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Abstract. In this paper, we propose a new scheme to analyze factors that affect
outbreak of malaria using the Locally-Compensated Ridge Geographically
Weighted Regression (LCR-GWR). Since malaria prevalence is location
dependence, the relationships between natural and social-economic factors to
the development and concentration of malaria hotspots have been investigated.
The proposed method is applied to DakNong province, one of the most vul-
nerable areas to malaria risk in Vietnam due to the lack of social infrastructure
and the limited accessibility to health services. Even though mitigation cam-
paigns were launched in the last several years, the number of new cases was
found increasingly and several hotspots are still remained. The result is com-
pared to those of several local analyses of spatial collinearity. It has been shown
that LCR-GWR considerably improves the model fit and is useful to determine
several factors including NDVI, DEM, distance to residential areas, distance to
road that are highly associated with malaria risks. The results of this study help
measuring the incidence of malaria in the context of climate change and under
the impact of change in people’s livelihoods.

Keywords: Malaria � Locally-compensated ridge � Geographically weighted
regression � Hotspots

1 Introduction

Malaria is one of the most widespread parasitic diseases worldwide and is considered as
one of the most dangerous endemic in 91 countries with 212 million cases and 429, 000
deaths [33]. Vietnam is one of those malaria - endemic countries which has 74% of the
population having malaria risk mainly in the Central Coastal and Central Highland
region [33]. There were several activities aim to reduce the morbidity and mortality of
malaria in Vietnam, typical of which is National Malaria Control and Elimination
Program launched officially by Vietnamese Government in 2011 [32]. The program
achieved some successes with confirming cases in 2016 was 9331 and 3 deaths com-
pared to 18387 cases and 8 deaths in 2012 [32, 33]. However, there are still challenges
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especially in the context of climate change where climate factors affect the distribution
of malaria [3].

Several methods have been proposed to this problem including epidemiological
expert methods [15], Remote Sensing and GIS [1, 24] and the hybrid GIS with soft
computing [6, 25, 31]. Lubetzky-Vilnai et al. [19] and Mosha et al. [21] used statistics
and spatial analysis based on time series [4]. However, the statistical approach is not
sufficient to handle complex structures and nonlinearity of malaria risk datasets.
Incorporating artificial intelligence, remote sensing and GIS is an alternative way to
overcome this drawback [18, 24]. Specifically, Ch et al. [7] integrated a support vector
model and Firefly algorithms to evaluate the risk of malaria. Buczak et al. [6] applied
fuzzy logic to study malaria in Korea. Zacarias et al. [34] compared the support
deployment models and random forest in Mozambique. Recently, Geographically
Weighted Regression (GWR) and its variants have been used in the study of the
relationship between malaria and geographical factors [5, 12, 25–29].

Unlike conventional regression methods that assume the relationship between
malaria and geographic factors is the same across regions in a study area, GWR creates
separate regressions for each set of observed data (local regression) using adjacent
objects in a defined “bandwidth” distance [2]. Although GWR is important to explore
spatial non-stationary data relationship, a problem found in many regression models is
collinearity which affects the precision of the model. Locally-compensated ridge GWR
aims to reduce the influence of the collinearity to the regression model; thus improving
its accuracy [8].

Taking advantage of regression in epidemiological studies, in this paper, we pro-
pose a new scheme to analyze factors that affect outbreak of malaria using the
Locally-Compensated Ridge Geographically Weighted Regression (LCR-GWR). The
new method is used to ascertain the relationship between factors such as land use,
distance to residence, distance to road, elevation, NDVI and the development of
malaria. For variables related to geography, collinearity is used to verify two variables
if they have linear relationship or highly correlated [8]. For example, the higher the
elevation, the lower the temperature and contrary the higher the humidity (at the
troposphere), or the age group will have a relationship with the employment. It is
indeed obvious that the LCR-GWR can reduce the effects of local collinearity so as to
improve the models’ efficiency.

The proposed method is applied to Dak Nong province, located in the Central
Highland region of Vietnam- an inhabited area for the minority community who has
lacks condition and infrastructure with limited access to health services [23]. Dak Nong
is determined within the geographical coordinate: 11°45ʹ to 12°50ʹ north latitude,
107°13ʹ to 108°10ʹ east longitude. Dak Nong shares border with Dak Lak province to
the North and Northeast, border with Lam Dong province to the East and Southeast,
border with Binh Phuoc province, “the cradle” of malaria in Vietnam [9], to the
Southern and Southwestern and border with Cambodia to the West [10]. With its
geographical conditions, Dak Nong has been one of the malaria hotspots. In the first 4
months of 2015, 176 cases of malaria and 175 patients were detected, with an increase
of 68 cases and 72 patients compared to the same period in 2014. Although in 2016, the
province set up impact mitigation campaigns for malaria and got some achievements.
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However, this region is still considered as hotspots of malaria from the past to present
(Fig. 1).

The remainder of this paper is organized as follows: Sect. 2 introduces the datasets
and LCR-GWR method. Section 3 presents the experimental results. Section 4 high-
lights some conclusions and further works of the paper.

2 Materials and Methods

2.1 Datasets

The vector for transmission of malaria is from infected mosquitoes’ bite. In hot and
humid climate territories, such as Vietnam, mosquitoes thrive as a favorable condition
for malaria outbreaks [15]. According to WHO, the malaria parasites commonly found
in Vietnam are P. vivax and P. falciparum through Anopheles mosquitoes [33]. In this

Fig. 1. Location of Dak Nong province, Vietnam

168 T.-A. Hoang et al.



study, we do not focus on the epidemiology of malaria but would like to point out the
conditions that affect the development of malaria through the collected survey data. The
malaria data were collected from the Provincial Center for Preventive Medicine
through a survey and inspection of more than 50,000 people from DakNong province
in which 198 people were infected by malaria parasites in 2016. To assure and enhance
the data quality, we have also visited the field to check and investigate more in
prevalence malaria cases with a total of 209 observations which is expressed through
Fig. 2a. From the data, we conduct a malaria hotspot map using Kriging algorithm. The
result turns out that the malaria area is close to the border of Cambodia and Binh Phuoc
province (Fig. 2b).

2.2 Methods

In each regression model, the results indicate the level of predictor variable influence
on the dependent variable. In this study, the dependent variable is the 209 malaria cases
in 2016 for the whole province. The probable predictor variables were chosen based on
the relation to malaria and through previous research and source of data. Several
researches can provide these variables, such as vegetation, which plays a very
important role in transmitting malaria. There are few indicators to express the prop-
erties vegetation but NDVI is the most widely used index. Temperature, rainfall,

(a) (b)

Fig. 2. (a) Distribution map of malaria; (b) Hotspot map of malaria in DakNong
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humidity are the meteorological variables that are often used in predicting malaria
transmission [17]. In addition, age group, gender are the social variables that are highly
associated with malaria [32]. To take advantage of data collected, we selected 40
predictor variables as follows: the variables were divided into 2 groups which are
natural conditions and social - economic conditions.

Natural condition variables
A DEM was provided globally from Aster Global DEM data (available at https://
earthexplorer.usgs.gov/). The DEM is then used to generate Aspect and Slope using
ArcGIS 10.4.1. Daily climatic data during 2016 were collected from 18 national
meteorological stations and then averaged. Then we used Kriging in ArcGIS 10.4.1 to
interpolate for the whole study area. NDVI, NDBI, and NDMI are calculated using
bands from Landsat 8 OLI captured in Fed 12 2017 in which NDVI is Normalized
Difference Vegetation Index, NDBI is Normalized Difference Built-up Index and
NDMI is Normalized Difference Moisture Index. NDVI, NDMI and NDBI are defined
as follow:

NDVI ¼ ðNIR�RÞ=ðNIRþRÞ
NDMI ¼ ðNIR�IRÞ=ðNIRþ IRÞ

NDBI ¼ ðSWIR2�NIRÞ=ðSWIR2þ IRÞ
ð1Þ

where NIR is the Near Infrared band, R is the Red band and SWIR is the Short-Wave
Infrared band. The last variables are determined using Dak Nong land use map 2015
which was collected at the Dak Nong Department of Natural Resources and Envi-
ronment at the scale of 1:50000. The land use map is categorized into 16 types name
TTN (Religious land), SMN (Water surface), RSX (Production forest land), RPH
(Protective forest land), RMP (Protective planted forest land), RDD (special forest
land), OTC (Residential land), NTS (Aquaculture land), NHK (Upland land cultivate
another annual crop), NKH (Other agricultural land), CSK (Productive land,
non-agricultural business), CSD (Unused land), CLN (Perennial crops), CHN (Annual
crop land), CDG (Specialized land), CCC (Public land) and few other point and line
layers (river, road, hospital, school). Variable as forest is extracted in a combination of
RSX, RPH, RPM and RDD. Agriculture land is extracted using CHN, CLN, NHK,
NKH. Aquaculture land and residential land are NTS and OTC. The point and line
objects as hospitals, rivers and roads were also extracted from land use map. For
distance to hospital, we also selected few others which are inside 10 km distance from
Dak Nong. These objects are respectively used to calculate distance using Euclidean
Distance tool from ArcGIS software [13] (Table 1).

Social – economic condition variables
Data about population including population, density, gender, age group and building
structure are collected from Dak Nong Statistic Yearbook 2015 at commune level. The
data are then divided into sub-groups as shown in Table 2:

Due to the reason that the statistic is at commune level while the spatial malaria
data are points, the statistic was calculated as the average of the whole commune. In
addition, natural condition variables are also at Raster format and were added to the
malaria table base on the location of the malaria point.
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Table 1. Natural condition variables

Variable name Code Resolution/Unit/Method Source

Aspect Aspect 30 m Extracted from Aster global
DEM data

Elevation DEM 30 m Extracted from Aster global
DEM data

Slope Slope 30 m Extracted from Aster global
DEM data

Normalized
Difference
Built-up Index

NDBI 30 m Calculated using SWIR 2 and
NIR bands of Landsat 8 OLI
Feb 12, 2017

Normalized
Difference
Vegetation
Index

NDVI 30 m Calculated using NIR and
Red Bands of Landsat 8 OLI
Feb 12, 2017

Normalized
Difference
Moisture Index

NDMI 30 m Calculated using NIR and IR
Bands of Landsat 8 OLI Feb
12, 2017

Distance to
residence

DRe Calculated using Euclidean
Distance in ArcGIS,
resolution 30 m

Resident area extracted from
Landuse map 2015

Distance to
road

DRo Calculated using Euclidean
Distance in ArcGIS,
resolution 30 m

Roads extracted from
Landuse map 2015

Distance to
river

DRi Calculated using Euclidean
Distance in ArcGIS
resolution 30 m

Rivers extracted from
Landuse map 2015

Distance to
hospital

DHo Calculated using Euclidean
Distance in ArcGIS,
resolution 30 m

Hospital extracted from
Landuse map 2015

Distance to
aquaculture
land

DAqL Calculated using Euclidean
Distance in ArcGIS,
resolution 30 m

Aquaculture land extracted
from Landuse map 2015

Distance to
agriculture land

DAgL Calculated using Euclidean
Distance in ArcGIS,
resolution 30 m

Agriculture land extracted
from Landuse map 2015

Distance to
wetland

DWe Calculated using Euclidean
Distance in ArcGIS,
resolution 30 m

Agriculture land extracted
from Landuse map 2015

Distance to
forest

DFo Calculated using Euclidean
Distance in ArcGIS,
resolution 30 m

Resident area extracted from
Topography map 2015

Rainfall Rain Kriging (ArcGIS) average of
daily rainfall during the year
2016 (mm)

Rainfall collected from 18
national stations

(continued)
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We presume that the non-stationary relationship exists between malaria occurrences
and influential factors. Therefore, the following scheme is proposed to analyze factors
that affect outbreak of malaria using LCR-GWR (Fig. 3).

Step 1 is to determine the correlation coefficient between variables to eliminate
those which are highly correlated. For instance, one of these variables as NDVI, NDBI,
and NDMI can be eliminated if the correlation coefficient is higher than 0.7 (the
correlation ranges from -1 to 1, with 0 value means there is no correlation between
variables, we will give a table pairing all variables in the next section), we decide to
keep those having high impact in the model. Then, in step 2, we run an OLS model to
test the explanatory variables and determine how many percents of the data that
potentially explain the malaria disease. However, spatial data, as variables in this
research has unique characteristics. Firstly, the geographical factors are spatial auto-
correlation which means the two locations that are close together should have similar
characteristics compared to locations that are far away from each other. Secondly,
geographic related factors for instance elevation, NDVI, population density are spatial

Table 1. (continued)

Variable name Code Resolution/Unit/Method Source

Temperature Temp Kriging (ArcGIS) average of
daily temperature during the
year 2016 (oC)

Temperature collected from
18 national stations

Humidity Humid Kriging (ArcGIS) average of
daily humidity during the
year 2016 (%)

Humidity collected from 18
national stations

Table 2. Social – economic variables

Variable
name

Code Resolution/Unit Source

Population Pop Population group includes 4 variables as
Sum_pop, Urban_pop, Rural_pop,
Pop_dens

DakNong
Statistic
yearbook 2015

Age Age Age is divided into 10 subs – group as 0–5
years old, 5–9 years old 10–19 years old,
20–29 years old, 30–39 years old, 40–49
years old, 50–59 years old, 60–69 years
old, 70–79 years old, >80 years old (10
variables)

DakNong
Statistic
Yearbook 2015

Sex Sex Sex is divided into 2 subs – group as
Pop_male, Pop_femal. (2 variables)

DakNong
Statistic
Yearbook 2015

Building
structure

Build_struct Building structure group includes 7
variables as Sum_build, Solid_build,
Semi_sol_bui,un_so_bui,Simp_build,
undef_build and Area_per_cap.

DakNong
Statistic
Yearbook 2015
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non-stationary. These factors value vary differently across the research area. Therefore,
in step 3, spatial autocorrelation statistics as Moran I and Geary C are calculated to
estimate the degree of spatial autocorrelation in a dataset [12, 22]. The Moran I runs
with the residual of OLS regression. If Moran I approximately equals to 0 or less than
0, that means the data are randomly distributed or dispersed and an OLS model is fit.
But if Moran Index is greater than 0, then the data are clustered and an OLS model is
not appropriate. Step 4 in hence provides a GWR model will be run with the significant
variables extracted from OLS model. The basic GWR model is:

yi ¼ bi0 þ
Xm

k¼1
bikxik þ �i ð2Þ

where yi is the dependent variable at location i, xik is the value of the kth independent
variable at location i, m is the number of independent variables, bi0 is the intercept term
at location i, bik is the local regression coefficient for the kth independent variable at
location i and ei is the random error at location i. In this step, we need to consider the
variable collinearity, which can be measured as condition number (CN) and variance
inflation factors (VIFs). The condition number is used to assess the whole model while
VIFs consider each variable in turn [8]. Therefore, the local condition number

Evaluation of correlations between variables by pair comparison of each two factors.

Run Ordinary Least Square (OLS) regression to preliminarily test global statistics to 
acknowledge where spatial stationary condition exists

Run spatial auto-correlation (Moran I, Geary C) to test magnitude of possible spatial 
dependency

Run GWR and measure variations of coefficients.

Try a customized version of GWR, namely locally-compensated ridge GWR in order 
to examine local collinearity

Evaluate and compare performances of OLS, GWR, and locally-compensated ridge 
GWR.

Produce spatial variation map of malaria.

Fig. 3. Schematic overview of using LCR-GWR in prediction of malaria incidences
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(CN) was tested in this model to check if it is greater than 30, as proved in literature,
means that there are local collinearities between variables [8, 16]. Step 5 is to provide a
better GWR model in which AICc, R2 and R2 adjusted will be observed. Step 6 is to
compare between OLS, GWR and LCR.GWR. In the final step, the coefficients of
variables from LCR.GWR are used to calculate and provide a spatial variation map of
malaria.

3 Results and Discussion

3.1 Evaluation of Correlation

Correlation coefficient (r) is a statistical indicator that measures the correlation between
two variables. In this research, Pearson correlation coefficient is used to indicate the
relationship of variables globally using cor(x,y) function in R [14]. The definition of the
correlation coefficient is defined as follow:

rðx; yÞ ¼
Pn

i¼1 xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � �xð Þ2Pn

i¼1 yi � �yð Þ2
q ð3Þ

where x̄ and ȳ is the mean value of variables x and y. Some variables were eliminated
due to the correlation coefficient absolute value is higher than 0.7 (age structure group,
gender group, NDBI, NDMI, Temperature). Strong correlations amongst the predictor
variables indicate prominent level of collinearity. Therefore, this step is to filter the
significant variables for OLS model (Table 3).

After calculating correlation between 40 preliminary input variables, only 13
variables are selected to use for regression models. They are elevation, distance to
agriculture land, distance to aquaculture land, distance to forest, distance to hospital,

Table 3. Correlation between variables

DEM DAgL DAqL DFo DHo DRe DRi DRo NDVI Rain Slope Aspect DWe

DEM 1 0.043 0.12 −0.32 −0.34 0.13 −0.25 0.03 0.06 0.46 0.17 0.006 0.16

DAgL – 1 0.36 −0.19 0.02 0.68 −0.07 0.5 0.11 −0.03 0.048 0.04 0.30

DAqL – – 1 −0.28 0.23 0.58 0.008 0.43 0.11 −0.006 −0.000 0.001 0.25

DFo – – – 1 0.06 −0.39 0.17 −0.3 −0.05 −0.28 −0.10 0.02 −0.11

DHo – – – – 1 0.04 0.14 0.09 0.08 −0.34 −0.06 −0.05 −0.13

DRe – – – – – 1 −0.09 0.66 0.25 0.020 0.09 0.05 0.39

DRi – – – – – – 1 −0.03 −0.09 −0.24 −0.16 0.19 0.24

DRo – – – – – – – 1 0.22 0.06 0.041 0.06 0.18

NDVI – – – – – – – – 1 0.08 0.23 0.04 −0.06

Rain – – – – – – – – – 1 0.23 −0.006 −0.01

Slope – – – – – – – – – – 1 −0.08 0.05

Aspect – – – – – – – – – – – 1 0.06

DWe – – – – – – – – – – – – 1
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distance to residence, distance to river, distance to road, distance to wetland, NDVI,
rainfall, slope, and aspect. These variables seem to be appropriated to explain the
malaria incidence in this study area. However, we need to indicate which are the most
significant variables.

3.2 Ordinary Least Square Regression (OLS) and Spatial
Autocorrelation

Predictor variables listed in Table 3 were used as inputs to construct a model to predict
malaria incident. ArcGIS 10.4.1 is used for generating and visualizing the OLS model.
The global coefficient estimates together with their significance and VIFs for each
predictor variable are shown in Table 4. Table 4 indicates significant variables to
predict malaria which has p-value < 0.05 and none of VIFs are greater than 10 which
mean that globally there is evidence of variable collinearity [8].

Overall, summary of the OLS model in Table 5 shows that malaria is dependent on
elevation, distance to residence, distance to road, and NDVI. This is reasonable because
elevation influences many other variables as precipitation, temperature, slope and
aspect, therefore it directly or indirectly influences the widespread of malaria. Mean-
while, NDVI represents factors such as forests and crops. For epidemiology, forestland
is a good place for the development of malaria [32]. Distance to residential area and
distance to roads are also explained by the activities of Central Highland people of the
central highlands who have the custom to go into forests for cultivation or cutting
wood, they move back and forth between regions, provinces, even across Cambodia
borders for months and sometimes sleep in the forest. These people are at higher risk of
malaria infection than the others [15]. Therefore, we can see that the area outside the
residence, away from the main roads and close to the border have a higher incidence of
malaria than normal.

Table 4. Estimated regression coefficient for OLS model

Variables Coefficient Standard error t-value p-value VIF [c]

Intercept 1.604376 1.239738 1.294125 0.197158 —

DEM 0.001541 0.000597 2.578767 0.010645* 1.543405
DRe 0.000178 0.000124 2.032316 0.049665* 3.781569
DRo −0.000294 0.000146 −2.01361 0.045420* 1.918792
NDVI −1.736418 0.658739 −2.635972 0.009060* 1.194432

Table 5. OLS summary

Number of observations 209
Akaike’s Information Criterion (AICc) [d]: 714.086802
Multiple R-Squared [d]: 0.127098
Adjusted R-Squared [d]: 0.068905
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There are several different measures: The R2 is 0.127098 and the adjusted R2 is
0.068905. The R2 measures the proportion of the variation in the dependent variable
which is accounted for by the variation in the model which has possible values range
from 0 to 1. The adjusted R2 is a preferable measure since it contains some adjustment
for the number of variables in the model. In our OLS model, the value of R2 adjusted is
0.068905 indicates that it accounts for about 6% of the variation in the dependent
variable. This means this model has a substandard performance. There is a need to
consider another model.

Another measure for evaluating model fit is provided by the Akaike Information
Criterion (AIC) [16, 20]. Unlike the R2 the AIC measure the ‘relative distance’ between
the model that has been fitted and the unknown ‘true’ model [20]. Models with smaller
values of the AIC is better fit than other with higher AIC value. The AIC in this case is
714.086802.

3.3 Moran Index of Residual

Global Moran I is used to determine autocorrelation of input variables for OLS model
through interpretation of the residual.

I ¼

Pn
i¼1

Pn
j¼1

wijðxi � xÞðxj � xÞ

ðP
n

i¼1

Pn
j¼1

wijÞ
Pn
i¼1

ðxi � xÞ
ð4Þ

where N is the number of observation, x̄ is the mean of variable x, xi is the variable
value at location i, xj is the variable value at location j, wij is the spatial weight. Moran I
ranges from −1 (negative correlation) to +1 (positive correlation) (Table 6).

In this research, the Moran I value is 0.376422 indicating that the variables are
positively correlated. After the Moran I is computed, the Expected Index value will also
be generated using the following formula:

EðIÞ ¼ �1
ðn� 1Þ ð5Þ

where n is the number of observation. The Expected Index will also help to measure the
variance. The Expected Index is then used in comparison with the Observed Index. The

Table 6. Global Moran Index summary

Moran’s Index: 0.376422
Expected Index: −0.004808
Variance: 0.001222
z-score: 10.906042
p-value: 0.000000
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z-score (standard deviation) and p-value (probability) are calculated using this com-
parison, which will indicate whether this data is statistically significant or not. Z-score
is defined as follow:

zðIÞ ¼ I � EðIÞffiffiffiffiffiffiffiffiffi
VðIÞp ð6Þ

where

VðIÞ ¼ EðI2Þ � EðIÞ2 ð7Þ

V(I) is the variance. The value of z-score and p-value will also show whether or not
to reject the null hypothesis. For this tool, the null hypothesis states that the values
associated with features are randomly distributed [11]. The z-score and p-value in this
situation mean that the null hypothesis will be rejected, the data is highly clustered with
approximately 0% percent of being randomly distributed.

3.4 GWR and Variations of Coefficients

The results of Moran I OLS’ residual indicate the consideration of using GWR while
OLS can only explain 6% malaria collected data (R2 adjusted = 0.068905). There are
two main parameters required for GWR including bandwidth and kernel type. In this
research, we used a corrected version of AICc to automatically specify the bandwidth.
For the kernel, there are two possible choices for the Kernel type, FIXED and
ADAPTIVE. FIXED kernel type is used for observations which are regularly dis-
tributed across the research area while ADAPTIVE kernel is for clustered observation
[16, 20]. The Moran I have already indicated that data are clustered. Therefore, for
better fit and accuracy, and also an ADAPTIVE kernel will cover most applications
[20], an ADAPTIVE kernel was used. GWR function in ArcGIS (spatial statistic
toolbox) was used to generate GW model.

The results from GWR model are express in Table 7 and Fig. 4.

The results show a significant improvement of GWR compare to OLS: AICc
decreased from 714.09 to 689.42. The lower the AICc, the better performance the
model. R2 and R2 adjusted are highly improved indicate that GWR explained more in
malaria collected data than OLS (23.32%). However, the condition number is higher
than 30 in some locations which is considered to have collinearity between variables

Table 7. GWR summary

Standard GWR Compare to OLS model

Kernel type Adaptive
AICc 679.41602964841491 714.086802
R2 0.36841843019175602 0.127098
R2Adjusted 0.23326644249726569 0.068905
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Fig. 4. Local parameters for GWR
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[16]. The CN values shown in Fig. 5 demonstrate that the collinearity appeared near
the malaria hotspots.

3.5 Locally-Compensated Ridge GWR

One of the methods to reduce collinearity in the explanatory variables of a linear model
is ridge regression. The estimator of a ridge regression is altered to include a small
change to values of diagonal of the cross-product matrix known as ridge shown as k in
the following equation:

b ¼ xTxþ kI
� ��1

xTy: ð8Þ

The relationship between condition number and ridge parameter is shown as
follow:

k ¼ �1 � �Pð Þ / j� 1ð Þf g � �P; ð9Þ

Fig. 5. Spatial variations in condition number (CN) of coefficients
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where ε1, ε2… εP are the eigenvalues of the matrix (xTx), j is the condition number. In
locally-compensate ridge, the estimator for GW regression model is:

b ui; við Þ ¼ xTW ui; við Þxþ kI ui; við Þ� ��1
xTW ui; við Þy: ð10Þ

kI(ui,vi) is locally-compensated value of k at location (ui,vi). The weight W(ui,vj)
(weight at location i with coordinate value (u,v)) is calculated based on its distance to
the center of the kernel as follows:

W ui; við Þ ¼ 1� d ui; við ÞÞ2=b2
� �

; ð11Þ

where d(ui,vi)is the distance in meters from the center of the kernel to the data point and
b is the bandwidth [16, 30]. The same bandwidth of GWR can be applied to
LCR-GWR model. LCR-GWR bandwidth was run in R environment (bw.gwr.lcr in
GWmodel) then put into ArcGIS for generating intercept and coefficients. From the
results, the bandwidth 51 which has the smallest CV score was chosen for GWR model
with the CN threshold less than 30 (Table 8 and Fig. 6).

Variations maps of malaria occurrences
The results of LCR-GWR is improved in comparison with basic GWR with R2

adjusted = 0.506. The intercept and coefficient will then be used in ArcGIS along with
the DEM, distance to road, distance to residence, NDVI value run in the previous steps
to generate the spatial variation of malaria occurrence (Fig. 7). The malaria prevalence
map seems to be appropriate with the malaria occurrence near the border of Cambodia
and Binh Duong at the low terrain area.

The results of this study indicated that it is necessary to focus on the collinearity
among variables, especially variables that varied spatially. The regression models also
show that the influence of variables on the incidence of malaria is reasonable, espe-
cially with high mountainous areas with most people being ethnic minorities who have
different customs. OLS or standard GWR may explain some cases of malaria. How-
ever, when collinearity occurs between variables, the model becomes less precise and
predictive. LCR-GWR was used to reduce the local collinearity by using the
locally-compensated value of ridge with condition number less than 30. The results
showed a significant improvement within which the established model capable of

Table 8. Locally compensated ridge GWR summary

Locally-compensated ridge GWR
(LCR-GWR)

Compare to standard GWR
model

Kernel type Adaptive Adaptive
AICc 220.50814901236132 679.41602964841491
R2 0.63565935117477057 0.36841843019175602
R2Adjusted 0.50627226519768787 0.23326644249726569
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Fig. 6. Spatial variations of coefficients by locally-compensated ridge GWR
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explaining more than 50% of cases of malaria in the study area by considering factors
such as elevation, distance to roads, distance to residential areas and NDVI.

4 Conclusions

Variation of malaria hotspot is subject to change across the study area depending on
local physical and environmental conditions. In this paper, we proposed a new scheme
to analyze factors that affect outbreak of malaria using the LCR-GWR. Forty variables
that were likely to influence the distribution of malaria occurrences were selected and
filtered out by correlation to keep the most predictive power ones for modeling. The
remaining variables were analyzed by the ordinary least square, GWR and GWR
analysis with LCR term to result in the final variation map of malaria incidences in Dak
Nong province, Viet Nam. The results showed a significant improvement from OLS to

Fig. 7. Spatial variation of malaria occurrence
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GWR, and from GWR to LCR-GWR, where local collinearity was taken into con-
sideration. The local collinearity between variables significantly reduced the results of
GWR analysis with about twenty three percent of the malaria cases were explained
compare to nearly fifty percent of LCR-GWR. However, LCR-GWR can only be
necessary when local condition number was found to be greater than 30 that indicate
the collinearity between variables. In addition, the results also support the fact that
NDVI, DEM, Distance to residence and Distance to road are the most controlling
factors to detect malaria hotspot in the study area. The local combination of the four
significant variables determined magnitudes in local community that exposures to the
diseases.

From the view of statistics, it shows that malaria occurrences in Dak Nong mainly
distribute in the low terrain and near the border of “malaria cradle” Binh Duong and
Cambodia. The application of statistics and regression model feature the advantage of
eliminating the human’s subjective thought but requires accurate statistical and large
enough sample size data. For malaria, the factors that affect the incidence of malaria are
very complex and vary in different areas. However, the regression model in this
research, especially LCR-GWR accounts for approximately half of the cases in the
study area. In this way to show, this tool is useful for the study of malaria in the future
in Vietnam and across the world in general.

As its name, GWR is much depended on the variation of local physical and social
condition. This method should be used in different geographical regions to validate its
predictive capability. On the other hand, since this study employed point locations of
malaria occurrences (because of data limitation), all aggregated social factors were
removed from the analysis that might reduce accuracies of prediction map. There is a
possibility to divide the study area into small sub parts to take explanatory capability of
social statistics factors such as occupation or livelihood behaviors. The spatial variation
in scale selection between point and polygons might produce new insight into malaria
hotspot study.
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