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Abstract. Automated cell nuclei determination of stained images is of utter-
most importance for diagnosis. In this work, we have proposed a novel efficient
and accurate image segmentation technique for densely clustered overlapping
cell nuclei. Firstly, we have extracted the cell body (foreground) from the
background using global thresholding followed by local thresholding. Then, we
have employed the fusion of seeded region growing technique and
level-set algorithm. The initial seed points need to be selected accurately and
precisely in order to generate appropriate outcomes from region growing
framework. Initial contours for level-set evolution relies heavily on an output of
this adaptive region growing approach and some morphological operations.
Finally, Global Gaussian distribution with several means and variances is
employed in an enhanced edge-based level-set approach for precise nuclei
segmentation. We have performed our analysis on Nissl stained EMF exposed,
and SHAM exposed cell images. The proposed framework is very much capable
of extracting the cell nuclei from stained cell images. Experimental outcomes
reveal that our approach has out-performed existing state of art techniques for
cell nuclei extraction and segmentation.

Keywords: Nissl staining + EMF and SHAM exposed - Global and local
thresholding - Seeded region growing and level-set approach

1 Introduction

Microscopic image analysis is an area for researchers when it comes to the domain of
cell biology [1-5] computations. Several techniques have already been developed. Still,
at the single cell level, the analysis of cell cultures is quite a task. Therefore, the
techniques capable of accurately analyzing the cellular phenotypes images at the single
cell level is the need of the hour as it plays a vital character in enhancing the treatment
of human diseases. So, the basic necessity of such analysis is precise and accurate cell
segmentation on the basis of intensity, morphology or texture. Therefore, several single
cell detection techniques have been put-forward. Amongst them, the simplest of the
methods rely on local or global thresholding which in most of the cases depends on
image intensity histogram. Such methods usually have petite computational constraints
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[6-9]. Some of the single cell segmentation techniques utilize inherent characteristics
of image intensity for cell detection [10]. Machine learning techniques have also
contributed a lot to such image analysis. But, when it comes to the complex spatial
arrangements, all these above-mentioned techniques failed to detect multiple cells. So,
a feasible way of overcoming the mentioned limitation could be to incorporate the
segmentation algorithms with the prior shape details regarding the objects to be seg-
mented. A common practice could be to fit defined rigid structures to datasets and
recognize the equivalency [11-15]. These approaches can deal with the overlapping
objects to quite an extent but fail completely when it comes to capturing the small
shape variations. Several studies have already been put-forward regarding the auto-
matic analysis of cell nuclei for the Immunohistochemistry (IHC) images. Active
contours have gained popularity over the years and are quite handy for medical image
analysis [16].

However, the conventional approach does not work satisfactorily to overlapping
nuclei segmentation. But, its derivatives seem to work well for certain complex sce-
narios. An active contour employed with level set algorithm has gained popularity for
nuclei segmentation of fluorescence images [17]. An unsupervised Bayesian classifi-
cation approach on mammary invasive ductal carcinomas has been utilized for nuclei
segmentation [18]. To segment the overlapping cells in breast cancer, an approach
utilizing single-path voting following fusion of level set algorithm and mean-shift
clustering has been employed [19]. Unsupervised clustering structure for nuclei seg-
mentation has been used in case of prostate cancer [19].

Even though these mentioned techniques yield satisfactory results, but when it
comes to the segmenting densely clustered cell nuclei, these approaches failed miser-
ably. Addressing such an issue is quite a challenging task because of several compli-
cations. Firstly, tissue sections and color stains are often not produced evenly because of
which separating the nuclei from the cluttered background is a cumbersome task.
Secondly, huge intensity swings in the nuclei make the segmentation of such cell images
difficult. Thirdly, there are always chances of under-segmentation because the
3-dimensional entity is being represented as 2-dimensional. The reason behind that is
different planes of histological sections may seem to be oriented and overlapped when
observed from a different perspective. Watershed algorithms are the most common
technique to segment the overlapping cell nuclei [20]. Although the conventional
watershed algorithm employs the regional minima as initial points which might result in
over-segmentation. So, rather than using regional minima as initial points, researchers
first detected the seeds and then employed those seeds as initial points [21, 22]. For
satisfactory operation of such approach greatly depends on precise detection of these
seeds. An iterative voting approach has been proposed to find the centers of cluttered
cell nuclei which in turn is used for efficient detection of these seeds [23]. Laplacian of
Gaussian (LoG) with distance constraints can also be used detect the seeds [24]. These
techniques yield satisfactory results. However, these techniques fail when heavily
clustered nuclei are there along with poorly defined boundaries.

In this paper, we have introduced a novel overlapping cell nuclei segmentation
technique of Histopathology images. Our approach is capable of segmenting the
heavily clustered and overlapped nuclei avoiding over-segmentation and
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under-segmentation at the same time. Initially, we have separated the foreground (cell
body) and background using global thresholding technique followed by local thresh-
olding approach. Secondly, we have employed the fusion of seeded region growing
method along with level set algorithm to segment the cell nuclei. The proposed method
has edge over the conventional techniques of nuclei segmentation. Segmentation
precision and computational time have been enhanced using this framework com-
prising of region growing and level-set approach. Some of them are (1) The results
obtained by the seeded region growing technique is automatically fed as an initial
contour to level-set approach; (2) Mean and variances Gaussian distribution are
embedded to level-set approach. The remaining portion of the paper has been struc-
tured as following. In Sect. 2, we demonstrated our proposed cell nuclei segmentation
technique and relevant theoretical knowledge. Results and discussion are explained in
Sect. 3 of the paper. In Sect. 4, we have stated conclusion from our end.

2 Methodology

Our proposed methodology
comprises of three primary
steps. The first step deals with
the classification of fore-
Initial §eeq ground (cell body) and back-
Detectiop ground. The second step deals
| with detection of initial seeds

)
7 Globg)

Thresholging 4 for region growing. Thirdly,
kef:.g‘:?d region growing is used as prior

l_ﬁ:eal Igorithm information for the initializa-
rsholding tion of level-set. Apart from

this, informatics regarding
Gaussian distribution has also
been availed to level-set. The
proposed algorithm flowchart
Fig. 1. Flow chart of proposed algorithm has been depicted in Fig. 1.
Let us discuss each one of
them in detailed manner.

2.1 Classification of Cell and Background

The intensity level of foreground that is the pixels possessing to the cell nuclei can be
separated from the background by employing global thresholding approaches [25]. But,
when it comes to the stained cell images, the mean intensity levels tend to under drastic
changes throughout the entire image background because of which nuclei border is
pretty much susceptible to be misclassified. Thereby, the global thresholding tech-
niques do not yield acceptable results. We have employed both global as well as local
thresholding approaches to counter this issue. Local thresholding method uses an
adaptive valley point value in local regions. Therefore, it can encounter the intensity
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variations through the background [26]. Local thresholding technique further processes
those pixels which are distinguished as foreground (nuclei) by global thresholding
approach. The thresholding accuracy is greatly influenced by window size of local
regions and step-size of the sliding window. The size of the selected window must be
greater than that of cell nuclei to efficiently extract the cells from the image (back-
ground). If the size of the window is more than that of nuclei, then it would lead to
under-segmentation. The same holds good for the opposite case too. So, it becomes
important to select proper window size. In Fig. 2, we have shown the results that
acquired using various window sizes. For the sake of analysis, we have empirically set
the window size to 60 x 60. The window size defines the linear horizontal movement
which is governed by the following relation,

1<d<s;

Where s is the window size while d is the linear horizontal movement. In Fig. 3, we
had demonstrated the results obtained when different horizontal distances were used. It
is pretty clear that when small horizontal distances are used, most of the nuclei pixels
are missed. Despite the fact that small distances work fine when it comes to the tracking
the borders of heavily clustered nuclei, but it fails miserably for weakly stained nuclei.
We have used the horizontal distance of 30 pixels. Once cell body is extracted from
image background. Now, we will find the seeds for proper functioning of region
growing technique.

(@) (b) (©) ‘ (d)

Fig. 2. Results obtained against various window sizes. ((a). Original image (b). Window size of
10 x 10 (c). Window size of 25 x 25 (d). Window size of 60 x 60)

Fig. 3. Results obtained against various horizontal distances for (a). 1 pixel (b). 10 pixels
(c). 15 pixels (d). 30 pixels
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2.2 Selection of Seed Points

The initial selection of seed points: The gray values of cell nuclei structures and its
adjacent anatomical structure’s gray values are indistinguishable. These regions have
small coverage area. To make the complex computation easy and the segmentation
more authentic, we only process a local area along with entire cell nuclei region and
some other regions. Primarily, we have selected the initial seed points manually from
the original image of cell nuclei. Then we get slice image having initial seed at the
center position. We have done shearing to reduce the disturbance of cell nuclei seg-
mentation because it will filter out the bulk of cerebrospinal fluid, white matter, and
gray matter. Slice images represents the features of cell nuclei better and hence make
the segmentation more accurate.

2.3 Region Growing Framework

From given initial seeds, the neighboring pixels having equivalent properties are
appended to grow the region. We have chosen standard deviation as the growth rule
corresponding to the special position of cell nuclei. It can be formulated as:

|Is(xay) - :useed| < Tthres = &0global (1)

Where, 1_s (X, y) is the slice image, p_seed is the mean intensity of current seed
points, o_global is the global standard deviation of the slice image, and ¢ is the weight
of o_global. All the connected blocks derived by the quad-tree decomposition, are
allowed to include due to this criterion, whose intensity does not differ from the seed
point intensity more than manually define threshold value. According to this exami-
nation, ¢_global can be formulated as:

1 P q 2
Oglobal = \/ Zx:l Zy:l (IY (X, y) - :useed) )

P xq
1 P q

ZIS(XJ)

Hseea =
p X q x=1 y=1
where, p X ¢ is the size of slice image and u,,,, is the mean intensity of slice image.
Pixels belonging to the 8-connected neighborhood of seed points satisfy the growth
criterion and add to the seed point set.

2.4 Morphological Operations

Group of nonlinear operations related to shape or morphology features of an image are
called morphological operations. Primarily, we have calculated the perimeter of the
homogenous region obtained by region growing framework. As a result, we get is not
exactly the same as the cell nuclei region. So, we have applied the level set method
developed from region growing method is applied to upgrade the output. The perimeter
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fitting has been done to gain the convex polygon which prevents falling into local
minima and further used to initialize the level set algorithm.

2.5 Level-Set Algorithm

We obtain some prior information from region growing and fuse global Gaussian
distribution information with the standard level set model to increase the result accu-
racy in detection of cell nuclei. Global information plays the beneficiary role for
regions having weak boundaries. Especially it is critical to minimize the sensitivity to
the initialization of the contour. From statistical view interpretation, the proposed
model fitting energy is the fusion of Li’s model and global Gaussian distributions
having distinct means and variances, respectively. The global Gaussian distribution
fitting energy can be formulated as:

boor =Y., [ logpeli(r)nk = 1.2 ()

where, Q; = in(C), , = out(C) and

\2
PlI() = e ( . ) @

where, 1, and oy are global intensity means and standard deviation, respectively.

Suppose, Q € R? be a two-dimensional image space and I : Q — R be a given gray
image. Assume that image domain segregated into two regions. These two regions
represent the two regions i.e. the inside and outside region of zero level ¢; i.e. Q; =
{¢p >0} and Q, = {¢ < 0}. We can rewrite the global Gaussian distribution fitting
energy function by using Heavside function H, as:

Voor((x) = | = logp (1) HAp()dr-+ | = logpall(r)(1 = H.(6(x))ds
1 7]
(5)
In this analysis, we have elucidated the energy function as follows:

E($(x)) = RT($(x)) + KKy ($()) + 15 ($(3)) + oo ($())
— 50 [ (180(0] = 1)%as
+K/§a )IAG () |dx+ﬂ/§H $(x))dx

+w[ /Q ~ logpi (I(r)) Hy(b(x))dx + /Q ~logpa(I(r) (1 — Hy((x)))dx
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By calculus of variations, it is interpreted that the parameters 1, and o7 that reduce
the energy functional in (above Eq. 6) satisfy the Euler’s Lagrange equation written
below:

[0 = oM nas =0

2 (7)
/(U% = (I(r) = m) )NkA,g((f)(X))dx =0
where, Ny (¢(x)) = Hy(¢(x)) and Noo(¢(x)) = 1 — Ho($d(x)).
From Eq. 7, we obtain;
fI Nk; )dx
= J Nio(d(x))dx (8)
7 = JU(r) - ﬂk)2)Nk,;;(¢(x))dx )

J Nica((x))dx

which reduce the energy functional E(¢) for fixed ¢.
Minimization of the energy functional E(¢) can be achieved by solving the gra-
dient decent flow equation given below with respect to ¢.

= n|ao - an(55) |+ xeoan (535 ) +55.00) - 0806 - )
(10)
where,
1 zlog(\/ﬁal)—l-% (11)
g2 = log (V210 + % (12)
H,(x) :% <1 + %arctan(g)) (13)
Ce(x) L (14)
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3 Results and Discussion

We have performed our analysis on the Nissl stained dataset which comprises of 64
EMF exposed images at 900 MHz and 56 sham exposed images. These Hippocampal
CA3 region images were captured under 60 x objective, i.e., 600 magnification. Female
Swiss albino mice of 6-8 weeks of age were selected and exposed to 900 MHz (Power
level +10 dBm, SAR 0.00831 W/kg) EMF exposure in GTEM cell for 120 days
(6 days/week, and 2 h/days, with 5 min break after every 30 min). Sham-exposed mice
were kept under the same condition without radiation exposure. These are courtesy of
Department of Life Science Engineering, Manipal University, Manipal, Karnataka,
India. We have used the window size of 60 x 60 pixels and horizontal moving distance
of 30 pixels. Both these parameters were found empirically. A steadfast and systematic
approach is required to find these parameters. It could also be an active area of research.
The experiments were performed upon Intel i7 ACER with 4 GB RAM and 3.4 GHz
processor operating under Windows 8 Pro. We have performed our algorithm on
MATLAB”© R2015a. The program can be executed on MATLAB platform.

In our proposed work, we have employed seeded region growing technique followed
by level-set algorithm to extract and segmentation the cell nuclei from histopathological
images. We have evaluated the flexibility of our algorithm on 64 EMF exposed images
and 56 sham exposed images. Moreover, we have compared our results with some of
existing conventional techniques and the results clearly reveals that our approach has
out-performed those techniques by quite a margin. The well-known techniques for cell
nuclei segmentation that are involved in the comparison are: Al-Kofahi et al. [24] which
was evaluated on FARSIGHT [28], publicly available iterative voting procedure [23],
conventional watershed approach on globally thresholded datasets [25] and extended
minima dataset (E-min) [27]. We have demonstrated the results in Table 1. We have
demonstrated the results of our proposed algorithm in Fig. 4.

Table 1. AS = Auto Segmentation, the number of segmented nuclei result. CD = Correct
Detection. OS = Over Segmentation. US = Under Segmentation. Miss = Miss Segmented
nuclei. FP = False Positive. AR = Average Accuracy Rate, the average correct detection rate.
OR = Overall Accuracy Rate, CD/GD (Ground Truth).

AS |CD |OS |US |Miss|FP | AR OR

Global [25] 902 661 14|203|379 | 20|51.7% | 53.4%
E-min [27] 923 | 784| 31| 76|368 | 31 60.8% | 60.5%
Voting [23] 808 | 440| 73|211|539 | 82|32.7% |36.4%
LoG [24] 1638 | 828 339 43| 45 |419|62.3% | 67.1%

Proposed technique | 1450 | 1058 | 51| 72|121 | 69 |82.8% | 81.3%

As far as performance evaluation is concerned, we have considered various mea-
surement criterions like false positive, missed nuclei, under and over segmentation and
correct detection. The number of false positive nuclei in the over-segmented regions is
defined as false positive. The number of cell nuclei that resides among the foreground
and under-segmented regions is defined as missed nuclei number. The number of cell
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Fig. 4. First column depicts original cell images, Second column shows cell body separated
from the background, Third column represents level-set framework output and Fourth column
depicts the final nuclei segmentation.

nuclei detected truly is defined as correct detection. We have evaluated this value and
represented in tabular for our proposed method as well as for existing in-class tech-
niques in Table 1. It is evident from the table that our proposed approach maintains the
balance amongst under and over segmentation besides providing significant correct
detections and minimal missed ones as compared to conventional techniques.

4 Conclusion

Cell nuclei quantification plays an important role for strategic therapy. The objective
approach is utter significance when it comes to the reduction of the subjective orien-
tation of quantification. In our work, we have proposed novel cell nuclei segmentation
technique for histopathological images. We have employed the Li’s framework by
involving various mean and variance Gaussian distributions into the level-set algorithm.
This prevents the boundary leakage issue in case if there are any low contrast borders in
our cell images. To address the issue of sensitivity, we have employed seeded region
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growing which is used to initialize the level-set procedure. Experimental findings on
large datasets also support our claim of being the best technique so as far as segmen-
tation of heavily clustered cell nuclei is concerned. The similar techniques in this class
need a lot of parameters to be calculated empirically. This work can be extended by
considering and addressing the changes in the shape due to staining to achieve better
segmentation outcomes.
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