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Abstract. Underground mining-induced land subsidence may cause serious
damage to engineering structures (e.g., buildings or roads) therefore, it is nec-
essary to predict the subsidence with the highest possible accuracy. This paper
proposes a new method for estimating preliminary values of the parameters to
the modified Knothe time function, resulting in an improved capability of pre-
dicting land subsidence. A computational tool incorporating the proposed
method has been developed to practically and numerically facilitate the
time-series prediction of mining subsidence. A case study at the Mong Duong
colliery at Quang Ninh province in Vietnam was considered and back-analyzed
to validate the capability and accuracy of the tool. The accuracy of the subsi-
dence prediction was evaluated using Root Mean Square Errors (RMSE), Mean
Absolute Errors (MAE), and the Correlation coefficient (r). The result showed
that the proposed method predicted reasonably well both the calibrating dataset
(RMSE = 15 mm, MAE = 13 mm, r = 0.996) and the validating dataset
(RMSE = 44 mm,MAE = 37 mm, r = 0.857). Based on the comparison results,
it is concluded that the developed tool incorporating the proposed method is
suitable for predicting underground mining-induced land subsidence.
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1 Introduction

The rapid growths in the world’s population and economy have resulted in continuous
increase in energy and mineral consumption. To meet this high demand for minerals,
mining activities have continuously and rapidly expanded over time, all over the world.
Underground coal mining can cause serious damages, as a result of mining-induced land
subsidence, to engineering structures such as buildings, roads, railways, and drainage
systems [1–3]. It is important to note that mining-induced land subsidence can occur not
only during active mining but also several decades after the completion of active mining.
In Vietnam, damage caused by mine surface deformation is commonly observed and
occurs in most of all underground mining areas, especially at the Quang Ninh coal basin
[4]. For example, in 1991 mining-induced subsidence caused huge damage to the road at
the Deo Nai mine [5]. In 2000, a subsidence observed at the Mao Khe coal mine caused
serious damage for the fan station [4]. Several residential houses were heavily damaged
and the 110 kV electricity line was destroyed because of a subsidence at the Mong
Duong colliery [6, 7]. It is concluded that one of the main reasons of causing the above
land subsidence phenomena in Vietnam was the lack of practical and sophisticated
methods for accurately predicting mining-induced land subsidence.

Many methods have been developed and continuously improved to better predict
and estimate land subsidence due to mining activities [1, 8, 9]. According to Bahuguna,
et al. [10], subsidence prediction methods can be basically classified into three cate-
gories: empirical techniques, influence function and theoretical modelling. Among
them, the Knothe time function (KTF) is considered to be the most effective and widely
used [11, 12]. The major advantage of the KTF method is that it can describe the process
of surface subsidence in time through a set of differential mathematical equations
[13, 14]. By using the KTF method, land subsidence over time due to underground
mining activity can be simply predicted through a subsidence curve. However, land
subsidence is generally a complex and nonlinear process so that the application of the
original KTF method is not able to correctly capture the whole process of surface
subsidence. Wang [15] reported that the prediction accuracy of the KTF models could be
low in many cases. Therefore, some modifications of KTF have been proposed [16–18],
i.e. a modified function adding a constant parameter to the KTF [19]. Although many
recent modified KTF models have made it possible to accurately predict land subsidence
over time, it is still difficult and time-consuming to properly determine the function
parameters due to the fact that these parameters heavily depend on the estimation of their
preliminary values [19]. Therefore, research works are still needed to further improve
the prediction accuracy of mining-induced land subsidence.

This research addresses the aforementioned limitation by proposing a new method
for estimating the preliminary parameter values of the modified KTF model proposed
by Chinh [19], leading to an improved capability of predicting land-surface subsidence.
The proposed method was further used to develop a computational tool for time-series
prediction of mining subsidence. It is noted that the computational tool was developed
using Visual C.net programing language. A case study of the Mong Duong colliery at
Quang Ninh province in Vietnam was considered to validate both the current model
and the computational tool. The geodetic time-series data of mining subsidence
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measured from 2013 to 2015 with 12 epochs were used as input to the modified KTF
model. The subsidence prediction accuracy was assessed using Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and the Correlation coefficient (r).

2 Methodology

2.1 Knothe Time Function and Its Modified Version

According to Knothe [13, 14], the relationship between a time parameter and land
subsidence can be established using the following equation:

dg tð Þ
dt

¼ b gmax � g tð Þ½ � ð1Þ

where b is a parameter describing the influence of geological and mining conditions on
the subsidence progress with time; gmax and g tð Þ are the final subsidence and the
subsidence at the time t, respectively.

By integrating Eq. 1 with respect to t, the KTF model for surface dynamic sub-
sidence could be written as below:

gp tið Þ ¼ gmax: 1� e�bti
� � ð2Þ

It is observed from Eq. 2 that there is only one parameter b which plays a sig-
nificant role in predicting surface subsidence. This limitation could result in low pre-
diction accuracy when using the KTF model in many cases [15]. To improve the
prediction, Chinh [19] proposed a modified KTF model described as follows:

gp tið Þ ¼ gmax 1� e�b tið Þc
h i

ð3Þ

where gp tið Þ is the predicted subsidence of the ith epoch; c is the fitting parameter.
Literature review indicates that the preliminary value of c equal to 2 is commonly

assumed in various works [19]. The uncertainty in defining the fitting parameter c may
result in large errors in some complex land subsidence. In some cases, it is even
impossible to find c in a given dataset. Thus, the approach used for estimating the
preliminary c-value needs to be improved in order to better determine the parameter c.

2.2 Method for Determination of Preliminary Parameters

From Eq. 3, the relation between gp tið Þ and the measured value g tið Þ can be derived as:

gp tið Þ ¼ g tið ÞþVg tið Þ ð4Þ

where Vg tið Þ is residual value at the time ti. The model parameters gmax; b; c are
determined based on the least-squares principle using the following equations:

A Computational Tool for Time-Series Prediction 3



gmax ¼ g0max + dgmax
b ¼ b0 þ db

c ¼ c0 + dc

8><
>: ð5Þ

where g0max; b
0; c0 are the preliminary values of the modified KTF; dgmax; db; dc are the

residual ones.
Based on Eq. 4 and the system of Eq. 5, the residual equation can be rewritten as

follows:

Vg tið Þ ¼ gp tið Þ g0max þ dgmax; b
0 þ dbc0 þ dc

� �� g tið Þ ð6Þ

To estimate preliminary values for g0max, b
0, c0, the following steps are proposed:

Rewriting Eq. 3 as follows:

1� g tið Þ
g0max

¼ e�b0 tið Þc0 ð7Þ

By taking the natural logarithm of the both sides of Eq. 7, the modified KTF model
will become:

ln 1� g tið Þ
g0max

� �
¼ �b0 tið Þc0¼ [ tið Þc0¼

ln 1� g tið Þ
g0max

h i
�b0

ð8Þ

At the iþ 1ð Þth epoch, Eq. 8 is formed as:

tiþ 1ð Þc0¼
ln 1� g tiþ 1ð Þ

g0max

h i
�b0

ð9Þ

Dividing Eqs. 8 and 9 gives the following equation for estimating preliminary
parameter c0:

c0 ¼ log ti
tiþ 1

ln 1� g tið Þ
g0max

h i

ln 1� g tiþ 1ð Þ
g0max

h i
2
4

3
5 ð10Þ

The value c0 from Eq. 10 is substituted into Eq. (8), then b0 can be determined as
follows:

b0 ¼ �
ln 1� g tið Þ

g0max

h i

tið Þc0
ð11Þ

4 N.Q. Long et al.



2.3 Computation of Modified KTF Parameters

If the preliminary parameters are estimated sufficiently close to their desired values then
the residuals are small. In this case, the residual value Vg tið Þ in Eq. 4 can be approximated
by a Taylor series expansion, retaining only the first order terms of @gmax , db, dc as follows:

Vg tið Þ ¼ gp tið Þ g0max; b
0; c0

� �þ @gp tið Þ
@gmax

� 	
0

dgmax þ
@gp tið Þ
@b

� 	
0
db

þ @gp tið Þ
@c

� 	
0
dc � g tið Þ

ð12Þ

where @gp tið Þ
@gmax

¼ 1� e�b0 tið Þc0 ; @gp tið Þ
@b

¼ gmax tið Þc0e�b0 tið Þc0 ;

and @gp tið Þ
@c

¼ gmaxb
0:e�b0 tið Þc0 tið Þc0 ln tið Þ

The residual between the predicted values and their corresponding measured values
is expressed as follows:

‘i ¼ gp tið Þ g0max; b
0; c0

� �� g tið Þ ð13Þ

Finally, the observation equation is derived as:

Vg tið Þ ¼ @gp tið Þ
@gmax

� 	
0

dgmax þ
@gp tið Þ
@b

� 	
0
db þ @gp tið Þ

@c

� 	
0
dc þ ‘i ð14Þ

The coefficients of Eq. 14 are symbolized as @gp tið Þ
@gmax ; b; c


 �
0
¼ aij, with i ¼ 1�n and

j ¼ 1; 2; 3, corresponding to the unknowns @gmax , db, dc. By doing so, a system of linear
equations in Eq. 14 can be represented in matrix form as follows:

V ¼ A:XþL ð15Þ

where A is the design matrix, V is the vector of discrepancies, L is the vector of
observations, and X is the vector of unknowns.

A ¼
a1;1 a1;2 a1;3
a2;1 a2;2 a2;3
. . . . . . . . .
an;1 an;2 an;3

2
664

3
775; V ¼

V1

V2

. . .
Vn

2
664

3
775; L ¼

‘1
‘2
. . .
‘n

2
664

3
775; X ¼

@gmax
db
dc

2
4

3
5: ð16Þ

The following normal equation can be derived from a set of different observation
equations:

ATA
� �

Xþ ATL
� � ¼ 0 ð17Þ

X ¼ � ATA
� ��1

ATL ð18Þ
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Considering these derived X values, parameters gmax; b; c of the prediction model
can be firstly determined by Eq. 5, and then Eq. 3 is used to calculate the subsidence
value of the ith epoch.

2.4 Accuracy Assessment

Accuracy of the current prediction model is assessed by comparing the predicted result
with the measured data in terms of Root Mean Square Error (RMSE), mean absolute
error (MAE) and correlation coefficient (r). The lower RMSE and MAE together with
the higher r indicate the more accurate prediction of the model. More specifically, the
following equations are used:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
gp tið Þ � g tið Þ½ �2

r
ð19Þ

MAE ¼ 1
n

Xn

i¼1
g tið Þ � gp tið Þj j ð20Þ

r ¼
Pn

i¼1 g tið Þ � �gð Þ gp tið Þ � gpð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 g tið Þ � �gð Þ2�Pn

i¼1 gp tið Þ � gpð Þ2
q ð21Þ

where g tið Þ and gp tið Þ are the measured and the predicted values at ti; �g and gp are the
corresponding medium values of measured and predicted values, respectively.

3 Computational Tool for Time-Series Prediction of Mining
Subsidence

Based on the modified KTF method proposed in the Sect. 2, a computational tool for
time-series prediction of mining subsidence was developed. It is noted that the tool was
programmed in Visual Studio.Net 2013 Ultimate, an object-oriented programming
language with Visual Studio DevExpress Universal 15.2.7 library package [20]. The
tool can run in different versions of Microsoft Windows including the version 7, 8 and
10 and it is also compatible with both 32- and 64-bit environments.

Figure 1 presents a workflow for the determination of the preliminary parameters
(g0max; b

0; c0) of the modified KTF method. A workflow for the computation of the
corresponding final parameters (gmax; b; c) based on the least-squares principle and
accuracy assessment (RMSE, MAE and r) is illustrated in Fig. 2.

A Graphic User Interface (GUI) of the computational tool is shown in Fig. 3. Input
data could be either entered directly through the GUI or imported from text or excel
files. The computed results including the model’s parameters and the predicted values,
are stored both in txt and csv formats, which make them easier to be shared with and
edited by other softwares. Furthermore, measurement data and prediction results can be
exported/converted into a graphical file in Drawing Exchange Format (DXF). DXF is a
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CAD data file format developed by Autodesk for enabling data interoperability
between AutoCAD and other programs [21].

4 A Case Study of Mining Subsidence at Mong Duong
Colliery, Quang Ninh Province in Vietnam

4.1 Description of the Study Site

Mong Duong colliery, a typical coal mine in Vietnam with more than 35-year oper-
ation, is selected as a case study for validating the modified KTF model. This mine is
located about 10 km north of Cam Pha city, as shown in Fig. 4. The mine boundary
was taken according to the Decision No. 1122/QD-HDQT dated on May 16, 2008, by
the Chairman of the Vinacomin’s Board of Directors on Approving the master plan for
coal mines boundary of the Vietnam National Coal - Mineral Industries Holding
Corporation Limited.

From explorations’ results, there are in total 22 coal seams in the Mong Duong
colliery. To date, the coal is excavated in various seams and multi-layer seams, mainly
varying from −100 m to −250 m below the sea level. They consist of seams H10, G9
in the East Wing, G9 in the West Wing, G9 in Vu Mon area, II (11) and K8, etc. There
are two shafts including the main shaft and the auxiliary shaft, which were built
correspondingly from +18 m and +6.5 m down to −97.5 m.

Fig. 1. Workflow used for estimating preliminary parameters of modified KTF
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Underground mining activity in the Mong Duong colliery has resulted in various
subsidence problems that caused several damages to residential areas, the main shaft,
the wind turbine station, the 110/35/6 kV substation and office buildings on the mine
surface.

4.2 Data Collection and Processing

To assess and forecast potential land subsidence due to the underground mining at the
Mong Duong colliery, a monitoring network has been established in the G9 BMD
seam, where the Face No.2 was mined. The G9 BMD seam has an average thickness of
2.5 m with an average slope angle of 35o. The Face No.2 was commenced in the
second quarter 2013 and finished in second quarter 2014. The panel was prepared along
the seam strike and retreated, cutting coal by blasting and supporting the roof using
hydraulic props (Fig. 5).

Fig. 2. Workflow used for the computing final parameters of modified KTF
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The measurements were carried out using Leica NAK2 automatic level instrument
shown in Fig. 6. The observation network consists of 2 leveling lines - the line P was
established in the strike direction and the line D is along the dip direction of the Face

Fig. 3. Illustration of Graphic User Interface of computational tool

Fig. 4. Mong Dong colliery location
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No.2, as illustrated in Fig. 7. The land subsidence data have been continuously mea-
sured from 2013 to 2015 with 12 repeated epochs. The time interval between two
successive epochs is approximately 2 months. Measurement precision satisfied the
Vietnam National Specifications on Mine Surveying (closed loop misclosure is less
than 20

ffiffiffi
L

p
mmð Þ [22] with L is the total length of the leveling route.

Fig. 5. Face No.2 with hydraulic props (photo
courtesy of Long Quoc Nguyen)

Fig. 6. Leica NAK2 level

Fig. 7. The monitoring lines at the G9 BMD seam of the Mong Duong colliery
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In order to detect and eliminate outliers, the difference in level between two adjacent
benchmarks is determined from both forward and backward measurements. The differ-
ence in level between benchmarks is then taken equal to the average of the two values.

The monitoring observation results obtained from 16 benchmarks on the line P (see
Fig. 7) were considered in the evaluation of the suitability of the algorithm used for
determining the model parameters as well as the prediction accuracy of the modified
KTF model. The datasets are summarized in Table 1.

4.3 Land Subsidence Model and Its Performance Assessment

The data in the first nine cycles of 16 points were used to calibrate the subsidence
model, whereas the remaining data (i.e. the data of cycles 10, 11 and 12) were used for
validating the model as well as confirming its predictive capability. The algorithm
described in Sect. 2 was applied to determine the parameters of the subsidence model
for each point for the first 9 cycles. The calculated parameters are given in Fig. 8. The
results show that the model performs well with the determining parameters set.

In this study, the authors did not use observation points such as points 1, point 2,
point 19, and point 20 either to build the prediction model or to evaluate prediction
results. As those points lying at the beginning and at the ending of monitoring
lines, their settlement rules are not stable, hence, their subsidence curves do not match
the curve for the modified KTF model.

To validate the predictive ability of the model, these calculated parameters have
been used to predict the subsidence of points at the remaining cycles, i.e., the 10th, 11th

and 12th cycles. The subsidence calculated from the model was subsequently compared

Table 1. Measured subsidence (mm) with time from 16 benchmarks on line P

Point name Cycle
1 2 3 4 5 6 7 8 9 10 11 12

P3 0 −1 −2 −3 −5 −9 −12 −14 −15 −17 −18 −18
P4 0 −2 −6 −11 −18 −26 −30 −35 −37 −40 −42 −43
P5 0 −7 −12 −21 −38 −55 −63 −71 −89 −96 −105 −111
P6 0 −23 −67 −85 −123 −153 −178 −195 −213 −235 −256 −279
P7 0 −17 −52 −108 −192 −258 −345 −412 −472 −541 −578 −610
P8 0 −22 −62 −129 −198 −278 −369 −452 −516 −589 −637 −664
P9 0 −25 −67 −115 −192 −342 −429 −558 −638 −725 −761 −797
P10 0 −24 −77 −102 −183 −317 −416 −547 −617 −694 −740 −783
P11 0 −15 −54 −109 −165 −303 −441 −569 −639 −711 −762 −814
P12 0 −8 −37 −86 −144 −287 −414 −528 −638 −677 −731 −805
P13 0 −5 −16 −64 −121 −229 −358 −506 −598 −659 −719 −777
P14 0 −4 −15 −43 −113 −197 −339 −452 −528 −558 −613 −655
P15 0 −2 −6 −14 −53 −94 −207 −336 −458 −535 −598 −644
P16 0 −1 −2 −9 −27 −70 −147 −216 −316 −385 −432 −471
P17 0 0 −1 −2 −15 −38 −95 −155 −233 −278 −302 −359
P18 0 −2 −3 −4 −12 −24 −49 −79 −107 −132 −158 −173
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with that of observations with a deviation between predicted and monitoring data
calculated by Eq. 22.

Di ¼ gi � g0i ð22Þ

where Di is the difference between predicted value and its respective measurement of
the ith point; gi is the subsidence calculated from measurement data and g0i is the value
of prediction.

Small deviations shown in (Fig. 9) confirm a good model obtained. The biggest
errors in prediction is at the point P9 with predicted errors at epochs 10, 11, 12 are

Fig. 8. Model parameters and its accuracy

Fig. 9. Differences between measured and predicted values
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−30 mm, −72 mm and -98 mm, respectively. These errors correspond to 4%, 8.6%,
11% of the actual subsidence magnitude of the corresponding measurement epochs.
These errors are proportional to the temporal separation between the time of prediction
and that of the last stage used for building prediction model, i.e., the 9th epoch. More
strictly, the longer the temporal separation is, the higher error in prediction we get.

Statistical indicators including RMSE, MAE, RMSE=gmax, MAE=gmax and r were
used to assess the accuracy of the modified KTF model in predicting subsidence

Fig. 10. Assessment of predicted results

Fig. 11. Comparison of prediction and observation curves of point P9
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monitored along the considered line P. The validation dataset is given in Fig. 10. It can
be seen from the calculated results that the largest RMSE and MAE values are 44 mm
and 37 mm, respectively, which are actually equivalent to 7% and 6% of maximum
subsidence. The largest RMS/gmax and RMS/gmax values are obtained at point P18,
which equal to 14% and 12%, respectively. This can be explained by the fact that this
point is close to the trough subsidence edge so that the rule of point settlement has not
been well-defined.

Figure 11 plots a comparison of the anticipated curve of point P9, which is cal-
culated from Eq. (3), with the curve of actual values. It is seen from the figure that the
model is able to predict very well the surface subsidence curve observed in the Mong
Duong colliery.

The correlation coefficients between predicted and measured values for both cases
of parameters determination and subsidence prediction are plotted in Fig. 12. With high
values in the building model and the prediction results, it indicates that the predictive
model is consistent with the measured data.

5 Conclusion

This research proposes a new method for calculating the preliminary values of the input
parameters of the modified KTF model proposed by Chinh [19]. The method is basi-
cally based on the least-squares principle and observation data, which results in a more
practical facilitation to the determination of model parameters. The computational tool
has been developed incorporating a friendly user-interface and more flexibility for
post-processing of the calculated results.

-900

-800

-700

-600

-500

-400

-300

-200

-100

0
-900 -800 -700 -600 -500 -400 -300 -200 -100 0

Pr
ed

ic
te

d 
va

lu
es

 (
m

m
)

Measured values (mm)

Point P9

Function (r=0.997) Prediction (r=0.995)

Fig. 12. Correlation between the measured and predicted values of point P9

14 N.Q. Long et al.



The functionality and accuracy of the tool were evaluated and validated against the
measured subsidence values at 16 monitoring points along the observation line P which
is located in the Face. No.2 at the Mong Duong colliery. The comparison result shows a
very well agreement between the model prediction values and their corresponding
geodetic monitoring data, where the largest RMSE and MAE are 44 mm and 37 mm,
respectively. The smallest correlation coefficient r is calculated equal to 0.857, which
indicates a high correlation between the monitoring measurements and their predicted
values. It is concluded that the developed tool incorporating the modified KTF model is
useful and suitable for predicting and evaluating potential mining-induced subsidence
in the mining industry. Thereby, the tool can support appropriate strategy to prevent
and minimize potential impact caused by land subsidence phenomenon.

A main limitation of this research work is that points lying at the beginning and at
the end of the observation line have been excluded from the calculation model as they
could have influenced by an irregular process of subsidence. The modified KTF applied
in this research, therefore, cannot represent the subsidence of these points over time.
More flexible prediction models are thus necessary.
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