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Abstract. The visualization of large volumes of data has been explored
in several knowledge domains, such as remote sensing, medicine, mete-
orology, biology, among others. In traditional data visualization tech-
niques, data is stored, processed and rendered locally on the client
machine, which may require expensive computational resources in terms
of storage space and processing power. This work presents and discusses a
methodology for out-of-core remote rendering of large three-dimensional
triangles meshes. Users are able to interact with the developed visualiza-
tion tool through requests sent to a server by directly manipulating the
data volumes on their own Web browser.

1 Introduction

Technological advances in acquisition and processing of large data volumes
have driven the development of applications in several fields of knowledge, such
as medicine, biology, remote sensing, entertainment, interactive broadcasting,
among others [4,14,16]. The continuous growth of data availability makes the
traditional visualization techniques more difficult to be processed locally on a
client machine, since they usually demand computationally expensive resources
to store, manipulate and display large volumes of data. On the other hand, data
remote rendering [5,7,21] has allowed expensive operations to be performed on
a server with high processing power and storage capacity, as well as resources
for sharing collaboration among multiple users through security mechanisms and
version control.

Current browsers implement the WebGL and WebSocket standards to allow
visualization of three-dimensional (3D) data and fast information exchange
between server and client. However, the implementation of a remote render-
ing tool on Web browser presents several challenges. The amount of memory
available in the client machine may not suffice for storing and manipulating the
data. Current WebGL standard (version 1) allows only for 16-bit identifiers [13],
which limits the display of meshes with up to 65,535 faces. In order to deal with
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large polygonal meshes (e.g. over 1 million faces), out-of-core techniques can be
used to partition the meshes into multiple clusters with progressive rendering.

This work describes a novel methodology for 3D mesh rendering on Web
using out-of-core strategy. From requests sent to a server, users are able to
manipulate and visualize large volumes of data in a fast and easy manner via
the browsing environment itself. Several benefits are offered to users from the
proposed system: (i) the approach eliminates the installation of special software
in the client machine, (ii) the solution uses only free and open source packages,
(iii) the server is responsible for executing the operations required by users,
which avoids the need for expensive resources on the client machine in terms
of memory storage and processing power, and (iv) the visualization results are
available from any device with Internet access.

2 Background

With the advances of computer systems and the popularization of Internet, users
now have access to multimedia information such as images, videos, audio and
texts in a fast and easy way.

The standard WebGL [20] has been proposed, which is an extension of the
application program interface (API) OpenGL for Embedded Systems (ES) for
browsers, both desktop computers and mobile devices. This standard allows the
rendering of various graphics primitives such as lines and triangles, as well as
the use of shader for light and shadow effects. It also allows volume rendering
through the use of raycasting algorithms.

WebSocket [9] is another important standard in the context of remote render-
ing, which allows bidirectional communication between two or more computer
systems. Client-server interaction can be performed without requiring a request
from the client, which is an important requirement for the visualization tool.

Another important issue in the context of visualization is the data struc-
ture [8], that is, the representation to maintain the mesh information to be
displayed. The mesh is basically composed of interconnected triangular faces.

The indexed mesh is one of the simplest data structures, where a table is
used to store the vertex coordinates and another table contains the faces, such
that each face indicates its vertex via indices. However, this structure does not
contain any information for adjacency queries, in constant time, of vertices and
faces, requiring to traverse the entire list of faces and vertices to obtain such
information.

The corner table representation [17] is based on the concept of corners, which
is a vertex-face association. Each vertex of a face is a corner. Each vertex is
referenced by 1 or n corners, where n is the number of faces which the vertex vi
belongs to. Thus, a vertex is referenced by n corners. This structure uses three
tables, one for the vertices with their spatial coordinates, one for the corner table,
and another for the opposite corners to allow for adjacency queries in constant
time.

Another representation, used in our work, is the laced ring [11], which is
based on the corner table. This data structure consists of a ring that traverses



458 T.F. Moraes et al.

all or the majority of the mesh vertices. The triangles are classified according to
the number of incident edges to the ring: T0, T1 and T2 are triangles with zero,
one or two edges incident to the ring, respectively. Triangles T0 are the minority
and are represented through the same structure as the corner table. The other
triangles have a more compact representation.

The previously mentioned data structures are known as in-core representa-
tions since they need to be fully stored in primary memory. On the other hand,
out-of-core representations allow only part of its structure to be in memory, such
that, other portions can be brought to memory when required, whereas other
ones are removed from memory when are no longer needed.

Yoon and Lindstrom [22] describe an out-of-core mesh representation on
clustering. Internally to the clusters, the same representation as the streaming
meshes is used. Prior to the clustering construction, a reordering of the mesh is
performed. In order to do that, they used the OpenCCL sorting algorithm [23],
reducing the problem in two dimensions to a one-dimensional problem. Subse-
quently, the clusters are compressed through the same operators as the process-
ing sequences [12]. When necessary, the groups are decompressed and the access
to faces and vertices is made using similar operators to the corner table. This
representation maintains topology information and allows adjacency queries in
constant time.

3 Methodology

The proposed methodology can be divided into two components: (i) construction
of the out-of-core mesh file and (ii) visualization of the resulting file. These
components are detailed as follows.

3.1 Construction of the Out-of-Core Mesh File

The data structure used in our methodology is the laced ring due to its advan-
tages: (i) it is compact, which helps reduce the frequency of page faults, the cost
of exchanging mesh portions among processors, and amount of required mem-
ory; (ii) it stores adjacency information, which is very important for smoothing
algorithms [18] and mesh simplification [19].

Initially, an in-core mesh file is loaded into memory and stored through an
indexed mesh structure. The file can be in PLY, STL or OBJ format. From this
file, vertices and faces of the mesh are extracted. The indexed mesh structure
is then converted to a corner table structure. This step is required for the con-
struction of the laced ring representation to allow adjacency information. The
corner table was chosen due to its similarities to the laced ring. From the corner
table, the laced ring representation of the mesh is built.

The generation of clusters is performed using the laced ring obtained in the
previous step. Each cluster has approximately the same size (the last cluster to
be created can be much smaller) and is identified by an integer starting from
0 to n − 1, where n is the number of clusters. This identifier is both used for
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indexing and for the retrieval of such clusters. Clusters are useful for maintaining
the idea of location, since vertices and adjacent triangular faces are kept in the
same cluster, which minimizes the need to transfer mesh blocks from the disk to
the memory.

A laced ring sorts its vertices and triangles, such that the construction of
clusters is reduced from a problem in two dimensions to one dimension. This
means that we can create a cluster for every n triangles, where n is the desired
size of each cluster. Triangles T0 that are not part of the ring will be inserted into
the cluster whose first T1 or T2 references it as adjacent. If there are triangles T0

adjacent only to other triangles T0, they will be inserted in the last cluster(s).
The clusters are then stored in a disk file. All the triangles of the cluster and

their vertices are stored in disk according to the laced ring structure. Vertices
that are used for triangles of different clusters are stored in more than one
cluster. That is, vertices can be duplicated in several different clusters. This is
done in order for the rendering of a cluster not to depend on other cluster(s).
The position of the clusters in the file and the location of vertices and faces
are indexed for further reading and retrieval of information. The indices are
stored in a hash table and written to a file along with the mesh of triangles. In
parallel, a version with fewer polygons of the mesh is created. This simplified
mesh is generated by a decimation algorithm, such as the quadric edge collapse
decimation [10].

3.2 Remote Rendering

Based on modern resources available in current browsers, such as WebGL [20]
and WebSocket [9], in conjunction with the client-server architecture, we devel-
oped a mesh viewer that does not require advanced computing resources. The
processing can be performed on the server, such that the client machine is
responsible for interaction with the environment and visualization of the results.
Figure 1 illustrates the main components of the proposed remote rendering.

Fig. 1. Main components of the proposed remote rendering.
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The server can be subdivided into three parts:

• reading and management of clusters: responsible for reading the out-of-core
mesh and loading the cluster as needed.

• HTTP server: responsible for the initial communication, which indicates the
model to be rendered. This component was implemented in Python program-
ming language in conjunction with the Web framework Flask [2].

• WebSocket communication: responsible for the WebSocket client communi-
cation. It also communicates with the reading component to obtain clusters,
convert the triangles and vertices of the clusters to the indexed mesh repre-
sentation to serialize them in JSON, sending the results to the client. It was
implemented in C++ programming language, version 11.

The client can be subdivided into two parts:

• WebSocket communication: responsible for communication with the server. It
requests new clusters to the server. After receiving the clusters, it deserializes
the clusters and send them for rendering. It was implemented in JavaScript.

• renderer: responsible for rendering the clusters. After displaying a cluster, it
requests a new cluster to the WebSocket communication. It is also allows the
user to interact with the camera to manipulate the model (for instance, zoom-
ing, translation, rotation). It was implemented in JavaScript in conjunction
with the threejs library [6], which is based on WebGL.

A server stores the models on disks, according to the methodology proposed
here. Client machines, such as desktop computers and mobile devices, connect to
the server, requesting the model to be rendered. Then, a connection is started via
WebSocket between the client and the server machines. From that moment on,
all client-server communication is done via WebSocket. The WebSocket is used
to maintain the connection, which optimizes the exchange of messages. Since it
involves a bidirectional communication, the server can send messages to a client
without a request from it. At the beginning of this communication, the server
sends:

• the amount of model clusters: the client needs this information to know how
many cluster requests are required.

• the model bounding box: for initial setup of camera, its position and focus.
• the mesh with fewer polygons to be rendered. The rendering process starts

with this simplified version of the mesh, such that the user can have a coarse
view of the final model. This mesh is also displayed when the user interacts
with the view camera. During the progressive rendering of the clusters, details
are gradually added to the mesh.

The server uses the initial information from the camera to sort the clusters.
Clusters are sorted by the distance from its center to the camera. This ordering
is important to first show user the visible portions of the scene, then parts that
are farther away and most likely hidden. This is an approximation since what is
more distant from the camera is not necessarily hidden. The cluster center does
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not necessarily indicate whether a cluster is in front or behind others, however,
the center is an available information and no access is required to the clusters.

To sort the clusters, first it is necessary to calculate the projection plane.
The camera contains the following information used in the projection plane
estimation: (i) its position and (ii) focal point position. A plane is mathematically
expressed as ax+by+cz+d = 0, where (a, b, c) is the normal vector that indicates
the plane inclination. Considering position p, focal point pf , normal vector pn
for the plane (a, b, c, d), the projection plane can be calculated as pn = vf − p,
where d is given by d = −(pn.p). After the calculation of the projection plane,
distance = |pn.cc+d|

‖pn‖ is applied, where cc is the cluster center.
The client is a Web browser, which can be a desktop or a mobile browser.

It requires only WebGL and WebSocket standards. A client can successively
request clusters. The transmission of clusters follows the order described pre-
viously. Before transmitting the cluster, the server serializes the cluster using
the JSON standard. After receiving the requested cluster i, the client deserial-
izes and renders i and requests the next cluster. The renderer is progressively
executed, where details are incrementally added to the low resolution model.
For this, the renderer does not clear the screen before rendering. The pixel with
lower z-buffer value will overwrite the pixel rendered in the previous cluster. The
screen is only cleared when the camera position is changed. When this occurs,
in addition to clear the screen, the client sends to the server the new position
and focal point of the camera. The server reorders the clusters and the client
restarts the request for clusters.

For performance purpose, the server retains a small part of the clusters in
cache. The cache keeps a small portion of the clusters in memory to avoiding
accessing the cluster in disk. There are several policies for managing cache. The
Least Recently Used (LRU) strategy keeps in cache the n most recently used
clusters.

4 Results

This section describes and discusses the experimental results obtained with the
proposed methodology. Its implementation can be divided into three parts: file
creation, server and client.

To validate the proposed methodology, the following experiment was con-
ducted: a browser client requests a model to the server and renders according
to the steps discussed in Section 3. During this experiment, the memory con-
sumption of both the client and server was measured. The purpose is to assess
the maximum memory consumption and rendering time on the client for each
model. This experiment was conducted on models with varying sizes (numbers
of vertices and faces). Table 1 shows, in ascending order, information on the
number of vertices, edges and faces for each model used in the experiment.

The creation of files was implemented in C++ programming language (ver-
sion 11). As input, it reads files in PLY format for the models available at
Stanford repository [1] and in DICOM format for the models available at OsiriX
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Table 1. Number of vertices, edges and faces for each triangle mesh. Buddha, Asian
Dragon, Thai Statue and Lucy models are available at Stanford repository [1]. Melanix
model, available at OsiriX repository [15], was obtained from the segmentation and
extraction of isosurface via marching cubes technique.

Model Vertices Edges Faces

Buddha 543,652 1,631,574 1,087,716

Melanix 1,454,869 4,364,613 2,909,742

Asian Dragon 3,609,455 10,828,359 7,218,906

Thai Statue 4,999,996 15,000,000 10,000,000

Lucy 5,012,704 15,038,106 10,025,404

(a) Initial rendering with few polygons (b) Final rendering

Fig. 2. Progressive rendering of the Asian Dragon model.

Fig. 3. Asian Dragon model rendered on a smartphone browser.

repository [15]. As output, this module has the out-of-core mesh and the neces-
sary indices.

Figure 2 illustrates the progressive rendering of Asian Dragon model on a
desktop browser. The initial rendering with few polygons and less details is
shown in Fig. 2(a), whereas the final rendering is shown in Fig. 2(b). Figure 3
illustrates the same model rendered on a mobile browser.

The experiment was conducted by varying the cluster size of each model and
the server cache size. The cache size indicates how many clusters are kept in
memory in the cache. Clusters with size of 5,000, 10,000 and 25,000 were evalu-
ated. Larger sizes were not used due to the WebGL limitation of only supporting
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Table 2. Measurements of maximum memory consumption for the server and the
client (browsers) and time to render the entire model on the browser.

Model Cluster Size Cache Size Server
max mem
(MB)

Browser
max mem
(MB)

Rendering
Time (s)

Buddha 5000 10 76.36 448.84 11.58

100 180.3 441.3 11.18

10000 10 125.18 448.22 10.3

100 216.34 445.42 9.73

25000 10 278.48 479.97 9.5

100 336.26 476.3 9.16

Melanix 5000 10 85.16 489.43 34.88

100 172.55 489.5 35.63

10000 10 135.42 493.22 30.52

100 296.44 493.58 30.57

25000 10 286.4 524.71 28.96

100 485.72 534.55 28.68

Asian Dragon 5000 10 79.52 494.26 84.03

100 144.01 488.21 81.65

10000 10 131.39 510.1 73.78

100 256.36 500.89 70.37

25000 10 271.84 532.93 67.26

100 579.19 536.4 64.23

Thai Statue 5000 10 155.61 491.33 125.82

100 247.26 493.87 123.14

10000 10 209.99 507.04 109.84

100 404.2 500.16 105.06

25000 10 356.63 524.42 99.64

100 846.15 536.33 96.04

Lucy 5000 10 163.88 494.13 106.22

100 258.98 485.98 103.58

10000 10 209.72 502.05 97.62

100 405.57 503.39 95.09

25000 10 400.4 541.82 89.8

100 897.9 541.32 85.39

16-bit identifiers. Caches with size of 10 and 100 were used to determine their
influence on memory consumption and rendering time. The LRU policy was used
in the cache management for this experiment.
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We used the Firefox browser version 47 in the experiments. To perform a Web
browser automation, we used the Selenium tool [3]. The memory consumption
assessment was implemented in Python programming language. The experiments
were executed on a system with 2 Intel Xeon CPU E5-2640 2.50 GHz with 15 MB
cache and 32 GB main memory, running Ubuntu 16.04.

Table 2 shows the measurements of maximum memory consumption for the
server and client browsers, as well as the rendering time. It is possible to observe
the increased memory consumption on the server in the larger meshes, since
they have more index information kept in memory. This large consumption does
not occur on the client, because no index information is necessary. The use of
larger clusters results in greater memory consumption both for the server and
client machines, but less time rendering. The cache size has little influence on
the memory consumption on the client, such that the consumption difference
may occur due to browser optimizations. The cache size has influence, however
not significantly, in the rendering time on the client. The use of larger caches
reduces the need for disk reading by the server. On the server, the use of larger
caches results in greater memory consumption, reaching double the consumption
in the experiments. The rendering time for large meshes (Lucy and Thai Statue
models) is high, about 100 seconds. However, the use of progressive rendering and
cluster rendering ordering speeds up the results for the user. From the results, it
is possible to conclude that the use of larger clusters and smaller caches is more
cost-effective, demanding less rendering time and regular memory consumption.

5 Conclusions and Future Work

This paper described an out-of-core methodology for remote rendering of three-
dimensional triangle meshes directly on Web browsers. The developed tool
requires only a modern browser in the client machine that supports HTML5
language, WebGL and WebSockets, without the need for special software or
additional plugins, as in the case of VRML and X3D.

The data rendering performed directly in the client browser makes it sim-
ple for users since the process eliminates the use of advanced features on their
devices. The use of out-of-core techniques allows the visualization of massive
triangle meshes with a low cost memory consumption, which is not possible in
the conventional WebGL standard, enabling rendering on mobile devices.

Some directions for future work include the investigation of efficient tech-
niques for cluster compression and effective mechanisms for out-of-core level-of-
detail structures.
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