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Abstract. Real-time communication, as well as simple data and file
sharing motivates relevant research in network design nowadays. While
centralized structures are generally favored over distributed ones for sake
of simplicity, a considerable amount of literature has been devoted to the
latter. In particular, the problem of distributed indexing is not trivial,
and has been addressed by extending classical data structures such as
tries, kd-trees. However, all proposed solutions seem to assume that there
is a central and unique entity handling the indexing. In this paper, we
propose a fully distributed indexing strategy by extending a data struc-
ture called prefix hash tree (PHT). More precisely, in this strategy, each
node is part of the distributed network and participates in maintain-
ing the distributed index. Our ideas have been implemented in a freely
available framework called OpenDHT.

1 Introduction

Since the Internet has become the main foundation of large scale communica-
tions, various logical network designs lying on top of this huge network have
reached a state of standard. As such, there are networks which rely on a cen-
tral point of authority providing lower concern complexity when designing client
end-user applications. However, those systems lack the ability to scale, they are
more vulnerable to straightforward denial of service attacks and have power over
the client nodes communication capability. All of these concerns can be avoided
or mitigated by using a distributed network design. Indeed, distributed networks
have no central authority over a subset of nodes and no central point of failure,
and in general, these systems can also easily recover from node failures.

Distributed Hash Tables (DHT) [1,7] are scalable peer-to-peer storage sys-
tems providing a simple interface based on the two canonical get/put operations.
DHTs are used in a number of applications today where load distribution is an
important factor. Those systems are scalable in the sense that they can sustain
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growing participant load by automatically accommodating for that growth. More
precisely, the requests resolution grows logarithmically in the number of nodes
[1]. This quality is what makes this type of system of great interest today con-
sidering the growing number of participating devices in many networks. Appli-
cations include file sharing [2], VoIP [9], large scale website load distribution [12]
and many others.

When the only supported operations are get and put, the implementation of
DHTs is straightforward. However, it becomes more involved when other more
complex operations have to be supported.

In [4], the authors describe a data structure called range search tree, which
allows efficient range queries in a fully distributed manner. An alternative data
structure called distributed segment tree was also considered in [11] to support
range queries as well as cover queries. Similarly, partial queries, i.e. queries for
which the information is incomplete, can be efficiently supported by organizing
the data hierarchically [5]. The authors also showed that their strategy is viable
in realistic contexts by illustrating it on a bibliographic database.

All kind of queries mentioned in the previous paragraph arise in natural
contexts and in most storage access applications, which can potentially include:

– A distributed media storage in which access for a subset of media entries
based on the name of the author is needed and may be partial (non-exact).
Obviously, this use case extends to file searching in general;

– Distributed scientific computing system where discovery of resources is based
on a parameter being within a certain range;

– A distributed profile directory where you obviously search for profiles by first
name, last name, city, etc.;

The authors of [8] propose a data structure, called a prefix hash tree (PHT),
for building an index over a distributed hash table. Their model provides a sim-
ple interface for performing “insert” and “lookup” operations on the distributed
index. Similarly in [13], the authors use the ideas of the PHT and focus on mul-
tidimensional keys aspect by extending the well-known kd-tree data structure.
They linearize the keys using traditional projections, following a space filling
curve like the Z-curve. However, in both cases, very few details are given about
the actual implementation and suggest that the indexing data structure is a
centralized entity sitting on a distributed hash table, i.e. that the index itself is
not maintained asynchronously by multiple nodes.

Our main contribution consists in proposing an augmented model of the PHT
[8] in a fully distributed manner, i.e in which the index lies on the DHT and is
maintained by the participants performing operations on it. Our construction is
inspired from the Kademlia [7] protocol and is freely available as a framework
called OpenDHT [10]. We also discuss strategies that were designed to improve
significantly the overall efficiency of the basic operations.
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2 Motivations

Very few end-user communication applications guarantee complete privacy to
their users. In practice, all data about users and their interaction within their
personal network is stored in some central database and can be retrieved by
anyone with access. In most cases, even the files and messages exchanged between
users are not encrypted. Some applications like Signal, a messaging solution,
makes a step in addressing these matters, by offering end-to-end and perfect
secure encryption of the content exchanged. However, it is not possible to hide
the metadata (who talked with whom, when, how frequently, etc.) [3].

With these concerns in mind, a software called Ring [9] is being under heavy
development and aims to offer a completely secured exchange environment. One
of the main concerns of the developers is their users’ privacy. In particular, while
it is virtually impossible to hide all metadata about communications between two
users in a given public network, there is a concern about letting the users know
exactly what information they share is public or private. More precisely, Ring
is a distributed peer-to-peer communication software for chat and VoIP. It uses
standard and secure protocols such as TLS (Transport Layer Security) and SRTP
(Secure Real-time Transport Protocol). Ring is distributed since all users are part
of a DHT network and can establish communication between each other after com-
pleting negotiations for NAT traversal using the ICE [6] (Interactive Connectivity
Establishment) protocol. This software stands out from the other applications in
the sense that no central server is needed and, therefore significantly mitigating
privacy concerns associated with threats coming from central authorities.

A diagram illustrating the logical components of Ring is depicted in Fig. 1.
The main component we are interested in here is called OpenDHT [10]. This

Fig. 1. Architecture of the Ring project.
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distributed hash table is a C++11 implementation of the Kademlia [7] protocol
with some novel features such as a listen(key) operation for on-going updates
about a certain key, a subset of SQL syntax queries capability and a complete
cryptographic layer available on its API.

One subproblem encountered during the development of Ring has been the
conception of a solution for username directory which is being achieved using
a blockchain system called Ethereum [14]. Moreover, a distributed directory for
user profiles and a distributed index for DHT nodes proxy discovery is being
resolved with the help of the PHT enrichment discussed in the following sections.

3 Prefix Hash Tree

We now recall from [8] the main ideas around a prefix hash tree data structure
(PHT). A PHT is a binary tree, more specifically a trie. Every leaf is associated
with a unique path down the trie which yields a unique label. A label is a prefix
of a key k ∈ {0, 1}D for some D ∈ N. Data is stored only in leaf nodes in such
a way that the label of the leaf is a prefix of the key to the stored data. The
following constraints must also be satisfied [8]:

1. (Universal prefix ) Each node has either 0 or 2 children;
2. (Key storage) A key K is stored at a leaf node whose label is a prefix of K;
3. (Split) Each leaf node stores atmost B keys;
4. (Merge) Each internal node contains at least B+1 keys in each of its sub-tree.

For sake of simplicity, we assume that the values stored in the data structure
are equal to their corresponding key even though in practice, stored elements
can be arbitrary complex data.

Example 1. Figure 2 shows potential content of an instance of a PHT. The key
000110 is stored in the leaf labelled 000 and so are all other keys having 000 as
a prefix. In particular, the two longest labels of length 3 are 000 and 001 with
one of the associated leaves empty (no stored data).

Fig. 2. A PHT storing 12 pairs key-value.
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From the picture, we must have B ≥ 5. Moreover, the labels 000, 01 and 001
all have 0 as prefix. Therefore, the total amount of keys indexed under prefix 0
can explain the expansion of the left part of the tree. As a consequence, depend-
ing on the distribution of the keys, the data structure may become unbalanced,
which might have a critical impact on performances.

In its most basic form, the PHT data structure support at least two simple
operations, called lookup(key) and insert(key, value), which respectively
return a view on the data stored in a given node and insert some value with
given key. In order not to overload access to higher nodes in the PHT, a binary
search scheme is used to find the correct node each time a “lookup” operation
is performed. See [8] for the original algorithms and performance analysis.

4 Distributed Indexing

The PHT layer sits on three layers: cryptographic algorithms, the distributed
hash table and the transport layer. OpenDHT uses UDP as transport layer. The
cryptographic layer will mostly expose asymmetric encryption algorithms which
is appropriate to compensate for the untrusted public space in the DHT network.

Indeed, it is worth mentioning OpenDHT is designed for public use. There-
fore, significant trade-offs are implied in its design in order to keep a viable and
consistent overall behavior. One important design choice that was made consists
in preventing anyone to be able to remove values. Instead, a time expiration
mechanism was introduced, which implies that all values are stored on the DHT
for a limited amount of time. The value lifetime is a key feature used in the PHT
layer: When a value has been stored on the DHT, it can only be removed when
it expires, according to its time duration specification.

As mentioned before, OpenDHT is an implementation of the Kademlia pro-
tocol [7]. Therefore, it uses the XOR metric to perform searches on the key
space. In OpenDHT the eight closest nodes to a hash target will be used to per-
form fundamental operations. At any given time, when some nodes in the eight
closest nodes leave, others will take their place as implied by the XOR metric.
OpenDHT also features data maintenance to ensure that any content is always
available, even when the network topology is significantly modified.

The listen(key) operation enables a peer to ask other peers closest to a
given hash to yield on-going updates about the associated storage. This operation
is used in the PHT layer in order to actively perform elementary rules mentioned
in Sect. 3. Figure 3 shows a typical sequence of operations performed according
to a “listen” operation. Notice that this operation does not require that the peer
A instantiates any further calls after the initial request. This usually last thirty
seconds, upon which the peer A shall initiate another “listen” request to keep
being updated on further changes.

We are now ready to introduce our improvement of the PHT scheme intro-
duced in [8]. Let D be the length of the PHT keys. A canary is a value stored in
the DHT for the purpose of identifying a node as part of the indexing structure.
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Fig. 3. Listen operation chronological sequence.

Also, let � ∈ {0, 1}m be a label with m ≤ D. If dht lookup(�) succeeds and
yields a set of values containing at least one canary, then the node labeled � is
called a PHT node. In particular, it is called a leaf node if there is no PHT node
either labelled � · 0 or � · 1, where · denotes the concatenation, and it is called an
internal node otherwise.

Based on the definitions introduced in the previous paragraph, algorithms for
performing “lookup” and “insert” operations differ from the original algorithms
from [8]. Algorithm 1 describes the steps performed for the “lookup” operation.
Note that Prefα(k) denotes the prefix of length α of a key k. First, two DHT
lookups have to be performed to identify the type of the node, which is consistent
with how leaf nodes have been defined. Also, it is worth mentioning that the
formal definition of a leaf node suggests to perform a third DHT lookup on the
other child of the target node. However, this third lookup is not necessary as
the algorithm for performing insertion will assure that either both nodes yield a
canary or none of them does.

Next, Algorithm 2 describes in details the “insert” operation, where B is
the maximal number of values per leaf. Also, it is important to notice that the
resulting “leaf” from the call to pht-lookup is not final. Indeed, by Rule 4,
the definition of a leaf node and inherited properties from OpenDHT, merging
and splitting PHT nodes is an on-going process which consists in selecting the
appropriate node to consider as a leaf based on the number of values yielded by
the underlying dht-lookup operation. We use the canonical “listen” operation
from OpenDHT to execute the algorithm again (Line 19) when new PHT node
are created below. In addition to inserting the value in the index, the algorithm
has to complete the task of maintaining canary values on the network as they
are simple DHT values which also expire.

Such strategy for performing concurrently those operations can raise ques-
tions about data consistency. The first scenario one can consider when thinking
of data inconsistency is data query failure during split and merge operations.
The “listen” operation provided by OpenDHT assures high reliability since it is
designed to provide quick and light updates. Therefore, when split (or merge)
occurs, other indexing participant will quickly react and sync data in new leaves.
The time for completing such operation for one index entry is less than a second.
Optimizations leading to even lower response time are discussed in Sect. 5.
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Algorithm 1. pht-lookup
1: Input: A key K
2: Output: leaf (K)
3:
4: lo ← 0
5: hi ← D
6: while lo ≤ hi do
7: mid ← (lo + hi)/2
8: node ← dht-lookup(Prefmid(K))
9: if mid < D then

10: nodechild ← dht-lookup(Prefmid+1(K))
11: end if
12: � The type is deduced from the presence of a canary
13: node type ← node-type(node.values(), nodechild.values())
14: if node type = “leaf ′′ then
15: return node
16: else
17: if node type = “internal′′ then
18: lo ← mid + 1
19: else
20: hi ← mid − 1
21: end if
22: end if
23: end while

Algorithm 2. pht-insert
1: Input: A key K and a value v
2:
3: leaf ← pht-lookup(K) � Might not be a leaf at the end
4: β ← Length(leaf.prefix())
5: if Count(leaf.values()) < B then
6: parent ← dht-lookup(Prefβ−1(K))
7: sibling ← dht-lookup(Prefβ(K) ⊕ 0× 00...1)
8: count ← Count(leaf.values() + parent.values() + sibling.values())
9: if count < B then � Merge

10: � ← β − 1
11: else � Straight insert
12: � ← β
13: end if
14: else � Split and insert
15: � ← β + 1
16: end if
17: dht-insert(Pref�(K), v)
18: update-canary(Pref�(K))
19: dht-listen(Pref�+1(K), pht-insert, K, v) � Listen for new canaries below
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Algorithm 3. update-canary
1: function update-canary(p: word)
2: dht-insert(p, canary) � Update canary in leaf
3: dht-insert(p ⊕ 0× 00...1, canary) � Update canary in sibling
4: x ← Rand(0, 1)
5: if x ≤ P (p) then � Probability of updating the parent
6: update-canary(ShiftRight(p, 1)) � Bit shift yields the parent’s prefix
7: end if
8: end function

To conclude this section, we describe in details the strategy used to maintain
canary values in Algorithm 3. If the data was stored in a centralized database,
this step would be straightforward. However, in the distributed case, since differ-
ent nodes maintain the PHT structure, and since data can expire—in particular
canaries—additional care must be taken. We propose a strategy that is very sim-
ple to implement and which provides a reasonable guarantee that all canaries
are present at all time, at least in the case where the PHT structure is not too
unbalanced.

Assume that a call to update-canary() is done for some prefix p. Then we
let P (p) be the probability of updating the parent of p. There are two unwanted
scenarios that can occur when recursively updating the parent this way:

(i) The root of the PHT, or some internal nodes are not up-to-date;
(ii) The root of the PHT, and some internal nodes, are updated too often.

For instance, if we set P (p) = 1, then Scenario (i) never occurs, but the root
would be updated as many times as half the number of nodes (a binary tree of
n nodes might contain up to (n + 1)/2 leaves), which could easily overload it.
Obviously, setting P (p) = 0 would be worst: Scenario (ii) would never occur, but
the PHT would completely disappear. Therefore, it is quite intuitive to set P (p)
close to 1. We explore two strategies for handling the updates. For this purpose,
let R be the number of times the root is updated.

A first interesting candidate is P (p) = 1/2 or a value slightly larger than 1/2.
If the PHT data structure is a perfectly balanced tree, then the probability of
not updating the root is

P (R = 0) = (1 − P (p)d)2
d → 0,

where d is the current depth of the PHT. Similarly, the probability of updat-
ing the root too often is also small in the perfectly balanced case since R ∼
Binomial(2d, P (p)d), so that

E[R] = 2d × P (p)d = 2d · 1
2d

= 1.

Another interesting strategy consists in setting a probability dependent on
the actual depth (or prefix length), such as P (p) = 1 − 1/2|p|+a, where |p| is the



316 S. Désaulniers et al.

length of the prefix p and a ≥ 0 is some integer parameter. Let K be the set of
prefixes that trigger an initial call to update-canary. Then

P (not updating the root with prefix p) = 1 −
|p|∏

i=1

P (Prefi(p))

and

P (R = 0) =
∏

p∈K

P (not updating the root with prefix p)

=
∏

p∈K

⎛

⎝1 −
|p|∏

i=1

P (Prefi(p))

⎞

⎠

≤ 1 −
D∏

i=1

(
1 − 1

2i+a

)
,

the worst case being when there is a single key at depth D. The values of this
upper bound can be found in Table 1, with respect to the value of the parameter
a and by setting D = 160.

Table 1. Upper bound for the probability P (R = 0).

a 0 1 2 3 4 5 6 7

P (R = 0) ≤ 0.7113 0.4225 0.2299 0.1199 0.0613 0.0310 0.0156 0.0078

However, if a is too large, then the nodes close to the root (including the root
itself) are updated too often, so that this second scenario can also be problematic.
In the future, we intend to study further what would be best to handle the
canaries updating and, in particular, what information about the network should
be known or estimated in order to control both situations.

5 Optimizations

Our algorithm performing insertion is autonomous in that when a new leaf
appears below the node on which a value was first inserted, the old values are
automatically “moved” on the new leaf. However, as mentioned by [8], naive
implementation of Rule 3 can produce unwanted behavior such as splitting nodes
continuously down to the end of the trie. Such scenario can occur if, for instance,
B values share a same long prefix of their respective keys. In order to avoid
such complications we propose two optimizations. First, double values counting
should be avoided when identifying the type of the node based on the number
of values yielded by a DHT “lookup”. Secondly, splitting should imply the com-
putation of the longest common prefix between all values already present on the
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leaf. This prefix indicates the number of PHT nodes to mark with a canary. The
participant performing the split shall be the one creating this branch of PHT
nodes from bottom to top so that other listening participants shall perform a sin-
gle pht-insert on the appropriate node. Figure 4 illustrates this process. Note
that in this figure, canary update of each siblings of the respective leafs labelled
p�, p�−1, . . . , p�−i, . . . , p�0+1 is implied. This is needed as per Rule 1.

Fig. 4. Optimization: split down the trie

In order to provide further enhancements, we propose using a local cache for
each instance of indexing participant. Then, subsequent operations in a same
region in the tree will benefit from information gathered from previous opera-
tions. Algorithms 1 and 2 will use and maintain this cache such that a “lookup”
will adjust initial values for lo and hi variables before commencing.

6 Conclusion

We have proposed a way of maintaining the trie data structure in a distributed
manner and according to specific rules inspired by the initial authors of a data
structure called PHT. The indexation is assumed to be performed by multiple
nodes simultaneously and assures good efficiency and consistency in case that
data set is balanced.

Our implementation of our solution is currently still under development. In
particular, we are finalizing writing on range query concerns.

In the future, we will provide a more advanced analysis of this strategy in
extreme cases such as strongly unbalanced data set. Another angle to address this
problem is to remap the data according to a relevant distribution (like Zipfian
as suggested by [8]) such that resulting insertions and lookups occur in a mostly
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balanced space. Our future work to provide public Ring profiles indexation could
require such a strategy. Finally, we plan on providing test and benchmark results
in order to support our argumentation on efficiency and data consistency. We
hope that our contribution generates more interest and development in the field
of distributed systems.
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