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Preface

This volume contains the proceedings of the 15th International Conference on Auto-
mated Technology for Verification and Analysis (ATVA 2017), held in Pune, India,
during October 3–6, 2017. ATVA is a premier conference in the theoretical and
practical aspects of formal verification and has traditionally been hosted in the
Asia-Pacific region. This is the second time that the conference has been held in India.

The conference attracted a total of 78 high-quality submissions. Each submission
received three reviews during a month-long review period, in which the 31 Program
Committee members and 42 external reviewers provided their evaluation of these
papers. After a two-week long electronic discussion using the EasyChair system, the
Program Committee selected 29 papers (22 regular papers and seven tool papers) for
presentation at the conference.

The Program Committee members devoted a significant amount of time in
reviewing the papers and in the subsequent discussions. We deeply appreciate their
contributions. We also thank the external reviewers for their insightful reviews.

The conference program also included three invited talks, delivered by Carla
Ferreira, Gerwin Klein, and Helmut Seidl. We thank them for accepting our invitation
and also for providing extended abstracts of their talks for the proceedings.

The conference was hosted by the Tata Consultancy Services at their Sahyadri Park
Campus in Pune, India. The meticulous care and enthusiasm of the Organizing
Committee from TCS, Pune, contributed immensely to the success of the conference.
In particular, we wish to thank R. Venkatesh, the general chair of ATVA 2017, Ulka
Shrotri, chair of the Organizing Committee, Kashmira Jhinjina, Kumar Madhukar, and
Tukaram Muske.

We express our gratitude to the sponsors of ATVA 2017: The Indian Association for
Research in Computing Science (IARCS), Tata Consultancy Services (TCS), Microsoft
Research, Mathworks, and Springer.

The proceedings of the conference appears as part of the Springer Lecture Notes in
Computer Science (LNCS), in the newly introduced Formal Methods subline. We
thank Springer for the editorial help in publishing these proceedings.

October 2017 Deepak D’Souza
K. Narayan Kumar
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Consistency Made Easy: Towards Building
Correct by Design Cloud Applications

Carla Ferreira

NOVA-LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal

In the last years, cloud applications have been used to provide increasingly complex
services at a global scale. Ensuring quality of service for these applications is chal-
lenging, as they need to ensure scalability, availability, and low latency. To achieve
these goals the typical approach is to rely on geo-replication, i.e., to maintain copies
of the application’s shared data across geographically dispersed locations. Ideally, a
replicated database should support a strong consistency model, one that behaves as if a
single node handles all user requests. But strong consistency requires synchronisation
among replicas, thus drastically reducing the application’s availability and latency. As a
consequence, many applications eschew strong consistency and use weak consistency
models instead [4, 8]. Weak models avoid synchronisation altogether: user requests can
be executed by the closest replica without synchronising with other replicas so the user
gets an immediate reply; any effects are propagated in the background to other replicas.
By avoiding synchronisation, replicas may temporarily diverge exposing anomalies to
users (e.g. an user might see a reply to a facebook post before seeing the original post).
These anomalies are temporary as local effects are eventually propagated to all replicas.
An inescapable drawback of weak consistency is that without synchronisation most
data integrity invariants cannot be ensured.

To address this tension between availability and safety, large cloud providers
(Microsoft Azure and Google’s Spanner) have very recently started promoting cloud
storage services that support hybrid consistency models [1, 3, 7, 6]. By using hybrid
consistency the developer can make fine-grained decisions on the consistency level
assigned to each individual operation. The insight is that most operations are asyn-
chronous, and synchronisation is used only when strictly necessary to ensure the
application’s data integrity invariants. The drawback is that making these choices is
very complex and error prone. Requesting stronger consistency in too many operations
may hurt performance and availability, while requesting it in too few places may
violate correctness.

This talk presents an important milestone in providing verification techniques for
cloud applications. With our approach [2], developers no longer have to rely on
complex and ad-hoc reasoning to validate an application. The proof rule, defined in [2],
is able to check in polynomial time that a particular hybrid consistency model is
sufficient to preserve a given integrity invariant. The proof rule is defined over a
generic hybrid consistency model expressive enough to instantiate a variety of research
and industry consistency models. To illustrate the flexibility of the generic model some
encodings of existing consistency models will be shown. In our setting [2], a database



computation is defined by a partial order on operations, representing causality, and a
conflict relation that further constraints the partial order. The conflict relation specifies
which pairs of operations need to be synchronised, as their non-synchronised con-
current execution may lead to an invariant violation. Instead of reasoning about all
possible interactions between operations, our proof rule reasons about each operation
individually under a set of assumptions on the behaviour of other operations. This
allows us to reason in terms of states of a single replica instead of having to consider a
set of replicas. We have developed a prototype tool that automates the proof rule
proposed in [5]. The evaluation showed the tool can efficiently analyse the correctness
of the consistency model of a given application specification. Furthermore, the tool is
able to automatically derive a conflict relation (consistency model) that is guaranteed to
ensure a given application invariant. In practice, the tool allows developers to build
applications assuming a (simple and familiar) sequential execution context. The
analysis will then pinpoint what are the problematic operations if the application is
executed in a replicated context. In line of this, the developer has two choices. Either
devise a consistency model or use the tool to generate one. The use of the tool will be
illustrated through some examples.

Acknowledgements. The work presented was partially supported by FCT-MCTES-PT
NOVA LINCS project (UID/CEC/04516/2013), EU FP7 SyncFree project (609551),
and EU H2020 LightKone project (732505).
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From Trustworthy Kernels to Trustworthy
Systems

Gerwin Klein

Data61 and UNSW Sydney, Australia
gerwin.klein@data61.csiro.au

This talk presents an approach for building highly trustworthy systems that derive
their assurance from a formally verified OS kernel and a component system that
together enforce non-bypassable architectural boundaries within the system through
code/proof co-generation. The talk will show how this approach can produce real-word
systems, such as autonomous helicopters, that are robust against cyber attacks.

The key ingredients to this approach are: a formally verified microkernel, a com-
ponent system that provably makes correct use of this verified microkernel, a software
component architecture that enforces the desired security property, potentially relying
on a small set of trusted (in the best case, formally verified) components, and a
high-level formal analysis that the architecture does indeed enforce the security
property.

Given these ingredients, we can build systems that are demonstrably highly robust
against cyber attack, that can be built by software engineers without deep knowledge of
formal methods, and that can be retrofitted with little effort onto suitable existing
systems, compared to writing and verifying them from scratch.

The main limitation is that the security properties of interest must be enforceable by
architecture with a minimal amount of trusted code. That is not always achievable, and
returns are diminishing as the size of trusted code grows. However, when it is
achievable, the additional effort that engineers need to invest per system for gaining
evidence of high assurance is minimal: the OS kernel proofs are done once and for all
and are merely used, the component architecture proofs are automatically generated per
system, and the composition of these theorems can in principle be fully automated. If
trusted components are involved, their verification may need to be integrated manually,
or at least assumed in the high-level security analysis. Compared to formally verifying
security properties of real-world systems from scratch, the formal verification effort per
system involved in this approach tends towards zero.

The talk will show an example of this approach with the seL4 microkernel [2] as
the basis, the CAmkES component system providing the code/proof co-generation for
the component architecture [1], and the mission computer of Boeing’s Unmanned Little
Bird helicopter as the target system. The seL4 kernel comes with a proof of functional
correctness from abstract specification down to binary code, as well as proofs of
isolation properties. The CAmkES component system generates proofs for correct
configuration of seL4 and proofs of correct communication glue code between com-
ponents. The target system is a full-sized autonomous helicopter with a code base that



Boeing engineers rearchitected during the project for high robustness against cyber
attack via the ground link or via maintenance access points. The secured vehicle runs
native seL4 components, but also large portions of unverified third-party software,
including inside a Linux virtual machine. The vehicle will operate safely even when the
third party software is compromised via an unknown attack vector and behaves
maliciously.

Acknowledgements. This work is the combined effort of many people, including the
Trustworthy Systems team at Data61, and our project partners in the DARPA
High-Assurance Cyber-Military Systems (HACMS) program, in particular at Rockwell
Collins, Galois Inc, the University of Minnesota, and Boeing.

This material is based on research sponsored by Air Force Research Laboratory and
the Defense Advanced Research Projects Agency (DARPA) under agreement number
FA8750-12-9-0179. The U.S. Government is authorised to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory, the Defense Advanced
Research Projects Agency or the U.S. Government.
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Proving Absence of Starvation by Means
of Abstract Interpretation

and Model Checking

Helmut Seidl and Ralf Vogler

Fakultät für Informatik, TU München, Garching, Germany
{seidl,voglerr}@in.tum.de

Abstract. The Avionics Application Software Standard Interface ARINC 653 is
meant to increase predictability of safety-critical software systems. It allows to
coordinate multiple tasks by means of priorities, semaphores, setting and waiting
for events as well as by sending suspend and resume signals. Thus, it is a major
challenge to verify that no such tightly coupled task gets ultimately stuck, e.g.,
by infinitely waiting for an event or a resume signal by another task. We explain
how abstract interpretation together with model checking may nicely cooperate
to guarantee absence of such concurrency flaws and report on practical
experiments.

R. Vogler—This work is supported by the ITEA3 project 14014 ASSUME.
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Proving Absence of Starvation by Means
of Abstract Interpretation and Model Checking

Helmut Seidl(B) and Ralf Vogler

Fakultät für Informatik, TU München, Garching, Germany
{seidl,voglerr}@in.tum.de

Abstract. The Avionics Application Software Standard Interface
ARINC 653 is meant to increase predictability of safety-critical software
systems. It allows to coordinate multiple tasks by means of priorities,
semaphores, setting and waiting for events as well as by sending sus-
pend and resume signals. Thus, it is a major challenge to verify that
no such tightly coupled task gets ultimately stuck, e.g., by infinitely
waiting for an event or a resume signal by another task. We explain
how abstract interpretation together with model checking may nicely
cooperate to guarantee absence of such concurrency flaws and report on
practical experiments.

1 Introduction

Safety-critical software as is used in avionic or automotive applications, requires
particular care: any kind of malfunction may cause significant financial damage
or even have severe consequences to life or well-being of humans. The dream
would be to provide for every such system a thorough mathematical proof that
the system always does what it is expected to do. Huge progress has been made
in for what machine-checkable correctness proofs can be provided. There is a ver-
ified implementation of an operating system [19] as well as of compilers [7,18].
Still, these efforts are tremendous and therefore only applied to dedicated, widely
usable components. Also, in each of these two cases, the software has been con-
structed together with the corresponding correctness proof. It is unclear to what
extent these techniques could also be applied a posteriori to existing software.
Instead, more light-weight methods are sought for, which allow to prove, if not
the correctness of a program, so then at least the absence of a certain class of
errors. One of the greatest success stories in this area is the development of
the static analyzer Astree [4–6,25] which has been applied to prove absence of
run-time errors in the control software of the A380. Run-time errors could be,
e.g., index-out-of-bounds errors when accessing arrays, null pointer dereferences,
divisions by 0, or unintended overflows.

Safety-critical software typically is embedded and thus has to meet real-time
requirements. Whether or not a task meets hard timing constraints cannot be
easily deduced from the high-level source code alone. Also, it cannot be inferred
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from a few measurements on example runs, as both the control-flow as well as the
hardware status between different runs can be quite different. Another success
story in this area therefore is the development of accurate Worst-case execution
time analyzers [35]. The effort for developing such tools cannot easily be over-
estimated as each such analyzer must take into account even tiniest details of
the target architecture the application is going to run on.

Moreover, safety-critical embedded software typically consists of multiple
tasks which may interact in non-trivial ways. Like timing errors, absence of
concurrency errors cannot be proven by inspection of a few example runs of
the system. Quite some attention has been attracted by methods which prove
absence of data races. In device drivers of the Linux kernel, mutexes are used
to protect access to shared data-structures. Then, an analysis of the sets of
definitely held mutexes is the method of choice [13,33]. In systems using the
operating system Autosar/OSEK, protection is based on dynamic adjustment of
priorities [21]. Then, an analysis of defense and offense priorities may be applied
[30,33]. More intricate analyses are required if ad-hoc synchronization patterns
are used [29].

A much more complicated issue is to prove absence of deadlocks or, more
generally, absence of starvation. Early work has, e.g., tried to prove absence of
circular wait situations by identifying a partial ordering on mutexes according to
which mutexes are acquired [13,36]. Such an approach is insufficient if multiple
synchronization primitives, not just mutexes, are used. More recently, a static
deadlock detection analysis for Java is presented in [26], which, however, neither
claims to be sound nor complete. Dedicated methods have also been designed
for the async construct together with explicit wait commands in C� applications
[28]. An interesting analysis based on a translation to Petri net reachability for
detecting deadlocks in systems with active objects and futures is proposed in
[11]. Other attempts rely on an analysis of what may happen in parallel [14].

A better chance to provide provable guarantees is offered by software model-
checking as in [8]. There, concurrent C programs are analyzed which communi-
cate via blocking message passing. In order to extract a labeled transition system
from the program, predicate abstraction and counter-example guided abstraction
refinement (CEGAR) is applied. Temporal properties of the resulting models
then are checked by a standard LTL model checking algorithm. Deadlock free-
dom is, as the authors indicate, a prerequisite for the soundness of their method.
Still, termination of iterative auxiliary local computation is not considered as an
issue. At least naive predicate abstraction is not sufficient to infer termination.
As a consequence for our programs of interest, this approach, as is, does not
seem appropriate.

Another attempt to apply model-checking to concurrent C programs, in par-
ticular for avionics applications, is [12]. The idea is to directly translate C code
into Promela programs. Such an attempt, however, suffers from the compli-
cated global states encountered in realistic applications and thus is not likely to
scale. Other attempts try to improve on that by circumventing Promela and
directly model-check C code [31].
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In contrast, our vision for identifying starvation of tasks is to combine the
best of the two worlds Abstract Interpretation and Model-Checking. In abstract
interpretation-based static analysis, we appreciate the efficiency by which sound
program invariants — even for large programs with complicated data-structures
and complicated control-flow — can be handled. When it comes to the verifica-
tion of liveness properties of possibly non-terminating concurrent programs, then
the algorithms and tools provided for, say, LTL model-checking are well appro-
priate. Our key idea therefore is to use abstract-interpretation based methods to
extract from the given real-time system S with multiple tasks, a decently small
system which still has multiple tasks, but no explicit timings any more so that
starvation-freedom of the extracted system implies starvation-freedom of S —
provided that S is locally terminating. Essentially, local termination means that
no task of S performs infinitely many steps, without executing an OS command
in between. Local termination is then considered as a separate issue. We explain
that global invariants [2] can nicely be applied to decompose this problem into
proofs of local termination of appropriately defined sequential systems for which
then the wealth of methods can be applied to solve that particular problem
[10,32,37].

We have implemented our approach within the analyzer framework Goblint.
A particular issue is how to deal with time-dependent behavior of real-time
systems. Here, we report on preliminary experiments with our approach for a
not-too-large safety-critical real-time application from avionics.

2 Programs

In order to capture the essential features of programs running under an operat-
ing system such as ARINC 653 or Autosar/OSEK, we consider a multi-tasking
system S which consists of:

– A finite set of tasks T ;
– Finite sets E and L of events and mutexes, respectively.

Each task has a unique name f ∈ F , a priority in N, and is defined by a control-
flow graph. Events are considered as boolean flags. Each event is equipped with
a queue of tasks waiting for the event to be set to true. Initially, each event has
value false and the corresponding waiting queue is empty. Likewise, a mutex con-
sists of a field containing the task currently owning the mutex (if any) together
with a queue of tasks waiting to acquire the mutex. Initially, each mutex is free,
i.e., not owned by any task, and the corresponding waiting queue is empty.

The edges of each control-flow graph are labeled either with a builtin OS
command or with an ordinary statement s. As OS commands, we consider:

– suspend(f), resume(f) (f ∈ F);
– set event(e), reset event(e), and wait event(e) (e ∈ E), as well as
– lock(l) and unlock(l) (l ∈ L).

We remark that operating systems such as ARINC 653 provide various fur-
ther commands, e.g., to stop and start other tasks, in addition to other types
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of resources that can be used for synchronization and communication between
tasks. These can be handled in the same style as the subset of commands con-
sidered here.

At any moment, each task f is in a particular task state. Figure 1 gives an
overview of the states we consider here, together with the transitions between
them.

ready run done

susp

wait susp––wait

Fig. 1. The task states and the transitions between them.

Initially, all tasks are in state ready. From all tasks in state ready, the sched-
uler selects the one of highest priority and sets its state to run. This task is then
allowed to execute. When the execution of the task terminates by reaching the
end point of the task, the state is set to done. When a task executes the com-
mand yield(), its state is changed from run to ready. The same happens when
a task with higher priority becomes ready. A task in state run may change its
state to wait when it tries to acquire a mutex which is already owned, or when
executing wait event(e) for an event e which currently has value false. When the
task receives the mutex it was waiting for, its state is changed back to ready.
The same happens when the event it was waiting for, is set to true.

A task may also be suspended. In this case, its state changes from run or ready
to susp. If the task is in state wait, the new state is susp wait. A suspended task
may be resumed by some other task. If the state is susp, it is changed to ready.

Finally, a task can be in state susp wait, i.e., be both suspended and waiting
for some resource. Then it may still complete waiting, i.e., change its state to
susp alone. This is the case when the task was waiting for an event e which is
set to true, or receives the mutex it was waiting for. It may also change its state
to wait, if it was resumed by some other task.

In detail, the semantics of the OS commands are as follows:

yield(). The task state is set from run to ready.
set event(e). The value of the event e is set to true. Every task f which is in

the waiting queue for the event e, receives the state ready (if its current state
has been wait) or susp (if its current state has been susp wait). Then the
queue of e is set to the empty queue.

reset event(e). The value of the event e is set back to false.
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wait event(e). If the value of the event e is true, the current task proceeds.
Otherwise, its state is set to wait, and the current task is added to the queue
of tasks waiting at e.

lock(l). If the mutex l is not owned by any task, l is acquired and the task
proceeds. Otherwise, its state is set to wait , and the current task is added to
the queue of tasks waiting for lock l.

unlock(l). Assume that the mutex l is owned by the current task. If the queue
of tasks waiting for l is empty, the mutex l is marked as free. Otherwise, the
the first task f in the queue is extracted, the mutex is marked as owned by
f , and the state of f is set to ready (if it has been wait) or susp (if it has
been susp wait).

In each case, when the set of tasks in state ready has been changed, the scheduler
may subsequently select another ready task for receiving the state run.

Program execution proceeds in atomic steps. For simplicity, we assume that
such a step consists in processing one edge in one of the control-flow graphs.
Thus, the execution of a single command, a single assignment, as well as a single
guard, is considered atomic. This means that effects of weak memory or multiple
cores are ignored.

In the following, we assume that sets of nodes and edges in the control-flow
graphs are disjoint. Moreover, we assume each control-flow edge a is labeled by
a corresponding action.

Program executions operate on the system’s state σ. This state consists of a
tuple σ = (q, η, μ, λ) where

– q represents the global memory state of the system which is accessible to all
tasks;

– η maps each event e to a pair (b, w) where b is its boolean value and w is the
queue of tasks waiting for e;

– μ maps each mutex l to a pair (f, w) where f is the task currently owning l
or indicates that l is free, and w is the queue of tasks waiting for l;

– λ maps each task f to its relevant local information, namely the pair (v, s, p),
where v is the current program point, s is the task state and p is the task-local
memory state.

The initial state σ0 of S is given by σ0 = (q0, η0, μ0, λ0) for some initial global
memory state q0, η0 = {e �→ (false, ∅) | e ∈ E}, μ0 = {l �→ (free, ∅) | l ∈ L}, and
λ0 = {f �→ (vf,0, ready , pf,0) | f ∈ F} where vf,0, pf,0 are the initial program
point and the initial local memory state of the task f , respectively.

Starting from the initial state σ0, a program trace can be represented as a
(finite or infinite) sequence Σ of pairs 〈a1, σ1〉 . . . 〈at, σt〉 . . . of control-flow edges
and system states. The trace Σ is maximal if Σ is infinite, or it is finite, but
cannot be extended by another pair 〈a, σ〉.

We are particularly interested in starvation of tasks. We say that starvation
of task f occurs at some step t in a maximal trace Σ if f has not reached state
done, but at all time points t′ ≥ t, no action of f is executed. In the following, we
assume that all control-flow graphs are well-formed, meaning that only the end
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point of the control-flow graph has no outgoing edge; every other node v with
an outgoing edge a labeled by a guard with condition b, also has an outgoing
edge a′ which is labeled with a guard with condition ¬b. Then, we can identify
two reasons for starvation of f . At each step t′ ≥ t,

– f is either in state susp or ready, and whenever f is not suspended, then the
running task has the same or higher priority than f ; or

– the task state of f is either wait or susp wait.

In the first case, thread f now and then may become ready — but running is
prevented by some other task with sufficiently high priority. In the second case,
task f fails to become ready, because it has started to wait for a resource which
is not provided.

The system S is called starvation-free for the initial state σ0, if on no maximal
trace Σ of the system starting in σ0, starvation of any task occurs.

Proving starvation freedom is a classical verification problem where model-
checking has successfully been applied. In practical applications, however, mul-
tiple obstacles are encountered. The number of lines of code in realistic appli-
cations, grow dramatically. These programs do not just use boolean variables,
but compute with integers, floating-point numbers and maintain data-structures.
Even if the number of tasks is fixed and small (as is assumed for the applica-
tions we consider here), the number of global system states to be explored, grows
dramatically.

Thus, this type of starvation problems goes way beyond what can be expected
from explicit-state model-checkers, such as Spin [17]. Also, symbolic model-
checkers typically will not be able to deal with programs as large as these and
with as complicated a semantics. Tools such as cbmc have successfully been tried
on very large programs [20]. As they use bounded model-checking only, they are,
however, inherently unsound. Moreover, as they explore finite traces only, it is
impossible for them to identify whether a task is starving or not.

In the following, we use some C-like syntax where each procedure represents
a task with the corresponding name.

Example 1. Consider the following system:

int z = 0;

void work() {
while(true) {

z++;
if (z < 65536) set event(e);
else break;

}
}

void ctrl() {
while(true) {

reset event(e);
resume(work);
wait event(e);
suspend(work);
. . .

}
}

where we assume that e is an event, and the priorities of ctrl and work are given
as 10 and 5, respectively. The idea of this program is as follows (cf. Fig. 2). The
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Fig. 2. Execution of example 1

first task to run is the task ctrl. This task first resets the event e. Then the
execution of the task work is resumed. As this task has lower priority, its task
state is just set to ready (if it is not already ready). The task ctrl then waits
until task work has set the event e, in which case, the task work is suspended.
The last command executed by ctrl before execution continues with resetting the
event e, is some activity (indicated by . . .) to be alternatingly executed with the
task work. Note that suspending and resuming the task work is only necessary, if
that activity may contain blocking commands where still task work should not
be allowed to proceed.

Let us finally explain the behavior of the task work. This task has lowest
priority. It runs in close interaction with the task ctrl. When it runs, the task ctrl
is waiting for the event e. It increments the global variable z by 1. If the value
is less than 65536, it sets event e. Otherwise, it exits the loop and stops. Thus,
control is usually handed back to the task ctrl. In the given implementation, it
happens, though, that when z reaches 65536, task ctrl remains waiting for event
e for ever. Therefore, the system is not starvation-free. 	


3 The Abstraction

In order to deal with this situation, we proceed in two stages. In the first stage,
we extract a small abstract system from the large concrete system. This small
system then is (hopefully) small enough to be handled by off-the-shelf model-
checkers such as Spin.

The idea of the abstraction is to strip the control-flow graphs of the tasks of
everything which is not related to task interaction and scheduling. The intuition
behind this crude abstraction is that application engineers of critical software
have a very clear pattern for task interaction in mind. The flow of control in these
patterns usually depends on the roles the respective tasks are playing (working,
supervising, error-handling, etc.) and rarely on data values.

For every task f , we consider the control-flow graph Gf for f . Let Of denote
the subset of nodes of Gf which consists of the initial node vf,0 of Gf together
with all end-points of edges labeled with OS commands. To every node v in Gf ,
we assign the subset O[v] ⊆ Of of all v′ ∈ O[v], where there is a path from v′

to v in Gf without OS commands as labels. These sets O[v] can be computed
by some GEN/KILL bit-vector analysis along the lines of a reaching definitions
analysis.
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Given the sets O[v], we define the abstracted control-flow graph G�
f as follows.

The set of nodes of G�
f are given by Of , while there is an edge (v′, v1) in G�

f iff
there is an edge (v, v1) in Gf labeled with some OS command c, and v′ ∈ O[v]
— in which case the label of the abstract edge equals the label of (v, v1).

The crucial question is in which sense the set of traces of the abstract system
reflects the set of traces of the concrete system. Let us call a system locally
non-terminating, if

N1: There is an infinite trace Σ, some task f and step t so that for all t′ ≥ t,
the following holds:

– f is in state run, ready or susp at t′;
– f does not perform an OS command, and
– f is in state run at some time point t′′ ≥ t′.

According to our scheduling policy, a task not executing any OS command cannot
be interrupted. Accordingly, a task is locally non-terminating, iff

N2: there is a step t so that for all t′ ≥ t, f is in state run without ever executing
an OS command.

A system for which no task is locally non-terminating, is called locally terminat-
ing. In the system of Example 1, tasks work and ctrl both have non-terminating
loops. Still, this system is locally terminating, as each control-flow path travers-
ing the bodies of these loops contains at least one OS command.

For a concrete system state σ = (q, η, μ, λ), the corresponding abstract state
α(σ) = σ� is obtained by dropping the global memory state q, and also for each
f , the local memory state in λ(f). For a concrete trace Σ = 〈a1, σ1〉 . . . 〈ai, σi〉 . . .

the corresponding abstract trace α(Σ) = Σ� is given by 〈aj1 , σ
�
j1

〉 . . . 〈ajn , σ�
jn

〉 . . .

where aj1 . . . ajn . . . is the subsequence of OS commands in Σ and σ�
jn

= α(σjn).

Theorem 1. Assume that the concrete system is locally terminating. Assume
that Σ is a trace of the concrete system. Then α(Σ) is a trace of the abstracted
system. Moreover, starvation of the task f occurs on Σ iff starvation of f occurs
on α(Σ).

Proof. Clearly, if starvation of f occurs on α(Σ), then also on the trace Σ. Now
assume that starvation of f occurs on Σ, but not on α(Σ). This means that
from some point t on, for all t′ ≥ t, some task f ′ is running with priority equal
or higher than f — without executing an OS command. But this contradicts the
assumption that S is locally terminating. 	


By Theorem 1, we thus may split the effort of proving starvation freedom of a
system into two subtasks: first, to prove that the system is locally terminating.
Second, to prove that the abstracted system is starvation-free. The latter sys-
tem, however, is considerably smaller than the original system. Accordingly, this
check can be more easily accomplished by some off-the-shelf model-checker such
as Spin.
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To prove that the given system S is locally terminating, on the other hand, is
often reducible to proving termination of sequential tasks alone. Such a reduction
can be obtained by means of global invariants. A global invariant is a superset
Q of all global memory states q possibly encountered during any trace of the
system when starting in σ0 = (q0, η0, μ0, λ0). Assume that we are given such a
global invariant Q. Relative to Q, we consider for each task f the set of all local
traces starting in the initial local state. The initial local state is obtained from
λ0(f) by ignoring the task state. Thus, it is given by τf,0 = (vf,0, pf,0). A local
trace then performs only actions of f and for these, only considers the effects on
the local state of f . Thus, a local trace of f is a sequence 〈a1, τ1〉 . . . 〈at, τt〉 . . .
where τt is the local state of f attained after the tth action of f , and at is the tth
control-flow edge taken by task f . Let us denote the resulting sequential system
by SQ,f . We call it locally non-terminating, if there is an infinite local trace so
that from some t on, no OS command is executed. The system is called locally
terminating, if it is not locally non-terminating. We have:

Theorem 2. Assume that Q is a global invariant of the system S with initial
state σ0. If for each task f , the sequential system SQ,f is locally terminating for
the initial local state λ0(f), then so is S for σ0.

Proof. Assume that S is not locally terminating. Then there is a reachable global
state σ = (q, η, μ, λ) and a task f with λ(f) = (v, run, p) and a trace Σ starting
in σ where always f is running — without executing an OS command. This trace
of S gives rise to an infinite trace of SQ,f starting in τ = (v, p), which does not
execute OS commands. Since (v, p) is reachable from τf,0 in SQ,f , the sequential
system SQ,f cannot be locally terminating. 	


In [2], side-effecting constraint systems have been proposed to formalize global
invariants of multi-tasking systems. In a series of papers, also solvers for such sys-
tems have been proposed [1,3,15]. Given such an invariant, off-the-shelf methods
for proving termination of loops can be applied [10,27,32,37].

Extensions

So far, we have assumed that priorities are fixed in the beginning. In operat-
ing systems such as Autosar/OSEK [30], dynamically adjusted priorities are the
central means to guarantee exclusive access to shared data. Also, we simplified
our exposition in assuming that OS commands always succeed. In Posix, e.g.,
acquiring a mutex may also fail [34] or just time-out. The latter concept will be
discussed in detail in the next section. In presence of possibly unsuccessful OS
commands, the programmer is required to inspect the return code of a command
in order to know what kind of action has been performed. In order to deal with
possibly failing commands in the abstract system, a refined slicing procedure
must be applied. The abstract system should maintain not only all OS com-
mands, but also all actions that compute with return values of OS commands,
e.g., store or retrieve them from local variables as well as guards referring to
such values.
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4 Time-Dependent Behavior

Operating systems such as ARINC 653 or Autosar/OSEK are designed for the
realization of time-critical systems. These systems typically consist of several
tasks — some of which are periodically activated and must finish within the
given period. These tasks may control other tasks with deadlines. Now, each
task may set a time-out when waiting should be interrupted. Accordingly, we
consider the following timed commands. When executed by task f , they mean:

wait event(e, t). If the event e is not yet set, the state of f is set to wait, and f
is added to the waiting queue of e. If t time units have elapsed, and f is still
in the waiting queue for e, f is removed, the state of f is set accordingly, and
the command returns time-out. If before t time units have elapsed, the event
e has been set, f is removed from the waiting queue of e, the state of f is set
accordingly, and and the command terminates by returning success.

lock(l, t). If the mutex l is not free, the state of f is set to wait, and f is added to
the waiting queue of l. If t time units have elapsed, and f is still in the waiting
queue for l, it is removed, the state of f is set accordingly, and the command
returns time-out. If before t time units have elapsed, the lock l is handed
over to f , the state of f is set accordingly, and the command terminates by
returning success.

In presence of potential time-outs, the programmer is required to inspect the
return code of the commands wait event() and lock() to detect whether or not
the command completed successfully or with time-out.

Moreover, the OS may provide external timers which periodically set timer
events to true. These events may be used to periodically trigger tasks. In ARINC
653, e.g., a command periodic wait() is used by periodic tasks to yield execution
until their next release point. The base functionality can be modeled as:

reset event(relf );
wait event(relf );

if f is a periodic task, and relf is the release event of f , which is periodically set
by the operating system. In ARINC 653, however, tasks may also have deadlines
for their execution times. Their violation may be acted upon using an error task.
This task is meant to have the highest priority in the system and should only
run after a violation occurred. Therefore it should initially be suspended in our
setting:

void error() {
suspend(error);
. . . // error handling code

}
For each task f — triggered by the release event relf and equipped with a
deadline tf — we introduce another event finf together with an auxiliary task



Proving Absence of Starvation by Means of Abstract Interpretation 13

watchf , whose priority is less than the priority of the error task, but exceeds the
priority of all other user-defined tasks. The task watchf can be implemented as:

void watchf () {
while (true) {
wait event(relf );
if (wait event(finf , tf ) �= success)

resume(error);
else reset event(finf );

}
}

For a periodic task f , the event relf is the periodic event triggered by the external
timer. The event finf on the other hand, should now be set during execution of
the command periodic wait():

reset event(relf );
set event(finf );
wait event(relf );

The task watchf waits until the event relf is set. Subsequently, it starts to wait
for the event finf — but with time-out tf . If the event finf is not set before
tf time units have elapsed, the error task is resumed. Otherwise, i.e., if the
event finf has been set in time, the finf is reset, and the task continues at the
beginning of its loop, i.e., waiting for the next event relf .

Figure 3 illustrates the execution of some periodic task f which violates its
deadline. Since all periodic tasks may run from the beginning, the event relf will
already be set by the external timer. The task with the highest priority is error,
which will therefore run first, and do nothing more than suspend itself. Next,
task watchf will wait for the first release event, which is already set, and then
start to wait for task f to yield for the first time. If task f does not manage to
call periodic wait() before tf time units have passed, watchf will become ready,
thereby preempt f , and resume the error handler.

Fig. 3. Execution of a periodic task that violates its deadline.

Figure 4 illustrates the execution of some periodic task f which successfully
finishes execution before its deadline by calling periodic wait(). The error handler
is omitted for simplicity.
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Fig. 4. Execution of periodic wait before the deadline of a periodic task.

The Example 1 with time-dependent commands may look as follows.

Example 2. Consider the following system:

int z = 0;

void work() {
while(true) {

z++;
if (z < 65536) set event(e);
else break;

}
}

void ctrl() {
while(true) {
reset event(e);
resume(work);
if (time-out �= wait event(e, 50))
suspend(work);
periodic wait();

}
}

Here, we only display the user code, not possibly generated tasks for supervising
deadlines and also no error code. Again, we assume that we are given an event e,
and that the priorities of ctrl and work are 10 and 5, respectively. The idea of this
program is that task ctrl only waits for 50 ns before task work is suspended. If
within that period, work has set event e, this event is reset. Otherwise, task work
is suspended until the next period where ctrl runs. In this case, after sufficiently
many iterations of work, event e remains false. Thus, from that point on, a time-
out of the timed command wait event will always be observed. Still, no starvation
of task ctrl occurs. 	


In order to precisely formalize the semantics of such systems, we require

– exact execution times of sequences of actions;
– the exact overhead incurred by the scheduler, e.g., for switching between

tasks.

Due to modern hardware facilities such as caches or pipelines, exact execution
times cannot be determined by adding up execution times of individual actions
(see, e.g., the recent overviews [16,22,35]). For simplicity, let us nonetheless
assume that this were so, that execution of each control-flow edge takes exactly
one time step, and scheduling incurs 0 overhead. Under these premises, we may
assign the time point t to every step at which this step is initiated.

By systematically introducing time-outs, starvation due to infinite waiting for
events or mutexes becomes obsolete. Still, starvation may occur, due to missing
resume commands or abundance of higher-priority ready tasks.
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In order to abstract from the complicated time behavior of the system S,
we consider the time-abstracted system S0 where the time-dependent commands
are interpreted by means of non-deterministic choice as follows:

wait event0(e, ). This command behaves like wait event(e, t), only that at any
step it may non-deterministically be terminated by the scheduler, in which
case the return value is time-out. Alternatively, if the event e is set, the task
is removed from the waiting queue of e, the state is set accordingly, and the
command returns the value success.

lock0(l, ). Similarly, this command behaves like lock(e, t), only that at any step
it may non-deterministically be terminated by the scheduler, in which case the
return value is time-out. Alternatively, if the mutex l is acquired by the task,
the task is removed from the waiting queue of l, the state is set accordingly,
and the command returns the value success.

For a trace Σ of S let Σ0 denote the sequence which is obtained from Σ
by dropping the time annotation at every step. The following theorem tells us
about the relationship between traces of the system S with timings and traces
of S0.

A particular abstraction is applied to the command periodic wait(). As
another simplification assume that all periodic tasks have the same period t0.
The abstract command periodic wait0() sets the current task’s state to wait. At
any point in time later, the state of each task currently executing this command
may non-deterministically be set to ready (if its state has been wait) or susp (if
its state has been susp wait). Moreover, if no other task is in state run or ready,
and some tasks have not completed a periodic wait0(), then all of them terminate
this command.

As no timing information is available, the event relf for a periodic task f is no
longer tracked. The same holds for the event finf to supervise a potential dead-
line of f . Accordingly, we abandon the auxiliary task watchf for f . Instead, the
scheduler may execute resume(error) at any time during the execution of f . For
a trace Σ of the real-time system S, let Σ0 denote the corresponding trace of S0.
This trace is obtained by removing the subsequences of commands correspond-
ing to the tasks watchf (up to the commands resume(error)), and furthermore,
by replacing the commands periodic wait(), wait event(e, t) and lock(l, t) with
periodic wait0(), wait event0(e, ) and lock0(l, ), respectively.

In general, there could be periodic tasks with several distinct periods where
each is equipped with a dedicated deadline. Clearly, exact execution times are
no longer available in the time-abstracted system. Still, we can construct an
abstract timer used by the scheduler of S0 which at least maintains the ordering
between significant time points.

Example 3. Assume the given system consists of the periodic tasks f1, f2, f3
where f1, f2 have period 100 and deadlines 30 and 40, respectively, while task f3
has period 50 with deadline 10. Along the full period of 100, the scheduler then
should distinguish the time points

0, 10, 30, 40, 50, 60, 100
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before it returns to time point 10.

– At time point 0, the states of all tasks are set to ready ;
– by time point 10, task f3 has issued a periodic wait (or an error occurs);
– by time point 30, task f2 has issued a periodic wait (or an error occurs);
– by time point 40, task f1 has issued a periodic wait (or an error occurs);
– at time point 50, f3 continues after the last periodic wait;
– by time point 60, task f3 has again issued a periodic wait (or an error occurs);
– at time point 100, all tasks continue after their last periodic wait.

Thus, we construct an abstract timer which uses seven states to distinguish
between the relevant time points. As no exact time points are known, the abstract
timer always stays in the same state, but then non-deterministically may decide
to proceed to the next state. According to this construction, the current abstract
timer state provides a lower bound to the concrete elapsed time (modulo the
maximal period). 	


For the time-abstracted system, we have:

Theorem 3. Assume that S is a real-time system and S0 is the corresponding
time-abstracted system.

1. If Σ is a maximal trace of S starting in some initial state σ, then Σ0 is a
maximal trace of S0 starting in σ.

2. If S0 is starvation-free, then so is S.

The proof of this theorem directly follows from the definition of the time-
abstracted system S0. We remark that S0 can also be constructed for systems
where the execution times of scheduler actions and of sequences of task actions
cannot be calculated easily or are unknown. The only property we require is that
each step of each user task of the real-time system can be simulated by a corre-
sponding step of S0. From the time-abstracted system S0 we proceed as in the
last section. This means that we extract a (hopefully small) system S�

0 which
is obtained by removing all actions which are not related to OS commands.
Note that now, since some OS commands need no longer necessarily succeed,
additionally the return values of OS commands must be tracked. Also, as tasks
may spontaneously become ready (or susp) after a command periodic wait0(),
we must refer to definition N1 for local termination. In order to establish this
property, we again rely on a global invariant Q for S0. By means of this invariant,
we decompose this problem into local termination problems for the sequential
systems S�

0,Q,f .

5 Implementation

We have realized this sketched approach. The extraction of the concurrent algo-
rithmic core has been implemented within the abstract interpretation framework
Goblint [33]. The latter tool supports the specification of static analyses by



Proving Absence of Starvation by Means of Abstract Interpretation 17

means of side-effecting constraint systems and thus is well-suited to infer global
invariants of systems consisting of multiple concurrent tasks. The analyzer Gob-
lint allows to analyze programs context-sensitively, thus distinguishing, e.g.,
distinct calls of wrapper functions for distinct arguments. This is crucial, e.g.,
for a precise lockset analysis. Goblint also comes with a series of generic local
fixpoint engines which allow to solve the specified analysis problems in a demand-
driven way.

For the purposes of a starvation analysis, Goblint is instrumented to extract
the set of control-flow edges of the abstract system S�. The system S� is then
translated into a Promela program which implements the given scheduling
policy and provides the semantics for the OS commands. The Promela program
together with LTL specifications of non-starvation are then fed into the model-
checker Spin [17].

Another instance of Goblint is used to analyze the real-time system S for
local termination. The implementation of this second stage is still in a pre-
liminary stage. This analysis first instruments each loop with an explicit loop
iteration counter and then tries to prove that each such counter takes values
only from some bounded range. For that, a variant of the octagon domain [24]
is employed to track bounds as sums and differences of integer variables. This
type of analysis is tailored to prove termination for standard for -loops. To deal
also with more irregular cases, extensive constant propagation together with a
dedicated treatment of enums is added.

6 A Case Study

We tried our starvation analyzer on a not-too-large application from the area
of avionics. The application is targeted for the ARINC 653 operating system
standard and has about 50k lines of (obfuscated) C code. It uses seven tasks, all
running at different static priorities. One of them is used for initialization, one
for error handling, three are periodic, and two non-periodic. The initialization
task creates the other tasks and runs exclusively until it issues a command that
starts the scheduler. Among other ARINC primitives, the program makes use of
suspend, resume, setting, resetting and timed waiting for a single event as well as a
single semaphore. The program does not contain too many of the OS commands,
but these may occur deeply nested inside function calls which are dispersed all
over the program. In fact, the maximal nesting-depth of function calls is 19. Due
to this considerable depth, it pays off, precision-wise, that Goblint allows to
use the full local states as calling contexts when extracting the system S�

0, which
abstracts first from time and second, from all non-OS related actions. As it is a
safety-critical real-time application, the program does not use dynamic memory
allocation or recursion, but makes extensive use of arrays and pointers.

Using a 3.7 GHz Intel Core i7 processor, the extraction of the abstract sys-
tem takes about 3 min. The extraction results in an interprocedural control-flow
graph of 4310 edges.
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The LTL formula, we want to check for each task f is

GF(runf ∨ donef )

where runf and donef are the properties that task f is in state run and done,
respectively. From the abstract model together with the LTL formulas, a spec-
ification in Promela is generated. On this specification, the Spin model checker
takes 1 min and at most 7.4 GB of memory to finish to verify the formulas. For
the given application, it did not find a violation of starvation-freedom.

For our approach to be sound it remains to certify local termination. In order
to do so, we tried to prove termination of each loop in the program, given a global
invariant for shared data. The results of a manual classification of the different
kind of loops is given in Fig. 5.

Fig. 5. Manual classification of loops

The program contains 323 loops, of which one had to be unrolled for the ana-
lyzer to infer precise information about the created resources. From all loops, our
analysis could identify local program variables which control the loop iteration
in 282 loops. For 204 of these loops, an octagon analysis is sufficient to prove
that the iteration terminates. Additionally in some loops, exit conditions must
be tracked as they are stored and inspected later for breaking out of the loop.
With some extra effort, we expect termination of all loops from the first three
categories in Fig. 5 to be automatically provable.

Upon manual inspection of the remaining loops, we found that the four non-
terminating loops are the outermost loops of the three periodic tasks, together
with the outermost loop of a non-periodic task that is periodically resumed and
suspended. In all these cases, OS commands are encountered on each control-flow
path traversing the loop body.

The program code also contains the code for string manipulating system
functions such as strlen, strcat, or strcpy, whose termination depends on whether
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pointers to null terminated strings are provided as arguments or not. There are
twenty loops where the criteria for termination are rather contrived.

– In five loops, termination can only be guaranteed due to explicitly pro-
grammed time-outs by means of the non-blocking command get time(), which
is not extracted into transitions of the abstract model.

– Termination of six loops depends on the return-codes of non-blocking OS
commands like Logbook or QueuingMessage. These commands, however, are
extracted to the abstract model.

– Termination of nine loops occurs once a certain value in some data-structure
is found.

The latter loops are most difficult, as tailored analyses are required to provide
sufficiently strong invariants for these data-structures to deduce that the exit
condition ever is met.

The given numbers and observations are specific to the particular given exam-
ple application. Nonetheless, the experience is encouraging: while most loops
can be dealt with automatically, only few loops remain which must be inspected
manually to ensure local termination.

7 Conclusion

Proving properties such as definite starvation-freedom in a realistic concurrent
real-time system is challenging. We have proposed to use a static analyzer to
strip the system of all computation which is irrelevant for the interaction between
tasks. We showed that if the resulting abstract system is starvation-free, then so
is the original system — given that the original system is locally terminating.
This observation allows us to decompose the analysis of starvation-freedom into
a model-checking problem for a decently small model by means of an off-the-
shelf LTL model-checker; and a proof of local termination. In order to attack the
latter problem, we relied on global invariants. These can again be computed by
a static analyzer such as Goblint based on abstract interpretation. We finally
argued that, relative to a given global invariant, local termination can be reduced
to local termination of finitely many sequential systems. To the latter, a variety
of known techniques for proving termination of loops can be applied.

Based on an implementation in the static analyzer framework Goblint, we
indicated that such an approach may indeed be viable. For a realistic safety-
critical real-time application based on ARINC 653, we showed that extraction
of the abstract model as well as the verification of the appropriate temporal
properties is indeed feasible. We also categorized the loops occurring in the
application and showed that for most of them, termination proofs are possible
by standard means.

Currently, we are extending our approach to other real-time operating sys-
tems such as Autosar/OSEK and also to systems running not on a single sequen-
tial processor, but on multi-cores.
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Abstract. Precise analysis of pointer information plays an important
role in many static analysis tools. The precision, however, must be bal-
anced against the scalability of the analysis. This paper focusses on
improving the precision of standard context and flow insensitive alias
analysis algorithms at a low scalability cost. In particular, we present a
semantics-preserving program transformation that drastically improves
the precision of existing analyses when deciding if a pointer can alias
Null. Our program transformation is based on Global Value Number-
ing, a scheme inspired from compiler optimization literature. It allows
even a flow-insensitive analysis to make use of branch conditions such as
checking if a pointer is Null and gain precision. We perform experiments
on real-world code and show that the transformation improves precision
(in terms of the number of dereferences proved safe) from 86.56% to
98.05%, while incurring a small overhead in the running time.

Keywords: Alias analysis · Global Value Numbering · Static Single
Assignment · Null pointer analysis

1 Introduction

Detecting and eliminating null-pointer exceptions is an important step towards
developing reliable systems. Static analysis tools that look for null-pointer excep-
tions typically employ techniques based on alias analysis to detect possible alias-
ing between pointers. Two pointer-valued variables are said to alias if they hold
the same memory location during runtime. Statically, aliasing can be decided
in two ways: (a) may-alias [1], where two pointers are said to may-alias if they
can point to the same memory location under some possible execution, and (b)
must-alias [27], where two pointers are said to must-alias if they always point
to the same memory location under all possible executions. Because a precise
alias analysis is undecidable [24] and even a flow-insensitive pointer analysis is
NP-hard [14], much of the research in the area plays on the precision-efficiency
trade-off of alias analysis. For example, practical algorithms for may-alias analy-
sis lose precision (but retain soundness) by over-approximating: a verdict that
two pointer may-alias does not imply that there is some execution in which
c© Springer International Publishing AG 2017
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they actually hold the same value. Whereas, a verdict that two pointers cannot
may-alias must imply that there is no execution in which they hold the same
value.

We use a sound may-alias analysis in an attempt to prove the safety of a
program with respect to null-pointer exceptions. For each pointer dereference,
we ask the analysis if the pointer can may-alias Null just before the dereference.
If the answer is that it cannot may-alias Null, then the pointer cannot hold a
Null value under all possible executions, hence the dereference is safe. The
more precise the analysis, the more dereferences it can prove safe. This paper
demonstrates a technique that improves the precision of may-alias analysis at a
little cost when answering aliasing queries of pointers with the Null value.

The Null value is special because programmers tend to be defensive against
null-pointer exceptions. If there is doubt that a pointer, say x, can be Null or
not, the programmer uses a check “if (x �= Null)” before dereferencing x. Exist-
ing alias analysis techniques, especially flow insensitive techniques for may-alias
analysis, ignore all branch conditions. As we demonstrate in this paper, exploit-
ing these defensive checks can significantly increase the precision of alias analysis.
Our technique is based around a semantics-preserving program transformation
and requires only a minor change to the alias analysis algorithm itself.

Program transformations have been used previously to improve the precision
for alias analysis. For instance, it is common to use a Static Single Assignment
(SSA) conversion [5] before running flow-insensitive analyses. The use of SSA
automatically adds some level of flow sensitivity to the analysis [12]. SSA, while
useful, is still limited in the amount of precision that it adds, and in particular, it
does not help with using branch conditions. We present a program transforma-
tion based on Global Value Numbering (GVN) [16] that adds significantly more
precision on top of SSA by leveraging branch conditions.

The transformation works by first inserting an assignment v := e on the then
branch of a check if (e �= Null), where v is a fresh program variable. This gives us
the global invariant that v can never hold the Null value. However, this invariant
will be of no use unless the program uses v. Our transformation then searches
locally, in the same procedure, for program expressions e′ that are equivalent to
e, that is, at runtime they both hold the same value. The transformation then
replaces e′ with v. The search for equivalent expressions is done by adapting the
GVN algorithm (originally designed for compiler optimizations [10]).

Our transformation can be followed up with a standard alias analysis to
infer the points-to set for each variable, with a slight change that the new vari-
ables introduced by our transformation (such as v above) cannot be Null. This
change stops spurious propagation of Null and makes the analysis more precise.
We perform extensive experiments on real-world code. The results show that the
precision of the alias analysis (measured in terms of the number of pointer deref-
erences proved safe) goes from 86.56% to 98.05%. This work is used in Microsoft’s
Static Driver Verifier tool [22] for finding null-pointer bugs in device drivers1.

1 https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=vs.
85).aspx.

https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt779102(v=vs.85).aspx
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var x : int
procedure f(var y : int) returns u : int
{

var z : int
L1 :

x := y.f;
assume (x �= Null);
goto L2;

L2 :
z.g := y;
assert (x �= Null);
u := x;
return;

}

procedure main()
{

var a : int;
var b : int;
L1 :

a := new();
b := call f(a);
goto L2;

L2 :
return;

}

Fig. 1. An example program in our language

The rest of the paper is organized as follows: Sect. 2 provides background on
flow-insensitive alias analysis and how SSA can improve its precision. Section 3
illustrates our program transformation via an example and Sect. 4 presents it
formally. Section 5 presents experimental results, Sect. 6 describes some of the
related work in the area and Sect. 7 concludes.

2 Background

2.1 Programming Language

We introduce a simplistic language to demonstrate the alias analysis and how
program transformations can be used to increase its precision. As is standard,
we concern ourselves only with statements that manipulate pointers. All other
statements are ignored (i.e., abstracted away) by the alias analysis. Our language
has assignments with one of the following forms: pointer assignments x := y,
dereferencing via field writes x.f := y and reads x := y.f, creating new memory
locations x := new(), or assigning Null as x := Null. The language also has
assume and assert statements:

– assume B checks the Boolean condition B and continues execution only if the
condition evaluates to true. The assume statement is a convenient way of
modeling branching in most existing source languages. For instance, a branch
“if (B)” can be modeled using two basic blocks, one beginning with assume B
and the other with assume ¬B.

– assert B checks the Boolean condition B and continues execution if it holds.
If B does not hold, then it raises an assertion failure and stops program
execution.

A program in our language begins with global variable declarations followed
by one or more procedures. Each procedure starts with declarations of local
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Statement Constraint

i : x := new() aSi ∈ pt(x)

x := Null aS0 ∈ pt(x)

x := y pt(y) ⊆ pt(x)

x := y.f

aSi ∈ pt(y)

pt(aSi.f) ⊆ pt(x)

x.f := y

aSi ∈ pt(x)

pt(y) ⊆ pt(aSi.f)

Fig. 2. Program statements and
corresponding points-to set
constraints

Algorithm 1. Algorithm for computing
points-to sets
1: For each program variable x, let pt(x) = ∅
2: repeat
3: opt := pt
4: for all program statements st do
5: if st is i : x := new() then
6: pt(x) := pt(x) ∪ {aSi}
7: if st is x := Null then
8: pt(x) := pt(x) ∪ {aS0}
9: if st is x := y then

10: pt(x) := pt(x) ∪ pt(y)

11: if st is x := y.f then
12: for all aSi ∈ pt(y) do
13: pt(x) := pt(x) ∪ pt(aSi.f)

14: if st is x.f := y then
15: for all aSi ∈ pt(x) do
16: pt(aSi.f) := pt(aSi.f) ∪ pt(y)

17: for all tagged(x) do
18: pt(x) := pt(x) − {aS0}
19: until opt = pt

variables, followed by a sequence of basic blocks. Each basic block starts with a
label, followed by a list of statements, and ends with a control transfer, which is
either a goto or a return. A goto in our language can take multiple labels. The
choice between which label to jump is non-deterministic. Finally, we disallow
loops in the control-flow of a procedure; they can instead be encoded using
procedures with recursion. This restriction simplifies the presentation of our
algorithms. Figure 1 shows an illustrative example in our language.

2.2 Alias Analysis

This section describes Andersen’s may-alias analysis [1]. The analysis is context
and flow-insensitive, which means that it completely abstracts away the control
of the program. But the analysis is field-sensitive, which means that a value can
be obtained by reading a field f only if it was previously written to the same field
f. Field-insensitive analyses, for example, also abstract away the field name.

The analysis outputs an over-approximation of the set of memory locations
each pointer can hold under all possible executions. Since a program can poten-
tially execute indefinitely (because of loops or recursion), the number of memory
locations allocated by a program can be unbounded. We consider a finite abstrac-
tion of memory locations, commonly called the allocation-site abstraction [15].
Each memory location allocated by the same new statement is represented using
the same abstract value. This abstract value is also called an allocation site. We
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x := new();

assert (x �= Null);

y := x.f;

x := Null;

x1 := new ();

assert (x1 �= Null);

y := x1.f;

x2 := Null;

Fig. 3. A program snippet before SSA (left) and after SSA (right)

label each new statement with a unique number i and refer to its corresponding
allocation site as aSi. We use the special allocation site aS0 to denote Null.

We follow a description of Andersen’s analysis in terms of set constraints
[26], shown in Fig. 2. The analysis outputs a points-to relation pt where pt(x)
represents the points-to set of a variable x, i.e. (an over-approximation of) the
set of allocation sites that x may hold under all possible executions. In addition,
it also computes pt(aSi.f), for each allocation site aSi and field f, representing
(an over-approximation of) the set of values written to the f field of an object
in pt(aSi).

The analysis abstracts away program control along with assert and assume
statements. It considers a program as a bag of pointer-manipulating statements
where each statement can be executed any number of times and in any order.
Function calls are processed by adding assignments between formal and actual
variables. For instance, in Fig. 1, the call to f from main will result in the assign-
ments y := a and b := u. For each statement, the analysis follows Fig. 2 to gen-
erate a set of rules that define constraints on the points-to solution pt. The rules
can be read as follows.

– If a program has an allocation x := new() and this statement is labeled with
the unique integer i, then the solution must have aSi ∈ pt(x).

– If a program has the statement x := NULL, then it must be that aS0 ∈ pt(x).
– If the program has an assignment x := y then the solution must have pt(y) ⊆

pt(x), because x may hold any value that y can hold.
– If the program has a statement x := y.f and aSi ∈ pt(y), then it follows that

pt(aSi.f) ⊆ pt(x) because x may hold any value written to the f field of aSi.
– If the program has a statement x.f := y and aSi ∈ pt(x) then it must be that

pt(y) ⊆ pt(aSi.f).

These set constraints can be solved using a simple fix-point iteration, shown
in Algorithm 1. (Our tool uses a more efficient implementation [26].) For now,
ignore the loop on line 17. Once the solution is computed, we check all assertions
in the program. We say that an assertion assert (x �= Null) is safe (i.e., the
assertion cannot be violated) if aS0 �∈ pt(x). We do not consider other kinds of
assertions in the program because our goal is just to show null-exception safety.
Andersen’s analysis complexity is cubic in the size of the program.
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assume (x �= Null);

y := x;

assert (x �= Null);

z := x.f;

assume (x �= Null);

cseTmp# := x;

y := cseTmp#;

assert (cseTmp# �= Null);

z := cseTmp#.g;

Fig. 4. A program snippet before CSE (left) and after CSE (right)

2.3 Static Single Assignment (SSA)

This section shows how a program transformation can improve the precision of
an alias analysis. Consider the program on the left in Fig. 3. A flow-insensitive
analysis does not look at the order of statements. Under this abstraction, the
analysis cannot prove the safety of the assertion in this snippet of code because it
does not know that the assignment of Null to x only happens after the assertion.

To avoid such loss in precision, most practical implementations of alias analy-
sis use the Single Static Assignment (SSA) form [5]. Roughly, SSA introduces
multiple copies of each original variable such that each variable in the new pro-
gram only has a single assignment. The SSA form of the snippet is shown on
the right in Fig. 3. Clearly, this program has the same semantics as the original
program. But a flow-insensitive analysis will now be able to show the safety of
the assertion in the program because the assignment of Null is to x2 whereas
the assertion is on x1.

3 Overview

This section presents an overview of our technique of using program transfor-
mations that add even more precision to the alias analysis compared to the
standard SSA. We start by using Common Subexpression Elimination [4] and
build towards using Global Value Numbering [16], which is used in our imple-
mentation and experiments.

3.1 Common Subexpression Elimination

We demonstrate how we can leverage assume and assert statements to add pre-
cision to the analysis. Consider the program on the left in Fig. 4. Once the
program control passes the assume statement, we know that x cannot point to
Null, hence the assertion is safe, irrespective of what preceded this code snip-
pet. Also, note that SSA renaming does not help prove the assertion in this case
(it is essentially a no-op for the program). We now make the case for a different
program transformation.

As a first step, we introduce a new local variable cseTmp# to the procedure
and assign it the value of x right after the assume. These new variables that we
introduce to the program will carry the tag “#” to distinguish them from other
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program variables. For a tagged variable w#, we say that tagged(w#) is true.
These tagged variables carry the special invariant that they cannot be Null;
their only assignment will be after an assume statement that prunes away the
Null value. (The same reasoning applies to assert statements too, i.e. once
control passes a statement assert(x �= Null), x cannot point to Null.)

After introducing the variable cseTmp#, we make use of a technique similar
to Common Subexpression Elimination (CSE) to replace all expressions that are
equivalent to cseTmp# with the variable itself, resulting in the program on the
right in Fig. 4. This snippet is clearly equivalent to the original one. We perform
the alias analysis on this snippet as usual, but enforce that pt(cseTmp#) cannot
have aS0 because it cannot be Null. (See the loop on line 17 of Algorithm 1.)
The analysis can now prove that the assertion is safe.

The process of finding equivalent expressions is not trivial. For instance,
consider the following program where we have introduced the variable cseTmp#.

assume (x.f �= Null);
cseTmp# := x.f;
y.f := z;
z := x.f;

In the last assignment, x.f cannot be substituted by cseTmp#, because there
is an assignment to the field f in the previous statement. As there is no aliasing
information present at this point, we have to conservatively assume that y and x
could be aliases, thus, the assignment y.f := z can potentially change the value
of x.f, breaking its equivalence to cseTmp#.

3.2 Global Value Numbering

We improve upon the previous transformation by using a more precise method
of determining expression equalities. The methodology remains the same: we
introduce temporary variables that cannot be Null and use them to replace
syntactically equivalent expressions. But this time we adapt the Global Value
Numbering (GVN) scheme to detect equivalent expressions. Consider the follow-
ing program. (For now, ignore the right-hand side of the figure after the “=⇒”.)

1 y := x.f.g; =⇒ t1 ← x, t2 ← t1.f, t3 ← t2.g, y ↪→ t3
2 z := y.h; =⇒ t3 ← y, t4 ← t3.h, z ↪→ t4
3 assume (z �= Null); =⇒ add t4 to nonNullExprs

4 a := x.f; =⇒ t1 ← x, t2 ← t1.f, a ↪→ t2
5 b := a.g.h; =⇒ t2 ← a, t3 ← t2.g, t4 ← t3.h, b ↪→ t4
6 assert (b �= Null); =⇒ check t4 ∈ nonNullExprs

7 c.g := d;

It is clear that z and b are equivalent at the assertion location, and because
z �= Null, the assertion is safe. However, none of the previous methods would
allow us to prove the safety of the assertion. We adapt the GVN scheme to help
us establish the equality between z and b. We introduce the concept of terms
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that will be used as a placeholder for subexpressions. The intuitive idea is that
equivalent subexpressions will be represented using the same term.

We start by giving an overview of the transformation for a single basic block,
and then generalize it to full procedure later in this section. For a single basic
block, we walk through the statements in order and as we encounter a new
variable, we assign it a new term and remember this mapping in a dictio-
nary called hashValue. We also store the mapping from terms to other terms
through operators in a separate dictionary called hashFunction. For example,
if x is assigned term t1, and we encounter the assignment y := x.f, we store
hashFunction[f][t1] = t2 and assign the term t2 to y. We also maintain a sep-
arate list nonNullExprs of terms that are not null. Finally, for performing the
actual substitution, we maintain a dictionary defaultVar that maps terms to the
temporary variables that we introduced for non-null expressions.

We go through the program snippet starting at the first statement and move
down to the last statement. At statement i, we follow the description written
in the ith item below. This description is also shown on the right side of the
program snippet, after the =⇒ arrow.

1. Assign a new term t1 to x, and set hashValue[x] = t1. Then, set
hashFunction[f][t1] = t2, and hashFunction[g][t2] = t3. Finally the assignment
to y sets hashValue[y] = t3.

2. We already have hashValue[y] = t3, so assign hashFunction[g][t3] = t4. The
assignment to z sets hashValue[z] = t4.

3. We have hashValue[z] = t4. So, we add t4 to nonNullExprs. We create
a new temporary variable gvnTmp#, and construct an extra assignment
gvnTmp# := z, and add it after the assume statement. Because hashValue[z] =
t4, we also add defaultVar[t4] = gvnTmp#, which we will use later for substi-
tutions to all expressions that hash to t4.

4. We already have hashValue[x] = t1 and hashFunction[f][t1] = t2, so we set
hashValue[a] = t2.

5. Since hashValue[a] = t2, hashFunction[g][t2] = t3 and hashFunction[h][t3] =
t4, the hash value of the expression a.g.h is t4. We also have defaultVar[t4] =
gvnTmp#. At this point, we observe t4 being in nonNullExprs and substitute
the RHS a.g.h with gvnTmp#. Finally, we set hashValue[b] = t4.

6. Because hashValue[b] = t4 and defaultVar[t4] = gvnTmp# and nonNullExprs
contains t4, we replace the expression b with gvnTmp#.

The resulting code is shown below.

1 y := x.f.g;
2 z := y.h;
3 assume (z �= Null);
4 gvnTmp# := z;
5 a := x.f;
6 b := gvnTmp#;
7 assert (gvnTmp# �= Null);
8 c.g := d;
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L1 :
assume (x �= Null);

gvnTmp
#
1 := x;

goto L3;

L2 :
assume (x �= Null);

gvnTmp
#
2 := x;

goto L3;

L3 :
assert (x �= Null);

L1 :
assume (x �= Null);

gvnTmp
#
1 := x;

goto L3;

L2 :
assume (x �= Null);

gvnTmp
#
2 := x;

goto L3;

L3 :

gvnTmp
#
3 := x;

assert (gvnTmp
#
3 �= Null);

Fig. 5. A program snippet before GVN (left) and after GVN (right)

Clearly, we retain the invariant that #-tagged variables cannot be Null, and
it is now straightforward to prove the safety of the assertion. We also note that
the expression substitution is performed in a conservative manner. It is aborted
as soon as a subexpression is assigned to. For example, at line 8, we encounter
an assignment to the field g, so we remove g from the dictionary hashFunction.
This has the effect of g acting as a new field, and all terms referenced by this
field will now be assigned new terms.

The above transformation, in general, is performed on the entire procedure,
not just a basic block to fully exploit its potential. This occurs in two steps. First,
loops are lifted and converted to procedures (with recursion), so that the control-
flow of each resulting procedure is acyclic. Next, we perform a topological sort of
the basic blocks of a procedure and analyze the blocks in this order. This ensures
that by the time the algorithm visits a basic block, it has already processed all
predecessors of the block.

When analyzing a block, the algorithm considers all its predecessors and takes
the intersection of their nonNullExprs list and hashValue map. This is because
an expression is non-null only if it is non-null in all its predecessors and, further,
we can use a term for a variable only if it is associated with the same term in
all its predecessors. Finally, an important aspect of the algorithm is to perform
a sound substitution at the merge point of basic blocks.

Consider the code snippet on the left in Fig. 5. In this example, although x
is available as a non-null expression in L3, we cannot substitute x in the asser-
tion by either gvnTmp#1 or gvnTmp#2 because neither preserves program seman-
tics. Instead, we introduce a new variable gvnTmp#3 and add the assignment
gvnTmp#3 := x right before the assertion in L3 and use that for substituting x.
This is achieved by the map var2expr in the main algorithm. It maps a #-tagged
variable to the expression that it substitutes. In the above program, suppose we
assign the term t to the non-null expression x. Hence, nonNullExprs[L1] and
nonNullExprs[L2] both contain t. We also have defaultVar[L1][t] = gvnTmp#1
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and var2expr[gvnTmp#1 ] = x. Since t is available from all predecessors of L3, we
know that this term is non-null in L3. The question is finding the expression cor-
responding to this term t and introducing a new assignment for it. At this point,
the map var2expr comes into play. We pick a predecessor of L3, say L1. We
look for the default variable of t and find defaultVar[L1][t] = gvnTmp#1 , we then
search for var2expr[gvnTmp#1 ] = x. At this point, we find that the expression
corresponding to term t is x, and we introduce a new assignment gvnTmp#3 := x
at the start of L3 and use this for substitution of x in L3. The next section
describes the algorithm formally.

4 Algorithm

We present the pseudocode of our program transformation in this section, as
Algorithms 2 and 3. The transformation takes a program as input and pro-
duces a semantically-equivalent program with new #-tagged variables that can
never point to Null. This involves adding assignments for these new variables,
and substituting existing expressions with these variables whenever we deter-
mine that the substitution will preserve semantics. A proof of correctness of our
transformation can be found in our full version [7].

At a high level, the idea is to use assume and assert statements to identify non-
null expressions. We introduce fresh #-tagged variables and assign these non-null
expressions to them. Then, in a second pass, we compute a term corresponding
to each expression. These terms are assigned in a manner that if two expressions
have the same term, then they are equivalent to each other. If we encounter
an expression e with the same term as one of the non-null expressions e′, we
substitute e with the #-tagged variable corresponding to e′.

We start by describing the role of each data structure used in Algorithm 2.

– nonNullExprs stores the terms corresponding to non-null expressions of a
particular block.

– var2expr maps a #-tagged variable to the expression it is assigned to in each
block. This will be used to perform sound substitution at merge points of
basic blocks, as discussed in the last example of Sect. 3.2.

– defaultVar maps the term of to an expression to the #-tagged variable that
will be used for its substitution. Whenever we compute the term for an expres-
sion, if the term is present in nonNullExprs, we will use defaultVar to find the
#-tagged variable that will be used for the substitution.

– hashValue maps variables to terms assigned to them in a particular block.
– hashFunction stores the mapping from a field and a term to a new term. It

is used to store the term for expressions with fields.
– currBlock keeps track of the current block (used in helper functions).

We explain the algorithm step by step.



Precise Null Pointer Analysis Through Global Value Numbering 35

Algorithm 2. Algorithm to perform GVN
1: nonNullExprs = {} � block → non-null terms in block
2: var2expr = {} � #-tagged variable → expression
3: defaultVar = {} � block, term → variable for substitution
4: hashValue = {} � block, variable → term
5: hashFunction = {} � operator, terms → term
6: currBlock � current block
7: function DoGVN
8: for proc in program do
9: for block in proc.Blocks do

10: for stmt in block.Stmts do
11: if stmt is “assert expr �= Null” or “assume expr �= Null” then
12: gvnTmp# ← GetNewTaggedV ar()

13: s ← “gvnTmp# := expr
′′

14: block.Stmts.Add(s)
15: var2expr[block][gvnTmp#] ← expr

16: for proc in program do
17: sortedBlocks ← TopologicalSort(proc.Blocks)
18: for block in sortedBlocks do
19: nonNullExprs[block] ← ⋂blk∈block.Preds nonNullExprs[blk]
20: hashValue[block] ← ⋂blk∈block.Preds hashValue[blk]
21: currBlock ← block
22: for term in nonNullExprs[block] do
23: expr ← var2expr[defaultVar[blk][term]] � for some blk ∈ Preds
24: gvnTmp# ← GetNewSpecialV ar()
25: var2expr[gvnTmp#] ← expr
26: s ← “gvnTmp# := expr”
27: block.Stmts.AddFront(s)

28: for stmt in block.Stmts do
29: stmt ← ProcessStmt(stmt)
30: if stmt is “gvnTmp# := expr” then
31: term ← ComputeHash(expr)
32: nonNullExprs[block].Add(term)
33: defaultVar[block][term] ← gvnTmp#

1. Lines 8–15 – In this first pass of the algorithm, we search for program state-
ments of the form “assert expr �= Null” or “assume expr �= Null”. This guar-
antees that expr cannot be Null after this program location under all exe-
cutions. Hence, we introduce a new variable gvnTmp# and assign expr to it.
This mapping is also added to var2expr.

2. Line 17 – Before the second pass, we perform a topological sort on the basic
blocks according to the control-flow graph. This is necessary since the infor-
mation of nonNullExprs for the predecessors of a basic block is needed before
analyzing it. Note that control-flow graphs of procedures in our language must
be acyclic (we convert loops to recursion), thus a topological sorting always
succeeds.
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Algorithm 3. Helper Functions for DoGVN
1: function ProcessStmt(stmt)
2: if stmt is “assume expr” or “assert expr” then
3: expr ← GetExpr(expr)
4: return stmt
5: else if stmt is “v := expr” then
6: hashValue[currBlock][v] ← ComputeHash(expr)
7: expr ← GetExpr(expr)
8: return stmt
9: else if stmt is “v.f := expr” then

10: expr ← GetExpr(expr)
11: v ← GetExpr(v)
12: hashFunction.Remove(f)
13: return stmt
14: function GetExpr(expr)
15: if expr is v then
16: term ← ComputeHash(v)
17: if nonNullExprs[currBlock] contains term then
18: return defaultVar[currBlock][term]

19: return v
20: if expr is v.f then
21: v ← GetExpr(v)
22: return v.f
23: function ComputeHash(expr)
24: if expr is v then
25: if hashValue[currBlock] does not contain v then
26: hashValue[currBlock][v] ← GetNewTerm()

27: return hashValue[currBlock][v]
28: else if expr is v.f then
29: term ← ComputeHash(v)
30: if hashFunction[f] does not contain term then
31: hashFunction[f][term] ← GetNewTerm()

32: return hashFunction[f][term]

3. Lines 18–27 – We compute the set of expressions that are non-null in all
predecessors. These expressions will also be non-null in the current block.
We also need the term for each variable in the current block, which also
comes from the intersection of terms from all predecessors. Finally, for all
the non-null expressions, we add an assignment since these expressions may
be available from different variables in different predecessors, as discussed in
Sect. 3.2.

4. Lines 28–33 – Finally, we process each statement in the current block. This
performs the substitution for each expression in the statement (GetExpr
function in Algorithm 3). GetExpr computes the term for the expression
(ComputeHash function in Algorithm 3), and if the term is contained in
nonNullExprs, the substitution is performed. Finally, if we encounter a store
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statement, “v.f := expr”, we remove all mappings w.r.t. f in hashFunction. So,
for the future statements (and future blocks in the topological order), new
terms will be assigned to expressions related to field f.

Following Algorithm 2, we generate a semantically equivalent program, and
as we show in our experiments, will have improved precision with regard to
alias analysis. The main reason behind this improvement is that these #-tagged
variables can never contain aS0 in their points-to set, hence Null cannot flow
through these variables in the analysis.

5 Experimental Evaluation

We have implemented the algorithms presented in this paper for the Boogie
language [19]. Boogie is an intermediate verification language. Several front-ends
are available that compile source languages such as C/C++ [17,23] and C# [2]
to Boogie, making it a useful target for developing practical tools. (For C/C++,
we make the standard assumption that pointer arithmetic does not change the
allocation site of the pointer, and thus can be ignored for the alias analysis [29];
due to space constraints we do not describe these details in this paper.)

Our work fits into a broader verification effort. The Angelic Verification (AV)
project2 at Microsoft Research aims to design push-button technology for finding
software defects. In an earlier effort, AV was targeted to find null-pointer bugs
[6]. Programs from the Windows codebase, in C/C++, were compiled down to
Boogie with assertions guarding every pointer access to check for null derefer-
ences. These Boogie programs were fed to a verification pipeline that applied
heavyweight SMT-solver technology to reason over all possible program behav-
iors. To optimize the verification time, an alias analysis is run at the Boogie level
to remove assertions that can be proved safe by the analysis. As our results will
show, this optimization is necessary. The alias analysis is based on Andersen’s
analysis, as was described in Fig. 2. We follow the algorithm given in Sridharan
et al. report [26] with the extra constraint that #-tagged variables cannot alias
with Null, i.e. they cannot contain the allocation site aS0. We can optionally
perform the program transformation of Sect. 4 before running the alias analysis.
Our implementation is available open-source3.

We evaluate the effect of our program transformation on the precision of
alias analysis for checking safety of null-pointer assertions. The benchmarks are
described in the first three columns of Table 1. We picked 16 different modules
from the Windows codebase. The table lists an anonymized name for the module
(Bench), the lines of code in thousands (KLOC) and the number of assertions
(one per pointer dereference) in the code (Asserts). It is worth noting that the
first ten modules are the same as ones used in the study with AV [6], while the
rest were added later.

2 https://www.microsoft.com/en-us/research/project/angelic-verification/.
3 At https://github.com/boogie-org/corral, project AddOns\AliasAnalysis.

https://www.microsoft.com/en-us/research/project/angelic-verification/
https://github.com/boogie-org/corral
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Table 1. Results showing the effect of SSA and GVN program transformations on the
ability of alias analysis to prove safety of non-null assertions.

Bench Stats SSA only SSA with GVN

KLOC Asserts Time (s) Asserts Time (s) GVN Asserts

Mod 1 3.2 1741 9.08 61 11.37 0.88 17

Mod 2 8.4 4035 11.34 233 17.62 1.13 45

Mod 3 6.5 4375 10.26 617 19.43 2.15 52

Mod 4 20.9 7523 24.04 543 33.99 2.43 123

Mod 5 30.9 11184 35.02 1881 59.84 7.11 232

Mod 6 37.8 12128 35.94 2675 70.71 11.13 452

Mod 7 37.2 6840 36.88 1396 53.24 3.44 127

Mod 8 43.8 12209 28.91 2854 62.27 5.38 475

Mod 9 56.6 19030 60.05 5444 106.61 12.40 508

Mod 10 76.5 39955 171.43 2887 839.58 475.08 372

Mod 11 23.5 6966 49.17 875 69.10 10.14 103

Mod 12 14.9 8359 24.57 820 59.13 13.41 210

Mod 13 22.1 11471 38.27 869 87.07 24.03 248

Mod 14 36.2 18026 48.56 2501 149.60 41.93 478

Mod 15 19.4 20555 55.07 586 269.35 134.06 131

Mod 16 54.0 16957 62.86 2821 127.67 30.46 342

Total 491.9 201354 701.45 27063 2036.58 775.16 3915

We ran our tool, using either SSA alone or SSA followed by our GVN trans-
formation, followed by the alias analysis. We list the total time taken by the
tool (Time(s)), including the time to run the transformation, and the number
of assertions that were not proved safe (Asserts). In the case of GVN, we also
isolate and list the time taken by the GVN transformation itself (GVN). The
experiments were run (sequentially, single-threaded) on a server class machine
with an Intel(R) Xeon(R) processor (single core) executing at 2.4 GHz with 32
GB RAM.

It is clear from the table that GVN offers significant increase in precision.
With only the use of SSA, the analysis was able to prove the safety of 86.56%
of assertions, while with the GVN transformation, we can prune away 98.05%
of assertions. This is approximately a 7X reduction in the number of assertions
that remain. This pruning is surprising because the alias analysis is still context
and flow insensitive. Our program transformation crucially exploits the fact that
programmers tend to be defensive against null-pointer bugs, allowing the analysis
to get away with a very coarse abstraction. In fact, this level of pruning means
that investing in more sophisticated alias analyses (e.g., flow sensitive) would
have very diminished returns.
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The alias analysis itself scales quite well: it finishes on about half a million
lines of code in approximately 700 s with just SSA (86.56% pruning) or 2000 s
with GVN (98.05% pruning). We note that there is an increase in the running
time when using GVN. This happens because the transformation introduces
more variables, compared to just SSA. However, this increase in time is more
than offset by the improvement presented to the AV toolchain. For example,
with the GVN transformation, AV takes 11 h to finish the first 10 modules
[6], whereas with the SSA transformation alone it does not finish even in 24 h.
Furthermore, AV reports fewer bugs when using just SSA because the extra
computational load translates to a loss in program coverage as timeouts are hit
more frequently.

6 Related Work

Pointer analysis is a well-researched branch of static analysis. There are several
techniques proposed that interplay between context, flow and field sensitivity.
Our choice of using context-insensitive, flow-insensitive but field sensitive analy-
sis is to pick a scalable starting point, after which we add precision at low cost.
The distinguishing factor in our work is: (1) the ability to leverage information
from assume and assert statements (or branch conditions) and (2) specializing
for the purpose of checking non-null assertions (as opposed to general aliasing
assertions). We very briefly list, in the rest of this section, some of the previous
work in adding precision to alias analysis or making it more scalable.

Context Sensitivity. Sharir and Pnueli [25] introduced the concept of call-strings
to add context-sensitivity to static analysis techniques. Call strings may grow
extremely long and limit efficiency, so Lhoták and Hendren [21] used k-limiting
approaches to limit the size of call strings. Whaley and Lam [28] instead use
Binary Decision Diagrams (BDDs) to scale a context sensitive analysis.

Flow sensitivity. Hardekopf and Lin [11] present a staged flow-sensitive analysis
where a less precise auxiliary pointer analysis computes def-use chains which is
used to enable the sparsity of the primary flow-sensitive analysis. The technique
is quite scalable on large benchmarks but they abstract away the assume state-
ments. De and D’Souza [8] compute a map from access paths to sets of abstract
objects at each program statement. This enables them to perform strong updates
at indirect assignments. The technique is shown to be scalable only for small
benchmarks, moreover, they also abstract away all assume statements. Finally,
Lerch et al. [20] introduce the access-path abstraction, where access paths rooted
at the same base variable are represented by this base variable at control flow
merge points. The technique is quite expensive even on small benchmarks (less
than 25 KLOC) and do not deal with assume statements in any way.

Other techniques. Heintze and Tardieu [13] improved performance by using a
demand-driven pointer analysis, computing sufficient information to only deter-
mine points-to set of query variables. Fink et al. [9] developed a staged verifi-
cation system, where faster and naive techniques run as early stages to prune
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away assertions that are easier to prove, which then reduces the load on more
precise but slow techniques that run later. Landi and Ryder [18] use conditional
may alias information to over-approximate the points-to sets of each pointer.
Context sensitivity is added using k-limiting approach, and a set of aliases is
maintained for every statement within a procedure to achieve flow-sensitivity.
Choi et al. [3] also follows [18] closely but uses sparse representations for the con-
trol flow graphs and use transfer functions instead of alias-generating rules. To
the best of our knowledge, none of these techniques are able to leverage assume
statements to improve precision.

7 Conclusion

This paper presents a program transformation that improves the efficiency of
alias analysis with minor scalability overhead. The transformation is proved to
be semantics preserving. Our evaluation demonstrates the merit of our approach
on a practical end-to-end scenario of finding null-pointer dereferences in software.
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23. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 7

24. Ramalingam, G.: The undecidability of aliasing. ACM Trans. Program. Lang. Syst.
16(5), 1467–1471 (1994)

25. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis, pp.
189–234. Prentice-Hall, Englewood Cliffs, NJ (1981). Chap. 7

26. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Alias analysis for
object-oriented programs. In: Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in
Object-Oriented Programming. Types, Analysis and Verification. LNCS, vol. 7850,
pp. 196–232. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36946-9 8

27. Steensgaard, B.: Points-to analysis in almost linear time. In: Principles of Pro-
gramming Languages (POPL), pp. 32–41. ACM, New York (1996)

28. Whaley, J., Lam, M.S.: An efficient inclusion-based points-to analysis for strictly-
typed languages. In: Static Analysis Symposium, pp. 180–195 (2002)

29. Zheng, X., Rugina, R.: Demand-driven alias analysis for c. In: Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, pp. 197–208. ACM, New York (2008)

https://github.com/boogie-org/boogie
http://msdn.microsoft.com/en-us/library/windows/hardware/ff552808(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff552808(v=vs.85).aspx
http://dx.doi.org/10.1007/978-3-319-08867-9_7
http://dx.doi.org/10.1007/978-3-642-36946-9_8


May-Happen-in-Parallel Analysis
with Returned Futures

Elvira Albert(B), Samir Genaim, and Pablo Gordillo

Complutense University of Madrid (UCM), Madrid, Spain
elvira@sip.ucm.es

Abstract. May-Happen-in-Parallel (MHP) is a fundamental analysis to
reason about concurrent programs. It infers the pairs of program points
that may execute in parallel, or interleave their execution. This infor-
mation is essential to prove, among other things, absence of data races,
deadlock freeness, termination, and resource usage. This paper presents
an MHP analysis for asynchronous programs that use futures as syn-
chronization mechanism. Future variables are available in most concur-
rent languages (e.g., in the library concurrent of Java, in the standard
thread library of C++, and in Scala and Python). The novelty of our
analysis is that it is able to infer MHP relations that involve future
variables that are returned by asynchronous tasks. Futures are returned
when a task needs to await for another task created in an inner scope,
e.g., task t needs to await for the termination of task p that is spawned
by task q that is spawned during the execution of t (not necessarily by
t). Thus, task p is awaited by task t which is in an outer scope. The
challenge for the analysis is to (back)propagate the synchronization of
tasks through future variables from inner to outer scopes.

1 Introduction

MHP is an analysis of utmost importance to ensure both liveness and safety
properties of concurrent programs. The analysis computes MHP pairs, which
are pairs of program points whose execution might happen, in an (concurrent)
interleaved way within one processor, or in parallel across different processors.
This information is fundamental to prove absence of data races as well as more
complex properties: In [13], MHP pairs are used to discard unfeasible deadlock
cycles; namely if a deadlock cycle inferred by the deadlock analyzer includes pairs
of program points that are proven not to happen in parallel by our MHP analysis,
the cycle is spurious and the program is deadlock free. In [4], the use of MHP
pairs allows proving termination and inferring the resource consumption of loops
with concurrent interleavings. For instance, consider a loop whose termination
cannot be proven because of a potential execution in parallel of the loop with a
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task that modifies the variables that control the loop guard (and thus threatens
its termination). If our MHP analysis proves the unfeasibility of such parallelism,
then termination of the loop can be guaranteed.

For simplicity, we develop our analysis on a small asynchronous language
which uses future variables [10,12] for task synchronization. A method call m on
some parameters x̄, written as f = m(x̄), spawns an asynchronous task, and the
future variable f allows synchronizing with the termination of such task by means
of the instruction await f ?; which delays the execution until the asynchronous
task has finished. In this fragment of code f = m(..) ;...; await f ?; the execution
of the instructions of the asynchronous task m may happen in parallel with the
instructions between the asynchronous call and the await. However, due to the
future variable in the await instruction, the MHP analysis is able to ensure that
they will not run in parallel with the instructions after the await. Therefore,
future variables play an essential role within an MHP analysis and it is essential
for its precision to track them accurately. Future variables are available in most
concurrent languages: Java, Scala and Python allow creating pools of threads.
The users can submit tasks to the pool, which are executed when a thread of
the pool is idle, and may return future variables to synchronize with the tasks
termination. C++ includes the components async, future and promise in its
standard library, which allow programmers to create tasks (instead of threads)
and return future variables in the same way as we do.

In this paper, we present to the best of our knowledge the first MHP analysis
that captures MHP relations that involve tasks that are awaited in an outer
scope from the scope in which they were created. This happens when future
variables are returned by the asynchronous tasks, as it can be performed in
all programming languages that have future variables. Our analysis builds on
top of an existing MHP analysis [3] that was extended to track information of
future variables passed through method parameters in [5], but it is not able
to track information propagated through future variables that are returned by
tasks. The original MHP analysis [3] involves two phases: (1) a local analysis
which consists in analyzing the instructions of the individual tasks to detect the
tasks that it spawns and awaits, and (2) a global analysis which propagates the
local information compositionally. Accurately handling returned future variables
requires non-trivial extensions in both phases:

1. The local phase needs to be modified to backpropagate the additional inter-
procedural relations that arise from the returned futures variables. Back-
propagation is achieved by modifying the data-flow of the analysis so that it
iterates to propagate the new dependencies.

2. The global phase has to be modified by reflecting in the analysis graph the
additional information provided by the local phase. A main achievement has
been to generate the necessary information at the local phase so that the
process of inferring the MHP pairs remains as in the original analysis.

Our analysis has been implemented within the SACO static analyzer [2], which
is able to infer the safety and liveness properties mentioned above. The system
can be used online at http://costa.ls.fi.upm.es/saco/web/, where the benchmarks

http://costa.ls.fi.upm.es/saco/web/
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used in the paper are available. Our experiments show that our analysis improves
the accuracy over the previous analysis with basically no overhead.

2 Language

We present the syntax and semantics of the asynchronous language on which we
develop our analysis. A program P is composed by a set of classes. Each class
contains a set of fields and a set of methods. A (concurrent) object of a class
represents a processor with a queue of tasks which (concurrently) execute the
class methods, and access a shared-memory made up by the object fields. One of
the tasks will be active (executing) and the others pending to be executed. The
notation M is used to abbreviate M1, ...,Mn. Each field and method has a type
T . The set of types includes class identifiers C and future variable types fut〈T 〉.
A method receives a set of variables as arguments x, contains local variables x′,
a returned variable, and a sequence of instructions s.

CL ::= class C {T f ;M}
M ::= T m(T x) {T x′; s}
s ::= ε | b; s
b ::= o = new C(x) | if (∗) then s1 else s2 | while (∗) do s | y = o.m(x) |

| await y? | z = y.get | return y | skip

y and z represent variables of type fut〈T 〉 and x represents a variable of type
T . Arithmetic expressions are omitted for simplicity and are represented by the
instruction skip. This instruction has no effect on the analysis of the program.
The loop and conditional statements are non-deterministic and the symbol ∗
represents true or false. The instruction y = o.m(x) corresponds to an asynchro-
nous call. It spawns a new instance of the task m in the object o and binds the
task to the future variable y. Instruction await y? is used to synchronize with
the task y = o.m(x), and blocks the execution in object o until task m finishes
its execution. z = y.get retrieves the value returned by the method bound to y
and associates it with z. W.l.o.g., we make the following assumptions: each get

instruction is preceded by an await, i.e., the task associated to the get statement
has to be finished to access its returned value; the program has a method call
main without parameters from which the execution will start; future variables
can be used once and they cannot be reused after they are bound to a task;
the get instruction can be applied once over each future variable; we restrict the
values returned by a method to future variables; each method can only have a
return statement in its body, and it has to be the last instruction of the sequence.
We let ppoints(m) and ppoints(P ) be the set of program points of method m
and program P respectively, methods(P ) be the set of method names of program
P and futures(P ) be the set of all future variables defined in program P .

Let us define the operational semantics for the language. A program state S
is a tuple S = 〈O, T 〉 where O is the set of objects and T is the set of tasks. Only
one task can be active in each object. An object is a term obj(o, a, lk) where o is
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(1)
l′ = l[o → bid1], O

′ = O ∪ {obj(bid1, a, ⊥)}, a = init atts(C, x), bid1

〈O, {tsk(tid , m, l, bid , �, o = C(x); s) ‖ T}〉 � 〈O′, {tsk(tid , m, l′, bid , �, s) ‖ T}〉

(2)

l(o) = bid1 	= , l′ = l[y → tid1], l1 = buildLocals(x, m)), tid1

〈O, {tsk(tid , m, l, bid , �, y o.m1(x); s) ‖ T}〉 �
〈O, {tsk(tid , m, l′, bid , �, s), tsk(tid1, m1, l1, bid1, ⊥, body(m1)) ‖ T}〉

(3)

l1(y) = tid2

〈O, {tsk(tid1, m1, l1, bid1, �, y?; s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉 �
〈O, {tsk(tid1, m1, l1, bid1, �, s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉

(4)

l1(y) = tid2, l
′
1 = l1[z → v]

〈O, {tsk(tid1, m1, l1, bid1, �, z y. ; s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉 �
〈O, {tsk(tid1, m1, l

′
1, bid1, �, s1), tsk(tid2, m2, l2, bid2, ⊥, ε(v)) ‖ T}〉

(5)
obj(bid , a, �) ∈ O, O′ = O[obj(bid , a, �)/obj(bid , a, ⊥)], v = l(y)

〈O, {tsk(tid , m, l, bid , �, y) ‖ T}〉 � 〈O′, {tsk(tid , m, l, bid , ⊥, ε(v)) ‖ T}〉

(6)

(l′, s′) = eval(instr, O, l)
instr ∈ { , b s1 s2, b s3}

〈O, {tsk(tid , m, l, bid , �, instr; s) ‖ T}〉 � 〈O, {tsk(tid , m, l′, bid , �, s′) ‖ T}〉

(7)
obj(bid , a, ⊥) ∈ O, O′ = O[obj(bid , a, ⊥)/obj(bid , a, �)], s 	= ε(v)

〈O, {tsk(tid , m, l, bid , ⊥, s) ‖ T}〉 � 〈O′, {tsk(tid , m, l, bid , �, s) ‖ T}〉

Fig. 1. Summarized semantics

the identifier of the object, a is a mapping from the object fields to their values
and lk ∈ {�,⊥} indicates whether the object contains an active task executing
(�) or not (⊥). A task is a term tsk(t,m, l, o, lk, s) where t is a unique task
identifier, m is the method name that is being executed, l is a mapping from the
variables of the task to their values, o is the identifier of the object in which the
task is executing, lk ∈ {�,⊥} indicates if the task has the object’s lock or not
and s is a sequence of instructions that the task will execute or s = ε(v) if the
task has finished and the return value v is available. The execution of a program
starts from the initial state S0 = 〈obj(0, a,�), tsk(0,main, l, 0,�, body(main)〉
where a is an empty mapping, and l maps future variables to null .

The execution starts from S0 applying non-deterministically the semantic
rules from Fig. 1. We use the notation {t ‖ T} to represent that task t is the
one selected non-deterministically for the execution. At each step, a subset of
the state S is rewritten according to the rules of Fig. 1 as follows: (1) creates a
new object with an empty queue, free lock and initializes its fields (init atts).
(2) corresponds to an asynchronous call. It gets the identifier of the object which
is going to execute the task, initializes the parameters and variables of the task
(buildLocals), and creates the new task with a new identifier that is associated
with the corresponding future variable. (3) An await y? statement waits until the
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task bound to y finishes its execution. (4) checks if the task bound to the future
variable involved in the get statement is finished. If so, it retrieves the value
associated with the future variable. (5) After executing the return statement, the
retrieved value is stored in v so that it can be obtained by the future variable
bound to this task. Then, the object’s lock is released (O[o/o′] means that the
object o is replaced by o′ in O) and the task is finished (ε(v) is added to the
sequence of instructions). (6) covers sequential instructions that do not affect
synchronization by moving the execution of the corresponding task to the next
instruction and possibly changing the state (represented by eval). Finally, (7) is
used to get the object’s lock by an unfinished task and start its execution.

In what follows, given a task tsk(t,m, l, o, lk, s), pp(s) denotes the program
point of the first instruction of s. If s is empty, pp(s) returns the exit program
point of the corresponding method, denoted exit(m). Given a state S = 〈O, T 〉,
we define its set of MHP pairs, i.e., the set of program points that can run in par-
allel as E(S) = {(pp(s1), pp(s2)) | tsk(tid1,m1, l1, o1, lk1, s1), tsk(tid2,m2, l2, o2,
lk2, s2) ∈ T, tid1 	= tid2}. The set of MHP pairs for a program P is defined as
the set of MHP pairs of all reachable states, namely EP = ∪{E(Sn) | S0 �∗ Sn}.

3 Motivation: Using MHP Pairs in Deadlock Analysis

Let us motivate our work by showing its application in the context of deadlock
analysis. Consider the example in Fig. 2 that models a typical client-server appli-
cation with two delegate entities to handle the requests. The execution starts
from the main block by creating four concurrent objects, the client c, the server
s, and their delegates dc and ds, respectively. The call start at Line 6 (L6) spawns
an asynchronous task on the client object c that sends as arguments references
to the other objects. When this task is scheduled for execution on the client,
we can observe that it will spawn an asynchronous task on the server (L10) and
another one on the delegate-client (L14). The request task on the server in turn
posts two asynchronous tasks on the delegate-server (L19) and delegate-client
objects (L20). Such delegates communicate directly with each other as we have
passed as arguments the references to them.

The most challenging aspect for the analysis of this model is due to the syn-
chronization through returned future variables. For instance at L12 the instruc-
tion x.get retrieves the future variable returned by request at L21. Thus, we would
like to infer that after L13 the task executing result at the object ds has termi-
nated. The inference needs to backpropagate this synchronization information
from the inner scope where the task has been created (L19) to the outer scope
where it is awaited (L13). This backpropagation is necessary in order to prove
that the execution of this application is deadlock free. Otherwise, an MHP-based
deadlock analyzer will spot an unfeasible deadlock. Figure 3 shows a fragment of
the graph that a deadlock analyzer [13] constructs: the concurrent objects are in
circles, the asynchronous tasks in boxes, and labelled arrows contain the program
lines at which tasks post new tasks on the destiny objects. In the bold arrows
of the graph, we can observe the cycle detected by the analyzer due to the task
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Fig. 2. Example of client-server model

Fig. 3. Partial data-flow graph of example in Fig. 2.

result and sendMessage executing respectively in objects ds and dc. These two
tasks wait for the termination of tasks myClientId and myServerId in each other
object, thus creating a potential cycle. Our MHP analysis will accurately infer
that these two tasks cannot happen simultaneously, and will allow the dead-
lock analyzer to break this unfeasible deadlock cycle. Figure 4 shows some of the
MHP pairs that the analysis in [3] infers, and we mark in bold font those pairs
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L11||L19 L11||L20 L11||L21 L11||L28 L11||L29 L11||L40 L12||L22
L12||L28 L12||L29 L12||L40 L14||L22 L14||L29
L15||L22 L15||L29 L15||L31 L21||L29 L21||L40
L22||L28 L22||L44 L28||L41 L28||L43 L28||L44 L29||L41 L29||L44
L29 L41 L29 L44 L29 L40 L21 L44

Fig. 4. Results of MHP analysis.

that our analysis spots as spurious (as will be explained along the paper). For
instance, the original analysis infers L15||L28 and L37||L28. However, we detect
that at program point L14 the task result is finished so it cannot run in parallel
with task sendMessage and hence those pairs are eliminated, this allows us later
to discard the potential deadlock described above.

4 MHP Analysis

The MHP analysis of [3] consists of two phases. The first one, the local phase,
considers each method separately and infers information (at each program point
of the method) about the status of the tasks that are created locally in that
method. The second one, the global phase, uses the information inferred by the
first phase to construct an MHP graph from which an over-approximation of the
MHP pairs set can be extracted. As mentioned already, the limitation of this
analysis is that it does not track inter-procedural synchronizations originating
from (1) passing future variables as method parameters; or (2) returning future
variables from one method to another. The work of [5] extends [3] to handle
the first issue, and in this paper we extend it to handle the second one. Both
extensions require different techniques, and are both complementary and com-
patible. To simplify the presentation, we have not started from the analysis with
future variables as parameters [5], but rather from the original formulation [3].
In Sect. 6, we provide a detailed comparison of [5] and our current extension.

4.1 Local MHP

The local phase of the MHP analysis (LMHP) of [3] considers each method n
separately, and for each program point � ∈ ppoints(n) it infers a LMHP state
that describes the status of each task invoked in n before reaching �. Formally,
a LMHP state E is a multiset of MHP atoms, where an MHP atom is:

1. y:T(m, act), which represents a task that is an instance of method m and can
be executing at any program point. We refer to it as active task; and

2. y:T(m, fin), which represents a task that is an instance of method m and has
finished its execution already (i.e., it is at its exit program point). We refer
to it as finished task.
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(1) τ(y = o.m(x̄), E) = E[y:T(m, X)/�:T(m, X)] ∪ {y:T(m, act)}
(2) τ( y?, E) = E[y:T(m, act)/y:T(m, fin)]
(3) τ(z = y. , E) = E′ ∪ E′′ ∪ E′′′

E′ = eliminate({y}, E[z:T(m, X)/�:T(m, X)])
E′′ = {z:T(n, X) | y:T(f, fin) ∈ E, T(n, X) ∈ Ret(f)}
E′′′ = {y:T(f, fin) | y:T(f, fin) ∈ E}

(4) τ(b, E) = E otherwise

Fig. 5. Local MHP transfer function τ .

In both cases, the task is associated to future variable y, i.e., in the concrete
state that E describes y is bound to the unique identifier of the corresponding
task. Intuitively, the MHP atoms of E represent the tasks that were created
locally and are executing in parallel. In what follows, we use y:T(m,X) to refer
to an MHP atom without specifying if it corresponds to an active or finished
task. MHP atoms might also use the symbol � instead of a future variable to
indicate that we do not know to which future variable, if any, the task is bound.
Note that if we have two atoms with the same future variable in a LMHP state
E, then they are mutually exclusive, i.e., only one of the corresponding tasks
might be executing since at the concrete level y can be bound only to one task
identifier. This might occur when merging branches of a conditional statement.
Note also that MHP states are multisets because we might have several tasks
created by invoking the same method. Since LMHP states are multisets, we write
(q, i) ∈ E to indicate that atom q appears i > 0 times in E.

The LMHP analysis of [3], that infers the LMHP states described above, is a
data-flow analysis based on the transfer function τ in Fig. 5, except for Case (3)
which is novel to our extension and whose auxiliary functions will be given
and explained later. Recall that the role of the transfer function in a data-flow
analysis is to abstractly execute the different instructions, i.e., transforming one
LMHP state to another. Let use explain the relevant cases of τ :

– Case (1) handles method calls, it adds a new active task (an instance of m)
that is bound to future variable y, and renames all atoms that already use y
to use � since it is overwritten;

– Case (2) handles await, it changes the state of any task bound to future
variable y to finished; and

– Case (4) corresponds to other instructions that do not create or wait for tasks
to finish. In this case the abstract state is not affected.

In addition, the LMHP analysis merges states of conditional branches using
union of multisets, and loops are iterated, with a corresponding widening oper-
ator that transforms unstable MHP atoms (q, i) to (q,∞), until a fix-point is
reached.
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Example 1. Consider a method f with a body while(∗){ y = o.m();}. The first
time we apply τ over f , we obtain {y:T(m, act)} at the exit program point of
the while. At the next iteration, we add a new atom bound to y so we lose
the association existing in the current state and add the new atom, obtaining
{�:T(m, act), y:T(m, act)}. After applying one more iteration, we lose the rela-
tion between y and the task m again obtaining {(�:T(m, act), 2), y:T(m, act)}.
When comparing the last two LMHP states, we observe that �:T(m, act) is
unstable, thus we apply widening and obtain {(�:T(m, act),∞), y:T(m, act)}.

In what follows we present how to extend the transfer function τ and the
LMHP states to handle returned futures in Case (3). We first explain it using a
simple example, and then describe it formally.

Example 2. Assume we have a method f with an instruction “returnx”, and
that at the exit program point of f we have a LMHP state E0 = {x:T(h, act),
w:T(g, act)}, which means that at the exit program point of f we have two active
instances of methods h and g, bound to future variables x and w respectively.
This means that f returns a future variable that is bound to an active instance
of h. Now assume that in some other method, at some program point, we have
a state E1 = {y:T(f, fin), r:T(k, act), u:T(l, act)}, which means, among other
things, that before reaching the corresponding program point, we have invoked
f and waited for it to finish (via future variable y). Let us now execute the
instruction u = y.get in the context of E1 and generate a new LMHP state E2.
Since y is bound to a task that is an instance of f , E2 should include an atom
representing that u is bound to an active task which is an instance of h (which
is returned by f via a future variable). Having this information in E2 allows us
to mark h as finished when executing await u? later. We do this as follows:

– any MHP atom from E1 that does not involve u or y is copied to E2.
– any MHP atom from E1 that involves u is copied to E2 but with u renamed

to � because u is overwritten.
– we transfer the atom x:T(h, act) from E0 to E2, by adding u:T(h, act) to E2

since now the corresponding task is bound to u as well.
– the atom y:T(f, fin) must be copied to E2 as well, but we first rewrite it

to y:T(f, fin) (in E2) to indicate that we have incorporated the information
from the exit program point of f already. This is important because after
executing the get, we will have two instances of h in E0 and E2 that refer to
the same task, and we want to avoid considering them as two different ones
in the global phase that we will describe in the next section.

This results in E2 = {y:T(f, fin), r:T(k, act), �:T(l, act), u:T(h, act)}.

To summarize the above example, the local phase of our analysis extends that
of [3] in two ways: it introduces a new kind of LMHP atom; and it has to treat
the get instruction in a special way. In the rest of this section we formalize this
extension by providing the auxiliary functions and the data-flow inference. As
notation, we let E� be the LMHP state that corresponds to program point �;
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we let Em
exit be the LMHP state that corresponds to the exit program point of

method m; and we define

Ret(m) = {T(n,X) | return y ∈ body(m), y:T(n,X) ∈ Em
exit},

which is the set of tasks in Em
exit that are bound to a future variable that is

returned by method m. This set is needed in order to incorporate these tasks
when abstractly executing a get instruction as we have seen in the example above.
We also let eliminate(Y,E) be the LMHP set obtained from E by removing all
atoms that involve a future variable y ∈ Y . We first modify the transfer function
of [3] to treat the instruction z = y.get, similarly to what we have done in the
example above. This is done by adding Case (3) to the transfer function of Fig. 5:

– The set E′ is obtained from E by renaming future variable z to �, since
variable z is overwritten, and then eliminating all atoms associated to future
variable y (they will be incorporated in E′′′ below).

– The set E′′ consists of new MHP atoms that correspond to futures that are
returned by methods to which y is bound. Note that all are now bound to
future variable z.

– In E′′′ we add all atoms bound to y from E but rewritten to mark them as
already been incorporated.

Due to the new case added to the transfer function, we need to modify the
work-flow of the corresponding data-flow analysis in order to backpropagate
the information learned from the returned future variables. This is because the
LMHP analysis of one method depends on the LMHP states of other methods
(via Ret(m) in Case (3) of τ). This means that a method cannot be analyzed
independently from the others as in [3], but rather we have to iterate over their
analysis results, in the reverse topological order induced by the corresponding
call graph, until their corresponding results stabilize.

Example 3. The left column of the table below shows the LMHP states resulting
from applying once the τ function to selected program points, the right column
shows the result after one iteration of τ over the results in the left column:

E11: {x:T(request, act)}
E12: {x:T(request, fin)}
E13: τ(z = x.get, E12)
E14: τ(await z?, E13)
E15: E14 ∪ {�:T(sendMessage, act)}

E20: {y:T( result , act)}
E21: {y:T( result , act),

p:T(inform, act)}
E22: {y:T( result , act),

p:T(inform, act))}

E11: {x:T(request, act)}
E12: {x:T(request, fin)}
E13: {x:T(request, fin), z:T( result , act)}
E14: {x:T(request, fin), z:T( result , fin)}
E15: {x:T(request, fin), z:T( result , fin),

�:T(sendMessage, act)}
E20: {y:T( result , act)}
E21: {y:T( result , act),

p:T(inform, act)}
E22: {y:T( result , act),

p:T(inform, act))}
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Let us explain some of the above LMHP states. In the left column, E11 cor-
responds to the state when reaching program point L11, i.e., before executing
the statement await x?. It includes x:T(request, act) for the active task invoked
at L10. The state E12 includes the finished task corresponding to the await
instruction of the previous program point. E13 cannot be solved, as we need
the information from state E22 (it is required when calculating E′′), which has
not been computed yet. Something similar happens with the state E14, which
cannot be calculated as the state E13 has not been totally computed. Atoms
y:T( result , act) and p:T(inform, act) appear in state E22 for the active tasks
invoked at L19 and L20. The state E15 includes �:T(sendMessage, act) for the
task invoked at L14, which is not bound to any future variable.

In the right column, after one iteration, we observe that most states are
not modified except for E13, E14 and E15. As for E13, in the previous step we
could not obtain the set E′′ when analyzing E13 because the function τ had
not been applied to request (E22 had not been computed). Thus, it considered
E13: E′ = {} as there was no task bound to z; E′′ = {z:T( result , act)} and;
E′′′ = {y:T(request, fin)}. Having E13 calculated, E14 is computed modifying
the state of result to finished and E15 is updated with the new information.

4.2 Global MHP

In this section we describe how to use the LMHP information, inferred by the
local phase of Sect. 4.1, in order to construct an MHP graph from which an over-
approximation of the set of MHP pairs can be extracted. The construction of
the MHP graph is different from the one of [3] in that we need to introduce new
kind of nodes to reflect the information carried by the new kind of MHP atom
y:T(m, fin). However, the procedure for computing the MHP pairs from the
MHP graph is the same. The MHP graph of a given program P is a (weighted)
directed graph, denoted by G

P
, whose nodes are:

– method nodes: each method m ∈ methods(P ) contributes 3 nodes act(m),
fin(m) and fin(m). We use X(m) to refer to a method node without speci-
fying if it corresponds to act(m), fin(m), or fin(m).

– program point nodes: each program point � ∈ ppoints(P ) contributes a
node �.

– return nodes: each program point � ∈ ppoints(P ) that is an exit program
point, of some method m, contributes a node �̄.

– future variable nodes: each future variable y ∈ futures(P ) and program
point � ∈ ppoints(P ) contribute a node �y (which can be ignored if y does
not appear in the corresponding LMHP state of �).

Note that nodes fin(m) and �̄ are particular to our extension, they do not appear
in [3] and will be used, as we will see later, to avoid duplicating tasks that are
returned to some calling context.

The edges of G
P

are constructed in two steps. First we construct those that
do not depend on the LMHP states, and afterwards those that are induced by
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LMHP states. The first kind of edges are constructed as follows, for each method
m ∈ methods(P ):

– there are edges from act(m) to all program point nodes � ∈ ppoints(m). This
kind of edges indicate that an active task can be executing at any program
point, including its exit program point;

– there is an edge from fin(m) to the exit program point node � of m. This
kind of edges indicate that a finished task can be only at the exit program
point;

– there is an edge from fin(m) to the corresponding return node �̄, i.e., � here
is the exit program point of m. This kind of edges are similar to the previous
ones, but they will be used to avoid duplicating tasks that were returned to
some calling context.

All the above edges have weight 0. Next we construct the edges induced by the
LMHP states. For each program point � ∈ ppoints(P ), we consider E� and
construct the following edges:

– if (�:T(m,X), i) ∈ E�, we add an edge from node � to node X(m) with weight
i. If � is an exit program point we also add an edge from node �̄ to node X(m)
with weight i;

– if (y:T(m,X), i) ∈ E�, we add an edge from node � to node �y with weight 0
and an edge from node �y to node X(m) with weight i. In addition, if � is an
exit program point and y is not a returned future we add an edge from node
�̄ to node �y with weight 0.

Note that when � is an exit program point, the difference between node � and �̄
is that the later ignores tasks that were returned via future variables.

Example 4. Figure 6 shows the MHP graph for some program points of interest
for our running example. Note that the out-going edges of program point nodes in
G coincide with the LMHP states at these program points depicted in Example 3.
At program point L15, the LMHP state E15 contains the atoms x:T(request, fin),
z:T( result , fin) and �:T(sendMessage, act). Each of these atoms corresponds to
one of the edges from program point node 15. The first one is represented by
the edge that goes from program point node 15 to future variable node 15x and
from 15x to method node fin(request). The second one corresponds to the edge
that goes from 15 to 15z and from there to method node fin( result ). The edge
which goes from 15 to method node act(sendMessage) originates from the MHP
atom �:T(sendMessage, act). This last edge does not go to a future variable node
as the task is not bound to any future variable (�). Note that we have two nodes
22 and 22 to represent the exit program point L22, connected to fin(request)
and fin(request). The edges that go out from 22 correspond to the atoms in E22.
As L22 is the exit program point of method request, we have to build an edge.
This edge goes from 22 to 22p and from there to act(inform) and corresponds to
the atom in E22 whose future variable is not returned by request.

Given G
P
, using the same procedure as in [3], we say that two program points

�1, �2 may run in parallel if one of the following conditions hold:



54 E. Albert et al.

act( )

fin( )

11x

12x

13x

13z

15x

15z

act( )

fin( )

fin( ) 22

20y

22y

22p

act( )

fin( )

37r

38r

act( )

fin( )

28w

29w

act( )

fin( )

act( )

fin( )

act( )

fin( )

G

Fig. 6. MHP graph obtained from the analysis of program in Fig. 2.

1. there is a non-empty path from �1 to �2 or vice-versa; or
2. there is a program point �3 and non-empty paths from �3 to �1 and from �3

to �2 such that the first edge is different, or they share the first edge but it
has weight i > 1.

The first case is called direct MHP pairs and the second one indirect MHP pairs.

Example 5. Let us explain some of the MHP pairs shown in Fig. 4 and induced
by G . (22,28) and (22,44) are direct MHP pairs as we can find the paths 22 � 44
and 22 � 44 in G . In addition, as the first edge is different, we can conclude
that (22,44) is an indirect pair. In contrast to the graph that one would obtain
for the original analysis, (15,28) is not an MHP pair (marked in bold in Fig. 4).

Instead, we have the path 15 � 29 which indicates that the task result is
finished. Similarly, the analysis does not infer the pair (28,37), allowing us to
discard the deadlock cycle described in Sect. 3. We find the path 15 � 37 in G ,
but the path 15 � 28, needed to infer this spurious pair, is not in G .

Let ẼP be the set of MHP pairs obtained by applying the procedure above.

Theorem 1 (soundness). EP ⊆ ẼP .

5 Implementation and Experimental Evaluation

The analysis presented in Sect. 4 has been implemented in SACO [2], a S tatic
Analyzer for Concurrent Objects, which is able to infer deadlock, termination
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Fig. 7. Examples and statistics

and resource boundedness [14]. Our analysis has been built on top of the original
MHP analysis in SACO and can be tried online at: http://costa.ls.fi.upm.es/
saco/web/ by selecting MHP from the menu as type of analysis, then enabling the
option Global Futures Synchronization in the Settings section, and clicking
on Apply. The benchmarks are also available in the folder ATVA17. Given a
program with a main procedure, the analysis returns a list of MHP pairs and
some statistics about the runtime of the local and global phases.

Figure 7 summarizes our experiments. The first benchmark ServerClient cor-
responds to the complete implementation of our running example. The next four
are some traditional programs for distributed and concurrent programming: Chat
models a chat application, MailServer models a distributed mail server with sev-
eral users, DistHT implements and uses a distributed hash table and PeerToPeer

which represents a peer-to-peer network. The last two examples, ETICS and
TradingSys are industrial case studies, respectively, developed by Engineering R©
and Fredhopper R© that model a system for remotely hosting and managing IT
resources and a system to manage sales and other facilities on a large product
database. These case studies are very conservative on the use of futures (namely
only 3 tasks return a future), however, we have included them to assess the
efficiency of our analysis on large programs. For the TradingSys, we have two
versions, TradingSys1 which creates a constant number of tasks (namely 3),
and TradingSys2 which creates an unknown number of tasks within a loop.
Experiments have been performed on an Intel Core i7-6500U at 2.5 GHz x 4 and
7.5GB of Memory, running Ubuntu 16.04. For each program P , G

P
is built and

the relation ẼP is computed for those points that affect the concurrency of the
program (i.e., entry points of methods, awaits, gets and exit points of methods).

Let us first discuss the accuracy of our approach. Columns Examples and
Lines show the name and number of lines of the benchmark. N is the number
of program point nodes in G

P
. PPs2 is the square of the number of program

points, i.e., the total number of pairs that could potentially run in parallel.
OMHPs and MHPs show the number of MHP pairs inferred by the original
analysis [3] and by ours. PPs2-MHPs is thus the number of MHP pairs that are
detected not to happen in parallel by the original analysis. Naturally the original
analysis already eliminates many pairs that arise from local future variables (not

http://costa.ls.fi.upm.es/saco/web/
http://costa.ls.fi.upm.es/saco/web/
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returned). OMHPs-MHPs gives us the number of further spurious MHP pairs
that our analysis eliminates. We can observe that for all examples (except for
TradingSys2) we reduce the number of inferred MHP pairs (ranging from a
small reduction of 0.2% pairs for ETICS to a big reduction of 23.9% for Chat). In
TradingSys2 we do not eliminate any pair because the tasks created within the
loop use the same future variable to return their results, and the analysis needs
to over-approximate and assume that all of them may run in parallel.

As regards the efficiency of the analysis, the next three columns contain the
time (in milliseconds) taken by the local MHP (Lmhp), the graph construction
(Gmhp) and the time needed to infer the MHP pairs (Mhp). The data presented
are the average time obtained across several executions. We can observe that
both LMHP and the graph construction are very efficient and they only take
0.175 s in the largest case. The inference of the MHP pairs is more complex
and takes more time. This time depends on the number of program point nodes
that the graphs contain. For medium programs, the inference technique is also
efficient (taking 0.6 s in the largest case), but the time increases notably in bigger
examples, reaching 40.8 s in our experiments. However, in most applications we
are only interested in a subset of pairs. Besides, the pairs can be computed on
demand, spending less time to infer them. The last two columns contain the total
time (in milliseconds) taken by the analysis of [3] (OT) and our approach (T).
It can be observed that our analysis is more efficient than the original one for all
examples except for the TradingSys2 and ETICS, being the overhead negligible
in these cases (less than 2.5%). The reason for the efficiency gain is that when
returned futures are tracked, our graph contains less paths that are inspected
to infer the MHP pairs. Thus, the process of computing all the feasible paths is
faster in these cases, and the global time of the analysis is smaller than [3].

6 Conclusions and Related Work

An MHP analysis learns from the future variables used in synchronization
instructions when tasks are terminated, so that the analysis can accurately elimi-
nate unfeasible MHP pairs that would be otherwise inferred. Some existing MHP
analyses [1,3,15,16] for asynchronous programs lose all the information when
future variables are awaited in a different scope to the one that spawns the tasks
bound to the futures. We have presented a static MHP analysis which captures
inter-procedural MHP relations in which future variables are propagated back-
wards from one task to another(s). This implies that a task can be awaited in
an outer scope from the one in which it was created. Previous work [5] has con-
sidered the propagation of future variables forward, i.e., when future variables
are passed as arguments of the tasks. This implies that a task can be awaited in
an inner scope from the one in which it was created. Also, other MHP analyses
allow synchronizing the termination of the tasks in an inner scope, passing them
as arguments of methods, namely: [11] considers a fork-join semantics and uses
a Happens-Before analysis to infer the MHP information; in [6,8], programs are
abstracted to a thread model which is then analyzed to infer the MHP pairs; [9]
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builds a time based model to infer race conditions in high performance systems;
this work is extended in [7], using a model checker to solve the MHP decision
problem. The last six analyses are imprecise though when future variables or the
tasks identifiers are returned by methods and awaited in an outer scope.

The solutions for the backwards and forward inference (namely as formalized
in [5]) are technically different, but fully compatible. Essentially, they only have
in common that both the local and global analysis phases need to be changed.
For the forward inference, the analysis includes a separated must-have-finished
(MHF) pre-analysis that allows inferring, for each program point �, which tasks
(both the tasks spawned locally and the passed as arguments) have finished their
execution when reaching �. In contrast, for the backwards inference, the local
phase itself has to be extended to propagate backwards the new relations created
when a future variable is returned, which requires changing the analysis flow. In
both analyses, the creation of the graph needs to be modified to reflect the new
information inferred by the respective local phases, but in each case is different.
For the forward inference, the way in which the MHP pairs are inferred besides
has to be modified. All in all, both extensions are fully compatible, and together
provide a full treatment of future variables in the MHP analysis.
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Abstract. The notion of treewidth of graphs has been exploited for
faster algorithms for several problems arising in verification and pro-
gram analysis. Moreover, various notions of balanced tree decompositions
have been used for improved algorithms supporting dynamic updates
and analysis of concurrent programs. In this work, we present a tool for
constructing tree-decompositions of CFGs obtained from Java methods,
which is implemented as an extension to the widely used Soot framework.
The experimental results show that our implementation on real-world
Java benchmarks is very efficient. Our tool also provides the first imple-
mentation for balancing tree-decompositions. In summary, we present the
first tool support for exploiting treewidth in the static analysis problems
on Java programs.

1 Introduction

Treewidth of Graphs. A very widely studied and well-known concept in graph
theory for algorithmic analysis is the notion of treewidth, which measures the
similarity of a graph to a tree [14,16]. Along with its mathematical elegance, the
treewidth property has great practical relevance, as many NP-complete problems
can be solved in polynomial time on graphs of constant treewidth [3,4].
Constant Treewidth in Verification and Program Analysis. The constant
treewidth property has not only been studied in the graph algorithmic commu-
nity, but has been considered in many problems in verification and program
analysis.
Verification. The constant-treewidth property has played an important role in
logic and verification; for example, MSO (Monadic Second Order logic) queries
can be solved in polynomial time [10] (also in log-space [12]) for constant-
treewidth graphs; parity games on graphs with constant treewidth can be solved
in polynomial time [15]; and there exist faster algorithms for probabilistic models
(such as Markov decision processes) [6]. Recently it was shown for problems in
quantitative verification the constant treewidth can be exploited to design much
faster algorithms [5], as well as improve space usage [7].
Program Analysis. A very important class of constant-treewidth graphs is the
control flow graphs (CFGs) of goto-free programs of many programming lan-
guages [17]. It has also been shown that typically all Java programs have small
c© Springer International Publishing AG 2017
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treewidth [13]. The small treewidth has been used to develop algorithms for (i)
register allocation in polynomial time [2,17], (ii) interprocedural analysis [9], and
(iii) intraprocedural analysis of concurrent programs [8].
Relevant Algorithmic Questions. In the context of program analysis, the rel-
evant algorithmic questions are: (a) given an input CFG of constant treewidth,
construct a constant-width decomposition; and (b) balance a constant-width
tree decomposition Balanced tree decompositions are required to support fast
dynamic algorithms (i.e., algorithms that support fast updates given small
changes in the input graph) [9] as well as for intraprocedural analysis of concur-
rent programs [8].
Our Contributions. Although the treewidth property has been exploited for
faster algorithms in many problems in verification and program analysis, there
exists no tool support for the algorithmic questions we consider. In this work we
present JTDec, a tool for constructing tree decompositions of Java programs.
We have implemented existing algorithms for the above algorithmic questions,
along with several heuristics that exploit the special structure of programs. Our
tool is integrated as a plugin in the widely used Soot framework [18]. Our exper-
imental results show that our implementation on real-world Java benchmarks is
very efficient. In summary we present the first tool for tree-decomposition and
balanced tree-decompositions of CFGs of programs in Java, which can be used
by algorithms that exploit the low-treewidth property of graphs.

JTDec is available at http://pub.ist.ac.at/∼akafshda/JTDec/ and a full
version of this paper at https://repository.ist.ac.at/845/.

2 Definitions

Graphs and Trees. Let G = (V,E) be a finite directed graph (henceforth
called simply a graph) where V is a set of n nodes and E ⊆ V × V is an edge
relation. Given a set of nodes X ⊆ V , we denote by G � X = (X,E∩(X×X)) the
subgraph of G induced by X. A path P : u � v is a sequence of nodes (x1, . . . , xk)
such that x1 = u, xk = v, and for all 1 ≤ i < k we have (xi, xi+1) ∈ E. The
length of P is |P | = k−1. A set of nodes X ⊆ V is called a connected component
of G, if for every pair of nodes u, v ∈ X, there is either a path P1 : u � v or a
path P2 : v � u in G � X. Additionally, X is called strongly-connected if both
P1 and P2 exist. A tree T = (V,E) is an undirected graph with a root node u0,
such that between every two nodes there is a unique acyclic path. For a node u,
we denote by Lv(u) the level of u which is defined as the length of the acyclic
path from u0 to u. A child of a node u is a node v such that Lv(v) = Lv(u) + 1
and (u, v) ∈ E, and then u is the parent of v. A tree T is k-ary if every node has
at most k-children (e.g., a binary tree has at most two children for every node).
Finally, the depth of T is the maximum level of its nodes, i.e. maxu Lv(u), and T is
called balanced if its depth is logarithmic on its size, i.e. maxu Lv(u) = O(log n).
Tree-Decompositions. A tree-decomposition Tree(G) = T = (VT , ET ) of a
graph G is a tree, where every node Bi in T , which is called a bag, is a subset
of nodes of G such that:

http://pub.ist.ac.at/~akafshda/JTDec/
https://repository.ist.ac.at/845/
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C1 VT = {B0, . . . , Bb} with Bi ⊆ V , and
⋃

Bi∈VT
Bi = V (every node is

covered).
C2 For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi (every edge is

covered).
C3 For all i, j, k such that there is a bag Bk that appears in the unique path

Bi � Bj in T we have Bi ∩ Bj ⊆ Bk (every node appears in a contiguous
subtree of T ).

Conventionally, we call B0 the root of T , and denote by Lv(Bi) the level of Bi

in T . For a bag B of T , we denote by T (B) the subtree of T rooted at B. A
bag B is called the root bag of a node u if u ∈ B and every B′ that contains
u appears in T (B). We often use Bu to refer to the root bag of u, and define
Lv(u) = Lv(Bu). A tree decomposition T is called normal if for each B1, B2 ∈ VT ,
such that B2 is a child of B1, then |B2 \ B1| ≤ 1, i.e. each bag has at most one
more node from its parent. The width of the tree-decomposition T is the size of
the largest bag minus 1. The treewidth t of G is the smallest width among all
tree-decompositions of G.
(α, β, γ) Tree-Decompositions. Given a graph G with treewidth t and a fixed
α ∈ N, a tree-decomposition Tree(G) is called α-approximate if it has width at
most α ·(t+1)−1. Given a real constant β < 1 and an integer constant γ ≥ 1 we
say that Tree(G) is (β, γ)-balanced, if for every bag B and every descendant B′

of B with Lv(B′) = Lv(B) + γ, the size of the subtree T (B′) is at most β times
as large as the size of the subtree T (B). A (β, γ)-balanced tree-decomposition
that is α-approximate is called an (α, β, γ) tree-decomposition.
Algorithmic Questions. We consider the following algorithmic questions:

Q1: Given a constant-treewidth input graph (being the CFG of a method),
construct a tree-decomposition of constant width.

Q2: Convert an input tree decomposition to a balanced one.
Q3: Convert a tree decomposition to an (α, β, γ) tree-decomposition, for a single

balancing parameter λ ≥ 2, and α = 2·λ, β = 2−λ+1 and γ = λ (see Remark 1
below).

We note that the solution for Q3 subsumes the solution for Q2 (with any constant
λ). In the next section we will present details of the algorithms for Q1 and Q3.

Remark 1 (Significance). (1) The basic tree-decomposition has been used for
polynomial-time algorithms for register allocation [2,17]. (2) The balanced tree-
decompositions have been crucial in algorithms for interprocedural analysis [9]
and verification of quantitative properties in graphs [5]. (3) The notion of
(α, β, γ) tree-decompositions has been used in algorithmic dataflow analysis of
concurrent programs [8]. The ideal value for α and γ is 1, and for β is 1

2 . How-
ever, this exact combination is not achieved in any of the known algorithms. In
Q3 we consider parameters for which efficient algorithms exist and suffice for the
problems considered in [8].
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3 Algorithms

We present the algorithms for Q1–Q3. First, we focus on Q1 and then consider
Q3 (which subsumes Q2). Our tool JTDec implements all the algorithms of this
section.

3.1 Tree-Decomopsitions of CFGs

There exist several general-purpose tree-decomposition algorithms which operate
on arbitrary graphs. Here our focus is on tree-decompositions of CFGs. The
main part of this section focuses on outlining a tree-decomposition algorithm
that operates on input being the source code, as opposed to arbitrary graphs.
In particular, the input to the algorithm is a method in Jimple, which is a
standard, 3-address representation of Java methods in the Soot framework. As
an example, Fig. 1 depicts a Java method and its Jimple representation, and
Fig. 2 shows the CFG of a simplified version of the Jimple representation and a
balanced tree-decomposition of the CFG.

void t h reeNPlusOne ( i n t n )
{

whi le ( n > 1){
i f ( n % 2 == 0){
n /= 2 ;

}
e l s e {
n = 3 ∗ n + 1 ;

}
}

}

1 : n := pa r ame t e r 0 : i n t
2 : nop
3 : i f n > 1 goto nop
4 : goto [?= nop ]
5 : nop
6 : temp$0 = n % 2
7 : i f temp$0 == 0 goto

nop
8 : goto [?= nop ]
9 : nop
10 : temp$1 = n
11 : temp$2 = temp$1 / 2

12 : n = temp$2
13 : goto [?= nop ]
14 : nop
15 : temp$3 = 3 ∗ n
16 : temp$4 = temp$3
17 : temp$5 = temp$4+1
18 : n = temp$5
19 : nop
20 : goto [?= nop ]
21 : nop
22 : re turn

Fig. 1. A Java method (left), and its 3-address code representation in Jimple.

1 i 0 := pa r ame t e r 0 : i n t
2 goto [?= ( b ranch ) ]
3 $ i1 = i 0 % 2
4 i f $ i1 != 0 goto $ i2 = 3 ∗ i 0
5 i 0 = i 0 / 2
6 goto [?= ( b ranch ) ]
7 $ i2 = 3 ∗ i 0
8 i 0 = $ i2 + 1
9 i f i0>1 goto $ i1 = i 0 % 2
10 re turn

1 2 3
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Fig. 2. A simplified Jimple representation of the method in Fig. 1 (left), Its CFG G
and an approximate, balanced tree-decomposition Tree(G) (right).

A Dedicated Algorithm for Tree-Decompositions of CFGs. We consider
dedicated algorithms that are specific to CFGs, and operate on the source code
rather than on the graph itself [17]. In the following we outline the key steps of
one such algorithm. We phrase the algorithm on Jimple source code. We start
with the notion of complex listings required for the algorithm.
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(≤k)-Complex Listings. A (≤k)-Complex listing of a graph G = (V,E) is a
permutation of the elements of V , such that for each u ∈ V , there exists a set Su

of at most k nodes preceding u in the permutation, and whose deletion from G
separates u from all the nodes preceding u in the permutation. In this case Su is
called a separator of u. Given a listing and a node u, there is a unique minimal
choice for separators of nodes [17]. We always use minimal separators and for
brevity drop the word minimal in the sequel. A graph G is called (≤k)-complex
if it has a (≤k)-complex listing and is called k-complex if it has a (≤k)-complex
listing but no (≤k − 1)-complex listings. Given a (≤k)-complex listing L and a
pair of distinct nodes u, v, we write v < u to denote that v appears before u in
L.

Our main approach for obtaining tree-decompositions from CFGs of Jimple
methods is the following theorem and algorithm, which allows us to focus on
computing (≤ k)-complex listings of the CFG:

Theorem 1. A graph G has treewidth k if and only if it is k-complex [11]. Given
any such listing and separators of all the nodes, a tree-decomposition Tree(G) of
width k can be constructed in linear time [17].

CFG-Specific Algorithm. Given a listing L, the above algorithm simply creates
one bag Bx per node x, and connects the bag Bu to the bag Bv if v < u and
v is the latest element of Su in the listing or to the root if no such v exists.
The bag corresponding to u will contain the set Su ∪ {u}. Hence, computing a
tree-decomposition efficiently reduces to two steps:

1. Finding “good” listings, i.e., listings where each separator has small size.
2. Given a listing L, finding efficiently the separator Su of every node u.

We provide brief and intuitive description of the two steps (following [17]), and
refer to the Appendix for the pseudocode.
Heuristic for Good Listings. Our algorithm implements a heuristic of [17] for
processing programs in the form of 3-address codes, which is guaranteed to create
a listing of small separators for CFGs of goto-free programs, and is expected to
perform well for structured programs. Intuitively, given a CFG, a listing with
small separators can be obtained using the following two rules for the heuristic:

– The nodes of CFG that correspond to entries and exits of block structures
(e.g. if-blocks, while-loops) must appear early in the listing.

– The remaining nodes (e.g. statements within the structures) must appear
after the entries and exits of these structures in the listing.

Finding Separators in Listings. Given a listing L, the separators Su of nodes
of L can be created efficiently in O(n lg∗ n) time. This is achieved by a single
traversal of L from right to left, and maintaining a disjoint-set data-structure,
which keeps track of the strongly-connected components of G formed by the set
of nodes that have been examined already.
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3.2 Constructing (α, β, γ) Tree-Decompositions

Given a CFG G and a binary tree-decomposition Tree(G) of width k, let λ ≥ 2
be the balancing (integer) parameter (c.f. Q3). For α = 2 · λ, β = 2−λ+1 and
γ = λ, the core procedure for constructing an (α, β, γ) tree-decomposition is a
recursive one. In each step of the recursion, the algorithm uses one of two rules to
split a subtree of Tree(G) to connected components. Informally, (i) Rule 1 con-
trols the height (i.e., parameters (β, γ)), and (ii) Rule 2 controls the width (i.e.,
parameter α) of the constructed tree-decomposition. The balancing parameter
λ specifies how often each rule is used in the recursion, and thus specifies the
trade-off between height and width. The algorithm is a simplified and efficiently
implementable version of [8, Sect. 3] (see Appendix for the pseduocode). Given
a tree-decomposition of O(n) bags, the algorithm runs in O(n · log n) time and
O(n) space.

4 Implementation

We build upon the widely used Soot framework and JTDec is an extension to it.
Soot is a framework for language manipulation and optimization that provides
tools for different problems in static program analysis. Soot is written in Java
and has many different intermediate representation schemes for Java programs.
We use the Jimple representation which has a typed 3-address format and is the
most widely used of the representations. The main class for representing CFGs
is BriefUnitGraph in which each node of the CFG corresponds to one Jimple
statement, and is represented by the Unit class.

Our implementation is placed under the package JTDec. We provide an imple-
mentation of a class JTDecTree which is used to store and manipulate tree
decompositions and supports basic tree-decomposition operations, e.g., iterating
over the bags of the tree, and adding/removing nodes to bags. Based on this,
we have implemented the algorithms of Sect. 3 in another class called JTDec
in an easy-to-use manner. Specifically, we give the user access to the following
functions in JTDec:

1. createTreeDec: The input is a SootMethod method and returns a tree decom-
position of the CFG of the method. In the CFG we treat each Unit as one
node.

2. normalizeTreeDec: The input is a tree-decomposition T in form of JTDecTree
and returns a normalized version of T .

3. createBalancedTree: The input is an integer λ and tree-decomposition T in
form of JTDecTree, and returns a balanced version of T with parameter λ.

4. process: The input is a SootMethod and (optionally) integer λ, and applies
all the above functions in the same order and returns a balanced tree decom-
position of the CFG of the method.

Examples of using JTDec can be found in the Appendix. The tool and source
code are available at http://pub.ist.ac.at/∼akafshda/JTDec/.

http://pub.ist.ac.at/~akafshda/JTDec/
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Table 1. Evaluation results of JTDec. Times are rounded to the nearest millisecond.

Range #M Unbalanced λ = 2 λ = 3 λ = 4 λ = 5

T W H T W H T W H T W H T W H

[50, 59] 494 0 3.1 29.7 1 8.5 6.9 1 9.9 5.3 1 10.7 5.1 1 11.0 4.6

[60, 69] 343 1 3.2 33.0 2 8.8 7.1 1 10.6 5.7 2 11.2 5.6 1 11.5 5.0

[70, 79] 232 1 3.4 39.3 2 8.6 7.6 2 10.5 6.4 2 11.1 5.8 1 11.4 5.6

[80, 89] 170 1 3.4 42.8 2 9.0 8.0 2 11.0 6.6 2 11.5 5.9 2 11.9 5.8

[90, 99] 128 1 3.6 45.7 3 9.8 8.4 2 12.1 6.8 2 12.5 5.9 2 13.0 5.8

[100, 149] 394 1 3.6 59.5 4 10.0 8.9 3 12.3 7.2 3 13.1 6.4 3 13.4 6.3

[150, 299] 270 2 4.7 90.6 8 11.3 19.4 8 14.1 8.1 7 14.7 7.2 6 15.2 7.1

[300, 999] 81 5 5.4 203.1 22 17.4 11.8 19 26.6 9.4 17 27.1 8.5 16 27.4 8.0

[1000, 2156] 9 46 2.6 1079.7 98 21.3 15.6 82 20.0 12.2 72.0 26.7 10.9 71 26.7 10.6

5 Evaluation

Experimental results show that JTDec is very efficient. We used JTDec to obtain
tree-decompositions for methods from the DaCapo benchmark suit [1], and to
obtain balanced tree-decompositions using different values of the balancing para-
meter λ. The experiments were run on a laptop with Intel Core i5 5200 U Proces-
sor (2.7 GHz) and 8 GB of RAM. Table 1 summarizes the results. We divided
the benchmark methods based on number of nodes in their CFG to several
ranges and for each range we report number of methods in that range (#M),
mean execution time of the function createTreeDec (T), mean width of the
obtained tree-decompositions (W) and their mean height (H). Then for each λ,
we report the mean execution time (T) of createBalancedTree on the tree-
decompositions obtained previously, the mean width of the obtained balanced
tree-decompositions (W) and their mean height (H). The table shows the trade-
off between the latter two. All times are measured in milliseconds. Soot’s analysis
typically takes much more time than JTDec.
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Abstract. Strings are pervasive in programming, and arguably even
more pervasive in web programming. A natural abstraction for reason-
ing about strings are finite-automata. They are a well-understood for-
malism, and operations on them are decidable and well-known. But in
practice these operations either blow up in size or in cost of operations.
Hence the attractive automata representations become impractical. In
this paper we propose reasoning about strings using small automata, by
restricting the number of states available. We show how we can con-
struct small automata which over-approximate the language specified by
a larger automata, using discrete optimization techniques, both complete
approaches and incomplete approaches based on greedy search. Small
automata provide a strong basis for reasoning about strings in program-
ming, since operations on small automata do not blow up in cost.

1 Introduction

Strings are pervasive in programs, and arguably even more pervasive in web pro-
gramming. They also arise as a natural representation of system configurations
for multi-agent systems where agents are linearly ordered [3].

To reason about such systems or programs one has to manipulate possibly
infinite sets of strings or languages. To achieve effective reasoning, a natural
abstraction for languages is to consider the class of regular languages which
were shown to be sufficiently expressive to verify non-trivial properties. Regular
languages are well-studied and are supported by multiple description formal-
ism including automata-based representations. The usual operations required for
abstract reasoning such as Boolean operations and usual tests such as inclusion
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and equivalence can be implemented in polynomial time on deterministic finite-
state automata. This contrasts with non-deterministic finite-state automata
where inclusion is PSPACE-complete. This has to be taken with a grain of
salt since there exist languages whose specification by non-deterministic finite-
state automata are logarithmically more succinct than their smallest determin-
istic automata counterpart [14]. In practice, however, deterministic finite-state
automata often blow up in representation size impeding the success automata-
based techniques.

In this paper we examine the use of deterministic finite-state automata of
bounded size as a way to achieve scalability of automata-based techniques. By
bounding the size we combine the benefit of a small representation with the
polynomial runtime of the operations and tests on finite-state automata. We
consider k-state deterministic finite-state automata as our representation for
languages. This restriction avoids the blow up in size, the size of the whole
automata is k|Σ|, and avoids the blow up in cost of operations, each operation
is at most k2|Σ|.

We start by investigating basic questions and show that, in general, there
is no “minimum” k-state DFA that includes a language specified by n-state
DFA with n > k. Here “minimum” is defined using language inclusion. This
result is expected since the intersection of two languages defined by k-state
DFAs is in general not representable precisely as a k-state DFA. Therefore we
identify criteria besides language inclusion to select between two k-state DFA
approximation when language inclusion alone is inconclusive.

To evaluate the effectiveness of those criteria, we formalize the problem of
computing a k-state DFA approximating a given a n-state DFA as a search
problem. Modeling the problem as a search problem allows to flexibly express
the criteria we identified as objective to minimize.

Our first model as a search problem restricts the search space to those k-
state DFA resulting from merging state of the n-state DFA in accordance with
a k-block partition of the n states. State partitioning is the basis of minimiza-
tion algorithms for DFAs. Using partitions result in a straightforward encoding
of k-state approximation because language inclusion follows immediately from
partitioning.

In a second model, we formalize the search problem in full-generality by con-
sidering all k-state DFAs. Therefore, in this encoding, we encode the constraint
that the language of the k-state DFA includes that of the n-state DFA.

As a consequence of our result on the absence of a least k-state DFA the above
search problems have no unique solution. Therefore we rely on the identified
criteria to narrow the set of solutions using an objective function.

Modelling the approximation of an automaton as a search problem allows us
to find all possible approximations, or find optimal approximations, in practice
these problems are challenging to solve. Hence it is worth considering a greedy
approach to tackling these problems. We first introduce a greedy approach for
finding quotient automata approximations. Then, motivated by the ease in which
quotient automata collapse, we introduce a greedy algorithm that preserves more
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of the structure of the automata while building decreasing size approximations,
based on the idea of tracking language dominance of states of the automata.

2 Preliminaries

Strings. We assume a finite alphabet of symbols Σ. A string w is either the
empty string ε or of the form cw′ where c is a symbol in Σ and w′ a string.
The length of a string w, denoted |w|, is the number of symbols appearing in
the string. We use array notation to lockup the symbols appearing in a string.
Suppose |w| = l then w[i], 1 ≤ i ≤ l is the ith symbol appearing in the string.
We assume the reader is familiar with regular expressions.

Finite-State Automata. A finite-state automaton (or simply automaton) is a
tulle R = 〈Q,Σ, δ, q0, F 〉 where Σ is an alphabet ; Q is a finite set of states
including the initial state q0 and a set F of accepting states ; and δ ⊆ Q×Σ ×Q
is a set of transitions. The size of an automata R, size(R) is defined as |Q|.

A transition in automaton R from state q to q′, written q → q′, exists if
there is (q, c, q′) ∈ δ for some c ∈ Σ. A computation for string w of length l
in an automaton R is a sequence of transitions q0 → q1 → · · · → ql where
(qi, w[i + 1], qi+1) ∈ δ. An accepting computation for w in R from state q0 is a
computation for w in the automaton R where ql ∈ F . The language of automaton
R from state q ∈ Q, L(q,R), is the set of strings w which have an accepting
computation from state q. The language of automaton R, L(R) = L(q0, R).

A state q is said to be accessible if there is a sequence of transitions from
q0 to q; co-accessible if there is a sequence of transitions from q to some state
q′ ∈ F ; and useful if q is both accessible and co-accessible. An automaton is trim
if all its states are useful. An automaton is deterministic (DFA) if δ denotes a
(partial) function from Q×Σ into Q. In that case, we sometimes use the notation
δ(q, c) where q ∈ Q, c ∈ Σ to refer to q′ where (q, c, q′) ∈ δ, when it exists. An
automaton is said to be a t-DFA if it is deterministic and trim.

3 Automaton Approximation

In this paper we are interested in defining approximations of DFAs which are as
precise as possible given a fixed budget on the number of states.

Definition 1. Given two automata R and R′, we say that R′ approximates R
iff L(R) ⊆ L(R′). Given two k-state approximations R1, R2 of R we say R1

dominates R2 whenever L(R1) ⊂ L(R2).

When constructing an approximation of a DFA R we are interested in finding
an approximation that is not dominated by any other approximation. Next we
exhibit an example showing there might be more than one such approximation.

Example 1. Let A be the 3-state t-DFA 〈{0, 1, 2}, {a, b}, {(0, a, 1), (1, b, 2)},
0, {2}〉 that accepts exactly {ab}.
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���������	0
a ���������	1

b ���������	
������2

Then for the three 2-state approximations shown in Fig. 1: L(B1) = ab�, L(B2) =
a�b and L(B3) = (ab)� and none dominates another. 	


0
b

a

1 0
a

1
b

0 a 1

b

B1 B2 B3

Fig. 1. Three 2 state approximations of the automata A.

While we are mainly interested in over-approximations of DFAs, we can define
under-approximations as well using the complement. To compute an under-
approximation of n-state DFA R = (Q,Σ, δ, q0, F ) such that δ is total, we
complement R obtaining R̄ = (Q,Σ, δ, q0, Q − F ) and compute a k-state over-
approximation of R̄, R̄′ = (Q′, Σ, δ′, q0′, F ′) and then, assuming δ′ is total,1

complement R̄′ to obtain R′ = (Q′, Σ, δ′, q0′, Q′ −F ′). R′ is a k-state automaton
under-approximating R by construction.

4 Approximations Using Equivalence Relations on States

DFA minimization relies on building an equivalence relation of the states of the
DFA, or equivalently partitioning the states into equivalence classes. Given an
n-state DFA R that minimizes to an equivalent k-state DFA R′, we find that
R′ dominates all other k-state approximations of R since L(R′) = L(R). This
observation is the starting point of our study of approximations using state
partitions.

4.1 Partitions and Quotient Automata

Consider a partition P = {b1, . . . , bn} of Q into n non-empty, pairwise disjoint
subsets covering Q called blocks and define the equivalence class of a state q,
written [q]P as the (unique) block bi such that q ∈ bi. It is known that the set of
partitions of a finite set forms a complete lattice. Thus we find that (Part(Q),�,
�,�, {Q}, {{q} | q ∈ Q}) is a complete lattice where Part(Q) is the set of
partitions of Q; P1 � P2 iff for all blocks b1 of P1 there exist a block b2 of P2

such that b1 ⊆ b2; P1 � P2 is the partition resulting from intersecting all pairs
of blocks of P1 and P2

2; P1 � P2 is the partition obtained by merging the blocks
of P1 which have a member in the same block of P2.

1 or a k − 1-state over-approximation, on which we turn δ′ into a total function.
2 Note that the empty set is not a block, hence it is not part of the resulting partition.
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Given a t-DFA R = 〈Q,Σ, δ, q0, F 〉 and a partition P of Q, then the quotient
automata R/P is defined as the automaton 〈P,Σ, δP , [q0]P , FP 〉 where FP =
{p ∈ P | p ∩ F = ∅}, and δP = {([q]P , c, [q′]P ) | (q, c, q′) ∈ δ}. Notice that R/P

is not necessarily a t-DFA. The resulting automaton is a t-DFA for a subset of
the partitions as we will see later.

A quotient automaton is always an approximation of the automaton it is
defined from.

Theorem 1. Given t-DFA R and partition P of its states, L(R) ⊆ L(R/P ). 	

Example 2. Consider the t-DFA of Example 1, we have B1 = A/{{0,1},{2}}, B2 =
A/{{0},{1,2}} and B3 = A/{{0,2},{1}}. 	


4.2 Determinizing Partitions

Note that the quotient automata of a t-DFA is not necessarily deterministic.
A partition P for a t-DFA R is deterministic if for all {(q, c, q′), (q′′, c, q′′′)} ⊆
δ, [q]P = [q′′]P ⇒ [q′]P = [q′′′]P . Hence the resulting quotient automata R/P is
also a t-DFA. Given a t-DFA R we define the language quotients of R as the
automata R/P arising from all deterministic partitions P of R. Lemma 1 shows
that the set of deterministic partitions forms a meet semi-lattice.

Lemma 1. Let P and P ′ be deterministic partitions for some t-DFA R. Then
the partition P � P ′ is deterministic. 	

Lemma 2. Given a t-DFA R and partition P there is a least deterministic
partition detR(P ) of R such that P � detR(P ). 	


For any t-DFA R and partition P , we compute the least deterministic parti-
tion detR(P ) in O(|δ| + |P ||Σ|) time. This algorithm is given in Fig. 2.

Lemma 3. Procedure determinize-part(P,R) runs in O(|δ| + |P ||Σ|) time. 	

Lemma 4. Let P ′ = determinize-part(P,R). Then P ′ = detR(P ). 	


4.3 Incompleteness of Partition-Based Approaches

It would be convenient if the only k-state DFA approximations we need to con-
sider were quotient automata, since there are many fewer quotient automata of
an n-state t-DFA, than there are k-state DFA. Unfortunately, this is not the
case.

Example 3. The following 14 state automaton A1 for (a|b)aaaaaaaaaaaa

���������	0
a ��

b

���������	1 a
���������	2 a

���������	3 a
���������	4 a

���������	5 a
���������	6 a

���������	7 a
���������	8 a

���������	9 a
�� ��������10

a

��
���������������	13 ��������12

a�� ��������11
a��
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Fig. 2. Algorithm for computing detR(P ). It maintains a partition represented by a
union-find data structure repr.

has this 8 state approximation A2 such that L(A2) = aaa(aaa)�|baaa(aaaa)�

���������	0
a ��

b
���

��
��

��
��

�������	1 a
���������	2 a

���������	
������3

a

��

�������	4 a
���������	5 a

���������	6 a
���������	
������7

a

��

There is no 8-state quotient of A1 whose language is a subset of L(A2) since any
quotient t-DFA must map state 1 to a single block and hence accepts a language
of the form (a|b) E for some regular expression E. 	


It is worth noting that when computing quotients of sparse automata, trim-
ming is crucial. With a complete DFA, the additional error transitions force us
to merge more states than we need to preserve determinism.

Example 4. Recall the automaton from Example 1, now as a complete DFA.

���������	0
a ��

b
���

�
�

�
�

�������	1
b ��

a

���
�
�

�������	
������2

a,b
		�

�
�

�
�

�
� �

�
�
�� �∅

a,b




� 	




If we attempt to merge states 0 and 2 as before, the transitions (0, a, 1) and
(2, a, ∅) force us to merge 1 with ∅. Then (∅, b, ∅) and (1, b, 2) forces us to merge
the two remaining partitions, yielding the single-state trivial automaton.
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5 Approximations as a Search Problem

We define a discrete satisfaction problem that given an original n-state t-DFA
R = 〈Q,Σ, δ, q0, F 〉, finds a k-state DFA R′ = 〈Q′, Σ, δ′, q0′, F ′〉 which approxi-
mates it. In the next subsection we consider only quotient DFA, before general-
izing this to arbitrary DFA in the following subsection.

5.1 Searching Quotient k-state DFAs

Quotient DFAs are an attractive class to consider for approximating arbitrary
DFAs since they automatically satisfy the approximation condition, and they
can be specified simply in terms of a partition.

Writing this problem as a combinatorial search problem is reasonably
straightforward since we are merely deciding a partition. The model is defined
by the principal decisions mq which maps each state q ∈ Q to a state in Q′ where
|Q′| = k (which represent the states of the k-state DFA). The constraints are

mq ∈ Q′ (1)
mq is surjective (2)
q0′ = mq0 (3)
F ′ = {mq | q ∈ F} (4)
δ′ = {(mq, c,mq′) | (q, c, q′) ∈ δ} ∀q ∈ Q, c ∈ Σ (5)
δ′ is a partial function from Q′ × Σ to Q′ (6)

The size of the system of constraints O(nk|Σ|).
Theorem 2 (Correctness). Let t-DFA R and DFA R′ satisfy Eq. (1)–(6) then
L(R) ⊆ L(R′). 	

Theorem 3 (Completeness). Given t-DFA R and R′, if R′ is a quotient t-
DFA of R then there exist m satisfying Eq. (1)–(6). 	


In practice we improve the model (1)–(6) by adding value symmetry break-
ing constraints to remove isomorphic k-states automata. We add a symmetry
breaking constraint requiring that ∀q ∈ Q,u ∈ {2, . . . , k} if mq = u then there
exists q′ < q,mq′ = u − 1. This enforces that we number the partitions P of R
in the order of their least element. To be compatible with Eq. (3) we also require
that the initial states q0 and q0′ of both R and R′ are the least numbered state.

5.2 Searching All k-state DFAs

Not all k-state DFAs are quotient automata. Furthermore, Example 3 shows
there are k-state DFAs approximations which are dominated by no k-state quo-
tient DFA. Hence we are also interested in non-quotient k-state DFA that are
approximations.
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To model the general approximation problem we reason about the synchro-
nized product of the known n-state t-DFA, and the unknown k-state DFA. The
principle decisions are δ′ the transition relation for the k-state DFA and F ′ the
set of final states. We ensure that each state reachable in the synchronized prod-
uct, which represents a final state for the n-state t-DFA, is also a final state
for the k-state DFA. The propositional decision variables rq,q′ represent that the
state (q, q′) is reachable in the intersection DFA. The first four constraints ensure
that any computation in the n-state t-DFA is reflected in the k-state DFA. The
last constraint ensures that each reachable state in the synchronized product
which is final for the n-state t-DFA is also final for the k-state DFA.

rq0,q0′ (7)
rq,q′ → ∀(q, c, q2) ∈ δ ∃(q′, c, q′

2) ∈ δ′ : rq2,q′
2

(8)
δ′ is a partial function from Q′ × Σ to Q′ (9)

rq,q′ → q′ ∈ F ′ ∀q ∈ F, q′ ∈ Q′ (10)

The size of this system of constraints in O(nk|Σ|).
Theorem 4 (Correctness). Let t-DFA R and DFA R′ satisfy Eq. (7)–(10)
then L(R) ⊆ L(R′). 	

Theorem 5 (Completeness). Given t-DFAs R and R′ if R′ is k-state t-DFA
such that L(R) ⊆ L(R′) then there is a solution of Eq. (7)–(10). 	


5.3 Complexity

We conjecture that the problem of finding a non-dominated k-state DFA of an
n-state t-DFA is NP-hard, even when we restrict to quotient automata.

NONDOMPART(R,P ): given an n-state t-DFA R and deterministic par-
tition P of R decide whether there exists a deterministic partition P ′ of
R where |P ′| ≤ |P | such that L(R/P ′) ⊂ L(R/P ).

NONDOMAPPROX(R,R′): given an n-state t-DFA R and a k-state DFA
R′ where L(R) ⊆ L(R′) decide whether there exists a k-state DFA R′′

such that L(R) ⊆ L(R′′) ⊂ L(R′).

Conjecture 1. NONDOMPART and NONDOMAPPROX are NP-hard 	

Observe that both problems are in NP. For NONDOMPART, guess a parti-

tion P ′ of the n states of R with no more than |P | blocks; check in polynomial
time that P ′ is deterministic; if successful then build the DFAs R/P and R/P ′ ;
check, in polynomial time, that L(R/P ′) ⊆ L(R/P ) and L(R/P ′) = L(R/P ). The
argument to show NONDOMAPPROX belongs to NP is similar.

There are some closely related problem which are NP-complete. Gold [8]
shows that deciding if there exists a k-state automaton that agrees with a set of
examples and counterexamples is NP-complete.
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5.4 Objectives

The models above that describe the problem of finding a k-state approximation
of an n-state t-DFA, while correctly capturing this question are not that useful
in practice. It is always possible to answer with a single-state machine whose
initial state is accepting and has self arcs for all symbols in the alphabet.

Ideally what we desire are k-state t-DFA R which are non-dominated.
Although this is decidable it seems hard to compute, and we conjecture it is
NP-hard. Instead we will consider simpler objectives which are easier to com-
pute. Hence we convert our problem to a discrete optimization problem.

Counting Prefixes. The first thing we consider is counting the number of
strings accepted up to some length. We can compute the number of strings
accepted aq′,l for each state q′ ∈ Q′ and each length from l ∈ {0, . . . ,m} as
follows

aq′,0 = q′ ∈ F ′ (11)

aq′,l+1 =
∑

(q′,c,q′′)∈δ′
aq′′,l (12)

The size of this constraint system is O(k2|Σ|m). We can then minimize the
expected number of strings of length between 0 and m accepted by the initial
state of the k-state DFA

∑
l∈0,...,m aq′

0,l.
Using a result of Moore [11] that states that a pair of automata can be

differentiated by a string of length less than the sum of their numbers of states
we show the following lemma.

Lemma 5. Suppose m ≥ 2k − 1 then a k state DFA R′ minimizing∑
l=0,...,m aq′

0,l is dominated by no k-state DFA R′′ approximating R. 	


Markov-Like Measures. If we assume that the strings of interest have a
Poisson distribution in length we can model this as an expected probability pc

for each alphabet symbol x and a probability pe of reaching the end of the string
where pe +

∑

c∈Σ

pc = 1. We can define the expected proportion of strings rq

accepted by state q as a system of simultaneous equations

rq′ = pe × (q′ ∈ F ′) +
∑

(q′,c,q′′)∈δ′
pcrq′′ (13)

The size of this constraint system is O(k2|Σ|). We can then minimize the
expected proportion of strings accepted by the automata as rq0′ .

Other objectives are possible: using a finite corpus of counter-examples, or
calculating the expected proportion of strings of some length that are accepted.



76 G. Gange et al.

6 Greedy Approaches

Independent of whether our conjecture of NP hardness holds, solving the con-
straint optimization problems defined in the previous section are challenging.
Their solving behaviour appears to scale exponentially in k in practice.

Hence we consider incomplete approaches to find k-state approximations to
an n-state t-DFA, which may not necessarily return a non-dominated approxi-
mation, nor minimize any objective.

The most obvious approach to producing a greedy approximation is by
restricting consideration to quotient DFA of the original n-state t-DFA R, and
merging partitions in these DFA until we reach a DFA with k or less states.

The greedy algorithm is shown in Fig. 3. At each stage it considers each
deterministic automaton R/P12 that arises from merging each pair of states in
the original automaton R, and calculates a measure (objective value) for the
automaton. It greedily selects the best resulting t-DFA. If this has no more than
k states the process finishes, otherwise we repeat the merging process.

Fig. 3. Greedy algorithm for building a k-state quotient t-DFA for t-DFA R.

The result crucially depends on the measure used. Note that each of the
objective measures defined in Sect. 5.4 is straightforward to calculate for a given
fixed automaton R/P12 .

Example 5. Consider the automaton A from Example 1. We will consider each
of the quotient automata B1, B2 and B3 of Fig. 1 arising from partitions
{{0, 1}, {2}}, {{0}, {1, 2}} and {{0, 2}, {1}} respectively. If we count the number
of strings accepted of length up to 3, we find the measures are respectively 3,
3, and 2, and B3 is preferable. If we use a Markov measure with pe = 1/3 and
pa = pb = 1/3 then the measures are respectively 1/6, 1/6 and 3/8 and one of
B1 or B2 is preferable. 	
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7 Better State Merging

Quotient automata while easy to understand and construct often collapse quickly
by partition determinization into small, and even single-state, automaton. Worse,
some interesting classes of automata admit no non-trivial deterministic quotient.

Example 6. Consider the following automaton, recognizing the language (a ∪
b)�abaa(a ∪ b)�:

���������	0
a ��

b

�� �������	1
b ��

a

�� �������	2
a ��

b

��
�������	3

a ��

b


�������	
������4

a,b





If we attempt to merge states 3 and 4, we find that the outgoing transitions
on b conflict, and we are forced to add 2 to the partition. But as 2 transitions
to 0 on b, we are again forced to merge 0 with {2, 3, 4}. But since 0 and {2, 3, 4}
disagree on a, we are finally forced to add 1 to the partition, obtaining the
single-state universal automaton.

The same collapse occurs for any pair of states we choose to merge. How-
ever, in some sense it should be safe to merge state 3 into state 4, to produce
automaton recognizing the shorter substring aba. 	


This suggests that language quotients describe too restrictive a form of
transformation. Instead, consider some partition P such that [q1]P = [q2]P ,
{(q1, c, q′

1), (q2, c, q
′
2)} ⊆ δ, [q′

1]P = [q′
2]P and L(q′

1, R) ⊆ L(q′
2, R). If we replace

the transition (q1, c, q′
1) with (q1, c, q′

2), we resolve the non-determinism of δP

and obtain an over-approximation of L(R).
In order to use this we have to understand the inclusion relations between

the states of the automaton we wish to approximate. To this end, we can use
simulation preorders between states. Simulation preorders are computable in
time polynomial in the size of the automaton. Moreover, if a simulation preorder
� is such that q � q′ in R then L(q,R) ⊆ L(q′, R) holds [6].

We will determinize a t-DFA while shrinking the number of states from n to
k by using an approximating version of the NFA to DFA translation. First we
map the t-DFA with n-states R to a t-DFA with n-states RR whose state names
are QQ = {{q} | q ∈ Q}. During the determinization we will construct new
states which always represent sets of the original states Q. This mapping is only
used to prevent creating states which already exists. We calculate the inclusion
relation D for the t-DFA RR using, for instance, simulation preorders. We then
apply the algorithm determinize-tdfa defined in Fig. 4 to R and D choosing two
states q1 and q2 in QQ to collapse.

The algorithm works by collapsing two states q1 and q2 into one. In the case
that there is an inclusion relation between them this is easy, we simply eliminate
the included state. Otherwise we create a new state q labelled with the union of
original states of q1 and q2, and replace all occurrences of q1 and q2 by q. This
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Fig. 4. Algorithm for computing a n− 1-state DFA approximation of n-state t-DFA R
given inclusion relation D which replaces q1 and q2 by their union.

may result in an NFA. We then continue finding non-deterministic transitions
going to q′

1 and q′
2 and merging the states using merge-state which replaces one

of these states by a state that over-approximate the union of their languages.

Lemma 6. The algorithm determinize-tdfa terminates. 	

Lemma 7. The algorithm determinize-tdfa returns a DFA R′ with at most n−1
states such that L(R) ⊆ L(R′). 	


We can adapt the greedy algorithm quot to use determinize-tdfa to construct
the candidate automaton M ′ in place of determinize-part in an obvious manner.
We call this dom.

There is a simpler variation of determinization using dominance. We add a
universal accepting state a to the original automata (initially unconnected) and
we only consider greedily merging other states q with a. This means that the
first if condition in determinize-tdfa always holds, so determinization is simple.
We call this greedy variant univ (Fig. 4).
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Fig. 5. Algorithm for computing an NFA with one of states q1 and q2 replaced with
their union. It returns the name of the merged state, an NFA and a language inclusion
relation for the states of the NFA.

8 Experiments

To evaluate the proposed approximation strategies, we generated a corpus of
automata. For an instance ty-l-m-d.xx, we generated m random words W with
length l over alphabet {1, . . . , d}. We then built an automaton of the given type
ty: exact matching {w ∈ W}, prefix {wΣ∗ | w ∈ W}, suffix {Σ∗w | w ∈ W} or
substring {Σ∗wΣ∗ | w ∈ W}. We generated 10 instances for each combination
of l ∈ {5, 10, 15, 20},m ∈ {1, 3, 5, 10}, d ∈ {2, 3, 5, 10}, yielding 2560 automata
with between 6 and 200 states.

For an automaton having n states, we constructed k-state approximations
for k ∈ {n− 2, n

2 , n
4 } using the three greedy merging approaches: quotient deter-

minization (quot), merge-into-universal (univ) and determinization with domi-
nance (dom).

Results for the three greedy approaches are illustrated in Fig. 6. For each
initial automaton and target size k, we computed the number of strings of length
≤2k − 1 recognized by the approximation, and reported the average over the 10
instances for each combination of parameters.

It is interesting to note the differences in behaviour of quot and univ. For
automata recognizing a single substring, quot cannot produce a non-trivial
approximation – after merging any two states, determinization produces the
universal automaton. But for these, univ constructs good (frequently minimal)
approximations, recognizing a shorter prefix of the target substring. Conversely,
quot produces much better approximations for exact string matching automata
than univ: univ produces automata matching all prefixes of the target string,
whereas quot constructs long loops.
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Fig. 6. For each parameter combination and target size k, the number of strings of
length ≤2k−1 recognized by the approximate automaton (averaged over 10 instances).

As hoped, the greater fidelity of dom allows us to achieve tighter approxima-
tions than quot or univ. In all but one instance, dom produced an automaton at
least as tight, and frequently much tighter, than either quot or univ. A summary
of runtimes is given in Fig. 7.

Fig. 7. Runtime quartiles
for the greedy approxima-
tion methods. The lower two
quartiles are <0.01 for all
methods.

In most cases approximations are constructed
quickly. However for large automata, repeatedly
evaluating all possible merges (each evaluation sim-
ulating the DFA up to 2k − 1 steps) becomes quite
expensive. However, we expect by using previous
results as lower bounds, we could avoid many of
these evaluations entirely.

To test the accuracy of these greedy approxi-
mation strategies, we built MiniZinc [13] models
for the optimal approximation obtainable in gen-
eral (Eq. (7)–(10)), and under the quot and univ approximation strategies.3 We
then computed optimal approximations of the smaller test instances using the
constraint programming solver chuffed [5]. chuffed was run with time and
memory limits of 10 min and 2 Gb respectively. Figure 8 reports results for those
automata where optimal approximations were found for all MiniZinc models.

The observed results match those for the greedy approaches: both quot and
univ can represent optimal approximations for matching single prefixes, and
produce poor approximations for suffix automata; but quot can produce optimal
automata for exact matching, but univ produces much tighter (but typically not
optimal) automata for substring matching.

3 We do not include a model for dom, as the natural decision model is semantically
equivalent to the general approximation model.
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Fig. 8. Ideal approximations achievable under the (a) quot and (b) univ approximation
strategies, compared with the best possible approximation.

9 Conclusion and Related Work

Finding small approximating automata is a challenging problem, but the prob-
lem has a number of uses: in static analysis [7], in computer security [10], and
elsewhere given the ubiquity of automata. In this paper we have formalized this
problem as a search problem, and defined a number of complete and incomplete
methods for finding correct approximations.

A related problem is that of computing minimal separating DFAs: Given two
DFA defining disjoint languages, compute a DFA with as few states as possible
that includes one language and is disjoint from the other. Observe that the
minimal separating DFA problem optimizes for size of the resulting DFA while we
optimize for its precision with given size k. The minimal separating DFA problem
has its origin in the learning of DFA from samples [1,8] where its formulation
as a decision problem was shown to be NP-complete. More recently [4,9,12] the
problem found applications in formal verification to discover invariants and in
the context of assume guarantee reasoning. In that context, the work of Neider
[12] is the most relevant to us since he defines a constraint-based approach to
the minimal separating DFA problem.

On the other hand, the problem of finding minimal approximations using
smaller automaton has been studied in several independent contexts [2,7,10].
D’silva [7] studied the problem in the context of static analysis where abstract
states are given by languages of finite-state automaton. To ensure termination
of fixpoint computations a widening operator has to be defined. D’silva lays
down a principled approach to define widening operators for automata-based
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representation. Earlier Bouajjani et al. [2] faced identical termination problems
in the context of abstract regular model-checking.

Both work put forward an approach based on state equivalences for various
notions of equivalences. Equivalent states are then collapsed (merged or identi-
fied) yielding a smaller automaton whose language is a superset of original one.
The equivalence relation is fixed a priori based on the application domain.

We differ in several aspects: we have a fixed budget on the number of states
of the resulting automaton; and using our constraint-based approach we are
searching a larger space of candidate automata, not necessarily automata result-
ing from merging states.

Finally, let us mention the work of Luchaup et al. [10] in the context of
computer security where the use of approximations of finite-state automaton is
motivated for performance reasons. Again they use an approach merging states
with the goal of minimizing the error of classification.
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Abstract. Array-intensive programs often undergo extensive loop
transformations and arithmetic transformations during code optimiza-
tion. Accordingly, translation validation of array-intensive programs
requires manipulation of intervals of integers (representing domains of
array indices) and relations over such intervals to account for loop trans-
formations and simplification of arithmetic expressions to handle arith-
metic transformations. Translation validation becomes more challenging
in the presence of recurrences because recurrences lead to cycles in the
data-dependence graph of a program which make dependence analyses
and simplifications (through closed-form representations) of the data
transformations difficult. To address the problem of translation vali-
dation of array-intensive programs, we have developed an equivalence
checking framework, where both the original program and the optimized
program are modeled as array data-dependence graphs (ADDGs), that
can handle loop and arithmetic transformations along with most of the
recurrences.

Keywords: Translation validation · Equivalence checking · Loop
transformations · Arithmetic transformations · Recurrence · Array
data-dependence graph (ADDG)

1 Introduction

Compiler optimizations targeting better performance in terms of energy, area
and/or execution time typically involve extensive applications of loop trans-
formations together with arithmetic transformations for array-intensive pro-
grams [3,4,14]. Although effective translation validation techniques exist for
programs involving scalar variables [1,7,8], verification of array-intensive pro-
grams and accompanying loop transformations requires more complex data-
flow analyses. Loop transformations essentially involve partitioning/unifying the
index spaces of arrays. Figure 1 shows two programs before and after application
of loop fusion and tiling transformations; moreover, the temporary array T in
Fig. 1(a) has been removed in Fig. 1(b) and the definition of array Out has been
altered appropriately. Specifically, two nested loops in the original program are
c© Springer International Publishing AG 2017
D. D’Souza and K. Narayan Kumar (Eds.): ATVA 2017, LNCS 10482, pp. 84–90, 2017.
DOI: 10.1007/978-3-319-68167-2 6
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fused into one and then the 8 × 8 index space of 〈i, j〉 is covered hierarchically
along 4 × 4 tiles by the outer loop iterators 〈l1, l2〉, each tile having 2 × 2 ele-
ments covered by the inner loop iterators 〈l3, l4〉; the definition of the array Out
in Fig. 1(b) is obtained from that of Fig. 1(a) by substituting for the array T
and applying the distributive property of multiplication over addition. Clearly,
establishing equivalence/non-equivalence of the two programs shown in Fig. 1
calls for an (elaborate) analysis of the index spaces of the involved arrays and
the ability to handle arithmetic transformations.

Fig. 1. Two programs before and after loop and arithmetic transformations.

An array data-dependence graph (ADDG) based equivalence checking
method has been proposed by Shashidhar et al. in [10] which is capable of verify-
ing many loop transformations without requiring any supplementary information
from the compiler. Another data dependence graph based method has been pro-
posed by Verdoolaege et al. in [12,13] that can additionally handle recurrences.
However, none of these methods [10,12,13] can handle arithmetic transforma-
tions, such as distributive transformations, common sub-expression elimination,
arithmetic expression simplification, constant (un)folding. The ADDG based
method described in [5,6] has been shown to handle loop and arithmetic transfor-
mations. However, since recurrences lead to cycles in the data-dependence graph
of a program which make dependence analyses and simplifications (through
closed-form representations) of the data transformations difficult, the method
of [5,6], which basically relies on such simplification procedures, fails in the
presence of recurrences. The work described in [2] presents a unified equivalence
checking framework based on ADDGs to handle loop and arithmetic transfor-
mations along with recurrences. Specifically, the slice based ADDG equivalence
checking framework [6] which handles loop and arithmetic transformations is
extended in [2] so that recurrences are also handled. The tool presented in this
paper is basically a product of our earlier works reported in [2,5,6].

The rest of the paper is organized as follows. An overview of our tool can
be found in Sect. 2. A comprehensive evaluation of our tool and some relevant
discussion on the same can be found in Sect. 3. The paper is concluded in Sect. 4.
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2 Overview of the Tool

2.1 Overview

Our ADDG based equivalence checker for array-intensive programs has been
implemented in C and the tool is available at https://github.com/kunalbanerjee/
EquivalenceChecker ADDG along with the benchmarks, installation and usage
guidelines. The tool is an open source free software covered under GNU General
Public License as published by the Free Software Foundation.

Failure +
Probable source
of non-equivalence

Success /

Source Code

ADDG ADDG
A2

Normalizer

A1

A1

Norm
ADDG

Norm

A2
ADDG

Slice Slice
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R2

C-to-ADDG Translator

Checker
Slice Equivalence

Slice Constructor

S1

Region

Compiler

Recurrence Identifier

Fig. 2. Framework of the equivalence checker. (Color figure online)

The framework of the equivalence checker is shown in Fig. 2. The modules
given in green boxes are integrated within our tool whereas, the box with blue
color is external to it. Each of the modules shown in the figure are briefly
described below.

1. Compiler: This module takes a source code as input and produces an opti-
mized version of it known as the target code; our objective is to ensure that
the target code is bug-free by means of equivalence checking.

2. C-to-ADDG Translator: Since our equivalence checker works with ADDGs
as inputs, we need this module to translate the source code and the target code
into ADDGs. In case the source and/or the target languages of a compiler is
something other than C, one will require a different translator; however, it

https://github.com/kunalbanerjee/EquivalenceChecker_ADDG
https://github.com/kunalbanerjee/EquivalenceChecker_ADDG
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may be noted that deriving ADDG from any high-level language is easy and
straightforward [9].

3. Normalizer: Unlike Boolean expressions, no canonical representation exists
for expressions involving integers; so, we have developed a normalization tech-
nique for integer expressions as given in [1] for comparing such expressions.
This module basically converts all operations occurring in the ADDGs A1

and A2 into their corresponding normalized forms.
4. Recurrence identifier: This module identifies recurrences in an ADDG

which, in turn, involves identification of strongly connected components in
a directed graph. Some intricacies entailed in recurrence identification has
been underlined in [2]. Once the recurrences have been identified, an ADDG
is divided into recurrence and non-recurrence regions.

5. Slice Constructor: This module constructs slices from each region in an
ADDG and tries to pair them with corresponding slices in the other ADDG
based on their input/output arrays and data transformations.

6. Slice Equivalence Checker: This module takes a slice S1 from ADDG A1

and its paired slice S2 from ADDG A2 and tries to establish equivalence
between the two [2,6]. Since this module constitutes the primary difference
from the earlier path based ADDG equivalence checking method [9,10] and
the slice based equivalence checking method [2,6], it has been highlighted
with gray color.

The output “success” signifies that the two ADDGs are equivalent; in case
of a “failure”, the probable source of inconsistency (basically, non-equivalent
slices in the ADDGs being compared) is outputted. Note that the ADDG based
equivalence checking method has been proven to be sound [2] but not complete,
i.e., when the checker outputs “success” then the ADDGs (and the programs
they represent) are indeed equivalent; however, a “failure” does not necessarily
mean that the ADDGs are not equivalent and hence an inspection of the non-
equivalent slices outputted may be needed.

2.2 Guidelines

Our tool requires the following softwares to be installed in the system prior to
its deployment: gcc, flex, bison and Integer Set Library [11]; note that all these
softwares come for free. Once all the pre-requisite softwares have been installed,
one can install our tool using the following command:

$ make

And run the tool using the following command:

$ ./bin/eqChkAddg program1.c program2.c
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3 Evaluation and Discussion

As mentioned in the Introduction section, loop and arithmetic transformations
have been successfully applied to reduce execution time and/or save critical
resources in various domains, especially in the areas of multimedia and signal
processing. Consequently, codes optimized using the aforementioned transfor-
mations may be found in softwares running in safety critical applications or
in brand sensitive products on account of which it is extremely important to
ascertain that design optimizations do not lead to introduction of errors. So,
we tested our tool on several benchmarks from several fields, which primarily
included applications from signal processing and multimedia domains [2,6]. Note
that the correctness and the complexity issues of the method have been formally
treated in [2].

Ver
Kar
Our

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

L+A+RL+RL+AL

Transformations

T
im

e 
(s

ec
)

Fig. 3. Average run times for different transformations. (Color figure online)

To validate that our ADDG based equivalence checker [Our] is superior
to that of the work reported in [6] [Kar] and to that of another competing
method [13] [Ver], we compared our tool with those of [6,13] for several bench-
marks undergoing different types of transformations. The average run times
taken by the tools of [6,13] and ours have been shown in red, green and blue
colors, respectively, in Fig. 3. Note that all the tools succeeded in showing equiv-
alence for benchmarks which involved only loop transformations (denoted by
‘L’ in Fig. 3); the tool of [13] failed to establish equivalence for benchmarks
which contained arithmetic transformations as well (denoted by ‘L + A’); the
tool of [6] failed for benchmarks which involved loop transformations along with
recurrences (denoted by ‘L + R’) and both the tools of [6,13] failed for bench-
marks which involved both arithmetic transformations and recurrences (denoted
by ‘L + A + R’); our current tool succeeded in showing equivalence in all these
cases. Although a comparative analysis with the method of [9] would have also
been relevant, we could not furnish it since their tool is not available to us.
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To find out the set of loop transformations and arithmetic transformations sup-
ported by our tool, the readers are referred to [6]. A pertinent point to note is
that although our tool outperforms that of [6] with respect to execution time
whenever both the tools are able to establish equivalence, the tool of [13] takes
about 2.4 times less execution time on average than that of ours whenever it is
successful – this is probably because our tool invokes ISL [11] through system call
and communicates with it via reading and writing to files whereas, ISL comes
as an integrated package within [13] itself and hence it is faster. The details of
these experiments have been reported in [2]. Note that the run times given here
have been obtained by executing the test cases on a 2.0 GHz Intel R© CoreTM2 Duo
machine.

In another set of experiments, we manually injected data computation errors
and/or wrongly wrote the loop iterators to enforce erroneous loop boundary
calculations in order to check the efficacy of the equivalence checker in detecting
incorrect code transformations. Our equivalence checker reported failure in all
these cases and correctly identified the subgraphs of the ADDGs where the errors
had been injected.

4 Conclusion

Translation validation is a crucial step in software development because it pre-
vents faulty code optimizations from proliferating as software bugs. Accord-
ingly, we have developed an equivalence checking framework which represents
both the original and the translated versions of an array-intensive program as
ADDGs. The experiments carried out using our tool attest to its robustness by
handling various loop and arithmetic transformations even in the presence of
recurrences as reported in [2,5,6], Our tool is an open source free software that
can be installed and operated easily. Enhancing the present method to handle
co-induction (mutual recurrence) and nested recurrence remain as our future
goals.
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Abstract. Several techniques for analysis and transformations are used
in compilers. Among them, the peeling of loops for hoisting quasi-
invariants can be used to optimize generated code, or simply ease devel-
opers’ lives. In this paper, we introduce a new concept of dependency
analysis borrowed from the field of Implicit Computational Complexity
(ICC), allowing to work with composed statements called “Chunks” to
detect more quasi-invariants. Based on an optimization idea given on a
WHILE language, we provide a transformation method - reusing ICC con-
cepts and techniques [8,10] - to compilers. This new analysis computes
an invariance degree for each statement or chunks of statements by build-
ing a new kind of dependency graph, finds the “maximum” or “worst”
dependency graph for loops, and recognizes if an entire block is Quasi-
Invariant or not. This block could be an inner loop, and in that case the
computational complexity of the overall program can be decreased.

In this paper, we introduce the theory around this concept and
present a prototype analysis pass implemented on LLVM. We already
implemented a proof of concept on a toy C parser (https://github.
com/ThomasRuby/LQICM On C Toy Parser) analysing and transform-
ing the AST representation. In a very near future, we will implement the
corresponding transformation within our prototype LLVM pass and pro-
vide benchmarks comparisons.

Keywords: Static analysis · Transformations · Optimization ·
Compilers · Loop invariants · Complexity · Quasi-invariants

1 Introduction

A compiler turns some high-level program into a (semantically) equivalent low-
level assembly program. This translation implies many smaller transformations,
notably because features such as objects, exceptions, or even loops need to be
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expressed in assembly language. The compiler also performs many optimisations
aiming at making the code more efficient. These are often needed to streamline
the code generated by the transformations but can also be used to optimise the
source code.

A command inside a loop is loop invariant code if its execution has no effect
after the first iteration of the loop. Typically, an assignment x:=0 in a loop is
invariant (provided x is not modified elsewhere). Loop invariants can safely be
moved out of loops (hoisted) in order to make the program run slightly faster.

While loop invariant code is maybe not so frequent in source code, many
transformations along the compilation process can generate some. For example,
when compiling the editors vim or emacs, an average of 10 commands per loop
can be hoisted. These are mostly generated by other optimisations.

A command inside a loop is quasi-invariant if its execution has no effect
after a finite number of iterations of the loop. Typically, if a loop contains the
sequence x:=y; y:=0, then y:=0 is invariant. However, x:=y is not invariant.
The first time the loop is executed, x will be assigned the old value of y, and
only from the second time onward will x be assigned the value 0. Hence, this
command is quasi-invariant. It can still be hoisted out of the loop, but to do so
requires to peel the loop first, that is execute its body once (by copying it before
the loop). The number of times a loop must be executed before a quasi-invariant
can be hoisted is called here the degree of the invariant.

An obvious way to detect quasi-invariants is to first detect invariants (that
is, quasi-invariants of degree 1) and hoist them; and iterate the process to find
quasi-invariant of degree 2, and so on. This is, however, not very efficient since
it may require a large number of iterations to find some invariance degrees.

We provide here an analysis able to directly detect the invariance degree of
any statements in the loop. Moreover, our analysis is able to assign an invariance
degree not only to individual statements but also to groups of statements (called
chuncks). That way it is possible, for example, to detect that a whole inner loop is
invariant and hoist it, thus decreasing the asymptotic complexity of the program.

This analysis and transformation has first been implemented as a Proof of
Concept in a toy C-parser. Next, the analysis has been implemented as a pro-
totype pass of the mainstream compiler LLVM and the transformation is under
way. The prototype is currently unable to handle several common situations
(and leave them untouched) because of choices made for the sake of simplicity.
It is, nonetheless, powerful enough to make significant progress compared to the
existing loop invariant code motion techniques (it can handle many more cases).

Loop optimization techniques based on quasi-invariance are well-known in the
compilers community. The transformation idea is to peel loops a finite number
of time and hoist invariants until there are no more quasi-invariants. As far as
we know, this technique is called “peeling” and it was introduced by Song et al.
[16].

Loop peeling and unrolling can also happen for entirely different reasons,
mostly to optimise pipelines. In these cases, the decision to unroll is based
on loop size and (predicted) number of iterations but not on the presence of
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quasi-invariants. It may, of course, happen that quasi-invariant removal is per-
formed as a side effect of this unrolling, but only as a side effect and not as the
main goal.

The present paper offers a new point of view on invariant and quasi-invariant
detection. Adapting ideas from an optimization on a WHILE language by Lars
Kristiansen [8], we provide a way to compute invariance degrees based on tech-
niques developed in the field of Implicit Computational Complexity.

Implicit Computational Complexity (ICC) studies computational complexity
using restrictions of languages and computational principles, providing results
that do not depend on specific machine models. Based on static analysis, it helps
predict and control resources consumed by programs, and can offer reusable and
tunable ideas and techniques for compilers. ICC mainly focuses on syntactic
[3,4], type [2,6] and Data Flow [7,9,12,13] restrictions to provide bounds on
programs’ complexity. The present work was mainly inspired by the way ICC
community uses different concepts to perform Data Flow Analysis, e.g. “Size-
change Graphs” [12] or “Resource Control Graphs” [13] which track data values’
behavior and uses a matrix notation inspired by [1], or “mwp-polynomials” [9]
to provide bounds on data size.

For our analysis, we focus on dependencies between variables to detect invari-
ance. Dependency graphs [10] can have different types of arcs representing differ-
ent kind of dependencies. Here we will use a kind of Dependence Graph Abstrac-
tion [5] that can be used to find local and global quasi-invariants. Based on these
techniques, we developed an analysis pass and we will implement the correspond-
ing transformation in LLVM.

We propose a tool which is notably able to give enough information to easily
peel and hoist an inner loop, thus automatically decreasing the complexity of a
program from O(n2) to O(n).

1.1 State of the Art on Quasi-Invariant Detection in Loop

Modern compilers find loop invariant code by recursively searching for variables
whose value only depends on either code that is outside the loop; or other loop
invariant code. To our knowledge, no compiler searches for loop quasi-invariant
code.

A quasi-invariance detection has been described in [16]. The authors define
a variable dependency graph (VDG) and detect a loop quasi-invariant variable
x if, among all paths ending at x, no path contain a node included in a circular
path. Then they deduce an invariant length which corresponds to the length
of the longest path ending in x. To our knowledge, this analysis has not been
implemented in a compiler. Moreover, they only analyse individual commands
and do not handle chunks. In the present paper, this length is called invariance
degree.
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1.2 Contributions

This paper lies between the fields of Implicit Computational Complexity and
Compilation and provides significant advancement to both.

To the authors’ knowledge, this is the first application of ICC techniques
on a mainstream compiler. One interest is that our tool potentially applies to
programs written in any programming language managed by LLVM. Moreover,
this work should be considered as a first step of a larger project that will make
ICC techniques more accessible to programmers. Thus, we show that 25 years
after Bellantoni and Cook breakthrough [3], ICC techniques are ready to move
into “the real world”.

On a more technical side, our tool aims at improving on currently imple-
mented loop invariant detection and optimization techniques. The main LLVM
tool for this purpose, the Loop Invariant Code Motion pass (LICM), does not
detect quasi-invariant of degree more than 3 (and not all of those of degree 2).
More importantly, LICM will not detect quasi-invariant chunks, such as whole
loops. Our tool, on the other hand, detects quasi-invariants of arbitrary degree
and is able to deal with chunks. For instance the optimization shown in Fig. 6 is
performed neither by LLVM nor by GCC even at their maximum optimization
level.

2 Data Flow Graphs

In this section, we sketch the main lines of the theory of data flow graphs. While
in later sections we will only be studying a specific case of those, the theory is
quite general and pinpoints to formal links with various works on static analysis
[1,9,12] and semantics [11,14,15].

Here data flow graphs are used to represent (weighted) relations between
variables, that is relations that carry some additional information represented
by elements of a semi-ring. In the next section, for instance, the semi-ring1

({0, 1,∞},max,×) will be used to represent various kinds of dependencies
between variables. Consequently, all examples will be given with this specific
choice of semi-ring.

2.1 Definition of Data Flow Graphs

We will work with a simple imperative WHILE-language, with semantics similar
to C. The grammar is given by:

(Variables) X ::= X1 | X2 | X3 | . . . | Xn

(Expression) exp ::= X | op(exp,...,exp )
(Command) com ::= X = exp | com;com | skip | while exp do com od |

if exp then com else com fi | use(X1,...,Xn)

A WHILE program is thus a sequence of statements, each statement being
either an assignment, a conditional, a while loop, a function call or a skip. The
1 The convention here is that 0 × ∞ = 0.
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use command represents any command which does not modify its variables but
use them and should not be moved around carelessly (typically, a printf). In
practice, we currently treat all function calls as use, even if the function is pure.
Statements are abstracted into commands. A command can be a statement or a
sequence of commands. We also call a sequence of commands a chunk.

A data-flow graph for a given command C will be a weighted relation on the
set V of variables involved in C. Formally, this can be represented as a matrix
over a semi-ring, with the implicit choice of a denumeration of the set V . We
now fix, until the end of this section, an arbitrary semi-ring (S,+,×).

Definition 1. A Data Flow Graph (dfg) for a command C is a n × n matrix
over the semi-ring (S,+,×) where n is the number of variables involved in C.

We write M(C) the dfg of C.

For technical reasons, we identify the dfg of a command C with any embed-
ding of M(C) in a larger matrix. I.e. we will abusively call the dfg of C any
matrix of the form (

M(C) 0
0 Id

)
,

implicitly viewing the additional rows/columns as variables that do not appear
in C.

In all examples, we will be using weighted relations, or weighted bi-partite
graphs, to illustrate these matrices. We leave it to the reader to convince herself
that these matrices and graphs are in one-to-one correspondence. Moreover,
all examples will be based on the semi-ring ({0, 1,∞},max,×), since it is the
specific case that will be under study in later sections: it will be used to represent
dependencies: 0 will represent reinitialization, 1 will represent propagation, and
∞ will represent dependence. Figure 1 introduces both these notions and the
graphical convention used throughout this paper.

Graphically, dependencies are represented by two types of arrows from vari-
ables on the left to variables on the right: plain arrows for direct dependency,
dashed arrows for propagation. Reinitialisation of a variable z then corresponds
to the absence of arrows ending on the right occurrence of z. Figure 1 illustrates
these types of dependencies; let us stress here that the dfg would be the same
if the assignment y = y; were to be removed2 from C since the value of y is still

x

y

z

x

y

z

dependence

propagation

reinitialization

C := [x = x + 1;

y = y;

z = 0; ]

Fig. 1. Types of dependence

2 Note that y = y; does not create a direct dependence.
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propagated. Finally x = x + 1 can be seen as xr = xl + 13 where xr depends
directly on xl.

For convenience we define, given a command C, the following two sets of
variables.

Definition 2. Let C be a command. We define In(C) (resp. Out(C)) as the set
of variables used (resp. modified) by C.

Note that in the case of dependencies, In(C) is exactly the set of variables
that are source of a “dependence” arrow, while Out(C) is the set of variables
that either are targets of dependence arrows or were reinitialised.

2.2 Constructing dfgs

We now describe how the dfg of a command can be computed by induction on
the structure of the command. Base cases (skip, use and assignment) should be
defined depending on what the dfg will be used for. The dfg for assignments
are obtained by straightforward generalisation of the cases shown in Fig. 1 (see
also Sect. 3 for some more explanations). Next, define a variable e – standing for
effect – not part of the language, and define:

– M(skip) as the “empty matrix” with 0 rows and columns4;
– M(use(X1, . . . , Xn)) as the matrix with coefficients from each Xi and e to e

equal to ∞, and 0 coefficients otherwise.

Composition and Multipaths. We now turn to the definition of the dfg
for a (sequential) composition of commands. This abstraction allows us to see a
block of statements as one command with its own dfg.

Definition 3. Let C be a sequence of commands [C1; C2; . . . ; Cn]. Then M(C) is
defined as the matrix product M(C1)M(C2) . . . M(Cn).

Following the usual product of matrices, the product of two matrices A,B is
defined here as the matrix C with coefficients: Ci,j =

∑n
k=1(Ai,k × Bk,j).

It is standard that the product of matrices of weights of two graphs F,G
represents a graph of length 2 paths. This operation of matrix multiplication
corresponds to the computation of multipaths [12] in the graph representation
of dfgs. We illustrate this intuitive construction on an example in Fig. 2.

Conditionals. We now explain how to compute the dfg of a conditional, i.e.
we define the dfg of C := if E then C1 else C2; from the dfg of the commands
C1 and C2.

3 In SSA form.
4 Up to the identification of the dfg with its embeddings, it is therefore the identity

matrix of any size.
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C1 C2

⎡
⎢⎢⎣

∞ 0 0 0
∞ 1 0 0
0 0 1 ∞
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 ∞ 1 0
0 0 0 ∞

⎤
⎥⎥⎦
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y
z
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y
z

[C1; C2]

⎡
⎢⎢⎣

∞ 0 0 0
∞ 0 0 0
0 ∞ 1 ∞
0 0 0 0

⎤
⎥⎥⎦

Fig. 2. dfg of composition. Here C1 := [w = w + x; z = y + 2; ] and C2 := [x = y; z = z ∗ 2; ]

Firstly, we need to take into account that both commands C1 and C2 may be
executed. In that case, the overall command C should be represented by the sum
M(C1) + M(C2).

However, in most cases, it is not enough to consider M(C1) + M(C2), and the
dfg of the command C should be obtained by adding a conditional correction
that may depend on the expressions E and C. This correction will here be written
as CC(E).

In the case of dependencies, we can notice that all modified variables in C1 and
C2 should depend on the variables used in E. Denoting E the vector representing
variables in5 Var(E), O the vector representing variables in Out(C1) ∪ Out(C2),
and (·)t the matrix transpose, we define CC(E) = EtO. Figure 3 illustrates this
on an example.

Definition 4. Let C = if E then C1 else C2;. Then M(C) = M(C1) + M(C2) +
CC(E).
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0
0

∞

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∞
0

∞
∞

⎤
⎥⎥⎦

w
x
y
z

w
x
y
z

[if E then C1]

⎡
⎢⎢⎣

∞ 0 0 0
∞ 1 0 0
0 0 0 ∞

∞ 0 ∞ ∞

⎤
⎥⎥⎦

Fig. 3. dfg of conditional. Here E := z ≥ 0 and C1 := [w = w + x; z = y + 2; y = 0; ];

While Loops. Lastly, we define the dfg of a command C := while E do C1;
from M(C1). First, we define a matrix M(C∗

1) representing iterations of the com-
mand C1. Then, as for conditionals, we introduce a loop correction LC(E). In the
case of dependencies, the loop correction and the conditional correction coincide:
LC(E) = CC(E).

When considering iterations of C1, the first occurrence of C1 will influence
the second one and so on. Computing the dfg of Cn1 , the n-th iteration of C1,
5 I.e. the vector with a coefficient equal to ∞ for the variables in Var(E), and 0 for all

others variables.
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is just computing the power of the corresponding matrix, i.e. M(Cn1 ) = M(C1)n.
But since the number of iteration cannot be decided a priori, we need to sum
over all possible values of n. The following expression then defines the dfg of the
(informal) command C∗

1 corresponding to “iterating C1 a finite (but arbitrary)
number of times”:

M(C∗
1) = limitk→∞

k∑
i=1

M(C1)i

To ease notations, we note M(C1)(k) the partial summations
∑k

i=1 M(C1)i.
Figure 4 illustrate the computation of the DFG of a loop.
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while E then C3

⎡
⎢⎢⎣

∞ 0 0 0
∞ 0 0 0
∞ ∞ 1 0
∞ ∞ 0 ∞

⎤
⎥⎥⎦

Fig. 4. dfg of while loop. Here E := z ≤ 100 and C3 := [w = w + x; x = y; z = z + 1];

Definition 5. Let C = while E do C1;. Then M(C) = M(C∗
1) + LC(E).

Note that M(C∗) is not always defined (depending on the choice of semi-ring).
In the case of the semiring ({0, 1,∞},max,×), the set of all relations is finite
and the sequence (M(C1)(k))k�0 is monotonic, hence this sequence is eventually
constant. I.e., there exists a natural number N such that M(C1)(k) = M(C1)(N)

for all k � N . One can even obtain a reasonable bound on the value of N .

Lemma 1. Let C be a command, and K = min(i, o), where i (resp. o) denotes
the number of variables in In(C) (resp. Out(C)). Then, the sequence (M(C(k)))k�K

is constant.

3 Dependencies and Quasi-Invariants

We now study in more details the dfg representation of programs for the
semiring ({0, 1,∞},max,×). Each different weight represents different types of
dependencies.

Each weight express how the values of the involved variables after the exe-
cution of the command depend on their values before the execution. There is a
direct dependence between variables appearing in an expression and the variable
on the left-hand side of the assignment. For instance x directly depends on y and
z in the statement x = y + z;. When variables are unchanged by the command
we call it propagation; this includes statements such as x = x;. Propagation
only happens when a variable is not affected by the command, not when it is
copied from another variable. If the variable is set to a constant, we call this a
reinitialization.
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3.1 Invariance Degree

We now explain how, based on the computation of dfgs, we are able to define
a notion of dependence degree for commands within a while loop. Based on this
notion of degree, we show how the loop can be optimised by peeling it in order
to extract all quasi-invariant commands, reducing the overall complexity while
preserving the semantics.

Before going into details, the reader should be aware that the studied trans-
formation applied on arbitrary WHILE programs gives rise to non-trivial renaming
issues; in particular when a peeled conditional changes the value of a reused vari-
able (we give an intuition of that in Sect. 4.1). To simplify the exposition while
being able to show an interesting example, we here introduce the ϕ-function that,
at runtime, can choose the correct value of a variable depending on the path just
taken. ϕ-functions are a standard tool of compilation, used when the code is set
in SSA form (see Subsect. 4.2). Thus, we do not delve into details concerning
how they precisely work and assume some sort of “black box” able to select the
correct value. Figure 5 shows the dependency graph of a small program.

Fig. 5. Exemple of dependency graph

We now consider a loop C := while E do [C1; C2; . . . , Cn]. We will build a
dependence graph Dep(C) from the information given by the dfgs.

We will define the subset of principal dependences of the command Cm w.r.t.
a given variable i. Intuitively, this principal dependence is the last command
preceding Cm which modified the value of the variable i. However, since while
and if commands may be skipped, we have to consider several main dependences
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in general. Based on this, we will then build the dependence graph which simply
consists in writing the principal dependences of each command.

First, we introduce some notations. Given a variable i, we define the set i≺ as
{Ck | i ∈ Out(Ck)}, the set of command modifying variable i. Given a command
Cm and a variable i ∈ In(Cm), we denote as PrDi(Cm) the subset of i≺ – the use-def
chain over our ordered commands – defined as follows:

– it contains the smallest element of i≺ w.r.t. the order <m defined as

Cm−1 <m Cm−2 <m · · · <m C1 <m Cn <m Cn−1 <m · · · <m Cm;

– if it contains a command Ch which is either a while or if, it contains the
next element of i≺ w.r.t. the order <m.

Definition 6. Let C := while E do [C1; C2; . . . , Cn] be a command. We define the
directed graph Dep(C) as follows:

– the set of vertices V Dep(C) is equal to {C1, . . . , Cn} (the set of commands in
the loop);

– the set of edges EDep(C) is equal to �n
m=1 �i∈In(Cm) PrDi(Cm) (the set of all

principal dependencies);
– the source s(i) of the edge Ck ∈ PrDi(Cm) is Ck;
– the target t(i) of the edge Ck ∈ PrDi(Cm) is Cm.

The invariance degree degC(Cm) of a command Cm w.r.t. C is then defined as
follows. When clear, we will avoid writing the subscript C to ease notations. If
Cm is a source in Dep(C), then deg(Cm) = 1. If Cm has a reflective edge in Dep(C),
then deg(Cm) = ∞. Otherwise, we write Fib(Cm) – the fiber over Cm – the set of
vertices in Dep(C) defined as {Ck | ∃e ∈ EDep(C), s(e) = Ck, t(e) = Cm}, and define
deg(Cm) by the following equation, where χ>m(i) = 1 if i > m and χ>m(i) = 0
otherwise:

deg(Cm) = max ({deg(Ci) + χ>m(i) | Ci ∈ Fib(Cm)})

In particular, if Cm is part of a cycle in Dep(C), its degree is equal to ∞.
For all i ∈ N ∪ {∞}, we define the inverse image deg−1(i), i.e. deg−1(i) =

{Ck | deg(C)k = i}, and we note maxdeg(C) the largest integer (i.e. not equal to
∞) such that deg−1(maxdeg(C)) �= ∅. The following lemma will be used in the
proof of the main theorem.

Lemma 2. Consider the set deg−1(i) for an integer i > 0 and the relation
induced from the dependency graph, i.e. Ci → Cj if and only if there is a sequence
of edges from Ci to Cj in Dep(C). Then (deg−1(i),→) is a partial order.

Proof. It is clear that → is transitive and reflexive. We only need to show that it
is antisymmetric. I.e. that there are no two commands Ci, Cj such that Ci → Cj
and Cj → Ci. We suppose that two such commands can be found and show it
leads to a contradiction. Indeed, if such a situation arises, it means that the
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dependency graph contains a cycle P1, . . . , Pk with P1 = Pk = Ci. By definition of
the degree, one has deg(Pi+1) � deg(Pi). More to the point, one has deg(Pi+1) >
deg(Pi) as long as Pi = Ck and Pi+1 = Ch with k > h. Now, it is clear that
one of the inequalities deg(Pi+1) � deg(Pi) has to be strict, as no sequence
Ci1 , Ci2 , . . . , Cik with i1 < i2 < · · · < ik can form a cycle. This implies that
deg(Ci) > deg(Ci); a contradiction.

Based on the invariance degree, we will be able to peel loops. For this
purpose, we define the following notation. Given a sequence of commands
[C1; C2; . . . ; Cn], we write [Č1; Č2; . . . ; Čn](i) the subsequence in which all com-
mands of degree strictly less than i are removed. We then define ifi =
if E then [Č1; Č2; . . . ; Čn](i), and whilei = while E then [Č1; Č2; . . . ; Čn](i). We
can now state the main theorem of the paper, denoting by �C� the semantics of
the command C.

Theorem 1. Let C := while E do [C1; C2; . . . , Cn] be a command. Then

�C� ≡ �if1; if2; . . . ; ifmaxdeg(C); while∞�

The proof of this theorem is based on an induction, using the following
lemma.

Lemma 3. Let C := while E do [C1; C2; . . . , Cn], and D := if1; while2. Then
�C� ≡ �D� and for each command Cm appearing in while2, degC(Cm) = degD(Cm)+1.

Proof. We start by proving the claim that for each command Cm appearing in
while2, degC(Cm) = degD(Cm) + 1. This is a consequence of the fact that the
dependency graph Dep(D) is obtained from Dep(C) by removing all vertices Cm
for commands Cm of degree 1, together with their outgoing edges. Note that this
defines a well-formed graph since by definition of the degree, a command of
degree 1 may only depend on commands which are themselves of degree 1 (i.e.
edges of target Cm are removed as well). Now, it is clear from the definition of
the dependence degree that degC(Cm) = ∞ implies degD(Cm) = ∞, and that if
degC(Cm)) = d the command Cm only depended commands of degree at most d.
From Lemma 2 we can prove by induction that degD(Cm) = d − 1.

Then, one should realise that commands of degree 1 are in fact invariants of
the loop C. It is then clear that �C� ≡ �D�.

4 In Practice

In the previous section, we have seen that the transformation is possible from
and to a While-language. This section will progressively show that we can do
it in real languages by introducing our implementations. First it will present
our proof of concept6 which does both analysis and propose a transformation
from C to C. After we will explain how we implemented a prototype analysis in
a mainstream compiler.
6 https://github.com/ThomasRuby/LQICM On C Toy Parser.

https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser
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4.1 Proof of Concept (PoC)

To easily and quickly integrate our transformation, we decided to use “pyc-
parser”7, a C parser written in Python. The principal interest was to simply
get and manipulate an Abstract Syntax Tree. Using a “WhileVisitor” we list
all nested while-loops, then, with a bottom-up strategy (the inner loop first),
this tool analyses and transforms the code if an invariant or quasi-invariant is
detected. The analysis is divided in two parts: the dfg construction and the
invariance degree computation.

Analysis. The first part aims to list relations between statements. In this imple-
mentation we decided to define a relation object by one list of pairs (for the
direct dependencies) and two sets (for the propagations and reinitializations) of
variables. A relation is computed for each command using a top-down strategy
following the dominance tree. The relations are composed when the correspond-
ing command is a sequence of commands. As described previously, we compute
the correction and the maximum relations possible for a while or if statement.
With those relations, we compute an invariance degree for each statement in the
loop regarding to the relations listed (Algorithm1).

Peeling Loops from C to C. On a non-SSA form (see Subsect. 4.2), variables
are often reused to store temporary values. The problem is that if we hoist a
part of loop which changes the value of one of those variables it is possible to
change the semantic. Furthermore, it is harder if those variables are modified in
a conditional chunk, in this case a ϕ-function is needed. This issue is illustrated
in Fig. 6 if we replace y1, y2 by y and ϕ-function is removed.

Implementation Details. For this PoC we decided to not consider renaming
issue, or the ϕ-functions used in the example. Indeed, these are already standard
in compilers, our ultimate goal, and there is no need to rewrite a full “put
into SSA form” algorithm. The PoC is nonetheless able to peel C programs in
SSA form with no invariant conditional statements (see the examples in the
repository).

This implementation is almost 400 lines of Python. It is able to compute
relations of each commands or sequence of commands. This tool focuses on a
restricted C syntax and considers all functions as non-pure. Functions with side
effects can be seen as an anchor in the sequence of statements, commands can
not be moved around. But we can restrain the conditions for peeling. We can
allow to hoist pure functions as in [16]. All other side effects can be broken by
this transformation, and thus should not be moved.

7 https://github.com/eliben/pycparser.

https://github.com/eliben/pycparser
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4.2 Prototype Pass in LLVM

Compilers, and especially LLVM on which we are working, use an Intermediate
Representation (IR) to handle programs. This is a typed assembly-like language
that is used during all the stages of the compilation. Programs (in various dif-
ferent languages) are first translated into the IR, then several optimizations
are performed (implemented in so-called passes), and finally the resulting IR
is translated again in actual assembly language depending on the machine it
will run on. Using a common IR allows to do the same optimizations on several
different source languages and for several different target architectures.

One important feature of the LLVM IR is the Single Static Assignment form
(SSA). A program is in SSA form if each variable is assigned at most once. In
other words, setting a program in SSA form requires a massive α-conversion of
all the variables to ensure uniqueness of names. The advantages are obvious since
this removes any name-aliasing problem and ease analysis and transformation.

The main drawback of SSA comes when several different paths in the Con-
trol Flow reach the same point (typically, after a conditional). Then, the val-
ues used after this point may come from any branch and this cannot be stati-
cally decided. For example, if the original program is if (y) then x:=0 else
x:=1;C, it is relatively easy to turn it into a pseudo-SSA form by α-converting
the x: if (y) then x0 := 0 else x1 := 1; C but we do not know in C which of x0 or
x1 should be used.

SSA solves this problem by using ϕ-functions. That is, the correct SSA form
will be if (y) then x0:=0 else x1:=1; X:=ϕ(x0, x1); C.

While the SSA itself eases the analysis, we do have to take into account the
ϕ functions and handle them correctly.

Existing. LLVM does have a Loop Invariant Code Motion (LICM) pass which
hoists invariants out of loops. Used with unrolling and instruction combination
optimizations it can sometimes “peel” quasi-invariants. However, as far as we
know, it does not compute invariance degrees and does not detect quasi-invariant
chunks. Hence, if peeling occurs, it is as a side effect of another transformation
(mostly, pipeline optimisation) and not to hoist quasi-invariants.

Preliminaries. First, we want to visit all loops using a bottom-up strategy
(the inner loop first). Then, as for the LICM, our pass is derived from the basic
LoopPass (loops are detected by the LLVM’s LoopInfo pass). Which means that
each time a loop is encountered, our analysis is performed.

At this point, the purpose is to gather the relations of all instructions in the
loop to compose them and provide the final relation for the entire loop.

Then a Relation is generated for each command using a top-down strategy
following the dominance tree. The SSA form helps us to gather dependence
information on instructions. By visiting operands of each assignment, it’s easy
to build our map of Relation. With all the current loop’s relations gathered, we
compute the compositions, condition corrections and the maximums relations
possible as described in Sect. 2.2. Obviously this method can be enhanced by
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an analysis on bounds around conditional and number of iterations for a loop.
Finally, with those composed relations we compute an invariance degree for each
statement in the loop following Algorithm 1.

Data: Dependency Graph and Dominance Graph
Result: List of invariance degree for each command
Initialize degrees of use to ∞ and others to 0;
for each command Cm do

if the current degree deg(Cm) 
= 0 then
return deg(Cm);

else
Initialize the current degree deg(Cm) to ∞;
if there is no dependence for the current chunk then

deg(Cm) = 1;
else

for each dependent command ordered (Subsect. 3.1) compute the degree
deg(Cd) do

if deg(Cd) = ∞ or Cd = Cm then
return ∞;

end
if deg(Cm) ≤ deg(Cd) and d > m then

deg(Cm) = deg(Cd) + 1;
else

deg(Cm) = deg(Cd);
end

end

end
return deg(Cm)

end

end

Algorithm 1. Invariance degree computation.

This algorithm is dynamic. It stores progressively each degree needed to
compute the current one and reuse them. Note that, for the initialization part, we
are using LLVM methods (canSinkOrHoist, isGuaranteedToExecute etc. . . ) to
figure out if an instruction is movable or not. These methods provide the anchors
instructions for the current loop.

Peeling Loop Idea. The transformation will consist in creating as many basic
blocks before the loop as needed to remove all quasi-invariants. For each block
created, we include every commands with a higher or equal invariance degree.
For instance, the first preheader block will contain every commands with an
invariance degree higher or equal to 1; the second one, higher or equal to 2
etc. . . to maxdeg. The final loop will contain every commands with an invariance
degree equal to ∞.

Of course, hoisting quasi-invariant of high degrees is not necessarily a good
idea since it requires peeling the loop many times and thus greatly increase the
size of the code. The final decision to hoist or not will depend on the quasi-
invariance degree, the size of the loop, . . .

Implementation Details. The only chunks considered in the current imple-
mentation are the one consisting of while (any loops in LCSSA form) or
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if-then-else (any forks which have a common post dominator existing in the
loop) statements.

This implementation (including a preliminary version of peeling) is almost
3000 lines of C++. It is able to compute relations of each commands or sequence
of commands. However, it has, for the moment, some restrictions on the form of
the loop analyzed. First, loops with several exit blocks are ignored and left intact
(typically a loop including a break); furthermore, this tool considers all functions
as non-pure as for the Proof of Concept. Even with these restrictions, the pass
is able to optimise code that was previously left untouched, thus illustrating the
power of the method.

5 Conclusion and Future Work

5.1 Results

Developers expect that compilers provide certain more or less “obvious” opti-
mizations. When peeling is possible, that often means: either the code was gen-
erated; or the developers prefer this form (for readability reasons) and expect
that it will be optimized by the compiler; or the developers haven’t seen the
possible optimization (mainly because of the obfuscation level of a given code).

Fig. 6. Hoisting inner loop
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Our generic pass is able to provide a reusable abstract dependency graph
and the quasi-invariance degrees for further loop optimization or analysis.

In this example (Fig. 6), we compute the same factorial several times. We can
detect it statically, so the compiler has to optimize it at least in -O3. Our tests
showed that is done neither in LLVM nor in GCC (we also tried -fpeel loops
with profiling). The generated assembly shows the factorial computation in the
inner loop.

Moreover, the computation time of this kind of algorithm compiled with
clang in -O3 still computes n times the inner loop so the computation time
is quadratic, while hoisting it results in linear time. For the example shown in
Fig. 6 (LLVM-IR in Fig. 7a), our pass will compute the correct degrees.

To each instruction printed corresponds an invariance degree. The assignment
instructions are listed by loops, the inner loop (starting with while.cond5) and
the outer loop (starting with while.cond). The inner loop has its own invariance
degree equal to 4 (line 10). Remark that we do consider the phi initialization
instructions of an inner loop. Here %fact.0 and %i.1 are reinitialized in the
inner loop condition block. So phi instructions are analyzed in two different
cases: to compute the relation of the current loop or to give the initialization of
a variable sent to an inner loop. Our analysis only takes the relevant operand
regarding to the current case and do not consider others.

Statistics have been generated by our pass on the editor vim to evaluate the
magnitude of new possible optimizations (Fig. 7b). Note that the result changes

Fig. 7. LLVM IR and LQICM’s statistics
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a lot regarding to when our pass is called. Here, to compare, it is placed before all
LICM iterations. We can observe that, despite the number of aborted analysis due
to the lack of flexibility of our young pass, over less than half of the loops analyzes
LICM, we find 5984 quasi-invariants instructions, 73% of the total invariants
currently hoisted by LICM.

The code of this pass is available online8. To provide some real benchmarks
on large programs we need to finish the transformation. We are currently working
on it.

5.2 Further Works

The pass is currently a prototype. The transformation is still in preliminary
form and even the analysis is making some approximations (e.g. considering all
functions as non-pure) that hamper its efficiency. We will obviously work further
on the pass to finish the transformation and increase the number of cases we can
handle.

On a more theoretical side, the current analysis is strongly inspired by other
ICC analysis such as Size Change Termination [12] (from which the Data Flow
Graphs and Multipaths are taken) or the mwp-analysis (from which the loop
correction idea is taken) [9]. As shown in Subsect. 2.1, it is easy to adapt the
method to similar analysis, and most of the existing code can be reused. Thus,
we plan on implementing a mwp-inspired complexity analysis in LLVM, which
should be able to guarantee the polynomiality of large parts of the code.

Such certificates built at compile-time can be used in a Proof Carrying Code
paradigm. If the compiler is trusted (for example, untrusted developers upload
source-code onto an applications store and the compilation is made by the trusted
store), then the certificate ensures that certain properties (in this case, complex-
ity) are valid.
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Abstract. An application program can go through significant opti-
mizing and parallelizing transformations, both automated and human
guided, before being mapped to an architecture. Formal verification of
these transformations is crucial to ensure that they preserve the original
behavioural specification. PRES+ model (Petri net based Representa-
tion of Embedded Systems) encompassing data processing is used to
model parallel behaviours more vividly. This paper presents a transla-
tion validation tool for verifying optimizing and parallelizing code trans-
formations by checking equivalence between two PRES+ models, one
representing the source code and the other representing its optimized
and (or) parallelized version.

Keywords: Eclipse plugin · PRES+ model · FSMD model · Equiva-
lence checking · Cut-point

1 Introduction

Applications written for parallel and embedded systems often go through a
series of semantic preserving transformations so that the resulting program can
optimally utilize the underlying computing infrastructure. Over the years, the
researchers and practitioners have developed tools and methodologies to perform
code transformations manually or semi-automatically. For instance, Intel R© com-
piler1 performs a series of transformations on the applications to improve the
performance by utilizing the multi-core and vector registers. There are compilers
like PLuTo [1], Par4All [2], Cetus [3] which perform source to source transfor-
mation to parallelize a sequential code. There are compilers like ROSE [4] which
performs source to source transformation to improve fault-tolerance of a code.
In practice, developers often perform a hand-crafted transformation of a code
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followed by extensive testing. In all these cases, it is absolutely essential to ver-
ify that the transformed program preserves the semantics of the original code.
Several translation validation methods are reported in [5–10]. In this paper, we
propose an Eclipse plugin based verification tool named SamaTulyata, that can
verify the semantic equivalence of two programs using Petri-net based model.
The plugin is integrated with the Eclipse-CDT environment. The equivalence
checking algorithm along with the theoretical treatment is given in [11–14]. The
paper has been organized as follows. In Sect. 2 we describe the architecture of
the tool. Next, in Sect. 3 we report the experimental results performed for this
tool. Finally we conclude the paper.

2 Tool Architecture

The equivalence checker tool has been implemented as an Eclipse plugin, shown
in Fig. 1. The lifecycle of the plugin is as follows:

Inactive state: The plugin gets loaded while Eclipse development environment
is initialized but it remains inactive at the beginning.

Active state: Since the equivalence checker works on two C programs, the
plugin becomes active when two C programs are selected as shown in Fig. 1
under the Eclipse-CDT environment. When the plugin receives the equivalence
check event from the user, it converts the source programs into two Petri net
based control flow graphs, and then performs equivalence check on the CFGs.
The result of the equivalence check is displayed as shown in Fig. 1.

Fig. 1. Architecture of the equivalence checker
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2.1 Functional Modules

The tool has been implemented in Java and C, where the plugin functionality
and the lifecycle have been implemented in Java and the core equivalence check-
ing algorithm has been implemented in C. The core system comprises of three
modules as shown in Fig. 1. The First one, PRES+ Model generator accepts
a control flow graph and generates a PRES+ model of the program. The second
module, PRES+ Model analyzer, accepts two PRES+ models and performs
the equivalence check. The detailed report of the equivalence check process is
generated by Equivalence Report Generator module. Currently, the tool
displays the results in a textual form. In the future version, we intend to make
the results more interactive where the tool will not only show the final result
but highlight the source code lines in the Eclipse, to explain why the equiva-
lence checking process has failed. Through the following example, we illustrate
the equivalence checking method. Note that here we have considered only integer
type variables.

Fig. 2. Illustrative example for the equivalence checking method.

Example 1. Figure 2(c) is the program obtained from the program of Fig. 2(a) by
moving the instruction x = 10 preceding the loop using code motion across the
loop. Figure 2(b) depicts the PRES+ model N0 corresponding to the Fig. 2(a)
and (d) represents the PRES+ model N1 corresponding to Fig. 2(b) which are
constructed by the PRES+ Model Generator module. Then the two con-
structed models are fed into the Model Analyzer module which essentially
checks the equivalence between two PRES+ models. The working principle of
equivalence checking procedure is given below.

The set of variables (for both N0, N1) is V = {i, x}. In Fig. 2(a), the cut-
points are p1, p2, p4 and p5; using path construction module, the set of paths
for N0 is {α0, α1, α2}. Similarly, in Fig. 2(b), the cut-points are p′

1, p
′
2, p

′
3, p

′
4

and the set of paths is {β0, β1, β2}. The equivalence checking method consists in
establishing that for all path of N0, there exists a path in N1 such that two paths
are computationally equivalent [11,14] and vise-versa. Now, for α0, the path
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β0 is chosen as the candidate for examining equivalence with α0 because their
respective pre-places are related by the relation fin and they are computationally
equivalent. Hence, it infers that α0 � β0. Similarly, α1 and α2 are found to have
equivalence with β1 and β2, respectively. At last, the method identifies that the
non-equivalent path sets of N0 and N1 is empty and accordingly declares that
the two models N0 and N1 are equivalent. �

3 Experimental Results

The core system has been tested on both sequential and parallel examples on
a 2.0 GHz Intel(R) Core(TM)2 Duo CPU machine (using only a single core).
We have carried out the experiments on a set of sequential examples and a set
of parallel examples. For both the cases, we have performed the following steps
systematically.

3.1 Methodology

1. Preparation of the Example Suite: We have considered a set of ten
source programs used by SPARK compiler benchmarking [15], as shown in
Table 1. For the parallel examples, we have considered the last four sequential
programs shown in Table 1 from [1] and parallelized them using the PLuTo
compiler.

2. Transforming the Programs: Each of the sequential programs in Table 1
is then transformed using some human guided transformations (code motion
across loops and Dynamic loop scheduling) and by the SPARK compiler [15].

However, for the parallel examples, the last four sequential programs
depicted in Table 1 are converted to their parallel equivalents using a promi-
nent thread level parallelizing compiler PLuTo [1].

3. Tool Verification: We feed the original and the transformed version of each
example as inputs to our tool and evaluate its performance when the trans-
formed program is semantically equivalent to the original program and when
the transformation is erroneous.

Performance: For each example, we observe number of paths, path construction
time for both original and transformed programs and the equivalence checking
time. We compare the timing with two other reported methods in [13,16]. The
entire module is now available online for verification2.

Faulty Translation: In order to experimentally evaluate the performance of
the tool in the presence of faulty translation of code, we inject some errors in
the source code of the transformed program and observe the time it takes to
detect these errors during equivalence checking process. We have introduced
the following types of (both instruction level and thread level) erroneous code
transformations:
2 https://github.com/santonus/equivchecker.

https://github.com/santonus/equivchecker
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Type 1: non-uniform boosting up code motions from one branch of an if-then-
else block to the block preceding it which introduces false-data dependencies;
this has been injected in the GCD and MODN examples.

Type 2: non-uniform duplicating down code motions from the basic block pre-
ceding an if-then-else block to one branch of the if-then-else block which
removes data dependency in the other branch;

Type 3: mix of some correct code motions and incorrect code motions.
Type 4: data-locality transformations which introduce false data-locality in the

body of the loop.

Table 1. Equivalence checking results for several sequential and parallel examples

Example Paths Need
extension

Need
extension

FSMDEQX in (µs) DCPEQX in (µs) SamaTulyata in (µs)

Orig Transf (FSMDEQX) (DCPEQX) Total PathConstr Total PathConstr Total

MODN 30 30 YES YES 16001 22208 37789 19835 30761

SUMOFDIGITS 9 9 YES YES 8000 12175 25477 11389 23451

PERFECT 53 23 YES YES 8372 44375 53674 29918 37274

GCD 43 43 YES NO 12563 28960 41432 28034 38238

TLC 70 70 YES YES 16121 282876 288671 252251 272129

DCT 18 18 NO NO 1902 35637 42354 25134 28123

LCM 45 45 YES NO 16174 30960 43245 29143 39235

LRU 56 56 YES NO 20001 834323 855785 768790 826716

PRIMEFAC 35 20 YES YES 6352 21846 27414 17734 24356

MINANDMAX-S 40 38 × NO × 24774 40763 21309 37033

BCM 1 1 × NO × 912 4659 802 3561

LUP 18 18 × NO × 20209 33633 18341 31012

DEKKER 12 12 × NO × 8912 16821 6891 10234

PETERSON 10 10 × YES × 10526 17652 9521 10387

3.2 Performance Analysis

In Table 1, we discuss the observations regarding the performance of Sama
Tulyata vis-a-vis those of the FSMD based equivalence checker (FSMDEQX) [17]
and the dynamic cut-point induced PRES+ equivalence checker (DCPEQX) on
programs and their equivalent transformed versions.

FSMD Based Approach: As observed from Table 1, FSMDEQX is signifi-
cantly faster than SamaTulyata for all the examples. The main reason is that an
FSMD based equivalence checker unlike PRES+ model based ones (DCPEQX
and SamaTulyata), can construct paths by identifying the cut-points only, which
are essentially the control flow bifurcation points. In contrast, for PRES+ mod-
els, the path construction process involves not only identification of the back
edges but also keeping track of the sequence of maximally parallelizable tran-
sitions. Nevertheless, PRES+ models are more powerful to capture the data
independence, and hence parallelism [11,14], which an FSMD based model is
not capable of. Consequently, FSMDEQX is not capable of checking equivalence
of several parallel examples as indicated using × in Table 1.
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Dynamic Cut-Point Based Approach: Let us now focus on the columns
pertaining to DCPEQX and SamaTulyata. It may be observed that SamaTulyata
outperforms DCPEQX in terms of total time. Both the approaches use path con-
struction method and they are capable of analyzing sequential as well as par-
allel examples. The main reason for better performance in SamaTulyata lies in
path construction during equivalence checking. Since SamaTulyata creates paths
based on static cut points, it cuts the loop (if present in the PRES+ model of
a program) in at least one cut point [11,14]. However, DCPEQX generates more
cut-points for the same PRES+ model of a program as it seeks to capture the
computation syntactically [12,13]. In the process, it has to employ costly path
extension during equivalence checking. Due to this reason, SamaTulyata consid-
ers less number of paths during equivalence checking, and hence executes faster.

3.3 Performance in Presence of Fault

The last three columns of Table 2 depict the non-equivalence detection times
for the three equivalence checkers to identify the set of non-equivalent paths in
each cases. The non-equivalence time for SamaTulyata is better than DCPEQX
and FSMDEQX. The reason is that for reporting non-equivalent paths, both
DCPEQX and FSMDEQX methods call the costly path extension routine; however,
in SamaTulyata there is no need for costly path extension.

Table 2. Non-equivalence checking times for faulty translations

Errors Example FSMDEQX DCPEQX SamaTulyata

Time (µs) Time (µs) Time (µs)

Type 1 MODN 15456 17255 13471

GCD 10435 12523 10142

Type 2 TLC 14592 16434 13780

Type 3 LRU 19278 23143 16143

LCM 11412 12834 10619

Type 4 MINANDMAX-P × 24347 15463

PETERSON × 10913 6534

4 Conclusion

In this paper we describe a tool named SamaTulyata that implements an effi-
cient path based equivalence checking. The underlying technique does not use
the costly path extension mechanism. In comparison, the current tool has been
found to be somewhat better than DCPEQX tool; however, both take more time
than FSMDEQX methods primarily because the path construction time for PRES+



SamaTulyata: An Efficient Path Based Equivalence Checking Tool 115

model is significantly higher than the corresponding time for FSMD model. The
tool has been implemented as an Eclipse plugin, which is active under the CDT
environment and can help the programmer to perform the equivalence checking
during program development. Some of the limitations of the present work are its
inability to handle loop-shifting, software pipelining and other loop transforma-
tions for array handling programs which are going to be our focus for the future
work.

Acknowledgment. Santonu Sarkar has been partially supported by Science and
Engineering Research Board, Govt. of India project (SB/S3/EECE/0170/2014) for
this research work.
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{mohammad.torabi,basin}@inf.ethz.ch

Abstract. The purpose of testing a system with respect to a require-
ment is to refute the hypothesis that the system satisfies the require-
ment. We build a theory of tests and refutation based on the elementary
notions of satisfaction and refinement. We use this theory to character-
ize the requirements that can be refuted through black-box testing and,
dually, verified through such tests. We consider refutation in finite time
and obtain the well-known finite falsifiability of hyper-safety temporal
requirements as a special case. We extend our theory with computational
constraints and separate refutation from enforcement in the context of
temporal hyper-properties. Overall, our theory provides a basis to ana-
lyze the scope and reach of black-box tests and to bridge results from
areas including testing, verification, and enforcement.

1 Introduction

Testing is a widely adopted quality-assurance activity and there is a general
agreement as to its purpose and importance. However, a solid understanding
of testing’s strength and limitations is lacking, despite the manifest importance
of this topic. For instance, it is commonly agreed upon that the purpose of
testing a system with respect to a requirement is to refute the hypothesis that
the system satisfies the requirement [6,15]. Yet, existing testing theory is inad-
equate for answering basic questions such as: which class of requirements are
refutable, given a class of tests? Or, which class of tests, if any, can refute a
class of requirements? The need for research advances here is imperative as cur-
rent analytic frameworks for testing are incapable of even articulating, let alone
answering, these fundamental questions in a satisfactory manner. We show how
this can be done for black-box testing, the most basic system analysis technique,
by presenting a theory of tests and refutation that fully characterizes the class of
refutable requirements and provides a foundation for bridging results in testing
with other related disciplines.

We start with an abstract model of systems and requirements (Sect. 2) and
introduce two types of requirements: obligations and prohibitions (Sect. 3). A
requirement is an obligation if it obliges the systems to exhibit certain (desired)
behaviors, and it is a prohibition if it prohibits the systems from exhibiting
(undesired) behaviors. We show that these two requirement types admit a
straightforward order-theoretic characterization. Namely, given a refinement (or
abstraction) partial-order on a set of systems, the satisfaction of an obligation
c© Springer International Publishing AG 2017
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is abstraction-closed, and for a prohibition it is refinement-closed. We then turn
to black-box tests (Sect. 4).

A system is a black-box if we can observe its input and output, but cannot
observe how the latter is produced from the former. Therefore, a tester can ana-
lyze such a system only by interacting with it through its interface. In black-box
testing, sometimes called “testing by sampling” [6], testing a system amounts
to inspecting a sample of its behaviors. The sample obtained through tests can
be seen as a refinement of the system under test, a notion we make precise in
the following sections. All a tester learns by sampling is that a system exhibits
certain behaviors. From this, the tester cannot infer that the system does not
exhibit other behaviors as well. Such a conclusion could only be justified through
the sample’s exhaustiveness, which black-box testing alone cannot establish. A
requirement is therefore refutable through tests if, for any system that violates
the requirement, the hypothesis that the system satisfies the requirement can
be refuted by inspecting a refinement of the system. It follows that a require-
ment whose violation is contingent upon demonstrating the absence of behav-
iors cannot be refuted through black-box testing. Based on this, we prove that
any refutable requirement is a prohibition, and all non-trivial obligations are
irrefutable (Sect. 5). We then define the notion of verification dual to refutation,
and show that any verifiable requirement is an obligation and that non-trivial
prohibitions cannot be verified through tests (Sect. 6).

Contributions. We present a theory for reasoning about the strength and the
limitations of black-box testing. Our theory has minimal formal machinery, which
gives rise to direct, elementary proofs (Appendix A). We use the theory to prove
new results and to obtain known results as special cases.

We fully characterize the requirements that can be refuted and those that
can be verified through black-box tests. This characterization augments, and in
some cases rectifies, the folkloric understanding that exists in the community.
For example, we highlight the fundamental role that determinacy assumptions
play in making sense of day-to-day black-box tests.

Our theory is abstract. Extending it to account for refutation in finite
time and refutation under computational constraints is therefore immediate.
We present different applications of our theory of finite refutability (Sect. 7).
We demonstrate that the well-known finite falsifiability of hyper-safety tem-
poral requirements [4] can be derived as a special case in our theory. More-
over, we explicate the relationship between finite refutability and system self-
composition [3,4], a central technique in information flow analysis. Finally, we
use our characterization to separate refutability from enforceability: we show
that any enforceable temporal requirement is refutable, but refutable require-
ments need not be enforceable; we give a precise definition of the notion of
enforceable requirements in the following sections. The separation hinges upon
analyzing the computational constraints of refutation (and enforcement) via a
notion of algorithmically refutable requirements (Sect. 8).

Related Work. Below, we review the most closely related work.
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Our definition of refutability is inspired by Popper’s notion of testable the-
ories [19]. Theories of black-box testing proposed in the software engineering
literature are largely concerned with the notions of test selection and test ade-
quacy; see, e.g., [9,10,24,27]. Refutable requirements have not been investigated
in prior works. In contrast, enforceable temporal requirements have been exten-
sively studied. Intuitively, a requirement is enforceable if there exists a reference
monitor that can tell when a system violates the requirement only by observing
the system’s behaviors [11,16]. Due to its technical nature, we relegate compar-
ing refutability and enforceability to Sect. 7.

Obligations and prohibitions, as requirement types, implicitly appear in var-
ious domains of software engineering. For example, Damm and Harel introduce
existential charts for specifying the obligatory behaviors of a system, and univer-
sal charts for specifying all the behaviors the system exhibits [5]. An existential
chart intuitively corresponds to an obligation, and a universal chart corresponds
to a semi-monotone requirement in our theory, which is the conjunction of an
obligation and a prohibition. The notions of necessity and possibility also have
a central role in modal logic. For example, Larsen and Thomsen’s modal transi-
tion systems specify obligations and prohibitions through, respectively, must and
may transitions [13]. Similarly, Tretmans’ ioco testing theory [24] is based on
specifications that define both a lower bound and an upper bound on a system’s
behaviors, which roughly speaking correspond to, respectively, obligations and
prohibitions (see Sect. 6). The existing works define prohibitions and obligations
in concrete modeling formalisms. In contrast, we present abstract definitions
which can be instantiated by the existing ones.

We briefly discuss the limitations of our theory in Sect. 9.

2 Systems and Requirements

We start with a simple abstract model of systems and requirements. A system is
an entity that is capable of exhibiting externally observable behaviors. Operating
systems, digital circuits and vending machines are all examples of systems. We
keep the notion of a behavior unspecified for now. Let S denote the nonempty set
of all systems under consideration. For example, S may stand for the set of all
Java programs. We assume that (S,�) is a partially-ordered set (poset), where �
denotes a refinement relation: S1 � S2 states that system S1 refines system S2,
or that system S2 abstracts system S1. That is, S1 � S2 means that S1 exhibits
fewer behaviors than S2. There exists a large body of research on refinement and
abstraction; see for instance [1,14,25]. Examples of refinement relations include
trace containment and various algebraic simulation relations. In the interest of
generality, we do not bind � to any particular relation. We write �S� and �S�
respectively for the set of systems that abstract a system S and those that refine
it: �S� = {S′ ∈ S | S � S′} and �S� = {S′ ∈ S | S′ � S}. We assume that
the poset (S,�) is bounded: it has a greatest element � and a least element ⊥.
The “chaos” system � (sometimes called the “weakest” system [12]), abstracts
every system, and the “empty” system ⊥ refines every system in S. In short, our
abstract model of systems is a four-tuple (S,�,⊥,�).
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We extensionally define a requirement as a set of systems. A system sat-
isfies a requirement R if it belongs to R. For now, we need not expound on the
satisfaction relation between systems and requirements; we will give examples
later. We write χR for a requirement R’s characteristic function, which maps S
to {0, 1}. A requirement R is trivial if all or none of the systems in S satisfy
it, i.e. χR is a constant function. Let R denote the set of all requirements. It
is immediate that (R,⊆), where ⊆ is the standard set inclusion relation, is a
complete lattice. We define the conjunction of two requirements R1 and R2,
denoted R1∧R2, as their meet. For a set R of systems, we write �R� =

⋃
S∈R�S�

and �R� =
⋃

S∈R�S�. A set R is an upper set if R = �R�, and a lower set
if R = �R�. These terms originate from order theory.

3 Obligations and Prohibitions

A requirement is an obligation if it obliges the systems to exhibit certain (desired)
behaviors, often corresponding to intended functionalities and features. For
example, a requirement for a database system obliges it to provide the user
with an option to commit transactions. Intuitively, this requirement cannot be
violated by adding behaviors to the system, for example by providing the user
the option to review transactions. The satisfaction of an obligation R is there-
fore abstraction-closed: ∀S, S′ ∈ S. S ∈ R ∧ S � S′ → S′ ∈ R. That is, an
obligation is an upper set.

A requirement is a prohibition if it prohibits the systems from exhibiting
certain (undesired) behaviors. For instance, consider the requirement that pro-
hibits a database system from committing malformed transactions. Intuitively,
this requirement cannot be violated by removing behaviors from the system, for
example removing the option for committing transactions altogether. That is,
the satisfaction of a prohibition R is refinement-closed: ∀S, S′ ∈ S. S ∈ R ∧ S′ �
S → S′ ∈ R. In other words, a prohibition is a lower set of systems.

Definition 1. A requirement R is an obligation if R = �R� and R is a pro-
hibition if R = �R�.
The following example illustrates obligations and prohibitions.

Example 2. Consider the system model (2N×N,⊆, ∅,N × N), where a system
is extensionally defined as a subset of N × N, with N being the set of natural
numbers, and the refinement relation is the standard subset relation. For an
input i ∈ N, a system S can produce an output o, non-deterministically chosen
from the set {n ∈ N | (i, n) ∈ S}, and it does not produce any outputs when {n ∈
N | (i, n) ∈ S} is empty. We call this the extensional input-output system
model eio.

The requirement P stipulating that systems are deterministic is a prohibition:
if S is deterministic, meaning ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| ≤ 1, then so is
any refinement, i.e. subset, of S. In particular, the empty system satisfies the
definition of determinacy.
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The requirement O stipulating that systems define total relations is an oblig-
ation: if S is total, meaning ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| > 0, then so is any
abstraction, i.e. superset, of S. The requirement R, stating that systems exten-
sionally define total functions is clearly neither a prohibition nor an obligation:
from ∀i ∈ N. |{n ∈ N | (i, n) ∈ S}| = 1 we cannot conclude that an arbitrary
subset or superset of S defines a total function. Note that R = P ∧ O. �

A requirement R is an obligation iff χR is monotonically increasing in �,
that is, S � S′ → χR(S) ≤ χR(S′). Similarly, R is a prohibition iff χR is
monotonically decreasing, that is, S � S′ → χR(S′) ≤ χR(S). Therefore, any
requirement that is both an obligation and a prohibition must have a constant
characteristic function. The following lemma is now immediate.

Lemma 3. If a requirement R is both an obligation and a prohibition, then R
is trivial.

This lemma implies that a prohibition cannot in general be replaced with an
obligation and vice versa. For example, the prohibition smoking is forbidden has
no equivalent obligation and the obligation sacrifice a ram has no equivalent pro-
hibition. The lemma does not however imply that obligations and prohibitions
exhaust the set of requirements. Namely, a non-monotone requirement, i.e. one
whose characteristic function is neither monotonically increasing nor monoton-
ically decreasing, is neither an obligation nor a prohibition. For instance, the
requirement R = P ∧ O, defined in Example 2, is not monotone. Therefore, R is
neither an obligation nor a prohibition.

Note that prohibitions implicitly define which behaviors are permissible.
Namely, the set of permissible behaviors complements the set of prohibited ones,
cf. deontic logic [26]. To avoid inconsistency, all obligatory behaviors must be
permissible, but not all permissible behaviors need be obligatory. Consequently,
the set of permissible behaviors for a system, delimited by the prohibitions, does
not necessarily coincide with its set of obligatory behaviors.

4 Black-Box Tests

We start by defining the notion of a test setup. This notion enables us to distin-
guish system behaviors from what a black-box tester observes. Let (S,�,⊥,�)
be a system model. By sampling the behaviors of a system S ∈ S, a tester
makes an observation. For now, we do not further specify observations. We
give examples shortly. A test setup is a pair (T, α), where T is an (uninter-
preted) domain of observations and α is an order-preserving function from S
to 2T , i.e., S � S′ → α(S) ⊆ α(S′). Intuitively, the set α(S) consists of all the
observations that can be made by testing a system S in this test setup. Since α
is order-preserving, if t belongs to α(S) for some system S, then t ∈ α(S′)
for any system S′ that abstracts S. This reflects the nature of black-box test-
ing where analyzing a system S “by sampling” amounts to inspecting a sample
of S’s behaviors [6]. Therefore, if an observation can be made on S by inspecting
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the behaviors S exhibits, then the same observation can also be made on any
system S′ that abstracts S, simply because S′ exhibits all of S’s behaviors.

We define the function α̂ : T → 2S to map an observation to the set of
systems that can yield that observation. Formally, α̂(t) = {S ∈ S | t ∈ α(S)},
for any t ∈ T . In black-box testing, a tester knows nothing about the behaviors of
the system under test beyond what is observed by interacting with it. Therefore,
all the tester can conclude from an observation t is that the system under test can
be any system that could yield t. That is, solely based on an observation t, the
tester cannot distinguish between the system under test and any other member
of the set α̂(t). We call this condition the indistinguishability condition.
Clearly black-box tests combined with, say, white-box system inspection [17],
are not constrained by this condition.

The above condition delimits the knowledge a tester can obtain through
black-box testing. Suppose that Ted (the tester) performs a black-box analysis
of a system S. Ted cannot distinguish S from, say, �, simply because � abstracts
every system. This epistemic limitation is not alleviated by exhaustive tests:
regardless of whether or not Ted samples and analyzes all the behaviors of S
during testing, � ∈ �S� is still true. That is, black-box testing can neither
demonstrate the absence of behaviors nor the exhaustiveness of an observation;
otherwise, Ted could tell that the system under test is not �, which exhibits
all behaviors, thereby distinguishing S from �. But, as just discussed, this falls
beyond the scope of black-box testing. The following example illustrates these
points.

Example 4. Consider the eio system model and the test setup Tr = (S, �·�),
where a tester may observe an arbitrary refinement of the system under test.
Note that �·� is order-preserving and hence Tr is a test setup. Suppose Ted
observes that the system under test S outputs 0 for input 0, and 1 for input 1.
That is, Ted makes the observation t = {(0, 0), (1, 1)}. Ted can neither conclude
that S does not output 1 for input 0, e.g. due to internal nondeterminism, nor
that S extensionally defines the identity function. This is because �, which
abstracts t and hence belongs to α̂(t), satisfies these requirements, and Ted
cannot differentiate S from � by observing t alone. �

Note that the conclusions drawn above hold true regardless of whether or
not observations can be carried out in a finite amount of time. We return to this
point in Sect. 7.

5 Refutable Requirements

The purpose of testing a system with respect to a requirement is to refute the
hypothesis that the system satisfies the requirement [6,15,19]. Below, we char-
acterize the class of requirements that can be refuted using black-box tests, after
presenting an illustrative special case.

Any system model M = (S,�,⊥,�) induces a reflexive test setup TM
r =

(S, �·�), where each observation on a system S ∈ S is a system in S that refines S.
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When M is clear from the context, we simply write Tr for M’s reflexive test setup,
as we did in Example 4. In the reflexive setup, testing a system S against a
requirement R amounts to inspecting a refinement Sw of S to refute the hypoth-
esis that S ∈ R. By merely observing Sw, with Sw ∈ �S�, the tester cannot
distinguish S from any other system that abstracts Sw, due to the indistin-
guishability condition. Therefore, the tester can infer S �∈ R after observing Sw

iff every element of �Sw� violates R. Hence R is refutable in a reflexive test setup
if, for any S that violates R, there is at least one witness system Sw ∈ �S� such
that any system that abstracts Sw violates R. That is, R is refutable in Tr if
∀S ∈ S. S �∈ R → ∃Sw ∈ �S�. �Sw� ∩ R = ∅.

Example 5. Consider a program whose input and output domains are the set
of lists of natural numbers. A requirement R restricts the program’s outputs
to ascending lists. Suppose that a system S violates R. Then there must exist
an input i for which S produces an output list o that is not ascending. Let us
refer to the system that exhibits just this forbidden behavior as Sw = {(i, o)}.
Clearly Sw refines S, and any system that abstracts Sw violates R by exhibiting
the forbidden behavior. Therefore, R is refutable in the test setup Tr. �

We now generalize the above and define refutability in an arbitrary test
setup T.

Definition 6. Let T = (T, α) be a test setup for a system model (S,�,⊥,�).
A requirement R is T-refutable if ∀S ∈ S. S �∈ R → ∃t ∈ α(S). α̂(t) ∩ R = ∅.

Let R be a (T, α)-refutable requirement. Then, for any system S, S �∈ R →
�S� ∩ R = ∅, simply because α is order-preserving. The contrapositive implies
that if S1 ∈ R and S2 � S1, then S2 ∈ R. That is, R is a prohibition. The
following theorem is now immediate.

Theorem 7. Let T be a test setup. Any T-refutable requirement is a prohibition.

Example 8. Consider the model where each system extensionally defines a
binary tree where each node is colored either red or black, and � is the sub-
tree relation. The requirement R stipulates that the two children of any red
node must have the same color. Observing a tree t in which a red node has a
red child and a black child implies that any tree that abstracts t violates R.
Therefore, R is refutable in Tr and, due to Theorem 7, it is a prohibition. �

Given a system model, we say a test setup Ti is more permissive that
a test setup Tj if any Tj-refutable requirement is Ti-refutable. The following
lemma along with Theorem 7 imply that, in any system model M, the reflexive
test setup TM

r = (S, �·�) is the most permissive test setup.

Lemma 9. In any system model M, any prohibition is TM
r -refutable.

The proof is straightforward: if R is a prohibition and S �∈ R, then S′ �∈ R
for any S′ that abstracts S. Therefore, S itself can serve as the witness sys-
tem demonstrating R’s violation in Tr. To further illustrate, observe that any
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test setup T = (T, α) induces a set of obligations: O(T) = {α̂(t) | t ∈ T}.
Testing a system S in T amounts to the conclusion that S satisfies an obliga-
tion that includes S, namely the obligation α̂(t), where t ∈ α(S) is the obser-
vation obtained through testing. Therefore, the smaller α̂(t) is, the more we
learn about S by observing t; recall the indistinguishability condition. For any
system S, the smallest obligation in R that includes S is �S�, which belongs
to O(Tr) = {�S� | S ∈ S}. This intuitively explains why M’s reflexive setup TM

r

is the most permissive test setup in any system model M. In Sect. 7, we show
that Tr is “too permissive” in some settings, going beyond what is in practice
refutable in a finite amount of time.

That Tr is the most permissive test setup implies that a requirement that
is irrefutable in Tr is irrefutable for any test setup. Obligations are prominent
examples of such irrefutable requirements, as stated in the following lemma,
whose proof is immediate by Lemma 3 and Theorem 7.
Lemma 10. Nontrivial obligations are irrefutable in any test setup.

Example 11. Consider the setting of Example 4 and assume that the system S
should satisfy the obligation O stating: systems must exhibit the behavior (1, 0).
Suppose Ted observes t = {(1, 1)}. Based on this, he cannot refute the hypoth-
esis S ∈ O, simply because � abstracts t and satisfies the obligation. Note that
interpreting O as the requirement P stating that the system may output nothing
but 0 for input 1 results in a refutable requirement. But O and P are not equiv-
alent: O is an obligation and P is a prohibition; recall Lemma 3. Clearly if Ted
knows that S is deterministic, then observing t would demonstrate O’s violation.
Determinacy itself cannot however be concluded through black-box tests alone,
simply because determinacy is a prohibition (see Example 2) and prohibitions
cannot be verified through black-box tests as we prove below in Lemma 15. �

As the last example suggests, determinacy assumptions can play a significant
role in testing. For example, passing a test that checks a program’s output when
the input is the empty list is in practice taken as a “proof” that the program
behaves correctly on empty lists. This reasoning hinges upon the assumption
that the program is deterministic.

We now turn to the irrefutability of non-monotone requirements. Suppose
that a requirement R is not monotone. Although R is irrefutable by Theorem 7, it
is possible that for some systems the violation of R can be demonstrated through
tests, as explained in the following. We say a non-monotone requirement is semi-
monotone if it is the conjunction of two monotone requirements. It is easy to
prove that a requirement R is semi-monotone iff R = �R�∧�R� (see Theorem 26
in Appendix A). Clearly any system S that violates the prohibition �R� violates
the semi-monotone R as well. Since S �∈ �R� can be demonstrated through tests,
so can S �∈ R. For instance, the non-monotone requirement R = P ∧ O, defined
in Example 2, is semi-monotone. For the system S = {(0, n) | n ∈ N}, any test
that demonstrates S �∈ P also demonstrates that S violates R.

For a requirement R that is not semi-monotone, it is possible that testing
can demonstrate R’s violation for none of the systems under consideration, as
the following example illustrates.
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Example 12. Consider the eio model and the requirement R stating that for
each (i, o) ∈ S there exists some (i′, o) ∈ S, with i �= i′. This requirement, which
can be seen as a simplified form of a k-anonymity requirement [23], intuitively
states that by solely inspecting a system’s outputs, an observer cannot determine
whether or not the input is some particular i ∈ N. Note that R is not monotone.
Moreover, R’s violation (for any system) cannot be demonstrated through tests
in any test setup (T, α): every observation t ∈ T obtained by testing any system
belongs to α(�), and � ∈ R. It is easy to check that �R�∧�R� = S and hence R
is not semi-monotone. �

6 Verifiable Requirements

We define testing with the purpose of verifying the satisfaction of a requirement
as dual to testing for refutation.

Definition 13. Let T = (T, α) be a test setup for a system model (S,�,⊥,�).
A requirement R is T-verifiable if ∀S ∈ S. S ∈ R → ∃t ∈ α(S). α̂(t) ⊆ R.

In particular, a requirement R is TM
r -verifiable in the system model M =

(S,�,⊥,�) if ∀S ∈ S. S ∈ R → ∃Sw ∈ �S�. �Sw� ⊆ R. That is, if there exists a
witness system Sw that refines S and any system that abstracts Sw satisfies R,
then by observing Sw we have conclusively demonstrated S ∈ R. The following
theorem is dual to Theorem 7. Its proof is immediate.

Theorem 14. Let T be a test setup. Any T-verifiable requirement is an oblig-
ation.

An observation t ∈ α(S) shows that the system S satisfies the obligation
O = α̂(t). It also proves that S ∈ R for any requirement R ⊇ O. There-
fore, as O becomes smaller, more obligations are proved by the observation.
This also explains why Tr is the most permissive test setup for verification:
any T-verifiable requirement is Tr-verifiable. Consequently, a requirement that
is not Tr-verifiable is non-verifiable in any test setup. Prohibitions are promi-
nent examples of such non-verifiable requirements. The following lemma’s proof
is straightforward.

Lemma 15. Nontrivial prohibitions are non-verifiable in any test setup.

The lemma expresses the essence of Dijkstra’s often-quoted statement that “pro-
gram testing can be used to show the presence of bugs, but never to show their
absence” [6]. Contrary to the folklore, this does not mean that no requirement
is verifiable through black-box tests. For instance, the requirement that obliges
a magic 8-ball to output ask again later is clearly verifiable through black-box
tests: observing this output once demonstrates the obligation’s satisfaction. The
following example illustrates this point. We return to this example in Sect. 7
where we investigate temporal requirements.
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Example 16. Consider the setting where a system S is identified with the
set b(S) of its behaviors, and S1 � S2 denotes b(S1) ⊆ b(S2). Suppose that
a system behavior is a sequence of events and e is an event. Assume that a
system S satisfies the requirement Re stating that systems exhibit at least one
behavior where e eventually appears. Note that Re is an obligation since its sat-
isfaction is abstraction-closed. Now, observing a refinement Sw of S where Sw

exhibits one behavior π in which e eventually appears demonstrates S ∈ Re: any
abstraction of Sw exhibits π as well, hence satisfying Re. We conclude that the
obligation Re is verifiable through tests in Tr. �

We can now sharpen Dijkstra’s dictum to: (D) Program testing can be used to
show the presence of behaviors, but never to show their absence. If a software bug
is a prohibited behavior, then (D) coincides with Dijkstra’s statement, simply
stipulating that prohibitions are refutable, but not verifiable. However, if a bug
is the absence of an obliged behavior, then (D) translates to: program testing
can be used to show the absence of bugs, but never to show their presence.
This statement, which is dual to Dijkstra’s, simply stipulates that obligations
are verifiable, but not refutable.

We conclude this section with an intuitive interpretation of refutability and
verifiability. The examples thus far given in the paper suggest that a system S
satisfies an obligation O if the set of desired behaviors that O obliges is included
in the set of behaviors of S. Any violation of O is therefore due to the behaviors
that S “lacks”. Consequently, O can be seen as a “lower-bound” for the set of S’s
behaviors. Similarly, S satisfies a prohibition P iff the set of behaviors of S is
contained in the set of behaviors P permits. Any violation of P is therefore due
to “excessive” behaviors of S. In this sense, P constitutes an “upper-bound” for
the set of S’s behaviors; see Fig. 1.

Prohibited
Permissible

Obligatory

S

Fig. 1. The hatched area stands for the set of prohibited behaviors. The white box is
the set of permissible ones which includes the set of obligatory behaviors, represented
by the oval. The triangle represents a system S’s behaviors. The white circle represents
a violation of the obligation denoted by the oval, and the black circle represents a
violation of the prohibition depicted by the hatched area.

7 Refutation in Finite Time

A requirement that is deemed refutable in our theory might not be refutable in
practice. For example, a requirement whose refutation hinges upon measuring
the exact momentum and position of a quantum object is impossible to refute
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due to the laws of physics. This limitation, not unexpectedly, does not follow
from our logical theory of tests and refutation. Below, we extend our theory
to account for a practically relevant limitation of system testing: we consider
refutation through black-box tests that proceed in a finite amount of time.

In a system model (S,�,⊥,�), to show that a requirement R’s satisfaction is
refutable through tests in a finite amount of time, we prove that R is T-refutable
in a setup T = (T, α) where (1) every observation in

⋃
S∈S α(S) consists of

finitely many elements and (2) each such element is observable in finite time. In
this case, we say R is finitely refutable in T. The notion of finite verifiability
is defined dually.

Condition (2) above refers to the world: determining whether a given ele-
ment can be observed in finite time falls outside our theory’s scope, and this
condition’s satisfaction must be substantiated by other means. Thus our theory
cannot establish a requirement’s finite (ir)refutability unless assumptions are
made about what can be observed in finite time in the world. The following
example illustrates this point.

Example 17. Consider the eio system model and the family Tk = ((N ×
N)k, αk) of test setups, where k ≥ 1 and αk maps any system S to Sk, induc-
tively defined as S1 = S and Sk+1 = S ×Sk. Testing a system S in the setup Tk

amounts to observing k input-output pairs belonging to S. Assume that natural
numbers are observable in finite time. Then, observing every element of (N×N)k,
where k ≥ 1 belongs to N, takes finite time. The requirement Rnz stating that
systems never output zero is, under this assumption, finitely refutable in T1.
Now consider the requirement Rfz , stating that systems may output zero for at
most finitely many inputs. It is easy to check that Rfz , although refutable in the
reflexive test setup Tr, is not Tk-refutable for any k ≥ 1.

It now seems reasonable to conclude that Rfz is not finitely refutable: no
finite set of behaviors can refute Rfz . This conclusion does not however follow
from our theory. To illustrate, consider an alternative test setup T = ({∗, ω}, α),
where α(S) = {∗} if S outputs zero for finitely many inputs, and α(S) = {∗, ω}
otherwise. Since α is order-preserving, T is formally a test setup. The require-
ment Rfz is finitely refutable in T, under the assumption that the elements
of {∗, ω} are observable in finite time, which is the essence of Condition (2)
above. Whether this is a tenable assumption cannot be settled inside our theory.
Although T hardly appears realizable, such observations are possible in certain
cases, for example by measuring the electromagnetic radiation emitted from a
black-box system, cf. [22]. �

Condition (1) above is satisfied if finitely many behaviors of the system under
test are sampled for each observation, and only a finite portion of those behaviors
are inspected even when the behaviors themselves are not finite objects. We
illustrate this point with an example.

Example 18. Consider the system model (2R×R,⊆, ∅,R × R), where R is the
set of real numbers. This system model is similar to the eio model except
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its input-output pairs belong to R. Define pre(r) as the set of finite trunca-
tions of the decimal expansion of a real number r. For instance, pre(

√
2) =

{1, 1.4, 1.41, 1.414, 1.4142, · · · }. Note that a real number can have more than one
decimal expansions, for example, 1 and 0.999 · · · , but accounting for this point
is unnecessary for our discussion here. We define the test setup T = (F × F, α),
where F is the set of rational numbers that have a finite decimal expansion and α
maps any system S to the set

⋃
(i,o)∈S pre(i)×pre(o). An observation of a system

S in this setup is a pair (f1, f2), where f1 is a truncation of an input i and f2 is
a truncation of an output o, where (i, o) ∈ S. That is, we may observe only finite
portions of the decimal expansions of the inputs and outputs. Assume that F’s
elements are observable in finite time. That is, any T-refutable requirement is
finitely refutable.

Now consider the requirement R<, stating that system outputs are strictly
smaller than

√
2. Clearly R< is a prohibition, hence Tr-refutable. Below, we

show that R< is not T-refutable. Define the system S = {(1, 1.4142 · · · )}, which
outputs

√
2, decimally expanded, for the input 1. Even though S violates R<,

no truncation of S’s output’s decimal expansion conclusively demonstrates this,
because the set of permissible outputs according to R<, namely {o ∈ R | o <√

2}, is not a closed set in R’s standard topology. That is, there is a number,
namely

√
2, that is arbitrarily close to this set, but is not a member of the set. No

finite truncation of this numbers decimal expansion can therefore conclusively
determine whether it is a member, or not. We therefore conclude that R< is not
T-refutable. An analogous argument shows that the requirement R≤ stating that
system outputs must be less than or equal to

√
2 is T-refutable, and hence finitely

refutable, because the set of permissible outputs it induces, namely (−∞,
√

2],
is topologically closed. �

The example suggests that there is a fundamental connection between
refutability and topological closure when system behaviors are infinite sequences.
This connection has been investigated by Alpern and Schneider in the context
of temporal properties [2], which we turn to next.

To investigate temporal requirements, we model systems that induce infi-
nitely long sequences of events, such as operating systems, and their require-
ments following [4]. Let Σ be an alphabet (e.g. of events or states), where every
element of Σ can be observed in finite time. We write Σ∗ and Σω for, respec-
tively, the sets of finite and countably infinite sequences of Σ’s elements. A
behavior is an element of Σω and a system is a set of behaviors. The complete
lattice (2Σω

,⊆, ∅, Σω) instantiates our system model, defined in Sect. 2. For a
behavior π ∈ Σω, we write pre(π) for the set of all finite prefixes of π, and we
denote the concatenation of an element of Σ∗ with one of Σω by their juxtapo-
sition. As usual, a requirement is a set of systems.

We define the test setup T∗ as (T∗, α∗), where T∗ is the set of all finite
subsets of Σ∗, and α∗(S) is the set of all finite subsets of

⋃
π∈S pre(π) for a

system S. Intuitively, any element of α∗(S) is a possible observation of S where
finite prefixes of finitely many behaviors of S are observed. For any T∗-refutable
requirement R and any S �∈ R, there exists a finite (witness) set tw of finite
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prefixes of S’s behaviors such that any system S′ that could have yielded the
observation tw, i.e. tw ∈ α∗(S′), violates R. Clearly, every T∗-refutable require-
ment is finitely refutable. Next, we relate T∗-refutability and T∗-verifiability to
the notions of properties and hyper-properties.

A property is a set of (permitted) behaviors [2,18], i.e. a subset of Σω.
We have (extensionally) defined a system as a set of behaviors. A property can
therefore be seen as a system. By overloading the notion of satisfaction, we say
a system S satisfies a property φ if S ⊆ φ. Any property φ thereby defines a
refinement-closed requirement Rφ = �φ�. A property φ is safety if ∀π �∈ φ.∃σ ∈
pre(π).∀π′ ∈ Σω. σπ′ �∈ φ and liveness if ∀σ ∈ Σ∗.∃π ∈ Σω. σπ ∈ φ. That
is, safety and liveness properties are closed and dense sets, respectively [2]. The
following example illustrates properties.

Example 19. A linear-time temporal logic (LTL) formula φ defines a set b(φ)
of behaviors or executions; see, e.g., [18]. A system S satisfies the requirement
expressed by φ if the set of system behaviors is contained in b(φ). Clearly if S sat-
isfies the requirement and S′ ⊆ S, for some system S′, then S′ satisfies it as well.
Here the satisfaction relation is refinement-closed, with S1 � S2 if S1 ⊆ S2. Hence,
for every φ, regardless of whether b(φ) is a safety property, a liveness property, or
an intersection of the two [2], the requirement expressed by φ is a prohibition.
Note that the obligation Re of Example 16 is not expressible in LTL, where the
satisfaction relation is refinement-closed as just discussed, because then Re would
have to be trivial by Lemma 3. However, Re is expressed as EF e in the computa-
tion tree logic CTL. This argument amounts to a simple proof for the well-known
result that LTL is not more expressive than CTL [7]. �

Theorem 20. A temporal property φ is T∗-refutable iff φ is safety. Moreover,
all temporal properties are Tr-refutable and any T∗-verifiable property is trivial.

The theorem, whose proof hinges upon Lemma 3 and Theorem 7, implies that
nontrivial liveness properties, although Tr-refutable, are not T∗-refutable; cf. [8].
We now turn to hyper-properties.

A hyper-property is a set of properties [4], i.e. a requirement in our model.
A system S satisfies a hyper-property H, if S ∈ H. A hyper-property H is
hyper-safety if for any S �∈ H, there exists an observation t ∈ α(S) such
that ∀S′ ∈ α̂(t). S′ �∈ H; see [4]. It is easy to check that a temporal requirement R
is hyper-safety iff R is T∗-refutable. Now it is immediate by Theorem 7 that any
hyper-safety requirement is a prohibition. Therefore, finitely verifiable hyper-
safety requirements must be trivial. These results show how existing, specialized
concepts and their refutability follow as special cases of the notions we defined.
For instance, Example 16’s requirement Re, which is clearly finitely verifiable
in T∗, cannot be hyper-safety due to the above results and it is therefore not
finitely refutable in T∗.

We conclude this section with another application of our theory and con-
sider refutation through system self-composition. Suppose we want to refute the
hypothesis H stating that a plane figure S is a circle by observing a number of
points lying on the figure. Since any three (non-collinear) points define a circle,
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in general we must observe at least four points lying on the figure to refute H.
Alternatively, we may consider the fictitious entity defined by the relation r4,
where the relation r is obtained from S: (x, y) ∈ r iff the point (x, y) lies on S.
Then, observing a single element of the set r4, which consists of four-tuples of
the coordinates of the figure’s points, can refute H. This line of reasoning is
central to the self composition technique [3]: to refute a k-property, which is
a temporal property that cannot be refuted by observing less than k system
behaviors [4], one can make a single observation on the fictitious entity that
contains k copies of the system under test. Returning now to the family of test
setups Tk, with k ≥ 1, defined in Example 17, we remark that a requirement
that is Tk+1-refutable, but not Tk-refutable, can be refuted by observing a sin-
gle behavior of the entity that is found by self-composing the system under test
no less than k + 1 times. We proceed with an example.

Example 21. The prohibition P , stating that systems are deterministic, given
in Example 2, is not T1-refutable: observing any single behavior of a non-
deterministic eio system S is insufficient to refute the hypothesis S ∈ P . However,
observing a single element of S2 can demonstrate P ’s violation. Therefore, P
is T2-refutable: determinacy can be refuted by self-composing the system under
test. �

Intuitively, the less stringently a requirement is specified, the larger is the num-
ber of times the system under test must be self-composed to facilitate the
requirement’s refutability. We illustrate this point with a simple example. Con-
sider the eio system model and the prohibition R defined as: S satisfies R
iff ∀(i, o) ∈ S. o = f(i), where f is a function from N to N. Suppose that f
is not available, but it is known that f is monotonically increasing: i1 ≤ i2
implies f(i1) ≤ f(i2). We write R′ for the corresponding (less stringent) require-
ment: S ∈ R′ iff ∀(i1, o1), (i2, o2) ∈ S, i1 ≤ i2 implies o1 ≤ o2. The requirement R
is T1-refutable, whereas R′, which is a superset of R, is not: R′’s test oracle can-
not make a decision solely based on a single input-output pair; a test oracle for
a requirement R is a (partial) decision function that given a set of system behav-
iors tells whether the system violates R. Note however that R′ is T2-refutable.
Since Tk+1 is strictly more permissive than Tk, we conclude that the less strin-
gently specified R is (in the above sense), the more a system must be sampled,
or self-composed, to facilitate a test oracle for R; cf. [21]. That is, a partially
specified requirement is harder to refute, because it leaves more leeway.

8 Algorithmic Refutability

We now characterize the requirements whose violation can be demonstrated
through algorithmic means. We start with an auxiliary definition. Any require-
ment R induces a set ΩR of irremediable observations {t ∈ T | α̂(t)∩R = ∅}
in a test setup T = (T, α). It follows that a system S violates a T-refutable R
iff α(S) ∩ ΩR �= ∅. Intuitively, a requirement is algorithmically refutable only if
it induces a recursively enumerable set of irremediable observations. Recall that,
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given a countable set U , a set E ⊆ U is recursively enumerable if there is a
(semi-)algorithm AE that terminates and outputs true for any input u ∈ U that
is a member of E. If u �∈ E, then AE does not terminate.

Definition 22. A requirement R is algorithmically refutable in the test
setup T = (T, α) if R is finitely refutable in T, and ΩR is a recursively enu-
merable subset of the countable set T .

If a system S violates an algorithmically refutable requirement R in T, then
there is at least one observation t ∈ α(S) that can be carried out in finite
time, where AΩR

terminates on t and outputs true. Here, true means t ∈ ΩR,
demonstrating S �∈ R. Observing such a t through testing, therefore, conclusively
refutes the hypothesis S ∈ R. The following example illustrates Definition 22.

Example 23. Consider the prohibition P for eio systems stating that a system
may never output 0 for an odd input. Clearly, P is T1-refutable, and whether an
observation {(i, o)} is irremediable is decidable since the set ΩP = {{(2i+1, 0)} ∈
T1 | i ∈ N} is recursive. If natural numbers are finitely observable, then P is
algorithmically refutable in T1: any S that violates P has a finitely observable
behavior, e.g. t = {(3, 0)}, and whether, or not, t ∈ ΩP can be decided by a
Turing machine. �

Let R be an algorithmically refutable requirement in T = (T, α), and S be a
system. The decision problem that asks whether S violates R is semi-decidable,
if α(S) is a recursively enumerable subset of T . We illustrate this point using the
following test algorithm, which relies on dovetailing. For a formal treatment
of dovetailing, which is a poor man’s parallelization technique, see, e.g., [20].

Algorithm 24. Fix an arbitrary total order on T ’s elements. Dovetail Aα(S)’s
computations on the elements of T . In parallel, dovetail AΩR

’s computations
on those observations for which Aα(S) terminates. Output true and terminate,
when any computation of AΩR

terminates.

If S �∈ R, then there exists at least one observation tw in the set α(S) ∩
ΩR. The test algorithm is bound to terminate on tw and output true, thus
demonstrating S �∈ R in finite time. However, if S ∈ R, then the test (semi-
)algorithm does not terminate. Ideally, standard test selection methods [15] place
likely witnesses of R’s violation early in the ordering assumed on T . Note that the
above test algorithm achieves the (impractical) ideal of testing: it not only has “a
high probability of detecting an as yet undiscovered error” [15], the algorithm is
in fact guaranteed to reveal flaws in any system that violates an algorithmically
refutable requirement. We proceed with an example.

Example 25. Fix an ordering on the set of all Turing machines: M0,M1, · · · .
In the eio model the requirement R is defined as: S ∈ R if for any (i, o) ∈ S the
machine Mi diverges on o. It is easy to check that R is T1-refutable and the
set ΩR is recursively enumerable. Suppose that α1(S) is recursively enumerable
for a system S. That is, Aα(S) is guaranteed to terminate on any (i, o) ∈ S in
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the universe N × N. If S �∈ R, then there is a “witness” (iw, ow) ∈ S where Miw

terminates on ow. Therefore, dovetailing Mi’s computations on o for all (i, o)
on which Aα(S) terminates is bound to witness a terminating computation, thus
demonstrating S �∈ R in finite time. �

Next, we apply the notion of algorithmic refutability to the temporal require-
ments introduced in Sect. 7 and the corresponding test setup T∗. It is easy to
check that a safety property φ is algorithmically refutable iff φ’s set of irreme-
diable sequences ∇φ = {σ ∈ Σ∗ | ∀π ∈ Σω. σπ �∈ φ} is recursively enumerable.
This condition separates refutability from enforceability, as explained below.
To enforce the safety property φ on a system S, a reference monitor observes
some t ∈ α(S). If t demonstrates that S violates φ, then the monitor stops S.
Otherwise, the monitor permits S to continue its execution. For enforcement, the
set ∇φ must therefore be recursive [11]. It then follows that any enforceable tem-
poral property is algorithmically refutable. An algorithmically refutable property
need not however be enforceable: any property φ, where ∇φ is recursively enu-
merable but not recursive, is algorithmically refutable, but not enforceable.

To further illustrate the relationship between refutability and enforceability,
we define weak enforceability for a hyper-safety requirement R as follows. By
monitoring the executions of a system S, a monitor observes some t ∈ α∗(S).
If t does not conclusively demonstrate S �∈ R, then the monitor permits S
to continue. However, if t does conclusively demonstrate R’s violation, then
the monitor may either stop S, or diverge and thereby stall S. Recall that a
system S violates a hyper-safety requirement R iff α∗(S) ∩ ΩR �= ∅. To weakly
enforce R, the set ΩR must therefore be co-recursively enumerable, i.e. T∗ \
ΩR must be recursively enumerable. This observation, which concurs with [16,
Theorem 4.2], illustrates that weak enforceability and algorithmic refutability
are complementary in the sense that the former requires ΩR to be co-recursively
enumerable and the latter requires ΩR to be recursively enumerable. This duality
between refutability and enforceability becomes evident only after explicating
the computational constraints of testing and enforcement.

9 Concluding Remarks

We have formally characterized the classes of refutable and verifiable require-
ments for black-box tests. Naturally black-box testing can be combined with
other analysis techniques, like white-box system inspection; see, e.g., [17]. The
indistinguishability condition of Sect. 4, stating that the system under test can be
any abstraction of an observation obtained through tests, would then no longer
be applicable. For instance, if the system under test is known to be determinis-
tic, then clearly more requirements become refutable as discussed in Sect. 5. In
other words, augmenting black-box analysis with knowledge that itself cannot
be verified through black-box tests (e.g., coming from white-box analysis) would
expand the analysis’s capabilities, leading to more powerful refutation methods.
Developing such an extension of our theory and exploring its applications remain
as future work.
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We remark that our theory of tests and refutation is not readily applicable
to probabilistic constraints. For example, a gambling regulation requiring that
slot machines have a 75% payout cannot be refuted through black-box test.
Nevertheless, tests refuting such probabilistic constraints with a controllable
margin of error can be devised. Developing a corresponding theory of tests and
refutation also remains as future work.

Acknowledgments. We thank E. Fang, M. Guarnieri, G. Petric Maretic, S.
Radomirovic, C. Sprenger, and E. Zalinescu for their comments on the paper.

A Proofs

We first present the proofs of the lemmas and theorems that are given in the
paper. Afterwards, we formally state and prove the claim that a requirement is
semi-monotone iff it is the intersection of its upper set and its lower set, which
is mentioned in Sect. 5.

Proof (Lemma 3’s Proof). If no system satisfies R, then R is trivial. Suppose that
some system S satisfies R. Then, every system in ��S�� satisfies R, because R is
an obligation and a prohibition. As ��S�� = S, for any S ∈ S, we conclude that
every system satisfies R. That is, R is trivial. ��
Proof (Theorem 7’s Proof). Suppose R is T-refutable, with T = (T, α). We prove
that R is a prohibition. If R is empty, then R is a trivial prohibition. Assume
that R is nonempty and let S ∈ R. Now, suppose S′ � S. All we need to prove
is that S′ ∈ R. We present a proof by contradiction.

Assume that S′ �∈ R. Then ∃t ∈ T. α̂(t) ∩ R = ∅ simply because R is
T-refutable. Since α is order-preserving and S′ � S, we have t ∈ α(S). There-
fore, S ∈ α̂(t). This entails S �∈ R, which contradicts the assumption S ∈ R. We
conclude that S′ ∈ R. Therefore, R is a prohibition.

Proof (Lemma 9’s Proof). Fix a system model M = (S,�,⊥,�), and assume
that R is prohibition. We show that R is TM

r -refutable, where TM
r = (S, �·�).

Assume that some system S violates R. Since R is a prohibition, any system that
abstracts S violates R. Moreover, S ∈ �S�. We conclude that ∃Sw ∈ �S�. �Sw�∩
R = ∅, namely Sw = S. Therefore, R is TM

r -refutable.

Proof (Lemma 10’s Proof). Suppose R is a nontrivial obligation. We prove by
contradiction that R is not refutable in any test setup.

Assume that R is T-refutable in some test setup T. By Theorem 7, R is a
prohibition. Then, R must be trivial by Lemma 3, because R is both a prohibition
and an obligation. That R is a trivial contradicts the assumption that R is a
nontrivial obligation. We conclude that R is not refutable in any test setup.

Proof (Theorem 14’s Proof). Suppose R is T-verifiable, with T = (T, α). We
prove that R is an obligation. If R is empty, then R is a trivial obligation.
Assume that R is nonempty and let S ∈ R. Now, suppose S � S′. All we need
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to prove is that S′ ∈ R. Since R is T-verifiable, from S ∈ R we conclude ∃t ∈
α(S). α̂(S) ⊆ R. As α is order-preserving and S � S′, we have t ∈ α(S′). That
is, S′ ∈ α̂(S). We conclude that S′ ∈ R. Therefore, R is an obligation.

Proof (Lemma 15’s Proof). Suppose R is a nontrivial prohibition. We prove by
contradiction that R is not verifiable in any test setup.

Assume that R is T-verifiable in some test setup T. By Theorem 14, R is an
obligation. Then, R must be trivial by Lemma 3, because R is both a prohibition
and an obligation. That R is a trivial contradicts the assumption that R is a
nontrivial prohibition. We conclude that R is not verifiable in any test setup.

Proof (Theorem 20’s Proof). We split the proof into several parts.

(1) Suppose that a property φ is T∗-refutable. We show that φ is safety. Assume
that π �∈ φ, for some π ∈ Σω. Then, the system Sπ = {π} violates φ. Now,
by φ’s T∗-refutability, there exists a finite set t of φ’s finite prefixes that
demonstrates Sπ �∈ Rφ, where Rφ = �φ�. Let σ be the longest element in t;
note that since {π} is a singleton, there always exists a single longest element
in t. Then, for any π′ ∈ Σω, the system Sπ′ = {σπ′} violates φ, simply
because t belongs to α(Sπ′). We conclude that σπ′ �∈ φ, for all π′ ∈ Σω.
That is, φ is a safety temporal property.

(2) Suppose that φ is safety. We show that φ is T∗-refutable. Assume that a
system S violates φ. That is, ∃π ∈ S. π �∈ φ. Since φ is safety, a finite prefix
of π, say σ, satisfies the following condition: ∀π′ ∈ Σω. σπ′ �∈ φ. Now, define
the observation t ∈ T∗ as {σ}. Note that t ∈ α(S), and moreover α̂(t)∩Rφ =
∅ due to the above condition. This shows that φ is T∗-refutable.

(3) Any temporal property φ is Tr-refutable because Rφ’s satisfaction is
abstraction-closed, for any φ. Then, by Lemmas 3 and 15, any Tr-verifiable
or T∗-verifiable property must be trivial.

Theorem 26. A requirement R is semi-monotone iff R = �R� ∧ �R�.
Proof. We split the proof into two parts, reflecting the theorem’s two statements.

(1) Assume that R is semi-monotone. We show that R = �R�∧�R�. Clearly R ⊆
�R�∧�R�, for any requirement R. All we need to prove is that �R�∧�R� ⊆ R.
If �R� ∧ �R� = ∅, then the claim trivially holds. Suppose S ∈ �R� ∧ �R� for
some system S. From S ∈ �R�, we conclude ∃S− ∈ R. S− � S. Similarly,
from S ∈ �R�, we conclude ∃S+ ∈ R. S � S+. In short, we have S− �
S � S+, S− ∈ R, and S+ ∈ R. Then, Lemma 27 below implies that S ∈
R, simply because R is semi-monotone. Therefore, if R is semi-monotone,
then R = �R� ∧ �R�.

(2) Assume that R = �R� ∧ �R�. We prove that R is semi-monotone. Note
that for any requirement Q, the requirement �Q� is a prohibition, hence
monotone. Moreover, �Q� is an obligation, hence monotone. Therefore, �Q�∧
�Q� is semi-monotone, that is the intersection of two monotone require-
ments, for any requirement Q. In particular, R is semi-monotone because
R = �R� ∧ �R�.
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Lemma 27. If R is a semi-monotone requirement, then for any three sys-
tems S−, S, and S+ the following condition holds.

S− � S � S+ ∧ S− ∈ R ∧ S+ ∈ R → S ∈ R

Proof. Either (1) R is monotone, that is R is the conjunction of two prohibitions
or the conjunction of two obligations, or (2) R is the conjunction of a prohibi-
tion P and an obligation O. The lemma’s claim is immediate for case (1). Let
us consider case (2). Suppose S− � S � S+ ∧ S− ∈ R ∧ S+ ∈ R. Note
that S− ∈ R implies that S− ∈ O. Then, S− � S implies that S ∈ O. Simi-
larly, S+ ∈ R implies that S+ ∈ P . Then, S � S+ implies that S ∈ P . These
two statements show that S ∈ P ∧ O. That is, S ∈ R.
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Abstract. Finding models for linear-time properties is a central prob-
lem in verification and planning. We study the distribution of linear-
time models by investigating the density of linear-time properties over
the space of ultimately periodic words. The density of a property over
a bound n is the ratio of the number of lasso-shaped words of length n,
that satisfy the property, to the total number of lasso-shaped words of
length n. We investigate the problem of computing the density for both
linear-time properties in general and for the important special case of ω-
regular properties. For general linear-time properties, the density is not
necessarily convergent and can oscillates indefinitely for certain proper-
ties. However, we show that the oscillation is bounded by the growth of
the sets of bad- and good-prefix of the property. For ω-regular properties,
we show that the density is always convergent and provide a general algo-
rithm for computing the density of ω-regular properties as well as more
specialized algorithms for certain sub-classes and their combinations.

1 Introduction

Given a linear-time property, specified for example as a formula of a temporal
logic, how hard is it to guess a model of the property? Temporal models play
a fundamental role in verification and planning, for example in the satisfiability
problem of temporal logic [19], in model checking [2], and in temporal plan-
ning [16]. With this paper, we initiate the first systematic study of the density
of the linear-time temporal models.

The first choice to be made at the outset of such an investigation is how to
represent temporal models. We base our study on ultimately periodic words, i.e.,
infinite words of the form u·vω, where u and v are finite words. This is motivated
by the fact that ultimately periodic words are the natural and commonly used
representation in all applications, where the underlying state space is finite (cf.
[5]). With this choice of representation, our central question thus is the following:
Suppose you are given an infinite word u ·vω, where u and v are two finite words,
that have been chosen randomly from all sequences over a given alphabet. How
likely is it that u · vω is a model of a given linear-time property?

We consider the cardinality and the density function in terms of the bound n.
The cardinality of a property ϕ for a given bound n is the number of lassos of
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length n, that are models for the property ϕ, denoted by #ϕ(n) = |{(u, v) ∈
Σ∗ × Σ+ | |u · v| = n, u · vω ∈ ϕ}|. The density function of a property ϕ
determines the rate of the cardinality of ϕ over the whole solution space for
the specific bound n, and is denoted by ∇ϕ(n) = #ϕ(n)/|{(u, v) ∈ Σ∗ × Σ+ |
|u · v| = n}| = #ϕ(n)/(n · |Σ|n). To answer the question posed above, we study
the asymptotic behavior of the density function, i.e., the limit lim

n→∞ ∇ϕ(n), which
we denote by ∇∞

ϕ and refer to as the density of the property ϕ.
Consider the following linear-time properties over the alphabet Σ = 2{a,b}.

The density function of the property given by the LTL formula ϕ1 = a∧�b∧��b
is constant and equal to 1

8 for bounds larger than two, because there is no
restrictions on the labeling once the constraint of a labeling a followed by two
b’s has been satisfied. The density of the property ϕ2 = aU b is equal to 2

3
as the increase in the number of models is twice as large as the increase in the
number of non-models for increasing bounds. Properties like ϕ3 = �(a∧�b) have
densities equal to 0, because the cardinality of the set of bad-prefixes increases
exponentially with increasing bounds, in comparison to a linear increase in the
number of its models.

Two key questions of interest are whether or not the density exists for a
linear-time property and, if the answer to the first question is yes, to compute
its value. It is not obvious that the density exists for linear-time properties. In
the case of ω-regular properties, we show that the density indeed always exists.
This stands in contrast to regular properties of finite words, where this is not
always true. Consider, for example, the regular property (aa)∗. Models for the
property exist only for even bounds, and the density function oscillates between 0
and 1 for the alphabet {a}. The ω-regular property (aa)ω for the same alphabet,
however, has ultimately periodic models for all bounds and its density function
converges to 0. The density for linear-time properties in general, nevertheless,
does not necessarily exist. We show that for certain not ω-regular properties, the
density function oscillates indefinitely without converging.

In case the density function cannot be computed, we show that it can still be
approximated by examining the growth of the sets of good- and bad-prefixes of
the property. The density of good-prefixes of a property defines a lower bound on
the density. The density of bad-prefixes defines an upper bound on the density.
Whether a density exists for property ϕ depends on the densities of four classes
of lassos, that partition the whole space of lassos with respect to ϕ. These classes
represent lassos (u, v), where u · v is a bad-prefix for ϕ, a good-prefix for ϕ, or
models or non-models of ϕ where u · v is neither a good- nor a bad-prefix. We
present few ways to check the existence of the density of a linear-time property
with respect to the densities of each of these classes. To illustrate the affect of
these classes consider the property � � �a. It is clear that the rate of both
the classes of models with no good-prefix and non-models with no bad-prefix
converge to 0. This means, the upper and the lower bound of the density, deter-
mined by the classes of bad-prefix non-models and good-prefix models, meet in
the limit and the density function converges to 1

2 .
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For the special case of ω-regular properties, the limit of the density function
can be computed algorithmically. This can be done by constructing an unam-
biguous ω-automaton, that defines the property and computing the probability
of reaching an accepting strongly connected component in the automaton. Build-
ing on top of the algorithmic ideas, we also investigate the qualitative density
checking problems, i.e., we determine if the density of a property is equal to
0 or 1, and provide a complete complexity analysis, determining the lower and
upper bounds of these problems. Table 1 gives a summary on the complexity
results shown and proven in the paper. A gap between the lower (Pspace) and
upper bound (Exptime) remains open for the problem of determining whether
the density is smaller than 1 for a given LTL formula.

Table 1. Results for the computational complexity of computing the density of
ω-regular languages.

LTL Non-deterministic Büchi Deterministic parity

∇∞
ϕ Exptime Exptime P

∇∞
ϕ > 0 Pspace-compl P-compl. NL-compl.

∇∞
ϕ < 1 Exptime Pspace-compl. NL-compl.

For some sub-classes of ω-regular properties, we can even avoid the costly
construction of the automaton. We investigate a series of sub-classes and show
how to compute the density for these classes and any of their combinations. In
the case of LTL, we match syntactic classes to the introduced sub-classes and
show that the density of a boolean combination of these syntactic classes can be
reduced to the computation of the density of a much smaller formula.

Related Work. In the setting of finite, rather than infinite, words, the study
of density has a long history [3,4,10,12,21]. For each language ϕ ⊆ Σ∗ of
finite words over some alphabet Σ, the density function is defined as the quo-
tient ∇ϕ(n) = #ϕ(n)/|Σn|, where |S| denotes the cardinality of a set S and
#ϕ(n) = |ϕ ∩ Σn|, i.e., the number of words of length n in ϕ. In 1958, Chomsky
and Miller [4] showed that for each regular language ϕ, there exists an initial
length n0 such that for all n ≥ n0, #ϕ(n) can be described by a linear recur-
rence. For example, for the language ψ of the regular expression (ab + baa)∗, we
have that #ψ(n) = #ψ(n − 2) + #ψ(n − 3). The recursive description of #ϕ(n)
allows for a detailed analysis of the shapes of #ϕ(n) and ∇ϕ(n) (cf. [12]). The
result was later extended to the nonambiguous context-free languages [12]. Much
attention has focussed on sparse languages, i.e., languages, where #ϕ(n) can be
bounded from above by a polynomial [6,10,21]. Sparse languages can be used to
restrict NP-complete problems so that they can be solved polynomially [6]. An
interesting application of the density is to determine how well a non-regular lan-
guage is approximated by a finite automaton [7]; this is important in streaming
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algorithms, where the incoming string must be classified quickly, and it suffices
if the classification is correct most of the time.

In previous work [9], we have presented automata-based algorithms for com-
puting #ϕ(n) for safety specifications expressed in LTL. These algorithms com-
pute #ϕ(n) for a specific property ϕ and a specific value of n, but cannot be
used to derive the convergences value of ∇ϕ(n) for an entire class of properties.
Faran and Kupferman have recently investigated the probability that a prefix of
a word not in ϕ is a bad prefix of ϕ [8]. This probability is used to quantitatively
determine the “safety level” of ϕ. The analysis again is done with respect to the
finite words not the infinite words. A key difference to our work is that the safety
level does not give the probability of a model and does not distinguish between
properties of the same class but with different density values. Also related is
Asarin et al.’s investigation of the asymptotic behavior in temporal logic [1].
The authors use the notion of entropy to show the relation between formulas
in parametric linear-time temporal logic and formulas in standard LTL as some
bounds tend to infinity.

2 Preliminaries

Linear-Time Properties and Models. A linear-time property ϕ over an alpha-
bet Σ is a set of infinite words ϕ ⊆ Σω. Elements of ϕ are called models of ϕ.
The complement set ϕ = Σω \ ϕ is called the set of non-models of ϕ.

A lasso over an alphabet Σ of length n is a pair (u, v) of finite words u ∈ Σ∗

and v ∈ Σ+ with |u ·v| = n, that induces the ultimately periodic word u ·vω. We
call u · v the base of the lasso or ultimately periodic word. An n-model for the
property ϕ over Σ is a lasso (u, v) ∈ Σ∗ × Σ+ of length n such that the induced
ultimately periodic word u · vω ∈ ϕ. We call n the bound of the n-model. The
language Ln(ϕ) for a bound n is set of n-models of ϕ. Note that a model of ϕ
might be induced by more than one n-model, e.g., aω is induced by (a, a) and
(ε, aa). The complement language Ln(ϕ) is the set of n-non-models of ϕ. We call
the linear-time property over Σ, whose models build up the set of all lassos over
Σ the universal property and denote it by �. The cardinality of a property ϕ
for a bound n, denoted by #ϕ(n), is the size of Ln(ϕ).

Safety and Liveness. For an infinite word σ = α1α2 · · · ∈ Σω we denote every
prefix α1 . . . αi by σ[. . . i]. A finite word w = α1 . . . αi ∈ Σ∗ is called a bad-prefix
for a property ϕ, if every infinite word σ ∈ Σω with σ[. . . i] = w is not a model
of ϕ. We call a bad-prefix w minimal, if no prefix of w is a bad-prefix for ϕ.
We denote the set of bad-prefixes of a property ϕ by Bad(ϕ). A finite word
w = α1 . . . αi ∈ Σ∗ is called a good-prefix for a property ϕ, if every infinite word
σ ∈ Σω with σ[. . . i] = w is a model of ϕ. We call a good-prefix w minimal, if w
has no prefix, that is also a good-prefix for ϕ. We denote the set of good-prefixes
of a property ϕ by Good(ϕ).

A property ϕ is a safety property if every non-model of ϕ has a bad-prefix
for ϕ. A property ϕ is a liveness property if every finite word w can be extended
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by an infinite word σ such that w ·σ is a model of ϕ. A property ϕ is a co-safety
property if every model of ϕ has a good-prefix for ϕ. Co-safety properties can
be either safety or liveness properties. The only property that is both liveness
and safety at the same time is the universal property �.

Linear-Time Temporal Logic. We use Linear-time Temporal Logic (LTL) [18],
with the usual temporal operators Next �, Until U , and the derived operators
Release R, which is the dual operator of U , Eventually � and Globally �. LTL
formulas are defined over a set of atomic propositions AP. We denote the satis-
faction of an LTL formula ϕ by an infinite sequence σ ∈ (2AP )ω of valuations of
the atomic propositions by σ |= ϕ and call σ a model of ϕ. For an LTL formula ϕ
we define L(ϕ) by the set {σ ∈ (2AP )ω | σ |= ϕ}. A lasso (u, v) of length n is an
n-model of an LTL formula ϕ if u · vω ∈ L(ϕ). If u · vω is not a model of ϕ, the
lasso is called an n-non-model of ϕ.

Parity Automata. A parity automaton over an alphabet Σ is a tuple A =
(Q,Q0, δ, c), where Q is a set of states, Q0 is a set of initial states, δ : Q×Σ → 2Q

is a transition relation, and c : Q → N is a coloring function. A run of A on
an infinite word w = α1α2 · · · ∈ Σω is an infinite sequence r = q0q1 · · · ∈ Qω

of states, where q0 ∈ Q0 and for each i ≥ 0, qi+1 = δ(qi, αi+1). We define
Inf(r) = {q ∈ Q | ∀i∃j > i. qj = q}. A run r is called accepting if
max{c(q) | q ∈ Inf(r)} is even. A word w is accepted by A if there is an
accepting run of A on w.

The automaton is called deterministic if the set Q0 is a singleton and for each
(q, α) ∈ Q×Σ we have |δ(q, α)| ≤ 1. The automaton is called unambiguous if for
each accepted word w there is exactly one accepting run of the automaton on w.
A parity automaton is called a Büchi automaton if the image of c is contained
in {1, 2}. An automaton is complete if each state has an outgoing transition for
each letter α ∈ Σ. In the paper we always consider complete automata.

A strongly connected component (SCC) in A is a strongly connected compo-
nent of the graph induced by the automaton. A strongly connected component
is called terminal if none of the states in the SCC has a transition, that leaves
the SCC. An SCC is called accepting if the highest color of the states of the SCC
is even.

3 The Density of Linear-Time Properties

For a given linear-time property ϕ, the density function of ϕ gives the distribu-
tion of models of ϕ for increasing bounds n.

Definition 1 (Density). The density function of a linear-time property ϕ over
an alphabet Σ and a bound n is the ratio between the cardinality of ϕ for n and
the number of lassos of length n over Σ:

∇ϕ(n) =
#ϕ(n)
n · |Σ|n



144 B. Finkbeiner and H. Torfah

The asymptotic density of ϕ (short density) is the value lim
n→∞ ∇ϕ(n) (in case

it exists), which we denote by ∇∞
ϕ .

In previous work we presented an algorithm for computing the cardinality of
safety LTL formulas for a given bound. The algorithm is doubly-exponential in
the length of the formula yet linear in the bound [9]. An algorithm based on a
translation to a propositional formula is exponentially less expensive in the for-
mula than our algorithm, but exponentially more expensive in the bound. With
respect to counting complexity classes, the complexity of computing the den-
sity of a property ϕ depends on the complexity of the membership test allowed
by the representation of ϕ. Counting the number of models for a bound n and
a property given as an LTL formula has been shown to be in #P [23]. Using
these results we summarize the counting complexities of computing the density
of ω-regular properties in the following theorem1.

Theorem 1. For an ω-regular property ϕ given by an LTL formula, a nonde-
terministic Büchi automaton, or a deterministic parity automaton, and for a
given bound n, the problem of computing ∇ϕ(n) is in #P.

Proof. To show that the problem is in #P, we show that there is nondeterministic
polynomial-time Turing machine M, such that, the number of accepting runs
of the machine on a given bound n and a property ϕ, is equal to the number
of n-models of ϕ. We define M as follows. The machine M guesses a prefix u
and a period v of an ultimately periodic word u · vω with |u · v| = n, and checks
whether u · vω satisfies ϕ, which can be done polynomial time when ϕ is an LTL
formula [13], and in logarithmic space when ϕ is given by a nondeterministic
Büchi or a deterministic parity automaton [14]. For each n-model (u, v) of ϕ
there is exactly one accepting run of M. Thus, counting the n-models of ϕ can
be done by counting the accepting runs of M on the input (n, ϕ). �

Before getting to the computational complexity of computing the density of
a given linear-time property, we illustrate what factors play a role in shaping the
density function of a property. Consider the density of the universal property �,
which is constant and equal to 1, as its cardinality is defined by #ϕ(n) = n·|Σ|n.
For each bound n, we can transform every n-model of � to a (n + 1)-model by
extending the base of the n-models with one letter from Σ and adding one
of the now n + 1 possible loops to the new base. The number of bases for n-
models for the property � is #�(n)

n . Thus, the number of (n + 1)-models for �
is equal to |Σ| · n+1

n ·#�(n). According to the definition of the density function,
this means that the monotonicity of the density function of a property in some
bound n depends on whether the increase in the number of models in n is larger
or smaller than the growth factor |Σ| · n+1

n .
We define the growth function of a property ϕ by ςϕ(n) = #ϕ(n+1)

#ϕ(n) . We
call the function ς�(n) = |Σ| · n+1

n the universal growth function. The following

1 For more on counting complexities and the counting problem for linear-time tem-
poral logic we refer the reader to [9,23,24].
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proposition clarifies the relation between the monotonicity of the density function
of a linear-time property ϕ and the universal growth function. Furthermore, the
proposition shows the relation between the growth function of ϕ and the growth
function of its complement ϕ.

Proposition 1. Given a property ϕ over Σ the following holds:

1. ∀n. ∇ϕ(n) = ∇ϕ(n + 1) if and only if ςϕ(n) = ς�(n)
2. ∀n. ∇ϕ(n + 1) > ∇ϕ(n) if and only if ςϕ(n) > ς�(n)
3. ∀n. ςϕ(n) = ς�(n) if and only if ςϕ(n) = ς�(n)
4. ∀n. ςϕ(n) > ς�(n) if and only if ςϕ(n) < ς�(n)

For any linear-time property ϕ, the function #ϕ(n) is monotonically increas-
ing. This is due to the fact that any n-model of the property ϕ can be mapped
to a (n + 1)-model of ϕ, namely the one that results from unrolling the loop of
the n-model by one position. From the last proposition we read thus that the
monotonicity of the density function of ϕ at some bound n depends on the num-
ber of new (n + 1)-models, i.e., those that cannot be rolled back to n-models. A
density function, where the increase in models at some bound is higher (lower)
than the increase in all lassos (models of the universal property �) is increas-
ing (decreasing) at that bound. This in turn means that the growth factor of
the number of non-models is lower (higher) at the same bound. An oscillating
function is one, where the increase in the number of models is interchangeably
higher and lower than the increase in the total number of lassos.

Whether the density of a property exists, converges, is monotone or oscillat-
ing, depends on the densities of the following classes of lassos, that form with
respect to a given property a partition of the space of lassos. For a property ϕ,
we split the set of lassos into four classes:

– Base non-models: These are non-models (u, v), where u · v ∈ Bad(ϕ).
– Base models: These are models (u, v), where u · v ∈ Good(ϕ).
– Loop non-models: These are non-models (u, v), where u · v �∈ Bad(ϕ).
– Loop models: These are models (u, v) where u · v �∈ Good(ϕ).

In Fig. 1, we show how each of these classes grow over increasing bounds.
For any property ϕ and for all bounds n, the classes of base non-models and
base models increase by a factor larger or equal to ς�(n), because any extension
of a bad-prefix remains a bad-prefix and every extension of a good-prefix also
remains a good-prefix. Following Proposition 1, this means that for any bound n,
the rates of base n-models and base n-non-models to the set of all n-lassos are
monotonically increasing and thus converging. The rate of base models defines
for each n a lower bound for the density function ∇ϕ(n). Its convergence value
defines in turn a lower bound on the limit inferior of the density function. The
rate of base non-models defines an upper bound on the density function and
its convergence value is an upper bound on the limit superior of the density
function. The increase in the number of lassos of the classes of loop models and
loop non-models depends highly on the property. An extension of the bases may



146 B. Finkbeiner and H. Torfah

base n-models

base n-non-models

loop n-non-models

loop n-models

n

1

0
1

ac
ce

pt
an

ce
pr

ob
ab

ili
ty

max lim sup ∇∞
ϕ

min lim inf ∇∞
ϕ

∇∞
ϕ

Fig. 1. The change in the density of the different classes of lassos for a linear property
ϕ over increasing bounds n. Notice that both the rates of base n-non-models (lined
gray area) and base n-models (plain gray area) is monotonically increasing forming an
upper and lower bound on the density.

result in a new bad-prefix a new good-prefix, or a base on top of which new
loop models or non-models can be obtained. This means that the rate of these
two classes to the set of all lassos might oscillate indefinitely without converging
as we show for some properties in the next section. This in turn means that
the convergences behavior of the density function of ϕ is determined by the
convergence of the rate of loop models of ϕ.

3.1 Asymptotic Density

In this section we investigate which linear-time properties have a converging
density function. In the case of finite regular properties the density does not
always exist. This follows from the fact that some regular properties allow no
models for certain bounds as we have seen in the introduction. In contrast, in
the case of ω-regular properties we will show that the density always exists. For
general linear-time properties however we will see that this does not necessarily
hold when considering ω-non-regular properties as shown in detail in Theorem2.

We classify a property ϕ according to the convergence of its density function
to either: 0-convergent when ∇∞

ϕ = 0, 1-convergent when ∇∞
ϕ = 1, ε-convergent

when ∇∞
ϕ = ε for 0 < ε < 1, and ⊥-convergent when the density function is

non-convergent.
The change in the size of the different classes of lassos presented in the last

section plays a key role in the convergence behavior of a property. From the last
section we know that the rates of base models and base non-models are always
convergent. This means the convergence behavior depends on the rates of loop
models and loop non-models. For example, the property �p, has no loop models
nor loop non-models for bounds larger that 2, and the rates of these classes
converge to 0. All lassos of length greater or equal to 2 belong to one of the sets
of base models or base non-models, depending on whether the second position
of the lasso is labeled with p or not, and thus, the density of �p is determined
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by the rates of base models and base non-models. The number of base models
of �p is equal to 2AP−1 · (2AP)n−1 · n for n > 1, which results in a density of 1

2 .
The rates of base models and base non-models also determine the density

of the safety property qRp over AP = {p, q}, which convergences to a value
of 1

3 . The property has no loop non-models and n loop models for each bound
n, namely those where all positions are labeled with p and not labeled with q.
Thus, the rates of loop models and loop non-models converge to 0. In the case

of base-models we can count
n∑

i=1

(2AP)n−i · n many base n-models, because for

each 1 ≤ i ≤ n, there are (2AP)n−i · n many base n-models which are labeled
with p and q at position i − 1 and with only p for all positions smaller than i,
and arbitrarily for all positions greater than i. Applying Definition 1, the density

function of qRp can be computed as
n∑

i=1

(4)−i, which converges towards 1
3 when

n tends to infinity.
An example, where the density depends fully on the rate of loop models is��p. The property has neither base models nor base non-models. A lasso is a

loop model for ��p if all positions in the loop are labeled with p. For a bound n,

there are
n∑

i=1

(2AP)i−1 many loop n-models (i is the position of the loop). This

results in a density function equal to
n∑

i=1

(2AP)i−1

(2AP)n·n which converges to 0 when n

grows to infinity2.
If none of the sets of bad- nor good-prefixes is empty, and the rate of loop

models is convergent then the density is ε-convergent, because none of the rates
of base models nor base non-models to all lassos is equal to zero.

Lemma 1. The density function of a property ϕ is convergent, if and only if
the rate of loop models is convergent.

Proof. The density function can be defined as the sum of the two rates of base
models and loop models. Because the rate of base models is always convergent,
it follows that the density function is convergent if and only if the rate of loop
models is convergent. �
With the same argumentation the rate of loop non-models plays the same role
as the one for loop models.

Lemma 2. For a given property ϕ, the rate of loop models is convergent if and
only if the rate of loop non-models is convergent.

Proof. From Lemma 1 we know that when the rate of loop models is convergent
then the density of ϕ is also convergent. This means that the rate of non-models
is convergent, and as the rate of base non-models is always convergent, then so
is the rate of loop non-models.

With analogous reasoning we can show that the convergence of the rate of
loop non-models implies the convergence of the rate of loop models. �
2 The formula ��p is an example of a 0-convergent liveness formula.
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We show now an example of certain types of not ω-regular properties, that
have a non-convergent rate of loop models, and thus a non-convergent density
function.

Theorem 2. There is a linear-time property with a non-convergent density
function.

Proof. We divide each of the lasso classes further into cyclic lassos, i.e., lassos,
where the loop is at the first position of the lasso, and non-cyclic lassos, which
cover the rest of lassos in a class. The property we present is a liveness property,
where the classes of base models and base non-models are empty. We show that
the rate of loop models is non-convergent and we show that the reason is that
the rate of cyclic loop models is non-convergent.

We define a property ϕ over the set of atomic propositions AP = {a} as
follows: Let c1, c2 . . . and d1, d2 . . . be natural numbers such that c1 ≤ d1 <
c2 ≤ d2 < . . . . A lasso is a model of ϕ if eventually the letter {a} is encountered
at some position and there is a constant δ in one of the intervals [ci, di) for some
number i ∈ N such that from then on, {a} appears periodically every δ positions.

The number of non-cyclic loop n-models of ϕ is equal to |2AP| · #ϕ(n − 1),
because we can extend each (n − 1)-model ϕ to an n-model by attaching any
letter from 2AP to the first position of the (n − 1)-model. This means that the
growth factor of the models of ϕ is determined by the respective growth in the
size of the sets of cyclic models for each bound.

Notice that the rate of cyclic models depends strongly on the bound n. If
cj ≤ n < dj for some j, then we have |2AP|n − 1 many cyclic models of length
n, as we only need to have at least one position labeled with {a} and the rate
of models in this case is increasing. If dj ≤ n < cj+1, then there are at most
|2AP|n−� n

h � · h, where h is the largest allowed period in n. In this case, the rate
of models is decreasing. This means that in all bounds n that belong to some
interval [ci, di) the density is increasing, and all bounds in intervals [dj , cj+1) the
density of ϕ is decreasing. We can choose the numbers c1, c2, . . . and d1, d2 . . . in
a way that the density increases in ci+1 to a value larger than the one in ci, and
decreases in di+1 to a value smaller than in di. In this way, the density function
is oscillating and non-convergent. �

3.2 Density of ω-Regular Properties

In this section we show how to compute the density of ω-regular properties
given by non-deterministic Büchi and deterministic parity automata. In the next
section we show how these results can be adopted to compute the density of
properties given as LTL formulas.

We start by showing the relationship between the density of a property ϕ
and the densities of the terminal SCCs of an automaton representing ϕ.

Lemma 3. The density of an ω-regular property ϕ given as a parity automaton
A is greater than 0 if and only if A has a reachable terminal accepting strongly
connected component.
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Proof. We prove the lemma along the steps of [20]. Let A be defined over the
alphabet 2AP for a set of atomic proposition AP. Let S be an accepting terminal
SCC in A with n states (remember that A is complete, thus S allows transitions
for all letters in 2AP in each state). The probability of choosing a transition
with label α ∈ 2AP is equal to ε = 1

|2AP| from any state in S. Let s be a state
in S. The probability of not reaching s from any other state in S in n steps
is at most 1 − εn < 1. This means for an infinite trace in S, the probability
of not seeing s again from every position of the trace is equal to 0. Thus, the
probability of choosing an infinite run σ in S such that s �∈ Inf(σ) is also equal
to 0. This is in particular true for the state smax with the maximum color in S.
This implies that an infinite run σ in S with Inf(σ) equal to the set of states
of S, has probability 1. Because smax is even, it follows that the probability of
a lasso with an accepting run in S converges to 1, when the length of the lasso
tends to infinity.

If A has a reachable terminal accepting SCC S, then it is reached by at least
one finite prefix with positive probability. The density of ϕ is then at least equal
to the probability of choosing this prefix. If A does not have a terminal accepting
SCC, then the rate of models of ϕ converges to 0, because the probability of
staying infinitely in an accepting cycle in the automaton is 0. �

Using the previous lemma we show the complexity of the following qualitative
problems for the density.

Theorem 3. Let ϕ be an ω-regular property given by a deterministic parity
automaton. The problem of checking whether ∇∞

ϕ > 0 is NL-complete.

Proof. As shown in Lemma 3, to check if the density of the property given by an
automaton A is greater than 0, it suffices to check whether there is an accepting
terminal strongly connected component in A. We choose a state q of A reachable
from the initial state and apply the following procedure. Iterating over all states
q′ of the automaton, we check if q′ is reachable from q. If yes, we check if q is
reachable again from q′. If this is not the case, then q is not a state in a terminal
SCC in A, and we choose a new state in A different than q and repeat the whole
procedure for the new state. Otherwise, if for each q′ reachable from q, there is
a path leading back to q, then we have found a terminal SCC that contains q.
During the iteration we also save the highest color seen. If this color is even then
q is a state in a terminal accepting SCC in A. If no terminal accepting SCC is
found after iterating over all states of A, then the density is 0.

Checking whether a state is reachable from another can be done in nonde-
terministic logarithmic space (the reachability problem in automata is in NL).
Checking whether a state is not reachable from another can also be done in non-
deterministic logarithmic space (the non-reachability problem in automata is in
co-NL and NL=co-NL). In each iteration we only need to memorize the binary
encoding of the state q and the current state q′ and the current highest color
seen so far, which require in total an encoding of no more than logarithmically
many bits in the size of the automaton.
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A matching lower bound is can be proven by a reduction from a nondeter-
ministic logarithmic-space Turing machines. �
Theorem 4. Let ϕ be an ω-regular property given by a nondeterministic Büchi
automaton A. The problem of checking whether ∇∞

ϕ > 0 is P-complete.

Proof. We check whether A has a terminal accepting SCC S. Finding such an
SCC can be done in polynomial time. A matching lower bound is achieved by a
log-space reduction from the circuit value problem. �

We turn now to the problem of checking if ∇∞
ϕ < 1.

Theorem 5. Let ϕ be an ω-regular property given by a deterministic parity
automaton A. The problem of checking whether ∇∞

ϕ < 1 is NL-complete.

Proof. Following the idea of Theorem 3 we can check if A has a terminal non-
accepting SCC in nondeterministic logarithmic space. Because the automaton
is deterministic, any lasso that has a run in this SCC is a non-model of ϕ. If A
contains such an SCC, then the rate of non-models is greater than 0 (at least
as equal as the probability of reaching the non-accepting SCC), and thus the
density is less than 1. If no such SCC is found, then the density is equal to 1.

A matching lower bound can be shown via a reduction from a nondetermin-
istic logarithmic-space Turing machine.

Theorem 6. Let ϕ be an ω-regular property given by a nondeterministic Büchi
automaton A. The problem of checking whether ∇∞

ϕ < 1 is Pspace-complete.

Proof. Using Safra’s construction [17], every nondeterministic parity automaton
A can be transformed into a deterministic parity automaton D of size exponential
in the size of A. Each state of D is a Safra-tree over the states of A. The size
of a Safra-tree is equal to the size of A and we can distinguish exponentially
many Safra-trees. In Theorem 5 we presented a non-deterministic logarithmic-
space algorithm over deterministic parity automata for checking whether there
is an non-accepting terminal SCC. Instead of constructing the whole automaton
D and checking the existence of such an SCC, we will do it on the fly as follows.
We can guess a run of the automaton D by stepwise guessing Safra-trees and
checking if two succeeding trees are consistent with transition relation of D.
At some position we also guess that a current state q of the run is one in a
terminal SCC. As in the procedure of Theorem3 we check whether all successor
states q′ allow a path from which q can be reached again. For that we only need
logarithmic space in the size of D, thus, polynomial space in the size of A. If a
maximum color seen during the traversal of a path is even, then we have found
an accepting terminal SCC that contains the state q.

A matching lower bound can be achieved following the steps of [15] by reduc-
ing a polynomial space-bound Turing machine M and a word w to a non-
deterministic parity automaton A such that, M accept w if and only if the
density of A is smaller 1.
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Using the so far presented results we show now how to compute the density.

Theorem 7. Computing the density ∇∞
ϕ for an ω-regular property ϕ can be

done in polynomial time if ϕ is given by an unambiguous parity automaton A.

Proof. To compute the density of ϕ we need to compute the density of each
terminal accepting strongly connected component in the automaton A. Because
A is unambiguous, it is guaranteed that no model ends in two terminal accept-
ing SCCs of A and thus the density is the sum of densities of all terminal
accepting SCCs. The density of an SCC is given by the probability of reaching
the SCC. Computing the probability of an SCC can be seen as a convergence
problem of a Markov chain, where the automaton A can be thought of as a
Markov chain, where the label of a transition is replaced by its probability, i.e.,
a probability equal to 1

|2AP | . Both finding the terminal accepting strongly con-
nected components and computing their probabilities can be done in polynomial
time [3]. �

4 Density of LTL Properties

In this section we reexamine the problems investigated in the last section for
properties given as LTL formulas. For any LTL property ϕ we can compute
the density by constructing an unambiguous ω-automaton for ϕ and using the
algorithm given in Theorem7. However, the construction of the automaton is
costly (exponential [2]) and can be avoided for many sub-classes of LTL.

The results for LTL are summarized below, and follow from Theorems 7, 6,
and 3, and from the fact that any LTL formula can be turned into an exponential
unambiguous parity automaton [2].

Theorem 8. 1. Computing the density ∇∞
ϕ for an ω-regular property ϕ given

as an LTL formula can be done in exponential time.
2. Checking whether ∇∞

ϕ > 0 for an LTL formula ϕ is Pspace-complete.
3. Checking whether ∇∞

ϕ < 1 for an LTL formula ϕ is in Exptime.

In the following we present a series of syntactic LTL classes for which the
density can be immediately given. Using these sub-classes we show later that the
computation of the density for LTL formulas can be reduced to the computation
of the density of a much smaller LTL formula. We distinguish following syntactic
LTL classes:

– Bounded-Safety: A bounded-safety property ϕ describes a set of infinite
words, each with a prefix in a finite set Γ ⊆ Σk for some k. A formula in
the LTL fragment with only the temporal operator � is a bounded-safety
formula.

– Invariants: An invariant property ϕ describes an unreachability property
over a bounded-safety property ψ and is given by the LTL fragment �ψ.

– Guarantee: A guarantee property ϕ is a reachability property defined over
some bounded-safety property ψ and is given by the LTL fragment �ψ.
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– Persistence: A persistence property ϕ is a co-Büchi condition defined over
a bounded-safety property ψ and is given by the LTL fragment ��ψ.

– Response: A response property ϕ is a Büchi condition defined over a
bounded-safety property and is given by the LTL fragment ��ψ.

Theorem 9. 1. Every bounded-safety property ϕ not equivalent to false or to
true is ε-convergent.

2. Every invariant property or persistence property ϕ is 0-convergent.
3. Every guarantee property or response property ϕ is 1-convergent.

4.1 Composition of LTL Properties

When given an LTL formula ϕ composed of formulas from the syntactic classes
presented above we can compute the density of ϕ using the rules given in Table 2.
The intersection of properties ϕ1 and ϕ2 that are convergent to 1 results in a
new property that also has an density ∇∞

ϕ1∩ϕ2
= 1. When ϕ1 and ϕ2 converge

to 0 then ∇∞
ϕ1∩ϕ2

= 0. The same also holds when considering the union of the
properties ϕ1 and ϕ2. In the case of ε-convergent properties ϕ1 and ϕ2 the density
of the intersection of the properties depends intersected properties. If both ϕ1

and ϕ2 were bounded-safety properties this value depends on the size of the
intersection of characterization sets of ϕ1 and ϕ2. It can range from 0, when the
characterization sets are disjoint, to ε when the properties are equivalent. When
building the union of two ε-convergent properties the density can range from ε
to 1. If both properties were again bounded safety properties then the density is
equal to ε when ϕ1 and ϕ2 are equivalent and to 1 when their characterization
sets are disjoint. Given an LTL formula ϕ composed of the syntactic classes we
apply the rules presented in Table 2 and the results from Theorem 9, until no
rule is applicable anymore. The remaining formula is a bounded safety formula
for which we apply the algorithm given in Theorem7.

Table 2. Density for conjunctive (lower triangle) and disjunctive (upper triangle)
compositions:

For example, consider the LTL formula over the set of atomic propositions
AP = {a, b}:

ϕ = (a ∨ �b) ∧ (� � �(b ∧ a) ∨ �a) ∨ (�b ∧ �(a ∧ �b))
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We start by evaluating the subformulas

∇∞�b∧�(a∧�b) = ∇∞�b = 0 and ∇∞���(b∧a)∨�a = 1

Thus the density is equal to the one of the formula (a∨�b), which is a bounded-
safety property for which we can use the algorithm in Theorem7 and compute
the density

∇∞
a∨�b = 0.5 + 0.5 ∗ 0.5 = 0.75

5 Discussion

With this paper, we have initiated an investigation of the density of models of
linear-time properties. Our work extends the classic results for finite words to
ultimately periodic infinite words. In comparison to finite words, the new class of
models significantly complicates the analysis; the proof techniques introduced in
this paper, in particular the analysis of classes of loop and base models and non-
models, have allowed us, however, to obtain a classification of the major property
classes according to the convergence of the density. Computing the density for
omega-regular properties can be done algorithmically, yet is very expensive. In
contrast to expensive LTL algorithms presented above, the qualitative analysis
can be obtained for free, for the syntactic fragments for the different property
types introduced in the paper (and their combinations).

The obvious next step is to exploit the results algorithmically. It may be
possible to steer randomized algorithms such as Monte Carlo model checking [11]
towards areas of the solution space where we are most likely to find a model. In
planning, the choice between exploration and backtracking in a temporal planner
could be biased towards exploration in situations with increasing probability, and
towards backtracking in situations with decreasing probability. It may also be
possible to develop approximative algorithms that replace a complicated linear-
time property with a simpler, but ultimately equivalent property, such as a parity
condition with a smaller number of colors. In similar techniques for properties
of finite words, the density of the difference language is used to verify that the
error introduced by the approximation is small [7].

A big challenge is to extend the results further to tree models and, thus,
to determine the density of branching-time properties. A first step into this
direction is made by model counting algorithms for tree models [9]. Since tree
models can be seen as implementations in the sense of reactive synthesis [22],
this line of work might also lead to a better understanding of the complexity of
the synthesis problem, and perhaps to new randomized synthesis algorithms.
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Abstract. We present HyLeak, a tool for reasoning about the quantity
of information leakage in programs. The tool takes as input the source
code of a program and analyzes it to estimate the amount of leaked
information measured by mutual information. The leakage estimation is
mainly based on a hybrid method that combines precise program analysis
with statistical analysis using stochastic program simulation. This way,
the tool combines the best of both symbolic and randomized techniques
to provide more accurate estimates with cheaper analysis, in comparison
with the previous tools using one of the analysis methods alone. HyLeak
is publicly available and is able to evaluate the information leakage of
randomized programs, even when the secret domain is large. We demon-
strate with examples that HyLeaks has the best performance among the
tools that are able to analyze randomized programs with similarly high
precision of estimates.

1 Introduction

Automated Security Evaluation. With the increasing complexity of networked
systems, it is getting harder and harder for security engineers to analyze a system
and give a reasonable guarantee that the system does not jeopardize the security
and privacy of the users. A significant effort in research has been devoted towards
techniques able to (semi-)automatically identify leakage of confidential informa-
tion in software and hardware systems, allowing for more formal assurances of
security and privacy.
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Among automated techniques to quantify the information leakage of a sys-
tem, we distinguish the two approaches: precise program analysis providing a
precise result (e.g. [2,4,5]) and statistical analysis providing an approximate
estimation (e.g. [6–8]). The main difference between them is that precise analy-
sis needs to explore the complete behavior of the system to obtain the exact
leakage values, while statistical analysis has to cover only a statistically signifi-
cant sample of the system’s behavior to produce their estimation, and thus tends
to scale better. However, when statistical analysis fails to cover many rare events
in the system, it does not produce an accurate estimation.

Recently, some researchers have been trying to bridge the gap between precise
and statistical techniques by introducing hybrid methods combining them [10,12].
This paper presents the HyLeak tool, the first publicly available leakage compu-
tation tool leveraging both precise and statistical analyses. The implementation
is based on the hybrid method for estimating mutual information [10] while it
also employs many optimization techniques to enhance the estimation perfor-
mance. As we explain in Sect. 4 the tool has the best performance in computing
leakage among the tools that are able to analyze randomized programs with
similarly high precision of estimates.

The HyLeak Hybrid Analysis Strategy. The HyLeak tool takes as input a program
written in a simple imperative language (a slight extension of the input language
used in the QUAIL tool [4]) and computes its Shannon leakage, i.e., the mutual
information between the variables defined as secrets and those as observable
outputs in the given source code.

More specifically, HyLeak divides a program code into (terminal) components
and decides for each of them whether to analyze it using precise or statistical
analysis, by applying heuristics that evaluate the analysis cost of each com-
ponent. Then, following the theoretical results in [10], HyLeak composes the
analysis results of all components into an approximate joint probability distri-
bution of the secret and observable variables in the program. Finally, the tool
estimates the Shannon leakage and its confidence interval.

One of HyLeak’s technical novelties lies in the implementation of the code
decomposition. The procedure is based on the fact that the cost of analyzing a
code fragment with precise analysis is proportional to the amount of traces in
the fragment (since precise analysis has to analyze all traces), while the cost of
statistical analysis is proportional to the number of possible observable variables
(since statistical analysis has to run simulations for each value of the observable
variables). Then the amount of traces and observable variable values at each
point in the program execution is statically estimated via a heuristic approach.
The tool locates in which part of the execution, if any, stochastic simulation
becomes more efficient than precise analysis, and records this by inserting a
simulate statement in the code.
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Fig. 1. Random walk.

The stochastic simulation usually has to run the
code for each value of the secret; however, if in
the code fragment the observable variables do not
depend on the secret, it is sufficient to simulate the
fragment with a single secret value and to apply
the results to all the other values of the secret.
This technique is called abstraction-then-sampling
in [10], and can significantly reduce the number of
simulations necessary to produce a good estima-
tion, particularly for programs with a large secret
domain. If the tool finds it can apply abstraction-
then-sampling on the code fragment, it inserts a
simulate-abs statement instead. In the analysis of
the program, when the tool reaches a simulate or
a simulate-abs statement in the code, it switches
precise program analysis to stochastic simulation or
abstraction-then sampling, respectively.

Motivating Example. Consider the following random walk problem (modeled in
Fig. 1).

The secret is the initial location of an agent, encoded by a single natural
number representing an approximate distance from a given point, e.g. in meters.
Then the agent takes a fixed number of steps. At each step the distance of the
agent increases or decreases by 10 m with the same probability. After this fixed
number of random walk, the final location of the agent is revealed, and the
attacker uses it to guess the initial location of the agent.

This problem is too complicated to analyze by precise analysis, because the
analysis needs to explore every possible combination of random paths, amounting
to an exponential number in the walking steps. It is also intractable to analyze
with a fully statistical approach, since there are hundreds of possible secret values
and the program has to be simulated many times for each of them to sufficiently
observe the agent’s behavior.

As shown in Sect. 4, HyLeak’s hybrid approach computes the leakage signif-
icantly faster than the fully precise analysis and more accurately than the fully
statistical analysis.

2 HyLeak Implementation

We describe how HyLeak estimates the Shannon leakage of an input program.
The tool determines which component of the program to analyze with precise
analysis and which with randomized analysis, and inserts appropriate annota-
tions in the code. The components are analyzed with the chosen technique and
the results are composed into a joint probability distribution of the secret and
observable variables. Finally, the Shannon leakage and its confidence interval are
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computed. The tool implementation consists of the following 4 steps. Steps 1 and
2 are implemented with different ANTLR parsers [14]. The implementation of
Step 3 inherits a large amount of code from the QUAIL tool. This means that
QUAIL’s optimizations, i.e., parallel analysis of execution traces and compact
Markovian state representation, are inherited. However QUAIL’s restrictions are
inherited as well in HyLeak, meaning that the prior distribution on the secret is
assumed to be uniform and no private variable can appear in assignments.

Step 1: Preprocessing

Step 1a. Lexing, Parsing and Syntax Checking. The tool starts by lexical analy-
sis, macro substitution and syntax analysis. In macro substitution the constants
defined in the input program are replaced with their declared values, and simple
operations are resolved immediately. The tool checks whether the input program
correctly satisfies the language syntax. In case of syntax errors, an error message
describing the problem is produced.

Step 1b. Loop Unrolling and Array Expansion. for loops ranging over fixed
intervals are unrolled to optimize the computation of variable ranges and thus
program decomposition in Step 2. Similarly, arrays are replaced with multiple
variables indexed by their position number in the array. Note that these tech-
niques are used only to optimize program decomposition and not required to
compute the leakage in programs with arbitrary loops.

Step 2: Program Decomposition and Internal Code Generation

If a simulate or simulate-abs statement is present in the code, this step is
skipped. Otherwise, for each variable and each code line, an estimation of the
number of possible values of the variable at the specific code line is computed.
This is used to evaluate at each point in the input program whether it would
be more expensive to use precise or statistical analysis, as explained in Sect. 5
of [10]. The tool adds simulate and/or simulate-abs statements in the code
to signal which parts of the input program should be analyzed with standard
statistical sampling and with abstraction-then-sampling. At the end, the input
program is translated into a simplified internal language. Conditional statements
and loops (if, for, and while) are rewritten into if-goto statements.

Step 3: Program Analysis

In this step the tool analyzes the executions of the program using the two
approaches.

Step 3a. Precise Analysis. The tool performs a depth-first symbolic execution
of all possible execution traces of the input program, until it finds a return,
simulate, or simulate-abs statement. When reaching a return statement the
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tool recognizes the execution trace as terminated and stores its secret and output
values. In the cases of simulate and simulate-abs statements it halts the
execution of the trace, saves the resulting program state, and schedules it for
stochastic simulation or for abstraction-then-sampling simulation, respectively,
starting from the saved program state.

Step 3b. Randomized Analysis. The tool performs all the standard stochastic
simulations and abstraction-then-sampling simulations, using the saved program
states from Step 3a as starting point of each component to analyze stochastically.
The sample size for each simulation is automatically decided by using heuristics
to have better accuracy with less sample size. The results of each analysis is
stored as an appropriate joint probability sub-distribution between secret and
observable values.

Step 4: Leakage Estimation

In this step the tool aggregates all the data collected by the program analysis
(performed in Steps 3) and estimates the Shannon leakage of the input program,
together with evaluation of the estimation. More specifically, it constructs an
(approximate) joint posterior distribution of the secret and observable values of
the input program from all the collected data produced by Step 3, as explained
in Sect. 3.1 of [10]. Then the tool estimates the Shannon leakage value from the
joint distribution, including bias correction (See more details in Sect. 4 of [10]).
Finally, a 95% confidence interval for the estimated leakage value is computed
to roughly evaluate the quality of the analysis.

3 On Using HyLeak

HyLeak is freely available from https://project.inria.fr/hyleak, in both source
code and artifact form. Multiple examples and the scripts to generate the results
are also provided.

We show how to use HyLeak to analyze the random walk example presented
in Sect. 1. The program code is shown in Fig. 1 on the left; assume it is contained
in the file random walk abs-sim.hyleak. We invoke the tool with the command:
./hyleak random walk abs-sim.hyleak

The tool generates various .pp text files with analysis information and the
control flow graph of the program (Fig. 2). Finally, it outputs the prior and pos-
terior Shannon entropy estimates, the estimated leakage of the program before
and after bias correction, and its confidence interval. HyLeak can also print the
channel matrix and additional information; the full list of arguments is printed
by ./hyleak -h.

https://project.inria.fr/hyleak
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4 Comparison with Other Tools

Fig. 2. Control flow graph for the
input code of Fig. 1.

The HyLeak tool processes a simple impera-
tive language that is an extension of the lan-
guage used in the QUAIL tool version 2.0 [3].
The QUAIL tool implements only a precise
calculation of leakage that examines all exe-
cutions of programs. Hence the performance
of QUAIL does not scale, especially when the
program performs complicated computations
that yield a large number of execution traces.
On the other hand, HyLeak fully supports
the statistical approach and the hybrid app-
roach. Hence HyLeak can analyze large prob-
lems that QUAIL cannot handle. Note that
an approach combining static and random-
ized analyses was first proposed by Köpf and
Rybalchenko [12] differently.

The stochastic simulation techniques
implemented in HyLeak have also been devel-
oped in the tools LeakiEst [7] (with its exten-
sion [11]) and LeakWatch [8,9]. Below we
compare HyLeak’s analysis technique against
the full simulation technique implemented in
these tools.

The tool Moped-QLeak [5] computes the
precise information leakage of a program by
transforming it into an algebraic decision dia-
gram (ADD). As noted in [3], this technique
is efficient when the program under analysis is simple enough to be converted
into an ADD, and fails otherwise even when other tools including HyLeak can
handle it.

Many information leakage tools restricted to deterministic input programs
have been released, including TEMU [13], squifc [15], jpf-qif [16], QILURA [17],
nsqflow [18], and sharpPI [19]. Some of these tools have been proven to scale
to programs of thousands of lines written in common languages like C and Java.
Such tools rely on the fact that the Shannon leakage of a deterministic pro-
gram is bounded from above by the logarithm of the number of possible out-
puts of the program. The number of possible outputs is usually computed using
model counting on a SMT-constraint-based representation of the possible out-
puts, obtained by analyzing the program. Contrary to these tools, HyLeak can
analyze randomized programs1 and provides a quite precise estimation of the

1 Some of these tools, like jpf-qif and nsqflow, present case studies on randomized
protocols. However, the randomness of the programs is assumed to have the most
leaking behavior. E.g., in the Dining Cryptographers this means assuming all coins
produce head with probability 1.
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Fig. 3. Random walk experimental results

leakage of the program, not just an upper bound. As far as we know, HyLeak is
the most efficient tool that has this greater scope and higher precision.

Experimental Results

In this section we compare the performance of the tool HyLeak against the
precise analysis technique (implemented in version 2.0 of QUAIL) and the sta-
tistical technique (used in LeakiEst and LeakWatch). In the experiments we use
an option of HyLeak that deactivates stochastic simulations and performs fully
precise analysis, which has basically an identical behavior to the QUAIL tool. As
another comparison, we have forced fully randomized analysis like LeakWatch.

The random walk example in Fig. 1 has a conditional branching inside the
while loop, and thus it has an exponential number of execution traces in the
walking time time. Hence precise analysis takes an exponential time while both
HyLeak and fully randomized analysis take much less time thanks to random
sampling of traces (Fig. 3 on the left). Since HyLeak uses an abstraction-then-
sampling technique, it has smaller errors than fully randomized analysis with an
identical sample size (Fig. 3 on the right).

See the full version [1] for other examples and the results of their experiments.
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Abstract. One of the most successful techniques for refuting safety
properties is to find counterexamples by bounded model checking. How-
ever, for large programs, bounded model checking instances often exceed
the limits of resources available. Generating such counterexamples in a
modular way could speed up refutation, but it is challenging because of
the inherently non-compositional nature of these counterexamples. We
start from the monolithic safety verification problem and present a step-
by-step derivation of the compositional safety refutation problem. We
give three algorithms that solve this problem, discuss their properties
with respect to efficiency and completeness, and evaluate them experi-
mentally.

1 Introduction

Divide-and-conquer approaches are considered to be the blue print solution to
scale algorithms to large problems. Compositionality of proofs is the enabler of
a map-reduce approach to verification. Compositional verification approaches
based on contracts and summaries have been shown to tremendously increase
scalability and productivity in real-world formal verification [2,12,19,27].

But what about refutation? Unlike verification, refutation algorithms are
usually based on finding a violating execution trace, which seems to be inher-
ently non-compositional. Consequently, the study of the compositional refutation
problem is an under-explored area of research. Yet, solutions to this problem
have significant impact on other research problems. As a motivation, we give
here two algorithmic approaches in verification and testing that will be enabled
by efficient compositional refutation algorithms:

– Property-guided abstraction refinement algorithms like CEGAR [6] need to
decide whether counterexamples that are found in the abstraction are spuri-
ous or true counterexamples. The lack of compositional refutation techniques
forces these algorithms to operate in a monolithic manner and is therefore an
obstacle to scaling them to large programs.

– Automated test generation techniques based on Bounded Model Checking
are successfully used in various industries to generate unit tests (e.g. [25]).
However, they do not sufficiently scale to accomplish the task of generating
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integration tests. Compositional refutation techniques achieve exactly this
goal: they efficiently produce refutations (from which test vectors can be
derived) on unit (module) level and enable their composition in order to
obtain system level refutations, i.e. integration tests.

This paper is a first step in this direction and lays the base for a more systematic
study of the problem domain.

Contributions. We summarise the contributions of the paper as follows:

– In order to place the problem in a wider context, we give an informal overview
on how completeness relates to problem decomposition in safety refutation
and verification (Sect. 3).

– We formalise the safety refutation problem in horizontal decompositions, e.g.
procedure-modular decompositions, and characterise the compositional com-
pleteness guarantees of various algorithmic approaches (Sect. 4).

– We describe three refutation approaches with different degrees of complete-
ness (Sect. 5) and give experimental results on C benchmarks, comparing their
completeness and efficiency (Sect. 6).

2 Preliminaries

Program Model and Notation. We assume that programs are given in terms of
acyclic1 call graphs, where individual procedures f are given in terms of deter-
ministic, symbolic input/output transition systems. F is the set of all procedures
in the program. Since the handling of loops is orthogonal to the compositional
aspect, we consider only loop-free procedures (respectively bounded unwindings
of loops) in this paper. Thus, we simply denote the input/output relation of
a procedure f as Tf (x in,x out). Inputs x in are procedure parameters, global
variables, and memory objects that are read by f . Outputs x out are return
values, and potential side effects such as global variables and memory objects
written by f . Boolean guard variables (g) are used to model the control flow.
Non-deterministic choices are encoded by additional input variables.

The relations Tf are given as first-order logic formulae over bitvectors and
arrays, resulting from the logical encoding of the program semantics. Figure 1
gives an example of the encoding of a program into such formulae using the
loop-free notation. The inputs x in of foo are (y, g6) and the outputs x out consist
of (r, g7) where r is the return value. In addition to the inputs and outputs we
need boolean guard variables gin, gout (here g6, g7) that are true if the entry
and, respectively, exit of the procedure can be reached. They are handled like
input/output parameters and have their actual counterparts in the guard vari-
ables in the caller (here, e.g. g1, g2 for the call foo0 in main). Note that we
consider exit in a procedure is not reachable, i.e., ¬gout, if either the program is
non-terminating or an assertion in a procedure is violated. Hence, the exit guard

1 We consider non-recursive programs with multiple procedures (cf. model in [5]).
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Fig. 1. Example program and its encoding

condition in the definition of a transition function includes assertion checks as
in Tbar. We use a single static assignment (SSA) encoding, which gives a fresh
name to each update of a variable if it is modified multiple times, such as for
example in main.

Each call to a procedure h at call site i in a procedure f is modeled by a place-
holder predicate hi(x

p in
i ,x p out

i ) occurring in the formula Tf for f . The place-
holder predicate ranges over intermediate variables representing its actual input
and output parameters x p in

i and x p out
i , respectively. Placeholder predicates

evaluate to true in the beginning, which corresponds to havocking the program
variables in procedure calls. As the analysis progresses, they get strengthened by
summaries. We later explain how we use the guard variables in performing this
propagation. In procedure main in Fig. 1, the placeholder for the first procedure
call to foo is foo0((x0, g1), (x1, g2)) with the actual input and output parameters
x0, x1, respectively, and the corresponding guard variables that encode whether
the entry and exit of foo0 are reachable. Let Propsf denote the property (asser-
tion) in procedure f (e.g. the assertion in bar in Fig. 1). Note that we view these
formulae as predicates, e.g. T (x ,x ′), with given parameters x ,x ′, and mean
the T [a/x , b/x ′] when we write T (a , b). Moreover, we write x and x with the
understanding that the former is a vector, whereas the latter is a scalar.

CSf is the set of call sites in procedure f , and the set of all call sites CS
is

⋃
f∈F CSf . fn(i) is the procedure called at call site i. We write Xf for the

variables in Tf , and X̂ for the entirety of variables in Tfn(i)(x in
i ,x out

i ) for all
i ∈ CS.

Summaries, and Calling Contexts. Inter-procedural compositional proofs of a
sequential program usually use a set of auxiliary predicates to define abstrac-
tions of loops and procedures. These abstractions are usually formally defined
by means of a set of predicates – invariants, a summary and a calling con-
text (CallCtx i) for every procedure invocation hi at call site i in a call-graph
of the program. These predicates have the following roles: Invariants abstract
the behaviour of loops inside functions. Summaries abstract the behaviour
of called procedures; they are used to strengthen the placeholder predicates.
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Calling contexts abstract the caller’s behaviour w.r.t. the procedure being called.
When analysing the callee, the calling contexts are used to constrain its inputs
and outputs. The set of sub-traces corresponding to a function at a call site is
characterised by a conjunction of the calling context and summary predicates
associated with the function at that call site. We provide formal definitions for
summaries and calling contexts below (invariants are not needed in this paper).

Definition 1. For a procedure given by Tf we define:

– A summary is a predicate Sumf such that:

∀Xf : Tf (xin,xout) =⇒ Sumf (xin,xout)

– The calling context for a procedure call h at call site i in the given procedure
is a predicate CallCtx i such that

∀Xf : Tf (xin,xout) =⇒ CallCtx i(x
p in
i ,xp out

i )

For instance, a summary for procedure foo in Fig. 1, is Sumfoo((y, g6),
(r, g7)) = (y<MAX ⇒ r>y).2 A (forward) calling context for the first call
to procedure foo in main is CallCtx foo0

((x0, g1), (x1, g2)) = (g1 ⇒ x0<0).
We observe that the guard variables are also used in defining summaries and

calling contexts. They have the same meaning as in transition functions. The
reason we have defined CallCtx over both input and output parameters is so we
can propagate it in forward or backward directions.

3 Compositional Verification and Refutation Overview

A decomposition of a verification problem intuitively splits the original problem
into a set of sub-problems that cover the original problem. The decomposition
operator for the problem has a corresponding composition operator for compos-
ing the results obtained from the sub-problems in order to obtain a solution of
the original problem.

In terms of program executions, a decomposition can be viewed as a way a
proof of verification splits the behaviour, i.e. the set of all execution traces of a
program, in constructing the proof. Consider a safe version of the code in Fig. 1
where the assertion in bar is changed to z ≤ 10. A safety proof for the pro-
gram can be constructed hierarchically by using the following summaries for foo
and bar: Sumfoo((y, g6), (r, g7)) = (r=y+1∧ g6=g7) and Sumbar((z, g8), (g9)) =
(g9 ⇒ z ≤ 10). Then, the proof for main can be constructed using the recur-
sive Algorithm 1. The proof for the leaves (foo and bar) involves showing their
transition functions imply their respective summary. Proof composition for a
non-leaf procedure will use the caller summaries to similarly construct a proof
(a summary) for the caller. In our example, the program is indeed proved safe
as the algorithm constructs a Summain, which, in this case, can be a suitable
2 MAX denotes the maximum possible value in the type of y.
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Algorithm 1. Composition operator for summaries
1: procedure Compose(f)
2: for all i ∈ CSf do � CSf are the call sites in procedure f
3: Sum fn(i) ← Compose(fn(i)) � fn(i) is the procedure called at call site i

4: Sumf ← proof (f) � uses Sum fn(i), i ∈ CSf and proof composer operator
5: return Sumf � Sumf can be cached

abstraction of the transition function for main, that is not false, while checking
that the constructed summaries verify all the embedded properties.

For sequential programs, decompositions can be vertical or horizontal. A
vertical decomposition usually focuses on entire execution traces and splits the
behaviour of the program into subsets of end-to-end traces, e.g. program slic-
ing [16]. A horizontal decomposition is usually based on a syntactic decompo-
sition of the program e.g. into procedures. This paper focuses on solving the
refutation problem with horizontal decompositions.

The challenge in automating horizontal compositional verification lies in syn-
thesising a set of precise summary predicates for the procedures in the call graph.
Note that in the program in Fig. 1, it was essential to constrain the input z to
bar to be (z ≤ 1) to get a proof. This effort is made harder if the code has loops,
which require invariants and use of abstractions. The calling contexts and sum-
maries can be mutually dependent even for non-recursive programs. In general,
one requires iterative fix-point computation on the call-graph structure, possi-
bly using abstraction and refinement. A pre-requisite for performing abstraction
refinement is the ability to refute safety and check for spurious counterexamples
also in a modular and efficient fashion, which is the goal of this paper.

A Practical View of the Modular Refutation Problem. Consider the example in
Fig. 1 in Sect. 2. This program is unsafe because when bar is called the actual
argument to it that takes the place of z can at most be only 1. The question is if
we can arrive at this refutation modularly. Analysing procedure bar in isolation
indeed gives a counterexample, which could be possibly spurious.

Instantiated on the example in Fig. 1, a refutation involves checking ¬∀z, g8 :
g8 ⇒ (z > 10). A counterexample could be g8∧z = 5, for example. The question
is now how to decide whether this counterexample is spurious or not, and to
find a valid counterexample if one exists. For instance, z = 5 turns out to be
spurious if we consider the whole program because it clashes with x0 < 0 in
main. However, z = −8 would be a valid counterexample.

The set of local counterexamples found in a procedure f might contain many
counterexamples that are spurious for the whole program, i.e. they are infeasible
from the entry point of the program. A definite answer to this question cannot
be given by looking at the local problems alone, but only by analysing the
global one. This is the reason why refutation in horizontal decompositions is
hard — unlike refutation in vertical decompositions where a refutation of the
local problem implies the refutation of the global one.
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Intuitively, the negation of the assertion has to be hoisted up along the error
path to the entry point of the program. If the obtained weakest precondition for
the violation of the assertion is not false, then the counterexample is feasible.
Propagating up the counterexample itself is not sufficient to decide spuriousness
as illustrated above.

4 Formalising Horizontal Compositional Refutation

In this section we formalise the problem of safety refutation for sequential pro-
grams. To simplify the presentation we focus on loop-free programs. The formal-
isation for programs with loops is structurally similar, but in addition, requires
the handling of invariants, which is orthogonal to the compositional aspect.

We give three different formalisations – the first corresponds to a monolithic
approach, and the remaining two correspond to compositional approaches.

4.1 Monolithic Safety Refutation Problem

For non-recursive programs, since one can always inline every procedure call at
its call site, we can replace every call by recursively inlining its body. Then, to
refute safety we have to show unsatisfiability of the following formula:

∀X̂ :
∧

j∈CS ginfentry ∧ Tfn(j)(x in
j ,x out

j ) ∧ InlineSums fn(j) ⇒ Props fn(j)(x j) (1)

where

– InlineSumsf is
∧

i∈CSf
InlineSum fn(i)(x

p in
i ,x p out

i ),
– InlineSumf (x in

f ,x out
f ) is Tf (x in

f ,x out
f ) ∧ InlineSumsf ,

– X̂ is the entirety of variables in (1),
– and the conjunction with ginfentry states that the entry procedure is reachable.3

Alternatively, we can write:

∃
for all f∈F

︷ ︸︸ ︷
Sumf , . . . :

∧
f∈F ∀Xf :(

ginfentry ∧ Tf (x in
f ,x out

f ) ∧ Sumsf =⇒ Propsf (x f )
)

∧ (
Tf (x in

f ,x out
f ) ∧ Sumsf ⇐⇒ Sumf (x in

f ,x out
f )

)
(2)

where Sumsf is
∧

i∈CSf
Sumfn(i)(x

p in
i ,x p out

i ).
This formulation uses a predicate Sumf to exactly express the behaviours

of each procedure f . (1) and (2) are equisatisfiable, i.e., 1 is satisfiable iff 2
is satisfiable. The existential quantifier in (2) can be uniquely eliminated by
recursively replacing the Sumf predicates by left-hand side of the equivalence in
the last line in (2), obtaining (1). Note that solving (1) is NP-complete, whereas

3 This amounts to using Tfentry [true/gin
fentry ] as the transition relation of fentry .
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solving (2) is PSPACE-complete. However, (1) may be exponentially larger (in
the number of variables) than (2).

Both versions are monolithic because they consider the entire program as a
whole. In particular, (2) finds summaries globally, i.e. for the whole program.

Also note that, proving unsatisfiability of (2) shows the inexistence of a ver-
ification proof, but it does not directly allow us to derive a counterexample in
terms of an execution trace because of the universal quantification of the vari-
ables. Moreover, showing unsatisfiability of (2) is difficult because it involves
proving the inexistence of summary predicates. For this reason, many practical
techniques, such as SAT-based Bounded Model Checking use (1) (considering
bounded unwindings for programs with loops in order to make them loop-free).
Note that negating (1) results in an existentially quantified problem, whose sat-
isfiability witnesses a refutation in the form of values for the variables X̂.

However, solving (1) monolithically is often intractable. Therefore, we want
to decompose the problem into smaller subformulae that are faster to solve.
(2) is amenable to decomposition, but it does not allow us to approximate the
summaries with the help of abstractions (because of ⇔ in last line). Therefore
we give a third formulation of the monolithic problem that additionally uses
calling contexts. The calling context for the entry procedure is ginfentry .

∃
for all f∈F

︷ ︸︸ ︷
Sumf ,CallCtx f , . . . :

∧
f∈F ∀Xf :(

CallCtx f (x in
f ,x out

f )∧
Tf (x in

f ,x out
f ) ∧ Sumsf =⇒ Propsf (x f )∧

Sumf (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx fn(j)(x

p in
j ,x p out

j )
)

(3)

Equation (3) is also equisatisfiable with (2), although (3) admits more solutions
to Sumf including those that are over-approximations adequate to prove the
properties. To see this, if (2) is satisfiable, the precise solution of (2) for Sumf

can be used to satisfy (3) by plugging it in for both CallCtx f and Sumf in (3). If
(2) is unsatisfiable, then so is (3) because one or all behaviour included in Sumf

solution of (2) violates one of the properties. Then, every solution to (3) would
violate the properties as they are over-approximations of the precise summaries.

4.2 Modular Safety Refutation Problem

Let us now have a look at the horizontal decomposition following the procedural
structure of the program. The goal is to compute the summaries Sumf for each
f while considering only f and the summaries for the procedures called in f .
We can attempt at achieving this by flipping the existential quantifier (∃Sumf )
and the top-level conjunction (

∧
f∈F in (3)). However, this does not result in

an equisatisfiable formula because existential quantification does not distribute
over conjunctions. Therefore, we need an alternative formulation to solve the
existential query per procedure. One approach is to search for a minimal solution
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for summaries and calling contexts occurring within each calling site of procedure
f for a given context for f that satisfies all the embedded properties in f as shown
in 4. I.e. for each f ∈ F we have:

minSumf ,

for all j∈CSf

︷ ︸︸ ︷
CallCtx j , . . . : ∀Xf :(

CallCtx f (x in
f ,x out

f )∧
Tf (x in

f ,x out
f ) ∧ Sumsf =⇒ Propsf (x f )∧

Sumf (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx j(x

p in
j ,x p out

j )
)

(4)

minP : F (P ) is defined w.r.t. implication order for a formula F involving
predicates P , i.e. as ∃P : F (P ) ∧ ∀P ′ : (P ′ ⇒ P ) ⇒ ¬F (P ′). Note that minP
is not unique in a partial order. (4) gives a solution for Sumf and the calling
contexts for all embedded calling sites relative to a CallCtx f , assuming there
is a minimal solution for all embedded procedures. But, we have not broken
the dependency between calling contexts and summaries. Solving this problem
requires computing a fixed point in the composition operator (presented below)
and computing minimal solutions for the summary and calling context predi-
cates. That is, what has been an existential second-order satisfaction problem
in (3), has now become a second-order minimisation (∃∀) problem. The reason
for this is that the mere existence of a solution for Sumf and CallCtx fn(j) does
not prove that the overall verification problem holds. Therefore, we pessimisti-
cally have to assume that we require the exact calling contexts and summaries
in order to decide the problem during proof composition.

The proposed proof composition operator (compose) with calling contexts is
shown in Algorithm 2 and is more complex than Algorithm 1. The idea is to use
the call graph of the program to compute the minimal calling context for each
call site of procedure call of f piecewise in a top-down fashion use that calling
context to compute a piecewise minimal summary for f for that call site (note
the conjunction on Line 12 of Algorithm 2) consistent with all the properties in
f . The piecewise summaries and contexts are combined disjunctively as they are
built, which takes care of the dependency between summary and calling contexts.
In the algorithm, each time compose is called recursively for f , it is called with
a new piece of entry calling context for f and (4) is solved with summaries
computed up to that point for the procedures in the body of f . Solving the
equation smay result in new contexts for each call site (if any) inside f and a
new piece of summary for f all of which are accumulated.

For a program with entry fentry , a proof can be constructed by calling
compose(fentry , ginfentry ). The calling context ginfentry means that the entry proce-
dure is reachable. The calling context of all embedded functions are initialised
to false as that is the least element and also makes everything following the first
call site unreachable. The summary for each f is initialised to ¬goutf , meaning
that its exit is not reachable and hence execution cannot continue beyond any
call to f . This initial value for summary has the effect of blocking analysis of all
functions following f in the code until a piecewise summary is computed for f .
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Algorithm 2. Composition operator with calling contexts
1: global Sumf ← ¬gout

f for all f ∈ F
2: CallCtxf ← false for all f ∈ F
3: procedure compose(f , CallCtx∗

f )
4: while true do � Repeat until fixed point reached

5: Solve (4) for f with CallCtx∗
f as CallCtx f �

{
obtain Sumf and CallCtx j

for all j ∈ CSf

6: for all j ∈ CSf do � join calling contexts for fn(j)
7: CallCtx fn(j) ← CallCtx fn(j) ∨ CallCtx j(x

in
fn(j), x

out
fn(j))

8: if CallCtx fn(j) for all j ∈ CSf has not changed then
9: return Sumf

10: for all j ∈ CSf for which CallCtx fn(j) has changed do
11: Sumj ← compose(fn(j),CallCtx j(x

in
fn(j), x

out
fn(j)))

12: Sum fn(j) ← Sum fn(j) ∨ (CallCtx j(x
in
fn(j), x

out
fn(j)) ∧ Sumj)

13: � join summaries for fn(j)

Observe that, as opposed to monolithic (3) where the fixed point computation
for resolving the mutually dependent summary and calling context predicates
(cf. [23]) is done within the solver for solving the monolithic formula, the fixed
point in the modular version must be computed during the composition of the
individual results. I.e. we have to saturate the Sumf and CallCtx f predicates.

Theorem 1. We obtain Sumfentry = false using Algorithm 2 iff (3) is unsatisfi-
able. I.e. horizontal decomposition is sound and complete.

Proof (sketch): We prove this by induction on the depth (k) of the top-level
function in the call graph of the program.

For the base case (k = 0), there is only one procedure call - the call to the
entry procedure, fentry . Since the calling context of fentry is ginfentry , and there are
no other procedure calls, it is evident that computing Sumfentry from Algorithm 2
effectively reduces to finding it by solving (4) (line 5 of Algorithm 2), with Sums
and CallCtx j not present. This makes Eqs. (4) and (3) identical and hence the
theorem follows trivially.

Proceeding with the induction step for k+ 1 assuming the theorem holds for
all functions in the call graph with depth ≤ k. That is, we assume as hypothesis
the summary computed by compose satisfies theorem for all function calls in
the body of f for all contexts. Suppose (3) is unsatisfiable. We will argue that
Algorithm 2 must return false.

If (3) is unsatisfiable then there must be at least one function (either the
top-level function or something deeper in the call graph) that is unsatisfiable.
Suppose it is one of the called functions, say h, that is unsatisfiable. Then, by our
induction hypothesis, the algorithm will return false for Sumh. The moment one
of the embedded summaries becomes false our algorithm immediately saturates
because Algorithm 2 is trivially satisfiable with minimal solution of false for
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Sumf . If (3) is unsatisfiable because the top-level function f is unsatisfiable,
then it must be because Propsf is inconsistent with Tf . In this case, Algorithm 2
can only return false.

4.3 Modular Safety Refutation with Witnesses

(4) suffers from the same problem as (3) that we cannot extract counterexamples
in terms of an execution trace in case of a refutation because the formulae
are unsatisfiable for refutations. Therefore we give next a formulation and a
corresponding composition operator that produces refutation witnesses. The idea
here is to compute piecewise contexts and summaries backwards starting from
exit points of each procedure, much like a weakest-precondition computation
works. Additionally, we start with negation of properties and compute maximal
summary and contexts that possibly lead the program to an error state. In other
words, a summary computed for f represent maximal symbolic witness to all
the states reachable to safety violation. Such a summary can be obtained as
maximal solutions to the equation shown in 5.

maxSumf ,

for all j∈CSf

︷ ︸︸ ︷
CallCtx j , . . . : ∀Xf :

Sumf (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx j(x

p in
j ,x p out

j ) =⇒ (CallCtx f (x in
f ,x out

f ) ∨ ¬Propsf )∧
Tf (x in

f ,x out
f ) ∧ Sumsf

(5)

where maxP.F (P ) is defined as usual: ∃P.F (P ) ∧ ∀P ′.(P ⇒ P ′) ⇒ ¬F (P ′).
(5) describes maximal solutions for the summary and calling contexts that

are contained in the behaviour of the procedure. That is the reason the predicates
for the summary and the calling contexts (for the called functions) appear on the
left-hand side of the implication and the transition relation is on the right-hand
side, i.e. reversed in comparison with (4). The disjuncts in the first part of the
consequent of (5) are the sources of safety violations: these are safety violations
in the caller (which are propagated by CallCtx f ), and safety violations in f itself
(¬Propsf ). Safety violations in callees are propagated through the summaries.
Both these are constrained to be consistent with the transition relation of f (with
current summaries plugged in for the called functions), which ensures spurious
errors are not propagated upwards.

We use the composition operator as in Algorithm 2, but with the following
modifications to the initialization. We call this composition operator compose ′

or Algorithm 2’ from now on.

– Initially, Sumf ← ¬ginf for all f ∈ F , meaning that the entry of f is not
backwards-reachable.

– In Line 5, we solve (5).

The calling contexts for all embedded functions are initialized to false as
before except for the top-level function fentry. A refutation is constructed by
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computing compose ′(fentry ,¬goutfentry
). The calling context ¬goutfentry

of fentry means
that we cannot reach the regular exit of the entry procedure if there is a property
violation. If there are no property violations at this level (or no properties),
then this choice for top-level context would still work as the second conjunct in
Eq. 5, which denotes the transition relation, would ensure the precise contexts
propagated to the first embedded call site from exit point. The choice of initial
summary of ¬ginf for all embedded functions will ensure that the summaries are
generated in order of dependency of function calls backward from the exit point.

Theorem 2. We obtain Sumfentry using Algorithm 2’ such that ∃xin,xout :
ginfentry ∧ Sumfentry (x

in,xout) iff (3) is unsatisfiable.

Note that the conjunction with ginfentry projects the summary on the inputs,
which must be satisfiable to have a refutation.

Proof (sketch): In contrast to Algorithm 2 with (4), Algorithm 2’ uses (5) that
computes the maximal solutions for the summary and calling contexts contained
in the program behaviour. The summaries and calling contexts are computed
such that their projection on the input variables of a procedure is the weakest
precondition w.r.t. the properties (Props), whose complement is the refutation.
Thus at the entry function, fentry , we get Sumfentry (x

in,x out) as weakest pre-
condition for the negation of the property such that ginfentry ∧ Sumfentry (x

in,x out)
is satisfiable iff (3) is unsatisfiable.

4.4 Worked Example

Let us consider the example in Fig. 1, but with the conditional in line 2 being
x < 10. We start with Summain((x0, g0), (g5)) = ¬g0, Sumfoo((y, g6), (r, g7)) =
¬g6, Sumbar ((z, g8), (g9)) = ¬g8, and CallCtx∗

main((x0, g0), (g5)) = ¬g5,
CallCtx foo((y, g6), (r, g7)) = false, CallCtx bar((z, g8), (g9)) = false.

The composition operator is called for main. We solve (5):

maxSummain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x0, g1), (x1, g2))∧
CallCtx foo1

((x1, g2), (x2, g3))∧
CallCtx bar ((x2, g3), (g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2 ∧ ¬g3

We obtain the following solutions for the predicates: CallCtx bar = ¬g4,
CallCtx foo1

= ¬g3, CallCtx foo0
= ¬g2, Summain = ¬g0 ∧ ¬g5.

Then we recur into bar with (5) instantiated as:

maxSumbar : ∀z, g8, g9 :
Sumbar ((z, g8), (g9)) =⇒ (¬g9 ∨ ¬(g8 ⇒ z > 10))∧

(g9 = (g8 ∧ z > 10))
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Hence, we get for Sumbar : (g8 ⇒ ¬(z > 10)) ∧ ¬g9.
In Line 6 of Algorithm 2’, (5) for main is then:

maxSummain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x0, g1), (x1, g2))∧
CallCtx foo1

((x1, g2), (x2, g3))∧
CallCtx bar ((x2, g3), (g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2∧
(g3 ⇒ ¬(x2 > 10)) ∧ ¬g4

which results inCallCtx bar = ¬g4,CallCtx foo1
= g3 ⇒ ¬(x2 > 10),CallCtx foo0

=
¬g2, Summain = ¬g5. Hence, CallCtx foo is updated to g7 ⇒ ¬(r > 10).

In the next iteration of compose(main) we recur into foo1 and solve:

maxSumfoo : ∀y, g6, r, g7 :
Sumfoo((y, g6), (r, g7)) =⇒ ((g7 ⇒ ¬(r > 10)) ∨ ¬true)∧

(g6 = g7) ∧ (r = y + 1)

Thus, Sumfoo is updated to (g6 ⇒ ¬(r > 10) ∧ g7) ∧ (r = y + 1).
Then in Line 6 in compose(main), we solve

maxSummain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x1, g2))∧
CallCtx foo1

((x2, g3))∧
CallCtx bar ((g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
(g1 ⇒ ¬(x1 > 10) ∧ g2) ∧ (x1 = x0 + 1)∧
(g2 ⇒ ¬(x2 > 10) ∧ g3) ∧ (x2 = x1 + 1)∧
(g3 ⇒ ¬(x2 > 10)) ∧ ¬g4

which gives us Summain = (g0 ⇒ ¬(x0 > 8)) ∧ ¬g5. The calling contexts
CallCtx bar = ¬g4, CallCtx foo0

= g2 ⇒ ¬(x1 > 10), and CallCtx foo1
= g3 ⇒

¬(x2 > 10) do not result in an update of the calling contexts for foo and bar
(Line 8 in Algorithm 2). g0 ∧Summain is satisfiable, hence, x ≤ 8 is a (maximal)
refutation witness.

5 Examples of Refutation Algorithms

Algorithm 2’ is not only applicable to straight-line programs with multiple pro-
cedure invocations, it can still be used for programs with loops by introducing
invariants into the formula for the modular subproblem (5). However, in general
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it is hard to solve the problems without using approximations by bounding the
number of unwindings and/or using abstractions for computing the predicates
involved.

In the previous section, we have described the elements necessary for compo-
sitional, horizontal refutation proofs. In this section, we will give three examples
of algorithms that instantiate this framework (Algorithm 2’), which we have
implemented to compare them experimentally in Sect. 6. We assume that loops
have been unwound a finite number of times before application of these tech-
niques. The difference in the following three techniques lies in the abstractions
that are used to solve for Sumf and CallCtx f in (5). We consider techniques
that use constraint solving to find counterexamples.

5.1 Concrete Backward Interpretation

This technique is the one sketched in the example at the beginning of Sect. 3.
Formally, we use the domain of predicates that track a single constant value for
each variable, defined as follows: Let P (x ) = {false} ∪ {x = d | di ∈ Dom(xi)}
with the domain Dom(xi) of variable xi, then we admit the following predicates
for summaries and calling contexts: Sumf ∈ {ginf ⇒ p | p ∈ P (x in

f )} and
CallCtx f ∈ {goutf ⇒ p | p ∈ P (x out

f )}. We explain now in an example how
Algorithm 2’ proceeds using this domain.

Example. Let us consider the example in Fig. 1 in Sect. 2. We start with
compose ′(main,¬g5). We obtain the calling contexts ¬g2,¬g3,¬g4 for foo0, foo1,
bar , respectively. We recur into compose ′(bar ,¬g9). We have to solve (5) where∑

bar is instantiated with the above domain:

∃d : ∀z, g8, g9 :
(g8 ⇒ z=d) =⇒ (¬g9 ∨ ¬(g8 ⇒ (z > 10)))∧

(g9 = (g8 ∧ z > 10))
(6)

The partial order of our domain has only two levels false and the values for d .
Hence, we can implement max by ∃d ; if there is no d then p = false. A constraint
solver may return, for example, d = −4; Sumbar is hence g8 ⇒ (z = −4). This
is an under-approximative summary of bar w.r.t. property violation.

In the next iteration of compose ′(main,¬g5) we solve:

∃d0, . . . , d3 : ∀x0, g0, . . . , g5 :
(g0 ⇒ x0=d0)∧
(g2 ⇒ x1=d1)∧
(g3 ⇒ x2=d2)∧
(g4 ⇒ d3) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2∧
(g3 ⇒ (x2 = −4)) ∧ ¬g5

(7)
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and obtain CallCtx foo1
= (g3 ⇒ (x2 = −4)). compose ′(foo, g7 ⇒ (r = −4))

returns g6 ⇒ (y = −5) for Sumfoo1
. Note that the boolean variable d3 stands

for the reachability of the exit of bar. Since bar has no return value, this is how
its exit is encoded. Proceeding similarly we get compose ′(foo, g7 ⇒ (r = −5)) =
(g6 ⇒ (y = −6)); and finally Summain = (g0 ⇒ x0 = −6). Hence, we have found
a true global counterexample.

5.2 Abstract Backward Interpretation

Abstract backward interpretation computes sufficient preconditions to safety vio-
lations, i.e. negations of necessary preconditions to safety. The size of the sum-
maries can vary from very concise to larger than the procedure, depending on
the abstraction.

There are a couple of techniques to implement such abstract interpretations
that are distinguished by the way abstract preconditions are inferred, e.g. (clas-
sical) abstract domain transformers (e.g. [20]), template-based synthesis (e.g.
[15]) or interpolation (e.g. [1]).

We are going to use the template-based synthesis technique used in [3] to solve
(5). We know how to compute over-approximative abstractions with that tech-
nique. Hence, we use an over-approximation to compute an under-approximation
(similar to computing max f by −min(−f)). This means we compute predicates
Sum ũ

f and CallCtx ũ
j whose negations are Sumf and CallCtx j , respectively. This

is done by solving the following formula in place of (5) in Algorithm 2’.

minSum ũ
f ,

for all j∈CSf

︷ ︸︸ ︷
CallCtx ũ

j , . . . : ∀Xf :(
CallCtx ũ

f (x in
f ,x out

f ) ∧ Sums ũf∧
Tf (x in

f ,x out
f ) ∧ Propsf (x f ) =⇒ Sum ũ

f (x in
f ,x out

f )∧
∧

j∈CSf
CallCtx ũ

j (x p in
j ,x p out

j )
)

(8)

This formula is derived from (5) by negating (CallCtx f ∨ ¬Props) on the
right-hand side of (5), which yields (CallCtx ũ

f ∧ Props), reversing the implica-
tion, and minimising to obtain an over-approximation for Sum ũ and CallCtx ũ.
Similar approaches are used in [5,10]. Since convex domains are too impre-
cise for this purpose, we use a disjunctive domain [22]. For our experiments
we used intervals as a base domain. Formally, let P (x ) = {∨k d

′
k ≤ x ≤

dk | di, d
′
i ∈ Dom(xi), k ≥ 0}, then Sumf ∈ {ginf ⇒ p | p ∈ P (x in

f )} and
CallCtx f ∈ {goutf ⇒ p | p ∈ P (x out

f )}. Our implementation also ensures that
arithmetic overflows create new disjuncts in order to avoid precision loss. The
second source of additional disjuncts that we take into account are Lines 7 and 12
in Algorithm 2’.

Example. For the example in Fig. 1, we compute compose ′(main,¬g5). We solve
(8) with CallCtx ũ

main = g5 and get CallCtx ũ
bar = g4, i.e. CallCtx bar = ¬g4.
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We recur into compose ′(bar ,¬g9), i.e. CallCtx ũ
bar = g9 We have to solve (8)

instantiated with our domain.

∃d, d′ : ∀z, g8, g9 :
(g9 ∧ true∧
(g9 = (g8 ∧ z > 10)) ∧ (g8 ⇒ (z > 10)) =⇒ (g8 ⇒ (d ≤ z ≤ d′)))

(9)

Note that Sums ũf is true because the initial under-approximations are false—the
superscript ũ flags predicates that carry negations of under-approximations. We
get Sum ũ

bar = (g8 ⇒ (11 ≤ z ≤ MAX )), i.e. Sumbar = (g8 ∧ (MIN ≤ z ≤ 10)).
MAX and MIN denote the maximum, resp. minimum, possible value for the
type of z.

We proceed similarly. Finally, compose ′(main,¬g5) computes Sum ũ
main =

(g0 ⇒ (9 ≤ x0 ≤ MAX )), i.e. Summain = (g0 ∧ (MIN ≤ x0 ≤ 8)).
Note that (8) expresses an over-approximation of good states; the comple-

ment is therefore guaranteed not to contain any good states, but only bad and
unreachable states, and hence no strict under-approximation of bad states. How-
ever, this does not matter since we project Sumfentry on the initial condition (see
Theorem 2) to obtain a true under-approximation of inputs that violate a prop-
erty.

Abstract backward interpretation is not limited to bounded unwindings of
the transition relation, but can also be used for programs with loops (cf. [5,11])
by calling invariants into play in (8).

5.3 Symbolic Backward Interpretation

This technique computes the exact weakest precondition for the bounded prob-
lem. The technique is complete for loop-free programs. However, the size of the
obtained summaries is in the same order as the procedure size in the worst case.

The domain used are sets of variables, so-called dependency sets. These sets of
variables, X in

f , Xout
f , Xp in

j , Xp out
j , describe which variables should be kept as

relevant part of the summary. We then use them to compute an exact summary
as the following predicate Sumf (x in,x out):

∃Xf \ (X in
f ∪ Xout

f ∪
for all j∈CSf

︷ ︸︸ ︷
Xp in

j ∪ Xp out
j ∪ . . .) :

(CallCtx f (x in,x out) ∨ ¬Propsf ) ∧ Tf (x in,x out) ∧ Sumsf

(10)

We implement the existential quantification in (10) by Gaussian elimination
to eliminate as many of the intermediate or irrelevant variables as possible. After
elimination the summary contains only variables that have a dependency on the
property Propsf , on x out, or on the placeholder predicates, which are going to
be replaced by summaries during the composition. The elimination can have
positive and negative effects on the formula size depending on non-determinism
and control flow paths in the procedure.
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The composition operator is the same horizontal composition operator as in
the two previous techniques. Context-sensitivity is exploited exactly in the same
way as in the previous two techniques. The calling context at call site j is the set
of output variables Xp out

j that a procedure call backward-transitively depends
on the given property. The resulting calling context dependency set Xout

f is then
used for eliminating intermediate variables in (10) in addition to the dependency
sets obtained from Sumsf , and Propsf . The set of input variables X in

f that have
not been eliminated is the dependency set Xp in

f of the summary Sumf .
Any satisfiable assignment to x in

fentry
in the formula obtained by Gaussian

elimination of the summary predicates in the entry function is a feasible global
refutation.

Example. For example, in Fig. 1 the symbolic backward interpreter starts from
the exit of main with Xout

main = ∅ to start with. As it arrives in bar, it retains
the negation of the assertion ¬(g8 ⇒ (z > 10)) and updates the dependency
set to X in

bar = {z, g8}. On simplification, this gives the summary for bar as
g8 ∧ ¬(z > 10).

Then the technique proceeds to the caller of bar, replacing the variables in
the dependency set by the parameter passed, i.e. Xp out

foo1
= {x2, g3}. Then it

recurs into the call to foo. The statement r = y + 1 gives the summary of foo as
r = y + 1 and the dependency set {y, g6}. The next call to foo has already been
analysed with the same dependency set, hence there is no need to recur.

Proceeding in the main function, we finally get the summary for main as (g1 =
g0∧(x0 < 0))∧foo0((x0, g1), (x1, g2))∧foo1((x1, g2), (x2, g3))∧bar((x2, g3), (g4)).
Substituting the placeholder predicates by their respective summaries (variables
are renamed) allows us to evaluate the summary for main. Since it is satisfiable,
we have found a global refutation.

6 Experiments
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Fig. 2. Comparison on product-lines benchmarks

We performed a number of
experiments to evaluate com-
positional refutation techniques
in comparison with monolithic
approaches.

Implementation. We have imple-
mented these safety refutation
techniques as an extension to
2LS [3,24]. 2LS is a verification
tool built on the CPROVER
framework [9], using MiniSAT
2.2.1 as the backend solver
(although other SAT and SMT
solvers with incremental solving
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support can also be used). We limit resources to 900 s CPU time and 13 GB
memory per benchmark. To aid reproducibility, we provide4 the implementation
sources along with the compilation instructions, the benchmarks, and scripts
that can be used to run the tool on the benchmarks. As explained in Sect. 5,
the three techniques are instances of a context-sensitive inter-procedural analysis
that traverses the callgraph backwards and propagates summaries and calling
contexts. For the concrete interpretation, values for non-deterministic choices are
picked by the SAT solver. For the abstract interpretation we use disjunctions of
intervals.

Benchmarks. We selected the unsafe examples (265 benchmarks) from the
product-lines collection of the SV-COMP 2017 benchmarks set for our exper-
iments. These benchmarks have a reasonably complex procedural structure (83
procedures per benchmark on average), which makes it suitable to test the effec-
tiveness of our techniques. We set an unwinding depth of 5 for all the bench-
marks, across all the techniques. The chosen depth might have been, in some
cases, higher than what would be necessary to find a refutation. However, the aim
of our experiments was to compare the scalability of the techniques in general,
and not to find out the least amount of time needed to solve a given benchmark.

Results. Figure 2 shows the results plotting for each technique the cumulative
time (y-axis) it takes to solve the given number of benchmarks (x-axis). The
longer the line for a technique extends to the right the more benchmarks were
solved within the resource limits. These results show some interesting tenden-
cies. We observe that the symbolic backward interpretation performs best. It is
complete, but could potentially degrade into a monolithic analysis if summaries
cannot be sufficiently simplified and reused. But on this benchmark set it works
quite well on a certain number of benchmarks. The abstract backward interpreta-
tion is very fast on a couple of benchmarks, but then remains inconclusive. This
is supposedly due to the imprecision introduced by the weak abstract domain
that we use. Yet, this is encouraging that by a clever choice of abstractions one
could outperform the symbolic backward interpretation. The concrete backward
interpretation succeeds only on very few benchmarks and is surprisingly slow.
An explanation for this is that it is required to make non-deterministic choices
that may turn out to be bad choices and make a counterexample infeasible.
Moreover, the summaries that it computes usually do not generalise beyond the
procedure invocation they were generated for. Hence, this technique is likely to
degrade into following the entire execution path, spoiling the benefits of mod-
ularity while exhibiting the drawbacks of abstraction. The monolithic analysis
(BMC), which is based on full inlining is slowest but solves almost as many
benchmarks as the abstract one.

4 https://github.com/kumarmadhukar/2ls/tree/atva17.

https://github.com/kumarmadhukar/2ls/tree/atva17
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7 Conclusion

We investigated compositional refutation techniques in horizontal, e.g.
procedure-modular, decompositions of sequential programs. We showed how to
derive a compositional refutation framework step by step from the monolithic
problem. We also compared the completeness properties of concrete, abstract
and symbolic modular refutation approaches. Our experiments show that com-
positional refutation techniques have an advantage over monolithic approaches,
however, not all tested approaches perform equally well because of their varying
completeness. Using a portfolio of fast incomplete techniques and slower com-
plete ones may ensure that modular techniques are always at least as fast as
monolithic ones in practice.

Open Questions. Modular analyses should be independent of a program’s syntac-
tic structure because real-world programs are not written in a nice and balanced
way that would enable efficient modular analysis. It would be worthwhile to
explore semantic decompositions into modules in order to make these techniques
scale on real-world programs. W.r.t. the inter-procedural backward analysis, it
remains to be investigated how to handle recursion.

Moreover, it would be interesting to look into compositional refutation in
termination analysis. Also there, spuriousness of local refutations can occur due
to lack of context information: To find a counterexample to termination one
needs to find a stem from the entry point. Compositionality in this context has
been explored in the Ultimate tool [17]. We would also consider performance
comparisons with testing, i.e. dynamic refutation techniques (random, directed,
concolic, etc.) to be beneficial to advance research in static refutation techniques.

Related Work. Compositional automated verification approaches have been con-
sidered in the tools Whale [1] and FunFrog [26], for example. Horn clause encod-
ings were used in [18]. These tools eventually use interpolation to compute
abstractions. Under-approximating precondition inference techniques have been
proposed for polyhedra [20] and with the help of bit blasting and loop iteration
estimation [4]. All these techniques can be used in our setting, however, their
completeness properties remain to be evaluated. Completeness considerations
[21] have been conducted for compositional LTL model checking [7,8] of (paral-
lel) compositions of (infinite-) state transition systems. Since the decomposition
of sequential programs can be encoded into a composition of parallel programs
(with appropriate synchronisation), their completeness results are expected to
hold in our setting. Compositionality has also been explored in the context of
dynamic test generation to achieve scalability by memoizing symbolic execution
sub-paths as test summaries [13]. This has given rise to an incremental approach
for statically validating symbolic test summaries against code changes [14]. In
our framework memoization is naturally handled by the composition operator.
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Abstract. This paper presents Gradient-Π, a novel heuristics for find-
ing the variable ordering of Decision Diagrams encoding the state space
of Petri net systems. Gradient-Π combines the structural informations
of the Petri net (either the set of minimal P-semiflows or, when available,
the structure of the net in terms of “Nested Units”) with a gradient-based
greedy strategy inspired by methods for matrix bandwidth reduction.
The value of the proposed heuristics is assessed on a public benchmark
of Petri net models, showing that Gradient-Π can successfully exploit
the structural information to produce good variable orderings.

Keywords: Decision diagrams · Variable ordering · Petri nets

1 Introduction

The use of binary decision diagrams [8] and their variants is at the base of the
so-called symbolic model-checking techniques. These techniques have given an
incredible boost to state-based verification of systems over the last 30 years
and have given rise to a number of successful tools for automatic verification of
systems, in particular for discrete event dynamic systems (DEDS) [9]: systems
in which the state is composed by a set of variables, taking values on a set of
finite and discrete values, and events that change the state of the system.

It is well-known that the size of the decision diagram representation of a
state space heavily depends on the chosen order of the variables that represent
the state of the system, and that the problem of finding such an ordering is
NP-complete. Many heuristics for finding “good” variable orderings have been
proposed in the past (see for example the surveys in [23,26]) and they are often
crucial for the performances of model-checking tools and of decision diagram
libraries [19].

Variable ordering can be static or dynamic, or, more precisely, can be used
statically or dynamically. In the first case an ordering is computed before state
space generation and it is kept fixed through the whole generation procedure,
while in the second case a new order can be computed and applied at run-time if
the decision diagram size grows too large. In this paper we concentrate on static
ordering and we aim at understanding if and how the structure of the system
can be exploited for devising a good variable ordering.
c© Springer International Publishing AG 2017
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To answer this question we need to place our research in a specific context, as
it is difficult to draw conclusions on the efficacy of a heuristics without referring
to a specific state-space generation technique and to an appropriate benchmark
of systems on which to exercise our findings. As system specification language
we consider Petri Nets, that have proven useful in modelling a large variety
of DEDS, from hardware [24] to business process models [1]. The evaluation
of the proposed heuristics is based on a benchmark extracted from the public
model set of the Model-Checking Contest (MCC2016) [14], which includes 664
model instances. We use symbolic model-checking based on Multi-terminal Dci-
sion Diagrams (MDDs) as implemented in the GreatSPN tool [4,5] based on the
MDD library Meddly [7]. We assume that MDD levels encode Petri net places,
i.e. we do not consider merging multiple places into a single level like in [11].
The state space generation algorithms employs saturation [10].

Another reason for choosing Petri nets is the large amount of literature on
structural analysis techniques [12], that is to say techniques that allow to check
properties of the state space (like invariant properties of the variables, finiteness
of the state space and liveness of events) without building the state space itself.

Structural informations are at the base of many of the heuristics designed for
the analysis of (Petri net models of) circuits, which exploit the locality of the
inter-dependent variables, or the input-output dependencies, as the widely used
heuristics based on fan-in [20]. However, only a subset of these heuristics can be
used effectively on general Petri net models, which usually have cyclic behaviour
and no clear input/output dependencies. Popular static variable ordering heuris-
tics applied to Petri nets include, among others: The Noack and Tovchigrechko
[16] methods; The Force and the Mince heuristics [3]; Bandwidth-reduction tech-
niques like the Sloan method [27].

In a previous paper [6] we evaluated 14 different heuristics on 386 model
instances (belonging to 62 parametric models) taken from the MCC2016 model
set. In that paper we also tested a heuristics called P-chain based on P-semiflows
(which are subsets of places with constant weighted sum of tokens in all reach-
able states) to improve variable ordering heuristics. P-chain showed rather poor
performances, suggesting that the concatenation of P-semiflows which is at the
base of the technique is not enough. In this paper we propose Gradient-Π, a new
heuristics that modifies the bandwidth-reduction method of Sloan to order places
on a subset-basis, using either P-semiflows or Nested Units [15] to provide such
subsets. An extensive benchmark enlights that Gradient-Π has better perfor-
mance than the Sloan method and better than other structural-based methods
like P-chain, as well as various other state-of-the-art variable ordering methods.

Note that Gradient-Π assumes that in the MDD we assign one place per
level. Other techniques have instead used P-semiflows for identifying places to
be grouped in a single level [11] or for state compression for binary decision
diagrams [25]. These technique can be seen as orthogonal to the proposed one.

The paper is organized as follows: Sect. 2 introduces the notation used in the
paper; Sect. 3 describes the Gradient-Π heuristics; Estimation of the heuristics
parameters is done in Sect. 3.1; The effectiveness of the new method is assessed
in Sect. 4. Finally, Sect. 5 concludes the paper.



186 E.G. Amparore et al.

2 Background

This section first reviews the definition of Petri nets [2] and the related notions of
P-semiflows and Nested Units. The section then presents a description of the two
variable ordering algorithms (the Sloan method [27] and the P-chain method [6])
which influenced the definition of the proposed static variable ordering heuristics.

The Petri net (PN) is a graphical mathematical formalism that has been
widely used to model and study real systems in different fields (e.g. communica-
tion systems, biological systems, power systems, work-flow management, . . . ). A
Petri net is a bipartite directed graph with nodes partitioned into places or tran-
sitions. An example of PN is depicted in Fig. 4. Places, graphically represented
as circles, correspond to the state variables of the system, while transitions,
graphically represented as boxes, correspond to the events that determine the
state changes. The arcs connecting places to transitions (and vice versa) express
the relations between states and event occurrences. Each arc is labeled with a
non null natural number representing its “weight”. The state of a PN is usually
called a marking m, a multiset on the set P of places.

Definition 1 (Petri Net). A PN system is a tuple N = (P, T, I−, I+,m0),
where: P is a finite and non empty set of places; T is a finite and non empty
set of transitions with P ∩ T = ∅; I−, I+ : T × P → IN are the input and
output matrices, that define the arcs of the net and that specify their weight;
and m0 : P → IN is a multiset on P representing the initial marking of the net.

A marking m (or state) of a PN is a multiset on P . A transition t is enabled in
marking m iff I−(t, p) ≤ m(p), ∀p ∈ P , where m(p) is the number of tokens in
place p in marking m. Enabled transitions may fire, and the firing of transition
t in marking m yields a marking m′ = m+ I+(t) − I−(t). Marking m′ is said to
be reachable from m because of the firing of t and is denoted by m[t〉m′.

The markings which are reachable from a given initial marking m0 form the
Reachability Set (RS(m0)). The incidence matrix is the matrix C = I+ − I−,
so that Ct,p = I+(t, p) − I−(t, p) describes the effect of the firing of transition
t on the number of tokens in place p. Any left annuller of matrix C, a vector
x ∈ Z |P | solution of the matrix equation xC = 0 is called a P-semiflow.

The set of P-semiflows are at the base of the first notion of “structure” used
in this paper. Indeed if x is a P-semiflow and m any state reachable from the
initial state m0, we can write that x · m = K, where K is a constant value
that can be computed from the initial state, K = x · m0. This suggests that
all the places that are in the same P-semiflow (that is to say the set πx of all
places p with a non-null value of x(p)) have a form of “circular” dependency
and it is advisable to put them close together in the decision diagram [11]. The
intuition is that each P-semiflow usually represents a local sub-component of a
more complex model. The set πx consists of connected places that can be used
to identify a PN subnet, the Petri Net structure that will be at the basis of
the algorithm proposed in the next section. All the P-semiflows of a PN can
be expressed as linear combinations of the set ΠMPS of minimal P-semiflows
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Algorithm 1. Pseudocode of the Sloan algorithm.
Function Sloan:

Select a vertex u of the graph.
Select v as the most-distant vertex to u with a graph visit.
Assign to each vertex v′ a gradient grad(v′) = dist(v, v′).
Initialize visit frontier Q = {v}
repeat until Q is empty:

Remove from the frontier Q the vertex v′ that minimizes P (v′).
Add v′ to the variable ordering l.
Add the unexplored adjacent vertices of v′ to Q.

(MPS). Since the number of MPS can be exponential in the number of places,
their computation is in EXPSPACE. However, on many practical cases, the set
of MPS is much smaller and can be computed in almost linear time [12]. In the
experimental section we shall detail on which models the computation is feasible.

The second notion of “structure” used in this paper is that of nested unit
(NU) which is at the base of Nested-Unit Petri Nets (NUPN) [15]. NUPN are
ordinary Petri nets (all arcs have weight one) with an additional structure of
“nested units”. Units constitute a partition of the set P of places and are char-
acterized by having at most one place of the unit marked in any reachable state.
NUPN have been developed as the target formalism for the translation from
process algebra to Petri nets. Let ΠNU be the set of nested units of a NUPN.

Note that while the structure based on MPS can be computed on (almost)
any net, the structure of NU applies only to NUPN, and is part of the model
definition. This topic will be discussed with more detail in the experimental
section. Both NU and MPS express an important property of mutual dependency
of the involved variables in PN system. In a NU, at most one place can have
a token in any marking. In a MPS, a weighted sum of tokens is constant in
any marking. Therefore, we expect that a variable ordering that groups together
MDD variables corresponding to places in the same NU/MPS should reduce the
MDD size, due to the inter-dependence between the variables [11,25].

The Sloan Algorithm for Static Variable Ordering
The Sloan algorithm [27] is an algorithm to reorder the entries of a sparse
symmetric matrix A around its diagonal. It computes a permutation of the
rows/columns of A such that most of the non-zero entries are maintained as
close as possible to the diagonal. Recently, the work in [21] has shown that
Sloan is a promising algorithm for variable ordering of Petri net models. The
idea is to express variable-variable interactions in A. Compacting A around the
diagonal results in an improved transition locality in the MDD. Since the Sloan
method requires A to be symmetric, some form of symmetrization is needed. In
our context, we define Ai,j to be non-zero iff there is a transition that connects
place i with place j, regardless of the direction of the arcs.

The pseudocode of Sloan is given in Algorithm1. The method can be divided
into two phases. In the first phase it searches a pseudo-diameter of the A matrix
graph, i.e. two vertices v, u that have an (almost) maximal distance. Usually, a
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Algorithm 2. Pseudocode of the P-semiflows chaining algorithm.
Function P-chain(ΠMPS):

l = ∅ is the ordered list of places.
S = ∅ is the set of currently discovered common places.
Select a MPS πi ∈ ΠMPS s.t. max{i,j}∈|ΠMPS| πi ∩ πj with i �= j
ΠMPS = ΠMPS \ {πi}
πcurr = πi

Append V (πcurr) to l
repeat until ΠMPS is empty:

Select a MPS πj ∈ ΠMPS s.t. maxj∈|ΠMPS| πcurr ∩ πj

Remove (l ∩ V (πj)) \ S to l
Append V (πcurr ∩ πj) \ S to l
Append V (πj) \ (S ∩ V (πcurr)) to l
Add V (πcurr ∩ πj) to S
πcurr = πj

ΠMPS = ΠMPS \ {πj}
return l

heuristic approach based on the construction of the root level structure of the
graph is employed. The method then performs a visit, starting from v, exploring
in sequence all vertices in the visit frontier Q that maximize a priority function
P (v′). The function P (v′) guides the variable selection in the greedy strategy. It
is defined as P (v′) = −W1 · incr(v′) + W2 · dist(v, v′) where v, v′ are vertices in
graph A, incr(v′) is the number of unexplored vertices adjacent to v′, dist(v, v′)
is the distance of the shortest path between v and v′, and W1 and W2 are two
integer weights. The weights control how Sloan prioritizes the visit of the local
cluster (W1) and how much the selection should follow the gradient (W2).

The P-chain Algorithm for Static Variable Ordering
The P-semiflows chaining algorithm(P-chain) is based on the idea of keeping
together the places belonging to the same P-semiflow for the MDD variable
ordering. The idea behind this algorithm is to maintain the places shared by
two P-semiflows as close as possible in the final DD variable ordering, since their
markings cannot vary arbitrarily. The pseudo-code is reported in Algorithm2.

The algorithm takes as input the ΠMPS set and returns as output a variable
ordering l. Initially, the MPS πi sharing the highest number of places with any
unit is removed from ΠMPS and saved in πcurr. All its places are added to l.

Then the main loop runs until ΠMPS becomes empty. The loop comprises
the following operations. The MPS πj sharing the highest number of places with
πcurr is selected. All the places of πj in l, which are not currently S (the list of
currently discovered common places) are removed. The common places between
πi and πj not present in S are appended to l, followed by the places present only
in πj . After these steps, S is updated with the common places in πi and πj , and
πj is removed from ΠMPS. Finally πcurr becomes πj , completing the iteration.
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Evaluation Methodology
When testing multiple methods on a set of models, we need one or more score
functions to determine the efficacy of the methods. We mainly consider the peak
node size of the constructed MDD as a basis for the score functions, since it is
the upper bound of the MDD computation both in terms of memory and time.
Let A be a set of considered methods, let I be the set of model instances, and let
i be a model instance solved by algorithms A = {a1, . . . , am} with peak nodes
Pi = {pa1(i), . . . , pam

(i)}. We consider three score functions for each instance i:

– Solveda(i): 1 if the RS generation using the variable ordering provided by
algorithm a finishes in the time/memory constraints, 0 otherwise;

– Optimala(i): 1 if algorithm a found the variable ordering among the tested
method which leads to the smallest MDD peak size, 0 otherwise;

– Normalized Score (NS): is a value between 0 and 1 which weights the “quality”
of the variable ordering, and it is defined as:

NSa(i) = 1 − min{p ∈ Pi}
pa(i)

(1)

The optimal algorithm for an instance i receives a NS score of 0. If an algo-
rithm does not terminate in the given time/space limits, we arbitrarily assign
a score of 1 to that algorithm.

3 The Gradient-Π Algorithm

This section presents the Gradient-Π heuristics, the main contribution of the
paper. It is an hybrid algorithm that combines the features of both the Sloan
method (which is gradient-based) and the P-Chain method (which is based on the
idea of ordering the structural units). As observed in [6] Sloan performs rather
well, especially in terms of the number of “solved” models (models on which the
state space is generated within the given time and space constraints), but it is not
always the best one. Methods like Tovchigrechko, that takes into consideration
some aspect of the net graph (like number of input and output arcs of a place)
often exhibit better performances. That analysis also showed that a heuristics
like Force, that usually reaches intermediate performances, when modified to
include information on the NU (method called Force-NU in [6]) can go beyond
the performance of the best performers (like Tovchigrechko and Sloan) on the
set of NUPN models.

The idea behind the Gradient-Π heuristics is indeed to combine the general-
ity of Sloan, that results in a large number of solved models, with the exploita-
tion of structural informations that could result in better performances. The
exploitation of structural info is similar to the idea behind the P-chain algo-
rithm. According to the benchmark results reported in [6], P-chain does not
perform well, and our hypothesis is that its poor performances have two motiva-
tions: (1) there is no clever choice of the order in which the MPSs are considered
and (2) there is no indication on how to order the variables of the same MPS
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Algorithm 3. Pseudocode of the Gradient-Π heuristics.
Function Gradient-Π(v0, Π):

// Phase 1: establish a gradient based on vfirst and vlast.
Start a graph visit from v0. Let vlast the variable that maximizes dist(v0, vlast).
Start a visit from vlast. Let vfirst be the variable that maximizes dist(vlast, vfirst).
for each variable v ∈ V :

Compute grad(v).
S ← ∅

l ← [ ]
// Phase 2: Linearize the elements of Π along the gradient.
while exists at least one π ∈ Π with π \ S �= ∅:

for each element π ∈ Π with π \ S �= ∅:
Compute score(π).

Let πmax be the element with maximum score(π) value.
// Phase 3: Linearize the variables in the selected element πmax.
Append variables in (πmax \ S) to l in ascending gradient order.
S ← S ∪ πmax.

Append all variables in (V \ S) to l in ascending gradient order.
return l.

(which corresponds to linearize the places inside the MPS which is basically a
cyclic structure). In Gradient-Π the choices associated to the two points above
are resolved using a gradient-based approach mutuated from Sloan algorithm

The method takes as input an initial vertex and a structure Π of places. We
consider two different applications of this method: Gradient-P uses the set of
minimal P-semiflows ΠMPS as input, and Gradient-NU uses the set of Nested
Units ΠNU as input. A pseudo-code is given in Algorithm3.

The algorithm is subdivided into three main phases. In the first phase, the
algorithm identifies a pseudo-diameter of the system graph, whose vertices vfirst
and vlast are the opposite ends. Identification is done using two graph visits.
Alternatively, a root level structure [18] can be used for this task. The identi-
fied diameter is a pseudo-diameter, since there is no guarantee that (vfirst, vlast)
forms the maximum diameter of the graph. However, this method usually finds
a reasonable approximate of the pseudo-diameter, and it is very fast. Once the
pseudo-diameter is established, a scalar gradient is assigned to each vertex v.
The definition of grad(v) is the subject of study in the next section.

The second phase of the algorithm takes one element of Π at a time, according
to the gradient order. To do so, it assigns a score value to each element, with the
goal of taking the one with the maximum score. The algorithm tracks the set of
variables S that have already been inserted in the variable ordering l. Again we
shall discuss the considered score function in the next section. Once the element
with the maximum score πmax has been identified, the algorithm performs the
third phase, which consists in a greedy local optimization of the variable ordering.
Variables in (πmax \S) are ranked according to the grad(v) value, and appended
to l. The method continues selecting elements π ∈ Π until all variables have been
inserted in l. For completeness of the method, if some variable is not covered
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by any element of Π, it is appended at the end of l. The implemented method
also considers the case where the graph is not fully connected. In that case, the
algorithm is run separately for each connected component.

3.1 Parameter Estimation of the Score and Gradient Functions

The Gradient-Π method depends on a set of different parameters and functions.
We defined a set of experiments to estimate empirically these parameters. The
targeted questions are the following:

Q1. What is the best strategy for the selection of the initial vertex v0?
Q2. What score(π) function should be used?
Q3. What grad(v) function should be used?

To answer these questions, we run a prototype implementation of the
Gradient-Π method on a benchmark composed of 51 PN model instances, made
by a section of the smallest instances of the MCC2016 benchmark, used for the
Gradient-Π assessment in Sect. 4. We consider ΠMPS as the input set Π.

Q1. We consider three different criterias for the selection of v0: (1) Take v0 as the
first place P0 in the net; (2) Take v0 as a random place in the net; and (3) Take
v0 as the place with the maximum number of input/output arcs.

We run Gradient-Π on the test set, collecting the peak MDD size for each
run. Figure 1 shows the comparative results obtained by the three criterias.

Each plot in Fig. 1 shows the MDD peak values of the compared runs, on a
log-log scale. Each dot represent a model run, where the x and y coordinates
are the MDD peaks obtained in two of the three tested configurations. The data
shows that the method is not very sensible to the selection of v0, with the third
configuration only marginally better than the other two. However, since the third
configuration is also the typical strategy for the initial vertex selection of Sloan,
we adopt it for our implementation of Gradient-Π.

Q2. The score function for an element π ∈ Π should balance these quantities:

1. An element π that has many variables already in S should be preferred;
2. The score should be proportional to the gradient;
3. The element cardinality |π| can be used as a weight parameter.
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Fig. 1. MDD peaks obtained for different choices of v0.
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To encode these three desiderata into a single score function, we defined (empir-
ically) two parametric score functions:

scoremult(π) =

d
︷ ︸︸ ︷
(

W1 ·
∑

v∈π∩S

grad(v) −
∑

v∈π\S

grad(v)

)

·∣∣π \ S
∣

∣
E·sign(d) (2)

scoreadd(π) = W1 ·
∑

v∈π∩S

grad(v) −
∑

v∈π\S

grad(v) + W2 · ∣

∣π \ S
∣

∣ (3)

These functions are inspired by both the weight function of Sloan and the weight
function of the Noack method [16]. In the function scoremult(π) the weight of
the element size is a multiplicative factor, while for the function scoreadd(π) it is
an additive factor. The power in Eq. (2) consideres the sign of d to ensure that
when E is positive the score increases for increasing values of |π\S

∣

∣ regardless of
the sign of d. Vice versa, it should decrease when E is negative. Both functions
are controlled by a set of parameters (W1 and E for the first, W1 and W2 for
the second). We run a set of experiments on the parameter space of W1 ×E and
W1 × W2, in order to determine the best values for both.

Figure 2 shows the normalized scores of Eq. (1) of the runs on the 51 model
instances considered. The left plot shows the NS results when the scoremult(π)
is used, for varying (W1, E). Similarly, the right plot shows the NS results when
using the scoreadd(π), for varying (W1,W2). Lighter blocks have a smaller NS,
which means that the algorithm running on that pair of parameter’s values
computes better variable orderings. The resulting plots are remarkably smooth.
Interestingly, the left one has a local minimum in W1 = 1, E = 0, while the
right one has a local minimum in W1 = 1,W2 = 0. This analysis suggests that
the element size does not bring any advantage to the score function, neither in
multiplicative nor in additive form. Therefore, the final score function that we
adopt is:

Fig. 2. Normalized scores on the parameter space of W1 × E and W1 × W2.
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score(π) =
∑

v∈π∩S

grad(v) −
∑

v∈π\S

grad(v) (4)

Q3. Since the Gradient-Π method works using a pseudo-diameter, a critical ele-
ment is the gradient function grad(v). Let b = maxv∈V dist(vlast, v). We consider
two gradient functions: (1) An integer function: grad(v) = dist(vfirst, v), based
solely on vfirst; (2) A fractional function: grad(v) = dist(vfirst, v) + 1

b

(

b + 1 −
dist(vlast, v)

)

. The first function is the same used in the Sloan method. The
second function also considers the distance to vlast as a fractional part. We
investigate if this addition brings benefits to the method.

1 10 100 1000 104 105 106

10

100

1000

104

105

106 Integer gradient
is better.

Fractional gradient
is better.

Fig. 3. Effect of the two tested gradient functions.

Figure 3 shows the comparison of the two gradient functions. The plot com-
pares the MDD peaks obtained running the same test using the two different
functions. The results show that the integer function is slightly better than the
fractional one in some cases, but the advantage cannot be determined clearly.

Example 1 (Gradient-Π example on a Petri net using P-semiflows)
We now illustrate the Gradient-Π algorithm on a small Petri net, taken from
the MCC2016 model set. The model is called “SwimmingPool” and describes a
sort of protocol to use a pool1. We use the set of P-semiflows ΠMPS for the input
elements Π. Figure 4 shows in the upper-left frame the Petri net model. Numbers
written in the places are the ordering computed by the Gradient-P algorithm.
Numbers written aside of each place are the computed integer gradient. The
three replicas of the model on the right show the three MPS π1, π2 and π3.

The algorithm computes three iterations of the second phase loop. In the
first iteration, π1 is selected, since it has the highest score. Since no variable has
been selected yet, all variables in π1 are taken, in gradient order. In the second
iteration, π2 is selected, which has already two variables in S. Finally, π3 is
selected. Intuitively, the P-semiflows of this model represents closed loops where
a constant token quantity circulates. The algorithm attaches these “loops” one
after the other, following the gradient order.

1 Model details can be found in http://mcc.lip6.fr/pdf/SwimmingPool-form.pdf.

http://mcc.lip6.fr/pdf/SwimmingPool-form.pdf


194 E.G. Amparore et al.

Fig. 4. Gradient-P run on the Swimming pool model.

4 Comparison of Gradient-Π with Other Heuristics

The goal of this section is to test the effectiveness of the proposed heuristics
against other commonly used variable ordering algorithms for Petri net mod-
els. We use the evaluation methodology of [6]. We only consider static variable
ordering methods. The set A of considered methods is:

– Force-{PTS, NES, WES}: variants of the Force heuristics [3] where 200
orderings are generated, and the one with the smallest score is selected. The
considered score functions are: point-transition span (PTS), normalized event
span (NES) and weighted event span (WES), respectively [26].

– Force-{P, NU}: variant of Force where structural elements are also centers
of gravity, along with the events. Elements can be either ΠMPS or ΠNU.

– Cuthill-Mckee heuristics, defined in [13].
– King heuristics, defined in [17].
– Sloan/Sloan16 heuristics, defined in [27] and recalled in Sect. 2. We consider

two variations of this method: Sloan uses W1
W2

= 1
2 , while Sloan16 uses W1

W2
= 1

16
(the parameters used in [21] and in [6], respectively).

– P-Chain heuristics: defined in [6] and recalled in Sect. 2
– Noack heuristics, defined in [22], is a greedy heuristics for Petri net models

that tries to minimize the locality of the events in the ordering.
– Tovchigrechko heuristics, defined in [16], is a variation of the Noack heuris-

tics with a different selection criteria.
– Markov Cluster uses the Markov cluster algorithm [28] to identify variable

clusters and group them together.

Example 2 (Tested algorithms on the running example model). Figure 5 shows
the variable orderings obtained with the tested methods on the SwimmingPool
model. The model has a very clear structure of partially overlapped P-semiflows,
as shown in Fig. 4, and we expect Gradient-P to perform well as it is designed
to exploit this type of structure.
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Fig. 5. Comparison of Gradient-P with the other tested methods.

Each block shows the algorithm name, the symmetric adjacency matrix of
the ordered model, and the performances of the state space generation using that
ordering. Algorithms are ordered according to peak nodes (smallest to highest).
Some algorithms obtained the same ordering, and have been grouped together
in a single column. The matrix has a black square in (i, j) if there exists an event
that links the variable at level i with the variable at level j. In this visualization
we do not consider the event directionality, and we make the matrix symmetric.
The rows below each matrix report the number of MDD nodes, the peak nodes,
the time needed to construct the MDD, and the normalized score assigned to that
variable order. In this example, Gradient-P performs better and thus receives
an NS score of 0. All the other algorithms receive a score that is proportional to
how much their peak node size departs from the minimum peak node size found
for that instance. Note that Gradient-P has a peak size which is almost one third
of the second best ordering algorithm (Force-P, which is also an algorithm that
exploits the net structure), one fourth of Sloan (which is a generic algorithm that
does not exploit P-semiflows). Note that algorithms that have been specifically
performed for Petri nets, like Tovchigrechko and Noack perform rather poorly
on this example, with peak sizes more than 30 times bigger than Gradient-P.

4.1 Empirical Assessment on the Benchmark

The model of the previous section is just an example of a structure on which
Gradient-P performs very well. In this section we test Gradient-P and Gradient-
NU on a broader set of models, to evaluate their average performance. The
evaluation is based on a benchmark with two subsets of models, taken from the
664 instances of the Model Checking Contest (MCC) 2016 [14] model set:

– The set IMPS where P-semiflows are computable in less than 30 s. The set
is made by 408 model instances, belonging to 45 models. In 294 of these
instances at least one algorithm finishes in the time/memory limits.

– The set INU of NUPN instances, with well identified nested units that cor-
respond to process algebra terms. The set is made by 80 model instances
belonging to 12 different models. For 67 of these instances, at least one algo-
rithm finishes in the time/memory limits.
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The excluded instances either are not NUPN, or the MPS set is not computable.
All computations have been done using the GreatSPN tool [5], with a maximum
of 4 GB of memory and 60 min of time.

Table 1. Benchmark results on the IMPS and INU model sets.

Models (45) Instances (294) Models (12) Instances (67)

Method solv. opt NS solv. opt NS Method solv. opt NS solv. opt NS

Gradient-P 28.61 12.42 12.73 240 76 137.22 Gradient-NU 9.82 7.03 2.64 50 34 23.72

Sloan16 28.61 4.60 21.46 244 53 181.29 Sloan16 9.47 0.45 8.10 55 9 45.40

Sloan 28.51 4.84 22.07 242 43 188.83 Sloan 9.37 1.31 8.56 53 7 49.07

Tovchigr. 28.29 5.62 18.80 240 52 169.27 Tovchigr. 8.82 0.60 8.51 44 12 47.71

P-Chain 26.81 2.61 24.88 229 21 223.33 Noack 7.83 0.15 8.34 42 3 50.66

Noack 26.31 4.34 19.21 228 36 176.99 Force-NES 6.30 0 10.22 35 0 61.85

Force-NES 22.69 2.90 23.98 192 23 209.52 Force-PTS 5.74 0 10.43 27 0 64.24

Force-P 22.40 4.67 20.75 199 30 188.09 Force-NU 5.71 1.30 8.78 38 5 54.59

Force-PTS 22.33 2.53 24.32 189 19 213.19 Force-WES 5.41 0 10.11 34 0 61.72

Force-WES 22.04 3.40 23.27 190 23 206.30 MarkovCl. 4.91 0 9.19 24 0 60.94

Cuthill-M. 21.32 2.74 24.63 214 52 180.11 Cuthill-M. 2.53 0 10.58 21 0 65.59

King 20.80 1.77 24.99 206 21 199.89 King 2.49 0 10.59 21 0 65.71

MarkovCl. 18.61 1.30 27.29 174 15 235.13

Table 1(left) reports the results for the IMPS set. Since in the MCC model
set the number of instances-per-model vary largely (some have just one, others
have up to forty instance), the table reports the results on a per-model and
per-instance basis. For each algorithm a ∈ A, the table indicates the number of
models for which a terminates (solv.), the number of models where the a found
the best variable ordering (opt) and the total NS score for that algorithm. The
last three columns replicate the same data for the model instances.

The computation of the NS score for the per-instance analysis of algorithm
a just sums the value of NSa(i) of Eq. (1) over all instances i. In the per-model
analysis the sum is over the NSa(m) values for each model m, where the NS score
of a model m is computed as NSa(m) =

∑

i∈m
1

|m|NSa(i), to balance models that
have many instances. Analogous rescaling is done for the number of solved and
optimally solved models (which results in fractional numbers).

From the data it emerges that Gradient-P and the variation of Sloan that we
propose (Sloan16) are the best performers. In particular if we observe the per-
model results, Gradient-P has a significant margin in finding the optimal order-
ing (thus reducing the MDD peak size) on both Sloan16 and Sloan (and even on
their sum) and a much better NS score both with respect to Sloan/Sloan16 and
with respect to the second one on the NS column (Tovchigrechko). Surprisingly,
neither P-chain nor Force-P methods, which are both P-semiflow based algo-
rithm, reaches similar performances to that of Gradient-P. From these positive
results we conjecture that the combination of a Sloan-like gradient order with
the structural information of P-semiflows produces variable orderings that are
better that those generated by algorithms that use just one of the two elements
(gradient or P-semiflows).
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(A) All models with P-semiflows: (B) All models with Nested Units:

Fig. 6. Performance obtained using Gradient-Π on the benchmark.

In the per-instance analysis, Gradient-P has the best NS score, actually sig-
nificantly better than the second one in the column (which is, again, Tovchi-
grechko), a number of solved instances that is only 1.7% less than the best
performer on solved instances (Sloan16) and the best number of optimal solved
instances. This last results is nevertheless not particularly relevant, since the
splitting of Sloan on two variations (Sloan and Sloan16) may have lead to an
underestimation of the value with respect to a benchmark in which only one of
the two is present.

Table 1(right) reports the results for the INU set. The results are similar to
that of the previous case but even more striking for what concerns the number
of optimally solved models/instances: Sloan, Gradient-NU and Tovchigrechko
methods occupy the top positions in terms of solved models/instances, but
Gradient-NU finds the optimal variable ordering among the tested methods more
often than the others, with a significantly lower NS score. The number of solved
instances is now worse than the best one by 10%, but, as explained before, the
results per instance are less stable, since it is enough to have a single model with
many instances, on which an algorithm does not perform well, to badly influence
the results.

From the data analysis it seems that Gradient-P and Gradient-NU finds
better variable ordering compared to state-of-the-art methods like Sloan and
Tovchigrechko. To confirm this observation, we look at the point density of the
NS scores of each instance. Figure 6 reports on the top row the plots of the NS
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score and the count of solved models (normalized from 0 to 1), for each algorithm.
Plots (C) and (D) shows the NS point density of each run in the benchmark.
In the bar of algorithm a there is a single black point for each NSa(m), which
allows to understand the distribution that makes up the NS value reported on
Tables 1. From the plot (C) emerges that Sloan and Tovchigrechko methods
are more polarised with a higher concentration of lower scores in the upper
part of the diagrams (higher NS scores), while the behaviour of Gradient-P is
more distributed. Note that also the algorithms of the Force type show a more
distributed values of NS than Sloan and Tovchigrechko. The small number of INU

instances do not allow to draw very definite conclusions, but apparently the trend
of plot (D) is similar to that observed in plot (C), were Sloan/Tovchigrechko have
many more instances with high NS scores.

5 Conclusions

Motivated by the aim of understating if and how the structure of the system
can be exploited to improve the performance of gradient-based algorithms for
devising a good variable ordering, in this paper we proposed a new algorithm for
statically computing a variable ordering of DDs that exploits the net structure.
The algorithm combines the features of the Sloan method, with the ideas of the
P-Chain method. It finds the variable ordering by sorting a set of structural
units of the system along a Sloan-like gradient. The structural units should be
available or computable, which may limit the applicability of the method on
a subset of models. In practice, these units are computable on most models
in a reasonable time. For the set of tested models with structural information
(294 instances), the efficacy of the proposed algorithm emerges, producing bet-
ter results over the set of considered state-of-the-art variable ordering methods
(13 were tested). Our tests show that the combination of a gradient-based order
with the structural units is effective in reducing the MDD peak size. Parameter
estimation techniques were used to tune the internals of the proposed heuris-
tics. This allowed the identification of the range of the internal score function
coefficients that have been used for the 294 instances test.

We would like to extend the method to formalisms other than Petri nets
(like process algebra models or workflows models), to see if the observed perfor-
mance is consistent. In addition, other kinds of structural informations could be
exploited, as for instance the min-cut partitioning.
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Abstract. The fourth version of the DIVINE model checker provides
a modular platform for verification of real-world programs. It is built
around an efficient interpreter of LLVM code which, together with a small,
verification-oriented operating system and a set of runtime libraries,
enables verification of code written in C and C++.

1 Introduction

Building correct software is undoubtedly an important goal for software devel-
opers and we firmly believe that formal verification methods can help in this
endeavour. In particular, explicit-state model checking promises to put forth a
deterministic testing procedure for non-deterministic problems (such as paral-
lel programs or tests which use fault injection). Moreover, it is quite easy to
integrate into common test-based workflows. The latest version of DIVINE aims
to make good on these promises by providing an efficient and versatile tool for
analysis of real-world C and C++ programs.

2 DIVINE 4 Architecture

The most prominent feature of DIVINE 4 is that the runtime environment for the
verified program (i.e. support for threads, memory allocation, standard libraries)
is not part of the verifier itself: instead, it is split into several components, sep-
arated by well-defined interfaces (see Fig. 1). The three most important com-
ponents are: the DIVINE Virtual Machine (DiVM), which is an interpreter of
LLVM code and provides basic functionality such as non-determinism and mem-
ory management; the DIVINE Operating System (DiOS), which takes care of
thread management and scheduling; and finally libraries, which implement stan-
dard C, C++ and POSIX APIs. The libraries use syscalls to communicate with
DiOS and hypercalls to communicate with DiVM.

The verification core below DiVM is responsible for verification of safety
and liveness properties and uses DiVM to generate the state space of the (non-
deterministic) program.

This work has been partially supported by the Czech Science Foundation grant No.
15-08772S and by Red Hat, Inc.
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User’s program + libraries

C/C++ standard libraries, pthreads

DiOS

DiVM

Verification core

hypercalls

syscalls

DIVINE

Fig. 1. Overview of the architecture of DIVINE 4. The shaded part consists of LLVM
code which is interpreted by DiVM.

2.1 DIVINE Virtual Machine (DiVM)

The basic idea of DiVM is to provide the bare minimum required for efficient
model checking of LLVM-based programs. To this end, it executes instructions,
manages memory, implements non-deterministic choice, and (with the help of
program instrumentation) keeps track of visible actions performed by the pro-
gram. To the verification core, DiVM provides support for saving and loading
snapshots of the program state and for generating successors of a given program
state.

When the user program is executed in DiVM, it will be typically supported
by a runtime environment (which itself executes on top of DiVM). This environ-
ment is expected to supply a scheduler, a procedure invoked by DiVM to explore
the successors of a given program state. The scheduler’s primary responsibility is
thread management. It can, for example, implement asynchronous thread inter-
leaving by managing multiple stacks and non-deterministically choosing which
to execute. This design allows DiVM to be small, minimising the space for errors
in this crucial part of the verifier. Moreover, it allows for greater flexibility, since
it is usually much easier to program for DiVM then to change DiVM itself.

DiVM uses a graph to represent the memory of a program: nodes correspond
to memory objects (e.g. results of allocation, global variables) and edges to point-
ers between these objects. Each program state corresponds to one such graph.
When exploring the state space, those graphs are stored, hashed and compared
directly (i.e. they are not converted to byte vectors). This graph representation
allows DiVM to handle programs with dynamic heap allocation efficiently.

Out of the box, memory access in DiVM is subject to sequentially consistent
semantics. Nevertheless, analysis under relaxed memory semantics can be added
to DIVINE by the means of program transformations on the level of LLVM, as
outlined in [7].

More details about DiVM, including an experimental evaluation, can be found
in [6].

2.2 DIVINE Operating System (DiOS)

DiOS supplies both a scheduler, which is invoked by DiVM, and a POSIX-like
environment for the libraries and the user program. To this end, DiOS exposes
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a syscall interface to libc, in a manner similar to common operating systems.
Currently, DiOS implements asynchronous parallelism with threads and supports
syscalls which cover an important subset of the POSIX file system interface
(provided by the integrated virtual file system). Additional syscalls make thread
management and DiOS configuration possible.

2.3 State Space Reductions

To be able to verify nontrivial C or C++ programs, DIVINE 4 employs heap
symmetry reduction and τ reduction [5]. The latter reduction targets parallel
programs and is based on the observation that not all actions performed by
a given thread are visible to other threads. These local, invisible actions can
be grouped and executed atomically. In DIVINE, actions are considered visible
if they access shared memory. As DiVM has no notion of threads, the shared
status of a memory object is partially maintained by DiOS. However, DiVM
transparently handles the propagation of shared status to objects reachable from
other shared objects.

It is desirable that threads are only switched at well-defined points in the
instruction stream: in particular, this makes counterexamples easier to process.
For this reason, DIVINE instruments the program with interrupt points prior to
verification. DiVM will then only invoke the scheduler at these explicit interrupt
points, and only if the program executed a shared memory access since the
previous interrupt. To ensure soundness, these interrupt points are inserted such
that there cannot be two accesses to shared memory without an interrupt point
between them.

To further reduce the size of the state space of parallel programs, DIVINE
performs heap symmetry reduction. That is, heaps that differ only in concrete
values of memory addresses are considered identical for the purpose of verifi-
cation. On top of that, DIVINE 4 also employs static reductions which modify
the LLVM IR. However, it only uses simple transformations which are safe for
parallel programs and which cause minimal overhead in DiVM.

2.4 C and C++ Language Support

For practical verification of C and C++ code, it is vital that the verifier has
strong support for all language features and for the standard libraries of these
languages, allowing the user to verify unmodified code. DIVINE achieves this by
integrating ported implementations of existing C and C++ standard libraries.
Additionally, an implementation of the POSIX threading API was developed
specifically for DIVINE. These libraries together provide full support for C99
and C++14 and their respective standard libraries.

As DiVM executes LLVM instructions and not C or C++ directly, the pro-
gram needs to be translated to LLVM IR and linked with the aforementioned
libraries. This is done by an integrated compiler, based on the clang C/C++
frontend library. How a program is processed by DIVINE is illustrated in Fig. 2.
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C++ code property and options

compiler

runtime

LLVM IR instrumentation DiVM IR

verification core

ValidCounterexample

divine verify

Fig. 2. Verification workflow of the divine verify command when it is given a C++
file as an input. Boxes with rounded corners represent stages of input processing.

The inputs to the build are a C or a C++ program and, optionally, a specifica-
tion of the property to be verified. The program is first compiled and linked with
runtime libraries, producing an LLVM IR module. This module is then instru-
mented to facilitate τ reduction (see Sect. 2.3) and annotated with metadata
required for exception support [8]. The instrumented IR is then passed to the
verification algorithm, which uses DiVM to evaluate it. Finally, the verification
core (if provided with sufficient resources) either finds an error and produces a
counterexample, or concludes that the program is correct.

2.5 Property Specification

DIVINE 4 supports a range of safety properties: detection of assertion violations,
arithmetic errors, memory errors (e.g. access to freed or otherwise invalid mem-
ory), use of uninitialised values in branching, and pthreads locking errors.

The libraries shipped with DIVINE can simulate memory allocation failures
and spurious wake-ups on pthreads conditional variables. The allocation failure
simulation can be disabled on DIVINE’s command line.

Monitors and Liveness. More complex properties can be specified in the form
ofmonitors, which are executed synchronously by DiOS every time a visible action
(as determined by τ reduction) occurs. This allows such monitors to observe glob-
ally visible state changes in the program, and therefore to check global assertions
or liveness properties (using a Büchi accepting condition). Moreover, it is also pos-
sible to disallow some runs of the program, i.e. the monitor can specify that the
current run of the program should be abandoned and ignored.

In order to check LTL properties in DIVINE, the LTL formula has to be
translated to a Büchi automaton encoded as a monitor in C++. This translation
can be done automatically by an external tool, dipot,1 which internally uses
SPOT [1] to process the LTL formula.
1 Available from https://github.com/xlauko/dipot.

https://github.com/xlauko/dipot
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2.6 Interactive Program Simulator

Model checkers traditionally provide the user with a counterexample: a trace
from the initial state to the error state. However, with real-world programs, the
presentation of this trace is critical: the user needs to be able to understand
the complex data structures which are part of the state, and how they evolve
along the error trace. To help with this task, DIVINE now contains an interactive
simulator that can be used to perform the steps of the program which led to the
error and to inspect values of program variables at any point in the execution [4].

2.7 Major Changes Compared To DIVINE 3

Compared to DIVINE 3, the new version comes with several improvements. From
architectural point of view, the most important changes are the introduction of
DiVM and DiOS and the graph-based representation of program memory [6].
From user perspective, the most important changes include better support for
C++ and its libraries, an improved compilation process which makes it easier
to compile C and C++ programs into LLVM IR, an interactive simulator of
counterexamples, and support for simulation of POSIX-compatible file system
operations.

3 Usage and Evaluation

DIVINE is freely available online2, including source code, a user manual, and
examples which demonstrate the most important features of DIVINE. In addition
to the source code, it is also possible to download a pre-built binary for 64bit
Linux (which also works on Windows Subsystem for Linux), or a virtual machine
image with DIVINE installed (available in 2 formats, OVA for VirtualBox, and
VDI for QEMU and other hypervisors). If you choose to build DIVINE from
source code, please refer to the user manual3 for details.

3.1 Using DIVINE

Consider the code from Fig. 3 and assume it is saved in a file named test.cpp.
Assuming that DIVINE is installed4, the code can be verified by simply executing
divine verify test.cpp. DIVINE will report an invalid write right after the
end of the x array. You can observe that the output of printf is present in the
error trace part of DIVINE’s output. Moreover, toward the end, the output
includes stack traces of all running threads. In this case, there are two threads,
the main thread of the program and a kernel thread, in which the fault handler
is being executed.

2 https://divine.fi.muni.cz/2017/divine4/.
3 https://divine.fi.muni.cz/manual.html.
4 The binary has to be in a directory which is listed in the PATH environment variable.

https://divine.fi.muni.cz/2017/divine4/
https://divine.fi.muni.cz/manual.html
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#include <cstdio>

#include <cassert>

void foo( int *array ) {
for ( int i = 0; i <= 4; ++i ) {

printf( "writing at %d\n", i );

array[i] = 42;

}
}

int main() {
int x[4];

foo( x );

assert( x[3] == 42 );

}

Fig. 3. Example C++ code which creates an array x of size 4 (on the stack) and then,
in function foo, writes into this array. foo does, however, attempt to write one element
past the array, which would normally overwrite the next entry on the stack but not
cause an immediate program failure. In DIVINE, this error is detected and reported.

If we wanted to inspect the error state in more detail, we could use DIVINE’s
simulator. First, we need a way to identify the error state: the counterexample
contains a line which reads choices made: 0^182; the sequence of numbers after
the colon is a sequence of non-deterministic choices made by DIVINE. We can now
run divine sim test.cpp and execute trace 0^182 (replacing the sequence of
choices with the ones actually produced by divine). This makes the simulator
stop after the last non-deterministic choice before the error. The error location
can be inspected by executing stepa, which tells DIVINE to perform a single
atomic step (unless an error occurs, in which case it stops as soon as the error is
reported). It is now possible to examine the frame of the error handler, although
it is more useful to move to the frame which caused the error by executing the
up command. At this point, local variables can be inspected by using show.

Please consult the user manual for more detailed information on using
DIVINE. Additionally, divine help and the help command in the simulator
provide short descriptions of all available commands and switches.

3.2 Evaluation

We have evaluated DIVINE 4 on a set of more than 900 benchmarks from various
sources, including parallel and sequential tests of parts of C and C++ standard
libraries, the pthread library, part of the SV-COMP pthread benchmark set,
and programs from various programming courses. We have compared DIVINE 4
to DIVINE 3 (an older version of DIVINE, also an explicit-state model checker)
and ESBMC 4.1 [3] (an SMT-based symbolic model checker).

From our benchmark set, DIVINE 3 was able to process 457 benchmarks
in 7 h, while DIVINE 4 processed the same 457 benchmarks in 1 h and 5 min.
ESBMC was only able to process 60 benchmarks, mostly due to limitations of
its C++ support and worse performance on threaded benchmarks. ESBMC took
2 h 43 min, while DIVINE 4 only took 10 minutes on the same subset. In all cases,
there was a timeout of 2 h and benchmarks which timed out were not included
in the results. More details are available online.5

5 https://divine.fi.muni.cz/2017/divine4/.

https://divine.fi.muni.cz/2017/divine4/


Model Checking of C and C++ with DIVINE 4 207

Overall, DIVINE 4 showed substantial improvement over DIVINE 3, both in
terms of speed as well as C++ support. Compared to ESBMC, DIVINE 4 has
again the advantage of better C++ support (partially due to usage of clang
compiler whereas ESBMC has custom C++ frontend) and additionally better
performance on programs with threads.

4 Conclusion and Future Work

In this paper, we have introduced DIVINE 4, a versatile explicit-state model
checker for C and C++ programs, which can handle real-world code using an
efficient LLVM interpreter which has strong support for state space reductions.
The analysed programs can make use of the full C99 and C++14 standards,
including the standard libraries.

In the future, we would like to take advantage of the new program represen-
tation and versatility of DiVM to extend DIVINE with support for programs with
significant data non-determinism, taking advantage of abstract and/or symbolic
data representation, building on ideas introduced in SymDIVINE [2]. We would
also like to add support for verification of concurrent programs under relaxed
memory models, based on [7].
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2.0—a framework for LTL and ω-automata manipulation. In: Artho, C., Legay, A.,
Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016).
doi:10.1007/978-3-319-46520-3 8
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Abstract. In this paper, we consider the backward reachability problem
of multi-threaded programs where the threads have priorities, can be
synchronized using locks and are scheduled by a priority based round-
robin scheduler. For that, we extend the well known Dynamic Pushdown
Network model with priorities and locks (called PL-DPN). We represent
potentially infinite sets of configurations of PL-DPNs using finite state
automata and show that the backward reachability sets of PL-DPNs
are regular and can be effectively computed if we restrict the usage of
priorities inside lock usages. Also, we show that allowing an unrestricted
usage of nested locks and priorities leads to undecidability. We evaluate
the performance of our algorithm on benchmarks drawn from real time
systems, device drivers and hypervisor obtaining encouraging results and
discovering new bugs.

1 Introduction

Writing multi-threaded programs is notoriously difficult, as concurrency related
bugs are hard to find and reproduce. This difficulty is increased if we consider
that several software systems consist of different components that react to the
environment and use resources like CPU or memory according to a real time
need. For instance, in systems that control automobiles we can have a compo-
nent in charge of the music sub-system and another component in charge of
the braking sub-system. Obviously, the braking sub-system should have a higher
priority access to the resources needed, since a delay in the action of the brakes
can cost lives.

The programming model used in the vast majority of these real time systems,
used from automobiles to spacecrafts, defines a set of threads that perform com-
putation monitoring or respond to events. Each thread is typically assigned a
priority and are scheduled by a priority round-robin preemptive scheduler: if a
thread with a higher static priority becomes ready to run, the currently running
thread will be preempted and returned to the wait list for its priority level. The
round-robin scheduling policy allows each thread to run only for a fixed amount
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of time before it must yield its processing slot to another thread of the same
priority.

Combining threads with priorities and different synchronization primitives
like locks can easily lead to a large number of undesirable behaviors. Consider
for example the pseudocode of Fig. 1. It consists on five threads that synchronize
their access to shared variables using a spin-lock. The program consists of two
global variables x and y, and one spin-lock l (lines 1, 2 and 3). The program
starts with thread main (line 5), of priority one, creating two threads A and B
(lines 7 and 8), each of them also of priority one. Thread A increments variable x
(line 14), holding the spin-lock, and then it creates thread C (line 16), of higher
priority of two. Thread B, holding the spin-lock, reads variable x into variable
tmp (line 22) and checks if they are equal (line 23). Note that threads A and
B can be executed concurrently, but the assert succeeds, since all accesses to
variable x are protected by the spin-lock. Thread C is similar to thread A, but
this time incrementing variable y and creating again thread A. This creates a
loop that executes thread A and C in an interleaved way. A similar behavior is
produced by threads B and D.

Now, we may think that the error in this program is the lack of protection to
the global variable y on thread D. But the assertion (line 39) will always succeed,
since threads C and D will never be executed concurrently. Indeed, either C or
D will be created first and will block the creation of the other thread until it
finishes. However, the program still has a bug. The problem occurs when thread
B owns the spin-lock (lines 22 or 23) and it is interrupted by thread C trying to
acquire it (line 30). In this case we have a deadlock, since the only thread that
can make progress is thread C (having highest priority) but it cannot acquire
the spin-lock.

The program of Fig. 1 shows that there is a real need for formal methods to
find automatic verification techniques for multi-threaded programs with locks and

1 int x = 0 ;
2 int y = 0 ;
3 spin_lock l ;
4
5 void main ( ) {
6 // Pr ior i t y 1.
7 thread_create ( A , 1 ) ;
8 thread_create ( B , 1 ) ;
9 }

10
11 void A ( ) {
12 // Pr ior i t y 1.
13 spinlock_lock ( l ) ;
14 x++;
15 spinlock_unlock ( l ) ;
16 thread_create ( C , 2) ;
17 }
18
19 void B ( ) {
20 // Pr ior i t y 1.
21 spinlock_lock ( l ) ;

22 int tmp = x ;
23 assert ( tmp == x ) ;
24 spinlock_unlock ( l ) ;
25 thread_create ( D , 2) ;
26 }
27
28 void C ( ) {
29 // Pr ior i t y 2.
30 spinlock_lock ( l ) ;
31 y++;
32 spinlock_unlock ( l ) ;
33 thread_create ( A , 1) ;
34 }
35
36 void D ( ) {
37 // Pr ior i t y 2.
38 int tmp = y ;
39 assert ( tmp == y ) ;
40 thread_create ( B , 1) ;
41 }

Fig. 1. Pseudocode of a multi-threaded program with priorities and spin-locks.
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priorities. Indeed, deadlock freedom and absence of conflicts, like data races, are
among the most crucial properties that need to be checked for multi-threaded
programs.

Dynamic pushdown networks (DPNs) were introduced in [1] as a suitable
formalism to model multi-threaded programs. DPNs generalize pushdown sys-
tems by a rule that have the additional side effect of creating a new pushdown
system that is then executed in parallel. The key concept for analyzing DPNs
is computation of predecessor sets. Configurations of a DPN are represented as
words over control and stack symbols, and for a regular set of configurations,
the set of predecessor configurations is regular and can be computed effectively
[1]. Predecessor computations can be used for various interesting analyses, like
kill/gen analysis on bit-vectors and context-bounded model checking.

In [2] the DPN model was extended with well-nested locks, generalizing the
technique of Kahlon and Gupta [3]. The authors give an algorithm for predecessor
computation in a DPN model capable of acquiring and releasing locks. But in this
model threads have the same priority and therefore they can preempt each other
without restrictions. In [4] we extended the DPN model with priorities in the
control states. The model, called P-DPN, is able to model the interaction between
threads with different priorities. In a P-DPN, a thread can only be preempted by
threads of equal or higher priority (threads of the same priority can interleave).
However, P-DPNs do not give any other mechanism to synchronize threads, in
particular, they are unable to synchronize using locks.

Previous research [5,6] on verification of multi-threaded programs with pri-
orities using pushdown systems has focused on threads scheduled under a FIFO
policy, on which each thread can only be interrupted by another thread of highest
priority (threads of the same priority cannot interleave).

Here we consider multi-threaded programs with priorities and locks scheduled
under a priority based round-robin scheduler. For this, we extend the DPN model
allowing threads to synchronize by using priorities and locks. In this way we
obtain a new model, called PL-DPN, more expressive than the models of [2,4].
The contributions of this paper are:

– A suitable definition of the PL-DPN model. There are many ways to com-
bine priorities and locks giving rise to different degrees of expressiveness and
complexity of the algorithms. We believe to have found a good balance that
allows us to modelcheck real programs with locks and priorities.

– An algorithm for the computation of predecessor sets of configurations. We
constructed a finite abstraction that allows us to reduce the pre∗ images
computation for PL-DPNs to the computation of pre∗ images for DPNs, and
then use the algorithm of [1]. Our finite abstraction is quite elaborate and we
explain it in detail.

– An evaluation of the performance of our algorithm for real programs. We used
several benchmark programs extracted from real time systems and device
drivers. Our tool was able to find new data races in a hypervisor software,
that follows our scheduling policy, consisting of 460,000 lines of code.
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– An undecidability result. If we remove a small restriction in our model, allow-
ing threads to change their priority while they hold a lock, our reachability
problem becomes undecidable. The undecidability is proved by showing a way
to simulate pairwise rendezvous using nested locks and priorities.

2 Model Definition

A PL-DPN can be seen as a collection of threads running in parallel, each of
them being able to:

1. Perform pushdown operations. This can be used to model calls and returns
from (possible recursive) functions.

2. Change its priority if it is not holding any lock. Removing this constraint
leads to undecidability (see Sect. 9).

3. Acquire a lock that is not in its set of acquired locks.
4. Release a lock in its set of acquired locks.
5. Create a new thread with any priority.

Definition 1. A Dynamic Pushdown Network with Priorities and Locks (PL-
DPN) is a tuple M = (P, Γ,Δ, ηp, ηl), where P is a finite set of control states, Γ
is a finite stack alphabet with P ∩ Γ = ∅, ηp : P → I is a function from control
states to a finite set of natural numbers I representing priorities, ηl : P → L is
a function from control states to a set of locks from the finite set L, and Δ is a
finite set of rules of the following forms:

1. pγ
τ

↪−→ qw, with ηp(q) = ηp(p) and ηl(q) = ηl(p);
2. pγ

n
↪−→ qw, with ηp(q) = n and ηl(q) = ηl(p) = ∅;

3. pγ
acq l

↪−−−→ qw, with ηp(q) = ηp(p), ηl(q) = ηl(p) ∪ {l} and l �∈ ηl(p);

4. pγ
rel l

↪−−→ qw, with ηp(q) = ηp(p), ηl(q) = ηl(p) \ {l} and l ∈ ηl(p);
5. pγ

τ
↪−→ q1w1 � q2w2, with ηp(q1) = ηp(p), ηl(q1) = ηl(p) and ηl(q2) = ∅.

where p, q1, q2 ∈ P, γ ∈ Γ, w,w1, w2 ∈ Γ ∗, l ∈ L, n ∈ I. A Dynamic Pushdown
Network (DPN), can be seen as a PL-DPN (P,Γ ,Δ, η0

p, η∅
l ), where for all p ∈

P, η0
p(p) = 0 and η∅

l (p) = ∅. Given a PL-DPN M = (P,Γ ,Δ, ηp, ηl), its DPN
M ′ is defined as (P,Γ ,Δ, η0

p, η∅
l ), abbreviated (P,Γ ,Δ).

A global configuration of a PL-DPN M is a word over the alphabet P ∪ Γ ,
starting with a symbol in P , representing the state of the PL-DPN. A global
configuration can be seen as a sequence of (sub)-words in PΓ ∗ each of them
corresponding to the configuration of one of the threads running in parallel on
the system, also called local configuration. Let ConfM be the set of all global
configurations of a PL-DPN M .

The function ηp assigns a priority to each control state. Intuitively, this means
that a thread can be in configurations with different priorities. PL-DPNs must
execute first the thread in the configuration with highest priority. We overload
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the function ηp to global configurations as follows: for all c = p1w1 . . . pnwn ∈
ConfM , ηp(p1w1 . . . pnwn) := max(ηp(p1), . . . , ηp(pn)).

The function ηl assigns a set of locks to each control state. This set of
locks represents the locks held (acquired but not yet released) by the thread
at such configuration. Transitions in a PL-DPN should follow the locking rules:
(1) a transition attempting to acquire a lock can only be executed if the lock
is free; (2) a transition attempting to release a lock, can only be executed if
the lock is in possession of the corresponding thread. We overload the func-
tion ηl to global configurations as follows: for all c = p1w1 . . . pnwn ∈ ConfM ,
ηl(p1w1 . . . pnwn) := ηl(p1) ∪ · · · ∪ ηl(pn).

Following previous works we assume that locks are used in a well-nested
fashion, i.e. a process has to release locks in the opposite order of acquisition,
an assumption that is often satisfied in practice. Note that for non-well-nested
locks even simple reachability problems are undecidable [3].

3 Semantics of the Model

Definition 2. The transition relation −→M is defined as the smallest relation
in ConfM × ConfM such that ∀c1, c2 ∈ ConfM :

1. c1 pγr c2 −→M c1 qwr c2,

if ηp(p) = ηp(c1 pγr c2) and pγ
lab

↪−−→ qw ∈ Δ, s.t. lab ∈ {τ, rel l} ∪ I;
2. c1 pγr c2 −→M c1 qwr c2,

if ηp(p) = ηp(c1 pγr c2), l �∈ ηl(c1 pγr c2) and pγ
acq l

↪−−−→ qw ∈ Δ;
3. c1 pγr c2 −→M c1 q2w2 q1w1r c2,

if ηp(p) = ηp(c1 pγr c2) and pγ
τ

↪−→ q1w1 � q2w2 ∈ Δ;

where p, q, q1, q2 ∈ P, γ ∈ Γ,w,w1, w2, r ∈ Γ ∗, l ∈ L. We denote the transitive-
reflexive closure of −→M as −→∗

M .

The semantics above says that:

1. A thread in a local configuration with control state p and top of stack γ can
move to a local configuration with control state q, replacing the top of its

stack γ by w, if there is a τ , n or release rule pγ
lab

↪−−→ qw ∈ Δ and its priority
(ηp(p)) is equal to the highest priority among all the threads (ηp(c1 pγr c2));

2. A thread in a local configuration with control state p and top of stack γ can
move to a local configuration with control state q, replacing the top of its

stack γ by w, if there is an acquire rule pγ
acq l

↪−−−→ qw ∈ Δ, the lock that the
rule attempts to take is free (l �∈ ηl(c1 pγr c2)), and its priority (ηp(p)) is
equal to the highest priority among all the threads (ηp(c1 pγr c2));

3. A thread in a local configuration with control state p and top of stack γ can
move to a local configuration with control state q1, replacing the top of its
stack γ by w1 and create another thread in control state q2 with stack w2, if
there is a rule pγ

τ
↪−→ q1w1 � q2w2 ∈ Δ and its priority (ηp(p)) is equal to the

highest priority among all the threads (ηp(c1 pγr c2)).
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Note that the semantics of locks corresponds to the one of spin-locks, found in
the main libraries for threads (like Pthreads). Spin-locks are similar to mutexes,
but they might have lower overhead for very short-term blocking. When the
calling thread requests a spin-lock that is already held by another thread, the
calling thread spins in a loop to test if the lock has become available. As we saw
in the program of Fig. 1, this means that if a thread with lower priority, holding
a lock l, is interrupted by a thread with higher priority, attempting to acquire
the same lock, then the program becomes blocked (assuming there is only one
CPU).

Given a configuration c, the set of immediate predecessors of c in a PL-
DPN M is defined as preM (c) = {c′ ∈ ConfM : c′ −→M c}. This notation can
be generalized straightforwardly to sets of configurations. Let pre∗

M denote the
reflexive-transitive closure of preM . For the rest of this paper, we assume that
we have fixed a PL-DPN M = (P,Γ ,Δ, ηp, ηl) and let M ′ = (P,Γ ,Δ) be its
corresponding DPN as defined in Definition 1.

4 Modeling Programs with PL-DPNs

It was explained in [1] how to use DPNs to model multi-threaded programs
without locks and priorities. PL-DPN extends the DPN model by attaching a
priority and a set of locks to each control state and restricting the execution of
each thread according to the priority and spin-locks semantics.

In order to model our example of Fig. 1, we give to all the control states of a
thread the same priority. Also, when modeling the termination of a thread, we
must make sure that the priority of its final control state does not prevent other
threads from making a transition. To ensure this, we model the end of a thread
execution with a transition to a control state with priority zero.

Thus, the PL-DPN of the program of Fig. 1 consists on:

– The set of control states P = {p0, p0,l, p1, p1,l, p2, p2,l}. The sub-index indi-
cates the priority and the spin-locks of the control state. For instance p0 is a
control state with priority zero and does not hold any spin-lock, while p1,l is
a control state with priority one and holds spin-lock l.

– The stack corresponds to program points on each thread:
Γ = {m0, . . . ,m3, a0, . . . , a4, b0, . . . , b5, c0, . . . , c4, d0, . . . , d3}.

– We show some of the rules of Δ in Fig. 2. For instance, there are three rules
corresponding to thread main: the first two rules modeling the creation of
threads A and B; and the last rule modeling the end of its execution. Thread
A, is modeled by five transition rules, each one representing (in this order):
the acquisition of lock l, the write of variable x, the release of lock l, the
creation of thread C, and the end of its execution. The rules for the others
threads are created in a similar way.

– As said previously, the sub-index of the control states indicates their priority
and locks. Thus we have that ηp(p0) = 0, ηp(p1) = ηp(p1,l) = 1 and ηp(p2) =
ηp(p2,l) = 2. Also, ηl(p0) = ηl(p1) = ηl(p2) = ∅ and ηl(p0,l) = ηl(p1,l) =
ηl(p2,l) = {l}.
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Thread main:

p1 m0
τ

↪−→ p1 m1 � p1 a0

p1 m1
τ

↪−→ p1 m2 � p1 b0

p1 m2
0

↪−→ p0

Thread A:

p1 a0
acq l

↪−−−→ p1,l a1

p1,l a1
τ

↪−→ p1,l a2

p1,l a2
rel l

↪−−→ p1 a3

p1 a3
τ

↪−→ p1 a4 � p2 c0

p1 a4
0

↪−→ p0

Thread B:

p1 b0
acq l

↪−−−→ p1,l b1

p1,l b1
τ

↪−→ p1,l b2

p1,l b2
τ

↪−→ p1,l b3

p1,l b3
rel l

↪−−→ p1 b4

p1 b4
τ

↪−→ p1 b5 � p2 d0

p1 b5
0

↪−→ p0

Thread C:

p2 c0
acq l

↪−−−→ p2,l c1

p2,l c1
τ

↪−→ p2,l c2

p2,l c2
rel l

↪−−→ p2 c3

p2 c3
τ

↪−→ p2 c4 � p1 a0

p2 c5
0

↪−→ p0

Thread D:

p2 d0
τ

↪−→ p2 d1

p2 d1
τ

↪−→ p2 d2

p2 d2
τ

↪−→ p2 d3 � p1 b0

p2 d3
0

↪−→ p0

Fig. 2. Transition rules corresponding to the PL-DPN of the program of Fig. 1.

5 Execution Hedges p1m0

p1m1

p1m2p1b0

p1,lb1

p1,lb2

p1,lb3

p1b4

rel l

τ

τ

acq l

τ
p1a0

p1,la1

p1,la2

p1a3

p1a4p2c0

p2,lc1

acq l

τ

rel l

τ

acq l

τ

Fig. 3. Graphical representation
of an execution tree. The tree
c(lab, t1, t2) is represented by the

edges c
lab−−→ t1 and c ��� t2.

Executions of DPNs can be viewed as trees,
on which we specify the order of transitions
inside each thread and the father-child rela-
tion between threads, but we do not spec-
ify the order of transitions between different
threads running concurrently.

In Fig. 3 we can observe a graphical rep-
resentation of a possible execution tree from
the PL-DPN of Fig. 2. At the top of the
tree we can observe the thread main creat-
ing thread A. The left subtree corresponds
to the execution of thread A, in which it
acquires and releases the spin-lock l and cre-
ates thread C. The right subtree corresponds
to the remaining execution of thread main,
where it creates thread B, and the execution
of thread B, on which it acquires and releases
the spin-lock l and then creates thread D.

Formally, let X be a variable, we define
the set T [X] of terms over P ∪ Γ ∪ {X},
inductively, as follows: X ⊆ T [X], PΓ ∗ ⊆ T [X], if t ∈ T [X], c ∈ PΓ ∗ then
c(lab, t) ∈ T [X] with lab ∈ {τ} ∪ I ∪ {acq l | l ∈ L} ∪ {rel l | l ∈ L}, if
t1, t2 ∈ T [X], c ∈ PΓ ∗ then c(τ, t1, t2) ∈ T [X]. Terms in T [] are called trees,
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and will be denoted also by T . A context C is a term in which X occurs exactly
once. Let t be a tree, then C[t] is the tree obtained by substituting in C the
occurrence of the variable X with the tree t. We define an execution hedge as a
finite sequence of trees in T , and denote the set of execution hedges as T ∗.

Given a hedge h ∈ T ∗, we define the root configuration of h, root(h), as the
configuration formed by concatenation of the roots of each tree in h from left to
right. Given a hedge h ∈ T ∗, we define the yield configuration of h, yield(h), as
the configuration formed by concatenating the leaves of h from left to right.

Since we are interested in execution hedges that can be mapped to at least
one valid execution path under PL-DPN semantics, we define now a scheduler
relation that schedules the transitions of an execution hedge following the pri-
ority and spin-locks semantics. The scheduler will consume the execution hedge
by choosing, between the roots of the (non-leaf) trees, an edge that respects the
PL-DPN semantics. Removing an edge from a root local configuration means
that the scheduler executes the transition corresponding to this edge.

Definition 3. The scheduler �⊆ T ∗ × T ∗ is the least relation satisfying the
following constraints:

h1 c(lab, t) h2 � h1 t h2, if ηp(c) = ηp(root(h1 c(lab, t) h2))
h1 c(acq l, t) h2 � h1 t h2, if ηp(c) = ηp(root(h1 c(acq l, t) h2))

∧ l �∈ ηl(root(h1 c(acq l, t) h2))
h1c(τ, t1, t2)h2 � h1t1t2h2, if ηp(c) = ηp(root(h1 c(τ, t1, t2) h2))

where h1, h2 ∈ T ∗, t, t1, t2 ∈ T, c ∈ PΓ ∗, l ∈ L, lab ∈ {τ} ∪ I ∪ {rel l | l ∈ L}. Its
transitive reflexive closure is denoted by �∗.

We say that a hedge h is schedulable if the scheduler can schedule all its
transitions, i.e. the sequence of � transitions end up with the yield configuration
of h.

Definition 4. An execution hedge h is schedulable if and only if h �∗ yield(h).

Then, it is easy to see that a schedulable execution hedge has a valid execution
path in M , i.e. under PL-DPN semantics. This leads to the following theorem.

Theorem 1. Let c, c′ ∈ ConfM , then c −→∗
M c′ iff there is a schedulable exe-

cution hedge h ∈ T ∗ with c = root(h), c′ = yield(h).

In the next section we give a finite abstraction to detect if an execution hedge
is schedulable without the need to schedule the transitions of the execution hedge
in all possible ways.

6 Abstracting Execution Hedges

The main idea of our algorithm is to apply the saturation process of [1] to com-
pute predecessors under DPN semantics, and then filter out the configurations
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p1,l2a1

p1,l2a2

p1a3

p0

0

rel l2

p2b1

p2b2

p0

0

usg l3

τ
p1,l1c1

p1,l1c2

p1c3

p0

0

rel l1

p2d1

p2d2

p0

0

usg l2

τ
p1,l3e1

p1,l3e2

p1e3

p0

0

rel l3

p2f1

p2f2

p0

0

usg l1

τ

Fig. 4. Execution hedge with three initial threads of priority one, each one of them
spawns another thread with higher priority of two.

that cannot be reached under PL-DPN semantics, i.e. considering priorities and
locks. To be able to filter out these unreachable configurations we define in this
section a finite abstraction of the execution hedges. This abstraction will allow
us to decide effectively whether an execution hedge satisfies or not the priority
and lock semantics.

In [2], the authors give a finite abstraction of execution hedges called acqui-
sition structure and use it to decide whether an execution hedge respects or not
the semantics of locks. In [4], we used a similar method and give a finite abstrac-
tion called priority structure to decide if an execution hedge respects or not the
semantics of priorities. However, until now, there was no finite abstraction that
can be used to decide if an execution hedge respects both semantics: the one of
spin-locks and priorities.

6.1 Unsoundness of Previous Abstractions

Given an execution hedge, we call usage of l (usg l) each acquisition of a lock
l with a matching release. Acquisitions (releases) of locks without matching
releases (acquisitions) are called final acquisitions (initial releases).

We cannot use priority and acquisition structures in conjunction in order to
give an abstraction to decide schedulability of execution hedges with different
priorities and lock actions. This method may fail and label a hedge without
schedule as schedulable. Indeed, priorities may force the execution of some lock
actions before others, introducing lock dependencies not contemplated by acqui-
sition structures.

Consider the execution hedge of Fig. 4, it consists of three initial threads
with priority one. Each thread is holding a lock from {l1, l2, l3}. After releasing
the corresponding lock and finishing its execution, each thread spawns another
thread of priority two. Each spawned thread uses another lock, and then finishes
its execution. Thus, the first tree creates the dependency usg l3 → rel l2, where
the arrow means that the usage of lock l3 should be executed before the initial
release of lock l2, since the branch of the spawned thread has a higher priority
of two. The same happens with the other two trees: the second tree adds the
dependency usg l2 → rel l1 and the third tree adds the dependency usg l1 →
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rel l3, both for the same reasons as before. Therefore, we have the following
dependency path:

usg l3 → rel l2 → usg l2 → rel l1 → usg l1 → rel l3

and since we cannot use lock l3 before releasing it, the whole execution hedge
cannot be scheduled. However, this execution hedge is schedulable under only
the priority semantics or only the lock semantics, not both. This means that we
cannot combine, in an easy way, priority and acquisition structures to decide
schedulability under priority and spin-lock semantics.

6.2 Definition of Priority-Lock Structure

In this section we give a finite abstraction that is priority and spin-lock sensitive.
The abstraction, called priority-lock structure (pl-structure), is defined as either
a tuple [[x,y,gr,ga, la]] or the symbol ⊥. We use ⊥ to denote the pl-structure of
an execution hedge that cannot be scheduled. On the other hand, the pl-structure
of an execution hedge that can be scheduled will be a tuple with five elements
satisfying some properties. The tuple is composed of the following elements:

– Lowest transition priority (x): the lowest priority between the priorities
of all configurations that make a transition in the execution hedge. Intuitively,
given two execution hedges with different lowest transition priority, it is easy
to see that the execution hedge with highest x finish its execution first.

– Highest final priority (y), the highest priority between the priorities of all
leaf configurations of the execution hedge. Intuitively, after executing a hedge
with highest final priority y we know that the remaining transitions in the
execution hedge should have at least a priority of y to be able to execute.

– The release graph (gr), with edges usg l1 → rel l2, representing usages
that should be executed before initial releases. These dependencies can be
created due to the order of the lock actions inside an execution tree or due
to priorities like in Fig. 4.

– The acquisition graph (ga), with edges acq l1 → usg l2, representing final
acquisitions that should be executed before usages. As in the previous item,
these dependencies can be created due to the ordering of the lock actions
inside the execution tree or due to priorities.

– Lock actions (la), set with information of each lock action that occurs in
the hedge. This information will be useful to decide if a lock action needs to
be executed before another one, dependency that will be added to gr or ga.
The elements of this set are tuples composed of the following elements:

• Name of the lock on which the action is executed, takes values of L.
• Type of the lock action, take values from {acq, rel, usg}.
• Lowest before priority (lbp): lowest priority between the priorities of all

ancestor configurations of the action, including the priority of the configu-
ration that makes the transition itself. Intuitively, given two lock actions
with different lbp values, the action with highest lbp value will be exe-
cuted first because the path from the root to that lock action has highest
priority.
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• Lowest after priority (lap): lowest priority on which the hedge can be after
the execution of this action. Intuitively, given two lock actions a1 and a2,
if the first one has a lowest before priority lower than the lowest after
priority of the second one, i.e. lbp1 < lap2, then the first action should be
executed first. Otherwise it gets blocked by the priorities after the second
lock action.

The set of all pl-structures is denoted by PLS. It is easy to see that PLS is finite,
with size exponential in the number of locks.

The first two elements of the pl-structure tuple correspond to the prior-
ity structure of [4] while the remaining elements correspond to the acquisition
structure of [2]. The novelty consist of the attachment of priorities to the ele
ments of lock actions and all the computation necessary to update them.

6.3 Computing Priority-Lock Structures

The computation of the pl-structure of an execution hedge h is carried out
inductively over its structure in a bottom-up way, from its leaves to its roots.

The main function of the algorithm is denoted by Φ : T ∗ → PLS:

– If h = pw then Φ(h) = [[∞, ηp(p), ∅, ∅, ∅]]. Since the hedge does not have
transitions, its lowest transition priority is initialized to ∞. Its highest final
priority is set to ηp(p), the priority of the control state of its unique leaf
configuration. The hedge does not have any transition or lock actions, so the
remaining elements of the tuple are empty sets.

– If h = c(lab, t) then Φ(h) = update(ηp(c), lab, Φ(t)). The function update,
explained in detail later, it is in charge of updating the minimum priorities
and keeping track of the lock actions found.

– If h = c(τ, t1, t2), we proceed in a way similar to the previous case, Φ(h) =
update(ηp(c), τ, Φ(t1) ⊕ Φ(t2)), except that before updating we need to com-
bine the pl-structures of the subtrees. For combining the pl-structures we
introduce the operator ⊕, explained in detail later, that takes as input two
pl-structures and returns a new pl-structure, the composition of them.

– If h = t1 . . . tn then Φ(h) = Φ(t1) ⊕ · · · ⊕ Φ(tn). If the hedge is a sequence of
trees then its pl-structure is the composition of the pl-structures of the trees.
This is computed using the operator ⊕ by taking pairs of trees, since ⊕ will
be defined to be associative and commutative.

The function update : P × Lab × PLS → PLS, takes as input the priority n
of the root configuration of the tree, the label lab of the first edge of the tree and
the pl-structure s of the subtree (or subtrees) and returns a new pl-structure s′.
We define update(n, lab, s) as follows:

– If s = ⊥ then update(n, lab, s) = ⊥. This means that a execution tree cannot
be scheduled if the subtree cannot.

– Suppose s = [[x, y, gr, ga, la]]. Then update(n, lab, s) depends on the label of
the edge as follows:
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• Suppose lab = τ . We update the lowest transition priority and the before
priorities of the locks actions in la. Then s′ = [[min(x, n), y, gr, ga, la′]],
where la′ = {(a, l,min(x, n), y) | (a, l, x, y) ∈ la}.

• Suppose lab = k, with k a priority. Same as previous case.
• Suppose that lab = rel l. We update the minimum priorities as previously

and we add (rel, l, n,min(x, y)) to la′. The lowest before priority is n
since, by now, is the unique priority that occurs before the action. The
lowest after priority is set to min(x, y) since it is the lowest priority of
the tree after the lock action.

• Suppose lab = acq l and there is not an initial release of the same
lock in la (the acquisition corresponds to a final acquisition). We add
(acq, l, n,min(x, y)) to la′ and for all usages in la we add to ga an edge
from l to its lock: g′

a = ga ∪ {l → l′ | (usg, l′, x′, y′) ∈ la}.
• Suppose lab = acq l and there is an initial release of the same lock

(rel, l, x, y) in la (the acquisition corresponds to an usage of the lock l). We
remove the matched initial release and we add the usage (usg, l, x, y) to la.
Also, we remove the edges from gr that were pointing to the initial release
and we add edges from this usage to all the other initial releases in la.
Formally: g′

r = {l′ → l′′ | l′ → l′′ ∈ gr ∧ l′′ �= l} ∪ {l → l′ | (rel, l′, x′, y′) ∈
la ∧ l′ �= l}.

The operator ⊕ : PLS×PLS → PLS, takes as input two pl-structures s1, s2
and returns another one, s′, the composition of them:

1. If s1 = ⊥ or s2 = ⊥ then s1 ⊕ s2 = ⊥. This means that if one of the
execution hedges does not have a schedule then the composition of them is
not schedulable.

2. Suppose s1 =[[x1, y1, gr1 , ga1 , la1]] and s2 =[[x2, y2, gr2 , ga2 , la2]].
(a) If x1 ≥ x2 ≥ y1 ∨ x2 ≥ x1 ≥ y2 is not satisfied then the execution hedges

cannot be scheduled together because the last priority of one tree will
block some transitions in the other one. Then, in this case s′ = ⊥.

(b) If there is a final acquisition (or initial release) of the same lock in both
la1 and la2, then s′ = ⊥, since this is forbidden by the lock rules.

(c) Otherwise, s′ =[[min(x1, x2),max(y1, y2), g′
r, g

′
a, la′]], where la′, g′

r, g
′
a are

defined as follows:
i. The lowest priority of the left branch is lp1 = min(x1, y1), and of the

right branch is lp2 = min(x2, y2). Then we update the information on
each lock action, setting la′ as follows:
la′ = {(a, l, x,max(lp2, y)) | (a, l, x, y) ∈ la1}
∪ {(a, l, x,max(lp1, y)) | (a, l, x, y) ∈ la2}.

ii. Let gr
′ = gr1 ∪ gr2

∪ {l2 → l1 | (usg, l2, x2, y2) ∈ la2, (rel, l1, x1, y1) ∈ la1, x2 > x1}
∪ {l1 → l2 | (usg, l1, x1, y1) ∈ la1, (rel, l2, x2, y2) ∈ la2, x1 > x2}.

iii. Let ga
′ = ga1 ∪ ga2 ∪{l1 → l2 | (acq, l1, x1, y1) ∈ la1, (usg, l2, x2, y2) ∈

la2, x1 = x2 ∧ x1 < y2} ∪ {l2 → l1 | (acq, l2, x2, y2) ∈ la2, (usg,
l1, x1, y1) ∈ la1, x1 = x2 ∧ x2 < y1}.
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The core of the algorithm consist of items (i), (ii) and (iii) of the operator ⊕
definition. Item (i) of the algorithm means that priorities of threads created in
the path from the common ancestor of two lock actions to one of the lock actions
can block the execution of the other lock action. So when we compute the lowest
after priority of a lock action we must take into account the priorities of these
threads. Item (ii) means that an usage with a higher lowest before priority than
an initial release will be executed before the initial release (see Fig. 5). This
condition does not need to be checked for final acquisitions and usages since the
subtree of a final acquisition cannot change priorities, therefore in this case the
execution tree cannot be scheduled and will be detected by the equation of (a).
Item (iii) has similar reasoning as (ii).

Once we have the pl-structure of the execution hedge computed we can have
two possible results. If it is bottom, then the hedge cannot be scheduled. If the
pl-structure is not bottom, we still have to check that it is consistent in order
to get that the execution hedge is schedulable.

Definition 5. A pl-structure s =[[x, y, gr, ga, la]] is consistent with respect to a
set of locks X iff it satisfies X \ {l | (rel, l, x, y) ∈ la} ∩ {l | (acq, l, x, y) ∈
la∨ (usg, l, x, y) ∈ la} = ∅ and gr, ga are acyclic. The bottom pl-structure is not
consistent with respect to any set of locks.

The intuition behind these definitions is as follows:
– The first condition means that the hedge does not acquire a lock that was

taken from the beginning of the execution and was not initially released.
– Second, if there is a cycle in one of the graphs, then there is a lock that

should be finally acquired before being used, or a lock that should be used
before being initially released. Since this is not possible according to the lock
semantics, the hedge is not schedulable.

This leads us to the following theorem.

Theorem 2. An execution hedge h is schedulable iff Φ(h) is consistent with
respect to the set of locks ηl(root(h)).

6.4 Example of Computation of PL-Structure

In Fig. 5 we can observe the computation of the pl-structure for the first tree of
the execution hedge of Fig. 3. The computation starts in the leaves of the tree
and finishes in the root, with a pl-structure:

[[1, 0, {l3 → l2}, ∅, {(usg, l3, 2, 0), (rel, l2, 1, 0)}]]

The dependency l3 → l2 is added by the compose operator because the
lowest before priority of usg l3 is higher than the lowest before prior-
ity of rel l2. The pl-structure for the others two execution trees is simi-
lar. After composing the pl-structure of all trees using ⊕, the resulting pl-
structure for the whole hedge of Fig. 4 is: [[1, 0, {l3 → l2, l2 → l1, l1 →
l3}, ∅, {(usg, l3, 2, 0), (rel, l2, 1, 0), (usg, l2, 2, 0), (rel, l1, 1, 0), (usg, l1, 2, 0), (rel, l3,
1, 0)}]]. Since gr has a cycle, the pl-structure is not consistent and by Theorem 2,
the execution hedge is not schedulable.
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Fig. 5. Example of computation of pl-structure for the rst tree of the execution hedge
in Fig. 4. Each node has the pl-structure of the (sub)-tree rooted by himself.

7 Computing pre* Images of PL-DPNs

Following [1], we use finite automata called M -automata to represent regular
(possible infinite) sets of configurations of PL-DPNs.

Given a PL-DPN M = (P, Γ,Δ, ηp, ηl) and a M -automaton A, the main idea
of the algorithm consists on computing the predecessors without taking care of
the priority and locks semantics, using the algorithm of [1], and then filter out
the unreachable configurations using priority-lock structures.

First we modify M ′ (the DPN of M) and A, as in Sect. 7 of [4], embedding
the definition of Φ inside the control states of the configurations:

1. We transform M ′ into the DPN M ′′ = (P ′, Γ,Δ′), where P ′ = {(p, s) | p ∈
P, s ∈ PLS} and the transition rules of Δ′ are:

− (p, sp)γ ↪−→ (q, sq)w, if pγ
lab

↪−−→ qw ∈ Δ ∧ sp = update(ηp(p), lab, sq),
− (p, sp)γ ↪−→ (q1, sq1)w1 � (q2, sq2)w2, if pγ ↪−→ q1w1 � q2w2 ∈ Δ

∧ sp = update(ηp(p), τ, sq1 ⊕ sq2),

where p, q, q1, q2 ∈ P, γ ∈ Γ,w,w1, w2 ∈ Γ ∗, sp, sq, sq1 , sq2 ∈ PLS.
2. We transform A into A ′, that accepts the language:

L(A ′) = {(p1,[[∞, ηp(p1), ∅, ∅, ∅]])w1 . . .(pn,[[∞, ηp(pn), ∅, ∅, ∅]])wn

| p1w1 . . . pnwn ∈ L(A)}.

Then, we compute predecessors of L(A ′) in M ′′, using the algorithm of [1],
obtaining configurations of the form (p1, s1)w1 . . . (pn, sn)wn, where each si is a
priority structure. Intuitively, the fact that (p1, s1)w1 . . . (pn, sn)wn ∈ pre∗

M ′′(A ′)
means that p1w1 . . . pnwn ∈ pre∗

M ′(L(A)) and that s1⊕· · ·⊕sn is the priority-lock
structure of the hedge rooted at p1w1 . . . pnwn and whose yield is in L(A).
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Finally, we create an automaton Apre∗
M

that accepts only the configurations
of pre∗

M ′′(L(A ′)) with priority-lock structures not equal to ⊥:

L(Apre∗
M

) = {p1w1 . . . pnwn | (p1, s1)w1 . . . (pn, sn)wn

∈ L(Apre∗
M′′ ) ∧ s1 ⊕ · · · ⊕ sn �= ⊥}

It is easy to see that is straightforward to construct such M-automata.
In this way we get the main result of the paper that says that backward

reachability sets of PL-DPNs are regular and can be effectively computed:

Theorem 3. L(Apre∗
M

) = pre∗
M (L(A)).

8 Implementation and Benchmarks

We implemented our algorithm in a tool called PL-DPN [7]. The tool is written
in the programming language Python and takes as input programs written in C.
We compared our implementation with a tool called i-CBMC [8], an extension of
the well known CBMC bounded model checker [9], capable of handling threads
with priorities.

The effectiveness of our method is evaluated by using a set of benchmarks
derived from real time software, Linux device drivers and a hypervisor. For each
benchmark, we have a version where priorities and/or locks correctly protect
shared variables from producing data races or deadlocks, and another version
where they are incorrectly managed, and hence, safety properties are violated.

Program LOC Threads i-CBMC PL-DPN
Logger (1) 112 2 0.2 sec 2.8 sec
+ incorrect 112 2 0.2 sec 0.6 sec
Logger (2) 172 3 19 sec 34 sec
+ incorrect 172 3 18 sec 8 sec
Blink 2,652 2 8 sec 29 sec
+ incorrect 2,652 2 11 sec 7 sec
Brake (1) 3,938 2 TO 1 sec
+ incorrect 3,938 2 4 sec 0.9 sec
Brake (2) 3,938 3 TO 1 sec
+ incorrect 3,938 3 6 sec 0.9 sec
Brake (3) 3,938 4 TO 1 sec
+ incorrect 3,938 4 8 sec 0.9 sec
Xvisor 108,353 4 TO 15 min
+ incorrect 108,353 4 TO 7 min

Fig. 6. Experimental results.

In Fig. 6 we can observe
the results of running our
tool and i-CBMC on the
seven benchmark programs.
Overall, our tool performs
quite well obtaining, in some
cases, smaller running times
than i-CBMC. Also, our tool
found several new data races
in the Xvisor program, some
of them confirmed and fixed
by the author [10]. The bug
was caused by an unpro-
tected data structure and
was fixed by adding spin-
locks.



Dealing with Priorities and Locks for Concurrent Programs 223

9 An Undecidability Result

In this section we show that for concurrent programs that allow the synchro-
nization by changing priorities between lock acquisition and the corresponding
release, the model checking problem for pairwise reachability is undecidable.

Given a concurrent program comprised of two threads T1 and T2 communi-
cating via pairwise rendezvous, we construct a new program comprised of two
threads T ′

1 and T ′
2 simulating rendezvous using changes of priority inside the

usages of nested locks. This reduces the decision problem for pairwise reachabil-
ity for threads communicating by pairwise rendezvous to threads communicating
with nested locks and priorities.

We show how to simulate a given pair a
m!−−→ b and c

m?−−→ d of send and
receive pairwise rendezvous transitions, respectively. Recall that for this ren-
dezvous to be executed, both the send and receive transitions must be simulta-
neously enabled, else neither transition can fire.

On [3], Kahlon et al. (weakly) simulate pairwise rendezvous by using non-
well-nested locks. The main idea for simulating pairwise rendezvous using non-
well-nested locks was to create lock chains. In a lock chain before releasing a
lock a thread is forced to pick up another lock, giving the ability to introduce a
relative ordering on the firing of local transitions of T ′

1 and T ′
2.

In this way a
m!−−→ b becomes: a

acq lm−−−−→ a
rel lm?−−−−→ a

acq lm!−−−−→ a
rel lm−−−−→ b

acq lm?−−−−−→
b

lm!−−→ b and c
m?−−→ d becomes c

acq lm?−−−−−→ c
rel lm!−−−−→ c

acq lm−−−−→ c
rel lm?−−−−→ d

acq lm!−−−−→
d

lm−→ d, where lm, lm?, lm! are new locks.
Here we simulate their construction using nested locks and priorities. In order

to simulate lock chains using nested locks and priorities we can replace each
chain link of the form: c

acq l1−−−−→ c
acql2−−−→ c

rel l1−−−→ c by the following sequence:
c1

acq l1−−−−→ c1
acq l2−−−−→ c1

2−→ c2
rel l2−−−→ c2

rel l1−−−→ c2
acq l2−−−−→ c2

1−→ c1, where the
subindex number denotes the priority of the configuration.

Theorem 4. The model checking problem for pairwise reachability is undecid-
able for concurrent programs communicating using nested locks and priorities.
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Abstract. A protocol defines a structured conversation aimed at
exchanging information between two or more parties. Complete confiden-
tiality is virtually impossible so long as useful information needs to be
transmitted. A more useful approach is to quantify the amount of infor-
mation that is leaked. Traditionally, information flow in protocols has
been analyzed using notions of entropy. We move to a discrete approach
where information is measured in terms of propositional facts. We con-
sider protocols involving agents holding numbered cards who exchange
information to discover each others’ private hands. We define a transition
system that searches the space of all possible announcement sequences
made by such a set of agents and tries to identify a subset of announce-
ments that constitutes an informative yet safe protocol.

1 Introduction

A protocol defines a structured conversation aimed at exchanging information
between two or more parties. In a computational setting, there is a natural ten-
sion between transmitting relevant information to a trusted partner and leaking
confidential data to an intruder.

This has led to the study of security in protocols from the perspective of infor-
mation flow. Complete confidentiality is virtually impossible so long as useful
information needs to be transmitted. For instance, rejecting an invalid password
reveals indirectly what the password is not. Hence, a more useful approach is to
quantify the amount of information that is made available to an eavesdropper
and use this as a basis for evaluating the security of protocols.

Several proposals have been made over the past decade to model quantitative
information flow [1–4,6–8]. The general consensus has been to use ideas from
information theory, primarily the notion of entropy, as a basis for measuring
information leakage. Starting with the classical notion of entropy proposed by
Shannon, some of this work has moved towards analyzing alternative notions of
entropy. These choices are often motivated by ad hoc synthetic scenarios that
bear no clear relationship to protocols in actual use.

We move away from this continuous measurement of information content to a
discrete approach in terms of knowledge. To start with, we regard information as
consisting of propositional facts, representing knowledge that has to be shared
amongst agents. Initially, the eavesdropper does not know any of these facts.
c© Springer International Publishing AG 2017
D. D’Souza and K. Narayan Kumar (Eds.): ATVA 2017, LNCS 10482, pp. 225–240, 2017.
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As the protocol evolves and the honest agents participating in the conversation
learn facts about each other, the eavesdropper also comes to know certain facts
about the system. The goal is to have informative protocols that share knowledge
effectively, but are still safe in terms of leaking this knowledge to an intruder.

Concretely, we focus on problems involving sets of agents holding cards on
which distinct numbers are written. Each hand is initially known only to the
agent who holds it. The agents’ aim is to learn about each others’ hands through
public announcements, while revealing as little as possible to an eavesdropper.

An example is the Russian Cards problem with distribution 〈k1|k2|k3〉, denot-
ing that A and B get k1, k2 cards respectively while the third player C gets k3
cards. The objective of A and B is to communicate with each other so that they
both eventually learn each other’s cards, while C remains ignorant of every card.
An in-depth analysis of this problem in terms of the logic of public announce-
ments can be found in [9].

One generalization of the Russian Cards setting is the Secure Aggregation
of Distributed Information (SADI) problem, where there are k agents and an
eavesdropper E . The distribution of cards is then given by 〈n1| . . . |nk〉, with ni

denoting the number of cards that honest agent i holds. The eavesdropper E
does not receive any cards. The objective is to come up with protocols such that
all the honest agents learn each others’ cards while E remains ignorant of the
location of at least some, if not all, cards. The SADI problem is analyzed in [5].

We present an approach to the SADI problem based on searching through the
state space of a transition system. Each state of the transition system describes
the knowledge of the individual agents, in terms of atomic propositions of the
form A knows that B has card i and A knows that B does not have card i. Each
announcement updates these knowledge propositions. To effect this update, we
set up rules linking the propositions and use a SAT solver to compute the set of
possible states after each announcement.

The updates we compute are first order—that is, they calculate the knowl-
edge that has been revealed through the current sequence of announcements.
However, we also need to capture second order knowledge—for instance, the
given sequence should be compatible with more than one starting distribution
of cards to prevent the eavesdropper from indirectly inferring the cards held
by the honest agents from the choice of the announcement sequence. Using the
formulation from [5], we show that such second order knowledge can also be
captured using our transition system framework.

The paper is organized as follows. We set the framework for the SADI prob-
lem in Sect. 2. In the next section, we describe how we set up a transition
system to analyze this problem. Section 4 describes how we can formulate and
answer questions about information flow using our transition system. In Sect. 5
we describe some experimental results. We conclude with a discussion of future
directions.
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2 Preliminaries

Recalling the definitions from [5], the setting we consider involves a finite set of
agents, Ag , with information distributed amongst them. Apart from the (honest)
agents in Ag , there is also the eavesdropper. For convenience, if Ag consists of k
honest agents, we assume that they are named {0, 1, . . . , k−1}.

For our purposes, the information that the agents hold consists of a set of
cards numbered 0, 1, . . . , n−1. These cards are distributed amongst the honest
agents. In what follows, if X is a set and m is a natural number, then

(
X
m

)
denotes

the subsets of X of cardinality m. The cardinality of X is denoted by #X.
It is assumed that there is a mechanism to distribute the cards initially,

at the end of which each agent knows his own hand and the number of cards
that everyone has been dealt, but nothing more. The problem is for the honest
agents to learn each other’s hands via public announcements without leaking
information to the eavesdropper.

Definition 1. The distribution type is a vector s̄ = (sp)p∈Ag of natural numbers,
where sp denotes the number of cards dealt initially to agent p. We denote by |s̄|
the total number of cards, Σp∈Agsp.

A deal of type s̄ is a partition H = (Hp)p∈Ag of {0, . . . , |s̄| − 1} such that
#Hp = sp for each agent p. We say Hp is the hand of p. Further, we denote the
set of all deals over s̄ by Deals (̄s).

Given two deals H and H ′ of type s̄, and an agent p, we say that H and H ′

are indistinguishable for p (in symbols: H ∼p H ′) if Hp = H ′
p.

The agents try to learn each other’s hand by publicly (and truthfully)
announcing information about their own cards. Consider an agent A holding
the cards {1, 2, 3}. One announcement he might make is “My hand is either
{1, 2, 3} or {1, 4, 6} or {2, 3, 5}.” Any other agent who holds 4 and 5, on hear-
ing this announcement, will immediately know that A’s hand is {1, 2, 3}. But
the eavesdropper still has uncertainty about A’s hand, since he doesn’t have
any cards of his own. Another possible announcement is “My cards are among
{1, 2, 3, 4, 6, 7}.” Yet another announcement is “The sum of the numbers on my
cards is 6.” All these announcements can be encoded as a disjunction of hands.
For instance, the last announcement above is the disjunction “My hand is either
{1, 2, 3} or {0, 2, 4}.”

Definition 2 (Actions). Fix a distribution type s̄, and let Cards = {0, . . . , |s̄|−
1}. An announcement by agent p is a disjunction of possible hands. Since he has
sp cards, the announcement can be thought of as a subset of

(
Cards

sp

)
. Thus we can

define Actp, the set of p-announcements to be P(
(
Cards

sp

)
), where P(X) denotes

the powerset of X. The set of actions is defined to be Act =
⋃

p∈Ag Actp.

We assume a situation in which agents take turns to make announcements,
starting from 0 and proceeding in cyclic order, till they achieve a certain goal.
This is formalized by the following definition.
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Definition 3 (Runs). Fix a distribution type s̄ as before, with m agents. An
execution is a (finite or infinite) sequence of actions α0α1 · · · such that αi ∈ Actp

whenever i mod m = p. A finite execution is also called a run. Given a run ρ =
α0α1 . . . αn and two indices i ≤ j, α[i . . . j] denotes the segment αiαi+1 . . . αj.
We denote the length of a run ρ by |ρ|. The set of runs is denoted by Runs.

A protocol describes a strategy for each agent to make announcements given
the current history. We constrain each announcement to be truthful. We also
insist that a protocol depend only on the local information available to the
agent—any two situations that are the same from the agent’s point of view must
elicit the same response. In other words, if the agent holds the same hand in two
different deals and sees the same sequence of announcements, he must respond
identically in both situations.

Definition 4 (Protocol). Fix a distribution type s̄, with m agents. A protocol
(for s̄) is a function π assigning to every deal H ∈ Deals (̄s), and every run
ρ ∈ Runs with |ρ| mod m = p, a non-empty set of p-actions π(H, ρ) ⊆ Actp

such that:

– Hp ∈ α for all α ∈ π(H, ρ) (the announcement is truthful), and
– if H ∼p H ′, then π(H, ρ) = π(H ′, ρ) (the announcement is view-based).

A run of a protocol π is a pair (H, ρ) where H ∈ Deals (̄s) and ρ = α0α1 . . . αm

is a run such that αi+1 ∈ π(H, ρ[0 . . . i]) for every i < m. The set of runs of π
is denoted by Runs(π).

We are interested in protocols that are informative (all honest agents learn
the whole deal) and safe (the eavesdropper is uncertain about the deal even after
listening to all the announcements). We formalize these notions below.

Definition 5. A run (H, ρ) of a protocol π is informative for an agent p if there
is no execution (H ′, ρ) of π with H ∼p H ′ and H �= H ′. (i.e., there is no other
starting deal that is consistent with p’s hand and the subsequent announcements.)
A protocol π is

– weakly informative (WI): if every run of π is informative for some agent.
– informative (I): if every run of π is informative for every agent.

The eavesdropper does not have any information about the deal to begin
with. Hence, the actual deal could be any deal of the correct distribution type.
As the honest agents communicate amongst themselves, the eavesdropper uses
the information in the announcements to eliminate various deals from contention.
At the end of a sequence of announcements, he will be left with a set of deals
that are consistent with this sequence. This set must have at least one element,
namely the actual deal. This set is formally defined below.

Definition 6. Given a protocol π and a run ρ, define the (eavesdropper’s) igno-
rance set Iπ(ρ) to be {H | (H, ρ) ∈ Runs(π)}.
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Iπ(ρ) is can be used to determine what the eavesdropper knows at the end
of ρ.

Consider a situation where agent 0 holds the card 5 in every deal in Iπ(ρ).
This means that the eavesdropper has ruled out all deals where agent 0 does not
hold card 5 as being inconsistent with ρ. Hence, the run ρ has leaked information
about the location of card 5 to the eavesdropper.

Consider another situation involving card 5, where agent 1 holds card 5 in
some of the deals in Iπ(ρ), and agent 2 holds card 5 in the rest of the deals in
Iπ(ρ). Here, even though the eavesdropper does not know exactly who holds the
card 5, he is certain that no agent other than {1, 2} holds card 5.

This leads us to the following two notions of safety of a card (at the end of
a run).

Definition 7 (Safety of cards). A run (H, ρ) of a protocol π is safe for the
card c if for every agent p, there is a deal G ∈ Iπ(ρ) such that c �∈ Gp.

A run (H, ρ) of a protocol π is strongly safe for the card c if for every agent
p, there are two deals F,G ∈ Iπ(ρ) such that c ∈ Fp and c �∈ Gp.

Thus, safety of a run means that the eavesdropper does not know for certain
that an agent p has card c, but the eavesdropper may have concluded that p
definitely does not have c. On the other hand, strong safety requires that the
eavesdropper cannot conclude whether p holds c or p does not hold c.

We can lift the notion of safety from runs to protocols as follows.

Definition 8 (Safety of Protocols). A protocol π is

– deal safe: if every run of π is safe for some card c. Equivalently, deal safety
means that the eavesdropper does not learn the deal at the end of any run of
π.

– p-safe (for an agent p): if every run of π is safe for all cards in Hp.
– safe: if every execution of π is safe for every card c.
– strongly safe: if every execution of π is strongly safe for every card c.

In the rest of the paper, we will examine an approach to synthesize infor-
mative and safe protocols based on these definitions. Equivalently, our approach
can be used to validate if a given protocol is informative and safe.

We assume that there are at least three honest agents, so that negative
information of the form p does not hold card c does not automatically imply
positive information of the form q holds card c.

3 Implementation

In this section, we describe a tool written in Python to search for informative
and safe runs of a particular distribution type. Before presenting the details of
the tool, we present an abstract transition system model for protocols.
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3.1 Defining the Transition System

Fix a distribution type s̄ with k agents {0, 1, . . . , k−1}. For convenience, we
assume that the eavesdropper is agent k, with the understanding that agent k
possesses no cards. Let {0, 1, . . . , n−1} be the set of cards dealt. We describe
a transition system that tracks the uncertainty of every agent about the actual
deal. Essentially, each agent implicitly stores a set of valuations that represent
all deals that are compatible with the information that he has seen so far.

Definition 9 (Valuations). The set of knowledge propositions for an agent
p ≤ k, denoted K(p), is the set

{Kpq(c),KpNq(c) | q < k, q �= p, c < n}.

The proposition Kpq(c) describes the fact that agent p knows that agent q has
card c, while the proposition KpNq(c) says that p knows that q does not have
card c.

Definition 10 A valuation for agent p (with respect to an initial deal H) is a
function v : K(p) → {
,⊥} satisfying the following conditions, where we write
v |= � to mean v(�) = 
 and v �|= � to mean v(�) = ⊥.

– consistency with the deal: For all 0 ≤ c < n, if c ∈ Hp then for all
0 ≤ q < k, p �= q, v |= KpNq(c).

– consistency of knowledge propositions: For all 0 ≤ q < k and 0 ≤ c < n,
either v �|= Kpq(c) or v �|= KpNq(c).

– ownership of cards: For all 0 ≤ q < k and 0 ≤ c < n, v |= Kpq(c) iff for
all r /∈ {p, q}, v |= KpNr(c).

– consistency with the distribution type: For each q �= p, there are at most
sq propositions of the form Kpq(c) such that v |= Kpq(c).

– complete knowledge: For each q �= p, there are exactly sq propositions of
the form Kpq(c) such that v |= Kpq(c) iff there are exactly (n−sq) propositions
of the form KpNq(c) such that v |= KpNq(c).

We denote the set of all valuations for agent p by Valsp, and let Vals =⋃
p≤m Valsp.

A valuation for p is supposed to capture p’s information state. If v maps Kpq(c)
to 
, it means that p believes, in this information state, that q has card c. If
v maps KpNq(c) to 
, it means that p believes that q does not have card c. If
v maps both Kpq(c) and KpNq(c) to ⊥, this means that p is uncertain about
whether or not q holds card c.

Assuming three agents {0, 1, 2}, an example valuation for agent 0 is given in
Fig. 1. This corresponds to the initial deal ({0, 1}, {2, 3, 4}, {5, 6, 7, 8}).

Each agent has a valuation describing the initial state according to his per-
spective, but as he hears more and more announcements (which are all disjunc-
tions), it might not be possible to represent the information he has by means
of one valuation. Each disjunct in the announcement he hears might lead him
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0 1 2 3 4 5 6 7 8

K01 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K02 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K0N1 � � ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K0N2 � � ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fig. 1. Valuation for agent 0 at initial deal 〈0, 1|2, 3, 4|5, 6, 7, 8〉

to consider a new valuation as a possible world. Thus each agent might need to
store a set of valuations as a run progresses. This leads to the following definition
of states.

Definition 11 (States). A state is an k+1-tuple (V0, . . . , Vk) where each Vp ⊆
Valsp.

Definition 12 (X-extension). Let v be a q-valuation and X be an sp-sized
subset of {0, . . . , n−1}. We say that a q-valuation v′ is a X-extension of v if
v ≤ v′ and v′ |= Kqp(c) for all c ∈ X.

Note that for a given v and X, it is possible that there is no X-extension
of v.

Definition 13 (State updates). Given a state s = (V0, . . . , Vk) and a p-
announcement α, we define update(s, α) to be s′ = (V ′

0 , . . . , V
′
k) such that:

– V ′
p = Vp

– for q �= p, V ′
q =

⋃
v∈Vq,Xis a disjunct of α {v′ | v′is anX − extension of v}.

The core component of our tool computes the updated state at the end of a
sequence of announcements, starting from an initial deal. The final state encap-
sulates a nontrivial amount of information, from which one can test whether
the honest agents have complete knowledge of the deal, and also whether the
eavesdropper knows the original deal. Furthermore, we can also generate the
uncertainty set of the eavesdropper, namely, the set of all deals that are com-
patible with the given announcement sequence. We can use this information in
a variety of ways, as detailed in Sect. 4.

The important point to note is that the tool computes the updated state
implicitly. Rather than explicitly maintain a set of valuations after each
announcement, the tool just collects all the announcements, and invokes the
SAT solver to determine the certain knowledge of the agents.

3.2 A High-Level Description of the Tool

In this section, we describe in more detail some key components of our tool. In
the interests of space, we present a high-level overview1. The tool is written in
1 Please check http://www.cmi.ac.in/∼spsuresh/projects/russian-cards-z3/ for the
full code.

http://www.cmi.ac.in/~spsuresh/projects/russian-cards-z3/
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Python, and implements the system described in the previous section. It interacts
with the SAT solver Z3 to compute the updated state after each announcement.
As detailed in the definition of valuations, each valuation has to satisfy a lot of
constraints. These are coded as system invariants. A solver instance is created
and formulas corresponding to the constraints are added to the solver, as shown
in the following snippet.

solvR = Solver()
solvR.push()
vD,oW,hK = self.validDeal(), self.ownership(), self.hand2K()
kC,oK,dK = self.kConsistency(), self.ownershipK(), self.dealK()
solvR.add(vD)
solvR.add(oW)
solvR.add(hK)
solvR.add(kC)
solvR.add(oK)
solvR.add(dK)
solvR.push()
return solvR

For instance, validDeal corresponds to the constraint that if c ∈ Hp then
v |= KpNq(c), while ownershipK corresponds to the constraint that v |= Kpq(c)
iff v |= KpNr(c) for all r �= q. Similarly for the other constraints.

Given any announcement as a tuple consisting of the speaker as well as
the DNF formula, the updateAnn procedure produces a new state with the
appropriate update to the knowledge of each agent. Essentially, it translates
the announcement to an appropriate formula denoting how each agent other
than the speaker would perceive it and this is appended to the knowledge of
each listener.

To process a sequence of announcements, the tool does not calculate the set
of valuations at each intermediate state. Rather, repeated calls to updateAnn
are made, which builds a conjunction of the initial knowledge, the constraints,
and all the announcements. Now we can call the SAT solver to check what
all propositions are consequences of this formula, and thus determine all the
propositions that each agent is certain about.

The tool is meant to go through a set of runs of bounded length, each run
consisting of announcements of a specific structure (typically a bound on the
number of disjunctions in the announcement), and compute various statistics at
the end of each run. For instance, we might want to know how many propositions
of the form Kmp(c) is definitely known to m (remember {0, . . . , m−1} is the set
of honest agents and m is the eavesdropper) at the end of a run. This measures
the amount of positive knowledge leaked. We might also want to check how
many propositions of the form KmNp(c) is definitely known to m (i.e., for every
valuation v ∈ Vm in the final state, v |= KmNp(c)). This measures the amount
of negative knowledge leaked. We can use this tool to either discover protocols
or check whether a purported protocol is informative and safe, as elaborated in
Sect. 4.
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3.3 An Example

In this example, we illustrate the functioning of our tool with the 〈2|3|4〉 SADI
problem detailed in [5]. Recall that the initial deal is 〈0, 1|2, 3, 4|5, 6, 7, 8〉, and an
informative and safe announcement sequence is the announcement {01, 08, 18}
by A, followed by the announcement {0234, 1237, 5678} by C. (B passes its turn
– by announcing true, for instance).

First, we need to create and initialize the problem instance

In [1]: from cpState import *
In [2]: deal = {’a’:[0,1],’b’:[2,3,4],’c’:[5,6,7,8],’e’:[]};
In [3]: infAgts, eaves = [’a’,’b’,’c’],’e’;
In [4]: agts = infAgts + [eaves]
In [5]: s0 = cpState([2, 3, 4, 0], agts, deal, infAgts, eaves)

At the end of the above commands, we obtain the initial state s0 initialized
with the deal 〈0, 1|2, 3, 4|5, 6, 7, 8〉. Having obtained the initial state, we now need
to update it with the announcements ann1 of A followed by ann2 of C.

In [6]: ann1 = (’a’, [[0, 1], [0, 8], [1, 8]])
In [7]: ann2 = (’c’, [[0, 2, 3, 4], [1, 2, 3, 7], [5, 6, 7, 8]])
In [8]: s1 = s0.updateAnn(ann1)
In [9]: s2 = s1.updateAnn(ann2)

Now that we have the resulting state s2 alongwith the intermediate state s1,
we can actually analyze the states and query them to obtain further information
about the states of any agent in each of the states.

We can obtain the set of all positive knowledge propositions for any agent

In [10]: %time s2.getPosK(’a’)
CPU times: user 3.42 s, sys: 32 ms, total: 3.45 s
Wall time: 3.45 s
Out[10]: [’Kab__2’,’Kab__3’,’Kab__4’,’Kac__5’,’Kac__6’,

’Kac__7’,’Kac__8’]

In [11]: %time s2.getPosK(’b’)
CPU times: user 2.95 s, sys: 0 ns, total: 2.95 s
Wall time: 2.95 s
Out[11]: [’Kba__0’,’Kba__1’,’Kbc__5’,’Kbc__6’,

’Kbc__7’,’Kbc__8’]

In [12]: %time s2.getPosK(’c’)
CPU times: user 2.46 s, sys: 4 ms, total: 2.47 s
Wall time: 2.47 s
Out[12]: [’Kca__0’,’Kca__1’,’Kcb__2’,’Kcb__3’,’Kcb__4’]

In [13]: %time s2.getPosK(’e’)
CPU times: user 4.43 s, sys: 16 ms, total: 4.44 s
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Wall time: 4.45 s
Out[13]: []

As observed, the above queries take about 3 to 4 seconds even for this simple
example. However, if all we are interested is in the informativity property, we can
reduce the time taken by using isInfAgt or isInformative as shown below,

In [14]: %time s2.isInfAgt(a)
CPU times: user 472 ms, sys: 0 ns, total: 472 ms
Wall time: 480 ms
Out[14]: True

In [15]: %time s2.isInfAgt(b)
CPU times: user 468 ms, sys: 0 ns, total: 468 ms
Wall time: 471 ms
Out[15]: True

In [16]: %time s2.isInfAgt(c)
CPU times: user 472 ms, sys: 0 ns, total: 472 ms
Wall time: 476 ms
Out[16]: True

In [17]: %time s2.isInformative(infAgts)
CPU times: user 1.48 s, sys: 0 ns, total: 1.48 s
Wall time: 1.48 s
Out[15]: True

In [16]: %time s2.isInformative([eaves])
CPU times: user 508 ms, sys: 0 ns, total: 508 ms
Wall time: 509 ms
Out[16]: False

Hence, we’ve ascertained that the state s2 is informative to a, b and c but e
doesn’t learn the owner of any card. This tallies with the analysis in [5]. However,
we can also query the states for negative propositions revealed to e,

In [17]: %time s1.getNegK(’e’)
CPU times: user 8.93 s, sys: 0 ns, total: 8.93 s
Wall time: 8.97 s
Out[17]: [’KeNa__2’,’KeNa__3’,’KeNa__4’,’KeNa__5’,

’KeNa__6’,’KeNa__7’]

In [18]: %time s2.getNegK(’e’)
CPU times: user 8.86 s, sys: 4 ms, total: 8.87 s
Wall time: 8.89 s
Out[18]: [’KeNa__2’,’KeNa__3’,’KeNa__4’,’KeNa__5’,
’KeNa__6’,’KeNa__7’,’KeNb__0’,’KeNb__1’,’KeNb__8’]
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From the above, it is clear that even though e doesn’t know any of the owners
of any cards, he does know 9 propositions of negative information involving cards
[0, 8]. In fact, for each of the cards, he knows at least one agent that does not
own the card. Thus, for any card, e initially did not know which of the 3 agents
it belonged to, but at the end, his uncertainty is restricted to 2 of the 3 agents.

4 Formulating Information Leakage Problems

We can use the transition system defined in the previous section in two ways: to
search for an informative and safe protocol, and to validate if a given protocal
is informative and safe.

4.1 Synthesis of Protocols

We can characterize informative states based on the knowledge propositions of
the agents—in an informative state, each agent should know completely all the
cards of the agents.

Likewise, safety can be described in terms of the knowledge propositions of
the eavesdropper. Unlike the classical SADI problem, we can quantify the level
of safety we tolerate by placing a threshold on the knowledge revealed to the
eavesdropper.

Our first task is to identify a set of runs that lead to informative and safe
states. We call such a run a first-order informative run. It suffices to start the
search at a fixed initial state corresponding a canonical distribution of cards.
Every other deal is a permutation of this deal. If we can find a protocol for this
starting deal, we can construct a symmetric protocol for every other deal by
permuting all announcements in the same manner as the initial deal.

Having identified first order informative runs (through depth-first search,
say) we have to check if they satisfy second order safety and if they meet the
view-based criterion laid down for protocols.

First order safety guarantees that the eavesdropper has at least two possible
deals in his ignorance set at the end of each such run. However, this does not
guarantee that the same run, starting from one of the alternative states, achieves
informativeness and safety. This is what we call second order safety. Our first
task, therefore, is to identify a set of first order informative runs that is closed
with respect to this pairing: for every run ρ starting from the initial deal H,
there is another deal H ′ such that ρ from H ′ is informative and safe.

Having identified such a set of runs closed with respect to second order safety,
we then ensure that there is a subset that is view-based—that is, if H ∼p H ′,
then the choice made after any sequence of announcements ρ starting from H
matches that made after ρ starting from H ′.

After these two stages of pruning, any first order informative runs that survive
constitute a protocol that solves the given problem.
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4.2 Verification of Protocols

Conversely, we can use our transition system to verify a given protocol. This
follows conventional lines, where we search for a state that is reachable with
respect to the protocol that violates the given safety requirement.

5 Experimental Results

In this section, we document some experiments with our tool on a 3 agent SADI
system. To assist readability, we refer to the 3 honest agents as {A,B,C} rather
than {0, 1, 2}. The eavesdropper is denoted E .

5.1 Need for Second Order Safety

To illustrate the inadequacy of direct first order reasoning, we consider an exam-
ple with deal type 〈2, 3, 4〉. Suppose the initial deal is d0 = 〈0, 1|2, 3, 4|5, 6, 7, 8〉.
Let the first announcement (ann1) by A be {01, 12, 23}. This would result in B
obtaining complete knowledge of the deal (as he has card 2). B could then make
the second announcement (ann2) as {234, 056, 178} to inform the others.

The only alternative deals compatible with the above announcements are

(a) d1 = ({1, 2}, {0, 5, 6}, {3, 4, 7, 8})
(b) d2 = ({2, 3}, {1, 7, 8}, {0, 4, 5, 6})
(c) d3 = ({2, 3}, {0, 5, 6}, {1, 4, 7, 8})

One may check that none of these deals are completely informative to all
three agents A,B and C when using the run ρ consisting of exactly the two
announcements above. For the first deal, A’s announcment is not informative to
B and the run itself is not informative to any of the agents. So, (d1, ρ) is not even
weakly informative. The runs (d2, ann1) as well as (d3, ann1) are informative to
exactly B and C respectively (the agent that has card 1) but, (d2, ρ) is not
informative to A and (d3, ρ) is informative to neither A nor C.

Currently, our tool can evaluate announcement sequences for first order
safety. It is straightforward to extend it to check for second order safety as
defined above. However, one would need to check what one could handle with
a näıve implementation of second order safety. In the next section, we describe
experiments using our tool for first order safety of larger instances with varying
parameters.

5.2 Hand Size and Informativity

For a particular deal type (say 〈4, 4, 4, 0〉), and a particular initial deal (say
〈{0, 1, 2, 3}|{4, 5, 6, 7}|{8, 9, 10, 11}〉), we generate random truthful announce-
ment sequences using the function genRun defined in cpState. Though an
announcement is simply a disjunction of hands, it makes sense for an agent
to reveal only partial information in every announcement. This can be done by



Knowledge Transfer and Information Leakage in Protocols 237

uniformly restricting the size of each set in the announcement. We call this the
size of the hand (hSize) revealed in the announcement. The function genRun
accepts the following arguments

a) The size of each set in the announcement (hSize).
b) The number of sets (or disjuncts) in an announcement (annLen).
c) The number of announcements for each run (runLen).

The executions were generated for the deal type 〈4, 4, 4, 0〉, varying hSize in
the range {1, 2, 3}. Furthermore, we also varied annLen to take values in {3, 5, 7}.
The results obtained are presented in Tables 1, 2 and 3. We also ran some exper-
iments for the deal type 〈8, 8, 8, 0〉—the results are tabulated in Table 4. For all
runs, we have fixed runLen as 6, denoting sequences of 6 announcements, corre-
sponding to exactly 2 rounds across the 3 agents. Our eventual goal is to move
beyond the 1 round protocols studied in the literature [5,9].

The hSize column denotes the hand size used in the announcements. The
other columns are labeled by sets of agents. The entries in the matrix denote
the number of runs which were informative for the corresponding set of agents.

If we look at the tables for 〈4, 4, 4, 0〉, (that is, Tables 1, 2 and 3) we notice
that, as we increase hSize, the number of runs which are informative for any
agent increases. This reflects our intuition that more information is transferred
when each part of the announcment reveals more details about the hand. Another
expected outcome is that the number of cards revealed to E also increases with

Table 1. Executions with annLen = 3 for 〈4, 4, 4, 0〉 (500 per entry).

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0

2 355 24 27 34 17 19 22 1 1

3 9 2 6 1 36 30 35 0 381

Table 2. Executions with annLen = 5 for 〈4, 4, 4, 0〉 (500 per entry).

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0

2 434 23 19 16 0 4 3 1 0

3 12 2 8 8 41 38 42 4 345

Table 3. Executions with annLen = 7 for 〈4, 4, 4, 0〉 (500 per entry).

hSize ∅ A B C A,B A,C B,C A,B,C A,B,C,E

1 500 0 0 0 0 0 0 0 0

2 480 7 8 5 0 0 0 0 0

3 12 12 13 10 55 59 55 20 264
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Table 4. Executions with annLen = 3 for 〈8, 8, 8, 0〉 (250 per entry)

hSize ∅ C A,B A,C B,C A,B,C,E

2 250 0 0 0 0 0

4 243 0 4 2 1 0

6 38 1 30 19 31 131
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Legend: hSize = 1 hSize = 2 hSize = 3

Fig. 2. Infomation leakage to E

increasing hSize, as observed in Fig. 2. Note that the number of cards revealed
to E is not represented in the tables but was computed independently using the
same set of runs.

Notice that for 〈4, 4, 4, 0〉, setting annLen = 7 and hSize = 3, we obtained
about 20 runs that were informative and safe. For the same configuration, we
obtained a larger number of runs (about 169 runs or about 33% of the runs)
that were informative for 2 of the agents.

One motivation for running these experiments is to identify parameters for
which the probability of hitting an informative run is high. Once we identify
informative runs, the next step would be to validate these runs with respect to
second order reasoning of E in order to design or search for informative and safe
protocols. We can also use these experiments to guide us towards impossibility
proofs when a protocol does not exist.
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6 Discussion

We have attempted to describe a framework for quantifying information flow in
protocols in terms of discrete items of knowledge. We have used card playing
protocols because the cards themselves act as natural units of knowledge.

We have identified two kinds of knowledge propositions: A knows that B
has card i and A knows that B does not have card i. In the Russian Cards
Problem where there are only two honest agents, these two are dual to each
other. However, in the SADI framework, the second type of knowledge is strictly
weaker than the first. Positive information about where a card is implies negative
information about where the card is not to be found, but not vice versa.

We can thus impose a partial order on different knowledge states of the
eavesdropper and use this to rank different protocols according the amount of
information that they reveal. A challenge would then be to synthesize an optimal
protocol with respect to this information ordering.

A more ambitious extension would be to extend our analysis to settings such
as bidding in the game of bridge. In the bridge bidding process, each pair tries to
understand the strength of the team’s hand without revealing too much to the
opponent. Bids are restricted to be an ascending sequence of announcements and
the number of such announcements is fixed a priori. Hence, the goal is to maxi-
mize the information shared between partners while minimizing the information
revealed to the opponents.
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Abstract. Automatic verification of concurrent programs written in
low-level languages like ANSI-C is an important task as multi-core archi-
tectures are gaining widespread adoption. Formal verification, although
very valuable for this domain, rapidly runs into the state-explosion
problem due to multiple thread interleavings. Recently, Bounded Model
Checking (BMC) has been used for this purpose, which does not scale
in practice. In this work, we develop a method to further constrain the
search space for BMC techniques using underapproximations of data flow
of shared memory and lazy demand-driven refinement of the approxima-
tion. A novel contribution of our method is that our underapproximation
is guided by likely data-flow invariants mined from dynamic analysis and
our refinement is based on proof-based learning. We have implemented
our method in a prototype tool. Initial experiments on benchmark exam-
ples show potential performance benefit.

1 Introduction

Automatic verification of concurrent programs written in low-level languages
like ANSI-C is an important task as multi-core architectures are gaining wide-
spread adoption. Difficulty in development of programs due to concurrency and
different memory models of processors underlines the need for tool support.
Bounded Model Checking (BMC) has been proposed as a solution for this pur-
pose which tries to ferret shallow bugs limiting unwinding depth [1], number
of context-switches [2], or number of writes [3,4] as a bounding parameter to
restrict search space and manage complexity. In these techniques, the control
flow of the concurrent program is sequentialized by choosing an arbitrary thread
order, and then modeling the effect of all interleavings by symbolically encoding
the possible read-write partial orders as non-deterministic data-flow constraints
on all behaviors up to the chosen BMC bounding parameter.

Contributions. In this work, we develop a method to further restrict proof search
space by using semantic underapproximations of possible data flow (i.e., write-
to-read relations in happens-before orders) of shared memory accesses and
c© Springer International Publishing AG 2017
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lazy, on-demand refinement of the approximation. The novel contributions of
our work are the following:

1. Our underapproximation is guided by likely data-flow invariants for the pro-
gram mined from dynamic analysis.

2. We perform automatic refinement of the approximation based on learning
from partial proofs.

3. We present an implementation of the method in a prototype tool inside
CBMC1. The tool fully automates extraction of likely invariants, construction
of the underapproximations and the refinement loop.

4. We report results of experiments we have run on a set of benchmarks.

2 The Method

In practice concurrent programs are developed with synchronization techniques
such as locks to protect shared memory. Even when explicit locks are not used,
the program semantics may constrain data flow. The search space considered by
BMC techniques considered earlier should thus be restricted to the feasible data
flow. To illustrate this problem and our method we use an example program
shown in Fig. 1.

{)(2t*diov1{)(1t*diov1

2 while(read_y()<NUM) { 2 int t, tmp1, tmp2;

3 int tmp1, tmp2; 3 while(read_y()<NUM) { }

4 tmp1=read_y(); 4 t=read_y();

5 write_y(tmp1+1); // y=y+1 5 tmp1=read_x();

6 tmp1=read_x(); 6 tmp2=read_y();

7 tmp2=read_y(); // x=x+y 7 write_y(tmp1+tmp2); // y=x+y;

8 write_x(tmp1+tmp2); 8 assert(read_y()==t+read_x());

}}9}}9

Fig. 1. Motivating example

Here two threads are executing functions t1, t2 and x, y are global variables
initialized to 0. This program is not safe as the following execution violates the
asserted condition: y is NUM−1; t12, t13, t14, t15, t23, t24, t25, t26, t16, t17, t18, t12,
t27, t28. For this program the encodings of [1] and [4] consider two writes (t15
and t27) for reads at t14 and t17. However, by considering only local writes
(t15) we can still find the assertion violation in a more constrained model as
shown in the previous execution trace. If we were unable to detect an error then
we would have to refine the model. Now suppose we modify the program by
swapping lines t16–t18 with lines t14–t15, then it is indeed a true invariant that
t14 and t17 will always read from the local write. In this case we can complete

1 http://www.cprover.org/cbmc/.

http://www.cprover.org/cbmc/
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verification without refining, if we are able to detect that they are true invariants
or the underapproximation is sufficient for verifying the property at hand. We
use dynamic analysis for this purpose. In particular we extract likely invariants
on data flow following [6]. For instance, in most executions of the program in
Fig. 1, reads at t14 and t17 will refer only to the local write (t15) due to the
spin-lock like condition in t23.

If the set of possible executions of a given program is represented as LC ∩
LD, where LC is the set of executions from the control-flow graph and LD is
the allowed data flow in underlying memory model, then our tool starts with
LC ∩ LD′ , where LD′ ⊆ LD. It either proves that LD \ LD′ is irrelevant to the
property or unfeasible, or refines LD′ towards LD. This has the advantage that
if the program is unsafe in the restricted model (as shown on Fig. 1) then we can
find a counterexample earlier; otherwise we explore data flows which are only
relevant to the property. To construct an initial LD′ such that LD′ ⊆ LD we use
likely invariants on data flow following [6].

We use unsatisfiable cores produced by a SAT solver for refinement of our
data-flow invariants on a demand-driven basis. Our refinement algorithm works
as shown in Fig. 2. We start with a Boolean formula, which is constructed by
converting the conjunction of given program (P ), negation of a property (φ)
and a set of constraints (Inv := I1 ∧ · · · ∧ In) to Boolean form (CNF) using
an appropriate method (like bit-blasting). This yields an underapproximation of
the original formula (P ∧ ¬φ), which is passed to a SAT solver. If the formula
is satisfiable then we deduce that the input program is unsafe. If, however, the
formula is unsatisfiable then we check whether any of I1 . . . In from Inv are
part of the unsatisfiability proof (unsatisfiable core) C. If none of the clauses
originating from I1 . . . In are present in C then we decide that the input program
is safe. Otherwise we consider Inv := {I1, . . . , In} \ C for the next iteration.

Lemma 1. Soundness: If our algorithm terminates with the outcome “Safe”,
then the property φ is guaranteed to hold; if it terminates with “Unsafe” then φ
is violated.

Proof. In symbolic BMC, the program and the assert predicate is converted to
a Boolean formula of the form P ∧ φ, where φ is the negation of the asserted
predicate. To this formula we conjoin additional constraints I1 ∧ · · ·∧ In to get a
Boolean formula P := P ∧ φ ∧ I1 ∧ · · · ∧ In. Here P , φ and I1 . . . In are in CNF.
We declare a given program as Unsafe when P is satisfiable. It is easy to see that
if P is satisfiable then so is P ∧ φ. This implies that P ∧ φ is also satisfiable and
hence program is unsafe as φ is the negation of the asserted predicate. We mark
a given program as Safe when C ∩ {I1 . . . In} = ∅, where C is an unsatisfiable
core. By definition, C is unsatisfiable and C ⊆ P . Therefore we conclude that
C ⊆ (P ∧ φ) as C ⊆ P and C ∩ {I1 . . . In} = ∅. Since C is unsatisfiable P ∧ φ is
also unsatisfiable as P and φ are in CNF.

This proves the soundness of our algorithm.

Lemma 2. Completeness: Our algorithm always terminates for a finite-state
concurrent program.
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Fig. 2. Refinement flowchart Fig. 3. Design of the tool

Proof. We start with P := P ∧ φ ∧ I1 ∧ · · · ∧ In. At each iteration we either
decide safety of a program or consider {I1 . . . In} \ (C ∩ {I1 . . . In}), where C is
an unsatisfiable core. If we proceed without deciding about safety of the given
program we will have P := P ∧φ after a maximum of n iterations. This formula
is the original formula which can be decided. Hence, we always terminate in at
most n + 1 iterations.

3 Implementation

Our tool operates in two stages, shown in Fig. 3. First, likely invariants are gen-
erated by dynamic analysis, which are used to construct an underapproximation
of the input program. In the second stage the tool performs SAT-based bounded
model checking and refinement on the underapproximated input program. In
subsequent sections we provide details of each stage.

3.1 Likely Invariant Generation and Constraints

The compiled input program is passed to binary instrumentation built using
PIN [5]. We instrument shared memory instructions to collect execution traces,
which are analyzed to detect three classes of likely invariants following [6]. The
generated invariants are sequences of tuples where each tuple consists of a loca-
tion of the instruction in the source code, the name of the variable on which the
instruction operates, and the type of instruction (read or write).

These invariants are passed to CBMC, together with the input program
and unwinding depth, via newly added options. Option --refine-cpu indicates
to CBMC to invoke our changed code path. Options --invariant-strategy l
and --invariant-file file-name specify that likely invariants are to be read from
file-name for underapproximation. These likely invariants are considered while
constructing the rf relation: for reads appearing as likely invariants only writes



Concurrent Program Verification with Invariant-Guided Underapproximation 245

that are present in the corresponding definition set are considered. In order to
fall back to the original rf relation during refinement we add a switch vari-
able while constructing the rf relation, which, when disabled, yields the orig-
inal rf relation. For example, we construct the following formula: switchv1 ⇒
(rv1 = wi1

v1
∨ wi2

v1
∨ . . . wim

v1
) ∧ ¬switchv1 ⇒ (rv1 = w1

v1
∨ w2

v1
∨ . . . wn

v1
), where

rv1 = w1
v1

∨ w2
v1

∨ . . . wn
v1

is the original rf relation, wi1
v1

. . . wim
v1

are writes corre-
sponding to rv1 in the definition set and w1

v1
. . . wn

v1
is the actual set of writes in

the program. These constraints along with the unwound program and property
are converted to a Boolean formula [1].

3.2 Refinement

We have implemented the refinement algorithm of Fig. 3 in CBMC. Initially,
all switch variables switchvi

are true. These constrain the rf relation as seen
in Sect. 3.1, and will act as constraints I1 . . . In. We pass the Boolean formula
constructed above to a SAT solver, which has the capability of generating an
unsatisfiability proof. If the program is decided to be unsafe, a counterexample
is returned. Otherwise we perform refinement as explained earlier.

4 Experiments

Our experiments address the following questions:

1. How effective are likely data-flow invariants in reducing the proof search space
for verification? We measured the number of considered writes with our app-
roach relative to the total possible writes of an unconstrained proof.

2. Does such a reduction in search space translate to a reduction in verification
run time? We measure the SAT solver’s time spent on a proof.

A reasonable question to ask related to the second item above is why can
one expect SAT solver time to reduce by constraining proof search space. Note
that we constrain search space by adding additional constraints (invariants)
to the formula sent to the solver. Typically the distribution of solving times
over degrees of constraining has a peak in the middle of the spectrum. That is,
problems that are either under-constrained or over-constrained are easy because
solvers encounter few conflicts. The latter because solver gets a solution mostly
by propagation, the former because you get a solution mostly by making decisions
only. The idea of adding additional constraints is to get us out of the middle of
the peak towards the over-constrained side, which should make it easier for the
solver although the formula is larger in size.

We ran our tool on a set of targeted benchmark programs as well as bench-
mark programs from SV-COMP (pthread and pthread-atomic directories). The
targeted benchmarks were constructed based on concurrent algorithms that had
interesting data-flow invariants, e.g., programs that exhibited a large number of
writes in possible atomic sections and different properties. Our experiments were
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run on a system with an i3 CPU (1.70 GHz) and 4 GB RAM, running GNU/Linux
OS. Our tool, the benchmark programs, and instructions to repeat our exper-
iments are available in public [7]. For mining invariants, every program was
executed to completion on random inputs and random interleaving for up to 50
execution traces. Since invariants were mined on limited runs there is no a-priori
guarantee that they were true invariants. Table 1 shows the results corresponding
to the targeted benchmark programs. We have experimented with both safe and
unsafe programs and different unwindings as shown in columns labeled Type and
U. The column Writes Saved indicates the total number of writes that were not
considered when compared to the original encoding of CBMC. This is measured
by taking the difference between the total number of writes that is considered in
CBMC and the total number of writes considered with constraints for all reads.
This will be 0 if we fall back to the original model after refinement (for example,
7.c). The Refinement columns indicate the number of constraints added in the
beginning, the number of constraints remaining when a decision was taken, and
the total number of iterations completed. The overall time taken by the SAT
solver for CBMC and our tool with likely invariants encoded as constraints, as
explained in Sect. 3.1, are shown in columns CBMC and LI, respectively.

Our main observations are:

1. In all our targeted cases the mined invariants have been effective in reducing
the proof search required to be considered as indicated by the numbers in
the Writes Saved column. This shows that use of good invariants can have a
potential impact in reducing proof complexity.

2. There has been a gain in speed in roughly half the number of cases (shown
as bold face entries in File in Table 1).

3. However, the effect of the underapproximations on the reduction of the SAT
solver time has been less significant. In some cases, we have observed that the
SAT solver is slowed down even when there has been a significant reduction
in the number of writes.

How can one explain observations 2 and 3, especially 3? SAT solver time is
function of size of the formula as well as the number of variables. The formula
representing the underapproximation is usually much larger (in terms of number
of clauses) than the original model, which is one possible explanation for observa-
tion 3. To get evidence in support of this explanation, we constructed the under-
approximated model more directly by eliminating the unnecessary writes at the
partial-encoding itself (instead of adding them as clauses) resulting in smaller
formulas. The NoR column shows the SAT numbers when run on this directly
encoded model. As the numbers indicate this method of encoding reduces SAT
time in most cases. There were a few exceptions shown by numbers in italics
font. (TO indicates more than 200s.) One disadvantage of using this encoding
is that it is not amenable for easy refinement.

Our results [8] on the SV-COMP benchmarks were mixed and not as good
as for the targeted set. Since most SV-COMP benchmarks are stripped down to
their minimal functionality, (1) the total number of memory accesses themselves
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were very small in most examples and (2) our dynamic analysis step produced
very few invariants that could be used to cut down the partial read-write orders.

Table 1. Result of experiment on targeted benchmarks

File Type U CBMC LI Refinement Writes saved NoR

1.c Unsafe 10 14.06s 13.541s 87 to 87 in 1 1235/2390 21.719s

2.c Unsafe 10 2.835s 2.034s 28 to 28 in 1 450/912 1.734s

3.c Unsafe 20 21.127s 10.359s 58 to 58 in 1 1900/3727 16.87s

4.c Safe 16 39.633s 23.987s 107 to 88 in 5 1266/4489 6.818s

5.c Unsafe 16 28.273s 34.923s 93 to 93 in 1 2415/3710 5.813s

6.c Unsafe 21 15.984s 11.416s 42 to 42 in 1 1720/3144 12.832s

7.c Safe 6 48.716s 44.519s 22 to 0 in 4 0/599 0.598s

8.c Unsafe 11 4.567s 5.909s 32 to 32 in 1 685/1194 5.41s

9.c Unsafe 10 31.835s 17.196s 76 to 76 in 1 2115/3060 8.553s

10.c Unsafe 10 101.484s 29.699s 76 to 76 in 1 1935/3060 TO

11.c Unsafe 9 38.624s 20.81s 83 to 83 in 1 1744/2868 16.439s

12.c Unsafe 9 62.895s 155.681s 68 to 68 in 1 1935/3060 3.03s

13.c Safe 10 7.392s 10.993s 22 to 8 in 3 144/736 8.4s

5 Conclusions and Future Work

We have developed a sound and complete tool to formally verify concurrent
ANSI-C programs by automatically constructing underapproximations using
likely data-flow invariants and incrementally refining them to get efficient proofs.

Our experimental results show that the tool can lead to reductions in proof
search space and verification time on programs the synchronized behaviors of
which significantly constrain the possible read-write-orders that can be captured
in the form of data-flow invariants. Producer-consumer-like programs, where
consumers can only read from producers on a priority-based schedule, is one
example that exhibits this characteristic. Our future work is aimed at eliminating
some of the bottlenecks: (1) Alternate methods to encode the invariants without
increasing size of the formulas, (2) Integrate an overapproximation step during
refinement. (3) Interface with proficient open-source invariant mining tools. In
related work, the use of underapproximations using number of interleavings as
a refinement metric was proposed in [9]. Distinction of our work is in the use
likely invariants for this purpose.
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Abstract. The deployment of Artificial Neural Networks (ANNs) in
safety-critical applications poses a number of new verification and certi-
fication challenges. In particular, for ANN-enabled self-driving vehicles
it is important to establish properties about the resilience of ANNs to
noisy or even maliciously manipulated sensory input. We are addressing
these challenges by defining resilience properties of ANN-based classifiers
as the maximum amount of input or sensor perturbation which is still
tolerated. This problem of computing maximum perturbation bounds
for ANNs is then reduced to solving mixed integer optimization prob-
lems (MIP). A number of MIP encoding heuristics are developed for
drastically reducing MIP-solver runtimes, and using parallelization of
MIP-solvers results in an almost linear speed-up in the number (up to a
certain limit) of computing cores in our experiments. We demonstrate the
effectiveness and scalability of our approach by means of computing max-
imum resilience bounds for a number of ANN benchmark sets ranging
from typical image recognition scenarios to the autonomous maneuvering
of robots.

1 Introduction

The deployment of Artificial Neural Networks (ANNs) in safety-critical appli-
cations such as medical image processing or semi-autonomous vehicles poses
a number of new assurance, verification, and certification challenges [2,5]. For
ANN-based end-to-end steering control of self-driving cars, for example, it is
important to know how much noisy or even maliciously manipulated sensory
input is tolerated [12]. Here we are addressing these challenges by establishing
maximum and verified bounds for the resilience of given ANNs on these kinds
of input disturbances.

More precisely, we are defining and computing safe perturbation bounds for
multi-class ANN classifiers. This measure compares the relative ratio-ordering
of multiple, so-called softmax output neurons for capturing scenarios where one
only wants to consider inputs that classify to a certain class with high probabil-
ity. The problem of finding minimal perturbation bounds is reduced to solving
a corresponding mixed-integer programming (MIP). In particular, the encoding
of some non-linear functions such as ReLU and max-pooling nodes require the
c© Springer International Publishing AG 2017
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introduction of integer variables. These integer constraints are commonly han-
dled by off-the-shelf MIP-solvers such as CPLEX1 which are based on branch-
and-bound algorithms. In the MIP reduction, a number of nonlinear expressions
are linearized using a variant of the well-known big-M [8] encoding strategy.
We also define a dataflow analysis [6] for generating relatively small big-M as
the basis for speeding up MIP solving. Other important heuristics in encoding
the MIP problem include the usage of solving several substantially simpler MIP
problems for speeding up the overall generation of satisfying instances by the
solver. Lastly, branch-and-bound is run in parallel on a number of computing
cores.

We demonstrate the effectiveness and scalability of our approach and encod-
ing heuristics by computing maximum perturbation bounds for benchmark sets
such as MNIST [13] and agent games [14]. These cases studies include ANNs for
image recognition and for high-level maneuver decisions for autonomous control
of a robot. Using the heuristic encodings outlined above we experienced a speed-
up of about two orders of magnitude compared with vanilla MIP encodings.
Moreover, parallelization of branch-and-bound [23] on different computing cores
can yield, up to a certain threshold, linear speed-ups using a high-performance
parallelization framework.

The practical advantages of our approach for validating and qualifying ANNs
for safety-relevant applications are manifold. First, perturbation bounds pro-
vide a formal interface between sensor sets and ANNs in that they provide a
maximum tolerable bound on possible sensor errors. These assume-guarantee
interfaces therefore form the basis for decoupling the design of sensor sets from
the design of the classifier itself. Second, our method also computes minimally
perturbed inputs of different classification, which might be included into ANN
training sets for potentially improving classification results. Third, maximum
perturbation bounds are a useful measure of the resilience of an ANN towards
(adversarial) perturbation, and also for objectively comparing different ANNs.
Last, large perturbation bounds are intuitively inversely related with the prob-
lem of overfitting, that is poor generalization to new inputs, which is a common
issue with ANNs.

An overview of concrete problems and various approaches to the safety of
machine learning is provided in [2]. We compare our results only with work
that is most closely related to ours. Techniques including the generation of test
cases [7,15,16] or strengthening the resistance of a network with respect to adver-
sarial perturbation [17] are used for validating and improving ANNs. In contrast
to our work, these methods do not actually establish verified properties on the
input-output behavior of ANNs. Formal methods-based approaches for verify-
ing ANNs include abstraction-refinement based approaches [18], bounded model
checking for neural network for control problems [21] and neural network verifi-
cation using SMT solvers or other specialized solvers [9,11,19]. Instead we rely
on solving MIP problems and parallelization of branch-and-bound algorithms.
In contrast to previous approaches we also go beyond verification and solve

1 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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optimization problems for ANNs for establishing maximum perturbation bounds.
These kinds of problems might also be addressed in SMT-based approaches either
by using binary search over SMT or by using SMT solvers that support opti-
mization such as νZ [4], but it is not clear how well these approaches scale to
complex ANNs. Recent work also targets ReLU [11] or application of a single
image [3,9] (point-wise robustness or computing measures by taking samples).
Our proposed resilience measure for ANNs goes beyond [3,9,11] in that it applies
to multi-classification network using the softmax descriptor. Moreover, our pro-
posed measure is a property of the classification network itself rather than just a
property of a single image (as in [9]) or by only taking samples from the classifier
without guarantee (as in [3]).

The paper is structured as follows. Section 2 reviews the foundations of feed-
forward ANNs. Section 3 presents an encoding of various neurons in terms of
linear constraints. Section 4 defines our measure for quantifying the resilience of
an ANN, that is, its capability to tolerate random or even adversarial input per-
turbations. Section 5 summarizes our MIP encoding heuristics for substantially
increasing the performance of the MIP-solver in establishing in minimal pertur-
bation bounds of ANN. Finally, we present the results of some of our experiments
in Sect. 6, and we describe possible improvements and extensions in Sect. 7.

2 Preliminaries

We introduce some basic concepts of feed-forward artificial neural networks
(ANN) [1]. These networks consist of a sequence of layers labeled from l =
0, 1, . . . , L, where 0 is the index of the input layer, L is the output layer, and
all other layers are so-called hidden layers. For the purpose of this paper we
assume that each input is of bounded domain. Superscripts (l) are used to index
layer l-specific variables, but these superscripts may be omitted for input layers.
Layers l are comprised of nodes n

(l)
i (so-called neurons), for i = 0, 1, . . . , d(l),

where d(l) is the dimension of the layer l. By convention nodes of index 0 have a
constant output 1; these bias nodes are commonly used for encoding activation
thresholds of neurons. In a feed-forward net, nodes n

(l−1)
j of layer l − 1 are con-

nected with nodes n
(l)
i in layer l by means of directed edges of weight w

(l)
ji . For

the purpose of this paper we are assuming that all weights in a network have
fixed values, since we do not consider re-learning. Figure 1 illustrates a small
feed-forward network structure with four layers, where each layer comes with a
different type of node functions, which are also main ingredients of convolutional
neural networks. These node functions are specified in Fig. 2. The first hidden
layer of the network in Fig. 1 is a fully-connected ReLU layer. Node n

(1)
2 , for

example, computes the weighted linear sum of all inputs from the previous layer
as im

(1)
2 , and outputs the maximum of 0 and this weighted sum. The second

hidden layer is using max-pooling for down-sampling an input representation by
reducing its dimensionality; node n

(2)
1 , for example, just outputs the maximum

of its inputs. Node n
(3)
1 in the output layer applies the sigmoid-shaped tan−1 on

the weighted linear input sum.
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Given an input to the network these node
functions are applied successively from layer 0
to L − 1 for computing the corresponding net-
work output at layer L. For l = 1 to L we
use x

(l)
i to denote the output value of node n

(l)
i

and x
(l)
i (a1, . . . , ad) denotes the output value x

(l)
i

for the input a1, . . . , ad, sometimes abbreviated by
x

(l)
i (a).

For the purpose of multi-class classification,
outputs in layer L are often transformed into a
probability distribution by means of the softmax
function

ex
(L−1)
i

∑
j=1,...,dL ex

(L−1)
j

.

In this way, the output x
(L)
i is interpreted as the probability of the input

to be in class i. For the inputs x
(L−1)
1 = −1, x

(L−1)
2 = 2, x

(L−1)
3 = 3 of the

nodes in Fig. 3, for example, the corresponding outputs (0.0132, 0.2654, 0.7214)
for (x(L)

1 , x
(L)
2 , x

(L)
3 ) sum up to 1.

3 Arithmetic Encoding of Artificial Neural Networks

In a first step, we are encoding the behavior of ANNs in terms of linear arithmetic
constraints. In addition to [11] we are also considering tan−1, max-pooling and



Maximum Resilience of Artificial Neural Networks 255

softmax nodes as commonly found in many ANNs in practice. These encodings
are based on the input-output behavior of every node in the network, and the
main challenge is to handle the non-linearities, which are arising from non-linear
activation functions (e.g., ReLU and tan−1), max-pooling and softmax nodes.

Constraints for ReLU and tan−1 nodes as defined in Fig. 2 are separated
into, first, an equality constraint (1) for the intermediate value im

(l)
i and, second,

several linear constraints for encoding the non-linear behavior of these nodes.

im
(l)
i =

∑

j=0,...,d(l−1)

w
(l)
ji x

(l−1)
j (1)

We now describe the encoding of the non-linear functions (x(l)
i = max(0, im

(l)
i )

or x
(l)
i = tan−1(im(l)

i )).

Encoding ReLU activation function. The non-linearity in ReLU constraints
x

(l)
i = max(0, im

(l)
i ) is handled using the well-known big-M method [8], which

introduces a binary integer variable b
(l)
i together with a positive constant M

(l)
i

such that −M
(l)
i ≤ im

(l)
i and x

(l)
i ≤ M

(l)
i for all possible values of im(l)

i and x
(l)
i .

A derivation of the following reduction is listed in the appendix.

Proposition 1. x
(l)
i = max(0, im

(l)
i ) iff the constraints (2a) to (4b) hold.

x
(l)
i ≥ 0 (2a)

x
(l)
i ≥ im

(l)
i (2b)

im
(l)
i − b

(l)
i M

(l)
i ≤ 0 (3a)

im
(l)
i + (1 − b

(l)
i )M (l)

i ≥ 0 (3b)

x
(l)
i ≤ im

(l)
i + (1 − b

(l)
i )M (l)

i (4a)

x
(l)
i ≤ b

(l)
i M

(l)
i (4b)

The efficiency of a MIP-solver via big-M encoding heavily depends on the size
of M

(l)
i , because MIP-solvers typically relax binary integer variables to real-

valued variables, resulting in a weak LP-relaxation for large big-Ms. It is there-
fore essential to choose relatively small values for M

(l)
i . We apply static analy-

sis [6] based on interval arithmetic for propagating the bounded input values
through the network, as the basis for generating “good” values for M

(l)
i .

Max-Pooling. The output x
(l)
i of a max-pooling node is rewritten as x

(l)
i =

max(im1, im2), where im1 = max(x(l−1)
j1

, x
(l−1)
j2

) and im2 = max(x(l−1)
j3

, x
(l−1)
j4

).
Encoding the max(x1, x2) function into MIP constraints is accomplished by intro-
ducing three binary integer variables to encode y = max(x1, x2) using the big-M
method.
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Property-directed encoding of softmax. The exponential function in the definition
of softmax, of course, can not be encoded into a linear MIP constraint. However,
using the proposition below, one confirms that if the property to be analyzed
does not consider the concrete value of output values from neurons but only the
ratio ordering, then (1) it suffices to omit the construction of the output layer,
and (2) one may rewrite the property by replacing each x

(L)
i by x

(L−1)
i .

Proposition 2. Given a feed-forward ANN with softmax output layer and a
constant α > 0, then for all i, j ∈ {1, . . . , d(L)}:

x
(L)
i1

≥ α x
(L)
i2

⇔ x
(L−1)
i1

≥ ln(α) + x
(L−1)
i2

.

This equivalence is simply derived by using the definition of softmax, multiplying
by the positive denominator, and by applying the logarithm and the resulting
inequality. The derivation is listed in the appendix.

Encoding tan−1 with error bounds. The handling of non-linearity in tan−1(im)
is based on results in digital signal processing for piece-wise approximating
tan−1(im) with quadratic constraints and error bounds. In case −1 ≤ im ≤ 1
the quadratic approximation methods (Eq. (7) of [20]) are used, and tan−1(im)
is approximated by π

4 im + 0.273 im(1 − |im|) with a maximum error smaller
than 0.0038. The absolute value |im| in the formula is removed by encoding
case splits between im ≥ 0 and im < 0 using big-M methods. Otherwise, when
considering the case im > 1 or im < −1, the symmetry condition of tan−1 [22]
states that (1) if im > 0 then tan−1(im) + tan−1( 1

im ) = π
2 , and (2) if im < 0

then tan−1(im) + tan−1( 1
im ) = −π

2 . This implies that we can create a variable
iminv with a constraint that iminv im = 1, i.e., variable iminv is the inverse of
im. By utilizing the fact that −1 ≤ iminv ≤ 1, the value of tan−1(iminv) can be
computed by the formula in (i).

Moreover, case splits are encoded using the big-M method as outlined above.
Since quadratic terms are used, our approach for handling tan−1 nodes requires
solving mixed integer quadratic constraint problem (MIQCP) problems.

Using these approximations for tan−1(imi), we obtain lower and upper bounds
for the value of the node variable xi, where the interval between lower and upper
bound is determined by the approximation error of tan−1. Since the approxima-
tion error propagates through the network and using lower and upper bounds
instead of an equality constraint relaxes the problem, our method computes
approximations for the measure when it is used for ANNs with tan−1 as activa-
tion function.

Pre-processing based on dataflow analysis. We use interval arithmetic to obtain
relatively small values for big-M , in order to avoid a weak LP-relaxation of the
MIP. Interval bounds for the values of x

(l)
i are denoted by [Lo(x(l)

i ),Up(x(l)
i )]. We

are assuming that all input values (at layer l = 0) are bounded, and the output
of bias nodes is restricted by the singleton [1, 1] (the value of the bias is given
by the weight of a bias node). Interval bounds for the values of node outputs
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x
(l)
i are obtained from the interval bounds of connected nodes from the previous

layers by means of interval arithmetic.
The output x

(l)
i of ReLU nodes is defined by im

(l)
i =

∑
j=0,...,d(l−1) w

(l)
ji x

(l−1)
j

and the ReLU function max(0, im
(l)
i ). Therefore, interval bounds for x

(l)
i are

computed by first considering the interval bounds Lo(im(l)
i ) and Up(im(l)

i ), which
are determined by weights of the linear sum and the bounds on x

(l−1)
j . The

bounds Lo(im(l)
i ) and Up(im(l)

i ) are obtained from interval arithmetic as follows:

Lo(im(l)
i ) =

∑

j=0,...,d(l−1)

min
(
w

(l)
ij · Lo(x(l−1)

j ), w(l)
ij · Up(x(l−1)

j )
)

Up(im(l)
i ) =

∑

j=0,...,d(l−1)

max
(
w

(l)
ij · Lo(x(l−1)

j ), w(l)
ij · Up(x(l−1)

j )
)

.

Given Lo(im(l)
i ) and Up(im(l)

i ) the bounds on x
(l)
j are derived using the definition

of ReLU, i.e.,

[Lo(x(l)
i ),Up(x(l)

i )] = [max(0, Lo(im(l)
i )),max(0,Up(im(l)

i ))].

ReLU

[1, 1]

1

[−1, 2]

0.23

[−2,−1]

−0.2

0.1

[0, 0.33]

Fig. 4. Dataflow analysis for
bounding computed values in
a neural network.

Note that if Lo(x(l)
i ) ≥ 0 or Up(x(l)

i ) ≤ 0
these bounds suffice to determine which case of
the piece-wise linear ReLU function applies. In this
way, the constraints (2)–(4) maybe dropped and
the value of x

(l)
i is directly encoded using linear

constraints, which reduces the number of binary
variables. See Fig. 4 for an example of dataflow
analysis.

In the case of max-pooling nodes, the out-
put x

(l)
i is simply the maximum max(x(l−1)

j1
,

x
(l−1)
j2

, x
(l−1)
j3

, x
(l−1)
j4

) of its four inputs. Therefore,
the bounds Lo

x
(l)
i

and Up
x
(l)
i

on the output are
given by the maximum of the lower and uppers bounds of the four inputs respec-
tively. Interval bounds of the outputs for tan−1 are obtained using a polynomial
approximation for tan−1. Finally, the output of softmax nodes is a probability
in [0, 1] which might also be further refined using interval arithmetic. These
bounds on softmax nodes, however, are not used in our encodings, because of
the property-driven encoding of softmax output layers as described previously.

4 Perturbation Bounds

We define concrete measures for quantifying the resilience of multi-classification
neural networks with softmax output neurons. This measure for resilience is
defined over all possible inputs of the network. In particular, our developments
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do not depend on probability distributions of training and test data as in previous
work [3]. Maximum resilience of these ANNs is obtained by means of solving cor-
responding MIP problems (or MIQCPs in the case of tan−1 activation functions).

We illustrate the underlying principles of maximum resilience using examples
from the MNIST database [13] for digit recognition of input images (see Fig. 5).
Input images in MNIST are of dimension 24 × 24 and are represented as a
vector a1, . . . , a576. Input layers of ANN-based multi-digit classifiers for MNIST
therefore consist of 576 input neurons, and the output layer is comprised of 10
softmax neurons. Let the output x

(L)
0 , . . . , x

(L)
9 at the last layer be the computed

probabilities for an input image to be classified to characters ‘0’ to ‘9’.
To formally define a perturbation, we allow each input ai (i = 1, . . . , d) to

have a small disturbance εi, so the input after perturbation is (a1+ε1, . . . , ad+εd).
We sometimes use the concise notation of a + ε := (a1 + ε1, . . . , ad + εd) for the
perturbed input. The global value of the perturbation is obtained by taking the
sum of the absolute values of each disturbance εi, i.e., |ε1| + |ε2| + . . . + |εd|.
Definition 1 (Maximum Perturbation Bound for m-th classifier). For
a given ANN with d(L) neurons in a softmax output layer and given constants
α ≥ 1 and k ∈ {1, . . . , d(L) − 1}, we define the maximum perturbation bound
for the m-th classifier, denoted by Φm,2 to be the maximum value such that:

For all inputs a = (a1, . . . , ad) where x
(L)
m (a) ≥ α · x

(L)
j (a) on

all other classes j ∈ {1, . . . , d(L)} \ {m}, we have that for all
perturbations ε = (ε1, ε2, . . . , εd) where |ε1|+|ε2|+. . .+|εd| < Φm,
there exist at most k − 1 classes j′ ∈ {0, 1 . . . , d(L)} such that
x

(L)
m (a + ε) ≤ x

(L)
j′ (a + ε).

Intuitively, the bound Φm guarantees that for all inputs that strongly (defined
by α) classify to class m, if the total amount of perturbation is limited to a value
2 For clarity, we usually omit the dependency of Φm from α.
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strictly below Φm, then either (1) the perturbed input can still be classified as m,
or (2) the probability of classifying to m is among the k highest probabilities.
Dually, Φm is the smallest value such that there exists an input that originally
classifies to m, for which the computed probability for class m may not be among
the k highest after being perturbed with value greater than or equal to Φm.
Figure 5 illustrates an example of an MNIST image being perturbed, where the
neural network considers the perturbed image to be ‘0’ or ‘3’ with at least the
probability of being a ‘5’. The “not among the k highest” property is an indicator
that the confidence of classifying to class m has decreased under perturbation,
as the perturbed input can be interpreted as at least k other classes. In our
experiment evaluations below we used the fixed value k = 2.

Constant α ≥ 1 may be interpreted as indicating the level of confidence of
being classified to a class m. When setting α to 1, the analysis takes all inputs for
which the probability of class m is greater than or equal to the probabilities of
the other classes. Since there might exist an image that has the same probability
for all classes, setting α = 1 may result in a maximum perturbation of zero.
Increasing k helps to avoid this effect, because it requires that at most k − 1
other classes have probabilities greater than or equal to the probility of m. By
picking an α > 1 low-confidence inputs are removed and part (II) of Definition 1
forces the perturbation to be greater than zero. E.g., assume if point B in Fig. 6
is classified to ‘5’ with probability 0.35 and to ‘0’ with probability 0.34, then even
by setting α = 1.1, point B will not be considered in the analysis. By setting
α to 25 one already only considers inputs that classifies to m with probability
higher than 0.95.

Provided that Φm can be computed for each class m (as shown below), one
defines a measure for safe perturbation by taking the minimum of all Φm, and
the measure is computed by computing each Φm independently.

Definition 2 (Perturbation Bound for ANN). For an ANN with L layers
and d(L) softmax neurons in the output layer, a given α ≥ 1, k ∈ {1, . . . , d(L) − 1},
andΦm the perturbation bound for them-th classifier of this ANN fromDefinition 1,
the perturbation bound for ANN is defined as Ξ := min(Φ1, . . . , ΦdL).

Based on the dual interpretation above of Definition 1 we are now ready to encode
the problem of finding Φm in terms of the following optimization problem, where
a = (a1, . . . , ad) and a + ε = (a1 + ε1, . . . , ad + εd).

minimize
∑

i=1,...,d

|εi|

subject to

x(L)
m (a) ≥ αx

(L)
i (a) ∀i ∈ {1, . . . , dL} \ m

∨

I ⊆ {1, . . . , dL} \ m

|I| = k

∧

∀i∈I

x(L)
m (a + ε) ≤ x

(L)
i (a + ε)

and subject to constraints (1)–(4) for ANN encoding.
(5)
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Proposition 3. For a given α ≥ 1 and k ∈ {1, . . . , d(L) − 1}, the optimal value
of the optimization problem (5) as stated above equals Φm. For ANNs using
tan−1 problem (5) yields an under-approximation Φ′

m ≤ Φm, because the feasible
region is relaxed due to the approximation of tan−1.

The first set of conjunctive constraints specifies that the input a =
(a1, . . . , ad) strongly classifies to m (i.e., satisfies condition I in Definition 1),
while the second set of disjunctive constraints specifies that by feeding the image
after perturbation, the neural network outputs that at least k classes in I are
more likely (or equally likely) than class m (i.e., the second condition in Def-
inition 1 is violated). Therefore, for input a = (a1, . . . , ad) and its associated
perturbation ε = (ε1, . . . , εd), we have that

∑
i=1,...,d |εi| ≥ Φm. By comput-

ing the minimum objective of
∑

i=1,...,d |εi| satisfying the constraints we obtain∑
i=1,...,d |εi| = Φm.
We now address the following issues in order to transform optimization prob-

lem (5) into a MIP: (1) the objective is not linear due to the introduction of the
absolute value function, (2) the non-linearity of softmax due to the function

x
(L)
i = ex

(L−1)
i /

∑
j=1,...,dL ex

(L−1)
j , and (3) the disjunction in the second set of

constraints.

(i) Transforming objectives. Since the objective |ε1|+ |ε2| . . . , |εd| in problem (5)
is not linear, we create new variables εabsi in optimization problem (6), where
i ∈ {1, . . . , d}, such that every εabsi is greater than εi and −εi. Whenever the
value is minimized, we have that εabsi = |εi|.

(ii) Removing softmax output layer. Optimization problem (5) contains the
inequality x

(L)
m (a1, . . . , ad) ≥ αx

(L)
i (a1, . . . , ad). It follows from Proposition 2

that replacing this inequality with x
(L−1)
m (a1, . . . , ad) ≥ ln(α)+x

(L−1)
i (a1, . . . , ad)

is sufficient, thereby omitting the exponential function.

(iii) Transforming disjunctive constraints. The disjunctive constraint in prob-
lem (5) guarantees at least k classifications with probability equal or higher
as m. We rewrite it by introducing a binary variable ci for each class i �= m.
Then we use (1) an integer constraint

∑
i=1,...,d,i �=m ci ≥ k to select k classifica-

tions and (2) the big-M method to enforce that if classification i is selected (i.e.,
ci = 1), the probability of classifying to i is higher or equal to the probability of
classifying to m.

By applying the transformations (i)–(iii) to the optimization problem (5)
we obtain problem (6), which is a MIP, and it follows from Proposition 3 that
maximum perturbations bounds can be obtained by solving the MIP in (6).

Theorem 1. For a given α ≥ 1 and k ∈ {1, . . . , d(L) − 1}, the optimum of the
MIP in (6) equals Φm for ANNs with ReLU nodes and softmax output layer. For
ANNs using tan−1 it yields an under-approximation.
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minimize Φm :=
∑

i∈{1,...,d} εabsi

subject to

x(L−1)
m (a) ≥ ln(α) + x

(L−1)
i (a) ∀i ∈ {1, . . . , dL} \ m

∑

i∈{1,...,dL}\m

ci ≥ k

x
(L−1)
i (a + ε) ≥ x(L−1)

m (a + ε) − M(1 − ci) ∀i ∈ {1, . . . , dL} \ m

εabsi ≥ εi ∀i ∈ {1, . . . , d}

εabsi ≥ −εi ∀i ∈ {1, . . . , d}

ci ∈ {0, 1} ∀i ∈ {1, . . . , dL} \ m

and subject to constraints (1)–(4) for ANN encoding.
(6)

5 Heuristic Problem Encodings

We list some simple but essential heuristics for efficiently solving MIP problems
for the verification of ANNs. Notice that these heuristics are not restricted to
computing the resilience of ANNs, and may well be applicable for other verifi-
cation tasks involving ANNs.

1. Smaller big-M s by looking back at multiple layers. The dataflow analysis in
Sect. 3 essentially views neurons at the same layer to be independent. Here we
propose a more fine-grained analysis by considering a fixed number of predecessor
layers at once. Finding the bound for the output of a neuron x

(l)
i , for example,

can be understood as solving a substantially smaller MIP problem by considering
neurons from layer l − 1 and l − 2 when considering two preceding layers. These
MIP problems are independent for each node in these layers and can therefore
be solved in parallel. For each node, we first set the upper bound as a variable
to be maximized in the objective, and trigger the MIP-solver to find such a
value. Relations over integer binary variables can be derived by applying similar
techniques. Notice that these MIPs only generate correct lower and upper bounds
if they can be solved to optimality.

2. Branching priorities. This encoding heuristics uses the given structure of
feed-forward ANNs in that binary integer variables originating from lower layers
are prioritized for branching. Intuitively, variables from the first hidden layer
only depend on the input and it influences all other binary integer variables
corresponding to neurons in deeper layers.
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3. Constraint generation from samples and solver initialization. For comput-
ing Φm on complex systems via MIP, we use the following three-step process.
First, find an input assignment (aini

1 , . . . , aini
d ) such that the probability of classi-

fying to m is α times larger, i.e., x
(L)
m (aini

1 , . . . , aini
d ) ≥ αx

(L)
j (aini

1 , . . . , aini
d ) for all

j = 1, . . . , d(L), j �= m. Finding (aini
1 , . . . , aini

d ) is equivalent to solving a sub-
stantially simpler MIP problem without introducing variables ε1, . . . , εd and
εabs1 , . . . , εabsd . Second, use Eq. (6) to compute the minimum perturbation by
considering the domain to be size 1, i.e., {(aini

1 , . . . , aini
d )}. As the domain is

restricted to a single input, all variables aini
1 , . . . , aini

d in Eq. (6) are replaced by
constants aini

1 , . . . , aini
d . This also yields substantially simpler MIP problems, and

the computed bound is denoted by Φini
m . Third, and finally, initialize the MIP-

solver by using the computed values from steps 1 and 2, such that the search
directly starts with a feasible solution with objective Φini

m. Also, the constraint
−Φini

m ≤ ∑
i=1,...,d εi ≤ Φini

m, as
∑

i=1,...,d εi ≤ ∑
i=1,...,d |εi| = Φm ≤ Φini

m, can be
further added to restrict the search space.

6 Implementation and Evaluation

We implemented an experimental platform in C++ for verifying and comput-
ing perturbation bounds for neural networks, which is based on IBM CPLEX
Optimization Studio 12.7 (academic version) for MIP solving. We used three dif-
ferent benchmark sets as the basis for our evaluations: (1) MNIST3 for number
characterization, (2) agent games4, and (3) deeptraffic for simulating highway
overtaking scenarios5. These benchmarks are denoted by IMNIST, IAgent, and
Ideeptraffic respectively, in the following. For each of the benchmarks we created
neural networks with different numbers of hidden layers and numbers of neu-
rons, which are shown in Tables 1 and 2. All the networks were trained using
ConvNetJS [10].

– Agents in agent games have 9 sensors, each pointing into a different direction
and returning the distances to an apple, poison or a wall, which amounts to
the 27 inputs. Neural networks of various size were trained for an agent that
gets rewarded for eating red things (apples) and gets negative reward when
it eats green things (poison).

– deeptraffic is used as a gamified simulation environment for highway traffic.
The controller is trained based on a grid sensor map, and it outputs high-level
driving decisions to be taken such as switch lane, accelerate or decelerate.

– For MNIST digit recognition [13] has 576 input nodes for the pixels of a
gray-scale image, where we trained three networks with different numbers of
neurons in the hidden layers.

3 http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html.
4 http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html.
5 http://selfdrivingcars.mit.edu/deeptrafficjs/.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
http://selfdrivingcars.mit.edu/deeptrafficjs/
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Table 1. Execution time for verifying perturbation problem over a single input
instance. Time out (t.o.) is set to be 1 h. Agent games turn out to be quite sim-
ple to solve, therefore no heuristics are being applied (n.a.).

ID Instance & output m # inputs; #
neurons in
hidden layers

δ Status Time(s)
M = 104

Time(s)
dataflow

Time(s)
heuristic 1.+2.

0 IAgent m=0 27; 300 0.025 inf 1.9 0.1 n.a.

0.05 feas 7.2 26.9 n.a.

1 I2×50
MNIST m=0 576; 100 0.075 inf 477.8 186.8 35.1

2 0.1 inf t.o. t.o. 2015.9

3 I2×50
MNIST m=1 576; 100 0.025 inf 516.8 763.9 40.5

4 0.05 feas 0.5 0.3 328.3

5 I2×50
MNIST m=3 576; 100 0.025 inf 0.3 0.3 18.7

6 0.05 inf 303.9 405.1 68.9

7 0.075 feas 0.3 0.4 151.6

8 I2×50
MNIST m=8 576; 100 0.025 inf 0.3 0.3 16.5

9 0.05 inf 146.0 193.5 37.2

10 0.075 feas 1.1 1.2 185.3

11 I4×50
MNIST m=0 576; 200 0.025 inf 464.7 489.4 38.08

12 0.05 inf t.o. t.o. 65.5

13 I4×50
MNIST m=1 576; 200 0.025 inf t.o. t.o. 128.21

14 0.05 feas t.o. 261.4 3197.6

15 I4×50
MNIST m=2 576; 200 0.025 inf t.o. t.o. 54.32

16 0.05 unkown t.o. t.o. t.o.

17 I4×50
MNIST m=3 576; 200 0.025 feas 2.7 2.7 45.88

18 0.05 feas 12.5 18.8712 115.1

19 I4×50
MNIST m=4 576; 200 0.025 inf t.o. t.o. 66.43

20 0.05 unkown t.o. t.o. t.o.

In our experimental validation we focus on efficiency gains of our MIP encod-
ings and parallelization for verifying neural networks, and the computation of
perturbation bound by means of the optimization problem stated in Eq. (6).

Evaluation of MIP Encodings. To understand how dataflow analysis and our
heuristic encodings reduce the overall execution time, we have created synthetic
benchmarks where for each example, we only ask for a given input instance
(e.g., an image) that classifies to m, whether the perturbation bound is below δ.
By restricting ourselves to only verify a single input instance and by not min-
imizing δ, the problem under verification (local robustness related to an input)
is substantially simpler and is similar to those stated in [3,11]. Table 1 gives a
summary over results being evaluated using Google Computing Engine (16 CPU
and 60 GB RAM) by only allowing 12 threads to be used. Compared to a näıve
approach that sets M

(l)
i uniformly to a large constant, applying dataflow analy-

sis can bring benefits for instances that take a longer time to solve. The first
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two heuristics we have implemented are useful for solving some very difficult
problems. Admittedly, it can also result in longer solutions times for simpler
instances, but as our ultimate goal is for scalability such an issue is currently
minor. More difficult instances (see I4×50

MNIST in Table 1) could only be solved using
heuristic 1. for preprocessing.

Effects of Parallelization. For IMNIST we further measured the solution time
for local robustness with ε = 0.01 for 10 test inputs using 8, 16, 24, 32 and 64
threads on machines that have at least as many CPUs as we allow CPLEX to
have threads. The results are shown in Fig. 7. It is clearly visible that using more
threads can bring a significant speed-up till 32 cores, especially for instances that
cannot be solved fast with few threads. Interestingly, one can also observe that
for this particular problem (200 neurons in hidden layers), increasing the number
of threads from 32 to 64 does not improve performance (many lines just flatten
from 32 cores onwards). However, for some other problems (e.g., 400 neurons in
hidden layers in hidden layers or computing resilience), the parallelization effect
can last longer to some larger number of threads. We suspect that for problems
that have reached a certain level of simplicity, adding additional parallelization
may not further help.

8 16 24 32 40 48 56 60 64
0

500

1000

1500

2000

2500

number of threads

so
lu

tio
n 

tim
e 

in
 s

Fig. 7. Execution time vs. the number of threads of five test inputs for IMNIST with
ε = 0.01.

ComputingΦm by solving problem (6). Table 2 shows the result of computing
precise Φm. For simpler problems, we can observe from the first 4 rows of Table 2
that the computed Φm increases, when the value of the parameter α increases.
This is a natural consequence - for inputs being classified with higher confidence,
it should allow for more perturbation to bring to ambiguity. Notably, using a
value of α above its maximum makes the problem infeasible, because there does
not exist an input for which the neural network has such high confidence. For
complex problems, by setting α is closer to its maximum (which can be computed
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Table 2. Computation time and results for computing the maximum resilience Φm.

Net: # input; #
neurons in hidden
layers, output m

α # of parallelization Φm Time (s)

IRL: 27;15 m := 0 1.1 12 0.1537 0.4

1.2 12 0.3006 0.3

1.5 12 0.7666 0.1

1.7 12 1.2730 0.1

IRL 27;15 m := 3 1.3 12 0.6904 1.5

Ideeptraffic: 30;70 m := 0 4.022 360 11.3475 421.58

Ideeptraffic: 30;70 m := 3 78.0305 360 69.9109 86.40

Ideeptraffic: 45;70 m := 2 13.5258 360 7.6226 124.46

Ideeptraffic: 60;70 m := 2 2.2704 360 0.8089 2246.8

by solving another substantially simpler MIP that maximizes α for all inputs that
classify to class m), one shrinks the complete input space to inputs with high
confidence. Currently, scalability of our approach relies on sometimes setting a
high value of α, as can be observed in the lower part of Table 2.

7 Concluding Remarks

Our definition and computation of maximum perturbation bounds for ANNs
using MIP-based optimization is novel. By developing specialized encoding
heuristics and using parallelization we demonstrate the scalability and possi-
ble applicability of our verification approach for neural networks in real-world
applications. Our verification techniques also allow to formally and quantita-
tively compare the resilience of different neural networks. Also, perturbation
bounds provide a formal assume-guarantee interface for decoupling the design of
sensor sets from the design of the neural network itself. In our case, the network
assumes a maximum sensor input error for resilience, and the input sensor sets
need to be designed to guarantee the given error bound. These kinds of contract-
based interfaces may form the basis for constructing more modularized safety
cases for autonomous systems.

Nevertheless, we consider the developments in this paper as only a first tiny
step towards realizing the full potential of formal verification techniques for
artificial neural networks and their deployment for realizing new safety-critical
functionalities such as self-driving cars. For simplicity we have restricted our-
selves to 1-norms for measuring perturbations but other vector norms may, of
course, also be used depending on the specific needs of the application con-
text. Also, the development of specialized MIP solving strategies for verifying
ANNs, which go beyond the encoding heuristics provided in this paper, may
result in considerable efficiency gains. Notice also that the offline verification
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approach as presented here is applied a posteriori to fixed and “fully trained”
networks, whereas real-world networks are usually trained and improved in the
field and during operation. Furthermore, the exact relationship of our pertur-
bation bounds with the common phenomena of over-fitting in a neural network
classifier deserves a closer examination, since perturbation may also be viewed
as generalization from samples. And, finally, investigation of further measures of
the resilience of ANNs is needed, as perturbation bounds do not generally cover
the resilience of ANNs to input transformations such as scaling or rotation.

Appendix

Proposition 1. x
(l)
i = max(0, im

(l)
i ) iff constraints (2a) to (4b) hold.

First we establish a lemma to assist the proof.

Lemma 1. b
(l)
i = 1 ⇔ im

(l)
i ≥ 0.

Proof. (⇒) Assume b
(l)
i = 1, then (3a) holds trivially and (3b) implies im(l)

i ≥ 0.
(⇐) Assume im

(l)
i ≥ 0, then (3b) holds trivially and (3a) only holds if b

(l)
i = 1.

Proof (Proposition 1).
First we rewrite the condition x

(l)
i = max(0, im

(l)
i ) to allow further processing.

x
(l)
i = max(0, im

(l)
i )

definition of max⇐==========⇒ (im
(l)
i ≥ 0 ⇒ x

(l)
i = im

(l)
i ) ∧ (im

(l)
i < 0 ⇒ x

(l)
i = 0)

Replace im
(l)
i by b

(l)
i = 1 using lemma 1⇐==========================⇒ (b

(l)
i = 1 ⇒ x

(l)
i = im

(l)
i ) ∧ (b

(l)
i = 0 ⇒ x

(l)
i = 0)

(⇒) If (b(l)
i = 1 ⇒ x

(l)
i = im

(l)
i ) ∧ (b(l)

i = 0 ⇒ x
(l)
i = 0) holds, as b

(l)
i is a 0 − 1

integer variable, we consider both cases:

(case b
(l)
i = 1) From the left clause we derive x

(l)
i = im

(l)
i . From Lemma 1

we have im
(l)
i ≥ 0. By injecting b

(l)
i = 1, x

(l)
i = im

(l)
i , and im

(l)
i ≥ 0 to

constraints (2a) to (4b), all constraints hold due to very large M
(l)
i .

(case b
(l)
i = 0) From the right clause we derive x

(l)
i = 0. From Lemma 1 we have

im
(l)
i < 0. By injecting b

(l)
i = 0, x

(l)
i = 0, and im

(l)
i < 0 to constraints (2a)

to (4b), all constraints hold due to very large M
(l)
i .

(⇐) If all constraints in (2a) to (4b) hold, we do case split to consider cases
b
(l)
i = 0 and b

(l)
i = 1, and how they make (b(l)

i = 1 ⇒ x
(l)
i = im

(l)
i ) ∧ (b(l)

i = 0 ⇒
x

(l)
i = 0) hold.
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(case b
(l)
i = 1) From (2b) and (4a) we know that x

(l)
i = im

(l)
i .

(case b
(l)
i = 0) From (2a) and (4b) we know that x

(l)
i = 0.

In both cases, (b(l)
i = 1 ⇒ x

(l)
i = im

(l)
i ) ∧ (b(l)

i = 0 ⇒ x
(l)
i = 0) holds.

Proposition 2. Given a feed-forward ANN with softmax output layer and a
constant α > 0, then for all i, j ∈ {1, . . . , d(L)}:

x
(L)
i1

≥ α x
(L)
i2

⇔ x
(L−1)
i1

≥ ln(α) + x
(L−1)
i2

.

Proof.
x

(L)
i1

≥ α x
(L)
i2

⇐⇒ ex
(L−1)
i1

∑
j=1,...,dL ex

(L−1)
j

≥ α
ex

(L−1)
i2

∑
j=1,...,dL ex

(L−1)
j

⇐⇒ x
(L−1)
i1

≥ ln(α) + x
(L−1)
i2

References

1. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.-T.: Learning from Data, vol. 4.
AMLBook, New York (2012)

2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
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Abstract. We present an approach for the verification of feed-forward
neural networks in which all nodes have a piece-wise linear activation
function. Such networks are often used in deep learning and have been
shown to be hard to verify for modern satisfiability modulo theory (SMT)
and integer linear programming (ILP) solvers.

The starting point of our approach is the addition of a global linear
approximation of the overall network behavior to the verification prob-
lem that helps with SMT-like reasoning over the network behavior. We
present a specialized verification algorithm that employs this approxi-
mation in a search process in which it infers additional node phases for
the non-linear nodes in the network from partial node phase assignments,
similar to unit propagation in classical SAT solving. We also show how to
infer additional conflict clauses and safe node fixtures from the results of
the analysis steps performed during the search. The resulting approach is
evaluated on collision avoidance and handwritten digit recognition case
studies.

1 Introduction

Many tasks in computing are prohibitively difficult to formalize and thus hard to
get right. A classical example is the recognition of digits from images. Formalizing
what exactly distinguishes the digit 2 from a 7 is in a way that captures all
common handwriting styles is so difficult that this task is normally left to the
computer. A classical approach for doing so is to learn a feed-forward neural
network from pre-classified example images. Since the advent of deep learning
(see, e.g., [1]), the artificial intelligence research community has learned a lot
about engineering these networks, such that they nowadays achieve a very good
classification precision and outperform human classifiers on some tasks, such as
sketch recognition [2]. Even safety-critical applications such as obstacle detection
in self-driving cars nowadays employ neural networks.

But if we do not have formal specifications, how can we assure the safety
of such a system? The classical approach to tackle this problem is to construct
safety cases [3]. In such a safety case, we characterize a set of environment

This work was supported by the Institutional Strategy of the University of Bremen,
funded by the German Excellence Initiative.

c© Springer International Publishing AG 2017
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conditions under which a certain output is desired and then test if the learned
problem model ensures this output under all considered environment conditions.
In a self-driving car scenario, we can define an abstract obstacle appearance
model all of whose concretizations should be detected as obstacles. Likewise,
in a character recognition application, we can define that all images that are
close to a given example image (by some given metric) should be detected as
the correct digit. The verification of safety cases somewhat deviates from the
classical aim of formal methods to verify correct system behavior in all cases,
but the latter is unrealistic due to the absence of a complete formal specification.
Yet, having the means to test neural networks on safety cases would help with
certification and also provides valuable feedback to the system engineer.

Verifying formal properties of feed-forward neural networks is a challenging
task. Pulina and Tacchella [4] present an approach for neurons with non-linear
activation functions that only scales to small networks. In their work, they use
networks with 6 nodes, which are far too few for most practical applications.
They combine counterexample-triggered abstraction-refinement with satisfiabil-
ity modulo theory (SMT) solving. Scheibler et al. [5] consider the bounded model
checking problem for an inverse pendulum control scenario with non-linear sys-
tem dynamics and a non-linear neuron activation function, and despite employ-
ing the state-of-the-art SMT solver iSAT3 [6] and even extending this solver to
deal better with the resulting problem instances, their experiments show that
the resulting verification problem is already challenging for neural networks with
26 nodes.

In deep learning [1], many works use networks whose nodes have piece-wise
linear activation functions. This choice has the advantage that they are more
amenable to formal verification, for example using SMT solvers with the theory
of linear real arithmetic, without the need to perform abstract interpretation. In
such an approach, the solver chooses the phases of (some of) the nodes, and then
applies a linear-programming-like sub-solver to check if there exist concrete real-
valued inputs to the network such that all nodes have the selected phases. The
node phases represent which part of the piece-wise linear activation functions are
used for each node. It has been observed that the SMT instances stemming from
such an encoding are very difficult to solve for modern SMT solvers, as they need
to iterate through many such phase combinations before a problem instance is
found to be satisfiable or unsatisfiable [7,8]. Due to the practical importance of
verifying piecewise-linear feed-forward neural networks, this observation asks for
a specialized approach for doing so.

Huang et al. [9] describe such an approach that is based on propagating
constraints through the layers of a network. The constraints encode regions of
the input space of each layer all of whose points lead to the same overall clas-
sification in the network. Their approach is partially based on discretization
and focusses on robustness testing, i.e., determining the extent to which the
input can be altered without changing the classification result. They do not
support general verification properties. Bastiani et al. [10] also target robust-
ness testing and define an abstraction-refinement constraint solving loop to
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test a network’s robustness against adversarial pertubations. They also employ
the counter-examples that their approach finds to learning more robust net-
works. Katz et al. [7] provide an alternative approach that allows to check the
input/output behavior of a neural network with linear and so-called ReLU nodes
against convex specifications. Many modern network architectures employ these
nodes. They present a modification of the simplex algorithm for solving linear
programs that can also deal with the constraints imposed by ReLU nodes, and
they show that their approach scales orders of magnitudes better than when
applying the SMT solvers MathSAT or Yices on SMT instances generated from
the verification problems.

Modern neural network architectures, especially those for image recognition,
however often employ another type of neural network node that the approach
by Katz et al. does not support: MaxPool nodes. They are used to determine
the strongest signal from their input neurons, and they are crucial for feature
detection in complex machine learning tasks. In order to support the verification
of safety cases for machine learning applications that make use of this node type,
it is thus important to have verification approaches that can efficiently operate
on networks that have such nodes, without the need to simulate MaxPool nodes
by encoding their behavior into a much larger number of ReLU nodes.

In this paper, we present an approach to verify neural networks with piece-
wise linear activation functions against convex specifications. The approach
supports all node types used in modern network, network architectures that
only employ piece-wise linear activation functions (such as MaxPool and ReLU
nodes). The approach is based on combining satisfiability (SAT) solving and
linear programming and employs a novel linear approximation of the overall
network behavior. This approximation allows the approach to quickly rule out
large search space parts for the node phases from being considered during the
verification process. While the approximation can also be used as additional
constraints in SMT solving and improves the computation times of the SMT
solver, we apply it in a customized solver that uses the elastic filtering algo-
rithm from [11] for minimal infeasible linear constraint set finding in case of
conflicts, and combine it with a specialized procedure for inferring implied node
phases. Together, these components lead to much shorter verification times. We
apply the approach on two cases studies, namely collision avoidance and charac-
ter recognition, and report on experimental results. We also provide the resulting
solver and the complete tool-chain to generate verifiable models using the Deep
Learning framework Caffe [12] as open-source software.

2 Preliminaries

Feed-Forward Neural Networks: We consider multi-layer (Perceptron) networks
with linear, ReLU, and MaxPool nodes in this paper. Such networks are formally
defined as directed acyclic weighted graphs G = (V,E,W,B, T ), where V is a
set of nodes, E ⊂ V × V is a set of edges, W : E → IR assigns a weight
to each edge of the network, B : V → IR assigns a node bias to each node,
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and T assigns a type to each node in the network from a set of available types
T ∈ {input , linear ,ReLU ,MaxPool}. Nodes without incoming edges are called
input nodes, and we assume that T (v) = input for every such node v. Vertices
that have no outgoing edge are also called output nodes.

A feed-forward neural network with n input nodes and m output nodes rep-
resents a function f : IRn → IRm. Given assignments in : {1, . . . , n} → V and
out : {1, . . . , m} → V that define the orders of the input and output nodes (so
that we can feed elements from IRn to the network to obtain an output from
IRm), and some input vector (x1, . . . , xn) ∈ IRn, we can define the network’s
behavior by a node value assignment function a : V → IR that is defined as
follows:

– For every node v with T (v) = input , we set a(v) = xj for j = in−1(v),
– For every node v with T (v) = linear , we set a(v) =

∑
v′∈V,(v′,v)∈E W ((v′, v)) ·

a(v′) + B(v).
– For every node v with T (v) =ReLU, we set a(v) = max(B(v)+

∑
v′∈V,(v′,v)∈E

W ((v′, v)) · a(v′), 0).
– For every node v with T (v) = MaxPool , we set a(v) = maxv′∈V,(v′,v)∈E a(v′).

Function f ’s output for (x1, . . . , xn) is defined to be (a(out(1)), . . . ,
a(out(m))). Note that the weights of the edges leading to MaxPool nodes and
their bias values are not used in the definition above. Given a node value assign-
ment function a : V → IR, we also simply call a(v) the value of v. If for a ReLU
node v, we have s(v) < 0 for s(v) = B(v) +

∑
v′∈V,(v′,v)∈E W ((v, v′)) · a(v′), and

hence a(v) = 0, we say that node n is in the ≤0 phase, and for s(v) ≥ 0, and
hence a(v) ≥ 0, we say that it is in the ≥0 phase. If we have s(v) = 0, then
it can be in either phase. For a MaxPool node v, we define it to be in phase
e ∈ E ∩ (V × {v}) if a(v) = a(v′) for e = (v′, v). If multiple nodes with edges to
v have the same values, then node v can have any of the respective phases.

Modern neural network architectures are layered, i.e., we have that every path
from an input node to an output node has the same length. For the verification
techniques given in this paper, it does however not matter whether the network
is layered. Networks can also be used to classify inputs. In such a case, the
network represents a function f ′ : IRn → {1, . . . , m} (for some numbering of the
classes), and we define f ′(x1, . . . , xn) = arg maxi∈{1,...,m}yi for (y1, . . . , ym) =
f(x1, . . . , xn).

We do not discuss here how neural networks are learned, but assume net-
works to be given with all their edge weights and node bias values. Frameworks
such as Caffe [12] provide ready-to-use functionality for learning edge weights
and bias values from databases of examples, i.e., tuples (x1, . . . , xn, y1, . . . , ym)
such that we want the network to induce a function f with (x1, . . . , xn) =
(y1, . . . , ym). Likewise, for classification problems, the databases consist of tuples
(x1, . . . , xn, c) such that we want the network to induce a function f ′ with
f ′(x1, . . . , xn) = c. When using a neural network learning tool, the architec-
ture of the network, i.e., everything except for the weights and the node bias
values, is defined up-front, and the framework automatically derives suitable
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edge weights and node bias values. There are other node types (such as Softmax
nodes) that are often used during the learning process, but removed before the
deployment of the trained network, and hence do not need to be considered in
this work. Also, there are network layer types such as convolutional layers that
have special structures. From a verification point of view, these are however just
sets of linear nodes whose edges share some weights, and thus do not have to be
treated differently.

Satisfiability Solvers: Satisfiability (SAT) solvers check if a Boolean formula has
a satisfying assignment. The formula is normally required to be in conjunctive
normal form, and thus consists of clauses that are connected by conjunction.
Every clause is a disjuction of one of more literals, which are Boolean variables
or their negation. A SAT solver operates by successively building a valuation of
the Boolean variables and backtracking whenever a conflict of the current partial
valuation and a clause has been found. To achieve a better performance, SAT
solvers furthermore perform unit propagation, where the partial assignment is
extended by literals that are the only remaining ones not yet violated by the
partial valuation in some clause. Additionally, modern solvers perform clause
learning, where clauses that are implied by the conjunction of some other clauses
are lazily inferred during the search process, and select variables to branch on
using a branching heuristic. Most modern solvers also perform random restarts.
For more details on SAT solving, the interested reader is referred to [13].

Linear Programming: Given a set of linear inequalities over real-valued variables
and a linear optimization function (which together are called a linear program),
the linear programming problem is to find an assignment to the variables that
minimizes the objective function and fulfills all constraints. Even though lin-
ear programming was shown to have polynomial-time complexity, it has been
observed that in practice [14], it is often faster to apply the Simplex algorithm,
which is an exponential-time algorithm.

Satisfiability Modulo Theory Solving: SAT solvers only support Boolean vari-
ables. For problems that can be naturally represented as a Boolean combination
of constraints over other variable types, Satisfiability Modulo Theory (SMT)
solvers are normally applied instead. An SMT solver combines a SAT solver
with specialized decision procedures for other theories (such as, e.g., the theory
of linear arithmetic over real numbers).

3 Efficient Verification of Feed-Forward Neural Networks

In this paper, we deal with the following verification problem:

Definition 1. Given a feed-forward neural network G that implements a func-
tion f : IRn → IRm, and a set of linear constraints ψ over the real-valued vari-
ables V = {x1, . . . , xn, y1, . . . , ym}, the neural net (NN) verification problem is
to find a node value assignment function a for V that fulfils ψ over the input
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and output nodes of G and for which we have f(x1, . . . , xn) = (y1, . . . , ym), or
to conclude that no such node value assignment function exists.

The restriction to conjunctions of linear properties in Definition 1 was done for
simplicity. Verifying arbitrary Boolean combinations of linear properties can be
fitted into Definition 1 by encoding them into the structure of the network itself,
so that an additional output neuron yadd outputs a value ≥0 if and only if the
property is fulfilled. In this case, ψ is then simply yadd ≥ 0.

There are multiple ways to solve the neural network (NN) verification prob-
lem. The encoding of an NN verification problem to an SMT problem instance is
straight-forward, but yields instances that are difficult to solve even for modern
SMT solvers (as the experiments reported on in Sect. 4 show). As an alterna-
tive, we present a new approach that combines (1) linear approximation of the
overall NN behavior, (2) irreducible infeasible subset analysis for linear con-
straints based on elastic filtering [11], (3) inferring possible safe node phase
choices from feasibility checking of partial node phase valuations, and (4) per-
forming unit-propagation-like reasoning on node phases. We describe these ideas
in this section, and present experimental results on a tool implementing them in
the next section.

Starting point is the combination of a linear programming solver and a satis-
fiability solver. We let the satisfiability solver guide the search process. It deter-
mines the phases of the nodes and maintains a set of constraints over node phase
combinations. On a technical level, we allocate the SAT variables x(v,≤0) and
x(v,≥0) for every ReLU node v, and also reserve variables x(v,e) for every MaxPool
node v and every edge e ending in v. The SAT solver performs unit propagation,
clause learning, branching, and backtracking as usual, but whenever the solver
is about to branch, we employ a linear programming solver to check a linear
approximation of the network behavior (under the node phases already fixed)
for feasibility. Whenever a conflict is detected, the SAT solver can then learn a
conflict clause. Additionally, we infer implied node phases in the search process.

We describe the components of our approach in this section, and show how
they are combined at the end of it.

3.1 Linear Approximation of Neural Network Value Assignment
Functions

Let G = (V,E,W,B, T ) be a network representing a function f : IRn → IRm. We
want to build a system of linear constraints using V as the set of variables that
closely approximates f , i.e., such that every node value assignment function a
is a correct solution to the linear constraint system, and the constraints are as
tight as possible. The main difficulty in building such a constraint system is that
the ReLU and MaxPool nodes do not have linear input-output behavior (until
their phases are fixed), so we have to approximate them linearly.

Figure 1 shows the activation function of a ReLU node, where we denote the
weighted sum of the input signals to the node (and its bias) as variable c. The
output of the node is denoted using the variable d. If we have upper and lower
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c

d

ul

Fig. 1. The activation function of a ReLU node, with a linear over-approximation
drawn as filled area.

bounds [l, u] of c, then we can approximate the relationship between c and d by
the constraints d ≥ 0, d ≥ c, and d ≤ u·(c−l)

u−l , all of which are linear equations
for constant u and l. This yields the set of allowed value combinations for c and
d drawn as the filled area in Fig. 1.

Obviously, this approach requires that we know upper and lower bounds
on c. However, even though neural networks are defined as functions from IRn,
bounds on the input values are typically known. For example, in image processing
networks, we know that the input neurons receive values from the range [0, 1].
In other networks, it is common to normalize the input values before learning
the network, i.e., to scale them to the same interval or to [−1, 1]. This allows
us to use classical interval arithmetic on the network to obtain basic lower and
upper bounds [l, u] on every node’s values.

For the case of MaxPool nodes, we can approximate the behavior of the nodes
linearly similarly to the ReLU case, except that we do not need upper bounds
for the nodes’ values. Let c1, . . . , ck be the values of nodes with edges leading to
the MaxPool node, l1, . . . , kk be their lower bounds, and d be the output value
of the node. We instantiate the following linear constraints:

∧

i∈{1,...,k}
(d ≥ ci) ∧ (c1 + . . . + ck ≥ d +

∑

i∈{1,...,k}
li − max

i∈{1,...,k}
li)

Note that these are the tightest linear constraints that can be given for the
relationship between the values of the predecessor nodes of a MaxPool node and
the node value of the MaxPool node itself.

After a linear program that approximates the behavior of the overall network
has been built, we can use it to make all future approximations even tighter. To
achieve this, we add the problem specification ψ as constraints and solve, for
every variable v ∈ V , the resulting linear program while minimizing first for
the objective functions 1 · v, and then doing the same for the objective function
−1 · v. This yields new tighter lower and upper bounds [l, u] for each node (if
the network has any ReLU nodes), which can be used to obtain a tighter linear
program. Including the specification in the process allows us to derive tighter
bounds than we would have found without the specification. The whole process
can be repeated several times: whenever new upper and lower bounds have been
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obtained, they can be used to build a tighter linear network approximation,
which in turn allows to obtain new tighter upper and lower bounds.

3.2 Search Process and Infeasible Subset Finding

Given a phase fixture for all ReLU and MaxPool nodes in a network, checking if
there exists a node value assignment function with these phases (and such that
the verification constraint ψ is fulfilled) can be reduced to a linear programming
problem. For this, we extend the linear program built with the approach from
the previous subsection (with V as the variable set for the node values) by the
following constraints:

– For every ≤ 0 phase selected for a ReLU node v, we add the constraints v = 0
and

∑
(v′,v)∈E W ((v′, v)) · v′ + B(v) ≤ 0.

– For every ≥ 0 phase selected for a ReLU node v, we add the constraint
v ≥

∑
(v′,v)∈E W ((v′, v)) · v′ + B(v).

– For every phase (v′, v) selected for a MaxPool node v, we add the constraint
v = v′.

If we only have a partial node phase selection, we add these constraints only
for the fixed nodes. If the resulting linear program is infeasible, then we can
discard all extensions to the partial valuation from consideration in the search
process. This is done by adding a conflict clause that rules out the Boolean
encoding of this partial node phase selection, so that even after restarts of the
solver, the reason for infeasibility is retained.

However, the reasons for conflicts often involve relatively few nodes, so
shorter conflict clauses can also be learned instead (which makes the search
process more efficient). To achieve this, we employ elastic filtering [11]. In
this approach, all of the constraints added due to node phase selection are
weakened by slack variables, where there is one slack variable for each node.
So, for example a constraint

∑
(v′,v)∈E W ((v′, v)) · v′ + B(v) ≤ 0 becomes

∑
(v′,v)∈E W ((v′, v)) · v′ +B(v)− sv ≤ 0. When running the linear programming

solver again with the task of minimizing a weighted sum of the slack variables,
we get a ranking of the nodes by how much they contributed to the conflict,
where some of them did not contribute at all (since their slack variable had a
0 value). We then fix the slack variable with the highest value to be 0, hence
making the corresponding constraints strict, and repeat the search process until
the resulting LP instance becomes infeasible. We then know that the node phase
fixtures that were made strict during this process are together already infeasi-
ble, and build conflict clauses that only contain them. We observed that these
conflict clauses are much shorter than without applying elastic filtering.

Satisfiability modulo theory solvers typically employ cheaper procedures to
compute minimal infeasible subsets of linear constraints, such as the one by
Duterte and de Moura [15], but the high number of constraints in the linear
approximation of the network behavior that are independent of node phase selec-
tions seems to make the approach less well-suited, as our experiments with the
SMT solver Yices that uses this approach suggest.
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3.3 Implied Node Phase Inference During Partial Phase Fixture
Checking

In the partial node fixture feasibility checking step from Sect. 3.2, we employ a
linear programming solver. However, except for the elastic filtering step, we did
not employ an optimization function yet, as it was not needed for checking the
feasibility of a partial node fixture.

For the common case that the partial node fixture is feasible (in the linear
approximation), we define an optimization function that allows us to infer addi-
tional infeasible and feasible partial node fixtures when checking some other
partial node fixture for feasibility. The feasible fixtures are cached so that if
it or a partial fixture of it is later evaluated, no linear programming has to
be performed. Given a partial node fixture to the nodes V ′ ⊂ V , we use
−1 ·

∑
v∈V \V ′,T (v)=ReLU v − 1

10

∑
v∈V \V ′,T (v)=MaxPool v as optimization func-

tion. This choice asks the linear programming solver to minimize the error for the
ReLU nodes, i.e., the difference between a(v) and max(

∑
v′∈V,(v′,v)∈E W ((v′, v))·

a(v′) + B(v), 0) for every assignment a computed in the linear approximation of
the network behavior and every ReLU-node v. While this choice only minimizes
an approximation of the error sum of the nodes and thus does not guarantee that
the resulting variable valuation denotes a valid node value assignment function,
it often yields assignments in which a substantial number of nodes v have a tight
value, i.e., have a(v) = max(

∑
v′∈V,(v′,v)∈E W ((v′, v)) · a(v′) + B(v), 0).

If tight is the set of nodes with tight values, p is the partial SAT solver
variable valuation that encodes the phase fixtures for the nodes V ′, and if p′ is
the (partial) valuation of the SAT variables that encodes the phases of the tight
nodes, we can then cache that p∪p′ is a partial assignment that is feasible in the
linear approximation. So when the SAT solver adds literals from p′ to the partial
valuation, there is no need to let the linear programming solver run again.

At the same time, the valuation a (in the linear approximation) can be used
to derive an additional clause for the SAT solver. Let unfixed be the ReLU nodes
whose values are not fixed by p. If for any node v ∈ unfixed, we have a(v) > 0,
then we know by the choice of optimization function and the fact that we per-
formed the analysis in a linear approximation of the network behavior, that some
node in v needs to be in the ≥0 phase (under the partial valuation p). Thus, we
can learn the additional clause

(∨
l∈p ¬l

)
∨

∨
v∈V,T (v)=ReLU ,((v,≤0) �→true)/∈p(v,≥

0) for the SAT solver, provided that the values of the MaxPool nodes are valid,
i.e., for all MaxPool nodes v we have a(v) = a(v′) for some (v, v′) ∈ E. This
last restriction is why we also included the MaxPool nodes in the optimization
function above (but with lower weight).

3.4 Detecting Implied Phases

Whenever the SAT solver has fixed a new node phase, the selected phases
together may imply other node phases. Take for example the net excerpt from
Fig. 2. There are two ReLU nodes, named r1 and r2, and one MaxPool node.
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r1 r2

m

Fig. 2. An example neural network part, used in Subsect. 3.4.

Assume that during the initial analysis of the network (Sect. 3.1), it has been
determined that the value of node r1 is between 0.0 and 1.5, and the value of
node r2 is between 0.1 and 2.0. First of all, the SAT solver can unconditionally
detect that node r2 is in the ≥0 phase. Then, if at some point, the SAT solver
decides that node r1 should be in the ≤0 phase, this fixes the value of r1 to 0.
Since the flow out of r2 has a lower bound >0, we can then deduce that m’s
phase should be set to (r2,m).

Similar reasoning can also be performed for flow leading into a node. If we
assume that the analysis of the initial linear approximation of the network’s
node functions yields that the outgoing flow of m needs to be between 0.5 and
0.7, and the phase of r1 is chosen to be ≤0, then this implies that the phase of
r2 must be ≥0, as otherwise m would be unable to supply a flow of >0.

Both cases can be detected without analyzing the linear approximation of
the network. Rather, we can just propagate the lower and upper bounds on the
nodes’ outgoing flows through the network and detect implied phases. Doing so
takes time linear in the size of the network, which is considerably faster than
making an LP solver call. This allows the detection of implied phases to be
applied in a way similar to classical unit propagation in SAT solving: whenever
a decision has been made by the solver, we run implied phase detection to extend
the partial valuation of the SAT solver by implied choices (which allows to make
the linear approximation tighter for the following partial node fixture feasibility
checks).

3.5 Overview of the Integrated Solver

To conclude this section, let us discuss how the techniques presented in it are
combined. Algorithm 1 shows the overall approach. In the first step, upper and
lower bounds for all nodes’ values are computed. The solver then prepares an
empty partial valuation to the SAT variables and an empty list extra in which
additional clauses generated by the LP instance analysis steps proposed in this
section are stored. The SAT instance is initialized with clauses that enforce that
every ReLU node and every MaxPool node has exactly one phase selected (using
a one-hot encoding).

In the main loop of the algorithm, the first step is to perform most steps of
SAT solving, such as unit propagation, conflict detection & analysis, and others.
We assume that the partial valuation is always labelled by decision levels so that
backtracking can also be performed whenever needed. Furthermore, additional
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clauses from extra are mixed to the SAT instance ψ. This is done on a step-
by-step basis, as the additional clauses may trigger unit propagation and even
conflicts, which need to be dealt with eagerly. After all clauses from extra have
been mixed into ψ, and possibly the partial valuation p has been extended by
implied literals, in line 12, the approach presented in Sect. 3.4 is applied. If it
returns new implied literals (in the form of additional clauses), they are taken
care of by the SAT solving steps in line 11 next. This is because the clauses
already in ψ may lead to unit propagation on the newly inferred literals, which
makes sense to check as every additional literal makes the linear approxima-
tion of the network behavior tighter (and can lead to additional implied literals
being detected). Only when all node phases have been inferred, p is checked for
feasibility in the linear approximation (line 14).

There are two different outcomes of this check: if the LP instance is infea-
sible, a new conflict clause is generated, and hence the condition in line 15 is
not satisfied. The algorithm then continues in line 11 in this case. Otherwise,
the branching step of the SAT solver is executed. If p is already a complete
valuation, we know at this point that the instance is satisfiable, as then the
CheckForFeasibility function just executed operated on an LP problem that is
not approximate, but rather captures the precise behavior of the network. Oth-
erwise, p is extended by a decision to set a variable b to true (for some variable
chosen by the SAT solver’s variable selection heuristics). Whenever this hap-
pens, we employ a plain SAT solver for checking if the partial valuation can be
extended to one that satisfies ψ. This not being the case may not be detected
by unit propagation in line 11 and hence it makes sense to do an eager SAT
check. In case of conflict, the choice of b’s value is inverted, and in any case, the
algorithm continues with the search.

4 Experiments

We implemented the approach presented in the preceding section in a tool called
Planet. It is written in C++ and bases on the linear programming toolkit GLPK
4.611 and the SAT solver Minisat 2.2.0 [16]. While we use GLPK as it is, we
modified the main search procedure of Minisat to implement Algorithm 1. We
repeat the initial approximation tightening process from Sect. 3.1 until the cumu-
lative changes in

−−→
min and −−→max fall below 1.0. We also abort the process if 5000

node approximation updates have been performed (to not spend too much time
in the process for very large nets), provided that for every node, its bounds have
been updated at least three times.

All numerical computations are performed with double precision, and we did
not use any compensation for numerical imprecision in the code apart from using
a fixed safety margin ε = 0.0001 for detecting node assignment values a(v) to
be greater or smaller than other node assignment values a(v′), i.e., we actually
check if a(v) ≤ a(v′)−ε to conclude a(v) ≤ a(v′), whenever such a comparison is

1 GNU Linear Programming Kit, http://www.gnu.org/software/glpk/glpk.html.

http://www.gnu.org/software/glpk/glpk.html
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Algorithm 1. Top-level view onto the neural network verification algorithm.
1: function VerifyNN(V, E, T, B, W )

2: (
−−→
min, −−→max ) ← ComputeInitialBounds(V, E, T, B, W ) � Section 3.1

3: (
−−→
min, −−→max ) ← RefineBounds(V, E, T, B, W,

−−→
min, −−→max) � Section 3.1

4: p ← ∅, extra ← ∅
5: ψ ← ∧v∈V,T (v)=MaxPool

∨
v′∈V,(v′,v)∈E xv,(v′,v)

6: ψ ← ψ ∧∧v∈V,T (v)=MaxPool,v′,v′′∈V,v′ �=v′′,(v′,v)∈E,(v′′,v)∈E(¬xv,(v′,v) ∨ ¬xv,(v′′,v))

7: ψ ← ψ ∧∧v∈V,T (v)=ReLU (xv,≤0 ∨ xv,≥0) ∧ (¬xv,≤0 ∨ ¬xv,≥0)
8: while ψ has a satisfying assignment do
9: while extra is non-empty do

10: Perform unit propagation, conflict detection, backtracking, and clause
11: learning for p on ψ, while moving the clauses from extra to ψ one-by-one.

12: extra ← InferNodePhases(V, E, T, B, W, p,
−−→
min, −−→max ) � Section 3.4

13: if extra = ∅ then
14: extra ← CheckForFeasibility(V, E, T, B, W, p,

−−→
min, −−→max) � Section 3.2–3.3

15: if p |= c for all clauses c ∈ extra then
16: if p is a complete assignment to all variables then
17: return Satisfiable
18: Add a new variable assignment b �→ true to p for some variable b in ψ.
19: if p cannot be extended to a satisfying valuation to ψ then
20: p = p \ {b �→ true} ∪ {b �→ false}
21: return Unsatisfiable

made in the verification algorithm steps described in Sects. 3.2 and 3.3. Since the
neural networks learned using the Caffe [12] deep learning framework (which
we employ for our experiments in this paper) tend not to degenerate in the node
weights, this is sufficient for the experimental evaluation in this paper. Also,
we did not observe any differences in the verification results between the SMT
solver Yices [17] on the SMT instances that we computed from the verification
problems and the results computed by our tool. The tool is available under the
GPLv3 license and can be obtained from https://github.com/progirep/planet
along with all scripts & configuration files needed to learn the neural networks
used in our experiments with the Caffe framework and to translate them to
input files for our tool.

All computation times given in the following were obtained on a computer
with an Intel Core i5-4200U 1.60 GHz CPU and 8 GB of RAM running an x64
version of GNU/Linux. We do not report memory usage, as it was always <1 GB.
All tools run with a single computation thread.

4.1 Collision Avoidance

As a first example, we consider the problem of predicting collisions between
two vehicles that follow curved paths at different speeds. We learned a neural
network that processes tuples (x, y, s, d, c1, c2) and classifies them into whether
they represent a colliding or non-colliding case. In such a tuple,

https://github.com/progirep/planet
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– the x and y components represent the relative distances of the vehicles in
their workspace in the X- and Y-dimensions,

– the speed of the second vehicle is s,
– the starting direction of the second vehicle is d, and
– the rotation speed values of the two vehicles are c1 and c2.

The data is given in normalized (scaled) form to the neural network learner,
so that all tuple components are between 0 and 1 (or between −1 and 1 for
c1 and c2). We wrote a tool that generates a few random tuples (within some
intervals of possible values) along with whether they represent a colliding or non-
colliding case, as determined by simulation. The vehicles are circle-shaped, and
we defined a safety margin and only consider tuples for which either the safety
margins around the vehicles never overlap, or the vehicles themselves collide. So
when only the safety margins overlap, this represents a “don’t care” case for the
learner. The tool also visualizes the cases, and we show two example traces in
Fig. 3. The tool ensures that the number of colliding cases and non-colliding ones
are the same in the case list given to the neural network learner (by discarding
tuples whenever needed). We generated 3000 tuples in total as input for Planet.

We defined a neural network architecture that consists of 40 linear nodes in
the first layer, followed by a layer of MapPool nodes, each having 4 input edges,
followed by a layer of 19 ReLU nodes, and 2 ReLU nodes for the output layer.
Since Caffe employs randomization to initialize the node weights, the accuracy
of the computed network is not constant. In 86 out of 100 tries, we were able to
learn a network with an accuracy of 100%, i.e., that classifies all example tuples
correctly.

Fig. 3. Two pairs of vehicle trajectories, where the first one is non-colliding, and the
second one is colliding. The lower vehicle starts roughly in north direction, whereas the
other one starts roughly in east direction. The first trajectory is non-colliding as the
two vehicles pass through the trajectory intersection point at different times.
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We want to find out the safety margin around the tuples, i.e., the highest
value of ε > 0 such that for every tuple (x, y, s, d, c1, c2) that is classified to
b ∈ {colliding ,notColliding}, we have that all other tuples (x± ε, y ± ε, s± ε, d±
ε, c1 ± ε, c2 ± ε) are classified to b by the network as well. We perform this check
for the first 100 tuples in the list, use bisection search to test this for ε ∈ [0, 0.05],
and abort the search process if ε has been determined with a precision of 0.002.

We obtained 500 NN verification problem instances from this safety margin
exploration process. Figure 4 shows the distribution of the computation times
of our tool on the problem instances, with a timeout of 1 h. For comparison,
we show the computation times of the SMT solver Yices 2.5.2 and the (I)LP
solver Gurobi 7.02 on the problem instances. The SMT solver z3 was observed
to perform much worse than Yices on the verification problems, and is thus not
shown. The choice of these comparison solvers was rooted in the fact that they
performed best for verifying networks without MaxPool nodes in [7]. We also give
computation times for Gurobi and Yices after adding additional linear approx-
imation constraints obtained with the approach in Sect. 3.1. The computation
times include the time to obtain them with our tool.

It can be observed that the computation times of Gurobi and Yices are
too long for practical verification, except if the linear approximation constraints
from our approach in this paper are added to the SMT and ILP instances to help
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Fig. 4. Cactus plot of the solver time comparison for the 500 vehicle collision bench-
marks. Time is given in seconds (on a log-scale), and the lines, from bottom right to
top left, represent Gurobi without linear approximation (dashed), Yices without linear
approximation (solid), Yices with linear approximation (dotted), Planet (solid), and
Gurobi with linear approximation (solid).
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the solvers. While Yices is then still slower than our approach, Gurobi actually
becomes a bit faster in most cases, which is not surprising, given that it is a
highly optimized commercial product that employs many sophisticated heuristics
under-the-hood, whereas we use the less optimized GLPK linear programming
framework. Planet spends most time on LP solving. It should be noted that
the solver comparison is slightly skewed, as Yices employs arbitrary precision
arithmetic whereas the other tools do not.

4.2 MNIST Digit Recognition

As a second case study, we consider handwritten digit recognition. This is a
classical problem in machine learning, and the MNIST dataset [18] is the most
commonly used benchmark for comparing different machine learning approaches.
The Caffe framework comes with some example architectures, and we use a sim-
plified version of Caffe’s version of the lenet network [19] for our experiments.
The Caffe version differs from the original network in that is has piecewise linear
node activation functions.

Figure 5(a)–(b) shows some example digits from the MNIST dataset. All
images are in gray-scale and have 28×28 pixels. Our simplified network uses the
following layers:

– One input layer with 28 × 28 nodes,
– one convolutional network layer with 3×13×13 nodes, where every node has

16 incoming edges,
– one pooling layer with 3 × 4 × 4 nodes, where each node has 16 incoming

edges,
– one ReLU layer with 8 nodes, and
– one ReLU output layer with 10 nodes

The ReLU layers are fully connected. Overall, the network has 1341 nodes, the
search space for the node phases is of size 163·4·4 ·28 ·210 = 2162, and the network
has 9344 edges.

We used this architecture to learn a network from the 100000 training images
of the dataset, and the resulting network has an accuracy of 95.05% on a separate
testing dataset. Note that an accuracy of 100% cannot be expected from any
machine learning technique, as the dataset also contains digits that are even
hardly identifiable for humans (as shown in Fig. 5(b)).

We performed a few tests with the resulting network. First we wanted to see
an input image that is classified strongly as a 2. More formally, we wanted to
obtain an input image (x1,1, . . . , x28,28) for which the network outputs a vector
(y0, . . . , y9) for which y2 ≥ yi+δ for all i ∈ {0, 1, 3, 4, 5, 6, 7, 8, 9} for a large value
of δ. We found that for values of δ = 20 and δ = 30, such images can be found in
4 min 25 s and 32 min 35 s, respectively. The two images are shown in Fig. 5(c)
and (d). For δ = 50, no such image can be found (4 min 41 s of computation
time), but for δ = 35, Planet times out after 4 h. Gurobi (with the added linear
approximation constraints) could not find a solution in this time frame, either.
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(a) ‘3’ digit from
the MNIST dataset

(b) ‘2’ digit from the
MNIST dataset

(c) Image classified
as digit 2 with δ =
20

(d) Image classified
as digit 2 with δ =
30

Fig. 5. Example digit images from Sect. 4.2

Then, we are interested in how much noise can be added to images before
they are not categorized correctly anymore. We start with the digit given in
Fig. 5(a), which is correctly categorized by the learned network as digit 3. We
ask whether there is another image that is categorized as a 4, but for which each
pixel has values that are within an absolute range of ±8% of color intensity of
the original image’s pixels, where we keep the pixels the same that are at most
three pixels away from the boundaries. To determine that this is not the case,
planet requires 1 min 46.8 s. For a range of ±0.12, planet times out after four
hours. The output of planet shows that long conflict clauses are learned in the
process, which suggests that we applied it to a difficult verification problem.

We then considered an error model that captures noise that is likely to occur
in practice (e.g., due to stains on scanned paper). It excludes sharp noise edges
such as the ones in Fig. 5(d). Instead of restricting the amplitude of noise, we
restrict the noise value differences in adjacent pixels to be ≤ 0.05 (i.e., 5%
of color density). This constraint essentially states that the noise must pass
through a linearized low-pass filter unmodified. We still exclude the pixels from
the image boundaries from being modified. Our tool concludes in 9 min 2.4 s
that the network never misclassifies the image from Fig. 5(a) as a 4 under this
noise model. Since the model allows many pixels to have large deviations, we
can see that including a linear noise model can improve the computation time
of planet.

5 Conclusion

In this paper, we presented a new approach for the verification of feed-forward
neural networks with piece-wise linear activation functions. Our main idea was
to generate a linear approximation of the overall network behavior that can
be added to SMT or ILP instances which encode neural network verification
problems, and to use the approximation in a specialized approach that features
multiple additional techniques geared towards neural network verification, which
are grouped around a SAT solver for choosing the node phases in the network. We
considered two case studies from different application domains. The approach
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allows arbitrary convex verification conditions, and we used them to define a
noise model for testing the robustness of a network for recognizing handwritten
digits.

We made the approach presented in this paper available as open-source soft-
ware in the hope that it fosters the co-development of neural network verifica-
tion tools and neural network architectures that are easier to verify. While our
approach is limited to network types in which all components have piece-wise
linear activation functions, they are often the only ones used in modern network
architectures anyway. But even if more advanced activation functions such as
exponential linear units [20] shall be used in learning, they can still be applied
to learn an initial model, which is then linearly approximated with ReLU nodes
and fine-tuned by an additional learning process. The final model is then easier
to verify. Such a modification of the network architecture during the learning
process is not commonly applied in the artificial intelligence community yet, but
while verification becomes more practical, this may change in the future.

Despite the improvement in neural network verification performance reported
in this paper, there is still a lot to be done on the verification side: we currently do
not employ specialized heuristics for node phase branching selection, and while
our approach increases the scalablity of neural network verification substantially,
we observed it to still be quite fragile and prone to timeouts for difficult verifica-
tion properties (as we saw in the MNIST example). Also, we had to simplify the
LeNet architecture for digit recognition in our experiments, as the original net
is so large that even obtaining a lower bound for a single variable in the network
(which we do for all network nodes before starting the actual solution process
as explained in Sect. 3.1) takes more than 30 min otherwise, even though this
only means solving a single linear program. While the approach by Huang et
al. [9] does not suffer from this limitation, it cannot handle general verification
properties, which we believe to be important. We plan to work on tackling the
network size limitation of the approach presented in this paper in the future.
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networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). doi:10.1007/978-3-319-63387-9 1

10. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Annual Conference on
Neural Information Processing Systems (NIPS), pp. 2613–2621 (2016)

11. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. INFORMS J. Comput. 3(2), 157–168 (1991)

12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. arXiv/CoRR 1408.5093 arXiv:1408.5093 (2014)

13. Franco, J., Martin, J.: A history of satisfiability. In: Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 3–74. IOS Press,
February 2009

14. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Springer, Heidelberg (2008)

15. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). doi:10.1007/11817963 11
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Abstract. Liquid types qualify ordinary Hindley-Milner types by pred-
icates expressing properties. The system infers the types of all the vari-
ables and checks that the verification conditions proving correctness hold.
These predicates are currently expressed in a quantifier free decidable
logic.

Here, we extend Liquid types with quantified predicates of a decid-
able logic for arrays, propose a concept of an array refinement type, and
present an inference algorithm for this extension, that we have imple-
mented. By applying our tool to several imperative algorithms dealing
with arrays, we have been able to infer complex invariants.

1 Introduction

Liquid types [10,13,17–19] are a variant of dependent types which have been
successfully used for automatically verifying a number of non trivial properties
of programs. Recently they have also been used as a guide for synthesizing correct
programs [12]. They have been mainly applied to functional languages. A liquid
type is a refinement of an ordinary type, defined by restricting the set of possible
values to those satisfying a predicate. This predicate may have as free variables
some variables in scope. In this way, the type depends on the values computed
by the program.

The original idea [13] has been extended to recursive data structures [10], and
it is possible for instance to define a list whose tail values depend on the value at
the head, or a tree whose children values depend on the value at the root. This
captures in a natural way invariants of sorted lists, binary search trees, binary
heaps and many other interesting data structures. Once the programmer has
written the invariant, the system assists the programmer in verifying that the
functions manipulating the data structure actually preserve the invariant. This
saves most of the verification effort that would be needed by doing it manually.

The underlying machinery is a type inference algorithm which tries to prove
a set of logical implications, which in essence are the verification conditions
that a human programmer would try to prove manually. The system does it
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automatically with the aid of a SMT solver. In order that the solver never fails
to prove a formula, the logic of the predicates used in liquid types must be
decidable. In its current state, the logic, and hence the liquid types one can
infer, does not include quantifiers. It supports however linear integer arithmetic,
equality, algebraic types and uninterpreted functions (this logic is known as QF-
EUFLIA).

Our contribution here is extending the liquid types to properties on arrays,
which very frequently need predicates universally quantified over the array
indices. Nevertheless, we still remain in the safe side by only allowing formulas in
a decidable theory of arrays, which is a fragment of Bradley and colleagues’ [2].

Additionally, we extend the type inference algorithm to quantified formulas,
and also use SMTs to automatically discharge them. This extension includes
two novelties: (a) new liquid variables are created dynamically in order to split a
quantified formula over an array segment into two or more formulas over smaller
segments; and (b) these variables occur in negative positions of the formula.
Even though, our domain is still a finite one, and our abstract interpretation
is monotonic in this domain. This ensures that the inference algorithm always
terminates without the need of a widening operator.

Another contribution is that we apply the liquid type technology to impera-
tive programming languages dealing with arrays such as C++ and Java. This is
possible thanks to our verification platform [11] that transforms programs into an
intermediate representation (IR) common to all these languages. In essence, this
IR is a desugared functional language, where state updating has been replaced by
dynamic creation of variables, and iteration has been transformed into recursion.

Our inference algorithm has been integrated in that platform. With this
new tool, we have inferred complex invariants on arrays, as for instance those
occurring in the imperative sorting algorithms. We think that this opens the
door to the use of liquid types in verifying non trivial properties of programs
written in conventional imperative languages.

The plan of the paper is as follows: after this introduction, Sect. 2 explains
some fundamentals about liquid types and their inference algorithm; then, Sect. 3
reviews the decidable theories about arrays; inspired in those theories, Sect. 4
contains our proposal for an array refinement, whose aim is to capture as many
properties about arrays as possible out of those arising in imperative algorithms;
Sect. 5 presents our type inference algorithm, and Sect. 6 shows a number of
meaningful examples to which the algorithm has been applied. Sect. 7 relates our
approach to other works in the literature, and Sect. 8 draws some conclusions.

2 Liquid Types

The Liquid type system [13] extends the polymorphic Hindley-Milner type
system by decorating types with refinement predicates constraining the values
represented by them. A refined type has the form {ν : τ | e}, where τ is a
Hindley-Milner type and e is a boolean expression which may name the ν vari-
able and other program variables. This type represents the values b of type τ such
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that e[b/ν] evaluates to true. For instance, the type {ν : int | ν ≥ 0} represents
the type of nonnegative integers. Another example is the following declaration,
which specifies the type of a function get for array indexing,

get :: ∀α.(a : array α) → i : {ν : int | 0 ≤ ν ∧ ν < len a} → {ν : α | ν = a[i]}
(1)

where len a represents the length of the array a. The type array α abbreviates
the refined type {ν : array α | true}.

In their most general form, type checking and type inference of refined types
is undecidable. However, in the Liquid type system inference becomes decidable
by restricting the boolean expressions to the logic of linear arithmetic, equality
and uninterpreted functions (QF-EUFLIA), and by bounding the search space
of refinements with the help of logical qualifiers.

A logical qualifier q is a predicate which depends on ν and a placeholder vari-
able denoted by �. The set Q of qualifiers to be used is given by the programmer.
The larger this set, the more complex refinements can be specified, but the larger
the search space becomes. An instance of a logical qualifier q is another qualifier
obtained by replacing each placeholder in q by a program variable. We denote
by Q

∗ the set of qualifiers that are instances of Q. Since Q is finite, so is Q
∗. A

liquid type is a refined type in which the refinement predicates are conjunctions
of elements in Q

∗. For instance, if Q = {ν ≥ 0, ν < len �, ν = �[�]}, the type (1)
is a liquid type.

The inference algorithm, which will be detailed in Sect. 2.1 transforms subtyp-
ing relations between liquid types into boolean formulas which are subsequently
sent to a SMT solver. The variables occurring in these formulas are assumed
to be universally quantified at the outermost level. However, in some cases we
need nested quantification: assume a function that initializes all the positions
of an array with a given element x. The type of the resulting array have the
refinement ∀i.0 ≤ i < n → ν[i] = x. As another example, a function that sorts
an array would have the refinement ∀i.∀j.0 ≤ i ≤ j < len ν → ν[i] ≤ ν[j] in the
type of the output. These types are not liquid types, since their refinements are
not conjunctions of qualifiers, but universally quantified formulas.

The original work of [13] summarized above only manages quantifier-free
refinements in order to make inference decidable. In further work [10,17], the
authors extend the Liquid type system in order to allow parametricity on the
refinement predicates. This is achieved by including refinement predicate vari-
ables. For instance, if p denotes a predicate variable, the type int 〈p〉 stands for
the set of integers x such that p x holds. This type can be instantiated, for
instance, to int〈λx.x mod 2 = 0〉, which denotes the set of even integers. This
idea is also applied to arrays by including two refinement predicate variables into
the array data type. The first one (dom) constraints the set of valid indexes,
whereas the second one (rng) specifies the property that must hold for each ele-
ment stored in the array. This property may also, in turn, depend on the element
index. Therefore we would have the type array α〈dom, rng〉 with the following
signatures for accessing and modifying arrays:
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get :: ∀α.∀(dom :: int → bool).∀(rng :: int → α → bool).
(i : int〈dom〉) → array α〈dom, rng〉 → α〈rng i〉

set :: ∀α.∀(dom :: int → bool).∀(rng :: int → α → bool).
(i : int〈dom〉) → array α〈dom ′, rng〉 → α〈rng i〉 → array α〈dom, rng〉

where dom ′ abbreviates λk.dom k ∧k 	= i. These parametric arrays allow one to
express properties on the elements of an array while still avoiding quantified for-
mulas in the refinements. However, this approach has some drawbacks. In princi-
ple we would be tempted to think that the type array α〈dom, rng〉 is semantically
equivalent to the refined type {ν : array α | ∀i.dom i → rng i ν[i]}. However,
there is a difference: in presence of refinement variables, the subtyping relation is
defined covariantly. That is, in order to prove that array α〈dom, rng〉 is a subtype
of array α〈dom ′, rng ′〉 the condition ∀i.∀z.(dom i∧rng i z ⇒ dom ′ i∧rng ′ i z) is
sent to an SMT solver. We cannot justify covariance in the dom variable, as this
implies, for instance, that an array whose indices are in [0..3] is a subtype of an
array whose indices range over the interval [0..5]. On the other hand, if we allow
quantifiers in refinement types, proving that {ν : array α | ∀i.dom i → rng i ν[i]}
is a subtype of {ν : array α | ∀i.dom ′ i → rng ′ i ν[i]} amounts to prove the
assertion (∀i.dom i → rng i ν[i]) ⇒ (∀i.dom ′ i → rng ′ i ν[i]). This kind of
assertions can be managed by some SMTs under some conditions which will be
explained in Sect. 3.

Another drawback of the type array〈dom, rng〉 is that properties involving
two quantifiers, such as the one shown above for the sort function, cannot be
expressed. Our main technical contribution in this work is the extension of the
Liquid type system in order to be able to infer properties involving quantification
on the indices of the array in order to overcome the limitations explained above.

2.1 Features of the Type System and Inference

As mentioned above, there is a subtyping relation between refined types. This
relation is defined by a set of rules of the form Γ � τ1 <: τ2, meaning that τ1 is
a subtype of τ2 under an environment Γ . The type system is path-sensitive, so
the type environment does not only contain the types of the variables in scope,
but also the conditions that are satisfied in the context of an expression (these
are gathered, for example, when traversing if expressions). Among the typing
rules of the system (see [13]), the most relevant one specifies that, under Γ , the
type {ν : B | e1} is a subtype of {ν : B | e2} whenever B is a basic type and the
formula [[Γ ]] ∧ e1 ⇒ e2 is valid. The notation [[Γ ]] is a logical characterization of
the environment in which each binding of the form x : {ν : B | e} is translated
into the formula e[x/ν].

The inference algorithm assumes that a standard Hindley-Milner inference
has been applied previously. After this, each type τ in the typing derivation is
refined with a fresh template variable κ so as to obtain {ν : τ | κ}. Type inference
consists in finding a substitution A from variables κ to conjunctions of Q∗ such
that, when applied to the typing derivation, the expression type checks. This
solution is obtained by a standard fixpoint algorithm. Initially all refinement
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templates are mapped to
∧

q∈Q∗ q, which is the strongest refinement. If it is a
valid solution, the algorithm terminates. Otherwise, the subtyping rules must
have generated an assertion A([[Γ ]]) ∧ A(κ1) ⇒ A(κ2) that is not proven valid
by the SMT. In this case the algorithm modifies the substitution A by removing
from A(κ2) the qualifiers not being satisfied in the formula. Then, program is
type checked again with the new substitution. This process is repeated until a
solution is found. Since the set of conjunctions of elements of Q∗ is finite, the
algorithm is guaranteed to terminate.

3 Decidable Theories on Arrays

As explained before, when working with liquid types, refinements should be
formalized using formulas whose satisfiability could be provable. Therefore, it is
important to know which theories concerning arrays are decidable, in order to
use formulas of such theories to specify array properties. First studies involving
satisfiability decision procedures for array theories have focused on quantifier-
free fragments [16], as the full theories are undecidable. Later, an extensional
theory of arrays with equality between unbounded arrays has been formalized
as a decidable fragment [15]. An extension of these theories is studied in [2]. The
motivation is that most assertions and invariants of programs related to arrays
require at least a universal quantifier over index variables. Usual array properties
can be formalized by formulas having the form (∀j.ϕI(j) → ϕV (j)) where j is a
vector of index variables, the guard ϕI(j) delimits the segment of the array we
are interested in, while ϕV (j) refers to the value constraint. Both the guard and
the value constraint involve predicates referring to program variables.

In order to have a satisfiability procedure for universal quantified formulas
with that shape, some limitations are imposed to the syntax of ϕI(j) and ϕV (j).
These limitations restrict the set of predicates that can be used to build those
formulas, but most of the common program invariants referring arrays can be
expressed with the restricted set, as we will see. The form of an index guard
ϕI(j) is constrained according to the grammar:

guard :: = guard ∧ guard | guard ∨ guard | atom
atom :: = expr ≤ expr | expr = expr
expr :: = uvar | pexpr
pexpr :: = z | z ∗ evar | pexpr + pexpr

where z stands for Presburger arithmetic basic terms (i.e. terms built up from
the constants 0, 1 and the functions + and −), uvar represents variables that
will occur universally quantified, and evar represents integer variables that
will occur existentially quantified. Notice that the relations 	= and < are not
allowed between quantified indices, and that they cannot be simulated by using
≤ because terms like j + 1 are not valid in pexpr if j is a universally quantified
variable. However, we will write j < b, where j is quantified and b is in pexpr,
as an abbreviation of j ≤ b − 1, which is allowed if b is not quantified.
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The formula ϕV (j) is constrained in such a way that any occurrence of a
quantified variable j ∈ j must be as a read into an array, a[j], for array term
a, and nested array reads are not allowed. Other program variables and terms
can occur everywhere in the formula. A formula of the form (∀j.ϕI(j) → ϕV (j))
with the previous constraints for ϕI(j) and ϕV (j) is called an array property.

The theory consisting in all existentially-closed Boolean combinations of
array properties, and quantifier-free formulas built from program variables and
terms is decidable. However, when considering existentially-closed ∀-∃-fragments,
even with syntactic restrictions like those in the array property, the satisfiabil-
ity problem becomes undecidable. Other theories also proved undecidable are
the following extensions of the array property formulas: If the formula contains
nested reads as a1[a2[j]] and j is universally quantified, or if a[j] appears in the
guard and j is universally quantified, or if the formula includes general Pres-
burger arithmetic expressions over universally quantified index variables (e.g.,
j + 1) in the index guard or in the value constraint.

4 Array Refinements

In order to bound the decidable fragment of the array theory, we realize that
most of the array properties fall in some of the following categories:

– Some elements of an array satisfy individually a property. For example:

∀j.0 ≤ j < len v ∧ j%2 = 0 → v[j] > 0 (2)
∀j.a ≤ j ≤ b → x < v[j] ∧ v[j] ≤ y (3)

– Some pairs of elements in a segment of an array satisfy a binary relation:

∀j1, j2.a ≤ j1 < j2 ≤ b → v[j1] 
= v[j2] (4)
∀j1, j2.a ≤ j1 ≤ p ∧ p ≤ j2 ≤ b → v[j1] ≤ v[j2] (5)

Property (5) holds after partition in quicksort, being p the pivot position.
Sometimes the binary relation concerns two different arrays. For example:

∀j1, j2.a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m → v[j1] ≤ w[j2] (6)

is a property that holds while merging the two sorted halves [a,m] and [m +
1, b] of an array w into an ordered array v (see Example 3).

– Usually we also need properties related to the length of the array in order to
guarantee that the array accesses are well defined. For instance, the property
(3) can be completed with (0 ≤ a < len v) ∧ (0 ≤ b < len v).

Some formulas listed above do not belong to the decidable fragment men-
tioned in the previous section. In particular, (2) is not in the fragment because
operators over the quantified variables are not allowed, and (4) is not an array
property, because relation < is not allowed over the quantified indices. The
remaining formulas are allowed1, even more, they belong to a subset of the frag-
ment that we are going to characterize in our formalization of array refinements.
1 We consider len v to be a fixed integer rather than a function applied to v.
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{0 ≤ n < len v ∧ ord(v, 0, n − 1)}
1 i = n-1; x = v[n];

2 while (i >= 0 && x < v[i])

3 {v[i+1] = v[i]; i = i-1;}

4 v[i+1] = x;

{ord(v, 0, n)}

Fig. 1. insert algorithm

{ord(v, 0, len v − 1)}
1 a = 0; b = (len v) - 1;

2 while (a<=b)

3 { m = (a+b)/2;

4 if (v[m] < x) {a = m+1;}

5 else {b = m-1;} }

{lt(v, x, 0, a) ∧ geq(v, x, a, len v)}

Fig. 2. binSearch algorithm

{0 ≤ a ≤ m ≤ b < len v ∧ ord(w, a, m) ∧ ord(w, m + 1, b)}
1 i = a; j = m+1;k = a;

2 while (i <= m && j <= b)

3 { if (w[i] <= w[j]) { v[k] = w[i]; i=i+1; }

4 else { v[k] = w[j]; j=j+1; }

5 k=k+1; }

6 while (i <= m) {v[k]=w[i]; i=i+1; k=k+1;}

7 while (j <= b) {v[k]=w[j]; j=j+1; k=k+1;}

{ord(v, a, b)}

Fig. 3. merge algorithm

Considering these three kinds of array properties, we establish three kinds of
refinements with the aim of inferring automatically array properties. We consider
that they widely cover many of the invariants needed to verify programs dealing
with arrays, including the most known sorting algorithms, as we will show in
Sect. 6. We will call them respectively simple array refinements (denoted as ρ),
double array refinements (denoted as ρρ) and length refinements (denoted as ψ).

Simple refinements have the shape ρ(w) ≡ ∀j.I(j) → E(w[j]), where w is an
array. In the liquid type this will be the array being refined, i.e. ν. Predicate
I restricts the values of the indices whose elements satisfy the property, and
E expresses the individual property satisfied by each considered element. The
qualifiers allowed in both of them are constrained as explained in Sect. 3 to
ensure decidability, and belong to the sets of qualifiers which are provided by
the programmer. As we may have several simple refinements, we can consider
predicate I to be just a conjunction of qualifiers due to the logical equivalence
(A ∨ B) → C ⇔ (A → C) ∧ (B → C). In order to reduce the search space in the
inference process we have decided E to be a conjunction of qualifiers2. Due to
the logical equivalence A → (B ∧ C) ⇔ (A → B) ∧ (A → C), we can consider that
in fact E is a single qualifier. Note that the previous predicate (3) is a valid
simple refinement.

2 This does not preclude that a qualifier could be a disjunction of atomic properties.
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Double refinements have the shape ρρ(v, w)≡∀j1, j2.II(j1, j2)→EE(v[j1], w[j2]),
where v, w are array variables. In the liquid type, at least one of them will
be the refined array ν, and in case the other is not, it has to be a free in
scope variable. Predicate II restricts the values of the pairs of indices, and EE
expresses the relation satisfied by each considered pair. Both of them must meet
the constraints of the array property formulas. Similarly to simple refinements,
II is a conjunction of qualifiers and EE is a single qualifier. Note that examples
(5) and (6) are valid double refinements.

Length refinements are qualifiers relating the length of the array to other
values or program variables, such as a < len ν or len ν = len w.

Definition 1. A refined array type has the following shape:

{ν : array τ | (
∧

i

ψi(ν)) ∧ (
∧

j

ρj(ν)) ∧ (
∧

k

ρρk(ν, vk))}

where each vk may be ν itself or a free array variable.

Example 1. Figure 1 shows the specification and the imperative code corre-
sponding to the algorithm insert used in the insertion sort, where ord(v, l, r) ≡
∀j1, j2.l ≤ j1 ≤ j2 ≤ r → v[j1] ≤ v[j2]. The property ∀j.i + 2 ≤ j ≤ n → x < ν[j] is
part of the refinement of array v in line 2, i.e. it is an invariant property of the
loop. ��
Example 2. Figure 2 shows the specification and the imperative code corre-
sponding to the binary search algorithm, where lt(v, x, l, r) ≡ ∀j.l ≤ j < r → v[j] <

x and geq(v, x, l, r) ≡ ∀j.l ≤ j < r → x ≤ v[j]. The property geq(v, x, b + 1, len v) is
part of the refinement of array v in line 2, i.e. it is an invariant property of the
loop. ��
Example 3. In Fig. 3 we show the specification and the imperative code corre-
sponding to the algorithm merge used in the mergesort algorithm. The property

(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m → ν[j1] ≤ w[j2]) ∧
(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ j ≤ j2 ≤ b → ν[j1] ≤ w[j2])

is part of the refinement of array v in line 2, i.e. it is an invariant property of
the first loop. It is also part of v’s refinement in the second and third loops. ��

5 The Type Inference Algorithm

The inference algorithm has the following phases:

1. A standard type checking algorithm decorates every variable with its con-
ventional type. Our IR includes types at every defining occurrence. The type
checking propagates this information to every applied variable occurrence.

2. Each type occurrence is then refined with a liquid template (see below) of the
appropriate type. The template refining a type occurrence introduces a fresh
liquid variable. The purpose of the inference algorithm is to find appropriate
substitutions for these liquid variables.
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3. The syntax-driven liquid typing rules of the IR are applied, and a set of con-
straints is obtained. These are to be satisfied in order the program be correctly
typed in the liquid type sense. A constraint has the form [[Γ ]] ∧ θ1.ι1 ⇒ θ2.ι2,
where ι1 and ι2 are liquid variables and θ1, θ2 pending substitutions, as in [13].
The purpose of the pending substitutions is to replace formal arguments by
actual ones in function applications. In our IR, actual arguments are always
variables. The liquid typing rule for application is as follows:

Γ � e : (x : Tx → T ) Γ � y : Tx

Γ � e y : T [y/x]

4. The constraints are solved by an iterative weakening algorithm. The algorithm
starts with the strongest possible mapping A for all the liquid variables, and
at each step, a variable assignment is weakened in order to satisfy a constraint.
If a fixpoint is reached, then the final mapping obtained, when applied to all
the templates, gives us the liquid types for all the variables.

5.1 Liquid Templates

The liquid types of the variables x that are not arrays are represented by a liquid
variable κ with pending substitutions θ, as usual: x : {ν : τ | θ.κ}. The range of
A(κ) are conjunctions of qualifiers taken from the set Q∗, which is obtained from
Q at each program location by substituting program variables in scope of the
appropriated type for the wildcard �. After applying A, the pending substitution
θ is applied to the result.

The liquid types of the variables a of array type are dealt with similarly,
except for the fact that we denote the liquid variable by μ, a : {ν : array τ |
θ.μ}. In this case we assume that the programmer provides several qualifier sets
QE , QEE , QI , QII and Qlen, explained in detail below. The range of A(μ) are
array refinements obtained from conjunctions of array refinements templates by
substitution. These templates may be:

– Simple array refinement templates, ρ
def= (∀j.η → q), where q is a qualifier

taken from the set Q
∗
E , and η is a liquid variable.

– Double array refinement templates, ρρ
def= (∀j1, j2.ηη → q), where q is a quali-

fier taken from the set Q
∗
EE and ηη is a liquid variable.

– An array length refinement template ζ. This liquid variable represents prop-
erties restricting the length of the array.

We will use ξ to denote both a simple and a double array refinement tem-
plate, so A(μ) = (

∧n
i=1 A(ξi)) ∧ A(ζ), where A(ρ) = ∀j.A(η) → q, and

A(ρρ) = ∀j1, j2.A(ηη) → q. The range of A(η), A(ηη) and A(ζ) are conjunctions
of qualifiers taken respectively from the sets Q

∗
I , Q

∗
II , and Q

∗
len. Only variables

in scope are considered on these instances of the respective qualifier sets QE ,
QEE , QI , QII , Qlen. These sets meet several constraints which guarantee that,
when wildcards are instantiated, then the obtained qualifiers satisfy the restric-
tions imposed on the array property formulas, e.g. QI and QE use � and # as
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wildcards in the qualifiers, and only the bound variable j can be substituted for
the wildcard #.

From now on, we will consider fixed the sets Q, QI , QII , QE , QEE and Qlen

and we denote by Q the collection of these six sets.

Definition 2. A mapping A is suitable to Q if it assigns a value of their respec-
tive ranges to each κ, μ, ζ, η, and ηη variables, and for each η variable of
a ρ template, A(η) contains 0 ≤ j < len ν, where j is the universal quanti-
fied variable in ρ, and for each ηη variable of a ρρ template, A(ηη) contains
0 ≤ j1 < len a ∧ 0 ≤ j2 < len b, where j1, j2 are the universal quantified vari-
ables in ρρ, a and b are either ν, or the free array variable in scope substituted
for � in the qualifier at the right-hand side of ρρ. We denote by AQ the set of all
the mappings suitable to Q.

The κ, μ, ζ variables occur in logically positive positions in the templates,
while η, and ηη variables occur in negative ones. As a consequence, weakening
A may consist of weakening the assignment to a κ, a μ, or a ζ variable, or
strengthening the assignment to a η or a ηη variable.

For any liquid variable ι, if Q is a set of qualifiers, or a set of array refinements,
when we write A(ι) = Q, Q denotes the conjunction of its elements. In the
examples, we omit the component 0 ≤ j < len ν of A(η) when it is not relevant
(analogously for A(ηη)).

Example 4. In the insert algorithm of Fig. 1, from the template (∀j1, j2.ηη →
q), and the sets QII = {0 ≤ #1, � + 2 ≤ #2,#1 ≤ �,#2 ≤ �}, and QEE =
{ν[#1] ≤ ν[#2]}, the predicate ∀j1, j2.0 ≤ j1 ≤ i∧ i+2 ≤ j2 ≤ n → ν[j1] ≤ ν[j2]
can be obtained. It is part of the refinement type for v. ��

5.2 The Iterative Weakening Algorithm

Given a set C of constraints, and a collection Q = {Q,QI , QII ,QE ,QEE ,Qlen},
the purpose of the algorithm is to find a solution to C, in accordance to the
following definition:

Definition 3. Given A ∈ AQ, we say that A satisfies c ∈ C if A(c) is a valid
formula. We say that A is a solution of C, if the set A(C) is a set of valid
formulas, abbreviated A(C) valid.

Below we describe the steps of the weakening algorithm. It starts with the
strongest possible mapping A suitable to Q. This consists of:

1. For a κ variable, A(κ) is the conjunction of all the well-typed qualifiers of Q∗

containing variables in scope.
2. For a μ variable, A(μ) is the conjunction of as many instances A(ρ) of ρ

templates as well-typed qualifiers in Q
∗
E , and as many instances A(ρρ) of ρρ

templates as well-typed qualifiers in Q
∗
EE . There is also an additional con-

junction A(ζ) for qualifying the array length (with variables in scope in each
case).



Liquid Types for Array Invariant Synthesis 299

– For a ζ variable, A(ζ) is the conjunction of all the well-typed qualifiers of
Q

∗
len containing variables in scope.

– For the η variable of a ρ template, A(η) is the weakest possible predicate,
0 ≤ j < len ν, where j is the universally quantified variable in ρ.

– For the ηη variable of a ρρ template, A(ηη) is the weakest possible pred-
icate, 0 ≤ j1 < len a ∧ 0 ≤ j2 < len b, where j1, j2 are the universally
quantified variables in ρρ, a and b are either ν, or the free array variable
in scope substituted for � in the qualifier at the right-hand side of ρρ.

Example 5. In the binSearch algorithm of Fig. 2, we have Q
∗
E = {x ≤ ν[j], x >

ν[j]}, Q
∗
I = {j ≤ a−1, b+1 ≤ j} for the μ3 variable corresponding to the array

v at the beginning of each iteration. Then the refinement:

(∀j . 0 ≤ j ∧ j < len ν → x ≤ ν[j]) ∧ (∀j . 0 ≤ j ∧ j < len ν → x > ν[j]) (7)

will be included in the strongest assignment to μ3. ��
At each iteration, the algorithm arbitrarily chooses a constraint c ∈ C not

satisfied by A. Then, A is weakened in order to make the constraint valid. If this
is not possible, then the algorithm ends up with failure. If this is possible, A
is replaced by its weakened form A′, and the set C of constraints is inspected
again looking for a new unsatisfied constraint. Because A has changed, some
prior satisfied constraints may have turned into unsatisfied ones. If no unsat-
isfied constraint remains, then the algorithm ends up with success. The final
mapping A, when applied to all the templates, and then applying the pending
substitutions, gives the liquid type of each program variable.

The crucial step is then how to weaken the mapping A in order to satisfy
a constraint c. Differently to the standard algorithm of [13], weakening A in
our case may change the constraints themselves, and may introduce new liquid
variables. Let us see the process in detail:

1. If c has the form [[Γ ]] ∧ θ1.ι ⇒ θ2.κ, where ι denotes either a κ or a μ variable,
and A(κ) = q1 ∧ · · · ∧ qr, then the weakening removes from A(κ) all the
qualifiers qi such that the formula A([[Γ ]]) ∧ θ1.A(ι) ⇒ θ2.qi is not valid. This
approach corresponds to the standard weakening of [13]. The ζ variable of an
array refinement is dealt with exactly in the same way as a κ variable, so in
what follows we will not insist in these ζ variables.

2. If c has the form [[Γ ]] ∧ θ1.ι ⇒ θ2.μ, and A(μ) = A(ξ1) ∧ · · · ∧ A(ξr), in a
first step the weakening removes from A(μ) all the refinements A(ξi) such
that the formula A([[Γ ]]) ∧ θ1.A(ι) ⇒ θ2.A(ξi) is not valid and cannot not be
made valid. If the formula is not valid, then it is tested whether it can be
made valid by strengthening the antecedent of A(ξi). To do this, the η or ηη
variable of ξi is assigned the strongest possible value, i.e. the conjunction of
all the qualifiers of its respective Q

∗
I or Q

∗
II set. This assignment makes the

instance of ξi as weak as possible. If, in spite of being that weak, the formula
is not valid, then A(ξi) is discarded from A(μ).
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3. For each not valid A(ξi) in A(μ) which can be made valid by strengthening its
antecedent as explained before, a search for the strongest possible valid forms
of the ξi instance is performed. Let us assume for a moment that ξi is a simple
refinement template ρ1 of the form ∀j.η1 → q, and A(η1) = Q1 ⊆ Q

∗
I . The

discussion would be similar for a double one. Conjunctions mj of |Q1| + 1,
|Q1| + 2, |Q1| + 3, etc. qualifiers from Q

∗
I , all of them supersets of Q1, are

tried in this order as possible mappings for the η1 variable of ρ1, until one of
them, let us call it m1, makes the formula valid. Then the algorithm refrains
from trying any superset of m1, instead, it continues the search by trying
the rest of the conjunctions. It may be the case that more than one conjunc-
tion (excluding their respective supersets) succeeds. Let them be m2, . . . ,ms.
Then, fresh copies of ρ1, call them ρ2, . . . , ρs, of the form ∀j.ηl → q, with
ηl fresh variables l = 2..s, are created. Now A′ is defined from A changing
the component A(ξi) of A(μ) by the conjunction A′(ρ1) ∧ · · · ∧ A′(ρs), where
A′(η1) = m1, . . . , A

′(ηs) = ms.

Example 6. In the binSearch algorithm, the following constraint establishes the
correctness of the initial iteration:

x : κ1 ∧ v : μ1 ∧ a = 0 ∧ b = (len v) − 1 ⇒ v : μ3

This constraint is not valid under the initial assignment to μ3 given in (7), but
it can be made valid by strenghtening its antecedent, since for instance the first
conjunct of (7) becomes:

(∀j . 0 ≤ j ∧ j ≤ a − 1 ∧ b + 1 ≤ j ∧ j < len ν → x ≤ ν[j])

The search for supersets refines this predicate into the following two:

(∀j . 0 ≤ j ∧ j ≤ a − 1 → x ≤ ν[j]) ∧ (∀j . b + 1 ≤ j ∧ j < len ν → x ≤ ν[j])

which are both valid because the j ranges over two empty sets. The first conjunct
will disappear from the μ3 assignment in subsequent weakenings. ��

5.3 Soundness and Completeness

We have proven the following properties of the inference algorithm:

1. The algorithm always terminates.
2. If the algorithm terminates with failure, there exists no mapping A satisfying

all the constraints.
3. If the algorithm terminates with success, the result mapping A satisfies all

the constraints and it is the strongest possible mapping satisfying them.

The proof starts by showing that the search space, i.e the set AQ of mappings,
is a complete lattice, with the following definition of �.

Definition 4. Let A,A′ ∈ AQ. We say that A � A′ if for all κ, A(κ) ⇒ A′(κ)
and for all μ, A(μ) ⇒ A′(μ).
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Theorem 1. The partial ordered set (AQ,�) is a (finite) complete lattice.

Sketch of the Proof: Since the liquid variables are mapped to conjunctions of
formulas, the empty conjunction true is the weakest one, corresponding to the �
of the lattice. The strongest possible mapping is the initial one A0, i.e. ⊥ = A0.
It is easy to prove that the following definition (A1 � A2)(ι) = A1(ι) ∪ A2(ι)
makes � a greatest lower bound, and the lowest upper bound can be defined in
terms of � in a standard way. Since all the Q

∗ sets are finite, so it is the set of
formulas, and also the set AQ of mappings. ��

Moreover, the following theorem shows that each step of the weakening algo-
rithm produces an output mapping weaker than the input one.

Theorem 2. Let A ∈ AQ. If A′ is obtained from A by one step of the inference
algorithm, then A′ ∈ AQ and A � A′. ��

The following two theorems allow to prove that, if a solution exists for C,
then the algorithm terminates in a finite number of steps, and gives the strongest
mapping As as a result.

Theorem 3. Given a set C of constraints, if there exists a mapping A ∈ AQ
such that A is a solution of C, then there exists a minimum mapping As ∈ AQ
such as As(C) is valid.

Sketch of the Proof: As the set of mappings making C valid is finite, it is enough
to show that for every pair of mappings A1, A2 making C valid, their greatest
lower bound A1 � A2 is also a solution of C. ��
Theorem 4. If the set C of constraints has a strongest solution As ∈ AQ, and
A is a mapping produced by the inference algorithm, then A � As.

Proof: By induction on the number of weakening steps of the algorithm. ��

6 Implementation and Results

We have implemented our tool in two separated phases. The first one, called
Template Generator, traverses the program text previously transformed to the
platform IR, applies the typing rules, and generates the set of relevant constraints
that should be valid in order the program to be well-typed in the liquid-type
sense. These constraints contain κ and μ variables for respectively the unknown
basic and array types. The second phase is properly the type inference algorithm
explained in Sect. 5.2. It searches for a substitution of the κ and μ variables that
will make all the constraints valid. It uses the Why3 platform [5] and its SMT
solvers as the underlying proving machinery.

We have applied the tool to an assorted set of array algorithms, including
several sorting ones, or pieces of them, the binary search in a sorted array, a
simple linear search, the Dutch National Flag algorithm [4, pp. 111–116], and
the fill algorithm filling an array with a fixed value. Some of them are iterative,



302 M. Montenegro et al.

Function Array Inferred liquid type #C #F

fill v (loop) {ν : array α | (∀j . 0 ≤ j < i → ν[j] = x) ∧ (i ≤ len ν) 13 49
insert v (loop) {ν : array α | (∀j . i + 2 ≤ j ≤ n → x < ν[j]) 30 593

∧(∀j1, j2 . 0 ≤ j1 ≤ j2 ≤ i → ν[j1] ≤ ν[j2])
∧(∀j1, j2 . i + 2 ≤ j1 ≤ j2 ≤ n → ν[j1] ≤ ν[j2])
∧(∀j1, j2 . 0 ≤ j1 ≤ i ∧ i + 2 ≤ j2 ≤ n → ν[j1] ≤ ν[j2])
∧(n < len ν)}

merge v (1st loop) {ν : array α | (∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ i ≤ j2 ≤ m → ν[j1] ≤ w[j2]) 88 1.278
∧(∀j1, j2 . a ≤ j1 ≤ k − 1 ∧ j ≤ j2 ≤ b → ν[j1] ≤ w[j2])
∧(∀j1, j2 . a ≤ j1 ≤ j2 ≤ k − 1 → ν[j1] ≤ ν[j2])
∧(a < len ν) ∧ (b < len ν)}

partition v (loop) {ν : array α | (∀j1, j2 . a + 1 ≤ j1 ≤ i − 1 ∧ j2 = a → ν[j1] ≤ ν[j2]) 44 287
∧(∀j1, j2 . j1 = a ∧ j + 1 ≤ j2 ≤ b → ν[j1] ≤ ν[j2]
∧(a < len ν) ∧ (b < len ν)}

quicksort v (before {ν : array α | (∀j1, j2 . a ≤ j1 ≤ p − 1 ∧ j2 = p → ν[j1] ≤ ν[j2])
2nd call) ∧(∀j1, j2 . j1 = p ∧ p + 1 ≤ j2 ≤ b → ν[j1] ≤ ν[j2]) 18 203

∧(∀j1, j2 . a ≤ j1 ≤ j2 ≤ p − 1 → ν[j1] ≤ ν[j2])
∧(a < len ν) ∧ (b < len ν)}

selsort v (outer {ν : array α | (∀j1, j2 . 0 ≤ j1 ≤ j2 < i → ν[j1] ≤ ν[j2]) 30 233
loop) ∧(∀j1, j2 . 0 ≤ j1 < i ∧ i ≤ j2 < len ν → ν[j1] ≤ ν[j2])

∧(i ≤ len ν)}
selsort v (inner {ν : array α | (∀j1, j2 . j1 = min ∧ i ≤ j2 < j → ν[j1] ≤ ν[j2])

loop) ∧(i ≤ len ν) ∧ (j ≤ len ν)}
binSearch v (loop) {ν : array α | (∀j1, j2 . 0 ≤ j1 ≤ j2 < len ν → ν[j1] ≤ ν[j2]) 25 206

∧(∀j . 0 ≤ j ≤ a − 1 → x > ν[j]) ∧ (∀j . b + 1 ≤ j < len ν → x ≤ ν[j])}
∧0 ≤ a ≤ b + 1 ≤ len v

linSearch v (loop) (i ≤ len ν) ∧ (∀j . 0 ≤ j ≤ i − 1 → ν[j] 
= x) 19 193
DutchFlag v (loop) {ν : array α | (∀j . 0 ≤ j < len ν → ν[j] = R ∨ ν[j] = W ∨ ν[j] = B) 40 2.935

∧(∀j . 0 ≤ j < a → ν[j] = R) ∧ (∀j . a ≤ j < b → ν[j]) = W )
∧(∀j . c < j < len ν → ν[j] = W ) ∧ c < len v}

Fig. 4. Some of the liquid types inferred for assorted examples of array algorithms

and some other are recursive. As explained in the introduction section, after
transformed to our IR, all of them are recursive. In some cases, they call to
an external function that has been separately inferred. This poses no special
problems to the inference algorithm.

We have provided the liquid types of the arguments and the results, i.e. the
equivalent to the preconditions and the postconditions of the algorithms, and
left the system to infer all the intermediate types. The quicksort algorithm does
not include the code of partition. The qualifier sets used for inferring the types
of these algorithms are variants of the following ones:

Q = {constant ≤ ν, � ≤ ν, ν ≤ �, ν < �}
QE = {� < ν[#], constant = ν[#], � 
= ν[#]}
QI = {� ≤ #, # ≤ �, � < #, # < �}
QEE = {ν[#1] ≤ ν[#2], ν[#1] ≤ �[#2]}
QII = {� ≤ #1, #1 ≤ �, � ≤ #2, #2 ≤ �, #1 ≤ #2, #1 = �, #2 = �}
Qlen = {� < len ν, � ≤ len ν, � < len �, � ≤ len �}
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For the sets QI and QII , the qualifiers 0 ≤ #, # < len ν, 0 ≤ #1, #1 <
len ν, 0 ≤ #2, and #2 < len ν are automatically introduced by the tool, so
programmers do not need to provide them. Also, the algorithm removes fake
formulas (e.g. ∀j . a ≤ j < a → v[j] > x) that it can prove equivalent to true.

Some of the relevant types obtained are shown in Fig. 4. There, we have
observed the types in text positions corresponding to entering a loop iteration,
or entering a recursive call, which amounts to inferring the relevant invariants of
the respective programs. With these inferred invariants all the algorithms have
been proven correct by our tool.

Column #C records the number of constraints generated for the example,
and column #F the number of formulas sent to the SMT solvers. Our current
prototype is extremely slow: in order to prove a formula, two processes (Why3
and Z3) are, each time, started and stopped. Due to that, we can only process
10–12 formulas per second. This leads to times of up to 4 min in one of the
examples. We are improving the tool by implementing a direct interface to Z3
via its API, which will process 500–1000 formulas per second. Then, the most
complex example of Fig. 4 could be solved in about 5 s.

We make note that the properties inferred are in general far from being trivial.
Up to five array refinements are needed in some cases to completely express the
property kept invariant by a loop. We believe that these results are encouraging
enough to continue exploring the power of liquid types to assist the programmer
in the verification of complex array manipulating algorithms.

7 Related Work

The nearest works related to this paper are those about liquid types. These
have been already reviewed in Sect. 2, and we have explained their limitations
regarding universally quantified formulas.

A related technique to infer invariants of imperative programs is predicate
abstraction, a variant of abstract interpretation which is also part of the liquid
type approach. This was applied by [1,6]. The starting point is to have a finite
set Q = {p1, . . . , pn} of atomic predicates in a decidable logic, from which more
complex predicates can be built. In [6], the domain contains all combinations
of the pi by ∧ and ∨, i.e. the set of all boolean functions with n boolean argu-
ments, that is 22

n

functions. The abstract interpretation of a loop proceeds in
the forward direction, by using a strongest postcondition semantics. After each
loop iteration, the predicate obtained is joined by ∨ to the one obtained in the
prior iteration, and the result is abstracted by the abstraction function to that
domain. Since this one is finite, a least fixpoint is always reached, provided the
loop invariant can be effectively expressed by combinations of the given atomic
predicates. If the algorithm succeeds, it obtains the strongest invariant belong-
ing to the domain. They report experimenting their system with a Java program
consisting of 520 loops, and were able to infer invariants for 98% of these loops.

In [8], they propose an abstract interpretation domain with universally quan-
tified predicates. In prior attempts, quantification was introduced by rather
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ad-hoc means, but the abstract domain did not contain quantified formulas.
After looking at the shape of many invariants, the authors propose the general
form E ∧ ∧n

j=1 ∀Uj(Fj ⇒ ej) where E, all the Fj , and all the ej , are formu-
las belonging to non-quantified domains. Both E and the Fj are conjunctions
of atomic predicates, and the ej are just atomic ones. Each Uj is a tuple of
(quantified) variables occurring free in Fj and ej . An example of invariant is
1 ≤ i ≤ n ∧ ∀k(0 ≤ k < i⇒ a[k] = 0). The authors define an infinite lattice
where the elements are formulas with this shape, define widening and narrowing
operators to ensure termination, and also give some heuristics in order to convert
non-quantified facts into quantified ones, when at least two iterations have been
done during the interpretation of a loop. They infer invariants for most of the
usual sorting algorithms, for finding an element in an array, and for other similar
examples. The main differences with our approach are that our lattice is finite,
so termination is guaranteed, and that we need neither widening nor heuristics.

In [14], the user gives a template formula for each particular invariant. In
the template, the predicates are represented by unknowns that the system must
guess. For instance, in a ∧ ∀k(b ⇒ c) the system must find a substitution of
concrete predicates for the variables a, b and c. The user must also supply a set Q
of atomic predicates, conjunctions of which will replace the template unknowns.
If an invariant exists having the template shape and formed by conjunctions
of predicates from Q, then the algorithm finds the strongest one. The reported
examples include invariants for all the sorting algorithms, the binary search in
an array, list insertion, and list deletion. A difference with our approach is that
decidability of the formulas is not guaranteed. The authors recognize that they
sometimes provide their SMT solver with additional hints (triggers) in order
to deal with undecidable quantified formulas. Additionally, they need to give
a template with the exact number of quantified conjuncts, which is sometimes
difficult to guess. Our algorithm generates as many conjuncts as needed to prove
the correctness of the input program.

A last group of related papers is the temporal sequence [3,7,9] based on
abstract interpretation. The main insight is the definition of an abstract domain
for arrays, where they are considered to be split into a finite number of slices,
and each slice satisfies a possibly different property. Its contents is represented
by a single abstract variable that is updated as long as the algorithm progresses.
They succeed in obtaining invariants for some array processing algorithms, the
most complex of which is insertion sort. The approach is limited to single for
loops, and to slices described by a predicate with only one universally quantified
index. Also, they would be forced to change the abstract domain each time they
wish to infer a different property. All the reported examples can be dealt with
by our approach, and they admit that, at present, they cannot infer quicksort.

8 Conclusions

We have presented an extension of the Liquid type approach to universally quan-
tified formulas about arrays. Arrays are non-recursive data structures and cannot
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be dealt with by using the recursive refinements introduced in [10]. Addition-
ally, arrays are normally updated in-place and so used in imperative languages,
while the Liquid type approach seems to fit better with functional ones. We
have circumvented both obstacles: the first one, by allowing predicates on arrays
where the indices can be universally quantified, and the second one, by using
our verification platform which transform imperative programs into functional
ones. The array refinements introduced in this paper try to cover properties sat-
isfied for all the elements of an array segment and properties between pair of
elements, either of the same array, or of two different ones. Algorithms searching
arrays for a certain property are also covered, since their invariant can usually
be expressed by a universal quantification (saying that no element of the array
segment currently explored satisfies the property). As future work, we would like
to generate at least a part of the qualifiers directly from the code, so liberating
the programmer from most of this task.

We believe that other general refinements for arrays could be defined in order
to cover programs in which certain elements of an array segment are counted
or operated in some way. The resulting constraints should still be automatically
proved valid by the current SMT solver technology. In this way, more decid-
able array invariants could be rescued from the general undecidable problem of
invariant synthesis.
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9. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, June 7–13, 2008, pp. 339–348. ACM (2008)

10. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification.
In: Hind, M., Diwan, A. (eds.) PLDI, pp. 304–315. ACM (2009)

11. Montenegro, M., Peña, R., Sánchez-Hernández, J.: A generic intermediate rep-
resentation for verification condition generation. In: Falaschi, M. (ed.) LOP-
STR 2015. LNCS, vol. 9527, pp. 227–243. Springer, Cham (2015). doi:10.1007/
978-3-319-27436-2 14

12. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, pp. 522–538 (2016)

13. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) PLDI, pp. 159–169. ACM (2008)

14. Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: Hind, M., Diwan, A. (eds.) PLDI, pp. 223–234. ACM (2009)

15. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: 16th Annual IEEE Symposium on Logic in Com-
puter Science (LICS 2001), pp. 29–37. IEEE Computer Society Press (2001)

16. Suzuki, N., Jefferson, D.: Verification decidability of presburger array programs. J.
ACM 27(1), 191–205 (1980)

17. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-37036-6 13

18. Vazou, N., Seidel, E.L., Jhala, R.: LiquidHaskell: experience with refinement types
in the real world. In: ACM SIGPLAN Symposium on Haskell 2014, pp. 39–51
(2014)

19. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types
for Haskell. In: 19th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2014, pp. 269–282 (2014)

http://dx.doi.org/10.1007/978-3-319-27436-2_14
http://dx.doi.org/10.1007/978-3-319-27436-2_14
http://dx.doi.org/10.1007/978-3-642-37036-6_13


Lifting CDCL to Template-Based Abstract
Domains for Program Verification

Rajdeep Mukherjee1(B), Peter Schrammel2, Leopold Haller3,
Daniel Kroening1, and Tom Melham1

1 University of Oxford, Oxford, UK
rajdeep.mukherjee@cs.ox.ac.uk

2 University of Sussex, Brighton, UK
3 Google Inc., San Francisco, USA

Abstract. The success of Conflict Driven Clause Learning (CDCL)
for Boolean satisfiability has inspired adoption in other domains.
We present a novel lifting of CDCL to program analysis called Abstract
Conflict Driven Learning for Programs (ACDLP). ACDLP alternates
between model search, which performs over-approximate deduction with
constraint propagation, and conflict analysis, which performs under-
approximate abduction with heuristic choice. We instantiate the model
search and conflict analysis algorithms with an abstract domain of tem-
plate polyhedra, strictly generalizing CDCL from the Boolean lattice to
a richer lattice structure. Our template polyhedra can express intervals,
octagons and restricted polyhedral constraints over program variables.
We have implemented ACDLP for automatic bounded safety verification
of C programs. We evaluate the performance of our analyser by compar-
ing with CBMC, which uses Boolean CDCL, and Astrée, a commercial
abstract interpretation tool. We observe two orders of magnitude reduc-
tion in the number of decisions, propagations, and conflicts as well as
a 1.5x speedup in runtime compared to CBMC. Compared to Astrée,
ACDLP solves twice as many benchmarks and has much higher preci-
sion. This is the first instantiation of CDCL with a template polyhedra
abstract domain.

1 Introduction

Static program analysis with abstract interpretation [10] is widely used to ver-
ify properties of safety-critical systems. Static analyses commonly aim to com-
pute program invariants as fixed-points of abstract transformers. Abstract states
are chosen from a lattice that has meet (�) and join (�) operations; the meet
precisely models set intersection (or conjunction, taking a logical view), and
the join over-approximates set union (or disjunction). Over-approximation in
the join operation is one of the sources of precision loss, which can cause false
alarms. Typical abstract domains are non-distributive; suppose a and b together
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represent the abstract semantics of a program and c represents a set of abstract
behaviours that violate the specification. In a non-distributive domain, (a � b) � c
can be strictly less precise than (a � c) � (b � c). This means that in typical
abstract domains, analysing program behaviours separately can improve the pre-
cision of the analysis. Usual means to address false alarms therefore include not
only the use of richer abstract domains, but also of refinements that delay joins
or perform some form of case-splitting. Such techniques trade off higher precision
against lower efficiency and may be susceptible to case enumeration behaviour.

By contrast, Model Checking (MC) [2] can be seen to operate on distributive
lattice structures that represent disjunction without loss of precision. Classical
MC directly operates on distributive representations, such as BDDs, while more
recent implementations use SAT solvers. SAT solvers themselves operate on par-
tial assignments, which are non-distributive structures. To handle disjunction,
case-splitting is performed [15]. Propositional SAT solvers solve large formulae,
and are often able to avoid enumerating cases. The impressive performance of
modern solvers is credited to well-tuned decision heuristics and sophisticated
clause learning algorithms. Collectively, these algorithms are referred to as Con-
flict Driven Clause Learning (CDCL) [3]. An appealing idea is to lift CDCL
from the domain of partial assignments to other non-distributive domains.

Abstract Conflict Driven Clause Learning (ACDCL) [13] is one such lattice-
based generalization of CDCL. ACDCL is a general algorithmic framework, para-
meterized by a concrete domain C and an abstract domain A. Classical CDCL
can be viewed as an instance of ACDCL in which C is the set of propositional
truth assignments and A the domain of propositional partial assignments [17].
Since the concrete domain is a parameter to the framework, ACDCL can in prin-
ciple be used to build both logical decision procedures [5] and program analyzers.
In the former case, the concrete domain is the set of candidate models for the
formula; in the latter case, it is the set of program traces that may lead to an
error. Haller et al. [5] pursue the first idea by presenting a floating-point decision
procedure that uses interval constraint propagation.

In this paper, we explore the second idea by presenting an extension of
ACDCL to program analysis. We call our framework Abstract Conflict Driven
Learning for Programs (ACDLP). The key insight of ACDLP is to use decisions
and learning to reason precisely about disjunctions in non-distributive domains,
thereby automatically refining the precision of analysis for safety checking of C
programs. We introduce two central components of our framework: an abstract
model search algorithm that uses decisions and propagations to search for coun-
terexample trace and an abstract conflict analysis procedure that approximates
a set of unsafe traces through transformer learning. We illustrate the applica-
tion of our framework to program analysis using a template polyhedra abstract
domain [26], which includes most of the commonly used abstract domains, such
as boxes, octagons, zones and TCMs.

We give an experimental evaluation of our analyser compared to CBMC [8],
which uses propositional solvers, and to Astrée [4], a commercial abstract inter-
pretation tool. In this paper, we make the following contributions.
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1. A novel program analysis framework that lifts model search and conflict
analysis procedures of CDCL algorithm over a template polyhedra abstract
domain. These techniques are embodied in our tool, ACDLP, for automatic
bounded safety verification of C programs.

2. A parameterized abstract transformer that guides the model search in for-
ward, backward and multi-way direction for counterexample detection.

3. A conflict analysis procedure that performs UIP-based transformer learning
over template polyhedra abstract domain through abductive reasoning.

2 Motivating Examples

We present two simple examples to demonstrate the essence of ACDLP for
bounded verification. For each one, we apply three analysis techniques: abstract
interpretation (AI), SAT-based bounded model checking (BMC) and ACDLP.

First Example. The simple Control-Flow Graph (CFG) in Fig. 1 squares a
machine integer and checks whether the result is positive. To avoid overflow, we
assume the input v has an upper bound N. This example shows that (a) interval
analysis in ACDLP is more precise than a forward AI in the interval domain,
and (b) ACDLP with intervals can achieve a precision similar to that of AI
with octagons without employing more sophisticated mechanisms such as trace
partitioning [25].

CFG ACDLP with Intervals
ACDLP with

Octagons

v ≤ N)

n5

z < 0

z:=x * x
n4

x:=v

n3

[c==1]
n1

assume(0 ≤ v ∧
n0

[c==0]

n2

x:=-v

Error

Decision ACG2 (DL1)

Learnt Clause ACG3

n5: z=[0, 25]

ACG1 (DL0)
n4: x = [−5, 5] n5: z=[−25, 25] Error: z=[-25,25]

n0: c = [1, 1] n1: v=[0, 5]

n3: c=[1, 1]

n4: x=[0, 5]

n2: ⊥

n5: z=[0, 25] Error: ⊥

n2: c=[0, 0]n1: v=[0, 5]n0: c=[0, 0]

Error: ⊥ n4: x=[−5, 0]

ACG1 (DL0)

n5: (0 ≤ z ≤ 25)

n4: −5 ≤ x ≤ 5

∧ (x-z ≤ 5)
∧ (x-z ≥ −30)
∧ (-5 ≤ x+z ≤ 30)

Error: ⊥

Fig. 1. CFG and corresponding Abstract Conflict Graphs for intervals and octagons

AI versus ACDLP. Conventional forward interval AI is too imprecise to verify
safety of this program owing to the control-flow join at node n4. For example,
the state-of-the-art AI tool Astrée requires external hints, provided by manually
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annotating the code with partition directives at n1. This tells Astrée to analyse
the program paths separately.

ACDLP can be understood as an algorithm to infer such partitions automat-
ically. For the example in Fig. 1, interval analysis with ACDLP is sufficient to
prove safety. The analysis records the decisions and deductions in a trail data-
structure. The trail can be seen to represent a graph structure called the Abstract
Conflict Graph (ACG) that stores dependencies between decisions and deduc-
tions, similar to the way an Implication Graph [3] works in a SAT solver. Nodes
of the ACG in the second column of Fig. 1 are labelled with the CFG location and
the corresponding abstract value. Beginning with the assumption that v = [0, 5]
at node n1, the intervals generated by forward analysis in the initial deduction
phase at decision level 0 (DL0) are x = [−5, 5] and z = [−25, 25]. These do not
prove safety, as shown in ACG1. So ACDLP makes a heuristic decision, at DL1,
to refine the analysis. With the decision c = [1, 1], interval analysis then con-
cludes x = [0, 5] at node n4, which leads to (Error: ⊥) in ACG2, indicating that
the error location is unreachable and that the program is safe when c = [1, 1].

Reaching (Error: ⊥) is analogous to reaching a conflict in a propositional SAT
solver. At this point, a clause-learning SAT solver learns a reason for the conflict
and backtracks to a level such that the learnt clause is unit. By a similar process,
ACDLP learns that c = [0, 0]. That is, all error traces must satisfy c �= 1. The
analysis discards all interval constraints that lead to the conflict and backtracks
to DL0. ACDLP then performs interval analysis with the learnt clause c �= 1. This
also leads to a conflict, as shown in ACG3. The analysis cannot backtrack further
and so terminates, proving the program safe. Thus, decision and clause learning
are used to infer the partitions necessary for a precise analysis. Alternatively,
the octagon analysis in ACDLP—illustrated in the third column of Fig. 1—can
prove safety with propagations only. No decisions are required. Forward AI with
octagons in Astrée is also able to prove safety.

Second Example. Figure 2 shows that octagon analysis in ACDLP is more
precise than forward AI in the octagon domain. The CFG in Fig. 2 computes
the absolute values of two variables, x and y, under the assumption (x = y)
∨ (x = −y).

AI versus ACDLP. Forward AI in the octagon domain infers the octagonal
constraint Error: p ≥ 0 ∧ p + q ≥ 0 ∧ q ≥ 0 ∧ p + x ≥ 0 ∧ p − x ≥ 0 ∧ q + y ≥ 0 ∧
q − y ≥ 0. Clearly this is too imprecise to prove safety. The octagonal analysis
in ACDLP is illustrated by the ACGs in Fig. 2. (Due to space limitations, we
elide intermediate deductions.) The decision x = y at DL1 is not sufficient to
prove safety, as shown in ACG1. So a new decision x < 0 is made at DL2,
followed by forward propagation that infers y < 0 at node n5. This subsequently
leads to safety (Error: ⊥), as shown in ACG2. The analysis learns the reason for
the conflict, discards all deductions in ACG2 and backtracks to DL1. Octagon
analysis is run with the learnt constraint x ≥ 0 and this infers y ≥ 0 at node n5,
as shown in ACG3. This also leads to safety (Error: ⊥). The analysis now makes
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CFG ACDLP with Octagons

n4

[x < 0] [y < 0][x ≥ 0]

assume(x = y∨
x = −y)

[y ≥ 0]

p := −x p := x q := −y q := y

[p �= q]

Error

n8

n7

n5

n6n3n2

n0

n1

Decision

Decision

Decision ACG5 (DL2)

Learnt Clause ACG6

Decision ACG4 (DL1)

ACG2 (DL2)

ACG3

ACG1 (DL1)

Learnt Clause

n5: y < 0

n8: (p − q ≤ 0)∧
(q − p ≤ 0)

n8: (p − q ≤ 0)∧
(q − p ≤ 0)

n8: (p − q ≤ 0)∧
(q − p ≤ 0)

n8: (p − q ≤ 0)∧
(q − p ≤ 0)

Error:p ≥ 0 ∧ p + q ≥ 0 ∧ q ≥ 0 ∧ p + x ≥ 0
p − x ≥ 0 ∧ q + y ≥ 0 ∧ q − y ≥ 0

Error: ⊥

Error: ⊥

Error: ⊥

Error: ⊥

Error: ⊥

n0: x = y

n1: x < 0

n1: x ≥ 0

n0: x = −y

n1: x < 0

n1: x ≥ 0

n5: y < 0

n5: y ≥ 0

n5: y ≥ 0

Fig. 2. CFG and corresponding Abstract Conflict Graphs for octagon analysis

a new decision x = −y at DL1. The procedure is repeated leading to results
shown in ACG4, ACG5, and ACG6. Clearly, the decisions x = −y and x < 0
also lead to safety. The analysis backtracks to DL0 and returns safe. Note that
the specific decision heuristic we use in this case exploits the control structure
of the program to infer partitions that are sufficient to prove safety.

ACDLP versus BMC. ACDLP can require many fewer iterations than SAT-
based BMC due to its ability to reason over much richer lattice structures.
A SAT-based BMC converts the program into a bit-vector formula and passes it
to a CDCL-based SAT solver for proving safety. Table 1 compares the statistics
for BMC with MiniSAT [21] solver to those for interval and octagon analysis
in ACDLP. In the column labelled Domains, BVars is the set of propositional
variables; each of these is mapped to true (t), false (f) or unknown (?). NVars is
the set of numerical variables; Itvs[NVars] and Octs[NVars] are the Interval and
Octagon domains over NVars. As can be seen, ACDLP outperforms BMC in

Table 1. SAT-based BMC versus ACDLP for verification of programs in Figs. 1 and 2

Solver Domain Decisions Propagations Conflicts Conflict
literals

Restarts

Solver statistics for Fig. 1 (for N = 46000)

MiniSAT BVars → {t, f, ?} 233 36436 162 2604 2

ACDLP Itvs[NVars] 1 17 1 1 0

ACDLP Octs[NVars] 0 7 0 0 0

Solver statistics for Fig. 2

MiniSAT BVars → {t, f, ?} 4844 32414 570 4750 5

ACDLP Octs[NVars] 4 412 2 2 0
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the total number of decisions, propagations, learnt clauses and restarts for both
example programs.

3 Program Model and Abstract Domain

3.1 Program Representation

We consider bounded programs with safety properties given as a set of assertions,
Assn, in the program. A bounded program is obtained by a transformation that
unfolds loops and recursions a finite number of times. The result is represented
by a set Σ = Prog ∪ {¬∧

a∈Assn a}, where Prog contains an encoding of the
statements in the program as constraints, obtained after translating the pro-
gram into single static assignment (SSA) form via a data flow analysis. The
representation Σ for the program in Fig. 1 is

{g0 = (0 ≤ v ≤ N), g1 = (g0 ∧ c), x0 = v, x1 = −v,
x2 = g1?x0 : x1, g2 = (g1 ∨ g0 ∧ ¬c), z = x2·x2, g2 ∧ z < 0} (1)

Assignments such as x := v become equalities x1 = v, where the left-hand side
variable gets a subscripted fresh name. Control flow is encoded using guard
variables, e.g. g1 = g0 ∧ c. Data flow joins become conditional expressions,
e.g. x3 = g1?x1 : x2. The assertions in Assn are constraints such as g2 ⇒ z ≥ 0,
meaning that if g2 holds (i.e., the assertion is reachable), then z ≥ 0 must hold.
We write Vars for the set of variables occurring in Σ. Based on this representa-
tion, we define a safety formula (ϕ) as the conjunction of everything in Σ, i.e.
ϕ :=

∧
σ∈Σ σ. The formula ϕ is unsatisfiable if and only if the program is safe.

3.2 Abstract Domain

In this paper, we instantiate ACDLP over a reduced product domain [11]
D [Vars] = B|BVars| × TP[NVars] where B is the Boolean domain that permits
abstract values {true, false,⊥,�} over boolean variables BVars in the program,
and TP is a template polyhedra [26] domain over the numerical (bit-vector) vari-
ables NVars. Our template polyhedra domain can express various relational and
non-relational templates over NVars, as given in Table 2.

Template Polyhedra Abstract Domain. An abstract value of the tem-
plate polyhedra domain [26] represents a set X of values of the vector x of

Table 2. Template instances in the template polyhedra domain

Interval Octagons Zones Equality Fixed-coef. polyhedra

a ≤ xi ≤ b ±xi ± xj ≤ d xi − xj ≤ d xi = xj a1x1 + . . . + anxn ≤ d
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numerical (bit-vector) variables NVars of their respective data types. (Cur-
rently, signed and unsigned integers are supported.) For example, in the pro-
gram given by Eq. (1), we have four numerical variables, written as the vector
x = (x0, x1, x2, z). An abstract value is a constant vector d that represents sets
of values for x for which Cx ≤ d , for a fixed coefficient matrix C. The domain
containing d is augmented by a special element ⊥ to denote the minimal element
of the lattice. There are several optimisation techniques [26] for computing the
domain operations, such as meet (�) and join (�), in the template polyhedra
domain. In our implementation, we use the strategy iteration approach of [6].
The abstraction function is α(X ) = min{d | Cx ≤ d ,x ∈ X }, where min is
applied component-wise. The concretisation γ(d) is the set {x | Cx ≤ d} and
γ(⊥) = ∅, i.e., the empty polyhedron.

For notational convenience we will use conjunctions of linear inequalities, for

example x1 ≥ 0 ∧ x1 − z ≤ 30, to write the abstract domain value d =
(

0
30

)

,

with C =
(−1 0

1 −1

)

and x =
(

x1

z

)

; true corresponds to abstract value �
and false to abstract value ⊥. For a program with N = |NVars| variables, the
template matrix C for the interval domain Itvs[NVars], has 2N rows. Hence,
it generates at most 2N inequalities, one for the upper and lower bounds of
each variable. For octagons Octs[NVars], we have at most 2N2 inequalities,
one for the upper and lower bounds of each variable and sums and differences
for each pair of variables. Unlike a non-relational domain, a relational domain
such as octagons requires the computation of a closure to obtain a normal form,
necessary for precise domain operation. The closure computes all implied domain
constraints. An example of a closure computation for octagonal inequalities is
closure((x − y ≤ 4) ∧ (y − z ≤ 5)) = ((x − y ≤ 4) ∧ (y − z ≤ 5) ∧ (x − z ≤ 9)).
For octagons, closure is the most critical and expensive operator; it has cubic
complexity in the number of program variables. We therefore compute closure
lazily in template polyhedra domain in our abstract model search procedure,
which is described in Sect. 5.3.

Abstract Transformers. An abstract transformer[[σ]]D transforms an abstract
value a through a constraint σ; it deduces information from a and σ. The best
transformer is

[[σ]]D(a) = a � α({u | u ∈ γ(a), u |= σ}) (2)

where we write u |= σ if the concrete value u satisfies the constraint σ. Any
abstract transformer that over-approximates the best abstract transformer is a
sound transformer and can be used in our algorithm. For example, we can deduce
[[x = 2(y + z)]]D(a) = (0 ≤ y ≤ 2 ∧ 1 ≤ y − z ≤ 1 ∧ −2 ≤ x ≤ 6) for the abstract
value a = (0 ≤ y ≤ 2∧1 ≤ y−z ≤ 1). We denote the set of abstract transformers
for a safety formula ϕ using the abstract domain D by A = {[[σ]]D | σ ∈ Σ}.
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3.3 Precise Complementation in Abstract Domains

An important property of a clause-learning SAT solver is that each non-singleton
element of the partial assignment domain can be decomposed into a set of pre-
cisely complementable singleton elements [13]. This property is necessary to learn
elements that guide the model search away from the conflicting region of the
search space. Most numerical abstract domains, such as intervals and octagons,
lack complements in general: not every domain element has a precise comple-
ment. But these domain elements can be represented as intersections of half-
spaces, each of which admits a precise complement. We formalise this in the
sequel.

Definition 1. A meet irreducible m in a complete lattice structure A is an
element with the following property.

∀m1,m2 ∈ A : m1 � m2 = m =⇒ (m = m1 ∨ m = m2),m �= � (3)

The meet irreducibles in the Boolean domain B for a variable x are x and ¬x.
The meet irreducibles in the template polyhedra domain are all elements that
concretise to half-spaces; i.e., they can be represented by a single inequality. For
the interval domain, these are x ≤ d or x ≥ d for constants d.

Definition 2. A meet decomposition decomp(a) of an abstract element a ∈ D
is a set of meet irreducibles M ⊆ D such that a =

�
m∈M m.

For polyhedra this means that each polyhedron can be written as an intersec-
tion of half-spaces. For example, the meet decomposition of the interval domain
element decomp(2 ≤ x ≤ 4 ∧ 3 ≤ y ≤ 5) is the set {x ≥ 2, x ≤ 4, y ≥ 3, y ≤ 5}.

Definition 3. An element a ∈ D is called precisely complementable iff there
exists ā ∈ D such that ¬γ(ā) = γ(a). That is, there is an element whose com-
plemented concretisation equals the concretisation of a.

The precise complementation property of a partial assignment lattice can be
generalised to other lattice structures. For example, the precise complement of
a meet irreducible (x ≤ 2) in the interval domain over integers is (x ≥ 3), or the
precise complement of the meet irreducible (x + y ≤ 1) in the octagon domain
over integers is (x + y ≥ 2). Our domain implementation supports a precise
complementation operation. Standard abstract interpretation does not require a
complementation operator, so abstract domain libraries, such as APRON [19], do
not provide it. But it can be implemented with the help of a meet decomposition
as explained above.

4 Abstract Conflict Driven Learning for Programs

Figure 3 presents our framework called Abstract Conflict Driven Learning for
Programs that uses abstract model search and abstract conflict analysis proce-
dures for safety verification of C programs. The model search procedure operates
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on an over-approximate domain of program traces through repeated application
of abstract deduction transformer, ded , and decisions in order to search for a
counterexample trace. If the model search finds a satisfying assignment (corre-
sponding deduction transformer is γ-complete), then ACDLP terminates with a
counterexample trace, and the program is unsafe. Else, if a conflict is encoun-
tered, then it implies that the corresponding program trace is either not valid or
safe. ACDLP then moves to the conflict analysis phase where it learns the reason
for the conflict from partial safety proof using an abstract abductive transformer,
abd , followed by a heuristic choice of conflict reason. Similar to a SAT solver,
ACDLP picks one conflict reason from multiple incomparable reasons for conflict
for efficiency reasons. Hence, it operates over an under-approximate domain of
conflict reasons. A conflict reason under-approximates a set of invalid or safe
traces. The conflict analysis returns a learnt transformer (negation of conflict
reason) that over-approximates a set of valid and unsafe traces. Model search is
repeated with this new transformer. Else, if no further backtracking is possible,
then ACDLP terminates and returns safe. We present the ACDLP algorithm in
the subsequent section.

Learn new transformer

Partial Safety Proof

UNSAFE

Decision

Abstract Deduction
Transformer (ded )

Abstract Abduction
Transformer (abd )

Analyze Partial Safety Proof

Conflict AnalysisModel Search
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Heuristic Choice
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Fig. 3. Architectural view of ACDLP

The input to ACDLP (Algorithm 1) is a program in the form of a set of
abstract transformers A = {[[σ]]D |σ ∈ Σ} w.r.t. an abstract domain D . Recall
that the safety formula

∧
σ∈Σ σ is unsatisfiable if and only if the program is safe.

The algorithm is parametrised by heuristics for propagation (HP ), decisions
(HD), and conflict analysis (HC ). The algorithm maintains a propagation trail
T and a reason trail R. The propagation trail stores all meet irreducibles inferred
by the abstract model search phase (deductions and decisions). The reason trail
maps the elements of the propagation trail to the transformers ded ∈ A that
were used to derive them.
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Algorithm 1. Abstract Conflict Driven Learning ACDLPHP ,HD ,HC
(A)

input : A program in the form of a set of abstract transformers A.
output: The status safe or unsafe.

1 T ← 〈〉, R ← []
2 result ← deduceHP (A,T,R)
3 if result = conflict then return safe
4 while true do
5 if result = sat then return unsafe
6 q ← decideHD (abs(T))
7 T ← T · q
8 R[|T|] ← �
9 result ← deduceHP (A,T,R)

10 do
11 if ¬analyzeConflictHC

(A,T,R) then return safe

12 result ← deduceHP (A,T,R)

13 while result = conflict

14 end

Definition 4. The abstract value abs(T) corresponding to the propagation trail
T is the conjunction of the meet irreducibles on the trail: abs(T) =

�
m∈T m with

abs(T) = � if T is the empty sequence.

The algorithm begins with an empty T, an empty R, and the abstract value �.
The procedure deduce (details in Sect. 5) computes a greatest fixed-point over
the transformers in A that refines the abstract value, similar to the Boolean
Constraint Propagation step in SAT solvers. If the result of deduce is conflict (⊥),
the algorithm terminates with safe. Otherwise, the analysis enters into the while
loop at line 4 and makes a new decision by a call to decide (see Sect. 5.4), which
returns a new meet irreducible q . We append q to the trail T. The decision q
refines the current abstract value abs(T) represented by the trail, i.e., abs(T ·q) �
abs(T). For example, a decision in the interval domain restricts the range of
intervals for variables. We set the corresponding entry in the reason trail R to
� to mark it as a decision. Here, the index of R is the size of trail T, denoted
by |T|. The procedure deduce is called next to infer new meet irreducibles based
on the current decision. The model search phase alternates between the decision
and deduction until deduce returns either sat or conflict.

If deduce returns sat, then we have found an abstract value that represents
models of the safety formula, which are counterexamples to the required safety
property, and so ACDLP returns unsafe. If deduce returns conflict, the algo-
rithm enters in the analyzeConflict phase (see Sect. 6) to learn the reason for
the conflict. There can be multiple incomparable reasons for conflict. ACDLP
heuristically chooses one reason C and learns it by adding it as an abstract trans-
former to A. The analysis backtracks by removing the content of T up to a point
where it does not conflict with C . ACDLP then performs deductions with the
learnt transformer. If analyzeConflict returns false, then no further backtracking
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Algorithm 2. Abstract Model Search deduceHP
(A,T,R)

input : A program in the form of a set of abstract transformers A, a
propagation trail T, and a reason trail R.

output: sat or conflict or unknown
1 worklist ← initWorklistHP (A)
2 while !worklist .empty() do
3 dedL ← worklist .pop()

4 a ← dedL(abs(T))
5 if a = ⊥ then
6 R[⊥] ← dedL

7 worklist .clear()
8 return conflict

9 else
10 v = onlyNew(a)
11 T ← T · decomp(v)

12 R[|T|] ← dedL

13 updateWorklistHP
(worklist , v , dedL,A)

14 end
15 if A is γ-complete at abs(T) then return sat
16 return unknown

is possible. Thus, the safety formula is unsatisfiable and ACDLP returns safe.
An example demonstrating step-by-step execution of the ACDLP algorithm is
available at [23].

5 Abstract Model Search for Template Polyhedra

Model search in a SAT solver has two steps: deductions, which are repeated appli-
cation of the unit rule (also called Boolean Constraint Propagation, or BCP), to
refine current partial assignments, and decisions to heuristically guess a value for
an unassigned literal. BCP can be seen to compute the greatest fixed point over
the partial assignment domain [13]. Below, we present an abstract model search
procedure that computes a greatest fixed point over abstract transformers [[σ]]D .

5.1 Parametrised Abstract Transformers

The key considerations for an abstract transformer are precision and efficiency.
A precise transformer is usually less efficient than a more imprecise one. In this
paper, we present a specialised variant of the abstract transformer to compute
deductions called Abstract Deduction Transformer (ADT), which is parametrised
by a given subdomain L ⊆ D . A subdomain contains a chosen subset of the
elements in D including ⊥ and � that forms a lattice. The use of a subdomain
serves two purposes: (a) It allows us elegantly and flexibly to guide the deductions
in forward, backward or multi-way direction, which in turn affects the analysis



318 R. Mukherjee et al.

precision, and (b) it makes deductions more efficient, for example by performing
lazy closure in template polyhedra domain.

An ADT is defined formally as follows.

[[σ]]LD(a) = a �D αL({u | u ∈ γD(a), u |= σ}) (4)

For L = D , the ADT is identical to the abstract transformer defined in Eq. (2)
in Sect. 3. Note that a restricted subdomain makes a transformer less precise but
more efficient. Conversely, an unrestricted subdomain make a transformer more
precise, but less efficient. Therefore, we have the property [[σ]]DD(a) � [[σ]]LD(a).
To illustrate point (1), we give examples that demonstrate how the choice of
subdomain influences the propagation direction:

Forward Transformer. For an abstract value a = (0 ≤ y ≤ 1 ∧ 5 ≤ z), σ =
(x = y + z), and L = Itvs[{x}], we have [[x = y + z]]Itvs[{x}]

Itvs[{x,y,z}](a) = a � (x ≥ 6).
Assuming that the equality x = y + z originated from an assignment to x, this
performs a right-hand side (rhs) to left-hand side (lhs) propagation and hence
emulates a forward analysis.

Backward Transformer. For an abstract value a = (0 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 1 ∧
5 ≤ z), σ = (x = y + z), and L = Itvs[{y, z}], we have [[x = y + z]]Itvs[{y,z}]

Itvs[{x,y,z}] =
a � (z ≤ 10). This performs an lhs-to-rhs propagation and hence emulates a
backward analysis.

Multi-way Transformer. For an abstract value a = (c ≤ 1∧c ≥ 1∧x ≤ 5∧x ≥ 5),
σ = ((c = (x = y)) ∧ y = y + 1) and L = Itvs[{c, x, y}], we have [[σ]]Itvs[{c,x,y}]

Itvs[{c,x,y}] =
a � (y ≤ 6∧ y ≥ 6). This performs an lhs-to-rhs propagation for c = (x = y) and
rhs to lhs propagation for y = y + 1 and hence emulates a multi-way analysis.

5.2 Algorithm for the Deduction Phase

Algorithm 2 presents the deduction phase deduce in our abstract model search
procedure. The input to deduce is the set of abstract transformers, a prop-
agation trail (T) and a reason trail (R). Additionally, the procedure deduce
is parametrised by a propagation heuristic (HP ). We write the ADT [[σ]]LD as
dedL in Algorithm 2. The algorithm maintains a worklist, which is a queue that
contains ADTs. The propagation heuristics provides two functions initWorklist
and updateWorklist . The order of the elements in the worklist and the sub-
domain L associated with each ADT (dedL) determine the propagation strat-
egy (forward, backward, multi-way). These two functions construct a subdo-
main (L) for dedL by calling the function MakeL such that L = MakeLD(V ),
where V are the variables that appear in dedL. The abstract value a is
updated upon the application of dedL in line 4 in Algorithm 2. The function
onlyNew(a) =

�
(decomp(a)\decomp(abs(T))) is used to filter out all meet irre-

ducibles that are already on the trail in order to obtain only new deductions
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(v) when applying the ADT (shown in line 10). Depending on the propagation
heuristics, updateWorklist adds ADTs dedL to the worklist that contain vari-
ables that appear in v , and updates the subdomains of the ADTs in the worklist
to include the variables in v (shown in line 13).

If dedL deduces ⊥, then the procedure deduce returns conflict (shown in
line 8). Otherwise, when a fixed-point is reached, i.e., the worklist is empty, we
check whether the abstract transformers A are γ-complete [13] for the current
abstract value abs(T) (shown in line 15). Intuitively, this checks whether all
concrete values in γ(abs(T)) satisfy the safety formula ϕ, where ϕ :=

∧
σ∈Σ σ is

obtained from the program transformation (as defined in Sect. 3.1). If it is indeed
γ-complete, then deduce returns sat. Otherwise, the algorithm returns unknown
and ACDLP makes a new decision.

5.3 Computing Lazy Closure for Template Polyhedra

An advantage of our formalism in Eq. (4) is that the closure operation for
relational domains can be computed in a lazy manner through the construc-
tion of a subdomain, L. The construction of L allows us to perform one step
of the closure operation when dedL is applied. For example, let us consider
D = Octs[{x, y, z}] and V = {y}. An octagonal inequality relates at most
two variables. Thus it is sufficient to consider the subdomain MakeLD({y}) =
Octs[{y}] ∪ Octs[{x, y}] ∪ Octs[{y, z}], which will compute the one-step tran-
sitive relations of y with each of the other variables. Only if any subsequent
abstract deduction transformer makes new deductions on x or z, then the next
step of the closure will be computed through the subdomain Octs[{x, z}]. Hence,
an application of each abstract deduction transformer does not compute the full
closure in the full domain, but compute only a single step of the closure in a
subdomain. This makes each deduction step more efficient but may require more
steps to reach the fixed point.

5.4 Decisions

A decision q is a meet irreducible that refines the current abstract value abs(T),
when the result of the fixed-point computation through deduction is neither a
conflict nor a satisfiable model of ϕ. A decision must always be consistent with
respect to the trail T, i.e., abs(T · q) �= ⊥. A new decision increases the decision
level by one. Given the current abstract value abs(T), the procedure decide in
Algorithm 1 heuristically returns a meet irreducible.

For example, a decision in the interval domain can be of the form xRd where
R ∈ {≤,≥}, and d is the bound. A decision in the octagon domain can specify
relations between variables, and can be of the form ax − by ≤ d, where x and y
are variables, a, b ∈ {−1, 0, 1} are coefficients, and d is a constant. The detailed
description of the different decision heuristics in ACDLP is available at [23].
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6 Abstract Conflict Analysis for Template Polyhedra

Propositional conflict analysis with FIRST-UIP [3] can be seen as abductive
reasoning that under-approximates a set of models that do not satisfy a for-
mula [13,15]. Thus, we view abduction as De Morgan dual of deduction whose
result does not need to be consistent with respect to a background theory. Below,
we present an abstract conflict analysis procedure, analyzeConflict of Algo-
rithm 1, that uses a domain-specific abductive transformer for effective learning.
A conflict analysis procedure involves two steps: abduction and heuristic choice
for generalisation. Abduction infers possible generalised reasons for a conflict,
which is followed by heuristically selecting a generalisation. Below, we define
a global conflict transformer that gives a set of models that do not satisfy a
formula.

Definition 5. Given a formula ϕ, a downwards closed set of abstract elements
Q, and domain D, conf Dϕ (Q) = {u ∈ D | u ∈ Q∨u �|= ϕ}, that is, it returns the
set of abstract models that do not satisfy ϕ or are approximated by Q. An abstract
abductive transformer, abdD

ϕ (Q), corresponds to the under-approximation of the
global conflict transformer, conf Dϕ (Q).

For example, given a formula ϕ = (x = y + 1 ∧ x ≥ 0) and an interval abstract
element Q = (y ≤ −5 ∧ x ≤ −4), conf Itvsϕ (Q) = {(y ≤ −5 ∧ x ≤ −4), (y ≤
−2 ∧ x < 0), . . . , (y ≤ 2 ∧ x ≤ 10), . . .}. Now, an abstract abductive transformer
for ϕ is given by abd Itvs

ϕ (Q) = (y ≤ −2∧x < 0), which clearly underapproximates
conf Itvsϕ as well as strictly generalizes the reason for Q.

The main idea of abductive reasoning is to iteratively replace an abstract
element s in the conflict reason by a partial assignment that is sufficient to
infer s. Conflict abduction is performed by obtaining cuts through markings in
the trail T using an abstract Unique Implication Point (UIP) search algorithm [3].
Every cut is a reason for a conflict. The UIP search can be understood as graph
cutting in an Abstract Conflict Graph, which is defined next.

Definition 6. An Abstract Conflict Graph (ACG) is a directed acyclic graph in
which the vertices are defined by deduced elements (including a special conflict
node (⊥)) or a decision node in the trail T. The edges in ACG are obtained from
the reason trail R that maps pairs of elements in T to the abstract transformers
that are used to derive the deduced elements.

Abstract UIP Search. An abstract UIP is a node in the ACG that must
be traversed on every path between a decision node and the conflict. An
abstract UIP cut is necessary to ensure that the learnt clauses are asserting
after backtracking and prevent cyclic algorithm behavior. An abstract UIP
algorithm [5] traverses the trail T starting from the conflict node and com-
putes a cut that suffices to produce a conflict. For example, consider a formula
ϕ := (x + 4 = z ∧ x + z = 2y ∧ z + y > 10). As before, the trail can be viewed
to represent an ACG, given in Fig. 4, that records the sequence of deductions
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x + y ≤ 2

y = (x + z)/2y = (x + z)/2

cut 0 (first UIP) ⊥

y + z ≤ 6y ≤ 2x + y ≤ 2

z ≤ 4

reason trail

cut 1 (last UIP)

x + z ≤ 4

� z = x + 4

x ≤ 0

z = x + 4

First UIP

propagation trail

Last UIP

z ≤ 4 y + z ≤ 6y ≤ 2x + z ≤ 4x ≤ 0

y = (x + z)/2

Fig. 4. Finding the Abstract UIP in the octagon domain (Color figure online)

in the octagon domain that are inferred from a decision x ≤ 0 for the for-
mula ϕ. The arrows (in red) indicate the relationship between the reason trail
and propagation trail at the bottom of Fig. 4. For the partial abstract value,
a = (x ≤ 0∧x+z ≤ 4∧z ≤ 4), obtained from the trail, the result of the abstract
deduction transformer is [[y = (x+z)/2]]Octs(a) = (x+y ≤ 2∧y ≤ 2∧y +z ≤ 6).
A conflict (⊥) is reached for the decision x ≤ 0. Note that there exist multiple
incomparable reasons for the conflict, marked as cut 0 and cut 1 in Fig. 4. Here,
cut 0 is the first UIP (node closest to conflict node). Choosing cut 0 yields a
learnt clause y + z > 6, which is obtained by negating the reason for the con-
flict. The abstract UIP algorithm returns a learnt transformer AUnit , which is
described next.

Learning in Template Polyhedra Domain. Learning in a propositional
solvers yields an asserting clause [3] that expresses the negation of the con-
flict reasons. We present a lattice-theoretic generalisation of the unit rule for
template-based abstract domains that learns a new transformer called abstract
unit transformer (AUnit). We add AUnit to the set of abstract transformers A.
AUnit is a generalisation of the propositional unit rule to numerical domains.
For an abstract lattice D with complementable meet irreducibles and a set of
meet irreducibles C ⊆ D such that

�
C does not satisfy ϕ, AUnitC : D → D is

formally defined as follows.

AUnitC (a) =

⎧
⎨

⎩

⊥ if a � �
C (1)

t̄ if t ∈ C and ∀t′ ∈ C \ {t}.a � t′ (2)
� otherwise (3)

Rule (1) shows AUnit returns ⊥ when a � �
C is conflicting. Rule (2) of AUnit

infers a valid meet irreducible, which implies that C is unit. Rule (3) of AUnit
returns � which implies that the learnt clause is not asserting after backtracking.
This would prevent any new deductions from the learnt clause. Progress is then
made by decisions. An example of AUnit for C = {x ≥ 2, x ≤ 5, y ≤ 7} is below.
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Rule 1: For a = (x ≥ 3 ∧ x ≤ 4 ∧ y ≥ 5 ∧ y ≤ 6), AUnitC (a) = ⊥, since
a � �

C .
Rule 2: For a = (x ≥ 3∧x ≤ 4), AUnitC (a) = (y ≥ 8), since a � (2 ≤ x ≤ 5).
Rule 3: For a = (x ≥ 1 ∧ y ≤ 10), AUnitC (a) = �.

Backjumping. A backjumping procedure removes all the meet irreducibles
from the trail up to a decision level that restores the analysis to a non-conflicting
state. The backjumping level is defined by the meet irreducibles of the conflict
clause that is closest to the root (decision level 0) where the conflict clause is still
unit. If a conflict clause is globally unit, then the backjumping level is the root
of the search tree and analyzeConflict returns false, otherwise it returns true.

7 Experimental Results

We have implemented ACDLP for bounded safety verification of C programs.
ACDLP is implemented in C++ on top of the CPROVER [12] framework as
an extension of 2LS [27] and consists of around 9 KLOC. The template poly-
hedra domain is implemented in C++ in 10 KLOC. Templates can be inter-
vals, octagons, zones, equalities, or restricted polyhedra. Our domain handles all
C operators, including bit-wise ones, and supports precise complementation of
meet irreducibles, which is necessary for conflict-driven learning. Our tool and
benchmarks are available at http://www.cprover.org/acdcl/.

We verified a total of 85 ANSI-C benchmarks. These are derived from: (1) the
bit-vector regression category in SV-COMP’16; (2) ANSI-C models of hardware
circuits auto-generated by v2c [24] from VIS Verilog models and opencores.org;
(3) controller code with varying loop bounds auto-generated from Simulink
model and control intensive programs with nested loops containing relational
properties. All the programs with bounded loops are completely unrolled before
analysis.

We compare ACDLP with the state-of-the-art SAT-based bounded model
checker CBMC ([7], version 5.5) and a commercial static analysis tool, Astrée
([1], version 14.10). CBMC uses MiniSAT 2.2.1 in the backend. Astrée uses a
range of abstract domains, which includes interval, bit-field, congruence, trace
partitioning, and relational domains (octagons, polyhedra, zones, equalities, fil-
ter). To enable fair comparison using Astrée, all bounded loops in the program
are completely unwound up to a given bound before passing to Astrée. This
prevents Astrée from widening loops. ACDLP is instantiated to a product of the
Booleans and the Interval or Octagon domain. ACDLP is also configured with
a decision heuristic (ordered, random, activity-based), propagation (forward,
backward and multi-way), and conflict-analysis (learning UIP, DPLL-style). The
timeout for our experiments is set to 200 s.

ACDLP versus CBMC. Figure 5 presents a comparison between CBMC and
ACDLP. Figure 5(a) clearly shows that the SAT-based analysis makes signifi-
cantly more decisions than ACDLP for all the benchmarks. The points on the

http://www.cprover.org/acdcl/


Lifting CDCL to Template-Based Abstract Domains for Program Verification 323

10−1 100 101 102 103

100

102

SAT (Decisions)

A
C

D
L
P

(D
ec

is
io

n
s) Safe

Unsafe

10−1 100 101 102 103 104

100

102

104

SAT (Propagations)

A
C

D
L
P

(P
ro

p
a
g
a
ti

o
n
s)

Safe

Unsafe

)b()a(

Fig. 5. Comparing SAT-based BMC and ACDLP: number of decisions and propagations

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

10−1

100

101

102

Benchmark Number

T
im

e
(s

ec
o
n
d
s)

CBMC

ACDLP

Astrée
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extreme right below the diagonal in Fig. 5(b) show that the number of prop-
agations in the SAT-based analysis is maximal for benchmarks that exhibit
relational behaviour. These benchmarks are solved by the octagon domain in
ACDLP. We see a reduction of at least two orders of magnitude in the total num-
ber of decisions, propagations and conflicts compared to analysis using CBMC.

Out of 85 benchmarks, SAT-based analysis could prove only 26 benchmarks
without any restarts. The solver was restarted in the other 59 cases to avoid
spending too much time in “hopeless” branches. By contrast, ACDLP solved
all 85 benchmarks without restarts. The runtime comparison between ACDLP
and CBMC is shown in Fig. 6. ACDLP is 1.5X faster than CBMC. The superior
performance of ACDLP is attributed to the decision heuristics, which exploit
the high-level structure of the program, combined with the precise deduction by
multi-way transformer and stronger learnt clauses aided by the abstract domains.

ACDLP versus Astrée. To enable precise analysis with Astrée, we manually
instrument the benchmarks with partition directives ASTREE partition
control at various control-flow joins. These directives provide external hints
to Astrée to guide its internal trace partitioning domain. Figure 6 demonstrates
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that Astrée is 2X faster than ACDLP for 37% cases (32 out of 85); but the
analysis using Astrée shows a high degree of imprecision (marked as timeout
in Fig. 6). Astrée reported 53 false alarms among 85 benchmarks. By contrast,
the analysis using ACDLP produces correct results for 81 benchmarks. ACDLP
times out for 4 benchmarks. Clearly, ACDLP has higher precision than Astrée.
A detailed comparison between ACDLP, CBMC and Astrée is available at [23].

Our experimental evaluation suggests that ACDLP can be seen as a tech-
nique to improve the efficiency of SAT-based BMC. Additionally, ACDLP can
also be perceived as an automatic way to improve the precision of conventional
abstract interpretation over non-distributive lattices through automatic parti-
tioning techniques such as decisions and transformer learning.

8 Related Work

Fränzle et al. [16] present a tight integration of SAT solving with interval-based
constraint solving to handle large constraint systems. D’Silva et al. [15] present
an abstract interpretation account of satisfiability algorithms derived from DPLL
procedures. The work of [14] is a very early instantiation of abstract CDCL [15]
as an interval-based decision procedure for programs, but in a purely logical
setting. A similar technique that lifts DPLL(T) to programs is Satisfiability
Modulo Path Programs (SMPP) [18]. SMPP enumerates program paths using a
SAT formula, which are then verified using abstract interpretation.

The lifting of CDCL to first-order theories is proposed in [9,20,22]. Unlike
previous work that operates on a fixed first-order lattice, ACDLP can be instan-
tiated with different abstract domains as well as product domains. This involves
model search and learning in abstract lattices. A similar technique that lifts
decisions, propagations and learning to theory variables is Model-Constructing
Satisfiability Calculus (mcSAT) [22].

ACDLP is not, however, similar to abstraction refinement. ACDLP works on
a fixed abstraction. Also, transformer learning in ACDLP does not soundly over-
approximate the existing program transformers. Hence, transformer learning in
ACDLP is distinct from transformer refinement in classical CEGAR.

9 Conclusions

We present a general algorithmic framework for lifting the model search and con-
flict analysis procedures in DPLL-style satisfiability solvers to program analysis.
We embody these techniques in a tool, ACDLP, for automatic bounded safety
verification of C programs over a template polyhedra abstract domain.

We present an abstract model search procedure that uses a parameterised
abstract transformer to flexibly control the precision and efficiency of the deduc-
tions in the template polyhedra abstract domain. The underlying expressivity of
the abstract domain helps our decision heuristics to exploit the high-level struc-
ture of the program for making effective decisions. Our abstract conflict analysis
learns abstract transformers over a given template following a UIP computation.
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Experimental evaluation over a range of benchmarks shows a 20× reduction in
the total number of decisions, propagations, conflicts and backtracking iterations
compared to CBMC. Moreover, ACDLP is 1.5× faster than CBMC. Compared
to Astrée, ACDLP solves twice as many benchmarks and has much higher preci-
sion. In the future, we plan to extend our framework to unbounded verification
through invariant generation.
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Abstract. Formal program verification faces two problems. The first
problem is related to the necessity of having automated solvers that
are powerful enough to decide whether a formula holds for a set of proof
obligations as large as possible, whereas the second manifests in the need
of finding sufficiently strong invariants to obtain correct proof obliga-
tions. This paper focuses on the second problem and describes a new
method for the automatic generation of loop invariants that handles
polynomial and non deterministic assignments. This technique is based
on the eigenvector generation for a given linear transformation and on
the polynomial optimization problem, which we implemented on top of
the open-source tool Pilat.

1 Introduction

Program verification relies on different mathematical foundations to let users
prove that a piece of code behaves as intended. The problem is however unde-
cidable for any Turing complete language, partly because of loops. This is one of
the reasons why loop analysis is a highly studied topic in the field of verification.
Let us take for example linear filters, whose purpose are to apply a linear con-
straint to input signals. Such programs are heavily used in embedded software
for analyzing sensors’ data and are thus critical for the correction of the system.
Yet, linear filters are difficult to verify because of the non-determinism induced
by the unknown input signal and the use of floating-point computations. This
lack of precision forbids the direct use of exact mathematical techniques.

Figure 1 presents an example of program inspired by linear filters [21]. We
claim that loop invariants are a good way to obtain general information about
such a loop. In this particular case, the loop admits the invariant x2 + y2 �
14.9, bounding the maximal value of |x| and |y| to 3.9: this is an infinite loop.
More generally, if we can infer bounds for the value of the loop variables or for
polynomial expressions of these variables, we are then able to perform precise
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analyses, such as reachability. In this paper, we aim at facing two major problems
of numeric invariant generation, namely the generation of polynomial relations
between variables and the search of inductive spaces to which variables of a
program belong, in the context of simple (i.e. non-nested) loops composed of
polynomial and non deterministic assignments. In particular, linear filters are
encompassed in such context. The relations we generate have the advantage
to be completely independent from the initial state of the loop, making them
fully generic, as opposed to full-program based techniques that start from a
specific initial state. This work is an extension of the algorithm PILA [11],
which generates polynomial equalities between variables manipulated by a simple
deterministic loop. We show in this paper that a refined version of this algorithm
can also produce inductive inequality invariants and tackle non-deterministic
assignments as well as deterministic ones. Moreover, we add to this analysis an
optimization algorithm enabling us to minimize the inductive set described by
invariants of non deterministic loops.

Fig. 1. Example of linear filter

Contributions. The original PILA
approach generates inductive invari-
ants as equality relations of the form
P (X) = 0 with P a polynomial. This
paper extends this method (Sect. 2) to
generate new kinds of inductive invari-
ants of the form |P (X)| � k and
|P (X)| � k. It is mostly based on lin-
ear algebra and is applicable to C pro-
grams manipulating integers and float-
ing point numbers. To simplify the pre-
sentation, we describe the method on

a simple imperative language (Sect. 3). The two main results of this extension
are the treatment of loops with deterministic (Sect. 4.1) and non-deterministic
assignments (Sect. 4.2). Finally, we explain how to manage imprecision in float-
ing point computations (Sect. 4.3). In the latter cases, we reduce the problem
of generating invariants to the polynomial optimization problem. An algorithm
for solving this problem is given. The proposed method in this paper is correct,
fully implemented in Pilat and is currently part of the Frama-C suite [17] as an
external open-source plug-in, available at [3]. We show its efficiency by applying
it on several examples from related literature in Sect. 6. Due to space constraints,
proofs have been omitted. They are available in a separate report [12].

2 Overview

When synthesizing invariants, three ingredients are required:

1. what kind of invariants are computed;
2. what will be their most useful shape;
3. how strong they will be.
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In abstract interpretation for example, we first choose the type of invariant
that will be computed, i.e. the abstract domain, then a symbolic execution of
properties of this domain will shape the initial state into an invariant that we
will try to keep as strong as possible by applying appropriate widening and
narrowing operators.

Overview of the PILA Algorithm. Let us first recall how PILA works on
a simple example. Consider the loop of Fig. 2 for which we want to generate all
invariants (polynomials P such that P (x, y) = 0) of degree 2. By enhancing the
loop expressiveness with new variables representing the value of the monomials
of variables used in the loop, namely x2 for x2, y2 for y2 and xy for x ∗ y, it
first creates linear variables representing monomials.

Fig. 2. Simple affine loop

Let us take for instance x2. As the
new value of x is 0.68.(x − y), the new
value of x2 is 0.682.(x2−2.x.y+y2). x2

can then be expressed as a linear appli-
cation of x2, xy and y2. More generally,
any monomial of variables of the loop
in Fig. 2 evolves linearly along the exe-
cution of the enhanced loop.

Next, PILA starts generating
invariants. Instead of starting with an
initial state, which is not assumed to
be known, it generates relations that
are preserved by each step of the loop. Let f be the loop transformation, (here
f(x, y) = (0.68 ∗ (x−y), 0.68 ∗ (x+y)). A linear application ϕ is a semi-invariant
if, given any valuation of the variables, it stays constant through one iteration
of f . In other words, it must respect the following property:

If ϕ(X) = 0 then ϕ(f(X)) = 0

In linear algebra, this is strictly equivalent to the following:

If ϕ(X) = 0 then f∗(ϕ)(X) = 0

where f∗(ϕ) = ϕ ◦ f is the dual application of f . If there exists a scalar λ such
that f∗(ϕ) = λ.ϕ (i.e. ϕ an eigenvector of f∗ associated to the eigenvalue λ) the
criterion becomes obviously true, thus ϕ is a semi-invariant.

In fact, it is shown in [11] that eigenvectors of f∗ are exactly the set of such
invariants bound to the transformation f . More precisely, when an eigenvector ϕ
is associated to the eigenvalue 1 (i.e. f∗(ϕ) = ϕ), it represents an affine invariant
of f (ϕ.X = k). When the associated eigenvalue is not 1, the PILA algorithm
is not always capable of lifting the semi-invariant into a proper invariant. In the
example of Fig. 2, the associated eigenvalue of the only semi-invariant x2 + y2 is
0.9248. Pilat concludes that x2 + y2 = 0 is inductive but if it does not respect
the initial state, this is not an invariant.
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The key idea of this paper is to consider not only equalities, but also inequali-
ties. If the left eigenvector ϕ is associated to an eigenvalue λ such that 0 < λ � 1
then λ.ϕ(X) will necessarily be smaller than ϕ(X). Thus for any k � 0, the fol-
lowing proposition holds:

If ϕ(X) � k then f∗(ϕ)(X) � k

ϕ(X) � k is thus inductive. In our example, the relation x2+y2 � k is inductive,
and contrarily to x2+y2 = 0 it can be made an invariant even if the initial values
of x and y are not 0: we just have to choose k = x2

init + y2
init.

Non Determinism. The same reasoning can be applied to treat non determin-
istic values in assignments. By setting the non deterministic values to a random
value, e.g. 0, we are left to find inductive inequality relations, which can be
easily performed as we just saw. In the deterministic case, generated formulas
are inductive because the set of possible values for x and y that respects the
formula gets bigger by applying the loop transformation once. Adding the non
deterministic noise may lead to non inductive formulas. A solution consists in
finding upper and lower bounds for this noise and check if the set obtained in
deterministic case stays stable under this new transformation. If this is not the
case, we must consider a weaker invariant.

3 Setting

Mathematical Background. We work in the real field R. Let (Rn, ‖.‖) the
normed vector space of dimension n associated to the usual euclidean norm ‖.‖.
Elements of R

n are denoted x = (x1, . . . , xn)t a column vector. The variables
vector of a mapping f is denoted X. Mn(R) is the set of matrices of size n ∗ n
and R[X] is the set of polynomials with coefficients in R. The complex field
C is the algebraic closure of R. Let |.| be the euclidian norm on C. We use
〈., .〉 the linear algebra standard notation, 〈u, v〉 = ut.v, with . the usual dot
product (i.e. the sum of the product of each component of u and v). For a
linear mapping f(X) = A.X, we define its dual f∗(X) = AtX. The kernel of a
matrix A ∈ Mn(R), denoted ker(A), is the vectorial space defined as ker(A) =
{x ∈ R

n, Ax = 0}. Every matrix of Mn(R) admits a finite set of eigenvalues
λ ∈ C and their associated eigenspaces Eλ, defined as Eλ = ker(A − λId),
where Id is the identity matrix and Eλ �= {0}. Similarly, every matrix A admits
left-eigenspaces, i.e. eigenspaces of At. The limit of a multivariate function f :
R

n → R for ‖X‖ → l is defined by the maximal value of f(X) with ‖X‖ in the
neighborhood of l ∈ R ∪ {+∞} and is denoted lim

‖X‖→l
f(X).

Invariants. A formula requires two canonical properties to be a loop invariant:
it must be true at the beginning of the loop (initialization); it must be preserved
by a loop step (inductivity). Similarly to [11], we define the inductive relation ϕ
by the following constraint.
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Definition 1 (Exact).
ϕ ∈ R

n is an exact inductive invariant for a linear mapping f iff

∀X ∈ R
n, |〈ϕ,X〉| = 0 ⇒ |〈ϕ, f(X)〉| = 0 (1)

In the present paper, we add to this definition the concept of convergent and
divergent inductive relation.

Definition 2 (Convergence).
ϕ ∈ R

n is a convergent inductive invariant for a linear mapping f iff

∀X ∈ R
n,∀k ∈ R, |〈ϕ,X〉| � k ⇒ |〈ϕ, f(X)〉| � k (2)

Definition 3 (Divergence).
ϕ ∈ R

n is a divergent inductive invariant for a linear mapping f iff

∀X ∈ R
n,∀k ∈ R|〈ϕ,X〉| � k ⇒ |〈ϕ, f(X)〉| � k (3)

The convergent invariant definition could have been written equivalently
|〈ϕ,X〉| � |〈ϕ, f(X)〉|. We choose the other notation as the idea of the tech-
nique is to find a suitable value of k such that |〈ϕ,X〉| � k is an invariant of
the loop. A vector ϕ satisfying the inductive relation is called a semi-invariant
in contrast with invariants that also verify the initialization criterion, denoted
〈ϕ,Xinit〉 with Xinit the variables’ initial values. The exact semi-invariants set
of a linear mapping f is the union of all eigenspaces of f∗ as proven in [11]. Also,
we define the solvability of a mapping introduced in [27].

Definition 4. Let g ∈ (R[X])m be a polynomial mapping. g is solvable if there
exists a partition of X into sub-vectors of variables x = w1 � . . . � wk and we
can divide g into different mappings gwj

manipulating variables of wj such that

gwj
(x) = Mjw

t
j + Pj(w1, . . . , wj−1, N)

with Pj a polynomial and N eventual non deterministic parameters.

For example, the mapping gN (x, y) = (x + y2, y + N) depending on the
parameter N is solvable because we can set w1 = {y} and w2 = {x}. gy(x, y) =
y + P1(N), where P1 = N and gx(x, y) = x + P2(y) where P2(y) = y2. We also
can write gN (x, y) = (gx(x, y), gy(x, y)).

Remark. As shown in [11], deterministic solvable assignments are linearizable,
i.e. they can be replaced by equivalent linear mappings. This allows to con-
sider deterministic linear mappings X ′ = A.X with X a vector containing both
variables and monomials of those variables to represent deterministic solvable
assignments.
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Programming Model. We use a basic programming language whose syntax
is given in Fig. 3. V ar is the set of variables used by the program. Variables take
their value in R. A program state is then a partial mapping V ar ⇀ R. Any given
program only uses a finite number n of variables, thus program states can be
represented as vectors X = (x1, . . . , xn)t. Finally, we assume that for all pro-
grams, there exists xn+1 = 1 a constant variable always equal to 1. This allows to
represent any affine assignment by a matrix. The expression non det(exp1, exp2)
returns a random value between the valuation of exp1 and exp2 when the pro-
gram reaches this location. Multiple variables assignments occur simultaneously
within a single instruction. We say an assignment X = exp is affine (resp. solv-
able) when exp is an affine (resp. solvable) combination. Also, we say that an
instruction is non-deterministic when it is an assignment in which the right value
contains the expression non det.

Fig. 3. Code syntax

4 Convergent and Divergent Linear Applications

4.1 Deterministic Assignments

Being an inductive invariant requires for a formula F to be true after an itera-
tion of the loop under the hypothesis that F holds before the iteration. The left
eigenspace of a linear transformation (i.e. the eigenspace of the dual transfor-
mation) is exactly its set of exact invariants as defined in Definition 1.

Convergence. By linear algebra, |〈ϕ,X〉| � k ⇒ |〈f∗(ϕ),X〉| � k is
strictly equivalent to the Definition 2 of convergent semi-invariants. The for-
mula |〈ϕ,X〉| � k represents what we call a domain described by ϕ, i.e. a
polynomial relation over the variables of the program. The previous constraint
specify that the domain described by ϕ is stable by f . The loop in Fig. 2
admits the invariant x2 + y2 � 2, a domain described by ϕ = (0, 0, 0, 1, 0, 1)t

in the base (1, x, xy, x2, y, y2) where x2 represents x2, xy represents x ∗ y
and y2 represents y2. We can check with the PILA algorithm that ϕ is an
exact semi-invariant of the loop as it is a left eigenvector of the transforma-
tion performed by the loop. As such, it generates a vectorial space of exact
semi-invariants I = {k.(x2 + y2) = 0 | k ∈ R}, which is a very poor result as
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x2 + y2 is constant only if it starts at 0 (else, k = 0 and we don’t know any-
thing about x2 + y2). We focus now on the eigenvalue associated to ϕ on f∗,
which is 0.9248. Thus, we can replace |〈f∗(ϕ),X〉| by |λ|.|〈ϕ,X〉|, which returns
|〈ϕ,X〉| � k ⇒ |λ|.|〈ϕ,X〉| � k. As |λ| < 1, the vector ϕ satisfies the equa-
tion, thus ϕ is a convergent semi-invariant. Knowing the maximal initial value
of x2 + y2 allows to determine the value of k, which is 2.

More generally, the set of convergent semi-invariants is exactly the set of
eigenvectors bound to an eigenvalue λ such that |λ| < 1. The proof of this
assertion requires the following lemma:

Lemma 1. (∀k, |〈ϕ,X〉| � k ⇒ |〈ϕ, f(X)〉| � k) ⇒ f∗(ϕ) = λ.ϕ

In other words, convergent invariants are eigenvectors. The goal of the fol-
lowing property is to characterize the associated eigenvalue.

Property 1. ϕ is a convergent semi-invariant ⇔ ∃λ, |λ| � 1, f∗(ϕ) = λ.ϕ.

Proof. If |λ| � 1, then ϕ is a convergent semi-invariant (see introduction of
Sect. 4.1). As the exact semi-invariants set of f is the union of the eigenspaces
of f∗, we can deduce that this set is a superset of all the relations satisfying the
Definition 2. Moreover by the Lemma 1, we have

(|〈ϕ,X〉| � k ⇒ |〈ϕ, f(X)〉| � k) ⇒ (| <ϕ,X> | � k ⇒ |λ|.| <ϕ,X> | � k)

For k = | <ϕ,X> | it is true if and only if |λ| � 1. ��

Divergence. The same reasoning applies to the generation of divergent invari-
ants. For example, an eigenvalue λ such that |λ| > 1 associated to a semi-
invariant ϕ implies that |〈ϕ,X〉| � k is an inductive invariant.

Property 2. ∃λ, |λ| > 1, f∗(ϕ) = λ.ϕ ⇒ ϕ is a divergent semi-invariant.

Proof. If there exists λ such that f∗(ϕ) = λ.ϕ, then we have that being a
divergent semi invariant is equivalent to

| <ϕ,X> | � k ⇒ |λ|.| <ϕ,X> | � k

If we also have that |λ| > 1, then the previous equation is true. ��
Note that this time, we only have an implication. For example, the trans-

formation f(x,1) = (x + 1,1) admits x � xinit as a divergent invariant but
the only left eigenvector of f is (0, 1), which correspond to the invariant “1 is
constant”. Moreover, not all invariants of the form P (X) � k are generated : the
loop with the only assignment x = x − 1 admits the (non-convergent) invariant
x � xinit. This invariant does not enter the scope of our setting as |x| � xinit is
false for 2xinit + 1 iterations of x = x − 1.
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4.2 Non-deterministic Assignments

Fig. 4. Non deterministic variant of the
Fig. 2

Some programs depend on inputs
given all along their execution, for
example linear filters. More generally,
an important part of program analysis
consists in studying non-deterministic
assignments. As an example let us con-
sider the program in Fig. 4, a slightly
modified version of the program in
Fig. 2. Our previous reasoning is not
applicable now because, due to the
non-determinism of N , the loop is no
longer a linear mapping.

Idea. Intuitively, we will represent this loop by a matrix parametrized by N .
For that purpose we use the concept of abstract mapping introduced in [15].

Definition 5. An abstract linear mapping f : Rq �→ Mn(R) is a mapping asso-
ciating a vector N ∈ R

q to a matrix. We call f∗ the dual mapping of f (i.e.
the mapping such that f∗(N) = (f(N))T ). The expression of the parametrized
matrix with respect to an abstract linear mapping will be called the abstract
matrix.

In our setting, the parameters are the non-deterministic values. For example,
the previous loop can be represented by the abstract matrix MN :

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
N 0.68 0 0 −0.68 0
N2 1.36N 0 0.462 0 −0.462
N2 1.36N 0.925 0.462 −1.36N 0.462
N 0.68 0 0 0.68 0
N2 1.36N 0.925 0.462 1.36N 0.462

⎞
⎟⎟⎟⎟⎟⎟⎠

Remark. Similarly to deterministic solvable mappings defined in Sect. 3, non
deterministic solvable mappings can be linearized to an abstract matrix. By
considering non deterministic parameters as constants, the problem is reduced
to the linearization of deterministic solvable mappings.

We have shown in Sect. 4.1 that M0 admits the invariant e0 = (0, 0, 0, 1, 0, 1)
associated to the eigenvalue λ0 = 0.9248. By decomposing MN as the sum of M0

and (MN − M0), we also have e0.MN = e0.M0 + e0.(MN − M0) = λ0.e0 + δN
0 ,

where δN
0 = e0.(MN − M0) = (2N2, 2.72N, 0, 0, 0, 0). As the eigenvalue λ0 is

smaller than 1, we are looking for relations ϕ such that ∀X, |〈ϕ,X〉| � k ⇒
|〈MT

N .ϕ,X〉| � k. We will call e0 a candidate invariant for MN . For e0 to be a
proper invariant for this transformation, the following property must hold:

∀X, |〈e0,X〉| � k ⇒ |λ0〈e0,X〉 + 〈δN
0 ,X〉| � k (4)
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Intuitively, multiplying 〈e0,X〉 by λ0 reduces its norm strictly under k. We need
to make sure that adding 〈δN

0 ,X〉 does not contradict the induction criterion by
increasing the result over k. The variables of the program depend on k, as does
〈δN

0 ,X〉. If it increases faster than |λ0〈e0,X〉| when k is increased, then no value
of k will make the candidate invariant inductive. In particular, if 〈e0,X〉 is a
polynomial P of degree d, we need to be able to give an upper bound of 〈δN

0 ,X〉
knowing that |P (X)| < k. If the degree of 〈δN

0 ,X〉 is strictly smaller than d,
then it will grow asymptotically slower than |P (X)|, thus for a big enough k the
induction criterion is respected.

Property 3.
(∀X, |〈e0,X〉| � k ⇒ |〈δN

0 ,X〉| � (1 − |λ0|).k
) ⇒ (5)

|〈e0,X〉| � k is an invariant of the loop.

In our example, 〈δN
0 ,X〉 = 2.72 ∗ N ∗ x + 2 ∗ N2. The polynomial x is of

degree 1 while < e0,X >= x2 + y2 is of degree 2. We need to find a k such that

− 0.0752 ∗ k � 2.72 ∗ N ∗ x + 2 ∗ N2 � 0.0752 ∗ k (6)

Optimizing Expressions. We will now maximize and minimize 2.72 ∗ N ∗ x+
2 ∗ N2, knowing that x2 + y2 � k and −0.1 � N � 0.1. Solving this problem is
very close to solving a constrained polynomial optimization (CPO) problem [7].
CPO techniques provide ways to find values minimizing and maximizing expres-
sions under a set of inequalities constraints. Our main issue is related to the
parameter k that must be known in order to use CPO directly. We will not
investigate in this article how CPO works in detail, but how we can reduce the
problem of finding an optimal k to the CPO problem.

Assuming we have a function min computing the minimum, if it exists, of an
expression under polynomial constraints, we propose an algorithm that refines
the value of k in Fig. 5. The idea is to find k by dichotomy.

• If k doesn’t satisfy the constraints, we try a bigger one.
• If we find a k satisfying the two conditions, then it is a potential candidate.

We can still try to refine it by searching for a smaller k.

We can improve this algorithm by guessing an upper value of k instead of taking
an arbitrary maximal value MAX INT. For our example, we started at k = 50
and found that k = 14.9 respects all the constraints.

• x2 + y2 � 14.9 ⇒ |x| � 3.9
• |N | � 0.1
• |2.72 ∗ x ∗ N + 2 ∗ N2| � 1.08, and k ∗ (1 − |λ|) = 1.12.
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Fig. 5. Dichotomy search of a k satisfying the condition (6)

Convergence. Note however that the existence of a k satisfying (6) is not
guaranteed. For example, the set S = {(x, y,N)|x2 + y2 � k ∧ −0.1 � N � 0.1}
is a compact set for any value of k, which means that x, y and N have maximum
and minimum values. This implies the existence of a lower and an upper bound
for every expression composed with x, y and N , but the value of those expressions
may be always higher than k such as for x2 + y2 + 1 bounded by k + 1.

Property 4. Let P and Q two polynomials and M > 0 ∈ R.
If lim

‖X‖→+∞
|Q(X)
P (X) | < M , then there exists k ∈ R such that for all k′ � k

|P (X)| � k′ ⇒ |Q(X)| � M.k′

By taking M = (1 − |λ0|), this theorem gives us a sufficient condition to
guarantee the convergence of the algorithm in Fig. 5.

Corollary. If the objective has a lower degree in the deterministic variables than
the candidate invariant, then the algorithm converges. If it has the same degree,
then it depends on the main coefficients.

As we are dealing with two polynomials P and Q, then if P (the candidate
invariant) has a higher degree than Q (the objective function) in all its vari-
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ables, the limit of Q(X)
P (X) will be 0, which is enough to ensure the convergence

of the method. If we come back to the objective function for the loop of Fig. 2,
Q(X) = 2.72.x.N + 2.N2 is a polynomial of degree 1 in x and 0 in y, thus

lim
‖X‖→+∞

|Q(X,N)
P (X) | = 0 and we can be sure that the optimization will converge.

On the other hand, if we have X = (x, y), P (X) = x2 + y2 and Q(X,N) =
10.N(x2 + y2 + 1), with |N | � 0.1, the optimization procedure may not produce
a result by Theorem 4 because lim

‖X‖→+∞
|Q(X,N)

P (X) | = 10N is higher than 1 − |λ|
for N = 0.1.

Initial State. The knowledge of the initial state is not one of our hypotheses
yet, but the previous theorem provides the necessary information we need to
treat the case where the initial state is strictly higher than the minimal k we
found. The previous theorem tells us that there exists a k such that for all
k′ � k, k′ is a solution to the optimization problem. Our optimization algorithm
is searching for a value of k for which the set is inductive, though, and this
solution may be only local: there may be a k′ > k which is not a solution of the
optimization procedure. If the value of P (Xinit) is strictly higher than k, there
are two possibilities:

• it satisfies the objective (6), optimization is then not necessary as k =
P (Xinit) is correct, and we directly have a solution.

• it doesn’t satisfy the objective, we have to find a k > P (Xinit) satisfying it.

In both cases, we can enhance the optimization algorithm by first testing
the objective (6) with k = P (Xinit). If it does not respect the objective, then
starting the dichotomy with low k = P (Xinit) will return a solution (guaranteed
by the property 4) strictly higher than P (Xinit).

4.3 Rounding Error

When dealing with real life programs, performing floating point arithmetic gen-
erates rounding error. As for an input signal abstracted by a non deterministic
value, we can add to every computation that may lead to a rounding error a non
deterministic value whose bounds are determined by the variables types and
values.

Addition. Addition over two floating-point values lose some properties like
associativity. For example, (264 − 264) + 2−64 will be strictly equal to 2−64 but
264+(−264+2−64) will be equal to 0. To deal with addition, we can consider the
highest possible error between a real value and its floating point representation,
a.k.a. the machine epsilon. It is completely dependent of the C type used: for
float (single precision) it corresponds to 2−23; for double (double precision) it
is 2−52. More generally, let x and y be two reals, with x̃ and ỹ their respective
C representation. The IEEE model [2] says that an operation on floating point
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numbers must be equivalent to an operation on the reals, and then round the
result to one of the nearest1 floating point number. In this case, the relative
error |(x̃ + ỹ) − (x + y)| = (x + y) ∗ ε where ε is the highest machine epsilon
between the machine epsilon of the type of x, y and (x+y). The error is relative
to the value of x and y. This is not a problem, as we authorize in our setting
non deterministic calls with expressions as argument.

Multiplication. A similar approximation happens during a multiplication of
two floating point values. The relative error |(x̃ ∗ ỹ) − (x ∗ y)| = x ∗ y ∗ ε.
Thus for every multiplication, we can add a non deterministic value between
−x ∗ y ∗ ε and x ∗ y ∗ ε.

With these considerations, we are able to provide precise bounds for rounding
error for every operation performed in the loop.

Remark. Note that we can also deal with value casting. For example, when a
cast from a floating point value to a integer is performed, the maximal error
is bounded by 1 which can be abstracted in our setting by a non deterministic
assignment.

5 Related Work

There exist mainly two kinds of polynomial invariants: equality relations between
variables, representing precise relations, and inequality relations, providing
bounds over the different values of the variables. After the results of Karr
in [16,22] on the complete search of affine equality relations between vari-
ables of an affine program, Müller-Olm and Seidl [23] have proposed an inter-
procedural method for computing polynomial equalities of bounded degree as
invariants. For linear programs, Farkas’ lemma can be used to encode the invari-
ance condition [9] under non linear constraints. Similarly, for polynomial pro-
grams, Gröbner bases have been shown to be an efficient way to compute the
exact relation set of minimal polynomial loop invariants composed of solvable
assignments by computing the intersection of polynomial ideals [26,27]. Even if
this algorithm is known to be EXP-TIME complete in the degree of the invari-
ant searched, high degree invariants are very rare for common loops and the
tool Aligator [18], inspired from this technique for P-solvable loops[19,20], is
very efficient for low degree loops. Finally, [8] presents a technique that avoids
the combination problem by using abstract interpretation to generate abstract
invariants. This technique is implemented in the tool Fastind. The main issue
is the completion loss: some invariants are missed and a maximal degree must
be provided. The direct use of exact mathematical techniques is also not very
efficient for the analysis of non-deterministic assignments.

1 Depending on rounding mode, this may be the floating point value immediately
below or above the result.
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Synthesis of inequality invariants has become a growing field [21,29], for
example in linear filters analysis and automatic verification in general as it pro-
vides good knowledge of the variables bounds when computing floating point
operations. Abstract interpretation [10] with widening operators allows good
approximation of loops with the desired format. A recent work [14] mixes
abstract interpretation and loop acceleration (i.e. the precise computation of
the transitive closure of a loop) to extend the framework and obtain precise
upper and lower bounds on variables in the polyhedron domain. Very precise
and computing non-trivial relations for complex loops and conditions, it has the
drawback to be applicable to a very restricted type of transformations (linear
transformation with eigenvalues λ such that |λ| = 0 or 1). We see this technique
as complementary to ours as it generates invariants we do not find (such as
k � kinit for loop counters) and conversely. In order to treat non-deterministic
loops, [21] refines as precisely as possible the set of reachable states for linear fil-
ters, harmonic oscillators and similar loops manipulating floating point numbers
using a very specific abstract domain. A specific domain of polynomial inequal-
ities have been implemented by [5], allowing conditions in the form P (X) � 0.

Dynamic analysis is also widely used in the detection of invariants.
Daikon [13] infers linear likely invariants, i.e. candidate invariants, by confronting
a given property pattern against a large number of executions. By expanding the
pattern to more expressive terms with polynomial and array expressions, [24,25]
infers general and disjunctive polynomial and array invariants.

6 Application and Results

The plug-in Pilat, written in OCaml as a Frama-C plug-in (compatible with
the latest stable release, Aluminium) and originally generating exact relations for
deterministic C loops, has been extended with convergent invariant generation
and non deterministic loop treatment for simple C loops. It implements our main
algorithm of invariant generation in addition to the optimization algorithm of
Fig. 5, and generates invariants as ACSL [6] annotations, making them readily
understandable by other Frama-C plugins. The tool is available at [3].

Let us now detail the work performed by Pilat over the example of Fig. 6
(taken from [21]). First, our tool generates the shape of the invariant, i.e. the
polynomial P such that |P (X)| � k is inductive for a certain k of the loop
by setting the non deterministic choice to 0. We know by Property 1 that such
an invariant is an eigenvector of the transformation. By expressing s20, s0 ∗ s1
and s21 as linear variables, we find the eigenvector e0 = (1.42857,−2.14285, 1)
(in the base (s20, s0s1, s

2
1)) associated to the eigenvalue 0.7. Thus, P0(s0, s1) =

1.42857 ∗ s20 − 2.14285 ∗ s0 ∗ s1 + s21 � k is an invariant of the loop when N is
set to 0. The error made between the deterministic transformation (with N = 0)
and the non deterministic one (with N ∈ [−0.1, 0.1]) is given by Q(s0, s1, N) =
2 ∗ N ∗ s1 − 2.142 ∗ N ∗ s0 − 1.428 ∗ N2. Q has a lower degree than P for a
fixed N , so we have that lim

‖(s0,s1)‖→+∞
Q(s0,s1,N)

P (s0,s1) = 0 < 1 − λ. The optimization

procedure is now certain to converge, thus we minimize and maximize Q(X,N)
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Fig. 6. Generation of one of the smallest polynomial invariant of degree 2 for a linear
filter [21,31]

Table 1. Performance results with our implementation Pilat. Tests have been per-
formed on a Dell Precision M4800 with 16GB RAM and 8 cores. The first part rep-
resents deterministic loops (thus, no optimization is necessary). The second part of
the benchmark are non deterministic loops. Tests with abstract interpretation have
been performed with the fixpoint solver described in [21] by attempting to prove goals
implied by the invariants our tool synthesizes when they were compatible. Details and
benchmark are available in [1]

Program PILAT Input Results Abs. Int. [21]

Var Degree # invariants Generation
(in s)

Optimization
(in s)

Proof (in s)

Deterministic

Example 1 2 2 1 0.003 – 1.6

Dampened oscillator 2 2 1 0.007 – 0.036

Harmonic oscillator 2 2 1 0.004 – 0.035

Sympletic oscillator 2 2 1 0.002 – 0.008

[4] filter 2 1 1 0.0035 – 0.0017

Non deterministic

Simple linear filter 2 2 1 0.0015 1.3 6.5

Example 3 2 2 1 0.003 1.7 4.3

Linear filter 2 2 1 0.0019 1 1

Lead-lag controller 2 1 2 0.002 2.5 6

Gaussian regulator 3 2 1 0.007 2.5 –

Controller 4 2 5 0.066 14 –

Low-pass filter 5 2 2 0.06 7 –

with the hypothesis P (s0, s1) � k. By starting the procedure with k = 50
(which is usually a good heuristic) and performing 10 iterations the optimization
procedure returns k = 0.87891, thus 1.42857 ∗ s20−2.14285 ∗ s0s1+s21 � 0.87891
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is an inductive invariant represented in Fig. 6. This is a real invariant, assuming
the initial state satisfies the relation.

Let us now consider that the initial state of the loop is (s0, s1) = (2, 1). Then
at the beginning of the loop, 1.42857 ∗ s20 − 2.14285 ∗ s0s1 + s21 = 2.42858 >
0.87891, which does not respect the invariant. In this case the procedure starts by
testing the optimization criterion with k = 2.14285. This choice of k is correct.
In conclusion, we know that 1.42857 ∗ s20 − 2.14285 ∗ s0s1 + s21 � 2.42858 is an
invariant of the loop.

More generally, we evaluated our method over the benchmark used in [28]
for which we managed to find an invariant for every program containing no
conditions. Though this benchmark has been built to test the effectiveness of a
specific abstract domain, we managed to find similar results with a more general
technique. Our results are given in Table 1. As ellipsoids are a suitable repre-
sentation for those examples, we have choosen 2 as the input degree of almost
all our examples. The optimization script is based on Sage [30]. Note that the
candidate generation is a lot faster than the optimization technique, mainly
because of two reasons: computing min is time consuming for a large number of
constraints; it is imprecise and its current implementation is incorrect (outputs
an under approximation of the answer), we have to approximate its results to
get a correct over approximation.

7 Conclusion and Future Work

Invariant generation for non deterministic linear loop is known to be a difficult
problem. We provide to this purpose a surprisingly fast technique generating
inductive relations that mostly relies on linear algebra algorithms widely used
in many fields of computer science. Also, the optimization procedure for the non
determinism treatment returns strong results. These invariants will be used in
the scope of Frama-C [17] as a help to static analyzers, weakest precondition
calculators and model-checkers.

We are currently facing three major issues that we intend to address in
the future. The current optimization algorithm is assumed to have an exact
min function. However, such function is both time consuming and imprecise. In
addition, conditions are treated non deterministically, which reduces the strength
of our results and limits the size of our benchmark to simple loops (linear filters
with saturation are not included in our setting). Finally, the search of invariants
for nested loops is a complex problem on which we are currently focusing.
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Abstract. The advancement of constraint solvers and model checkers
has enabled the effective analysis of high-level formal specification lan-
guages. However, these typically handle a specification in an opaque man-
ner, amalgamating all its constraints in a single monolithic verification
task, which often proves to be a performance bottleneck.

This paper addresses this issue by proposing a solving strategy that
exploits user-provided partial knowledge, namely by assigning symbolic
bounds to the problem’s variables, to automatically decompose a veri-
fication task into smaller ones, which are prone to being independently
analyzed in parallel and with tighter search spaces. An effective imple-
mentation of the technique is provided as an extension to the Kod-
kod relational constraint solver. Evaluation shows that, in average, the
proposed technique outperforms the regular amalgamated verification
procedure.

1 Introduction

The steady advancement of constraint solvers and model checkers renders the
automatic analysis of software models increasingly efficient. Thus, high-level for-
mal specification languages – like Alloy [9], B [1] or TLA+ [10] – are currently
backed up by effective tool support that promotes the effortless specification and
analysis of complex systems. In fact, such frameworks have reached a level of
maturity that enables their application in industrial scenarios [16].

Nonetheless, such tools are still affected by scalability issues. One approach
to tackle this issue is to allow the user to provide additional a priori knowledge
about the problem’s domain, thus reducing its search space. For this effect, the
Kodkod [21] model finder supports the definition of partial instances, obtaining
impressive performance gains. Its language, based on relational logic, is suffi-
ciently simple, yet powerful, to be used directly by end users, but its relevance
also lies in its usage by the Alloy Analyzer to automate the analysis of Alloy
specifications, and as an alternative back-end for ProB, B’s model checker and
animator.

Kodkod’s partial instances define lower- and upper-bounds for the problem’s
variables, concretely stating which values must and may be assigned to a vari-
able, respectively. While useful, such bounds are rather inflexible and often do
not allow the user to specify all available partial knowledge. In this paper we
c© Springer International Publishing AG 2017
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advocate the support for richer partial instances by allowing the user to declare
symbolic bounds for the problem’s variables. We then show how such partial
knowledge can be exploited to improve the performance of automated analysis
procedures. Verification is typically handled opaquely by solvers, resulting in the
“amalgamation” of the variables and constraints into a single search problem.
Symbolic bounds give rise to dependencies that can be used to automatically
decompose the amalgamated problem into smaller ones. The first portion of
one such decomposed problem can be used to generated candidate partial solu-
tions, which are further refined in independent solving tasks taking into account
the remainder problem. This strategy can lead to better scalability since these
independent solving tasks (i) have smaller search spaces (in particular once the
symbolic bounds are factored in) and (ii) are prone to being executed in parallel.

Consider the analysis of a hotel room locking system [9]. The specification of
this system in Kodkod, Hotel, consists of a set of Rooms, a set of Keys (assigned to
rooms through a relation keys) and a set of potential Guests, restricted by appro-
priate constraints (e.g., the same key cannot be assigned to different rooms).
These elements are static components of the problem, in the sense that, although
several assignments are possible, once defined they remain frozen. Other parts of
the system are dynamic and evolve over time (explicitly modeled in Kodkod by
the set of Time instants under analysis). This is the case, for example, of the keys
registered at the rooms (relation r_keys) or assigned to guests (relation g_keys)
at any given instant of time. The possible assignments to those relations depend
on values assigned to the static ones (e.g., g_keys must only relate existing Keys
to potential Guests inside the Time period under analysis).

Unfortunately, in Kodkod this inclusion dependency cannot be captured by
the bounds defined in partial instances, requiring the user to express it in a reg-
ular logical constraint. Using the extension proposed in this paper, such depen-
dencies can be explicitly declared using symbolic bounds in the partial instance
definition (in this case setting the upper-bound to the cross product of the static
relations). For our example, this would result in the dependency graph depicted
in Fig. 1, where, e.g., the dependency of g_keys on the sets of available Keys,
Guests and Time instants becomes explicit. Using information from the depen-
dency graph (in particular the number of dependencies), our proposed solving
strategy will split the problem, first generating candidate partial solutions for a
subset of variables. These partial solutions will then be incorporated into new
problems extended with the remaining variables and the respective constraints,

Fig. 1. Dependency graph for the hotel room locking system.
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to be solved in parallel and with tighter bounds once the dependencies are
resolved. Naturally, not all of these candidate partial solutions can be extended
to full satisfiable instances, meaning that many of them can be discarded in this
process.

This paper formalizes the strategy described above and implements the par-
allel solving procedure as an extension to Kodkod. Kodkod is well-suited to deploy
such strategy due to: (i) its native support for partial instances, that will allow
an efficient embedding of the partial solutions into the remainder problem; (ii)
its ability to incrementally generate solutions, that will allow the efficient itera-
tive generation of the partial solutions; and (iii) its powerful symmetry break-
ing mechanism, that will avoid the generation of isomorphic candidate partial
solutions. The parallel implementation of the strategy both relies and preserves
these distinctive features. Experimental evaluation of this extension shows that
it can indeed outperform Kodkod amalgamated execution for complex problems,
particularly for satisfiable (SAT) problems. To balance the performance of the
technique for unsatisfiable (UNSAT) problems, we propose a hybrid technique
that minimizes performance deterioration in such scenarios, preserving the ben-
efits of the decomposed solving strategy otherwise.

Section 2 formalizes symbolic partial instances and the decomposed solving
strategy. Section 3 presents its implementation as a parallel extension to Kodkod,
which is then evaluated in Sect. 4. Section 5 compares this work with previously
proposed techniques. Section 6 wraps up and points directions for future work.

2 From Symbolic Bounds to Decomposed Model Finding

The proposed strategy is formalized over relational model finding problems as
embodied by Kodkod [21]. Although simple, this formalization is sufficiently
powerful and flexible to express general analysis procedures as model finding,
including model checking and animation.

2.1 Relational Model Finding with Symbolic Bounds

Model finders search for variable bindings that satisfy certain problem con-
straints. In Kodkod, problems are represented by a set of relations R with the
associated constraints specified in relational logic (a flavor of first-order logic
enhanced with transitive closure). A valid binding b : R → T , denoted by prob-
lem instance in Kodkod, assigns to each relation a tuple set from T , constructed
from a universe of atoms A, such that a formula φ with free-variables from R
holds. In order to restrict the search space, upper- and lower-bounds are imposed
to these relations (known as a partial instance). The former typically encode typ-
ing restrictions by stating which tuples may be assigned to a relation, while the
latter may encode partial knowledge about the problem by stating which tuples
must be assigned. The tuples comprising these bounds must be uniform on their
arity.
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A= {R1,R2,K1,K2,G1,G2,T1,T2}
R= Time : [{T1,T2},{T1,T2}]

Key : [{K1,K2},{K1,K2}]
Room : [{},{R1,R2}]
Guest : [{},{G1,G2}]
keys : [{},{(R1,K1),(R2,K1),

(R1,K2),(R2,K2)}]
guests : [{},{(R1,G1,T1),(R2,G1,T1),. . .,

(R1,G2,T2),(R2,G2,T2)}]
g_keys : [{},{(G1,K1,T1),(G2,K1,T1),. . .,

(G1,K2,T2),(G2,K2,T2)}]
. . .

φ = keys in Room → Key &&
guests in Room → Guest → Time &&
g_keys in Guest → Key → Time &&
all t:Time,r:Room | one r.r_keys.t &&
all k:Key | one keys.k && . . .

(a) The Hotel problem in normal Kodkod.

A= {R1,R2,K1,K2,G1,G2,T1,T2}
R= Room : [{},{R1,R2}]

Key : [{K1,K2},{K1,K2}]
Guest : [{},{G1,G2}]
keys : [{},Room → Key]
Time : [{T1,T2},{T1,T2}]
guests : [{},Room → Guest → Time]
g_keys : [{},Guest → Key → Time]
. . .

φ = all t:Time,r:Room | one r.r_keys.t &&
all k:Key | one keys.k && . . .

(b) The Hotel problem with symbolic
bounds.

Fig. 2. Hotel room locking system problem for n = 2.

Definition 1. A (relational) model finding problem P is a tuple 〈A, l, u, φ〉
where A is a universe of atoms, l, u : R → T assign to each relation vari-
able r ∈ R lower- and upper-bounds, respectively, with l(r) ⊆ u(r), and φ is a
relational logic formula over R variables. A binding b : R → T is a solution of
P if φ holds and b(r) ⊆ u(r)\l(r) for every r ∈ R.

For simplicity, components of P are denoted as AP , lP , uP and φP , respectively.
Figure 2a depicts part of the encoding of the Hotel specification in Kodkod,

for a problem of size n = 2 (n is the maximum size of Room and Guest and the
exact size of Time and Key). The lower- and upper-bounds appear between square
brackets in the declaration of the variables. Notice how constant tuple sets are
assigned to these bounds using the atoms available in the universe A. Equal
lower- and upper-bounds fix a relation exactly, as in Key and Time. Relational
logic formula φ is presented in Kodkod’s notation, which includes logical (&& for
conjunction and all for universal quantification) and relational operators (→
denotes the Cartesian product, in relational inclusion, . relational composition,
and one a multiplicity restriction). The five presented formulas specify, respec-
tively, the keys, guests, and g_keys typing restrictions, the requirement that at
each time instant a single Key is registered in every Room, and that every Key must
be assigned to a Room. The model finding procedure, denoted by �P � : R → T ,
searches for an instance for a problem P . Kodkod does so by encoding relations
into boolean matrices, creating a boolean variable for each tuple between the
lower- and upper-bounds. A propositional formula is then computed by convert-
ing relational operators into matrix operations, which is passed to an off-the-shelf
SAT solver. If there is no satisfying solution, an empty binding ⊥ : ∅ → T is
assumed to be returned (this is not the same as an empty model that binds every
R variable to an empty tuple set).

Kodkod allows users to iterate through valid instances. This can be embodied
by a scenario exploration operation [13] next, that given the previous problem
and the last known solution, generates a novel problem to be solved:
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next(〈A, l, u, φ〉, b) = 〈A, l, u, φ ∧ ¬b〉

For a binding b, b denotes its encoding into a predicate that exactly character-
izes it [13]: by adding the negation of this predicate to the iterated problem’s
constraints, only different instances will be generated. To avoid the generation of
isomorphic solutions, Kodkod’s symmetry breaking algorithm introduces addi-
tional restrictions during translation (see Sect. 3.2).

Kodkod problems allow relations to be bound by constant tuple sets, as
depicted in Fig. 2a for Hotel. As mentioned above, upper-bounds usually encode
typing restrictions. For instance, a valid binding for g_keys must be included in
the Cartesian product of Room, Key and Time. However, since we are forced to use
constants in the declarations, the upper-bound must be approximated by the
Cartesian product of the upper-bounds of those sets, and a constraint must be
explicitly included in the problem to enforce the desired typing restriction. A
similar situation occurs with relations keys and guests. The latter records which
Guest is in each Room at any Time instant.

In this paper we propose to extend Kodkod problems with a notion of sym-
bolic bounds, allowing users to bound relations with Kodkod relational expres-
sions that explicitly refer other relations rather than using just constant tuple
sets. A symbolic bound for a relation expresses some sort of conditional partial
knowledge, in the sense that once you know the value of the relations on which
it depends, you will know which tuples may or must appear in it. Although such
symbolic bounds bring no additional expressiveness, they can reduce the ver-
bosity of the declarations and constraints without any additional burden from
the user, since it only requires certain (already existing) constraints to be moved
from the problem’s formula to the bounds. Most importantly, it will expose
the dependencies between the declarations of relations, information that will be
later exploited by the decomposed solving strategy presented in Sect. 2.2. Using
this extension, the upper-bound of relations keys, guests, and g_keys can now
be declared directly as the desired Cartesian product, as depicted in Fig. 2b,
avoiding the extra constraints in φHotel.

Naturally, symbolic bounds must be resolved (i.e., converted into concrete
tuple sets) prior to solving. This action, denoted by 
P � for a problem P , is
achieved by iteratively expanding the binding relational expressions, replacing
each relation reference with its respective lower- or upper-bound. This process
must eventually result in constant bounds for every relation, thus the dependency
graph must be acyclic. That is the case of the Hotel example, whose dependency
graph is shown in Fig. 1. If the relations referred in a symbolic bound are not
bound exactly, the respective expression cannot be exactly evaluated, and thus
the symbolic bound must also be included as an explicit constraint in problem
formula that will be solved. For instance, if one resolves directly the problem
depicted in Fig. 2b we would end up with the problem in Fig. 2a, having no gains
whatsoever when solving. However, if meanwhile we found out the exact value of
Room then the binding expression of keys could be resolved exactly, reducing the
search space and avoiding the additional constraint in the solving stage. This
latter insight is exploited by the decomposed solving strategy presented in the
next section.
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Input: A model finding problem P = 〈A, R, l, u, φ〉 and a variable set Rp ⊆ R.
Output: A solution for the problem P or ⊥, and the updated formula for the

partial problem.
P↓ ← 〈A, l|Rp , u|Rp , φ|Rp〉
repeat

p ← �	P↓
�;
b ← �	P ⊕ p
�;
if b = ⊥ then

P↓ ← next(P↓, p);
end

until b �= ⊥ ∨ p = ⊥;
return 〈b, φP↓〉;

Algorithm 1. Algorithm for decomposed model finding.

2.2 Decomposed Model Finding

Given a subset of variables Rp ⊆ R, the decomposed strategy will first search for
valid bindings for those variables, which will improve the solving of the remainder
depending variables. A binding over Rp is a candidate partial solution of a
problem if it is within the bounds defined for Rp variables and the constraint
conjuncts defined exclusively over Rp hold. Let b|A denote the domain restriction
of mapping b to set A, and through an abuse of notation, φ|Rp

denote the
conjuncts of φ that refer exclusively to Rp.

Definition 2. A binding b : Rp → T is a candidate partial solution of a
model finding problem P = 〈A, l, u, φ〉 with symbolic bounds if Rp ⊆ R for
l, u : R → T , and it is a solution of the partial (model finding) problem
P↓ = 
〈A, l|Rp

, u|Rp
, φ|Rp

〉�.

This definition assumes the empty binding ⊥ to be a candidate partial solution of
every problem. Partial solutions can be embedded into the bounds of the original
problem, binding Rp relations exactly, leaving only Rr = R\Rp to be solved.
Moreover, symbolic bounds in Rr referring to Rp variables will be assigned
stricter tuple sets after resolution. For relations depending uniquely on Rp (or
other exactly bound relations) resolution will exactly calculate the value of the
relational expressions in the symbolic bounds, avoiding the need for additional
constraints in φ, as in Fig. 2b. Let ⊕ denote the overriding of mappings.

Definition 3. A candidate partial solution b : Rp → A can be integrated into a
model finding problem P = 〈A, l, u, φ〉 as 
〈A, l ⊕ b, u ⊕ b, φ〉�, denoted by P ⊕ b.

By overriding the lower- and upper-bounds with the concrete valuation from
the partial solution, Rp become exactly bound. The integration of a candidate
partial solution b does not entail a SAT problem by itself, since there may not
exist an extension to b for which φ holds.

The decomposed model finding strategy will generate candidate partial solu-
tions until an instance is found to an integrated problem. This strategy is encoded
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Room : [{R1},{R1}]
Key : [{K1,K2},{K1,K2}]
Guest : [{G1},{G1}]
keys : [{(R1,K1),(R1,K2)},

{(R1,K1),(R1,K2)}]

(a) Candidate partial solution
p obtained from 	Hotel↓
.

Room : [{R1},{R1}]
Key : [{K1,K2},{K1,K2}]
Guest : [{G1},{G1}]
keys : [{(R1,K1),(R1,K2)},{(R1,K1),(R1,K2)}]
Time : [{T1,T2},{T1,T2}]
guests : [{},{(R1,G1,T1),(R1,G1,T2)}]
. . .
g_keys : [{},{(G1,K1,T1),(G1,K1,T1),(G1,K2,T2),(G1,K2,T2)}]

(b) Result of integrating and resolving p into Hotel, i.e.
	Hotel ⊕ p
.

Fig. 3. Decomposed model finding for Hotel.

in Algorithm 1, relying only on regular model finding procedures. Essentially,
given the current state of the partial problem P↓, the procedure successively
generates candidate partial solutions p, that are integrated into the full problem
until a full solution is found or ⊥ is returned, rendering P UNSAT. Suppose P
to be the Hotel problem in Fig. 2b and Rp to include Room, Key, Guest and keys.
Solving 
P↓� could produce the candidate partial solution in Fig. 3a. Integration
into P and symbolic bound resolution (
P ⊕ p�) results in the constant bounds
in Fig. 3b. Since there Room and Guest are now exactly bound, the bounds of
the remainder variables are considerable smaller than in the amalgamated prob-
lem defined in regular Kodkod (Fig. 2a), potentially speeding up the solving of
the integrated problem. This algorithm is prone to being parallelized on the
exploration of the integrated problems, as will be shown in Sect. 3.

The procedure is complete, since every partial solution may be eventually
explored. To speed up the process, the current state of the partial problem,
embodied by φP↓, is also returned by the algorithm. This avoids the redundant
generation, at each iteration, of candidate partial solutions p that have already
been fully explored (i.e., for which �
P ⊕ p�� has already returned ⊥). The
discarding of partial solutions cannot be performed externally by next since the
current partial solution extended by b may still produce additional full solutions.
Given the output of Algorithm1, iteration of decomposed problems is defined as
follows, resulting in an iterated problem to be inputed back into the algorithm:

next(〈A,R, l, u, φ〉, 〈b, φP↓〉) = 〈A,R, l, u, φ ∧ ¬b ∧ φP↓〉

2.3 Criterion for Decomposing Problems

The previous section has shown how to decompose the model finding of a problem
given a subset of variables Rp. This subset can be defined manually, but ideally,
it should be derived automatically, and several criteria can be proposed to do
so. The usage of symbolic bounds enabled us to define a simple criterion that
lead to substantial gains in efficiency in most examples in our evaluation.

Looking at the entailed dependency graph and given a threshold t, relations
with outdegree (number of dependencies) bigger than t, or that depend directly
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or indirectly from one of those, are left out of Rp. The intuition behind this cri-
terion is that variables with more dependencies benefit more from prior solving.
If more than a single connected component is left, only the largest one is kept in
Rp. The number of candidate partial solutions should be manageable, and such
disconnected components usually give rise to an explosion of non-symmetric
solutions, unlike connected relations whose valuations are most likely restricted
by the constraints. We also found that setting t to the maximum outdegree typ-
ically provides optimal performance. In our running example, this would assign
to Rp Room, Key, Guest and keys, resulting in a behavior similar to that of Fig. 3.
The criterion was applied to all examples considered in Sect. 4.

3 Decomposed Kodkod

This section describes a concrete implementation of the decomposed strategy
described in the previous section as an extension to Kodkod [11].

3.1 Implementation Overview

The decomposed solver implements the strategy presented in Sect. 2.2: given
a problem P and a set of Rp variables, the procedure automatically extracts
φP |Rp

depending on the occurrence of Rp variables, and then solves the prob-
lem following the general idea behind Algorithm1. P↓ is deployed as a regular
Kodkod problem and generates candidate partial solutions pi, and for each pi,
an integrated problem P ⊕ pi is created that can also be deployed under regular
Kodkod. To avoid unnecessary translations, φP |Rp

is not included in the inte-
grated problem, since it is already known to hold for pi. However, unlike the
abstract formalization from Sect. 2.2, these integrated problems are launched in
parallel rather than explored sequentially. The number i of candidate partial
solutions is unknown a priori, so a (configurable) threshold is imposed on the
number of launched parallel threads. The state of P↓ is also internally preserved,
rather than being constructed at each iteration, benefiting from the performance
gains of incremental SAT solving. When one of the P ⊕ pi procedures finishes
and is SAT, the full solution sik is pushed into a blocking queue that the user
can inspect. UNSAT integrated problem are discarded. Remainder integrated
problems keep being solved and launched in the background until the blocking
queue fills up, providing a buffer of full solutions.

When the user asks for another solution succeeding sik , the system iterates
the P ⊕pi problem (by negating the full solution sik into it), and pushes it to the
execution queue (which is LIFO since it is cheaper to solve iterated problems).
Nonetheless, other integrated problems executing in the background could have
already pushed solutions into the queue, so there is no guarantee that succeeding
full solutions will share the same partial solution. Thus, although the set of
candidate partial solutions explored is identical, iteration order differs from that
of Algorithm 1. The set of solutions returned by each of the integrated problem
is disjoint since partial solutions are unique. Moreover, SAT integrated problems
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are directly and independently iterated (unlike the sequential Algorithm1 that
iterated the overall decomposed problem).

For UNSAT problems, every candidate partial solution must be explored,
which may entail an overwhelming number of integrated problems to solve. As
will be evident in Sect. 4, this may be a bottleneck for the decomposed strat-
egy. To address this issue, a hybrid strategy is proposed where the integrated
problems are paired with a thread solving the amalgamated problem P . In the
worst case, P will finish first and be handled as a regular model finding problem
(terminating the running integrated problems); in the best case a SAT (or every
UNSAT) integrated problem will finish before P , terminating it. This guarantees
no repeated full solutions are returned. This strategy resembles portfolio parallel
SAT solving [8], where identical solvers with different parameters competitively
solve the same problem. Nonetheless, the hybrid approach is expected to have
slightly deteriorated performance due to cache interference.

3.2 Symmetry Breaking

Symmetry breaking greatly reduces the number of generated solutions by deter-
mining equivalences between atoms and avoiding the generation of instances
considered isomorphic. This is particularly relevant when solving partial prob-
lems as it determines the number of integrated problems that will be launched.
Kodkod’s symmetry breaking procedure starts by detecting the symmetries of
a problem based on its bounds [21], and then generates a symmetry breaking
predicate [6] that is added to the problem’s constraint. This section describes
how these procedures were adapted in order to be sound in the decomposed
scenario. Symbolic bounds are assumed to be resolved at this point.

Symmetry detection searches for atom permutations that map valid bind-
ings to valid bindings and invalid to invalid based on the declared bounds. For
instance, a problem with a single relation s : [{},{(A1,B1),(A2,B1)}] induces a
symmetry {A1,A2}, since permuting these two atoms results in identical bounds
(see [21] for technical details). Thus, solutions s = {(A1,B1)} and s = {(A2,B1)}

are considered isomorphic. Clearly, the fixed valuation for Rp relations in inte-
grated problems cannot be considered as these would break potential symme-
tries: for example, assuming Rr= s and Rp= r :[{},{(A1,B1),(A2,B1)}], can-
didate partial solution r = {(A1,B1)}) would break the symmetry between A1

and A2, distinguishing s = {(A1,B1)} from s = {(A2,B1)}. The bounds of P↓
may also cause incongruences if considered independently. For example, if we
have r :[{},{(A1,B1),(A2,B1)}] and s : [{},{(A1,B1),(A1,B2)}] in the amal-
gamated problem no symmetries should be detected, but if Rp= r and P↓ con-
siders only r, symmetry {A1,A2} would be detected, meaning that the solving
procedure could return only solution r = {(A2,B1)} and not r = {(A1,B1)}, the
only candidate that could be extended to a full instance. The issue persists in
integrated problems, as considering only s would result in the symmetry {B1,B2}.
To preserve the soundness of the symmetry detection procedure, the original
bounds Pl and Pu of every relation R must be considered in both the partial
and integrated problems. Relations not relevant to each problem should then
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be ignored when generating the symmetry breaking predicate. Our extension
implements this strategy.

The generation of the symmetry breaking predicate imposes an ordering
on the boolean variables resulting from the translation of the relations R
into SAT, constructs a lexicographical order over them, and generates pred-
icates that force minimal valuations (see [6] for details). The main insight
is that the variable ordering must be preserved between the partial problem
and the integrated problems, otherwise the procedure will not be sound. Con-
sider an example with r : [{},{A1,A2}] and s : [{},{A1,A2}], producing 4
boolean variables, rA1, rA2, sA1 and sA2, denoting whether A1 and A2 belong to
r and s, respectively. Since A1 and A2 are symmetric, a lexicographical order
[rA1, sA1] ≤ [rA2, sA2] will be constructed, allowing 10 different valuations for
the boolean variables. Now, if Rp= s, 3 partial solutions will be generated,
s = {}, s = {A2} and s = {A1,A2}, giving rise to 3 integrated problems with
[rA1,F] ≤ [rA2,F], [rA1,F] ≤ [rA2,T] and [rA1,T] ≤ [rA2,T]. These allow only 9 val-
uations: solution r = {A2} and s = {A1} will be disregarded. If the ordering is pre-
served, problems with [F, rA1] ≤ [F, rA2], [F, rA1] ≤ [T, rA2] and [T, rA1] ≤ [T, rA2]
allow the expected 10 solutions. Our implementation guarantees that the order-
ing is preserved between partial and integrated problems by prioritizing Rp

variables.

4 Empirical Evaluation

To evaluate the performance of the procedure, several Kodkod problems with
scalability problems were collected. Hotel(1) is a SAT version of the Hotel
specification where a counter-example is found, and Hotel(2) is a fixed UNSAT
version. RBT(1) is a structural problem that generates red-black trees (SAT)
with n nodes, while RBT(2) checks whether every red-black tree is balanced
(UNSAT). Hand is a structural problem that models the Halmos handshake puz-
zle for n persons: Hand(1) generates instances of the puzzle (SAT) and Hand(2)
checks whether the answer to the puzzle holds (UNSAT). Regarding dynamic
problems, Dijk models Dijkstra’s mutual exclusion algorithm for n processes
and mutexes: Dijk(1) searches for a valid instance (SAT) while Dijk(2) checks
whether deadlocks may occur (UNSAT). Ring models a leader election algorithm
over ring network topologies: Ring(1) checks a liveness property that fails (SAT),
in Ring(2) the liveness property holds (UNSAT), and Ring(3) checks a safety
property that holds (UNSAT). Finally, Span models a distributed algorithm that
calculates the spanning tree of a graph, with Span(1) and Span(2) searching for
instances with different properties (both SAT). For Ring and Span, n denotes
the number of nodes in the network. Since Kodkod may only perform bounded
model checking, trace length t of 15 was imposed on Dijk, 20 on Hotel and Ring,
and 9 on Span. These problems, available in the code repository [11], range from
very few candidate partial solutions to tens of thousands, as well as from low to
high satisfiability ratios. All were modeled with symbolic bounds, which have a
larger impact in the search space of Dijk and Hotel, and decomposed according
to the criterion from Sect. 2.3.
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4.1 Setup

Tests were run in amalgamated, purely parallel and hybrid mode, with and
without symbolic bounds, for increasing n sizes, with a timeout (TO) of 10000
seconds. Problems solved under a second are not presented since performance
differences would be negligible. The most efficient SAT solvers supported by the
latest version of Kodkod [20] were used to solve the partial and integrated prob-
lems, namely Glucose [2] and MiniSat [7]. The performance tests were run on
commodity hardware, namely in a quad core 4 GHz Intel Core i7 with hyper-
threading, with 8 GB memory and running OS X 10.10.

Decomposed problems were solved with 4 parallel integrated problems (3
in hybrid mode). Our tests show that, as expected, the performance of the
purely parallel approach increases with the number of threads. However, in
hybrid mode, the performance is deteriorated when the amalgamated problem
terminates first, due to cache interference. For instance, in RBT(1) for n = 10,
an integrated problem terminates first, at 3.8 s, 4.0 s and 4.3 s for 2, 4 and 6
threads, respectively. In contrast, in RBT(2) at n = 8 the amalgamated problem
terminates first, at 1.3 s, 1.5 s and 1.8 s for 2, 4 and 6 threads, respectively. The 4
threads provide a reasonable balance between the benefits of the decomposition
while still relying on the amalgamated problem in the worst case scenario.

Since the parallelization of the solving process is at the core of our app-
roach, its performance was also compared with that of state-of-the-art parallel
SAT solvers over amalgamated problems. Both Syrup [2] (Glucose’s parallel ver-
sion) and Plingeling [5] (Lingeling’s parallel version), which ranked at the top
of the most recent SAT race1, were considered in our evaluation and used to
solve the selected tests. Although Plingeling is the only parallel SAT solver cur-
rently distributed with Kodkod, we also implemented support for Syrup, which
was straightforward since its sequential version Glucose is already supported. It
should be noted, however, that, unlike our technique, these parallel SAT solvers
do not yet support incremental executions, and as such cannot be used to effi-
ciently iterate through alternative solutions.

The results of the proposed strategy for the SAT and UNSAT problems using
Glucose are summarized in Tables 1 and 2, respectively. For each problem, the
tables present the number of candidate partial solutions (p#), the satisfiability
ratio (p%, estimated for larger p# values), the performance of the amalgamated
(T0), the performance of the purely parallel procedure with regular (Tp) and
symbolic bounds (Ts) and the performance of the hybrid procedure with symbolic
bounds (Th). The performance gain between the regular amalgamated approach
T0 and the proposed hybrid approach with symbolic bound Th is also presented
(G). The results are further detailed in Fig. 4 for RBT and Hotel.

4.2 Satisfiable Problems

For most problems (Dijk(1), Hand(1), Hotel(1) and RBT(1)) the hybrid app-
roach considerably outperforms the amalgamated execution, even for problems
1 http://baldur.iti.kit.edu/sat-race-2015/.

http://baldur.iti.kit.edu/sat-race-2015/
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with a large number of candidate partial solutions and reduced satisfiability
ratio, like RBT(1). In fact, the speedup may reach orders of magnitude, like
Hand(1) at n = 16, Hotel(1) at n = 11 and RBT(1) at n = 12, with speedups
of 916×, 1086× and 118×, respectively. At larger n values, several amalgamated
problems timeout while the decomposed procedure still takes few seconds to exe-
cute. As Fig. 4a and c show, for SAT problems the performance of amalgamated
executions tends to increase exponentially, unlike the decomposed strategy. For
Span(2) speedups are less significant, going up to 4.6×. Finally, for Ring(1)
and Span(1), results range from slowdowns of 0.5× to speedups of 1.2×. Here,
it can be seen that the purely parallel approach would actually be outperformed
by the amalgamated procedure, but the hybrid mode balances the losses. How-
ever, these problems were solved below 6 s, thus these differences are not very
significant. For the specifications for which symbolic bounds impact the search
space, (Dijk(1) and Hotel(1)) the purely parallel approach shows in average a
4× speedup. For the other specifications, performance differences are marginal,
as expected.

Results with MiniSat (not shown in the table) in general mirror those obtained
with Glucose. For instance, Hand(1) at n = 14, Hotel(1) at n = 9 and RBT(1)
at n = 10, have speedups of 528×, 376× and 14×, respectively. Regarding
the comparison with parallel SAT solvers, Syrup follows the tendency of Glu-
cose, as hinted by Fig. 4a and c, albeit with considerably improved performance.
Thus, problems that were considerably outperformed by the decomposed strat-
egy remain so: Hand(1) at n = 16, Hotel(1) at n = 11 and RBT(1) at n = 12,
have speedups of 650×, 255× and 7×, respectively. For Ring(1), Span(1) and
Span(2), which are solved below 6 s, Syrup actually performs slightly worse than
Glucose. For the considered specifications, Plingeling is usually outperformed by
Syrup, so the same conclusions apply. For this reason Plingeling’s results are
omitted in Fig. 4.

4.3 Unsatisfiable Problems

Although, as expected, the purely parallel execution is often outperformed by the
amalgamated execution, the hybrid execution is able to compensate the losses. In
fact, results show that the amalgamated approach is never more than 2× faster
than the hybrid approach for the considered specifications under considerable
n sizes. Figure 4b and d depict the overall tendency, with the hybrid execution
mostly accompanying the performance of the amalgamated execution.

Specifications where the amalgamated execution outperforms the hybrid
strategy are usually balanced by the results of their SAT counter-part. For
instance, for the UNSAT Dijk(2), the hybrid approach is about 1.5× slower
than the amalgamated approach for every n size; however, for the SAT Dijk(1),
the speedup of the hybrid approach ranges from 20× to 30×. Thus, in average,
the performance of the decomposed strategy outperforms the amalgamated app-
roach. Interestingly, for RBT(2) and Ring(2), the hybrid approach actually out-
performs amalgamated execution: for RBT(2) at n = 11 there is a 6× speedup,
and for Ring(2) at n = 5 a 553× speedup. For larger n values the amalgamated
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Table 1. Summary of the SAT performance tests.

Model n p# (p%) T0 Tp Ts Th G

Dijk(1) 27 28 (0.93) 25.3 4.8 1.1 1.1 23.3

Dijk(1) 28 29 (0.93) 30.6 4.8 1.2 1.2 26.4

Dijk(1) 29 30 (0.93) 43.9 5.4 1.3 1.3 32.7

Dijk(1) 30 31 (0.94) 28.3 5.7 1.4 1.4 20.1

Hand(1) 14 1 (1.00) 81.5 0.6 0.6 0.6 127.3

Hand(1) 15 0 (0.00) 2.1 0.1 0.1 0.1 14.3

Hand(1) 16 1 (1.00) 1496.2 1.6 1.6 1.6 916.3

Hand(1) 17 0 (0.00) 40.6 0.1 0.1 0.2 240.7

Hand(1) 18 1 (1.00) TO 4.7 4.7 5.1 +∞
Hand(1) 19 0 (0.00) 2724.8 0.2 0.2 0.2 13910.2

Hand(1) 20 1 (1.00) TO 874.5 871.3 1047.2 +∞
Hotel(1) 8 12833 (0.60) 64.1 2.9 1.0 0.9 71.6

Hotel(1) 9 211470 (>0.6) 216.0 3.4 1.0 0.9 236.5

Hotel(1) 10 >999999 (>0.6) 224.4 4.0 1.1 0.9 237.2

Hotel(1) 11 >999999 (>0.6) 1106.1 4.5 1.2 1.0 1086.3

Hotel(1) 12 >999999 (>0.6) 184.8 4.9 1.3 1.0 178.2

RBT(1) 9 4862 (0.01) 1.6 0.5 0.5 0.5 2.9

RBT(1) 10 16796 (0.00) 55.8 3.1 3.3 4.0 13.9

RBT(1) 11 58786 (0.00) 240.8 1.6 1.6 2.0 121.6

RBT(1) 12 208012 (0.00) 2350.5 17.0 17.3 19.9 118.2

RBT(1) 13 >999999 (0.00) TO 133.3 133.5 164.6 +∞
Ring(1) 8 16072 (>0.1) 1.9 193.8 196.2 4.2 0.5

Ring(1) 9 125673 (>0.1) 1.5 1.1 1.2 1.2 1.2

Ring(1) 10 >999999 (>0.1) 1.6 2.2 2.1 2.0 0.8

Ring(1) 11 >999999 (>0.1) 2.6 61.8 62.1 5.1 0.5

Ring(1) 12 >999999 (>0.1) 3.4 20.4 19.1 5.4 0.6

Span(1) 14 >999999 (1.00) 1.1 1.7 2.0 1.8 0.6

Span(1) 15 >999999 (1.00) 1.3 2.4 2.4 2.2 0.6

Span(1) 16 >999999 (1.00) 2.0 2.6 2.7 2.7 0.7

Span(2) 14 >999999 (1.00) 15.1 3.5 3.5 3.3 4.6

Span(2) 15 >999999 (1.00) 9.2 4.2 4.0 4.0 2.3

Span(2) 16 >999999 (1.00) 6.4 4.4 4.5 5.0 1.3

execution times out, while the hybrid approach still terminates within reason-
able time. Using symbolic bounds and the decomposed parallel solving strategy
can also lead to speedups in the UNSAT scenarios.
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Likewise the SAT case, MiniSat results are similar to those of Glucose. For
instance, Dijk(2) preserves the 1.5× slowdown in average, albeit at slightly
higher performance times, while Ring(2) at n = 5 the amalgamated execution
times out while the hybrid takes 18 s. Comparing with parallel SAT solvers, the
results are also similar to those obtained for the SAT problems. For instance, for
Ring(2) at n = 5 the speedup persists but reduced to 244×, while the slowdown
at Dijk(2) is in average increased to 2×. This phenomenon is hinted in Fig. 4b
and d, where Syrup has a similar growth curve to that of Glucose but with better
performance. Plingeling continues to be in general outperformed by Syrup.

(a) RBT(1) specification (SAT). (b) RBT(2) specification (UNSAT).

(c) Hotel(1) specification (SAT). (d) Hotel(2) specification (UNSAT).

Fig. 4. Performance times for the RBT and Hotel specifications.

4.4 Threats to Validity

The performance of the decomposed strategy is highly dependent on the order
on which the candidate partial solutions are generated, since they determine the
satisfiability of the integrated problems. However, since the generation of partial
solutions is extremely efficient, and the UNSAT integrated problems are often
quickly discharged, our technique has been able to handle problems with very
large number of partial solutions and very small satisfiability ratio, like RBT(1).

The partition criteria automatically inferred from the symbolic bounds is not
necessarily optimal. However, manual experiments have not found any better
partition for the considered problems. Nonetheless, the soundness of the decom-
posed strategy would be preserved by alternative partition criteria, and since
our tool accepts the set Rp of variables that will determine the partial problem,
the user is free to manually define the decomposition or experiment with other
automated criteria.
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Table 2. Summary of the UNSAT performance tests.

Model n p# (p%) T0 Tp Ts Th G

Dijk(2) 27 28 (0.00) 23.9 79.0 55.2 37.6 0.6

Dijk(2) 28 29 (0.00) 24.7 98.7 67.8 37.1 0.7

Dijk(2) 29 30 (0.00) 31.1 115.4 80.4 47.2 0.7

Dijk(2) 30 31 (0.00) 32.0 132.8 93.7 49.6 0.6

Hand(2) 12 1 (0.00) 5.0 6.6 6.9 5.1 1.2

Hand(2) 13 0 (0.00) 0.2 0.1 0.1 0.1 1.8

Hand(2) 14 1 (0.00) 127.3 724.2 162.7 122.9 1.0

Hand(2) 15 0 (0.00) 2.5 0.1 0.1 0.1 16.8

Hand(2) 16 1 (0.00) 2537.5 TO TO 2912.8 0.9

Hotel(2) 4 75 (0.00) 6.5 12.7 10.8 12.3 0.5

Hotel(2) 5 312 (0.00) 68.2 128.7 109.9 134.6 0.5

Hotel(2) 6 1421 (0.00) 234.7 1973.7 1820.5 460.3 0.5

Hotel(2) 7 7016 (0.00) 772.1 TO TO 1416.5 0.5

Hotel(2) 8 12833 (0.00) 2023.6 TO TO 3432.4 0.6

RBT(2) 9 4862 (0.00) 7.3 6.7 6.8 7.9 0.9

RBT(2) 10 16796 (0.00) 70.1 25.0 25.4 28.8 2.4

RBT(2) 11 58786 (0.00) 721.7 100.3 102.8 118.1 6.1

RBT(2) 12 58786 (0.00) TO 567.8 564.9 721.7 +∞
Ring(2) 4 24 (0.00) 10.8 0.7 0.7 3.1 3.5

Ring(2) 5 89 (0.00) 4486.8 6.6 6.6 8.1 552.8

Ring(2) 6 415 (0.00) TO 238.3 237.1 318.0 +∞
Ring(3) 5 89 (0.00) 1.4 2.5 2.4 2.8 0.5

Ring(3) 6 415 (0.00) 4.9 13.4 13.3 8.9 0.6

Ring(3) 7 2372 (0.00) 14.6 105.8 104.8 24.4 0.6

Ring(3) 8 16072 (0.00) 76.1 1100.5 1098.1 134.7 0.6

Span(1) 5 58 (0.00) 0.2 7.6 1.2 0.3 0.7

Span(1) 6 457 (0.00) 0.6 342.9 7.8 1.0 0.6

Span(1) 7 5777 (0.00) 4.4 663.4 337.2 9.0 0.5

Span(2) 5 58 (0.00) 0.4 3.1 2.9 0.7 0.6

Span(2) 6 457 (0.00) 0.6 30.0 30.1 1.1 0.5

Span(2) 7 5777 (0.00) 1.9 786.9 780.4 4.2 0.5

5 Related Work

The decomposition of Alloy models into smaller problems to improve the per-
formance of the solving process has been previously explored [22], a work from
which we drew inspiration. Likewise our technique, constraints are split in two,
and solutions to the first are fed as partial information to the second. The best
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partition criteria is chosen by testing candidates at small scopes. In contrast,
our partition criteria is automatically calculated from the partial knowledge
provided by the user. The proposed solving process was purely sequential but
already showed performance gains. Our technique takes this one step further by
parallelizing the process and exploiting additional partial knowledge to reduce
the search space. Moreover, the iteration of solutions was not addressed, and
thus symmetry breaking issues were not raised. Evaluation mainly focuses on
the small scope tests for SAT problems, with speedups not reaching an order of
magnitude, rendering direct performance comparisons unfeasible.

The partitioning and parallelization of Alloy analysis procedures has also
been proposed [18]. Here, each parallel problem solves the same constraints but
within a restricted search space, defined by a range of solutions. Ranges are
derived from the structure of the models, disregarding the constraints, result-
ing in unpredictable complexity. A relevant difference is that, unlike our app-
roach, the number of partitions calculated is exactly that of the parallel processes
available. Since the range partitioning does not guarantee problems with similar
complexity, some process may become idle while others are encumbered with
more complex tasks. This issue is tamed by allowing the dynamic partition of
problems. In our approach there are usually much more partitions, with reduced
complexity, than available processes, so processes rarely become idle. In gen-
eral, this renders their approach more suitable for UNSAT problems (where the
complete search space must be searched) and ours for SAT problems. It could
be interesting to see how our hybrid approach would fare replacing the amal-
gamated process by their approach. In a different study [17], the same authors
explore a technique to infer partitions on the SAT propositional variables from
high-level Alloy models with small scopes. Likewise our strategy, both techniques
obtain speedups up to two orders of magnitude before the amalgamated analyses
timeout, but since evaluation is performed in clusters direct comparisons should
be read with care. By allowing the definition of symbolic bounds, our approach
is able to explore additional knowledge about the problem’s domain without
burdening the user, since that information would still have to be integrated in
the constraints otherwise. The proposed hybrid approach, with a thread solving
the worst case scenario amalgamated problem, is also novel.

Techniques have been proposed to extract finer Kodkod partial instances from
high-level specifications, still relying on its constant tuple set bounds. In [15] an
extension to the Alloy language for the specification of instances is proposed, that
can be mapped into Kodkod bounds. Our approach extends the expressiveness
of partial instances at the Kodkod level. Since Alloy natively support binding
expressions in the declaration of the relations, symbolic bounds could easily be
retrieved from regular Alloy specifications without any extension to the language.

Many techniques have been proposed for parallelizing SAT solvers [8,14],
most based on the Conflict-Driven Clause Learning (CDCL) algorithm and
exploiting clause learning and sharing. In general, these fit into two families [8]:
competitive (or portfolio) approaches, where the solvers explore the same search
space, the fastest returning the solution; and cooperative approaches, following
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a divide and conquer strategy, where the search space is split and the solution is
built from the results of the solvers. Focusing on top ranking solvers from the lat-
est SAT competitions, Plingeling [4] falls in the former category, deploying solvers
with different configurations, with minimal clause sharing, while Syrup [3] follows
an hybrid approach, with an initial portfolio phase that switches to cooperative
after a certain threshold. These solvers, however, do not support incremental
solving, and thus cannot be used to effectively iterate solutions. Moreover, our
technique could be adapted to run in a distributed environment, unlike modern
solvers based on clause sharing.

A parallel SAT solving approach that is more closely related to ours is the
one followed by JaCk-SAT [19]. Here, the set of boolean variables is split through
heuristics, and the clauses are divided accordingly. Problems are then deployed
in parallel to solve the two sets of variables independently; solutions are then
checked over the clauses referring to both sets of variables, and are rejected if not.
This process can be repeated recursively. This technique, however, is not able
to compete with the performance of modern parallel SAT solvers. Rather than
acting on the SAT level, our technique exploits higher-level domain knowledge
provided in the problem definition.

6 Conclusions

This paper proposes the usage of symbolic partial knowledge to enhance the
analysis of declarative specifications through their automatic decomposition
into partial solutions and subsequent parallelization of the solving process with
tighter search spaces. This strategy is formalized and an effective parallel imple-
mentation for the Kodkod constraint solver is provided. This extension exploits
symbolic partial knowledge for increased efficiency, being able to automatically
analyze relational model finding problems without any additional burden to the
user, while still preserving the ability to iterate over solutions and the soundness
of the symmetry breaking algorithm.

Our evaluation has shown that, even in commodity hardware, the technique is
able to outperform amalgamated problems for most satisfiable specifications; the
hybrid approach addressed the worst case scenarios, providing balanced results in
comparison with the amalgamated execution. In fact, it rivals with state-of-the-
art parallel SAT solvers. We also show that decomposing the problems based on
the dependency degree of the problem’s variables is a suitable partition criteria.

Although we believe Kodkod to be powerful enough to be used by end users,
we expect the extension presented to be exploited by analyzers for high-level
specifications. In the future we intend to derive symbolic bounds directly from
the binding expressions of Alloy’s declarations, thus benefiting the large com-
munity of Alloy users. The decomposed strategy is already being used in the
back-end of Electrum [12], a temporal extension to Alloy. As in Hotel, in such
scenarios the partition criteria naturally degenerates into a division between the
static and dynamic variables. To support full (non-bounded) model checking for
such problems, we are currently exploring a generalization where Kodkod is used



Exploiting Partial Knowledge for Efficient Model Analysis 361

for the generation of the static partial solutions, while the integrated dynamic
problems are checked in parallel by off-the-shelf model checkers, such as NuSMV.
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Abstract. Input validation is the first line of defense against malformed
or malicious inputs. It is therefore critical that the validator (which is
often part of the parser) is free of bugs.

To build dependable input validators, we propose using parser genera-
tors for context-free languages. In the context of network protocols, vari-
ous works have pointed at context-free languages as falling short to spec-
ify precisely or concisely common idioms found in protocols. We review
those assessments and perform a rigorous, language-theoretic analysis
of several common protocol idioms. We then demonstrate the practi-
cal value of our findings by developing a modular, robust, and efficient
input validator for HTTP relying on context-free grammars and regular
expressions.

1 Introduction

Input validation, often carried out during parsing, is the first line of defense
against malformed or maliciously crafted inputs. As the following reports demon-
strate, bugs make parsers vulnerable, hence prone to attacks: a bug in the URL
parser enabled attackers to recover user credentials from a widely used password
manager [14], a bug in the RTF parser led to a vulnerability in Word 2010 [19],
and a lack of input validation in the Bash shell has been used for privilege escala-
tion by a remote attacker [13] just to cite a few. To stop the flow of such reports
improved approaches for building input validators are needed.

To build dependable input validators, an approach is to rely on mature pars-
ing technologies. As a candidate, consider parser generators for context-free lan-
guages (hereafter CFLs). Their main qualities are:

1. The code for parsing is synthesized automatically from a grammar specifica-
tion, shifting the risk of programming errors away from the architect of the
validator to the designer of the parser generator;

2. CFL is the most expressive class of languages supported by trustworthy imple-
mentation of parser generators. Here by trustworthy we mean an implemen-
tation that either stood the test of time like Flex, Bison, or ANTLR, or that
has been formally verified like the certified implementations of Valiant’s [3]
and CYK [11] algorithms.

c© Springer International Publishing AG 2017
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Relying on established CFL technology is an asset compared to existing solutions
which are either programmed from scratch [8] or generated from ad hoc parser
generators [2,21].

However, even though CFL is the most expressive language class with trust-
worthy parser generators, previous works suggest CFLs are not enough for net-
work messages. Specifically, they claim the impossibility or difficulty to specify
precisely the various idioms found in network messages using CFLs. For example,
some authors argue that CFL are insufficiently expressive because “data fields
that are preceded by their actual length (which is common in several network
protocols) cannot be expressed in a context-free grammar” [7]. Yet other authors
suggest that going beyond CFLs is merely required for conciseness of expression,
because “it is possible to rewrite these grammars to [...] be context-free, but the
resulting specification is much more awkward” [4]. Surprisingly, the arguments
made are not backed up by any formalization or proof.

In this paper we formally analyze which idioms can and which cannot be
(concisely) specified using CFLs, and we turn the results into practice by building
an input validator for HTTP messages entirely based on CFL technology.

As the main contributions of our analysis we find out that:

– Length fields of bounded size are finite and hence form a regular language.
However, while they can be concisely represented in terms of a context-free
grammar, every finite automaton that recognizes them grows exponentially
with the bound. In contrast, length fields of unbounded size cannot even be
expressed as a finite intersection of CFLs.

– Equality tests between words of bounded size again form a regular language
but, as opposed to length fields, they cannot be compactly represented in
terms of a context-free grammar. They do, however, allow for a concise rep-
resentation in terms of a finite intersection of context-free grammars. Specifi-
cally, we show that both the grammar and the number of membership checks
grows only linearly with the size bound, which has interesting practical impli-
cations, see below. As in the case of length fields, equality checks between
words of unbounded size cannot be expressed as a finite intersection of CFLs.

We consider finite intersections of CFLs because they are (a) strictly more
expressive than CFLs, and (b) checking membership in the intersection of CFLs
is equivalent to checking membership in each individual CFL.

These results lead to a principled and modular approach to input validation:
several CFL parsers are run on the input and their boolean results (whether the
input belongs or not to the CFL) are combined following a predefined logic to
decide whether or not the input message conforms to the standard (that specifies
what valid messages are).

We demonstrate that this approach is practical by implementing a proof
of concept input validator for a large subset of the HTTP protocol, covering a
significant number of the idioms found in network messages. Our input validator,
called HTTPValidator [24] draws inspiration from HTTPolice [8], a state of the
art input validator for HTTP messages built from scratch by the open source
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community. HTTPValidator is close to achieve feature parity (in terms of checks)
with HTTPolice and offers competitive performance.

Summary of Contributions. In summary, our contributions are both foundational
and applied. On the foundational side we perform a language-theoretic analysis
of important protocol idioms, making a step towards more rigor in the field. On
the applied side we show how to implement an input validator for HTTP using
off-the-shelf parser generators.

Paper Structure. Section 2 introduces basic language-theoretic and input valida-
tion concepts, Sect. 3 discusses the case of length fields, including the chunked
messages, whereas Sect. 4 considers the case of comparisons. We show the prac-
ticality of our approach in Sect. 5, before concluding with related work (Sect. 6),
conclusions and future work (Sect. 7). Due to the lack of space, some proofs are
deferred to a long version [25].

2 Preliminaries

Language Theory. We begin by introducing the language-theoretic context
needed for our development. An alphabet Σ is a nonempty finite set of sym-
bols. A word w is a finite sequence of symbols of Σ where the empty sequence
is denoted ε. A language is a set of words and the set of all words over Σ is
denoted Σ∗. We denote by |w| the length of w. Further define (w)i as the i-th
symbol of w if 1 ≤ i ≤ |w| and ε otherwise. Given a nonempty subset X of Σ
and i ∈ N define Xi as {w ∈ X∗ | |w| = i}.

We assume the reader is familiar with common operations on languages such
as concatenation and boolean combinations. Likewise, we count on the reader’s
familiarity with regular languages and finite-state automata. Yet we next give a
description of context-free grammars, which are the formal basis of our work.

A context-free grammar (or grammar for short) is a tuple G = (V,Σ, S,R)
where V is a finite set of variables (or non-terminals) including the start variable
S; Σ is an alphabet (or set of terminals), R ⊆ V × (Σ ∪ V )∗ is a finite set of
rules. We often write X → w for a rule (X,w) ∈ R. We define a step as the
binary relation ⇒ on (V ∪ Σ)∗ given by u ⇒ v if there exists a rule X → w of
G such that u = α X β and v = α w β for some α, β ∈ (V ∪ Σ)∗. Define u ⇒∗ v
if there exists a n ≥ 0 steps sequence u0 ⇒ u1 ⇒ . . . ⇒ un such that u0 = u
and un = v. A step sequence u ⇒∗ w is called a derivation whenever u = S and
w ∈ Σ∗. Define L(G) = {w ∈ Σ∗ | S ⇒∗ w} and call it the language generated
by G. A language L is said to be context-free, or CFL, if there exists a grammar
G such that L = L(G). The size of a grammar is the sum of the sizes of its
production rules R, that is, it is given by

∑
(X,w)∈R 1+|w|.

Input Validation. In this paper, validating an input means checking whether it
belongs to a language. In particular, no data structure is filled and no information
is extracted from the input other than its membership status. Thus, validating
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an input w for a language L means deciding whether w is a member of L which
is also known as the membership problem. To specify L, we use context-free
grammars or regular expressions.

3 Formal Analysis of Length Fields

Length fields, whose role is to specify the length of subsequent fields, are com-
monly found in network protocols such as HTTP [9], SIP [23], DNS [20] and
UDP [22]. As an example, consider the following HTTP POST message:

POST /1/notification/list HTTP/1.1\r\n
Content-Length: 47\r\n\r\n
{"header":{},"query":{"count":100},"answer":{}}

The length field begins after the keyword Content-Length and terminates before
the carriage return/newline \r\n. Its content, i.e. 47, describes the length of the
message body, which is the string coming after the double \r\n.

In this section, we characterize length fields from the point of view of formal
language theory. We begin with a formalization aiming to capture their essence,
and then characterize the class of languages specifying them in the bounded and
unbounded cases. We consider both cases because some protocols, such as DNS
and UDP, require length fields to have fixed size, while others, such as HTTP
and SIP, have no such restriction. We conclude by leveraging these results to
analyze chunked transfer encoding.

3.1 Modeling Length Fields

To model length fields, we will work with formal languages over an alphabet Σ.
For the example of HTTP, Σ would be the ASCII character set.

Fixed Size. To describe length fields of finite size n > 0 we define the language
Llen(n) over Σ = B ∪ W as follows:

Llen(n) def= {x w | x ∈ Bn, w ∈ W ∗, |w| =
∑n−1

i=0 (x)i+1 · bi}

where B = {0, . . . , b − 1} for an integer b > 1. Intuitively, Llen(n) represents
the same number twice, using two different encodings: first b-ary as x and then
unary as w, where the relationship between both encodings is given by |w| =
∑n−1

i=0 (x)i+1 · bi. For example, let n = 3, B = {0, 1} and W = {a, b, c} the word
110abc consists of the binary representation of 3 = (1 · 20) + (1 · 21) + (0 · 22)
followed by a word (abc) of length 3 and, therefore, 110abc ∈ Llen(3). We choose
this unconventional “least significant digit first” to keep notation simple. The
results of this section stay valid for the “most significant digit first” convention.
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Unbounded Size. For describing length fields of unbounded size, observe that
any overlap between the alphabets W and B for describing the body of the
message and its length, respectively, introduces ambiguity as to where the length
field ends. A common approach to remove such ambiguities is to use a delimiter,
which is a special symbol � not occurring in x whose aim is to separate explicitly
the length field from the body of the message. We extend the definition of Llen(n)
to account for such delimiters:

L�
len(n) def= {x � w | x ∈ Bn, w ∈ W ∗, |w| =

∑n−1
i=0 (x)i+1 · bi}.

We are now in position to define a language for describing length fields of
arbitrary and unbounded size:

L�
len

def=
⋃

i>0 L�
len(i).

Results shown in this section remain valid when there is no overlap between
alphabets W and B. In such case the delimiter is no longer needed and removing
it from the results in Sect. 3.2 has no effect on them.

3.2 Unbounded Length Fields

The following theorem shows that length fields of unbounded size cannot be
specified using intersection of finitely many CFLs. This means that we need to
impose restrictions, such as size bounds, in order to specify length fields using
CFLs. We will study fixed size length fields in Sect. 3.3.

Theorem 1. L�
len is not a finite intersection of CFLs.

To prove this result, we begin by defining the following subset of L�
len :

L∠
def= L�

len ∩ 1∗�∗a∗.

Lemma 2. L∠ is not a finite intersection of CFLs. Moreover, no infinite subset
of L∠ is a finite intersection of CFLs.

The proof argument relies on semilinear sets which we recall next: a subset
of Nk, with k > 0, is called semilinear, if it can be specified as a finite union of
linear sets. A set S ⊆ N

k is called linear if there exists b ∈ N
k and a finite subset

{p1, . . . ,pm} of Nk such that S = {b + λ1 p1 + . . . + λm pm | λ1, . . . , λm ∈ N}.
Let w̄ = 〈w1, . . . , wk〉 be a tuple of k > 0 words, define a mapping fw̄ : Nk →

w∗
1 . . . w∗

k by fw̄(i1, . . . , ik) = wi1
1 . . . wik

k , that is, the output of fw̄ is a word in
which the i-th component of w̄ is repeated a number of times that corresponds
to the i-th input to fw̄. We define the preimage of fw̄ and liftings of fw̄ from
elements to subsets of Nk in the natural way.

The following result by Latteux [15] establishes a fundamental correspon-
dence between languages given by finite intersection of CFLs and semilinear
sets.
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Proposition 3 ([15, Proposition 7]). Let w̄ = 〈w1, . . . , wk〉, k > 0, and L ⊆
w∗

1 . . . w∗
k: f−1

w̄ (L) is semilinear if and only if L is a finite intersection of CFLs.

Now we meet the requirements to prove Lemma 2.

Proof (Sketch). The proof of Lemma 2 relies on the observation that

L∠ = {1n � aval | val =
∑n−1

i=0 bi}.

Let w̄ = 〈1, �, a〉, since
∑n−1

i=0 bi = bn−1
b−1 for all b > 1, we obtain:

f−1
w̄ (L∠) =

{(
i, 1, bi−1

b−1

) | i ∈ N

}
. (1)

Next, we show this set is not semilinear using the facts that (a) the third
component grows exponentially in i, and f−1

w̄ (L∠) is an infinite set. The definition
of semilinear set then shows that by taking two elements in (b) we can obtain
a third one. We then show that those three elements violate (a) unless they all
coincide. The same reasoning remains valid when considering an infinite subset
of L∠. �

Once Lemma 2 is proved, the proof of Theorem1 easily follows.

Proof (of Theorem 1). Assume L�
len is a finite intersection of CFLs. Since 1∗�∗a∗

is a CFL, L∠ is also a finite intersection of CFLs contradicting Lemma 2. �
Our definitions of Llen(n) and L�

len do not put any constraints on the struc-
ture of the word w that follows the length field and the delimiter (if any). In
practice, however, the word w may need to satisfy constraints beyond those on
its length, such as containment in a specific language.

Theorem 4. The language L�
len ∩ {x � w | x ∈ B∗, w ∈ LC} is a finite intersec-

tion of CFLs for no infinite CFL LC ⊆ W ∗.

The proof of this Theorem follows the same argument used to prove Theo-
rem 1. Hence, we begin by defining a subset of L�

len ∩ {x � w | x ∈ B∗, w ∈ LC}
for which Proposition 3 holds.

Let S be the start symbol of the grammar generating language LC . Since
language LC is infinite the following must hold: for some non terminal A and
ai ∈ W ∗, we have S ⇒∗ a1Aa5; A ⇒∗ a2Aa4; A ⇒∗ a3 with a2 �= ε or a4 �= ε.

It follows that {a1a
i
2a3a

i
4a5 | i ≥ 0} ⊆ LC and, thus,

L�
def= L�

len ∩ {x � w | x ∈ B∗, w ∈ LC} ∩ 1∗�∗a∗
1a

∗
2a

∗
3a

∗
4a

∗
5

is an infinite language contained in 1∗�∗a∗
1a

∗
2a

∗
3a

∗
4a

∗
5.

Lemma 5. Language L� is not a finite intersection of CFLs. Moreover, no
infinite subset of L� is a finite intersection of CFLs.

This Lemma is similar to Lemma 2 and so is the proof. Finally, we proceed to
prove Theorem 4 by contradiction.

Proof (of Theorem 4). Assume that L�
len ∩ {x � w | x ∈ B∗, w ∈ LC} is a finite

intersection of CFLs. Since 1∗�∗a∗
1a

∗
2a

∗
3a

∗
4a

∗
5 is context-free, L� is also a finite

intersection of CFLs, which contradicts Lemma 5. �



A Language-Theoretic View on Network Protocols 369

3.3 Fixed Size Length Fields

In this section we sidestep the negative results of Sect. 3.2 by assuming an upper
bound on the length field which indeed occurs in some network protocols. Such
is the case of the IP, UDP and DNS protocols, whose specifications [1,20,22]
define 16-bit fields containing the length of the data in terms of bytes. In some
cases, assuming an upper bound on the length field, even if it is not defined by
the standard, yields no loss of generality for all practical purposes. It is the case
for HTTP where the majority of implementations do assume a bound on the
size of length fields (e.g. major web browsers all do).

We start with the family of languages Llen(n) where the length field is n
symbols long. It is easy to see that each language of this family is finite, hence
regular. Now we turn to the size of specifications for Llen(n). In terms of finite
state automata, all automata specifying Llen(n) grow exponentially in n. Let b >
1 be the base in which the length is encoded, then there are bn possible encodings
for the length. By the pigeonhole principle, having less than bn reachable states
after reading the first n symbols implies that two distinct length encodings end
up in the same state, making them indistinguishable for the automaton. Hence,
it cannot decide Llen(n). However, when Llen(n) is specified using context-free
grammars, we show that it admits a more compact description.

Theorem 6. Let Σ be fixed alphabet and n > 0, there exists a context-free
grammar Glen(n) of size O(n) such that L(Glen(n)) = Llen(n).

Proof. For simplicity of presentation we assume that length fields are encoded
in binary, i.e. b = 2 in the definition of Llen(n). The generalization to any b > 2
is tedious but straightforward.

The grammar Glen(n) is defined by the alphabet Σ, variables {S} ∪ {Xi |
0 ≤ i ≤ n} ∪ {Fi | 0 ≤ i ≤ n − 1} and the following rules:

{S → X0} {Xn → ε}
{Xi → 0 Xi+1 | 0 ≤ i < n} {Xi → 1 Xi+1 Fi | 0 ≤ i < n}
{Fj → Fj−1 Fj−1 | 1 ≤ j ≤ n − 1} {F0 → c | c ∈ W}

It follows by construction that L(Glen(n)) = Llen(n). A closer look reveals
that, since the alphabet is fixed and therefore so is |Σ| ≥ |W |, the size of the
rules of each set is bounded and independent from n while there are 3n+2+|W |
rules so the size of Glen(n) is O(n). �

Next, we show that 110abc ∈ Llen(3) is also contained in L(Glen(3)).

S ⇒ X0 ⇒ 1X1F0 ⇒ 11X2F1F0 ⇒ 110X3F1F0

⇒ 110F1F0 ⇒ 110F0F0F0 ⇒∗ 110abc

3.4 Chunked Messages

Closely related to length fields are chunked messages, a feature found in the
HTTP protocol. According to the standard, the header Transfer-Encoding:
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chunked signals that the body of the message is divided into chunks, each of
which has its size defined by a variable size length field as shown below:

HTTP/1.1 200 OK\r\n

Transfer-Encoding: chunked\r\n\r\n

12\r\nThe file is \r\n

16\r\n3,400 bytes long\r\n

0\r\n\r\n

Relying on previous definitions we model chunked messages by defining
the languages L�

chunk
def=

(
L�
len {�})+ and L�

chunk (n) def=
(
Llen(n) {�})+ for

unbounded and fixed (given by n) length field size, respectively. We further
assume � /∈ W and Σ = B ∪ W ∪ {�} to recognize the end of each chunk and
thus avoid ambiguity.

Next, we turn to the claims found in the literature [7] about the impossibility
of specifying chunked messages using CFLs.

Theorem 7. L�
chunk is not a finite intersection of CFLs.

Theorem 8. Let Σ be a fixed alphabet and n > 0. The language L�
chunk (n) is

regular and can be specified by a context-free grammar of size O(n).

4 Formal Analysis of (In)equalities

Input validation sometimes requires comparing different parts of a message, e.g.,
to check that two subwords are identical or that the first one represents a number
or a date that is greater than the second one. For instance, an HTTP GET
message is valid only if the field last-byte-pos is greater than first-byte-pos.

4.1 Equality Check

Consider the case of HTTP when a client is asking for a transition to some
other protocol. As the standard of mandates, equality should hold between the
Upgrade fields of the request and its response.

======== REQUEST ======== ======== RESPONSE ========

GET /example HTTP/1.1\r\n HTTP/1.1 101 Switching Protocols\r\n

Upgrade: h2c\r\n Connection: Upgrade\r\n

Upgrade: h2c\r\n

Modeling Equality Check. We begin our study of comparisons with the case
of two contiguous subwords compared for equality. To this end consider the
following language over alphabet Σ given by

L�
=

def= {x � y | x = y}.

This language consists of twice the same word with ‘�’ in between. Again, we
assume � occurs in x for no x.

When the size of the words x and y is fixed, the delimiter is no longer needed.
Thus, we define L=(n)

L=(n) def= {x y | x, y ∈ Σn ∧ x = y}.
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Unbounded Size. We now consider the case where the length of the subwords
to compare is unbounded. The example at the top of the section requires, when
validating a request-response pair of HTTP messages, to check equality across
Upgrade fields.

This situation is described by the language L�
=. Next, we recall results by

Liu and Weiner [17] and Brough [5] enabling us to show that L�
= is not a finite

intersection of context-free languages.

Proposition 9 ([5, Proposition 2.1]). For every k > 0, the set of languages that
are an intersection of k CFLs is closed under (i) inverse GSM mappings, and
(ii) union with context-free languages.

Theorem 10 ([17, Theorem 8]). Let a1, . . . ak be k > 0 distinct symbols. Then
L(k)

def= {ai1
1 ai2

2 . . . aik
k ai1

1 ai2
2 . . . aik

k | ij ≥ 0 for all j} is an intersection of �
context-free languages for no � < k.

We are now in position to prove our impossibility result about L�
=.

Theorem 11. L�
= is not a finite intersection of CFLs.

Proof (Sketch.). For the proof sketch we deliberately ignore the delimiter.
Assume L= (the delimiterless version of L�

=) is an intersection of m CFLs.
Now observe that L(k) = L= ∩ a∗

1a
∗
2 . . . a∗

ka∗
1a

∗
2 . . . a∗

k This implies L(k) is an
intersection of m + 1 context-free languages, which contradicts Theorem 10 for
k > m + 1. �

Fixed Size. Because of the negative result of Theorem 11 we turn back again to
the restriction assuming an upper bound on the length of the subwords to com-
pare. We argue next that, in practice, such a restriction is reasonable.

Consider the following HTTP message.

HTTP/1.1 200 OK\r\n

Date: Sat, 25 Aug 2012 23:34:45 GMT\r\n

Warning: 112 -"Net down" "Sat, 25 Aug 2012 23:34:45 GMT"\r\n

The RFC mandates that the date in the Warning header be equal to Date. Since
date formats have bounded length we immediately have an upper bound of the
length of the subwords to compare.

Another example is given by the MIME protocol which allows to split mes-
sages into multiple parts provided they are flanked by a user-defined delimiter
string. Let us consider an example:

MIME-Version: 1.0\r\n

Content-type: multipart/mixed; boundary="Mydelimiter"\r\n\r\n

PREAMBLE to be ignored\r\n--Mydelimiter\r\n

Plain ASCII text.\r\n--Mydelimiter\r\n

Plain ASCII text.\r\n--Mydelimiter--\r\n

EPILOGUE to be ignored.\r\n
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Observe that the delimiter is first declared, boundary="Mydelimiter", and then
Mydelimiter is used three times, the first two times as --Mydelimiter the last
time as --Mydelimiter--.

Equality checks can ensure each part is flanked with the same delimiter. In
the case of MIME, the standard [12] imposes a maximum length of 69 symbols
for the delimiter giving us an upper bound.

Equality checks for a fixed number n of symbols are specified by L=(n). For
every n, the language L=(n) is finite, hence regular. Nonetheless Theorem 12,
due to Filmus [10], states that this language has no “compact” specification as
a grammar.1 Still it can be represented “compactly” as a finite intersection of
CFLs, as shown by Theorem 13. In this section we will study the size of different
grammars assuming the alphabet Σ is fixed and, thus, |Σ| is a constant.

Theorem 12 ([10, Theorem 7]). Let |Σ| > 2, every context-free grammar for
L=(n) has size

Ω

(
|Σ|n/4

√
2n

)

.

Recall that f(n) = Ω(g(n)) means that f is bounded from below2 by g for
sufficiently large n, which implies that context-free grammars for L=(n) exhibit
exponential growth in n.

Our next theorem based on the observation that x = y iff (x)i = (y)i for all
i allows to capture L=(n) as a intersection of n CFLs.

Theorem 13. Let the alphabet Σ be fixed, the language L=(n) is an intersection
of n CFLs, each of which is specified by a grammar of size O(n).

Proof. Given i ∈ {1, . . . , n}, define the language L=i
(n) over the alphabet Σ

given by
L=i

(n) def= {x y | x, y ∈ Σn, (x)i = (y)i}.

Clearly, for every word u we have u ∈ L=(n) iff u ∈ L=i
(n) for all i ∈

{1, . . . , n}. Next, define G=i
as the grammar for L=i

(n) with variables S and T ,
alphabet Σ and the rules:{S → T i−1 c Tn−1 c Tn−i | c ∈ Σ}, {T → c | c ∈ Σ}.
It is routine to check that the size of the grammar is O(n). �

Above, we studied specification of equality checks for two contiguous sub-
words. In practice, however, comparisons are often more general. In the previous
HTTP example, the dates to compare for equality are not necessarily contiguous.
Also, to specify the split messages of MIME using equality checks we need to
generalize to the cases where equality covers more than two subwords (each of the
multiple parts is flanked with the same delimiter) and those are not necessarily
contiguous (some parts are non empty).

We show this generalization of equality checks can still be specified concisely
by a finite intersection of CFLs.
1 This implies it has no “compact” specification by a finite state automaton either.
2 f(n) = Ω(g(n)) iff ∃ positive c, n0 s.t. ∀n > n0, f(n) ≥ c · g(n).
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4.2 Inequality Checks

Thus far, we have focused on languages whose words consist of two equal sub-
words. However, comparisons sometimes require that the first subword represents
a lower number than the second or an earlier date. The following request is ask-
ing for bytes of BigBuckBunny.mp4 between offsets 2833 and 7026. To be valid
the requested range should describe a non empty set.

GET /BigBuckBunny.mp4\r\n

Range: bytes=2833-7026\r\n

Modeling Inequality Checks. Let � define a total order on Σ. We extend �
to Σ∗ and denote it �∗ as follows. We first define �∗ when its arguments have
equal length, then we proceed with the general case.

Given x, y ∈ S∗ of equal length, let p be the least position such that (x)p �=
(y)p. Then (x)p � (y)p iff x �∗ y. Otherwise (no such position p exists) we also
have x �∗ y since the two words are equal.

Let us now proceed to the case where x and y have different length and
assume x is the shortest of the two words (the other case is treated similarly).
Then we have x �∗ y iff x′ �∗ y where x′ = min�(Σ)|y|−|x|x, that is x′ is the
result of padding x with the minimal element of Σ so that the resulting word
and y have equal length. For instance, 5 �∗ 21 because 05 �∗ 21 where Σ is the
set of all digits and � is defined as expected. It is an easy exercise to check that
�∗ is a total order (hint: � is a total order).

Unbounded Size. Let us turn back to the Range field example at the top of
the section. To specify the language of valid ranges, since the two subwords are
unbounded, a delimiter is needed to indicate the end of the first word. In our
example the delimiter is the dash symbol.

Next we define L�
�, the language deciding unbounded size inequality check

using � as a delimiter, as follows:

L�
�

def= {x � y | x, y ∈ Σ∗, x �∗ y}.

Theorem 14. The language L�
� is not a finite intersection of CFLs.

Proof. We begin by defining the order � over Σ as �−1 and define �∗ by
replacing � with � in the definition of �∗. Clearly a � b iff b � a holds,
hence there exists a permutation γ on Σ. Indeed, we can write Σ as the set
{a1, . . . , an} such that ai � aj iff i ≤ j. Now define γ : ai �→ an+1−i. It follows
that a � b iff γ(a) � γ(b). The previous equivalence naturally lifts to words (�∗

and �∗), e.g. v �∗ w iff γ(v) �∗ γ(w).
Next define

L�
�

def= {x � y | x, y ∈ Σ∗, x �∗ y}.



374 P. Ganty et al.

Notice that the following equality holds: L�
� = {γ(x) � γ(y) | x � y ∈ L�

�}. Stated
equivalently, γ(L�

�) = L�
� where γ is lifted to be a language homomorphism and

also L�
� = γ−1(L�

�) since γ is a bijection.
Following Proposition 9 (i) finite intersections of CFLs are closed under

inverse GSM mapping. This implies that they are also closed under inverse homo-
morphism such as γ−1.

Assume L�
� is a finite intersection of CFLs. It follows from above that so is

L�
�. Finally, consider the equivalence v = w iff v �∗ w and v �∗ w. Lifted to the

languages the previous equivalence becomes: L�
= = L�

� ∩ L�
�.

Since both L�
� and L�

� are finite intersection of CFLs we conclude that so is
L�
= which contradicts Theorem 11. �

Fixed Size. With the same motives as for equality checks we turn to the case
in which the size of the words to be compared is fixed, say n. As opposed to
the unbounded case, we can discard the delimiter because n – the last position
of the first word – is known. The message below illustrates an inequality check
between fixed size subwords.

HTTP/1.1 304 Not Modified\r\n

Date: Tue, 29 Mar 2016 09:05:57 GMT\r\n

Last-Modified: Wed, 24 Feb 2016 15:23:38 GMT\r\n

To ensure that this response is valid the Last-Modified field must contain
a date earlier than the Date field.

Let n > 0, we define L�(n) to be:

L�(n) def= {x y | x, y ∈ Σn, x �∗ y}.

Theorem 15. Let the alphabet Σ be fixed and n > 0, L�(n) is a boolean com-
bination of 2n languages each one specified by a grammar of size O(n).

Proof. Let G=i
be the grammars used in the proof of Theorem13 and let G�i

a grammar for the language L�i
(n) def= {x y | x, y ∈ Σn, (x)i � (y)i}. Then, by

definition of the order � over Σn, we write

w ∈ L�(n) ⇔ w ∈ L=1..n(n)
n∨

i=1

(
w ∈ L=1..i−1(n) ∧ w /∈ L=i

(n) ∧ w ∈ L�i
(n)

)

where w ∈ L=1..i(n) is equivalent to w ∈ ⋂i
j=1 L=j

(n).
The size of each grammar G=i

was shown to be O(n). On the other hand,
each grammar G�i

is defined by the alphabet Σ, variables S, T and {Ta | a ∈ Σ}
and the rules:

{S → T i−1 a Tn−1 Ta Tn−i | a ∈ Σ} {Ta → c | c ∈ Σ, a � c} {T → c | c ∈ Σ}.

It is routine to check that the size of the grammar is O(n). �
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The language L�(n) can be extended to describe the situation in which x and
y represent dates and � means “earlier than”. To this end, whenever the month
is given by its name instead of the number thereof we should read it as a single
symbol, considering each one as an element of the alphabet. Otherwise, a com-
parison between numbers as described in proof of Theorem15 will work. Once
we know how to compare the years, months, and days of two dates, combining
them to construct the language comparing two dates is straightforward.

5 Practical Evaluation

The results given in Sects. 3 and 4 characterize the extent to which (intersec-
tions of) CFL can be used to specify common idioms of network protocols. In
this section, we demonstrate that the positive theoretical results can be turned
into practical input validators for real-world network protocols. We begin by
discussing practical encoding issues, before we present an input validator for
HTTP.

5.1 Encoding Real-World Protocols as CFG

Encoding Effort. The manual effort of translating protocol specification into
grammars is facilitated by the RFC format: Protocol RFCs usually consist of
a grammar accompanied by a list of additional constraints written in English.
This grammar is typically given in ABNF format [6] which easily translates to a
context-free grammar. The additional constraints translate to regular expressions
or CFGs, along the lines described in this paper. Then the set of valid messages
of the protocol is described by a boolean combination of small CFLs.

Encoding Size. The grammars required to perform the validation against the
idioms discussed in this paper remain small even for real-world protocols:

Length Fields. The CFG for Llen(n) consists of 3n+2 rules, i.e. it grows linearly
in the size of the length field. This implies that it grows only logarithmically
with the size of the message body, which makes the CFG encoding practical for
real-world scenarios.

Comparisons. To compare two strings of length n we need 2n grammars each
with no more than 3|Σ| rules where |Σ| is the size of the alphabet. In practice,
n is small because it is the length of the encoding of a position within a file, a
timestamp, a hash value,. . .

5.2 An Input Validator for HTTP

Next we report on HTTPValidator [24], a proof of concept implementation to
validate HTTP messages based on mere CFGs and regular expressions, without
using attributes nor semantic actions.
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Why HTTP? First, HTTP contains almost all of the features that have been
used in the literature [4,21] to dispute the suitability of CFLs for parsing network
protocols. Second, HTTP is a widely used and complex protocol, making it
an ideal testbed for our approach. Finally, HTTPolice [8] is a lint for HTTP
messages which checks them for conformance to standards and best practices
and provides a reference for comparison.

HTTP as CFG. The ABNF described by the standard [9] is translated into a
single CFG while constraints such as “A client MUST send a Host header field in
all HTTP/1.1 request messages.” and “A client MUST NOT send the chunked
transfer coding name in TE” are translated into regular expressions and CFGs.

Implementation. Regular expressions and grammars are compiled with Flex and
Bison respectively. We avoid conflicts altogether by relying on the %glr-parser
declaration, which forces Bison to produce a generalized LR parser3 that copes
with unresolved conflicts without altering the specified language. Finally, a script
runs all these validators sequentially and combines their boolean outputs to
conclude the validation. Table 1 describes the sizes of each separate element of
our validator. Further details can be found in the repository [24].

Table 1. Sizes of the formal languages required to validate an HTTP message

Feature Size

HTTP ABNF as a CFG 1013 grammar rules

Decimal length field of size up to 80 871 grammar rules

Comparison of version numbers 3 grammars with 13 grammar rules each

Constraints (91 different ones) 260 regular expressions

Evaluation. We evaluate HTTPValidator on messages obtained from real-world
traffic (using Wireshark) and on messages provided with HTTPolice as test cases.
In total we thus obtain 239 test cases of which HTTPolice classifies 116 as valid
and 123 as invalid HTTP. We run HTTPValidator on these test cases obtaining
the same classification as HTTPolice but for two false positives. These errors
are due to well-formedness checks on message bodies in JSON and XML format,
which we currently do not consider in HTTPValidator but HTTPolice does.

The time required for evaluating all test cases4 is 16.1 s for HTTPValidator
and 60 s for HTTPolice, i.e. we achieve a 4-fold speedup. Note that this com-
parison is slightly biased towards HTTPValidator because HTTPolice relies on
interpreted Python code whereas the parsers in HTTValidator are compiled to
native code. Moreover, we store each of the test cases in a single file, forgo-
ing HTTPolice’s ability to process several HTTP messages in a single file. On
3 https://www.gnu.org/software/bison/manual/html node/GLR-Parsers.html.
4 We run our experiments on an Intel Core i5-5200U CPU 2.20 GHz with 8GB RAM.

https://www.gnu.org/software/bison/manual/html_node/GLR-Parsers.html
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the other hand, we have put ease of implementation before performance so no
parallelization has been implemented so far.

Overall, the experimental evaluation shows that, on our testbed, HTTPVal-
idator achieves coverage and performance that is competitive with the state-of-
the-art in the field, thereby demonstrating the practicality of our approach.

6 Related Work

We discussed related work on language theory and input validation in the paper
body. Here we focus on discussing recent efforts for building parser generators
for network protocols.

In recent years, a number of parser generators for network protocols have
emerged. They are often parts of larger projects, but can be used in a stand-
alone fashion. Important representatives are BinPac [21], which is part of the
Bro Network Security Monitor5, UltraPac [16], which is part of the NetShield
Monitor, Gapa [4], FlowSifter [18], and Nail [2]. The difference to our approach
is that they are all are built from scratch, whereas we rely on established CFG
parsing technology. Moreover, they rely on user-provided code for parsing idioms
such as length fields, whereas we specify everything in terms of (intersections
of) CFG. However, we emphasize that the focus of our approach lies on the
task of input validation, whereas those approaches deal with parsing, i.e. they
additionally fill a data structure.

Among the previous parser generators, Gapa and Nail stand out in terms
of their safety features. Gapa achieves a degree of safety by generating parsers
in a memory-safe language. Note that this does not prevent runtime error, e.g.,
dividing by zero still remains possible. Nail also aims at safety by providing some
automated support for filling user-defined data structure therefore reducing the
risk of errors introduced by user-defined code. In contrast, we do not rely on any
user-provided code.

Another line of work [7] relies on the use of the so-called attribute grammars,
an extension of context-free grammar that equips rules with attributes that can
be accessed and manipulated. For the parser generator, the authors use Bison and
encode the attribute aspect of grammars through user-defined C code annotating
the grammar rules which, as we argued before, augments the risk of errors.

7 Conclusions and Future Work

Input validation is an important step for defending against malformed or mali-
cious inputs. In this paper we perform the first rigorous, language theoretic
study of the expressiveness required for validating a number of common pro-
tocol idioms. We further show that input validation based on formal languages
is practical and build a modular input validator for HTTP from dependable

5 https://www.bro.org/.

https://www.bro.org/
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software components such as off-the-shelf parser generators for context-free lan-
guages. Our experimental result shows that our approach is competitive with
the state-of-the-art input validator for HTTP in terms of coverage and speed.

There are some promising avenues for extending our work. For instance our
approach can be generalized to boolean closures of CFLs, which are known to be
strictly more expressive than the finite intersection we deal with in this paper [5].
Besides, our approach can be extended with a notion of state that is shared
between protocol participants which will allow us to implement, e.g., stateful
firewalls using our approach.
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Abstract. Markov decision processes (MDPs) are standard models for
probabilistic systems with non-deterministic behaviours. Mean payoff (or
long-run average reward) provides a mathematically elegant formalism
to express performance related properties. Strategy iteration is one of
the solution techniques applicable in this context. While in many other
contexts it is the technique of choice due to advantages over e.g. value
iteration, such as precision or possibility of domain-knowledge-aware ini-
tialization, it is rarely used for MDPs, since there it scales worse than
value iteration. We provide several techniques that speed up strategy
iteration by orders of magnitude for many MDPs, eliminating the per-
formance disadvantage while preserving all its advantages.

1 Introduction

Markov decision processes (MDPs) [19,28,34] are a standard model for analysis
of systems featuring both probabilistic and non-deterministic behaviour. They
have found rich applications, ranging from communication protocols to biological
systems and robotics. A classical objective to be optimized in MDPs is mean
payoff (or long-run average reward). It captures the reward we can achieve on
average per step when simulating the MDP. Technically, one considers partial
averages (average over the first n steps) and let the time n go to infinity. This
objective can be used to describe performance properties of systems, for example,
average throughput, frequency of errors, average energy consumption, etc.

Strategy (or policy) iteration (or improvement) (SI) is a dynamic-programming
technique applicable in many settings, including optimization of mean payoff in
MDPs [28,34], but also mean payoff games [6,9], parity games [17,33,35,38], sim-
ple stochastic games [11], concurrent reachability games [25], or stochastic parity
games [24]. The main principle of the technique is to start with an arbitrary strat-
egy (or policy or controller of the system) and iteratively improve it locally in a
greedy fashion until no more improvements can be done. The resulting strategy is
guaranteed to be optimal.

SI has several advantages compared to other techniques used in these con-
texts. Most interestingly, domain knowledge or heuristics can be used to initialize
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with a reasonable strategy, thus speeding up the computation to a fraction of
the usual analysis time. Further, SI is conceptually simple as it boils down to
a search through a finite space of memoryless deterministic strategies, yielding
arguments for correctness and termination of the algorithm.

More specifically, in the context of MDPs, it has advantages over the other
two standard techniques. Firstly, compared to linear programming (LP), SI scales
much better. LP provides a rich framework, which is able to encode many opti-
mization problems on MDPs and in particular mean payoff. However, although
the linear programs are typically of polynomial size and can be also solved in
polynomial time, such procedures are not very useful in practice. For larger
systems the solvers often time out or run out of memory already during the
construction of the linear program. Furthermore, SI ensures that the current
lower bounds on the mean payoff is monotonically improving. Consequently, the
iteration can be stopped at any point, yielding a strategy at least as good as all
previous iterations.

Secondly, compared to value iteration (VI), SI provides a precise solution,
whereas VI is only optimal in the limit and the number of iterations before the
numbers can be rounded in order to obtain a precise solution is very high [10].
Furthermore, stopping criteria for VI are limited to special cases or are very
inefficient. Consequently, VI is practically used to produce results that may be
erroneous even for simple, realistic examples in verification, see e.g. [23].

On the other hand, the main disadvantage of SI, in particular for mean payoff,
is its scalability. Although SI scales better than LP, it is only rarely the case that
SI is faster than VI. Firstly, in the worst case, we have to examine exponentially
many strategies [15], in contrast to the discounted case, which is polynomial (for
a fixed discount factor) [39] even for games [26]. However, note that even for
parity games it was for long not known [21] whether all SI algorithms exhibit
this property since the number of improvements is only rarely high in practice.
Secondly, and more importantly, the evaluation of each strategy necessary for the
greedy improvement takes enormous time since large systems of linear equations
have to be solved. Consequently, VI typically is much faster than SI to obtain a
similar precision, although it may also need an exponential number of updates.

This scalability limitation is even more pronounced by the following contrast.
On the one hand, mean payoff games, parity games, and simple stochastic games
are not known to be solvable in polynomial time, hence the exponential-time SI
is an acceptable technique for these models. On the other hand, for problems on
MDPs that are solvable in polynomial time, such as mean payoff, the exponential-
time SI becomes less appealing. In summary, we can only afford to utilize the
mentioned advantages of SI for MDPs if we make SI perform well in practice.

This paper suggest several heuristics and opens new directions to increase
performance of SI for MDPs, in particular in the setting of mean payoff. Our
contribution is the following:

– We present several techniques to significantly speed up SI in many cases,
most importantly the evaluation of the current strategy. The first set of tech-
niques (in Sect. 4) is based on maximal end component decomposition of the
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MDP and strongly connected component decomposition of the Markov chain
induced by the MDP and the currently considered strategy. The second class
(in Sect. 5) is based on approximative techniques to compute mean payoff
in these Markov chains. Both variants reduce the time taken by the strat-
egy evaluation. Finally, we combine the two approaches in a non-trivial way
in Sect. 5.1, giving rise to synergic optimizations and opening the door for
approximation techniques.

– We provide experimental evaluation of the proposed techniques and com-
pare to the approaches from literature. We show experimental evidence that
our techniques are speeding up SI by orders of magnitude and make its per-
formance (i) on par with VI, the prevalent technique which, however, only
provides approximate solutions, and (ii) incomparably more scalable than the
precise technique of LP.

Further related work. Strategy iteration for MDPs has been extensively stud-
ied [16,28,34]. Performance of SI for MDPs has been mainly improved in the dis-
counted total reward case by, e.g., approximate evaluation of the strategy using
iterative methods of linear algebra [36], model reduction by adaptive state-space
aggregation [1] or close-to-optimal initialization [20]; for an overview see [5]. The
treatment of the undiscounted case has focused on unichain MDPs [27,34]. Apart
from solving the MDPs modelling probabilistic systems, the technique has found
its applications in other domains, too, for example program analysis [22].

2 Preliminaries

In this section, we introduce some central notions. Furthermore, relevant tech-
nical notions from linear algebra can be found in [30, Appendix A].

A probability distribution on a finite set X is a mapping ρ : X → [0, 1], such
that

∑
x∈X ρ(x) = 1. Its support is denoted by supp(ρ) = {x ∈ X | ρ(x) > 0}.

D(X) denotes the set of all probability distributions on X.

Definition 1. A Markov chain (MC) is a tuple M = (S, sinit,Δ, r), where S is
a finite set of states, sinit ∈ S is the initial state, Δ : S → D(S) is a transition
function that for each state s yields a probability distribution over successor states
and r : S → R

≥0 is a reward function, assigning rewards to states.

Definition 2. A Markov decision process (MDP) is a tuple of the form M =
(S, sinit,Act ,Av,Δ, r), where S is a finite set of states, sinit ∈ S is the initial
state, Act is a finite set of actions, Av : S → 2Act assigns to every state a set of
available actions, Δ : S×Act → D(S) is a transition function that for each state
s and action a ∈ Av(s) yields a probability distribution over successor states and
r : S ×Act → R

≥0 is a reward function, assigning rewards to state-action pairs.
Furthermore, we assume w.l.o.g. that actions are unique for each state, i.e.

Av(s) ∩ Av(s′) = ∅ for s �= s′.1

1 The usual procedure of achieving this in general is to replace Act by S × Act and
adapting Av, Δ, and r appropriately.
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For ease of notation, we overload functions mapping to distributions f :
Y → D(X) by f : Y × X → [0, 1], where f(y, x) := f(y)(x). For example,
instead of Δ(s)(s′) and Δ(s, a)(s′) we write Δ(s, s′) and Δ(s, a, s′), respec-
tively. Further, given some MC M, a function f : S → R and set of states
C ⊆ S, we define E

C
Δ(f, s) :=

∑
s′∈C Δ(s, s′)f(s′), i.e. the weighted sum of

f over all the successors of s in C. Analogously, for some MDP M, we set
E

C
Δ(f, s, a) :=

∑
s′∈C Δ(s, a, s′)f(s′). Further, we define EΔ(f, s) := E

S
Δ(f, s)

and EΔ(f, s, a) := E
S
Δ(f, s, a).

An infinite path ρ in a Markov chain is an infinite sequence ρ = s0s1 · · · ∈
Sω, such that for every i ∈ N we have that Δ(si, si+1) > 0. A finite path
w = s0s1 . . . sn ∈ S∗ is a finite prefix of an infinite path. Similarly, an infinite
path in an MDP is some infinite sequence ρ = s0a0s1a1 · · · ∈ (S × Act)ω, such
that for every i ∈ N, ai ∈ Av(si) and Δ(si, ai, si+1) > 0. Finite paths are defined
analogously as elements of (S × Act)∗ × S.

A Markov chain together with a state s induces a unique probability dis-
tribution Ps over measurable sets of infinite paths [3, Chapter 10]. For some
C ⊆ S, we write ♦C to denote the set of all paths which eventually reach C, i.e.
♦C = {ρ = s0s1 · · · | ∃i ∈ N. si ∈ C}, which is measurable [3, Sect. 10.1.1].

A strategy on an MDP is a function π : (S × Act)∗ × S → D(Act),
which given a finite path w = s0a0s1a1 . . . sn yields a probability distribution
π(w) ∈ D(Av(sn)) on the actions to be taken next. We call a strategy mem-
oryless randomized (or stationary) if it is of the form π : S → D(Act), and
memoryless deterministic (or positional) if it is of the form π : S → Act . We
denote the set of all strategies of an MDP by Π, and the set of all memory-
less deterministic strategies as ΠMD. Note that ΠMD is finite, since at each state
there exist only finitely many actions to choose from. Fixing any positional strat-
egy π induces a Markov chain where Δ(s, s′) =

∑
s∈Av(s) π(s, a) · Δ(s, a, s′) and

r(s) =
∑

a∈Av(s) π(s, a) · r(s, a).
Fixing a strategy π and an initial state s on an MDP M also gives a unique

measure P
π
s over infinite paths [34, Sect. 2.1.6]. The expected value of a random

variable F then is defined as E
π
s [F ] =

∫
F d P

π
s .

Strongly Connected Components and End Components. A non-empty
set of states C ⊆ S in a Markov chain is strongly connected if for every pair
s, s′ ∈ C there is a path from s to s′, possibly of length zero. Such a set C is a
strongly connected component (SCC) if it is inclusion maximal, i.e. there exists
no strongly connected C ′ with C � C ′. Note that each state of an MC belongs
to exactly one SCC2. An SCC is called bottom strongly connected component
(BSCC) if additionally no path leads out of it, i.e. for s ∈ C, s′ ∈ S \ C we
have Δ(s, s′) = 0. The set of (B)SCCs in an MC M is denoted by SCC(M) and
BSCC(M), respectively.

The concept of SCCs is generalized to MDPs by so called (maximal) end
components. A pair (T,A), where ∅ �= T ⊆ S and ∅ �= A ⊆ ⋃

s∈T Av(s), is an end

2 Some authors deliberately exclude so called “trivial” or “transient” SCCs, which are
single states without a self-loop.
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component of an MDP M if (i) for all s ∈ T, a ∈ A ∩ Av(s) we have
supp(Δ(s, a)) ⊆ T , and (ii) for all s, s′ ∈ T there is a finite path w =
sa0 . . . ans′ ∈ (T × A)∗ × T , i.e. the path stays inside T and only uses actions in
A. Note that we assumed actions to be unique for each state.

Intuitively, an end component describes a set of states for which a particular
strategy exists such that all possible paths remain inside these states. An end
component (T,A) is a maximal end component (MEC) if there is no other end
component (T ′, A′) such that T ⊆ T ′ and A ⊆ A′. Given an MDP M, the set of
its MECs is denoted by MEC(M).

Finally, given an MDP M let (T,A) ∈ MEC(M) some MEC in it. By picking
some initial state s′

init ∈ T , defining the straightforward restrictions of Av and Δ
by Av′ : T → 2A, Av′(s) := Av(s)∩A and Δ′ : T ×A → D(T ), Δ′(s, a) := Δ(s, a)
one obtains the restricted MDP M′ = (T, s′

init, A,Av′,Δ′).

Remark 1. For a Markov chain M, the computation of SCC(M), BSCC(M) and
a topological ordering of the SCCs can be achieved in linear time w.r.t. the
number of states and transitions by, e.g., Tarjan’s algorithm [37]. Similarly, the
MEC decomposition of an MDP can be computed in polynomial time [12].

Long-Run Average Reward. (also called mean payoff ) of a strategy π intu-
itively describes the optimal reward we can expect on average per step when
simulating the MDP according to π. In the following, we will only consider the
case of maximizing the average reward, but the presented methods easily can be
transferred to the minimization case.

Formally, let Ri be a random variable which given an infinite path returns
the reward obtained at step i ≥ 0, i.e. for ρ = s0a0s1a1 . . . we have Ri(ρ) =
r(si, ai). Given a strategy π, the n-step (maximal) average reward then is defined
as gπ

n(s) = E
π
s ( 1

n

∑n−1
i=0 Ri). The long-run average reward (in this context also

traditionally called gain [34]) of the strategy π is gπ(s) = lim infn→∞ gπ
n(s).3

Consequently, the long-run average reward (or gain) of a state s is defined as

g∗(s) := sup
π∈Π

gπ(s) = sup
π∈Π

lim inf
n→∞ E

π
s

(
1
n

n−1∑

i=0

Ri

)

.

For finite MDPs g∗(s) in fact is attained by a memoryless deterministic strategy
π∗ ∈ ΠMD and it further is the limit of the n-step average reward [34]. Formally,

g∗(s) = max
π∈ΠMD

gπ(s) = lim
n→∞ gπ∗

n (s).

With this in mind, we now only consider memoryless deterministic strategies.

3 Strategy Iteration

One way of computing the optimal gain of an MDP (i.e. determining the opti-
mal gain of each state) is strategy iteration (or policy iteration or strategy
3 The lim inf is used since the limit may not exist in general for an arbitrary strategy.
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improvement). The general approach of strategy iteration is to (i) fix a strat-
egy, (ii) evaluate it and (iii) improve each choice greedily, repeating the process
until no improvement is possible any more. For an in depth theoretical exposé
of strategy iteration for MDPs, we refer to e.g. [34, Sect. 9.2]. We briefly recall
the necessary definitions.

Gain and Bias. As mentioned, the second step of strategy iteration requires to
evaluate a given strategy. By investigating the Markov chain M = (S, sinit,Δ, r)
induced by the MDP M together with a strategy π ∈ ΠMD, one can employ the
following system of linear equations characterizing the gain g [34]:

g(s) =
∑

s′∈S

Δ(s, s′) · g(s′) = EΔ(g, s) ∀s ∈ S,

b(s) =
∑

s′∈S

Δ(s, s′) · b(s′) + r(s) − g(s) = EΔ(b, s) + r(s) − g(s) ∀s ∈ S.

A solution (g, b) to these gain/bias equations yields the gain g and the so called
bias b of the induced Markov chain, which we also refer to as gain gπ and bias bπ

of the corresponding strategy π. Intuitively, the bias relates to the total expected
deviation from the gain until the obtained rewards “stabilize” to the gain. Note
that the equations uniquely determine the gain but not the bias. We refer the
reader to [34, Sects. 9.1.1 and 9.2.1] for more detail but highlight the following
result. A unique solution can be obtained by adding the constraints b(si) = 0 for
one arbitrary but fixed state si in each BSCC [34, Condition 9.2.3]. Note this
condition requires to fix the bias of the “first” state in the BSCC to zero. But,
as the states can be numbered arbitrarily, any state of the BSCC is eligible. This
is also briefly touched upon in the corresponding chapter of [34]. Unfortunately,
this results in a non-square system matrix.

With these results, the strategy iteration for the average reward objective on
MDPs is defined in Algorithm 14. Reasoning of [34, Sect. 9.2.4] yields correctness.

Theorem 1. The strategy iteration presented in Algorithm 1 terminates with a
correct result for any input MDP.

It might seem unintuitive why the bias improvement in Line 6 is necessary, since
we are only interested in the gain after all. Intuitively, when optimizing the bias
the algorithm seeks to improve the expected “bonus” until eventually stabilizing
without reducing the obtained gain. This may lead to actually improving the
overall gain, as illustrated in [30, Appendix C].

4 Note that the procedure found in [34, Sect. 9.2.1] differs from our Algorithm in
Line 6. There, the bias is improved over all available actions instead of the gain-
optimal ones, which is erroneous. The proofs provided in the corresponding chapter
actually prove the correctness of the algorithm as presented here.



386 J. Křet́ınský and T. Meggendorfer

Algorithm 1. SI
Input: MDP M = (S, sinit,Act ,Av, Δ, r).
Output: (g∗, π∗), s.t. g∗ is the optimal gain of the MDP and is obtained by π∗.
1: Set n = 0 and pick an arbitrary strategy π0 ∈ ΠMD.
2: Obtain gn and bn which satisfy the gain/bias equations.
3: Let � Gain improvement

Avgn(s) = arg max
a∈Av(s)

EΔ(gn, s, a),

all actions maximizing the successor gains.
4: Pick πn+1 ∈ ΠMD s.t. πn+1(s) ∈ Avgn(s), setting πn+1(s) = πn(s) if possible.
5: if πn+1 �= πn then increment n by 1 and go to Line 2.

6: Pick πn+1 ∈ ΠMD which satisfies � Bias improvement

πn+1(s) ∈ arg max
a∈Avgn (s)

r(s, a) + EΔ(bn, s, a),

again setting πn+1(s) = πn(s) if possible.
7: if πn+1 �= πn then increment n by 1 and go to Line 2.

8: return (gn+1, πn+1).

Advantages and Drawbacks of Strategy Iteration. Compared to other
methods for solving the average reward objective, e.g. value iteration [2,10],
strategy iteration offers some advantages:

(i) A precise solution can be obtained, compared to value iteration which is
only optimal in the limit.

(ii) The gain of the strategy is monotonically improving, the iteration can be
stopped at any point, yielding a strategy at least as good as the initial one.

(iii) It therefore is easy to introduce knowledge about the model or results of
some pre-computation by initializing the algorithm with a sensible strategy.

(iv) On some models, strategy iteration performs significantly faster than value
iteration, as outlined in [30, Appendix B].

(v) The algorithm searches through the finite space of memoryless deterministic
strategies, simplifying termination and correctness proofs.

But on the other hand, the naive implementation of strategy iteration as pre-
sented in Algorithm 1 has several drawbacks:

(i) In order to determine the precise gain by solving the gain/bias equations,
one necessarily has to determine the bias, too. Therefore, the algorithm has
to determine both gain and bias in each step, while often only the gain is
actually used for the improvement.

(ii) For reasonably sized models the equation system becomes intractably large.
In the worst case, it contains 2n2+n non-zero entries and even for standard
models there often are significantly more than n non-zero entries.
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(iii) Furthermore, the gain/bias equation system is under-determined, ruling out
a lot of fast solution methods for linear equation systems. Uniqueness can be
introduced by adding several rows, which results in the matrix being non-
square, again ruling out a lot of solution methods. Experimental results
suggest that this equation system furthermore has rather large condition
numbers (see [30, Appendix A]) even for small, realistic models, leading to
numerical instabilities5.

(iv) Lastly, the equation system is solved precisely for every improvement step,
which often is unnecessary. To arrive at a precise solution, we often only
need to identify states in which the strategy is not optimal, compared to
having a precise measure of how non-optimal they are.

In the following two sections, we present approaches and ideas tackling each of
the mentioned problems, arriving at procedures which perform orders of magni-
tude faster than the original approach.

4 Topological Optimizations

Our first set of optimizations is based on various topological arguments about
both MDPs and MCs. They are used to eliminate unnecessary redundancies in
the equation systems and identify sub-problems which can be solved separately,
eventually leading to small, full-rank equation systems. Reduction in size and
removal of redundancies naturally lead to significantly better condition numbers,
which we also observed in our experiments.

Proofs of our claims can be found in [30, Appendix E].

4.1 MEC Decomposition

We presented a variant of this method in our previous work [2] in the context
of value iteration. Due to space constraints we only give a short overview of the
idea.

The central idea is that all states in a MEC of some MDP have the same
optimal gain [34, Sect. 9.5]6. Intuitively this is the case since any state in a
particular MEC can reach every other state of the MEC almost surely. For some
MEC M we define g∗(M) to be this particular optimal value and call it the gain
of the MEC. The optimal gain of the whole MDP then can be characterized by

g∗(s) = max
π∈ΠMD

∑

M∈MEC(M)

P
π
s [♦�M ] · g∗(M)

where ♦�M denotes the measurable set of paths that eventually remain within
M . This leads to a divide-and-conquer procedure for determining the gain of an

5 On crafted models with less than 10 states we observed numerical errors leading to
non-convergence and condition numbers of up to 105.

6 Restricting a general MDP to a MEC results in a “communicating” MDP.
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Algorithm 2. MEC-SI

Input: MDP M = (S, sinit,Act ,Av, Δ, r).
Output: The optimal gain g∗ of the MDP.
1: f ← ∅, rmax ← maxs∈S,a∈Av(s) r(s, a).
2: for Mi = (Ti, Ai) ∈ MEC(M) do
3: Compute g∗(Mi) of the MEC by applying Algorithm 1 on the restricted MDP.
4: Set f(Mi) ← g∗(Mi)/rmax.

5: Compute the weighted MEC quotient Mf .
6: Compute p ← P

max
Mf (♦{s+}).

7: return rmax · p

MDP. Conceptually, the algorithm first computes the MEC decomposition [12],
then for each MEC M determines its gain g∗(M) by strategy iteration and finally
solves a reachability query on the weighted MEC quotient Mf by, e.g., strategy
iteration or (interval) value iteration [7,23].

The weighted MEC quotient Mf is a modification of the standard MEC
quotient of [13], which for each MEC M introduces an action leading from the
collapsed MEC M to a designated target sink s+ with probability f(M) (which
is proportional to g∗(M)) and a non-target sink s− with the remaining proba-
bility. With this construction, we can relate the maximal probability of reach-
ing s+ to the maximal gain in the original MDP. For a formal definition, see
[30, Appendix D].

Using this idea, we define the first optimization of strategy iteration in Algo-
rithm 2. Its correctness follows from [2, Theorem 2]. Since we are only concerned
with the average reward and each state in the restriction can reach any other
(under some strategy), the initial state we pick for the restriction in Line 3 is
irrelevant. Note that while the restricted MDP consists of a single MEC, an
induced Markov chain may still contain an arbitrary number of (B)SCCs.

This algorithm already performs significantly better on a lot of models, as
shown by our experimental evaluation in Sect. 6. But, as to be expected, on
models with large MECs this algorithm still is rather slow compared to, e.g., VI
and may even add additional overhead when the whole model is a single MEC.
To this end, we will improve strategy iteration in general. To combine these
optimized variants with the ideas of Algorithm 2, one can simply apply them in
Line 3.

4.2 Using Strongly Connected Components

The underlying ideas of the previous approach are independent of the procedure
used to determine g∗(M). Naturally, this optimization does not exploit any spe-
cific properties of strategy iteration to achieve the improvement. In this section,
we will therefore focus on improving the core principle of strategy iteration,
namely the evaluation of a particular strategy π on some MDP M. As explained
in Sect. 3, this problem is equivalent to determining the gain and bias of some
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Markov chain M. Hence we fix such a Markov chain M throughout this section
and present optimized methods for determining the required values precisely.

BSCC Compression. In this approach, we try to eliminate superfluous redun-
dancies in the equation system. The basic idea is that all states in some BSCC
have the same optimal gain. Moreover, the same gain is achieved in the attractor
of B, i.e. all states from which almost all runs eventually end up in B.

Definition 3 (Attractor). Let M be some Markov chain and C ⊆ S some set
of states in M. The attractor of C is defined as

prob1(C) := {s ∈ S | Ps[♦C] = 1},

i.e. the set of states which almost surely eventually reach C.

Lemma 1. Let M be a Markov chain and B a BSCC. Then g(s) = g(s′) for all
s, s′ ∈ prob1(B).

Proof. When interpreting the MC as a degenerate MDP with |Av(s)| = 1 for all
s, the gain of the MC coincides with the optimal gain of this MDP and each
BSCC in the original MC is a MEC in the MDP. Using the reasoning from
Sect. 4.1 and [34, Sect. 9.5], we obtain that all states in prob1(B) have the same
gain. ��

Therefore, instead of adding one gain variable per state to the equation sys-
tem, we “compress” the gain of all states in the same BSCC (and its attractor)
into one variable. Formally, the reduced equation system is formulated as follows.

Let {B1, . . . , Bn} = BSCC(M) be the BSCC decomposition of the Markov
chain. Further, define Ai := prob1(Bi) the attractors of each BSCC and T :=⋃n

i=1 Ai the set of all states which don’t belong to any attractor. The BSCC
compressed gain/bias equations then are defined as

g(s) = E
T ′
Δ (g, s) +

∑

Ai

E
Ai

Δ (gi, s) ∀s ∈ T,

b(s) = E
Ai

Δ (b, s) + r(s) − gi ∀1 ≤ i ≤ n, s ∈ Ai,

b(s) = EΔ(b, s) + r(s) − g(s) ∀s ∈ T,

b(si) = 0 for one arbitrary but fixed si ∈ Bi, ∀1 ≤ i ≤ n.

(1)

Applying the reasoning of Lemma 1 immediately gives us correctness.

Corollary 1. The values g1, . . . , gn, g(s) and b(s) are a solution to the equation
system (1) if and only if

g′(s) :=

{
gi if s ∈ Ai,

g(s) otherwise.

and b(s) are a solution to the gain/bias equations.
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Algorithm 3. SCC-SI

Input: MC M = (S, sinit, Δ, r).
Output: (g, b), s.t. g and b are solutions to the gain/bias equations.
1: Obtain BSCC(M) = {B1, . . . , Bn} and SCC(M) \BSCC(M) = {S1, . . . , Sm} with Si

in reverse topological order.
2: for Bi ∈ BSCC(M) do � Obtain gain and bias of BSCCs
3: Obtain gi and b(s) for all s ∈ Bi by solving the equations

b(s) = E
Bi
Δ (b, s) + r(s) − gi ∀s ∈ Bi,

b(si) = 0 for one arbitrary but fixed si ∈ Bi.

4: Set g(s) ← gi for all s ∈ Bi.

5: for i from 1 to m do � Obtain gain and bias of non-BSCC states
6: Let S< :=

⋃i−1
j=1 Sj ∪⋃n

j=1 Bj

7: Compute succ(g) ← {s′ ∈ S< | ∃s ∈ Si. Δ(s, s′) > 0 ∧ g(s′) = g}.
8: Set succg = {g | succ(g) �= ∅}.
9: For each g ∈ succg, obtain pg by solving the equations

pg(s) = E
Si
Δ (pg, s) +

∑

s′∈succg

Δ(s, s′) ∀s ∈ Si.

10: Set g(s) ←∑g∈succg pg(s) · g for all s ∈ Si.
11: Obtain b(s) for all s ∈ Si by solving the equations

b(s) = E
Si
Δ (b, s) + E

S<

Δ (b, s) + r(s) − g(s) ∀s ∈ Si.

12: return (g, b).

This equation system is significantly smaller for Markov chains which contain
large BSCC-attractors. Furthermore, observe that the resulting system matrix
also is square. We have |BSCC(M)| + |T | gain and |S| bias variables but also |T |
gain and |S| + |BSCC(M)| bias equations. Additionally, by virtue of Corollary 1
and [34, Condition 9.2.3], the system has a unique solution. Together, this allows
the use of more efficient solvers. Especially when combined with the previous
MEC decomposition approach, significant speed-ups can be observed.

SCC Decomposition. The second approach extends the BSCC compression
idea by further decomposing the problem into numerous sub-problems. A formal
definition of the improved evaluation algorithm is given in Algorithm 3.

As with the compression approach, we exploit the fact that all states in some
BSCC have the same gain. But instead of encoding this information into one big
linear equation system, we use it to obtain multiple sub-problems.

First, we obtain gain and bias for each BSCC separately in Line 3. Note that
there are only |Bi| + 1 variables and equations, since there only is a single gain
variable. The last equation, setting bias to zero for some state of the BSCC,
again induces a unique solution.
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Now, these values are back-propagated through the MC. As mentioned, we
can obtain a topological ordering of the SCCs, where a state s in a “later” SCC
cannot reach any state s′ in some earlier SCC. By processing the SCCs in reverse
topological order, we can successively compute values of all states as follows.

Since the gain actually is only earned in BSCCs, the gain of some non-BSCC
state naturally only depends on the probability of ending up in some BSCC.
More generally, by a simple inductive argument, the gain of such a non-BSCC
state only depends on the gains of the states it ends up in after moving to a later
SCC. In other words, the gain only depends on the reachability of the successor
gains. So, instead of constructing a linear equation system involving both gain
and bias for each SCC, we determine the different “gain outcomes” in Line 8 and
then compute the probability of these outcomes in Line 9, i.e. the probability of
reaching a state obtaining some particular successor gain. Finally, we simply set
the gain of some state as the expected outcome in Line 10. Only then the bias is
computed in Line 11 by solving the bias equation with the computed gain values
inserted as constants.

At first glance, this might seem rather expensive, as there are |succg|+1 linear
equation systems instead of one. But the corresponding matrices of the systems
in Lines 9 and 11 actually are (i) square with a unique solution, allowing the use
of LU decomposition; and (ii) are the same for a particular SCC, enabling reuse
of the obtained decomposition.

Note how this in fact generalizes the idea of computing attractors in the
BSCC-compression approach. Suppose a non-BSCC state s ∈ Sj is in the attrac-
tor of a particular BSCC Bi. Since moving to Bi is the only possible outcome,
succg as computed in Line 8 actually is a singleton set containing only the gain
gi of the BSCC. Then pgi

(s) = 1 for all states in Sj and we can immediately set
g(s) = gi.

5 Approximation-Guided Solutions

This section introduces another idea to increase efficiency of the strategy itera-
tion. Section 5.1 then combines this method with optimizations of the previous
section in a non-trivial way, yielding a super-additive optimization effect. Our
new approach relies on the following observation. In order to improve a strat-
egy, it is not always necessary to know the exact gain in each state; sufficiently
tight bounds are enough to decide that the current action is sub-optimal. To this
end, we assume that we are given an approximative oracle for the gain of any
state under some strategy7. Formally, we require a function g≈ : ΠMD × S →
R

≥0 × R
≥0 and call it consistent if for g≈(π, s) = (gL(π, s), gU (π, s)) we have

that gπ(s) ∈ [gL(π, s), gU (π, s)]. For readability, we write gL(π) and gU (π) for
the functions s �→ gL(π, s) and s �→ gU (π, s), respectively.

In Algorithm 4, we define a variant of strategy iteration, which incorporates
this approximation for gain improvement. Let us focus on this improvement in

7 We will go into detail why we do not deal with bias later on.
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Algorithm 4. Approx-SI

Input: MDP M = (S, sinit,Act ,Av, Δ, r) and consistent gain approximation g≈.
Output: (g∗, π∗), s.t. g∗ is the optimal gain of the MDP and is obtained by π∗.
1: Set n ← 0, and pick an arbitrary strategy π0 ∈ ΠMD.
2: Set πn+1 = πn

3: for s ∈ S do � Approximate gain improvement
4: if gU (πn, s) < maxa∈Av(s) EΔ(gL(πn), s) then
5: Pick πn+1 ∈ arg maxa∈Av(s) EΔ(gL(πn), s, a).

6: if πn+1 �= πn then increment n by 1, go to Line 2.

7: Obtain gn+2 and πn+2 by one step of precise SI. � Precise improvement
8: if πn+2 �= πn+1 then increment n by 2, go to Line 2.

9: return (gn+2, πn+2)

Line 5. There are three cases to distinguish. (1) If the test on Line 4 holds, i.e.
the upper bound on the gain in the current state is smaller than the lower bound
under some other action a, then a definitely gives us a better gain. Therefore, we
switch the strategy to this action. If the test does not hold, there are two other
cases to distinguish: (2) If in contrast, the lower bound on the gain in the current
state is bigger than the upper bound under any other action, the current gain
definitely is better than the gain achievable under any other action. Hence the
current action is optimal and the strategy should not be changed. (3) Otherwise,
the approximation does not offer us enough information to conclude anything.
The current action is neither a clear winner nor a clear loser compared to the
other actions. In this case we also refrain from changing the strategy. Intuitively,
if there are any changes to be done in Case (3), we postpone them until no
further improvements can be done based solely on the approximations. They
will be dealt with in Line 7, where we determine the gain precisely.

Theorem 2. Algorithm 4 terminates for any MDP and consistent gain approx-
imation function. Furthermore, the gain and corresponding strategy returned by
the algorithm is optimal.

Implementing Gain Approximations. In order to make Algorithm 4 prac-
tical, we provide a prototype for such a gain approximation. To this end, we can
again interpret the MC M as a degenerate MDP M and apply variants of the
value iteration methods of [2, Algorithm 2]. We want to emphasize that there
are no restrictions on the oracle except consistency, hence there may be other,
faster methods applicable here. This also opens the door for more fine-tuning
and optimizations. For instance, instead of “giving up” on the estimation and
solving the equations precisely, the gain approximation could be asked to refine
the estimate for all states where there is uncertainty and Case (3) occurs.

Difficulties in Using Bias Estimations. One may wonder why we did not
include a bias estimation function in the previous algorithm. There are two
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Procedure 5. MEC-Approx
1: Set gmax

L (πn) ← maxs∈M gL(πn, s), S− ← {s | gU (πn, s) < gmax
L (πn)}, S+ = M \ S−.

2: if S− = ∅ then Continue with precise improvement.
3: else

4: while S− �= ∅ do

5: Obtain s ∈ S− and a ∈ Av(s) such that
∑

s′∈S+
Δ(s, a, s′) > 0.

6: Set πn+1(s) ← a, S+ ← S+ ∪ {s}, S− ← S− \ {s}.
7: Increment n by 1, go to Line 1.

main reasons for this, namely (i) by naively using the bias approximation, the
algorithm may not converge any more (even with ε-precise approximations) and
(ii) it seems rather difficult to efficiently obtain a reasonable bias estimate. We
provide more detail and intuition in [30, Appendix F].

5.1 Synergy of the Approaches

In order to further improve the approximation-guided approach, we combine
it with the idea of MEC decomposition, which in turn allows for even more
optimizations. As already mentioned, each state in a MEC has the same optimal
gain. In combination with the idea of the algorithm in [34, Sect. 9.5.1], this allows
us to further enhance the gain improvement step as follows.

The gain g∗(M) of some MEC M certainly is higher than the lower bound
achieved through some strategy in any state of the MEC, which is gmax

L (πn) :=
maxs∈M gL(πn, s). Hence, any state of the MEC which has an upper bound less
than gmax

L (πn) is suboptimal, as we can adapt the strategy such that it achieves at
least this value in every state of the MEC. With this, the gain improvement step
can be changed to (i) determine the maximal lower bound gmax

L (πn), (ii) identify
all states S+ which have an upper bound greater than this lower bound and
(iii) update the strategy in all other states S− to move to this “optimal” region.
Algorithm 5 then is obtained by replacing the approximate gain improvement
in Lines 3 to 2 of Algorithm 4 by Procedure 5.

Theorem 3. Algorithm 5 terminates for any MDP and consistent gain approx-
imation function. Furthermore, the gain and corresponding strategy returned by
the algorithm indeed is optimal.

6 Experimental Evaluation

In this section, we compare the presented approaches to established tools.

Implementation Details. We implemented our constructions8 in the PRISM
Model Checker [31]. We also added several general purpose optimizations to

8 Accessible at https://www7.in.tum.de/∼meggendo/artifacts/2017/atva si.txt.

https://www7.in.tum.de/~meggendo/artifacts/2017/atva_si.txt
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PRISM, improving the used data structures. This may influence the compara-
bility of these results to other works implemented in PRISM.

In order to solve the arising systems of linear equations, we used the ojAlgo
Java library9. Whenever possible, we employed LU decomposition to solve the
equation systems and SVD otherwise. We use double precision for all computa-
tions, which implies that results are only precise modulo numerical issues. The
implementation can easily be extended to arbitrary precision, at the cost of per-
formance. Further, our implementation only uses the parallelization of ojAlgo.
Since the vast majority of computation time is consumed by solving equation
systems, we did not implement further parallelization.

Experimental Setup. All benchmarks have been run on a 4.4.3-gentoo x64
virtual machine with 16 cores of 3.0 GHz each, a time limit of 10 min and memory
limit of 32 GB, using the 64-bit Oracle JDK version 1.8.0 102-b14. All time
measurements are given in seconds and are averaged over 10 executions. Instead
of measuring the time which is spent in a particular algorithm, we decide to mea-
sure the overall user CPU time of the PRISM process using the UNIX tool time.
This metric has several advantages. It allows for an easy and fair comparison
between, e.g., multithreaded executions, symbolic methods or implementations
which do not construct the whole model. Further, it reduces variance in mea-
surements caused by the operating system through, e.g., the scheduler. Note
that this also allows for measurements larger than the specified timeout, as the
process may spend this timeout on each of the 16 cores.

6.1 Models

We briefly explain the examples used for evaluation. virus [32] models a virus
spreading through a network. We reward each attack carried out by an infected
machine. cs nfail [29] models a client-server mutual exclusion protocol with
probabilistic failures of the clients. A reward is given for each successfully han-
dled connection. phil nofair [14] represents the (randomised) dining philoso-
phers without fairness assumptions. We use two reward structures, rewarding
“thinking” and “eating”, respectively. sensor [29] models a network of sensors
sending values to a central processor over a lossy connection. Processing received
data is rewarded. mer [18] captures the behaviour of a resource arbiter on a Mars
exploration rover. We reward each time some user is granted access to a resource
by the arbiter.

6.2 Tools

Since we are unaware of other implementations, we implemented standard SI as
in Algorithm 1 by ourselves. We compare the following variants of SI.

9 http://ojalgo.org/.

http://ojalgo.org/
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– SI: Standard SI as presented in Algorithm 1.
– BSCC: SI with BSCC compression gain/bias equations.
– SCC: The SCC decomposition approach of Algorithm 3.
– SCCA: The SCC decomposition approach combined with the approximation

methods from Sect. 5.

Further, a “M” superscript denotes use of the MEC decomposition approach as
in Algorithm 2. In the case of SCCM

A , we use the improved method of Sect. 5.1.
More details and evaluation of some further variants can be found in [30, Appen-
dix G]. During our experiments, we observed that the algorithm used to solve
the resulting reachability problem did not influence the results significantly, since
the weighted quotients are considerably simpler than the original models.

We compare our methods to the value iteration approach we presented in [2,
Algorithm 2] with a required precision of 10−8 (VI). This comparison has to be
evaluated with care, since (i) value iteration inherently is only ε-precise and (ii) it
needs a MEC decomposition for soundness. Note that topological optimizations
for value iteration as suggested by, e.g., [4] are partially incorporated by VI,
since each MEC is iterated separately.

We also provide a comparison to the LP-based MultiGain [8] in [30, Appendix
G]. In summary, the LP approach is soundly beaten by our optimized approaches.
A more detailed comparison can be found in [2].

We are unaware of other implementations capable of solving the mean payoff
objective for MDPs. Neither did we find a mean payoff solver for stochastic
games which we could easily set up to process the PRISM models.

6.3 Results

We will highlight various conclusions to be drawn from Table 1. Comparing the
naive SI with our enhanced versions BSCC and SCC, the number of strategy
improvements does not differ, but the evaluation of each strategy is significantly
faster, yielding the differences displayed in the table.

On the smaller models (cs nfail and virus) nearly all of the optimized meth-
ods perform comparable, a majority of the runtime actually is consumed by the
start-up of PRISM. Especially on virus, all the MEC-decomposition approaches
have practically the same execution time due to the model only having a single
MEC with a single state, which the problem trivial for these approaches.

The results immediately show how intractable naive strategy iteration is.
On models with only a few hundred states, the computation already times out.
The BSCC compression approach BSCC suffers from the same issues, but already
performs significantly better than SI. In particular, when combined with MEC
decomposition, it is able to solve more models within the given time.

Further, we see immense benefits of using the SCC approach, regularly beat-
ing even the quite performant (and imprecise) value iteration approach. Inter-
estingly, the variants using approximation often perform worse than the “pure”
SCC method. We conjecture that this is due the gain approximation function
we used. It computes the gain up to some adaptively chosen precision instead of
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Table 1. Comparison of various variants on the presented models. Timeouts and memo-
uts are denoted by a hyphen. The best results in each row are marked in bold, excluding
VI. The number of states and MECs are written next to the model.

Model SI SIM BSCC BSCCM SCC SCCA SCCM
A VI

cs nfail3 (184, 38) 17 4 4 4 4 4 4 4

cs nfail4 (960, 176) 1129 6 16 5 5 5 6 5

virus (809, 1) − 4 10 4 5 5 4 4

phil nofair3 (856, 1) − − 112 112 6 10 7 5

phil nofair4 (9440, 1) − − − − 15 310 107 18

sensors1 (462, 132) − 13 23 4 4 6 4 5

sensors2 (7860, 4001) − 89 − 14 13 168 11 15

sensors3 (77766, 46621) − − − 78 40 − 46 72

mer3 (15622, 9451) − 21 − 26 16 244 22 15

mer4 (119305, 71952) − 58 − 281 42 − 84 64

mer5 (841300, 498175) − − − − 474 − − −

computing up to a certain number of iterations. Changing this precision bound
gave mixed results, on some models performance increased, on some it decreased.
Comparing the two approximation-based approaches SCCA and SCCM

A , we high-
light the improvements of Algorithm 5, speeding up convergence even though a
MEC decomposition is computed.

Finally, we want to emphasize the mer results. Here, our SCC approach man-
ages to obtain a solution within the time- and memory-bound, while all other
approaches, including VI, fail due to a time-out.

7 Conclusion

We have proposed and evaluated several techniques to speed up strategy itera-
tion. The combined speed ups are in orders of magnitude. This makes strategy
iteration competitive even with the most used and generally imprecise value
iteration and shows the potential of strategy iteration in the context of MDPs.

In future work, we will further develop this potential. Firstly, building upon
the SCC decomposition, we can see opportunities to interleave the SCC compu-
tation and the improvements of the current strategy. Secondly, the gain approx-
imation technique used is quite naive. Here we could further adapt our recent
results on VI [2], in order to improve the performance of the approximation.
Besides, we suggest to use simulations to evaluate the strategies. Nevertheless,
the incomplete confidence arising form stochastic simulation has to be taken into
account here. Thirdly, techniques for efficient bias approximation and algorithms
to utilize it would be desirable. Finally, a fully configurable tool would be helpful
to find the sweet-spot combinations of these techniques and useful as the first
scalable tool for mean payoff optimization in MDPs.
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Abstract. Quantitative loop invariants are an essential element in the
verification of probabilistic programs. Recently, multivariate Lagrange
interpolation has been applied to synthesizing polynomial invariants. In
this paper, we propose an alternative approach. First, we fix a polyno-
mial template as a candidate of a loop invariant. Using Stengle’s Po-
sitivstellensatz and a transformation to a sum-of-squares problem, we
find sufficient conditions on the coefficients. Then, we solve a semidefi-
nite programming feasibility problem to synthesize the loop invariants. If
the semidefinite program is unfeasible, we backtrack after increasing the
degree of the template. Our approach is semi-complete in the sense that it
will always lead us to a feasible solution if one exists and numerical errors
are small. Experimental results show the efficiency of our approach.

1 Introduction

Probabilistic programs extend standard programs with probabilistic choices and
are widely used in protocols, randomized algorithms, stochastic games, etc. In
such situations, the program may report incorrect results with a certain proba-
bility, rendering classical program specification methods [10,18] inadequate. As a
result, formal reasoning about the correctness needs to be based on quantitative
specifications. Typically, a probabilistic program consists of steps that choose
probabilistically between several states, and the specification of a probabilistic
program contains constraints on the probability distribution of final states, e.g.
through the expected value of a random variable. Therefore the expected value
is often the object of correctness verification [14,21,23].

To reason about correctness for probabilistic programs, quantitative annota-
tions are needed. Most importantly, correctness of while loops can be proved by
inferring special bounds on expectations, usually called quantitative loop invari-
ants [23]. As in the classical setting, finding such invariants is the bottleneck
of proving program correctness. For some restricted classes, such as linear loop
invariants, some techniques have been established [4,21,24]. To use them to
synthesize polynomial loop invariants, so-called linearization can be used [1],
c© Springer International Publishing AG 2017
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a technique widely applied in linear algebra. It views higher-degree monomi-
als as new variables, establishes their relation with existing variables, and then
exploits linear loop invariant generation techniques. However, the number of
monomials is exponential in the degree. Rodŕıguez-Carbonell and Kapur [28]
introduce solvable mappings, which are a generalization of affine mappings, to
avoid non-polynomial effects generated by polynomial programs. Recently, Chen
et al. [7] applied multivariate Lagrange interpolation to synthesize polynomial
loop invariants directly.

Another important problem for probabilistic programs is the almost-sure
termination problem, answering whether the program terminates almost surely.
Fioriti and Hermanns [13] argued that Lyapunov ranking functions, used in non-
probabilistic termination analysis, cannot be extended to probabilistic programs.
Instead, they extended ranking supermartingales [3] to the bounded probabilistic
case and provided a compositional and sound proof method for the almost-sure
termination problem. Kaminski and Katoen [20] investigated the computational
complexity of computing expected outcomes (including lower bounds, upper
bounds and exact expected outcomes) and of deciding almost-sure termination
of probabilistic programs. Further, Chatterjee et al. [6] investigated termina-
tion problems for affine probabilistic programs. Recently, they also presented a
method [5] to efficiently synthesize ranking supermartingales by Putinar’s Posi-
tivstellensatz [27] and used it to prove the termination of probabilistic programs.
Their method is sound and semi-complete over a large class of programs.

In this paper, we develop a technique exploiting semidefinite programming
through another Positivstellensatz to synthesize the quantitative loop invariants.
Positivstellensätze are essential theorems in real algebra to describe the structure
of polynomials that are positive (or non-negative) on a semialgebraic set. While
our approach shares some similarities with the one in [5], the difference to the
termination problem requires a variation of the theorem. In detail, Putinar’s Pos-
itivstellensatz deals with the situation when the polynomial is strictly positive on
a quadratic module, which is not enough for quantitative loop invariants. In the
program correctness problem, equality constraints are taken into consideration
as well as inequalities. Therefore in our method, Stengle’s Positivstellensatz [29]
dealing with general real semi-algebraic sets is being used.

As previous results [7,15,21], our approach is constraint-based [8]. We fix
a polynomial template for the invariants with a fixed degree and generate con-
straints from the program. The constraints can be transformed into an emptiness
problem of a semialgebraic set. By Stengle’s Positivstellensatz [29], it suffices to
solve a semidefinite programming feasibility problem, for which efficient solvers
exist. From a feasible solution (which need not be tight) we can then obtain
the corresponding template coefficients. If the solver does not provide a feasible
solution or a verification shows that the coefficients are not correct, we refine the
analysis by adding constraints to block the undesired solutions or by increasing
the template degree, which will always lead us to a feasible solution if one exists.

The method is applied to several case studies taken from [7]. Our technique
usually solves the problem within one second, which is about one tenth of the
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time taken by the tool of [7]. Our tool supports real variables rather than dis-
crete ones and can generate polynomial invariants. We illustrate these features
by analyzing a non-linear perceptron program and a model for airplane delay
with continuous distributions. Moreover, we conduct a sequence of trials on para-
meterized probabilistic programs to show that the main influence factor on the
running time of our method is the degree of the invariant template. We compare
our results on these examples with the Lagrange Interpolation Prototype (LIP)
in [7], Prinsys [15] and the tool for super-martingales (TM) [3].

2 Preliminaries

In this section we introduce some notations. We use Xn to denote an n-tuple
of variables (X1, . . . , Xn). For a vector α = (α1, . . . , αn) ∈ N

n, Xα
n denotes the

monomial Xα1
1 · · · Xαn

n , and d =
∑

i αi is its degree.

Definition 1. A polynomial f in variables X1, . . . , Xn is a finite linear combi-
nation of monomials: f =

∑
α cαXα

n where finitely many cα ∈ R are non-zero.

The degree of a polynomial is the highest degree of its component monomials.
Extending the notation, for a sequence of polynomials F = (f1, . . . , fs) and a
vector α = (α1, . . . , αs) ∈ R

s, we let Fα denote
∏s

i=1 fαi
i . The polynomial ring

with n variables is denoted with R[Xn], and the set of polynomials of degree at
most d is denoted with R

≤d[Xn]. For f ∈ R[Xn] and zn = (z1, . . . , zn) ∈ R
n,

f(zn) ∈ R is the value of f at zn.
A constraint is a quantifier-free formula constructed from (in)equalities of

polynomials. It is linear if it contains only linear expressions. A semialgebraic
set is a set described by a constraint:

Definition 2. A semialgebraic set in R
k is a finite union of sets of the form

{x ∈ R
k|f(x) = 0 ∧ ∧

g∈G g > 0}, where f is a polynomial and G is a finite set
of polynomials.

A polynomial p(Xn) ∈ R[Xn] is a sum of squares (or SOS, for short), if there
exist polynomials f1(x), . . . , fm(x) ∈ R[Xn] such that p(Xn) =

∑m
i=1 f2

i (Xn).
Chapters 2 and 3 of [2] introduce a way to transform the problem whether a given
polynomial is an SOS into a semidefinite programming problem (or SDP, for
short), which is a generalization of linear programming problem. We introduce
the transformation and SDP problems briefly in our technical report [12].

2.1 Probabilistic Programs

We use a simple probabilistic guarded-command language to construct probabilis-
tic programs with the grammar:

P :: = skip | abort | x := E | P ;P | P [p] P | if (G) then {P} else {P} | while(G){P}
where E is a real-valued expression and G is a Boolean guard defined by the
grammar:
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E :: = c | xn | r | constant/variable/random variable
E + E | E · E | arithmetic

G :: = E < E | G ∧ G | ¬G guards

Random variable r follows a given probability distribution, discrete or continu-
ous. For p ∈ [0, 1], the probabilistic choice command P0 [p] P1 executes P0 with
probability p and P1 with probability 1 − p.

Example 3. The following probabilistic program P describes a simple game:

z := 0; while(0 < x < y) {x := x + 1[0.5]x := x − 1; z := z + 1}.

The program models a game where a player has x dollars at the beginning and
keeps tossing a coin with probability 0.5. The player wins one dollar if he tosses
a head and loses one dollar for a tail. The game ends when the player loses all
his money, or he wins y−x dollars for a predetermined y. The variable z records
the number of tosses made by the player during this game.

We assume that the reader is familiar with the basic concepts of probability
theory and in particular expectations, see e.g. [11] for details. Expectations are
typically functions from program states (i.e. the real-valued program variables)
to R. An expectation is called a post-expectation when it is to be evaluated on the
final distribution, and it is called a pre-expectation when it is to be evaluated on
the initial distribution. Let preE , postE be expectations and prog a probabilistic
program. We say that the sentence 〈preE 〉 prog 〈postE 〉 holds if the expected
value of postE after executing prog is equal to or greater than the expected
value of preE . When postE and preE are functions, the comparison is executed
pointwise.

Classical programs can be viewed as special probabilistic programs in the
following sense. For classical precondition pre and postcondition post , let the
characteristic function χpre equal 1 if the precondition is true and 0 otherwise,
and define χpost similarly. If one considers a Hoare triple {pre} prog {post} where
prog is a classical program, then it holds if and only if 〈χpre〉 prog 〈χpost〉 holds
in the probabilistic sense.

2.2 Probabilistic Predicate Transformers

Let P0, P1 be probabilistic programs, E an expression, post a post-expectation,
pre a pre-expectation, G a Boolean expression, and p ∈ (0, 1). The probabilistic
predicate transformer wp can be defined as follows [16]:

wp(skip, post) = post
wp(abort, post) = 0
wp(x := E, post) = post [x/ES(E)]
wp(P ; Q, post) = wp(P,wp(Q, post))
wp(if(G) then(P ) else(Q), post) = χG · wp(P, post) + (1 − χG) · wp(Q, post)
wp(P [p] Q, post) = p · wp(P, post) + (1 − p) · wp(Q, post)
wp(while(G) {P}, post) = μX.(χG · wp(P,X) + (1 − χG) · post)
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Here post [x/ES(E)] denotes the formula obtained by replacing free occurrences
of x in post by the expectation of E over state space S. The least fixed point
operator μ is defined over the domain of expectations [23,24], and it can be shown
that 〈pre〉 P 〈post〉 holds if and only if pre ≤ wp(P, post). Thus, wp(P, post) is
the greatest lower bound of precondition expectation of P with respect to post ,
and we say wp(P, post) is the weakest pre-expectation of P w.r.t. post.

2.3 Positivstellensatz

Hilbert’s Nullstellensatz is very important in algebra, and its real version, known
as Positivstellensatz, is crucial to our method. First, some concepts are needed
to introduce the theorem.

– The set P ⊆ R[Xn] is a positive cone if it satisfies: (i) If a ∈ R[Xn], then
a2 ∈ P , and (ii) P is closed under addition and multiplication.

– The set M ⊆ R[Xn] is a multiplicative monoid with 0 if it satisfies: (i) 0, 1 ∈
M , and (ii) M is closed under multiplication.

– The set I ⊆ R[Xn] is an ideal if it satisfies: (i) 0 ∈ I, (ii) I is closed under
addition, and (iii) If a ∈ I and b ∈ R[Xn], then a · b ∈ I.

We are interested in finitely generated positive cones, multiplicative monoids
with 0, and ideals. Let F = {f1, . . . , fs} be a finite set of polynomials. We recall
that

– Any element in the positive cone generated by F (i. e., the smallest positive
cone containing F) is of the form

∑

α∈{0,1}s

kαFα where kα is a sum of squares for all α ∈ {0, 1}s

In the sum, α denotes an s-length vector with each element 0 or 1.
– Any nonzero element in the multiplicative monoid with 0 generated by F is

of the form Fα, where α = (α1, . . . , αs) ∈ N
s.

– Any element in the ideal generated by F is of the form k1f1+k2f2+· · ·+ksfs,
where k1, . . . , ks ∈ R[Xn].

The Positivstellensatz due to Stengle states that for a system of real polyno-
mial equalities and inequalities, either there exists a solution, or there exists a
certain polynomial which guarantees that no solution exists.

Theorem 4 (Stengle’s Positivstellensatz [29]). Let (fj)s
j=1, (gk)t

k=1, (hl)w
l=1

be finite families of polynomials in R[Xn]. Denote by P the positive cone gen-
erated by (fj)s

j=1, by M the multiplicative monoid with 0 generated by (gk)t
k=1,

and by I the ideal generated by (hl)w
l=1. Then the following are equivalent:

1. The set ⎧
⎨

⎩
zn ∈ R

n

∣
∣
∣
∣
∣

fj(zn) ≥ 0, j = 1, . . . , s
gk(zn) 	= 0, k = 1, . . . , t
hl(zn) = 0, l = 1, . . . , w

⎫
⎬

⎭
(1)

is empty.
2. There exist f ∈ P, g ∈ M,h ∈ I such that f + g2 + h = 0.
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3 Problem Formulation

The question that concerns us here is to verify whether the loop sentence

〈preE 〉 while(G) {body} 〈postE 〉
holds, when given the pre-expectation preE , post-expectation postE , a Boolean
expression G, and a loop-free probabilistic program body . One way to solve
this problem is to calculate the weakest pre-expectation wp(while(G, {body}),
postE ) and to check whether it is not smaller than preE . However, the weakest
pre-expectation of a while statement requires a fixed-point computation, which
is not trivial. To avoid the fixed point, the problem can be solved through a
quantitative loop invariant.

Theorem 5 [15]. Let preE be a pre-expectation, postE a post-expectation, G a
Boolean expression, and body a loop-free probabilistic program. To show

〈preE 〉 while(G) {body} 〈postE 〉,
it suffices to find a loop invariant I which is an expectation such that

1. (boundary) preE ≤ I and I · (1 − χG) ≤ postE;
2. (invariant) I · χG ≤ wp(body , I);
3. (soundness) the loop terminates with probability 1 from any state that satisfies

G, and
(a) the number of iterations is finite, or
(b) I is bounded from above by some fixed constant, or
(c) the expected value of I ·χG tends to zero as the number of iterations tends

to infinity.

Since soundness of a loop invariant is not related to pre- and postconditions and
can be verified from its type before any specific invariants are found, we focus on
the boundary and invariant conditions in Theorem 5. The soundness property
is left to be verified manually in case studies.

For pre-expectation preE and post-expectation postE , the boundary and
invariant conditions in Theorem 5 provide the following requirements for a loop
invariant I:

preE ≤ I

I · (1 − χG) ≤ postE
I · χG ≤ wp(body , I). (2)

The inequalities induced by the boundary and invariant conditions contain
indicator functions, which may be difficult to analyze if they appear multiple
times. So we rewrite them to a standard form. For a Boolean expression F , we
use [F ] to represent its integer value, i.e. [F ] = 1 if F is true, and [F ] = 0
otherwise. An expectation is in disjoint normal form (DNF) if it is of the form

f = [F1] · f1 + · · · + [Fk] · fk
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where the Fi are disjoint expressions, which means any two of the expressions
cannot be true simultaneously, and the fi are polynomials.

Lemma 6 [21]. Suppose f = [F1]·f1+· · ·+[Fk]·fk and g = [G1]·g1+· · ·+[Gl]·gl

are expectations over Xn in DNF. Then, f ≤ g if and only if (pointwise)

k∧

i=1

l∧

j=1

[

Fi ∧ Gj ⇒ fi ≤ gj

]

∧
k∧

i=1

[

Fi ∧
( l∧

j=1

¬Gj

)

⇒ fi ≤ 0

]

∧
l∧

j=1

[( k∧

i=1

¬Fi

)

∧ Gj ⇒ 0 ≤ gj

]

. (3)

Example 7. Consider the following loop sentence for our running example:

〈xy − x2〉 z := 0; while(0 < x < y){x := x + 1 [0.5] x := x − 1; z := z + 1; } 〈z〉

For this case, the following must hold for any loop invariant I.

xy − x2 ≤ I

I · [x ≤ 0 ∨ y ≤ x] ≤ z

I · [0 < x < y] ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1)

By Lemma 6, these requirements can be written as

xy − x2 ≤ I ∧ (4)

x ≤ 0 ∨ y ≤ x ⇒ I ≤ z ∧ (5)

0 < x < y ⇒ 0 ≤ z ∧ (6)

0 < x < y ⇒ I ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1) ∧ (7)

x ≤ 0 ∨ y ≤ x ⇒ 0 ≤ 0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1) (8)

The program in this example originally served as a running example in [7].
There, after transforming the constraints into the form above, Lagrange interpo-
lation was applied to synthesize the template coefficients. Our approach asserts
the correctness of each conjunct in (4–8) by checking the nonnegativity of the
polynomial on the right side over a semialgebraic set related to polynomials
on the left side. In this way, we use the Positivstellensatz to synthesize the
coefficients.
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4 Constraint Solving by Semidefinite Programming

Our aim is to synthesize coefficients for the fixed invariant template for simple
(Subsect. 4.1) and nested (Subsect. 4.2) programs. Checking the validity of con-
straints can be transformed into checking the emptiness of a semialgebraic set.
Then, we show that the emptiness problem can be turned into sum-of-squares
constraints using Stengle’s Positivstellensatz.

Our Approach in a Nutshell. For a given polynomial template as a candidate
quantitative loop invariant, it needs to satisfy boundary and invariant condi-
tions. Our goal is to synthesize the coefficients in the template. These conditions
describe a semialgebraic set, and the satisfiability of the constraints is equiva-
lent to the non-emptiness of the corresponding semialgebraic set. Applying the
Positivstellensatz (see Sect. 2.3), we will transform the problem to an equivalent
semidefinite programming problem using Lemma 8. Existing efficient solvers can
be used to solve the problem. A more efficient yet sufficient way is to transform
the problem into a sum-of-squares problem using Lemma 9 and then to solve
it by semidefinite programming. After having synthesized the coefficients of the
template, we verify whether they are valid. In case of a negative answer, which
may happen due to numerical errors, some amendments can be made by adding
further constraints, which is described in Sect. 4.3. If the problem is still unsolved,
we try raising the degree of the template and reiterate the procedure.

4.1 Synthesis Algorithm for Simple Loop Programs

Now we are ready for the transformation method. Each conjunct obtained in
Lemma 6 is of the form F ⇒ G, where F is a quantifier-free formula constructed
from (in)equalities between polynomials in R

≤d[Xn], and G is of the form f ≤ g,
f ≤ 0 or 0 ≤ g, with f, g ∈ R

≤d[Xn]. If F contains negations, we use De Morgan’s
laws to eliminate them. If there is a disjunction in F , we split the constraints
into sub-constraints as ϕ ∨ ψ ⇒ χ is equivalent to (ϕ ⇒ χ) ∧ (ψ ⇒ χ). After
these simplifications, F ⇒ G can be written in the form

∧
i(fi �i 0) ⇒ g ≥ 0

where �i ∈ {≥,=}. Observe that a constraint
∧

i(fi �i 0) ⇒ g ≥ 0 is satisfied if
and only if the set {x|fi(x) �i 0 for all i; −g(x) ≥ 0; and g(x) 	= 0} is empty. In
this way, we transform our constraint into the form required by Theorem 4.

Summarizing, Constraint (2) (the main condition of Theorem 5) is satisfied
if and only if all semialgebraic sets created using the procedure above are empty.
Now we are ready to transform this constraint to an SDP problem.

Lemma 8 [9,25]. The emptiness of (1) is equivalent to the feasibility of an SDP
problem.

This and the following results are proven in the technical report [12] accom-
panying this publication. Although the transformation in Lemma 8 is effective,
it is complicated in practice. In the following lemma we present a simpler yet
sufficient procedure.
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Lemma 9. The following statements hold (with �i ∈ {≥,=}):
1. f(Xn) ≥ 0 ⇒ g(Xn) ≥ 0 holds if g(Xn) − u · f(Xn) is a sum of squares for

some u ∈ R≥0.
2. f(Xn) = 0 ⇒ g(Xn) ≥ 0 holds if g(Xn) − v · f(Xn) is a sum of squares for

some v ∈ R.
3. f1(Xn) �1 0 ∧ f2(Xn) �2 0 ⇒ g(Xn) ≥ 0 holds if g(Xn) − r1 · f1(Xn) − r2 ·

f2(Xn) is a sum of squares for some r1, r2 ∈ R; if �i is ≥, it is additionally
required that ri ≥ 0.

Note that Item (3) can be strengthened slightly by adding a cross product
r12f1(Xn)f2(Xn) and squares of the fi(Xn).

Example 10. Applying the above procedure, Constraint (5) in Example 7 is split
into (x ≤ 0 ⇒ I ≤ z) ∧ (y ≤ x ⇒ I ≤ z) and then normalized to (−x ≥ 0 ⇒
z − I ≥ 0) ∧ (x − y ≥ 0 ⇒ z − I ≥ 0). This holds if z − I + u1x is a SOS for
some u1 ∈ R≥0 and z − I + u2(y − x) is a SOS for some u2 ∈ R≥0. The other
constraints can be handled in a similar way.

After applying the Positivstellensatz and Lemma 8, template coefficients for
the loop invariant can be synthesized efficiently by semidefinite programming.
See our technical report [12] for details on the corresponding technique.

Algorithm 1. Loop Invariant Generation with Refinement
Input: sentence := 〈preE〉 while(G){body} 〈postE〉 with program variables Xn

Output: a loop invariant satisfying the boundary and invariant conditions

1: loop
2: d := 2
3: Choose a template for I ∈ R

≤d[Xn]
4: Let f be Constraint (2), i. e. the boundary and invariant conditions from Theo-

rem 5, for sentence
5: Let constraints be the SDP problem equivalent to f according to Lemma 8
6: while constraints is feasible do
7: Set the coefficients in the template for I
8: Round the coefficients of I into rational numbers
9: if I satisfies the boundary and invariant conditions then

10: Output I and terminate
11: end if
12: Refine constraints
13: end while
14: d := d + 2
15: end loop

We summarize our approach in Algorithm 1. The aim is to synthesize the
coefficients of template I. The terms in I are all terms with degree ≤ d from
variables in Xn. Algorithm 1 is semi-complete in the sense that it will generate
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an invariant if there exists one. Its termination is guaranteed in principle by
Theorem 4 and the equivalence between SOS and SDP in Lemma 8, though due
to numerical errors, the algorithm may fail to find I in practice.

For efficiency, Lemma 9 is often used instead of Lemma 8. Step 5 in
Algorithm 1 is replaced by: “Let constraints be the relaxation of f to an SOS
problem according to Lemma 9”; this can be translated to an equivalent SDP
problem, which is simpler than the direct translation of Lemma 8.

Example 11. We extend Example 7 using Lemma 9. To illustrate our solution
method, we choose Constraints (4), (5), and (7). The initial condition z = 0 is not
included in these constraints, so (4) needs to be refined to z = 0 ⇒ xy − x2 ≤ I.

First, we set a template for I. Assume I as a quadratic polynomial with three
variables x, y, z:

I = c0 + c1x + c2y + c3z + c11x
2 + c12xy + c13xz + c22y

2 + c23yz + c33z
2

where c0, . . . , c33 ∈ R are coefficients that remains to be determined.
For Constraint (4) with initial constraint z = 0, we get the following corre-

sponding constraint:

I − (xy − x2) − v · z ≥ 0 (4′)

For (5), the antecedens is a conjunction of two constraints. As in Example 10,
(5) is split into two constraints and transformed into

z − I + u1 · x ≥ 0 and
z − I − u2 · (x − y) ≥ 0 (5′)

For (7), the constraint 0 < x < y needs to be split into two inequalities
x > 0 ∧ y − x > 0. Similarly to (5), we transform (7) to

0.5 · I(x + 1, y, z + 1) + 0.5 · I(x − 1, y, z + 1) − I − u3 · x − u4 · (y − x) ≥ 0
(7′)

In this way the example can be transformed into an SDP problem with
constraints (4′), (5′), and (7′), and positivity constraints on the multipliers u1 ≥
0, . . . , u4 ≥ 0. (For v, an arbitrary real value is allowed.) Then the resulting SDP
problem can be submitted to any SOS solver.

The result using solver SeDuMi [30] is shown below.

I = −7.1097 · 10−10 − 3.8818 · 10−10x − 0.4939 · 10−10y + z − x2 + xy +
2.7965 · 10−10xz + 0.97208 · 10−10y2 + 4.4656 · 10−10yz − 0.28694 · 10−10z2

If we ignore the amounts smaller than the order of magnitude of 10−6, we
get I = z − x2 + xy. This I satisfies all constraints (including (6) and (8), which
are similar to (5) and (7)), so it is correct.
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4.2 Synthesis Algorithm for Nested Loop Programs

We are now turning to programs containing nested loops. To simplify our dis-
cussion, we assume the program only contains a single, terminating inner loop,
i.e. it can be written as

P = while(G){body}
= while(G){body1 ; while(Ginn){body inn}; body2}

where body1 , body inn, and body2 are loop-free program fragments. (If the inner
loop is placed within an if statement, one can transform it to the above
form by strengthening G.) For a given preE and postE , we need to verify
whether there exists an invariant I that satisfies Constraint (2) (the bound-
ary and invariant conditions of Theorem 5). We denote the inner loop by
Pinn = while(Ginn){bodyinn}.

For such a program, the main difficulty is how to deal with wp(body , I) in
Constraint (2). We propose a method here that takes the inner and outer iter-
ation into consideration together and uses the verified pre-expectation of the
inner loop to relax the constraint.

Fix templates for the polynomial invariants: I for the outer loop and Iinn for
the inner loop Pinn, both with degree d. Since body2 is loop-free, it is easy to
obtain Ĩ := wp(body2 , I). We use Ĩ as post-expectation postE inn for the inner
loop. Note that (2) for the inner loop requires preE inn ≤ Iinn, so we can use
the template Iinn also as template for preE inn. Then the constraints for loop
invariants I and Iinn are

preE ≤ I

I · [1 − χG] ≤ postE
I · χG ≤ w̃p(body , I) := wp(body1 , preEinn)

preE inn = Iinn

Iinn · [1 − χGinn ] ≤ postE inn = wp(body2 , I)
Iinn · χGinn ≤ wp(body inn, Iinn)

(9)

The first three equations are almost Constraint (2) for the outer loop, except
that w̃p is the strengthening of the weakest pre-expectation using preE inn =
Iinn in the wp-calculation instead of wp(Pinn, Ĩ). The last three equations are
Constraint (2) for the inner loop, except that we require equality in preE inn ≤
Iinn.

Then we have the following lemma, proven in our technical report [12].

Lemma 12. An invariant I that satisfies Constraint (9) also satisfies (2), there-
fore it is a loop invariant for program P .

4.3 Handling Numerical Error

In practice, it sometimes happens that numerical errors lead to wrong or trivial
coefficients in the templates. We suggest several methods to refine the constraints
and avoid these errors.
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Due to the inaccuracy of floating-point calculations, it is hard for a software
to check equations and inequalities like x = 0 or x 	= 0. A common trick to
avoid this problem is to turn the equality constraint into x ≥ 0 ∧ x ≤ 0. As
for inequalities, taking x 	= 0 as an example, a way to solve the problem is
adding a new variable y to transform the constraint into xy ≥ 1, since xy ≥ 1
implies x 	= 0 for any value of y. The new constraints are in the form required
by Theorem 4.

Numerical errors may also lead to an unsound invariant: we may get some
coefficients with a small magnitude, which often result from floating-point inac-
curacies. A common solution for this problem is to ignore those small numbers,
usually smaller than 10−6 in practice, which means that if r is presented as a0

a1
with a1 > 0, then it is the closest to r in all rational numbers having smaller
denominator. In Example 11, eliminating the terms with a small order of mag-
nitude was successful, but we cannot be sure whether the resulting invariant is
correct if the remaining coefficients are approximate. We propose to check the
soundness of such solutions symbolically as follows. Checking whether the gen-
erated invariant satisfies Constraint (2) is a special case of quantifier elimination
∀xn ∈ R

n, f(xn) ≥ 0. Such problem can be solved efficiently using an improved
Cylindrical Algebraic Decomposition (CAD) algorithm implemented in [17]. In
our experiments in Sect. 5, the found solutions are obtained by ignoring small
numbers, and we verified they are correct by running CAD in a separate tool.

If the invariant still violates some of the constraints, we can try to strengthen
the constraint (e. g., change x ≥ 0 to x ≥ 0.1) and repeat our method.

5 Experimental Results

We have implemented a prototype in Python to test our technique. We call the
MATLAB toolbox YALMIP [22] with the SeDuMi solver [30] to solve the SDP
feasibility problem. We use the math software Maple to verify the correctness of
the constraints through CAD. The experiments were done on a computer with
Intel(R) Core(TM) i7-4710HQ CPU and 16 GiB of RAM. The operating system
is Window 7 (32bit). Constraint refinement cannot be handled automatically in
the current version, but we plan to add it together with projection for rounding
solutions in a future version.

Our prototype and the detailed experimental results can be found at http://
iscasmc.ios.ac.cn/ppsdp. For each probabilistic program, we give the pre- and
post-expectations in Table 1. The annotated pre-expectation serves as an exact
estimate of the annotated post-expectation at the entrance of the loop. We
apply the method to several different types of examples. A summary of the
results is shown in Table 1. The first eleven probabilistic programs are bench-
marks taken from paper [7]. We have further constructed three case studies to
illustrate continuous distributions, polynomial probabilistic programs and nested
loop programs. Detailed descriptions and the code of all examples are available
from [12]. After generating an invariant, we ran CAD in Maple manually to
verify its feasability.

http://iscasmc.ios.ac.cn/ppsdp
http://iscasmc.ios.ac.cn/ppsdp
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Table 1. The column “Name” shows the name of each experiment. The annotated pre-
and post-expectations are shown in the columns “preE” and “postE”. The inferred
quantitative loop invariant for each example is given in the column “Invariant”. The
column “Time” gives the running time needed of our tool: the first one is the total
running time, and the second one is the time used in the SeDuMi solver.

Name preE postE Invariant Time (s)

ruin xy − x2 z z + xy − x2 0.4/0.3

bin1 x + 1
4
ny x x + 1

4
ny 0.4/0.2

bin2 1
8
n2 − 1

8
n + 3

4
ny x x + 1

8
n2 − 1

8
n + 3

4
ny 0.7/0.3

bin3 1
8
n2 − 1

8
n + 3

4
ny2 x x−0.0057n−0.0014x2 +

0.1763xn + 712.909n2 +
0.0014x2n+0.4114xn2 +
0.4188ny2 − 0.0178n3

0.7/0.3

geo x + 3zy x x + 3zy 0.2/0.2

geo2 x + 15
2

x x+30.2312y+3.4699z−
12.6648y2 − 44.6591yz −
35.5112z2 − 22.8807

0.2/0.1

sum 1
4
n2 + 1

4
n x x + 1

4
n2 + 1

4
n 0.3/0.1

prod 1
4
n2 − 1

4
n xy − 1

4
n + xy + 1

2
xn +

1
2
yn + 1

4
n2

0.3/0.1

fair coin1 1
2

− 1
2
x 1 − x + xy 0.7130 − 0.5622x +

0.3364y + 0.8564n −
1.2740x2 + 07610xy −
1.4572xn − 1.2208y2 +
1.4572yn − 0.1366n2

0.2/0.1

fair coin2 1
2

− 1
2
y x + xy 1.1941 + 1.6157x +

0.6387y + 7.9774n −
14.6705x2 + 9.7904xy −
14.9948xn− 14.6457y2 +
14.9948yn − 1.4058n2

0.3/0.1

fair coin3 8
3

− 8
3
x − 8

3
y + 1

3
n n 6.0556 + 2.5964x +

3.2468y + 39.2052n −
69.9038x2 + 44.0224xy −
72.1408xn− 69.8067y2 +
72.1408yn − 6.7632n2

0.2/0.1

simple perceptron −2b n n − 2b 0.3/0.1

airplane delay 106.548x h 106.548x − 106.548n + h 0.4/0.2

airplane delay2 282.507x h 282.507(x − n) + h 0.5/0.2

nested loop 20(m − x) k k + 20(m − x) 1.6/1.1

As we can see from Table 1, the running time of our method is within one
second. There are some notes when calculating the examples. We relax the loop
condition z 	= 0 in example geo2 into z ≥ 0.5. Also in the fair coin example, we
relax the loop condition x 	= y into x − y ≥ 0.5 ∨ y − x ≥ 0.5. Since variables in
those two examples are integers, the relaxation is sound.
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5.1 Evaluation

Other approaches to compute loop invariants in probabilistic programs are the
Lagrange Interpolation Prototype (LIP) in [7], the tool for martingales (TM)
in [3] and Prinsys in [15]. The tools are executed on the same computer, LIP
and TM under Linux and the other two under Windows. In Table 2, we compare
the features supported by the four tools.

Table 2. Comparison of the features supported by 4 tools

Prinsys LIP TM Our tool

Type of program Linear Cubic Linear Polynomial

Type of invariant Linear Polynomial Linear Polynomial

Computation method Symbolic Symbolic Numerical Numerical

Distribution of variable Discrete Discrete Continuous Continuous

We have tested the examples in Table 1 on these four tools. Prinsys takes
the longest time and fails to verify any of non-linear examples presented. LIP
fails to verify any examples that include a continuous variable or have a degree
larger than 3; additionally it is always about 10 times slower than our tool. TM
fails to verify examples ruin, bin3 and geo directly. We observe that it cannot
treats constraints of the form x = y or x 	= y (where x and y might be variables
or constants). However, by transforming x = y into x ≥ y ∧ y ≥ x, TM can
synthesize a supermartingale for the program. Also, it cannot verify the simple
perceptron, as it is a non-linear program. Furthermore, TM cannot deal with
nested loop programs.

A weakness of our approach is that it depends heavily on the number of
variables. We have constructed an artificial example to expose this: a parametric
linear program that repeats t times the probabilistic assignment

h := h + x1 + · · · + xn [0.5] h := h + x1 + · · · + xn + UnifDist(0, 2n)

This program has n + 2 variables. Table 3 compares the time consumption of
the main technical step in our prototype. Adding five variables leads to a solver
time that is about 2.5 times higher, showing that the measured solver time is
exponential in the number of variables. The full description and code are, again,
in our report [12].

Table 3. Comparison of running time (in seconds) of the parameterized linear example

Number of variables n = 15 n = 20 n = 25 n = 30 n = 35 n = 40

Solver time of our tool 0.41 1.30 2.44 8.30 20.56 46.62
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6 Conclusion

In this paper, we propose a method to synthesize polynomial quantitative invari-
ants for recursive probabilistic programs by semialgebraic programming via
a Positivstellensatz. First, a polynomial template is fixed whose coefficients
remain to be determined. The loop and its pre- and post-expectation can be
transformed into a semialgebraic set, of which the emptiness can be decided by
finding a counterexample satisfying the condition of the Positivstellensatz. Semi-
definite programming provides an efficient way to synthesize such a counterexam-
ple. The method can be applied to polynomial programs containing continuous
or discrete variables, including those with nested loops. When numerical errors
prevent finding a loop invariant polynomial right away, we currently can cor-
rect them ad hoc (by deleting terms with very small coefficients and sometimes
strengthening the constraints), but we would like to develop a more systematic
treatment.

As future improvement, we are working on the handling of numerical errors.
A better approximation can be found by projecting Ĩ(x) onto a rational sub-
space defined by SDP constraints [19,26]. There are also acceleration meth-
ods for different types of probabilistic programs: For linear programs, Handel-
man’s Positivstellensatz describes a faster way to synthesize SOS constraints,
and for Archimedean programs, [9] describes a faster way to apply Stengle’s
Positivstellensatz.
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Abstract. Repair mechanisms are important within resilient systems to
maintain the system in an operational state after an error occurred. Usu-
ally, constraints on the repair mechanisms are imposed, e.g., concerning
the time or resources required (such as energy consumption or other kinds
of costs). For systems modeled by Markov decision processes (MDPs),
we introduce the concept of resilient schedulers, which represent con-
trol strategies guaranteeing that these constraints are always met within
some given probability. Assigning rewards to the operational states of
the system, we then aim towards resilient schedulers which maximize
the long-run average reward, i.e., the expected mean payoff. We present
a pseudo-polynomial algorithm that decides whether a resilient sched-
uler exists and if so, yields an optimal resilient scheduler. We show also
that already the decision problem asking whether there exists a resilient
scheduler is PSPACE-hard.

1 Introduction

Computer systems are resilient when they incorporate mechanisms to adapt to
changing conditions and to recover rapidly or at low costs from disruptions. The
latter property of resilient systems is usually maintained through repair mech-
anisms, which push the system towards an operational state after some error
occurred. Resilient systems and repair mechanisms have been widely studied in
the literature and are an active field of research (see, e.g., [2] for an overview).
Errors such as measurement errors, read/write errors, connection errors do not
necessarily impose a system error but may be repaired to foster the system to
be operational. Examples of repair mechanisms include rejuvenation procedures
that face the degradation of software over time [13], the evaluation of checksums
to repair communication errors, or methods to counter an attack from outside
a security system. The repair of a degraded software system could be achieved,
e.g., by clearing caches (fast, very good availability), by running maintenance
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methods (more time, less availability, but higher success), or by a full restart
(slow, cutting off availability, but guaranteed success). Depending on the situ-
ation the system faces, there is a trade-off between these characteristics and a
choice has to be made, which of the repair mechanisms should be executed to
fulfill further constraints on the repair, which errors should be avoided, and to
optimize an overall goal. Usually, finding suitable control strategies performing
the choices for repair is done in an ad-hoc manner and requires a considerable
engineering effort.

In this paper, we face the question of an automated synthesis of resilient
control strategies that maximize the long-run average availability of the system.
Inspired by the use of probabilistic response patterns to describe resilience [8], we
focus on control strategies that are probabilistically resilient, i.e., with high prob-
ability repair mechanisms succeed within a given amount of time or other kinds
of costs. Our formal model we use to describe resilient systems is provided by
Markov decision processes (MDPs, see, e.g., [17,19]). That is, directed graphs
over states with edges annotated by actions that stand for non-deterministic
choices and stochastic information about the probabilistic choices resolved after
taking some action. Following [3,16], we distinguish between three kinds of states:
error, repair and operational states. Error states stand for states where a disrup-
tion of the system is discovered, initiating a repair mechanism modeled by repair
states. Operational states are those states where the system is available and no
repair is required. To reason about the trade-off between choosing control strate-
gies, we amend error and repair states with cost values, and operational states
with payoff values, respectively. Assigned costs formalize, e.g., the time required
or the energy consumed for leaving an error or repair state. Likewise, assigned
payoff values quantify the benefit of some operational state, e.g., stand for the
number of successfully completed tasks while being operational. We define the
long-run average availability as the mean-payoff. Control strategies in MDPs
are provided by (randomized) schedulers that, depending on the history of the
system execution, choose the probability of the next action to fire. When the
probabilities for action choices are Dirac, i.e., exactly one action is chosen almost
surely, the scheduler is called deterministic. Schedulers which select an action
only depending on the current state, i.e., do not depend on the history, are called
memoryless. For a given cost bound R and a probability threshold ℘, we call a
scheduler resilient if the scheduler ensures for every error a recovery within at
most R costs with probability at least ℘.

Our Contribution. We show that if the cost bound R is represented in unary,
the existence of a resilient scheduler is solvable in polynomial time. Further,
we show that if there is at least one resilient scheduler, then there also exists
an optimal resilient scheduler R computable in polynomial time. Here, optimal-
ity means that R achieves the maximal long-run average availability among all
resilient schedulers. The constructed scheduler R is randomized and uses finite
memory. The example below illustrates that deterministic or memoryless ran-
domized schedulers are less powerful. If R is encoded in binary, our algorithms
are exponential, and we show that deciding the existence of a resilient scheduler



Synthesis of Optimal Resilient Control Strategies 419

sinit error

op1

rep

op2
β

β

α

Fig. 1. Optimal resilient schedulers might require finite memory and randomization

becomes PSPACE-hard. Let us note that all numerical constants (such as ℘ or
MDP transition probabilities) except for R are represented as fractions of binary
numbers. The key technical ingredients of our results are non-trivial observations
about the structure of resilient schedulers, which connect the studied problems
to the existing works on MDPs with multiple objectives and optimal strategy
synthesis [7,11,17]. The PSPACE-hardness result is obtained by a simple reduc-
tion of the cost-bounded reachability problem in acyclic MDPs [15]. More details
are given at appropriate places in Sect. 3. Due to space constraints, full proofs
can be found in the full version of this paper [4].

Example. As a simple example, consider an MDP model of a resilient system
depicted in Fig. 1. Operational states are depicted by thin rounded boxes, error
states are shown as rectangles and repair states are depicted by thick-rounded
boxes. Assigned cost and payoff values are indicated above the nodes of the MDP.
For edges without any action name or probability, we assume one action with
probability one. The system starts its execution in the operational state sinit , from
which it reaches the error state error and directly invokes a repair mechanism by
switching to the repair state rep, where either action α or β can be chosen. After
taking α, an operational state op1 is reached that, however, does not grant any
payoff. When choosing β, a fair coin is flipped and either the repair mechanism
has to be tried again or the operational state op2 is reached, while providing
the payoff value 1 for each visit of op2. Assume that we have given the cost
bound R = 2 and probability threshold ℘ = 4/5. The memoryless deterministic
strategy always choosing β yields the maximal possible mean payoff of 1, but is
not resilient as ℘ > 1− 1/2R = 3/4. The memoryless randomized scheduler that
chooses β with probability 2/

√
5 is resilient and achieves the maximal mean

payoff of 1/(
√

5 − 1) ≈ 0.809, when ranging over all memoryless randomized
schedulers. Differently, the finite-memory randomized scheduler playing β with
probability 4/5 in the second step and with probability 1 in all other steps yields
the mean payoff of 0.9, which is optimal within all resilient schedulers. As this
example shows, optimal resilient schedulers might require randomization and
finite memory in terms of remembering the accumulated costs spent so far after
an error occurred.

Related work. Concerning the analysis of resilient systems, [3] presented algo-
rithms to reason about trade-offs between costs and payoffs using (probabilistic)
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model-checking techniques. In [18], several metrics to quantify resiliency and
their applications to large scale systems has been detailed.

Synthesis of control strategies for resilient systems have been mainly consid-
ered in the non-probabilistic setting. In [16], a game-theoretic approach towards
synthesizing strategies that maintain a certain resilience level has been presented.
The resilience level is defined in terms of the number of errors from which the
system can recover simultaneously. Automatic synthesis of Pareto-optimal imple-
mentations of resilient systems were detailed in [10]. Robust synthesis procedures
with both, qualitative and mean-payoff objectives have been presented in [6]. In
[14], the authors present algorithms to synthesize controllers for fault-tolerant
systems compliant to constraints on power consumption.

Optimization problems for MDPs with mean-payoff objectives and con-
straints on cost structures have been widely studied in the field of constrained
Markov decision processes (see, e.g., [19] and [1] for an overview). MDPs with
multiple constraints on the probabilities for satisfying ω-regular specifications
were studied in [11]. This work has been extended to also allow for (multiple)
constraints on the expected total reward in MDPs with rewards in [12]. Syn-
thesis of optimal schedulers with multiple long-run average objectives in MDPs
has been considered in [7,9]. All of the mentioned approaches have in common
that they adapt well-known linear programs to synthesize optimal memoryless
randomized schedulers (see, e.g., [17,19]). We also use combinations of similar
techniques to find optimal resilient schedulers. As far as we know, we are the first
to consider mean-payoff optimization problems under cost-bounded reachability
probability constraints. Although we investigate these problems in the context
of resilient systems, they are interesting by its own.

2 Notations and Problem Statement

Given a finite set X, we denote by Dist(X) the set of probability distributions
on X, i.e., the set of functions μ : X → [0, 1] where

∑
x∈X μ(x) = 1. By X∞ we

denote finite or infinite sequences of elements of X. We assume that the reader is
familiar with principles about probabilistic systems, logics, and model-checking
techniques and refer to [5] for an introduction in these subjects.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a triple M = (S,Act , P, sinit), where S is
a finite state space, sinit ∈ S an initial state, Act a finite set of actions, and
P : S × Act × S → [0, 1] a transition probability function, i.e., a function where∑

s′∈S P (s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act . For s ∈ S, let Act(s) denote
the set of actions α ∈ Act that are enabled in s, i.e., α ∈ Act(s) iff P (s, α, ·) is
a probability distribution over S. Unless stated differently, we suppose that any
MDP does not have any trap states, i.e., states s where Act(s) = ∅. Paths in M
are alternating sequences s0α0s1α1 . . . ∈ S × (Act×S)∞ of states and actions,
such that P (si, αi, si+1) > 0 for all i ∈ N. The set of all finite paths starting in
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state s ∈ S is denoted by FinPaths(s), where we omit s when all finite paths
from any state are issued.

A (randomized, history-dependent) scheduler for M is a function
S : FinPaths → Dist(Act). A S-path in M is a path π = s0α0s1α1 . . . in M
where for all n ∈ N we have that S(s0α0s1α1 . . . αn−1sn)(αn) > 0. We write
PrSM,s for the probability measure on infinite paths of M induced by a scheduler
S and starting in s. For a scheduler S and π ∈ FinPaths, S ↑ π denotes the
residual scheduler T given by T(π′) = S(π;π′) for each finite path π′ where the
first state of π′ equals the last state of π. Here ; is used for the concatenation
operator on finite paths. S is called memoryless if S(s) = S(π) for all s ∈ S
and all finite paths π ∈ FinPaths where the last state of π is s. We abbreviate
memoryless (randomized) schedulers as MR-schedulers.

2.2 Markov Decision Processes with Repair

Let M = (S,Act , P, sinit) be an MDP and suppose that we have given two
disjoint sets of states Err ,Op ⊆ S. Intuitively, Err stands for the set of states
where an error occurs, and Op stands for the set of states where the system
modeled is operational. In all other states, we assume that a repair mechanism
is running, triggered directly within the next transition after some error occurred.
We formalize the latter assumption by

e |= ∀ © ∀(¬Err WOp) for all states e ∈ Err (∗)

where © and W stand for the standard next and weak-until operator, respec-
tively, borrowed from computation tree logic (CTL, see, e.g., [5]). Assumption (*)
also asserts that as soon as a repair protocol has been started, the system does
not enter a new error state before a successful repair, i.e., until the system
switches to its operational mode.

Further, we suppose that states in M are amended with non-negative integer
values, i.e., we are given a non-negative integer reward function rew : S → N.
For an operational state s ∈ Op, the value rew(s) is viewed as the payoff value
of state s, while for the non-operational states s ∈ S\Op, the value rew(s) is
viewed as the repairing costs caused by state s. To reflect this intuitive meaning
of the reward values, we shall write payoff (s) instead of rew(s) for s ∈ Op and
cost(s) instead of rew(s) for s ∈ S\Op. Furthermore, we assume payoff (s) = 0
if s ∈ S\Op and cost(s) = 0 if s ∈ Op. For a finite path π = s0α0s1 . . . αn−1sn,
let cost(π) and payoff (π) be

∑n
i=0 cost(si) and

∑n
i=0 payoff (si), respectively.

An MDP with repair is formally defined as a tuple (M,Err ,Op, rew), where
assumption (*) is satisfied and the transition probability function of M is ratio-
nal, assuming representation of probabilities as fractions of binary numbers.

2.3 Long-Run Availability and Resilient Schedulers

Given an MDP with repair (M,Err ,Op, rew) and a scheduler S for M, we
define the long-run availability of S, denoted by AvailSM,sinit

, as the expected



422 C. Baier et al.

long-run average (mean-payoff) of the payoff function. That is, for any s0 ∈ S,
AvailSM,s0

agrees with the expectation of the random variable X under PrSM,s0

that assigns to each infinite path ζ = s0 α0 s1 α1 s2 α2 . . . the value

X(ζ) = lim inf
n→∞

1
n

n−1∑

i=0

payoff (si).

Let us further assume that we have given a rational probability threshold
℘ ∈ (0, 1] and a cost bound R ∈ N. The threshold ℘ is always represented as
a fraction of two binary numbers. The bound R is represented either in binary
or in unary, which significantly influences the (computational) complexity of the
studied problems.

Definition 1 (Resilient schedulers). A scheduler S is said to be probabilis-
tically resilient with respect to ℘ and R if the following conditions (Res) and
(ASRep) hold for all finite S-paths π from sinit to an error state s:

PrS↑π
M,s

( ♦�R Op
)

� ℘ (Res)

PrS↑π
M,s

( ♦Op
)

= 1 (ASRep)

Here, ♦Op denotes the set of infinite paths ζ for which there exist a finite path π′

and an infinite path � such that ζ = π′; � and the last state of π′ is in Op. Further,
♦�R Op denotes the set ♦Op restricted to paths satisfying cost(π′) � R.

The task addressed in this paper is to check the existence of resilient sched-
ulers (i.e., schedulers that are probabilistically resilient w.r.t. ℘ and R), and if so,
construct an optimal resilient scheduler R that has maximal long-run availability
amongst all resilient schedulers, i.e., AvailRM,sinit

= Availmax
M,sinit

, where

Availmax
M,sinit

= sup
{

AvailR
′

M,sinit
: R′ is a resilient scheduler

}
.

3 The Results

In the following, we present and prove our main result of this paper:

Theorem 1. Let (M,Err ,Op, rew) be an MDP with repair, ℘ ∈ (0, 1] a ratio-
nal probability threshold, and R ∈ N a cost bound encoded in unary. The existence
of a probabilistically resilient scheduler w.r.t. ℘ and R is decidable in polynomial
time. If such a scheduler exists, then an optimal probabilistically resilient sched-
uler R (w.r.t. ℘ and R) is computable in polynomial time.

If R is encoded in binary, our algorithms are exponential, and we show that
even the existence of a probabilistically resilient scheduler w.r.t. ℘ and R becomes
PSPACE-hard. The optimal scheduler R is randomized and history dependent,
which is unavoidable (see the example in the introduction). More precisely, the
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memory requirements of R are finite with at most |Err | · R memory elements,
and this memory is only used in the repairing phase where the scheduler needs
to remember the error state and the total costs accumulated since visiting this
error state.

For the rest of this section, we fix an MDP with repair (M,Err ,Op, rew)
where M = (S,Act , P, sinit), a rational probability threshold ℘ ∈ (0, 1], and a
cost bound R ∈ N. We say that a scheduler is resilient if it is probabilistically
resilient w.r.t. ℘ and R.

The proof of Theorem 1 is obtained in two steps. First, the MDP M is trans-
formed into a suitable MDP M̂ where the total costs accumulated since the last
error are explicitly remembered in the states. Hence, the size of M̂ is polyno-
mial in the input size if R is encoded in unary. We will show that the problem of
computing an optimal resilient scheduler can be safely considered in M̂ instead
of M. In the second step, it is shown that there exists an optimal memoryless
resilient scheduler for M̂ computable in time polynomial in the size of M̂. This
is the very core of our paper requiring non-trivial observations and construc-
tions. Roughly speaking, we start by connecting our problem to the problem of
multiple mean-payoff optimization, and use the results and algorithms presented
in [7] to analyze the limit behavior of resilient schedulers. First, we show how to
compute the set of end components such that resilient schedulers can stay only
in these end components without loosing availability. We also compute memory-
less schedulers for these end components that can safely be adopted by resilient
schedulers. Then, we show that the behavior of a resilient scheduler prior enter-
ing an end component can also be modified so that it becomes memoryless and
the achieved availability does not decrease. After understanding the structure of
resilient schedulers, we can compute an optimal memoryless resilient scheduler
for M̂ by solving suitable linear programs.

The first step (i.e., the transformation of M into M̂) is described in Sect. 3.1,
and the second step in Sect. 3.2.

3.1 Transformation

Let (M̂, Êrr , Ôp, ˆrew) be an MDP with repair where M̂ is an MDP
(Ŝ, Âct , P̂ , sinit) such that Ŝ = S ∪ Rep with

Rep = Err × S × {0, 1, . . . , R}.

Intuitively, state 〈e, s, r〉 ∈ Rep indicates that the system is in state s executing
a repair procedure that has been triggered by visiting e ∈ Err somewhen in the
past and with accumulated costs r so far. For technical reasons, we also include
triples 〈e, s, r〉 with s ∈ Op in which case a repair mode with total cost r has
just finished. The sets of error and operational states in M̂ are:

Êrr = Err and Ôp = Op ∪ { 〈e, s, r〉 ∈ Rep : s ∈ Op
}
.
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The action set of M̂ is the same as for M. In what follows, we write Âct(ŝ) for the
set of actions that are enabled in state ŝ of M̂. Then, Âct(s) = Âct(〈e, s, r〉) =
Act(s). Let s, s′ ∈ S and α ∈ Act . Then, P̂ (s, α, s′) = P (s, α, s′) if s /∈ Err . If
e ∈ Err and α ∈ Act(e), then

P̂
(
e, α, 〈e, s, cost(e)〉) = P (e, α, s)

For, e ∈ Err , r ∈ {0, 1, . . . , R}, and α ∈ Act(s) we have:

P̂
(〈e, s, r〉, α, 〈e, s′, r+cost(s)〉) = P (s, α, s′) if r+cost(s) � R and s /∈ Op

P̂
(〈e, s, r〉, α, s′) = P (s, α, s′) if r+cost(s) > R or s ∈ Op

In all remaining cases, we set P̂ (·) = 0. The reward function ˆrew of M̂ is given by
ˆcost(s) = ˆcost(〈e, s, r〉) = cost(s) and ˆpayoff (s) = ˆpayoff (〈e, s, r〉) = payoff (s).

Note that assumption (*) ensures that s /∈ Err for all states 〈e, s, r〉.
There is a one-to-one correspondence between the paths in M and in M̂.

More precisely, given a (finite or infinite) path π̂ in M̂, let π̂|M denote the unique
path in M that arises from π̂ by replacing each repair state 〈e, s, r〉 with s.
Vice versa, each path π in M can be lifted to a path π|M̂ in M̂ such that
(π|M̂)|M = π. Next lemmas follow directly from definitions of ˆcost and ˆpayoff .

Lemma 1. For each finite path π̂ in M̂ starting in some state e ∈ Êrr we have
ˆcost(π̂) = cost(π̂|M).

Lemma 2. For each infinite path ζ̂ in M̂, ˆpayoff (ζ̂) = payoff (ζ̂|M).

The one-to-one correspondence between the paths in M and in M̂ carries
over to the schedulers for M and M̂. Given a scheduler S for M, let S|M̂
denote the scheduler for M̂ given by S|M̂(π̂) = S(π̂|M) for all finite paths π̂ of
M̂. This yields a scheduler transformation S �→ S|M̂ that maps each scheduler
for M to a scheduler for M̂. Vice versa, given a scheduler Ŝ for M̂ there exists
a scheduler Ŝ|M such that Ŝ = (Ŝ|M)|M̂.

Due to assumption (*) we have that s /∈ Err for all repair states 〈e, s, r〉 that
are reachable from e in M̂. Thus, with Lemmas 1 and 2, we obtain:

Lemma 3. Let S be a scheduler for M and Ŝ a scheduler for M̂ such that
S = Ŝ|M. Then:

(a) For each state e ∈ Err: PrSM,e

( ♦Op
)

= PrŜM̂,e

(♦ Ôp
)

and

PrSM,e

( ♦�R Op
)

= PrŜM̂,e

( ♦�R Ôp
)

= PrŜM̂,e

(©(Rep UOpe)
)

where Ope =
{ 〈e, s, r〉 ∈ Rep : s ∈ Op

}
.

(b) AvailSM,sinit
= AvailŜM̂,sinit

Corollary 1. Availmax
M,sinit

= Availmax
M̂,sinit
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Proof. The above transformations π �→ π|M̂ and S �→ S|M̂ for paths and sched-
ulers of M to paths and schedulers of M̂, and the inverse mappings π̂ �→ π̂|M
and Ŝ �→ Ŝ|M for paths and schedulers of M̂ to paths and schedulers of M are
compatible with the residual operator for schedulers in the following sense:

(S ↑ π)|M̂ =
(
S|M̂) ↑ (

π|M̂)
and

(
Ŝ ↑ π̂

)|M =
(
Ŝ|M

) ↑ (
π̂|M

)

Thus, part (a) of Lemma 3 yields that Ŝ is resilient for M̂ if and only if S is
resilient for M. Part (b) of Lemma 3 then yields the claim. ��

The following mainly technical lemma shows that residual schedulers arising
from resilient schedulers maintain the resilience property.

Lemma 4. Let S be a resilient scheduler for M̂, and let s be a state of M̂ such
that s �∈ Rep. Let P be a set of finite S-paths initiated in sinit and terminating
in s, and let S′ be a scheduler for M̂ resilient for the initial state changed to s.
Consider the scheduler S[P,S′] which is the same as S except that for every
finite path w such that w = w′;w′′ where w′ ∈ P we have that S[P,S′](w) =
S′(w′′). Then S[P,S′] is resilient (for the initial state sinit).

3.2 Solving the Resilience-Availability Problem for M̂
In this section, we analyze the structure of resilient schedulers for M̂ and prove
the following proposition:

Proposition 1. The existence of a resilient scheduler for M̂ can be decided
in polynomial time. The existence of some resilient scheduler for M̂ implies
the existence of an optimal memoryless resilient scheduler for M̂ computable in
polynomial time.

Note that Theorem 1 follows immediately from Proposition 1 and Corollary 1.
We start by introducing some notions. A fragment of M̂ = (Ŝ, Âct , P̂ , sinit)

is a pair (F,A) where F ⊆ Ŝ and A : F → 2Âct is a function such that A(s) �= ∅

and A(s) ⊆ Âct(s) for every s ∈ F . An MR-scheduler for (F,A) is a function
SF assigning a probability distribution over A(s) to every s ∈ F . We say that
a scheduler S for M̂ is consistent with SF if for every π ∈ FinPaths ending in
a state of F we have that S(π) = SF (π).

An end component of M̂ is a fragment (E,A) of M̂ such that

– (E,A) is strongly connected, i.e., for all s, s′ ∈ E there is a finite path
s0α0s1 . . . αn−1sn from s = s0 to s′ = sn such that si ∈ E and αi ∈ A(si) for
all 0 ≤ i < n;

– for all s ∈ E, α ∈ A(s), and s′ ∈ Ŝ such that P̂ (s, α, s′) > 0 we have s′ ∈ E.

Let S be a scheduler for M̂ (not necessarily resilient). For every infinite path ζ,
let Fζ be the set of states occurring infinitely often in ζ. For every s ∈ Fζ ,
let Aζ(s) be the set of all actions executed infinitely often from s along ζ. For
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a fragment (F,A), let Path(F,A) be the set of all infinite paths ζ such that
Fζ = F and Aζ = A, and let PrSM̂,sinit

(F,A) be the probability of all ζ ∈
Path(F,A) starting in sinit . If (F,A) is not an end component, then clearly
PrSM̂,sinit

(F,A) = 0. Hence, there are end components (F1,A1), . . . , (Fm,Am)
such that:

PrSM̂,sinit
(Fi,Ai) > 0 for all i ≤ m, and

m∑

i=1

PrSM̂,sinit
(Fi,Ai) = 1

We say that S stays in these end components.
Proposition 1 is proved as follows. We show that there is a set E , computable

in time polynomial in |M̂|, consisting of triples of the form (E,A,SE) such
that (E,A) is an end component of M̂ and SE is an MR-scheduler for (E,A),
satisfying the following conditions (E1) and (E2):

(E1) If (E,A,SE), (E′,A′,SE′) ∈ E , then the two triples are either the same
or E ∩ E′ = ∅.

(E2) Every (E,A,SE) ∈ E is strongly connected, i.e., the directed graph (E,→),
where s → s′ iff there is some α ∈ A(s) such that SE(s)(α) > 0 and
P̂ (s, α, s′) > 0, is strongly connected. (In this case, E is a bottom strongly
connected component of the Markov chain induced by SE .)

Further, we can safely restrict ourselves to resilient schedulers whose long-run
behavior is captured by some subset E ′ ⊆ E in the following sense:

Lemma 5. Given the set E, for every resilient scheduler R there exist a set
E ′ ⊆ E and a resilient scheduler R′ such that

– almost all R′-paths starting in sinit visit a state of
⋃

(E,A,SE)∈E′ E,
– R′ is consistent with SE for every (E,A,SE) ∈ E ′,
– AvailRM̂,sinit

≤ AvailR
′

M̂,sinit
.

Using Lemma 5, we prove the following:

Lemma 6. Given the set E, there is a linear program L computable in time
polynomial in |M̂| satisfying the following: If L is not feasible, then there is
no resilient scheduler for M̂. Otherwise, there is a subset E ′ ⊆ E and an MR-
scheduler SF for the fragment (F,A) with F = Ŝ \ ⋃

(E,A,SE)∈E′ E and A(s) =
Âct(s) for every s ∈ F such that

– E ′ and SF are computable in time polynomial in |M̂|,
– the scheduler R consistent with SF and SE for every (E,A,SE) ∈ E ′ is

resilient, and
– for every resilient scheduler R′ we have that AvailRM̂,sinit

≥ AvailR
′

M̂,sinit
.

In the next subsections, we show how to compute the set E satisfying condi-
tions (E1) and (E2) in polynomial time and provide proofs for Lemmas 5 and 6.
Note that Proposition 1 then follows from Lemma 6 and the polynomial-time
computability of E .
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Constructing the Set E . For each e ∈ Err , we define the weight function
wgte : Ŝ → Q given by

wgte(〈e, s, r〉) = 1−℘ if s ∈ Op
wgte(〈e, s, r〉) = −℘ if s /∈ Op and r+cost(s) > R

and wgte(ŝ) = 0 otherwise (in particular, for all states in ŝ ∈ Ŝ that do not
have the form 〈e, s, r〉). For every scheduler S, let MPS

e be the expected value
(under PrSM̂,sinit

) of the random variable Xe assigning to each infinite S-path
ζ = s0 α0 s1 α1 s2 α2 . . . the value

Xe(ζ) = lim inf
n→∞

1
n

n−1∑

i=0

wgte(si).

We say that a scheduler S for M̂ is average-resilient if MPS
e ≥ 0 for all e ∈ Err .

Note that if R is a resilient scheduler for M̂, then Xe(ζ) ≥ 0 for almost all ζ
(this follows by a straightforward application of the strong law of large numbers).
Thus, we obtain:

Lemma 7. Every resilient scheduler for M̂ is average-resilient.

Although an average-resilient scheduler for M̂ is not necessarily resilient, we
show that the problems of maximizing the long-run availability under resilient
and average-resilient schedulers are to some extent related. The latter problem
can be solved by the algorithm of [7]. More precisely, by Theorem 4.1 of [7], one
can compute a linear program LM̂ in time polynomial in |M̂| such that:

– if LM̂ is not feasible, then there is no average-resilient scheduler for M̂;
– otherwise, there is a 2-memory stochastic update scheduler H for M̂, con-

structible in time polynomial in |M̂|, which is average-resilient and achieves
the maximal long-run availability among all average-resilient schedulers.

The scheduler H almost surely “switches” from its initial mode to its second
mode where it behaves memoryless. Hence, there is a set EH (computable in
time polynomial in |M̂|) comprising triples (E,A,HE) that enjoy the following
properties (H1) and (H2):

(H1) (E,A) is an end component of M̂ and HE is an MR-scheduler for (E,A)
achieving the maximal long-run availability among all average-resilient
schedulers for every initial state s ∈ E.

(H2) If (E,A,HE), (E′,A′,HE′) ∈ EH, then the two triples are either the same
or E ∩ E′ = ∅. Further, every (E,A,HE) ∈ EH is strongly connected.

We show that for every (E,A,HE) ∈ EH and every s ∈ E, the scheduler HE

is resilient when the initial state is changed to s (see Lemma 10). So, H starts
to behave like a resilient scheduler after a “switch” to some (E,A,HE) ∈ EH.
However, in the initial transient phase, H may violate the resilience condition,
which may disallow a resilient scheduler R to enter some of the end components
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Algorithm 1. Computing the set E .

input : the transformed MDP M̂
output: the set E satisfying (E1) and (E2)

1 Q := M̂, s := sinit , E := ∅
2 repeat
3 Compute the linear program LQ
4 if LQ is feasible then
5 compute the scheduler H and the set EH satisfying (H1) and (H2)
6 E := E ∪ EH

7 Q := Q � EH

8 else
9 Q := Q � {s}

10 if s is not a state of Q then
11 s := some state of Q
12 until Q becomes empty
13 return E

of EH. Thus, a resilient scheduler R can in general be forced to stay in an end
component that does not appear in EH. So, the set E needs to be larger than
EH, and we show that a sufficiently large E is computable in polynomial time by
Algorithm 1.

Algorithm 1 starts by initializing Q to M̂, s to sinit , and E to ∅. Then, it
computes the linear program LQ and checks its feasibility. If LQ is not feasible,
the initial state s of Q is removed from Q in the way described below. Otherwise,
the algorithm constructs the scheduler H, adds EH to E , and “prunes” Q into
Q�EH. If the state s is deleted from Q, some state of Q is chosen as a new initial
state. This goes on until Q becomes empty. Here, the MDP Q�X is the largest
MDP subsumed by Q which does not contain the states in X ⊆ Ŝ. Note that
when a state of Q is deleted, all actions leading to this state must be disabled;
and if all outgoing actions of a state s are disabled, then s must be deleted. Hence,
deleting the states appearing in EH may enforce deleting additional states and
disabling further actions. Note that every (E,A,HE) ∈ E is obtained in some
iteration of the repeat-until cycle of Algorithm 1 by constructing the scheduler
H for the current value of Q. We denote this MDP Q as QE (note that QE is
not necessarily connected). The set E returned by Algorithm 1 indeed satisfies
conditions (E1) and (E2). The outcome E = ∅ is possible, in which case there is
no resilient scheduler for M̂ as the linear program L of Lemma 6 is not feasible
for E = ∅.

An immediate consequence of property (H1) is the following:

Lemma 8. Let (E,A,HE) ∈ E and s ∈ E. Then HE achieves the maximal
long-run availability for the initial state s among all average-resilient schedulers
for QE.

The next lemma follows easily from the construction of E .
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Lemma 9. Let S be a scheduler for M̂ (not necessarily resilient) and let (F,B)
be an end component where S stays with positive probability. Then there is
(E,A,HE) ∈ E such that (F,B) is an end component of QE and F ∩ E �= ∅.

Let (E,A,HE) ∈ E . Since HE is an MR-scheduler, the behavior of HE in an
error state f ∈ E (for an arbitrary initial state s ∈ E) is independent of the
history. That is, the resilience condition is either simultaneously satisfied or
simultaneously violated for all visits to f . However, if the second case holds, HE

is not even average-resilient, what is a contradiction. Thus, we obtain:

Lemma 10. Let (E,A,HE) ∈ E, and let s ∈ E. Then the scheduler HE is
resilient when the initial state is changed to s. Further, if R is a resilient sched-
uler for QE with the initial state s, then AvailHE

QE ,s ≥ AvailRQE ,s.

Proof of Lemma 5. Let R be a resilient scheduler for M̂. We show that there
is another resilient scheduler R′ satisfying the conditions of Lemma 5. First,
let us consider the end components (F1,B1), . . . , (Fm,Bm) where R stays. For
every (Fi,Bi), let (E,A,HE) ∈ E be a triple with the maximal Avail(E) such
that Fi ∩ E �= ∅ (such a triple exists due to Lemma 9). We say that (E,A,HE)
is associated to (Fi,Bi). Let Avail(Fi,Bi) be the conditional availability w.r.t.
scheduler R under the condition that an infinite path initiated in sinit stays in
(Fi,Bi). Given a triple (E,A,HE) ∈ E , we use Avail(E) to denote the availability
achieved by scheduler HE for s. Note that Avail(E) is independent of s.

Lemma 11. Avail(Fi,Bi) ≤ Avail(E), where (E,A,HE) ∈ E is the triple asso-
ciated to (Fi,Bi).

Further, we say that (Fi,Bi) is offending if there is a finite R-path π initiated
in sinit ending in a state s ∈ E, where (E,A,HE) is associated to (Fi,Bi), such
that s �∈ Rep and the availability achieved by the scheduler R ↑ π in s is strictly
larger than Avail(E). Note that if no (Fi,Bi) is offending, we can choose E ′ as
the set of triples associated to (F1,B1), . . . , (Fm,Bm), and redefine the scheduler
R into a resilient scheduler R′ as follows: R′ behaves exactly like R until a state
s of some (E,A,HE) ∈ E ′ is visited. Then, R′ switches to HE immediately. The
scheduler R′ is resilient because s �∈ Rep (a visit to a repair state is preceded by a
visit to the associated fail state which also belongs to E) and hence we can apply
Lemma 4. Clearly, R′ is consistent with every HE such that (E,A,HE) ∈ E ′. It
remains to show that the availability achieved by R′ in sinit is not smaller than
the one achieved by R. This follows immediately by observing that whenever R′

makes a switch to HE after performing a finite R-path initiated in sinit ending
in s ∈ E, the availability achieved by the resilient scheduler R ↑ π for the initial
state s must be bounded by Avail(E), because otherwise some (Fi,Bi) would be
offending. So, the introduced “switch” can only increase the availability.

Now assume that (Fm,Bm) is offending, and let (E,A,HE) be the triple
associated to (Fm,Bm). We construct a resilient scheduler R̃ which stays in
(F1,B1), . . . , (Fm−1,Bm−1) and achieves availability not smaller than the one
achieved by R. This completes the proof of Lemma 5, because we can then
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successively remove all offending pairs. Since (Fm,Bm) is offending, there is a
finite R-path π initiated in sinit ending in a state s ∈ E such that s �∈ Rep and the
availability A achieved by R ↑ π in s is larger than Avail(E). Since Fm ∩E �= ∅,
there is a state t �∈ Rep such that t ∈ Fm ∩ E. Note that HE is resilient for the
initial state t, and almost all infinite paths initiated in t visit the state s under
the scheduler HE .

Now, we construct a resilient scheduler Ss achieving availability at least
A in s such that all components where Ss stays (for the initial state s) are
among (F1,B1), . . . , (Fm−1,Bm−1). Let Pm be the probability that an infinite
path initiated in s stays in (Fm,Bm) under the scheduler R ↑ π. If Pm = 0, we
put Ss = R ↑ π. Now assume Pm > 0. We cannot have Pm = 1, because then A
is bounded by Avail(E) (see Lemma 11). Let B be the conditional availability
achieved in s by R ↑ π under the condition that an infinite path initiated in s
stays in (F1,B1), . . . , (Fm−1,Bm−1). Since A ≤ (1−Pm) · B + Pm · Avail(E) and
A > Avail(E), we obtain B > A. For every ε > 0, let Πε be the set of all finite
(R ↑ π)-paths π′ initiated in s and ending in t such that the probability of all
infinite paths initiated in t staying in (Fm,Bm) under the scheduler R ↑ (π;π′) is
at least 1−ε. Note that each (R ↑ π)-path initiated in s and staying in (Fm,Bm) is
included in (R ↑ π)-paths starting with a prefix of Πε. Hence, a smart redirection
of the strategy after passing via Πε can avoid staying in (Fm,Bm). We use P ε

m to
denote the probability (under the scheduler R ↑ π) of all infinite paths initiated
in s starting with a prefix of Πε, and Bε to denote the conditional availability
achieved in s by R ↑ π under the condition that an infinite path initiated in s
does not start with a prefix of Πε. Since limε→0 P ε

m = Pm and limε→0 Bε = B,
we can fix a sufficiently small δ > 0 where

I. δ · M + (1−δ) · Avail(E) < A, where M is the maximal payoff assigned to a
state of M̂.

II. conditional bound Bδ > A.

The scheduler Ss is defined in the following way, where Σ denotes the set of
all finite paths � initiated in t and ending in s, such that the state s is visited
by � only once:

Ss(π′) =

⎧
⎪⎨

⎪⎩

Ss(π′′) if π′ = π̂; �;π′′ where π̂ ∈ Πδ and � ∈ Σ,

HE(π′′) if π′ = π̂;π′′ where π̂ ∈ Πδ and no prefix of π′′ is in Σ,

(R ↑ π)(π′) otherwise.

Intuitively, Ss simulates R ↑ π unless a path of Πδ is produced, in which case Ss

temporarily “switches” to HE until s is revisited and the simulation of R ↑ π is
restarted. It is easy to verify that Ss is a resilient scheduler achieving availability
equal to Bδ > A staying in end components (Fi,Bi) with i < m.

Now we can easily construct the scheduler R̃. Let Ξδ be the set of all finite
paths π initiated in sinit and ending in t where the probability of all infinite paths
initiated in t staying in (Fm,Bm) is at least 1−δ. The scheduler R̃ behaves as
R unless a path of Ξδ is produced, in which case R̃ temporarily switches to
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HE until the state s is reached, and then it permanently switches to Ss. The
availability achieved by R̃ in sinit can be only larger that the availability achieved
by R due to Conditions I and II above.

Proof of Lemma 6. Let E denote the set of triples computed by Algorithm 1.
Due to Lemma 5, we can concentrate on schedulers those paths almost surely
reach subsets E ′ ⊆ E and are consistent with the schedulers in E ′. Observe that
the transient prefix of each path then has no effect on the long-run availability
of the path and just influences the reachability probability distribution on E .
The resulting availability then is a convex combination of availabilities of the
triples in E . Thus, the aim is to find a resilient scheduler that maximizes this
convex combination. We do so by constructing an MDP N where the resilient
MR-scheduler RN with optimal reachability reward induces optimal resilient
scheduler in M̂. We show that RN can be obtained from a slightly modified
linear program of [17,19].

Let N = (SN ,ActN , PN , sinit) be an MDP over the state space

SN = Ŝ ∪ {
goalE : (E,A,HE) ∈ E } ∪ {goal}

and the action space ActN = Âct ∪ {τ}, where τ is a fresh action symbol.
The transition probabilities PN are defined as for M̂, but with additional τ -
transitions for each (E,A,HE) ∈ E :

– from each state ŝ ∈ E ∩ Ôp to goalE , i.e., PN (ŝ, τ, goalE) = 1,
– from goalE to goal , i.e., PN (goalE , τ, goal) = 1, and
– from goal to goal , i.e., PN (goal , τ, goal) = 1.

The reward function in N is given by rew(goalE) = Avail(E) for each goalE ∈
SN and rew(s) = 0 for all the remaining states s ∈ Ŝ ∪{goal}. Given a scheduler
S, the random variable TR assigns to an infinite S-path ζ = s0 α0 s1 α1 s2 α2 . . .
the total accumulated reward TR(ζ) =

∑∞
i=0 rew(si). The expected total accu-

mulated reward from a state s ∈ SN is denoted by E
S
N ,s[TR].

Lemma 12. Let R′ be a resilient scheduler for M̂ such that R′-paths from sinit

almost surely reach a subset E ′ ⊆ E and is consistent with the schedulers in E ′.
Then, there is a resilient scheduler R for N where the R-paths from sinit almost
surely reach goal and

AvailR
′

M̂,sinit
= E

R
N ,sinit

[TR].

From R′ we can easily construct an equivalent scheduler R by redefining
R′ to almost surely perform τ actions in E ∩ Ôp for (E,A,HE) ∈ E ′. From
Lemmas 5 and 12 it follows that if there is no resilient scheduler for N there
is no resilient scheduler for M̂. Let RN be the resilient scheduler that acquires
the supremum of the expected total accumulated rewards from sinit among all
resilient schedulers for N that reach goal almost surely from sinit . As we shall see
bellow, we can safely assume that RN is an MR-scheduler. The technical details
for proving the following lemma can be found in [4].
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Lemma 13. Let RN be an MR-scheduler that acquires maximal E
R′
N ,sinit

[TR]
within resilient schedulers R′ for N such that almost all R′-paths reach the goal .
Let E ′ be the set of all (E,A,HE) ∈ E such that goalE is visited from sinit with
positive probability under RN , and let Se(s) = RN (s) for each s ∈ F where
F = Ŝ \⋃

(E,A,SE)∈E′ E. Moreover, let R be the unique scheduler consistent with
Se and HE for each (E,A,HE) ∈ E ′. It holds that

AvailRM̂,sinit
= E

RN
N ,sinit

[TR].

Note that the scheduler R of Lemma 13 simulates the scheduler RN only until a
state of E ′ is visited (not until RN visits a goalE state). This is the main subtlety
hidden in Lemma 13.

A resiliency linear program. To obtain RN , let us consider the following linear
program clearly constructible in polynomial time in |N | (and thus also in |M̂|).
Intuitively, the variables yt,α stand for the expected number of times an action
α ∈ ActN is taken from state t ∈ SN . We set yt =

∑
α∈ActN (t) yt,α and define

(1) flow equation: for all states s ∈ SN \ {goal}

ys = δ(s, sinit) +
∑

t∈SN

∑

α∈ActN (t)
yt,α · PN (t, α, s)

where δ(s, sinit) is 1 if s = sinit , and 0 otherwise.
(2) non-negativeness: ys,α � 0 for all state-action pairs (s, α).
(3) flow equation for the goal state: ygoal � 1.
(4) resiliency constraint: for all e ∈ Err

∑

s∈Ope

ys � ℘ · ye

The next lemma is proven by the methods of [17,19] (the only difference
distinguishing our case is Constraint (4), which is easy to handle).

Lemma 14. Each feasible solution (z∗
s,α)s∈SN ,α∈ActN (s) of the linear program

(1)–(4) under the objective to maximize
∑

(E,A,HE)∈E ygoalE · Avail(E), induces
an MR-scheduler RN that is resilient in N and can be computed in time poly-
nomial in |N |. If there is no such solution, there is no resilient scheduler in N .

Conversely, let R be a resilient scheduler such that R-paths almost surely
reach goal and the expected number of actions executed before reaching goal is
finite. Let zs,α denote the expected number of times an action α ∈ ActN is taken
in a state s ∈ SN using R. Then, values zs,α = yt,α form a solution of the above
linear constraints (1)–(4).

According to the second part of Lemma 14, the scheduler RN achieves
the optimal total accumulated reward among all resilient schedulers where the
expected number of transitions executed before reaching goal is finite. The next
lemma shows that RN achieves the optimal total accumulated reward among all
resilient schedulers, which completes the proof of Lemma 6.
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Lemma 15. E
RN
N ,sinit

[TR] ≥ L with L being the supremum over all ER
N ,sinit

[TR]
ranging over resilient schedulers R in N those paths almost surely reach goal .

Proof. First, note that E
S
N ,sinit

[TR] for an HR-scheduler S can be approximated
up to an arbitrary small error using a sequence of schedulers Ri: For each i ∈ N

we define the scheduler Ri by acting as S until the i-th step and then continuing
as RN . The expected number of executed actions before reaching the goal state
is finite for all Ri. Clearly, |ES

N ,sinit
[TR] − E

Ri

N ,sinit
[TR]| gets arbitrarily small for

increasing i. Towards a contradiction, assume that L − E
RN
N ,sinit

[TR] > δ > 0.
Then, there is a sequence of schedulers that approximate L arbitrarily close and
there is a scheduler R such that E

R
N ,sinit

[TR] = K with |L−K| < δ/2. Moreover,
there is sequence of schedulers Ri that approximate K arbitrarily close and have
a finite expected number of executed actions before reaching goal . Hence, there
is some Ri such that

∣
∣L − E

Ri

N ,sinit
[TR]

∣
∣ < δ, which is in contradiction with the

optimality of RN among all schedulers with a finite expected number of actions
executed before reaching goal . ��

3.3 A Lower Complexity Bound

When the bound R is encoded in binary, our algorithms become exponential.
Using the PSPACE-hardness result for cost-bounded reachability problems in
acyclic MDPs by Haase and Kiefer [15], we show that the question whether
there exists a resilient scheduler is PSPACE-hard, even for acyclic MDPs, when
R is encoded in binary.

Lemma 16. If R is encoded in binary, the problem to check the existence of a
resilient scheduler and the decision variant of the resilience-availability problem
are PSPACE-hard.

Proof. In [15], the PSPACE-completeness of the following cost-problem has been
proven: Given an acyclic MDP N = (S,Act , P, sinit) with a cost function and a
cost bound R, the task is to check whether there is a scheduler S for N such that
PrSN ,sinit

(♦�R T ) � 1
2 . Here, T denotes the set of trap states in N and sinit /∈ T .

We now provide a polynomial reduction from the cost-problem à la Haase
and Kiefer [15] to the problem to decide the existence of a resilient scheduler
and the decision variant of the resilience-availability problem.

Let M be the MDP resulting from N by defining Err = {sinit} and Op = T
and adding a fresh action symbol τ and τ -transitions from the states t ∈ T to sinit .
That is, M has the same state space as N , the action set is ActM = Act ∪ {τ}
and the M’s transition probability function extends N ’s transition probability
function by P (t, τ, sinit) = 1 and P (t, α, s) = 0 for all states t ∈ T , α ∈ ActM
and s ∈ S with (s, α) �= (sinit , τ). M’s cost function is the same as in N for all
states s ∈ S and cost(t) = 0 for all states t ∈ T . Obviously, each scheduler S for
N with PrSN ,sinit

(♦�R T ) � 1
2 can be viewed as a memoryless resilient scheduler

for M with respect to the probability threshold ℘ = 1
2 and cost bound R. Vice

versa, given a resilient scheduler S′ for M, the decisions of S′ for the paths from
sinit to a T -state yield a scheduler S for N with PrSN ,sinit

(♦�R T ) � 1
2 .
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For the decision problem of the resilience-availability problem, we use the
same reduction with availability threshold ϑ = 0 and the payoff function that
assign 0 to all operational states.
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Abstract. This tool paper discusses the design and implementation of
the formal feature evaluation tool for hybrid systems, ForFET. Features
extend the notion of assertions by associating a computable function to
the match of an assertion. This paper illustrates the practical utility of
feature evaluation through several examples.

1 Introduction

Present day research has focused on assertion languages [7,14] for the model
checking of hybrid system. Assertions however, do not give insight into the
robustness of systems. Features (first introduced in [2]) are richer than asser-
tions and allow assertions to be written in the form of timed sequences of events
and predicates over real variables (PORVs) [13]. Features overlay computable
functions over assertion matches allowing complex properties such as rise time,
overshoot, settling times etc. to be evaluated. Hence, while assertions evaluate
to a Boolean outcome, the match of a feature evaluates to a value in the real
number domain. Since an assertion can match multiple runs of the hybrid sys-
tems, a computable function associated with it can yield multiple results, one for
each match of the assertion. All these values contribute to an interval of feature
values. The Feature Indented Assertion language (FIA), for features, used by
ForFET is detailed in [9].

Hybrid Automata (HA) [5] are widely used to model control systems and
analog mixed-signal (AMS) designs (including AMS circuits) [3,4,6,10]. Several
tools for the reachability analysis of hybrid systems exist, such as PHAVer [11]
and SpaceEx [12], to name a few. This paper presents the design of the tool For-
FET for the feature analysis of hybrid systems. ForFET transforms the problem
of feature computation to a problem of reachability analysis and uses SpaceEx
to compute the feature value. An initial attempt to study the formal feature
evaluation of HAs was made in [8]. The study therein presented an intuitive
approach to the treatment of features for the analysis of HAs. A generalized
theory, with a richer feature description language, FIA, and a universal method-
ology for the evaluation of features for HAs was presented in [9]. ForFET uses
techniques of model checking introduced in [9] to evaluate features over runs of
the HA model of a hybrid system. The tool ForFET was designed keeping AMS
c© Springer International Publishing AG 2017
D. D’Souza and K. Narayan Kumar (Eds.): ATVA 2017, LNCS 10482, pp. 437–445, 2017.
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designers in mind. Therefore, in this article, we introduce for the first time the
HA Specification Language for AMS Circuits (HASLAC). HASLAC is designed
to be familiar to AMS and digital circuit designers, and is inspired by constructs
in Verilog and SystemVerilog Assertions.

2 Tool Design

ForFET1 is a feature evaluation tool for hybrid systems, subsuming assertion
checking tools by also providing a measure of robustness in addition to the
notion of assertion match/failure. It does this by delivering an explicit confidence
in how well the feature interval fits specification. ForFET is developed in C and
uses the reachability analysis tool SpaceEx [12]. The transformations applied to
the HA during the reduction of the feature analysis problem to the reachability
analysis problem are independent of the underlying reachability analysis tool
used and scale well. Therefore as reachability analysis tools improve in accuracy
and scalability, ForFET can work with them to improve the accuracy of its
feature analysis results. The reader is referred to [9] for a complete description
of the underlying theory used for ForFET. The implementation details of the
tool will now be outlined. One of the inputs to ForFET is the HA model of the
system specified in the language HASLAC2.

module buck(v,i,t)
output v,i,t;
parameter

Vr = 12,
...
b1c = 0,
T = 1e-05,
D = 0.51667;

mode closed
begin

ddt t = 1;
ddt v = (a10c*i + a11c*v + b1c*Vs);
ddt i = (a00c*i + a01c*v + b0c*Vs);

end
...
property inv closed

mode==closed |=> t<=D * T && t>=0;
endproperty

property trans closed_open
mode==closed && mode’==open &&
t>=D*T |=> i’==i && t’==0 && v’==v;

endproperty
...
initial begin

set begin
mode == closed;
i == 0; v == 0; t == 0;

end
end

endmodule

Open

0 ≤ t ≤ (1 − D)T

t ≥ (1 − D)T

ẋ = Aox + Bo

t′ := 0 Closed

0 ≤ t ≤ DT
ẋ = Acx + Bc

t ≥ DT

t′ := 0

Fig. 1. Code-snippet of the HASLAC model of a buck regulator

A variety of benchmark HA models, including one of a DC-DC buck regulator,
are available in Ref. [6]. The HA and a code-snippet of the HASLAC description
for a buck regulator model is shown in Fig. 1. In the HA, x is the vector [v, i].

1 Available at the repository http://cse.iitkgp.ac.in/∼bdcaa/ForFET.
2 ForFET Manual available at http://cse.iitkgp.ac.in/∼bdcaa/ForFET/ref.pdf.

http://cse.iitkgp.ac.in/~bdcaa/ForFET
http://cse.iitkgp.ac.in/~bdcaa/ForFET/ref.pdf
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The matrices Ao, Ac, Bo and Bc capture the constants of the transfer function.
The variables of the HA are v, i and t. In HASLAC, the mode dynamics
are specified using the keyword ddt. The invariant of a mode is specified in a
property inv block, and is written out as a property over the variables of the
HA. The interpretation of a property of the form A |=> B is, when A holds true,
then B holds true. An invariant property has the following form:

property inv ID
mode==ID |=> CNF CONSTRAINTS ;

endproperty

ID is any unique identifier. Within a property, mode is a special variable
used to indicate the location of the HA for which the property is applicable.
CNF CONSTRAINTS is a conjunction of PORVs, indicating the invariant in the
location. Similarly, a transition between two modes is also written as a property
specified in a property trans block, and relates the valuation of variables before
and after the transition is taken. A transition property has the following form:

property trans ID
mode==ID && CNF CONSTRAINTS && mode’==ID |=> RESET RELATION;

endproperty

In a transition property, for any variable z, the RESET RELATION relates z’,
the value of variable z after the transition is taken, with values of the HA vari-
ables before the transition is taken. Additionally, mode’ specifies the destination
location of the transition. For the transition property closed open described
in the example of Fig. 1, the logical comparison mode’==open specifies that the
next mode is location open.

Additionally, a feature specifying what is to be measured must be clearly
defined. For instance, for the buck regulator circuit, an AMS designer would
want to know how fast the regulator’s voltage output settles to its stable state
value (Vr). This measurement is known as the settling time of the buck regula-
tor. The buck regulator model HA in the hybrid systems benchmarks of [6], has
two locations, open and closed, indicating the state of the switch that charges
the capacitor of the regulator. The fact that the output voltage (v) of the regu-
lator has settled can be expressed as an assertion in a SystemVerilog Assertion
(SVA) [1] like language as follows:

(v>=Vr+E) ##[0:$] @+(state==Open)&&(v<=Vr+E) ##[0:$] @+(state==Open)&&(v<=Vr+E)

This assertion is called a sequence expression. Note that the sequence expres-
sion presented here and the expressions used to describe invariants and transi-
tions in HASLAC are distinctly different. The later describe the structure of
the HA while in general the former describe temporal sequences of PORVs and
events. Additionally the artifacts used in a RESET RELATION are not relevant in
the former.

In the sequence expression above, the symbol E represents the maxi-
mum allowed tolerance around the stable state voltage. (v >= Vr + E) and
(v <= Vr + E) are PORVs. state is a special variable allowing us to write predi-
cates over the location labels of the HA. The construct @+(P) is true only on the
positive edge of the predicate P. The statement P ##[a:b] Q is true whenever
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Q occurs within a time interval of a and b from when P is true; a,b ∈ R
+, b≥a.

Observe that P can be true over a dense time interval, and for each point in the
interval P ##[a:b] Q can be true yielding an infinite number of matches. P and
Q are termed as sub-expressions of the sequence. Sub-expressions are separated
by delay constructs of the form ##[a:b]. The symbol $ represents the notion
“anytime after a”. In the above expression, the notable differences with SVA are
the following:

– Sequence expressions allows PORVs. Here (v>=Vr+E) and (v<=Vr+E) are
PORVs.

– Events of the form @+(P), @−(P) denoting the positive and negative crossing
for PORV P are allowed.

– All intervals of the form ##[a:b], a, b ∈ R
≥0, are treated as dense time

intervals, as opposed to intervals countable in terms of the number of clock
cycles in SVA semantics.

To understand the semantics of sequence expressions further, the reader may
refer to [2]. The assertion above can be interpreted as follows: (v<=Vr+E) is true
and thereafter v settles below (Vr+E) for two successive openings of the capacitor
switch. This sequence expression captures the notion of settling of the buck
regulator voltage, however, in and of itself, the outcome of evaluating a sequence
expression is Boolean, that is, it will either yield a match (evaluating to true) or
no match (evaluating to false). Therefore, to compute the settling time, a feature
uses the sequence expression to define the scenario for measurement, along with
other artifacts, associates a computable function with it, and is written as follows:

feature settleTime(Vr,E);
begin

var st;
(v>=Vr+E) ##[0:$] @+(state==Open) && (v<=Vr+E), st=$time
##[0:$] @+(state==Open) && (v<=Vr+E) |-> settleTime = st;

end

The feature is named settleTime and has two parameters Vr and E. The
variable st is a local variable that can hold a value local to a single match
of the assertion. In the assertion the variable st is assigned the value of the
special variable $time, after the second sub-expressions matches. The construct
$time which measures the time elapsed from the initial state and is modeled in
ForFET using a clock variable in the HA. When the entire sequence expression
matches, the feature is computed by the feature expression settleTime = st.
The feature variable settleTime is modeled in ForFET as a variable. More
complex feature expressions can be computed as functions over multiple local
variables (see footnote 2).

In general, a feature has the following syntax.

feature <feature-name> (<list-of-parameters>);
begin

var <list-of-local-variables>;
<sequence-expr> |-> <feature-name> = <feature-expr>;

end
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The sequence expression, <feature-expr>, is of the form s1 ## τ1 s2 ## τ2...
## τn−1 sn, where s1, s2, ..., sn are normalized sub-expressions of the form:
D ∧ E , A, where D is a boolean expression of PORVs in disjunctive normal
form, E is an event, and A is an optional ordered list of comma-separated local
variable assignment statements. τi represents a time interval and is of the form
[a : b], where a, b ∈ R

+, a ≤ b, and additionally b can be the symbol $, which
represents infinity. The use of local variables in a feature is similar to the use
of their counterparts in SVA, with the added fact that for features they are
treated as real variables. The local variables are assigned values as the sequence
expression matches. <feature-expr> is a linear function over the set of local
variables, representing the feature value. For a sequence expression that matches,
the computable function, <feature-expr>, is evaluated over the values of the
local variables for that match and the computed value is assigned to the special
variable <feature-name>. A more detailed discussion on assertions and features,
with more elaborate examples, is available in [2,9].

ForFET parses the HASLAC model, H, and the feature specification F , and
internally transforms H so that a reachability analysis on the resulting model
computes the feature expression on the runs matching the feature sequence-
expression. The model H and specification F are maintained in in-memory data
structures. F is internally represented as a monitoring automaton, F , known as
the Feature Automaton. The feature automaton is in its accepting/final location
when a run of the HA has matched the sequence expression for the feature. The
problem of computing the feature expression reduces to computing the range of
values of the feature variable in the final location of the product of H and F .
The product automaton is computed by the following steps:

– Locations of the model H are marked as Level 0 locations.
– Timers/Clocks and Local Variables are added to the model.
– The sequence of locations in the feature automaton, capture the sequence in

which sub-expressions match. This sequence is enforced on the model using
transitions from HA locations L that match the predicate "state = L" with
transition guards that take the form "S ∧ level==k ; level:=k+1". Here,
S is the boolean expression over predicates over variables of the model for
the (k + 1)th sub-expression. The variable level is assigned the value k+1
indicating that the (k + 1)th sub-expression has matched.

– Once the last sub-expression has matched, transitions guarded by level ==
k+1 lead to the accepting/final location of the product. On these transitions
the feature value is computed according to <feature-expr>.

– When an ordering amongst assignments exists, for an individual sub-
expression (arising out of assignment dependencies), a set of urgent/pause
locations is used to impose this ordering.

The product automaton HF , called a Level Sequenced Hybrid Automaton, is
fed to the reachability analysis tool SpaceEx. SpaceEx requires a configuration
file containing initial state specifications, error resolution and other parameters.
These parameters are specified in an auto-generated configuration file. The model
and the configuration are fed to SpaceEx. The SpaceEx analysis proceeds to
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compute a flow-pipe of the reachable state space for all the variables in HF .
SpaceEx can be queried to produce the reachable set for each location of HF in
terms of a range of values for a select list of variables. In ForFET, we ask SpaceEx
for the range of values reached in the final location for the special feature variable
<feature-name>. The result of the SpaceEx analysis is interpreted by ForFET
as the feature value interval. An outline of ForFET is shown in Fig. 2.
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Fig. 2. Design of the ForFET tool for feature analysis of hybrid systems

3 Tool Usage and Evaluation

ForFET is equipped with a library of models covering both the AMS circuit
domain and the control domain, including battery charger circuits, buck regula-
tors, a cruise control system and control strategies for nuclear reactor cooling rod
controllers, containing both unsafe and safe strategies. The buck regulator and
cruise control models are benchmark models from [6]. For each model, example
features are provided. Models and features can be added to the library seam-
lessly, by adding them into the lib directory of the tool and ForFET will add
them to its library.

ForFET runs in a terminal without any command line parameters. In the
tool-flow, the user chooses the model and feature to be used for analysis. The
user also chooses the error tolerance and a time bound on path lengths (the
length of a run in time). ForFET analyzes the feature and provides a feature
value range as output. The tool also indicates if no run matches the feature
assertion. We evaluate the following four features spanning three models.
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(a) Buck Regulator: settleTime
([135 : 245]µs)

(b) Buck Regulator: overshoot
([6.26 : 6.46]V )

(c) Battery Charger: chargeTime
([7562.75 : 9088.24]s)

(d) Nuclear Reactor: unsafe
([590 : 600]◦)

Fig. 3. ForFET: Observing execution time and feature width versus precision.

– The buck regulator switches the capacitor switch between open and closed
very frequently and therefore poses quite a challenge for analysis. We quantify
two features of the buck regulator, the time taken for the voltage of the
regulator to settle (feature settleTime) and the maximum overshoot above
the stable state output voltage of 6.3 V of the regulator (feature overshoot).

– The battery charger model HA has five locations, each indicating where in
the charge cycle the charger has reached. We quantify the time taken for the
batter to charge (feature chargeTime).

– We also analyze a control strategy used for controlling the insertion of cool-
ing rods into a nuclear reactor. A variety of such strategies also form
part of the example set provided with ForFET. Here we pick the model
nuclearReactor v2.ha. The nuclear reactor model switches between three
locations, one in which no rod is in the reactor, and two modes each repre-
senting the rate of change of temperature when a rod is inserted. Here the
feature measures temperatures at which the strategy fails to keep the reaction
under control (feature unsafe).

The reader may read the tool usage manual (see footnote 2) for more insights
into the features and models used. The general trend for feature analysis can be
observed in the charts plotted in Fig. 3. Each chart plots the results of feature
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analysis observing the time for analysis and width of the feature interval for
each precision node. For each feature, the most accurate feature interval is in
brackets. The interval of the feature becomes narrower as precision improves,
while time to analyze grows exponentially. However, a saturation point (marked
×) is observed, at which point no further changes of the feature interval are
observed.

4 Conclusion

We have demonstrated the utility of a formal feature evaluation tool for hybrid
systems specified as HA. We also introduced a Verilog and SVA-like language
HASLAC for the specification of hybrid automata. In the future our work will
focus on the use of SMT solvers to compute features and produce concrete traces
for feature corner points. An interesting challenge is to extend reachability solvers
to prune paths that can be decidedly proven to not contribute to the expansion
of the feature range.
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Abstract. Inspired by the emerging problem of CPS security, we intro-
duce the concept of controller-attacker games. A controller-attacker game
is a two-player stochastic game, where the two players, a controller and
an attacker, have antagonistic objectives. A controller-attacker game is
formulated in terms of a Markov Decision Process (MDP), with the con-
troller and the attacker jointly determining the MDP’s transition prob-
abilities. We also introduce the class of controller-attacker games we call
V-formation games, where the goal of the controller is to maneuver the
plant (a simple model of flocking dynamics) into a V-formation, and the
goal of the attacker is to prevent the controller from doing so. Controllers
in V-formation games utilize a new formulation of model-predictive con-
trol we have developed called Adaptive-Horizon MPC (AMPC), giving
them extraordinary power: we prove that under certain controllability
conditions, an AMPC controller can attain V-formation with probabil-
ity 1. We evaluate AMPC’s performance on V-formation games using
statistical model checking. Our experiments demonstrate that (a) as we
increase the power of the attacker, the AMPC controller adapts by suit-
ably increasing its horizon, and thus demonstrates resiliency to a variety
of attacks; and (b) an intelligent attacker can significantly outperform
its naive counterpart.

1 Introduction

Many Cyber-Physical Systems (CPSs) are highly distributed in nature, com-
prising a multitude of computing agents that can collectively exhibit emergent
behavior. A compelling example of such a distributed CPS is the drone swarm,
which are beginning to see increasing application in battlefield surveillance and
reconnaissance [3]. The emergent behavior they exhibit is that of flight forma-
tion.

A particularly interesting form of flight formation is V-formation, especially
for long-range missions where energy conservation is key. V-formation is emblem-
atic of migratory birds such as Canada geese, where a bird flying in the upwash
region of the bird in front of it can enjoy significant energy savings. The V-
formation also offers a clear view benefit, as no bird’s field of vision is obstructed
c© Springer International Publishing AG 2017
D. D’Souza and K. Narayan Kumar (Eds.): ATVA 2017, LNCS 10482, pp. 446–462, 2017.
DOI: 10.1007/978-3-319-68167-2 29
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by another bird in the formation. Because of the V-formation’s intrinsic appeal,
it is important to quantify the resiliency of the control algorithms underlying
this class of multi-agent CPSs to various kinds of cyber-attacks. This question
provides the motivation for the investigation put forth in this paper.

Problem Statement and Summary of Results. Inspired by the emerging prob-
lem of CPS security, we introduce the concept of controller-attacker games. A
controller-attacker game is a two-player stochastic game, where the two players,
a controller and an attacker, have antagonistic objectives. A controller-attacker
game is formulated in terms of a Markov Decision Process (MDP), with the con-
troller and the attacker jointly determining the MDP’s transition probabilities.

We also introduce a class of controller-attacker games we call V-formation
games, where the goal of the controller is to maneuver the plant (a simple model
of flocking dynamics) into a V-formation, and the goal of the attacker is to
prevent the controller from doing so. Controllers in V-formation games utilize a
new formulation of model-predictive control we have developed called Adaptive-
Horizon MPC (AMPC), giving them extraordinary power: we prove that under
certain controllability conditions, an AMPC controller can attain V-formation
with probability 1.

We define several classes of attackers, including those that in one move can
remove a small number R of birds from the flock, or introduce random displace-
ment (perturbation) into the flock dynamics, again by selecting a small number
of victim agents. We consider both naive attackers, whose strategies are purely
probabilistic, and AMPC-enabled attackers, putting them on par strategically
with the controller. The architecture of a V-formation game with an AMPC-
enabled attacker is shown in Fig. 1.

While an AMPC-enabled controller is expected to win every game with prob-
ability 1, in practice, it is resource-constrained : its maximum prediction horizon
and the maximum number of execution steps are fixed in advance. Under these
conditions, an attacker has a much better chance of winning a V-formation game.

AMPC is a key contribution of the work presented in this paper. Traditional
MPC uses a fixed prediction horizon to determine the optimal control action.
The AMPC procedure chooses the prediction horizon dynamically. Thus, AMPC
can adapt to the severity of the action played by its adversary by choosing its own
horizon accordingly. While the concept of MPC with an adaptive horizon has
been investigated before [5,9], our approach for choosing the prediction horizon
based on the progress toward a fitness goal is entirely novel, and has a more
general appeal compared to previous work.

In recent work [10], we presented a procedure for synthesizing plans
(sequences of actions) that take an MDP to a desired set of states (defining
a V-formation). The procedure adaptively varied the settings of various para-
meters of an underlying optimization routine. Since we did not consider any
adversary or noise in [10], there was no need for a control algorithm. Here we
consider V-formation in the presence of attacks, and hence we develop a generic
adaptive control procedure, AMPC, and evaluate its resilience to attacks.
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Our extensive performance evaluation of V-formation games uses statistical
model checking to estimate the probability that an attacker can thwart the
controller. Our results show that for the bird-removal game with 1 bird being
removed, the controller almost always wins (restores the flock to a V-formation).
When 2 birds are removed, the game outcome critically depends on which two
birds are removed. For the displacement game, our results again demonstrate
that an intelligent attacker, i.e. one that uses AMPC in this case, significantly
outperforms its naive counterpart that randomly carries out its attack.

Traditional feedback control is, by design, resilient to noise, and also certain
kinds of attacks; as our results show, however, it may not be resilient against
smart attacks. Adaptive-horizon control helps to guard against a larger class of
attacks, but it can still falter due to limited resources. Our results also demon-
strate that statistical model checking represents a promising approach toward
the evaluation of CPS resilience against a wide range of attacks.

2 V-Formation

We consider the problem of bringing a flock of birds from a random initial
configuration to an organized V-formation. Recently, Lukina et al. [10] have
modeled this problem as a deterministic Markov Decision Process (MDP) M,
where the goal was to generate actions that caused M to reach a desired state.
In our case M is an MDP as actions taken lead to probability distributions over
the states. The definition of M is given in Sect. 3. In this section, we present a
simple model of flocking dynamics that forms the basis of this definition.

In our flocking model, each bird in the flock is modeled using 4 variables: a
2-dimensional vector x denoting the position of the bird in a 2D space, and a
2-dimensional vector v denoting the velocity of the bird. We use s = {xi,vi}B

i=1

to denote a state of a flock with B birds. The control actions of each bird are
2-dimensional accelerations a and 2-dimensional position displacements d (see
discussion of a and d below). Both are random variables.

Let xi(t),vi(t),ai(t), and di(t) respectively denote the position, velocity,
acceleration, and displacement of the i-th bird at time t, 1 � i � B. The behavior
of bird i in discrete time is modeled as follows:

xi(t + 1) = xi(t) + vi(t + 1) + di(t)
vi(t + 1) = vi(t) + ai(t) (1)

The next state of the flock is jointly determined by the accelerations and the
displacements based on the current state following Eq. 1.

The problem of whether we can go from a random flock to a V-formation
can be posed as a reachability question, where the reachability goal is the set
of states representing a V-formation. A key assumption in [10] was that the
reachability goal can be specified as J(s) � ϕ, where J is a fitness function
that assigns a non-negative real (fitness) value to each state s, and ϕ is a small
positive constant.
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The fitness of a state was determined by the following three terms:

– Clear View. A bird’s visual field is a cone with angle θ that can be blocked
by the wings of other birds. The clear-view metric is defined by accumulating
the percentage of a bird’s visual field that is blocked by other birds. CV (s)
for flock state s is the sum of the clear-view metric of all birds. The minimum
value of CV is CV ∗= 0, and this value is attained in a perfect V-formation
where all birds have clear view.

– Velocity Matching. VM (s) for flock state s is defined as the difference between
the velocity of a given bird and all other birds, summed up over all birds in
the flock. The minimum value for VM is VM ∗= 0, and this value is attained
in a perfect V-formation where all birds have the same velocity.

– Upwash Benefit. The trailing upwash is generated near the wingtips of a bird,
while downwash is generated near the center of a bird. An upwash measure
um is defined on the 2D space using a Gaussian-like model that peaks at the
appropriate upwash and downwash regions. For bird i with upwash umi, the
upwash-benefit metric UB i is defined as 1 −umi, and UB(s) for flock state s is
the sum of all UB i for 1 � i � B. The upwash benefit UB(s) in V-formation
is UB∗ = 1, as all birds, except for the leader, have minimum upwash-benefit
metric (UB i = 0, umi = 1), while the leader has upwash-benefit metric of 1
(UB i = 1, umi = 0).

Given the above metrics, the overall fitness (cost) metric J is of a sum-of-squares
combination of VM , CV , and UB defined as follows:

J(s) = (CV (s) − CV ∗)2 + (VM (s) − VM ∗)2 + (UB(s) − UB∗)2. (2)

A state s∗ is considered to be a V-formation whenever J(s∗)� ϕ, for a small
positive threshold ϕ.

3 Controller-Attacker Games

We are interested in games between a controller and an attacker, where the goal
of the controller is to take the system to a desired set of states, and the goal
of the attacker is to keep the system outside these states. We formulate our
problem in terms of Markov Decision Processes for which the controller and the
attacker jointly determine the transition probabilities.

Definition 1. A Markov Decision Process (MDP) M = (S,A, T, J, I) is
a 5-tuple consisting of a set S of states, set A of actions, transition function
T : S × A× S �→ [0, 1], where T (s, a, s′) is the probability of transitioning from
state s to state s′ under action a, cost function J : S �→R, where J(s) is the cost
associated with state s, and I is the initial state distribution.

Our definition of an MDP differs from the traditional one in that it uses a cost
function instead of a reward function. We find this definition more convenient for
our purposes. Our focus is on continuous-space MDPs; i.e., the state space S is
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R
n and the action space A is in R

m. For the bird-flocking problem, n= m = 4B,
where B is the number of birds. We have four state variables and four action
variables for each bird. The state variables represent the x- and the y-components
of the position xi and velocity vi of each bird i, whereas the action variables
represent the (x- and y-components of the) acceleration ai and displacement
di of each bird i. The transition relation for the bird-flocking MDP is given by
Eq. 1.

A randomized strategy over an MDP is a mapping taking every state s to a
probability distribution P (a | s) over the (available) actions. We formally define
randomized strategies as follows.

Definition 2. Let M= (S,A, T, J, I) be an MDP. A randomized strategy σ
over M is a function of the form σ : S �→PD(A), where PD(A) is the set of
probability distributions over A. That is, σ takes a state s and returns an action
consistent with the probability distribution σ(s).

A controller-attacker game is a stochastic game [18], where the transition
probability from state s to state s′ is controlled jointly by two players, a controller
and an attacker in our case. To view an MDP as a stochastic game, we assume
that the set of actions A is given as a product C ×D, where the controller chooses
the C-component of an action a and the attacker chooses the D-component of a.
We assume that the game is played in parallel by the controller and the attacker;
i.e., they both take the state s(t) ∈ S of the system at time t, compute their
respective actions c(t) ∈ C and d(t) ∈ D, and then use the composed action
(c(t), d(t)) to determine the next state s(t + 1) ∈ S of the system (based on the
transition function T ). We formally define a controller-attacker game as follows.

Definition 3. A controller-attacker game is an MDP M= (S,A, T, J, I)
with A = C × D, where C and D are action sets of the controller and the
attacker, respectively. The transition probability T (s, c × d, s′) is jointly deter-
mined by actions c ∈ C and d ∈ D.

The actions of the controller and the attacker are determined by their ran-
domized strategies. Once we fix a randomized strategy for the controller, and
the attacker, the MDP reduces to a Markov chain on the state space S. Thus,
the controller and the attacker jointly fix the probability of transitioning from a
state s to a state s′. We refer to the underlying Markov chain induced by σ over
M as Mσ.

We define controller-attacker games on the flocking model by considering
the scenario where the accelerations are under the control of one agent (the
controller), and the displacements (position perturbations) are under the control
of the second malicious agent (the attacker).

Definition 4. A V-formation game is a controller-attacker game M = (S,
A, T , J , I), where S = {s | s = {xi,vi}B

i=1} is the set of states for a flock of
B birds, A = C ×D with the controller choosing accelerations a ∈ C and the
attacker choosing displacements d ∈ D, T and J are given in Eqs. 1 and 2,
respectively.
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Controller
c(t) = σC (f1, s(t), J)

Attacker
d(t) = σD (f2, s(t), −J)

Plant

s(t + 1) = f(s(t), c(t), d(t))

c(t)

d(t)

s(t + 1)

Fig. 1. Controller-attacker game architecture. The controller and the attacker use ran-
domized strategies σC and σD to choose actions c(t) and d(t) based on dynamics
f1 = f(s(t), c(t), 0) and f2 = f(s(t), 0, d(t)), respectively, where s(t) is the state at
time t, and f is the dynamics of the plant model. The controller tries to minimize the
cost J , while the attacker tries to maximize it.

In this paper, we consider reachability games only. In particular, we are given
a set G of goal states and the goal of the controller is to reach a state in G. Let
s0 → s1 → s2 → · · · be a sequence of states (a run of the system). The controller
wins on this run if ∃i : si ∈ G, and the attacker wins otherwise.

A classical problem in the study of games pertains to determining the exis-
tence of an optimal winning strategy (e.g. a Nash equilibrium) for a player. We
are not concerned with such problems in this paper. Due to the uncountably
many states in the state- and action-space, solving such problems for our games
of interest is extremely challenging. Instead, we focus on the problem of deter-
mining the likely winner of a game where the strategy of the two players is
fixed. Since we consider randomized strategies, determining the likely winner is
a statistical model checking problem, which allows us to evaluate the resilience
of certain controllers under certain attack models. We are now ready to formally
define the problem we would like to solve.

Definition 5. Let M= (S,A, T, J, I) be an MDP, where A= C ×D, and let
σC : S �→PD(C) and σD : S �→PD(D) be randomized strategies over M . Also,
let G ⊆ S be the set of goal states of M. The stochastic game verification
problem is to determine the probability of reaching a state in G in m steps, for
a given m, starting from an initial state in M(σC ,σD).

Figure 1 shows the architecture of a stochastic game between the controller
and the attacker, where at each time step the controller chooses action c(t) as
the C-component using strategy σC , and the attacker chooses action d(t) as the
D-component using strategy σD. The next state of the plant is determined by
the composed action (c(t), d(t)) based on the current state s(t) and the dynamics
of the plant model f .

Our main interest is in evaluating the resilience of a control algorithm σC

(a controller can be viewed as a strategy in our framework) to an attack algo-
rithm σD. The key assumption that the controller and the attacker make is the
existence of a cost function J : S �→R

+ such that

G := {s | J(s) � ϕ for some very small ϕ > 0} .
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Given such a cost function J , the controller works by minimizing the cost of
states reachable in one or more steps, as is done in model predictive control
(MPC). Since the cost function is highly nonlinear, the controller uses an opti-
mization procedure based on randomization to search for a minimum. Hence, our
controller is a randomized procedure. One possible attack strategy we consider
(for an advanced attacker) is based on the cost function as well: the attacker
tries to maximize the cost of reachable states.

4 The Adaptive-Horizon MPC Algorithm

We now present our new adaptive-horizon MPC algorithm we call AMPC. We
will use this algorithm as the controller strategy in the stochastic games we play
on MDPs. We will also consider attacker strategies that use AMPC. AMPC is
an MPC procedure based on particle-swarm optimization (PSO) [8]. The MPC
approach can be used for achieving a V-formation, as was outlined in [19,20].
These earlier works, however, did not use an adaptive dynamic window, and did
not consider the adversarial control problem.

The main algorithm of AMPC performs step-by-step control of a given MDP
M by looking h steps ahead—i.e. it uses a prediction horizon of length h—to
determine the next optimal control action to apply. We use PSO to solve the
optimization problem generated by the MPC procedure.

For V-formation, define the cost of ah as the minimum cost J (Eq. 2) obtained
within h steps by applying the sequence ah of h accelerations on M. Formally,
we have

Cost(M,ah, h) = min
1�τ�h

J(sτ
ah) (3)

where sτ
ah is the state after applying the τ -th action of ah to the initial state of

M.1 For horizon h, PSO searches for the best sequence of 2-dimensional accel-
eration vectors of length h, thus having 2hB parameters to be optimized. The
number of particles p used in PSO is proportional to the number of parameters
to be optimized, i.e., p = 2βhB, where β is a preset constant.

The AMPC procedure is given in Algorithm 1. A novel feature of AMPC
is that, unlike classical MPC which uses a fixed horizon h, AMPC adaptively
chooses an h depending on whether it is able to reach a cost that is lower than
the current cost by our chosen quanta Δi, 0 � i � m, for m steps.

AMPC is hence an adaptive MPC procedure that uses level-based horizons.
It employs PSO to identify the potentially best next actions. If the actions
ah improve (decrease) the cost of the state reached within h steps, namely
Cost(M,ah, h), by the predefined Δi, the controller considers these actions to
be worthy of leading the flock towards, or keeping it in, a V-formation.2

1 The initial state of M is being used to store the “current” state of the MDP as we
execute our algorithm.

2 We focus our attention on bird flocking, since the details generalize naturally to
other MDPs that come with a cost function.
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Algorithm 1. AMPC: Adaptive-Horizon Model Predictive Control
Input : M, ϕ, hmax , m, B, β, Cost
Output: {ai}1�i� m // optimal control sequence

1 Initialize �0 ← J(s0); ̂J ← inf; i ← 1; h ← 1; p ← 2βhB; Δ0 ← (�0 − ϕ)/m;

2 while (�i−1 > ϕ) ∧ (i < m) do
3 // find and apply first best action out of the horizon sequence of length h

4 [ah, ̂J ] ←particleswarm(Cost, M, p, h);

5 if �i−1 − ̂J > Δi ∨ h = hmax then
6 // if a new level or the maximum horizon is reached

7 ai ← ah
1 ; M ← Mai

; // apply the action and move to the next state
8 �i ← J(s(M)); // update �i with the cost of the current state
9 Δi ← �i/(m − i); // update the threshold on reaching the next level

10 i ← i + 1; h ← 1; p ← 2βhB; // update parameters

11 else
12 h ← h + 1; p ← 2βhB; // increase the horizon
13 end

14 end

In this case, the controller applies the first action to each bird and transi-
tions to the next state of the MDP. The threshold Δi determines the next level
�i = Cost(M, âh, h), where âh is the optimal action sequence. The prediction
horizon h is increased iteratively if the cost has not been decreased enough.
Upon reaching a new level, the horizon is reset to one (see Algorithm 1).

Having a horizon h> 1 means it will take multiple transitions in the MDP
to reach a solution with sufficiently improved cost. However, when finding such
a solution with h> 1, we only apply the first action to transition the MDP to
the next state. This is explained by the need to allow the other player (the
environment or an adversary) to apply their action before we obtain the actual
next state. If no new level is reached within hmax horizons, the first action of
the best ah using horizon hmax is applied.

The dynamic threshold Δi is defined as in [10]. Its initial value Δ0 is
obtained by dividing the cost range to be covered into m equal parts, that is,
Δ0 = (�0 − �m) /m, where �0 =J(s0) and �m =ϕ. Subsequently, Δi is determined
by the previously reached level �i−1, as Δi = �i−1/(m− i+ 1). This way AMPC
advances only if �i = Cost(M, âh, h) is at least Δi apart from �i−1.

This approach allows us to force PSO to escape from a local minimum, even if
this implies passing over a bump, by gradually increasing the exploration horizon
h. We assume that the MDP is controllable. A discrete-time system S is said
to be controllable if for any given states s and t, there exist a finite sequence of
control inputs that takes S from s to t [13]. We also assume that the set G of
goal states is non-empty, which means that from any state, it is possible to reach
a state whose cost decreased by at least Δi. Algorithm 1 describes our approach
in more detail.
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Theorem 1 (AMPC Convergence). Given an MDP M= (S,A, T, J) with
positive and continuous cost function J , and a nonempty set of target states
G⊂ S with G= {s |J(s)� ϕ}. If the transition relation T is controllable with
actions in A, then there exists a finite maximum horizon hmax and a finite
number of execution steps m, such that AMPC is able to find a sequence of
actions a1, . . . , am that brings a state in S to a state in G with probability one.

Proof. In each (macro-) step of horizon length h, from level �i−1 to level �i,
AMPC decreases the distance to ϕ by Δi � Δ, where Δ> 0 is fixed by the
number of steps m chosen in advance. Hence, AMPC converges to a state in G
in a finite number of steps, for a properly chosen m. AMPC is able to decrease
the cost in a macro step by Δi by the controllability assumption and the fairness
assumption about the PSO algorithm. Since AMPC is a randomized algorithm,
the result is probabilistic. Note that the theorem is an existence theorem of hmax

and m whose values are chosen empirically in practice.

The adaptive MPC procedure, AMPC, is a key contribution of our work.
Recall that traditional MPC uses a fixed finite horizon to determine the best
control action. In contrast, AMPC dynamically chooses the horizon depending
on the severity of the action played by the opponent (or environment). AMPC is
inspired by the optimal plan synthesis procedure we recently presented in [10],
which dynamically configures the amount of the effort it uses to search for a bet-
ter solution at each step. In [10] the monolithic synthesis procedure was adap-
tive (and involved dynamically changing several parameters), whereas here the
control procedure is adaptive and the underlying optimization is non-adaptive
off-the-shelf procedure, and hence the overall procedure here is simpler.

Note that AMPC is a general procedure that performs adaptive MPC using
PSO for dynamical systems that are controllable, come with a cost function,
and have at least one optimal solution. In an adversarial situation two players
have opposing objectives. The question arises what one player assumes about
the other when computing its own action, which we discuss next.

5 Stochastic Games for V-Formation

We describe the specialization of the stochastic-game verification problem to
V-formation. In particular, we present the AMPC-based control strategy for
reaching a V-formation, and the various attacker strategies against which we
evaluate the resilience of our controller.

5.1 Controller’s Adaptive Strategies

Given current state (x(t),v(t)), the controller’s strategy σC returns a proba-
bility distribution on the space of all possible accelerations (for all birds). As
mentioned above, this probability distribution is specified implicitly via a ran-
domized algorithm that returns an actual acceleration (again for all birds). This
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randomized algorithm is the AMPC algorithm, which inherits its randomization
from the randomized PSO procedure it deploys.

When the controller computes an acceleration, it assumes that the attacker
does not introduce any disturbances; i.e., the controller uses the following model:

xi(t + 1) = xi(t) + vi(t + 1)
vi(t + 1) = vi(t) + ai(t) (4)

where a(t) is the only control variable. Note that the controller chooses its next
action a(t) based on the current configuration (x(t),v(t)) of the flock using
MPC. The current configuration may have been influenced by the disturbance
d(t−1) introduced by the attacker in the previous time step. Hence, the current
state need not to be the state predicted by the controller when performing MPC
in step t−1. Moreover, depending on the severity of the attacker action d(t−1),
the AMPC procedure dynamically adapts its behavior, i.e. the choice of horizon
h, in order to enable the controller to pick the best control action a(t) in response.

5.2 Attacker’s Strategies

We are interested in evaluating the resilience of our V-formation controller when
it is threatened by an attacker that can remove a certain number of birds from
the flock, or manipulate a certain number of birds by taking control of their
actuators (modeled by the displacement term in Eq. 1). We assume that the
attack lasts for a limited amount of time, after which the controller attempts to
bring the system back into the good set of states. When there is no attack, the
system behavior is the one given by Eq. 4.

Bird Removal Game. In a BRG, the attacker selects a subset of R birds,
where R �B, and removes them from the flock. The removal of bird i from
the flock can be simulated in our framework by setting the displacement di for
bird i to ∞. We assume that the flock is in a V-formation at time t = 0. Thus,
the goal of the controller is to bring the flock back into a V-formation consisting
of B −R birds. Apart from seeing if the controller can bring the flock back to a
V-formation, we also analyze the time it takes the controller to do so.

Definition 6. In a Bird Removal Game (BRG), the attacker strategy σD is
defined as follows. Starting from a V-formation of B birds, i.e., J(s0) � ϕ,
the attacker chooses a subset of R birds, R � B, by uniform sampling with-
out replacement. Then, in every round, it assigns each bird i in the subset a
displacement di = ∞, while for all other birds j, dj = 0.

Random Displacement Game. In an RDG, the attacker chooses the displace-
ment vector for a subset of R birds uniformly from the space [0,M ]× [0, 2π] with
R � B. This means that the magnitude of the displacement vector is picked
from the interval [0,M ], and the direction of the displacement vector is picked
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from the interval [0, 2π]. We vary M in our experiments. The subset of R birds
that are picked in different steps are not necessarily the same, as the attacker
makes this choice uniformly at random at runtime as well.

The game starts from an initial V-formation. The attacker is allowed a fixed
number of moves, say 20, after which the displacement vector is identically 0 for
all birds. The controller, which has been running in parallel with the attacker,
is then tasked with moving the flock back to a V-formation, if necessary.

Definition 7. In a Random Displacement Game (RDG), the attacker strategy
σD is defined as follows. Starting from a V-formation of B birds, i.e., J(s0) � ϕ,
in every round, it chooses a subset of R birds, R � B, by uniform sampling
without replacement. It then assigns each bird i in the subset a displacement di

chosen uniformly at random from [0,M ] × [0, 2π], while for all other birds j,
dj = 0. After T rounds, all displacements are set to 0.

AMPC Game. An AMPC game is similar to an RDG except that the attacker
does not use a uniform distribution to determine the displacement vector. The
attacker is advanced and strategically calculates the displacement using the
AMPC procedure. See Fig. 1. In detail, the attacker applies AMPC, but assumes
the controller applies zero acceleration. Thus, the attacker uses the following
model of the flock dynamics:

xi(t + 1) = xi(t) + vi(t + 1) + di(t)
vi(t + 1) = vi(t) (5)

Note that the attacker is still allowed to have di(t) be non-zero for only a small
number of birds. However, it gets to choose these birds in each step. It uses
the AMPC procedure to simultaneously pick the subset of R birds and their
displacements. The objective of the attacker’s AMPC is to maximize the cost.

Definition 8. In an AMPC game, the attacker strategy σD is defined as follows.
Starting from a V-formation of B birds, i.e., J(s0) � ϕ, in every round, it uses
AMPC to choose a subset of R birds, R � B, and their displacements di for
bird i in the subset from [0,M ] × [0, 2π]; for all other birds j, dj = 0. After T
rounds, all displacements are set to 0.

Theorem 2 (AMPC resilience in a C-A game). Given a controller-
attacker game, there exists a finite maximum horizon hmax and a finite max-
imum number of game-execution steps m such that AMPC controller will win
the controller-attacker game in m steps with probability 1.

Proof. Since the flock MDP (defined by Eq. 1) is controllable, the PSO algorithm
we use is fair, and the attack has a bounded duration, the proof of the theorem
follows from Theorem 1.

Remark 1. While Theorem 2 states that the controller is expected to win with
probability 1, we expect winning probability to be possibly lower than one in
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many cases because: (1) the maximum horizon hmax is fixed in advance, and
so is (2) the maximum number of execution steps m; (3) the underlying PSO
algorithm is also run with bounded number of particles and time. Theorem 2 is
an existence theorem of hmax and m, while in practice one chooses fixed values
of hmax and m that could be lower than the required values.

6 Statistical MC Evaluation of V-Formation Games

As discussed in Sect. 3, the stochastic-game verification problem we address in
the context of the V-formation-AMPC algorithm is formulated as follows. Given
a flock MDP M (we consider the case of B = 7 birds), acceleration actions a of
the controller, displacement actions d of the attacker, the randomized strategy
σC : S �→PD(C) of the controller (the AMPC algorithm), and a randomized
strategy σD : S �→PD(D) for the attacker, determine the probability of reaching
a state s where the cost function J(s)� ϕ (V-formation in a 7-bird flock), starting
from an initial state (in this case this is a V-formation), in the underlying Markov
chain induced by strategies σC , σD on M.

Since the exact solution to this reachability problem is intractable due to
the infinite/continuous space of states and actions, we solve it approximately
with classical statistical model-checking (SMC). The particular SMC procedure
we use is from [7] and based on an additive or absolute-error (ε, δ)-Monte-Carlo-
approximation scheme. This technique requires running N i.i.d. game executions,
each for a given maximum time horizon, determining if these executions reach a
V-formation, and returning the average number of times this occurs.

Each of the games described in Sect. 5 is executed 2,000 times. For a con-
fidence ratio δ = 0.01, we thus obtain an additive error of ε = 0.1. We use the
following parameters in the game executions: number of birds B = 7, threshold
on the cost ϕ = 10−3, maximum horizon hmax = 5, number of particles in PSO
p = 20hB. In BRG, the controller is allowed to run for a maximum of 30 steps.
In RDG and AMPC game, the attacker and the controller run in parallel for 20
steps, after which the displacement becomes 0, and the controller has a maximum
of 20 more steps to restore the flock to a V-formation.

To perform SMC evaluation of our AMPC approach we designed the above
experiments in C and ran them on the Intel Core i7-5820K CPU with 3.30 GHz
and with 32 GB RAM available.

Table 1. Results of 2,000 game executions for removing 1 bird with hmax = 5, m = 40

Ctrl. success rate, % Avg. convergence duration Avg. horizon

Bird 4 99.9 12.75 3.64

Bird 3 99.8 18.98 4.25

Bird 2 100 10.82 3.45
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6.1 Discussion of the Results

To demonstrate the resilience of our adaptive controller, for each game intro-
duced in Sect. 5, we performed a number of experiments to estimate the proba-
bility of the controller winning. Moreover, for the runs where the controller wins,
the average number of steps required by the controller to bring the flock to a
V-formation is reported as average convergence duration, and the average length
of the horizon used by AMPC is reported as average horizon.

Fig. 2. Left: numbering of the birds. Right: configuration after removing bird 2 and 5.
The red-filled circle and two protruding line segments represent a bird’s body and
wings. Arrows represent bird velocities. Dotted lines illustrate clear-view cones. A
brighter/darker background color indicates a higher upwash/downwash.

Table 2. Results of 2,000 game executions for removing 2 birds with hmax = 5, m = 30

Ctrl. success rate, % Avg. convergence duration Avg. horizon

Birds 2 and 3 0.8 25.18 4.30

Birds 2 and 4 83.1 11.11 2.94

Birds 2 and 5 80.3 9.59 2.83

Birds 2 and 6 98.6 7.02 2.27

Birds 3 and 4 2.0 22.86 4.30

Birds 3 and 5 92.8 11.8 3.43

The numbering of the birds in Tables 1 and 2 is given in Fig. 2. Bird-removal
scenarios that are symmetric with the ones in the tables are omitted. The results
presented in Table 1 are for the BRG game with R = 1. In this case, the controller
is almost always able to bring the flock back to a V-formation, as is evident from
Table 1. Note that removing Bird 1 (or 7) is a trivial case that results in a
V-formation.
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Table 3. Results of 2,000 game executions for random displacement and AMPC attacks
with hmax = 5 and m = 40 (attacker runs for 20 steps)

Range of noise Ctrl. success rate, % Avg. convergence duration Avg. horizon

Random displacement game

[0, 0.50] × [0, 2π] 99.9 3.33 1.07

[0, 0.75] × [0, 2π] 97.9 3.61 1.11

[0, 1.00] × [0, 2π] 92.3 4.14 1.18

AMPC game

[0, 0.50] × [0, 2π] 97.5 4.29 1.09

[0, 0.75] × [0, 2π] 63.4 5.17 1.23

[0, 1.00] × [0, 2π] 20.0 7.30 1.47

In the case when R = 2, shown in Table 2, the success rate of the controller
depends on which two birds are removed. Naturally, there are cases where drop-
ping two birds does not break the V-formation; for example, after dropping
Birds 1 and 2, the remaining birds continue to be in a V-formation. Such trivial
cases are not shown in Table 2. Note that the scenario of removing Bird 1 (or 7)
and one other bird can be viewed as removing one bird in flock of 6 birds, thus
not considered in this table. Among the other nontrivial cases, the success rate
of controller drops slightly in four cases, and drops drastically in remaining two
cases. This suggests that attacker of a CPS system can incur more damage by
being prudent in the choice of the attack.

Impressively, whenever the controller wins, the controller needs about the
same number of steps to get back to V-formation (as in the one-bird removal
case). On average, removal of two birds results in a configuration that has worse
cost compared to an BRG with R = 1. Hence, the adaptive controller is able to
make bigger improvements (in each step) when challenged by worse configura-
tions. Furthermore, among the four cases where the controller win rate is high,
experimental results demonstrate that removing two birds positioned asymmet-
rically with respect to the leader poses a stronger, however, still manageable
threat to the formation. For instance, the scenarios of removing birds 2 and 6
or 3 and 5 give the controller a significantly higher chance to recover from the
attack, 98.6% and 92.8%, respectively.

Table 3 explores the effect of making the attacker smarter. Compared to
an attacker that makes random changes in displacement, an attacker that uses
AMPC to pick its action is able to win more often. This again shows that an
attacker of a CPS system can improve its chances by cleverly choosing the attack.
For example, the probability of success for the controller to recover drops from
92.3% to 20.0% when the attacker uses AMPC to pick displacements with mag-
nitude in [0, 1] and direction in [0, 2π]. The entries in the other two columns in
Table 3 reveal two even more interesting facts.
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First, in the cases when the controller wins, we clearly see that the controller
uses a longer look-ahead when facing a more challenging attack. This follows
from the observation that the average horizon value increases with the strength
of attack. This gives evidence for the fact that the adaptive component of our
AMPC plays a pivotal role in providing resilience against sophisticated attacks.
Second, the average horizon still being in the range 1–1.5, means that the adap-
tation in our AMPC procedure also helps it perform better than a fixed-horizon
MPC procedure, where usually the horizon is fixed to h � 2. When a low value
of h (say h = 1) suffices, the AMPC procedure avoids unnecessary calculation
that using a fixed h might incur.

In the cases where success rate was low (Row 1 and Row 5 in Table 2, and
Row 3 of the AMPC game in Table 3), we conducted additional 500 runs for each
case and observed improved success rates (2.4%, 9% and 30.8% respectively)
when we increased hmax to 10 and m to 40. This shows that success rates of
AMPC improves when given more resources, as predicted by Theorem 1.

7 Related Work

In the field of CPS security, one of the most widely studied attacks is sen-
sor spoofing. When sensors measurements are compromised, state estimation
becomes challenging, which inspired a considerable amount of work on attack-
resilient state estimation [4,6,14–16]. In these approaches, resilience to attacks
is typically achieved by assuming the presence of redundant sensors, or cod-
ing sensor outputs. In our work, we do not consider sensor spoofing attacks,
but assume the attacker gets control of the displacement vectors (for some of
the birds/drones). We have not explicitly stated the mechanism by which an
attacker obtains this capability, but it is easy to envision ways (radio controller,
attack via physical medium, or other channels [2]) for doing so.

Adaptive control, and its special case of adaptive model predictive control,
typically refers to the aspect of the controller updating its process model that
it uses to compute the control action. The field of adaptive control is concerned
with the discrepancy look aheadand its model used by the controller. In our
adaptive-horizon MPC, we adapt the lookahead horizon employed by the MPC,
and not the model itself. Hence, the work in this paper is orthogonal to what is
done in adaptive control [1,11].

Adaptive-horizon MPC was used in [5] to track a reference signal. If the
reference signal is unknown, and we have a poor estimate of its future behavior,
then a larger horizon for MPC is not beneficial. Thus, the horizon was determined
by the uncertainty in the knowledge of the future reference signal. We consider
cost-based reachability goals here, which allows us to choose a horizon in a more
generic way based on the progress toward the goal. More recently, adaptive
horizons were also used in [9] for a reachability goal. However, they chose a
large-enough horizon that enabled the system to reach states from where a pre-
computed local controller could guarantee reachability of the goal. This is less
practical than our approach for establishing the horizon.
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A key focus in CPS security has also been detection of attacks. For example,
recent work considers displacement-based attacks on formation flight [12], but it
primarily concerned with detecting which UAV was attacked using an unknown-
input-observer based approach. We are not concerned with detecting attacks, but
establishing that the adaptive nature of our controller provides attack-resilience
for free. Moreover, in our setting, for both the attacker the and controller the
state of the plant is completely observable. In [17], a control policy based on
the robustness of the connectivity graph is proposed to achieve consensus on
the velocity among a team of mobile robots, in the present of non-cooperative
robots that communicate false values but execute the agreed upon commands.
In contrast, we allow the attacker to manipulate the executed commands of the
robots. The cost function we use is also more flexible so that we can encode more
complicated objectives.

We are unaware of any work that uses statistical model checking to evaluate
the resilience of adaptive controllers against (certain classes of) attacks.

8 Conclusions

We have introduced AMPC, a new model-predictive controller that unlike MPC,
comes with provable convergence guarantees. The key innovation of AMPC is
that it dynamically adapts its receding horizon (RH) to get out of local minima.
In each prediction step, AMPC calls PSO with an optimal RH and corresponding
number of particles. We used AMPC as a bird-flocking controller whose goal is
to achieve V-formation despite various forms of attacks, including bird-removal,
bird-position-perturbation, and advanced AMPC-based attacks. We quantified
the resiliency of AMPC to such attacks using statistical model checking. Our
results show that AMPC is able to adapt to the severity of an attack by dynam-
ically changing its horizon size and the number of particles used by PSO to
completely recover from the attack, given a sufficiently long horizon and execu-
tion time (ET). The intelligence of an attacker, however, makes a difference in
the outcome of a game if RH and ET are bounded before the game begins.

Future work includes the consideration of additional forms of attacks, includ-
ing: Energy attack, when the flock is not traveling in a V-formation for a certain
amount of time; Collisions, when two birds are dangerously close to each other
due to sensor spoofing or adversarial birds; and Heading change, when the flock
is diverted from its original destination (mission target) by a certain degree.
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Abstract. A constant-rate multi-mode system is a hybrid system that
can switch freely among a finite set of modes, and whose dynamics is
specified by a finite number of real-valued variables with mode-dependent
constant rates. Alur, Wojtczak, and Trivedi have shown that reachabil-
ity problems for constant-rate multi-mode systems for open and convex
safety sets can be solved in polynomial time. In this paper we study
the reachability problem for non-convex state spaces, and show that this
problem is in general undecidable. We recover decidability by making
certain assumptions about the safety set. We present a new algorithm to
solve this problem and compare its performance with the popular sam-
pling based algorithm rapidly-exploring random tree (RRT) as imple-
mented in the Open Motion Planning Library (OMPL).

1 Introduction

Autonomous vehicle planning and control frameworks [15,20] often follow the
hierarchical planning architecture outlined by Firby [9] and Gat [11]. The key
idea here is to separate the complications involved in low-level hardware con-
trol from high-level planning decisions to accomplish the navigation objective.
A typical example of such separation-of-concerns is proving the controllability
property (vehicle can be steered from any start point to arbitrary neighborhood
of the target point) of the motion-primitives of the vehicle followed by the search
(path-planning) for an obstacle-free path (called the roadmap) and then utilizing
the controllability property to compose the low-level primitives to follow the path
(path-following). However, in the absence of the controllability property, it is not
always possible to follow arbitrary roadmaps with given motion-primitives. In
these situations we need to study a motion planning problem that is not opaque
to the motion-primitives available to the controller.
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We study this motion planning problem in a simpler setting of systems mod-
eled as constant-rate multi-mode systems [4]—a switched system with constant-
rate dynamics (vector) in every mode—and study the reachability problem for
the non-convex safety sets. Alur et al. [4] studied this problem for convex safety
sets and showed that it can be solved in polynomial time. Our key result is that
even for the case when the safety set is defined using polyhedral obstacles, the
problem of deciding reachability is undecidable. On a positive side we show that
if the safety set is an open set defined by linear inequalities, the problem is decid-
able and can be solved using a variation of cell-decomposition algorithm [22].
We present a novel bounded model-checking [7] inspired algorithm equipped
with acceleration to decide the reachability. We use the Z3-theorem prover as
the constraint satisfaction engine for the quadratic formulas in our implementa-
tion. We show the efficiency of our algorithm by comparing its performance with
the popular sampling based algorithm rapidly-exploring random tree (RRT) as
implemented in the Open Motion Planning Library (OMPL).

For a detailed survey of motion planning algorithms we refer to the excel-
lent expositions by Latombe [17] and LaValle [18]. The motion-planning problem
while respecting system dynamics can be modeled [10] in the framework of hybrid
automata [1,12]; however the reachability problem is undecidable even for simple
stopwatch automata [14]. There is a vast literature on decidable subclasses of
hybrid automata [1,6]. Most notable among these classes are initialized rectan-
gular hybrid automata [14], two-dimensional piecewise-constant derivative sys-
tems [5], timed automata [2], and discrete-time control for hybrid automata [13].
For a review of related work on multi-mode systems we refer to [3,4].

Due to lack of space proofs are either sketched or omitted in this extended
abstract. A full version including detailed proofs is available at [16].

2 Motivating Example

Let us consider a two-dimensional multi-mode system with three modes m1,m2

and m3 shown geometrically with their rate-vectors in Fig. 1(a). We consider the
reach-while-avoid problem in the arena given in Fig. 1(b) with two rectangular
obstacles O1 and O2 and source and target points xs and xt, respectively. In
particular, we are interested in the question whether it is possible to move a
point-robot from point xs to point xt using directions dictated by the multi-
mode system given in Fig. 1(a) while avoiding passing through or even grazing
any obstacle.

It follows from our results in Sect. 5 that in general the problem of deciding
reachability is undecidable even with polyhedral obstacles. However, the exam-
ple considered in Fig. 1 has an interesting property that the safety set can be
represented as a union of finitely many polyhedral open sets (cells). This prop-
erty, as we show later, makes the problem decidable. In fact, if we decompose
the workspace into cells using any off-the-shelf cell-decomposition algorithm, we
only need to consider the sequences of obstacle-free cells to decide reachability.
In particular, for a given sequence of obstacle-free convex sets such that the
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xs

xt

x
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Fig. 1. (a) A multi-mode system, (b) an “L”-shaped arena consisting of obstacles O1

and O2 with start and target points xs and xt along with the cell-decomposition shown
by orange lines, and (c) a safe schedule from xs to xt. (Color figure online)

starting point is in the first set, and the target point is in last set, one can write
a linear program checking whether there is a sequence of intermediate states, one
each in the intersection of successive sets, such that these points are reachable
in the sequence using the constant-rate multi-mode system. Our key observation
is that one need not to consider cell-sequences larger than the total number of
cells since for reachability, it does not help for the system to leave a cell and
enter it again.

This approach, however, is not very efficient since one needs to consider all
sequences of the cells. However, this result provides an upper bound on sequence
of “meta-steps” or “bound” through the cells that system needs to take in order
to reach the target and hint towards a bounded model-checking [7] approach.
We progressively increase bound k and ask whether there is a sequence of points
x0, . . . , xk+1 such that x0 = xs, xk+1 = xt, and for all 0 ≤ i ≤ k we have that xi

can reach xi+1 using the rates provided by the multi-mode system (convex cone
of rates translated to xi contains xi+1) and the line segment λxi + (1 − λ)xi+1

does not intersect any obstacle. Notice that if this condition is satisfied, then
the system can safely move from point xi to xi+1 by carefully choosing a scaling
down of the rates so as to stay in the safety set, as illustrated in Fig. 1.

Let us first consider k = 0 and notice that one can reach point xt from
xs using just the mode m1, however unfortunately the line segment connecting
these points passes through both obstacles. In this case we increase the bound
by 1 and consider the problem of finding a point x such that the system can
reach from xs to x and also from x to xt, and the line segment connecting xs

with x, and x with xt do not intersect any obstacles. It is easy to see from the
Fig. 1 that it is indeed the case. We can alternate modes m1,m2 from xs to x,
and modes m1,m3 from x to xt. Hence, there is a schedule that steers the system
from xs to xt as shown in the Fig. 1(c).

The property we need to check to ensure a safe schedule is the following:
there exists a sequence of points xs = x0, x1, x2, . . . , xn = xt such that for all
0 ≤ λ ≤ 1, and for all i, the line λxi + (1 − λ)xi+1 joining xi and xi+1 does not
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intersect any obstacle O. This can be thought of as a first-order formula of the
form ∃X∀Y F (X,Y ) where F (X,Y ) is a linear formula. By invoking the Tarski-
Seidenberg theorem we know that checking the satisfiability of this property is
decidable. However, one can also give a direct quantifier elimination based on
Fourier-Motzkin elimination procedure to get existentially quantified quadratic
constraints that can be efficiently checked using theorem provers such as Z3
(https://github.com/Z3Prover/z3). This gives us a complete procedure to decide
reachability for multi-mode systems when the safety set can be represented as a
union of finitely many polyhedral open sets.

3 Problem Formulation

Points and Vectors. Let R be the set of real numbers. We represent the states
in our system as points in R

n, which is equipped with the standard Euclidean
norm ‖ · ‖. We denote points in this state space by x, y, vectors by r,v, and
the i-th coordinate of point x and vector r by x(i) and r(i), respectively. The
distance ‖x, y‖ between points x and y is defined as ‖x − y‖.

Boundedness and Interior. We denote an open ball of radius d ∈ R≥0 centered
at x as Bd(x)= {y∈Rn : ‖x, y‖ < d}. We denote a closed ball of radius d ∈ R≥0

centered at x as Bd(x). We say that a set S ⊆ R
n is bounded if there exists

d ∈ R≥0 such that, for all x, y ∈ S, we have ‖x, y‖ ≤ d. The interior of a set S,
int(S), is the set of all points x ∈ S, for which there exists d > 0 s.t. Bd(x) ⊆ S.

Convexity. A point x is a convex combination of a finite set of points X =
{x1, x2, . . . , xk} if there are λ1, λ2, . . . , λk ∈ [0, 1] such that

∑k
i=1 λi = 1 and

x =
∑k

i=1 λi · xi. We say that S ⊆ R
n is convex iff, for all x, y ∈ S and all

λ ∈ [0, 1], we have λx + (1 − λ)y ∈ S and moreover, S is a convex polytope if
there exists k ∈ N, a matrix A of size k × n and a vector b ∈ R

k such that
x ∈ S iff Ax ≤ b. A closed hyper-rectangle is a convex polytope that can be
characterized as x(i) ∈ [ai, bi] for each i ≤ n where ai, bi ∈ R.

Definition 1. A (constant-rate) multi-mode system (MMS) is a tuple H =
(M,n,R) where: M is a finite nonempty set of modes, n is the number of con-
tinuous variables, and R : M → R

n maps to each mode a rate vector whose
i-th entry specifies the change in the value of the i-th variable per time unit. For
computation purposes, we assume that the real numbers are rational.

Example 1. An example of a 2-dimensional multi-mode system H = (M,n,R)
is shown in Fig. 1(a) where M = {m1,m2,m3}, n = 2, and the rate vector is
such that R(m1) = (1, 1), R(m2) = (0,−1), and R(m3) = (−1, 1).

A schedule of an MMS specifies a timed sequence of mode switches. Formally,
a schedule is defined as a finite or infinite sequences of timed actions, where
a timed action (m, t) ∈ M × R≥0 is a pair consisting of a mode and a time
delay. A finite run of an MMS H is a finite sequence of states and timed actions
r = 〈x0, (m1, t1), x1, . . . , (mk, tk), xk〉 such that for all 1 ≤ i ≤ k we have that

https://github.com/Z3Prover/z3
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xi = xi−1 + ti ·R(mi). For such a run r we say that x0 is the starting state, while
xk is its terminal state. An infinite run of an MMS H is similarly defined to be
an infinite sequence 〈x0, (m1, t1), x1, (m2, t2), . . .〉 such that for all i ≥ 1 we have
that xi = xi−1 + ti · R(mi).

Given a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 and a state x,
we write Run(x, σ) for the (unique) finite run 〈x0, (m1, t1), x1, (m2, t2), . . . , xk〉
such that x0 = x. In this case, we also say that the schedule σ steers the MMS
H from the state x0 to the state xk.

We consider the problem of MMS reachability within a given safety set S. We
specify the safety set by a pair (W,O), where W ⊆ R

n is called the workspace
and O = {O1,O2, . . . ,Ok} is a finite set of obstacles. In this case the safety set
S is characterized as SW\O = W \ O. We assume in the rest of the paper that
W = R

n and for all 1 ≤ i ≤ k, Oi is a convex (not necessarily closed) polytope
specified by a set of linear inequalities.

We say that a finite run 〈x0, (m1, t1), x1, (m2, t2), . . .〉 is S-safe if for all i ≥ 0
we have that xi ∈ S and xi + τi+1 · R(mi+1) ∈ S for all τi+1 ∈ [0, ti+1]. Notice
that if S is a convex set then for all i ≥ 0, xi ∈ S implies that for all i ≥ 0
and for all τi+1 ∈ [0, ti+1] we have that xi + τi+1 · R(mi+1) ∈ S. We say that a
schedule σ is S-safe from a state x, or is (S, x)-safe, if the corresponding unique
run Run(x, σ) is S-safe. Sometimes we simply call a schedule or a run safe when
the safety set and the starting state are clear from the context. We say that a
state x′ is S-safe reachable from a state x if there exists a finite schedule σ that
is S-safe at x and steers the system from state x to x′.

We are interested in solving the following problem.

Definition 2 (Reachability). Given a constant-rate multi-mode system H =
(M,n,R), safety set S, start state xs, and target state xt, the reachability prob-
lem Reach(H, SW\O, xs, xt) is to decide whether there exists an S-safe finite
schedule that steers the system from state xs to xt.

Alur et al. [4] gave a polynomial-time algorithm to decide if a state xt is
S-safe reachable from a state x0 for an MMS H for a convex safety set S. In
particular, they characterized the following necessary and sufficient condition.

Theorem 1 [4]. Let H = (M,n,R) be a multi-mode system and let S ⊂ R
n

be an open, convex safety set. Then, there is an S-safe schedule from xs ∈ S to
xt ∈ S, if and only if there is t ∈ R

|M |
≥0 satisfying: xs +

∑|M |
i=1 R(mi) · t(i) = xt.

A key property of this result is that if xt is reachable from xs without considering
the safety set, then it is also reachable inside arbitrary convex set as long as both
xs and xt are strictly in the interior of the safety set.

We study the extension of this theorem for the reachability problem with non-
convex safety sets. A key contribution of this paper is a precise characterization
of the decidability of the reachability problem for multi-mode systems.

Theorem 2. Given a constant-rate multi-mode system H, workspace W = R
n,

obstacles set O, start state xs and target state xt, the reachability problem
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Reach(H, SW\O, xs, xt) is in general undecidable. However, if the obstacle set
O is given as finitely many closed polytopes, each defined by a finite set of linear
inequalities, then reachability is decidable.

4 Decidability

We prove the decidability condition of Theorem2 in this section.

Theorem 3. For a MMS H = (M,n,R), a safety set S, a start state xs, and
a target state xt, the problem Reach(H, SW\O, xs, xt) is decidable if O is given
as finitely many closed polytopes.

For the rest of this section let us fix a MMS H = (M,n,R), a start state xs and
a target state xt. Before we prove this theorem, we define cell cover (a notion
related to, but distinct from the one of cell decomposition introduced in [17]).

Definition 3 (Cell Cover). Given a safety set S ∈ R
n, a cell of S is an open,

convex set that is a subset of S. A cell cover of S is a collection C = {c1, . . . , cN}
of cells whose union equals S. Cells c, c′ ∈ C are adjacent if and only if c ∩ c′ is
non-empty.

A channel in S is a finite sequence 〈c1, c2, . . . , cN 〉 of cells of S such that ci and
ci+1 are adjacent for all 1 ≤ i < N . It follows that ∪1≤i≤Nci is a path-connected
open set. A C-channel is a channel whose cells are in cell cover C.

Given a channel π = 〈c1, . . . , cN 〉, a multi-mode system H = (M,n,R), start
and target states xs, xt ∈ S, we say that π is a witness to reachability if the
following linear program is feasible:

∃
0≤i≤N

xi .
(
xs = x0 ∧ xt = xN

)
∧

(
1 ≤ i < N → xi ∈ (ci ∩ ci+1)

)
∧

∃
1≤i≤N,m∈M

t
(m)
i .

(
t
(m)
i ≥ 0

)
∧

∧

1≤i≤N

(
xi = xi−1 +

∑

m∈M

R(m) · t
(m)
i

)
. (1)

Lemma 1. If S is an open safety set, there exists a finite S-safe schedule
that solves Reach(H, S, xs, xt) if and only if S contains a witness channel
〈c1, c2, . . . , cN 〉 for some N ∈ N.

Proof. (⇐) If 〈c1, c2, . . . , cN 〉 is a witness channel, then for 0 < i ≤ N , xi−1 and
xi are in ci. Theorem 1 guarantees the existence of a ci-safe schedule for each i.
The concatenation of these schedules is a solution to Reach(H, S, xs, xt).

(⇒) The run of a finite schedule that solves Reach(H, S, xs, xt) defines a
closed, bounded subset P of S. Since S is open, every point x ∈ P is contained
in a cell of S. Collectively, these cells form an open cover of P . By compactness,
then, there is a finite subcover of P . If any element of the subcover is entered
by the run more than once, there exists another run that is contained in that
cell between the first entry and the last exit. For such a run, if two elements of
the subcover are entered at the same time, the one with the earlier exit time is
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redundant. Therefore, there is a subcover in which no two elements are entered
by the run of the schedule at the same time. This subcover can be ordered
according to the time at which the run enters each cell to produce a sequence
that satisfies the definition of witness channel. ��
Lemma 2. If S is an open safety set and C a cell cover of S, there exists a
witness channel for Reach(H, S, xs, xt) iff there exists a witness C-channel.

Proof. One direction is obvious. Suppose therefore that there exists a witness
channel; let σ be the finite schedule whose existence is guaranteed by Lemma 1.
The path that is traced in the MMS H when steered by σ is a bounded closed
subset P of S because it is the continuous image of a compact interval of the
real line. (The time interval in which H moves from xs to xt.) Since C is an open
cover of P , there exists a finite subset of C that covers P ; specifically, there is an
irredundant finite subcover such that no two cells are entered at the same time
during the run of σ. This subcover can be ordered according to entry time to
produce a sequence of cells that satisfies the definition of witness channel. ��
Lemma 3. If O is a finite set of closed polytopes, then a finite cell cover of the
safety set S is computable.

Proof. If O is a finite set of closed polytopes, one can apply the the vertical
decomposition algorithm of [17] to produce a cell decomposition. Each cell C in
this decomposition of dimension less than n that is not contained in the obstacles
(and hence is entirely contained in S) is replaced by a convex open set obtained
as follows. Let B be an n-dimensional box around a point of C that is in S. The
desired set is the convex hull of the set of vertices of either C or B. ��
Proof (of Theorem 3). Lemmas 1–2 imply that Reach(H, S, xs, xt) is decidable if
a finite cell cover of S is available. If O is given as a finite set of closed polytopes,
each presented as a set of linear inequalities, then Lemma 3 applies. ��

The algorithm implicit in the proof of Theorem3 requires one to compute
the cell cover in advance, and enumerate sequences of cells in order to decide
reachability. We next present an algorithm inspired by bounded model check-
ing [7] that implicitly enumerates sequences of cells of increasing length till the
upper bound on number of cells is reached, or a safe schedule from the source
point to the target point is discovered. The key idea is to guess a sequence
of points x1, . . . , xN starting from the source point and ending in the target
point such that for every 1 ≤ i < N the point xi+1 is reachable from xi

using rates provided by the multi-mode system. Moreover, we need to check
that the line segment connecting xi and xi+1 does not intersect with obstacles,
i.e.: ∀0≤λ≤1(λxi+(1−λ)xi+1) �∈ ∪k

j=1Oj . We write ObstacleFree(xi, xi+1) for
this condition. Algorithm1 sketches a bounded-step algorithm to decide reach-
ability for multi-mode systems that always terminates for multi-mode systems
with sets of closed obstacles defined by linear inequalities thanks to Theorem 3.

Notice that at line 2 of Algorithm 1, we need to check the feasibility of the con-
straints system, which is of the form ∃X∀Y F (X,Y ) where universal quantifica-
tions are implicit in the test for ObstacleFree. If the solver we use to solve the
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Algorithm 1. BoundedMotionPlan(H,W,O, xs, xt, B)
Input: MMS H = (M, n, R), two points xs, xt, workspace W, obstacle set O,

and an upper bound B on number of cells in a cell-cover.
Output: NO, if no safe schedule exists and otherwise such a schedule.

1 k ← 0; while k ≤ B do
2 Check if the following formula is satisfiable:

∃
1≤i≤N

xi ∃
1≤i≤N,m∈M

t
(m)
i s.t. (xs = x1 ∧ xt = xN ) ∧

∧

1≤i≤N
m∈M

t
(m)
i ≥ 0 ∧

N∧
i=2

(
xi = xi−1 +

∑

m∈M

R(m) · t
(m)
i

)
∧

N∧

i=2

ObstacleFree(xi−1, xi)

if not satisfiable then k ← k + 1 ;
3 else
4 Let σ be an empty sequence;
5 for i = 1 to k − 1 do
6 σ = σ ::Reach Convex(H, xi, xi+1, S)

7 return σ;

Algorithm 2. Reach Convex(H, xs, xt, S)
Input: MMS H = (M, n, R), two points xs, xt, convex, open, safety set S
Output: NO if no S-safe schedule from xs to xt exists and otherwise such a

schedule.
1 t1 = min

m∈M
max {τ : xs + τ · R(m) ∈ S};

2 t2 = min
m∈M

max {τ : xt + τ · R(m) ∈ S};

3 tsafe = min {t1, t2};
4 Check whether the following linear program is feasible:

xs +
∑

m∈M

R(m) · t(m) = xt and t(m) ≥ 0 for all m ∈ M (2)

5 if no satisfying assignment exists then return NO;
6 else

7 Find an assignment {t(m)}m∈M .

8 Set l = �(∑m∈M t(m))/tsafe�.
9 return the following schedule 〈(mi, ti)〉 where

mk = (k mod |M |) + 1 and tk = t(mk)/l for k = 1, 2, . . . , l|M |.

constraints has full support to solve the ∀ quantification, we can use that to solve
the above constraint. In our experiments, we used the Z3 solver (https://github.
com/Z3Prover/z3) to implement the Algorithm 1 and found that the solver was

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
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unable to solve in some cases. Fortunately, the universal quantification in our
constraints is of very special form and can be easily removed using the Fourier-
Motzkin elimination procedure, which results in quadratic constraints that are
efficiently solvable by Z3 solver. In Sect. 6 we present the experimental results
on some benchmarks to demonstrate scalability.

5 Undecidability

In this section we give a sketch of the proof of the following undecidability result.

Theorem 4. Given a constant-rate multi-mode system H, convex workspace
W, obstacles set O, start state xs and target state xt, the reachability problem
Reach(H, SW\O, xs, xt) is in general undecidable.

Proof (Sketch). We prove the undecidability of this problem by giving a reduc-
tion from the halting problem for two-counter machines that is known to be
undecidable [19]. Given a two counter machine A having instructions L = �1,
. . . , �n−1, �halt, we construct a multi-mode system HA along with non-convex
safety SW\O characterized using linear constraints. The idea is to simulate the
unique run of two-counter machine A via the unique safe schedule of the MMS
HA by going through a sequence of modes such that a pre-specified target point
is reachable iff the counter machine halts.

Modes. For every increment/decrement instruction �i of the counter machine
we have two modes Mi and Mik, where k is the index of the unique instruction
�k to which the control shifts in A from �i. For every zero check instruction �i, we
have four modes M1

i ,M2
i ,Mik and Mim, where k,m are respectively the indices

of the unique instructions �k, �m to which the control shifts from �i depending on
whether the counter value is >0 or =0. There are three modes Mhalt,Mc1

halt and
Mc2

halt corresponding to the halt instruction. We have a special “initial” mode
I which is the first mode to be applied in any safe schedule.

Variables. The MMS HA has two variables C = {c1, c2} that store the value
of two counters. There is a unique variable S = {s0} used to enforce that mode
I as the first mode. For every increment or decrement instruction �i, there are
variables wij , xij , where j is the index of the unique instruction �j to which
control shifts from �i. We define variable zi# for each zero-check instruction �i.

Simulation. A simulation of the two counter machine going through instructions
�0, �1, �2, . . . , �y, �halt is achieved by going through modes I,M0,M01,M1 or
M1

1 or M2
1 . . . ,My,My halt in order, spending exactly one unit of time in each

mode. Starting from a point xs with s0 = 1 and v = 0 for all variables v other
than s0, we want to reach a point xt where whalt = 1 and v = 0 for all variables
v other than whalt. The idea is to start in mode I, and spending one unit of
time in I obtaining s0 = 0, w01 = 1 (spending a time other than one violates
safety. Growing w01 represents that the current instruction is �0, and the next
one is �1. Next, we shift to mode M0, spend one unit of time there to obtain



472 S.N. Krishna et al.

x01 = 1, w01 = 0. This is followed by mode M01, where x01 becomes 0, and
one of the variables z1#, w12 attain 1, depending on whether �1 is a zero check
instruction or not (again, spending a time other than one in M0,M01 violates
safety).

In general, while at a mode Mij , the next instruction �k after �j is chosen by
“growing” the variable wjk if �j is not a zero-check instruction, or by “growing”
the variable zj# if �j is a zero-check instruction. In parallel, xij grows down to
0, so that xij + wjk = 1 or xij + zj# = 1. The sequence of choosing modes, and
enforcing that one unit of time be spent in each mode is necessary to adhere to
the safety set.

– In the former case, the control shifts from Mij to mode Mj where variable
xjk grows at rate 1 while wjk grows at rate −1, so that xjk +wjk = 1. Control
shifts from Mj to Mjk, where the next instruction �g after �k is chosen by
growing variable wkg if �k is not zero-check instruction, or the variable zk#

is grown if �k is a zero-check instruction.
– In the latter case, one of the modes M1

j ,M2
j is chosen from Mj where zj#

grows at rate −1. Assume �j is the instruction “If the counter value is > 0,
then goto �m, else goto �h”. If M1

j is chosen, then the variable xjm grows at
rate 1 while if M2

j is chosen, then the variable xjh grows at rate 1. In this
case, we have zj# + xjm = 1 or zj# + xjh = 1. From M1

j , control shifts to
Mjm, while from M2

j , control shifts to Mjh.

Continuing in the above fashion, we eventually reach mode My halt where xy halt

grows down to 0, while the variable whalt grows to 1, so that xy halt +whalt = 1.
Starting from xs—which lies in the hyperplane H0 given as s0 + w0j = 1

where �j is the unique instruction following �0—a safe execution stays in H0

as long as control stays in the initial mode I. Control then switches to mode
M0, to the hyperplane H1 given by w0j + x0j = 1. Note that H0 ∩ H1 is non-
empty and intersect at the point where w0j = 1, and all other variables are
0. Spending a unit of time at M0, control switches to mode M0j , and to the
hyperplane H2 given by x0j + wjk = 1 depending on whether �j is not a zero-
check instruction. Again, note that H1 ∩ H2 is non-empty and intersect at the
point where c1 = 1, x0j = 1 and all other variables are zero. This continues,
and we obtain a safe transition from hyperplane Hi to Hi+1 as dictated by the
simulation of the two counter machine. The sequence of safe hyperplanes lead
to the hyperplane Hlast given by whalt = 1 and all other variables 0 iff the two
counter machine halts. ��
Example 2 (Example of the reduction). Consider an example of a two counter
machine with counters c1, c2 and the following instruction set.

– �0 : c1 := c1 + 1; goto �1
– �1 : c1 := c1 − 1; goto �2
– �2 : if (c2>0) then goto �3; else goto �0
– �3 : HALT.
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Note that this machine does not halt. We now describe a multi-mode system that
simulates this two counter machine. The modes and variables are as follows.

1. Variables {c1, c2} correspond to the two counters, {w01, w12, z2#} correspond
to instructions �0, �1, �2, �3 and the switches between instructions, and variable
w3 corresponds to the halt instruction. We also have variables s0 and {xij |
0 ≤ i, j ≤ 3}.

2. Mode I: R(I)(s0) = −1 and R(I)(w01) = 1 and other variables have rate 0.
3. Modes M0,M1,M1

2,M2
2,M01,M12,M20 with rates:

– R(M0)(w01) = −1, R(M0)(x01) = R(M0)(c1) = 1, and R(M0)(v) = 0
for all other variables v;

– R(M1)(w12) = −1, R(M1)(x12) = 1, R(M1)(c1) = −1, and R(M1)(v) =
0 for all other variables v;

– R(M1
2)(z2#) = −1 = R(M2

2)(z2#), R(M1
2)(x23) = 1 = R(M2

2)(x20). All
other variables have rate 0 in modes M1

2,M2
2;

– R(M12)(z2#) = 1, and R(M12)(v) = 0 for all other variables v;
– R(M01)(x01) = −1, R(M01)(w12) = 1, and R(M01)(v) = 0 for other v;
– R(M20)(x20) = −1, R(M20)(w01) = 1, and R(M20)(v) = 0 for other v.

4. Mode M23 with R(M23)(x23) = −1, R(M23)(w3) = 1, R(M23)(v) = 0 for
other v. Modes M3,Mc1

3 ,Mc2
3 with R(M3)(w3) = −1 and R(M3)(v) = 0

for all other variables v; R(Mci
3 )(ci) = −1, R(Mci

3 )(w3) = 1.

The safety set is given by the conjunction of the following seven conditions:

1. 0 ≤ w01, w12, xij , z2#, s0 ≤ 1, 0 ≤ w3, c1, c2;
2. at any point, if some xij is non-negative, then all the other xkl variables are

0, i �= k, j �= l;
3. at any point, if some wij is non-negative, then all other wkl are zero, i �=

k, j �= l and z2# = 0;
4. At any point, if z2# > 0, then all the wij are 0;
5. At any point, if s0 > 0, then all xij = 0;
6. At any point, if w3 > 0, then variables xi3 are 0, and c1, c2 = 0;
7. At any point, if xi3 > 0, then xi3 + w3 = 1.

The obstacles are hence, the complement of this conjunction. Starting from s0 =
1 and v = 0 for v �= s0, a safe computation must start from I, then visit in order
modes M0,M01,M1,M12,M1

2,M20, and repeat this sequence spending one
unit in each mode. This will not reach M3 corresponding to the halt instruction.

6 Experimental Results

In this section, we discuss some preliminary results obtained with an implementa-
tion of Algorithm 1. In order to show competitiveness of the proposed algorithm,
we compare its performance with a popular implementation of the RRT algo-
rithm [18] on a collection of micro-benchmarks (some of these benchmarks are
inspired by [21]).
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Table 1. Summary of results for the L shaped arena

Dimension Arena size OMPLRRT BoundedMotionPlan

Time (s) Nodes Time (s) Witness length

2 100 × 100 0.011 8 0.012 2

2 1000 × 1000 0.076 245 0.012 2

3 100 × 100 0.107 4836 0.183 2

3 1000 × 1000 1.9 1800 0.19 2

4 100 × 100 1.2 612 0.201 2

4 1000 × 1000 94.39 2857 0.206 2

5 100 × 100 3.12 778 2.69 2

5 1000 × 1000 149.4 2079 2.68 2

6 1000 × 1000 105 3822 15.3 2

7 1000 × 1000 319.63 2639 190.3 2

6.1 Experimental Setup

Rapidly-exploring Random Tree (RRT) [18] is a space-filling data structure that
is used to search a region by incrementally building a tree. It is constructed
by selecting random points in the state space and can provide better coverage
of reachable states of a system than mere simulations. There are many ver-
sions of RRTs available; we use the Open Motion Planning Library (OMPL)
implementation of RRT for our experiments. The OMPL library (http://ompl.
kavrakilab.org) consists of many state-of-the-art, sampling-based motion plan-
ning algorithms. We used the RRT API provided by the OMPL library. The
results for RRT were obtained with a goal bias parameter set to 0.05, and obsta-
cles implemented as StateValidityCheckerFunction() as mentioned in the
documentation [23].

We implemented our algorithm on the top of the Z3 solver [8]. The imple-
mentation involves coding formulae in FO-logic over reals and checking for a sat-
isfying assignment. Our algorithm was implemented in Python 2.7. The OMPL
implementation was done in C++. The experiments with Algorithm1 and RRT
were performed on a computer running Ubuntu 14.10, with an Intel Core i7-4510
2.00 GHz quadcore CPU, with 8 GB RAM. We compared the two algorithms
by executing them on a set of microbenchmarks whose obstacles are hyper-
rectangular, though our algorithm can handle general polyhedral obstacles. We
considered the following microbenchmarks.

– L-shaped arena. This class of microbenchmarks contains examples with
hyper-rectangular workspace and certain “L” shaped obstacles as shown in
Fig. 1. The initial vertex is the lower left vertex of the square (xs) and the
target is the right upper vertex of the square (xt). Our algorithm can give the
solution to this problem with bound B = 2 returning the sequence 〈x1, x, xt〉
as shown in the figure, while the Rrt algorithm in this case samples most

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
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Fig. 2. (a) Snake-shaped arena with four obstacles (left), (b) Maze-shaped arena with
three C-shaped patterns (middle) and (c) modified L-shaped arena (right).

of the points which lie on the other side of the obstacles and if the control
modes are not in the direction of the line segments x1x and xxt, then it grows
in arbitrary directions and hits the obstacles a large number of times, leading
to a large number of iterations slowing the growth. We experimented with L-
shaped examples for dimensions ranging from 2 to 7. In most of the cases, we
found that the performance of the BoundedMotionPlan algorithm was
better than that of OMPLRRT. Another important point to note is that
RRT or other simulation-based algorithms do not perform well as the input
size increases, which can be clearly seen from the running times obtained on
increasing arena sizes in Table 1. Our algorithm worked better than RRT for
higher dimensions (≥3).

– Snake-shaped arena. The name comes from the serpentine appearance of
the safe sets in these arenas. The motivation to study these microbenchmarks
comes from motion planning problems in regular environments. The arena has
rectangular obstacles coming from the top and the bottom (as shown in Fig. 2
for two dimensions) alternately. The starting point is the lower left vertex xs

and the target point is xt. A sample free-path through the arena is also shown
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Table 2. Summary of results for the snake-shaped arena

Dim. Arena size Obstacles OMPLRRT BoundedMotionPlan

Time (s) Nodes Nodes in path Time (s) Witness length

2 350× 350 3 3.56 13142 72 2.54 4

2 350× 350 4 4.12 15432 96 4.23 5

2 3500× 3500 3 4.79 15423 83 2.57 4

3 350× 350 3 102.3 86314 67 96.43 4

3 3500× 3500 3 100.22 1013 27 96.42 4

Table 3. Summary of results for the maze-shaped arena

Dim. Arena size Obstacles OMPLRRT BoundedMotionPlan

Time (s) Nodes Nodes in path Time (s) Bound

2 600× 600 2 1.8 9500 60 1.3 4

2 6000× 6000 3 23.5 11256 78 45.23 5

3 600× 600 2 132.6 90408 71 120.3 5

3 6000× 6000 3 1002.6 183412 93 953.4 5

in the figure. Rrt algorithm performs well for lower dimensions but fails to
terminate for higher dimensions. The results for this class of obstacles are
summarised in Table 2. Experiments were performed for up to 3 dimensions
and 4 obstacles.

– Maze-shaped arena. These benchmarks mimic the motion planning situa-
tions where the task of the robot is to navigate through a maze. We model a
maze using finitely many concentric “C”-shaped obstacles with different ori-
entations as shown in Fig. 2. The task is to navigate from the lower left outer
corner to the center point of the square. This kind of arena seems to be par-
ticularly challenging for the RRT algorithm and the growth of the tree seems
to be quite slow. Also, the performance of our tool degrades as the bound
increases due to a increase in the number of constraints, and hence, these
examples require more time as compared to the other two microbenchmarks.
However, as shown in Table 3, OmplRrt and BoundedMotionPlan perform
almost equally well, with the latter being slightly better.

– Modified L-shaped obstacles. These set of microbenchmarks contains a
hyperrectangular workspace and 2 hyperrectangular obstacles arranged in a
“L-shaped” fashion as shown in Fig. 2. The initial vertex lies very close to one
of the obstacles. The target vertex is the vertex very close to the start vertex
but on the other side of the obstacle. Our algorithm can give the solution to
this problem with bound B = 3 while Rrt algorithm spends time in sampling
from the bigger obstacle-free part of the arena. The results are summarised
in Table 4.

The micro-benchmarks presented above involved the situations where the
target point is reachable from the source point. It is interesting to see the
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Table 4. Summary of results for the modified L-shaped obstacles

Dimension Arena size OMPLRRT BoundedMotionPlan

Time Nodes Nodes in path Time Bound

2 100 × 100 0.445 27387 40 0.126 3

2 1000 × 1000 2.57 38612 47 0.132 3

3 100 × 100 115.23 57645 71 92.1 3

3 1000 × 1000 675.62 183412 93 95.23 3

4 100 × 100 287.32 64230 65 283.23 3

4 1000 × 1000 923.45 192453 78 292.53 3

5 100 × 100 523.62 73422 69 534.45 3

5 1000 × 1000 1043 223900 72 533.96 3

Table 5. Summary of results for the unreachable L-shaped obstacles.

Dimension OMPLRRT BoundedMotionPlan

Time (s) Nodes Time (s)

2 500 (TO) 5301778 0.0088

3 500 (TO) 7892122 0.032

4 500 (TO) 4325621 0.056

5 500 (TO) 5624609 2.73

6 500 (TO) 4992951 18.34

7 500 (TO) 3765123 213.23

performance of two algorithms in cases when there is no path from the source to
target point. For the cases when an upper bound on cell-decomposition can be
imposed, our algorithm is capable of producing negative answer. Table 5 sum-
marizes the performance of OmplRrt and BoundedMotionPlan for L-shaped
arenas when the target point is not reachable. The timeout for RRT was set to
be 500 s, and it did not terminate until the timeout, which is as expected. On the
other hand, BoundedMotionPlan performed well, with running times close
to those when the target point is reachable.

Discussion. Our implementation of BoundedMotionPlan even though pre-
liminary, compares favorably with a state-of-the-art implementation of Rrt.
BoundedMotionPlan, in addition, can naturally deal with restrictions on the
dynamics of the MMS, that is, with systems such that the positive linear span
of the mode vectors is not R

n.
A trend observed in our experiments is that if a large fraction of the arena is

covered by obstacles, then the probability of a randomly sampled point lying in
the obstacle region is high and this makes RRT ineffective in this situation by
wasting a lot of iterations. Another trend is that as the arena size increases, it
becomes more difficult for RRT to navigate to the destination points even with
higher values of goal bias.
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Our algorithm performs better in situations when it terminates early (tar-
get reachable from source with shorter witnesses) while the performance of our
algorithm degrades as the bound or the dimensions increases since the number
of constraints introduced by the Fourier-Motzkin like-procedure implemented in
our algorithm grows exponentially with the dimension exhibiting the curse of
dimensionality.

7 Conclusion

In this paper we studied the motion planning problem for constant-rate multi-
mode system with non-convex safety sets given as a convex set of obstacles.
We showed that while the general problem is already undecidable in this simple
setting of linearly defined obstacles, decidability can be recovered by making
appropriate assumption on the obstacles. Moreover, our algorithm performs sat-
isfactorily when compared to well-known algorithms for motion planning, and
can easily be adapted to provide semi-algorithms for motion-planning problems
for objects with polyhedral shapes. While the algorithm is complete for classes
of safety sets for which a bound on the size of a cell cover can be effectively com-
puted, bounds based on cell decompositions of the safety set may be too large to
be of practical use. This situation is akin to that encountered in bounded model
checking of finite-state systems, in which bounds based on the radii of the state
graph are usually too large. We are therefore motivated to look at extensions of
the algorithm that incorporate practical termination checks.
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