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Abstract. In this study, we proposed a novel hybrid model namely Rotation
Forest based Functional Trees (RFFT), which is a hybrid intelligent approach of
two state of the art machine learning techniques of Functional Trees (FT) clas-
sifier and Rotation Forest (RF) ensemble, for landslide susceptibility mapping at
the Kon Tum Province, Viet Nam. Landslide affecting factors (slope angle, slope
aspect, elevation, valley depth, land use, NDVI, soil type, lithology, distance to
geology boundaries, and distance to faults), and 1404 past and current landslide
locations have been first collected from the study area for generating training and
testing datasets. Secondly, the hybrid model RFFT has been constructed for
landslide susceptibility assessment using training dataset. Performance of the
proposed RFFT model has been validated by analysis of the Receiver Operating
Characteristic (ROC) curve and statistical indexes, and compared with a
well-known landslide models namely Support Vector Machines (SVM) and the
single FT. Results show that the proposed RFFT model has good performance for
landslide susceptibility assessment. It has better predictive capability compared
with well-known SVM model and single FT model. Therefore, it can be con-
cluded that the proposed RFFT model should be used as a great alternative
method for better landslide susceptibility assessment in landslide prone area.
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1 Introduction

Landslide susceptibility mapping is known as a first step in landslide hazard mitigation
[1]. It helps in identifying the high and very high prone areas so that the suitable land use
planning strategies and decisions can be made in advance to protect the stability of the
slopes and prevent the occurrences of future landslides. Landslide susceptibility map-
ping is carried out on the basis of the analysis of spatial relationship between past and
current landslides and a set of influencing factors [2, 3]. Geographic Information Sys-
tems (GIS), which has been used widely as a basic tool for data manipulation and spatial
management [4], is also a helpful tool for producing the landslide susceptibility map.

In recent years, many literatures have shown landslide susceptibility mapping
studies using GIS. Many of these studies have applied machine learning methods such
as artificial neural networks [5, 6], decision trees [7, 8], support vector machines
[9, 10], logistic regression [11, 12]. More recently, new hybrid techniques have been
developed and used for landslide susceptibility mapping. Bui et al. [13] developed a
novel hybrid model of least-squares support vector machines and differential evolution
optimization for landslide spatial prediction. Pham et al. [14] proposed a novel hybrid
machine learning model of rotation forest ensemble and fuzzy unordered rules
induction algorithm classifier for landslide prediction. In general, the hybrid models
often outperform the single models for landslide susceptibility mapping [15, 16].

In this paper, we proposed a novel hybrid model namely Rotation Forest based
Functional Trees (RFFT), which is a hybrid intelligent approach of two state of the art
machine learning techniques of Functional Trees (FT) classifier and Rotation Forest
(RF) ensemble, for landslide susceptibility mapping at the Kon Tum Province, Viet
Nam. Another objective of this study is to compare the novel hybrid RFFT model with
another well-known landslide model namely Support Vector Machines (SVM), and the
single FT model. To validate and compare the models, the Receiver Operating Char-
acteristic (ROC) curve and statistical indexes analysis have been applied in both
training and testing datasets.

2 Methods Used

2.1 Rotation Forest

Rotation Forest (RF), which is one of the popular ensemble techniques, was proposed
by Rodriguez et al. [17]. It is known as an efficient technique to improve the weaker
classifiers [18]. The RF uses Principal Component Analysis (PCA), which is a mul-
tivariate technique to analyze the large multivariate datasets for reducing their
dimensionality [19], and to separate the original training datasets into subsets which are
then used to train the classifiers [20]. Even though the RF is a relatively new ensemble
technique, its application has been in many different fields such as medical [21, 22],
remote sensing data classification [23, 24]. In landslide susceptibility modeling, the RF
has also been applied in few cases [14, 25, 26].
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2.2 Functional Trees

Functional Trees (FT), which was proposed by Gama [27], is a combination of a
discriminant function and a multivariate decision trees by means of constructive
induction [28]. It is considered as a generalization of multivariate trees. The FT
combines attributes at leaf nodes, decision nodes, or both nodes and leaves for learning
classification trees [28] in which decision nodes are constructed as the tree is growing
whereas functional leaves are constructed as the tree is pruning [27]. In prediction, the
FT can be used to predict the value of the target variables for unclassified samples.
Firstly, the sample traverses the tree from the root node to a leaf in which the set of
attributes of the sample is extended at each decision node using the constructor function
constructed at the node. Thereafter, the decision test of the node is applied to define the
path on which the sample will follow. Finally, the sample is classified as a leaf is
reached using either the constructor function constructed at the leaf or the constant
related with the leaf [28].

2.3 Proposed Rotation Forest Based Functional Trees

Rotation Forest Based Functional Trees (RFFT) is a hybrid approach of the RF
ensemble and the FT classifier. In landslide modeling, the RFFT is constructed in three
main steps as follows:

Step 1, Optimization: In this step, the RF ensemble was used to optimize the input
data for modeling. Original training dataset was divided into different sub-training
datasets which were then used for classification. Optimal sub-training datasets were
determined as the best performance of the RFFT model was obtained. Iterations
were applied in this step in which the number of iteration was determined as “16”
based on a trial-and-error test to give the best for training the RF ensemble.
Step 2, Classification: In this step, the FT classifier was used to classify the classes
(landslide and non-landslide) for predicting spatially landslides. Different FT
classifiers were generated using different sub-training datasets which were gener-
ated by the RF ensemble. To train the FT classifier, the parameters of the algorithm
were selected using trial-error process such as the minimum number of instances at
which a node is considered for splitting is “15”, and the number of iterations for the
RF is “15”.
Step 3, Combination: In the final step of modeling, the RF ensemble was used to
combine the FT classifiers generated to construct the final RFFT model.

2.4 Validation Methods

Receiver Operating Characteristic (ROC) curve which is a useful tool to represent the
quality of models [29, 30], and the area under the ROC curve (AUC) were selected to
validate the overall performance of the hybrid RFFT model in this study. On the ROC
curve graph, the “sensitivity” is shown on the y-axis whereas the “100-specificity” is
shown on the x-axis. The highest AUC value of “1” indicates the best or perfect
performance of the model whereas higher AUC value shows a better model [31–33].
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In addition, statistical indexes namely negative predictive value (NPV), positive
predictive value (PPV), specificity (SPF), sensitivity (SST), accuracy (ACC), Kappa
(K), and Root Mean Squared Error (RMSE), which shows more detail performance of
models, were also selected to validate the predictive capability of the proposed hybrid
model in the present study. Detail description of these statistical indexes were presented
in Bennett et al. [34] and Pham et al. [35].

3 General Characteristics of the Study Area

The study area is Kon Tum province located in Central Highland plateau where many
geo-hazards (i.e. landslides and human induced earthquakes) occurred as the result of
the interaction between natural hazards and human activities [36–40]. Geographically,
the study area is located on the western part of Truong Son mountain range, between
longitudes 107o 20ʹ E to 108o 32ʹ E and latitudes 13o 55ʹ N to 15o 26ʹ N (Fig. 1). It
covers an area of approximately 9689.6 km2, and has nine administrative units namely
Kon Tum city, Dak Glei, Dak To, Kon Ray, Kon Plong, TuMoRong, Sa Thay, Ngoc
Hoi, and Dak Ha districts. The study area belongs to the highly precipitation zone of
the Central Highland where total annually rainfall varies from 1700 mm to above
3000 mm in which rainfall (90.9%) concentrates strongly in rainy season (April to
November). The Kon Tum area has three main large drainages such as the Dak Bla
River, the KrongPoKo River, and the Sa Thay River. The drainage density in the study
area is measured around 0.45 km/km2.

In the study area, the topography feature is aligned in the N - S direction. The
elevation varies from 800–1200 m in the north part whereas it ranges from 500–530 m
in the southern part, and the highest point of 2598 m is at the Ngoc Linh peak in the
southern part of Vietnam.

The geology is complex with 33 geologic formations and complexes from Archean
to Cenozoic of ages. Metamorphic rocks are mostly dominated, followed by intrusive

Fig. 1. Landslide inventory map and location map of study region
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igneous rocks, extrusive igneous rocks, and sedimentary. The study area belongs to the
Kon Tum block which is one of the main uplift blocks in the Central Highland affected
strongly by the tectonic activities. Fault zones in the Kon Tum province follow the
sub-meridian and northwest-southeast directions. Major faults traverse area including
Ngoc Linh - Dak To, Po Co River, Xe Ca Man, Dak Sa, and Sa Thay.

4 GIS Database

4.1 Landslide Inventory Map

Landslide inventory map of this area was constructed from 1404 landslides occurred
during the years from 2004 to 2015, data for the inventory has been collected from
various sources such as interpretation of Google Earth images and field investigation.

Landslides in this area can be classified into 3 main types in size such as large
landslides (above 10000 m2), medium landslides (1000–10,000 m2), and small land-
slides (less than 1000 m2). Among these landslides, the largest landslide covers an area
of approximately 361485 m2 whereas the smallest one is about 118.4 m2.

Landslides, in the study area, have been identified as polygons. However, due to the
number of landslides are of big size, thus the center representative landslide pixels
converted from polygons have been used for landslide susceptibility analysis. Out of
these, a total of 983 landslide pixels have been used for generating training dataset
whereas 420 remaining pixels have been utilized for creating testing dataset.

4.2 Landslide Affecting Parameters

In the present study, a total of ten parameters (Table 1) namely slope, aspect, elevation,
land use, lithology, Normalized Difference Vegetation Index (NDVI), soil type, dis-
tance to faults, distance to geology boundaries, and valley depth were selected and used
for landslide susceptibility modeling as they are known as landslide influencing factors
for landslide spatial prediction [13, 41].

A Digital Elevation Model (DEM) with the spatial resolution of 30 � 30 m was
generated from national topographic maps (1:50,000), and then the DEM was used to
generate slope map (Fig. 2), aspect map, elevation map, and valley depth map (Fig. 3)
using GIS application and SAGA software.

Soil type map (Fig. 4) at a scale of 1:100000 was collected from the Agricultural
Planning and Projection of Vietnam in 2000. Geological and mineral resource maps at
the scale of 1:200.000 collected from Ministry of Natural Resources and Environment
of Vietnam were used to construct lithology map (Fig. 5). These maps have been also
used to extract the faults which were then used to generate distance to faults map using
the buffering function in ArcGIS application. Landsat 8 OLI (30 m resolution, with
three paths/rows 124-50, 125-50 and 125-49) that was acquired on 14 April 2015 was
used to generate NDVI map. Land use map at scale of 1:50000 was provided by the
local authority of the study area. In addition, distance to geology boundaries was used
for landslide susceptibility modeling. Distance to geology boundaries map was con-
structed using the geology boundaries extracted from geological and mineral resource

190 B.T. Pham et al.



maps, and buffered into the study area. For landslide susceptibility assessment, different
classes of these factors have been classified on the basis of the study of literatures
[13, 42] and the analysis of the characteristics of the study area in relation with
landslide occurrences.

Table 1. Landside affecting parameters and their classes

No Landslide affecting
parameters

Classes

1 Slope (degrees) (1) 0–3.69, (2) 3.69–9.95, (3) 9.95–15.92, (4) 15.92–21.32,
(5) 21.32–26.44, (6) 26.44–31.55, (7) 31.55–38.09, and
(8) 38.09–72.49

2 Aspect (1) flat; (2) south; (3) southeast; (4) southwest; (5) east;
(6) west; (7) north; (8) northeast; and (9) northwest

3 Elevation (1) 136.85–433.86, (2) 433.86–673.38, (3) 673.38–855.42,
(4) 855.42–1037.46, (5) 1037.46–1200.34, (6) 1200.34–
1372.8, (7) 1372.9–1583.58, (8) 1583.58–1880.59, and
(9) 1880.59–2580

4 Valley depth (m) (1) 0–5; (2) 5–30; (3) 30–60; (4) 60–100; (5) 100–150; and
(6) >150

5 Lithology (1) quaternary sediments; (2) sedimentary classic rocks;
(3) extrusive mafic - ultramafic igneous rocks; (4) intrusive
mafic - ultramafic igneous rocks; (5) extrusive acid - neutral
igneous rocks; (6) intrusive acid - neutral igneous rocks; and
(7) metamorphic rock with rich quartz components

6 Soil type (1) water: (lakes and rivers); (2) Fluvisols: Humi-Gleyic
Fluvisols, Dystri-Arenic-Fluvisols; (3) Gleysols:
Hapli-Umbric Gleysols; (4) Cambisols: Anthraqui-Fluvic
Cambisols; (5) Haplic Acrisols; (6) Chromi-Hyperdystri
Acrisols, Chromi-Arenic Acrisols, Hapli-Hyperdystric
Acrisols; (7) Hapli-Chromic Acrisols; (8) Alumi-Humic
Acrisols; (9) Ferralsols: Humi-Acric Ferralsols, Verti-Acric
Ferralsols; (10) Humi-Endoleptic Acrisols; (11) Leptosols:
Dystri-lithic Leptosols; and (12) Anthraqui-Plinthic Acrisols

7 Land use (1) wet rice land; (2) upland rice; (3) grass land; (4) annual
crop land; (5) perennial crops; (6) productive forest land;
(7) protective forest land; (8) Specialized use forest land;
(9) rivers, lakes; (10) non-agricultural land; and (11) unused
land

8 Distance to faults (m) (1) 0–200; (2) 200–400 m; (3) 400–600; (4) 600–800;
(5) 800–1000; (6) 1000–1200; and (7) >1200

9 Distance to geology
boundaries (m)

(1) 0–200; (2) 200–400 m; (3) 400–600; (4) 600–800;
(5) 800–1000; (6) 1000–1200; and (7) >1200

10 NDVI (1) [(−0.23)–(0.02)]; (2) 0.02–0.12; (3) 0.12–0.19; (4) 0.19–
0.25; (5) 0.25–0.3; (6) 0.3–0.35; (7) 0.35–0.4; (8) 0.4–0.45;
and (9) 0.45–0.63
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Fig. 2. Slope map of the study area

Fig. 3. Valley depth map of the study area
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Fig. 4. Land use map of the study sarea

Fig. 5. Land use/ land cover map of the study area
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5 Results and Discussion

Landslide susceptibility model using the novel hybrid RFFT model has been con-
structed and validated using training and testing datasets, respectively, and the results
are shown in Figs. 6, 7, 8, and 9. According to the ROC curve analysis (Figs. 6 and 7),
it can be observed that the RFFT model has high AUC values for training (0.926), and
testing (0.811) datasets. These values are higher than those of the SVM model (0.904
for training dataset and 0.806 for testing dataset), and the single FT model (0.892 for
training dataset and 0.761 for testing dataset).

Likewise, according to the statistical indexes analysis (Figs. 8 and 9), the RFFT
model has the highest values of PPV (80.57% for training dataset and 70.31% for
testing dataset), NPV (90.05% for training dataset and 78.15% for testing dataset), SST
(90.00% for training dataset and 76.29% for testing dataset), SPF (82.41% for training
dataset and 72.47% for testing dataset), ACC (85.81% for training dataset and 74.23%
for testing dataset), and K (0.716 for training dataset and 0.485 for testing dataset),
followed by the SVM model with PPV (80.16% for training dataset and 70.30% for
testing dataset), NPV (90.74% for training dataset and 77.67% for testing dataset), SST
(89.65% for training dataset and 75.90% for testing dataset), SPF (82.06% for training
dataset and 72.35% for testing dataset), ACC (85.45% for training dataset and 73.99%
for testing dataset), and K (0.710 for training dataset and 0.480 for testing dataset), and
the single FT model with PPV (79.86% for training dataset and 68.65% for testing
dataset), NPV (90.54% for training dataset and 76.96% for testing dataset), SST
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Fig. 6. The ROC curve analysis of landslide models using training dataset
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(89.41% for training dataset and 74.87% for testing dataset), SPF (81.80% for training
dataset and 71.05% for testing dataset), ACC (85.20% for training dataset and 72.80%
for testing dataset), and K (0.704 for training dataset and 0.456 for testing dataset),
respectively. In contrast, the RFFT model has the lowest value of RMSE (0.322 for
training dataset and 0.412 for testing dataset), followed by the SVM model (0.349 for
training dataset and 0.419 for testing dataset), and the single FT model (0.395 for
training dataset and 0.454 for testing dataset), respectively.

In landslide susceptibility modeling, the hybrid model is known as a great alter-
native tool [16]. In this study, the RFFT model, which is a hybrid approach of the RF
ensemble and the FT classifier, also performed very well for landslide susceptibility
modeling based on the analysis of above results as it outperforms both the well-known
SVM model and single FT model. It can be reasonably explained that the RFFT model
takes advantage of machine learning ensemble method of the RF ensemble for
improving the prediction ability of FT classifier [17]. In the RF, the diversity is
guaranteed by the rotation strategy, thus the classification accuracy of the RFFT model
is better than single FT classifier [43]. In addition, the PCA used in the RF is a good
filter method which will help in reducing the learning errors [17].

Landslide susceptibility map has been constructed at the Kontum province, Viet
Nam using the novel hybrid model RFFT in this study. For this, a total of 24021009
pixels of the study area has been assigned the susceptibility indexes which have been
generated during training the RFFT model. Thereafter, susceptibility classes namely
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Fig. 7. The ROC curve analysis of landslide models using testing dataset
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very low, low, moderate, high, and very high were determined to construct the landslide
susceptibility map (Fig. 10) based on the classification of the generated susceptibility
indexes using the natural breaks method [44] in ArcGIS environment. Furthermore,
landslide pixels frequency analysis on the map has been carried out to validate the
reliability of the landslide susceptibility map, and the results are shown in Fig. 11. It can
be observed that the highest frequency of landslides is on the very high class (69.82%),
followed by the high class (15.63%), the moderate class (9.47%), the low class (3.71),
and the very low class (1.37%), respectively. Based on the frequency analysis results, it
is reasonably to state that the produced landslide susceptibility map is much reliable for
landslide hazard management in the study area.

Fig. 8. Model performance using training dataset
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Fig. 9. Model performance using testing dataset

Fig. 10. Landslide susceptibility map using the proposed hybrid model RFFT
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6 Concluding Remarks

Landslide susceptibility mapping has been conducted at the Kontum province, Viet
Nam using the novel hybrid model named RFFT which is a combination of two state of
the art machine learning methods of the RF ensemble and the FT classifier. Perfor-
mance of the proposed RFFT model has been validated by analysis of the ROC curve
and statistical indexes, and compared with a well-known landslide model namely
Support Vector Machines (SVM), and the single FT model.

Results show that the proposed RFFT model has very good performance for
landslide susceptibility assessment. It has better predictive capability compared with
well-known SVM model and single FT model. Therefore, it can be concluded that the
proposed RFFT model should be used as a great alternative method for better landslide
susceptibility assessment in landslide prone areas. Results of this study also recon-
firmed that the hybrid model using ensemble techniques such as the RF is a promising
approach for landslide susceptibility modeling.
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