sr of the
residual vectors is nonsingular, the multivariate regression model need
not be correct. Hence the coverage at the n training data cases (xi,yi)
is robust to model misspecification. Of course, the prediction regions may
be very large if the model is severely misspecified, but severity of misspec-
ification can be checked with the response and residual plots. Coverage for
a future value yf can also be arbitrarily bad if there is extrapolation or if
(xf ,yf ) comes from a different population than that of the data.

12.4 Testing Hypotheses

This section considers testing a linear hypothesis H0 : LB = 0 versus
H1 : LB �= 0 where L is a full rank r × p matrix.

Definition 12.9. Assume rank(X) = p. The total corrected (for the mean)
sum of squares and cross products matrix is

T = R + W e = ZT

(
In − 1

n
11T

)
Z.

Note that T /(n − 1) is the usual sample covariance matrix Σ̂y if all n of the
yi are iid, e.g., if B = 0. The regression sum of squares and cross products
matrix is

R = ZT

[
X(XTX)−1XT − 1

n
11T

]
Z = ZTXB̂ − 1

n
ZT11TZ.

Let H = B̂
T
LT [L(XTX)−1LT ]−1LB̂. The error or residual sum of squares

and cross products matrix is

W e = (Z − Ẑ)T (Z − Ẑ) = ZTZ − ZTXB̂ = ZT [In − X(XTX)−1XT ]Z.

Note that W e = Ê
T
Ê and W e/(n − p) = Σ̂ε.
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Warning: SAS output uses E instead of W e.

The MANOVA table is shown below.

Summary MANOVA Table

Source matrix df
Regression or Treatment R p − 1

Error or Residual W e n − p

Total (corrected) T n − 1

Definition 12.10. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of
W−1

e H. Then there are four commonly used test statistics.
The Roy’s maximum root statistic is λmax(L) = λ1.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)−1W e| = |W−1

e H + I|−1 =
m∏

i=1

(1 + λi)−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)−1H] =
m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H] =

m∑

i=1

λi.

Typically, some function of one of the four above statistics is used to get
pval, the estimated pvalue. Output often gives the pvals for all four test
statistics. Be cautious about inference if the last three test statistics do not
lead to the same conclusions (Roy’s test may not be trustworthy for r > 1).
Theory and simulations developed below for the four statistics will provide
more information about the sample sizes needed to use the four test statistics.
See the following page for notation used in the next theorem.

Theorem 12.6. The Hotelling-Lawley trace statistic

U(L) =
1

n − p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]. (12.7)

Proof. Using the Searle (1982, p. 333) identity
tr(AGTDGC) = [vec(G)]T [CA ⊗ DT ][vec(G)], it follows that

(n − p)U(L)=tr[Σ̂
−1

ε B̂
T
LT [L(XTX)−1LT ]−1LB̂]

=[vec(LB̂)]T [Σ̂
−1

ε ⊗(L(XTX)−1LT )−1][vec(LB̂)]=T where A = Σ̂
−1

ε ,

G = LB̂,D = [L(XTX)−1LT ]−1, and C = I. Hence (12.7) holds. �
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Some notation is useful to show (12.7) and to show that (n − p)U(L) D→
χ2
rm under mild conditions if H0 is true. Following Henderson and Searle

(1979), let matrix A = [a1 a2 . . . ap]. Then the vec operator stacks the
columns of A on top of one another so

vec(A) =

⎛

⎜
⎜
⎜
⎝

a1

a2

...
ap

⎞

⎟
⎟
⎟
⎠

.

Let A = (aij) be an m × n matrix and B a p × q matrix. Then the
Kronecker product of A and B is the mp × nq matrix

A ⊗ B =

⎡

⎢
⎢
⎢
⎣

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... · · · ...

am1B am2B · · · amnB

⎤

⎥
⎥
⎥
⎦

.

An important fact is that if A and B are nonsingular square matrices, then
[A ⊗ B]−1 = A−1 ⊗ B−1. The following assumption is important.

Assumption D1: Let hi be the ith diagonal element of X(XTX)−1XT .
Assume max1≤i≤n hi

P→ 0 as n → ∞, assume that the zero mean iid error

vectors have finite fourth moments, and assume that
1
n

XTX
P→ W−1.

Su and Cook (2012) proved a central limit type theorem for Σ̂ε and B̂ for
the partial envelopes estimator, and the least squares estimator is a special
case. These results prove the following theorem. Their theorem also shows
that for multiple linear regression (m = 1), σ̂2 = MSE is a

√
n consistent

estimator of σ2.

Theorem 12.7. Multivariate Least Squares Central Limit Theo-
rem (MLS CLT). For the least squares estimator, if assumption D1 holds,
then Σ̂ε is a

√
n consistent estimator of Σε and

√
n vec(B̂ − B) D→ Npm(0,Σε ⊗ W ).

Theorem 12.8. If assumption D1 holds and if H0 is true, then
(n − p)U(L) D→ χ2

rm.

Proof. By Theorem 12.7,
√

n vec(B̂ − B) D→ Npm(0,Σε ⊗ W ). Then

under H0,
√

n vec(LB̂) D→ Nrm(0,Σε ⊗ LWLT ), and n [vec(LB̂)]T [Σ−1
ε ⊗
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(LWLT )−1][vec(LB̂)] D→ χ2
rm. This result also holds if W and Σε are

replaced by Ŵ = n(XTX)−1 and Σ̂ε. Hence under H0 and using the proof
of Theorem 12.6,

T = (n− p)U(L) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)]
D→ χ2

rm.

�

Some more details on the above results may be useful. Consider testing
a linear hypothesis H0 : LB = 0 versus H1 : LB �= 0 where L is a full rank
r × p matrix. For now assume the error distribution is multivariate normal
Nm(0,Σε). Then

vec(B̂ − B) =

⎛

⎜
⎜
⎜
⎝

β̂1 − β1

β̂2 − β2
...

β̂m − βm

⎞

⎟
⎟
⎟
⎠

∼ Npm(0,Σε ⊗ (XTX)−1)

where

C = Σε ⊗ (XTX)−1 =

⎡

⎢⎢⎢⎣

σ11(X
TX)−1 σ12(X

TX)−1 · · · σ1m(XTX)−1

σ21(X
TX)−1 σ22(X

TX)−1 · · · σ2m(XTX)−1

...
... · · ·

...
σm1(X

TX)−1 σm2(X
TX)−1 · · · σmm(XTX)−1

⎤

⎥⎥⎥⎦ .

Now let A be an rm × pm block diagonal matrix: A = diag(L, ...,L). Then
A vec(B̂ − B) = vec(L(B̂ − B)) =

⎛

⎜
⎜
⎜
⎝

L(β̂1 − β1)
L(β̂2 − β2)

...
L(β̂m − βm)

⎞

⎟
⎟
⎟
⎠

∼ Nrm(0,Σε ⊗ L(XTX)−1LT )

where D = Σε ⊗ L(XTX)−1LT = ACAT =

⎡

⎢
⎢
⎢
⎣

σ11L(XTX)−1LT σ12L(XTX)−1LT · · · σ1mL(XTX)−1LT

σ21L(XTX)−1LT σ22L(XTX)−1LT · · · σ2mL(XTX)−1LT

...
... · · · ...

σm1L(XTX)−1LT σm2L(XTX)−1LT · · · σmmL(XTX)−1LT

⎤

⎥
⎥
⎥
⎦

.
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Under H0, vec(LB) = A vec(B) = 0, and

vec(LB̂) =

⎛

⎜
⎜
⎜
⎝

Lβ̂1

Lβ̂2
...

Lβ̂m

⎞

⎟
⎟
⎟
⎠

∼ Nrm(0,Σε ⊗ L(XTX)−1LT ).

Hence under H0,

[vec(LB̂)]T [Σ−1
ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)] ∼ χ2

rm,

and

T = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)] D→ χ2
rm. (12.8)

A large sample level δ test will reject H0 if pval ≤ δ where

pval = P

(
T

rm
< Frm,n−mp

)
. (12.9)

Since least squares estimators are asymptotically normal, if the εi are iid
for a large class of distributions,

√
n vec(B̂ − B) =

√
n

⎛

⎜
⎜
⎜
⎝

β̂1 − β1

β̂2 − β2
...

β̂m − βm

⎞

⎟
⎟
⎟
⎠

D→ Npm(0,Σε ⊗ W )

where
XTX

n

P→ W−1.

Then under H0,

√
n vec(LB̂) =

√
n

⎛

⎜
⎜
⎜
⎝

Lβ̂1

Lβ̂2
...

Lβ̂m

⎞

⎟
⎟
⎟
⎠

D→ Nrm(0,Σε ⊗ LWLT ),

and
n [vec(LB̂)]T [Σ−1

ε ⊗ (LWLT )−1][vec(LB̂)] D→ χ2
rm.
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Hence (12.8) holds, and (12.9) gives a large sample level δ test if the least
squares estimators are asymptotically normal.

Kakizawa (2009) showed, under stronger assumptions than Theorem 12.8,
that for a large class of iid error distributions, the following test statistics
have the same χ2

rm limiting distribution when H0 is true, and the same non-
central χ2

rm(ω2) limiting distribution with noncentrality parameter ω2 when
H0 is false under a local alternative. Hence the three tests are robust to the
assumption of normality. The limiting null distribution is well known when
the zero mean errors are iid from a multivariate normal distribution. See
Khattree and Naik (1999, p. 68): (n − p)U(L) D→ χ2

rm, (n − p)V (L) D→ χ2
rm,

and −[n − p − 0.5(m − r + 3)] log(Λ(L)) D→ χ2
rm. Results from Kshirsagar

(1972, p. 301) suggest that the third chi-square approximation is very good
if n ≥ 3(m + p)2 for multivariate normal error vectors.

Theorems 12.6 and 12.8 are useful for relating multivariate tests with
the partial F test for multiple linear regression that tests whether a reduced
model that omits some of the predictors can be used instead of the full model
that uses all p predictors. The partial F test statistic is

FR =
[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

where the residual sums of squares SSE(F ) and SSE(R) and degrees of
freedom dfF and dfr are for the full and reduced model while the mean
square error MSE(F ) is for the full model. Let the null hypothesis for the
partial F test be H0 : Lβ = 0 where L sets the coefficients of the predictors
in the full model but not in the reduced model to 0. Seber and Lee (2003,
p. 100) show that

FR =
[Lβ̂]T (L(XTX)−1LT )−1[Lβ̂]

rσ̂2

is distributed as Fr,n−p if H0 is true and the errors are iid N(0, σ2). Note
that for multiple linear regression with m = 1, FR = (n − p)U(L)/r since
Σ̂

−1

ε = 1/σ̂2. Hence the scaled Hotelling Lawley test statistic is the partial
F test statistic extended to m > 1 predictor variables by Theorem 12.6.

By Theorem 12.8, for example, rFR
D→ χ2

r for a large class of nonnormal
error distributions. If Zn ∼ Fk,dn

, then Zn
D→ χ2

k/k as dn → ∞. Hence using
the Fr,n−p approximation gives a large sample test with correct asymptotic
level, and the partial F test is robust to nonnormality.

Similarly, using an Frm,n−pm approximation for the following test statistics
gives large sample tests with correct asymptotic level by Kakizawa (2009) and
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similar power for large n. The large sample test will have correct asymptotic
level as long as the denominator degrees of freedom dn → ∞ as n → ∞, and
dn = n − pm reduces to the partial F test if m = 1 and U(L) is used. Then
the three test statistics are

−[n − p − 0.5(m − r + 3)]
rm

log(Λ(L)),
n − p

rm
V (L), and

n − p
rm

U(L).

By Berndt and Savin (1977) and Anderson (1984, pp. 333, 371),

V (L) ≤ − log(Λ(L)) ≤ U(L).

Hence the Hotelling Lawley test will have the most power, and Pillai’s test
will have the least power.

Following Khattree and Naik (1999, pp. 67–68), there are several approx-
imations used by the SAS software. For the Roy’s largest root test, if
h = max(r,m), use

n − p − h + r

h
λmax(L) ≈ F (h, n − p − h + r).

The simulations in Section 12.5 suggest that this approximation is good
for r = 1 but poor for r > 1. Anderson (1984, p. 333) stated that Roy’s
largest root test has the greatest power if r = 1 but is an inferior test for
r > 1. Let g = n − p − (m − r + 1)/2, u = (rm − 2)/4 and t =

√
r2m2 − 4/√

m2 + r2 − 5 for m2 + r2 − 5 > 0 and t = 1, otherwise. Assume H0 is true.
Thus U

P→ 0, V
P→ 0, and Λ

P→ 1 as n → ∞. Then

gt − 2u

rm

1 − Λ1/t

Λ1/t
≈ F (rm, gt − 2u) or (n − p)t

1 − Λ1/t

Λ1/t
≈ χ2

rm.

For large n and t > 0, − log(Λ) = −t log(Λ1/t) = −t log(1 + Λ1/t − 1) ≈ t(1 −
Λ1/t) ≈ t(1 − Λ1/t)/Λ1/t. If it cannot be shown that

(n − p)[− log(Λ) − t(1 − Λ1/t)/Λ1/t] P→ 0 as n → ∞,

then it is possible that the approximate χ2
rm distribution may be the limiting

distribution for only a small class of iid error distributions. When the εi are
iid Nm(0,Σε), there are some exact results. For r = 1,

n − p − m + 1
m

1 − Λ

Λ
∼ F (m,n − p − m + 1).
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For r = 2,

2(n − p − m + 1)
2m

1 − Λ1/2

Λ1/2
∼ F (2m, 2(n − p − m + 1)).

For m = 2,

2(n − p)
2r

1 − Λ1/2

Λ1/2
∼ F (2r, 2(n − p)).

Let s = min(r,m), m1 = (|r − m| − 1)/2, and m2 = (n − p − m − 1)/2. Note
that s(|r − m| + s) = min(r,m)max(r,m) = rm. Then

n − p

rm

V

1 − V/s
=

n − p

s(|r − m| + s)
V

1 − V/s
≈ 2m2 + s + 1

2m1 + s + 1
V

s − V
≈

F (s(2m1 + s+ 1), s(2m2 + s+ 1)) ≈ F (s(|r −m|+ s), s(n− p)) = F (rm, s(n− p)).

This approximation is asymptotically correct by Slutsky’s theorem since

1 − V/s
P→ 1. Finally,

n − p

rm
U =

n − p

s(|r − m| + s)
U ≈ 2(sm2 + 1)

s2(2m1 + s + 1)
U ≈ F (s(2m1 + s + 1), 2(sm2 + 1))

≈ F (s(|r − m| + s), s(n − p)) = F (rm, s(n − p)).

This approximation is asymptotically correct for a wide range of iid error
distributions.

Multivariate analogs of tests for multiple linear regression can be derived
with appropriate choice of L. Assume a constant x1 = 1 is in the model. As
a textbook convention, use δ = 0.05 if δ is not given.

The 4 step MANOVA test of linear hypotheses is useful.

i) State the hypotheses H0 : LB = 0 and H1 : LB �= 0.
ii) Get test statistic from output.
iii) Get pval from output.
iv) State whether you reject H0 or fail to reject H0. If pval ≤ δ, reject H0

and conclude that LB �= 0. If pval > δ, fail to reject H0 and conclude that
LB = 0 or that there is not enough evidence to conclude that LB �= 0.

The MANOVA test of H0 : B = 0 versus H1 : B �= 0 is the special case
corresponding to L = I and H = B̂

T
XTXB̂ = Ẑ

T
Ẑ, but is usually not a

test of interest.
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The analog of the ANOVA F test for multiple linear regression is the
MANOVA F test that uses L = [0 Ip−1] to test whether the nontrivial
predictors are needed in the model. This test should reject H0 if the response
and residual plots look good, n is large enough, and at least one response
plot does not look like the corresponding residual plot. A response plot for
Yj will look like a residual plot if the identity line appears almost horizontal,
hence the range of Ŷj is small. Response and residual plots are often useful
for n ≥ 10p.

The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].

i) State the hypotheses H0: The nontrivial predictors are not needed in the
mreg model H1: At least one of the nontrivial predictors is needed.
ii) Find the test statistic F0 from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude
that there is a not a mreg relationship between Y1, ..., Ym and the predictors
x2, ..., xp. (Or there is not enough evidence to conclude that there is a
mreg relationship between the response variables and the predictors. Get the
variable names from the story problem.)

The Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0], where the 1 is in
the jth position, to test whether the jth predictor xj is needed in the model
given that the other p − 1 predictors are in the model. This test is an analog
of the t tests for multiple linear regression. Note that xj is not needed in the
model corresponds to H0 : Bj = 0 while xj needed in the model corresponds
to H1 : Bj �= 0 where BT

j is the jth row of B.

The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where the 1
is in the jth position.
i) State the hypotheses H0 : xj is not needed in the model H1 : xj is needed.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym

given that the other predictors are in the model. If you fail to reject H0, then
conclude that xj is not needed in the mreg model for Y1, ..., Ym given that
the other predictors are in the model. (Or there is not enough evidence to
conclude that xj is needed in the model. Get the variable names from the
story problem.)
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The Hotelling Lawley statistic

Fj =
1
dj

B̂
T

j Σ̂
−1

ε B̂j =
1
dj

(β̂j1, β̂j2, ..., β̂jm)Σ̂
−1

ε

⎛

⎜
⎜
⎜
⎝

β̂j1

β̂j2

...
β̂jm

⎞

⎟
⎟
⎟
⎠

where B̂
T

j is the jth row of B̂ and dj = (XTX)−1
jj , the jth diagonal entry of

(XTX)−1. The statistic Fj could be used for forward selection and backward
elimination in variable selection.

The 4 step MANOVA partial F test of hypotheses has a full model using
all of the variables and a reduced model where r of the variables are deleted.
The ith row of L has a 1 in the position corresponding to the ith variable
to be deleted. Omitting the jth variable corresponds to the Fj test while
omitting variables x2, . . . , xp corresponds to the MANOVA F test. Using
L = [0 Ik] tests whether the last k predictors are needed in the multivariate
linear regression model given that the remaining predictors are in the model.

i) State the hypotheses H0: The reduced model is good H1: Use the full
model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used. If
pval > δ, fail to reject H0 and conclude that the reduced model is good.

The mpack function mltreg produces the m response and residual plots,
gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corresponding
to the reduced model that leaves out the variables given by indices (so x2

and x4 in the output below with F = 0.77 and pval = 0.614), Fj and the pval
for the Fj test for variables 1, 2, ..., p (where p = 4 in the output below so
F2 = 1.51 with pval = 0.284), and F0 and pval for the MANOVA F test (in
the output below F0 = 3.15 and pval = 0.06). Right click Stop on the plots
m times to advance the plots and to get the cursor back on the command
line in R.

The command out <- mltreg(x,y,indices=c(2)) would produce a
MANOVA partial F test corresponding to the F2 test, while the command
out <- mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA
partial F test corresponding to the MANOVA F test for a data set with
p = 4 predictor variables. The Hotelling Lawley trace statistic is used in the
tests.
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out <- mltreg(x,y,indices=c(2,4))
$Bhat

[,1] [,2] [,3]
[1,] 47.96841291 623.2817463 179.8867890
[2,] 0.07884384 0.7276600 -0.5378649
[3,] -1.45584256 -17.3872206 0.2337900
[4,] -0.01895002 0.1393189 -0.3885967
$Covhat

[,1] [,2] [,3]
[1,] 21.91591 123.2557 132.339
[2,] 123.25566 2619.4996 2145.780
[3,] 132.33902 2145.7797 2954.082
$partial

partialF Pval
[1,] 0.7703294 0.6141573

$Ftable
Fj pvals

[1,] 6.30355375 0.01677169
[2,] 1.51013090 0.28449166
[3,] 5.61329324 0.02279833
[4,] 0.06482555 0.97701447

$MANOVA
MANOVAF pval

[1,] 3.150118 0.06038742

#Output for Example 12.2
y<-marry[,c(2,3)]; x<-marry[,-c(2,3)];
mltreg(x,y,indices=c(3,4))
$partial

partialF Pval
[1,] 0.2001622 0.9349877
$Ftable

Fj pvals
[1,] 4.35326807 0.02870083
[2,] 600.57002201 0.00000000
[3,] 0.08819810 0.91597268
[4,] 0.06531531 0.93699302
$MANOVA

MANOVAF pval
[1,] 295.071 1.110223e-16
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Example 12.2. The above output is for the Hebbler (1847) data from
the 1843 Prussia census. Sometimes if the wife or husband was not at the
household, then she/he would not be counted. Y1 = number of married civil-
ian men in the district, Y2 = number of women married to civilians in the
district, x2 = population of the district in 1843, x3 = number of married
military men in the district, and x4 = number of women married to military
men in the district. The reduced model deletes x3 and x4. The constant uses
x1 = 1.

a) Do the MANOVA F test.
b) Do the F2 test.
c) Do the F4 test.
d) Do an appropriate 4 step test for the reduced model that deletes x3

and x4.
e) The output for the reduced model that deletes x1 and x2 is shown

below. Do an appropriate 4 step test.

$partial
partialF Pval

[1,] 569.6429 0

Solution:

a) i) H0: the nontrivial predictors are not needed in the mreg model
H1: at least one of the nontrivial predictors is needed

ii) F0 = 295.071
iii) pval = 0
iv) Reject H0, the nontrivial predictors are needed in the mreg model.
b) i) H0: x2 is not needed in the model H1: x2 is needed
ii) F2 = 600.57
iii) pval = 0
iv) Reject H0, population of the district is needed in the model.
c) i) H0: x4 is not needed in the model H1: x4 is needed
ii) F4 = 0.065
iii) pval = 0.937
iv) Fail to reject H0, number of women married to military men is not

needed in the model given that the other predictors are in the model.
d) i) H0: The reduced model is good H1: Use the full model.
ii) FR = 0.200
iii) pval = 0.935
iv) Fail to reject H0, so the reduced model is good.
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e) i) H0: The reduced model is good H1: Use the full model.
ii) FR = 569.6
iii) pval = 0.00
iv) Reject H0, so use the full model.

12.5 An Example and Simulations

The semiparametric prediction region and parametric MVN prediction region
from Section 5.2 applied to the ẑi are only conjectured to be large sample pre-
diction regions, but are added to the DD plot as visual aids. Cases below the
horizontal line that crosses the identity line correspond to the semiparametric
region, while cases below the horizontal line that ends at the identity line cor-
respond to the parametric MVN region. A vertical line dropped down from
this point of intersection does correspond to a large sample prediction region
for multivariate normal error vectors. Note that ẑi = ŷf + ε̂i, and adding a
constant ŷf to all of the residual vectors does not change the Mahalanobis
distances, so the DD plot of the residual vectors can be used to display the
prediction regions.

Example 12.3. Cook and Weisberg (1999a, pp. 351, 433, 447) gave a data
set on 82 mussels sampled off the coast of New Zealand. Let Y1 = log(S) and
Y2 = log(M) where S is the shell mass and M is the muscle mass. The pre-
dictors are X2 = L, X3 = log(W ), and X4 = H: the shell length, log(width),
and height.

a) First use the multivariate location and dispersion model for this data.
Figure 12.1 shows a scatterplot matrix of the data, and Figure 12.2 shows a
DD plot of the data with multivariate prediction regions added. These plots
suggest that the data may come from an elliptically contoured distribution
that is not multivariate normal. The semiparametric and nonparametric 90%
prediction regions of Section 5.2 consist of the cases below the RD = 5.86
line and to the left of the MD = 4.41 line. These two lines intersect on a
line through the origin that is followed by the plotted points. The parametric
MVN prediction region is given by the points below the RD = 3.33 line and
does not contain enough cases.

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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Fig. 12.1 Scatterplot Matrix of the Mussels Data
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Fig. 12.2 DD Plot of the Mussels Data, MLD Model
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Fig. 12.3 Plots for Y1 = log(S)
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Fig. 12.4 Plots for Y2 = log(M)
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Fig. 12.5 DD Plot of the Residual Vectors for the Mussels Data

b) Now consider the multivariate linear regression model. To check linear-
ity, Figures 12.3 and 12.4 give the response and residual plots for Y1 and Y2.
The response plots show strong linear relationships. For Y1, case 79 sticks
out while for Y2, cases 8, 25, and 48 are not fit well. Highlighted cases had
Cook’s distance > min(0.5, 2p/n). See Cook (1977).

To check the error vector distribution, the DD plot should be used instead
of univariate residual plots, which do not take into account the correlations
of the random variables ε1, ..., εm in the error vector ε. A residual vector
ε̂ = (ε̂ − ε) + ε is a combination of ε and a discrepancy ε̂ − ε that tends to
have an approximate multivariate normal distribution. The ε̂ − ε term can
dominate for small to moderate n when ε is not multivariate normal, incor-
rectly suggesting that the distribution of the error vector ε is closer to a
multivariate normal distribution than is actually the case. Figure 12.5 shows
the DD plot of the residual vectors. The plotted points are highly correlated
but do not cover the identity line, suggesting an elliptically contoured error
distribution that is not multivariate normal. The nonparametric 90% predic-
tion region for the residuals consists of the points to the left of the vertical
line MD = 2.60. Comparing Figures 12.2 and 12.5, the residual distribution
is closer to a multivariate normal distribution. Cases 8, 48, and 79 have espe-
cially large distances.

The four Hotelling Lawley Fj statistics were greater than 5.77 with pvalues
less than 0.005, and the MANOVA F statistic was 337.8 with pvalue ≈ 0.

The response, residual, and DD plots are effective for finding influential
cases, for checking linearity, for checking whether the error distribution is
multivariate normal or some other elliptically contoured distribution, and
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for displaying the nonparametric prediction region. Note that cases to the
right of the vertical line correspond to cases with yi that are not in their
prediction region. These are the cases corresponding to residual vectors with
large Mahalanobis distances. Adding a constant does not change the distance,
so the DD plot for the residual vectors is the same as the DD plot for the ẑi.
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Fig. 12.6 Plots for Y2 = M

c) Now suppose the same model is used except Y2 = M . Then the response
and residual plots for Y1 remain the same, but the plots shown in Figure 12.6
show curvature about the identity and r = 0 lines. Hence the linearity condi-
tion is violated. Figure 12.7 shows that the plotted points in the DD plot have
correlation well less than one, suggesting that the error vector distribution
is no longer elliptically contoured. The nonparametric 90% prediction region
for the residual vectors consists of the points to the left of the vertical line
MD = 2.52 and contains 95% of the training data. Note that the plots can
be used to quickly assess whether power transformations have resulted in a
linear model, and whether influential cases are present. R code for producing
the seven figures is shown below.

y <- log(mussels)[,4:5]
x <- mussels[,1:3]
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Fig. 12.7 DD Plot When Y2 = M

x[,2] <- log(x[,2])
z<-cbind(x,y)
pairs(z, labels=c("L","log(W)","H","log(S)","log(M)"))
ddplot4(z) #right click Stop
out <- mltreg(x,y) #right click Stop 4 times
ddplot4(out$res) #right click Stop
y[,2] <- mussels[,5]
tem <- mltreg(x,y) #right click Stop 4 times
ddplot4(tem$res) #right click Stop

12.5.1 Simulations for Testing

A small simulation was used to study the Wilks’ Λ test, the Pillai’s trace
test, the Hotelling Lawley trace test, and the Roy’s largest root test for
the Fj tests and the MANOVA F test for multivariate linear regression.
The first row of B was always 1T , and the last row of B was always 0T .
When the null hypothesis for the MANOVA F test is true, all but the
first row corresponding to the constant are equal to 0T . When p ≥ 3 and
the null hypothesis for the MANOVA F test is false, then the second to
last row of B is (1, 0, ..., 0), the third to last row is (1, 1, 0, ..., 0) etc.,
as long as the first row is not changed from 1T . First, m × 1 error vec-
tors wi were generated such that the m random variables in the vector wi

are iid with variance σ2. Let the m × m matrix A = (aij) with aii = 1 and
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aij = ψ where 0 ≤ ψ < 1 for i �= j. Then εi = Awi so that Σε = σ2AAT =
(σij) where the diagonal entries σii = σ2[1 + (m − 1)ψ2] and the off diag-
onal entries σij = σ2[2ψ + (m − 2)ψ2] where ψ = 0.10. Hence the correla-
tions are (2ψ + (m − 2)ψ2)/(1 + (m − 1)ψ2). As ψ gets close to 1, the error
vectors cluster about the line in the direction of (1, ..., 1)T . We used wi ∼
Nm(0, I),wi ∼ (1 − τ)Nm(0, I) + τNm(0, 25I) with 0 < τ < 1 and τ = 0.25
in the simulation, wi ∼ multivariate td with d = 7 degrees of freedom, or
wi ∼ lognormal - E(lognormal): where the m components of wi were iid with
distribution ez − E(ez) where z ∼ N(0, 1). Only the lognormal distribution
is not elliptically contoured.

Table 12.1 Test Coverages: MANOVA F H0 is True.

w dist n test F1 F2 Fp−1 Fp FM

MVN 300 W 1 0.043 0.042 0.041 0.018

MVN 300 P 1 0.040 0.038 0.038 0.007

MVN 300 HL 1 0.059 0.058 0.057 0.045

MVN 300 R 1 0.051 0.049 0.048 0.993

MVN 600 W 1 0.048 0.043 0.043 0.034

MVN 600 P 1 0.046 0.042 0.041 0.026

MVN 600 HL 1 0.055 0.052 0.050 0.052

MVN 600 R 1 0.052 0.048 0.047 0.994

MIX 300 W 1 0.042 0.043 0.044 0.017

MIX 300 P 1 0.039 0.040 0.042 0.008

MIX 300 HL 1 0.057 0.059 0.058 0.039

MIX 300 R 1 0.050 0.050 0.051 0.993

MVT(7) 300 W 1 0.048 0.036 0.045 0.020

MVT(7) 300 P 1 0.046 0.032 0.042 0.011

MVT(7) 300 HL 1 0.064 0.049 0.058 0.045

MVT(7) 300 R 1 0.055 0.043 0.051 0.993

LN 300 W 1 0.043 0.047 0.040 0.020

LN 300 P 1 0.039 0.045 0.037 0.009

LN 300 HL 1 0.057 0.061 0.058 0.041

LN 300 R 1 0.049 0.055 0.050 0.994

The simulation used 5000 runs, and H0 was rejected if the F statistic was
greater than Fd1,d2(0.95) where P (Fd1,d2 < Fd1,d2(0.95)) = 0.95 with d1 =
rm and d2 = n − mp for the test statistics

−[n − p − 0.5(m − r + 3)]
rm

log(Λ(L)),
n − p

rm
V (L), and

n − p
rm

U(L),
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while d1 = h = max(r,m) and d2 = n − p − h + r for the test statistic

n − p − h + r

h
λmax(L).

Table 12.2 Test Coverages: MANOVA F H0 is False.

n m = p test F1 F2 Fp−1 Fp FM

30 5 W 0.012 0.222 0.058 0.000 0.006

30 5 P 0.000 0.000 0.000 0.000 0.000

30 5 HL 0.382 0.694 0.322 0.007 0.579

30 5 R 0.799 0.871 0.549 0.047 0.997

50 5 W 0.984 0.955 0.644 0.017 0.963

50 5 P 0.971 0.940 0.598 0.012 0.871

50 5 HL 0.997 0.979 0.756 0.053 0.991

50 5 R 0.996 0.978 0.744 0.049 1

105 10 W 0.650 0.970 0.191 0.000 0.633

105 10 P 0.109 0.812 0.050 0.000 0.000

105 10 HL 0.964 0.997 0.428 0.000 1

105 10 R 1 1 0.892 0.052 1

150 10 W 1 1 0.948 0.032 1

150 10 P 1 1 0.941 0.025 1

150 10 HL 1 1 0.966 0.060 1

150 10 R 1 1 0.965 0.057 1

450 20 W 1 1 0.999 0.020 1

450 20 P 1 1 0.999 0.016 1

450 20 HL 1 1 0.999 0.035 1

450 20 R 1 1 0.999 0.056 1

Denote these statistics by W , P , HL, and R. Let the coverage be the propor-
tion of times that H0 is rejected. We want coverage near 0.05 when H0 is true
and coverage close to 1 for good power when H0 is false. With 5000 runs,
coverage outside of (0.04,0.06) suggests that the true coverage is not 0.05.
Coverages are tabled for the F1, F2, Fp−1, and Fp test and for the MANOVA
F test denoted by FM . The null hypothesis H0 was always true for the Fp

test and always false for the F1 test. When the MANOVA F test was true,
H0 was true for the Fj tests with j �= 1. When the MANOVA F test was
false, H0 was false for the Fj tests with j �= p, but the Fp−1 test should be
hardest to reject for j �= p by construction of B and the error vectors.
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When the null hypothesis H0 was true, simulated values started to get
close to nominal levels for n ≥ 0.8(m + p)2 and were fairly good for n ≥
1.5(m + p)2. The exception was Roy’s test which rejects H0 far too often if
r > 1. See Table 12.1 where we want values for the F1 test to be close to 1
since H0 is false for the F1 test, and we want values close to 0.05, otherwise.
Roy’s test was very good for the Fj tests but very poor for the MANOVA F
test. Results are shown for m = p = 10. As expected from Berndt and Savin
(1977), Pillai’s test rejected H0 less often than Wilks’ test which rejected H0

less often than the Hotelling Lawley test. Based on a much larger simulation
study Pelawa Watagoda (2013, pp. 111–112), using the four types of error
vector distributions and m = p, the tests had approximately correct level if
n ≥ 0.83(m + p)2 for the Hotelling Lawley test, if n ≥ 2.80(m + p)2 for the
Wilks’ test (agreeing with Kshirsagar (1972) n ≥ 3(m + p)2 for multivariate
normal data), and if n ≥ 4.2(m + p)2 for Pillai’s test.

In Table 12.2, H0 is only true for the Fp test where p = m, and we want
values in the Fp column near 0.05. We want values near 1 for high power
otherwise. If H0 is false, often H0 will be rejected for small n. For example,
if n ≥ 10p, then the m residual plots should start to look good, and the
MANOVA F test should be rejected. For the simulated data, the test had
fair power for n not much larger than mp. Results are shown for the lognormal
distribution.

Some R output for reproducing the simulation is shown below. The mpack
function is mregsim, and etype = 1 uses data from a MVN distribution.
The fcov line computed the Hotelling Lawley statistic using Equation (12.8)
while the hotlawcov line used Definition 12.10. The mnull=T part of the
command means we want the first value near 1 for high power and the next
three numbers near the nominal level 0.05 except for mancv where we want
all of the MANOVA F test statistics to be near the nominal level of 0.05. The
mnull=F part of the command means we want all values near 1 for high power
except for the last column (for the terms other than mancv) corresponding to
the Fp test where H0 is true so we want values near the nominal level of 0.05.
The “coverage” is the proportion of times that H0 is rejected, so “coverage”
is short for “power” and “level”: we want the coverage near 1 for high power
when H0 is false, and we want the coverage near the nominal level 0.05 when
H0 is true. Also see Problem 12.10.

mregsim(nruns=5000,etype=1,mnull=T)
$wilkcov
[1] 1.0000 0.0450 0.0462 0.0430
$pilcov
[1] 1.0000 0.0414 0.0432 0.0400
$hotlawcov
[1] 1.0000 0.0522 0.0516 0.0490
$roycov
[1] 1.0000 0.0512 0.0500 0.0480
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$fcov
[1] 1.0000 0.0522 0.0516 0.0490
$mancv

wcv pcv hlcv rcv fcv
[1,] 0.0406 0.0332 0.049 0.1526 0.049

mregsim(nruns=5000,etype=2,mnull=F)

$wilkcov
[1] 0.9834 0.9814 0.9104 0.0408
$pilcov
[1] 0.9824 0.9804 0.9064 0.0372
$hotlawcov
[1] 0.9856 0.9838 0.9162 0.0480
$roycov
[1] 0.9848 0.9834 0.9156 0.0462
$fcov
[1] 0.9856 0.9838 0.9162 0.0480
$mancv

wcv pcv hlcv rcv fcv
[1,] 0.993 0.9918 0.9942 0.9978 0.9942

12.5.2 Simulations for Prediction Regions

The same type of data and 5000 runs were used to simulate the prediction
regions for yf given xf for multivariate regression. With n=100, m=2, and
p=4, the nominal coverage of the prediction region is 90%, and 92% of the
training data is covered. Following Olive (2013a), consider the prediction
region {z : (z − T )TC−1(z − T ) ≤ h2}={z : D2

z ≤ h2}={z : Dz ≤ h}. Then
the ratio of the prediction region volumes

hm
i

√
det(Ci)

hm
2

√
det(C2)

was recorded where i = 1 was the nonparametric region, i = 2 was the semi-
parametric region, and i = 3 was the parametric MVN region. Here h1 and
h2 were the cutoff D(Un)(Ti,Ci) for i = 1, 2, and h3 =

√
χ2
m,qn .
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Table 12.3 Coverages for 90% Prediction Regions.

w dist n m = p ncov scov mcov voln volm

MVN 48 2 0.901 0.905 0.888 0.941 0.964

MVN 300 5 0.889 0.887 0.890 1.006 1.015

MVN 1200 10 0.899 0.896 0.896 1.004 1.001

MIX 48 2 0.912 0.927 0.710 0.872 0.097

MIX 300 5 0.906 0.911 0.680 0.882 0.001

MIX 1200 10 0.904 0.911 0.673 0.889 0+

MVT(7) 48 2 0.903 0.910 0.825 0.914 0.646

MVT(7) 300 5 0.899 0.909 0.778 0.916 0.295

MVT(7) 1200 10 0.906 0.911 0.726 0.919 0.061

LN 48 2 0.912 0.926 0.651 0.729 0.090

LN 300 5 0.915 0.917 0.593 0.696 0.009

LN 1200 10 0.912 0.916 0.593 0.679 0+

If, as conjectured, the RMVN estimator is a consistent estimator when
applied to the residual vectors instead of iid data, then the volume ratios
converge in probability to 1 if the iid zero mean errors ∼ Nm(0,Σε), and the
volume ratio converges to 1 for i = 1 for a large class of elliptically contoured
distributions. These volume ratios were denoted by voln and volm for the
nonparametric and parametric MVN regions. The coverage was the propor-
tion of times the prediction region contained yf where ncov, scov, and mcov
are for the nonparametric, semiparametric, and parametric MVN regions.

In the simulations, we took n = 3(m + p)2 and m = p. Table 12.3 shows
that the coverage of the nonparametric region was close to 0.9 in all cases.
The volume ratio voln was fairly close to 1 for the three elliptically contoured
distributions. Since the volume of the prediction region is proportional to hm,
the volume can be very small if h is too small and m is large. Parametric
prediction regions usually give poor estimates of h when the parametric dis-
tribution is misspecified. Hence the parametric MVN region only performed
well for multivariate normal data.

Some R output for reproducing the simulation is shown below. The mpack
function is mpredsim, and etype = 1 uses data from a MVN distribution.
The term “ncvr” is “ncov” in Table 12.3. Since up = 0.94, 94% of the train-
ing data is covered by the nominal 90% nominal prediction region. Also see
Problem 12.11.

mpredsim(nruns=5000,etype=1)
$ncvr
[1] 0.9162
$scvr
[1] 0.916
$mcvr
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[1] 0.9138
$voln
[1] 0.9892485
$vols
[1] 1
$volm
[1] 1.004964
$up
[1] 0.94

12.6 Two Robust Estimators

12.6.1 The rmreg Estimator

The classical multivariate linear regression estimator is found from m least
squares multiple linear regressions of Yj on the predictors. The first way
to make a robust multivariate linear regression estimator is to replace least
squares by a robust estimator, such as the m hbreg multiple linear regres-
sions of Yj on the predictors. Olive and Hawkins (2011) showed that the
probability the hbreg estimator is equal to the least squares estimator goes
to one as n → ∞ for a large class of (univariate) error distributions. See
Section 14.4. The class of (univariate) error distributions contains distribu-
tions that are not symmetric; however, for a skewed distribution, the slope
estimates are similar, but the intercept β̂1 will differ for least squares and
hbreg. See the Warning in Section 14.2.

The mpack function rmreg replaces least squares with hbreg to make the
first robust multivariate linear regression estimator. Then the probability that
the rmreg estimator is equal to the classical multivariate linear regression
estimator also goes to 1 on a large class of distributions for the error vector
ε, including many elliptically contoured distributions.

Hence the large sample nonparametric prediction region and the large
sample Wilks’ test, Pillai’s test, and Hotelling Lawley test using the robust
estimator rmreg are asymptotically equivalent to their analogs using the
classical estimator for a large class of error vector distributions.

The rmreg estimator has some useful theory for clean data, but replacing
the least squares multiple linear regression estimator by a highly outlier-
resistant multiple linear regression estimator results in a multivariate linear
regression estimator with outlier resistance that is still quite low. For rmreg,
the tests are not valid when outliers are present since Σ̂ε uses the outliers.

http://dx.doi.org/10.1007/978-3-319-68253-2_14
http://dx.doi.org/10.1007/978-3-319-68253-2_14
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Example 12.4. Buxton (1920) gave various measurements of 88 men.
Head length and person’s height were the response variables, while an inter-
cept, nasal height, bigonal breadth, and cephalic index were used as predictors
in the multivariate linear regression model. Observation 9 was deleted since
it had missing values. Five individuals, numbers 62–66, were reported to be
about 0.75 inches tall with head lengths well over five feet! Figure 12.8 shows
the response and residual plots corresponding to Y1 for the robust estima-
tor rmreg. The response plot for the classical estimator, not shown, has the
identity line tilted slightly above most of the plotted points in the lower part
of the plot, while the plotted points in the lower part of the residual plot
follow a line with negative slope instead of the r = 0 line. Figure 12.9 shows
the response and residual plots corresponding to Y2 for the robust estimator.
The response plot for the classical estimator, not shown, has the identity
line tilted slightly below most of the plotted points in the upper part of the
plot, while the plotted points in the upper part of the residual plot follow a
line with negative slope instead of the r = 0 line. Figure 12.10 shows the DD
plot. The 90% semiparametric and nonparametric regions use the 95th per-
centile which is a linear combination of an outlying case with a nonoutlying
case. The parametric MVN region contains cases below the RD = 2.448 line,
which is obscured by the identity line. The tests of hypotheses for the robust
estimator are not robust to outliers because all n = 87 residual vectors are
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Fig. 12.8 Plots for Y1 = head length
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used to make Σ̂ε. As is often the case, outliers can be detected with the plots
using the classical or robust estimator.

These three figures can be made with the following R commands.

ht <- buxy
z <- cbind(buxx,ht)
y <- z[,c(1,5)]
x <- z[,2:4]
# compare mltreg(x,y)
out<-rmltreg(x,y) #right click Stop 4 times
out; ddplot4(out$res) #right click Stop

R functions for simulating testing and prediction regions using rmreg are
rmregsim and rmpredism. The similar functions for the classical estimator
delete the initial “r.” The function rmltreg produces output similar to the
R function mltreg for the classical estimator, including response and resid-
ual plots and output for testing with the rmreg estimator. For prediction,
the simulation results for the robust estimator were similar to those for the
classical estimator. For testing, the robust estimator needed larger values of
n, and the tests did not work for the highly skewed lognormal distribution
since the robust and classical estimators estimate the m constants (β1j for
j = 1, ...,m) differently when the data is skewed. Rupasinghe Arachchige Don
(2013) did a large simulation study for testing using rmreg. Results suggested
that for the three elliptically contoured distributions used in Section 12.5.1
and m = p, the tests had approximately correct level if n > 150 + (m + p)2

for the Hotelling Lawley test, if n > 140 + 3(m + p)2 for the Wilks’ test, and
if n > 90 + 3.6(m + p)2 for Pillai’s test.

12.6.2 The rmreg2 Estimator

The robust multivariate linear regression estimator rmreg2 is the classi-
cal multivariate linear regression estimator applied to the RMVN set when
RMVN is computed from the vectors ui = (xi2, ..., xip, Yi1, ..., Yim)T for i =
1, ..., n. Hence ui is the ith case with xi1 = 1 deleted. This regression estima-
tor has considerable outlier resistance and is one of the most outlier resistant
practical robust regression estimator for the m = 1 multiple linear regression
case. See Chapter 14. The rmreg2 estimator has been shown to be consis-
tent if the ui are iid from a large class of elliptically contoured distributions,
which is a much stronger assumption than having iid error vectors εi.

http://dx.doi.org/10.1007/978-3-319-68253-2_14
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First, we will review some results for multiple linear regression. Let x =
(1,wT )T and let

Cov(w) = E[(w − E(w))(w − E(w))T] = Σw

and Cov(w, Y ) = E[(w − E(w))(Y − E(Y ))] = ΣwY . Let β = (α,ηT )T be
the population OLS coefficients from the regression of Y on x (w and a
constant), where α is the constant and η is the vector of slopes. Let the OLS
estimator be β̂ = (α̂, η̂T )T . Then the population coefficients from an OLS
regression of Y on x are

α = E(Y ) − ηTE(w) and η = Σ−1
w ΣwY. (12.10)

Then the OLS estimator β̂ = (XTX)−1XTY . The sample covariance
matrix of w is

Σ̂w =
1

n − 1

n∑

i=1

(wi − w)(wi − w)T where the sample mean w =
1
n

n∑

i=1

wi.

Similarly, define the sample covariance vector of w and Y to be

Σ̂wY =
1

n − 1

n∑

i=1

(wi − w)(Yi − Y ).

Suppose that (Yi,w
T
i )T are iid random vectors such that Σ−1

w and ΣwY

exist. Then
α̂ = Y − η̂Tw

P→ α

and
η̂ = Σ̂

−1

w Σ̂wY
P→ η as n → ∞.

Now for multivariate linear regression, β̂j = (α̂j , η̂
T
j )T where α̂j = Y j −

η̂T
j w and η̂j = Σ̂

−1

w Σ̂wYj
. Let Σ̂wy = 1

n−1

∑n
i=1(wi − w)(yi − y)T which

has jth column Σ̂wYj
for j = 1, ...,m. Let

u =
(

w
y

)
, E(u) = μu =

(
E(w)
E(y)

)
=

(
μw
μy

)
, and Cov(u) = Σu =
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(
Σww Σwy
Σyw Σyy

)
.

Let the vector of constants be αT = (α1, ..., αm) and the matrix of slope
vectors BS =

[
η1 η2 . . . ηm

]
. Then the population least squares coefficient

matrix is

B =
(

αT

BS

)

where α = μy − BT
Sμw and BS = Σ−1

w Σwy where Σw = Σww.
If the ui are iid with nonsingular covariance matrix Cov(u), the least

squares estimator

B̂ =
(

α̂T

B̂S

)

where α̂ = y − B̂
T

Sw and B̂S = Σ̂
−1

w Σ̂wy . The least squares multivariate
linear regression estimator can be calculated by computing the classical esti-
mator (u,Su) = (u, Σ̂u) of multivariate location and dispersion on the ui,
and then plug in the results into the formulas for α̂ and B̂S .

Let (T,C) = (μ̃u, Σ̃u) be a robust estimator of multivariate location and
dispersion. If μ̃u is a consistent estimator of μu and Σ̃u is a consistent
estimator of c Σu for some constant c > 0, then a robust estimator of mul-
tivariate linear regression is the plug-in estimator α̃ = μ̃y − B̃

T

S μ̃w and

B̃S = Σ̃
−1

w Σ̃wy .
For the rmreg2 estimator, (T,C) is the classical estimator applied to

the RMVN set when RMVN is applied to vectors ui for i = 1, ..., n (could
use (T,C) = RMVN estimator since the scaling does not matter for this
application). Then (T,C) is a

√
n consistent estimator of (μu, c Σu) if the ui

are iid from a large class of ECd(μu,Σu, g) distributions where d = m + p −
1. Thus the classical and robust estimators of multivariate linear regression
are both

√
n consistent estimators of B if the ui are iid from a large class of

elliptically contoured distributions. This assumption is quite strong, but the
robust estimator is useful for detecting outliers. When there are categorical
predictors or the joint distribution of u is not elliptically contoured, it is
possible that the robust estimator is bad and very different from the good
classical least squares estimator.



12.6 Two Robust Estimators 369

49 50 51 52 53

45
50

55
60

fit[, i]

y[
, i

]

Response Plot

49 50 51 52 53

−5
0

5
10

fit[, i]

re
s[

, i
]

Residual Plot

Fig. 12.11 Plots for Y1 = nasal height using rmreg

Example 12.4, continued. The mpack function rmreg2 computes the
rmreg2 estimator and produces the response and residual plots. The plots
for the rmreg2 estimator were very similar to Figures 12.8 and 12.9.

Now let Y1 = nasal height and Y2 = height with x2 = head length, x3 =
bigonal breadth, and x4 = cephalic index. Then Y2 and x2 have massive out-
liers. Then the response and residual plots for the classical estimator and the
robust estimator rmreg using hbreg were nearly identical. Figures 12.11
and 12.12 show that the fit using rmreg went right through the outliers.
Figures 12.13 and 12.14 show that the response and residual plots corre-
sponding to rmreg2 do not have fits that pass through the outliers.

These figures can be made with the following R commands.

ht <- buxy; z <- cbind(buxx,ht);
y <- z[,c(2,5)]; x <- z[,c(1,3,4)]
# compare mltreg(x,y) #right click Stop 4 times
rmltreg(x,y) #right click Stop 4 times
out <- rmreg2(x,y) #right click Stop 4 times
# try ddplot4(out$res) #right click Stop
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Fig. 12.12 Plots for Y2 = height using rmreg
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Fig. 12.14 Plots for Y2 = height using rmreg2

The residual bootstrap for the test H0 : LB = 0 may be useful. Take a
sample of size n with replacement from the residual vectors to form Z∗

1 with
ith row y∗T

i where y∗
i = ŷi + ε∗i . The function rmreg3 gets the rmreg2

estimator without the plots. Using rmreg3, regress Z on X to get vec(LB̂
∗
1).

Repeat B times to get a bootstrap sample w1, ...,wB where wi = vec(LB̂
∗
i ).

The nonparametric bootstrap uses n cases drawn with replacement and may
also be useful. Apply the nonparametric prediction region to the wi and
see if 0 is in the region. If L is r × p, then w is rp × 1, and we likely need
n ≥ max[50rp, 3(m + p)2].

12.7 Seemingly Unrelated Regressions

Each response variable in a multivariate linear regression model follows a
multiple linear regression model Y j = Xβj + ej for j = 1, ...,m where it is
assumed that E(ej) = 0 and Cov(ej) = σjjIn. Hence the errors correspond-
ing to the jth response are uncorrelated with variance σ2

j = σjj . Notice that
the same design matrix X of predictors is used for each of the m models,
but the response variable vector Y j , coefficient vector βj , and error vector
ej change and thus depend on j.
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The seemingly unrelated regressions (SUR) model differs from the multi-
variate linear regression model in that each response model follows a multi-
ple linear regression model Y j = Xjβj + ej with a different design matrix
Xj and the βj are kj × 1 vectors. Let xi,j = (1, x2,j , ..., xkj ,j)

T . Then the
ith case in the model is (Yi,1, ..., Yi,m, x2,1, ..., xk1,1, x2,2, ..., xk2,2, ..., x2,m, ...,
xkm,m). That is, string yi and the xi,j into a vector, omitting the m ones.

The multivariate linear regression model can be regarded as the spe-
cial case of the SUR model where all of the design matrices are equal
Xj ≡ X for j = 1, ...,m, and the SUR model can be regarded as a spe-
cial case of the multivariate linear regression model where the design matrix
X has columns corresponding to the constant 1, x2,1, ..., xkm,m. Hence if
k =

∑m
i=1 ki, then X is an n × (k − m + 1) matrix. Then the (k − m + 1) × 1

vector β∗
j = (β1,j , 0, ..., 0, β2,j , ..., βkj ,j , 0, ..., 0)T . Here β∗

j is the jth column
of B, and only kj of the entries of β∗

j are nonzero. Hence most of the entries
in B are zeroes.

A competitor of the SUR model would be the multivariate linear regression
model where there are no restrictions on B, so the columns βj of B are esti-
mated using least squares and X. The SUR model says that the Yi,1, ..., Yi,m

are correlated, but only xi,j is needed in the model for predicting the Yi,j

when xi,1, ...,xi,m are possible vectors of predictors. If this assumption is
wrong, then the SUR model could be throwing away a lot of information
from relevant predictors.

Definition 12.11. In the seemingly unrelated regressions model,

yi = E(yi) + εi =

⎛

⎜
⎜
⎜
⎝

xT
i,1β1

xT
i,2β2
...

xT
i,mβm

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

εi,1
εi,2
...

εi,m

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

xT
i,1β̂1

xT
i,2β̂2
...

xT
i,mβ̂m

⎞

⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

ε̂i,1
ε̂i,2
...

ε̂i,m

⎞

⎟
⎟
⎟
⎠

= ŷi + ε̂i for i = 1, ..., n, where Cov(εi) ≡ Σε is m × m and E(εi) ≡ 0.
Here xi,j , βj , and β̂j are kj × 1 vectors where

∑m
j=1 kj = k, and yi =

(yi1, ..., yim)T .

There are several ways to estimate the β̂j . First, estimate β̂j using least
squares on the m multiple linear regression models Y j = Xjβj + ej . This
method should be equivalent to using the multivariate regression model where
the β∗

j are the columns of B and the nonzero entries of β̂
∗
j are collected

into the kj × 1 vectors β̂j . Another method uses the seemingly unrelated
regressions estimator (SURE) which uses the multivariate linear regression
estimator as an initial estimator and then uses generalized least squares.
See Press (2005,

∮
8.5). In the discussion that follows, β̂ will be the SUR
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estimator which is thought to be more efficient than the alternatives. See
White (1984, p. 166–171) for large sample theory of the SUR estimator.

Model checking and prediction for the SUR model are very similar to that
for the multivariate regression model, but use the fitted values and residuals
from the SUR model.

1) Make the m response and residual plots, and make the DD plot of the ε̂i.
2) Transformation plots and variable selection can be done using least squares
on each of the m multiple linear regression models Y j = Xjβj + ej for j =
1, ...,m.
3) A prediction region for yf is made as in Section 12.3 using Σ̂ε and ẑi =
ŷf + ε̂i for i = 1, ..., n where ŷf = (xT

f,1β̂1, ...,x
T
f,mβ̂m)T and Σ̂ε and the β̂j

are the SUR estimators.

12.8 Summary

1) The multivariate linear regression model is a special case of the multi-
variate linear model where at least one predictor variable xj is continuous.
The MANOVA model in Chapter 10 is a multivariate linear model where all
of the predictors are categorical variables so the xj are coded and are often
indicator variables.

2) The multivariate linear regression model yi = BTxi + εi for
i = 1, ..., n has m ≥ 2 response variables Y1, ..., Ym and p predictor vari-
ables x1, x2, ..., xp. The ith case is (xT

i ,yT
i ) = (xi1, xi2, ..., xip, Yi1, ..., Yim).

The constant xi1 = 1 is in the model and is often omitted from the case
and the data matrix. The model is written in matrix form as Z = XB + E.
The model has E(εk) = 0 and Cov(εk) = Σε = (σij) for k = 1, ..., n. Also
E(ei) = 0 while Cov(ei,ej) = σijIn for i, j = 1, ...,m. Then B and Σε are
unknown matrices of parameters to be estimated, and E(Z) = XB while
E(Yij) = xT

i βj .
3) Each response variable in a multivariate linear regression model follows

a multiple linear regression model Y j = Xβj + ej for j = 1, ...,m where it
is assumed that E(ej) = 0 and Cov(ej) = σjjIn.

4) For each variable Yk, make a response plot of Ŷik versus Yik and a
residual plot of Ŷik versus rik = Yik − Ŷik. If the multivariate linear regression
model is appropriate, then the plotted points should cluster about the identity
line in each of the m response plots. If outliers are present or if the plot is not
linear, then the current model or data need to be transformed or corrected.
If the model is good, then each of the m residual plots should be ellipsoidal
with no trend and should be centered about the r = 0 line. There should not
be any pattern in the residual plot: as a narrow vertical strip is moved from

http://dx.doi.org/10.1007/978-3-319-68253-2_10
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left to right, the behavior of the residuals within the strip should show little
change. Outliers and patterns such as curvature or a fan-shaped plot are bad.

5) Make a scatterplot matrix of Y1, ..., Ym and of the continuous predictors.
Use power transformations to remove strong nonlinearities.

6) Consider testing LB = 0 where L is an r × p full rank matrix. Let

W e = Ê
T
Ê and W e/(n − p) = Σ̂ε. Let H = B̂

T
LT [L(XTX)−1LT ]−1LB̂.

Let λ1 ≥ λ2 ≥ · · · ≥ λm be the ordered eigenvalues of W−1
e H. Then there

are four commonly used test statistics.
The Wilks’ Λ statistic is Λ(L) = |(H + W e)−1W e| = |W−1

e H + I|−1 =
m∏

i=1

(1 + λi)−1.

The Pillai’s trace statistic is V (L) = tr[(H + W e)−1H] =
m∑

i=1

λi

1 + λi
.

The Hotelling-Lawley trace statistic is U(L) = tr[W−1
e H] =

m∑

i=1

λi.

The Roy’s maximum root statistic is λmax(L) = λ1.
7) Theorem: The Hotelling-Lawley trace statistic

U(L) =
1

n − p
[vec(LB̂)]T [Σ̂

−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)].

8) Assumption D1: Let hi be the ith diagonal element of X(XTX)−1

XT . Assume max(h1, ..., hn) P→ 0 as n → ∞, assume that the zero mean iid

error vectors have finite fourth moments, and assume that
1
n

XTX
P→ W−1.

9) Multivariate Least Squares Central Limit Theorem (MLS
CLT): For the least squares estimator, if assumption D1 holds, then Σ̂ε is a√

n consistent estimator of Σε, and
√

n vec(B̂ − B) D→ Npm(0,Σε ⊗ W ).
10) Theorem: If assumption D1 holds and if H0 is true, then

(n − p)U(L) D→ χ2
rm.

11) Under regularity conditions, −[n − p + 1 − 0.5(m − r + 3)]
log(Λ(L)) D→ χ2

rm, (n − p)V (L) D→ χ2
rm, and (n − p)U(L) D→ χ2

rm.
These statistics are robust against nonnormality.
12) For the Wilks’ Lambda test,

pval = P

(−[n − p + 1 − 0.5(m − r + 3)]
rm

log(Λ(L)) < Frm,n−rm

)
.

For the Pillai’s trace test, pval = P

(
n − p

rm
V (L) < Frm,n−rm

)
.

For the Hotelling Lawley trace test, pval = P

(
n − p

rm
U(L) < Frm,n−rm

)
.

The above three tests are large sample tests, P(reject H0|H0 is true) → δ
as n → ∞, under regularity conditions.
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13) The 4 step MANOVA F test of hypotheses uses L = [0 Ip−1].
i) State the hypotheses H0: The nontrivial predictors are not needed in the
mreg model H1: At least one of the nontrivial predictors is needed.
ii) Find the test statistic Fo from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. If H0 is rejected,
conclude that there is a mreg relationship between the response variables
Y1, ..., Ym and the predictors x2, ..., xp. If you fail to reject H0, conclude that
there is a not a mreg relationship between Y1, ..., Ym and the predictors x2,
..., xp. (Get the variable names from the story problem.)

14) The 4 step Fj test of hypotheses uses Lj = [0, ..., 0, 1, 0, ..., 0] where
the 1 is in the jth position. Let BT

j be the jth row of B. The hypotheses are
equivalent to H0 : BT

j = 0 H1 : BT
j �= 0. i) State the hypotheses

H0: xj is not needed in the model H1: xj is needed in the model.
ii) Find the test statistic Fj from output.
iii) Find pval from output.
iv) If pval ≤ δ, reject H0. If pval > δ, fail to reject H0. Give a nontechnical
sentence restating your conclusion in terms of the story problem. If H0 is
rejected, then conclude that xj is needed in the mreg model for Y1, ..., Ym. If
you fail to reject H0, then conclude that xj is not needed in the mreg model
for Y1, ..., Ym given that the other predictors are in the model.

15) The 4 step MANOVA partial F test of hypotheses has a full model
using all of the variables and a reduced model where r of the variables are
deleted. The ith row of L has a 1 in the position corresponding to the ith
variable to be deleted. Omitting the jth variable corresponds to the Fj test
while omitting variables x2, ..., xp corresponds to the MANOVA F test.
i) State the hypotheses H0: The reduced model is good
H1: Use the full model.
ii) Find the test statistic FR from output.
iii) Find the pval from output.
iv) If pval ≤ δ, reject H0 and conclude that the full model should be used.
If pval > δ, fail to reject H0 and conclude that the reduced model is good.

16) The 4 step MANOVA F test should reject H0 if the response and
residual plots look good, n is large enough, and at least one response plot
does not look like the corresponding residual plot. A response plot for Yj will
look like a residual plot if the identity line appears almost horizontal, hence
the range of Ŷj is small.

17) The mpack function mltreg produces the m response and residual
plots, gives B̂, Σ̂ε, the MANOVA partial F test statistic and pval corre-
sponding to the reduced model that leaves out the variables given by indices
(so x2 and x4 in the output below with F = 0.77 and pval = 0.614), Fj

and the pval for the Fj test for variables 1, 2, ..., p (where p = 4 in the
output below so F2 = 1.51 with pval = 0.284), and F0 and pval for the
MANOVA F test (in the output below F0 = 3.15 and pval= 0.06). The com-
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mand out <- mltreg(x,y,indices=c(2))would produce a MANOVA
partial F test corresponding to the F2 test while the command out <-
mltreg(x,y,indices=c(2,3,4)) would produce a MANOVA partial F
test corresponding to the MANOVA F test for a data set with p = 4 predictor
variables. The Hotelling Lawley trace statistic is used in the tests.

out <- mltreg(x,y,indices=c(2,4))
$Bhat [,1] [,2] [,3]
[1,] 47.96841291 623.2817463 179.8867890
[2,] 0.07884384 0.7276600 -0.5378649
[3,] -1.45584256 -17.3872206 0.2337900
[4,] -0.01895002 0.1393189 -0.3885967
$Covhat

[,1] [,2] [,3]
[1,] 21.91591 123.2557 132.339
[2,] 123.25566 2619.4996 2145.780
[3,] 132.33902 2145.7797 2954.082
$partial

partialF Pval
[1,] 0.7703294 0.6141573
$Ftable

Fj pvals
[1,] 6.30355375 0.01677169
[2,] 1.51013090 0.28449166
[3,] 5.61329324 0.02279833
[4,] 0.06482555 0.97701447
$MANOVA

MANOVAF pval
[1,] 3.150118 0.06038742

18) Given B̂ = [β̂1 β̂2 · · · β̂m] and xf , find ŷf = (ŷ1, ..., ŷm)T where

ŷi = β̂
T

i xf .

19) Σ̂ε =
Ê

T
Ê

n − p
=

1
n − p

n∑

i=1

ε̂iε̂
T
i while the sample covariance matrix of

the residuals is Sr =
n − p

n − 1
Σ̂ε =

Ê
T
Ê

n − 1
. Both Σ̂ε and Sr are

√
n consistent

estimators of Σε for a large class of distributions for the error vectors εi.
20) The 100(1 − δ)% nonparametric prediction region for yf given xf is

the nonparametric prediction region from
∮

5.2 applied to ẑi = ŷf + ε̂i =

B̂
T
xf + ε̂i for i = 1, ..., n. This takes the data cloud of the n residual vectors

ε̂i and centers the cloud at ŷf . Let

D2
i (ŷf ,Sr) = (ẑi − ŷf )TS−1

r (ẑi − ŷf )
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for i = 1, ..., n. Let qn = min(1 − δ + 0.05, 1 − δ + m/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δm/n), otherwise.

If qn < 1 − δ + 0.001, set qn = 1 − δ. Let 0 < δ < 1 and h = D(Un) where
D(Un) is the qnth sample quantile of the Di. The 100(1 − δ)% nonparametric
prediction region for yf is

{y : (y − ŷf )TS−1
r (y − ŷf ) ≤ D2

(Un)
} = {y : Dy(ŷf ,Sr) ≤ D(Un)}.

a) Consider the n prediction regions for the data where (yf,i,xf,i) =
(yi,xi) for i = 1, ..., n. If the order statistic D(Un) is unique, then Un of the
n prediction regions contain yi where Un/n → 1 − δ as n → ∞.

b) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε), then the nonpara-
metric prediction region is a large sample 100(1 − δ)% prediction region for
yf .

c) If (ŷf ,Sr) is a consistent estimator of (E(yf ),Σε), and the εi come
from an elliptically contoured distribution such that the unique highest den-
sity region is {y : Dy(0,Σε) ≤ D1−δ}, then the nonparametric prediction
region is asymptotically optimal.

21) On the DD plot for the residual vectors, the cases to the left of the
vertical line correspond to cases that would have yf = yi in the nonparamet-
ric prediction region if xf = xi, while the cases to the right of the line would
not have yf = yi in the nonparametric prediction region.

22) The DD plot for the residual vectors is interpreted almost exactly as
a DD plot for iid multivariate data is interpreted. Plotted points clustering
about the identity line suggests that the εi may be iid from a multivariate
normal distribution, while plotted points that cluster about a line through
the origin with slope greater than 1 suggests that the εi may be iid from an
elliptically contoured distribution that is not MVN. The semiparametric and
parametric MVN prediction regions correspond to horizontal lines on the DD
plot. Robust distances have not been shown to be consistent estimators of
the population distances, but are useful for a graphical diagnostic.

23) The robust multivariate linear regression method rmreg replaces least
squares with the hbreg estimator. The probability that the rmreg estimator
equals the classical estimator goes to 1 as n → ∞ for a large class of error dis-
tributions. Hence the hypothesis tests and nonparametric prediction regions
for the classical method can be applied to the robust method. The entries
of B̂ are hard to drive to ±∞ for the robust estimator, and the residuals
corresponding to outliers are sometimes large. Since the residuals are used to
compute Σ̂ε, the tests of hypothesis based on the robust estimator are not
robust to the presence of outliers.

24) The robust multivariate linear regression method rmreg2 computes
the classical estimator on the RMVN set where RMVN is computed from
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the n cases ui = (xi2, ..., xpi, Yi1, ..., Yim)T . This estimator has considerable
outlier resistance but theory currently needs very strong assumptions. The
response and residual plots and DD plot of the residuals from this estimator
are useful for outlier detection. The rmreg2 estimator is superior to the
rmreg estimator for outlier detection.

12.9 Complements

Multivariate linear regression is a semiparametric method that is nearly as
easy to use as multiple linear regression if m is small. The material on plots
and testing followed Olive et al. (2015) closely. The m response and residual
plots should be made as well as the DD plot, and the response and resid-
ual plots are very useful for the m = 1 case of multiple linear regression and
experimental design. These plots speed up the model building process for
multivariate linear models since the success of power transformations achiev-
ing linearity can be quickly assessed, and influential cases can be quickly
detected. See Cook and Cook and Olive (2001). Work is needed on variable
selection and on determining the sample sizes for when the tests and predic-
tion regions start to work well. Response and residual plots can look good for
n ≥ 10p, but for testing and prediction regions, we may need n ≥ a(m + p)2

where 0.8 ≤ a ≤ 5 even for well behaved elliptically contoured error distrib-
utions. Cook and Setodji (2003) used the FF plot.

Often observations (Y1, ..., Ym, x2, ..., xp) are collected on the same per-
son or thing and hence are correlated. If transformations can be found such
that the m response plots and residual plots look good, and n is large
(n ≥ max[(m + p)2,mp + 30)] starts to give good results), then multivari-
ate linear regression can be used to efficiently analyze the data. Examining
m multiple linear regressions is an incorrect method for analyzing the data.

In addition to robust estimators and seemingly unrelated regressions, enve-
lope estimators and partial least squares (PLS) are competing methods for
multivariate linear regression. See recent work by Cook such as Cook and
Su (2013), Cook et al. (2013), and Su and Cook (2012). Methods like ridge
regression and lasso can also be extended to multivariate linear regression.
See, for example, Obozinski et al. (2011). Prediction regions for alternative
methods with n >> p could be made following Section 12.3.

Section 12.3 follows Olive (2017b) closely. Consider the model yi =
E(yi|xi) + ei = m(xi) + εi for i = 1, ..., n. A practical method for produc-
ing a prediction region for yf is to create pseudodata ŷf + ε̂1, ..., ŷf + ε̂n
using the residual vectors ε̂i and the predicted value ŷf . Then apply pre-
diction region (5.12) to the pseudodata but modify c = kn = 	n(1 − δ)
 so
that the coverage is better for moderate samples. Often the nonparametric
prediction region (5.17) will work.

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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There is little competition for the nonparametric prediction region for
multivariate regression if m > 1. For m = 1 and multiple linear regression,
the prediction intervals of Olive (2007) based on the short should be shorter
when the error distribution is not symmetric. The parametric MVN region
works if the errors εi come from a MVN distribution, but this region tends
to have volume that is too small if the error distribution is not MVN. For
m not much larger than two, the Lei et al. (2013) prediction region or the
Hyndman (1996) prediction region (5.8) could be used on the pseudodata
ẑi = ŷf + ε̂i, possibly modifying (5.8) with a value of δn that increases to δ
as n → ∞. For m = 1, a similar procedure is done by Lei and Wasserman
(2014).

Some robust estimators are described by Wilcox (2009) and Rousseeuw
et al. (2004), where the practical FLTS and FMCD methods are not yet
backed by theory and should be replaced by the methods in Section 12.6.
Plugging in robust dispersion estimators in place of the covariance matrices,
as done in Section 12.6.2, is not a new idea. Maronna and Morgenthaler
(1986) used M–estimators when m = 1. Problems can occur if the error dis-
tribution is not elliptically contoured. See Nordhausen and Tyler (2015).

If m = 1 and n is not much larger than p, then Hoffman et al. (2015)
gave a robust Partial Least Squares–Lasso type estimator that uses a clever
weighting scheme.

The R software was used to make plots and software. See R Core Team
(2016). The function mpredsim was used to simulate the prediction regions,
mregsim was used to simulate the tests of hypotheses, and mregddsim
simulated the DD plots for various distributions. The function mltreg makes
the response and residual plots and computes the Fj , MANOVA F , and
MANOVA partial F test pvalues, while the function ddplot4 makes the
DD plots.

Variable selection, also called subset or model selection, is the search for
a subset of predictor variables that can be deleted without important loss of
information. There is the full model x = (xT

I ,xO)T where xI is a candidate
submodel. It is crucial to verify that a multivariate regression model is appro-
priate for the full model. For each of the m response variables, use the
response plot and the residual plot for the full model to check this
assumption. Variable selection for multivariate linear regression is discussed
in Fujikoshi et al. (2014). R programs are needed to make variable selection
easy. Forward selection would be especially useful.

To do crude variable selection, fit the model, leave out the variable with
the largest Fj test pvalue > 0.1, and fit the model, and repeat. The statistic
Cp(I) = (p − k)(FI − 1) + k may also be useful. Here p is the number of
variables in the full model, k is the number of variables in the candidate
model I, and FI is the MANOVA partial F statistic for testing whether the
p − k variables xO (in the full model but not in the candidate model I) can
be deleted. Models that have Cp(I) ≤ k are certainly interesting. Check the
final submodel xI for multivariate linear regression with the FF, RR plots,

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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and the response and residual plots for the full model and for the candidate
model for each of the m response variables Y1, ..., Ym. The submodels use ŶIj

for j = 1, ...,m.
If n < 10p, do forward selection until there are J ≈ n/10 predictors. Check

that the model with J predictors is reasonable. Then compute Cp(I) for each
model considered in the forward selection.

The theory for multivariate linear regression assumes that the model is
known before gathering data. If variable selection and response transforma-
tions are performed to build a model, then the estimators are biased and
results for inference fail to hold in that pvalues and coverage of confidence
and prediction regions will be wrong. When m = 1, see, for example, Berk
(1978), Copas (1983), Miller (1984), and Rencher and Pun (1980). Hence it
is a good idea to do a pilot study to suggest which transformations and vari-
ables to use. Then do a larger study (without using variable selection) using
variables suggested by the pilot study.

Khattree and Naik (1999, pp. 91–98) discussed testing H0 : LBM = 0
versus H1 : LBM �= 0 where M = I gives a linear test of hypotheses.
Johnstone and Nadler (2017) gave useful approximations for Roy’s largest

root test when the error vector distribution is multivariate normal.

12.10 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-
FUL.

12.1∗. Consider the Hotelling Lawley test statistic. Let

T (W ) = n [vec(LB̂)]T [Σ̂
−1

ε ⊗ (LWLT )−1][vec(LB̂)].

Let
XTX

n
= Ŵ

−1
.

Show T (Ŵ ) = [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)].

12.2. Consider the Hotelling Lawley test statistic. Let T =

[vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)].

Let L = Lj = [0, ..., 0, 1, 0, ..., 0] have a 1 in the jth position. Let b̂
T

j = LB̂ be
the jth row of B̂. Let dj = Lj(XTX)−1LT

j = (XTX)−1
jj , the jth diagonal

entry of (XTX)−1. Then Tj = 1
dj

b̂
T

j Σ̂
−1

ε b̂j . The Hotelling Lawley statistic
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U = tr([(n − p)Σ̂ε]−1B̂
T
LT [L(XTX)−1LT ]−1LB̂]).

Hence if L = Lj , then Uj = 1
dj(n−p) tr(Σ̂

−1

ε b̂j b̂
T

j ).
Using tr(ABC) = tr(CAB) and tr(a) = a for scalar a, show that

(n − p)Uj = Tj .

12.3. Consider the Hotelling Lawley test statistic. Using the Searle (1982,
p. 333) identity

tr(AGTDGC) = [vec(G)]T [CA ⊗ DT ][vec(G)],

show (n − p)U(L) = tr[Σ̂
−1

ε B̂
T
LT[L(XTX)−1LT]−1LB̂]

= [vec(LB̂)]T [Σ̂
−1

ε ⊗ (L(XTX)−1LT )−1][vec(LB̂)] by identifying A,G,D,
and C.

$Ftable Fj pvals #Output for problem 12.4.
[1,] 82.147221 0.000000e+00
[2,] 58.448961 0.000000e+00
[3,] 15.700326 4.258563e-09
[4,] 9.072358 1.281220e-05
[5,] 45.364862 0.000000e+00

$MANOVA
MANOVAF pval

[1,] 67.80145 0

12.4. The output above is for the R Seatbelts data set where Y1 =
drivers = number of drivers killed or seriously injured, Y2 = front = num-
ber of front seat passengers killed or seriously injured, and Y3 = back = num-
ber of back seat passengers killed or seriously injured. The predictors were
x2 = kms = distance driven, x3 = price = petrol price, x4 = van = number
of van drivers killed, and x5 = law = 0 if the law was in effect that month
and 1 otherwise. The data consists of 192 monthly totals in Great Britain
from January 1969 to December 1984, and the compulsory wearing of seat
belts law was introduced in February 1983.

a) Do the MANOVA F test.
b) Do the F4 test.
12.5. a) Sketch a DD plot of the residual vectors ε̂i for the multivariate

linear regression model if the error vectors εi are iid from a multivariate
normal distribution. b) Does the DD plot change if the one-way MANOVA
model is used instead of the multivariate linear regression model?
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12.6. The output below is for the R judge ratings data set consisting of
lawyer ratings for n = 43 judges. Y1 = oral = sound oral rulings, Y2 = writ =
sound written rulings, and Y3 = rten = worthy of retention. The predictors
were x2 = cont = number of contacts of lawyer with judge, x3 = intg = judi-
cial integrity, x4 = dmnr = demeanor, x5 = dilg = diligence, x6 = cfmg =
case flow managing, x7 = deci = prompt decisions, x8 = prep = preparation
for trial, x9 = fami = familiarity with law, and x10 = phys = physical abil-
ity.

a) Do the MANOVA F test.
b) Do the MANOVA partial F test for the reduced model that deletes

x2, x5, x6, x7, and x8.

y<-USJudgeRatings[,c(9,10,12)] #See problem 12.6.
x<-USJudgeRatings[,-c(9,10,12)]
mltreg(x,y,indices=c(2,5,6,7,8))
$partial

partialF Pval
[1,] 1.649415 0.1855314

$MANOVA
MANOVAF pval

[1,] 340.1018 1.121325e-14

12.7. Let βi be p × 1 and suppose

(
β̂1 − β1

β̂2 − β2

)
∼ N2p

((
0
0

)
,

[
σ11(XTX)−1 σ12(XTX)−1

σ21(XTX)−1 σ22(XTX)−1

])
.

Find the distribution of

[L 0]
(

β̂1 − β1

β̂2 − β2

)
= Lβ̂1

where Lβ1 = 0 and L is r × p with r ≤ p. Simplify.
R Problems
Warning: Use the command source(“G:/mpack.txt”) to download

the programs. See Preface or Section 15.2. Typing the name of the
mpack function, e.g., ddplot, will display the code for the function. Use the
args command, e.g., args(ddplot), to display the needed arguments for the
function. For some of the following problems, the R commands can be copied
and pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

12.8. This problem examines multivariate linear regression on the Cook
and Weisberg (1999a) mussels data with Y1 = log(S) and Y2 = log(M) where

http://dx.doi.org/10.1007/978-3-319-68253-2_15
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S is the shell mass and M is the muscle mass. The predictors are X2 = L,
X3 = log(W ), and X4 = H: the shell length, log(width), and height.

a) The R command for this part makes the response and residual plots
for each of the two response variables. Click the rightmost mouse button and
highlight Stop to advance the plot. When you have the response and residual
plots for one variable on the screen, copy and paste the two plots into Word.
Do this two times, once for each response variable. The plotted points fall in
roughly evenly populated bands about the identity or r = 0 line.

b) Copy and paste the output produced from the R command for this part
from $partial on. This gives the output needed to do the MANOVA F test,
MANOVA partial F test, and the Fj tests.

c) The R command for this part makes a DD plot of the residual vec-
tors and adds the lines corresponding to the three prediction regions of
Section 12.3. The robust cutoff is larger than the semiparametric cutoff. Place
the plot in Word. Do the residual vectors appear to follow a multivariate nor-
mal distribution? (Right click Stop once.)

d) Do the MANOVA partial F test where the reduced model deletes X3

and X4.
e) Do the F2 test.
f) Do the MANOVA F test.
12.9. This problem examines multivariate linear regression on the SAS

Institute (1985, p. 146) Fitness Club Data with Y1 = chinups, Y2 = situps,
and Y3 = jumps. The predictors are X2 = weight, X3 = waist, and X4 =
pulse.

a) The R command for this part makes the response and residual plots for
each of the three variables. Click the rightmost mouse button and highlight
Stop to advance the plot. When you have the response and residual plots for
one variable on the screen, copy and paste the three plots into Word. Do this
three times, once for each response variable. Are there any outliers?

b) The R command for this part makes a DD plot of the residual vec-
tors and adds the lines corresponding to the three prediction regions of
Section 12.3. The robust cutoff is larger than the semiparametric cutoff. Place
the plot in Word. Are there any outliers? (Right click Stop once.)

12.10. This problem uses the mpack function mregsim to simulate the
Wilks’ Λ test, Pillai’s trace test, Hotelling Lawley trace test, and Roy’s largest
root test for the Fj tests and the MANOVA F test for multivariate linear
regression. When mnull = T, the first row of B is 1T while the remaining
rows are equal to 0T . Hence the null hypothesis for the MANOVA F test
is true. When mnull = F, the null hypothesis is true for p = 2, but false
for p > 2. Now the first row of B is 1T , and the last row of B is 0T . If
p > 2, then the second to last row of B is (1, 0, ..., 0), the third to last
row is (1, 1, 0, ..., 0) etc., as long as the first row is not changed from
1T . First m iid errors zi are generated such that the m errors are iid with
variance σ2. Then εi = Azi so that Σ̂ε = σ2AAT = (σij) where the diagonal
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entries σii = σ2[1 + (m − 1)ψ2] and the off diagonal entries σij = σ2[2ψ +
(m − 2)ψ2] where ψ = 0.10. Terms like Wilkcov give the percentage of times
the Wilks’ test rejected the F1, F2, ..., Fp tests. The $mancv wcv pcv hlcv
rcv fcv output gives the percentage of times the 4 test statistics reject the
MANOVA F test. Here hlcov and fcov both correspond to the Hotelling
Lawley test using the formulas in Problem 12.3.

5000 runs will be used so the simulation may take several minutes. Sample
sizes n = (m + p)2, n = 3(m + p)2, and n = 4(m + p)2 were interesting. We
want coverage near 0.05 when H0 is true and coverage close to 1 for good
power when H0 is false. Multivariate normal errors were used in a) and b)
below.

a) Copy the coverage parts of the output produced by the R commands
for this part where n = 20,m = 2, and p = 4. Here H0 is true except for the
F1 test. Wilks’ and Pillai’s tests had low coverage < 0.05 when H0 was false.
Roy’s test was good for the Fj tests, but why was Roy’s test bad for the
MANOVA F test?

b) Copy the coverage parts of the output produced by the R commands
for this part where n = 20,m = 2, and p = 4. Here H0 is false except for the
F4 test. Which two tests seem to be the best for this part?

12.11. This problem uses the mpack function mpredsim to simulate the
prediction regions for yf given xf for multivariate regression. With 5000
runs, this simulation may take several minutes. The R command for this
problem generates iid lognormal errors then subtracts the mean, producing
zi. Then the εi = Azi are generated as in Problem 12.10 with n=100, m=2,
and p=4. The nominal coverage of the prediction region is 90%, and 92%
of the training data is covered. The ncvr output gives the coverage of the
nonparametric region. What was ncvr?



Chapter 13
Clustering

Clustering is used to classify the n cases into k groups. Unlike discriminant
analysis, it is not known to which group the cases in the training data belong,
and often the number of clusters k is unknown. Discriminant analysis is a
type of supervised classification while clustering is a type of unsupervised
classification. Factor analysis grouped highly correlated variables Xj together
(columns of the data matrix W ). Clustering groups cases xi together (rows
of the data matrix).

13.1 Hierarchical and k-Means Clustering

Two common methods of clustering are k-means clustering and hierarchical
clustering. A wide variety of distances or similarities have been suggested.
We will focus on Euclidean distances.

For the simplest version of k-means clustering, there are four steps.
1) Partition the n cases into k initial groups and find the means of each

group. Alternatively, choose k initial seed points. These are groups of size 1
so the mean is equal to the seed point.

2) Compute distances between each case and each mean. Assign each case
to the cluster whose mean is the nearest.

3) Recalculate the mean of each cluster.
4) Go to 2) and repeat until no more reassignments occur.

Two problems with k-means clustering are i) there could be more or less
than k clusters, and ii) two initial means could belong to the same cluster.
Then the resulting clusters may be poorly differentiated. It is often useful to
run the k-means clustering program with several randomly drawn partitions
or seeds, and to use several values of k.

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 13
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Hierarchical clustering also has several steps. A distance is needed. Single
linkage (or nearest neighbor) is the minimum distance between cases in cluster
i and cases in cluster j. Complete linkage is the maximum distance between
cases in cluster i and cases in cluster j. The average distance between clusters
is also sometimes used.

1) Start with m = n clusters. Each case forms a cluster. Compute the
distance matrix for the n clusters. Let dU,V be the smallest distance. Combine
clusters U and V into a single cluster and set m = n− 1.

2) Repeat step 1) with the new m. Continue until there is a single cluster.
3) Plot the resulting clusters as a dendrogram. Use the dendrogram to

select k reasonable clusters of cases.

500 1000 1500
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l

Fig. 13.1 Two clusters from k-means clustering with k = 2

Example 13.1. Often the clean data and outliers form two clusters. The R
function kmeans was used on the Buxton (1920) data to produce Figure
13.1. See the R commands below. The DD plot of the Buxton data shown in
Figure 5.10 also suggests a cluster of outliers and a cluster of clean data.

x <- cbind(buxx,buxy)

out<-kmeans(x,2,nstart=25)

plot(x, col = out$cluster)

points(out$centers, col = 1:2, pch = 8, cex=2)

Using five clusters does not change the appearance of the plot much. Try
the commands below.

http://dx.doi.org/10.1007/978-3-319-68253-2_5
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out5<-kmeans(x,5,nstart=25)

plot(x, col = out5$cluster)

points(out5$centers, col = 1:5, pch = 8, cex=2)

Removing the outliers and trying five clusters seem to show one cluster.
Try the commands below.

xc <-x[-c(61,62,63,64,65),]

out<-kmeans(xc,5,nstart=25)

plot(xc, col = out$cluster)

points(out$centers, col = 1:5, pch = 8, cex=2)

The following commands suggest that the clustering was done using values
of buxy = height.

plot(xc[,c(1,5)],col = out$cluster)

points(out$centers[,c(1,5)],col=1:5,pch=8,cex=2)

Example 13.2. R functions for hierarchical clustering include hclust and
agnes. See MathSoft (1999b, ch. 4) and Kaufman and Rousseeuw (1990,
ch. 5). One problem with hierarchical clustering is that it can be hard to
read the labels on the dendrogram unless n is small. The dendrogram for the
Buxton (1920) data is shown in Figure 13.2. The very top of the dendrogram
is a cluster containing all of the data. Then two clusters are formed, one
containing the five outlying cases (the five cases furthest to the left on the
bottom of the plot) and one cluster containing all of the remaining cases.
Outliers often appear among the last clusters formed in the dendrogram,
corresponding to the clusters near the top of the dendrogram.

x <- cbind(buxx,buxy)

out <- hclust(dist(x),"complete")

#complete is the default

plot(out)

plot(out,hang=-1)

Following James et al. (2014, pp. 391–392), to interpret the dendrogram,
each leaf on the bottom of Figure 13.2 represents one of the 87 cases of the
Buxton data. As we move up the tree, some leaves begin to fuse into branches
corresponding to cases that are similar to each other. Moving further up the
tree causes branches to fuse with other branches or leaves. The lower in the
tree that the fusions occur, the more similar the group of cases are to each
other. Cases that fuse near the top of the tree can be quite different. The
outliers fused together quickly, and the clean cases fused together quickly.
The outliers and clean cases fused together last since the outliers and clean
cases are quite different.
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Fig. 13.2 Dendrogram for Buxton (1920) data

Example 13.3. Following James et al. (2014, pp. 392–393), observations
that are close together horizontally are not necessarily similar. Case 5 and 7
are similar and cases 1 and 6 are similar since they fuse together at the lowest
points in the dendrogram shown in Figure 13.3. Cases 9 and 2 are located
close together horizontally, cases 2, 5, 7, and 8 fuse with case 9 at the same
height. Hence case 9 is about as similar to cases 5, 7, and 8 as case 9 is to
case 2. Plot the raw data to help see this. See Problem 13.3. The height of
the fusion determines similarity. A horizontal line at 1.5 gives two clusters,
while a horizontal line at 1.0 gives five clusters: i) 1, 6, and 4; ii) 3; iii) 2; iv)
5, 7, and 8; and v) 9. See the R code shown below to produce Figure 13.3.
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Fig. 13.3 9 and 2 are close in horizontal distance, but 2, 5, 7, and 8 fuse with 9 at the
same height

x1 <- c(-0.6,0.1,-1.5,-1.4,1.1,-0.9,1.4,0.6,0)

x2 <- c(-1,-0.75,-0.4,-1.6,-0.3,-1.2,0,-0.2,0.7)

x <- cbind(x1,x2)

##out<-hclust(x) #errors

out <- hclust(dist(x))

plot(out)

plot(x[,1],x[,2])

library(cluster)

out<-agnes(x)

plot(out) #right click twice
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13.2 Complements

Atkinson et al. (2004, ch. 7) gave some interesting ideas. Also see Kaufman
and Rousseeuw (1990), and Farcomeni and Greco (2015), and Ritter (2014).
A good review for robust methods is Garćıa-Escudero et al. (2010). For high
dimensional clustering, see Jin and Wang (2016).

13.3 Problems

R Problems
For some of the following problems, the R commands can be copied and

pasted from (http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.
13.1. Enter the commands for Example 13.1 to reproduce Figure 13.1.
13.2. Enter the commands for Example 13.2 to reproduce Figure 13.2.
13.3. Enter the commands for Example 13.3 to reproduce Figure 13.3.

Also plot X1 versus X2 to see that case 9 is about as similar to case 2 as
case 9 is to cases 5, 7, and 8.

13.4. a) Obtain the file mbb1415.csv from (http://lagrange.math.siu.
edu/Olive/multbk.htm), and save it on a flash drive (F, say). This file con-
tains comma-separated variables. The commands for this problem show how
to read the file into R.

The file, obtained and analyzed by Nicole Staples and Philip Kains, con-
tains variables on male basketball players from the Missouri Valley conference
2014–2015 season. The first variable x1 = position where 0 means position is
unknown, 1 for guard, 2 for guard-forward, 3 for forward, 4 for forward-center,
and 5 for center. The variable x2 is games played, x3 is number of minutes
played, x4 is sst (an efficiency rating), x5 is sst.ex.pts (an efficiency rating
excluding points), x6 is points, x7 is assists, x8 is turnovers, x9 is assists to
turn over ratio, x10 is steals, x11 is stl.pos (stolen possessions, a ball handling
rating), x12 is blocks, x13 is rebounds, x14 is offensive rebounds, x15 is defen-
sive rebounds, x16 is games played = x2, x17 is field goal (FG) attempts,
x18 is field goals made, x19 is FGs missed, x20 is field goal percentage, x21

is adjusted field goal percentage, x22 is two point field goal attempts, x23 is
two point field goals made, x24 is two point FGs missed, x25 is two point
field goal percentage, x26 is three point field goal attempts, x27 is three point
field goals made, x28 is three point FGs missed, x29 is three point field goal
percentage, x30 is free throws attempted, x31 is free throws made, x32 is free
throws missed, x33 is free throw percentage, x34 is related to the number of
“and one plays” (free throw after a made shot), x35 is personal fouls taken,
and x36 is personal fouls committed.

http://lagrange.math.siu.edu/Olive/mrsashw.txt
http://lagrange.math.siu.edu/Olive/multbk.htm
http://lagrange.math.siu.edu/Olive/multbk.htm
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Note that X will not be full rank since, for example x16 = x2, and offensive
rebounds + defensive rebounds = rebounds.

b) Sometimes the classes are known and you want to see how well clustering
works. The commands for this problem use assists and rebounds to form the
clusters. The second dendrogram uses positions as labels. We would like each
cluster to have one position or neighboring positions (all labels are i’s or all
labels are i’s and (i + 1)’s). Include the second plot in Word.

c) Many basketball players do not play much so all of their statistics are
near zero (and could be regarded as near point mass outliers). The commands
for this problem delete about 25% of the players who had the fewest minutes
and then uses assists and rebounds to form the clusters. Include the plot in
Word.

13.5. a) Obtain the file wbb1415.csv from (http://lagrange.math.siu.
edu/Olive/multbk.htm), and save it on a flash drive (F, say). This file con-
tains comma-separated variables. The commands for this problem show how
to read the file into R.

The file, obtained and analyzed by Nicole Staples and Philip Kains, con-
tains variables on female basketball players from the Missouri Valley confer-
ence 2014–2015 season.

The variables are almost the same as those in Problem 13.4. The only
difference is that this file does not have two games played variables. Hence
variables x1, ..., x15 are the same, but xi for the wbb1415 data set are vari-
ables xi+1 for the mbb1415 data set for i = 16, ..., 35.

b) Sometimes the classes are known and you want to see how well clustering
works. The commands for this problem use assists and rebounds to form the
clusters. The second dendrogram uses positions as labels. We would like each
cluster to have one position or neighboring positions (all labels are i’s or all
labels are i’s and (i + 1)’s). Include the second plot in Word.

c) Many basketball players do not play much so all of their statistics are
near zero (and could be regarded as near point mass outliers). The commands
for this problem delete about 25% of the players who had the fewest minutes
and then uses assists and rebounds to form the clusters. Include the plot in
Word.

http://lagrange.math.siu.edu/Olive/multbk.htm
http://lagrange.math.siu.edu/Olive/multbk.htm


Chapter 14
Other Techniques

This chapter suggests several other techniques using robust estimators. From
the literature, often the “robust method” can be improved by replacing the
plug in estimator (often FMCD, FS, FMM, or FMVE) with RFCH or RMVN.
Using the RMVN set U can also be useful. A short list of some techniques is
given in Section 14.1, and then more details are given for robust regression
and 1D regression. See Table 1.1 for acronyms.

Three mpack functions are useful for cleaning data with the RMVN set
U described in Section 4.6. i) The function getu gets the RMVN set U .
ii) If there are g groups (g = G for discriminant analysis, g = 2 for binary
regression, and g = p for one-way MANOVA), the function getubig gets the
RMVN set Ui for each group and combines the g RMVN sets into one large set
Ubig = U1 ∪ U2 ∪ · · · ∪ Ug. iii) If there are g groups and it can be assumed that
the data x1, ...,xn only differs by g location vectors, then getuc subtracts
the group coordinatewise median from each group, combines the centered
data into one data set z1, ...,zn, and gets the RMVN set Uc applied to the
zi. All three functions return indx, the indices of the cases in the cleaned data
set (U,Ubig, or Uc). Functions getbigu and getuc also return grp which
has the group to which each case in the cleaned data set belongs.

Two functions are useful for cleaning data with the covmb2 set B, which
can be useful even if p > n. See Section 4.7. The function getB gets B, and
the function getBbig is like getubig except it gets the covmb2 set Bi for
each group, and Bbig = B1 ∪ B2 ∪ · · · ∪ Bg.

14.1 A List of Techniques

To find some techniques in the literature that can be robustified, Google terms
like robust binary regression, robust cluster analysis, robust errors in vari-
ables, robust functional data, robust generalized partial linear models, robust
independent component analysis, robust invariant coordinates, robust longitu-

c© Springer International Publishing AG 2017
D. J. Olive, Robust Multivariate Analysis,
https://doi.org/10.1007/978-3-319-68253-2 14
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dinal data analysis, robust orthogonal regression, robust principal components
regression, robust quality control, robust regression, and robust singular value
decomposition. Some more techniques are listed below, and some techniques
are covered in more detail in the remaining sections of this chapter.

i) Resistant regression: Suppose the regression model has an m × 1 response
vector y, and a p × 1 vector of predictors x. Assume that predictor trans-
formations have been performed to make x, and that w consists of k ≤ p
continuous predictor variables that are linearly related. Find the RMVN set
based on the w to obtain nu cases (yci,xci) and then run the regression
method on the cleaned data. Often the theory of the method applies to the
cleaned data set since y was not used to pick the subset of the data. Effi-
ciency can be much lower since nu cases are used where n/2 ≤ nu ≤ n, and
the trimmed cases tend to be the “farthest” from the center of w.

The method will have the most outlier resistance if k = p (or k = p − 1 if
there is a trivial predictor X1 ≡ 1). If m = 1, make the response plot of Ŷc

versus Yc with the identity line added as a visual aid and make the residual
plot of Ŷc versus rc = Yc − Ŷc.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x
Yc <- Y[indx]
Xc <- x[indx,]
#example
indx <- getu(buxx)$indx
Yc <- buxy[indx]
Xc <- buxx[indx,]
outr <- lsfit(Xc,Yc)
MLRplot(Xc,Yc) #right click Stop twice

Two special cases are listed below.
a) Resistant additive error regression: An additive error regression model

has the form Y = g(x) + e where there is m = 1 response variable Y and
the p × 1 vector of predictors x is assumed to be known and independent
of the additive error e. An enormous variety of regression models have this
form, including multiple linear regression, nonlinear regression, nonparamet-
ric regression, partial least squares, lasso, ridge regression. As described
above, find the RMVN set (or covmb2 set) based on the w to obtain nU

cases (Yci,xci), and then run the additive error regression method on the
cleaned data.
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b) Resistant Additive Error Multivariate Regression
Assume y = g(x) + ε = E(y|x) + ε where g : Rp → R

m, y = (Y1, ..., Ym)T ,
and ε = (ε1, ..., εm)T . Many models have this form, including multivariate lin-
ear regression, seemingly unrelated regressions, partial envelopes, partial least
squares, and the models in a) with m = 1 response variable. Clean the data
as in a), but let the cleaned data be stored in (Zc,Xc). Again, the theory of
the method tends to apply to the method applied to the cleaned data since
the response variables were not used to select the cases, but the efficiency is
often much lower. In the R code below, assume the y are stored in z.

indx <- getu(w)$indx #often w = x
Zc <- z[indx]
Xc <- x[indx,]
#example
ht <- buxy
t <- cbind(buxx,ht);
z <- t[,c(2,5)];
x <- t[,c(1,3,4)]
indx <- getu(x)$indx
Zc <- z[indx,]
Xc <- x[indx,]
mltreg(Xc,Zc) #right click Stop four times

ii) Multivariate time series: see Croux et al. (2010). Need to replace FMCD
by RFCH or RMVN.

iii) Partial least squares: Cook et al. (2013) is a good reference for partial
least squares and competing envelope estimators. Technique i) b) is applicable
with the RMVN set if n > 20(m + p). Since partial least squares is a com-
petitor of multivariate linear regression, clean the data as in Section 12.6.2:
Combine the nontrivial predictors and response variables into one vector per
case and then get the RMVN set. Run the partial least squares method on
the set. This method needs theory and n > 20(m + p). Try the covmb2 set if
p is large compared to n, e.g., p > n. Also see Hubert and Vanden Branden
(2003) where FMCD should be replaced by RFCH or RMVN. The Hoffman
et al. (2015) robust PLS–Lasso type method is likely superior.

t <- cbind(x,z) #could use t <- cbind(w,z) or t <- w
#if w are the continuous linearly related predictors
indx <- getu(t)$indx
Xc <- x[indx,]
Zc <- z[indx,]
#Then plug Xc and Zc in place of x and z into the
#PLS program if n > 20 (m + p).

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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iv) Transforming Data Toward an elliptically contoured distribution: See
Cook and Nachtsheim (1994). The first step is to obtain a compact ellipsoidal
region. Use RMVN or RFCH instead of FMVE to get this region.

14.2 Resistant Multiple Linear Regression

Consider the multiple linear regression model, written in matrix form as
Y = Xβ + e. This model is a special case of the multivariate linear regression
model with m = 1. (Ordinary) least squares (OLS) is the classical regression
method. The OLS response and residual plots are very useful for detecting
outliers and checking the model. See Table 1.1 for acronyms.

Resistant estimators are useful for detecting certain types of outliers.
Some good resistant regression estimators are rmreg2 from Section 12.6.2,
the hbreg estimator from Section 14.4, and the Olive (2005a) MBA and
trimmed views estimators described below.

Resistant estimators are often created by computing several trial fits bi

that are estimators of β. Then a criterion is used to select the trial fit to
be used in the resistant estimator. Suppose c ≈ n/2. The LMS(c) criterion
is QLMS(b) = r2(c)(b) where r2(1) ≤ · · · ≤ r2(n) are the ordered squared resid-
uals, and the LTS(c) criterion is QLTS(b) =

∑c
i=1 r2(i)(b). The LTA(c) crite-

rion is QLTA(b) =
∑c

i=1 |r(b)|(i) where |r(b)|(i) is the ith ordered absolute
residual. Three impractical high breakdown robust estimators are the Ham-
pel (1975) least median of squares (LMS) estimator, the Rousseeuw (1984)
least trimmed sum of squares (LTS) estimator, and the Hössjer (1991) least
trimmed sum of absolute deviations (LTA) estimator. Also see Hawkins and
Olive (1999a, b). These estimators correspond to the β̂L ∈ R

p that minimizes
the corresponding criterion. LMS, LTA, and LTS have O(np) or O(np+1) com-
plexity. See Bernholt (2005), Hawkins and Olive (1999b), Klouda (2015),
and Mount et al. (2014). Estimators with O(n4) or higher complexity take
too long to compute. LTS and LTA are

√
n consistent, while LMS has the

lower n1/3 rate. See Kim and Pollard (1990), Č́ıžek (2006, 2008), and
Maš̈ıček (2004). If c = n, the LTS and LTA criteria are the OLS and L1

criteria.
A good resistant estimator is the Olive (2005a) median ball algorithm

(MBA or mbareg). The Euclidean distance of the ith vector of predictors xi

from the jth vector of predictors xj is

Di(xj) = Di(xj , Ip) =
√

(xi − xj)T (xi − xj).

For a fixed xj , consider the ordered distances D(1)(xj), ...,D(n)(xj). Next
let β̂j(α) denote the OLS fit to the min(p + 3 + 	αn/100
, n) cases with the

http://dx.doi.org/10.1007/978-3-319-68253-2_1
http://dx.doi.org/10.1007/978-3-319-68253-2_12
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smallest distances where the approximate percentage of cases used is α ∈
{1, 2.5, 5, 10, 20, 33, 50}. (Here 	x
 is the greatest integer function so 	7.7
 =
7. The extra p + 3 cases are added so that OLS can be computed for small n
and α.) This yields seven OLS fits corresponding to the cases with predictors
closest to xj . A fixed number of K cases are selected at random without
replacement to use as the xj . Hence 7K OLS fits are generated. We use
K = 7 as the default. A robust criterion Q is used to evaluate the 7K fits
and the OLS fit to all of the data. Hence 7K + 1 OLS fits are generated,
and the MBA estimator is the fit that minimizes the criterion. The median
squared residual is a good choice for Q.

Three ideas motivate this estimator. First, x-outliers, which are outliers in
the predictor space, tend to be much more destructive than Y -outliers which
are outliers in the response variable. Suppose that the proportion of outliers is
γ and that γ < 0.5. We would like the algorithm to have at least one “center”
xj that is not an outlier. The probability of drawing a center that is not an
outlier is approximately 1 − γK > 0.99 for K ≥ 7, and this result is free of p.
Second, by using the different percentages of coverages, for many data sets
there will be a center and a coverage that contains no outliers. Third, the
MBA estimator is a

√
n consistent estimator of the same parameter vector β

estimated by OLS under mild conditions on the zero mean error distribution.

Ellipsoidal trimming can be used to create resistant multiple linear regres-
sion (MLR) estimators. To perform ellipsoidal trimming, an estimator (T,C)
is computed and used to create the squared Mahalanobis distances D2

i for
each vector of observed predictors xi. If the ordered distance D(j) is unique,
then j of the xi’s are in the ellipsoid

{x : (x − T )T C−1(x − T ) ≤ D2
(j)}. (14.1)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Then an estimator of β is

computed from the remaining cases. For example, if j ≈ 0.9n, then about 10%
of the cases are trimmed, and OLS or L1 could be used on the cases that
remain. Ellipsoidal trimming differs from technique i) in Section 14.1 that
uses the RMVN set on the xi, since the RMVN set uses a random amount
of trimming. (The ellipsoidal trimming technique can also be used for other
regression models, and the theory of the regression method tends to apply
to the method applied to the cleaned data that was not trimmed since the
response variables were not used to select the cases.)

A response plot is a plot of the fitted values Ŷi versus the response Yi and
is very useful for detecting outliers. If the MLR model holds and the MLR
estimator is good, then the plotted points will scatter about the identity line
that has unit slope and zero intercept. The identity line is added to the plot
as a visual aid, and the vertical deviations from the identity line are equal to
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the residuals since Yi − Ŷi = ri. Note that the response and residual plots are
made using all of the data, not just the cleaned data that was not trimmed.

The resistant trimmed views estimator combines ellipsoidal trimming and
the response plot. First, compute (T,C) on the xi, perhaps using the RMVN
estimator. Trim the M% of the cases with the largest Mahalanobis distances,
and then compute the MLR estimator β̂M from the remaining cases. Use
M = 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 to generate ten response plots
of the fitted values β̂

T

Mxi versus Yi using all n cases. (Fewer plots are used
for small data sets if β̂M can not be computed for large M .) These plots are
called “trimmed views.”

Definition 14.1. The trimmed views (TV) estimator β̂T,n corresponds
to the trimmed view where the bulk of the plotted points follow the identity
line with smallest variance function, ignoring any outliers.

Example 14.1. For the Buxton (1920) data, height was the response
variable, while an intercept, head length, nasal height, bigonal breadth, and
cephalic index were used as predictors in the multiple linear regression model.
Observation 9 was deleted since it had missing values. Five individuals, cases
61–65, were reported to be about 0.75 inches tall with head lengths well
over five feet! OLS was used on the cases remaining after trimming, and
Figure 14.1 shows four trimmed views corresponding to 90%, 70%, 40%,
and 0% trimming. The OLS TV estimator used 70% trimming since this
trimmed view was best. Since the vertical distance from a plotted point to the
identity line is equal to the case’s residual, the outliers had massive residuals
for 90%, 70%, and 40% trimming. Notice that the OLS trimmed view with
0% trimming “passed through the outliers” since the cluster of outliers is
scattered about the identity line.

The TV estimator β̂T,n has good statistical properties if an estimator with
good statistical properties is applied to the cases (XM,n,Y M,n) that remain
after trimming. Candidates include OLS, L1,Huber’s M estimator,Mallows’
GM estimator, or the Wilcoxon rank estimator. See Rousseeuw and Leroy
(1987, pp. 12–13, 150). The basic idea is that if an estimator with OP (n−1/2)
convergence rate is applied to a set of nM ∝ n cases, then the resulting
estimator β̂M,n also has OP (n−1/2) rate provided that the response Y was
not used to select the nM cases in the set. If ‖β̂M,n − β‖ = OP (n−1/2) for
M = 0, ..., 90, then ‖β̂T,n − β‖ = OP (n−1/2) by Pratt (1959).

Let Xn = X0,n denote the full design matrix. Often when proving asymp-
totic normality of an MLR estimator β̂0,n, it is assumed that

XT
nXn

n
→ W−1.
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If β̂0,n has OP (n−1/2) rate and if for big enough n all of the diagonal ele-
ments of (

XT
M,nXM,n

n

)−1

are all contained in an interval [0, B) for some B > 0, then ‖β̂M,n − β‖ =
OP (n−1/2).

The distribution of the estimator β̂M,n is especially simple when OLS is
used and the errors are iid N(0, σ2). Then
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Fig. 14.1 4 Trimmed Views for the Buxton Data

β̂M,n = (XT
M,nXM,n)−1XT

M,nY M,n ∼ Np(β, σ2(XT
M,nXM,n)−1)

and
√

n(β̂M,n − β) ∼ Np(0, σ2(XT
M,nXM,n/n)−1). Notice that this result

does not imply that the distribution of β̂T,n is normal.

Warning: When Yi = xT
i β + e, MLR estimators tend to estimate the

same slopes β2, ..., βp, but the constant β1 tends to depend on the estimator
unless the errors are symmetric. The MBA and trimmed views estimators do
estimate the same β as OLS asymptotically, but samples may need to be huge
before the MBA and trimmed views estimates of the constant are close to the
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OLS estimate of the constant. If the trimmed views estimator is modified so
that the LTS, LTA, or LMS criterion is used to select the final estimator, then
for the modified trimmed views estimator and the MBA estimator, it is likely
that

√
n(β̂ − β) D→ ∑k

i=1 πiNp(0, σ2W i) where 0 ≤ πi ≤ 1 and
∑k

i=1 πi = 1.
The index i corresponds to the fits considered by the MBA estimator with
k = 7K + 1 where often K = 7 so k = 50 or the modified trimmed views esti-
mator with k = 10. For the MBA estimator and the modified trimmed views
estimator, the prediction region method, described in Section 5.3, may be
useful for testing hypotheses. Large sample sizes may be needed if the error
distribution is not symmetric since the constant β̂1 needs large samples. See
Section 14.7 for an explanation for why large sample sizes may be needed to
estimate the constant.

The TV estimator can be modified to create a resistant weighted MLR
estimator. To see this, recall that the weighted least squares (WLS) estima-
tor using weights Wi can be found using the ordinary least squares (OLS)
regression (without intercept) of

√
WiYi on

√
Wixi. This idea can be used

for categorical data analysis since the minimum chi-square estimator is often
computed using WLS. Let xi = (1, xi,2, ..., xi,p)T , let Yi = xT

i β + ei, and let
β̃ be an estimator of β.

Definition 14.2. For a multiple linear regression model with weights
Wi, a weighted response plot is a plot of

√
Wix

T
i β̃ versus

√
WiYi. The

weighted residual plot is a plot of
√

Wix
T
i β̃ versus the WMLR residuals

rWi =
√

WiYi −
√

Wix
T
i β̃.

Application 14.1. For resistant weighted MLR, use the WTV estimator
which is selected from ten weighted response plots.

The conditions under which the rmreg2 estimator of Section 12.6.2 has
been shown to be

√
n consistent are quite strong, but it seems likely that the

estimator is a
√

n consistent estimator of β under mild conditions where the
parameter vector β is not, in general, the parameter vector estimated by OLS.
For MLR, the mpack function rmregboot bootstraps the rmreg2 estimator,
and the function rmregbootsim can be used to simulate rmreg2. Both
functions use the residual bootstrap where the residuals come from OLS. See
the R code below.

out<-rmregboot(belx,bely)
plot(out$betas)
ddplot4(out$betas) #right click Stop

out<-rmregboot(cbrainx,cbrainy)
ddplot4(out$betas) #right click Stop

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_12
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14.3 MLR Outlier Detection

For multiple linear regression, the OLS response and residual plots are very
useful for detecting outliers. The DD plot of the continuous predictors is also
useful. Use the mpack functions MLRplot and ddplot4.

Huber and Ronchetti (2009, p. 154) noted that efficient methods for iden-
tifying leverage groups are needed. Such groups are often difficult to detect
with regression diagnostics and residuals, but often have outlying fitted val-
ues and responses that can be detected with response and residual plots. The
following rules of thumb are useful for finding influential cases and outliers.
Look for points with large absolute residuals and for points far away from
Y . Also look for gaps separating the data into clusters. The OLS fit often
passes through a cluster of outliers, causing a large gap between a cluster
corresponding to the bulk of the data and the cluster of outliers. When such
a gap appears, it is possible that the smaller cluster corresponds to good
leverage points: the cases follow the same model as the bulk of the data. To
determine whether small clusters are outliers or good leverage points, give
zero weight to the clusters, and fit an MLR estimator such as OLS to the
bulk of the data. Denote the weighted estimator by β̂w. Then plot Ŷw versus
Y using the entire data set. If the identity line passes through the cluster,
then the cases in the cluster may be good leverage points; otherwise, they
may be outliers. The trimmed views estimator of the previous section is also
useful. Dragging the plots, so that they are roughly square, can be useful.

Definition 14.3. Suppose that some analysis to detect outliers is per-
formed. Masking occurs if the analysis suggests that one or more outliers are
in fact good cases. Swamping occurs if the analysis suggests that one or more
good cases are outliers. Suppose that a subset of h cases is selected from the
n cases making up the data set. Then the subset is clean if none of the h
cases are outliers.

Influence diagnostics such as Cook’s distances CDi from Cook (1977)
and the weighted Cook’s distances WCDi from Peña (2005) are some-
times useful. Although an index plot of Cook’s distance CDi may be use-
ful for flagging influential cases, the index plot provides no direct way of
judging the model against the data. As a remedy, cases in the response
and residual plots with CDi > min(0.5, 2p/n) are highlighted with open
squares, and cases with |WCDi − median(WCDi)| > 4.5MAD(WCDi) are
highlighted with crosses, where the median absolute deviation MAD(wi) =
median(|wi − median(wi)|).
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Example 14.2. Figure 14.2 shows the response plot and residual plot for
the Buxton (1920) data. Notice that the OLS fit passes through the outliers,
but the response plot is resistant to Y -outliers since Y is on the vertical axis.
Also notice that although the outlying cluster is far from Y , only two of
the outliers had large Cook’s distance and only one case had a large WCDi.
Hence masking occurred for the Cook’s distances, the WCDi, and for the OLS
residuals, but not for the OLS fitted values. Plots using lmsreg and ltsreg
were similar, but trimmed views and MBA were effective. See Figures 14.1
and 14.6. Figure 14.2 was made with the following R commands.

source("G:/mpack.txt"); source("G:/mrobdata.txt")
mlrplot4(buxx,buxy) #right click Stop twice

High leverage outliers are a particular challenge to conventional numerical
MLR diagnostics such as Cook’s distance, but can often be visualized using
the response and residual plots. (Using the trimmed views of Section 14.2
is also effective for detecting outliers and other departures from the MLR
model.)
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14.3 MLR Outlier Detection 403

FIT

Y

0 2 4 6 8

0
2

4
6

8
10 2

1 6 4
35

14
13

11
12

Response Plot

FIT

R
ES

0 2 4 6 8

-8
-6

-4
-2

0
2

4

14
13

11
12

3
2

1 6 4

5

Residual Plot

Fig. 14.3 Plots for HBK Data

Example 14.3. Hawkins et al. (1984) gave a well-known artificial data
set where the first 10 cases are outliers, while cases 11–14 are good leverage
points. Figure 14.3 shows the residual and response plots based on the OLS
estimator. The highlighted cases have Cook’s distance > min(0.5, 2p/n), and
the identity line is shown in the response plot. Since the good cases 11–14
have the largest Cook’s distances and absolute OLS residuals, swamping has
occurred. (Masking has also occurred since the outliers have small Cook’s
distances, and some of the outliers have smaller OLS residuals than clean
cases.) To determine whether both clusters are outliers or if one cluster con-
sists of good leverage points, cases in both clusters could be given weight
zero and the resulting response plot created. (Alternatively, response plots
based on the tvreg estimator of Section 14.2 could be made where the cases
with weight one are highlighted. For high levels of trimming, the identity line
often passes through the good leverage points.)

The above example is typical of many “benchmark” outlier data sets for
MLR. In these data sets, traditional OLS diagnostics such as Cook’s distance
and the residuals often fail to detect the outliers, but the combination of the
response plot and residual plot is usually able to detect the outliers. The CDi

and WCDi are the most effective when there is a single cluster about the
identity line. If there is a second cluster of outliers or good leverage points
or if there is nonconstant variance, then these numerical diagnostics tend to
fail.
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Often, practical “robust estimators” generate a sequence of K trial fits
called attractors: b1, ..., bK . Then some criterion is evaluated, and the attrac-
tor bA that minimizes the criterion is used in the final estimator. One way
to obtain attractors is to generate trial fits called starts and then use the
concentration technique. Let b0,j be the jth start, and compute all n resid-
uals ri(b0,j) = Yi − xT

i b0,j . At the next iteration, the OLS estimator b1,j is
computed from the cn ≈ n/2 cases corresponding to the smallest squared
residuals r2i (b0,j). This iteration can be continued for k steps resulting in
the sequence of estimators b0,j , b1,j , ..., bk,j . Then bk,j is the jth attractor for
j = 1, ...,K. Using k = 10 concentration steps often works well, and the basic
resampling algorithm is a special case with k = 0; i.e., the attractors are the
starts. Elemental starts are the fits from randomly selected “elemental sets”
of p cases. Such an algorithm is called a CLTS concentration algorithm or
CLTS.

A CLTA concentration algorithm would replace the OLS estimator by the
L1 estimator and the smallest cn squared residuals by the smallest cn absolute
residuals. Many other variants are possible, but obtaining theoretical results
may be difficult.
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Fig. 14.4 The Highlighted Points are More Concentrated about the Attractor

Example 14.4. As an illustration of the CLTA concentration algorithm,
consider the animal data from Rousseeuw and Leroy (1987, p. 57). The
response Y is the log brain weight, and the predictor x is the log body weight
for 25 mammals and 3 dinosaurs (outliers with the highest body weight).
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Suppose that the first elemental start uses cases 20 and 14, corresponding to
mouse and man. Then the start bs,1 = b0,1 = (2.952, 1.025)T and the sum of

the c = 14 smallest absolute residuals
14∑

i=1

|r|(i)(b0,1) = 12.101. Figure 14.4a

shows the scatterplot of x and y. The start is also shown, and the 14 cases
corresponding to the smallest absolute residuals are highlighted. The L1 fit to

these c highlighted cases is b1,1 = (2.076, 0.979)T and
14∑

i=1

|r|(i)(b1,1) = 6.990.

The iteration consists of finding the cases corresponding to the c smallest
absolute residuals, obtaining the corresponding L1 fit and repeating. The
attractor ba,1 = b7,1 = (1.741, 0.821)T and the LTA(c) criterion evaluated at

the attractor is
14∑

i=1

|r|(i)(ba,1) = 2.172. Figure 14.4b shows the attractor and

that the c highlighted cases corresponding to the smallest absolute residuals
are much more concentrated than those in Figure 14.4a. Figure 14.5a shows 5
randomly selected starts, while Figure 14.5b shows the corresponding attrac-
tors.
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Fig. 14.5 Starts and Attractors for the Animal Data

Notice that the elemental starts have more variability than the attractors,
but if the start passes through an outlier, so does the attractor.
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Suppose the data set has n cases where d are outliers and n − d are “clean”
(not outliers). The outlier proportion γ = d/n. Suppose that K elemental sets
are chosen with replacement and that it is desired to find K such that the
probability P(that at least one of the elemental sets is clean) ≡ P1 ≈ 1 − α
where α = 0.05 is a common choice. Then P1 = 1− P(none of the K elemental
sets is clean) ≈ 1 − [1 − (1 − γ)p]K by independence. Hence α ≈ [1 − (1 −
γ)p]K or

K ≈ log(α)
log([1 − (1 − γ)p])

≈ log(α)
−(1 − γ)p

(14.2)

using the approximation log(1 − x) ≈ −x for small x. Since log(0.05) ≈ −3,

if α = 0.05, then K ≈ 3
(1 − γ)p

. Frequently a clean subset is wanted even if

the contamination proportion γ ≈ 0.5. Then for a 95% chance of obtaining at
least one clean elemental set, K ≈ 3 (2p) elemental sets need to be drawn. If
the start passes through an outlier, so does the attractor. For concentration
algorithms for multivariate location and dispersion, if the start passes through
a cluster of outliers, sometimes the attractor would be clean.

Notice that the number of subsets K needed to obtain a clean elemental
set with high probability is an exponential function of the number of predic-
tors p but is free of n. Hawkins and Olive (2002) showed that if K is fixed and

Table 14.1 Largest p for a 95% Chance of a Clean Subsample

K

γ 500 3000 10000 105 106 107 108 109

0.01 509 687 807 1036 1265 1494 1723 1952

0.05 99 134 158 203 247 292 337 382

0.10 48 65 76 98 120 142 164 186

0.15 31 42 49 64 78 92 106 120

0.20 22 30 36 46 56 67 77 87

0.25 17 24 28 36 44 52 60 68

0.30 14 19 22 29 35 42 48 55

0.35 11 16 18 24 29 34 40 45

0.40 10 13 15 20 24 29 33 38

0.45 8 11 13 17 21 25 28 32

0.50 7 9 11 15 18 21 24 28

free of n, then the resulting elemental or concentration algorithm (that uses
k concentration steps) is inconsistent and zero breakdown. See Theorem P.1
in the preface. Nevertheless, many practical estimators tend to use a value of
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K that is free of both n and p (e.g., K = 500 or K = 3000). Such algorithms
include ALMS = FLMS = lmsreg and ALTS = FLTS = ltsreg. The “A”
denotes that an algorithm was used. The “F” means that a fixed number of
trial fits (K elemental fits) was used and the criterion (LMS or LTS) was
used to select the trial fit used in the final estimator.

To examine the outlier resistance of such inconsistent zero breakdown esti-
mators, fix both K and the contamination proportion γ and then find the
largest number of predictors p that can be in the model such that the proba-
bility of finding at least one clean elemental set is high. Given K and γ, P (at
least one of K subsamples is clean) = 0.95 ≈ 1 − [1 − (1 − γ)p]K . Thus the

largest value of p satisfies
3

(1 − γ)p
≈ K, or

p ≈
⌊

log(3/K)
log(1 − γ)

⌋

(14.3)

if the sample size n is very large. Again, 	x
 is the greatest integer function:
	7.7
 = 7.

Table 14.1 shows the largest value of p such that there is a 95% chance
that at least one of K subsamples is clean using the approximation given
by Equation (14.3). Hence if p = 28, even with one billion subsamples, there
is a 5% chance that none of the subsamples will be clean if the contami-
nation proportion γ = 0.5. Since clean elemental fits have great variability,
an algorithm needs to produce many clean fits in order for the best fit to
be good. When contamination is present, all K elemental sets could contain
outliers. Hence basic resampling and concentration algorithms that only use
K elemental starts are doomed to fail if γ and p are large.

The outlier resistance of elemental algorithms that use K elemental sets
decreases rapidly as p increases. However, for p < 10, such elemental algo-
rithms are often useful for outlier detection. They can perform better than
MBA, trimmed views, and rmreg2 if p is small and the outliers are close
to the bulk of the data or if p is small and there is a mixture distribution:
the bulk of the data follows one MLR model, but “outliers” and some of the
clean data are fit well by another MLR model. For example, if there is one
nontrivial predictor, suppose the plot of x versus Y looks like the letter X.
Such a mixture distribution is not really an outlier configuration since out-
liers lie far from the bulk of the data. All practical estimators have outlier
configurations where they perform poorly. If p is small, elemental algorithms
tend to have trouble when there is a weak regression relationship for the bulk
of the data and a cluster of outliers that are not good leverage points (do
not fall near the hyperplane followed by the bulk of the data). The Buxton
(1920) data set is an example.



408 14 Other Techniques

Proposition 14.1. Let h = p be the number of randomly selected cases
in an elemental set, and let γo be the highest percentage of massive outliers
that a resampling algorithm can detect reliably. If n is large, then

γo ≈ min
(

n − c

n
, 1 − [1 − (0.2)1/K ]1/h

)

100%. (14.4)

Proof. As in Remark 4.1, if the contamination proportion γ is fixed, then
the probability of obtaining at least one clean subset of size h with high
probability (say 1 − α = 0.8) is given by 0.8 = 1 − [1 − (1 − γ)h]K . Fix the
number of starts K, and solve this equation for γ. �

The value of γo depends on c ≥ n/2 and h. To maximize γo, take c ≈ n/2
and h = p. For example, with K = 500 starts, n > 100, and h = p ≤ 20, the
resampling algorithm should be able to detect up to 24% outliers provided
every clean start is able to at least partially separate inliers (clean cases)
from outliers. However, if h = p = 50, this proportion drops to 11%.

Definition 14.4. Let b1, ..., bJ be J estimators of β. Assume that J ≥ 2
and that OLS is included. A fit-fit (FF) plot is a scatterplot matrix of the
fitted values Ŷ (b1), ..., Ŷ (bJ ). Often Y is also included in the top or bottom
row of the FF plot to see the response plots. A residual-residual (RR) plot is
a scatterplot matrix of the residuals r(b1), ..., r(bJ). Often Ŷ is also included
in the top or bottom row of the RR plot to see the residual plots.

If the multiple linear regression model holds, if the predictors are bounded,
and if all J regression estimators are consistent estimators of β, then the
subplots in the FF and RR plots should be linear with a correlation tending
to one as the sample size n increases. To prove this claim, let the ith residual
from the jth fit bj be ri(bj) = Yi − xT

i bj where (Yi,x
T
i ) is the ith observation.

Similarly, let the ith fitted value from the jth fit be Ŷi(bj) = xT
i bj . Then

‖ri(b1) − ri(b2)‖ = ‖Ŷi(b1) − Ŷi(b2)‖ = ‖xT
i (b1 − b2)‖

≤ ‖xi‖ (‖b1 − β‖ + ‖b2 − β‖). (14.5)

The FF plot is a powerful way for comparing fits. The commonly suggested
alternative is to look at a table of the estimated coefficients, but coefficients
can differ greatly while yielding similar fits if some of the predictors are highly
correlated or if several of the predictors are independent of the response.

http://dx.doi.org/10.1007/978-3-319-68253-2_4
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The mpack functions ffplot2 and rrplot2 make FF and RR plots
using OLS, ALMS from lmsreg, ALTS from ltsreg, mbareg, an outlier
detector mbalata, BB, and rmreg2 described in Section 12.6.2. OLS, BB,
and mbareg are the three trial fits used by the default version of the

√
n

consistent high breakdown hbreg estimator. See Section 14.4.2. The top
row of ffplot2 shows the response plots. The R code below is useful and
shows how to get some of the text’s data sets into R.

library(MASS)
rrplot2(buxx,buxy)
ffplot2(buxx,buxy)
#The following three data sets can be obtained with
#the source("G:/mrobdata.txt") command
#if the data file is on flash drive G.
rmreg2(buxx,buxy) #right click Stop twice
rmreg2(cbrainx,cbrainy)
rmreg2(gladox,gladoy)

hbk <- matrix(scan(),nrow=75,ncol=5,byrow=T)
hbk <- hbk[,-1]
rmreg2(hbk[,1:3],hbk[,4]) #Outliers are clear
#but fit avoids good leverage points.

nasty <- matrix(scan(),nrow=32,ncol=6,byrow=T)
nasty <- nasty[,-1]
rmreg2(nasty[,1:4],nasty[,5])

wood <- matrix(scan(),nrow=20,ncol=7,byrow=T)
wood <- wood[,-1]
rmreg2(wood[,1:5],wood[,6]) #failed to find
#the outliers

major <- matrix(scan(),nrow=112,ncol=7,byrow=T)
major <- major[,-1]
rmreg2(major[,1:5],major[,6])

Example 14.2, continued. The RR and FF plots for the Buxton (1920)
data are shown in Figures 14.6 and 14.7. Note that only the last four esti-
mators give large absolute residuals to the outliers. The top row of Figure
14.6 gives the response plots for the estimators. If there are two clusters, one

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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Fig. 14.6 FF Plots for Buxton Data

in the upper right and one in the lower left of the response plot, then the
identity line goes through both clusters. Hence the fit passes through the
outliers. One feature of the MBA estimator is that it depends on the sample
of 7 centers drawn and changes each time the function is called. In ten runs,
about seven plots will look like Figures 14.6 and 14.7, but in about three
plots the MBA estimator will also pass through the outliers.

Table 14.2 compares the TV, MBA (for MLR), lmsreg, ltsreg, L1, and
OLS estimators on seven data sets available from the text’s website. The col-
umn headers give the file name, while the remaining rows of the table give
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Fig. 14.7 RR Plots for Buxton Data

Table 14.2 Summaries for Seven Data Sets, the Correlations of the Residuals from
TV(M), and the Alternative Method are Given in the First Five Rows

Method Buxton Gladstone glado hbk major nasty wood

MBA 0.997 1.0 0.455 0.960 1.0 −0.004 0.9997

LMSREG −0.114 0.671 0.938 0.977 0.981 0.9999 0.9995

LTSREG −0.048 0.973 0.468 0.272 0.941 0.028 0.214

L1 −0.016 0.983 0.459 0.316 0.979 0.007 0.178

OLS 0.011 1.0 0.459 0.780 1.0 0.009 0.227

outliers 61-65 none 115 1-10 3,44 2,6,...,30 4,6,8,19

n 87 267 267 75 112 32 20

p 5 7 7 4 6 5 6

M 70 0 30 90 0 90 20
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the sample size n, the number of predictors p, the amount of trimming M
used by the TV estimator, the correlation of the residuals from the TV esti-
mator with the corresponding alternative estimator, and the cases that were
outliers. If the correlation was greater than 0.9, then the method was effec-
tive in detecting the outliers, and the method failed, otherwise. Sometimes,
the trimming percentage M for the TV estimator was picked after fitting the
bulk of the data in order to find the good leverage points and outliers. Each
model included a constant.

Notice that the TV, MBA, and OLS estimators were the same for the
Gladstone (1905) data and for the Tremearne (1911) major data which had
two small Y -outliers. For the Gladstone data, there is a cluster of infants that
are good leverage points, and we attempt to predict brain weight with the
head measurements height, length, breadth, size, and cephalic index. Origi-
nally, the variable length was incorrectly entered as 109 instead of 199 for
case 115, and the glado data contains this outlier. In 1997, lmsreg was not
able to detect the outlier while ltsreg did. Due to changes in the Splus 2000
code, lmsreg detected the outlier, but ltsreg did not. These two functions
change often, not always for the better.

14.4 Robust Regression

This section will consider the breakdown of a regression estimator and then
develop the practical high breakdown hbreg estimator.

14.4.1 MLR Breakdown and Equivariance

Breakdown and equivariance properties have received considerable attention
in the literature. Several of these properties involve transformations of the
data and are discussed below. If X and Y are the original data, then the
vector of the coefficient estimates is

β̂ = β̂(X,Y ) = T (X,Y ), (14.6)

the vector of predicted values is

Ŷ = Ŷ (X,Y ) = Xβ̂(X,Y ), (14.7)

and the vector of residuals is

r = r(X,Y ) = Y − Ŷ . (14.8)
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If the design matrix X is transformed into W and the vector of dependent
variables Y is transformed into Z, then (W ,Z) is the new data set.

Definition 14.5. Regression Equivariance: Let u be any p × 1 vector.
Then β̂ is regression equivariant if

β̂(X,Y + Xu) = T (X,Y + Xu) = T (X,Y ) + u = β̂(X,Y ) + u. (14.9)

Hence if W = X and Z = Y + Xu, then Ẑ = Ŷ + Xu and r(W ,Z) =
Z − Ẑ = r(X,Y ). Note that the residuals are invariant under this type of
transformation, and note that if u = −β̂, then regression equivariance implies
that we should not find any linear structure if we regress the residuals on X.
Also see Problem 14.3.

Definition 14.6. Scale Equivariance: Let c be any scalar. Then β̂ is
scale equivariant if

β̂(X, cY ) = T (X, cY ) = cT (X,Y ) = cβ̂(X,Y ). (14.10)

Hence if W = X and Z = cY , then Ẑ = cŶ and r(X, cY ) = c r(X,Y ).
Scale equivariance implies that if the Yi’s are stretched, then the fits and the
residuals should be stretched by the same factor.

Definition 14.7. Affine Equivariance: Let A be any p × p nonsingular
matrix. Then β̂ is affine equivariant if

β̂(XA,Y ) = T (XA,Y ) = A−1T (X,Y ) = A−1β̂(X,Y ). (14.11)

Hence if W = XA and Z = Y , then Ẑ = Wβ̂(XA,Y ) =
XAA−1β̂(X,Y ) = Ŷ , and r(XA,Y ) = Z − Ẑ = Y − Ŷ = r(X,Y ). Note
that both the predicted values and the residuals are invariant under an affine
transformation of the predictor variables.

Definition 14.8. Permutation Invariance: Let P be an n × n permu-
tation matrix. Then P T P = PP T = In where In is an n × n identity matrix
and the superscript T denotes the transpose of a matrix. Then β̂ is permu-
tation invariant if

β̂(PX,PY ) = T (PX,PY ) = T (X,Y ) = β̂(X,Y ). (14.12)
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Hence if W = PX and Z = PY , then Ẑ = P Ŷ and r(PX,PY ) =
P r(X,Y ). If an estimator is not permutation invariant, then swapping
rows of the n × (p + 1) augmented matrix (X,Y ) will change the estimator.
Hence the case number is important. If the estimator is permutation invari-
ant, then the position of the case in the data cloud is of primary importance.
Resampling algorithms are not permutation invariant because permuting the
data causes different subsamples to be drawn.

The remainder of this subsection gives a standard definition of breakdown
and then shows that if the median absolute residual is bounded in the presence
of high contamination, then the regression estimator has a high breakdown
value. The following notation will be useful. Let W denote the data matrix
where the ith row corresponds to the ith case. For regression, W is the
n × (p + 1) matrix with ith row (xT

i , Yi). Let W n
d denote the data matrix

where any dn of the cases have been replaced by arbitrarily bad contaminated
cases. Then the contamination fraction is γ ≡ γn = dn/n, and the breakdown
value of β̂ is the smallest value of γn needed to make ‖β̂‖ arbitrarily large.

Definition 14.9. Let 1 ≤ dn ≤ n. If T (W ) is a p × 1 vector of regression
coefficients, then the breakdown value of T is

B(T,W ) = min

{
dn

n
: sup
Wn

d

‖T (W n
d )‖ = ∞

}

where the supremum is over all possible corrupted samples W n
d .

Definition 14.10. High breakdown regression estimators have γn → 0.5
as n → ∞ if the clean (uncontaminated) data are in general position: any
p clean cases give a unique estimate of β. Estimators are zero breakdown if
γn → 0 and positive breakdown if γn → γ > 0 as n → ∞.

The following result greatly simplifies some breakdown proofs and shows
that a regression estimator basically breaks down if the median absolute
residual MED(|ri|) can be made arbitrarily large. The result implies that if
the breakdown value ≤ 0.5, breakdown can be computed using the median
absolute residual MED(|ri|(W n

d )) instead of ‖T (W n
d )‖. Similarly, β̂ is high

breakdown if the median squared residual or the cnth largest absolute resid-
ual |ri|(cn) or squared residual r2(cn) stay bounded under high contamination

where cn ≈ n/2. Note that ‖β̂‖ ≡ ‖β̂(W n
d )‖ ≤ M for some constant M that

depends on T and W but not on the outliers if the number of outliers dn is
less than the smallest number of outliers needed to cause breakdown.
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Proposition 14.2. If the breakdown value ≤ 0.5, computing the break-
down value using the median absolute residual MED(|ri|(W n

d )) instead of
‖T (W n

d )‖ is asymptotically equivalent to using Definition 14.9.

Proof. Consider any contaminated data set W n
d with ith row (wT

i , Zi)T . If
the regression estimator T (W n

d ) = β̂ satisfies ‖β̂‖ ≤ M for some constant M

if d < dn, then the median absolute residual MED(|Zi − β̂
T
wi|) is bounded

by maxi=1,...,n |Yi − β̂
T
xi| ≤ maxi=1,...,n[|Yi| +

∑p
j=1 M |xi,j |] if dn < n/2.

If the median absolute residual is bounded by M when d < dn, then ‖β̂‖
is bounded, provided fewer than half of the cases line on the hyperplane (and
so have absolute residual of 0), as shown next. Now suppose that ‖β̂‖ =
∞. Since the absolute residual is the vertical distance of the observation
from the hyperplane, the absolute residual |ri| = 0 if the ith case lies on the
regression hyperplane, but |ri| = ∞ otherwise. Hence MED(|ri|) = ∞ if fewer
than half of the cases lie on the regression hyperplane. This will occur unless
the proportion of outliers dn/n > (n/2 − q)/n → 0.5 as n → ∞ where q is
the number of “good” cases that lie on a hyperplane of lower dimension than
p. In the literature, it is usually assumed that the original data are in general
position: q = p − 1. �

Suppose that the clean data are in general position and that the number of
outliers is less than the number needed to make the median absolute residual
and ‖β̂‖ arbitrarily large. If the xi are fixed, and the outliers are moved up
and down by adding a large positive or negative constant to the Y values
of the outliers, then for high breakdown (HB) estimators, β̂ and MED(|ri|)
stay bounded where the bounds depend on the clean data W but not on the
outliers even if the number of outliers is nearly as large as n/2. Thus if the
|Yi| values of the outliers are large enough, the |ri| values of the outliers will
be large.

If the Yi’s are fixed, arbitrarily large x-outliers tend to drive the slope
estimates to 0, not ∞. If both x and Y can be varied, then a cluster of
outliers can be moved arbitrarily far from the bulk of the data but may still
have small residuals. For example, move the outliers along the regression
hyperplane formed by the clean cases.

If the (xT
i , Yi) are in general position, then the contamination could be

such that β̂ passes exactly through p − 1 “clean” cases and dn “contam-
inated” cases. Hence dn + p − 1 cases could have absolute residuals equal
to zero with ‖β̂‖ arbitrarily large (but finite). Nevertheless, if T possesses
reasonable equivariant properties and ‖T (W n

d )‖ is replaced by the median
absolute residual in the definition of breakdown, then the two breakdown
values are asymptotically equivalent. (If T (W ) ≡ 0, then T is neither regres-
sion nor affine equivariant. The breakdown value of T is one, but the median
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absolute residual can be made arbitrarily large if the contamination propor-
tion is greater than n/2.)

If the Yi’s are fixed, arbitrarily large x-outliers will rarely drive ‖β̂‖ to
∞. The x-outliers can drive ‖β̂‖ to ∞ if they can be constructed so that
the estimator is no longer defined, e.g., so that XT X is nearly singular. The
examples following some results on norms may help illustrate these points.

Definition 14.11. Let y be an n × 1 vector. Then ‖y‖ is a vector
norm if
vn1) ‖y‖ ≥ 0 for every y ∈ R

n with equality iff y is the zero vector,
vn2) ‖ay‖ = |a| ‖y‖ for all y ∈ R

n and for all scalars a, and
vn3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y in R

n.

Definition 14.12. Let G be an n × p matrix. Then ‖G‖ is a matrix
norm if
mn1) ‖G‖ ≥ 0 for every n × p matrix G with equality iff G is the zero matrix,
mn2) ‖aG‖ = |a| ‖G‖ for all scalars a, and
mn3) ‖G + H‖ ≤ ‖G‖ + ‖H‖ for all n × p matrices G and H.

Example 14.5. The q-norm of a vector y is ‖y‖q = (|y1|q + · · · + |yn|q)1/q.

In particular, ‖y‖1 = |y1| + · · · + |yn|, the Euclidean norm ‖y‖2 =
√

y2
1 + · · · + y2

n,
and ‖y‖∞ = maxi |yi|. Given a matrix G and a vector norm ‖y‖q, the

q-norm or subordinate matrix norm of matrix G is ‖G‖q = max
y �=0

‖Gy‖q

‖y‖q
. It

can be shown that the maximum column sum norm ‖G‖1 = max
1≤j≤p

n∑

i=1

|gij |,

the maximum row sum norm ‖G‖∞ = max
1≤i≤n

p∑

j=1

|gij |, and the spectral norm

‖G‖2 =
√

maximum eigenvalue of GT G. The Frobenius norm

‖G‖F =

√
√
√
√

p∑

j=1

n∑

i=1

|gij |2 =
√

trace(GT G).

Several useful results involving matrix norms will be used. First, for any
subordinate matrix norm, ‖Gy‖q ≤ ‖G‖q ‖y‖q. Let J = Jm = {m1, ...,mp}
denote the p cases in the mth elemental fit bJ = X−1

J Y J . Then for any
elemental fit bJ (suppressing q = 2),

‖bJ − β‖ = ‖X−1
J (XJβ + eJ) − β‖ = ‖X−1

J eJ‖ ≤ ‖X−1
J ‖ ‖eJ‖. (14.13)
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The following results (Golub and Loan 1989, pp. 57, 80) on the Euclidean
norm are useful. Let 0 ≤ σp ≤ σp−1 ≤ · · · ≤ σ1 denote the singular values of
XJ = (xmi,j). Then

‖X−1
J ‖ =

σ1

σp‖XJ‖ , (14.14)

max
i,j

|xmi,j | ≤ ‖XJ‖ ≤ p max
i,j

|xmi,j |, and (14.15)

1
p maxi,j |xmi,j | ≤

1
‖XJ‖ ≤ ‖X−1

J ‖. (14.16)

From now on, unless otherwise stated, we will use the spectral norm as the
matrix norm and the Euclidean norm as the vector norm.

Example 14.6. Suppose the response values Y are near 0. Consider the fit
from an elemental set: bJ = X−1

J Y J and examine Equations (14.14), (14.15),
and (14.16). Now ‖bJ‖ ≤ ‖X−1

J ‖ ‖Y J‖, and since x-outliers make ‖XJ‖
large, x-outliers tend to drive ‖X−1

J ‖ and ‖bJ‖ toward zero not toward ∞.
The x-outliers may make ‖bJ‖ large if they can make the trial design ‖XJ‖
nearly singular. Notice that Euclidean norm ‖bJ‖ can easily be made large if
one or more of the elemental response variables is driven far away from zero.

Example 14.7. Without loss of generality, assume that the clean Y ’s are
contained in an interval [a, f ] for some a and f . Assume that the regression
model contains an intercept β1. Then there exists an estimator β̂M of β such
that ‖β̂M‖ ≤ max(|a|, |f |) if dn < n/2.

Proof. Let MED(n) = MED(Y1, ..., Yn) and MAD(n) = MAD(Y1, ..., Yn).
Take β̂M = (MED(n), 0, ..., 0)T . Then ‖β̂M‖ = |MED(n)| ≤ max(|a|, |f |). Note
that the median absolute residual for the fit β̂M is equal to the median
absolute deviation MAD(n) = MED(|Yi − MED(n)|, i = 1, ..., n) ≤ f − a if
dn < 	(n + 1)/2
. �

Note that β̂M is a poor high breakdown estimator of β and Ŷi(β̂M ) tracks
the Yi very poorly. If the data are in general position, a high breakdown
regression estimator is an estimator which has a bounded median absolute
residual even when close to half of the observations are arbitrary. Rousseeuw
and Leroy (1987, pp. 29, 206) conjectured that high breakdown regression
estimators can not be computed cheaply and that if the algorithm is also
affine equivariant, then the complexity of the algorithm must be at least
O(np). The following theorem shows that these two conjectures are false.
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Theorem 14.3. If the clean data are in general position and the model
has an intercept, then a scale and affine equivariant high breakdown estimator
β̂w can be found by computing OLS on the set of cases that have Yi ∈
[MED(Y1, ..., Yn) ± w MAD(Y1, ..., Yn)] where w ≥ 1 (so at least half of the
cases are used).

Proof. Note that β̂w is obtained by computing OLS on the set J of the
nj cases which have

Yi ∈ [MED(Y1, ..., Yn) ± wMAD(Y1, ..., Yn)] ≡ [MED(n) ± wMAD(n)]

where w ≥ 1 (to guarantee that nj ≥ n/2). Consider the estimator β̂M =
(MED(n), 0, ..., 0)T which yields the predicted values Ŷi ≡ MED(n). The
squared residual r2i (β̂M ) ≤ (w MAD(n))2 if the ith case is in J . Hence the
weighted LS fit β̂w is the OLS fit to the cases in J and has

∑

i∈J

r2i (β̂w) ≤ nj(w MAD(n))2.

Thus

MED(|r1(β̂w)|, ..., |rn(β̂w)|) ≤ √
nj w MAD(n) <

√
n w MAD(n) < ∞.

Thus the estimator β̂w has a median absolute residual bounded by√
n w MAD(Y1, ..., Yn). Hence β̂w is high breakdown, and it is affine equivari-

ant since the design is not used to choose the observations. It is scale equivari-
ant since for constant c = 0, β̂w = 0, and for c �= 0 the set of cases used
remains the same under scale transformations and OLS is scale
equivariant. �

Note that if w is huge and MAD(n) �= 0, then the high breakdown estima-
tor β̂w and β̂OLS will be the same for most data sets. Thus high breakdown
estimators can be very nonrobust. Even if w = 1, the HB estimator β̂w only
resists large Y outliers.

An ALTA concentration algorithm uses the L1 estimator instead of OLS
in the concentration step and uses the LTA criterion. Similarly, an ALMS
concentration algorithm uses the L∞ estimator and the LMS criterion.

Theorem 14.4. If the clean data are in general position and if a high
breakdown start is added to an ALTA, ALTS, or ALMS concentration algo-
rithm, then the resulting estimator is HB.
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Proof. Concentration reduces (or does not increase) the corresponding HB
criterion that is based on cn ≥ n/2 absolute residuals, so the median absolute
residual of the resulting estimator is bounded as long as the criterion applied
to the HB estimator is bounded. �

For example, consider the LTS(cn) criterion. Suppose the ordered squared
residuals from the high breakdown mth start b0m are obtained. If the data
are in general position, then QLTS(b0m) is bounded even if the number of
outliers dn is nearly as large as n/2. Then b1m is simply the OLS fit to
the cases corresponding to the cn smallest squared residuals r2(i)(b0m) for
i = 1, ..., cn. Denote these cases by i1, ..., icn . Then QLTS(b1m) =

cn∑

i=1

r2(i)(b1m) ≤
cn∑

j=1

r2ij (b1m) ≤
cn∑

j=1

r2ij (b0m) =
cn∑

j=1

r2(i)(b0m) = QLTS(b0m)

where the second inequality follows from the definition of the OLS estimator.
Hence concentration steps reduce or at least do not increase the LTS crite-
rion. If cn = (n + 1)/2 for n odd and cn = 1 + n/2 for n even, then the LTS
criterion is bounded iff the median squared residual is bounded.

Theorem 14.4 can be used to show that the following two estimators are
high breakdown. The estimator β̂B is the high breakdown attractor used by
the

√
n consistent high breakdown hbreg estimator of Definition 14.14, while

the estimator bk,B is the high breakdown attractor used by the
√

n consistent
high breakdown CLTA estimator of Theorem 14.11.

Definition 14.13. Make an OLS fit to the cn ≈ n/2 cases whose Y values
are closest to the MED(Y1, ..., Yn) ≡ MED(n), and use this fit as the start
for concentration. Define β̂B to be the attractor after k concentration steps.
Define bk,B = 0.9999β̂B .

Theorem 14.5. If the clean data are in general position, then β̂B and
bk,B are high breakdown regression estimators.

Proof. The start can be taken to be β̂w with w = 1 from Theorem 14.3.
Since the start is high breakdown, so is the attractor β̂B by Theorem 14.4.
Multiplying a HB estimator by a positive constant does not change the break-
down value, so bk,B is HB. �

The following result shows that it is easy to make a HB estimator that
is asymptotically equivalent to a consistent estimator on a large class of iid
zero mean symmetric error distributions, although the outlier resistance of
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the HB estimator is poor. The following result may not hold if β̂C esti-
mates βC and β̂LMS estimates βLMS where βC �= βLMS . Then bk,B could
have a smaller median squared residual than β̂C even if there are no out-
liers. The two parameter vectors could differ because the constant term
is different if the error distribution is not symmetric. For a large class
of symmetric error distributions, βLMS = βOLS = βC ≡ β, then the ratio
MED(r2i (β̂))/MED(r2i (β)) → 1 as n → ∞ for any consistent estimator of β.
The estimator below has two attractors, β̂C and bk,B , and the probability
that the final estimator β̂D is equal to β̂C goes to one under the strong
assumption that the error distribution is such that both β̂C and β̂LMS are
consistent estimators of β.

Theorem 14.6. Assume the clean data are in general position and that
the LMS estimator is a consistent estimator of β. Let β̂C be any practical con-
sistent estimator of β, and let β̂D = β̂C if MED(r2i (β̂C)) ≤ MED(r2i (bk,B)).
Let β̂D = bk,B , otherwise. Then β̂D is a HB estimator that is asymptotically
equivalent to β̂C .

Proof. The estimator is HB since the median squared residual of β̂D

is no larger than that of the HB estimator bk,B . Since β̂C is consistent,
MED(r2i (β̂C)) → MED(e2) in probability where MED(e2) is the population
median of the squared error e2. Since the LMS estimator is consistent, the
probability that β̂C has a smaller median squared residual than the biased
estimator β̂k,B goes to 1 as n → ∞. Hence β̂D is asymptotically equivalent
to β̂C . �

14.4.2 A Practical High Breakdown Consistent
Estimator

Olive and Hawkins (2011) showed that the practical hbreg estimator is a
high breakdown

√
n consistent robust estimator that is asymptotically equiv-

alent to the least squares estimator for many error distributions. The hbreg
estimator was used in Section 12.6.1 to make the somewhat outlier resistant
rmreg estimator of multivariate linear regression that was asymptotically
equivalent to the classical estimator.

Suppose the algorithm estimator uses some criterion to choose an attractor
as the final estimator where there are K attractors and K is fixed, e.g.,
K = 500, so K does not depend on n. The following theorem is powerful
because it does not depend on the criterion used to choose the attractor. If
the algorithm needs to use many attractors to achieve outlier resistance, then
the individual attractors have little outlier resistance. Such estimators include

http://dx.doi.org/10.1007/978-3-319-68253-2_12
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elemental concentration algorithms, heuristic and genetic algorithms, and
projection algorithms. Algorithms such as elemental concentration algorithms
where all K of the attractors are inconsistent are especially untrustworthy.

Suppose there are K consistent estimators β̂j of β, each with the same
rate nδ. If β̂A is an estimator obtained by choosing one of the K estimators,
then β̂A is a consistent estimator of β with rate nδ by Pratt (1959). See
Proposition 3.15.

Theorem 14.7. Suppose the algorithm estimator chooses an attractor as
the final estimator where there are K attractors and K is fixed.

i) If all of the attractors are consistent, then the algorithm estimator is
consistent.

ii) If all of the attractors are consistent with the same rate, e.g., nδ where
0 < δ ≤ 0.5, then the algorithm estimator is consistent with the same rate as
the attractors.

iii) If all of the attractors are high breakdown, then the algorithm estimator
is high breakdown.

Proof. i) Choosing from K consistent estimators results in a consistent
estimator and ii) follows from Pratt (1959). iii) Let γn,i be the breakdown
value of the ith attractor if the clean data are in general position. The break-
down value γn of the algorithm estimator can be no lower than that of the
worst attractor: γn ≥ min(γn,1, ..., γn,K) → 0.5 as n → ∞. �

The consistency of the algorithm estimator changes dramatically if K is
fixed but the start size h = hn = g(n) where g(n) → ∞. In particular, if K
starts with rate n1/2 are used, the final estimator also has rate n1/2. The
drawback to these algorithms is that they may not have enough outlier resis-
tance. Notice that the basic resampling result below is free of the criterion.

Proposition 14.8. Suppose Kn ≡ K starts are used and that all starts
have subset size hn = g(n) ↑ ∞ as n → ∞. Assume that the estimator applied
to the subset has rate nδ.
i) For the hn-set basic resampling algorithm, the algorithm estimator has
rate [g(n)]δ.
ii) Under regularity conditions (e.g., given by He and Portnoy 1992), the
k-step CLTS estimator has rate [g(n)]δ.

Proof. i) The hn = g(n) cases are randomly sampled without replacement.
Hence the classical estimator applied to these g(n) cases has rate [g(n)]δ. Thus
all K starts have rate [g(n)]δ, and the result follows by Pratt (1959). ii) By
He and Portnoy (1992), all K attractors have [g(n)]δ rate, and the result
follows by Pratt (1959). �

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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Remark 14.1. Proposition 14.2 shows that β̂ is HB if the median absolute
or squared residual (or |r(β̂)|(cn) or r2(cn) where cn ≈ n/2) stays bounded

under high contamination. Let QL(β̂H) denote the LMS, LTS, or LTA cri-
terion for an estimator β̂H ; therefore, the estimator β̂H is high breakdown
if and only if QL(β̂H) is bounded for dn near n/2 where dn < n/2 is the
number of outliers. The concentration operator refines an initial estimator
by successively reducing the LTS criterion. If β̂F refers to the final estimator
(attractor) obtained by applying concentration to some starting estimator β̂H

that is high breakdown, then since QLTS(β̂F ) ≤ QLTS(β̂H), applying con-
centration to a high breakdown start results in a high breakdown attractor.
See Theorem 14.4.

High breakdown estimators are, however, not necessarily useful for detect-
ing outliers. Suppose γn < 0.5. On the one hand, if the xi are fixed, and the
outliers are moved up and down parallel to the Y axis, then for high break-
down estimators, β̂ and MED(|ri|) will be bounded. Thus if the |Yi| values
of the outliers are large enough, the |ri| values of the outliers will be large,
suggesting that the high breakdown estimator is useful for outlier detection.
On the other hand, if the Yi’s are fixed at any values and the x values per-
turbed, sufficiently large x-outliers tend to drive the slope estimates to 0,
not ∞. For many estimators, including LTS, LMS, and LTA, a cluster of Y
outliers can be moved arbitrarily far from the bulk of the data but still, by
perturbing their x values, have arbitrarily small residuals.

Our practical high breakdown procedure is made up of three components.
1) A practical estimator β̂C that is consistent for clean data. Suitable choices
would include the full-sample OLS and L1 estimators.
2) A practical estimator β̂A that is effective for outlier identification. Suitable
choices include the mbareg, rmreg2, lmsreg, or FLTS estimators.
3) A practical high breakdown estimator such as β̂B from Definition 14.13
with k = 10.

By selecting one of these three estimators according to the features each
of them uncovers in the data, we may inherit some of the good properties of
each of them.

Definition 14.14. The hbreg estimator β̂H is defined as follows. Pick
a constant a > 1 and set β̂H = β̂C . If aQL(β̂A) < QL(β̂C), set β̂H = β̂A. If
aQL(β̂B) < min[QL(β̂C), aQL(β̂A)], set β̂H = β̂B .
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That is, find the smallest of the three scaled criterion values QL(β̂C),
aQL(β̂A), aQL(β̂B). According to which of the three estimators attain this
minimum, set β̂H to β̂C , β̂A, or β̂B respectively.

Large sample theory for hbreg is simple and given in the following theo-
rem. Let β̂L be the LMS, LTS, or LTA estimator that minimizes the criterion
QL. Note that the impractical estimator β̂L is never computed. The following
theorem shows that β̂H is asymptotically equivalent to β̂C on a large class
of zero mean finite variance symmetric error distributions. Thus if β̂C is

√
n

consistent or asymptotically efficient, so is β̂H . Notice that β̂A does not need
to be consistent. This point is crucial since lmsreg is not consistent and it is
not known whether FLTS is consistent. The clean data are in general position
if any p clean cases give a unique estimate of β̂.

Theorem 14.9. Assume the clean data are in general position, and sup-
pose that both β̂L and β̂C are consistent estimators of β where the regression
model contains a constant. Then the hbreg estimator β̂H is high breakdown
and asymptotically equivalent to β̂C .

Proof. Since the clean data are in general position and QL(β̂H) ≤ aQL(β̂B)
is bounded for γn near 0.5, the hbreg estimator is high breakdown. Let
Q∗

L = QL for LMS and Q∗
L = QL/n for LTS and LTA. As n → ∞, consis-

tent estimators β̂ satisfy Q∗
L(β̂) − Q∗

L(β) → 0 in probability. Since LMS,
LTS, and LTA are consistent and the minimum value is Q∗

L(β̂L), it fol-
lows that Q∗

L(β̂C) − Q∗
L(β̂L) → 0 in probability, while Q∗

L(β̂L) < aQ∗
L(β̂)

for any estimator β̂. Thus with probability tending to one as n → ∞,
QL(β̂C) < amin(QL(β̂A), QL(β̂B)). Hence β̂H is asymptotically equivalent
to β̂C . �

Remark 14.2. i) Let β̂C = β̂OLS . Then hbreg is asymptotically equiv-
alent to OLS when the errors ei are iid from a large class of zero mean finite
variance symmetric distributions, including the N(0, σ2) distribution, since
the probability that hbreg uses OLS instead of β̂A or β̂B goes to one as
n → ∞.

ii) The above theorem proves that practical high breakdown estimators
with 100% asymptotic Gaussian efficiency exist; however, such estimators
are not necessarily good.

iii) The theorem holds when both β̂L and β̂C are consistent estimators of
β, for example, when the iid errors come from a large class or zero mean finite
variance symmetric distributions. For asymmetric distributions, β̂C estimates
βC and β̂L estimates βL where the constants usually differ. The theorem
holds for some distributions that are not symmetric because of the penalty
a. As a → ∞, the class of asymmetric distributions where the theorem holds
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greatly increases, but the outlier resistance decreases rapidly as a increases
for a > 1.4.

iv) The default hbreg estimator used OLS, mbareg, and β̂B with a = 1.4
and the LTA criterion. For the simulated data with symmetric error distrib-
utions, β̂B appeared to give biased estimates of the slopes. However, for the
simulated data with right skewed error distributions, β̂B appeared to give
good estimates of the slopes but not the constant estimated by OLS, and the
probability that the hbreg estimator selected β̂B appeared to go to one.

v) Both MBA and OLS are
√

n consistent estimators of β, even for a large
class of skewed distributions. Using β̂A = β̂MBA and removing β̂B from the
hbreg estimator results in a

√
n consistent estimator of β when β̂C = OLS is

a
√

n consistent estimator of β, but massive sample sizes were still needed to
get good estimates of the constant for skewed error distributions. For skewed
distributions, if OLS needed n = 1000 to estimate the constant well, mbareg
might need n > one million to estimate the constant well.

The situation is worse for multivariate linear regression when hbreg is
used instead of OLS, since there are m constants to be estimated. If the
distribution of the iid error vectors ei is not elliptically contoured, getting
all m mbareg estimators to estimate all m constants well needs even larger
sample sizes. See the rmreg estimator of Section 12.6.1.

vi) The outlier resistance of hbreg is not especially good and could likely
be improved by letting the constant ap depend on p. Let ap be very near 1
for low p and increase ap to 1.4 as p increases.

vii) Note that for a large class of symmetric elliptically contoured distribu-
tions for ε, the hbreg estimator could be used instead of OLS in multivariate
linear regression, but the classical tests could still be applied since the rmreg
and classical estimators were asymptotically equivalent. See Section 12.6.1.

viii) The estimator β̂A only needs to be practical to compute, and it does
not need to be consistent. Hence hbreg can be used to fix the estimators
that are zero breakdown and inconsistent, but the maximal bias of hbreg
will not be as good as that of some impractical high breakdown estimators.

The family of hbreg estimators is enormous and depends on i) the prac-
tical high breakdown estimator β̂B , ii) β̂C , iii) β̂A, iv) a, and v) the criterion
QL. Note that the theory needs the error distribution to be such that both
β̂C and β̂L are consistent. Sufficient conditions for LMS, LTS, and LTA to be
consistent are rather strong. To have reasonable sufficient conditions for the
hbreg estimator to be consistent, β̂C should be consistent under weak condi-
tions. Hence OLS is a good choice that results in 100% asymptotic Gaussian
efficiency.

We suggest using the LTA criterion since in simulations, hbreg behaved
like β̂C for smaller sample sizes than those needed by the LTS and LMS
criteria. We want a near 1 so that hbreg has outlier resistance similar to
β̂A, but we want a large enough so that hbreg performs like β̂C for moderate

http://dx.doi.org/10.1007/978-3-319-68253-2_12
http://dx.doi.org/10.1007/978-3-319-68253-2_12
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n on clean data. Simulations suggest that a = 1.4 is a reasonable choice. The
default hbreg program from mpack uses the

√
n consistent outlier resistant

estimator mbareg as β̂A.
There are at least three reasons for using β̂B as the high breakdown esti-

mator. First, β̂B is high breakdown and simple to compute. Second, the fit-
ted values roughly track the bulk of the data. Lastly, although β̂B has rather
poor outlier resistance, β̂B does perform well on several outlier configurations
where some common alternatives fail. See Figures 14.6 and 14.7.

Next, we will show that the hbreg estimator implemented with a = 1.4
using QLTA, β̂C = OLS, and β̂B can greatly improve the estimator β̂A. We
will use β̂A = ltsreg in R and Splus 2000. Depending on the implemen-
tation, the ltsreg estimators use the elemental resampling algorithm, the
elemental concentration algorithm, or a genetic algorithm. Coverage is 50%,
75%, or 90%. The Splus 2000 implementation is an unusually poor genetic
algorithm with 90% coverage. The R implementation appears to be the zero
breakdown inconsistent elemental basic resampling algorithm that uses 50%
coverage. The ltsreg function changes often.

Simulations were run in R with the xij (for j > 1) and ei iid N(0, σ2)
and β = 1, the p × 1 vector of ones. Then β̂ was recorded for 100 runs. The
mean and standard deviation of the β̂j were recorded for j = 1, ..., p. For
n ≥ 10p and OLS, the vector of means should be close to 1 and the vector
of standard deviations should be close to 1/

√
n. The

√
n consistent high

breakdown hbreg estimator performed like OLS if n ≈ 35p and 2 ≤ p ≤ 6,
if n ≈ 20p and 7 ≤ p ≤ 14, or if n ≈ 15p and 15 ≤ p ≤ 40. See Table 14.3
for p = 5 and 100 runs. ALTS denotes ltsreg, HB denotes hbreg, and
BB denotes β̂B . In the simulations, hbreg estimated the slopes well for the
highly skewed lognormal data, but not the OLS constant. Use the mpack
function hbregsim.

As implemented in mpack, the hbreg estimator is a practical
√

n consis-
tent high breakdown estimator that appears to perform like OLS for moder-
ate n if the errors are unimodal and symmetric and to have outlier resistance
comparable to competing practical “outlier resistant” estimators.

The hbreg, lmsreg, ltsreg, OLS, and β̂B estimators were compared
on the same 25 benchmark data sets. Also see Park et al. (2012). The HB
estimator β̂B was surprisingly good in that the response plots showed that it
was the best estimator for two data sets and that it usually tracked the data,
but it performed poorly in seven of the 25 data sets. The hbreg estimator
performed well, but for a few data sets hbreg did not pick the attractor with
the best response plot, as illustrated in the following example.

Example 14.8. The LMS, LTA, and LTS estimators are determined by
a “narrowest band” covering half of the cases. Hawkins and Olive (2002)
suggested that the fit will pass through outliers if the band through the
outliers is narrower than the band through the clean cases. This behavior
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Table 14.3 MEAN β̂i and SD(β̂i)

n method mn or sd β̂1 β̂2 β̂3 β̂4 β̂5

25 HB mn 0.9921 0.9825 0.9989 0.9680 1.0231

sd 0.4821 0.5142 0.5590 0.4537 0.5461

OLS mn 1.0113 1.0116 0.9564 0.9867 1.0019

sd 0.2308 0.2378 0.2126 0.2071 0.2441

ALTS mn 1.0028 1.0065 1.0198 1.0092 1.0374

sd 0.5028 0.5319 0.5467 0.4828 0.5614

BB mn 1.0278 0.5314 0.5182 0.5134 0.5752

sd 0.4960 0.3960 0.3612 0.4250 0.3940

400 HB mn 1.0023 0.9943 1.0028 1.0103 1.0076

sd 0.0529 0.0496 0.0514 0.0459 0.0527

OLS mn 1.0023 0.9943 1.0028 1.0103 1.0076

sd 0.0529 0.0496 0.0514 0.0459 0.0527

ALTS mn 1.0077 0.9823 1.0068 1.0069 1.0214

sd 0.1655 0.1542 0.1609 0.1629 0.1679

BB mn 1.0184 0.8744 0.8764 0.8679 0.8794

sd 0.1273 0.1084 0.1215 0.1206 0.1269
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Fig. 14.8 Response Plots Comparing Robust Regression Estimators

tends to occur if the regression relationship is weak, and if there is a tight
cluster of outliers where |Y | is not too large. As an illustration, Buxton (1920,
pp. 232–5) gave 20 measurements of 88 men. Consider predicting stature
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using an intercept, head length, nasal height, bigonal breadth, and cephalic
index. One case was deleted since it had missing values. Five individuals,
numbers 6–65, were reported to be about 0.75 inches tall with head lengths
well over five feet! Figure 14.8 shows the response plots for hbreg, OLS,
ltsreg, and β̂B . Notice that only the fit from β̂B (BBFIT) did not pass
through the outliers, but hbreg selected the OLS attractor. There are always
outlier configurations where an estimator will fail, and hbreg should fail on
configurations where LTA, LTS, and LMS would fail.

14.5 1D Regression

Regression is the study of the conditional distribution Y |x of the response Y
given the k × 1 vector of nontrivial predictors x. The scalar Y is a random
variable, and x is a random vector. A special case of regression was the mul-
tiple linear regression model Y = α + x1β1 + · · · + xkβk + e = α + βT x + e
where k = p − 1 and the nontrivial predictors are collected in the k × 1 vec-
tor x.

Definition 14.15. In a 1D regression model, the response Y is condition-
ally independent of x given the real-valued function h(x), written Y x|h(x).
If h(x) = βT x is a single linear combination βT x of the predictors, then

Y x|βT x or Y x|(α + βTx). (14.17)

For the remainder of this section, unless told otherwise, assume h(x) =
βT x. An important 1D regression model, introduced by Li and Duan (1989),
has the form

Y = g(α + βT x, e) (14.18)

where g is a bivariate (inverse link) function, and e is a zero mean error that
is independent of x. The constant term α may be absorbed by g if desired.

Special cases of the 1D regression model (14.17) include many important
generalized linear models (GLMs) and the additive error single index model

Y = m(α + βT x) + e. (14.19)

Typically m is the conditional mean or median function. For example, if all
of the expectations exist, then

E[Y |x] = E[m(α + βT x)|x] + E[e|x] = m(α + βT x).
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The multiple linear regression model is an important special case where m
is the identity function: m(α + βT x) = α + βT x. Another important special
case of 1D regression is the response transformation model where

g(α + βT x, e) = t−1(α + βT x + e) (14.20)

and t−1 is a one-to-one (typically monotone) function. Hence

t(Y ) = α + βT x + e.

Definition 14.16. Regression is the study of the conditional distribution
of Y |x. Focus is often on the mean function E(Y |x) and/or the variance
function VAR(Y |x). There is a distribution for each value of x = xo such
that Y |x = xo is defined. For a 1D regression with h(x) = βT x,

E(Y |x = xo) = E(Y |βT x = βT xo) ≡ M(βT xo)

and
VAR(Y |x = xo) = VAR(Y |βT x = βT xo) ≡ V (βT xo)

where M is the kernel mean function, and V is the kernel variance function.

Notice that the mean and variance functions depend on the same linear
combination if the 1D regression model is valid. This dependence is typical of
GLMs where M and V are known kernel mean and variance functions that
depend on the family of GLMs. See Cook and Weisberg (1999a, section 23.1).
A heteroscedastic regression model

Y = M(βT
1 x) +

√

V (βT
2 x) e (14.21)

is a 1D regression model if β2 = cβ1 for some scalar c.

Dimension reduction can greatly simplify our understanding of the condi-
tional distribution Y |x. If a 1D regression model with h(x) = βT x is appro-
priate, then the k-dimensional vector x can be replaced by the 1–dimensional
scalar βT x with “no loss of information about the conditional distribution.”
Cook and Weisberg (1999a, p. 411) defined a sufficient summary plot (SSP)
to be a plot that contains all the sample regression information about the
conditional distribution Y |x of the response given the predictors.

Definition 14.17. If the 1D regression model with h(x) = βT x holds,
then Y x|(a + cβT x) for any constants a and c �= 0. The quantity a + cβT x
is called a sufficient predictor (SP), and a sufficient summary plot is a plot of
any SP versus Y . An estimated sufficient predictor (ESP) is α̃ + β̃

T
x where
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β̃ is an estimator of cβ for some nonzero constant c. A response plot or
estimated sufficient summary plot (ESSP) is a plot of any ESP versus Y .

If there is only one predictor x, then the plot of x versus Y is both a
sufficient summary plot and a response plot, but generally only a response
plot can be made. Since a can be any constant, a = 0 is often used. The
following section shows how to use the OLS regression of Y on x to obtain
an ESP. If we plot the fitted values and the ESP versus Y , the plots are called
fit-response and ESP-response plots. For multiple linear regression, these two
plots are the same.

14.6 Visualizing 1D Regression

Consider the OLS estimator (α̂, β̂). Li and Duan (1989, p. 1031) showed that
under regularity conditions, β̂ is a

√
n consistent estimator of cβ for some

constant c. If β̂ ≈ cβ when model (14.17) holds, then the response plot of

α̂ + β̂
T
x versus Y

can be used to visualize the conditional distribution Y |(α + βT x) provided
that c �= 0. Often if no strong nonlinearities are present among the
predictors, β̂

T
x is a useful ESP.

Suppose Y = m(α + βT x) + e and the errors e are small. Suppose β̂
T
x is

a good estimator of cβT x. Then m can be visualized with a plot of ESP =
a + β̂

T
x versus Y if c �= 0. If c > 0, then the plot of ESP versus Y is similar to

the plot of α + βT x versus Y : except the labels of the horizontal axis change.
(The two plots are usually not exactly identical since plotting controls to “fill
space” depend on several factors and will change slightly.) If c < 0, then the
plot appears to be flipped about the vertical axis. OLS often provides a useful
estimator of cβ where c �= 0, but OLS can result in c = 0 if m is symmetric
about the population median of α + βT x.

Definition 14.18. If the 1D regression model (14.17) holds, and OLS is
used, then the ESP may be called the OLS ESP and the response plot may
be called the OLS response plot. Other estimators, such as SIR (sliced inverse
regression), may have similar labels.
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Example 14.9. Suppose that xi ∼ N3(0, I3) and that

Y = m(βT x) + e = (x1 + 2x2 + 3x3)3 + e.

Then a 1D regression model holds with β = (1, 2, 3)T . Figure 14.9 shows
the sufficient summary plot of βT x versus Y , and Figure 14.10 shows the
sufficient summary plot of −βT x versus Y . Notice that the functional form
m appears to be cubic in both plots and that both plots can be smoothed
by eye or with a scatterplot smoother such as lowess. The two figures were
generated with the following R commands.

X <- matrix(rnorm(300),nrow=100,ncol=3)
SP <- X%*%1:3
Y <- (SP)^3 + rnorm(100)
plot(SP,Y)
plot(-SP,Y)

We particularly want to use the OLS estimator (α̂, β̂) to produce an esti-
mated sufficient summary plot. This estimator is obtained from the usual
multiple linear regression of Yi on xi, but we are not assuming that the
multiple linear regression model holds; however, we are hoping that the 1D
regression model Y x|βT x is a useful approximation to the data and that
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Fig. 14.9 SSP for m(u) = u3
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Fig. 14.10 Another SSP for m(u) = u3

β̂ ≈ cβ for some nonzero constant c. Nice results exist if the additive error
single index model is appropriate. Recall that

Cov(x,Y ) = E[(x − E(x))((Y − E(Y ))T ].

Definition 14.19. Suppose that (Yi,x
T
i )T are iid observations and that

the positive definite k × k matrix Cov(x) = Σx and the k × 1 vector
Cov(x, Y ) = Σx,Y . Let the OLS estimator (α̂, β̂) be computed from the mul-
tiple linear regression of Y on x plus a constant. Then (α̂, β̂) estimates the
population quantity (αOLS ,βOLS) where

βOLS = Σ−1
x Σx,Y . (14.22)

The following notation will be useful for studying the OLS estimator.
Let the sufficient predictor z = βT x, and let w = x − E(x). Let r = w −
(Σxβ)βT w.

Theorem 14.10. In addition to the conditions of Definition 14.19, also
assume that Yi = m(βT xi) + ei where the zero mean constant variance iid
errors ei are independent of the predictors xi. Then

βOLS = Σ−1
x Σx,Y = cm,xβ + um,x (14.23)
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where the scalar
cm,x = E[βT (x − E(x)) m(βT x)] (14.24)

and the bias vector
um,x = Σ−1

x E[m(βT x)r]. (14.25)

Moreover, um,x = 0 if x is from an EC distribution with nonsingular Σx,
and cm,x �= 0 unless Cov(x, Y ) = 0. If the multiple linear regression model
holds, then cm,x = 1, and um,x = 0.

The proof of the above result is outlined in Problem 14.1 using an argument
due to Aldrin et al. (1993). See related results in Cook et al. (1992). If the 1D
regression model with h(x) = βT x is appropriate, then typically Cov(x, Y ) �=
0 unless βT x follows a symmetric distribution and m is symmetric about
the median of βT x. Often the bias vector is small if there are no strong
nonlinearities among the predictors.

Definition 14.20. Let (α̂, β̂) denote the OLS estimate obtained from the
OLS multiple linear regression of Y on x. The OLS view is a response plot
of a + β̂

T
x versus Y . Typically, a = 0 or a = α̂.

Remark 14.3. All of this awkward notation and theory leads to a remark-
able result, perhaps first noted by Brillinger (1977, 1983) and called the 1D
Estimation Result by Cook and Weisberg (1999a, p. 432). The result is that if
the 1D regression model with h(x) = βT x is appropriate, then the OLS view
will frequently be a useful estimated sufficient summary plot (ESSP). Hence

the OLS predictor β̂
T
x is a useful estimated sufficient predictor (ESP).

Although the OLS view is frequently a good ESSP if no strong nonlineari-
ties are present in the predictors and if cm,x �= 0 (e.g., the sufficient summary
plot of βT x versus Y is not approximately symmetric), even better estimated
sufficient summary plots can be obtained by using ellipsoidal trimming. This
topic is discussed next, and the discussion follows Olive (2002) closely.

To perform ellipsoidal trimming, an estimator (T,C) is computed where T
is a k × 1 multivariate location estimator and C is a k × k symmetric positive
definite dispersion estimator. Then the ith squared Mahalanobis distance is
the random variable

D2
i = (xi − T )T C−1(xi − T ) (14.26)
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for each vector of observed predictors xi. If the ordered distances D(j) are
unique, then j of the xi are in the hyperellipsoid

{x : (x − T )T C−1(x − T ) ≤ D2
(j)}. (14.27)

The ith case (Yi,x
T
i )T is trimmed if Di > D(j). Thus if j ≈ 0.9n, then about

10% of the cases are trimmed.

We suggest that the estimator (T,C) should be the classical sample mean
and covariance matrix (x,S) or a robust multivariate location and dispersion
estimator such as RMVN or RFCH. See Section 4.4. When j ≈ n/2, the
RFCH estimator attempts to make the volume of the hyperellipsoid given by
Equation (14.27) small.

Ellipsoidal trimming seems to work for at least three reasons. The trim-
ming divides the data into two groups: the trimmed cases and the remaining
cases (xM , YM ) where M% is the amount of trimming, e.g,. M = 10 for 10%
trimming. If the distribution of the predictors x is EC, then the distribution
of xM still retains enough symmetry so that the bias vector is approximately
zero. If the distribution of x is not EC, then the distribution of xM will
often have enough symmetry so that the bias vector is small. In particular,
trimming often removes strong nonlinearities from the predictors and the
weighted predictor distribution is more nearly elliptically symmetric than
the predictor distribution of the entire data set (recall Winsor’s principle:
“all data are roughly Gaussian in the middle”). Secondly, under heavy trim-
ming, the mean function of the remaining cases may be more linear than the
mean function of the entire data set. Thirdly, if |c| is very large, then the bias
vector may be small relative to cβ. Trimming sometimes inflates |c|. From
Theorem 14.10, any of these three reasons should produce a better estimated
sufficient predictor.

For example, examine Figure 5.7. The data are not EC, but the data within
the resistant covering ellipsoid are approximately EC.

Example 14.10. Cook and Weisberg (1999a, pp. 351, 433, 447) gave a
data set on 82 mussels sampled off the coast of New Zealand. The variables
are the muscle mass M in grams, the length L and height H of the shell
in mm, the shell width W , and the shell mass S. The robust and classical
Mahalanobis distances were calculated, and Figure 14.11 shows a scatterplot
matrix of the mussel data, the RDi’s, and the MDi’s. Notice that many
of the subplots are nonlinear. The cases marked by open circles were given
weight zero by the FMCD algorithm, and the linearity of the retained cases
has increased. Note that only one trimming proportion is shown and that a
heavier trimming proportion would increase the linearity of the cases that
were not trimmed.

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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Fig. 14.11 Scatterplot for Mussel Data, o Corresponds to Trimmed Cases

The two ideas of using ellipsoidal trimming to reduce the bias and choosing
a view with a smooth mean function and smallest variance function can
be combined into a graphical method for finding the estimated sufficient
summary plot and the estimated sufficient predictor. Trim the M% of the
cases with the largest Mahalanobis distances and then compute the OLS
estimator (α̂M , β̂M ) from the cases that remain. Use M = 0, 10, 20, 30, 40,

50, 60, 70, 80, and 90 to generate ten plots of β̂
T

Mx versus Y using all n
cases. In analogy with the Cook and Weisberg (1999a, ch. 8) procedure for
visualizing 1D structure with two predictors, the plots will be called “trimmed
views.” Notice that M = 0 corresponds to the OLS view.

Definition 14.21. The best trimmed view is the trimmed view with a
smooth mean function and the smallest variance function and is the estimated

http://dx.doi.org/10.1007/978-3-319-68253-2_8


14.6 Visualizing 1D Regression 435

sufficient summary plot. If M∗ = E is the percentage of cases trimmed that
corresponds to the best trimmed view, then β̂

T

Ex is the estimated sufficient
predictor.

The following examples illustrate the R function trviews that is used to
produce the ESSP. The command

library(MASS)

needs to be entered to access the function cov.mcd called by trviews.
The function trviews is used in Problem 14.11. Also notice the trviews
estimator is basically the same as the tvreg estimator described in Section
14.2. The tvreg estimator can be used to simultaneously detect whether
the data is following a multiple linear regression model or some other single
index model. Plot α̂E + β̂

T

Ex versus Y and add the identity line. If the plotted
points follow the identity line, then the MLR model is reasonable, but if the
plotted points follow a nonlinear mean function, then a nonlinear single index
model Y = m(α + βT x) + e may be reasonable.

Example 14.9 continued. The command

trviews(X, Y)

produced the following output.

Intercept X1 X2 X3
0.6701255 3.133926 4.031048 7.593501
Intercept X1 X2 X3
1.101398 8.873677 12.99655 18.29054

Intercept X1 X2 X3
0.9702788 10.71646 15.40126 23.35055
Intercept X1 X2 X3
0.5937255 13.44889 23.47785 32.74164
Intercept X1 X2 X3
1.086138 12.60514 25.06613 37.25504

Intercept X1 X2 X3
4.621724 19.54774 34.87627 48.79709

Intercept X1 X2 X3
3.165427 22.85721 36.09381 53.15153

Intercept X1 X2 X3
5.829141 31.63738 56.56191 82.94031

Intercept X1 X2 X3
4.241797 36.24316 70.94507 105.3816

Intercept X1 X2 X3
6.485165 41.67623 87.39663 120.8251
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The function generates 10 trimmed views. The first plot trims 90% of the
cases, while the last plot does not trim any of the cases and is the OLS
view. To advance a plot, press the right button on the mouse (in R, high-
light Stop rather than Continue). After all of the trimmed views have
been generated, the output is presented. For example, the fifth line of num-
bers in the output corresponds to α̂50 = 1.086138 and β̂

T

50 where 50% trim-
ming was used. The second line of numbers corresponds to 80% trimming,
while the last line corresponds to 0% trimming and gives the OLS esti-
mate (α̂0, β̂

T

0 ). The trimmed views with 50% and 90% trimming were very
good. We decided that the view with 50% trimming was the best. Hence
β̂E = (12.60514, 25.06613, 37.25504)T ≈ 12.5β. The best view is shown in
Figure 14.12 and is nearly identical to the sufficient summary plot shown in
Figure 14.9. Notice that the OLS estimate = (41.68, 87.40, 120.83)T ≈ 42β.

The plot of the estimated sufficient predictor versus the sufficient predictor
is also informative. Of course, this plot can usually only be generated for
simulated data since β is generally unknown. If the plotted points are highly
correlated (with |corr(ESP,SP)| > 0.95) and follow a line through the origin,

ESP

Y

-100 -50 0 50 100

-5
00

0
50

0

ESSP for Gaussian Predictors

Fig. 14.12 Best View for Estimating m(u) = u3
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CORR(ESP,SP) is Approximately One

Fig. 14.13 The angle between the SP and the ESP is nearly zero.

then the estimated sufficient summary plot is nearly as good as the sufficient
summary plot. The simulated data used β = (1, 2, 3)T , and the commands

SP <- X %*% 1:3
ESP <- X %*% c(12.60514, 25.06613, 37.25504)
plot(ESP,SP)

generated the plot shown in Figure 14.13.

Example 14.11. An artificial data set with 200 trivariate vectors xi was
generated. The marginal distributions of xi,j are iid lognormal for j = 1, 2,

and 3. Since the response Yi = sin(βT xi)/βT xi where β = (1, 2, 3)T , the ran-
dom vector xi is not elliptically contoured and the function m is strongly
nonlinear. Figure 14.14d shows the OLS view, and Figure 14.15d shows the
best trimmed view. Notice that it is difficult to visualize the mean function
with the OLS view, and notice that the correlation between Y and the ESP
is very low. By focusing on a part of the data where the correlation is high,
it may be possible to improve the estimated sufficient summary plot. For
example, in Figure 14.15d, temporarily omit cases that have ESP less than
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0.3 and greater than 0.75. From the untrimmed cases, obtain the ten trimmed
estimates β̂90, ..., β̂0. Then using all of the data, obtain the ten views. The
best view could be used as the ESSP.

Application 14.2. Suppose that a 1D regression analysis is desired on a
data set, use the trimmed views as an exploratory data analysis technique to
visualize the conditional distribution Y |βT x. The best trimmed view is an
estimated sufficient summary plot. If the additive error single index model
(14.19) holds, the function m can be estimated from this plot using paramet-
ric models or scatterplot smoothers such as lowess. Notice that Y can be
predicted visually using up and over lines.

Application 14.3. The best trimmed view can also be used as a diag-
nostic for linearity and monotonicity.

For example in Figure 14.12, if ESP = 0, then Ŷ = 0, and if ESP = 100,
then Ŷ = 500. Figure 14.12 suggests that the mean function is monotone but
not linear, and Figure 14.15 suggests that the mean function is neither linear
nor monotone.

Application 14.4. Assume that a known 1D regression model is assumed
for the data. Then the best trimmed view is a model checking plot and can
be used as a diagnostic for whether the assumed model is appropriate.

The trimmed views are sometimes useful even when the assumption of
linearly related predictors fails. Li Cook and Li (2002) summarized when
competing methods such as the OLS view, sliced inverse regression (SIR),
principal Hessian directions (PHD), and sliced average variance estimation
(SAVE) can fail. All four methods frequently perform well if there are no
strong nonlinearities present in the predictors.

Example 14.11 (continued). Figure 14.14 shows that the response plots
for SIR, PHD, SAVE, and OLS are not very good, while Figure 14.15 shows
that trimming improved the SIR, SAVE, and OLS methods.

One goal for future research is to develop better methods for visualizing
1D regression. Trimmed views seem to become less effective as the num-
ber of predictors k = p − 1 increases. Consider the sufficient predictor SP
= x1 + · · · + xk. With the sin(SP)/SP data, several trimming proportions
gave good views with k = 3, but only one of the ten trimming proportions
gave a good view with k = 10. In addition to problems with dimension, it is
not clear which dispersion estimator and which regression estimator should
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Fig. 14.16 1D Regression with lmsreg

be used. We suggest using the RFCH or RMVN estimator with OLS, and pre-
liminary investigations suggest that the classical covariance estimator gives
better estimates than cov.mcd. But among the many Splus regression esti-
mators, lmsreg often worked well. There is OLS theory, but there is no
theory for the robust regression estimators.

Example 14.11 continued. Replacing the OLS trimmed views by alterna-
tive MLR estimators often produced good response plots, and for single index
models, the lmsreg estimator often worked the best. Figure 14.16 shows a
scatterplot matrix of Y , ESP, and SP where the sufficient predictor SP =
βT x. The ESP used ellipsoidal trimming with cov.mcd and with lmsreg
instead of OLS. The top row of Figure 14.16 shows that the estimated suf-
ficient summary plot and the sufficient summary plot are nearly identical.
Also, the correlation of the ESP and the SP is nearly one. Table 14.4 shows
the estimated sufficient predictor coefficients b when the sufficient predictor
coefficients are c(1, 2, 3)T . Only the SIR, SAVE, OLS, and lmsreg trimmed
views produce estimated sufficient predictors that are highly correlated with
the sufficient predictor.

Figure 14.17 helps illustrate why ellipsoidal trimming works. This view
used 70% trimming, and the open circles denote cases that were trimmed.
The highlighted squares correspond to the cases (x70, Y70) that were not
trimmed. Note that the highlighted cases are far more linear than the data set
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Table 14.4 Estimated Sufficient Predictors Coefficients Estimating c(1, 2, 3)T

method b1 b2 b3

OLS View 0.0032 0.0011 0.0047

90% Trimmed OLS View 0.086 0.182 0.338

SIR View −0.394 −0.361 −0.845

10% Trimmed SIR VIEW −0.284 −0.473 −0.834

SAVE View −1.09 0.870 -0.480

40% Trimmed SAVE VIEW 0.256 0.591 0.765

PHD View −0.072 −0.029 −0.0097

90% Trimmed PHD VIEW −0.558 −0.499 −0.664

LMSREG VIEW −0.003 −0.005 −0.059

70% Trimmed LMSREG VIEW 0.143 0.287 0.428

FIT

Y
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Fig. 14.17 The Weighted lmsreg Fitted Values Versus Y

as a whole. Also, lmsreg will give half of the highlighted cases zero weight,
further linearizing the function. In Figure 14.17, the lmsreg constant α̂70 is
included, and the plot is simply the response plot of the weighted lmsreg
fitted values versus Y . The vertical deviations from the line through the origin
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are the “residuals” Yi − α̂70 − β̂
T

70x, and at least half of the highlighted cases
have small residuals.

Example 14.12. This insulation data was contributed by Ms. Spector.
A box with insulation was heated for 20 minutes and then allowed to cool
down. The response variable Y = temperature in the middle of the box was
taken at time 0, 5, ..., 40. The type of insulation was a factor with type
1 = no insulation, 2 = corn pith, 3 = fiberglass, 4 = styrofoam, and 5 =
bubbles. There were 45 temperature measurements, one for each time type
combination. The measurements were averages of ten trials, and starting
temperatures were close but not exactly equal.

The model using time, (time)2, type, and the interactions type:time and
type:(time)2 had E(Y |x) ≈ (xT β)2. A second model used time, (time)2,
and type, and rather awkward R code for producing the response plot in
Figure 14.18 is shown below. The solid curve corresponds to (xT β̂, (xT β̂)3) =
(FIT, (FIT )3) where β̂ is the OLS estimator from regressing Y on xT =
(1, time, (time)2, type). The thin curve corresponds to lowess. Since the two
curves correspond, E(Y |x) ≈ (xT β)3 or Y = m(xT β) + e where m(w) = w3.
See Problem 14.17 for producing the response plot in Arc.

#assume the insulation data is loaded
ftype <- as.factor(insulation[,2])
zi <- as.data.frame(insulation)
iout <- lm(ytemp~time+I(time^2)+ftype,data=zi)

22 24 26 28

22
24

26
28

30

FIT

Y

Fig. 14.18 Response Plot for Insulation Data
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FIT <- iout$fit
Y <- insulation[,1]

plot(FIT,Y)
lines(lowess(FIT,Y)) #get (FIT,(FIT)^3) curve
zx <- FIT
z <- lsfit(cbind(zx,zx^2,zx^3),Y)
zfit <- Y-z$resid
lines(FIT,zfit)

14.7 Complements

The fact that response plots are extremely useful for model assessment and
for detecting influential cases and outliers for an enormous variety of sta-
tistical models does not seem to be well known. Certainly, in any multiple
linear regression analysis, the response plot and the residual plot of Ŷ ver-
sus r should always be made. Cook and Olive (2001) used response plots to
select a response transformation graphically. Olive (2005a) suggested using
residual, response, RR, and FF plots to detect outliers, while Hawkins and
Olive (2002, pp. 141, 158) suggested using the RR and FF plots. The four
plots are best for n ≥ 5p. Olive (2008:

∮
6.4, 2017a: ch. 5–9) showed that

the residual and response plots are useful for experimental design models.
Park et al. (2012) showed response plots are competitive with the best robust
regression methods for outlier detection on some outlier data sets that have
appeared in the literature.

Olive (2004b, 2013b) used response plots for 1D regression, including gen-
eralized linear models and generalized additive models. Olive (2017a) covered
1D regression, multiple linear regression, and prediction intervals using the
shorth. Olive and Hawkins (2003) showed that regression residuals behave
well.

Rousseeuw and Zomeren (1990) suggested that Mahalanobis distances
based on “robust estimators” of location and dispersion can be more use-
ful than the distances based on the sample mean and covariance matrix.
They show that a plot of robust Mahalanobis distances RDi versus residuals
from “robust regression” can be useful.

Hampel et al. (1986, pp. 96–98) and Donoho and Huber (1983) provided
some history for breakdown. Maguluri and Singh (1997) gave interesting
examples on breakdown. Morgenthaler (1989) and Stefanski (1991) conjec-
tured that high breakdown estimators with high efficiency are not possible.
Theorems 14.6, 14.9, and 14.11 show that these conjectures are false. The
cross-checking estimator uses the classical estimator if it is “close” to an

http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_9
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impractical high breakdown consistent estimator and uses the high break-
down estimator, otherwise. See He and Portnoy (1992). The estimator in
Theorem 14.6 is similar and has problems since the practical robust estima-
tor is bad, and it is hard to define “close” when the robust and classical
estimators are not estimating the same β, e.g., if the error distribution is not
symmetric.

This paragraph will explain why mbareg needs large samples to give a
good estimate of the constant for highly skewed error distributions. Note
that the LMS, LTA, and LMS criteria use half sets. For simplicity, consider
the LMS criterion that minimizes the median squared residual. Heuristically,
for highly right skewed data, let the “left tail half set” shift the constant of
the OLS hyperplane down so that the half set of cases closest to the plane
are the half set with the smallest OLS residual values. These cases will have
negative residuals and residuals close to zero, which are roughly the cases
corresponding to the half set of errors in the left tail of the error distribution.
Let the “OLS half set” correspond to the half set of cases with the smallest
absolute OLS residuals, so the cases closest to the OLS hyperplane. Since
the distribution is highly right skewed, the “OLS half set” has much more
variability than the “left tail half set.” (For the location model, OLS is the
sample mean which is greater than the sample median for right skewed data.
The “left tail half set” shifts the mean down to the midpoint c of the minimum
value and the median value, and often c ≈ median/2 if the support of the
highly right skewed distribution is (0,∞).) A trial fit that uses the same OLS
slope estimates but which shifts the intercept down to use the “left tail half
set” will have a smaller median squared residual than the median squared
residual using OLS. The trial fits for mbareg are

√
n consistent, so estimate

the OLS intercept eventually. However, the trial fit that uses 1% of the data
has less than 1% efficiency since the x values are close in distance rather than
spread out. Unless the sample size is large, the mbareg estimator tends to
produce some trial fits that shift the intercept down, and one of these trial
fits is selected to be the final mbareg estimator since it has a smaller median
squared residual than the other trial fits.

The TV estimator was proposed by Olive (2002, 2005a) and is similar to
an estimator proposed by Rousseeuw and Zomeren (1992). Although both
the TV and MBA estimators have the good OP (n−1/2) convergence rate, their
efficiency under normality may be very low. Chang and Olive (2007, 2010)
suggested a method of adaptive trimming such that the resulting estimator
is asymptotically equivalent to the OLS estimator.

Introductions to 1D regression and regression graphics are Cook and Weis-
berg (1999a, ch. 18, 19, and 20) and Cook and Weisberg (1999b), while Olive
(2008: ch. 12, 2010: ch. 15, 2017a) considers 1D regression. Chang (2006) and
Chang and Olive (2007, 2010) extended least squares theory to 1D regression
models where h(x) = βT x.

http://dx.doi.org/10.1007/978-3-319-68253-2_12
http://dx.doi.org/10.1007/978-3-319-68253-2_15
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If n is not much larger than p, then Hoffman et al. (2015) gave a robust
Partial Least Squares–Lasso type estimator that uses a clever weighting
scheme.

14.7.1 More on Robust Regression

Theorems similar to Theorems 14.6 and 14.9 are easy to derive, but depend
on the strong assumption that the robust estimator that minimizes the robust
criterion and OLS estimate the same β. The basic resampling lmsreg esti-
mator is an inconsistent zero breakdown estimator by Hawkins and Olive
(2002), but the modification in Theorem 14.11 ii) is HB and asymptotically
equivalent to OLS for a large class of zero mean finite variance symmetric
error distributions. Hence the modified estimator has a

√
n rate which is

higher than the n1/3 rate of the LMS estimator. The maximum bias function
of the resulting estimator is not the same as that of the LMS estimator.

Theorem 14.11. Suppose that the algorithm uses Kn ≡ K randomly
selected elemental starts (e.g., K = 500) with k concentration steps and the
two additional attractors β̂OLS and bk,B . Assume that β̂LTS and β̂OLS are
both consistent estimators of β.

i) Then the resulting CLTS estimator is a
√

n consistent HB estimator
if β̂OLS is

√
n consistent, and the estimator is asymptotically equivalent to

β̂OLS .
ii) Suppose that a HB criterion is used on the K + 2 attractors such that

the resulting estimator is HB if a HB attractor is used. Also, assume that
the global minimizer of the HB criterion is a consistent estimator for β (e.g.,
LMS or LTA). The resulting HB estimator is asymptotically equivalent to
the OLS estimator.

Proof. i) Theorems 14.4 and 14.5 show that a LTS concentration algo-
rithm that uses a HB start is HB and that bk,B is a HB biased estimator.
The LTS estimator is consistent by Maš̈ıček (2004). As n → ∞, consistent
estimators β̂ satisfy QLTS(β̂)/n − QLTS(β)/n → 0 in probability. Since bk,B

is a biased estimator of β, OLS will have a smaller criterion value with prob-
ability tending to one. With probability tending to one, OLS will also have
a smaller criterion value than the criterion value of the attractor from a
randomly drawn elemental set (by He and Portnoy (1992)). Since K ran-
domly chosen elemental sets are used, the CLTS estimator is asymptotically
equivalent to OLS.
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ii) As in the proof of i), the OLS estimator will minimize the criterion
value with probability tending to one as n → ∞. �

Researchers are starting to use intelligently chosen trial fits. Maronna
and Yohai (2015) used OLS and 500 elemental sets as the 501 trial fits to
produce an FS estimator used as the initial estimator for an FMM estimator.
Since the 501 trial fits are zero breakdown, so is the FS estimator. Since
the FMM estimator has the same breakdown as the initial estimator, the
FMM estimator is zero breakdown. For regression, they show that the FS
estimator is consistent on a large class of zero mean finite variance symmetric
distributions. The theory is very similar to that of Theorems 14.6, 14.9, and
14.11. Consistency follows since the elemental fits and OLS are unbiased
estimators of βOLS , but an elemental fit is an OLS fit to p cases. Hence
the elemental fits are very variable, and the probability that the OLS fit
has a smaller S estimator criterion than a randomly chosen elemental fit (or
K randomly chosen elemental fits) goes to one as n → ∞. (OLS and the
S estimator are both

√
n consistent estimators of β, so the ratio of their

criterion values goes to one, and the S estimator minimizes the criterion
value.) Hence the FMM estimator is asymptotically equivalent to the MM
estimator that has the smallest criterion value for a large class of iid zero
mean finite variance symmetric error distributions. This FMM estimator is
asymptotically equivalent to the FMM estimator that uses OLS as the initial
estimator. When the error distribution is skewed, the S estimator and OLS
population constant are not the same, and the probability that an elemental
fit is selected is close to one for a skewed error distribution as n → ∞. (The
OLS estimator β̂ gets very close to βOLS , while the elemental fits are highly
variable unbiased estimators of βOLS , so one of the elemental fits is likely to
have a constant that is closer to the S estimator constant while still having
good slope estimators.) Hence the FS estimator is inconsistent, and the FMM
estimator is likely inconsistent for skewed distributions. No practical method
is known for computing a

√
n consistent FS or FMM estimator that has the

same breakdown and maximum bias function as the S or MM estimator that
has the smallest S or MM criterion value.

Olive (2008, ch. 7, 8, 9, 12, and 13) contains much more information about
1D regression and resistant and robust regression. The least squares response
and residual plots are very useful for detecting outliers. For more on the
behavior of fits from randomly selected elemental sets, see Hawkins and Olive
(2002) and Olive and Hawkins (2007a). For the hbreg estimator, see Olive
and Hawkins (2011). More on the MBA LATA estimator can be found in
Olive (2008, ch. 8).

For the dominant robust statistics paradigm, most of the problems for high
breakdown multivariate location and dispersion, discussed in Section 4.9, are
also problems for high breakdown regression: the impractical “brand-name”
estimators have at least O(np) complexity, while the practical estimators used

http://dx.doi.org/10.1007/978-3-319-68253-2_7
http://dx.doi.org/10.1007/978-3-319-68253-2_8
http://dx.doi.org/10.1007/978-3-319-68253-2_9
http://dx.doi.org/10.1007/978-3-319-68253-2_12
http://dx.doi.org/10.1007/978-3-319-68253-2_13
http://dx.doi.org/10.1007/978-3-319-68253-2_8
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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in the software have not been shown to be both high breakdown and con-
sistent. See Hawkins and Olive (2002), Hubert et al. (2002), and Maronna
and Yohai (2002). Huber and Ronchetti (2009, pp. xiii, 8–9, 152–154, 196–
197) suggested that high breakdown regression estimators do not provide
an adequate remedy for the ill effects of outliers, that their statistical and
computational properties are not adequately understood, that high break-
down estimators “break down for all except the smallest regression problems
by failing to provide a timely answer!”, and that “there are no known high
breakdown point estimators of regression that are demonstrably stable.”

A large number of impractical high breakdown regression estimators
have been proposed, including LTS, LMS, LTA, S, LQD, τ , constrained M,
repeated median, cross-checking, one step GM, one step GR, t-type, and
regression depth estimators. See Rousseeuw and Leroy (1987) and Maronna
et al. (2006). The practical algorithms used in the software use a brand-name
criterion to evaluate a fixed number of trial fits and should be denoted as
an F-brand-name estimator such as FLTS. Two stage estimators, such as
the MM estimator, that need an initial consistent high breakdown estima-
tor often have the same breakdown value and consistency rate as the initial
estimator. These estimators are typically implemented with a zero break-
down inconsistent initial estimator and hence are zero breakdown with zero
efficiency.

The practical estimators can be i) used in RR and FF plots for outlier
detection or ii) used as β̂A to create an hbreg estimator that is asymptoti-
cally equivalent to least squares on a large class of symmetric error distribu-
tions.

Some of the theory for the impractical robust regression estimators is useful
for determining when the robust estimator and OLS estimate the same β.
Many regression estimators β̂ satisfy

√
n(β̂ − β) D→ Np(0, V (β̂, F ) W ) (14.28)

when
XT X

n
→ W−1, and when the errors ei are iid with a cdf F and a

unimodal pdf f that is symmetric with a unique maximum at 0. When the
variance V (ei) exists,

V (OLS,F ) = V (ei) = σ2 while V(L1,F) =
1

4[f(0)]2
.

See Bassett and Koenker (1978).
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Theorem 14.12. Under regularity conditions similar to those in Conjec-
ture 14.1 below, a) the LMS(τ) converges at a cubed root rate to a non-
Gaussian limit. b) The estimator β̂LTS satisfies Equation (14.28) and

V (LTS(τ), F ) =

∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)
w2dF (w)

[τ − 2F−1(1/2 + τ/2)f(F−1(1/2 + τ/2))]2
. (14.29)

The proof of Theorem 14.12a is given in Kim and Pollard (1990). The
proof of b) is given in Maš̈ıček (2004), Č́ıžek (2006), and Vı́̌sek (2006).

Conjecture 14.1. Let the iid errors ei have a cdf F that is continuous
and strictly increasing on its interval support with a symmetric, unimodal,
differentiable density f that strictly decreases as |x| increases on the support.

Then the estimator β̂LTA satisfies Equation (14.28) and

V (LTA(τ), F ) =
τ

4[f(0) − f(F−1(1/2 + τ/2))]2
. (14.30)

See Tableman (1994b, p. 392) and Hössjer (1994).

Č́ıžek (2008) showed that LTA is
√

n consistent, but did not prove that
LTA is asymptotically normal. Assume Conjecture 14.1 is true for the fol-
lowing LTA remarks in this section. Then as τ → 1, the efficiency of LTS
approaches that of OLS and the efficiency of LTA approaches that of L1.
Hence for τ close to 1, LTA will be more efficient than LTS when the errors
come from a distribution for which the sample median is more efficient than
the sample mean (Koenker and Bassett 1978). The results of Oosterhoff
(1994) suggest that when τ = 0.5, LTA will be more efficient than LTS only
for sharply peaked distributions such as the double exponential. To simplify
computations for the asymptotic variance of LTS, we will use truncated ran-
dom variables (see Definition 1.8).

Lemma 14.13. Under the symmetry conditions given in Conjecture 14.1,

V (LTS(τ), F ) =
τσ2

TF (−k, k)
[τ − 2kf(k)]2

(14.31)

and
V (LTA(τ), F ) =

τ

4[f(0) − f(k)]2
(14.32)

http://dx.doi.org/10.1007/978-3-319-68253-2_1
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where
k = F−1(0.5 + τ/2). (14.33)

Proof. Let W have cdf F and pdf f . Suppose that W is symmetric about
zero, and by symmetry, k = F−1(0.5 + τ/2) = −F−1(0.5 − τ/2). If W has
been truncated at a = −k and b = k, then the variance of the truncated

random variable WT is V (WT ) = σ2
TF (−k, k) =

∫ k

−k
w2dF (w)

F (k) − F (−k)
by Definition

1.8. Hence ∫ F−1(1/2+τ/2)

F−1(1/2−τ/2)

w2dF (w) = τσ2
TF (−k, k)

and the result follows from the definition of k.

This result is useful since formulas for the truncated variance have been
given in Section 1.7. The following examples illustrate the result. See Hawkins
and Olive (1999b). The mpack functions cltv, deltv, and nltv are useful
for computing the asymptotic variance of the LTS and LTA estimators for
the Cauchy, double exponential, and normal error distributions, as given in
the following three examples. See Problems 14.6, 14.7, and 14.8.

Example 14.13: N(0,1) Errors. If YT is a N(0, σ2) truncated at a =

−kσ and b = kσ, V (YT ) = σ2[1 − 2kφ(k)
2Φ(k) − 1

]. At the standard normal

V (LTS(τ),Φ) =
1

τ − 2kφ(k)
(14.34)

while V(LTA(τ),Φ) =
τ

4[φ(0) − φ(k)]2
=

2πτ

4[1 − exp(−k2/2)]2
(14.35)

where φ is the standard normal pdf and k = Φ−1(0.5 + τ/2). Thus for τ ≥
1/2, LTS(τ) has breakdown value of 1 − τ and Gaussian efficiency

1
V (LTS(τ),Φ)

= τ − 2kφ(k). (14.36)

The 50% breakdown estimator LTS(0.5) has a Gaussian efficiency of 7.1%.
If it is appropriate to reduce the amount of trimming, we can use the 25%
breakdown estimator LTS(0.75) which has a much higher Gaussian efficiency
of 27.6% as reported in Ruppert (1992, p. 255). Also see the column labeled
“Normal” in table 1 of Hössjer (1994).

http://dx.doi.org/10.1007/978-3-319-68253-2_1
http://dx.doi.org/10.1007/978-3-319-68253-2_1
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Example 14.14: Double Exponential Errors. The double exponential
(Laplace) distribution is interesting since the L1 estimator corresponds to
maximum likelihood and so L1 beats OLS, reversing the comparison of the
normal case. For a double exponential DE(0, 1) random variable,

V (LTS(τ),DE(0, 1)) =
2 − (2 + 2k + k2) exp(−k)

[τ − k exp(−k)]2

while V(LTA(τ),DE(0, 1)) =
τ

4[0.5 − 0.5 exp(−k)]2
=

1
τ

where k = − log(1 − τ). Note that LTA(0.5) and OLS have the same asymp-
totic efficiency at the double exponential distribution. Also see Tableman
(1994a, b).

Example 14.15: Cauchy Errors. Although the L1 estimator and the
trimmed estimators have finite variance when the errors are Cauchy, the
OLS estimator has infinite variance (because the Cauchy distribution has
infinite variance). If XT is a Cauchy C(0, 1) random variable symmetrically

truncated at −k and k, then V (XT ) =
k − tan−1(k)

tan−1(k)
. Hence

V (LTS(τ), C(0, 1)) =
2k − πτ

π[τ − 2k
π(1+k2) ]

2

and V (LTA(τ), C(0, 1)) =
τ

4[ 1π − 1
π(1+k2) ]

2

where k = tan(πτ/2). The LTA sampling variance converges to a finite value
as τ → 1 while that of LTS increases without bound. LTS(0.5) is slightly
more efficient than LTA(0.5), but LTA pulls ahead of LTS if the amount of
trimming is very small.

14.8 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY
USEFUL.

14.1. (See Aldrin et al. 1993.) Suppose

Y = m(βT x) + e (14.37)
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where m is a possibly unknown function and the zero mean errors e are inde-
pendent of the predictors. Let z = βT x and let w = x − E(x). Let Σx,Y =
Cov(x, Y ), and let Σx = Cov(x) = Cov(w). Let r = w − (Σxβ)βT w.

a) Recall that Cov(x,Y ) = E[(x − E(x))(Y − E(Y ))T ] and show that
Σx,Y = E(wY ).

b) Show that E(wY ) = Σx,Y = E[(r + (Σxβ)βT w) m(z)] =

E[m(z)r] + E[βT w m(z)]Σxβ.

c) Using βOLS = Σ−1
x Σx,Y , show that βOLS = c(x)β + u(x) where the

constant
c(x) = E[βT (x − E(x))m(βT x)]

and the bias vector u(x) = Σ−1
x E[m(βT x)r].

d) Show that E(wz) = Σxβ. (Hint: Use E(wz) = E[(x − E(x))xT β] =
E[(x − E(x))(xT − E(xT ) + E(xT ))β].)

e) Assume m(z) = z. Using d), show that c(x) = 1 if βT Σxβ = 1.

f) Assume that βT Σxβ = 1. Show that E(zr) = E(rz) = 0. (Hint: Find
E(rz) and use d).)

g) Suppose that βT Σxβ = 1 and that the distribution of x is multivariate
normal. Then the joint distribution of z and r is multivariate normal. Using
the fact that E(zr) = 0, show Cov(r, z) = 0 so that z and r are independent.
Then show that u(x) = 0.

(Note: the assumption βT Σxβ = 1 can be made without loss of gen-
erality since if βT Σxβ = d2 > 0 (assuming Σx is positive definite), then
Y = m(d(β/d)T x) + e ≡ md(ηT x) + e where md(u) = m(du), η = β/d, and
ηT Σxη = 1.)

14.2. Referring to Definition 14.4, let Ŷi,j = xT
i β̂j = Ŷi(β̂j) and let ri,j =

ri(β̂j). Show that ‖ri,1 − ri,2‖ = ‖Ŷi,1 − Ŷi,2‖.
14.3. Assume that the model has a constant β1 so that the first column of

X is 1. Show that if the regression estimator is regression equivariant, then
adding 1 to Y changes β̂1 but does not change the slopes β̂2, ..., β̂p.

R Problems
Use the command source(“G:/mpack.txt”) to download the func-

tions and the command source(“G:/mrobdata.txt”) to download the data.
See Preface or Section 15.2. Typing the name of the mpack function, e.g.,
trviews, will display the code for the function. Use the args command, e.g.,

http://dx.doi.org/10.1007/978-3-319-68253-2_15
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args(trviews), to display the needed arguments for the function. For some
of the following problems, the R commands can be copied and pasted from
(http://lagrange.math.siu.edu/Olive/mrsashw.txt) into R.

14.4. Paste the command for this problem into R to produce the second
column of Table 14.1. Include the output in Word.

14.5. a) To get an idea for the amount of contamination, a basic resam-
pling or concentration algorithm can tolerate, enter or download the gamper
function (with the source(“G:/mpack.txt”) command) that evaluates Equa-
tion (14.4) at different values of h = p.

b) Next enter the following commands and include the output in Word.

zh <- c(10,20,30,40,50,60,70,80,90,100)
for(i in 1:10) gamper(zh[i])

The “asymptotic variance” for LTA in Problems 14.6, 14.7, and 14.8 is
actually the conjectured asymptotic variance for LTA if the multiple linear
regression model is used instead of the location model. See Section 14.7.

14.6. a) Download the R function nltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are N(0,1).
b) Enter the commands nltv(0.5), nltv(0.75), nltv(0.9), and nltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

14.7. a) Download the R function deltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are double exponential
DE(0,1).
b) Enter the commands deltv(0.5), deltv(0.75), deltv(0.9),, and deltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

14.8. a) Download the R function cltv that computes the asymptotic
variance of the LTS and LTA estimators if the errors are Cauchy C(0,1).

b) Enter the commands cltv(0.5), cltv(0.75), cltv(0.9), and cltv(0.9999).
Write a table to compare the asymptotic variance of LTS and LTA at these
coverages. Does one estimator always have a smaller asymptotic variance?

14.9∗. a) If necessary, use the commands source(“G:/mpack.txt”) and
source(“G:/mrobdata.txt”).

b) Enter the command mbamv(belx,bely) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this seven times
before the program ends. There is one predictor x and one response Y . The
function makes a scatterplot of x and Y and cases that get weight one are
shown as highlighted squares. Each MBA sphere covers half of the data.
When you find a good fit to the bulk of the data, hold down the Ctrl and c
keys to make a copy of the plot. Then paste the plot in Word.
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c) Enter the command mbamv2(buxx,buxy) in R. Click on the rightmost
mouse button (and in R, click on Stop). You need to do this 14 times before
the program ends. There are four predictors x1, ..., x4 and one response Y .
The function makes the response and residual plots based on the OLS fit to
the highlighted cases. Each MBA sphere covers half of the data. When you
find a good fit to the bulk of the data, hold down the Ctrl and c keys to make
a copy of the two plots. Then paste the plots in Word.

14.10. This problem compares the MBA estimator that uses the median
squared residual MED(r2i ) criterion with the MBA estimator that uses the
LATA criterion. On clean data, both estimators are

√
n consistent since both

use 50
√

n consistent OLS estimators. The MED(r2i ) criterion has trouble
with data sets where the multiple linear regression relationship is weak and
there is a cluster of outliers. The LATA criterion tries to give all x-outliers,
including good leverage points, zero weight.

a) If necessary, use the commands source(“G:/mpack.txt”) and
source(“G:/mrobdata.txt”). The mlrplot2 function is used to compute both
MBA estimators. Use the rightmost mouse button to advance the plot (and
in R, highlight stop).

b) Use the command mlrplot2(belx,bely) and include the resulting plot in
Word. Is one estimator better than the other, or are they about the same?

c) Use the command mlrplot2(cbrainx,cbrainy) and include the resulting
plot in Word. Is one estimator better than the other, or are they about the
same? (The infants are likely good leverage cases instead of outliers.)

d) Use the command mlrplot2(museum[,3:11],museum[,2]) and include the
resulting plot in Word. For this data set, most of the cases are based on
humans, but a few are based on apes. The MBA LATA estimator will often
give the cases corresponding to apes larger absolute residuals than the MBA
estimator based on MED(r2i ), but the apes appear to be good leverage cases.

e) Use the command mlrplot2(buxx,buxy) until the outliers are clustered
about the identity line in one of the two response plots. (This will usually
happen within 10 or fewer runs. Pressing the “up arrow” will bring the pre-
vious command to the screen and save typing.) Then include the resulting
plot in Word. Which estimator went through the outliers and which one gave
zero weight to the outliers?

f) Use the command mlrplot2(hx,hy) several times. Usually both MBA
estimators fail to find the outliers for this artificial Hawkins data set that is
also analyzed by Atkinson and Riani (2000, section 3.1). The lmsreg estimator
can be used to find the outliers. In R, use the commands library(MASS) and
ffplot2(hx,hy). Include the resulting plot in Word.

http://dx.doi.org/10.1007/978-3-319-68253-2_3
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14.11. Use the following R commands to make 100 N3(0, I3) cases and
100 trivariate non-EC cases.

n3x <- matrix(rnorm(300),nrow=100,ncol=3)
ln3x <- exp(n3x)

In R, type the command library(MASS).

a) Using the commands pairs(n3x) and pairs(ln3x) and include both scat-
terplot matrices in Word. (Click on the plot and hit Ctrl and c at the same
time. Then go to file in the Word menu and select paste.) Are strong nonlin-
earities present among the MVN predictors? How about the non-EC predic-
tors? (Hint: a box or ball shaped plot is linear.)

b) Make a single index model and the sufficient summary plot with the
following commands

ncy <- (n3x%*%1:3)^3 + 0.1*rnorm(100)
plot(n3x%*%(1:3),ncy)

and include the plot in Word.
c) The command trviews(n3x, ncy) will produce ten plots. To advance the

plots, click on the rightmost mouse button and highlight Stop to advance to
the next plot. The last plot is the OLS view. Include this plot in Word.

d) After all 10 plots have been viewed, the output will show 10 estimated
predictors. The last estimate is the OLS (least squares) view and might look
like the following output.

Intercept X1 X2 X3
4.417988 22.468779 61.242178 75.284664

If the OLS view is a good estimated sufficient summary plot, then the plot
created from the command (leave out the intercept)

plot(n3x%*%c(22.469,61.242,75.285),n3x%*%1:3)

should cluster tightly about some line. Your linear combination will be dif-
ferent than the one used above. Using your OLS view, include the plot using
the command above (but with your linear combination) in Word. Was this
plot linear? Did some of the other trimmed views seem to be better than the
OLS view, that is, did one of the trimmed views seem to have a smooth mean
function with a smaller variance function than the OLS view?

e) Now type the R command

lncy <- (ln3x%*%1:3)^3 + 0.1*rnorm(100).

Use the command trviews(ln3x,lncy) to find the best view with a smooth
mean function and the smallest variance function. This view should not be
the OLS view. Include your best view in Word.
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f) Get the linear combination from your view, say (94.848, 216.719,
328.444)T , and obtain a plot with the command

plot(ln3x%*%c(94.848,216.719,328.444),ln3x%*%1:3).

Include the plot in Word. If the plot is linear with high correlation, then your
response plot in e should be good.

14.12. At the beginning of your R session, use source(“G:/mpack.txt”)
command and library(MASS).

a) Perform the commands

nx <- matrix(rnorm(300),nrow=100,ncol=3)
lnx <- exp(nx)
SP <- lnx%*%1:3
lnsincy <- sin(SP)/SP + 0.01*rnorm(100)

For parts b), c), and d) below, to make the best trimmed view with
trviews, ctrviews, or lmsviews, you may need to use the function twice.
The first view trims 90% of the data, the next view trims 80%, etc. The last
view trims 0% and is the OLS view (or lmsreg view). Remember to advance
the view with the rightmost mouse button and highlight “Stop.” Then click
on the plot and next simultaneously hit Ctrl and c. This makes a copy of the
plot. Then in Word, use the menu command “Paste.”

b) Find the best trimmed view with OLS and covfch with the following
commands and include the view in Word.

trviews(lnx,lnsincy)

(With trviews, suppose that 40% trimming gave the best view. Then
instead of using the procedure above b), you can use the command

essp(lnx,lnsincy,M=40)

to make the best trimmed view. Then click on the plot and next simulta-
neously hit Ctrl and c. This makes a copy of the plot. Then in Word, use
the menu command “Paste.” Click the rightmost mouse button and highlight
“Stop” to return the command prompt.)

c) Find the best trimmed view with OLS and (x,S) using the following
commands and include the view in Word. See the paragraph above b).

ctrviews(lnx,lnsincy)

d) Find the best trimmed view with lmsreg and cov.mcd using the
following commands and include the view in Word. See the paragraph above
b).
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lmsviews(lnx,lnsincy)

e) Which method or methods gave the best response plot? Explain briefly.

14.13. Warning: This problem may take too much time, but
makes a good project. This problem is like Problem 14.12 but uses many
more single index models.
a) Make some prototype functions with the following commands.

nx <- matrix(rnorm(300),nrow=100,ncol=3)
SP <- nx%*%1:3
ncuby <- SP^3 + rnorm(100)
nexpy <- exp(SP) + rnorm(100)
nlinsy <- SP + 4*sin(SP) + 0.1*rnorm(100)
nsincy <- sin(SP)/SP + 0.01*rnorm(100)
nsiny <- sin(SP) + 0.1*rnorm(100)
nsqrty <- sqrt(abs(SP)) + 0.1*rnorm(100)
nsqy <- SP^2 + rnorm(100)

b) Make sufficient summary plots similar to Figures 14.9 and 14.10 with
the following commands and include both plots in Word.

plot(SP,ncuby)
plot(-SP,ncuby)

c) Find the best trimmed view with the following commands (in R, first
type library(MASS)). Include the view in Word.

trviews(nx,ncuby)

You may need to use the function twice. The first view trims 90% of the
data, the next view trims 80%, etc. The last view trims 0% and is the OLS
view. Remember to advance the view with the rightmost mouse button and
highlight “Stop.” Suppose that 40% trimming gave the best view. Then use
the command

essp(nx,ncuby, M=40)

to make the best trimmed view. Then click on the plot and next simultane-
ously hit Ctrl and c. This makes a copy of the plot. Then in Word, use the
menu command “Paste.”

d) To make a plot like Figure 14.13, use the following commands. Let tem

= β̂ obtained from the trviews output. In Example 14.9 (continued), tem can
be obtained with the following command.

tem <- c(12.60514, 25.06613, 37.25504)
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Include the plot in Word.

ESP <- nx%*%tem
plot(ESP,SP)

e) Repeat b), c), and d) with the following data sets.
i) nx and nexpy
ii) nx and nlinsy
iii) nx and nsincy
iv) nx and nsiny
v) nx and nsqrty
vi) nx and nsqy
Enter the following commands to do parts vii) to x).

lnx <- exp(nx)
SP <- lnx%*%1:3
lncuby <- (SP/3)^3 + rnorm(100)
lnlinsy <- SP + 10*sin(SP) + 0.1*rnorm(100)
lnsincy <- sin(SP)/SP + 0.01*rnorm(100)
lnsiny <- sin(SP/3) + 0.1*rnorm(100)
ESP <- lnx%*%tem

vii) lnx and lncuby
viii) lnx and lnlinsy
ix) lnx and lnsincy
x) lnx and lnsiny

14.14. Warning: this problem may take too much time, but makes
a good project. Repeat Problem 14.13 but replace trviews with a)
lmsviews, b) symviews (that creates views that sometimes work even
when symmetry is present), and c) ctrviews.

Except for part a), the essp command will not work. Instead, for the best
trimmed view, click on the plot and next simultaneously hit Ctrl and c. This
makes a copy of the plot. Then in Word, use the menu command “Paste.”

14.15. a) In addition to the source(“G:/mpack.txt”) command, also use
the source(“G:/mrobdata.txt”) command, and type the library(MASS) com-
mand).

b) Type the command tvreg(buxx,buxy,ii=1). Click the rightmost mouse
button and highlight Stop. The response plot should appear. Repeat 10 times
and remember which plot percentage M (say M = 0) had the best response
plot. Then type the command tvreg2(buxx,buxy, M = 0) (except use your
value of M, not 0). Again, click the rightmost mouse button (and in R, high-
light Stop). The response plot should appear. Hold down the Ctrl and c keys
to make a copy of the plot. Then paste the plot in Word.
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c) The estimated coefficients β̂TV from the best plot should have appeared
on the screen. Copy and paste these coefficients into Word.

14.16. a) After entering the two source commands above Problem 14.4,
enter the following command.

MLRplot(buxx,buxy)

Click the rightmost mouse button (and in R click on Stop). The response
plot should appear. Again, click the rightmost mouse button (and in R click
on Stop). The residual plot should appear. Hold down the Ctrl and c keys to
make a copy of the two plots. Then paste the plots in Word.

b) The response variable is height, but 5 cases were recorded with heights
about 0.75 inches tall. The highlighted squares in the two plots correspond
to cases with large Cook’s distances. With respect to the Cook’s distances,
what is happening, swamping, or masking?

c) RR plots: One feature of the MBA estimator is that it depends on the
sample of seven centers drawn and changes each time the function is called.
In ten runs, about seven plots will look like Figure 14.7, but in about three
plots the MBA estimator will also pass through the outliers. Make the RR
plot by pasting the commands for this problem into R and include the plot
in Word.

d) FF plots: the plots in the top row will cluster about the identity line if
the MLR model is good or if the fit passes through the outliers. Make the FF
plot by pasting the commands for this problem into R, and include the plot
in Word.

Problem using ARC

14.17. a) Activate the insulation.lsp data set of Example 14.12 with the
menu commands “File > Load > Removable Disk (G:) > insulation.lsp.”
Scroll up the screen to read the data description.

b) From the insulation menu select Transform, click on time, change the
number in the p box to 2, and click on OK to add time2 to the variable
list. From the insulation menu select Make factors, click on type and click
on OK to make the factor {F}type. From the insulation menu select Make
interactions, click on {F}type and time and then click on OK. Again, from
the insulation menu select Make interactions, click on {F}type and time2 and
then click on OK.

c) From the Graph&Fit menu select Fit linear LS, place y in the response
box and time, time2 and {F}type in the Terms/Predictors box. Click on OK
and copy and paste the output into Word.

d) To make a response plot use the menu commands “Graph&Fit >Plot
of.” Select y for the V-box and L1:Fit-Values for the H-box. Click on OK.
When the graph appears, move the OLS slider bar to 3 and the lowess slider
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bar to 0.5. Since the lowess curve and the OLS cubic fit to xT β̂ nearly
coincide, the approximation E(Y |x) ≈ (xT β)3 seems to be good. Copy the
plot into Word.

e) From the Graph&Fit menu select Fit linear LS, place y in the response
box and time, time2, {F}type, and from the Graph&Fit menu select Fit linear
LS, place y in the response box and time, time2, {F}type, {F}type∗time, and
{F}type∗time2 in the Terms/Predictors box. Click on OK and copy and paste
the output into Word.

f) To make a response plot for a second 1D regression model, use the menu
commands “Graph&Fit >Plot of.” Select y for the V-box and L2:Fit-Values
for the H-box. Click on OK. When the graph appears, move the OLS slider
bar to 2 and the lowess slider bar to 0.5. Since the lowess curve and the OLS
quadratic fit to xT β̂ nearly coincide, the approximation E(Y |x) ≈ (xT β)2

seems to be good. Copy the plot into Word.



Chapter 15
Stuff for Students

15.1 Tips for Doing Research

As a student or new researcher, you will probably encounter researchers who
think that their method of doing research is the only correct way of doing
research, but there are dozens of methods that have proven effective.

Familiarity with the literature is important since your research should
be original. The field of high breakdown (HB) robust statistics has perhaps
produced more literature in the past 40 years than any other field in statistics.

This text presents much of the author’s research in multivariate analysis
from 1997–2017, and a summary of the ideas that most influenced the devel-
opment of this text follows. Gnanadesikan and Kettenring (1972) suggested
an algorithm similar to concentration and suggested that robust covariance
estimators could be formed by estimating the elements of the covariance
matrix with robust scale estimators. Devlin et al. (1975, 1981) introduced
the concentration technique. Rousseeuw (1984) extended the MCD location
estimator to the MCD estimator of multivariate location and dispersion and
the LTS estimator and popularized the LMS estimator. Cook and Nacht-
sheim (1994) showed that robust Mahalanobis distances could be used to
reduce the bias of 1D regression estimators. Rousseeuw and Van Driessen
(1999) introduced the DD plot.

Much of the HB literature is not applied or consists of ad hoc methods.
In far too many papers, the estimator actually used is an ad hoc inconsistent
zero breakdown approximation of an estimator for which there is theory. The
brand-name HB robust estimators, such as MCD and MVE estimators, are
impractical to compute. The S estimator is currently impossible to compute
for p > 2. Unless there is a computational breakthrough, these estimators can
rarely be used in practical problems. Similarly, two-stage estimators need a
good initial HB estimator, but no good practical estimator of multivariate
location and dispersion has been shown to be both consistent and high break-
down for a large class of nonspherical distributions. (FCH is consistent and

c© Springer International Publishing AG 2017
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TFCH is high breakdown, but CFCH is only conjectured to be HB. The Olive
(2004a) MB estimator is HB, but not a consistent estimator of cΣx except
for a class of spherical distributions. The MB estimator is conjectured to
be a consistent estimator of its population analog. See Conjecture 4.3.) Ini-
tial practical consistent HB regression estimators, such as hbreg, were first
developed by Olive and Hawkins (2007b, 2008, 2011).

There are hundreds of papers on outlier detection. Most of these compare
their method with an existing method on one or two outlier configurations
where their method does better. However, the new method rarely outperforms
the existing method (such as lmsreg or cov.mcd) if a broad class of outlier
configurations is examined. In such a paper, check whether the new estimator
is consistent and if the author has shown types of outlier configurations where
the method fails. Try to figure out how the method would perform
for the cases of one and two predictors.

Dozens of papers suggest that a classical method can be made robust by
replacing a classical estimator with a robust estimator. Again, inconsistent
“robust estimators” are usually used. These methods can be very useful, but
rely on perfect classification of the data into outliers and clean cases. Check
whether these methods can find outliers that can not be found by the response
plot, RFCH DD plot, RMVN DD plot, and FMCD DD plot.

For example consider making a robust Hotelling’s t-test. If the paper uses
the FMCD cov.mcd algorithm, then the procedure is relying on the perfect
classification paradigm. On the other hand, Srivastava and Mudholkar (2001)
gave an estimator that has large sample theory. Better yet, use ideas from this
book. See Chapter 9 and Rupasinghe Arachchige Don and Pelawa Watagoda
(2017).

Beginners can have a hard time determining whether a robust algorithm
estimator is consistent or not. As a rule of thumb, assume that the approx-
imations (including those for depth, MCD, MVE, S, projection estimators,
and two-stage estimators) are inconsistent unless the authors show that they
understand this text, Hawkins and Olive (2002) and Olive and Hawkins
(2007b, 2008, 2010, 2011). In particular, the elemental or basic resampling
algorithms, concentration algorithms, and algorithms based on random pro-
jections should be considered inconsistent until you can prove otherwise.

After finding a research topic, paper trailing is an important technique
for finding related literature. To use this technique, find a paper on the topic,
go to the bibliography of the paper, find one or more related papers and
repeat. Often your university’s library will have useful Internet resources
for finding literature. Usually a research university will subscribe to (www.
sciencedirect.com), to the Web of Science (www.webofknowledge.com), or to
the Current Index to Statistics (www.statindex.org). These resources allow
you to search for literature by author, e.g., Olive, or by topic, e.g., robust
statistics. Both of these methods search for recent papers.

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_9
www.sciencedirect.com
www.sciencedirect.com
www.webofknowledge.com
www.statindex.org


15.2 R and Arc 463

The search engines (www.google.com), (www.ask.com), (www.msn.com),
(www.yahoo.com), and (www.info.com) are also useful. The google search
engine also has a useful link to “Google Scholar.” When searching, enter a
topic and the word robust or outliers. For example, enter the keywords robust
factor analysis or factor analysis and outliers.

Websites for researchers or research groups can be useful. Rousseeuw,
Hubert, Croux, and Van Aelst have lots of papers. STATLIB used to be
very useful. Statistical journals often have websites that make abstracts and
preprints available. Two useful websites are given below.

(www.stat.ucla.edu/journals/ProbStatJournals/)
(www.statsci.org/jourlist.html)

Familiarity with a high level programming language such as R is
essential. A very useful R link is (www.r-project.org/). See R Core Team
(2016).

Finally, a Ph.D. student needs an advisor or mentor and most researchers
will find collaboration valuable. Attending conferences and making your
research available over the Internet can lead to contacts.

Some references on research, including technical writing and presenta-
tions, include American Society of Civil Engineers (1950), Becker and Keller-
McNulty (1996), Ehrenberg (1982), Freeman et al. (1983), Hamada and Sitter
(2004), Rubin (2004), and Smith (1997).

15.2 R and Arc

R is the free version of Splus available from the CRAN website (https://cran.
r-project.org/). The website (http://www.stat.umn.edu) has useful links for
Arc which is the software developed by Cook and Weisberg (1999a). As of
June 2017, the author’s personal computer has Version 3.3.1 (June 21, 2016)
of R, and Version 1.06 (July 2004) of Arc. Several of the text R/Splus func-
tions and figures were made in the 1990s using Splus (see MathSoft 1999a, b)
on a workstation.

Downloading the book’s data.lsp files into Arc
Many of the data sets in the book’s website (http://lagrange.math.siu.edu/

Olive/multbk.htm) can easily be downloaded into the Cook and Weisberg
(1999a) Arc software. As an example, open the cbrain.lsp file with Notepad.
Then use the menu commands “File> Save As”. A window appears. On the
top “Save in” box change what is in the box to “Removable Disk (G:)” in
order to save the file on flash drive G. Then in Arc, activate the cbrain.lsp file
with the menu commands “File > Load > Removable Disk (G:) > cbrain.lsp.”

www.google.com
www.ask.com
www.msn.com
www.yahoo.com
www.info.com
www.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
http://www.stat.umn.edu
http://lagrange.math.siu.edu/Olive/multbk.htm
http://lagrange.math.siu.edu/Olive/multbk.htm
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Alternatively, open cbrain.lsp file with Notepad. Then use the menu com-
mands “File>Save As”. A window appears. On the top “Save in” box, change
what is in the box to “My Documents”. Then go to Arc and use the menu
commands “File>Load”. A window appears. Change “Arc” to “My Docu-
ments” and open cbrain.lsp.

Many of the homework problems use R functions contained in the book’s
website (http://lagrange.math.siu.edu/Olive/multbk.htm) under the file
name mpack.txt. The following two commands can be copied and pasted into
R from near the top of the file (http://lagrange.math.siu.edu/Olive/mrsashw.
txt).

Downloading the book’s R functions mpack.txt and data files mrob-
data.txt into R: The commands

source("http://lagrange.math.siu.edu/Olive/mpack.txt")
source("http://lagrange.math.siu.edu/Olive/mrobdata.txt")

can be used to download the R functions and data sets into R. Type ls(). Over
130 R functions from mpack.txt should appear. In R, enter the command q().
A window asking “Save workspace image?” will appear. Click on No to remove
the functions from the computer (clicking on Yes saves the functions in R,
but the functions and data are easily obtained with the source commands).
For Windows, the files can be saved on a flash drive G, say. Then use the
following commands.

source("G:/mpack.txt"); source("G:/mrobdata.txt")

The remainder of this section gives tips on using R but is no replace-
ment for books such as Becker et al. (1988), Braun and Murdoch (2007),
Crawley (2005, 2013), or Venables and Ripley (2003). Also see MathSoft
(1999a, b) and use the website (www.google.com) to search for useful web-
sites. For example, enter the search words R documentation.

The command q() gets you out of R.
Least squares regression is done with the function lsfit or lm.
The commands help(fn) and args(fn) give information about the function

fn, e.g., if fn = lsfit.
Type the following commands.

x <- matrix(rnorm(300),nrow=100,ncol=3)
y <- x%*%1:3 + rnorm(100)
out<- lsfit(x,y)
out$coef
ls.print(out)

The first line makes a 100 by 3 matrix x with N(0,1) entries. The second line
makes y[i] = 0 + 1 ∗ x[i, 1] + 2 ∗ x[i, 2] + 3 ∗ x[i, 2] + e, where e is N(0,1). The
term 1:3 creates the vector (1, 2, 3)T and the matrix multiplication operator

http://lagrange.math.siu.edu/Olive/multbk.htm
http://lagrange.math.siu.edu/Olive/mrsashw.txt
http://lagrange.math.siu.edu/Olive/mrsashw.txt
www.google.com
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is %*%. The function lsfit will automatically add the constant to the model.
Typing “out” will give you a lot of irrelevant information, but out$coef and
out$resid give the OLS coefficients and residuals, respectively.

To make a residual plot, type the following commands.

fit <- y - out$resid
plot(fit,out$resid)
title("residual plot")

The first term in the plot command is always the horizontal axis while the
second is on the vertical axis.

To put a graph in Word, hold down the Ctrl and c buttons simultane-
ously. Then select “Paste” from the Word menu.

To enter data, open a data set in Notepad or Word. You need to know
the number of rows and the number of columns. Assume that each case is
entered in a row. For example, assuming that the file cyp.lsp has been saved
on your flash drive from the webpage for this book, open cyp.lsp in Word. It
has 76 rows and 8 columns. In R, write the following command.

cyp <- matrix(scan(),nrow=76,ncol=8,byrow=T)

Then copy the data lines from Word and paste them in R. If a cursor does
not appear, hit enter. The command dim(cyp) will show if you have entered
the data correctly.

Enter the following commands

cypy <- cyp[,2]
cypx<- cyp[,-c(1,2)]
lsfit(cypx,cypy)$coef

to produce the output below.

Intercept X1 X2 X3
205.40825985 0.94653718 0.17514405 0.23415181

X4 X5 X6
0.75927197 -0.05318671 -0.30944144

To check that the data is entered correctly, fit LS in Arc with the response
variable height and the predictors sternal height, finger to ground, head length,
nasal length, bigonal breadth, and cephalic index (entered in that order). You
should get the same coefficients given by R.

Making functions in R is easy.

For example, type the following commands.

mysquare <- function(x){
# this function squares x
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r <- x^2
r }

The second line in the function shows how to put comments into functions.

Modifying your function is easy.

Use the fix command.
fix(mysquare)

This will open an editor such as Notepad and allow you to make changes. (In
Splus, the command Edit(mysquare) may also be used to modify the function
mysquare.)

To save data or a function in R, when you exit, click on Yes when the
“Save worksheet image?” window appears. When you reenter R, type ls().
This will show you what is saved. You should rarely need to save anything
for this book. To remove unwanted items from the worksheet, e.g., x, type
rm(x),
pairs(x) makes a scatterplot matrix of the columns of x,
hist(y) makes a histogram of y,
boxplot(y) makes a boxplot of y,
stem(y) makes a stem and leaf plot of y,
scan(), source(), and sink() are useful on a Unix workstation.
To type a simple list, use y < −c(1,2,3.5).
The commands mean(y), median(y), var(y) are self explanatory.

The following commands are useful for a scatterplot created by the com-
mand plot(x,y).
lines(x,y), lines(lowess(x,y,f=.2))
identify(x,y)
abline(out$coef), abline(0,1)

The usual arithmetic operators are 2 + 4, 3 − 7, 8 ∗ 4, 8/4, and

2^{10}.

The ith element of vector y is y[i] while the ij element of matrix x is x[i, j].
The second row of x is x[2,] while the 4th column of x is x[, 4]. The transpose
of x is t(x).

The command apply(x,1,fn) will compute the row means if fn = mean.
The command apply(x,2,fn) will compute the column variances if fn = var.
The commands cbind and rbind combine column vectors or row vectors with
an existing matrix or vector of the appropriate dimension.

Transferring Data to and from Arc and R.
For example, suppose that the Belgium telephone data (Rousseeuw and Leroy
1987, p. 26) has the predictor year stored in x and the response number of
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calls stored in y in R. Combine the data into a matrix z and then use the
write.table command to display the data set as shown below. The

sep=’ ’

separates the columns by two spaces.

> z <- cbind(x,y)
> write.table(data.frame(z),sep=’ ’)
row.names z.1 y
1 50 0.44
2 51 0.47
3 52 0.47
4 53 0.59
5 54 0.66
6 55 0.73
7 56 0.81
8 57 0.88
9 58 1.06
10 59 1.2
11 60 1.35
12 61 1.49
13 62 1.61
14 63 2.12
15 64 11.9
16 65 12.4
17 66 14.2
18 67 15.9
19 68 18.2
20 69 21.2
21 70 4.3
22 71 2.4
23 72 2.7073
24 73 2.9

To enter a data set into Arc, use the following template new.lsp.

dataset=new
begin description
Artificial data.
Contributed by David Olive.
end description
begin variables
col 0 = x1
col 1 = x2
col 2 = x3
col 3 = y
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end variables
begin data

Next, open new.lsp in Notepad. (Or use the vi editor in Unix. Sophisticated
editors like Word will often work, but they sometimes add things like page
breaks that do not allow the statistics software to use the file.) Then copy
the data lines from R and paste them below new.lsp. Then modify the file
new.lsp and save it on a flash drive as the file belg.lsp. (Or save it in mdata
where mdata is a data folder added within the Arc data folder.) The header
of the new file belg.lsp is shown below.

dataset=belgium
begin description
Belgium telephone data from
Rousseeuw and Leroy (1987, p. 26)
end description
begin variables
col 0 = case
col 1 = x = year
col 2 = y = number of calls in tens of millions
end variables
begin data
1 50 0.44
. . .
. . .
. . .
24 73 2.9

The file above also shows the first and last lines of data. The header file needs
a data set name, description, variable list, and a begin data command. Often,
the description can be copied and pasted from the source of the data, e.g.,
from the STATLIB website. Note that the first variable starts with Col 0.

To transfer a data set from Arc to R, select the item “Display data”
from the data set’s menu. Select the variables you want to save, and then
click the button for “Save in R/Splus format.” You will be prompted to give
a file name. If you select bodfat, then two files bodfat.txt and bodfat.Rd will be
created. The file bodfat.txt can be read into R using the read.table command.
The file bodfat.Rd saves the documentation about the data set in a standard
format for R.

Getting information about a library in R
In R, a library is an add-on package of R code. The command library()

lists all available libraries, and information about a specific library, such as
MASS for robust estimators like cov.mcd or ts for time series estimation,
can be found, e.g., with the command library(help=MASS).
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Downloading a library into R
Many researchers have contributed a library of R code that can be

downloaded for use. To see what is available, go to the website (http://cran.
us.r-project.org/) and click on the Packages icon. Suppose you are interested
in the Weisberg (2002) dimension reduction library dr. Following Crawley
(2013, p. 8), you may need to “Run as administrator” before you can install
packages (right click on the R icon to find this). Then use the following com-
mand to install the dr package.

install.packages("dr")

Open R and type the following command.
library(dr)

Next, type help(dr) to make sure that the library is available for use.

Warning: R is free but not foolproof. If you have an old version of R
and want to download a library, you may need to update your version of
R. The libraries for robust statistics may be useful for outlier detection, but
the methods have not been shown to be consistent or high breakdown. All
software has some bugs. For example, Version 1.1.1 (August 15, 2000) of R
had a random generator for the Poisson distribution that produced variates
with too small of a mean θ for θ ≥ 10. Hence simulated 95% confidence inter-
vals might contain θ 0% of the time. This bug seems to have been fixed in
Versions 2.4.1 and later. Also, some functions in mpack may no longer work
in new versions of R.

15.3 Projects

Straightforward Projects
1) Run an mpack simulation function for a range of values of n, p, error

distributions, estimators, data sets, etc. Functions problem pairs include
(rcovsim, 4.3), (concmv, 4.5), (ddmv, 4.6), (covesim, 4.8), (ddsim, 5.2),
(corrsim, 5.3), (predsim, 5.9), (pcasim, 6.9), (mregsim, 12.10), and
(mpredsim, 12.11).

Also see the mpack functions concsim, corrbootsim, corrsim2,
covcheck, covsim2, ddsim3, drsim5, drsim6, drsim7, hbregsim,
mbsim, medhotsim, mldsim, mldsim6, MLRsim, mregddsim,
pcabootsim, regbootsim, rhotsim, rhotsim2, rmbsim, rmpredsim,
rmregbootsim, rmregddsim, rmregsim, vsbootsim, and vsbootsim2.

2) Remark 4.1 estimates the percentage of outliers that the FMCD algo-
rithm can tolerate. In Section 4.5, data is generated such that the FMCD
estimator works well for p = 4 but fails for p = 8. Generate similar data sets
for p = 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, and 50. For each value of p, find
the smallest integer-valued percentage of outliers needed to cause the FMCD

http://cran.us.r-project.org/
http://cran.us.r-project.org/
http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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and FCH estimators to fail. Use the mpack function concsim. If concsim
is too slow for large p, use covsim2 which will only give counts for the
fast FCH estimator. As a criterion, a count ≥ 16 is good. Compare these
observed FMCD percentages with Remark 4.1 (use the gamper2 function).
Do not forget the library(MASS) command.

3) Read Bentler and Yuan (1998) and Cattell (1966). These papers used
scree plots to determine how many eigenvalues of the covariance matrix are
nonzero. This topic is very important for dimension reduction methods such
as principal components.

4) DD plots: compare classical–FCH vs classical–cov.mcd DD plots on real
and simulated data. Do problems 4.4, 5.2, and 5.3 but with a wider variety
of data sets, n, p, and gamma.

5) Many papers substitute the latest MCD algorithm for the classical esti-
mator and have titles like “Fast and Robust Factor Analysis.” Find such a
paper that analyzes a data set on

i) factor analysis,
ii) discriminant analysis,
iii) principal components,
iv) canonical correlation analysis,
v) Hotelling’s t-test, or
vi) principal component regression.
For the data, make a scatterplot matrix of the classical, RMVN, and

FMCD Mahalanobis distances. Delete any outliers and run the classical pro-
cedure on the undeleted data. Did the paper’s procedure perform as well as
this procedure?

6) Examine the DD plot as a diagnostic for multivariate normality and
elliptically contoured distributions. Use real and simulated data.

7) Resistant regression: examine tvreg by using OLS–FCH instead of
OLS–cov.mcd. (L1–cov.mcd and L1–covfch are also interesting.) Two other
projects would use RFCH or RMVN. Use type=3 for FCH and type=4 for
RMVN.

8) Using ESP to Search for the Missing Link: Compare trimmed views
which uses OLS and cov.mcd with another regression–MLD combo. There
are 5 possible projects: i) OLS–FCH, ii) OLS–Classical (use ctrviews), iii)
lmsreg–cov.mcd (lmsviews), iv) lmsreg–FCH, and v) lmsreg–classical. Do
Problem 14.12ac (but just copy and paste the best view instead of using the
essp(nx,ncuby,M=40) command) with both your estimator and trimmed
views. Try to see what types of functions work for both estimators, when
trimmed views is with cov.mcd is better, and when the picked procedure
i)–v) is better. If you can invent interesting 1D functions, do so. See Problem
14.13.

9) The DGK estimator with 66% coverage should be able to tolerate a
cluster of about 30% extremely distant outliers. Compare the DGK estimators
with 50% and 66% coverage for various outlier configurations.

http://dx.doi.org/10.1007/978-3-319-68253-2_4
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10) Find some large data sets or data sets with p > n and try to detect
outliers using Di(MED(W ), Ip) = ‖xi − MED(W )‖, the Euclidean distance
of xi from the coordinatewise median MED(W ). Also use covmb2 and
ddplot5. See Section 4.7.

11) Study the diagnostics in and below Problem 5.10. See Remark 5.8.

Harder Projects

12) Which estimator is better FCH, RFCH, CMBA, or RCMBA?
13) For large data sets, make the DD plot of the DGK estimator vs. the

MB estimator and the DD plot of the classical estimator versus the MB
estimator. Which DD plot is more useful? Does your answer depend on n
and p? These two plots are among the fastest effective outlier diagnostics for
iid multivariate data.

14) The Super Duper Outlier Scooper for Multivariate Location and Dis-
persion: Consider the modified MBA estimator for multivariate location and
dispersion given in Problem 4.7. This MBA estimator uses 8 starts using
0%, 50%, 60%, 70%, 80%, 90%, 95%, and 98% trimming of the cases closest
to the coordinatewise median in Euclidean distance. The estimator is

√
n

consistent for a large class of elliptically contoured distributions that have
a nonsingular covariance matrix. For small data sets, the cmba2 function
can fail because the covariance estimator applied to the closest 2% cases
to the coordinatewise median is singular. Modify the function so that it
works well on small data sets. Then consider the following proposal that
may make the estimator asymptotically equivalent to the classical estima-
tor when the data are from a multivariate normal (MVN) distribution. The
attractor corresponding to 0% trimming is the DGK estimator (μ̂0, Σ̂0).
Let (μ̂T , Σ̂T ) = (μ̂0, Σ̂0) if det(Σ̂0) ≤ det(Σ̂M ) and (μ̂T , Σ̂T ) = (μ̂M , Σ̂M )
otherwise where (μ̂M , Σ̂M ) is the attractor corresponding to M% trimming.
Then make the DD plot of the classical Mahalanobis distances versus the dis-
tances corresponding to (μ̂T , Σ̂T ) for M = 50, 60, 70, 80, 90, 95, and 98. If all
seven DD plots “look good,” then use the classical estimator. The resulting
estimator will be asymptotically equivalent to the classical estimator if P(all
seven DD plots “look good”) goes to one as n → ∞. We conjecture that all
seven plots will look good because if n is large and the trimmed attractor
“beats” the DGK estimator, then the plot will look good. Also, if the data is
MVN but not spherical, then the DGK estimator will almost always “beat”
the trimmed estimator, so all 7 plots will be identical.

15) The TV estimator for MLR has a good combination of resistance and
theory. Consider the following modification to make the method asymptot-
ically equivalent to OLS when the Gaussian model holds: if each trimmed
view “looks good,” use OLS. The method is asymptotically equivalent to
OLS if the probability P(all 10 trimmed views look good) goes to one as
n → ∞. Rousseeuw and Leroy (1987), p. 128) showed that if the predictors
are bounded, then the ith residual ri converges in probability to the ith error

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_5
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ei for i = 1, ..., n. Hence all 10 trimmed views will look like the OLS view
with high probability if n is large.

16) Compare outliers and missing values, especially missing and outlying
at random. See Little and Rubin (2002).

17) Suppose that the data set contains missing values. Code the missing
value as ±99999+ rnorm(1). Run a robust procedure on the data. The idea is
that the case with the missing value will be given weight zero if the variable is
important, and the variable will be given weight zero if the case is important.
See Hawkins and Olive (1999b).

18) Implement the Carroll and Pederson (1993) robust logistic regression
estimator using the robust MLD estimator RFCH or RMVN and see how
well the estimator works.

Research Ideas that have Confounded the Author

• If the attractor of a randomly selected elemental start is (in)consistent, then
FLTS is (in)consistent. Hawkins and Olive (2002) showed that the attractor
is inconsistent if k concentration steps are used. Suppose K elemental starts
are used for an LTS concentration estimator and that the starts are iterated
until convergence instead of for k steps. Prove or disprove the conjecture
that the resulting estimator is inconsistent. (Intuitively, the elemental starts
are inconsistent and hence are tilted away from the parameter of interest.
Concentration may reduce but probably does not eliminate the tilt.) A
similar conjecture exists for the FMCD concentration algorithm.

• Prove or disprove Conjectures 4.1, 4.2, and 4.3.
• Prove or disprove Conjecture 5.1. Do elemental set and concentration algo-

rithms for multivariate location and dispersion (MLD) give consistent esti-
mators if the number of starts increases to ∞ with the sample size n?
(Algorithms that use a fixed number of elemental sets along with the clas-
sical estimator and a biased but easily computed high breakdown estima-
tor will be easier to compute and have better statistical properties. See
Theorem 4.9 and Olive and Hawkin 2007b, 2008.)
It is easy to create consistent algorithm estimators that use O(n) ran-
domly chosen elemental sets. He and Wang (1997) showed that the all
elemental subset approximation to S estimators for MLD is consistent
for (μ, cΣ) (likely for a large class of elliptically contoured distributions).
Hence an algorithm that randomly draws g(n) elemental sets and searches
all C(g(n), p + 1) elemental sets is also consistent if g(n) → ∞ as n → ∞.
For example, O(n) elemental sets are used if g(n) ∝ n1/(p+1).
When a fixed number of K elemental starts are used, the best attractor is
inconsistent but gets close to (μ, cMCDΣ) if the data distribution is EC.
(The estimator may be unbiased but the variability of the component esti-
mators does not go to 0 as n → ∞.) If K → ∞, then the best attractor
should approximate the highest density region arbitrarily closely and the
algorithm should be consistent. However, the time for the algorithm greatly

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_4
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increases, the convergence rate is very poor (possibly between K1/2p and
K1/p), and the elemental concentration algorithm can not guarantee that
the determinant is bounded when outliers are present.

• A promising two-stage estimator is the “cross-checking estimator” that
uses a standard consistent estimator and an alternative consistent esti-
mator with desirable properties such as a high breakdown value. The final
estimator uses the standard estimator if it is “close” to the alternative esti-
mator and hence is asymptotically equivalent to the standard estimator for
clean data. One important area of research for robust statistics is finding
good computable consistent robust estimators to be used in plots and in
the cross-checking algorithm. The estimators given in Theorems 4.8 and
4.9 (see Olive 2004a and Olive and Hawkins 2007b, 2008) finally make the
cross-checking estimator practical, but better estimators are surely possi-
ble. He and Wang (1996) suggested the cross-checking idea for multivariate
location and dispersion. For regression, cross-checking is likely to run into
problems when the error distribution is not symmetric.

• Does the bootstrap prediction region method of Section 5.3 work under mild
conditions for variable selection methods? Are the Machado and Parente
(2005) sufficient conditions for estimating an asymptotic covariance matrix
of a statistic also sufficient conditions for the prediction region method?

15.4 Hints for Selected Problems

Chapter 1
1.1 a) Y = 24/5 = 4.8.
b)

S2 =
138 − 5(4.8)2

4
= 5.7

so S =
√

5.7 = 2.3875.
c) The ordered data are 2,3,5,6,8 and MED(n) = 5.
d) The ordered |Yi − MED(n)| are 0,1,2,2,3 and MAD(n) = 2.

1.2 a) Y = 15.8/10 = 1.58.
b)

S2 =
38.58 − 10(1.58)2

9
= 1.5129

so S =
√

1.5129 = 1.230.
c) The ordered data set is 0.0,0.8,1.0,1.2,1.3,1.3,1.4,1.8,2.4,4.6 and

MED(n) = 1.3.
d) The ordered |Yi − MED(n)| are 0,0,0.1,0.1,0.3,0.5,0.5,1.1,1.3,3.3

and MAD(n) = 0.4.
e) 4.6 is unusually large.

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_1
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Chapter 2
2.8 Several of the marginal relationships are nonlinear, including E(M |H).

Chapter 3
3.1 a) X2 ∼ N(100, 6).
b) (

X1

X3

)
∼ N2

((
49
17

)
,

(
3 −1
−1 4

))
.

c) X1 X4 and X3 X4.
d)

ρ(X1,X2) =
Cov(X1,X3)√

VAR(X1)VAR(X3)
=

−1√
3
√

4
= −0.2887.

3.2 a) Y |X ∼ N(49, 16) since Y X. (Or use E(Y |X) = μY +
Σ12Σ

−1
22 (X − μx) = 49 + 0(1/25)(X − 100) = 49 and VAR(Y |X) = Σ11 −

Σ12Σ
−1
22 Σ21 = 16 − 0(1/25)0 = 16.)

b)E(Y |X) = μY + Σ12Σ
−1
22 (X − μx) = 49 + 10(1/25)(X − 100) = 9 +

0.4X.
c) VAR(Y |X) = Σ11 − Σ12Σ

−1
22 Σ21 = 16 − 10(1/25)10 = 16 − 4 = 12.

3.4 The proof is identical to that given in Example 3.2. (In addition, it is
fairly simple to show that M1 = M2 ≡ M . That is, M depends on Σ but not
on c or g.)

3.6 a) Sort each column, then find the median of each column. Then
MED(W ) = (1430, 180, 120)T .

b) The sample mean of (X1,X2,X3)T is found by finding the sample mean
of each column. Hence x = (1232.8571, 168.00, 112.00)T .

3.11 ΣB = E[E(X|BTX)XTB)] = E(MBBTXXTB) = MBBTΣB.
Hence MB = ΣB(BTΣB)−1.

3.20 a)

N2

((
3
2

)
,

(
3 1
1 2

))
.

b) X2 X4 and X3 X4.

c)
σ12√
σ11σ33

=
1√
2
√

3
= 1/

√
6 = 0.4082.

http://dx.doi.org/10.1007/978-3-319-68253-2_2
http://dx.doi.org/10.1007/978-3-319-68253-2_3
http://dx.doi.org/10.1007/978-3-319-68253-2_3
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Chapter 4

4.4 a) The 4 plots should look nearly identical to the five cases 61–65
appearing as outliers.

4.5 Not only should none of the outliers be highlighted, but the highlighted
cases should be ellipsoidal.

4.6 Answers will vary since this is simulated data but should get gam near
0.4, 0.3, 0.2, and 0.1 as p increases from 2 to 20.

Chapter 5

5.2 b) Ideally, the answer to this problem and Problem 5.3b would be
nearly the same, but students seem to want correlations to be very high and
use n too high. Values of n around 20, 40, and 50 for p = 2, 3, and 4 should
be enough.

5.3 b) Values of n should be near 20, 40, and 50 for p = 2, 3, and 4.

5.4 c) This is simulated data, but for most plots, the slope is near 2 to 2.5.

Chapter 6

6.1 Note that oP (1)OP (1)=[(Σ̂ − λ̂i) − c(Σ − λi)]êi = c(Σ − λi)êi
P→ 0.

Chapter 8

8.5 See Example 8.6.

Chapter 11

11.2. See Example 11.5.

Chapter 14

14.1
a) Since Y is a (random) scalar and E(w) = 0, Σx,Y = E[(x − E(x))(Y −

E(Y ))T ] = E[w(Y − E(Y ))] = E(wY ) − E(w)E(Y ) = E(wY ).

b) Using the definition of z and r, note that Y = m(z) + e and w =
r + (Σxβ)βTw. Hence E(wY ) = E[(r + (Σxβ)βTw)(m(z) + e)] = E[(r +
(Σxβ)βTw)m(z)] + E[r + (Σxβ)βTw]E(e) since e is independent of x.
Since E(e) = 0, the latter term drops out. Since m(z) and βTwm(z) are
(random) scalars, E(wY ) = E[m(z)r] + E[βTw m(z)]Σxβ.

c) Using result b), Σ−1
x Σx,Y = Σ−1

x E[m(z)r] + Σ−1
x E[βTw m(z)]Σxβ

= E[βTw m(z)]Σ−1
x Σxβ + Σ−1

x E[m(z)r] = E[βTw m(z)]β + Σ−1
x E[m(z)r]

and the result follows.

http://dx.doi.org/10.1007/978-3-319-68253-2_4
http://dx.doi.org/10.1007/978-3-319-68253-2_5
http://dx.doi.org/10.1007/978-3-319-68253-2_6
http://dx.doi.org/10.1007/978-3-319-68253-2_8
http://dx.doi.org/10.1007/978-3-319-68253-2_8
http://dx.doi.org/10.1007/978-3-319-68253-2_11
http://dx.doi.org/10.1007/978-3-319-68253-2_11
http://dx.doi.org/10.1007/978-3-319-68253-2_14
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d) E(wz) = E[(x − E(x))xTβ] = E[(x − E(x))(xT − E(xT ) + E(xT ))β]
= E[(x − E(x))(xT − E(xT ))]β + E[x − E(x)]E(xT )β = Σxβ.

e) If m(z)=z, then c(x)=E(βTwz)=βTE(wz) = βTΣxβ = 1 by result
d).

f) Since z is a (random) scalar, E(zr) = E(rz) = E[(w − (Σxβ)βTw)z] =
E(wz) − (Σxβ)βTE(wz). Using result d), E(rz) = Σxβ − ΣxββTΣxβ =
Σxβ − Σxβ = 0.

g) Since z and r are linear combinations of x, the joint distribution of z and
r is multivariate normal. Since E(r) = 0, z and r are uncorrelated and thus
independent. Hence m(z) and r are independent and u(x) = Σ−1

x E[m(z)r] =
Σ−1

x E[m(z)]E(r) = 0.

14.2 ‖ri,1 − ri,2‖ = ‖Yi − xT
i β̂1 − (Yi − xT

i β̂2)‖ = ‖xT
i β̂2 − xT

i β̂1‖ =
‖Ŷ2,i − Ŷ1,i‖ = ‖Ŷ1,i − Ŷ2,i‖.

14.3 Adding 1 to Y is equivalent to using u = (1, 0, ..., 0)T in Equation
(14.9), and the result follows.

14.9 b) The line should go through the left and right cluster but not
through the middle cluster of outliers.

c) The identity line should NOT PASS through the cluster of outliers with
Y near 0 and the residuals corresponding to these outliers should be large in
magnitude.

14.10 e) Usually the MBA estimator based on the median squared residual
will pass through the outliers, while the MBA LATA estimator gives zero
weight to the outliers (so that the outliers are large in magnitude).

14.11. a) No strong nonlinearities for MVN data but there should be some
nonlinearities present for the non–EC data.

b) The plot should look like a cubic function.

c) The plot should use 0% trimming and resemble the plot in b), but may
not be as smooth.

d) The plot should be linear, and for many students, some of the trimmed
views should be better than the OLS view.

e) The response plot should look like a cubic with trimming greater than 0%.

f) The plot should be linear.

14.12. b) and c) It is possible that none of the trimmed views look much
like the sinc(ESP) = sin(ESP)/ESP function.

http://dx.doi.org/10.1007/978-3-319-68253-2_14


15.5 F Table 477

d) Now at least one of the trimmed views should be good.

e) More lmsreg trimmed views should be good than the views from the
other two methods, but since simulated data is used, one of the plots from
b) or c) could be as good or even better than the plot in d).

14.15 b) The identity line should NOT PASS through the cluster of out-
liers with Y near 0. The amount of trimming seems to vary some with the
computer (which should not happen unless there is a bug in the tvreg2
function or if the computers are using different versions of cov.mcd), but
most students liked 70% or 80% trimming.

14.16 b) Masking since three outliers are good cases with respect to Cook’s
distances.

c) and d) Usually, the MBA residuals will be large in magnitude, but for
some students MBA, ALMS, and ALTS will be highly correlated.

15.5 F Table

Tabled values are F(0.95,k,d), where P (F < F (0.95, k, d)) = 0.95.
00 stands for ∞. Entries were produced with the qf(.95,k,d) command
in R. The numerator degrees of freedom are k while the denominator degrees
of freedom are d.

k 1 2 3 4 5 6 7 8 9 00
d
1 161 200 216 225 230 234 237 239 241 254
2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.37
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.41
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 1.84
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 1.71
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 1.62
00 3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.00
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Cator, E. A., & Lopuhaä, H. P. (2012). Central limit theorem and influence function for

the MCD estimators at general multivariate distributions. Bernoulli, 18, 520–551.
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral

Research, 1, 245–276.
Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. (1983). Graphical methods

for data analysis. Boston: Duxbury.
Chang, J. (2006). Resistant dimension reduction, Ph.D. thesis, Southern Illinois University.

http://lagrange.math.siu.edu/Olive/sjingth.pdf.
Chang, J., & Olive, D. J. (2007). Resistant dimension reduction. http://lagrange.math.siu.

edu/Olive/preprints.htm.
Chang, J., & Olive, D. J. (2010). OLS for 1D regression models. Communications in

Statistics: Theory and Methods, 39, 1869–1882.
Chen, C., He, X., & Wei, Y. (2008). Lower rank approximation of matrices based on fast

and robust alternating regression. Journal of Computational and Graphical Statistics,
17, 186–200.

Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors.
arXiv:0707.0805v2.

Chew, V. (1966). Confidence, prediction and tolerance regions for the multivariate normal
distribution. Journal of the American Statistical Association, 61, 605–617.

Chmielewski, M. A. (1981). Elliptically symmetric distributions: A review and bibliography.
International Statistical Review, 49, 67–74.
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Czörgö, S. (1986). Testing for normality in arbitrary dimension. The Annals of Statistics,
14, 708–723.

Dahiya, R. C., Staneski, P. G., & Chaganty, N. R. (2001). Maximum likelihood estima-
tion of parameters of the truncated cauchy distribution. Communications in Statistics:
Theory and Methods, 30, 1737–1750.

DasGupta, A. (2008). Asymptotic theory of statistics and probability. New York: Springer.
Datta, B. N. (1995). Numerical linear algebra and applications. Pacific Grove: Brooks/Cole

Publishing Company.
Davidson, J. (1994). Stochastic limit theory. Oxford: Oxford University Press.
Davies, P. L. (1992). Asymptotics of Rousseeuw’s minimum volume ellipsoid estimator.

The Annals of Statistics, 20, 1828–1843.
Dehon, C., Filzmoser, P., & Croux, C. (2000). Robust methods for canonical correlation

analysis. In H. A. L. Kiers, J. P. Rasson, P. J. F. Groenen, & M. Schrader (Eds.), Data
analysis, classification, and related methods (pp. 321–326). Berlin: Springer.

Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1975). Robust estimation and outlier
detection with correlation coefficients. Biometrika, 62, 531–545.

Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1981). Robust estimation of dispersion
matrices and principal components. Journal of the American Statistical Association, 76,
354–362.

Devroye, L., & Wagner, T. J. (1982). Nearest neighbor methods in discrimination. In
P. R. Krishnaiah & L. N. Kanal (Eds.), Handbook of statistics (Vol. 2, pp. 193–197).
Amsterdam: North Holland.

Donoho, D. L., & Huber, P. J. (1983). The notion of breakdown point. In P. J. Bickel, K.
A. Doksum, & J. L. Hodges (Eds.), A Festschrift for Erich L. Lehmann (pp. 157–184).
Pacific Grove: Wadsworth.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). New
York: Wiley.

Easton, G. S., & McCulloch, R. E. (1990). A multivariate generalization of quantile quantile
plots. Journal of the American Statistical Association, 85, 376–386.

Eaton, M. L. (1986). A characterization of spherical distributions. Journal of Multivariate
Analysis, 20, 272–276.

Eaton, M. L., & Tyler, D. E. (1991). On Wielands’s inequality and its application to the
asymptotic distribution of the eigenvalues of a random symmetric matrix. The Annals
of Statistics, 19, 260–271.

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia:
SIAM.

Efron, B. (2014). Estimation and accuracy after model selection, (with discussion). Journal
of the American Statistical Association, 109, 991–1007.

Efron, B., & Hastie, T. (2016). Computer age statistical inference. New York: Cambridge
University Press.

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman
& Hall/CRC.

Ehrenberg, A. S. C. (1982). Writing technical papers or reports. The American Statistician,
36, 326–329.

Fan, R. (2017). A squared correlation coefficient of the correlation matrix, unpublished
manuscript at http://lagrange.math.siu.edu/Olive/sfan.pdf.

Fang, K. T., & Anderson, T. W. (Eds.). (1990). Statistical inference in elliptically contoured
and related distributions. New York: Allerton Press.

Fang, K. T., Kotz, S., & Ng, K. W. (1990). Symmetric multivariate and related distribu-
tions. New York: Chapman & Hall.

http://lagrange.math.siu.edu/Olive/sfan.pdf


484 References

Farcomeni, A., & Greco, L. (2015). Robust methods for data reduction. Boca Rotan: Chap-
man & Hall/CRC.

Feng, L., & Sun, F. (2015). A note on high-dimensional two-sample test. Statistics &
Probability Letters, 105, 29–36.

Feng, X., & He, X. (2014). Statistical inference based on robust low-rank data matrix
approximation. The Annals of Statistics, 42, 190–210.

Ferguson, T. S. (1996). A course in large sample theory. New York: Chapman & Hall.
Filzmoser, P., Joossens, K., & Croux, C. (2006). Multiple group linear discriminant analy-

sis: Robustness and error rate. In A. Rizzi & M. Vichi (Eds.), Compstat 2006: Proceed-
ings in computational statistics (pp. 521–532). Heidelberg: Physica.

Flury, B., & Riedwyl, H. (1988). Multivariate statistics: A practical approach. London:
Chapman & Hall.

Fogel, P., Hawkins, D. M., Beecher, C., Luta, G., & Young, S. (2013). A tale of two matrix
factorizations. The American Statistician, 67, 207–218.

Freeman, D. H., Gonzalez, M. E., Hoaglin, D. C., & Kilss, B. A. (1983). Presenting statis-
tical papers. The American Statistician, 37, 106–110.

Frey, J. (2013). Data-driven nonparametric prediction intervals. Journal of Statistical Plan-
ning and Inference, 143, 1039–1048.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American Sta-
tistical Association, 84, 165–175.

Friedman, J. H., & Hall, P. (2007). On bagging and nonlinear estimation. Journal of
Statistical Planning and Inference, 137, 669–683.

Fujikoshi, Y. (2002). Asymptotic expansions for the distributions of multivariate basic sta-
tistics and one-way MANOVA tests under nonnormality. Journal of Statistical Planning
and Inference, 108, 263–282.

Fujikoshi, Y., Sakurai, T., & Yanagihara, H. (2014). Consistency of high-dimensional AIC-
type and Cp-type criteria in multivariate linear regression. Journal of Multivariate
Analysis, 123, 184–200.
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Maš̈ıček, 396, 447, 449

Machado, 170, 184, 473

MacKinnon, 184

MAD, 4, 9, 10

Maguluri, 445

Mahalanobis distance, 31, 47, 51, 56, 88,
139, 145, 433

Mai, 268

Mallows, 398

Mammen, 184

MANOVA, 4

MANOVA model, 292

Manzotti, 184

Mardia, ix, 8, 55, 78, 193, 275, 283, 302,
308

Markov’s Inequality, 63

Maronna, x, xii, 94, 104, 131, 132, 135,
203, 379, 447, 448

Masking, 401

MathSoft, 387

Mathsoft, 463, 464

matrix norm, 416

MB, 4

MB estimator, 97

MBA, 4

mbareg, 4

McCulloch, 142

MCD, 4, 92

McDonald, 45

McLachlan, 260, 268

MCLT, 4

mean, 9

MED, 4

median, 9, 10

median absolute deviation, 10

Mehrotra, 131

mgf, 4, 70

Miller, 380

minimum covariance determinant, 92

minimum volume ellipsoid, 131

Minor, 270

missing values, 472



Index 499

mixture distribution, 12, 15

MLD, vi, 3, 4

MLR, 4

MLS CLT, 342

monotonicity, 439

Moore, 297

Morgenthaler, 379, 445

Morrison, 281, 287

Mount, 396

mpack, ix

Mudholkar, 274, 462

Muirhead, 79, 227

multiple linear regression, 175, 329, 428

multiple linear regression model, 328

multivariate analysis, 1

Multivariate Central Limit Theorem, 72

multivariate Chebyshev’s inequality, 154,
184

Multivariate Delta Method, 73

multivariate linear model, 291, 328

multivariate linear regression model, 327

multivariate location and dispersion, 25,
93

multivariate location and dispersion
model, 328

multivariate normal, 47, 52, 78, 139, 142

multivariate t-distribution, 55

Multivariate time series, 395

Murdoch, 464

MVE, 4

MVN, 4, 47, 129

N

Nachtsheim, 145, 396, 461

Nadler, 380

Naik, 213, 308, 345, 346, 380

Navarro, 154

Nishi, 176

nonparametric bootstrap, 164, 175

nonparametric prediction region, 152

Nordhausen, 324, 379

norm, 416

normal distribution, 15

Norman, 30

O

Obozinski, 378

observation, 1

OGK, 5

Oja, x

Olejnik, 267, 308

Olive, viii, ix, xi, xii, 3, 10, 22, 79, 93, 96,
112, 128, 130, 132, 133, 135, 239,

262, 268, 295, 298, 303, 308, 309,
332, 334, 335, 363, 378, 396, 406,
433, 444, 446, 448, 450, 462, 472,
473

OLS, 5

OLS view, 433

Oosterhoff, 449

order statistics, 9

outlier, 297

outliers, v, 401

P

paradigm, x, 132, 462

parametric MVN prediction region, 155

Parente, 170, 184, 473

Park, 425, 444

partial correlation, 30

partial least squares, 185, 378

partitioning, 96, 131

Pauls, 184

PCA, 5

pdf, 5, 13

Peña, 132, 401

Pederson, 472

Pelawa Watagoda, viii, 185, 262, 282,
283, 287, 360, 462

permutation invariant, 413

Pesch, 132

PI, 5, 148

Pires, 260

Pison, 324

pmf, 5, 12

Polansky, 79

Pollard, 396, 449

Poor, ix

population correlation, 49

population correlation matrix, 27, 41

population mean, 26, 48

Portnoy, 421, 445, 447

positive breakdown, 90

positive definite, 32

positive semidefinite, 32

Pourahmadi, 127

Pratt, 94, 101, 398, 421

prediction interval, 148

prediction region, 148

prediction region method, 167, 184

predictor variables, 291, 327

Press, ix, 84, 303, 372

Prieto, 132



500 Index

principal component analysis, 189
principal component regression, 470

principal components, 470
Pun, 380

Q
QDA, 5

R
R, 463
R Core Team, xii, 379, 463
random forests, 267
random vector, 26
range rule, 37
Rao, 47
Raveh, 268
Rayleigh quotient, 7
regression equivariance, 413
regression equivariant, 413
Ren, 169–171
Rencher, ix, 380
residual plot, 295, 332
response plot, 295, 332, 429
response transformation model, 428
response variables, 291, 327
Reyen, 133
RFCH, 5
RFCH estimator, 102
Riani, 22, 127, 455
ridge regression, 378
Riedwyl, ix
Ripley, 215, 228, 316, 464
Ritter, 390
RMVN, 5
Ro, 120
Rocke, 92, 104, 131, 201
Rohatgi, 50, 70
Ronchetti, v, 132, 134, 401, 448
Rousseeuw, xii, 88, 93, 96, 100, 112, 131,

133, 139, 142, 387, 390, 396, 398,
404, 417, 445, 446, 448, 461, 463,
471

RR plot, 333
Rubin, 463, 472
rule of thumb, 30
Rupasinghe Arachchige Don, viii, 262,

282, 283, 287, 303, 309, 462
Ruppert, 132, 451

S

sample correlation matrix, 28, 42

sample covariance matrix, 28, 41

sample mean, 28, 41, 57

SAS Institute, 310, 383

Savin, 346, 360

scale equivariant, 413

Scatterplot, 36

scatterplot matrix, 36, 39

Schaaffhausen, 136

Schwing, 45

scree plot, 193

scree plots, 470

SE, 5, 57

Searle, 341, 342, 381

Seber, 50, 169, 176, 345

seemingly unrelated regressions model,
372

semiparametric prediction region, 155

Sen, 79

Serfling, 79

Setodji, 378

Severini, 48, 75, 212

shape, 33, 34

Sheather, 23

Shevlyakov, x

shorth, 185

Sign Covariance Matrix, 124

Silverman, 154, 184, 244, 251, 252, 268

Simonoff, 132

Singer, 79

Singh, 445

single index model, 428, 431

Sitter, 463

Slutsky’s Theorem, 69, 75

Smith, 463

Spearman, 312

spectral decomposition, 32

spectral norm, 416

spherical, 52

Square root matrix, 32, 42

Srivastava, 31, 84, 204, 274, 462

SSP, 5, 429

Stahel–Donoho estimator, 132

standard deviation, 10

standard error, 57

Statistical Learning, 3

STATLIB, 239

Staudte, 23

Stefanski, 445

Stewart, 212

Streiner, 30

Strong Law of Large Numbers, 65

Su, 332, 339, 342, 378

submodel, 175



Index 501

sufficient summary plot, 429
Sun, 287

supervised classification, 233
support vector machines, 267
SUR, 5
Swamping, 401

T
Tabachnick, ix
Tableman, 449, 451
Tallis, 22, 127
Tarr, 120
Taskinen, 133
Taylor, 308
Thode, 184
Tiao, 127
Tibshirani, 184, 268
Todorov, 260, 268
trace, 191
training error rate, 252
trees, 267
Tremearne, 105, 412
trimmed view, 435
trimmed views estimator, 398
truncated Cauchy, 21
truncated double exponential, 18
truncated exponential, 17
truncated normal, 19
truncated random variable, 14, 16
Tsay, 127
Tukey, 37, 139
TV estimator, 398, 446
TVREG, 5
Tyler, 195, 203, 324, 379

U
uniquenesses, 312
unit rule, 37

V
Vı́̌sek, 449
Van Aelst, 129, 309, 463
van der Vaart 79
Van Driessen, xii, 93, 96, 100, 112, 131–

133, 139, 142, 461
Van Loan, 417
van Zomeren, xii, 132, 445, 446
Vanden Branden, 395
variable selection, 175
variance, 9, 10

Velilla, 145

vector norm, 416
Venables, 215, 228, 316, 464

von Mises differentiable statistical func-
tions, 154

W
Wackerly, ix
Wagner, 253
Wakaki, 308
Wang, 130, 132, 390, 472, 473
Wasserman, 379
Waternaux, 203, 227
Weak Law of Large Numbers, 65
weighted least squares, 400
Weisberg, 34, 37, 39, 44, 295, 332, 352,

382, 428, 429, 433, 435, 446, 463,
469

White, ix, 74, 79, 373
Wichern, v, ix, 7, 26, 32–34, 48, 78, 91,

97, 102, 152, 194, 214, 221, 234,
275, 280, 287, 301, 310, 315, 331,
335, 338

Wilcox, v, x, 210, 379
Wilcoxon rank estimator, 398
Wilk, 129
Willems, 287, 309
Winsor’s principle, 435
Winsorized random variable, 15, 16
Wisnowski, 132
Wisseman, 271
Witten, 268

Wood, 241
Woodruff, 92, 104, 131, 201

X
Xu, 210

Y
Yao, 127, 287
Yarnold, ix
Yohai, xii, 135, 447, 448
Yu, 172, 228
Yuan, 209, 470

Z
Zamar, 104, 131, 203
zero breakdown, 90
Zhang, 113, 130, 228, 267, 278, 287, 309
Zou, 210

Zuo, 132


	Preface
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Overview and Acronyms
	1.3 Some Things That Can Go Wrong with  a Multivariate Analysis
	1.4 Some Matrix Optimization Results
	1.5 The Location Model
	1.6 Mixture Distributions
	1.7 Truncated Distributions
	1.7.1 The Truncated Exponential Distribution
	1.7.2 The Truncated Double Exponential Distribution
	1.7.3 The Truncated Normal Distribution
	1.7.4 The Truncated Cauchy Distribution

	1.8 Summary
	1.9 Complements
	1.10 Problems

	2 Multivariate Distributions
	2.1 Introduction
	2.2 The Sample Mean and Sample Covariance Matrix
	2.3 Mahalanobis Distances
	2.4 Predictor Transformations
	2.5 Summary
	2.6 Complements
	2.7 Problems

	3 Elliptically Contoured Distributions
	3.1 The Multivariate Normal Distribution
	3.2 Elliptically Contoured Distributions
	3.3 Sample Mahalanobis Distances
	3.4 Large Sample Theory
	3.4.1 The CLT and the Delta Method
	3.4.2 Modes of Convergence and Consistency
	3.4.3 Slutsky's Theorem and Related Results
	3.4.4 Multivariate Limit Theorems

	3.5 Summary
	3.6 Complements
	3.7 Problems

	4 MLD Estimators
	4.1 Affine Equivariance
	4.2 Breakdown
	4.3 The Concentration Algorithm
	4.4 Theory for Practical Estimators
	4.5 Outlier Resistance and Simulations
	4.6 The RMVN and RFCH Sets
	4.7 What if p > n?
	4.8 Summary
	4.9 Complements
	4.10 Problems

	5 DD Plots and Prediction Regions
	5.1 DD Plots 
	5.2 Prediction Regions
	5.3 Bootstrapping Hypothesis Tests and Confidence Regions
	5.3.1 The Bootstrap
	5.3.2 The Prediction Region Method  for Hypothesis Testing
	5.3.3 Theory for the Prediction Region Method
	5.3.4 Bootstrapping Variable Selection
	5.3.5 Bootstrapping the Correlation Matrix

	5.4 Summary
	5.5 Complements
	5.6 Problems

	6 Principal Component Analysis
	6.1 Introduction
	6.2 Robust Principal Component Analysis
	6.3 Eigenvalue Inference
	6.4 Summary
	6.5 Complements
	6.6 Problems

	7 Canonical Correlation Analysis
	7.1 Introduction
	7.2 Robust CCA
	7.3 Summary
	7.4 Complements
	7.5 Problems

	8 Discriminant Analysis
	8.1 Introduction
	8.2 LDA and QDA
	8.3 LR
	8.4 KNN
	8.5 FDA
	8.6 The Kernel Density Estimator
	8.7 Estimating the Test Error
	8.8 Some Examples
	8.9 Robust Estimators
	8.10 Summary
	8.11 Complements
	8.12 Problems

	9 Hotelling's T2 Test
	9.1 One Sample
	9.1.1 A Diagnostic for the Hotelling's T2 Test
	9.1.2 Bootstrapping Hotelling's T2 Type Tests

	9.2 Matched Pairs
	9.3 Repeated Measurements
	9.4 Two Samples
	9.4.1 Bootstrapping Two-Sample Tests

	9.5 Summary
	9.6 Complements
	9.7 Problems

	10 MANOVA
	10.1 Introduction
	10.2 Plots for MANOVA Models
	10.3 One-Way MANOVA
	10.4 Two-Way MANOVA
	10.5 Summary
	10.6 Complements
	10.7 Problems

	11 Factor Analysis
	11.1 Introduction
	11.2 Robust Factor Analysis
	11.3 Summary
	11.4 Complements
	11.5 Problems

	12 Multivariate Linear Regression
	12.1 Introduction
	12.2 Plots for the Multivariate Linear Regression Model
	12.3 Asymptotically Optimal Prediction Regions
	12.4 Testing Hypotheses
	12.5 An Example and Simulations
	12.5.1 Simulations for Testing
	12.5.2 Simulations for Prediction Regions

	12.6 Two Robust Estimators
	12.6.1 The rmreg Estimator
	12.6.2 The rmreg2 Estimator

	12.7 Seemingly Unrelated Regressions
	12.8 Summary
	12.9 Complements
	12.10 Problems

	13 Clustering
	13.1 Hierarchical and k-Means Clustering
	13.2 Complements
	13.3 Problems

	14 Other Techniques
	14.1 A List of Techniques
	14.2 Resistant Multiple Linear Regression
	14.3 MLR Outlier Detection
	14.4 Robust Regression
	14.4.1 MLR Breakdown and Equivariance
	14.4.2 A Practical High Breakdown Consistent Estimator

	14.5 1D Regression
	14.6 Visualizing 1D Regression
	14.7 Complements
	14.7.1 More on Robust Regression

	14.8 Problems

	15 Stuff for Students
	15.1 Tips for Doing Research
	15.2 R and Arc
	15.3 Projects
	15.4 Hints for Selected Problems
	15.5 F Table

	Appendix  References
	
	Index



