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Abstract. Places are locations of special significance represented in spa-
tial memory. Place recognition is a central task in spatial cognition that
combines perception of local position information and ego-motion with
working memories of adjacent places and long-term memory codes of
the target place. In this paper, we examine the role of visual position
information and place recognition and thus attempt to link spatial cog-
nition to visual psychophysics. We present two experimental paradigms
for assessing the visual processing involved in the formation of memory
codes of place and the content of such memory codes. We also present a
maximum likelihood model of place recognition from distant landmarks
allowing detailed quantitative testing of the general assumptions. We
conclude that place recognition is based on a visual working memory
containing raw “snapshot” information as well as local depth maps of
surrounding landmark objects.

1 Introduction

1.1 Place Recognition

Place vs. Location. The concept of place, i.e. of locations of special signif-
icance, is central to the understanding of spatial cognition. Origins of spatial
memory in the animal kingdom are associated with a life-style known as central-
place foraging (Papi 1992) in which animals keep and remember a “home” loca-
tion from which they make excursions for feeding. Indeed, the representation
of this central place may be the simplest case of a spatial long-term memory
in the animal kingdom. Finding back to the central place can be based on vari-
ous mechanisms including search, laid-out trails (chiton), path integration (ants,
spiders, honeybees), or landmark-based matching (digger wasp, honey-bee). In
any case, the animal will have to know when the home is reached, in which case
some change in behavior will occur, e.g. the animal will decide to stop moving
or to start a final search routine.

In rodents and other mammals, multiple places or location in general are
thought to be represented in the activity of hippocampal place cells. For exam-
ple, Wilson and McNaughton (1993) demonstrate that the current location of
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a rat in a maze can be reconstructed from a population of ongoing place-cell
recordings, given that the firing fields of these neurons had been determined in
a previous measurement. Still, firing fields do not simply pave environmental
space in a homogeneous way. Rather, density and overlap of place cell firing
fields is increased at places which have an increased significance for the animal.
For example, Hollup et al. (2001) showed that in rats trained to find a hidden
platform in an annular watermaze, more firing fields are found in the vicinity of
the platform than in mid-water. Firing field density changes as the platform is
relocated.

In primates, place recognition also involves other brain regions, including
among others the parahippocampal place area (Epstein and Kanwisher 1998,
Epstein 2008). Places represented in the parahippocampal place area are discrete
entities characterized not just by their location (expressed e.g. by geometric
coordinates) but by invariant features such as landmark objects or the overall
geometrical layout of a scene.

Cognitive Graphs. Cognitive models of spatial behavior on the navigational or
way-finding scale are often based on places as a central data format or “spatial
primitive”. For example, the base level of Kuipers’ (2000) “spatial semantic
hierarchy” is formed by places which are recognized and approached by the
minimization of some measure of perceptual distance between the place and the
agent’s current location. The place representations are connected by action links
allowing the agent to travel from one place to the next. Tolman’s “means-ends-
field” (Tolman 1932) is also a graph-like structure in which the nodes are states
of the animal which may include the recognition of being at a particular place as
well as goals which the animal is currently pursuing. Again, the states are linked
by “means-ends-relations” allowing to plan state transitions. A developmental
argument for the relevance of places as a building block in spatial memory has
been presented by Siegel and White (1975). Graph approaches underly a large
part of the wayfinding literature in which routes are generally considered chains
of recognized places and actions, see for example O’Keefe and Nadel (1978),
Gillner and Mallot (1998), and Hartley et al. (2003).

Despite the central role of “places” in many representational formats of space,
other structures with similar roles may exist in spatial memory. One possibility
is the oriented “view” visible from a location. View-specific neurons have been
found in the primate hippocampus by Rolls et al. (1998) and have been used
as nodes for cognitive graphs e.g. by Schölkopf and Mallot (1995) and Gaussier
et al. (2002). Spatial graphs may also be composed of regional nodes representing
groups of places in a hierarchical scheme (Wiener and Mallot 2003) or patch maps
including a local reference frame (Meilinger 2008). Views, places, and regions
differ in the granularity of spatial representations. In the experiments reported
here, the extension of a place is mostly treated as an uncertainty, quantified by
a confusion area, i.e. the statistical error ellipse of the place judgments. A more
comprehensive theory of place recognition should probably treat the extension
as a property of a mentally represented place.
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Views, as well as places, as elements of a spatial ontology are associated with
a geometrical location in the sense that they are perceived when the agent is
located at or looking from this location. The situation is different for landmarks
and boundaries, which may also be elements of the spatial graph and associated
with specific locations, but which need not be reachable for the navigating agent.
In this paper, we consider reachable places which are encoded in memory during
an actual visit at this place and are recognized during subsequent encounters.
Landmarks and boundaries will show up only as descriptors of places, not as
nodes of the cognitive graph.

Fig. 1. Two approaches to place recognition

1.2 Models and Mechanisms

Figure 1 summarizes two basic approaches to place recognition. In the snapshot
approach suggested by Cartwright and Collett (1982), left part of Fig. 1, the
memory code for a particular place is closely related to the retinal image vis-
ible at the encoded place. Since this image may change substantially with the
illumination, the time of day or year etc. (Zeil et al. 2003), some preprocessing
is essential to yield a sufficient level of invariance. Such preprocessing of the
retinal image has indeed been suggested by Cartwright and Collett (1982), who
assume that the retinal image passes an edge detector before being stored as a
snapshot. Other preprocessing operations include detection of “landmark” pix-
els (Lambrinos and Möller 1997), sky-line detection (Graham and Cheng 2009;
Basten and Mallot 2010), average egocentric position of landmark objects
(“center-of-gravity”, O’Keefe 1991), local distance map derived from motion
parallax (Dittmar et al. 2010), etc. In any case, the actual recognition step
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is carried out as a comparison or matching operation between the stored and a
current snapshot, both preprocessed in the same way. Algorithms for this com-
parison operation include feature correspondence search (Cartwright and Col-
lett 1982), pixel-based root-mean-square minimization with and without image
warping (Franz et al. 1998) etc. For review see Möller and Vardy (2006).

In human spatial cognition place recognition can be based on snapshot-like
mechanisms (Gillner et al. 2008). However, it is quite clear that under nor-
mal circumstances, extra-retinal information provided by one or several working
memory stages will also play a role. These working memories contain informa-
tion from outside the current field of view and are updated upon observer motion
(Loomis et al. 2013; Burgess and Hitch 2005; Schindler and Bartels 2013; Röhrich
et al. 2014). They provide a description of the local spatial layout which may be
conceptualized as a local map or environment model surrounding the subject.
Behavioral experiments with configurations of isolated landmark objects show
that local charts of such landmark objects play a role in place recognition (Waller
et al. 2000; Pickup et al. 2013). Here, we will use the term “spatial appearance”
to characterize the spatial working memory of a place. Place codes for long-term
memory (LTM) will then be derived from the spatial appearance and recogni-
tion will be based on comparisons of such LTM codes with the current spatial
appearance (right part of Fig. 1).

While the idea of appearance-based place recognition does not seem to be
particularly controversial, it allows for a number of systematic questions that
may be used to structure the psychophysics of place recognition. These questions
are:

1. Depth of processing: which image processing steps are needed to extract the
place code from the raw retinal image? Possibilities include various early
vision operations (edge detection, parallax) as well as the recognition of more
abstract landmark structures such as the sky-line or recognizable objects.

2. Structure of the spatial working memory: which information is maintained
and used for place recognition? Possibilities include panoramic views, col-
lections of local views, objects localized in a local, egocentric but two-
dimensional map, three-dimensional spatial layouts, etc.

3. Mechanisms of comparison and decision making. These will depend on the
structure of the working memory and may include pointwise snapshot match-
ing, comparisons of local maps, identification of landmark objects, etc.

4. Structure of long-term memories of places. This includes the role of local
metric charts, geometric layout of he surrounding scene, and context from
larger representations of space.

1.3 Experimental Procedures

The classical place recognition experiment in animals has been developed by
Kruyt and Tinbergen (1938) in a study on digger wasps returning repeatedly to
each of a number of borrows in which a larva awaits feeding. In this case, the
place is selected by the animal and no learning or specific training is required
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during the experiment. Tinbergen and Kruyt (1938) marked a borrow by a circle
of pine cones and displaced this circle after the digger wasp had left from the
borrow. When returning, the wasp would search in the center of the displaced
circle, indicating that the cones were used as landmarks.

In the Morris water maze task for rodents (Morris 1981) a goal location is
rewarded by the fact that a rat can rest from swimming when it reaches the sub-
mersed platform in a water basin. Place learning in the water maze assesses both
the recognition performance and the learning speed. The experiments can last
for extended time, suggesting that a long-term memory of the place of the sub-
mersed platform is built and tested. For human subjects, various versions of the
Morris water maze have been realized in virtual reality. For example, Hamilton
and Sutherland (1999) used a virtual pool surrounded by two sets of landmarks
(A, B) to study blocking in landmark learning. When trained with both sets
together (A + B), subjects performed well even after one set was removed. How-
ever, when trained with one set only (A) and given the additional set B later,
removal of set A lead to performance loss, indicating that the landmarks B had
not been learned in this situation. Hort et al. (2007) adapted the water-maze
paradigm to humans using a circular arena of 2.9 m diameter with landmarks
projected variably by a beamer. This setup was used to demonstrate deficits in
spatial cognition associated with early stages of dementia.

In this paper, we will study place recognition by two different experimental
tasks. In the first one, “return-to-cued-location” (Gillner et al. 2008), a subject
in a virtual environment is presented with the visual surround visible from a goal
location. The virtual viewpoint tracker is then switched to a starting point from
which the goal has to be approached by interactive navigation in the virtual
environment. The task is similar to the tasks used in the geometric module
literature (Cheng et al. 2013), but goal places can occur anywhere in the maze.
Since the memory of the goal location is built during a brief inspection period
prior to the performance, the “return-to-cued-location” task addresses a working
memory of place. In the second paradigm, “incidental place learning” subjects
are required to navigate to a goal from different starting points, using routes
which all share a central crossing point. In the learning phase, this crossing
point is always passed, but never mentioned as a special point to remember.
In the test phase, however, subjects are explicitly instructed to navigate to the
central crossing point. This paradigm has the advantage that subjects have to
discover the central point themselves. It emphasizes spatial long-term memories.

The problem of place recognition is closely related to place learning, and
experimental paradigms will generally involve both performances. It is important
to note, however, that different learning schemes may lead to different place
representations. One respect in which these representations may differ is their
characterization as long-term or working memories. A second respect is place
selection which is arbitrary in supervised schemes such as the Morris water maze
or the walk-to-cues-location paradigm but may be influenced by the availability
of landmarks etc. in free place choice.
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2 Depth of Processing

Place recognition from visual cues involves the standard processes of early vision,
including among others the detection of image features and depth, the under-
standing of scenes, and the recognition of objects. Here we use stereoscopic
dynamic random dots to study the role of pure depth information in place
recognition. Results indicate that place recognition can be based on pure depth
information and (at least in our experimental environment) is not substantially
improved by cues from other visual sub-modalities such as texture or localized
objects (room corners).

2.1 Local Position Information

The recognition of places is generally thought to rely on a combination of land-
mark cues visible from the target place and spatial context such as traveled
distances from neighboring places (e.g., O’Keefe and Nadel 1978). For the land-
mark component, various types of “local position information” can be extracted
from the visual input and have been shown to play a role in place recogni-
tion. These types include barely processed “snapshots” (for review, see Gillner
et al. 2008) as well as visual information requiring higher amounts of image
processing such as landmark configurations (see next section), room geometry
and three-dimensional spatial layout (Cheng et al. 2013; Epstein 2008), or iden-
tified landmark objects (Janzen and van Turennout 2004). Visual depth, i.e. the
perceived distance to objects of the surrounding scene, is relevant for a num-
ber of these cues, especially if indoor-environments are considered. Here we use
psychophysical approaches from the study of early visual processes (stereopsis,
motion parallax) to investigate the role of perceived depth in place recognition
(Halfmann 2016).

2.2 Methods

Subjects and Procedure. 40 students from the University of Tübingen passed
a simple test for stereo vision and participated in this study. The experiments
were carried out in a virtual environment simulating a kite-shaped room with
edged or rounded corners. In the “return-to-cued-location task” (Gillner et al.
2008), participants were placed at one of three goal locations in the kite-shaped
room. In the following inspection phase subjects studied the local appearance
of the room by looking around and performing small translational movements.
They were then set back to a start position and used a joy-stick to return to the
goal. After indicating goal recognition by the button hit, subjects were moved
to the correct goal position, and the next trial started from there. In all, twelve
decisions were recorded per subject and condition, i.e. two cycles of all six pos-
sible transitions between the three goal locations. In the results reported here,
the virtual environment was presented with an Oculus-Rift stereoscopic head-
mounted display (HMD), but controls with a mirror stereoscope and monocular
viewing were also performed. In addition to the stereo disparities presented on
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b.

a.

right eye left eye right eye

Fig. 2. Sample view of the kite-shaped room arranged for free stereoscopic viewing.
For crossed fusion use leftmost columns, for uncrossed fusion use rightmost columns.
a. Texture condition. b. Dot condition (sample frame of the dynamic random dot
display). Both stereograms show the room with edged corners. Note that the texture
condition gives a much better stereoscopic impression that the dot condition. However,
in the actual experiment, motion parallax was present as an additional cue, leading to
a clear perception of the room layout.

the stereoscope, the HMD setup provided a higher level of immersion including
closed-loop movements of the head and body that might lead to better percep-
tion of structure-from-motion.

Stimuli and Conditions. Two factors, “visual cues” and “room shape”, were
varied in a full factorial design. In the cue-condition “texture”, rooms were
defined by a texture of large spots (about 10 cm diameter in the virtual environ-
ment) pasted to the room walls, floor, and ceiling as a wallpaper. This texture
provided stereo disparity, motion parallax upon observer motion, texture gradi-
ents and information about room corners (Fig. 2a). In the cue-condition “dots”,
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Fig. 3. Scatter plots of the decision points from 240 decisions (20 subjects × 12 deci-
sions per subject). a. Layout of the kite-shaped room with goal locations A, B, C,
and nearest-neighbor cells. Dimensions in meters. b., c. Edged corner room, d., e.
rounded corner room. Dot colors indicate goal positions A, B, C. Tokens indicate: +
true goal location, ◦ decision points within goal region (“correct decision”). ∗ decision
point outside goal region (“qualitative error”). Error ellipses are calculated over the
within-region decisions only and reflect one standard deviation. (Color figure online)
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Fig. 4. Absolute numbers of correct decisions (decisions inside goal region) out of a
total of 80 decisions per target (accumulated over all subjects). a. Edged corner room,
b. rounded corner room. Colors indicate goal locations A, B, C. Performance above
chance level defined by the relative area of Voronoi cell is highly significant for all cases.
(Color figure online)

surfaces were defined by dynamic random dots (Sperling et al. 1989) uniformly
distributed in the image plane and with a limited lifetime varying between 100
and 200 ms. Outdated dots or dots leaving the field of view were continuously
replaced so that the dot distribution on the screen was kept uniform. The dots
provided stereo disparities, a small amount of motion parallax (during dot life-
time), but no texture gradients (see Sperling et al. 1989). Room corners might
have been inferred from the depth information, but not from the dot distribution
itself (Fig. 2b). The cue conditions were performed in a blocked, within-subject
design (texture condition first).

Even if the example stimulus of Fig. 2b is properly fused, the structure of the
room is barely visible. In the experimental setup, however, the dots would start
to move as soon as the observer changes his or her viewpoint. In this situation,
the three-dimensional structure of the room becomes much clearer, since motion
parallax can be used.

We used two shape-conditions “edged”, and “rounded”, as shown in Fig. 3
(between subjects factor). These conditions were included to test the hypothesis
that the better defined corners in the “edged” condition provide better landmark
information than the rounded corners in the “rounded” condition, predicting a
superior performance in the “edged” condition.

2.3 Results

Figure 3 shows the decision points in the four conditions, accumulated over all
subjects. Decision points scatter about the goal positions with a moderate vari-
ance, and variance is not substantially different in the four conditions. We also
find a fair number of “qualitative errors” in which the subjects choose a place
closer to one of the non-goals than to the current goal. The respective nearest-
neighbor cells (Voronoi tessellation around goal points) are also indicated in
Fig. 3a. These errors are equivalent to the “rotation errors” discussed in the
geometric-module literature (see Cheng et al. 2013 for review). Figure 4 shows
the number of correct decisions for the various conditions, again accumulated
over all subjects. Note that the numbers given there are absolute counts out of
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80 trials and do therefore not carry error bars. If subjects would ignore the visual
information, the chance level for choosing a decision point in the correct Voronoi
cell would be about 33% compared to an average recorded performance rate of
about 91% shown in Fig. 4. A binomial test with chance level as null hypoth-
esis reveals high significance (p < 0.001) in all cases. No significant differences
between conditions were found.

A comparison with the stereoscopic and monocular viewing conditions (data
not presented in this paper) shows similar results. Performance is well above
chance even for the monocular condition, albeit slightly poorer than in the HMD-
data reported here.

2.4 Discussion

The results indicate that subjects can use pure depth information as is provided
by dynamic random dots to recognize places in a room. Additional texture cues
providing more reliable depth information seem to lead to some improvement,
which, however, is not statistically significant. This is even more surprising since
texture cues provide still another cue for place recognition, i.e. snapshot match-
ing. Indeed, since the texture was “painted to the wall”, the subjects might have
tried to remember the pattern of black and white wall patches appearing at each
goal location and try to match it to their memory when they return. If they did
use this strategy, it did not lead to a substantial improvement in performance.
The sharpness of the corners of the room (“edged” vs. “rounded” conditions) do
not seem to play an important role in self-localization, indicating that subjects
rely more on the distances to walls than to the corners. Overall, the results fit
nicely to the idea that places are represented by a local map of the environment
which is updated as the subject moves around (Byrne et al. 2007; Loomis et al.
2013; Röhrich et al. 2014).

3 Place Recognition from Distant Landmarks

In this section, we present experimental data and a probabilistic model of
place recognition from a configuration of distant landmarks surrounding a goal.
The model assumes that landmark positions are perceived with hyperbolic dis-
tance compression and added noise, depending on current observer position.
Position-dependent recognition rate is modeled as the likelihood of perceiving
the expected (stored) landmark configuration from each position. The model
reproduces key features of experimental results including a systematic localiza-
tion bias towards the most distant landmark, the shape and orientation of the
error ellipses, and effects of approach direction. We conclude that place recog-
nition is based on a comparison between a place code (landmark distance and
angles) and a working memory of surrounding space suffering from systematic
depth distortions and distance-dependent drop in resolution.
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Fig. 5. Experimental setup for Experiment 2. Left: Aerial view of pond and plus-shaped
bridge with a start and a goal location. In the experiments, four start and goal locations
close to the ends of the bridge arms were used in all possible combinations involving
a left or right turn at the decision point (bridge center). Four landmark objects can
be seen in the four quadrants defined by the bridge. Top right: Subjects’ view during
learning phase. Note the landmark objects hovering above the pond. Bottom right:
Subject’s view during test phase. Only the landmark objects remain visible while the
pond and bridge are covered by fog.

Fig. 6. Position choices for three landmark configurations. The landmarks are shown
with their actual position and color. a. Standard configuration (20 subjects, 954 deci-
sions), b. Parallelogram configuration (16 subjects, 761 decision), c. Peaked configura-
tion (16 subjects, 754 decisions). The error ellipses are displaced from the goal (control
and peaked condition) and elongated in the direction of the most distant landmark.
See Lancier (2016).

3.1 Summary of Experimental Data

The accuracy of the place recognition in an open environment comprising four
distant, distinguishable landmarks was studied in a behavioral experiment with
human subjects navigating a virtual environment (Fig. 5). The environment
included a plus-shaped bridge crossing a pond and four colored spheres hov-
ering in mid-air above the pond, one in each quadrant defined by the bridge
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Fig. 7. Detailed decision points for the data appearing in Fig. 6. a. Standard config-
uration (20 subjects, 954 decisions), b. Parallelogram configuration (16 subjects, 761
decision), c. Peaked configuration (16 subjects, 754 decisions). The read bar marks the
mean deviation from the bridge center (“bias”); it was significantly different from zero
for the standard and peaked conditions (Hotelling’s T-Square test).

arms. Subjects started at one bridge entry and had to find a goal that involved
either a left or a right turn at the bridge center (“decision point”). All possible
starting points and turn directions were used. In the test phase, bridge, pond,
and goals were rendered invisible by simulated ground fog and the subjects were
asked to navigate to the now invisible center of the bridge and indicate place
recognition by button hit. This performance was based essentially on the four
landmarks which remained visible at all times. In order to prevent subjects from
using path integration, the starting points at each of the four bridge entries were
varied using a random positional scatter. Experimental results are summarized
in Fig. 6 (Lancier 2016). For the model, the following constraints can be derived:

1. Decision points show both a systematic bias and a statistical error. The sys-
tematic bias as well as the major axis of the error ellipses point roughly in
the direction of the most distant landmark (Figs. 6 and 7).

2. If a point-symmetric configuration of landmarks is used, the systematic bias
goes away (Figs. 6b and 7b).

3. If the landmark sizes, and therefore the perceived landmark distances, are
manipulated between training and test session, decision points are shifted
towards down-scaled landmarks and away from the up-scaled ones (data not
shown). I.e. subjects try to adjust remembered and perceived distances.

3.2 Model

In a world coordinate system centered around the target point (the center of the
bridge), the landmark positions are denoted by li, i = 1, . . . , 4. Let x denote the
current observer position. The true landmark vectors from the current observer
position are mi = li − x. We assume that these positions are represented in
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Fig. 8. Place recognition model. a. Layout with bridge (shown in light brown) and
four landmarks arranged as in the “peaked” condition (Fig. 6c), shown as open circles.
The polar grid symbolizes the egocentric landmark memory of an observer inspecting
the bridge center. In this grid, the landmark positions are stored as a place code. b.
Approaching observer with place code (open colored circles). Solid colored disks: true
landmark positions; transparent ellipses: distribution of landmark measurement accord-
ing to Eq. 2. Note the displacements of the distributions relative to the true landmark
positions, which reflects the assumed hyperbolic distance compression. c. Probabilistic
match of place code and observed landmark positions. The green distribution in the
center is the joint likelihood p(l1, . . . , p(l4|x) from Eq. 4. (Color figure online)

an egocentric coordinate system with allocentric orientation. This allocentric
orientation can be provided by the overall orientation of the bridge and landmark
configuration (Fig. 8).

In order to model the systematic bias, we will need to assume that the
actual perceived landmark distance is not veridical but hyperbolically com-
pressed according the equation

µi =
A

A + ‖mi‖mi (1)

(Gilinsky 1951). A is a constant set to 60 m in our simulations. This compression
does not affect the stored landmark position which is assumed to be derived
from triangulation and spatial updating processes and may therefore be assumed
veridical. Indeed, Philbeck and Loomis (1997) demonstrate that the distance
walked to a visually presented target in the “walking-without-vision” task is not
affected by the hyperbolic compression reported by Gilinsky (1951). The stored
place code is therefore given by the true landmark positions li.

Consider the probability of perceiving a landmark i at a position mi, given
that the current observation position is x. This measurement mi is given in
a Cartesian, egocentric coordinate system oriented to some allocentric “North”
orientation. It comprises information about the perceived egocentric distance
(with hyperbolic compression) and allocentric bearing, i.e. bearing with respect
to a reference direction defined, for example, by the overall orientation of the
virtual environment. The probability density function is assumed to be

p(mi|x) = φ(mi;µi(x), Σi(x)), (2)
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i.e. the two-dimensional normal distribution with mean µi and covariance matrix
Σi. Note that both mean and covariance depend on the current observer posi-
tion x. For the mean, we have specified this dependence in Eq. 1 above. The
covariance matrix Σi will have an eigenvector in the direction (li − x), i.e. the
depth direction from the current view-point to the true landmark position, and
an orthogonal one in the width direction. Denoting the local bearing of the i-th
landmark by φi, ( (cos φi, sin φi) = (li − x)/‖li − x‖ ), we obtain:

Σi(x) =
(

cos φi − sin φi

sin φi cos φi

) (
σ2
id 0
0 σ2

iw

)(
cos φi sinφi

− sin φi cos φi

)
. (3)

The eigenvalues in the distance and width directions are assumed to scale with
distance according to σid(x) = 0.01 ‖li − x‖2 and σiw(x) = 0.3 ‖li − x‖. Thus,
the angular error of perceived landmark bearing does not depend on viewing
distance. For small distances the angular errors are larger than the depth errors
(σiw > σid) as is necessary to reproduce the shape of the experimental distrib-
utions. This may reflect the fact that inter-landmark angles have to be inferred
from multiple views and are therefore more error-prone than the distance esti-
mates.

As the observer moves, the probability densities p(mi|x) will be shifted to
their new bearing and (hyperbolically compressed) distance. In addition, they
will be rotated to keep the principle axis associated with σid aligned with the
landmark bearing. The place code for the goal position x = 0 will be {li, i =
1, . . . , 4}. The probability of measuring this place-code, given that the observer
is actually at x, is obtained by substituting m = li in Eq. 2 and taking the
product over all four landmarks:

p(l1, ..., l4|x) =
4∏

i=1

φ(li;µi(x), Σi(x)). (4)

The function LL(x) := log p(l1, ..., l4|x) is plotted as the model prediction in
Fig. 9 for the error distributions for the three landmark configurations appearing
in Figs. 6 and 7.

Note that the likelihood function p(l1, ..., l4|x) will always take its maximum
at x = 0 if we omit the hyperbolic distance compression (Eq. 1). In this case,
we have µi = li − x and the product in Eq. 4 is taken over four Gaussians all
of which are centered at x = 0. The systematic bias found in our experiments
cannot be explained in this case.

The simulations of Fig. 9 are in good quantitative agreement with the exper-
imental results appearing in Figs. 6 and 7. In particular, they reproduce the
bias towards the most distant landmark in the standard and peaked configura-
tions, and the orientation of the error distributions. A quantitative test of the
model was obtained with the directional statistics of the decision points appear-
ing in Fig. 10. Each decision point judgment was transformed into a unit vector
and counted in a circular histogram. Figure 10 shows the resulting distributions
together with the landmark bearings (colored circles) and the direction of the
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Fig. 9. Likelihood function (Eq. 4). a. Control condition, b. Parallelogram condition
c. peaked condition. The red bar indicates the maximum likelihood estimator (MLE)
for the bias. The direction and roughly also the length of the predicted biases agree
with the experimental results (Fig. 7). Note that the likelihood distributions in b. and
c. also show the elongation towards the most distant landmark. (Color figure online)

Fig. 10. Circular statistics of the bias direction for the control (a.), parallelogram
(b.) and peak conditions (c.). The black columns show the approximate densities in
expected cases per radian. The red needle shows the resultant vector, i.e. it points
towards the circular mean while its length is a measure of concentration. The colored
discs show the direction to the landmarks for each configuration. The green triangle
indicates the bias direction predicted by the model. Note that for the parallelogram
condition (b.) no bias is predicted, in agreement with the experimentally found resul-
tant vector. (Color figure online)

bias predicted by the model (green triangle). Note that no bias is predicted in
the parallelogram condition, Fig. 7b. The red needles show the circular mean of
the distributions. The orientation of the distributions towards the predicted bias
direction (green triangles) was tested against the null hypothesis of non-oriented
distribution using the circular V -test (Batschelet 1981) and reveals significant
deviations from the null hypothesis for the control (V (954) = 0.389, p < 10−4)
and peaked conditions (V (754) = 0.291, p < 10−4). Since the model does not
predict a bias for the parallelogram condition, we tested this condition with the
most distant landmark direction as a predicted bias, but no significant effect was
found (V (761) = 0.021, n.s.).
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We conclude that place recognition from distant landmarks is based on a
comparison of two components, (i) a referential place code containing veridical
landmark distances and inter-landmark angles, and (ii) a visual working memory
of the complete surroundings with distance-dependent resolution and systematic
depth compression. A simple model of these components is able to quantitatively
predict the statistical distribution of decisions made by human subjects. Effects
of approach direction can be modeled by increasing the variances of the less seen
landmarks.

The most surprising result of this study is the systematic bias found for
the asymmetric landmark configurations. This bias can be modeled if we assume
that the landmark distance instantaneously perceived during place recognition is
hyperbolically compressed while the landmark distance represented in long-term
memory is not. We think that this assumption is justified since the long-term
place code (the landmark positions l1, ..., l4) is a result of many encounters of the
goal location arriving from all four directions. It is thus a consolidated memory
taking into account multiple views and motion parallax during approach. In
contrast, the perception during recognition is mostly instantaneous, with only
limited access to the depth cues provided by motion parallax.

4 Conclusion

Place recognition is a simple, well-defined task in which a subject moves to a
place (in reality or in virtual reality) and reports arrival by button hit. The
main dependent variable is the observer position x at button hit, to which
simple bivariate statistics apply. Place recognition is interactive and continu-
ous much like an adjustment task in classical psychophysics with the adjusted
parameter being observer position. Button hit is triggered by a comparison oper-
ation involving memory content. In this respect, place recognition is more like a
match-to-sample task in which the sample has to be remembered. It differs from
match-to-sample in the continuity of the position parameter that allows gradual
similarity. Also, the memory content may change during the experiment due to
spatial updating processes accompanying the approach movement.

In this paper, we discussed two experiments on place recognition addressing
the various stages of the appearance-based place recognition model of Fig. 1. The
results are consistent with a simple model of spatial working memory (Eq. 4)
making the following assumptions:

1. The landmarks are distinguished and identified (index i in model).
2. Both landmark distance and bearing are represented in an egocentric but

geo-oriented reference frame.
3. Landmark distance in working memory is systematically biased according to

hyperbolic distance compression (Eq. 1).
4. Landmarks outside the field of view are also represented at an updated posi-

tion, but statistical error is larger than for actually perceived landmarks.
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This last assumption, i.e. the increased error of representations of landmarks out
of sight is not relevant for the results presented here, but has been used to model
the effects of different approach directions by Lancier (2016).

Similar assumptions are made in most models of spatial working memory.
For example, Loomis et al. (2013) assume that object knowledge is maintained
and updated in a spatial working memory. While this is well in line with our
results, it does not lend itself easily for quantitative predictions, as are sought in
this study. The Byrne et al. (2007) model assumes a map-like representation in
which walls or other objects are represented as activity in pixels of the map. The
model nicely explains spatial updating but it is not obvious how to represent
object identities. In contrast, object identities are easily accounted for in the
Röhrich et al. (2014) model which is based on views of the environment and
therefore automatically represents visual landmark properties. However, it lacks
a mechanism for spatial updating which would have to based on some sort of
ego-motion dependent view transformations.

In summary, our results call for an improved model of spatial working mem-
ory, accommodating both object identities and spatial updating in a way allowing
quantitative predictions.

References

Basten, K., Mallot, H.A.: Simulated visual homing in desert ants natural environments:
efficiency of skyline cues. Biol. Cybern. 102, 413–425 (2010)

Batschelet, E.: Circular Statistics in Biology. Academic Press, London (1981)
Burgess, N., Hitch, G.: Computational models of working memory: putting long-term

memory into context. Trends Cogn. Sci. 9, 535–541 (2005)
Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: A

neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007)
Cartwright, B.A., Collett, T.S.: How honey bees use landmarks to guide their return

to a food source. Nature 295, 560–564 (1982)
Cheng, K., Huttenlocher, J., Newcombe, N.S.: 25 years of research on the use of geom-

etry in spatial reorientation: a current theoretical perspective. Psychon. Bullet. Rev.
20, 1033–1054 (2013)

Dittmar, L., Stürzl, W., Baird, E., Boeddeker, N., Egelhaaf, M.: Goal seeking in hon-
eybees: matching of optic flow snapshots? J. Exper. Biol. 213, 2913–2923 (2010)

Epstein, R., Kanwisher, N.: A cortical representation of the local visual environment.
Nature 392, 598–601 (1998)

Epstein, R.A.: Parahippocampal and retrosplenial contributions to human spatial nav-
igation. Trends Cogn. Sci. 12, 388–396 (2008)

Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Where did I take this snap-
shot? Scene-based homing by image matching. Biol. Cybern. 79, 191–202 (1998)

Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells to
cognitive map learning: processing stages of the hippocampal system. Biol. Cybern.
86, 15–28 (2002)

Gilinsky, A.S.: Perceived size and distance in visual space. Psychol. Rev. 58, 460–482
(1951)

Gillner, S., Mallot, H.A.: Navigation and acquisition of spatial knowledge in a virtual
maze. J. Cogn. Neurosci. 10, 445–463 (1998)



Psychophysics of Place Recognition 135

Gillner, S., Weiß, A.M., Mallot, H.: Visual place recognition and homing in the absence
of feature-based landmark information. Cognition 109, 105–122 (2008)

Graham, P., Cheng, K.: Ants use panoramic shyline as a visual cue during navigation.
Current Biol. 19, R935–R937 (2009)

Halfmann, M.: Place Recognition and Navigation in Virtual Environments. PhD thesis,
Faculty of Science, University of Tübingen, Germany (2016)
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