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Preface

It is our pleasure to present to you the proceedings of the 28th Australasian Database
Conference (ADC 2017), which took place in Brisbane, Australia. The Australasian
Database Conference is an annual international forum for sharing the latest research
advancements and novel applications of database systems, data-driven applications,
and data analytics between researchers and practitioners from around the globe, par-
ticularly Australia and New Zealand. The mission of ADC is to share novel research
solutions to problems of today’s information society that fulfill the needs of hetero-
geneous applications and environments and to identify new issues and directions for
future research and development work. ADC seeks papers from academia and industry
presenting research on all practical and theoretical aspects of advanced database theory
and applications, as well as case studies and implementation experiences. All topics
related to databases are of interest and within the scope of the conference. ADC gives
researchers and practitioners a unique opportunity to share their perspectives with
others interested in the various aspects of database systems.

As in previous years, the ADC 2017 Program Committee accepted those papers to
be considered as being of ADC quality without setting any predefined quota. The
conference received 32 submissions and accepted 22 papers, including 20 full research
papers and two demo papers. Each paper was peer reviewed in full by at least three
independent reviewers, and in some cases four referees produced independent reviews.
A conscious decision was made to select the papers for which all reviews were positive
and favorable. The Program Committee that selected the papers consists of 41 members
from around the globe, including Australia, China, Finland, Japan, Korea, New
Zealand, Singapore, Switzerland, the UK, and the USA, who were thorough and
dedicated to the reviewing process.

We would like to thank all our colleagues who served on the Program Committee or
acted as external reviewers. We would also like to thank all the authors who submitted
their papers and all the attendees. This conference is held for you, and we hope that
with these proceedings, you can have an overview of this vibrant research community
and its activities. We encourage you to make submissions to the next ADC conference
and contribute to this community.

August 2017 Zi Huang
Xiaokui Xiao

Xin Cao



General Chair’s Welcome Message

Welcome to the proceedings of the 28th Australasian Database Conference (ADC
2017)! ADC is a leading Australia- and New Zealand-based international conference
on research and applications of database systems, data-driven applications, and data
analytics. In the past decade, ADC has been held in Sydney (2016), Melbourne (2015),
Brisbane (2014), Adelaide (2013), Melbourne (2012), Perth (2011), Brisbane (2010),
Wellington (2009), Wollongong (2008), and Ballarat (2007). This year, the ADC
conference came to Brisbane.

In the past, the ADC conference series was held as a part of the Australasian
Computer Science Week (ACSW). Starting from 2014, ADC conferences have
departed from ACSW as the database research community in Australasia has grown
significantly larger. Now the new ADC conference has an expanded research program
and focuses on community building through a PhD School. ADC 2017 was the fourth
of this new ADC conference series.

The conference this year had three eminent speakers to give keynote speeches:
Divesh Srivastava from AT&T Labs-Research (USA), Masaru Kitsuregawa
co-affiliated with the National Institute of Informatics and the University of Tokyo
(Japan), and Mingsheng Ying from the University of Technology Sydney (Australia).
In addition to 22 papers carefully selected by the Program Committee, we were also
fortunate to have a distinguished lecture by Dr. Guoliang Li from Tsinghua University
(China), and two invited talks presented by Gianluca Demartini from the University of
Sheffield (UK) and Dacheng Tao from the University of Sydney (Australia). Further-
more, we had a PhD School program with great support from four invited speakers:
Divesh Srivastava from AT&T Labs-Research (USA), Yu Zheng from Microsoft
Research (China), Gianluca Demartini from the University of Sheffield (UK), and Rui
Zhang from the University of Melbourne (Australia).

We wish to take this opportunity to thank all speakers, authors, and organizers.
I would especially like to thank our Organizing Committee members, the Program
Committee co-chairs Helen Huang and Xiaokui Xiao, for their dedication to ensuring a
high-quality program, proceedings chair Xin Cao, for his efforts in delivering the
conference proceedings, local organization co-chairs Hongzhi Yin and Sen Wang, for
their efforts in covering every detail of the conference logistics, publicity and Web
chair Jun Zhou for his efforts in maintaining the conference website, tutorial and
distinguished lecture chair Sebastion Link for his efforts in selecting and inviting the
tutorial/lecture speakers, panel chair Athman Bouguettaya for his efforts in choosing
the topic of an inspiring panel discussion, and PhD School coordinator Junhao Gan for
designing an exciting program for the PhD school. I would also like to thank the
University of Queensland for the support that it gave to the conference. Without them,
this year’s ADC would not have been a success.



Brisbane is a multicultural city, and ADC 2017 was held on the St. Lucia campus
of the University of Queensland. We trust that all ADC 2017 participants had a
wonderful experience with the conference, the campus, and the city.

Yufei Tao
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Quantum Graph Reachability Problem

Mingsheng Ying

University of Technology Sydney, Australia

Abstract. Graph reachability is a fundamental problem in database theory and
many other areas of computer science. In this talk, we consider quantum graph
reachability problem, which originally arose in verification and analysis of
quantum programs and model-checking quantum systems, but may also interest
database community. We will discuss the following issues: 1. How we can
naturally define a graph structure in the state Hilbert space of a quantum system
from its (discrete-time) dynamics? 2. Why the approaches to classical graph
reachability problem do not work for quantum reachability problem? 3. Strongly
connected component decomposition theorem for quantum graphs. At the end
of the talk, a series of open problems will be pointed out, including possible
applications to database search in future quantum computers.

Short Biography. Mingsheng Ying was Cheung Kong Chair Professor at Tsinghua
University and Director of the Scientific Committee, the National Key Laboratory of
Intelligent Technology and Systems, China. Since 2008, he is Distinguished Professor
and Research Director of the Centre for Quantum Software and Information, University
of Technology Sydney, Australia. He is also Deputy Director for Research of the
Institute of Software, Chinese Academy of Sciences.

Ying’s research interests include quantum computation and quantum information,
programming theory, and logical foundations of artificial intelligence. In particular, he
developed Hoare logic for quantum programs and proved its (relative) completeness
(TOPLAS’11). He defined the notion of invariants for quantum programs (POPL’17).
He initiated the research line of model checking quantum Markov chains (CON-
CUR’12–14, TOCL’14). Ying is the author of Foundations of Quantum Programming
(Morgan Kaufmann 2016).



Big Data Integration

Divesh Srivastava1 and Masaru Kitsuregawa2

1 AT&T Labs Research, USA
2 National Institute of Informatics, University of Tokyo, Japan

Abstract. The Big Data era is upon us: data are being generated, collected and
analyzed at an unprecedented scale, and data-driven decision making is
sweeping through all aspects of society. Since the value of data explodes when it
can be linked and fused with other data, addressing the big data integration
(BDI) challenge is critical to realizing the promise of Big Data. BDI differs from
traditional data integration in many dimensions: (i) the number of data sources,
even for a single domain, has grown to be in the tens of thousands, (ii) many
of the data sources are very dynamic, as a huge amount of newly collected data
are continuously made available, (iii) the data sources are extremely heteroge-
neous in their structure, with considerable variety even for substantially similar
entities, and (iv) the data sources are of widely differing qualities, with signif-
icant differences in the coverage, accuracy and timeliness of data provided. This
talk presents techniques to address these novel challenges faced by big data
integration, and identifies a range of open problems for the community.

Short Biography. Divesh Srivastava is the head of Database Research at AT&T
Labs-Research. He is a Fellow of the Association for Computing Machinery
(ACM) and the managing editor of the Proceedings of the VLDB Endowment
(PVLDB). He has served as a trustee of the VLDB Endowment, as an associate editor
of the ACM Transactions on Database Systems (TODS), as an associate Editor-
in-Chief of the IEEE Transactions on Knowledge and Data Engineering (TKDE), and
as a general or program committee co-chair of many conferences. He has presented
keynote talks at several international conferences, and his research interests and pub-
lications span a variety of topics in data management. He received his Ph.D. from the
University of Wisconsin, Madison, USA, and his Bachelor of Technology from the
Indian Institute of Technology, Bombay, India.

Short Biography. Masaru Kitsuregawa received his Information Engineering Ph.D.
degree from the University of Tokyo in 1983. Since then he joined the Institute of
Industrial Science, the University of Tokyo, and is currently a professor. He is also a
professor at Earth Observation Data Integration & Fusion Research Initiative of the
University of Tokyo since 2010. He also serves Director General of National Institute
of Informatics since 2013. Dr. Kitsuregawa's research interests include Database
Engineering, and he had been principal researcher of Funding Program for
World-Leading Innovative R&D on Science and Technology, MEXT Grant-in-Aids



Program for “Info-Plosion”, and METI's Information Grand Voyage Project. He had
served President of Information Processing Society of Japan from 2013 to 2015. He
served as a committee member for a number of international conferences, including
ICDE Steering Committee Chair. He is an IEEE Fellow, ACM Fellow, IEICE Fellow
and IPSJ Fellow, and he won ACM SIGMOD E.F.Codd Contributions Award, Medal
with Purple Ribbon, 21st Century Invention Award, and C&C Prize.

Big Data Integration XVII
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Human Computation
for Entity-Centric Information Access

Gianluca Demartini

The University of Sheffield, UK

Abstract. Human Computation is a novel approach used to obtain manual data
processing at scale by means of crowdsourcing. In this talk we will start
introducing the dynamics of crowdsourcing platforms and provide examples
of their use to build hybrid human-machine information systems. We will then
present ZenCrowd: a hybrid system for entity linking and data integration
problems over linked data showing how the use of human intelligence at scale in
combination with machine-based algorithms outperforms traditional systems. In
this context, we will then discuss efficiency and effectiveness challenges of
micro-task crowdsourcing platforms including spam, quality control, and job
scheduling in crowdsourcing.

Short Biography. Dr. Gianluca Demartini is a Senior Lecturer in Data Science at the
University of Sheffield, Information School. His research is currently supported by the UK
Engineering and Physical Sciences Research Council (EPSRC) and by the EU H2020
framework program. His main research interests are Information Retrieval, Semantic
Web, and Human Computation. He received the Best Paper Award at the European
Conference on Information Retrieval (ECIR) in 2016 and the Best Demo Award at the
International Semantic Web Conference (ISWC) in 2011. He has published more than 70
peer-reviewed scientific publications including papers at major venues such as WWW,
ACM SIGIR, VLDBJ, ISWC, and ACMCHI. He has given several invited talks, tutorials,
and keynotes at a number of academic conferences (e.g., ISWC, ICWSM, WebScience,
and the RuSSIR Summer School), companies (e.g., Facebook), and Dagstuhl seminars.
He is an ACM Distinguished Speaker since 2015. He serves as area editor for the Journal
of Web Semantics, as Student Coordinator for ISWC 2017, and as Senior Program
Committee member for the AAAI Conference on Human Computation and Crowd-
sourcing (HCOMP), the International Conference on Web Engineering (ICWE), and the
ACM International Conference on Information and KnowledgeManagement (CIKM). He
is Program Committee member for several conferences including WWW, SIGIR, KDD,
IJCAI, ISWC, and ICWSM. He was co-chair for the Human Computation and Crowd-
sourcing Track at ESWC 2015. He co-organized the Entity Ranking Track at the Initiative
for the Evaluation of XML Retrieval in 2008 and 2009. Before joining the University of
Sheffield, he was post-doctoral researcher at the eXascale Infolab at the University of
Fribourg in Switzerland, visiting researcher at UC Berkeley, junior researcher at the L3S
Research Center in Germany, and intern at Yahoo! Research in Spain. In 2011, he
obtained a Ph.D. in Computer Science at the Leibniz University of Hanover focusing on
Semantic Search.



The Progress of AI

Dacheng Tao

University of Sydney, Australia

Abstract. Since the concept of Turing machine has been first proposed in 1936,
the capability of machines to perform intelligent tasks went on growing expo-
nentially. Artificial Intelligence (AI), as an essential accelerator, pursues the
target of making machines as intelligent as human beings. It has already
reformed how we live, work, learning, discover and communicate. In this talk, I
will review our recent progress on AI by introducing some representative
advancements from algorithms to applications, and illustrate the stairs for its
realization from perceiving to learning, reasoning and behaving. To push AI
from the narrow to the general, many challenges lie ahead. I will bring some
examples out into the open, and shed lights on our future target. Today, we teach
machines how to be intelligent as ourselves. Tomorrow, they will be our part-
ners to get into our daily life.

Short Biography. Dacheng Tao is Professor of Computer Science and ARC Future
Fellow in the School of Information Technologies and the Faculty of Engineering and
Information Technologies at The University of Sydney. He was Professor of Computer
Science and Director of the Centre for Artificial Intelligence in the University of
Technology Sydney. He mainly applies statistics and mathematics to Artificial Intel-
ligence and Data Science. His research interests spread across computer vision, data
science, image processing, machine learning, and video surveillance. His research
results have expounded in one monograph and 500+ publications at top journals and
conferences, such as IEEE T-PAMI, T-NNLS, T-IP, JMLR, IJCV, IJCAI, AAAI,
NIPS, ICML, CVPR, ICCV, ECCV, ICDM; and ACM SIGKDD, with several best
paper awards, such as the best theory/algorithm paper runner up award in IEEE
ICDM’07, the best student paper award in IEEE ICDM’13, and the 2014 ICDM
10-year highest-impact paper award. He received the 2015 Australian Scopus-Eureka
Prize, the 2015 ACS Gold Disruptor Award and the 2015 UTS Vice-Chancellor’s
Medal for Exceptional Research. He is a Fellow of the IEEE, OSA, IAPR and SPIE.



Hybrid Human-Machine Big Data Integration
(Distinguished Lecture)

Guoliang Li

Tsinghua University, China

Abstract. Data integration cannot be completely addressed by automated pro-
cesses. We proposed a hybrid human-machine method that harnesses human
ability to address this problem. The framework first uses machine algorithms to
identify possible matching pairs and then utilizes the crowd to compute actual
matching pairs from these candidate pairs. In this talk, I will introduce our two
systems on hybrid human-machine big data integration. (1) DIMA: A distributed
in-memory system on big-data integration that can use SQL to integrate
heterogenous data. DIAM can be used to identify candidate matching pairs in
big data integration. (2) CDB: A crowd-powered database system that provides
declarative programming interfaces and allows users to utilize an SQL-like
language for posing crowdsourced queries. CDB can be used to refine the
candidate pairs in big data integration.

Short Biography. Guoliang Li is an Associate Professor of Department of Computer
Science, Tsinghua University, Beijing, China. His research interests include crowd-
sourced data management, large-scale data cleaning and integration, and big
spatio-temporal data analytics. He has regularly served as the PC members of many
premier conferences, such as SIGMOD, VLDB, KDD, ICDE, WWW, IJCAI, and
AAAI. He was a PC co-chair of WAIM 2014, WebDB 2014, NDBC 2016, and an area
chair of CIKM 2016-2017. He is an associated editor of some premier journals, such as
TKDE, Big Data Research, and FCS. He has published more than 80 papers in premier
conferences and journals, such as SIGMOD, VLDB, ICDE, SIGKDD, SIGIR,
ACM TODS, VLDB Journal, and TKDE. His papers have been cited more than 3600
times. He received IEEE TCDE Early Career Award, and best paper awards/
nominations at DASFAA 2014 and APWeb 2014.
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The Flexible Group Spatial Keyword Query

Sabbir Ahmad1, Rafi Kamal1, Mohammed Eunus Ali1(B), Jianzhong Qi2,
Peter Scheuermann3, and Egemen Tanin2

1 Department of CSE, Bangladesh University of Engineering and Technology,
Dhaka, Bangladesh

{ahmadsabbir,eunus}@cse.buet.ac.bd, rafikamalb@gmail.com
2 School of CIS, University of Melbourne, Melbourne, Australia

{jianzhong.qi,etanin}@unimelb.edu.au
3 Department of EECS, Northwestern University, Evanston, USA

peters@eecs.northwestern.edu

Abstract. We propose the flexible group spatial keyword query and
algorithms to process three variants of the query in the spatial textual
domain: (i) the group nearest neighbor with keywords query, which finds
the data object that optimizes the aggregate cost function for the whole
group Q of size n query objects, (ii) the subgroup nearest neighbor with
keywords query, which finds the optimal subgroup of query objects and
the data object that optimizes the aggregate cost function for a given
subgroup size m (m ≤ n), and (iii) the multiple subgroup nearest neigh-
bor with keywords query, which finds optimal subgroups and correspond-
ing data objects for each of the subgroup sizes in the range [m, n]. We
design query processing algorithms based on branch-and-bound and best-
first paradigms. Finally, we conduct extensive experiments with two real
datasets to show the efficiency of the proposed algorithms.

1 Introduction

The group nearest neighbor (GNN) query [10] and its variants, the flexible aggre-
gate nearest neighbor (FANN) [8] query and the consensus query [2] have been
previously studied in spatial database domain. Given a set Q of n queries and
a dataset D, a GNN query finds the data object that minimizes the aggregate
distance (e.g., sum or max) for the group, whereas an FANN query finds the opti-
mal subgroup of query points and the data object that minimizes the aggregate
distance for a subgroup of size m, and a consensus query finds optimal subgroups
and the data objects for each of the subgroup sizes in the range [n′, n]. In all
of these studies, the aggregate similarity is computed based on only spatial (or
Euclidean) distances between a data point and a group of query points. In this
paper, we address all the three variants of the above queries in the context of
spatial textual domain, where both spatial proximity and keyword similarity for
a group or subgroups of users to data points need to be considered. We call this
class of query as the flexible group spatial keyword query.

The flexible group spatial keyword query has many applications in spatial
and multimedia database domain. For example, a group of friends residing at
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 3–16, 2017.
DOI: 10.1007/978-3-319-68155-9 1
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Fig. 1. An example of a group of users to find the optimal restaurant.

their homes or offices may share their locations as spatial coordinates and their
preferences as sets of keywords with a location-based service provider, to find
a Point of Interest (POI) (e.g., restaurant) that optimizes an aggregate cost
function composed of spatial distances and keyword similarities for the group.
Since finding a POI that suits all group members might be difficult due to the
diverse nature of choices, the group might prefer a result that is not optimal for
the entire group, but is optimal for subset of it. In such cases, we need to find
optimal subgroup of users and a POI that minimizes the cost function for the
subgroup.

Figure 1 shows an example, where a group of five friends {q1, q2, q3, q4, q5}
is trying to decide a restaurant for a Sunday brunch. Each person provides
his location and preferred type of food, represented by a set of keywords
such as {“Burger”, “Pizza”} or {“Italian”}, etc. There is a set of restaurants
{o1, o2, ..., o7} to be selected from, and each restaurant is identified by its loca-
tion and by a set of keywords describing the type of cuisine it offer, e.g., {“Pizza”,
“Italian”}. In general, it is preferred to find an answer that optimizes both spa-
tial distance and keyword set dissimilarity at the same time, and o7 is returned
as the answer if we consider the whole group. However, if we allow leaving out a
user, say q4, then more answer candidates will become available. In particular,
o6 will now become the best choice of the subgroup {q1, q2, q3, q5}, as it covers
all the keywords, and is the closest to members of the subgroup. In fact, leaving
any other query user out (e.g., q2) would not obtain a better cost function value.
Thus {q1, q2, q3, q5} is the optimal subgroup of size 4 with o6 as the meeting
point.

We observe that in many practical applications relaxing the requirement,
i.e., not including all the query objects, has potential benefits in finding good
quality answer. For example, a company may want to find a location for holding
a marketing campaign, where it is often desired that the selected place optimizes
for at least 60% of the customers as it may be difficult to find a place that suits
all customers. Similarly, in a multimedia domain, one may want to find an image
that matches with a subgroup of query images, where an object or query image
is represented as a point (in a high-dimensional space) and a set of tag-words.
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Generally, one may prefer the subgroup size to be maximized, and hence, it
might be beneficial to explore the optimal solutions for different subgroup sizes.

The key challenge in processing the group spatial keyword queries is how
to utilize both the spatial and keyword preferences and to efficiently prune the
search space. Another major challenge is how to find the optimal subgroups of
various sizes in one pass over the data set. Our contributions are as follows:

– We propose a new class of group queries in the spatial textual domain: (i)
the group nearest neighbor with keywords (GNNK) query that finds the best
POI with respect to our cost function for the whole group, (ii) the subgroup
nearest neighbor with keywords (SGNNK) that finds the optimal subgroup
and the corresponding best POI for a given subgroup size of size m (with
m ≤ n, the group size), and (iii) the multiple subgroup nearest neighbor with
keywords (MSGNNK) that returns in one pass the optimal subgroups and
corresponding POIs for all subgroups of size m, where n′ ≤ m ≤ n and n′

being the minimum subgroup size.
– We propose pruning strategies based on branch and bound as well as best-

first strategies for these three queries. The resultant algorithms can process
the queries in a single pass over the dataset.

– We provide theoretical bounds for our algorithms, and evaluate them through
an extensive experimental evaluation on real datasets.

2 Problem Statement

Let D be a geo-textual dataset. Each object o ∈ D is defined as a pair (o.λ, o.ψ),
where o.λ is a location point and o.ψ is a set of keywords. A query object q is
similarly defined as a pair (q.λ, q.ψ). Let dist(q.λ, o.λ) be the spatial distance
between q and o, and similarity key(q.ψ, o.ψ) be the similarity between their
keyword sets. We normalize both dist(q.λ, o.λ) and similarity key(q.ψ, o.ψ) so
that their value lie between 0 and 1 (inclusive). The cost of o with respect to q
is expressed in terms of their spatial distance and keyword set distance:

cost(q, o) = α · dist(q.λ, o.λ) + (1 − α) · (1 − similarity key(q.ψ, o.ψ))

Here, α is a user-defined parameter to control the preference of spatial proximity
over keyword set similarity. The spatial distance is normalized by the maximum
spatial distance between any pair of objects in the dataset, dmax. Thus,

dist(q.λ, o.λ) = euclidean distance(q.λ, o.λ)/dmax

Each keyword in the dataset is associated with a weight. The weight of each
keyword is normalized by the maximum keyword weight wmax present in the
dataset. Let y.w be the weight of keyword y. Then the text relevance between q
and o is the normalized sum of the weights of the keywords shared by q and o:

similarity key(q.ψ, o.ψ) =
1

|q.ψ|
∑

y∈q.ψ∩o.ψ

y.w

wmax

We formulate the GNNK, SGNNK and MSGNNK queries as follows.
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Definition 1 (GNNK). Given a set D of spatio-textual objects, a set Q of
query objects {q1, q2, ..., qn}, and an aggregate function f , the GNNK query finds
an object oi ∈ D such that for any o′ ∈ D \ {oi},

f(cost(qj , oi) : qj ∈ Q) ≤ f(cost(qj , o
′) : qj ∈ Q)

Definition 2 (SGNNK). Given a set D of spatio-textual objects, a set Q of
query objects {q1, q2, ..., qn}, an aggregate function f , a subgroup size m (m ≤ n),
and the set SGm of all possible subgroups of size m, the SGNNK query finds a
subgroup sgm ∈ SGm and an object oi ∈ D such that for any o′ ∈ D \ {oi},

f(cost(qj , oi) : qj ∈ sgm) ≤ f(cost(qj , o
′) : qj ∈ sgm)

and for any subgroup sg′
m ∈ SGm \ {sgm},

f(cost(qj , oi) : qj ∈ sgm) ≤ f(cost(q′, o′) : q′ ∈ sg′
m)

Definition 3 (MSGNNK). Given a set D of spatio-textual objects, a set Q
of query objects {q1, q2, ..., qn}, an aggregate function f , and minimum sub-
group size n′ (n′ ≤ n), the MSGNNK query returns a set S of (n − n′ + 1)
〈subgroup, data object〉 pairs such that, each pair 〈sgm, om〉 is the result of the
SGNNK query with subgroup size m (n′ ≤ m ≤ n).

If the users are interested in the k-best POIs then the queries can be gener-
alized as k-GNNK, k-SGNNK and k-MSGNNK queries. In this paper, we focus
providing efficient solutions for the above queries for aggregate functions SUM
(
∑

qj∈Q cost(qj , o)) and MAX (maxqj∈Q cost(qj , o)).

3 Related Work

Group Nearest Neighbor Queries. The depth-first (DF) [11] and the best-
first (BF) [7] algorithms are commonly used to process the k nearest neighbor
(kNN) queries in spatial database. They assume the data objects to be indexed
in a tree structure, e.g., the R-tree [6].

The group nearest neighbor (GNN) query finds a data point that minimizes
the aggregate distance for a group of query locations. SUM, MAX and MIN are
commonly used aggregate functions. The generalization of the GNN query is
the kGNN query, where k best group nearest neighbors are to be found. Several
methods for processing GNN queries have been presented in [10].

The flexible aggregate nearest neighbor (FANN) query [8] is a generalization
of the GNN query. It returns the data object that minimizes the aggregate
distance to any subset of φn query points, where n is the size of the query group
and 0 < φ ≤ 1. The query also returns the corresponding subset of query points.

A query similar to the FANN query called the consensus query [2] is the
main motivation of our paper. Given a minimum subgroup size m and a set of
n query points, the consensus query finds objects that minimize the aggregate
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distance for all subgroups with sizes in the range [m,n]. A BF algorithm was
proposed to process the consensus query.

Spatial Keyword Queries. The spatial keyword query consists of a query
location and a set of query keywords. A spatio-textual data object is returned
based on its spatial proximity to the query location and textual similarity with
the query keywords. A number of indexing structures for processing the spatial
keyword query have been proposed [1,5,9,13]. Among them, the IR-tree [5,9] is
shown to be a highly efficient one. The IR-tree augments each node of the R-tree
with an inverted file corresponding to the keyword sets of the child nodes.

A variant of the spatial keyword query, called spatial group keyword query
has been introduced [3,4]. It finds a group of objects that cover the keywords of a
single query such that both the aggregate distance of the objects from the query
location and the inter-object distances within the group are also minimized.
Exact and approximate algorithms for three types of aggregate functions (SUM,
MAX and MIN) have been presented in [3].

A work parallel to ours, the group top-k spatial keyword query (GLkT)
has been proposed recently [12]. This paper presents a branch-and-bound tech-
nique to retrieve the top-k spatial keyword objects for a group. We show in our
experimental evaluation (Sect. 6), our best-first technique always outperforms
the branch-and-bound method substantially even for a single group query.

4 Our Approach

This section presents our algorithms to process the GNNK, SGNNK and
MSGNNK queries. The key challenge is to utilize the spatial distance and key-
word preference together to constrain the search space as much as possible, since
the performance of the algorithms is directly proportional to the search space (in
both running time and I/O). Another challenge in the SGNNK and MSGNNK
queries is to find the optimal subgroup from all possible subgroups.

4.1 Preliminaries

We use the IR-tree [5] to index our geo-textual dataset D. Other extensions of
the IR-tree, such as the CIR-tree, the DIR-tree or the CDIR-tree [5] can be used
as well. The IR-tree is essentially an inverted file augmented R-tree [6]. The leaf
nodes of the IR-tree contain references to the objects from dataset D. Each leaf
node has also a pointer to an inverted file index corresponding to the keyword
sets of the objects stored in that node. The inverted file index stores a mapping
from the keywords to the objects where the keywords appear. Each node N
of the IR-tree has the form (N.Λ, N.Ψ), where N.Λ is the minimum bounding
rectangle (MBR) that bounds the child node entries, and N.Ψ is the union of
the keyword sets in the child node entries. The cost of an IR-tree node is defined
similarly to the cost of a data object:

cost(q,N) = α min dist(q.λ,N.Λ) + (1 − α) (1 − similarity key(q.ψ,N.Ψ))
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Here, min dist(q.λ,N.Λ) is the minimum spatial distance between the query
object location q.λ and the MBR of N ; similarity key(q.ψ,N.Ψ) is the textual
similarity between the query keywords and the keywords of the node. The cost
of an IR-tree node gives a lower bound over the cost of its children, as formalized
by the following lemma:

Lemma 1. Let N be an IR-tree node and q be a query object. If Nc is a child
of N , then cost(q,N) ≤ cost(q,Nc).

Proof. The child Nc can either be a data object or an IR-tree node. In either
case min dist(q.λ,N.Λ) is smaller than or equal to that of Nc according to the
R-tree structure. Meanwhile, the keyword set of Nc is a subset of the keyword
set of N . Thus, N will have a higher (or equal) textual similarity value (and
hence lower keyword set distance) with the query keywords. Overall, we have
cost(q,N) ≤ cost(q,Nc).

4.2 Branch and Bound Algorithms for GNNK and SGNNK

Traditional nearest neighbor algorithms access the data indexed in a spatial
index (e.g., R-tree) and restricts its search space by pruning bounds [11]. We
extend the idea to design two branch and bound algorithms for the GNNK and
SGNNK queries. These algorithms work as the baseline in our experiments.

Branch and Bound Algorithm for GNNK. We use the following heuristic
to prune the unnecessary nodes while searching the IR-tree for the best object
with the minimum aggregate cost.

Heuristic 1. A node N can be safely pruned if its aggregate cost with respect
to the query set Q is greater than or equal to the smallest cost of any object
retrieved so far.

This heuristic is derived from Lemma 1. As f is a monotonic function and
cost(q,N) ≤ cost(q,Nc) for any child Nc of N , f(cost(Q,N)) ≤ f(cost(Q,Nc)).
Let min cost be the smallest cost of any data object retrieved so far. Then
f(cost(Q,N)) ≥ min cost implies that the cost of any descendant of N is greater
than or equal to min cost, and we can safely prune N .

The branch and bound algorithm for GNNK is based on the heuristic and
denoted by GNNK-BB. The algorithm keeps a stack and inserts the child nodes of
the IR-tree into the stack, if the aggregate cost of the node is less than min cost.
After all the nodes are explored, the leaf node for the min cost is returned.

Branch and Bound Algorithm for SGNNK. We design a similar branch
and bound algorithm named SGNNK-BB for the SGNNK query. The following
heuristic is used for pruning.

Heuristic 2. Let N be an IR-tree node and m be the required subgroup size. If
sgm is the best subgroup of size m, and min cost is the smallest cost of any size-m
subgroup retrieved so far, we can safely prune N if f(cost(sgm, N)) ≥ min cost.
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This heuristic is derived from Lemma 1. Let Nc be a child of N and sg′
m

be the best subgroup corresponding to Nc. Then we have f(cost(sg′
m, N)) ≤

f(cost(sg′
m, Nc)). Meanwhile sgm is the best subgroup for N among all possible

subgroups of size m. Thus, f(cost(sgm, N)) ≤ f(cost(sg′
m, N)).

The above two inequalities imply that f(cost(sgm, N)) ≤ f(cost(sg′
m, Nc)),

i.e., the aggregate cost for the best size-m subgroup of N is lower than or
equal to that of the best size-m subgroup of any of its children. Therefore, if
f(cost(sgm, N)) ≥ min cost, f(cost(sgm, Nc)) will also be greater than or equal
to min cost, and we should prune N . The overall tree traversal procedure is
similar to that of the GNNK-BB algorithm. The difference is in the calculation
of the optimization function, where the optimization function value is computed
based on the top-m queries with the lowest costs.

4.3 Best-First Algorithms for GNNK and SGNNK

Branch and bound techniques may access unnecessary nodes during query
processing. To improve the query efficiency by reducing disk accesses, we propose
in this section best-first search techniques that only access the necessary nodes.

Best-First Algorithm for GNNK. The best-first procedure for the GNNK
query is denoted by GNNK-BF. This algorithm uses a minimum priority queue
to maintain the nodes/objects to be visited according to their aggregate costs. If
an intermediate node (leaf node) is popped, all the child nodes (child objects) are
pushed into the queue. When an object is first popped from the queue, it denotes
the minimum cost object and is returned as the query result. The algorithm is
not shown due to space limitation.

Best-First Algorithm for SGNNK. The best-first algorithm for the SGNNK
query, denoted by SGNNK-BF, is similar to GNNK-BF algorithm. Here, the

Algorithm 1. SGNNK-BF (R,Q,m, f)
INPUT: IR-tree index R, n query points Q = {q1, q2, ..., qn}, subgroup size m, f .
OUTPUT: A data object o and a set of m query points sgm that minimize f(cost(sgm, o))
1: Initialize a new min priority queue P and P.push(root, 0)
2: repeat
3: E ← P.pop()
4: if E is an intermediate node N then
5: for all Nc in N.children do
6: Compute cost(q1, Nc), ..., cost(qn, Nc)
7: sgm ← first m query points with the lowest cost values
8: P.push(Nc, f(cost(sgm, Nc)))

9: else if E is a leaf node N then
10: for all o in N.children do
11: Compute cost(q1, o), ..., cost(qn, o)
12: sgm ← first m query points with the lowest cost values
13: o.best subgroup = sgm

14: P.push(o, f(cost(sgm, o))

15: else if E is a data object o then
16: return (o, o.best subgroup)

17: until P is empty
18: return null
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optimization function is computed for top-m queries. Best subgroup is chosen
from the lowest m query points, and pushed into the priority queue. For an
intermediate node, aggregate costs and best subgroup are calculated for all the
child nodes of the node. For a leaf node, it is done for all the children objects,
and then pushed into the priority queue. When an object is first popped, it is
returned as the result. The pseudocode is shown in Algorithm 1.

4.4 Algorithms for MSGNNK

To process the MSGNNK query with a minimum subgroup size m, we can run
SGNNK-BF n − m + 1 times (for subgroup sizes m,m + 1, ..., n) and return the
combined results. We call this the MSGNNK-N algorithm. However, MSGNNK-
N requires accessing the dataset n−m+1 times, which is too expensive. To avoid
this repeated data access, we design an algorithm based on best-first method that
can find the best data objects for all subgroup sizes between m and n in a single
pass over the dataset. Algorithm 2 summarizes the proposed procedure, denoted
as MSGNNK-BF. The algorithm is based on the following heuristic.

Algorithm 2. MSGNNK-BF (R,Q,m, f)
INPUT: Index R of objects, query set Q, min subgroup size m(m ≤ n), and f .
OUTPUT: A set of 〈data object, subgroup〉 pairs 〈o∗

k, sg∗
k〉 for all subgroup sizes between m and

n (inclusive), where 〈o∗
k, sg∗

k〉 minimizes f(cost(sgk, o)).
1: Initialize a new min priority queue P and P.push(root, 0)
2: min costs[i] ← ∞ and root.query costs[i] ← 0 for m ≤ i ≤ n
3: repeat
4: E ← P.pop()
5: if ∃i ∈ [m, n]: E.query costs[i] < min costs[i] then
6: if E is an intermediate node then
7: for all Nc in E.children do
8: Compute cost(q1, Nc), ..., cost(qn, Nc)
9: total cost ← 0
10: for i = m → n do
11: sgi ← top i lowest cost query points
12: total cost += f(cost(sgi, Nc))
13: Nc.query costs[i] = f(cost(sgi, Nc))

14: if f(cost(sgi, Nc)) < min costs[i] for any subgroup size i ∈ [m, n] then
15: P.push(Nc, total cost)

16: else if E is a leaf node then
17: for all o in N.children do
18: Compute cost(q1, o), ..., cost(qn, o)
19: for i = m → n do
20: sgi ← top i lowest cost query points
21: if f(cost(sgi, o)) < min costs[i] then
22: min costs[i] ← f(cost(sgi, o))
23: best objects[i] ← o
24: best subgroups[i] ← sgi

25: until P is empty
26: return best objects, best subgroups

Heuristic 3. Let N be an IR-tree node and m be the minimum subgroup size.
Let sgi be the best subgroup of size i (m ≤ i ≤ n), and min costi be the smallest
cost for subgroup size i from any object retrieved so far. We can safely prune N
if f(cost(sgi, N)) ≥ min costi for any i.
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The proof of correctness is straightforward based on Heuristics 1 and 2, and
is omitted due to space limit.

A Relaxed Pruning Bound. A possible simplification of Heuristic 3 is to only
test whether f(cost(sgm, N)) ≥ min costn, i.e., whether the best subgroup of
size m corresponding to N has a cost lower than the min cost for the whole
group of size n found so far. If this holds, then N can be safely pruned, as
formalized by the following heuristic.

Heuristic 4. Let N be an IR-tree node and m be the minimum subgroup size.
Let sgm be the best subgroup of size m corresponding to N , and min costn be
the smallest cost for the whole group of size n from any object retrieved so far.
We can safely prune N if f(cost(sgm, N)) ≥ min costn.

The proof is straightforward and thus omitted. Note that, while this heuristic
simplifies the node pruning computation (Lines 12 to 17 in Algorithm2), it also
relaxes the pruning bound, which may cause more nodes to be processed.

5 Cost Analysis

We analytically compare the I/O and CPU cost of the algorithms. Let Cm be
the maximum number of entries in a disk block, Ce be the effective capacity of
the IR-tree used to index the dataset D, and |D| be the size of D. We assume
that an IR-tree node size equals a disk block. I/O cost and CPU cost of the
preloading is denoted by ioi and cpui, respectively. We quantify the percentage
of pruned nodes in the tree traversal as the pruning power, denoted by w and is
represented by wgb, wgf , wsb, wsf , and wmb for GNNK-BB, GNNK-BF, SGNNK-
BB, SGNNK-BF, and MSGNNK-BF, respectively. We denote the I/O cost of
accessing the inverted index by iol, and the associated CPU cost by cpul. Per
node CPU cost of GNNK-BB and GNNK-BF is denoted by cpug, SGNNK-BB
and SGNNK-BF by cpus and MSGNNK-BF by cpum. Table 1 summarizes the
analytical results. Calculation of cost analysis is omitted due to page limitation.

Table 1. Summary of costs

Algorithm I/O CPU

GNNK-BB ioi + (1− wgb)(
|D |

Ce− 1
+ |D |

Ce
· iol) cpui + (1− wgb)(

|D |
Ce− 1

· cpug + |D |
Ce

· cpul)

GNNK-BF ioi + (1− wgf)( |D |
Ce− 1

+ |D |
Ce

· iol) cpui + (1− wgf)( |D |
Ce− 1

· cpug + |D |
Ce

· cpul)

SGNNK-BB ioi + (1− wsb)(
|D |

Ce− 1
+ |D |

Ce
· iol) cpui + (1− wsb)(

|D |
Ce− 1

· cpus + |D |
Ce

· cpul)

SGNNK-BF ioi + (1− wsf)( |D |
Ce− 1

+ |D |
Ce

· iol) cpui + (1− wsf)( |D |
Ce− 1

· cpus + |D |
Ce

· cpul)

MSGNNK-N ioi + (n− m+ 1)(1− wsf)( |D |
Ce− 1

+ |D |
Ce

· iol) cpui + (n− m+ 1)(1− wsf)( |D |
Ce− 1

· cpus + |D |
Ce

· cpul)

MSGNNK-BF ioi + (1− wmb)(
|D |

Ce− 1
+ |D |

Ce
· iol) cpui + (1− wmb)(

|D |
Ce− 1

· cpum + |D |
Ce

· cpul)
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6 Experimental Evaluation

6.1 Experimental Settings

We evaluate the performance of the proposed algorithms. The BB algorithms
are used as the baseline to compare with the BF algorithms for the GNNK and
SGNNK queries. We use the MSGNNK-N algorithm as the baseline algorithm
for the MSGNNK queries, and compare it with the MSGNNK-BF algorithm.

Table 2. Dataset properties

Parameter Flickr Yelp

Dataset size 1,500,000 60,667
Number of unique keywords 566,432 783
Total number of keywords 11,579,622 176,697
Avg. number of keywords per object 7.72 2.91

We use two real datasets from Yahoo! Flickr and Yelp1 (Table 2). We generate
20 groups of spatio textual query objects for each experiment and average the
results. The parameters that are varied are shown in Table 3.

We use the IR-tree to index the datasets, which is disk resident. The fanout
of the IR-tree is chosen to be 50, and the page size is 4 KB. All the algorithms
are implemented in Java and the experiments are conducted on a Core i7-4790
CPU @ 3.60 GHz with 4 GB of RAM. We measure the running time and the
I/O cost (number of disk page accesses), where the running time includes the
computation and I/O time. We use Flickr as our default dataset.

Table 3. Query parameters

Parameter name Values Default value

Number of queried data points (k) 1, 10, 20, 30, 40, 50 10

Query group size (n) 10, 20, 40, 60, 80 10

Subgroup size (m, %n) 40%, 50%, 60%, 70%, 80% 60%

Number of query keywords 1, 2, 4, 6, 8, 10 4

Size of the query space .001%, .01%, .02%, .03%, .04%, .05% 0.01%

Size of the query keyword set 1%, 2%, 3%, 4%, 5% 3%

Spatial vs. textual preference (α) 0.1, 0.3, 0.5, 0.7, 1.0 0.5

Dataset size (Flickr) 1M, 1.5M, 2M, 2.5M 1.5M

1 webscope.sandbox.yahoo.com, www.yelp.com/academic dataset.

http://webscope.sandbox.yahoo.com
www.yelp.com/academic_dataset
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Fig. 2. The effect of varying k (a–b), query group size (c–d), number of query keywords
(e–f), query keyword set size (g–h) and dataset size (i–j) in running time and I/O

6.2 The GNNK Query Algorithms

We conduct seven sets of experiments to evaluate the performance of GNNK-
BB and GNNK-BF. In each set of experiments, one parameter is varied while all
other parameters are set to their default values. GNNK-BF outperforms GNNK-
BB in all experiments both in terms of running time and I/O cost.

Varying k. Figure 2(a–b) shows that for both GNNNK-BB and GNNK-BF, the
processing time and the I/O cost increase with the increase of k. For both SUM
and MAX, on average GNNK-BF runs 3.5 times faster than GNNK-BB. The
I/O cost of GNNK-BF is much less than that of GNNK-BB as GNNK-BF only
accesses the necessary nodes.

Varying Query Group Size. The query processing costs of both algorithms
increase as the value of n increases (Fig. 2(c–d)). On average, GNNK-BF runs
approximately 4 times faster than GNNK-BB.

Varying Number of Query Keywords. Figure 2(e–f) shows the effect of the
number of keywords in each query object. GNNK-BF again outruns GNNK-
BB in all the experiments. Also, the query processing costs of both algorithms
increase as the number of keywords in each query object increases. This can be
explained by that a larger set of query keywords takes more time to compute
the aggregate cost function.

Varying Query Space Size. We observe that the running time of our algo-
rithms remains almost constant with the change of the query space area (not
shown in graphs). Since varied query space areas are insignificant in compared
to the data space, we do not observe any significant change in this experiment.

Varying Query Keyword Set Size. We see that the running time of our algo-
rithms do not follow any regular pattern with the change of the query keyword
set size and remains relatively stable for varying of query keyword set size (the
subset of keywords from where the query keywords are generated).
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Fig. 3. The effect of varying subgroup size m (a–b) and minimum subgroup size (c–d)

Varying α. We observe that, as α increases, the query costs decrease. A larger α
means that spatial proximity is deemed more important than textual similarity.
When α increases, the impact of the keyword similarity becomes smaller and
algorithms converge faster (not shown in graphs).

Varying Dataset Size. Figure 2(g–h) shows the effect of varying number of
objects. Both running time and I/O cost of our proposed algorithms increase at
a lower rate than the baseline algorithms.

6.3 The SGNNK Query Algorithms

We performed experiments on SGNNK-BB and SGNNK-BF, by varying query
group size, subgroup size, number of query keywords, query space size, query
keyword set size, k, dataset size, and α. SGNNK-BF outperforms SGNNK-BB
in all the experiments. For space constraints, we only show the effect of varying
the subgroup size (in % n) in Fig. 3(a–b). On average, SGNNK-BF runs 3.5
times faster and takes 40% less I/O than SGNNK-BB.

6.4 The MSGNNK Query Algorithms

In similar experiments, MSGNNK-BF significantly outperforms MSGNNK-N.
Due to space constraints, we only show the effect of varying the minimum sub-
group size (in percentage of n) in Fig. 3(c–d). When the minimum subgroup
size increases, the running time of both algorithms decrease as expected. The
smaller change in cost of MSGNNK-BF demonstrates its the better scalability.
On average, MSGNNK-BF runs about 4 times faster than MSGNNK-N.

0
20
40
60
80

100
120
140
160
180

10 20 40 60 80

ru
nn

in
g

ti
m

e
(m

s)

Group Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(a)

0
20
40
60
80

100
120
140
160

10 20 40 60 80

#
pa

ge
ac

ce
ss

es

Group Size

GNNK-BB (SUM)
GNNK-BF (SUM)
GNNK-BB (MAX)
GNNK-BF (MAX)

(b)

0
20
40
60
80

100
120
140
160
180

40 50 60 70 80

ru
nn

in
g

ti
m

e
(m

s)

Subgroup Size (%)

MSGNNK-N (SUM)
MSGNNK-BF (SUM)
MSGNNK-N (MAX)

MSGNNK-BF (MAX)

(c)

0
20
40
60
80

100
120
140
160
180

40 50 60 70 80

#
pa

ge
ac

ce
ss

es

Subgroup Size (%)

MSGNNK-N (SUM)
MSGNNK-BF (SUM)
MSGNNK-N (MAX)

MSGNNK-BF (MAX)

(d)

Fig. 4. The effect of varying group size (a–b) and minimum subgroup size (c–d)
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6.5 Experiments on Yelp Dataset

We have run the same set of experiments as mentioned above on the Yelp dataset.
All of our experimental results show similar trends in both datasets. Due to page
limitations, we only present the experimental results for varying group size for
GNNK queries and minimum subgroup size for MSGNNK queries with Yelp
dataset in Fig. 4(a–b) and (c–d), respectively.

7 Conclusion

In this paper, we have presented a new type of group spatial keyword query
suitable for a collaborative environment. This query aims to find the best POI
that minimizes the aggregate distance and maximizes the text relevancy for a
group of users. We have studied three instances of this query, which return (i)
the best POI for the whole group, (ii) the optimal subgroup with the best POI
given a subgroup size m, and (iii) the optimal subgroups and the corresponding
best POIs of different subgroup sizes in m,m + 1, ..., n. In all these queries, our
proposed best-first approach runs approximately 4 times faster (on average) than
the branch and bound approach for both real datasets.
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Abstract. Spatial join queries play an important role in spatial data-
base, and mostly all the distance-based join queries are based on the
range search and nearest neighbour (NN), namely range join query and
kNN join query. In this paper, we propose a new join query which is
called surrounding join query. Given two point datasets Q and P of mul-
tidimensional objects, the surrounding query retrieves for each point in
Q its all surrounding points in P . As a new spatial join query, we propose
algorithms that are able to process such query efficiently. Evaluation on
multiple real world datasets illustrate that our approach achieves high
performance.

Keywords: Spatial join · Spatial indexing · Spatial database · Nearest
neighbour

1 Introduction

The spatial join query involves two datasets Q and P retrieves the object pairs
from the Cartesian Product Q × P which satisfy a spatial predicate, From the
theoretical point of view, the spatial join is similar as join that in the traditional
database system domain. The main difference is join predicate, which can be
intersection, topological, directional or distance, rather than simply equijoin.
The intersection and distance-based join queries have been widely studied. A
typical example of an intersection join is “find all suburbs that are crossed by
Southern Link Highway (M1), Western Link (M2) and East Link Highway (M3)
in the city of Melbourne”. In the example, we regard highway and suburb as
spatial objects, line and polygon respectively. On the other hand, a case of
distance-based join could be “find all pairs of hotels and restaurants within 1 km
apart”. Both hotel and restaurant denote spatial point.

In this paper, we only focus on the distance-based join queries, most common
join queries in this category are range join and kNN join. More specifically, the
range join is a query for each query point finds all the target points that within
the pre-specified range ε. In contrast, the kNN join query retrieves k nearest
neighbours for each query points. However, both above queries have some main
problems. For range join query, the result set cardinality is difficult to control.
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 17–28, 2017.
DOI: 10.1007/978-3-319-68155-9 2
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If the distance is defined too small or too large, the size of result set will change
enormously in some situations. The problem of range join can be overcome by
kNN join, which make sure each point in one dataset exactly combined with its
k closest neighbours in the other dataset. However, if there is a cluster of points
near all the query points, then the kNN join result is restricted to that scope
[15]. Besides, before the query processing, we have to specify the range distance
ε for range join and value of k for kNN join.

Inspired by these limitations, we introduce a new join query, called the Sur-
rounding Join (SJ) query and propose efficient query processing techniques. This
new join query is based on the surrounding query. A surrounding query is a query
to retrieve all the nearest objects that surround the query object. Figure 1 shows
an example of surrounding query. In the figure, the blue point X denotes a user’s
position, and the black dots (A to R) are all groceries in this suburb. From the
perspective of this user, the query of surrounding groceries are the points {G,
I, J , L, K, M}. If this user picks a surrounding grocery (for example I), which
means that she doesn’t need to know the groceries (A, B, H) behind the grocery
I. In this case, A, B and H are dominated by I.

Fig. 1. An example of surrounding query (Color figure online)

In summary, the contributions of this paper are summarized as follows:

– We introduce surrounding join (SJ) query in spatial databases, which belongs
to the distance-based join queries and involves spatial point data type.

– To solve the SJ queries, We propose two approaches; the first one is a straight-
forward algorithm that relies on a Voronoi diagram; The second approach is
a hierarchical algorithm which prunes unnecessary nodes for obtaining the
surrounding points. Meanwhile, it has higher performance.

– We have conducted extensive experimental studies on two real datasets that
demonstrate the efficiency of our algorithms.
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2 Related Work

In geospatial domain, the nearest neighbour (NN) query is to retrieve the points
in the target dataset P that has shortest distance to a query point q. It has been
widely used in many different type of queries, such as k Nearest Neighbor (kNN)
[1,6,12], Reverse k Nearest Neighbor (RkNN) [7,14,16,17] and skyline query
[2,9,13]. The existing NN algorithms always assume that the target dataset is
indexed by an R-tree. In the R-tree index, the data point is completely and prop-
erly enclosed by a minimum bounding rectangle (MBR). In [11], Roussopoulos
et al. proposed a algorithm to find the nearest neighbour object to a point, which
is called branch and bound R-tree traversal. The metrics MINDIST denotes the
minimum distance of point pi to q, pi ∈ P . The algorithm access the R-tree
in a depth first (DF) manner. Starting from root node, and the entry with the
smallest MINDIST is accessed first. The process is repeated recursively until the
leaf node is visited where a potential NN is found. An optimal NN algorithm
has been introduced in [10]. Consider query point q is center point and radius
equals to the distance from q to its NN, then a query circle is created. In this
case, the algorithm only traverses nodes whose MBR intersect with query circle.

The Voronoi diagram (VD) of a given set G of k points {g1, g2,...,gm} in
a Euclidean plane partitions the space R

d into k regions. Each region contains
a point gi (gi ∈ G) that is regard as generator point. The Euclidean distance
form any other point in its region to gi is smaller than to any other generator.
Two generator points shares a Voronoi edge and three generator points form a
Voronoi vertex. Existing algorithms for generating VD can be briefly divided
into tree categories. The first category of algorithms are incremental algorithms,
which create the VD by inserting a point at a time [5]. The second are divide and
conquer algorithms. The set of points is divided into multiple parts, and VD of
each part constructed recursively [19] The last category of algorithms compute
VD by implementing the sweepline technique [4].

3 Problem Definition

The surrounding join (SJ) query is defined as below:

Definition 1 (SJ Queries). Given a set Q of m query points q1, q2,...,qm and
a set P of n target points p1, p2,...,pn, a SJ query Q ��

SJ
P returns for each query

point qi ∈ Q, a sub-set P ′ ⊆ P . In terms of the sub-set P ′, ∀pj ′ ∈ P ′ to the query
point qi has the shortest Euclidean distance in a particular direction. Meanwhile,
∀pj ′ ∈ P ′ is not dominated by the other points in P ′.

For a surrounding join query, we are going to find all the nearest target points
that just surround each query point. As depicted in Fig. 2, three query points
are respectively connected to its surrounding points.
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Fig. 2. Surrounding join

4 A Sketch-First Approach

Inspired by the Voronoi Diagram (VD), we can instantly get an idea that all
the surrounding target points of each query point look like the adjacent vertexes
in the VD [18]. Towards addressing this idea, a possible solution could be like
this: Firstly, create a VD based on all the query and target points, and then for
each query point qi retrieves all the adjacent vertexes which surround this query
point. Here, we assume that the adjacent vertexes are same as the surrounding
points, which are what we need for the join query. To creating a VD, we apply
the Fortune’s sweep line algorithm [4], which guarantees the O(n log n) worst-
case running time and uses O(n) space. However, there are some limitations
of this straightforward approach: (i) the data from two datasets need to be
merged first and then sorted as the input of the algorithm. If two datasets are
very big, which contains millions of spatial points; The sorting phase will take
a substantial amount of computing resources and very inefficient. (ii) When we
add, update, delete points in any dataset, the VD will be changed accordingly.
It means that we have to create a new VD for the join queries.

Figure 3 depicts an example of the VD processing. The target points are
denoted as A, B, C..., H. For simplicity and clarity, we only specify one query
point P that is represented as red square. Obviously, the surrounding points of
point P should be all adjacent vertexes, namely points {D, E, F, G, H }. In
Fig. 3, we observe that each of these green points share a VD edge with query
point P .

Fig. 3. VD approach (Color figure online)
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5 Our Proposed Approach

In this section, we present our approach for the surrounding join queries com-
putation, which is mainly composed of two parts: Filter and Refinement. More
specifically, in Filter phase, we implement the global Branch and Bound skyline
(GBBS) to prune all dominated points in target dataset. GBBS is an enhanced
customization of the original Branch and Bound Skyline BBS algorithm [8].
Then, based on the skyline points from phase 1, a VD is created. The pur-
pose the VD here is to help us retrieve all the adjacent points which surround
the query point. We start by introducing the skyline and its variation global -
skyline, and then we continue with a description of algorithms in Filter phase
and Refinement phase.

5.1 Skyline

Give a set T of d-dimensional points, the original skyline operation returns all
points in T are not dominated by any other point. More specifically, assume a
point tj is dominated by another point ti, the condition is that coordinate of ti
on any axis is not greater than the corresponding coordinate of tj , and strictly
smaller in at least one axis. Informally, this implies that point ti is preferable to
tj based on any real scenario. Figure 4(a) shows an example of original skyline in
a two-dimensional space. Three solid dots A, B, C are skyline points which are
dominating all the other points. If we refer to x and y axis to distance and price
attribute, retroactively, and assume all the dots denote different restaurants. For
instance, because point B dominates the point F , we can say restaurant B is
better than restaurant F . The reason is that restaurant B is cheaper and closer
than restaurant F . In short, the skyline of a multi-dimensional dataset encloses
the best points according to any preference function that is monotone in each
dimension [3].

(a) Original skyline (b) Global skyline

Fig. 4. Skyline

Original skyline considers the static attribute values of each data point in
the dimensional space, and only examines one direction. Meanwhile, the query
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point is not involved into the operation. Since our aim is surrounding join, which
means we need to consider all the directions rather than one direction. Besides,
both query and target points should be taken into account. Accordingly, we
apply global -skyline to solve our problem. As a variations of original skyline,
global -skyline concerns about the potential targets points for each a query point,
and returns all the points that are not globally dominated by other points. In
other words, the global -skyline considers the directions of the processing, and the
minimization of the coordinate distances between a query point and the target
point is taken into account.

Figure 4(b) illustrates the global -skyline of query point U contains six points,
H, O, M, G, I, E, which dominates the other points on all directions. Notice
that these dominating points surround the query point U , which means no other
target point is better than one of them with regard to U . Actually, these domi-
nating points are the initial result of the surrounding join query. In the following
section, we present the algorithm to generate these global -skyline points.

5.2 Filter Phase: GBBS Process

Same as NN and BBS, the GBBS join algorithm is also based on the nearest
neighbour [11] search. Although all of these algorithms could be implemented
by using data partition method, in this paper we use R-tree as index for tar-
get dataset due to its simplicity and popularity in spatial area. The set of 2-
dimensional data points are used in Fig. 3, which is organized in the R-tree of
Fig. 5.

Fig. 5. R-tree

For the query processing, we take point P as the query point to describe the
detail of the algorithm. GBBS starts from the root node of the R-tree and inserts
all its entries (R1, R2, R3) in a empty heap. The element in the heap is sorted
by the Euclidean distance from point P as ascending order. Then, the entry
with the minimum distance R3 is expanded. This expansion prunes R3 from the
heap and add its children (F , G, H). Currently, the elements in the heap are
(R2, R1, F,G,H). Then, the entry R2 with minimum distance is expanded, and
insert its children (E, B, D), in which the first nearest data point E appears.
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Algorithm 1. GBBS Join Algorithm
Input: query points Q, R-tree R of all target points
Output: S. list of target points

1 initialization: i ← {}, S ← {}, insert all entries of R in H;
2 while H.size() �= 0 do
3 e ← poll first element of H;
4 if e is not leaf then // MBR, intermediate node

5 for each child ei of e do
6 if ei is not dominate by any item in S then
7 insert ei to H;
8 end

9 end

10 else if e is leaf then // leaf node

11 for each child ei of e do
12 if ei is not dominate by any item in S then
13 insert ei to H;
14 end

15 end

16 else
17 insert ei to S;
18 end

19 end
20 Return result list S

Point E belongs to the global skyline and is added to result list S. After we
moved E from the heap to S. The first element in the heap is R1, which still is
an intermediate node, not the real data node. GBBS proceeds with the R1 and
inserts its children (A, C). The heap now becomes (G, B, F , D, C, H, A), and
S = {E}. The algorithm processes in the same way until the heap becomes empty
thus all global skyline points are added in the result list S. The join result of
P in phase 1 is a list {E, F , G, H, A}. The join operation between the other
two query point U , Q and target points will be processed as the same manner,
and the result about U , Q are the list {B, E, F , G, H, D} and {A, F , G, H},
respectively. The pseudo-code of GBBS is shown in Algorithm 1.

5.3 Refinement Phase: VD Process

In this phase, we consider the join result from step 1 is candidate result which
needs further process. Therefore, we create VD based on the query point and
skyline points which come from step 1. This means, as soon as we find the skyline
S of query point q, we check if the point t in S is the adjacent of the q. If this
is the case, we add this t to the final join result. Otherwise, we can safely prune
point t. Note that the number of target points is much smaller than the number
of the original dataset and consequently, the VD can be created much faster. For
generating VD, we still use Fortune’s sweep line algorithm [4].



24 L. Li et al.

(a) Join result of P in VD (b) Query point P and target point A

Fig. 6. Candidate result in VD

In the following discussion, we continue to use query point P to describe the
detail of the refinement algorithm. So for, we have already got the skyline points
of P is a list {E, F , G, H, A}. Therefore, we merge p and five skyline points
together and create a VD. The VD is shown in the Fig. 6(a). Next, we retrieve
the points around the cell of P . If a point share a same edge with P , then we
add this point to reset list. For example, each of point E, F , G and H shares
a VD edge with P , we can say the surrounding join result of P is the list of
target points {E, F , G, H}. Note that, the point A is pruned in this phase. The
reason is obvious, because A is not the adjacent of P . In Fig. 6(b), We can see
there is an edge between P and A. For the other query points, the same process
can be followed to get the join result. The pseudo-code of refinement is shown
in Algorithm 2.

Algorithm 2. Refinement Algorithm
Input: query points Q, Skyline points S
Output: Result set R

1 initialization: Merger Q and Skyline points, generate V D;
2 for each edge e of V D.edges do
3 if e.left is equal to Q then
4 insert e.right into R;
5 else if e.right equals Q then
6 insert e.left into R;

7 end
8 Return result set R

At this point, we get the join result of query points U , P , Q and target points
A, B, C, D, E, F , G, H. For Point P , if implement sketch-first approach, which
is a pure VD approach, then we get the join result P → {D, E, F , G, H}.
The detail is shown in Sect. 4, Fig. 3. In contrast, in our improved approach, the
join result of P is the {E, F , G, H}. If we compare these two lists, we can find
that the first approach contains extra point D. Consider this case based on the
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perspective of the global-Skyline; we can see D is dominated by E. Note that,
E is a surrounding point of P . Since there are no other existing approaches to
answer the surrounding join query, and we are the first to propose these two
possible solutions. Therefore, if we only consider these approaches, the second
approach is more accurate than sketch-first approach.

6 Experiments

6.1 Experimental Setup

According to our literature research, in addition to our two approaches, there
are no prior methods to process surrounding join queries. Therefore, we compare
two proposed algorithms with each other to evaluate their performance. We
refer to our sketch-first approach, improved approach as the VDS and SVDS in
the following evaluation report, respectively. The experiments are performed on
the real datasets which are road network of San Francisco and California. Both
datasets are retrieved from the website1. For the input data, we randomly obtain
2000 points and set them as query points. Then, get rid of those 2000 points, we
randomly generate five target datasets which contain 2000, 5000, 8000, 11000
and 14000 points, respectively. The experiments are repeated 100 times, and
the average value is reported. All algorithms were implemented in JAVA and
experiments were conducted on a Linux PC with 16 Intel Xeon E312xx 2 GHz
CPUs and 64 GB main memory.

6.2 Experimental Results

In this section, we will evaluate two approaches of surrounding join query from
four different perspectives, namely index construction, a diverse number of target
points, a diverse number of query points and the detail of the second approach.

Evaluation on Index Construction: In the first approach VDS, we create a
Voronoi Diagram first, then conduct the join operation on this VD. We assume
the VD that stored in the main memory is a kind of index. Besides, The sec-
ond approach SVDS is based on the R-Tree. Therefore, we compare the time
and space consumption of the index construction of two approaches. Figure 7(a)
illustrates the runtime of two index construction on same datasets. We specify
the number of query point equals to 2000 and gradually increase the number
of target points. The index creation time of SVDS is slighter faster than VDS.
However, the VD-index need more memory space to store index as shown in
Fig. 7(b). Specifically, the size of VD-index is about seven times that of SVDS-
index, which dues to that VD-index involves both query and target datasets,
and the structure is not good as R-Tree.

Evaluation on the Varied Number of Query and Target Points: We
evaluate the overall performance of VDS and SVDS from two perspectives,
1 http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm.

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
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(a) CPU cost (b) Index size

Fig. 7. Index construction

(a) CPU cost (b) I/O cost

(c) CPU cost (d) I/O cost

Fig. 8. Effect of varying number of points

CPU cost and average I/O cost. Figure 8(a) shows the CPU cost and Fig. 8(b)
shows the I/O cost of each method for increasing the number of the target
point. The number of query point is specified as 2000. When the number of
target point increases, the CPU and I/O cost of both two approaches increase
correspondingly. However, with the increment of the number of target points,
the cost of VDS rises rapidly because it has to access all the points. On the other
hand, we set target point equals to 2000 and increase the number of the query
point. For this case, Fig. 8(c) and (d) show the processing time and I/O cost,
respectively. The experimental results still indicate that SVDS is more efficient
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(a) CPU cost (b) CPU cost

Fig. 9. Performance comparison on two phases of SVDS

than VDS. The main reason behind this is SVDS prunes all the dominated points
in the filter phase. Nevertheless, VDS always access all the points.

Evaluation of SVDS : Based on the above evaluation, we understand the per-
formance of SVDS is much better than VDS. Evaluating the filter and refinement
phase in SVDS is necessary. In Fig. 9(a), we observe that the running time of
filter phase increases gradually with the increase of the number of the target
point. In contrast, the refinement phase remains almost constant during the
whole experiment. The CPU cost of two phases is displayed in Fig. 9(b), which
roughly illustrates the similar characteristics as Fig. 9(a). The reason is obvious.
The candidate join result as the input for refinement phase which comes from
filter phase is much smaller than the original size of target points.

7 Conclusion

In this paper, we introduced a new type of query, namely Surrounding Join Query
that enables for each query point to identify the surrounding target points. It
enriches the semantics of the conventional distance-based spatial join query. To
efficiently process a Surrounding Join Query, we proposed two approaches. The
first one, VDS, relies on the Voronoi Diagram. In contrast, the second approach,
SVDS that combines the skyline and Voronoi Diagram to answer the query. Our
experiments also illustrate that our algorithm has the capability to process the
query efficiently. In the future, we are going to implement the surrounding for
range join query and other spatial data types.
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Abstract. The availability of spatial data generated by objects enables
people to search for a similar pattern using a set of query points. In this
paper, we focus on point-based trajectory search problem which returns
top-k results to a set of query points. The primary purpose of this work
is to revisit state-of-the-art search algorithms on various indices and
find the best choice of spatial index while giving a reason behind it.
Furthermore, we propose an optimization on the search method, which
is able to find the initial upper bound for the query points, leading to
further performance improvement. Lastly, extensive experiments on real
dataset verified the choice of the index and our proposed search method.

Keywords: Spatial database · Trajectory search · Indexing technique

1 Introduction

Mobile devices equipped with GPS, such as smart phones, have generated a large
amount of geo-location data and trajectory data which is composed of multiple
points from a same device. The availability of trajectory data enables us to
develop useful applications such as route planning and trip recommendation [5,
10]. Finding similar trajectories for the given query also contributes significantly
to users explore valuable resources nearby [12–15].

Specifically, Chen et al. [1] first proposed a new search called k-Best Con-
nected Trajectories (k-BCT), which searches k trajectories for the query com-
posed by a set of locations. k-BCT searches for trajectories that best connect
given set of query points, the distance between the trajectory and query points
is calculated using the distance between each query point and its nearest point
of the trajectory. Figure 1a shows a set of query points and trajectories. k-BCT
chooses (q1, p31), (q2, p32), (q3, p33) as the shortest matching points to calculate
the distance between trajectory T3 and the query points.

IKNN(Incremental k-NN) [1] is first proposed to answer k-BCT query by
searching the nearest trajectory points to each query point independently. It
checks k-BCT using the trajectory points retrieved in each iteration and con-
tinues until reaching terminating condition. After the candidate generation
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 29–41, 2017.
DOI: 10.1007/978-3-319-68155-9 3
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(a) (b)

Fig. 1. (a) Trajectory and a set of query points (b) Expansion of query on R-Tree

ends, the candidate refinement stage iterates over partially matched trajec-
tories to compute actual distance to query points. Further, GH/QE (Global
Heap/Qualifier Expectation) [11] and SRA (Spatial Range-based Approach) [8]
algorithms are proposed to tackle the problem of multiple visit of tree nodes,
which causes performance degradation (more details in Sect. 2).

Motivation. A number of studies have been done for answering k-BCT query
efficiently by proposing different candidate generation and refinement techniques.
However, algorithms proposed by [1,8,11] all work on top of R-Tree [4], while R-
tree does not work well in the range-based or nearest neighbor-based expansion
for candidates. This motivates us to study how much the performance can be
improved by using other indexing structures, such as Grid [6], Quad-tree [3].
These indexing techniques perform better when doing the expansion to get new
candidates (more details on Sect. 3). Moreover, existing approaches for k-BCT
all choose a random query to evaluate the algorithms. This motivates us to test
the scalability of each method by various queries in substantially crowded areas,
such as using crowded area more than 10K points in 1 Km radius around the
query point.

Contributions. In this paper, we study the performance of well-known trajec-
tory search algorithms in dense populated dataset which has more points around
each query point in a real dataset called Geolife [16]. Based on the observations,
we study how the best algorithm performs on top of different indexing structure
which are R-Tree, Grid, and Quad-Tree. We propose how to compute the initial
upper bound of the search region for each query point to avoid poor performance
caused by outlier location. Extensive experiments show that our algorithm per-
forms better than other state-of-the-art algorithms. Our contributions can be
summarized as follows:
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– We employ a labeled Quad-tree to avoid the drawbacks of using R-tree, i.e.,
expansion without candidates and time consuming in the traversal from root
to leaf.

– We optimize the initial search upper bound to save computational cost.
– We conduct extensive experiments to verify our newly proposed index and

optimizations.

Outline. The rest of the paper is organized as follows. We discuss the problem
formulation and our motivation in detail in Sect. 2. In Sect. 3, we presented our
algorithm on top of Quad-Tree index. We present our experiment results in
Sect. 4 and conclude in Sect. 5.

2 Background and Problem Formulation

2.1 Problem Definition

We formally define the problem of k-BCT search. Table 1 summarizes the nota-
tion used throughout this paper.

Table 1. Summary of notations

Notation Definition

D Trajectory database

T Trajectory

Q A set of query points

C A set of candidate trajectories

L A set if labels assigned to Quad-Tree leafs

qi Query point

pi, pj Trajectory points

Euclidean(pi, qj) Euclidean distance between pi and qj points

d(T, Q) Distance between trajectory T and query Q

UBk Distance of kth-best connected trajectory

ri Currently explored search radius for qi

rtotal Total explored search radius for all query points

Definition 1 (Trajectory). A Trajectory T in dataset D is defined as a
sequence of n spatial points {p1, p2, . . . , pn} where each point is represented by
[latitude, longitude].

Definition 2 (Query). The input query Q (of size m) of k-BCT search over
the collection D is defined as a set of query points Q = {q1, . . . , qm}.
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Definition 3 (Matching Pair). If ∀pk �= pi, Euclidian(pi, qj) <
Euclidian(pk, qj) we say [pi, qj ] is the shortest matching pair of qj and T . The
distance between the trajectory and the query point is calculated using the match-
ing pairs of the trajectory and query points.

Definition 4 (Trajectory to Query Distance). We define the distance
between trajectory T and query Q as the aggregated sum of the short-
est matching pair of each query point qj. d(T,Q) =

∑
qj∈Q d(T, qj) =

∑
qj∈Q Euclidian(pi, qj).

Definition 5 (k-Best Connected Trajectory). k-BCT query finds the best
result set Sk = {T1, T2, . . . , Tk} trajectories from the dataset D where ∀Ti ∈
Sk,∀Tj ∈ D − Sk, d(Ti, Q) ≤ d(Tj , Q).

The goal of k-BCT query is to find k trajectories that have the shortest
aggregated distance to a set of query points. For instance, the distance between
the trajectory T3 and the query points in Fig. 1a can be computed as: d(T3, Q) =
d(p31, q1) + d(p32, q2) + d(p33, q3) = 10 + 32 + 12 = 54.

2.2 Preliminary

There have been three algorithms [1,8,11] to answer k-BCT query over spatial
database. These methods follow the procedure of conducting expansions based
on basic spatial index to scan candidate points from closest to furthest, until all
valid candidates have been found. Then, the scanned candidate trajectories are
refined by computing real distance.

Table 2 summarizes three methods that we compare the performance with
our solution. We briefly compare the solutions for the nearest neighbor-based
algorithms which are IKNN [1] and GH/QE [11] and the spatial range-based
approach which is SRA [8]. Specifically, we further distinguish them in terms of
expansion and terminating condition.

Expansion Method. Chen et al. [1] uses round robin technique to generate
candidates for each query point in the query set Q by conducting k-NN [9]
search. Candidate set is incrementally updated based on the result set of k-NN
search, where k increases in each iteration. Since a large number of points are
scanned multiple times due to several rounds of expansions with k-NN [1,11],

Table 2. Comparison of related works [1,8,11] to our work.

Method Expansion Termination Index Query generation

IKNN [1] Repetitive Bound R-Tree Random

GH/QE [11] Repetitive k Full-match R-Tree Random

SRA [8] Non-repetitive Bound R-Tree Random

Our solution Non-repetitive Bound Quad-tree Density-sensitive
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Qi et al. [8] proposed a range-based expansion method based on R-tree instead
of k-NN search. It avoids repetitive scanning by only visiting new candidates
based on range search over R-tree.

However, we find that R-tree is not the best index structure for range-based
expansion in terms of reducing I/O operation and the number of candidates.
Through analysis and experiments in Sect. 4, we found that Quad-tree can per-
form well in reducing I/O operation and the number of candidates.

Terminating Condition. Chen et al., Qi et al. [1,8] employed the bound com-
putation, i.e., comparing the lower bound of current results based on expansions
to the upper bound of unscanned trajectories, which is similar to [2]. The scan-
ning stops when the lower bound becomes bigger than the upper bound. For the
bound computation, we further describe it in Sect. 3.

Tang et al. [11] takes another way to terminate, it checks whether k full
matched trajectories exist which have been scanned all matching points. Once
the algorithm finds k full matches, the candidate generation terminates as the
lower bounds of all unseen trajectories are always bigger than kth full match.

3 Quad-Tree Based Approach

The main idea of most query processing methods can be divided into two parts
[1,8,11]: (1) one is filtering the unscanned trajectories which are impossible to be
the results, this part is done by comparing the upper bound distance of existing
result and the lower bound distance of unscanned trajectories. (2) it refines the
scanned candidates by computing their real distances to the query.

To generate candidates in the filtering stage, existing state-of-the-art algo-
rithms conduct a range-based expansion over R-tree [4]. A circle-range query
with a given radius finds new leaf nodes that are inside the range as we can see
in the Fig. 1b. However, there are two drawbacks of using R-tree to conduct the
incremental expansions.

– It depends on the radius of a range. In some cases, no candidate can be
returned due to the fixed incremental radius as shown in Fig. 1b.

– It needs to traverse from the root to all leaf nodes inside the range to retrieve,
which requires extra time on I/O.

Thus, we propose to use Label-Tree structure which expands the search range
dynamically based on the density of POIs.

3.1 Label-Tree

Quad-Tree index divides the whole space into four equal-sized square regions.
The capacity to store maximum number of points is defined before the creation
of Quad-Tree. If the number of points to be indexed in given region exceeds the
capacity, that particular region is divided further into four equal-sized square
regions.
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However, the main challenge here is that existing Quad-tree does not support
accessing the neighbor leaf nodes of the current node. To access efficiently to the
neighbors for a given leaf node, we build a Label-Tree for all the leaf nodes inside
a Quad-tree, which can address the problems of using R-Tree on a range-based
search.

Everytime we split the region, top-left, top-right, bottom-left and bottom
right sub regions are assigned 1, 2, 3, 4 values respectively as shown in Fig. 2a.
The label length increases as we further divide a region into sub regions. This
labeling structure requires much less space compared to the actual dataset.
Neighbor nodes can also guarantee an upper bound for the unseen trajectories.
Based on the Label-Tree, we can expand the search radius dynamically. This can
avoid an expansion without candidates and finding too many candidate points
like a range-based search in [8].

3.2 Our Algorithm

The pseudocode of our proposed algorithm is shown in Algorithm1. We call our
algorithm Quad-Tree based Spatial Range Approach (SQRA). Candidate set and
total radius are initialized in Line 1. The median point for all query points is
computed in Line 2. Line 3 computes initial kth upper bound distance using k-th
nearest point to the median point while SRA algorithm uses sum-ANN approach
[7]. Each radius is initialized ξ which is the half length of the smallest square in
Quad-Tree index in Line 4–6. Line 7 indicates stop condition of the candidate
generation. We choose query point with the smallest number of candidates points
in Line 8. We only retrieve points of labeled Quad-Tree nodes where the query
point resides in first iteration.

Starting from second iteration, we search for Label-Tree nodes that intersect
with the query region of length 2∗rc centred at qc. This condition is represented
in Line 9–14. Points are retrieved from the disk using labels that have not been
checked in previous iteration in Line 15. Line 16 updates search radius in next
iteration for query point qc based on the length of labels found in last iteration.
Candidate trajectory set is updated in Line 17.

A new upper bound is calculated using current candidate set C according
to Eq. 1 in Line 18. Line 19 computes total search range using current search
range of each query point according to Eq. 2. Algorithm refines results in Line
21 and returns k-BCT in line 22. The main differences of our algorithm and
the state-of-the-art algorithm lie in three aspects: (1) The initial upper bound
calculation in Line 2–3, (2) Retrieve candidate points that intersect with the
search region using Label-Tree in Line 9–15, and (3) Lower bound calculation
using search radius in line 16.

Bound Computation. The upper bound distance between Ti and Q:

UB(Ti, Q) =
∑

qj∈Qi

d(pij , qj) +
∑

qj∈Q\Qi

d(Ti.pj , qj) (1)
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Algorithm 1. Quad-Tree based Search Range Approach (SQRA)
Input: Trajector database D, set of query points Q, number of results k
Parameters: candidate set C, label set L, k-th distance upper bound UBk,

current ri search radius for each qi ∈ Q, total search radius rtotal,
set of labeled Quad-tree nodes N

Output: top-k list of trajectories R
1 initialize C ← ∅, L ← ∅, rtotal ← 0;
2 qmedian ← computeMedian(Q);
3 compute UBk invoking a k-NN(qmedian, N);
4 foreach qj ∈ Q do
5 initialize rj ← ξ
6 end
7 while rtotal ≤ UBk do
8 select qc with minimum candidate points;
9 if rc = ξ then

10 L ← find the label where the region contains qc;
11 end
12 else
13 L ← find labels where the region intersects with the region of rc

centered at qc ;

14 end
15 S ← retrievePoints(L);
16 rc ←update radius using the minimum length of intersecting region ;
17 Update C with S;
18 Update UBk;
19 Update rtotal with rc;

20 end
21 R ← Refine(k, T, Q, C);
22 return R;

where pij denotes a trajectory point that already matched and Ti.pj denotes
the closest trajectory point to qj found so far. Then, the lower bound of unseen
trajectories is computed as:

LB =
∑

qi∈Q

ri (2)

where ri denotes the search range for query point qi.
Figure 2a shows the algorithm execution. We search for Top-1 result with

three given query points. Each candidate trajectory contains same number of
slots with query points. We fill each slot of candidate trajectory based on the
points we have retrieved so far. Point p22 of trajectory T2 is the nearest point
from the computed median point of all query points. Thus, the initial UBk =
112 + 68 + 10 = 190.

We first choose query point q1 as current search point. We compute Quad-
Tree label 3.3 using q1 location and find point p11. Trajectory T1 is added to
candidate set. The slots are filled as follows T1(p11, p11, p11). Aggregated distance
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(a) Quad-tree Index (Node capacity of 2) (b) Running example using SQRA

Fig. 2. An example of Index and Search method

of T1 to query Q is d(T1, Q) = 12 + 112 + 115 = 239. The search radius is set to
rq1 = 12. rtotal = 12 + 0 + 0 = 12. We continue as rtotal < UBk. Algorithm
continues until the sixth iteration. Iterations from 2 to 5 can be seen from Fig. 2b.

Sixth iteration chooses query point q3 and finds two points p33, p52 using
labels 4.2.2 and 4.2.3. The search radius is set to rq1 = 24. The slots of the cor-
responding candidates are updated as follows T3(p31, p32, p33), T5(p51, p51, p52).
Aggregated distances of the trajectories to query Q are: T3 = 10 + 32 + 12 =
54, T5 = 83 + 18 + 25 = 126. As we found trajectory with shorter distance,
UBk = 54. Total radius of search area is rtotal = 51 + 43 + 24 = 118. We
stop candidate generation as rtotal > UBk. Our Top-1 result will be T3 where
d(T3, Q) = 54.

4 Experiment

4.1 Setup

Dataset. We conducted our analysis using GPS trajectory dataset that was col-
lected in (Microsoft Research Asia) Geolife project. GeoLife [16] dataset contains
17,620 trajectories and 23,642,416 points. We filtered the search space by the
latitude value of 39.0 and 41.0 and the longitude value of 116.0 and 118.0 to gen-
erate densely populated new dataset. This filtered dataset contains 19,476,949
points of 16438 unique trajectories. The latitude and longitude of each point is
normalized into [0,1] range to build a Grid index.

Parameters. Experimental parameters are shown in the following table. Default
values are shown in bold (Table 3).
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Table 3. Parameter setting

Description Parameter Values

Number of results k 1, 5, 10, 50, 100

Number of query points |Q| 2, 4, 6, 8, 10

Search range r 0.01

Nearest neighbor increment λ 1000

R-Tree node capacity Fanout 200

Quad-Tree node capacity Fanout 1000

Grid dimension d 128 × 128

Table 4. Grid density

Number of unique POIs Color

Less than 10

Between 10 and 10K

Between 10K and 50K

More than 50K

Table 5. Index footprint

Index Size/MB/ Height

R-Tree 918 4

GRID 767 N/A

Quad-Tree 968 16

Query Generation.We choose query points randomly from the grid cells that
have more than 10K points to evaluate how algorithms scale with respect to the
number of candidates to process. Grid presentation can be seen from Fig. 3 and
Table 4. Each query execution, I/O cost and the number of candidates have been
averaged for all 100 queries.

Comparisons.We test the following methods to answer k-BCT queries on Geo-
Life dataset. (1) IKNN: the nearest neighbor based algorithm on top of R-Tree
indexing structure (2) GH: the nearest neighbor based algorithm on top of
R-Tree indexing structure (3) SRA: the baseline algorithm that we optimized
to increase the performance. (4) SRA-G: the baseline algorithm SRA on top
of Grid indexing structure. (5) SRA-Q: the baseline algorithm SRA on top of
Quad-Tree index. (6) SQRA: the proposed algorithm on top of Quad-Tree index
structure. All algorithms are implemented in JAVA and experiment is done on a
machine with Intel Core i7-2630 2.0 GHz CPU and 8 GB main memory running
Windows 10.

4.2 Data Profiling

Figure 3 shows that our dataset is non-uniformly distributed. We show grid cells
with different colors based on the number of unique points in the cell. Table 4
shows the color representation of the grid density.



38 M.-E. Yadamjav et al.

Fig. 3. POI distribution in Geolife dataset according to Table 4

4.3 Evaluation

Overview. In summary, our main observations are (Table 5):

1. Our proposed algorithm performs up to 3 times faster than the best perform-
ing algorithm.

2. Grid index can save more time than R-Tree index when we search for small
number of results.

3. Quad-Tree based index always save I/O cost by applying a dynamic range-
based search compared to R-Tree index. Moreover, Quad-Tree based index
generates less candidates than other two indices.

4. The initial upper bound calculation will slow down the algorithm performance
when the query area is big or the density is high.

Effect of Indexing Structure. Figure 4 shows SRA algorithm’s execution,
I/O cost, the number of results on different indexing structure. It can be seen
that I/O cost directly influences on overall query performance. SRA-Q algorithm
generates less candidates as this method expands the search region dynamically
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Fig. 5. Scalability test of SRA on varying number of results

depending on the point density as shown in Fig. 4c. Grid index performs more
I/O operation when the number of query points increases. The reason is that
Grid index retrieves all points in the cell without considering the distance to
the query point. Quad-tree based index always performs better than R-Tree in
terms of I/O cost, computation cost and the number of candidates as shown in
Fig. 4 and 5.

Effect of |Q|. Figure 6 shows the query execution time, I/O cost and the num-
ber of candidates for different numbers of query points. Query execution and
I/O cost show an increasing trend as we conduct queries with more points for
all algorithms. However, our proposed algorithm based on Quad-Tree always
performs better than other algorithms in terms of query execution and I/O cost
as shown in Fig. 6a and b. The nearest neighbor based approach generates less
candidates than the range-based approach as shown in Fig. 6c.

Effect of k. Figure 7 shows how the different number of results influences on
query execution time and I/O cost. Fixed range for SRA algorithm retrieves
more points than other algorithms with few iterations. Query execution time of
algorithm highly depends on I/O cost as you see the correlation between Fig. 7a
and b. More candidates increase the overall query execution time. Our proposed
algorithm performs better than other algorithms as shown in Fig. 7a.
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Fig. 6. Scalability test on varying number of query points
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5 Conclusion

We studied the problem of efficiently answering k-BCT query on spatial database
with low computational and I/O cost in this paper. By utilizing the characteris-
tics of a Quad-Tree, we modified the indexing structure used by state-of-the-art
algorithms and constructed a Label-Tree. We proposed SQRA algorithm based
on the Label-Tree and further optimized query processing. Experiment showed
that our algorithm performs up to three times faster than the best performing
algorithm. As future work, we plan to investigate how to compute tighter bounds
to accelerate candidate generation phase.
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Abstract. In this paper, we focus on the problem of exploring sequen-
tial data to discover time sub-intervals that satisfy certain pairwise cor-
relation constraints. Differently than most existing works, we use the
deviation from targeted pairwise correlation constraints as an objective
to minimize in our problem. Moreover, we include users preferences as
an objective in the form of maximizing similarity to users’ initial sub-
intervals. The combination of these two objectives are prevalent in appli-
cations where users explore time series data to locate time sub-intervals
in which targeted patterns exist. Discovering these sub-intervals among
time series data is extremely useful in various application areas such as
network and environment monitoring.

Towards finding the optimal sub-interval (i.e., optimal query) satis-
fying these objectives, we propose applying query refinement techniques
to enable efficient processing of candidate queries. Specifically, we pro-
pose QFind, an efficient algorithm which refines a user’s initial query to
discover the optimal query by applying novel pruning techniques. QFind
applies two-level pruning techniques to safely skip processing unqualified
candidate queries, and early abandon the computations of correlation for
some pairs based on a monotonic property. We experimentally validate
the efficiency of our proposed algorithm against state-of-the-art algo-
rithm under different settings using real and synthetic data.

1 Introduction

Exploration of time series data [10,16,17] is present in many domains (e.g., for
environment monitoring, network traffic analysis, etc.) and is a key ingredient of
various analysis tasks such as detecting patterns or anomalies among multiple
time series [6,8]. Pearson’s correlation [3,4,11,12] is widely considered to be a
powerful tool for performing such analysis tasks, as it reveals the true pairwise
similarity between any time series pairs.

However, computing correlation of time series based on the whole time inter-
val [9,13] (rather than sub-intervals) is vulnerable to the classical Yule-Simpson
effect [1]. At the same time, computing correlation for all sub-intervals is a much
harder problem for users, since the number of sub-intervals increases quadrati-
cally with the length of time series. The following toy example shows the use-
fulness and the challenges of computing correlation of time series data based on

c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 45–58, 2017.
DOI: 10.1007/978-3-319-68155-9 4
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Fig. 1. Relation R stores hourly CPU load readings of three connected servers T1, T2

and T3 in a hypothetical data center.

Fig. 2. Correlation matrices MQ1 and MQ2 computed from Q1 and Q2 outputs

sub-intervals. This example is prevalent in data center management systems [7]
where users analyze servers’ loads collectively (e.g., Query 3 and 4 in [13]) using
the pairwise correlation of all servers’ loads.

Example 1 (Data Center Monitoring System): Assume a hypothetical data
center with 3 connected servers T1, T2, T3, where T1 is responsible for forwarding
incoming requests to T2 and T3 as evenly as possible. The hourly CPU load
readings of these servers are stored in a database table R, as shown in Fig. 1.

Further, assume an admin who wants to detect any abnormal behavior based
on the pairwise correlation of the servers’ loads. Let this abnormal behaviour be:
T1’s load increases but T2’s or T3’s loads simultaneously decreases.

Consequently, a correlation matrix M is created to assist in the automatic
detection of this abnormal behavior. To create M , a selection query is executed
Q1 : σ6≤timestamp≤20(R); then its output is used to compute the pairwise cor-
relation of the pairs (T1, T2), (T1, T3) and (T2, T3) in M . The correlation matrix
MQ1 for Q1 is shown in Fig. 2 for the whole time interval of the series.

It appears that no abnormal behavior exists within the results of Q1: the
loads of T2 and T3 do follow the same pattern as their parent T1, which the high
pairwise correlation values in MQ1 confirm. Nonetheless, between 9 and 12 there
is somehow an abnormal behavior: T3’s load breaks the pattern and decreases
while T1’s load increases. This abnormal pattern is captured by the following
query Q2 : σ9≤timestamp≤12(R); and its matrix MQ2 is shown in Fig. 2. �

In Example 1, it is assumed that the abnormal behaviour (i.e., matrix MQ2)
is well-known by the admin. However, the time sub-interval for which MQ2 was
produced is what the admin explores for. Hence, she would have to submit
queries for all possible sub time intervals and manually examine the correlation
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matrices to find Q2. Specifically, there is a total of m(m−1)
2 possible queries, and

this number increases quadratically with the length of time series m. Manually
examining these queries is a labor intensive task which leads to users frustration
and adds unnecessary overload to the database system [18].

A more suitable solution is for the user to define the target correlation matrix
(e.g., MQ2 in Example 1) that represents an abnormal behavior and a hint of
where this abnormal behavior might be at (e.g., Query Q1 in Example 1), and the
system automatically finds the query (i.e., sub-interval) that outputs this matrix.
This is an instance of the Query Refinement problems [2], where the goal is to
automatically refine a user’s query until its result satisfies her expectations. That
is, based on Example 1, the goal is to refine Q1 (i.e., its time interval) until its
result produce MQ2 . This simple yet computationally challenging problem is the
focus of this paper.

Challenges: The task of automatically finding a query with a target correla-
tion matrix is computationally challenging because: (1) an algorithm has to go
through all possible candidate queries, which increase quadratically with the
length of time series, (2) the number of pairs in the correlation matrix increases
quadratically as well with the number of time series, (3) computing correlation
from scratch hinder the exploration process, while caching some results to boost
correlation computations is limited by the amount of available memory.

Optimization Opportunities: We propose to take advantage of a monotonic
propriety to avoid processing some of the candidate queries by applying two-level
pruning techniques, and to cache some of the computed results which might be
helpful for incrementally computing correlation of later queries.

Our contributions are as follows:

– We formally defined the problem of Query Refinement based on Targeted
Correlation Matrix (Sect. 2).

– Then, we proposed the QFind algorithm based on the classical graph traversal
method BFS to be as solutions for the problem (Sect. 3).

– Further, we optimized our algorithm by applying two-level pruning tech-
niques, which utilize the monotonicity property to avoid processing of unqual-
ified queries and to early abandon the computations of pairwise correlation
for some of the pairs in the correlation matrix (Sect. 4).

– Finally, we conducted extensive experiments to show the efficiency of our
proposed algorithms on synthetic and real datasets, and compared the results
to state-of-the-art algorithm (Sect. 5).

2 Problem Formulation

In this section we formally define the Query Refinement based on Targeted Cor-
relation Matrix (QuReLat) problem. We assume the presence of n synchronized,
equal length time series stored in a flat relational table R : {T1, T2, ..., Tn} where
each Ti ∈ R contains m real values {vi

1, v
i
2, ..., v

i
m} such that vi

j is the j-th value
with time stamp j in Ti.
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Users explore R by submitting SQL range queries on the timestamp attribute
to select a time interval [s, e] of the time series in R, then further analyze the
results based on the pairwise correlation of all time series in R, i.e., correlation
matrix M . Next, we define the basic notions of this problem, then later give the
formal problem definition.

Definition 1. Q is a range selection query on the timestamp attribute:

σs≤timestamp≤e(R)

such that 1 ≤ s ≤ e ≤ m.

For ease of readability, a query will be denoted as Q[s, e], or Q if the time interval
[s, e] can be omitted. Refining Q[s, e] implies modifying its time interval. Hence,
the number of possible refined queries is m(m−1)

2 , which increases quadratically
with the length of time series m. This observation renders the problem at hand
to be computationally hard because the correlation matrix M will be computed
for each one of these queries.

Definition 2. Correlation matrix M is a symmetric matrix of size n×n. Each
entry M [i][j] ∈ M is precisely the pairwise correlation of Ti and Tj: ρ(Ti, Tj).

Definition 3. The pairwise correlation ρ(Ti, Tj) of length l is measured by the
Pearson’s coefficient ρ:

ρ(Ti, Tj) =
l

l∑

k=1

vi
kv

j
k −

l∑

k=1

vi
k

l∑

k=1

vj
k

√

l
l∑

k=1

(vi
k)2 − (

l∑

k=1

vi
k)2

√

l
l∑

k=1

(vj
k)2 − (

l∑

k=1

vj
k)2

(1)

We are now in place to formally define the problem at hand:

Definition 4. Query Refinement based on Targeted Correlation Matrix
Problem (QuReLat): Given an input query QI and a target correlation matrix
Mt. QuReLat’s goal is to automatically refine QI to Q∗ such that f(Q∗) is max-
imized.

f(Q∗) = f(QI , Q
∗,Mt) = λP (QI , Q

∗) + (1 − λ)C(Q∗,Mt) (2)

P (QI , Q
∗) = 1 − 1

1 + e−d(QI ,Q∗) (3)

C(Q∗,Mt) = 1 − (
1
z

n−1∑

i=0

n∑

j=i+1

(Mt[i][j] − MQ∗ [i][j])2) (4)

where z is a normalization factor, and:

d(QI , Q
∗) = |QI .s − Q∗.s| + |QI .e − Q∗.e| (5)
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As stated in Definition 4, the optimal solution Q∗ is the one with the maximum
preference P () and the maximum closeness to the target correlation matrix C(),
balanced by a user parameter λ. Ensuring maximum preference of Q∗ to QI is
useful when users are interested for a time interval that is close from QI ’s interval.
Similarly, ensuring maximum closeness to Mt is important to maximally achieve
the target.

Modeling the user preference P () as a Sigmoid function on the timestamp
attribute has two advantages: it is a parameter-free function, and it expresses
users interests to the input query: at the beginnings everything close by QI

seems interesting, though once moving away from QI (i.e., d(QI , Q
∗) increases),

all other queries seem rather unrelated. As for C(), we use the Sum of Square
Errors (SSE) since it indicates the tightness of Mt to a matrix MQ of a candidate
query Q. Its normalized value ranges between [0–1], where a small value denotes
a tight fit of MQ to the target Mt.

Towards finding the optimal solution Q∗, we propose an efficient search
algorithm called QFind. QFind adopts the classical graph traversal strategy:
Breadth First (BFS) which allows for innovative optimization techniques to be
incorporated in to efficiently find Q∗ without a compromise on the solution accu-
racy. Details are in the following section.

3 Methodology

We propose an efficient search algorithm called (QFind) as a solution for the
QuReLat problem. In short, QFind starts by the input query QI then recur-
sively refine it to obtain the next candidate queries (Sect. 3.1). The order in which
QFind visits the next query is determined by the traditional traversal strategy
Breadth First Strategy (BFS). Employing BFS enables QFind to incrementally
compute M (Sect. 3.2), i.e., incrementally computing the pairwise correlation
of every candidate query, which leads to considerable cost savings (Sect. 3.3).
Further, QFind applies two simple yet powerful pruning techniques (Sect. 4) to
enable far more efficient processing of the search space. These techniques enable
QFind to avoid processing unqualified queries and to early abandon the corre-
lation computations of unpromising pairs in M .

As shown in Fig. 3, QFind starts by the input query QI then recursively
applies four refinement operations on the current query to obtain the next set
of candidate queries. Next section explains how and on what those refinement
operations are applied.

3.1 Queries Refinement

To refine a query Q with a selection predicate on the timestamp attribute, two
operations are applied on that time interval [s, e]:

1. Expansion: to expand [s, e] from either sides s or e by δ. For instance, [ŝ, e]
is expanded from s side by δ such that ŝ = s− δ while [s, ê] is expanded from
e side by δ such that ê = e + δ. We encode those two operations as LE (left
expansion) and RE (right expansion).
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Fig. 3. QFind employs the classical traversal strategy: Breadth First (BFS) to decide
the visiting order of the candidate queries in the search space starting from the input
query QI .

2. Contraction: to contract [s, e] from either sides s or e by δ. For instance,
[ŝ, e] is contracted from s side by δ such that ŝ = s+δ while [s, ê] is contracted
from e side by δ such that ê = e−δ. Similarly, we encode those two operations
as LC (left contraction) and RC (right contraction).

With those two refinement operations, QFind is able to recursively generate
all possible m(m − 1)/2 combinations of candidate queries. Specifically, QFind
applies LE ,RE ,LC,LE on [s, e] to generate the offspring ([s + δ, e], [s, e + δ],
[s − δ, e] and [s, e − δ]) then iteratively apply them again on the offspring and so
on. To remove any approximation and to ensure no possible candidate queries
are missed, we set δ = 1.

For each candidate query Q, an algorithm has to compute the correlation
of all pairs (i.e., M) within Q’s interval, which can be done incrementally as
explained next.

3.2 Caching Essential Arrays

Based on the observation that Eq. 1 can be computed incrementally [15], we
propose to cache the essential arrays:

∑
x,

∑
x2 and

∑
xy of a query after its

correlation matrix has been evaluated and only if it happened to have offspring.
This enables computations reusing when computing M for Q’s offspring later
on, and lead to cost savings as we experimentally show later in Sect. 5.1.

The essential arrays of a query Q are added to memory by storing them
into a simple data structure (e.g., a hash table) called H, indexed by Q’s time
interval. Each component is a 1-dimensional array of size n, except

∑
xy which

is a 2-dimensional array of size n(n − 1)/2.
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3.3 Cost Model Analysis

Similar to [9,15], we focus on the computational bound costs involved when
searching for Q∗ because computing M is extremely expensive even if we com-
pletely ignore the I/O cost.

1. Number of Operations (OP): OP is the number of operations to compute
a correlation matrix M , and it depends on the length � and the number
n of the time series in Q. Specifically, for each pair of time series Ti, Tj of
length � in M , the five summation components in ρ(Ti, Tj) will require exactly
(� − 1) + (� − 1) + 2(� − 1) + 2(� − 1) + 2(� − 1) = 8(� − 1) operations. Hence,
M requires a total of n(n−1)

2 × 8(� − 1) operations.
2. Maximum Size of Memory (MaxMemory): After evaluating a query Q,

its essential arrays
∑

x,
∑

x2 and
∑

xy are cached in memory H. With the
assumption of a limited space for caching results, it is crucial for an algorithm
to minimize the size of H. Hence, an algorithm should release a query from
H once it is expired, i.e., its cached arrays will not be needed anymore. Thus,
we consider the maximum size of H as a cost of refinement.

3.4 QFind Algorithm

Algorithm 1 illustrates the main steps followed by QFind when searching for the
optimal solution Q∗. Using a queue Q, QFind orders the candidate queries to
be visited following a BFS strategy. QFind stops the search when Q becomes
empty, i.e., no more candidate queries to be evaluated (line 3).

For each candidate query Q, QFind looks up H for a suitable overlap to
incrementally compute the matrix MQ. If no such overlap exists in H, then MQ

is computed from scratch (line 7). While traversing the search space, QFind
remembers the best solution Q∗ and its fb (lines 12–13). Once QFind finishes
evaluating the current query, it evokes the auxiliary function refine() (line 14)
to generate the offspring of Q (Sect. 3.1) and inserts them into the queue Q as
long as they have never been visited nor already in the queue.

Adding Arrays to H and Searching for Overlap: QFind adds the essential
arrays of a query Q to H after fully evaluating Q, provided that Q has offspring.
When QFind picks unvisited query Q to be evaluated, it looks for the best
overlapping query Qo of Q in H based on their time intervals, then merges Qo’s
essential arrays with the new (and hopefully few) read values of Q. The best
overlapping query Qo of Q is the one with the minimum number of steps away
from Q (ideally, the parent of Q).

Remove Arrays from H: QFind removes the essential arrays of a query Q
from H once it has no benefit in future steps. The removal is triggered when the
current query’s parent is different from the previous query’s parent.
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Algorithm 1. QFind
Require: Input query QI [s, e], preference weight λ, target correlation Mt

Ensure: Q∗, fb
1: fb = −∞; Q∗ = φ; Q = φ; H = φ;
2: Q.add(QI);
3: while ( Q �= φ ) do
4: Q = Q.pop();
5: Qo = H.findOverlap(Q);
6: if ( Qo = φ ) then
7: Q = probe(Q);
8: else
9: Q = merge(Qo, Q);

10: update H;
11: f = λP (QI , Q) + (1 − λ)C(MQ, Mt);
12: if ( f > fb) then
13: fb = f ; Q∗ = Q;

14: C =refine(Q);
15: for all Q ∈ C do
16: Q.push(Q);

17: release(H);

18: return Q∗, fb;

4 Two-Level Pruning

We further extend QFind to utilize a monotonic property at two levels: preference
level, and pairwise correlation level. The former enables efficient pruning of the
search space with no false dismissal, which addresses the quadratic search space
O(m2), while the latter addresses the quadratic number of pairs in a correlation
matrix instance O(n2) by abandoning the computation of correlation for pairs
as early as possible.

4.1 Preference-Aware Pruning Technique

QFind applies a simple yet powerful pruning technique to avoid visiting
unpromising queries. This technique makes use of the monotonic property of
the preference function P (), i.e., Eq. 3.

Lemma 1. P () is a monotonic decreasing function.

Proof. It is easy to see from Fig. 3 that all candidate queries at level i have the
same P () since they are at the same distance from the root, i.e. d(QI , Qi). Also,
it is clear that candidate queries at level i + 1 are at one extra step from the
queries in the previous level, hence, their P () is lower. This pattern continues
through out the whole tree. Hence, P () is a monotonic decreasing function in
terms of levels.
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With Lemma 1, QFind is able to early terminate the search and abandon all
candidate queries that are yet to be explored once the current query’s estimated
f() (i.e., fe) is worse than the best solution found so far fb. Specifically, if the
current query’s estimated objective fe = λP () + (1 − λ) × 1 is lower than fb,
then this query, its offspring, the remaining queries in the queue, and all other
unvisited queries will definitely have lower f than fb and can no longer increase
fb further, thus they can be abandoned.

4.2 Pairwise Correlation Pruning Technique

Even with an arbitrary ordering of candidates, QFind is able to utilize a
monotonic decreasing property of the correlation function C(), i.e., Eq. 4, to
early abandon the correlation computations of some pairs in M .

Lemma 2. C() is a monotonic decreasing function.

Proof. Recall that C(Mt,MQ) is the normalized sum of all absolute differences of
correlation values between a target matrix Mt and a given one MQ. By assum-
ing MQ to be an exact replica of Mt (which returns the maximum value of
C(Mt,MQ)), and iterating over all pairs in MQ and inserting their real values,
C(Mt,MQ) will gradually decrease. Hence, C(Mt,MQ) is a monotonic decreas-
ing function in terms of number of pairs.

For a candidate instance Q, QFind assumes that MQ is an exact replica of Mt,
then whenever the algorithm inserts a real correlation value for a pair in MQ,
it simultaneously checks if fe = λP () + (1 − λ)C(Mt,MQ) is lower than fb. If
so, the rest of unevaluated pairs are skipped and the algorithm moves on to the
next candidate query.

The order which QFind follows in examining the pairs in MQ is crucial.
QFind should follow an ordering that enables more pruning of pairs in MQ.

Systematic Ordering: The default ordering of pairs in QFind is a systematic
ordering (SYS). As its name suggests, SYS ordering is as follows: {MQ[i][j]|i =
1, 2, ..., n − 1; j = i + 1, i + 2, ..., n; i < j}. Hence, QFind examines the pairs for
all candidate queries in the same exact order.

Greedy Ordering: Another more intuitive ordering is to rearrange the pairs in
MQ in an ascending order based on their scores. The score of a pair MQ[i][j] is its
distance d to the corresponding pair in Mt. Hence, the first pair to be examined
under this greedy ordering is the one with the maximum distance to the target
Mt. The intuition behind this ordering is to increase the chances of hitting the
threshold fb to early abandon the computations of correlation of the pairs in
MQ, as explained above in Sect. 4.2. However, since MQ is not known until it
is examined, QFind utilizes the history of the computed correlation values to
estimates d. That is, QFind exploits a reference matrix Mr that approximates
the current one MQ, and computes the distance d from that reference.

This reference matrix Mr can be either static or dynamic. In the static case,
Mr is an exact copy of the input query’s correlation matrix (MQI

), while in
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the dynamic case Mr is an exact copy of the current query’s parent matrix.
Consequently, the static case (REF) implies QFind to compute the order only
once (after computing MQI

), then reusing it for all remaining candidate queries.
However, the dynamic case (REF-DY) implies QFind to re-compute the order
every time the parent of a current query changes, which entails further cost
overhead when compared to REF and SYS.

5 Experiments

We have performed extensive experiments to evaluate the performance of our
proposed algorithms. Before discussing the results in Sect. 5.1, we explain the
experiments setup.

Evaluated Algorithms: We experimented with the variants of QFind
(Algorithm 1): QFind-PFP (Preference pruning, Sect. 4.1), QFind-PWC (pair-
wise pruning, Sect. 4.2), and QFind-PFP-PWC, under the default SYS ordering.
Note that state-of-the-art algorithm ZES [5] is extended to cater for more than
one pair of time series. The algorithms were implemented using Java SDK and
run on a Windows machine with 16 GB RAM and Intel i7 CPU 3.0 GHz.

Datasets: In our experiments, we used two datasets: synthetic and a real
dataset. The synthetic dataset was generated according to a Random Walk
model, while the real dataset was extracted from Google Cluster Usage Data
[14]. There are a total of n = 1000 time series, and their maximum length is
m = 1000.

Workload: a workload consists of a set of runs. Each run is a trio: input query,
target correlation matrix and a user preference (QI , Mt, λ). A query’s time
interval [s, e] length is either: short, medium or long. The interval is also either
on the left hand side, right hand side, or in the middle of the original time
series interval. QI is generated by random from these 23+1 classifications. Mt is
arbitrarily chosen from a query that is generated from the above classifications to
guarantee an exact solution existence. Hence, the size of the workload is (23+1)2.

We report the cost components defined in Sect. 3.3 and vary the parame-
ters n, m and λ in the experiments. Their default values are 30, 500 and 0.05
respectively.

5.1 Results

We test the scalability of our proposed algorithms in terms of n, their sensitivity
to the user preference weight λ, and the ordering of pairs effects on cost.

Scalability Results: Figure 4 shows the results from the Google Cluster
Dataset experiments. Figure 4a and b indicates that measuring the number
of operations is in fact a suitable performance indicator since it is correlated
with the execution time. Our proposed algorithm QFind-PFP-PWC is able to
reduce the computational costs by almost %50 than state-of-the-art, as shown in
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Fig. 4. Scalability results: λ = 0.005 and m = 200

Fig. 4a. As for the maximum size required to cache the essential arrays, QFind-
PFP-PWC also reduces it by almost %42, as shown in Fig. 4c. This shows how
powerful the two level pruning techniques are in avoiding unnecessary computa-
tions. Specifically, QFind-PFP reduces the computational costs by almost %40
by pruning unqualified candidate queries using Lemma1. Similarly, QFind-PWC
utilizes Lemma 2 to early abandon the computation of some pairs in the corre-
lation matrix, reducing its cost by %35.

Fig. 5. Sensitivity results: n = 20 and m = 200

Sensitivity to λ Results: Figures 5a and b show an interesting relationship
between the user preference weight λ and the cost components. As mentioned
previously, P () is a monotonic decreasing function, i.e., it decreases as the algo-
rithm moves away from the root (QI), which is a simple yet powerful property
that QFind utilizes to prune the unqualified queries. This is apparent in both
figures, as more weight is assigned to P (), i.e., increasing λ, QFind-PFP prunes
more unqualified queries, resulting into reducing the number of operations and
the amount of memory required. However, QFind-PWC becomes less efficient in
its correlation level pruning technique, since the threshold fb becomes more loose
due to the less weight C() gets as P ()’s weight is increased. QFind-PFP-PWC
which combines the two techniques achieves the best of these two techniques,
and is more (or at least) as efficient as the other two versions QFind-PFP and
QFind-PWC.
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Fig. 6. Ordering of pairs results: λ = 0 and m = 200

Ordering of Pairs Results: We further examined how ordering of pairs
can effect the cost components of our algorithm QFind-PFP-PWC using a
smaller dataset. As briefly mentioned in Sect. 4.2, the order which QFind fol-
lows in examining the pairs in M can have an effect on the overall performance.
Figures 6a and b show the computational cost (operations) and number of probed
pairs for three different approaches of ordering: systematic (SYS), greedy (REF)
and a dynamic greedy (REF-DY). Recall that REF-DY reorders the pairs when
the current candidate query’s parent changes, while REF performs this ordering
once at the beginning based on the input query.

From the figures, the computational cost and the number of examined pairs
can be further reduced by almost %40 and %52, respectively, if QFind uses
the REF-DY method to order the pairs instead of the default ordering SYS.
While this seems very promising, recomputing the distances when the parent
of a candidate query changes entails further computational cost, as shown in
Table 1. REF ordering provides a relatively competitive reduction of %22 and
%30 for the computational cost and number of probed pairs, respectively, when
compared to SYS. However, in contrast to REF-DY, REF incurs zero additional
cost.

Table 1. Additional computational costs of REF-DY

Number of pairs 10 45 105 190 300 435

Operations (#) 33788 153264 370228 680697 1131465 1671644

6 Conclusions

Motivated by the prevalent need to support exploring the continuously growing
time series data, we proposed the Query Refinement based on Targeted Corre-
lation Matrix problem. Then, we proposed the QFind algorithm as an efficient
solution. QFind extends state-of-the-art and applies innovative pruning tech-
niques to avoid processing unqualified candidate solutions. We also showed the
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performance gains of QFind under different experimental settings. The function-
ality of QFind can be integrated with the correlation engines in TSDBMS such
as Gorilla [11] to enable far more exploration capabilities.
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Abstract. Semi-stream processing, the operation of joining a stream of
data with non-stream disk-based master data, is a crucial component
of near real-time data warehousing. The requirements for semi-stream
joins are fast, accurate processing and the ability to function well with
limited memory. Currently, semi-stream algorithms presented in the lit-
erature such as MeshJoin, Semi-Stream Index Join and CacheJoin can
join only one foreign key in the stream data with one table in the mas-
ter data. However, it is quite likely that stream data have multiple for-
eign keys that need to join with multiple tables in the master data. We
extend CacheJoin to form three new possibilities for multi-way semi-
stream joins, namely Sequential, Semi-concurrent, and Concurrent joins.
Initially, the new algorithms can join two foreign keys in the stream
data with two tables in the master data. However, these algorithms can
be easily generalized to join with any number of tables in the master
data. We evaluated the performance of all three algorithms, and our
results show that the semi-concurrent architecture performs best under
the same scenario.

Keywords: Multi-way stream processing · Join operator · Near-real-
time data warehouse

1 Introduction

Near-real-time data warehousing (RDW), with its ability to process and analyze
data nearly instantly, is increasingly adopted by the business world. Among
several approaches to RDW, Data Stream Processing is a crucial component,
handling the continuous incoming information - a stream of data, from multiple
sources [1]. One method of stream processing is a join operation which combines
the streaming data with the slowly changing disk-based master data (denoted
as R) [1,2]. As the join deals with two sources, one being a stream, and the
other being fairly stable data stored in a disk, such as master data, the join is
considered “semi-stream”.
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 59–70, 2017.
DOI: 10.1007/978-3-319-68155-9 5
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With the rapid development of new technologies, the large capacity of cur-
rent main memories as well as the availability of powerful cloud computing plat-
forms can be utilized to execute stream-based operations [3]. However, to enable
the efficient use of ICT infrastructure, semi-stream joins that can process the
streaming data in a near-real-time manner while requiring minimum resource
consumption, are still of interest. Several semi-stream joining methods have been
proposed so far. The authors of the MeshJoin algorithm [8] argued for the need
to support streaming updates in RDW [4]. Since then, many other join operators
have been developed by improving or adding more features to MeshJoin, such
as R-MeshJoin [5], Partition-based Join [6], HybridJoin [7], Semi-Stream Index
Join (SSIJ) [2] and CacheJoin [3], to name a few. The authors of the MeshJoin
operator suggest that one of the most important research topics in the field
that need to be examined next is multi-way semi-stream joins between a stream
(whose tuples have two or more foreign keys) and many relations [8]. Indeed, it
would be quite practical to process stream data with multiple foreign keys to
join with multiple tables in R.

In this paper, we address the problem by developing a multi-way semi-stream
join. We propose three different approaches to the joins namely Sequential, Semi-
concurrent and Concurrent. The joins are developed by extending CacheJoin
(CJ), one of the most advanced semi-stream joins proposed in the field [3]. The
advantage of CJ is that it requires very little in the way of computing resources
while its service rate is higher than other joins such as MeshJoin, R-MeshJoin
and HybridJoin [3]. As extended versions of CJ, the new multi-way joins inherit
the main characteristics of their precursor. For example, as CJ performs well
with skewed, non-uniformly distributed data, such as the Zipfian distribution
of foreign keys in the stream data [3], the newly developed multi-way joins are
expected to have the same characteristics.

In this paper, we first develop new multi-way joins which can match a stream
data having two foreign keys with two tables in R. The joins then can be general-
ized to join more tables. To test the new algorithms, we apply them to a scenario
where a stream tuple includes customer and product foreign keys which need to
join with customer and product tables in R. In the Sequential approach, there
are two CJs running concurrently where the first CJ joins customer keys and pro-
duces output as the input for the second CJ. After this, the second CJ processes
the product foreign key and produces output for the whole multi-way join. In
Semi-concurrent, only part of the stream tuples are processed in sequence, and
the rest are processed concurrently by two separate CJs. In Concurrent, there
are also two CJs running concurrently, but they match the two foreign keys of
a tuple at the same time, and the tuple will be sent to output only when both
keys are matched. After testing the new joins with different datasets, results
show that Semi-concurrent performs best under the same memory setting.

The rest of this paper is organized as follows. Section 2 presents a review of
the available semi-stream joins in the academic literature, which focuses on the
architecture of the CJ algorithm. This is expected to provide the background
theory required to comprehend the new multi-way join algorithms. Section 3
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describes the architectures of the Sequential, Semi-Concurrent and Concurrent
joins in detail. In Sect. 4 we present a cost model to measure the performance
of the new joins. Section 5 presents the performance evaluation and, from the
experimental data, it is concluded that the Semi-concurrent performs best while
Concurrent performs worst among the three. In Sect. 6 we explain our explana-
tion for this order. Finally Sect. 7 concludes the paper.

2 Related Work

This section presents an overview of some of the semi-stream joins available and
then examines in detail the architecture and characteristics of CJ, which is the
antecedent of our multi-way semi-stream joins.

In the past, the algorithm MeshJoin was proposed for joining a data stream
with a slowly changing table under limited main memory conditions [8,9]. The
two fundamental features of MeshJoin are: (1) accessing the disk-based R with
fast sequential scans, and (2) armotizing the cost of I/O operations over a large
number of stream tuples. The features, therefore, can help MeshJoin reduce
costly disk access. Other advantages of MeshJoin are: (1) it can work well with
limited main memory and, (2) the organization of R has hardly any effect on
its performance. However, the join operation has some limitations. The first
limitation is caused by the fact that MeshJoin does not consider the distribution
of the incoming stream data as well as the organization of R. Therefore its
performance on skewed data is inferior [10]. Also, the performance of MeshJoin
is inversely proportional to the size of R. Thus this algorithm does not perform
well with large Rs [3].

To improve the MeshJoin algorithm, R-MeshJoin (Reduced MeshJoin) was
developed in 2010 [5]. R-MeshJoin improves the MeshJoin operator by clearly
defining the dependent relationships between its antecedent’s components.
Therefore, R-MeshJoin is simpler and obtains slightly better performance than
MeshJoin.

We presented another improved version named HybridJoin in the past [7].
The main goals of HybridJoin are: (1) to amortize the fast-coming data stream
with slow disk access using limited computer memory, and (2), to deal with an
input data stream sent in small and sporadic groups [10]. The main technique
used by HybridJoin to amortize the fast-coming data stream is an index-based
approach to access R, which is quite efficient. However, like MeshJoin, Hybrid-
Join does not take data distribution of the streaming data into consideration.

CJ is an improved HybridJoin operator that inherits the advantages and
solves the limitation of its former algorithms [3]. The architecture of CJ is pre-
sented in Fig. 1. The main improvement of CJ is an additional hash table stored
in computer memory, which stores the most frequent tuples coming from the
stream (denoted as HR). When tuples from the stream arrive, they enter the
cache phase first where they are matched with HR. In this way more frequent
tuples can be processed faster as memory access is faster than disk access. If
a tuple is not matched in the cache phase, it will be sent to disk phase which
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Fig. 1. CACHEJOIN architecture

is basically a HybridJoin. In disk phase, stream tuples are stored in a hash
table named HS and their foreign keys are also added to a queue. To minimize
expensive disk access, a few disk pages of R are loaded to a Disk-Buffer (DB)
whenever the join conducts a database query. The oldest tuple in the queue is
used to determine the partition of R which will be loaded in each probing itera-
tion. More specifically, after probing the foreign key of a tuple into R, a few disk
pages starting from the matching page in R will be put into DB. All these tuples
will be matched with HS , in order to amortize the seek and disk access time.
Thus, the higher the number of tuples in HS , the higher the probability that
some tuples in HS can be matched with DB, which leads to the faster service
rate of CJ’s Disk Phase. Another important component of CJ is the frequency
detector whose algorithm is as follows: In each matching iteration between DB
and HS , rows that have the number of matches above a certain threshold will
be considered as frequent tuples and added to HR.

A comparison between CJ and MeshJoin shows that CJ out performs
MeshJoin in many cases, such as with different settings of R, under different
memory conditions and when stream data is skewed [3]. The only situation
where CJ processes slower than MeshJoin is when the distribution of stream
data is completely uniform, which hardly ever happens in practice. Of the algo-
rithms described above, CJ is the only one which considers the distribution of
the stream data, while still including the positive features of the others.

All of the above algorithms can join only one-foreign-key stream data with a
single table in the master data, but in business there is a need of joining multiple
foreign keys with multiple tables in R. The review of current literature shows
that not much research has been carried out in this direction.
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3 Multi-way Semi-stream Joins

In this paper, we developed three different multi-way semi-stream joins extended
from CJ and named them Sequential, Semi-concurrent and Concurrent. As men-
tioned above, in our experiment presented here, the joins were applied to match
two foreign keys of stream tuples with two tables in R. As there are two keys
that need to be joined with two tables, our approach is to process each key using
a CJ. Thus, we need to organize the process of the two CJs in a suitable order
to optimize the multi-way joins’ performance in regard to both service rate and
resource consumption. The first decision was whether we should create two CJ
threads executing the two keys concurrently, or only one thread which processes
one key at a time. The two-thread approach was our preference for the following
reasons:

– Both approaches require the same level of memory: as both of them contain
two CJs, they have similar objects.

– The two-thread approach is feasible. Although running two threads concur-
rently means doubling the CPU calculation, this approach is still feasible as
CJ consumes few resources [3].

– Utilizing multiple threads may improve the applications’ performance [11].

Another advantage of the two-thread approach is that it reduces the idle
time of the join operator. In CJ, after sending a SQL query to a Database
Management System (DBMS) such as MySQL, the join is idle as it waits for the
DBMS to execute the query and return the results. Similarly, the DBMS sleeps
when the CJ is processing the data returned from the queries. By running two
CJs concurrently, the idle time of the both systems (CJs and DBMS) will be
reduced as one thread may be working while the other is idling. Therefore, we
expect that the time required to process two keys will be less than double the
time required to match only one key of the stream tuples.

3.1 Sequential Multi-way Semi-stream Join

Figure 2 presents the simplified architecture of the sequential join, which
abstracts CJ to the cache and disk phase level (The cache phase and disk phase
boxes are referred to in more detail in Fig. 1). Basically, the sequential join con-
tains two CJs running in sequence, i.e. a tuple is firstly joined with the Customer

Fig. 2. Simplified architecture of the sequential approach
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table by the Customer CJ. Then the matched tuple taken from the Customer
table is attached to the stream tuple to form the input for the second CJ, which
is the secondary stream buffer (SB). The second CJ takes tuples from SB and
processes the other key of the tuples (Product key) and adds the probed prod-
uct tuple to the stream tuple to form the final join’s output. It is worth noting
that, although the two keys of a stream tuple are processed in sequence, the
two CJs are running concurrently. In Fig. 2, we use a visual metaphor where the
water is the stream of data, and the two funnels depict the two CJs running
concurrently while the tuples are processed in sequence. With this architecture,
we may expect that, although Sequential matches two keys of a tuple, its service
rate is equal to the service rate of the slower of the two CJs.

3.2 The Semi-concurrent Approach

Figure 3 presents the simplified architecture of the semi-concurrent algorithm.
Similar to CJ, the semi-concurrent join has a cache phase and a disk phase.
When a tuple first enters Semi-concurrent, both of its keys are matched with
two hash tables HR C and HR P , which retain the most frequent tuples of the
customer and product tables in cache respectively. If both keys of a stream tuple
are matched, the tuple will be ready for output. In all other cases, the tuple will
be sent to the disk phase. Semi-concurrent’s disk phase has two CJ disk phases
running concurrently, processing tuples in sequence, which is quite similar to the
sequential process. In Fig. 3, we use the same visual metaphor as the sequential
join, but the two funnels are only disk phases instead of complete CJs. If only
one key of a tuple is matched in the cache phase, the tuple will be sent to the
relevant CJ disk phase to be joined with the other key, e.g. if the product key of
a tuple is matched in cache, the tuple will be sent to the customer disk phase.
After the second key is processed, the disk phases will produce the final output
for the join. With this architecture, only tuples having both keys unmatched
within cache go through both customer and product disk phases.

Fig. 3. Simplified architecture of the semi-concurrent approach
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Fig. 4. Abstract level architecture of the concurrent approach

3.3 The Concurrent Approach

Figure 4 presents the simplified architecture of the concurrent join. The cache
phase of the concurrent system is very similar to that of the semi-concurrent
system, while its disk phase has a new processing method. The concurrent sys-
tem stores stream, customer and product tuples in its queue, which makes the
queue the largest component of the join with regard to memory consumption.
At each queue node, its customer/product tuple will be set to null if its cus-
tomer/product key has not been matched, otherwise the customer/product tuple
will store the matched item. During the disk phase, there are two CJ disk phase
threads simultaneously executing the unmatched customer and product keys in
the queue, which are called customer and product disk phases. The disk phases
are supported by two hash tables HS C and HS P , whose key/value pairs are an
unmatched key and its associated queue node. In this architecture, a queue node
will be sent to output only when both customer and product tuples are not null.

For example, if the customer key of a stream tuple is matched in the cache
phase, this partially matched stream tuple will be added to a queue where the
product key will be matched. At the same time, as only its product key has not
been found in cache, the product key is put to HS P . In another instance, if
neither key of a tuple is matched with the cache, the tuple will be added to a
queue node where both customer and product items are null, and the customer
and product keys are put to HS C and HS P respectively.

As opposed to its predecessor CJ, the number of queue nodes in the concur-
rent system is not equal to the numbers of tuples in HS C and HS P . Rather,
the numbers of unmatched customer and product keys in the queue are equal to
the sizes of HS C and HS P , respectively.

4 Cost Model

To evaluate the new multi-way joins, we developed a cost model to measure
critical factors of their performance. In the case of CJ, the factors are classified
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into two main groups being memory cost and processing cost. As these multi-
way joins are developed from CJ, we have adopted the notations used in the
cost estimation of CJ to the new joins. Unfortunately, the processing cost in the
cost model is not meaningful when applied to multi-way joins. For example, for
each CJ run, processing costs such as; costs to conduct a database query and
read disk pages to the DB, cost to look up one tuple in the hash table HR can
be recorded and added together to get the total processing cost. However, we
cannot simply sum the processing costs of the two CJs to calculate the cost of the
whole multi-way join as the CJ threads run concurrently and the costs overlap.
Furthermore, as the two CJ threads execute independently, the multi-way joins
do not have a common iteration. Thus multi-way joins do not have a total cost
for one loop iteration as in CJ. To this end we have chosen one processing cost
factor for evaluating multi-way joins, which is service rate. The service rates of
the new joins are calculated as follows:

SR =
total processing time

total number of tuples processed
(1)

In regard to memory cost, we used the total runtime memory required by
the Java programs to operate the multi-way joins in order to compare their
performance. The runtime memory of a Java program includes both used and free
memory, which are the memory allocated for currently used objects and possible
new objects respectively [12]. In this way runtime memory may best reflect the
memory cost of each semi-stream join. In our research, we use the memory cost
objects adopted from CJ to calculate the memory required by all objects of the
joins, but it is only an estimation because sizes of some objects change overtime.
For example, the size of Concurrent’s queue depends on the number of matched
tuples in its nodes, but the number changes overtime. Another example is the
secondary SB of Sequential and Concurrent, whose memory size is also not stable.
By having the estimations, we adjust the setting of each multi-way join, so that
the three joins have the same memory setting.

5 Evaluation

5.1 Experimental Setup

Testing Environment. We ran our experiments on an Core i3-2310 CPU@
2.10 GHz with Solid State Drive (SSD). We implemented our experiments in
Java, using Eclipse Java Neon 4.6.3. Measurements were taken with Apache
plug ins and nanoTime() from Java API. The R is stored on a disk using a
MySQL database, the fetch size for the result set was set to be equal to the
disk buffer size. Synthetic data, the stream data, was generated with a Zipfian
distribution of the foreign key. The detailed specifications of the data set used
for analysis are shown in Table 1.
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Table 1. Data specifications

Object Value

Stream tuple size 20 bytes

Size of customer disk tuple 120 bytes

Size of product disk tuple 120 bytes

Data set based on Zipf’s law (exponent is set to 1)

Case 1: Both customer and product tables have
1 million tuples

Case 2: Customer table: 1 million tuples,
product table: 300,000 tuples

Memory Setting. In the concurrent join, the largest component in terms of
memory use is the queue. Indeed, each node of the queue stores the stream,
product and customer objects, where customer and product objects are null
if the objects have not been matched. To avoid memory consumption of the
join becoming too high, there is a fixed maximum number of queue nodes. The
memory size of the queue, therefore, will reach its maximum when all nodes are
half-matched (either the customer or the product object is matched). We used
NCQ to denote the number of nodes in the concurrent queue.

In the Sequential and Semi-concurrent joins, the largest components in term
of memory use are their two hash tables HS C and HS P and these hash tables’
sizes also need to be fixed. In both joins, we set the same size for both Customer
and Product Hash tables, and used NSQ and NSCQ to denote the size of the
sequential and semi-sequential hash tables respectively.

To test the performance of each join, we attempted to allocate the same
amount of memory for each multi-way join. For our test dataset, the size of each
customer and product object are the same (120 bytes), and the size of a stream
object is 20 bytes. With this setting, to allocate the same amount of memory to
all the joins, NSQ and NSCQ are set to equal to around 2/3 of NCQ.

5.2 Comparison of the Three Multi-way Joins

Figures 5 and 6 show comparisons between the three approaches and a single CJ
in two different cases as stated in Table 1. It must be remembered that, while
the multi-way joins match two keys of a stream tuple with two tables in R, CJ
joins only one. It can be observed that the time required to join two keys in the
newly developed multi-way joins is less than double the time of a single CJ to
process one key. In regard to the memory cost, these three new joins consume a
similar level of memory, around 600 MB and is three times more than CJ.

In both cases, the semi-concurrent join is the best performer, and Concur-
rent is the slowest multi-way join. The average time Semi-concurrent requires to
process 1000 tuples in Case 1 is 7.5 s, while the single CJ requires 5.5 s, and, in
Case 2, the difference is only one second.
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Fig. 5. Comparison of the three multi-way joins with the original CJ (Customer table:
1 million tuples, Product table: 1 million tuples)

Fig. 6. Comparison of the three multi-way joins and the original CJ (Customer table:
1 million tuples, Product table: 300,000 tuples)

6 Discussion

The reason why Concurrent is slower than Semi-concurrent is as follows. Since
both joins have the same cache phase, their disk phases cause the difference. As
mentioned above, a node in concurrent process’s queue will be moved to output
only when both its customer and product keys are matched. While the concurrent
process progresses, the number of half-matched nodes increases, which leads to
the numbers of unmatched customer and product keys decreasing (because the
total number of queue nodes is fixed to NCQ). However, a characteristic of the
CJ algorithm mentioned above is that the fewer unmatched items there are,
the slower the join performs. In our experiment, after the join runs for a while,
the number of unmatched customer and product keys is around 60% of NCQ,
which is smaller than in NSCQ (which is equal to 2/3 of NCQ). As a result,
the concurrent system becomes slower than the semi-concurrent system because
the number of unmatched keys in the semi-concurrent join is always fixed at
NSCQ. Figure 7 simulates the concurrent join’s queue status while the join is in
operation.
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Fig. 7. Simulation of a concurrent queue at a given time

There are several reasons to explain why the sequential join’s service rate
is lower than that of the semi-concurrent join. First, in a case where both keys
of a tuple are recognized as frequent keys, the semi-concurrent join will send
the tuple direct to output after matching it with the cache phase. However, the
sequential join requires more steps in processing the tuple as, after matching the
first key, the sequential join puts the tuple into a secondary stream buffer, and
the tuple must wait for the second CJ to be executed. Second, if the product
key of a tuple is matched with the semi-concurrent join’s cache, the tuple will
go to the customer disk phase, and this phase may directly send the tuple to
output. However, after processing this tuple’s customer key, sequential join also
needs to put it in the secondary stream buffer, and again the tuple must wait
for the second CJ to be executed.

Although Sequential has some weaknesses when compared with Semi-
concurrent, the two joins have quite similar architecture. Basically, the two joins
have two CJ disk phase threads running concurrently and processing tuples in
sequence, and this architecture has been proved to be more effective than the
concurrent architecture. This provides an answer as to why the concurrent join
performs the least well of the three.

Another advantage of the semi-concurrent architecture is that the join is quite
flexible. Depending on the case we can adjust its components to achieve better
performance. For example, if the size of the product disk tuple is smaller than the
customer disk tuple, we can put the product disk phase first in the architecture
to save memory. In the semi-concurrent join, after we match a stream tuple with
the second CJ, the tuple will be sent to output. Therefore, we do not keep the
disk tuple of the second CJ in memory. However, after matching a stream tuple
with the first CJ, we need to put keep the matched tuples for the other key to
be matched. Hence, by putting the disk tuple which has a smaller memory first
in the processing order, the memory required to store the tuples will decrease.

The semi-concurrent join can also be generalized to match more keys by
adding more HR tables to its cache phase and more CJ disk phase threads to
its disk phase. The main problem with generalization is that the more keys the
join needs to match, the more memory the join requires. Even so, the multi-way
join is still expected to be more efficient than other approaches.
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7 Conclusion

In this paper, we proposed three different multi-way join architectures called
Sequential, Semi-concurrent and Concurrent. Initially, we developed new joins
to match two-foreign keys in stream data with two tables in the master data.
We also developed a cost model to measure the joins’ performance. We com-
pared the performance of the all three newly developed joins with the original
CJ. Our results show that Semi-concurrent performed best among the three
approaches. In future we aim to generalize our multi-way semi-concurrent app-
roach to join with n number of tables in the master data. Also we will optimize
Semi-concurrent by making some adjustments on the algorithm such as the fre-
quency detector and allocating different memories to different CJs in accordance
with the distributions of each streaming tuple’s foreign key.
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Abstract. With the growing popularity of IoT nowadays, tremendous
amount of time series data at high resolution is being generated, trans-
mitted, stored, and processed by modern sensor networks in differ-
ent application domains, which naturally incurs extensive storage and
computation cost in practice. Data compression is the key to resolve
such challenge, and various compression techniques, either lossless or
lossy, have been proposed and widely adopted in industry and acad-
emia. Although existing approaches are generally successful, we observe
a unique characteristic in certain time series data, i.e., significant peri-
odicity and strong randomness, which leads to poor compression perfor-
mance using existing methods and hence calls for a specifically designed
compression mechanism that can utilise the periodic and stochastic pat-
terns at the same time. To this end, we propose a decomposition-based
compression algorithm which divides the original time series into several
components reflecting periodicity and randomness respectively, and then
approximates each component accordingly to guarantee overall compres-
sion ratio and maximum error. We conduct extensive evaluation on a
real world dataset, and the experimental results verify the superiority of
our proposals compared with current state-of-the-art methods.

Keywords: Time series compression · High periodicity · Strong ran-
domness · Decomposition-based algorithm · Max-error guarantee

1 Introduction

With the growing popularity of IoT (Internet of Things), tremendous amount of
time series data is being generated nowadays by modern sensor networks in vari-
ous domains [1], such as power grids, manufacturing networks, and medical care
systems. For example, due to the upgrading process from conventional power grid
to “smart grid”, all levels of components in a grid, ranging from power plants,
substations, transformers, distributors to smart home appliances, are being mon-
itored simultaneously. Hence, the central controller needs to receive and process
massive high resolution time series data from the smart electricity meters and
other sorts of measurement devices [2]. Apparently, this will cause problems in
terms of data storage, transmission, and processing. First, the expense on data
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storage is always a crucial financial concern for any organisation who owns mil-
lions of customers and measurement equipments. It is natural for the size of time
series data to reach petabyte level, which requires enormous amount of storage
space. Second, since massive data is being generated at real time, it will cause
congestion during transmission.

Data compression is the key to overcome the aforementioned problems. Exist-
ing data compression techniques can be roughly classified into two categories:
lossless compression and lossy compression [3,4]. As its name implies, lossless
compression can fully guarantee the compression accuracy, and the original data
can be reconstructed flawlessly from the compressed data. Nevertheless, the com-
pression ratio of lossless techniques is generally much smaller than that of the
lossy techniques. As a result, challenges caused by the high volume of time
series data cannot be easily resolved by lossless methods. Lossy compression
techniques, on the contrary, achieve a higher compression ratio at a slight sac-
rifice of the quality of the compressed data, and hence have attracted extensive
attention from both industry and academia during recent decades.

So far, many model-based lossy compression techniques [5] have been pro-
posed for various application domains where either the time series data is strictly
stationary or it is compressed without any error guarantee. However, in practice,
many time series data, such as traffic volume, illumination, solar energy gener-
ation, etc., demonstrate a common characteristic: they contain both significant
global periodicity and high local randomness. As can be observed from Fig. 1(a)
which illustrates solar energy generation for three consecutive days, although
data of each day follows an approximately same distribution (periodicity), they
differ from each other to various extent because of natural weather conditions
(randomness). In this case, it is hardly possible for existing model-based com-
pression methods to detect an appropriate model to approximate the original
data due to frequent local fluctuations. Furthermore, the repeated patterns in
each period can be utilised as well to improve compression ratio.

In this work, we propose a decomposition-based compression technique which
divides the original time series into periodic component and random component
(e.g., STL decomposition in Fig. 1(b)), and then approximates each component
respectively using different methods to achieve the best performance. Our con-
tributions can be summarised as below.

– We observe a common characteristic in certain time series data, i.e., high
global periodicity and strong local randomness, where existing data compres-
sion techniques cannot be easily applied.

– We design a novel DBA (Decomposition-Based Approximation) algorithm
to approximate such time series with max-error guarantee, based on which
an optimised algorithm DBAfS (Decomposition-Based Approximation for
Streams) is further proposed for online stream data compression.

– Experimental results on a real world dataset verify the superiority of our
proposals compared with state-of-the-art compression techniques.

The rest of this paper is organised as follows: in Sect. 2, we briefly discuss
related work for time series compression; then we formally define the research
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Fig. 1. An example of periodic and stochastic solar energy generation data and its STL
decomposition result. The four signals in Fig. 1(b) represent original data, seasonal
part, trend part, and remainder part, respectively.

problem and introduce in detail our proposed algorithms in Sects. 3, 4 and 5
respectively. Our experimental results are described in Sect. 6, followed by a
brief conclusion in Sect. 7.

2 Related Work

Time series data compression is a widely researched topic, and various com-
pression mechanisms have been proposed in recent decades. With respect to
the application scenario, existing techniques can be divided mainly into two
categories: local data compression and streaming data compression [4]. Local
data compression aims to reduce the storage cost on local databases and enable
faster processing of online queries with less I/O cost. During compression, new
patterns of the raw data need to be recognised to help further data analysis.
Streaming data compression, on the other hand, targets on data transmission.
It learns and adjusts models for newly observed data, and has the superiority
of extending sensors’ battery life and making better use of limited communica-
tion bandwidth. Both methods play an important role in the field of time series
research, especially in data management and data mining [6].

In terms of compression strategy, many techniques have been applied for gen-
erating an abstract representation of time series, including fourier transform [7],
wavelet transform [8,9], symbolic representation [10–12] and piecewise regression
[5]. These techniques seek to find an approximate representation that is smaller
in size than the original time series, without losing much information contained
in the original data. In particular, fourier transform and wavelet transform have
been used to extract features from time series for compression and enable efficient
subsequence matching. These techniques cannot provide an error guarantee for
the compressed data which, however, is crucial for many real world data analysis
tasks. Symbolic time series representation is based on data discretization and can
achieve high compression ratio. Whereas, applications of the compressed data
are limited to statistics and machine learning algorithms for some selected pur-
poses. Piecewise regression is the most widely adopted compression technique
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which can approximate time series data with guaranteed quality at every data
point. It divides a time series into fixed-length or variable-length intervals and
represents each interval with different regression models. Currently, various mod-
els have been explored for piecewise regression, including constant models (e.g.,
PAA [13], PCA [14], APCA [15], PCH [16], etc.), linear models (e.g., PLA [17],
PWLH [16], SWAB [18], SF [19], etc.), and nonlinear models (e.g., polynomial
functions [20], CHEB [21], etc.), among which polynomial functions achieve the
best balance between compression accuracy (under L∞ norm) and efficiency.

As discussed in Sect. 1, existing compression techniques are largely inap-
plicable for time series data with both high periodicity and strong randomness.
Therefore, we propose a decomposition-based compression algorithm with error
guarantees under the L∞ norm. The experimental results in Sect. 6 will demon-
strate the limitations of existing compression methods and the superiority of our
proposed algorithm in this case.

3 Problem Definition

In this work, we investigate the problem of time series data compression. We
first present the formal definitions of time series and time series compression.

Definition 1 (Time Series). A time series D is defined as a sequence of data
points (ti, vi), i.e., D = {(ti, vi)} = {(t1, v1), (t2, v2), . . . , (tn, vn)}, where ti is the
timestamp of vi organised monotonically, i.e., ∀j < k, tj < tk. vi represents the
data value at time ti, and it can be either one-dimensional or multi-dimensional.

In practice, a time series dataset is sometimes extremely large from the fol-
lowing two perspectives: (1) there could be a huge amount of time series, and (2)
each time series could be very long. In order to reduce its storage consumption
and guarantee its usability in real world applications, a wisely designed com-
pression strategy is indispensable. In particular, given a time series in the form
of {(ti, vi)}, we focus on transforming it into another sequence of bits, such that
the error for each vi does not exceed a predefined threshold ε. The ultimate goal
is to reduce the number of bits required for representing the original time series
as much as possible. Note that we adopt the L∞ metric for error constraint,
which guarantees the accuracy of each data point (ti, vi). This is a widely used
metric in recent time series compression techniques. Hence, the problem of time
series compression with error bound is formally defined as follows.

Problem 1 (Time Series Data Compression with Error Bound). Given
a time series D = {(ti, vD

i )} where i ∈ [1, n], and an error threshold ε, the
problem of time series compression is to find an approximated representation of
D such that the reconstructed time series from the approximation, i.e., D′ =
{(ti, vD′

i )}, satisfies the following condition: max (ei) = max (vD′
i − vD

i ) ≤ ε.

Throughout the paper, we will use D′ to denote both compressed time series
and reconstructed time series whenever it is clear.
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4 Decomposition-Based Compression Mechanism

We observe that most time series data in practice, such as illumination, traffic
volume, solar energy generation, and energy consumption, etc., is a combination
of necessity and contingency. In other words, they demonstrate both significant
global periodicity and strong local randomness. Inspired by this unique prop-
erty, we propose a decomposition-based compression technique that divides the
original time series into several components corresponding to its periodicity and
randomness respectively, and then compresses each component separately to
guarantee the overall error bound and meanwhile achieve the largest compres-
sion ratio.

In particular, given the original time serious data D = {(ti, vD
i )}, we decom-

pose D into three components: S = {(ti, vS
i )}, T = {(ti, vT

i )}, and r = {(ti, vr
i )},

where S, T and r represent the seasonality, trend and remainder parts of D
respectively, such that:

D = S + T + r i.e., ∀i, vD
i = vS

i + vT
i + vr

i (1)

Here, we divide the original time series with exiting STL (Seasonal Trend
Decomposition using Loess) tools. Based on such a decomposition, we redefine
the problem of time series compression as follows.

Problem 2 (Decomposition-Based Time Series Data Compression
with Error Bound). Given a time series D = {(ti, vD

i )} that can be decom-
posed into D = S + T + r, and an error threshold ε, the problem of time series
data compression is to find approximated representations of S, T and r such
that the reconstructed time series D′ and its components, i.e., S′ = {(ti, vS′

i )},
T ′ = {(ti, vT ′

i )} and r′ = {(ti, vr′
i )} respectively, satisfy the following conditions:

D′ = {(ti, vD′
i )} = S′ + T ′ + r′ and max (ei) = max (|vD′

i − vD
i |) ≤ ε.

4.1 Component Approximation

In this section, we will introduce our methods to compress each component, i.e.,
S = {(ti, vS

i )}, T = {(ti, vT
i )} and r = {(ti, vr

i )}, of the original time series
D = (ti, vD

i ) obtained by STL decomposition.
When conducting STL decomposition, the length of a single period needs

to be determined. In practice, most time series have a natural period p (e.g.,
one day for illumination, solar energy generation, etc.) which, however, might be
problematic if adopted directly for compression. The trend part for each natural
period could be dramatically different, which will then lead to low compression
ratio. But if a longer period is adopted, as in Fig. 1(b), the trend part will
become smoother and easier to compress. Therefore, we define a manual period
d · p where d is a positive integer, and use d · p to conduct STL decomposition.
In this case, each natural period in a manual period follows similar patterns,
whereas there are still slight differences (e.g., peak values) among these periods.
To avoid the cost of storing the entire manual period, we only preserve its mean
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value as a reference. Specifically, we replace the periodic part S with its mean
value S̄ = {(ti, vS̄

i )}, and add the difference between S and S̄ to the remainder
r such that the new remainder will be rp = r + S − S̄. More formally, let
{S1, S2, . . . , Sd} be a manual period where Sj , j ∈ [1, d] is the j-th natural
period, namely Sj = {(tp·(j−1)+1, v

S
p·(j−1)+1), . . . , (tp·j , vS

p·j)}. We calculate the
mean value of {S1, S2, . . . , Sd} based on Eq. 2, where i%p represents the modulo
operation, i.e., i%p = i − � i

p� · p.

∀i ∈ [1, d · p], vS̄
i =

∑d
j=1 vS

p·(j−1)+i%p

d
(2)

We then store only one period of S̄ as the representative of the periodic part S.
Since we have added the difference between S and S̄ into the remainder part rp,
there is no information loss when compressing the periodic part S̄ in this way.
We will show the impact of d on the compression performance in Sect. 6.

We adopt piecewise linear approximation to compress the trend part T
because it demonstrates an obvious linear property, as in Fig. 1(b). The informa-
tion we need to store is just the coefficients of line segmentations in T ′. For the
remainder part rp, we divide its value range [min(vrp),max(vrp)] into M inter-
vals and construct a histogram on these M intervals. We then approximate each
interval as well as it constituting values v

rp

i with the median of that interval.
Finally, we adopt Huffman coding to encode these median values and transform
the original remainder part rp into a sequence of Huffman codes r′

p. Run-length
coding can also be applied to further reduce the size of r′

p. The whole DBA
approximation algorithm is presented in Algorithm 1.

4.2 Error Analysis

The error between D′ and D equals to the sum of errors when approximating
S, T and r respectively. Since we transfer the difference between S′ and S into
rp, the error under L∞ norm can be calculated as below.

ei = |vD′
i − vD

i | = |(vT ′
i − vT

i ) + (v
r′
p

i − v
rp

i )| (3)

We can approximate T using any piecewise linear approximation algorithm, such
as PLA, PWLH, SWAB, SF, etc., that guarantees L∞ norm accuracy, namely

max (eT
i ) = max (|vT ′

i − vT
i |) ≤ ε1 (4)

For the remainder part rp, since we divide its value range into M intervals and
use the median values for Huffman coding, the maximum error of rp is

max (erp

i ) = max (|vr′
p

i − v
rp

i |) ≤ max (vrp) − min (vrp)
2M

(5)

We can choose a proper M such that M ≥ max (vrp )−min (vrp )
2ε2

to guarantee
max (erp

i ) ≤ ε2. Combining Inequations 4 and 5, we can conclude that

max (ei) ≤ max(eT
i ) + max(erp

i ) ≤ ε1 + ε2 (6)

By simply setting ε1 + ε2 ≤ ε, the error bound max(ei) ≤ ε is satisfied.
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Algorithm 1. Decomposition-Based Approximation (DBA)
Input:

D: original time series
ε1, ε2: error bounds for trend and remainder
p, d: natural and manual periods

Output:
D′: compression result of D

1: Divide D into S, T and r using STL decomposition
2: S′ ← S̄ calculated by Equation 2
3: T ′ ← LinearAppro(T, ε1)
4: rp ← r + S − S′

5: M ← max (vrp )−min (vrp )
2ε2

6: Divide the value range of vrp into M intervals and encode the median mk of each
interval using Huffman coding, k ∈ [1, M ]

7: vr′
p ← mk of corresponding interval

8: D′ ← S′ + T ′ + r′
p

5 Online Compression Mechanism

In order to conduct STL decomposition, the original time series needs to be
provided beforehand. Therefore, it is impossible to purely decompose a single
data point (ti, vi) into the form vi = vS

i + vT
i + vr

i . In other words, the compres-
sion technique described in Sect. 4 can only be applied for offline cases. In this
section, we introduce our optimisation to make Algorithm 1 capable of compress-
ing stream data. We observe that the periodic part of original time series roughly
follows certain distributions. Hence we can divide a time series D = {ti, v

D
i } into

two components Ns and rs, where Ns = {(ti, vNs
i )} fits a pre-learned distribution

and rs = {(ti, vrs
i )} is the remainder, such that:

D = Ns + rs i.e., ∀i, vD
i = vNs

i + vrs
i (7)

In this way, vrs
i can be calculated at real time and the algorithm can be applied

for online stream data compression. Based on such a decomposition, we define
the problem of stream data compression as follows.

Problem 3 (Decomposition-Based Stream Data Compression with
Error Bound). Given a time series D = {(ti, vD

i )} that can be decomposed
into D = Ns + rs, and an error threshold ε, the problem of stream data com-
pression is to find an approximated representation r′

s = {(ti, v
r′
s

i )}, such that
D′ = {(ti, vD′

i )} = Ns + r′
s and max (ei) = max (|vD′

i − vD
i |) ≤ ε.

5.1 Component Approximation

Recall that we divide D in a simpler form D = Ns + rs rather than STL decom-
position. We first learn the distribution of the periodic part from historical data.



78 B. Ruan et al.

Algorithm 2. Decomposition-Based Approximation for Stream (DBAfS)
Input:

D: original time series
ε: error bound p, d: natural and manual periods

Output:
D′: compression result of D

1: Learn the proper Ns from d · p period of D
2: rs ← D − Ns

3: M ← max (vrs )−min (vrs )
2ε

4: Divide the value range of vrs into M intervals and encode the median mk of each
interval using Huffman coding, k ∈ [1, M ]

5: vr′
s ← mk of corresponding interval

6: D′ ← Ns + r′
s

In the case of solar energy generation, a Gaussian distribution Ns = (μs, σs) can
be observed. But the problem is how many historical data should be utilised to
learn the parameters of the distribution. On one hand, the distribution should
be generalised enough to cover as much data as possible. On the other hand, it
needs to be locally typical so that not too much difference is transferred into the
remainder part. To this end, we adopt data within a manual period d ·p to learn
the distribution. Then we approximate rs in the same way as rp described in
Sect. 4. Since vrs

i can be calculated directly by vrs
i = vD

i −vNs
i at every timestamp

ti, this technique can be executed every time when a new data point arrives in
the stream. The whole approximation algorithm is presented in Algorithm 2.
After compression, we only need to store the coefficients of Ns and the Huff-
man coding results of r′

s. As before, run-length coding can be applied to further
reduce the size of r′

s.

5.2 Error Analysis

The error between D′ and D originates only from the error of approximating rs.
Hence, the error under L∞ norm can be calculated as follows.

ei = |vD′
i − vD

i | = |vr′
s

i − vrs
i | (8)

As discussed in Sect. 4, the maximum error of rs is

max(ei) = max(|vr′
s

i − vrs
i |) ≤ max (vrs) − min (vrs)

2M
. (9)

We can also choose a proper M such that M ≥ max (vrs )−min (vrs )
2ε to make sure

the error bound max(ei) ≤ ε is satisfied.

6 Experiments and Results

To evaluate the performance of our proposals, we conducted extensive experi-
ments on a real world data set from the smart grid. The data set consists of
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information about solar energy generation for one year with each day containing
5,040 data collected at a 10-second resolution. All the experiments were con-
ducted on a PC with Intel Core i7 processor 3.4 GHz and 16 GB main memory.

We compared DBA and DBAfS algorithms with current state-of-the-art lossy
compression methods, and examined the impact of parameter setting on the
compression performance which were measured in terms of both Compression
Ratio (CR, Eq. 10) and accuracy.

CR =
|D|
|D′| (10)

RMSE =

√
√
√
√ 1

n

n∑

i=1

(vD
i − vD′

i )2 (11)

In Eq. 10, |D| and |D′| represents the storage cost of original data D and com-
pressed data D′, respectively. We calculated accuracy with the Root Mean
Square Error (RMSE, Eq. 11), a widely adopted metric for evaluating the quality
of approximation. We noticed that the range of original data might vary a lot
throughout the entire time series. Therefore, we used relative error (in percent-
age) in the experiments to represent RMSE and error bound ε. For the remaining
part, we still use ε to denote relative error bound whenever it is clear.

6.1 Effect of Error Bound ε

As discussed in Sect. 2, piecewise regression is currently the most prevalent
lossy compression technique. Hence, we selected several representative piece wise
regression methods (i.e., PCA and APCA for constant models, PWLH and SF
for linear models, and CHEB for nonlinear models) and compared with our DBA
and DBAfS algorithms. Figures 2(a) and (b) demonstrate their respective com-
pression ratio and RMSE, when error bound ε ranges from 1% to 10%. We can
see that both compression ratio and RMSE of all methods rise with the increas-
ing of ε. This is natural and also consistent with the results obtained from [5].
Moreover, DBA and DBAfS achieve the largest compression ratio at the cost
of nearly the same RMSE with most counterparts, and such an improvement
further enlarges when ε increases. In particular, when ε is set as 10%, the com-
pression ratio of DBAfS is at least 10 times larger than all the existing piecewise
regression methods. Comparing DBA and DBAfS, we observe that DBA is not as
powerful as DBAfS with respect to compression ratio, especially when ε is large.
This is because except for periodic part, DBA needs to compress both trend and
remainder parts while DBAfS only handles remainder part. When ε is small, the
storage cost of the compressed data is dominated by the remainder part, which
results in similar compression ratio between DBA and DBAfS. However, when ε
grows, remainder becomes less dominant and thus the difference between DBA
and DBAfS gradually emerges.

To further explore the insights of DBA algorithm, we evaluated the impact of
ε1 and ε2 on its compression performance. In this case, we set ε = 1% and vary
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Fig. 2. Effect of error bound ε. Figures 2(a) and (b) compare the performance of our
techniques with other state-of-the-art compression methods. Figures 2(c) and (d) show
the impact of how we distribute ε1 and ε on the performance of DBA.

ε2 (i.e., the error bound for remainder part) from 0.1% to 0.9% (resp. ε1 ranges
from 0.9% to 0.1%). Figures 2(c) and (d) present the results. It can be observed
that larger ε2 leads to higher compression ratio and smaller RMSE. This also
verifies the remainder part dominates the size and quality of compressed data in
the solar generation data when total error bound ε is small, i.e. 1%.

6.2 Effect of Period Length d

As mentioned in Sect. 4, most periodic time series have a natural period p, and
we can define a manual period d · p, which is d times larger than the natural
period, to balance between the compression of trend part and remainder part. In
the case of solar energy generation, its natural period is one day. We evaluated
the impact of d on the compression performance of DBA algorithm. Figures 3(a)
and (b) present DBA’s compression ratio and RMSE respectively when ε is set
as 1%. We can see that both compression ratio and RMSE decrease with the
increasing of d. It has been verified in previous experiments that in solar energy
data, the storage size of compressed data is dominated by remainder part when
error bound ε is small. The increase of d means more difference is transferred
from periodic part to remainder part, which leads to larger deviation between
max(vrp) and min(vrp), and hence larger M according to Eq. 5. Consequently,
the compression of remainder part takes longer codes and thus more storage
cost. This in turn results in smaller compression ratio when d enlarges.

For DBAfS, parameter d is also adopted to trade-off the generalisability and
typicality of learned standard distribution of the original data. Therefore, we
studied the impact of d on the compression performance of DBAfS, as depicted
in Figs. 3(c) and (d) where ε = 1%. When d increases from 0 to 50 days, the
learned distribution can capture more periods of original data. However, when d
further enlarges, the learned distribution is too generalised and no longer typical
for a particular part of the data. This means too much difference is transferred
into the remainder part, which will lead to the decrease of compression ratio, as
analysed above. Hence, the best setting of parameter d in the DBAfS algorithm
for our solar generation data is selected as 50 days.
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Fig. 3. Effect of period length d. Figures 3(a) and (b) demonstrate the impact of d on
the compression performance of DBA. Figures 3(c) and (d) show the impact of d on
the compression performance of DBAfS.

7 Conclusion

In this work, we observe a common characteristic in certain time series data,
i.e., significant periodicity and strong randomness, which makes existing com-
pression techniques, either lossless or lossy, largely inefficient in terms of com-
pression ratio. Therefore, we propose two novel decomposition-based compres-
sion algorithms, namely DBA and DBAfS, to approximate such time series with
max-error guarantees. Our experimental results on a real world data set demon-
strate the superiority of our proposals, compared with current state-of-the-art
lossy compression methods. As future work, we plan to apply DBA and DBAfS
algorithms to more time series data, such as illumination, traffic volume, etc., to
further examine their applicability and compression performance.
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Abstract. With the proliferation of mobile devices, massive trajectory
data has been generated. Searching trajectories by locations is one of
fundamental tasks. Previous work such as [3,6,9] has been proposed to
answer the search. Such work typically measures the distance between
trajectories and queries by the distance between query points and GPS
points of trajectories. Such measurement could be inaccurate because
those GPS points generated by some sampling rate are essentially dis-
crete. To overcome this issue, we treat a trajectory as a sequence of line
segments and compute the distance between a query point and a trajec-
tory by the one between the query point and line segments. Next, we
index the line segments by R-tree and match each trajectory to the asso-
ciated line segments by inverted lists. After that, we propose a k-nearest
neighbor (KNN) search algorithm on the indexing structure. Moreover,
we propose to cluster line segments and merge redundant trajectory IDs
for higher efficiency. Experimental results validate that the proposed
method significantly outperforms existing approaches in terms of saving
storage cost of data and the query performance.

Keywords: KNN · Trajectory · Road network · Clustering · Index

1 Introduction

With the proliferation of mobile devices, massive trajectory data are generated.
Many applications, such as urban planning and intelligent transportation, have
used the trajectory data to understand people’s mobility patterns. Among such
applications, one fundamental task is to effectively and efficiently index and
search trajectories. For example, given a few selected locations as an input query,
a k-nearest neighbor (KNN) search demands to find the top-k trajectories that
are closest to the selected locations.

In literature, various work [3,6,9] has been proposed to answer the KNN
trajectory search. To compute the similarity between trajectories and queries,
such work typically measures the distance between GPS points in trajectories
and those selected locations in queries; in terms of query processing efficiency,
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 85–97, 2017.
DOI: 10.1007/978-3-319-68155-9 7
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these work focuses on precisely selecting a few GPS points (and thus a small
amount of associated trajectories) in order to faster satisfy the KNN stopping
condition by tighter lower and upper bounds of similarities between trajectories
and queries.

Unfortunately, the GPS points in trajectories are discrete and regularly
recorded by a fixed sampling rate (e.g., a GPS point per 300 s). Such discrete
GPS points could lead to the semantic issue in terms of the similarity between
trajectories and queries. For example, when mobile devices are continuously mov-
ing, the truly nearest position of a mobile device to a query point may not be
recorded by GPS sensors. It is particularly true when a low sampling rate leads
to very spare GPS points.

To overcome this issue above, in this paper, we propose a hybrid KNN algo-
rithm to find k-Nearest Neighbor Trajectories on Road-network (KNNTR). In
this algorithm, we treat a trajectory as continuous line segments and thus infi-
nite GPS points (instead of discrete points), and then the distance between a
query point and the trajectory by the one between the query point and the
line segments is computed. Such computation can guarantee the correctness of
the distance, no matter GPS sensors have sampled the point which leads to the
correct distance or not. To enable line segments, we adopt a frequently used
map-matching technique, given the map of road networks, to recover full trajec-
tories from (sparse) GPS points. In this way, we then represent each trajectory
by (partial) road segments.

Next, we index the line segments by a spatial structure such as R-tree [4], and
each leaf node in R-Tree refers to a list of trajectories with line segments. Thus,
each trajectory is matched to the associated line segments. With the indexing
structure, we could follow the classic KNN query processing framework to find
more candidates until the KNN stopping condition is satisfied. However, the
challenge is that R-Tree itself cannot be directly used to compute the distance
between query points and line segments, because the line segments are indexed in
the form of rectangles in R-tree. To optimize the overhead to retrieve indexed line
segments and distance computation, we approximate the distance lower/upper
bounds simply using the internal nodes (such as Minimal Bounding Box: MBR)
in R-Tree. Furthermore, due to distance locality, a trajectory could move on
multiple line segments. It indicates that the trajectory could redundantly appear
in multiple ID lists referred by those leaf nodes containing such line segments.
Such redundance not only incurs larger space cost but also higher KNN query
overhead. To this end, we propose a simple and efficient clustering approach to
merge the redundant trajectory IDs. In this way we have chance to optimize the
space cost and KNN query efficiency.

As a summary, we make the following contribution in this paper.

– We propose the line segments-based distance computation for more meaning-
ful semantics, regardless of GPS points in the trajectories.

– We propose a fast hybrid KNN query algorithm based on a new distance
measurement and the spatial indexing.

– We propose a simple clustering approach to merge the redundant data and
therefore, optimize the space cost and the KNN query efficiency.



Searching k-Nearest Neighbor Trajectories on Road Networks 87

2 Problem Definition

We consider a query Q = {q1...qm}, represented by a set of m locations qi

with 1 ≤ i ≤ m. A trajectory database T consists of a large amount of raw
trajectories. Each trajectory T ∈ T contains a series of n GSP positions pj with
1 ≤ j ≤ n. Each position pj is with the coordinations (latitude, longitude).

Given a query Q, we want to effectively and efficiently find the top-k nearest
trajectories from a trajectory database T. Firstly, we need to define a distance
or similarity function between a trajectory T ∈ T and a query Q.

Definition 1. After adopting a map-matching technique to map each trajectory
onto a road network map, we represent the trajectory by the associated line seg-
ments ST , and compute Dist(T, qi) by the distance between qi and qi’s nearest
point p′ ∈ ST , e.g., using Euclidean distance, i.e., Dist(T, qi) = Dist(ST , qi) =
Dist(p′, qi).

Next for a query Q, we define a monotonic aggregation function to measure
the similarity between query Q and trajectory T .

Dist(T,Q) =
m∑

i=1

Dist(T, qi) (1)

In the equation above, a larger distance Dist(T, qi) leads to a larger
Dist(T,Q). Note that the technique proposed in this paper can be generally
applied to other monotonic aggregation functions such as [12].

Problem 1. When Definition 1 and Eq. 1 are used to measure the distance
Dist(T,Q), we want to efficiently search a trajectory database T to find the
k-NN trajectories for a query Q.

3 Solution Design

3.1 Overall Framework

We first briefly introduce the data structure to index trajectories. On the overall,
in Fig. 1, the indexing structure consists of two components: a spatial structure
and inverted lists. Specifically, when each trajectory is represented by a sequence
of line segments (See Sect. 2), we use a spatial data structure, e.g., R-Tree,
to index such line segments. Each leaf Minimal Bounding Rectangle (MBR)
in the R-Tree maintains at least one line segment. After that, each leaf MBR
refers to a list of trajectory IDs. Such trajectories are those containing the line
segments appearing in the leaf MBR. Leaf MBRs and lists of trajectory IDs can
be intuitively treated as inverted lists.

We take Fig. 1(b) for illustration. We have three example trajectories
T1, T2, T3 and eight line segments. A leaf MBR in the R-Tree contains four exam-
ple segments S1...S4. For segment S1, it refers to a list of 4 example trajectory
IDs T1, T3, T6, T7; and S2 refers to the list of T1 and T2.
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Fig. 1. The framework of query

Algorithm 1. KNN Search (Query Q, Index I, Number k)

1 Initiate (m + 2)sets: PC, FC, Ci for each qi (i = 1...m), λ ← k;
2 while |FC| < k do
3 for i = 1 . . . m do Ci ← GetCandidate (qi, λ, I);
4 FC ← C1

⋂
C2
⋂

..
⋂

Cm, PC ← C1
⋃

C2
⋃

..
⋃

Cm;
5 λ ← λ + Δ;

6 return Refine(FC, PC, k);

Given the indexing structure above, Algorithm1 gives the overall KNN search
framework.

The Index I here refers to R-tree and Inverted Lists. Since we have m query
points, we then have m associated candidate sets Ci. As shown in line 4 in
Algorithm 1, we denote FC to the set of fully searched candidate set, and PC to
be the set of partially searched candidate set. By performing multiple rounds of
GetCandidate (see Algorithm 2). We search more candidate trajectories to meet
the stopping condition in line 2: the number of trajectories in FC is no less
than the number k, i.e., |FC| ≥ k. After that, we stop the search and refine the
candidates in PC to find the final k nearest trajectories (i.e., the function Refine
in line 6). Initially, we set λ to k and the Δ is set to k. Our experiment in Sect. 6
will empirically evaluate the effect of different Δ.

Lemma 1. For a KNN query, if |FC| ≥ k holds, then the set PC must contain
the k nearest trajectories to query Q.

The proof of Lemma 1 can be seen in [9].

4 Finding Candidate Trajectories and Refinement

In this section, we will present the algorithms GetCandidate to find candidate
sets (Sects. 4.1 and 4.2) and Refine to find the final KNN result (Sect. 4.3).

4.1 Finding the Nearest Line Segments

On the overall, GetCandidate consists of two parts. Firstly, it needs to find at
most λ nearest line segments that are not searched yet. Secondly, among those
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Fig. 2. Illustration of Dist(S, q) �= Dist(R, q).

trajectories associated with the found λ nearest line segments, the algorithm
searches λ newly founded trajectories which do not appear inside Ci.

The key of GetCandidate is its first part: how to efficiently find the λ nearest
line segments.

Example 1. We take Fig. 2 for illustration. It is not hard to find that the distance
between a MBR and query point q differs from the one between a line segment
and q, e.g., Dist(R3, q) �= Dist(S3, q) as shown in Fig. 2. If we find the nearest
line segments simply by using the distance between MBRs and query points,
since R1 → R2 → R3 → R4, we will falsely get a sorted lists of four nearest
line segments: S1 → S2 → S3 → S4. Instead, by the real distance between line
segments and query points, we have the correct sorted list S2 → S1 → S4 → S3.
Thus, we cannot simply use the distance between MBRs and query points to
find the nearest line segments.

We highlight the idea of GetCandidate to find the λ nearest line segments.
Though Dist(S, q) �= Dist(R, q), we can use the distance Dist(R, q) to be the
lower bound of Dist(S, q); otherwise, the line segment S must be out of the
bounding rectangle R. We then use Dist(R, q) as the lower bound of Dist(S, q)
to find the λ nearest line segments as follows.

Among the sorted list of founded MBRs R by ascending order of Dist(R, q),
we process each of the MBRs R one by one by retrieving the line segments S
inside R. Suppose that we have retrieved at least k line segments. Denote that
LBR to be the largest distance to q among all processed MBRs R, and UBS to
the kth smallest distance to q among all retrieved line segments S. If LBR > UBS

holds, we determine that the k nearest line segments needed by GetCandidate
must be inside those retrieved ones. We then stop the retrieval of line segments
and return the k nearest line segments from the retrieved ones.

4.2 Finding the Nearest Trajectories

Algorithm 2 gives the pseudocode of GetCandidate. Firstly, based on the idea of
Sect. 4.1, lines 3–6 are to find the nearest line segments. After that, lines 7–10 are
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Algorithm 2. GetCandidate(query point q, number λ, index I)

1 Initiate an empty candidate set S, Cnttraj ← 0;
2 while Cnttraj < λ do
3 LBR ← 0, UBS ← +∞;
4 while LBR < UBS do
5 find a new MBR R with the nearest distance to q, and update LBR;
6 retrieve new line segments S from the new MBR R and update UBS ;

7 for each found line segment S do
8 for each trajectory t moving on S do
9 if t does not inside S and Cnttraj < λ then

10 add t to S, Cnttraj++;

11 return set S;

to find the λ nearest trajectories which are moving on the found line segments.
Such trajectories are found by using the inverted list structure. In this way,
we guarantee that the found λ trajectories by Algorithm 2 must have smaller
distance to q than other remaining trajectories.

4.3 Candidate Refinement

Finally, the refinement is given by Algorithm3. First we create a maximal heap
H by adding each trajectory Tj ∈ FC. The items in heap H is sorted by descend-
ing order of Dist(Tj , Q). The head item Tj ∈ H, i.e., the largest Dist(Tj , Q),
becomes the threshold for the trajectories in PC to update the items in H.

As shown in the for loop (lines 3–6), we process the remaining trajectories
T� ∈ PC one by one except those in FC. For each T�, if the lower bound of
Dist(T�, Q), denoted by LB(T�, Q), is larger than the threshold τ , we do not
necessarily perform line 6; otherwise, we need to compute Dist(T�, Q), refresh
the heap H and update the threshold τ . The lower bound here is similar with
that in [9].

Algorithm 3. Refine(sets FC and PC, Number k)

1 Create a maximal heap H and add all trajectories in FC to H;

2 threshold τ ← the kth smallest Dist(Tj , Q) for Tj ∈ H; PC ← PC − FC;
3 for � = 1 . . . |PC| do
4 T� ← the �-th trajectory in PC;
5 if LB(T�, Q) ≥ τ then continue;
6 else if Dist(T�, Q) < τ then { add T� to H; H.pop(); update τ};
7 return H;

5 Redundance Reduction

In this section, in order to reduce redundant trajectory IDs in inverted lists, we
propose a set of techniques to optimize the space cost of inverted lists as well as
KNN query efficiency.
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5.1 Basic Idea

Our basic idea is to first find similar line segments, and then merge such segments
in order to reduce the redundant trajectory IDs. We take Fig. 3 for illustration.

Fig. 3. Reduction of redundant trajectory IDs

Example 2. In Fig. 3 (a), we have six segments S1 . . . S6, each of which refers
to an inverted list of trajectory IDs. The three inverted lists of S1 . . . S3 all
contain the three trajectories T1...T3. Thus, we consider that the three segments
S1 . . . S3 are similar. Next, we merge the three redundant trajectories T1...T3 by
creating a new inverted list referred by a virtual segment 1∗. After that, the
redundant trajectories T1...T3 in the inverted lists of S1 . . . S4 are replaced by
the segment 1∗, as shown in Fig. 3(b). Similarly, the three segments S4 . . . S6

all contain two redundant trajectories T3, T7. We again create a new inverted
list referred by the virtual segment 2∗ and replace the redundant trajectories in
three associated inverted lists as before.

Given the basic idea above, the key problem is how to efficiently and effec-
tively find similar line segments. We might simply follow traditional clustering
algorithms, such as k-means, to find similar line segments. Unfortunately, when
given a large amount of line segments and trajectories, traditional algorithms
suffer from inefficiency issues. Instead, we adopt the technique of Locality Sen-
sitive Hash (LSH) [5] to efficiently find approximately similar line segments.
Nevertheless, LSH gives only an approximation approach, and we thus design
an algorithm to select truly similar ones among such approximately similar line
segments. After the similar segments are found, we then merge redundant tra-
jectories as above.

5.2 Locality Sensitive Hashing

To enable LSH, we need to define the line segment similarity and hash functions
as follows.



92 P. Yuan et al.

Definition 2. Consider two line segments Si and Sj which are referred by two
inverted lists of trajectories: Si = { T 1

i . . . T
|Si|
i } and Sj = { T 1

j . . . T
|Sj |
j }. We

define a Jaccard similarity sim(Si, Sj) = |Si∩Sj |
|Si∪Sj |=

|{T 1
i ...T

|Si|
i }∩{T 1

j ...T
|Sj |
j }|

|{T 1
i ...T

|Si|
i }∪{T 1

j ...T
|Sj |
j }|

.

Definition 3. Hash Functions: The random permutations h1, h2, . . . , hn is a set
of hash functions where hi is a permutation of values T1, T2, . . . , Tn. The values
T1, T2, . . . , Tn are the trajectories.

Given the definition above, we create the clusters of line segments using
LSH as follows. First of all, we need to transform each inverted list of a line
segment into a boolean vector (with size equal to the number of trajectories).
In the vector, if a trajectory is moving on the line segment, then the associated
vector element is one and otherwise zero. After that, given m hash functions, we
generate a minhash signature with respect to the line segment. Suppose that we
have n line segments. We then have n associated minhash signature, and apply
LSH to find the similar line segments.

5.3 Cluster Reorganization

Since LSH gives an approximation algorithm, we have to re-organize the clusters
of line segments. To this end, for a cluster C of |C| line segments Si ∈ C with
1 ≤ i ≤ |C|, we define the following three metrics to measure the clustering
quality.

Simavg(C) =

∑|C|
i=1

∑|C|
j=i+1Sim(Si, Sj)

|C| × (|C| − 1)/2

Simcum(Si, C) =
|C|∑

j =1,j �=i

Sim(Si, Sj)

Space(C) = |C| +
|C|∑

i=1

|Si|

In the three equations above, Simavg(C) measures the average similarity
of pairwise line segments in the cluster C, and a higher Simavg(C) indicates
more dense line segments and better clustering quality; Simcum(Si) cumulates
the similarity between a given segment Si and all other segments Sj ∈ C, and
Space(C) instead computes the space cost used to maintain the inverted lists of
trajectories for all line segments Si ∈ C. Note that we use the count |C| of line
segments and the count |Si| of trajectories in segment Si together to measure
Space(C). A smaller Space(C) means less space overhead used for the cluster C.

Given the metrics above, we show the idea to optimize the clusters as follows.
If the line segments in a cluster C is not well clustered, we split the cluster C, such
that the split sub-clusters can achieve better clustering quality and less space
cost measured by the metrics above. The Split function is shown in Algorithm4.
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Algorithm 4. Split(Cluster C)

1 Initiate an empty set M ;
2 for each line segment Si ∈ C do
3 if Simcum(Si) < Simavg(C) ∗ (|C| − 1) then add Si to M ;

4 if Space(M) + Space(C − M) < Space(C) then
5 create two subclusters for M and C − M , respectively;

6 return M ;

First, we find those line segments which have the accumulated similarity smaller
than the average one (line 3) and add them to a set M . After that, we then have
two sets M and C −M . If the space cost of such two sets is smaller than the one
before the split, we then perform the Split operation and create two sub-clusters
M and C − M . Note that we can recursively perform the Split operation on the
sub-clusters until no chance to optimize smaller space cost.

Take Fig. 3 as an example. LSH might first cluster the three segments
S4, S5, S6 together into the same group, as shown in Fig. 3(b). After the re-
organization, we split the cluster and have two subsets {S4, S5} and {S6}. The
redundant trajectory IDs in subset {S4, S5} are merged as shown in Fig. 3(c) for
smaller space cost.

Finally note that the merging operation has changed the structure of inverted
lists above. We thus have an updated GetCandidate Algorithm. In the new algo-
rithm, an item in the inverted list could be either a merged set of trajectory IDs
or an individual trajectory ID. Thus, besides trajectory IDs, we will also confirm
whether the merged set is searched. If not, the trajectory IDs of the set will be
added into the searched set. We use a single merged item here to replace a set
of redundant trajectory IDs, and thus avoids redundant processing efforts.

6 Experiments

To evaluate our work, we use two real world data sets, Shanghai with 25000
trajectories and Porto [1] with 100000 trajectories. The road network data of
Shanghai and Porto have 46556 road segments and 7647 road segments respec-
tively. We perform a map-matching algorithm [8] on the trajectories to the road
network of both datasets. After that, we implement the proposed algorithm,
namely KNNTR, in Java, and evaluate the performance on a Ubuntu Linux
platform with Xeon 2.40 GHz cpu (6 cores), 64 GB of RAM, and 4 standard
512 GB SSD drive. The space cost of raw data was 100.1M, while it costs only
52.5M when using our algorithm. In the following, we will mainly focus on the
running time of algorithm in performance analysis.

For comparison, we choose the state of art algorithms including the Incre-
mental k-NN based Algorithm (IKNN) [3], Global Heap-based algorithm (GH)
[9] and Spatial Range-Based Approach (SRA) [6] as three competitors. In the
experiments, we study the effect of the following parameters:

– The number m of query points: following the previous work [3,6,9], we do
not choose a large number for m, and instead vary its value from 2 to 10.
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– The number k of trajectories for the KNN query result: since a very large
number k is meaningless, we require that the number k is smaller than 32.

– By default, we conduct all experiments on the whole dataset. Each of the
experiments are the average running time of 100 pairs of different query
points.

6.1 Baseline Study

In this section, we mainly compare the performance of proposed KNNTR with
the three competitors (IKNN, GH and SRA). In this experiment, we fix k = 10
and vary m from 2 to 10. When the number m is given, we then randomly choose
the query points inside corresponding maps.

Fig. 4. Running Time of four algorithms in two datasets

As shown in Fig. 4, KNNTR outperforms the other three competitors no
matter the number m in both datasets. Both figures show the same trend with
the number of query points increases. IKNN and GH have a good performance
when the number m of query points is very small, such as 2. SRA shows a better
performance when the number of query points increases, for it compute the
distance between the newly searched trajectory points and query points, which
helps it get a tighter bound. AS shown in the Fig. 4(a), the time cost of KNNTR
is three times shorter than SRA while KNNTR outperforms SRA in Fig. 4(b) by
at least two order of magnitude. We then study the effect of the parameters on
the algorithms in the following section.

6.2 Performance of Optimization

The KNNTR algorithm outperforms the other three algorithms dramatically on
its second efficiency. In the KNNTR algorithm, the LSH technique has been
employed to reduce running time and space cost. In the following No-LSH refers
to the baseline, LSH refers to the baseline with LSH and LSH-S refers to the
optimization with split algorithm.
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Fig. 5. Comparisons when parameters varies for Shanghai data

Fig. 6. Comparisons when parameters varies for Porto data

Effect of Query Points’ Number. First, we evaluate the algorithms’ perfor-
mances by tuning different number of query points. Query points are all ran-
domly generated from the whole scope of the corresponding city. As shown in
the Figs. 5(a) and 6(a), both figures show the same trend. The LSH-S increases
in the slowest rate.

Effect of Query Trajectories’ Number. The query trajectories’ number
k also affects the query time a lot. As shown in Figs. 5(b) and 6(b), with the
increasing of k, LSH-S is always the best because it reduce the time that many
adjacent road segments need to be added into the candidate set successively.

Scalability of Algorithms. Here we design the experiments to show the scal-
ability of three algorithms. As shown in Figs. 5(c) and 6(c), LSH-S does not
outperforms LSH notably when the number of trajectories is not large because
the adjacent road segments are not similar to each other. With the increasing of
the trajectory number, we can notice that the LSH-S shows a robust performance
for the optimization part which can get better clusters.

7 Related Work

Distance Measure: To answer the KNN trajectory search, the similarity
and/or distance measure is the first key point, and many previous work has
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proposed various metrics [12]. [2,10] proposed various distance measures while
we note that the trajectories of moving objects record only discrete location
points. The proposed distance metric in this paper is more accurate.

Learning to Hash: Learning to Hash is an efficient work in NN search, many
work [7,11] show a good performance compared to exact NN search while these
work is not appropriate in our application for we need to perform the exact NN
search.

KNN Query Processing: There existing some works for searching trajectories
by locations these years. [3] uses an incremental k-NN based algorithm and [9]
proposed a Global Heap (GH) based method. Spatial Range-based (SRA) [6]
shows the best performance by using a tighter upper bound. These work all
measured the distance between a query point and its nearest point in trajectories.
Such previous work are to index and process GPS points in trajectories, and
instead our solution is based on line segments. Since the number of line segments
is significantly smaller than the one of GPS points, our approach thus leads to
smaller overhead including both space cost and running time.

8 Conclusion

In this paper, we propose to compute the distance between the query point and
road segments for more meaningful semantics of KNN trajectory search. For
efficiency search, we design an indexing structure consisting of both R-tree and
inverted lists. Moreover, we propose a simple and efficient clustering approach
to merge the redundant trajectory IDs. With help of the indexing structure and
clustering approach, our approach can answer the KNN trajectory search by
using faster running time and smaller space.
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Abstract. Recent years have witnessed the promising capacity of hash-
ing techniques in tackling nearest neighbor search because of the high
efficiency in storage and retrieval. Data-independent approaches (e.g.,
Locality Sensitive Hashing) normally construct hash functions using ran-
dom projections, which neglect intrinsic data properties. To compen-
sate this drawback, learning-based approaches propose to explore local
data structure and/or supervised information for boosting hashing per-
formance. However, due to the construction of Laplacian matrix, existing
methods usually suffer from the unaffordable training cost. In this paper,
we propose a novel supervised hashing scheme, which has the merits of
(1) exploring the inherent neighborhoods of samples; (2) significantly
saving training cost confronted with massive training data by employing
approximate anchor graph; as well as (3) preserving semantic similar-
ity by leveraging pair-wise supervised knowledge. Besides, we integrate
discrete constraint to significantly eliminate accumulated errors in learn-
ing reliable hash codes and hash functions. We devise an alternative
algorithm to efficiently solve the optimization problem. Extensive exper-
iments on two image datasets demonstrate that our proposed method is
superior to the state-of-the-arts.

Keywords: Supervised hashing · Approximate anchor graph · Inherent
neighborhood

1 Introduction

Hashing has become a popular method in computer vision and machine learn-
ing. Especially in recent years, the demand for retrieving relevant content among
massive images is stronger than ever under such a big-data era. Hashing methods
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map high-dimensional images into short binary codes. In this way, searching sim-
ilar images converts to finding neighbor hashing codes in Hamming space. This
technique leads to significant efficiency in retrieval [8,12,15,21,23] and pattern
matching [5,16,22].

At the early time, many tree-based indexing approaches have been devel-
oped for approximate nearest neighbor (ANN) search like KD tree [1]. However,
as the dimension increases, KD tree needs enough space to store data which
costs a lot and the performance degrades quickly. In consideration of the ineffi-
ciency of tree-based indexing methods, hashing approaches have been proposed
to map entire dataset into discrete codes and the similarity can be measured by
Hamming distance which cost little time to calculate. One of the most popular
hashing methods is Locality-Sensitive Hashing (LSH) [3] that has been widely
used to handling massive data. LSH uses a hash function that randomly projects
or permutates nearby data points into same binary codes. However, LSH needs
long binary codes to achieve promising retrieval performance which increases the
storage space and computation costs. Moreover, LSH ignores the underlying dis-
tributions and manifold structure of the data on account of random-projection.

Realizing this deficiency, Weiss et al. proposed Spectral Hashing (SH) [19]
utilizing the subset of thresholded eigenvectors of the graph Laplacian by relax-
ing the original problem which improves the retrieval accuracy to some extent
yet charges more time to build a neighborhood graph. Liu et al. delivered some
improvements to SH and proposed the Anchor Graph Hashing (AGH) [11] that
uses anchor graphs to obtain low-rank adjacency matrices. Formulation of AGH
costs constant time by extrapolating graph Laplacian eigenvectors to eigenfunc-
tions.

However, hashing methods mentioned above can not achieve high retrieval
performance with a simple approximate affinity matrix [9]. Due to the semantic
gap, returning the nearest neighbors in metric space can not guarantee search
quality [18]. To solve this problem, images that are artificially labeled as similar
or dissimilar are used by supervised hashing methods like KSH [10] and SDH [14]
to satisfy the semantic similarity. By leveraging pairwise labeled information, the
performance has been remarkably improved.

In this paper, we aim to design a supervised hash method which can effi-
ciently generate high-quality compact codes. We utilize the anchor graph which
is built based on the pairwise similarity to exploit the inner structure of the
original data, in the process of learning hash function, we also take the super-
vision information to preserve the pairwise similarity to improve the accuracy
of retrieval. To avoid accumulated errors caused by continuous relaxation, we
choose to directly optimize the binary codes. With the discrete constraints added
to objective function, we propose a novel hashing framework, termed Local and
Inner Data Structure Supervised Hashing (LISH) which is able to efficiently
generate codes and satisfy the semantic similarity at the same time. Our main
contributions are summarized as follows:

• Our method uses graph laplacian to captures the local neighborhoods to
enhance hashing codes’ quality. And semantic gap can be properly solved by
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utilizing labeled information. By this way, both metric and semantic simi-
larity are preserved by our method which contribute a lot to improve the
performance significantly.

• Most existing hash method solve the problem with the relaxation of the dis-
crete constraints, since we directly optimize our method and each bit can be
sequentially learned by the algorithm, our method outperforms in an alter-
native and efficient manner.

• We evaluate our method on two popular large-scale image datasets and obtain
superior accuracy than state-of-the-arts.

In the remainder of this paper, we present the detailed formulation of pro-
posed LISH method in Sect. 2. Section 3 shows experimental results and conclu-
sions are given in Sect. 4.

2 Local and Inner Data Structure Supervised Hashing

In this section, we mainly introduce the algorithm of our method in detail. We
propose an alternative optimization model and sequentially learn each bit. The
hash functions are learned during the optimization process simultaneously.

Suppose we have n samples xi ∈ R
d, i = 1, · · · , n, deposited in matrix

X = [x1,x2, · · · ,xn]T ∈ R
n×d, where d is the dimensionality of the feature space.

Denote the label matrix Y = [y1,y2, · · · ,yn] ∈ {0, 1}n×c where c is the number
of classes of labels. When xi belongs to class j, yij equals 1, otherwise equals
0. By means of finding the mapping relation between the original feature space
and hamming space, hashing generates binary codes to represent the features.

2.1 Anchor Graphs

Since conventional graph structure is inefficient in large scale, we use Anchor
Graphs [11] to build the graph affinity matrix A. As in [11], by defining a subset
U = {uj ∈ R

d}mj =1 where uj represents an anchor to approximate the neighbor-
hood structure of the training dataset X. The regression matrix Z that measures
the underlying relationship between X and U can be calculated as follows:

Zij =

⎧
⎨

⎩

exp
(
−D2(xi,uj)/t

)

∑
j′∈〈i〉 exp(−D2(xi, uj′ )/t) , ∀j ∈ 〈i〉,

0, otherwise.
(1)

The distance function D(·) used here is �2 distance and t is the bandwidth
parameter. The anchor graph gives the diagonal matrix Λ = diag

(
ZT1

) ∈
R

m×m. Since approximate affinity matrix A = ZΛ−1ZT is positive semidefi-
nite (PSD) and has unit row and column sums, A can be calculated with high
efficiency. Each data point map to an r-bit binary code bi. The code matrix
B = [b1,b2, · · · ,bn]T ∈ R

n×r. In order to assure that the similar inputs have
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the minimal Hamming distance of the hashing codes, the following objective
formulation is proposed:

min
B

1
2

n∑

i,j =1

‖bi − bj‖2Aij = tr
(
BTLB

)
,

s.t.

{
B ∈ {±1}n×r

,
1TB = 0,BTB = nIr.

(2)

Constraint 1TB = 0 ensures each bit to be balanced, and BTB = nIr
enforces hashing codes to be uncorrelated to minimize the redundancy among
these bits. However, problem (2) is still NP-hard. By using the anchor graph
Laplacian L = In − A and defining a set Ω = {V ∈ R

n×r | 1TV = 0,VTV =
nIr} [11], problem (2) can be simplified as:

max
B

tr
(
BTAB

) − ρ

2
dist2

(
B, Ω

)
,

s.t. B ∈ {±1}n×r
,

(3)

where ρ is a tuning parameter. Since tr
(
BTB

)
= tr

(
VTV

)
= nr, problem (3)

equals to the following problem:

max
B,Y

tr
(
BTAB

)
+ ρtr

(
BTV

)
,

s.t.

{
B ∈ {±1}n×r

,V ∈ R
n×r,

1TV = 0,VTV = nIr.

(4)

2.2 Proposed Model

For most data-independent hashing methods like LSH, they use linear random
projections which lack good discrimination over data. So we extract the under-
lying structure of the data leveraging the RBF kernel mapping [7,10]. The non-
linear embedding algorithm we choose is formulated as:

F (x) = φ(x)P, (5)

where φ(x) =
[
exp

(‖x − a1‖2/σ
)
, · · · , exp

(‖x − am‖2/σ
)]

, {aj}mj =1 are the
randomly chosen anchors. To learn a discrete matrix, combining the relaxed
empirical fitness term from problem (4) and the relaxed regularization term, we
propose a novel optimization model as:

min
B,W,U,F

tr
(
BTLB

)
+ ω‖Y − BW‖2 + λ‖W‖2

+ ν‖B − F (X)‖2 + η‖P‖2 − ρtr
(
BTV

)
,

s.t.

{
B ∈ {±1}n×r

,V ∈ R
n×r,

1TV = 0,VTV = nIr.

(6)
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The first term approximates the underlying structure of the data and the
second term is the loss function measuring the approximation error between the
prediction results and labels. There are several loss function like logistic loss,
least square loss and hinge loss function. The least loss function is popular in
quantization and classification problems. The norms here refer to the matrix
norms induced by vector norms. Therefore, here we choose the least square loss
function to evaluate the variance. By minimizing the object function (6), we can
get the discriminative hash matrix B, each row of it represents the corresponding
binary code.

2.3 Alternating Manipulation

Our hashing problem is a nonlinear mixed-integer program involving a discrete
variable B, a continuous variable V and two regular variables W and P. In this
case, problem (6) is a NP-hard problem and also difficult to find a approximate
solution. As we can see, only when ω, λ, ν, η, ρ = 0 and r = 1, problem (6) is
a Max-Cut problem [9], there exists no polynomial-time algorithm or approxi-
mate solution which can achieve the global optimum unless P = NP [4]. For this
purpose, an effective solution to the problem (6) is using alternating manipula-
tion algorithm. In this way, our hashing problem can be decomposed into four
subproblems: B-subproblem, V-subproblem, W-subproblem and P-subproblem.

B-Subproblem. Notice that term λ‖W‖2 and η‖P‖2 are constant for B-
subproblem, we simply cast out these two terms. Acknowledging the linear
algebra theorem that ‖ · ‖2 = tr

(
(·)T (·)), the rest regularization terms can be

changed into tr(·) form for succeeding manipulation. And we have the anchor
graph Laplacian L = In − A. By these three steps, the optimization model can
be simplified as:

max
B

tr
(
BTAB

) − ωtr
(
Y − BW

)(
YT − WTBT

)

− νtr
((

B − F (X)
)(

BT − FT (X)
))

+ ρtr
(
BTV

)
,

s.t.

{
B ∈ {±1}n×r

,V ∈ R
n×r,

1TV = 0,VTV = nIr.

(7)

In order to directly optimize problem (7), we can further simplify it into

max
B∈{±1}n×r

tr
(
BBTA − ωBWWTBT + BC1

)
, (8)

where C1 = 2ωWYT + 2FT (X) + ρVT is the constant term that can be
obtained easily. However, it is NP hard to achieve B. To solve this problem,
we use DCC algorithm [14] to learn B bit by bit. In the iteration, we draw
out the lth, l = 1, · · · , r column of B as bl and the B′ is the matrix B which
excludes bl. In the same way, wl and cl respectively are the lth column of W
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Algorithm 1. B-subproblem of LISH.
Input : B0 ∈ {−1, 1}n×r,V ∈ R

n×r, P ∈ R
m×r, W ∈ R

r×c and Y ∈ R
n×c;

Output: B = [b1, b2, · · · bl, · · · br];
1 l := 1;
2 repeat
3 k := 1;
4 repeat
5 C1 = 2ωWYT + 2FT (X) + ρVT ;

6 C2 =
(
cTl − 2ωwT

l W
′T
l B

′T
l

)
;

7 ∇f
(
bkl
)

= 2Abk
l + CT

2 ;

8 bk+1
l = sgn

(
2Abk

l + CT
2

)
;

9 k := k + 1;

10 until bl converges;
11 l := l + 1;

12 until l = r;
13 return B

and C, W′ and C ′ are the the matrix W and C which exclude wl and cl. Then
we reformulate the problem (8) as:

max
bl∈{±1}n×1

tr
(
blbT

l A − 2ωblwl
TW′

l
TB′

l
T + blcl

T
)
, (9)

which is equivalent to

max
bl∈{±1}n×1

f
(
bl

)
= tr

(
bT
l Abl + C2bl

)
, (10)

where C2 =
(
cTl − 2ωwT

l W
′T
l B

′T
l

)
.

In the k-th iteration, a proxy function f̂k(bl) is defined to linearize f(bl) at
the point bk

l . This majorization method was first introduced by [2]. Since A is
positive semidefinite, f is a convex function then we have f̂k(bl) ≤ f

(
bl

)
, the

fact f
(
bk+1
l

) ≥ f̂k
(
bk+1
l

) ≥ f̂k
(
bk
l

) ≡ f
(
bk
l

)
guarantees that f

(
bk
l

)
and bk

l

could converge [9]. The next discrete point bk+1
l is

bk+1
l ∈ arg max

bl∈{±1}n×1
f̂k

(
bl

)
= f

(
bk
l

)
+

〈
∇f

(
bk
l

)
,
(
bl − bk

l

)〉
, (11)

where ∇f
(
bk
l

)
= 2Abk

l +CT
2 , thus we have f̂k

(
bl

)
= f

(
bk
l

)−(
2Abk

l +CT
2

)
bk
l +

(
2Abk

l + CT
2

)
bl, we can clearly see that the first and second term are constant.

To maximize the problem (11), the following function is proposed:

bk+1
l = sgn

(
2Abk

l + CT
2

)
. (12)

The procedure to solve the B-subproblem is described in Algorithm 1.
Figure 1 shows that our algorithm converges rapidly to reach the optimal solu-
tion.
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Fig. 1. Convergence curves of Eq. (11) in 16 and 64-bit.

V-Subproblem. When B, P and W are fixed in the problem (6), the objective
function of the V-subproblem is

max
V∈Rn×r

tr(BTV),

s.t. 1TV = 0,VTV = nIr.
(13)

We solve the problem with the aid of singular value decomposition (SVD).
B∗ denotes a zero-mean matrix with row-wise, where B∗ = B(In − 1

n11T ). We
write the B∗ as B∗ = JΣKT by using the SVD, where J ∈ R

n×r′
and K ∈ R

r×r′

are left and right matrices of singular vectors correspondingly. Then we apply

eigendecomposition for the small r × r matrix B∗TB∗ = [K
−
K]

[
Σ2

b 0
0 0

]

[K
−
K]

T

after introducing a matrix
−
K ∈ R

r×(r−r′) by employing the Gram-Schmidt
orthogonalization to the zero eigenvalues. Under the restriction of JTJ = Ir−r′ ,

[J 1]TJ = 0, we naturally add a matrix
−
J ∈ R

n×(r−r′) to satisfy the constraint
1TV = 0. Then we have J = B∗KΣ−1. By the adoption of relevant theorem in
DGH [9] we can simply have

V∗ =
√

n [J
−
J][K

−
K], (14)

which is a high degree approximate solution to the V-subproblem.

P-subproblem and W-subproblem. When B, V and W are fixed in the
problem (6). Taking the advantage of Eq. (5), the objective function of the
P-subproblem is

min
P

‖B − PTφ(x)‖2 +
η

ν
‖P‖2. (15)

When B, V and P are fixed in the problem (6), the objective function of the
W-subproblem is

min
P

‖Y − BW‖2 +
λ

ω
‖W‖2. (16)
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Algorithm 2. Local and Inner Data Structure Supervised Hashing (LISH)

Input : X ∈ R
n×d: training data,

r: hash code length,
m: number of anchor points,
ω, λ, ν, η and ρ: initial parameters;

Output: B ∈ {−1, 1}n×r: binary codes,
P ∈ R

m×r: projection matrix;
1 Initialization: randomly initialize B, P, W and V;
2 repeat
3 B-subproblem: Update B according to Algorithm 1;
4 P-subproblem: Update P according to Eq. (17);
5 W-subproblem: Update W according to Eq. (18);
6 V-subproblem: Update V according to Eq. (14);

7 until there is no change to B,P,W,V;
8 return B, P, W and V

Fig. 2. Convergence curves of Eq. (6) in 16 and 64-bit.

For these two subproblems, we can get the solution by the regularized least
squares problem. Then we have the closed-form solution:

P =
(
φ
(
X

)T
φ
(
X

)
+

η

ν
Ir

)−1

φ
(
X

)T
B, (17)

W =
(
BTB +

λ

ω
Ir

)−1

BTY. (18)

We implement our idea by Algorithm2. Figure 2 shows the objective function
values and the number of iterations where we can see the rapid convergence of
our algorithm.

3 Experiments

We conduct extensive experiments to evaluate our proposed method on three
publicly available large-scale image datasets: CIFAR-10 [6] and YouTube
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Table 1. Results with performance (MAP) and training time (seconds) of different
comparing algorithms on CIFAR-10 dataset.

Method n = 1000 n = 2000

MAP Time MAP Time

8-bit 16-bit 32-bit 32-bit 8-bit 16-bit 32-bit 32-bit

BRE 0.1403 0.1439 0.1618 79.01 0.1339 0.1507 0.1612 402.39

LFH 0.1146 0.1796 0.1979 0.53 0.1402 0.1539 0.2000 0.80

KSH 0.2182 0.2446 0.2618 117.48 0.2369 0.2696 0.2975 412.02

SDH 0.1512 0.2491 0.2751 0.22 0.1913 0.2744 0.3170 0.90

LISH 0.2122 0.2524 0.2834 6.93 0.2420 0.2862 0.3173 29.68

DGH 0.1163 0.1142 0.1135 0.76 0.1315 0.1346 0.1332 0.97

Faces [20]. CIFAR-10 is a labeled dataset of 80-million tiny images collection
[17], which contains 60K 32×32 color images of ten categories and each category
has 6,000 samples. Each image is represented by a 512-dimensional GIST feature
vector [13]. YouTube Faces dataset contains 1,595 different people, we choose
38 people and each one has more than 2,000 images to form a subset of totally
100K face images and each image is represented by a 1,770-dimensional LBP
feature vector in this dataset. The ground truths of two datasets are defined by
whether two samples share common class labels.

The proposed method is compared against several state-of-the-art supervised
hashing methods including kernel supervised hashing (KSH) [10], Supervised
Discrete Hashing (SDH) [14], binary reconstructive embedding (BRE) [7], Latent
Factor Hashing (LFH) [24] and an unsupervised method Discrete Graph Hashing
(DGH) [9]. We use the public codes and suggested parameters of these methods
from authors. In consideration of the fair comparison, we choose 1000 and 2000
samples for learning. For KSH, DGH and SDH, we randomly select 300 anchors
when using 1000 samples and 500 anchors when using 2000 samples.

Fig. 3. Different hashing methods’ Precision-recall curves using 8, 16 and 32-bit codes
on the CIFAR-10 dataset with 2000 training samples.
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In the experimental part, we evaluate the above hashing methods in term of
two standard criterions: mean average precision (MAP) and precision-recall (PR)
curve. The performance curves are shown from Fig. 3 to Fig. 4. The comparison
results of MAP and the training time are presented from Table 1 to Table 2.

3.1 CIFAR-10

The comparative results in MAP are shown in Table 1 and the precision-recall
curves using 8, 16, 32 bits are shown in Fig. 3. We partition the entire dataset
into two parts: a training subset of 59,000 images and a test subset of 1,000
images. We also randomly select 300 anchors when we use 1000 train data and
500 anchors for 2000 train data. We generate 8, 16 and 32-bit binary codes by
LFH, SDH, BRE, KSH, DGH and our proposed LISH.

As shown in Table 1 and Fig. 3, we can see the performance of all methods
become higher as the training samples increase. It is understandable that the
unsupervised hash method DGH do not perform well as others. Nevertheless,
LFH have a lower accuracy at 8-bit than DGH when n = 1000. KSH’s per-
formance is slight higher than our method at 8-bit, although LISH outperform
in all other situations. Moreover, KSH costs much longer time than ours. LISH
achieves the highest retrieval accuracy (precision and MAP) with almost all code
lengths and significantly outperforms the compared hashing methods at 16-bit.
It is clear that LISH is very effective with different code lengths for CIFAR-10.

3.2 YouTube Faces

In YouTube Faces dataset, it contains 98,000 images of 1595 individuals, 38
people are chosen and each one has more than 2,000 images to form a subset
of totally 100K faces and the test set is constituted of 3.8K images which are
sampled from the 38 classes. Evaluation results in term of Precision and MAP
are shown in the Table 2 and Fig. 4 respectively, we can see from Fig. 4, LFH

Table 2. Results with performance (MAP) and training time (seconds) of different
comparing algorithms on YouTube Faces dataset.

Method n = 1000 n = 2000

MAP Time MAP Time

16-bit 32-bit 64-bit 64-bit 16-bit 32-bit 64-bit 64-bit

BRE 0.4982 0.5909 0.6437 605.09 0.5384 0.5932 0.6479 2170.45

LFH 0.3731 0.7011 0.8442 3.42 0.4230 0.7242 0.8532 4.30

KSH 0.8454 0.9003 0.9250 214.67 0.8969 0.9414 0.9532 870.09

SDH 0.8367 0.7539 0.9278 28.60 0.9030 0.8191 0.9597 70.02

LISH 0.8408 0.9071 0.9326 19.91 0.9049 0.9770 0.9630 60.05

DGH 0.3088 0.4437 0.5286 0.55 0.1876 0.2920 0.2952 2.37
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Fig. 4. Different hashing methods’ Precision-recall curves using 16, 32 and 64-bit codes
on the YouTube Faces dataset with 2000 training samples.

perform badly in YouTube Faces, the reason may be it overfit the cifar-10. As
the Table 2 shows, KSH have higher performance at short bits. Since YouTube
Faces dataset is made up of people’s faces whose characteristics are obvious to
recognize, the results of BRE, KSH, SDH and our method increase rapidly. Our
method integrates the merits of those methods to have superior performance
both in time cost and retrieval accuracy. Especially when n = 1000 at 32-bit, its
MAP is 16.89% higher than SDH.

4 Conclusions

In this paper, we exploited underlying manifold structure of samples by graph
Laplacian. The approximate anchor graph was used to save training cost. To
capture and preserve the semantic label information in the Hamming space, we
explicitly formulated the tractable optimization function integrated with �2 loss
and decomposed it into several sub-problems which could be iteratively solved by
our algorithm. We proposed a discrete supervised paradigm to directly generate
hash codes without continuous relaxation, by working in the discrete code space,
the retrieval accuracy of the short binary codes can be boosted. Empirical evalu-
ations in retrieving semantically similar neighbors on three benchmark databases
showed that our method has superior performance over state-of-the-arts.
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Abstract. Unsupervised hashing has recently drawn much attention
in efficient similarity search for its desirable advantages of low storage
cost, fast search speed, semantic label independence. Among the exist-
ing solutions, graph hashing makes a significant contribution as it could
effectively preserve the neighbourhood data similarities into binary codes
via spectral analysis. However, existing graph hashing methods separate
graph construction and hashing learning into two independent processes.
This two-step design may lead to sub-optimal results. Furthermore, fea-
tures of data samples may unfortunately contain noises that will make
the built graph less reliable. In this paper, we propose a Robust Graph
Hashing (RGH) to address these problems. RGH automatically learns
robust graph based on self-representation of samples to alleviate the
noises. Moreover, it seamlessly integrates graph construction and hashing
learning into a unified learning framework. The learning process ensures
the optimal graph to be constructed for subsequent hashing learning,
and simultaneously the hashing codes can well preserve similarities of
data samples. An effective optimization method is devised to iteratively
solve the formulated problem. Experimental results on publicly available
image datasets validate the superior performance of RGH compared with
several state-of-the-art hashing methods.

1 Introduction

Similarity search plays an important role in machine learning [5], data mining
[10], and database [1]. However, for large-scale high-dimensional data, similar-
ity search becomes dramatically time and memory consuming. Therefore, it is
important to accelerate the similarity search while satisfying memory savings.

Hashing [2,29–31,34–36] is an effective indexing technique that can achieve
the above objective. With binary embedding of hashing, the original time-
consuming similarity computation is transformed to efficient bit operations. The
similarity search process could be greatly accelerated with constant or linear time
complexity [33]. And moreover, binary representation could significantly shrink
the memory cost of data samples, and thus accommodate large-scale similarity

c© Springer International Publishing AG 2017
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search with only limited memory. Due to these desirable advantages, hashing has
been widely explored for efficient large-scale similarity search [3,19,25,27,32].

Locality Sensitive Hashing (LSH) [6,11,14] is a typical data-independent
hashing technique. It simply exploits random mapping to project the data sam-
ples into binary Hamming space. In practice, for its ignorance on underlying data
characteristics, LSH generally requires more hashing tables and longer codes to
achieve satisfactory performance [19,23]. This requirement will unfortunately
bring in more storage cost. To solve the limitation, learning-based hashing meth-
ods [12,16–20,22,23,28,33] are proposed to generate the projected hashing codes
with various advanced machine learning models. Their basic learning principal
is that if two data samples are similar in the original space, they should have a
small Hamming distance between their corresponding binary codes.

According to the learning dependence on semantic labels, existing learning-
based hashing methods can be categorized into two major families: unsuper-
vised hashing [9,12,16,19,26,28] and supervised hashing [17,18,22,33]. Super-
vised hashing learns effective binary codes based on large amounts of semantic
labels. It usually achieves better performance than unsupervised hashing meth-
ods. However, high-quality labels are hardly or expensive to obtain in many
applications. Unsupervised hashing is developed without this limitation. Graph
hashing [12,16,19,20,23,28] is one of the representative unsupervised hashing
methods that achieve state-of-the-art performance. It generally operates with
two subsequent steps: First, similarity graph is constructed by computing sim-
ilarities of data samples. Second, hashing codes and functions are learned on
the built graph with spectral analysis. Spectral Hashing (SPH) [28], as a pio-
neering graph hashing methods, extends spectral clustering to hashing. In SPH,
hashing codes are computed by eigenvalue decomposition on Laplacian matrix
computed from similarity graph. Hashing functions are constructed with an effi-
cient Nystrom method. Anchor Graph Hashing (AGH) [20] utilizes low-rank
matrix to approximate the similarity graph to reduce the complexity of SPH.
In this method, hashing functions are learned by binarizing the eigen-functions.
Inductive Manifolds Hashing (IMH) [23] considers the intrinsic manifold struc-
ture and generates non-linear hashing functions. Scalable Graph Hashing (SGH)
[12] leverages feature transformation to approximate the similarity graph, and
thus avoids explicit graph computing. In SGH, hashing functions are learned in a
bit-wise manner with a sequential learning. Discrete Graph Hashing (DGH) [19]
proposes a discrete optimization approach to learn the binary codes in binary
Hamming space directly. Discrete Proximal Linearized Minimization (DPLM)
[24] can also handle the discrete constraint imposed on graph hashing. In DPLM,
hashing codes are solved by iterative procedures with each one admitting an ana-
lytical solution.

Although graph hashing can achieve promising results, there still exist several
problems that impede its performance.

– In graph hashing methods, hashing learning fully relies on a previously con-
structed similarity graph. The separation of graph construction and hashing
learning may lead to sub-optimal result, as the manually constructed graph
may not be optimal for the subsequent hashing learning.
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– Graph is generally built with specific distance measures. Extra parameters,
such as the bandwidth parameter for similarity computation and the number
of nearest neighbours for graph construction, will inevitably be brought into
graph construction. These parameters are highly dependent on experimental
experience. They may not achieve the satisfactory performance due to the
high complexity of graph modelling.

– The similarity graph may be unreliable as the data samples from the real
world always contain adverse noise. These noises will damage the local man-
ifold structure and bring negative impact on the hashing performance.

In this paper, we propose a Robust Graph Hashing (RGH) to address the
aforementioned problems in existing graph hashing methods. Specifically, RGH
automatically learns a robust graph based on self-representation of data samples
to avoid the adverse noises. Moreover, it seamlessly integrates graph construc-
tion and hashing learning into a unified learning framework where two learning
processes can mutually reinforce each other. An effective optimization method
is devised to iteratively solve the formulated learning problem. Experimental
results on two publicly available image datasets demonstrate the superior per-
formance of RGH compared with several state-of-the-art hashing methods.

It is worthwhile to highlight the key contributions of our proposed approach:

– We formulate a unified learning framework that integrates graph construction
and hashing learning. The framework ensures that the optimal graph can
be automatically constructed for hashing learning, and simultaneously the
hashing codes can effectively preserve discriminative information of original
data samples.

– We exploit self-representation of data samples to construct the similarity
graph. It can avoid parametric distance measures. In addition, we introduce
an error matrix that mitigates the negative interferences and makes the con-
structed graph more robust.

The rest of the paper is structured as follows. Section 2 gives the details of
the proposed approach. In Sect. 3, we present experimental results and analysis.
Section 4 concludes the paper.

2 Methodology

2.1 Overall Objective Formulation

As indicated by the principal of subspace clustering [7,8,15,21], a point set in
a union of subspaces generally locates in an underlying low-dimension subspace
instead of distributing equably in the entire space. In presentation, it means that
a data sample could be expressed as a linear combination of other data samples
in low-dimension subspace.

We construct the graph with the inspiration of above principal. For a given
data set X = {x1, x2, . . . , xn} ∈ �n×d (n is the number of data samples and
d is the dimension of feature representation). Each sample can be represented



Learning Robust Graph Hashing for Effecient Similarity Search 113

with the representation of the remaining samples in data set. Formally, X can
be represented as X = XZ, where Z = {z1, z2, . . . , zn} ∈ �n×n is the coefficient
matrix, zi is the representation of the raw data xi based on the subspaces. Z
actually characterizes the correlations of data samples and it can be exploited
for affinity matrix construction of graph. On the other hand, real world data
samples inevitably contain noises that are adverse for subsequent learning. In
this paper, we resort to a outlying entries matrix E = {e1, e2, . . . , en} ∈ �n×d

to alleviate them. Then, X = XZ is rewritten as X = XZ +E. In optimization,
we try to minimize the difference between X and XZ + E and automatically
learn robust Z. This process can be represented as

min
Z,E

‖X − XZ − E‖2F + λ‖E‖1 s.t. diag(Z) = 0, ZT1 = 1 (1)

where λ > 0 plays the trade-off between two terms, the constraint diag(Z) = 0
avoids the trivial case that a data point xi is represented with a combination of
itself. The constraint ZT1 = 1 indicates that the data point locates in a union of
affine subspaces. Data sample can be linearly represented with other samples. E
is introduced to strengthen the robustness of the model to the corrupted noise
involved in the real world data. The l1 norm on E is to promote the sparseness
of the noises.

The non-zero elements in zi only correspond to the points from the same
subspace. With Z, affinity matrix of graph can be defined as

W =
|Z| + |ZT |

2
(2)

As long as we have the affinity matrix, a conceptive graph hashing can be
performed on such a self-representation based affinity matrix. The basic principal
is that close data samples in original space should have small Hamming distance
between their corresponding hashing codes. Formally, the hashing codes can be
obtained by solving

min
Y

Tr(Y T (D − W )Y ) s.t. Y T Y = I, Y ∈ {−1, 1}n×c (3)

where D is the diagonal matrix with diagonal elements and the ith entry is
defined as di =

∑
j

|zij |+|zji|
2 , Y ∈ {−1, 1}n×c is the hashing codes of data

samples. The constraint Y T Y = I ensures the different hashing bits to be inde-
pendent with each other.

Conventional graph hashing methods separate graph construction and hash-
ing learning in two subsequent process, which may lead to suboptimal results.
Different from them, in this paper, we integrate them into a unified learning
framework. We derive the overall objective formulation as

min
Z,E,Y

‖X − XZ − E‖2F + βTr(Y T (D − W )Y ) + λ‖E‖1
s.t. diag(Z) = 0, ZT1 = 1, Y T Y = I, Y ∈ {−1, 1}n×c

(4)

where β > 0 balances robust graph construction and hashing learning.
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2.2 Optimization

Directly solving hashing codes is NP-hard. In this paper, we first relax the dis-
crete constraint to continues ones and then propose an iterative algorithm to
compute the approximate results. Specifically, we iteratively optimize each vari-
able by fixing the others.

Update Matrix Z . By fixing Y,E, the optimization for Z could be represented
as the following problem:

min
Z

‖X − XZ − E‖2F + βTr(Y T (D − |Z|+|ZT |
2 )Y )

s.t. diag(Z) = 0, ZT1 = 1.

(5)

As derived in [8], the solution of above problem could be rewritten as

zk =

⎧
⎨

⎩

vk − βpk

4 , if vk > βpk

4 ,

vk + βpk

4 , if vk < −βpk

4 ,
0, otherwise.

(6)

where zT presents the i-th row of Z, if k = i, zk = zi = 0 and v =
X−(XZ−xzT )−E)T x

xT x
, p presents the i-th row of P and Pij = ‖yi − yj‖2F where yi

presents the i-th row of matrix Y .

Update Matrix E. By fixing Z, Y , the optimization for E can be represented
as

min
E

‖X − XZ − E‖2F + λ‖E‖1 (7)

The solution of the above problem can be obtained as [8]:

Eij =

⎧
⎨

⎩

(X − XZ)ij − λ
2 , if (X − XZ)ij > λ

2 ,
(X − XZ)ij + λ

2 , if (X − XZ)ij < −λ
2 ,

0, otherwise.
(8)

Update Matrix Y. By fixing Z,E, the optimization for Y can be formulated
as

min
Y

Tr(Y T (D − |Z| + |ZT |
2

)Y ) s.t. Y T Y = I. (9)

Let A = D − |Z|+|ZT |
2 , Eq. (9) becomes:

min
Y

Tr(Y T AY ), s.t.Y T Y = I, (10)

The optimal solution of Y are the eigenvectors corresponding to the smallest
k eigenvalue of the Laplacian matrix A.

We iteratively conduct the above procedures and obtain the optimal relaxed
results of hashing codes.
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Algorithm 1. Solving the relaxed hashing codes
Input: Training data X = {x1, x2, . . . , xn} ∈ �n×d , code length c, parameters λ, β.
Output: Relaxed hashing codes Y .

Initialize Y as sparse matrix, E = 0, parameters λ, β.
repeat

Update Z by Eq. (6):
For k = i, zk = 0; For k �= i,

zk =

⎧
⎨

⎩

vk − βpk
4

, if vk > βpk
4

,

vk + βpk
4

, if vk < −βpk
4

,
0, otherwise.

Update E by Eq. (8):

Eij =

⎧
⎨

⎩

(X − XZ)ij − λ
2
, if (X − XZ)ij > λ

2
,

(X − XZ)ij + λ
2
, if (X − XZ)ij < −λ

2
,

0, otherwise.

Update Y by Eq. (10):
min

Y T Y = I
Tr(Y T AY ),

Solve it by eigenvalue decomposition of A.
until Converges or N iteration steps

2.3 Iterative Rotation

Directly binarizing the relaxed hashing codes (continues values) will lead to
quantization errors. In this paper, we apply a iterative rotation on the relaxed
hashing codes Y to minimize the quantization loss. This process can be formu-
lated as:

min
B,Q

‖B − Y Q‖2F ,

s.t. B ∈ {−1, 1}n×c, QT Q = I.

(11)

Q ∈ �c×c is an arbitrary orthogonal matrix for rotation.
This optimization problem can be solved by applying iteratively alternative

minimization as [9].

2.4 Hashing Function Learning

With the hashing codes, we construct the hashing functions. In this paper, we
leverage linear projection to achieve the aim for its high efficiency. The objective
is to minimize the loss between the hashing codes and the projected ones. The
formulation is

min
H

||Y − XH||2F + η||H||F (12)
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where η > 0 has the same function with the aforementioned β and λ, H ∈ �d×c

denotes the projection matrix. The optimal H is calculated as

H =
(
XT X + ηI

)−1
XT Y (13)

With H, hashing functions can be constructed as

F (x) =
sgn(xHQ) + 1

2
(14)

2.5 Online Search

In online search, we first leverage hashing functions to generate hashing codes
for queries. Then, the similarities between queries and database samples are
calculated with Hamming distance computation. Finally, similarities are ranked
according to the distance ascending or descending, and their corresponding data
samples are returned.

3 Experiment

3.1 Experimental Dataset

In this paper, two widely used benchmark datasets, CIFAR-10 [13] and NUS-
WIDE [4], are applied to evaluate the performance of our method on similarity
search.

– CIFAR-10 has 60,000 32× 32 color images which are separated into 10 classes.
It has 6,000 images for per class and each images is represented by 512-
dimensional GIST feature. For evaluation, we randomly select 1,000 images
as our query set and 1,000 images as training images. The rest images are
determined as the database images to be retrieved. In this dataset, images
are considered to be relevant only if they belong to the same category.

– NUS-WIDE is a web image database which contains 269,648 images. It pro-
vides ground-truth of 81 concepts. In experiment, we prune the original NUS-
WIDE to construct a new dataset consisting of 195,834 images by preserving
the images that belong to one of the 21 most frequent concepts. Each image
is described with 500-D bag-of-words1. The dataset partition for evaluation
in NUS-WIDE is the same with CIFAR-10. In NUS-WIDE, as images are
labelled into multiple concepts, they are determined as relevant if they share
at least one concept.

1 SIFT is employed as local feature.
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3.2 Evaluation Metrics

In experiment, mean average precision (mAP) [9,12,16,19,26,28] is adopted as
the evaluation metric for effectiveness. It is defined as the average precision (AP)
of all queries. Larger mAP indicates the better retrieval performance. For a given
query, AP is calculated as

AP =
1

NR

R∑

r =1

pre(r)rel(r) (15)

where R is the total number of retrieved images, NR is the number of relevant
images in retrieved set, pre(r) denotes the precision of top r retrieval images,
which is defined as the ratio between the number of the relevant images and the
number of retrieved images r, and rel(r) is indicator function which equals to
1 if the rth image is relevant to query, and 0 vice versa. In experiments, we set
R as 100 to collect experimental results. Furthermore, Precision-Scope curve is
also reported to illustrate the retrieval performance variations with respect to
the number of retrieved images.

Table 1. mAP of all approaches on two datasets The best result in each column is
marked with bold.

Methods CIFAR-10 NUS-WIDE

16 32 64 128 16 32 64 128

SH 0.2434 0.2880 0.3201 0.3360 0.4425 0.4547 0.4551 0.4491

AGH 0.2755 0.2995 0.3039 0.3024 0.4321 0.4479 0.4493 0.4559

PCAH 0.2694 0.2989 0.3125 0.3048 0.4525 0.4581 0.4532 0.4420

SGH 0.2713 0.3186 0.3498 0.3838 0.4448 0.4596 0.4621 0.4655

DPLM 0.2603 0.2702 0.2992 0.3011 0.4173 0.4292 0.4331 0.4315

RGH 0.2809 0.3244 0.3547 0.3871 0.4547 0.4712 0.4818 0.4965

Table 2. Effects of robust graph construction and one-step hashing learning. RGH* is
the variant method that removes E in Eq. (4). RGH† is the approach which separates
graph construction and hashing learning into two steps.

Methods NUS-WIDE

16 32 64 128

RGH* 0.4408 0.4631 0.4733 0.4857

RGH† 0.4500 0.4612 0.4767 0.4897

RGH 0.4547 0.4712 0.4818 0.4965
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Fig. 1. Precision-Scope curves on CIFAR-10 varying code length.

Fig. 2. Precision-Scope curves on NUS-WIDE varying code length.
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3.3 Compared Approaches

We compare RGH with several state-of-the-art unsupervised hashing approaches.
They include Spectral Hashing (SPH) [28], Anchor Graph Hashing (AGH) [20],
PCA based Hashing (PCAH) [26], Scalable Graph Hashing (SGH) [12], and
Discrete Proximal Linearized Minimization (DPLM) [24].

3.4 Implementation Setting

RGH has two parameters, λ and β, in hashing objective function Eq. (4). They
are used to play the balance between the formulated regularization terms. In
experiment, we set the value of parameters as {λ = 10−3, β = 10−1} and {λ =
10−1, β = 10−2} to achieve the best performance on CIFAR-10 and NUS-WIDE
respectively. The maximum number of iterations to solve Eq. (4) and ITQ is set
to 20 and 50 respectively.

In experiments, hashing code length on all datasets is varied in the range
of [16, 32, 64, 128] to observe the performance. Further, The retrieval scope
on two datasets is set from 100 to 1000 with step size 100. In the first step of
Algorithm 1, the initial Y is a sparse matrix, values of E are set to 0. When
minimizing the quantization error, we initialize Q with an arbitrary orthogonal
matrix.

3.5 Experimental Results

We report mAP results of all compared methods in Table 1. The Precision-Scope
curves on CIFAR-10 and NUS-WIDE are presented in Figs. 1 and 2 respectively.
We can easily find that RGH outperforms the competitors on all cases. As shown
in Table 1, the largest mAP gain of RGH over the second best approach is about
3.5% and 6.7%, on 16bits of CIFAR-10 and 128 bits of NUS-WIDE respectively.
Moreover, Fig. 2 shows that, on NUS-WIDE with 16, 64, 128 bits, the perfor-
mance of RGH is much better than the second best approach with the increasing
of code length.

We also compare RGH with two variants of our approach: RGH* and RGH†.
RGH* learns hashing codes without any specific sample noise accommodation. In
implementation, we remove the variable E in objective function Eq. (4) and con-
duct hashing learning. RGH† separates graph construction and hashing learning
into two subsequent steps. The experimental results are presented in Table 2.
From it, we observe that RGH improves the performance from 1% to 3% than
other two variants. These results clearly validate the effects of robust graph
construction and our one-step graph hashing learning.

4 Conclusion

In this paper, we propose a Robust Graph Hashing (RGH) to solve efficient sim-
ilarity search. We formulate a unified learning framework that integrates graph
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construction and hashing learning. The framework guarantees that the optimal
graph can be automatically constructed for hashing learning, and the hashing
codes can well preserve the original data similarity. RGH automatically learns a
robust graph based on self-representation to avoid the parameterized similarity
graph construction. And an error matrix is introduced to mitigate the negative
interferences of noises and enhance the robustness of the constructed graph. An
effective optimization method is devised to iteratively solve the formulated prob-
lem. Experimental results demonstrate that the proposed method can achieve
superior performance than several state-of-the-art methods.
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Abstract. With the advance of social media networks, people are shar-
ing contents in an unprecedented scale. This makes social networks such
as microblogs an ideal place for spreading rumors. Although different
types of information are available in a post on social media, traditional
approaches in rumor detection leverage only the text of the post, which
limits their accuracy in detection. In this paper, we propose a provenance-
aware approach based on recurrent neural network to combine the prove-
nance information and the text of the post itself to improve the accuracy
of rumor detection. Experimental results on a real-world dataset show
that our technique is able to outperform state-of-the-art approaches in
rumor detection.

1 Introduction

With the advance of social media networks, people are sharing user-generated
contents in an unprecedented scale. Due to its distributed and decentralized
nature, social media provides a platform for information to propagate without
any type of moderation. As a result, when an incorrect information propagates on
social media networks, it may have a profound impact on real life. For instance,
when a fake news claiming two explosions happened in the White House and
Barrack Obama got injured was posted by a hacked Twitter account associated
with a major newspaper, it caused panic in the society which incurred a loss
of $136.5 billion in stock market. This incident shows how a rumor can have a
severe impact on our life and it highlights the need for the detection of rumor
among different events being discussed on social media networks.

In an attempt to combat fake news, several rumor debunking services such
as snopes.com have been created to expose rumors and misinformation. These
websites harness collaborative efforts from internet users to identify potential
fake news and leverage experts to verify them. As they involve manual labor,
the number of events that can be covered are limited and it would take a long
time to fact-check an event.

In order to automate this process, several rumor detection models have been
proposed. These techniques first design a wide range of features based on the con-
tent of the posts [6,9], their characteristics [1,16,20] or the network of users [8,19].

c© Springer International Publishing AG 2017
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However, feature engineering is a tedious and time-consuming process while the
hand-crafted features may not be applicable to a new dataset.

Another important characteristics of rumors on social networks is their tem-
poral nature. When some posts discuss an event, there would be several posts
discussing the same event subsequently. These subsequent posts may just be
reiteration of the original posts or they could add new information which sheds
light on the event. Traditional approaches in rumor detection tend to ignore the
temporal nature of the posts. The temporal dependency can also be indicator
of rumors. For instance, an event that has many posts providing different views
with subsequent posts arguing with previous ones tends to be a rumor as this
event is controversial. To the best of our knowledge, there is only one work [10]
that models the temporal dependency of the posts explicitly using recurrent
neural network (RNN). However, in this work, although various information can
be obtained from a post in social media, the users only leverage the textual
contents of the posts to classify rumors. We posit that the provenance of the
event plays a significant role in identifying rumors. The provenance of an event
appears in a post in social media in the form of a link to an article discussing the
event. Traditional approaches considered these links as part of the text, hence,
provided no special treatment.

Based on this observation, in this work, we propose a provenance-based app-
roach to rumor detection. Our approach considers the provenance of the events
appearing as links in the posts as an important source of information. There are
several challenges we need to solve in order to leverage the provenance informa-
tion. First, as the provenance appears as links to some articles in the posts, we
need to find a way to model the provenance information. Second, as both the
provenance and textual information are present in a post, we also need a way
to combine these information in a coherent manner. Third, there are cases that
the provenance information is not available. For instance, a tweet may not refer
to any article. In these cases, we need to handle the missing of the provenance
information while making sure that the classification accuracy does not deteri-
orate. In order to handle these challenges, we propose a fusion approach that
is based on the pooling operation to combine information from the provenance
and the text itself. The pooling operation allows our approach to be robust with
the missing of the provenance information. In addition, we also leverage RNN
to capture the temporal dependency among the posts.

The contributions of this paper are as follows:

– We propose a provenance-based approach to classify events into rumors and
non-rumors. Our model also leverages RNN to capture the temporal depen-
dency between the posts.

– We have enriched a social media dataset by adding the provenance informa-
tion. Our dataset can also be used by subsequent research in this direction.

– Our extensive experiments on a real-world dataset show that our approach is
able to outperform state-of-the-art technique significantly.

The rest of the paper is organized as follows. Section 6 introduces related
works on the field of rumor detection. Section 3 discusses our general framework
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to classify rumors. Section 2 explains in detail our provenance-based approach.
Experimental evaluation and analysis are presented in Sect. 5 while Sect. 7 con-
cludes the paper.

2 Recurrent Neural Network for Rumor Detection

2.1 Problem Statement

We consider a setting in which a set of users discuss n events which can be
rumors or not. We denote a discussion for an event ei as dit = 〈ei, t〉 where t is
the time the discussion took place. In our setting, a discussion can be a tweet
or a post by a user on a social network. It is worth noting that different events
may have different number of discussions. In addition, each event is associated
with a label indicating where it is a rumor or not.

The problem we want to solve is given a set of events together with their
discussions, classify the events correctly. In particular, given a temporal sequence
of discussions D = {ei, t}, our goal is to assign a label li ∈ {0, 1} for the event ei

where 1 denotes rumor and 0 otherwise. We achieve this by training a feedforward
neural network which takes the discussions of an event as input and returns the
label for the event. More precisely, given an event ei and two classes Y = {0, 1},
we define a neural network that assigns probabilities to all y ∈ Y . The predicted
class is then the one with the highest probability:

ŷ = arg max
y

P (Y = y|e) (1)

Our network models the temporal characteristics of the dicussions using RNN
and leverages the provenance of the tweets to achieve high accuracy.

2.2 Neural Network Model

A feedforward neural network estimates P (Y = y|e) with a parametric function
φθ (Eq. 1), where θ refers to all learnable parameters of the network. Given an
event e, this function φθ applies a combination of functions such as

φθ(e) = φL(φL − 1(. . . φ1(e) . . .)), (2)

with L the total number of layers in the network.
We denote matrices as bold upper case letters (X, Y, Z), and vectors as bold

lower-case letters (a, b, c). Ai represents the ith row of matrix A and [a]i denotes
the ith element of vector a. Unless otherwise stated, vectors are assumed to be
column vectors. We also denote |a| to be the dimensionality of the vector a. We
now introduce the layers when training linear classifiers with neural networks:
the recurrent neural network layer, the linear layer and the softmax layer.
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Recurrent Neural Network. Among different types of feed-forward neural
networks, RNN is the one that can model the sequential characteristics of the
input data such as time series or sentences. Given an input sequence (x1, ..., xT ),
RNN processes each input sequentially (from x1 to xT ), at each step, it updates
its hidden state hi and returns an output oi. The hidden state vector hi captures
information of the elements that the RNN has seen. More precisely, at the time
step i, the network does the following update operations [4]:

hi = tanh(Uxi + Whi− 1 + b)
oi = Vhi + c

where the matrices U,V,W are used, respectively, to convert input vector to
hidden vector, hidden vector to output vector and hidden vector to hidden vector.
Two vectors b, c are the bias vectors and the function tanh is a nonlinearity
function. The matrices and the bias vectors are the trainable parameters of the
RNN. In order to find these parameters, we compute the gradients of the network
using back-propagation through time [18]. However, the RNN as discussed above
suffers from the the vanishing or exploding gradients problem which makes it
unable to learn from long sequences. A solution to this problem is to implement
memory cells in the network to store information over time, which is the idea
of Long Short-Term Memory (LSTM) [5,7] and Gated Recurrent Unit (GRU)
[2]. In this work, we use LSTM instead of the vanilla RNN to capture long-term
dependency in the inputs.

In our setting, we consider an RNN as the first layer in our network. It is
modelled by the function φ1

θ1
(e) which takes as input the event e which contains

|e| discussions and returns the output in the last time step o|e|. In particular,
o|e| = φ1

θ1
(e) and θ1 is the parameter of the RNN that we need to find. There

are two important hyperparameters of the RNN which is the size of the hidden
state vector hi and the output vector oi (denoted as m).

Linear Layer. This layer applies a linear transformation to its inputs x:

φl(x) = Wlx + bl (3)

where Wl and bl are the trainable parameters with Wl being the weight matrix,
and bl is the bias term.

In our model, we use two linear layers after the RNN layer to first convert the
output of the RNN to a hidden vector space and then, convert from this hidden
vector space to a score vector for the classes. In particular, the second layer of
our network φ2

θ2
(o) takes as input the output of the first layer (the output vector

o) and returns a vector from a hidden space p. More precisely, the layer φ2 takes
the vector o ∈ R

m as input and uses the matrix W2 ∈ R
p×m and b2 ∈ R

p to
convert o to the hidden space vector k ∈ Rp. Similarly, the third layer of our
network φ3

θ3
(k) takes as input the output of the second layer (the hidden space

vector k) and returns a score vector s ∈ R
2.
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Softmax Layer. Given an input x, the penultimate layer outputs a score for
each class s ∈ R

2. The probability distribution is obtained by applying the
softmax activation function:

P (Y = y|e) ∝ φθ(e, y) =
exp([s]y)

∑2
k =1 exp([s]yk

)
(4)

2.3 Training

In summary, our network is modelled as a function φθ which is a combination
of functions where each function represents a layer. The parameter θ, which
combines all the trainable parameters in the network, is obtained by minimizing
the negative log-likelihood using stochastic gradient descent (SGD):

L(θ) =
∑

(e,y)

− log P (Y = y|e) ∝
∑

(e,y)

− log
(
φθ(e, y)

)
. (5)

3 Provenance-Based Approach

In this section, we discuss how to obtain the provenance of the events that we
use in our models, and we present our technique for leveraging provenance to
classify the events.

3.1 Provenance of an Event

When an event is discussed on social media, it usually has a source or several
sources backing it up. When a post discusses an event, it tends to cite one of
those sources. For instance, when a tweet mentions an event, it may include the
link to the article. We consider these articles as the provenance of the event. As
these articles contain detail information about the event, they provide several
indicators of rumor. Based on this observation, we also include the provenance
of the event into our model.

We consider a discussion (e.g. a tweet or a post) to be composed of a text, or
both an article and a text. The article appears in a discussion in form a hyperlink.
When both article and text are present, we assume that they are semantically
related, e.g. the text is a summary of the article. Traditional techniques in rumor
detection only leverage the textual information. As a result, they represent each
discussion using only the text. In our setting, as we also consider the provenance
of the event, we propose a technique to model a discussion using the text and
article information. The text and article information are represented as feature
vectors.
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3.2 Feature Vectors

Before diving into the detail how to represent a discussion its text and article,
we discuss the process to represent the article and text in a discussion as fea-
ture vectors (γ(i), ψ(s)) as they are the foundation to construct a post vector
representing a discussion. A good article and text representation can affect the
performance of our approach heavily. We model the article i in a discussion with
an article feature vector γ(i) ∈ R

n. Similarly, we represent the piece of text s
with a textual feature vector ψ(s) ∈ R

m.

Text Representation. In order to represent a text, we aim to convert it from
its original format (i.e. words) to an n-dimensional vector. We first calculate
the tf-idf values of all words in all the posts. The tf-idf value of a word reflects
its importance based on its presence frequency in all the posts relative to the
number of posts it appears in. We keep the top-K words with the highest tf-idf
values as the vocabulary. Each post is then represented using the words in the
vocabulary as a vector of length |K|. The value of the i-th element in the vector
is 0 if the i-th word in the vocabulary does not appear in the text of the post.

Article Representation. An article contains different types of information
such as its text, images. However, the images may not contain indicators of
rumor. As a result, among different types of information in an article, we only
consider its main text. We also follow the same approach from text representation
by modeling each article by its tf-idf vector.

3.3 Joint Fusion

From the article and text vector of a discussion, there are many ways to construct
a post vector representing the discussion. However, the technique to represent
the discussion needs to take into account the missing of the article information.
For instance, there are cases that a post may not always explicitly refer to an
article and the technique must be robust to these absences. We propose joint
fusion which is a technique to combine article and text vector which is able to
handle the absence of the article.

Joint fusion takes the article vector and text vector γ(i), ψ(s) as input and
applies the pooling operation to obtain the post vector x:

x = pooling(γ(i), ψ(s)) (6)

The pooling function can be either a component-wise max pooling, or an average
pooling. In this work, we leverage the max pooling and we will extend this work
with the average pooling in the future works.

It is worth noting that the pooling operation requires the vectors γ(i) ∈ R
n

and ψ(s) ∈ R
m to have the same size. This can be done by adding an extra



Provenance-Based Rumor Detection 131

linear layer to γ (i.e. the network that extracts article feature vector). Assuming
n > m, the linear layer is as follows:

γ̃(i) = W̃γ(i) + b̃ (7)

where γ̃(i) ∈ R
m, W̃ ∈ R

n×m and b̃ ∈ R
m. The input to joint fusion is then two

vectors γ̈(i) and ψ(s). The trainable parameters of joint fusion are θ = {W̃, b̃}.

4 Putting It All Together

Recall that our model takes an event as input and returns a prediction for the
label of the event. As the event is composed of several discussions, and the dis-
cussion contains different types of information, we first model the discussion by
combining information from the text and its provenance as discussed in Sect. 3.
Then, we use the events with the post vectors as input to the network. The
complete model of our approach is shown in Fig. 1. We train the model to find
all the parameters in an end-to-end manner which means the parameters of the
network and of the joint fusion are trained together. The training is similar to
the one discussed in Sect. 2.3.

Fig. 1. Model of the network

5 Experiments

In this section, we evaluate our proposed approach on a real-world dataset.

5.1 Dataset

To the best of our knowledge, there is no large-scale dataset for rumor detection
that contains both the texts and their provenance. For textual content only,
there are the twitter and weibo dataset which were produced by Ma et al. [10].
This motivates us to construct a new dataset by adding the article information.

After inspecting the weibo dataset, we observe that there is no article infor-
mation to be added. The reason is that each post from weibo contains only text
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without any link to an outside article. As a result, in this work, we only focus
on the twitter dataset [10]. For this dataset, rumor and non-rumor events were
identified using a real-time rumor debunking service1. The authors of the dataset
then extracted keywords from Snopes and used the keywords to query tweets in
real-time from Twitter. Due to legal restrictions, only the tweet IDs from the
dataset are published instead of its content. Based on these tweet IDs, we crawled
their contents including its texts. For the tweets that contain links to a article,
we also followed the link and crawled the main text of the article. However, some
of the tweets from the original dataset are missing as they were removed by the
users or Twitter. As a result, we can only collected 586162 tweets. Over 60%
of them contain a link to an article. The statistics of the dataset is shown in
Table 1.

5.2 Experimental Settings

We compare our proposed approach (joint fusion) with a baseline that does
not leverage the provenance information. This baseline is similar to the original
approach to rumor detection by Ma et al. [10].

As some events has thousands of posts, it is inefficient to back propagate
through time with such amount of posts. As a result, instead of considering each
post separately, we group the posts into partitions and make these partitions
as the input to the RNN. For each event, we split the posts in to N partition
where each partition has nearly the same amount of posts. It is worth noting
that the partitions retain the temporal information among the posts i.e. first
partition contains posts that occur first. For all the tweets inside a partition, we
concatenate them and generate a longer tweet. Similarly, we also concatenate
the main text of the articles appearing in the tweets in a partition.

For regularization, we used a dropout layer with a dropout probability of 0.5
right after the RNN layer to reduce overfitting. We also use a dropout probability
of 0.5 for the RNN layer following the suggestion from [17]. In addition, it is
reported that factorizing the linear classifier into low rank matrices may improve
the classification accuracy [13]. We also followed this approach by adding a linear
layer right before the last layer to map the output vector from the RNN layer
to a hidden vector space with a size of nhid. Regarding the hyperparameters,
we tested different values of them on the validation set and select the ones that
gave the best results. Table 2 describes other hyperparameters. Our models were
trained with a learning rate set to 0.01.

The models were trained on a server equipped with a Tesla GPU. We use
10% events for testing and 10% for validation, the rest is used for training. We
use the same splits for all the models in our experiments. All the source codes
and the datasets will be released upon the publication of this work.

1 snopes.com.

http://www.snopes.com
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Table 1. Statistics of the dataset

Statistics Twitter

Involved users 231535

Total posts 586162

Total events 992

Total rumors 498

Total non-rumors 494

Table 2. Model hyperparameters

Parameter Value

Text vector size wvdim = 5000

Article vector size avdim = 5000

Hidden vector size of RNN nhid = 800

Low rank output size lowrank = 400

Classification main task weight λ = 3

Fusion layer function max

5.3 Effectiveness of the Provenance-Based Approach

Table 3 shows the experimental results of our approach in comparison with the
baseline. The results show that our provenance-based approach is able to outper-
form the baseline significantly on three metrics: accuracy, recall and F-measure.
For instance, our technique has an accuracy of 0.85, which is a 9% relative
improvement in comparison with the baseline. The superior performance of our
technique is also demonstrated by the recall metric. We are able to recall 92% of
events while the baseline approach can only achieve 70%, which is 22% difference.
These results show the effectiveness of our provenance-based approach as adding
the provenance information allows us to improve the performance significantly.
Although our approach has lower precision than the baseline, the difference is
extremely small (2%).

Table 3. Performance of the provenance-based approach

Method Accuracy Precision Recall F-measure

LSTM a 0.78 0.83 0.70 0.76

ProvBased b 0.85 0.81 0.92 0.86
a wvdim = 5000, nhid = 800, lowrank = 400
b wvdim = 5000, avdim = 5000, nhid = 800, low
rank = 400

5.4 Effects of RNN Hidden Vector Size

In this experiment, we want to analyze the effects of the hidden vector size (nhid)
to the performance of our approach and the baseline. In order to analyze the
effect of nhid, we fix other parameters (wvdim = 5000 and lowrank = 400). The
experimental results are shown in Fig. 2. It is clear that our approach has better
accuracy, recall and F-measure over different values of nhid. For instance, the
recall of our approach is always higher than 0.8 while the recall of the baseline
is always lower.
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Fig. 2. Effects of hidden vector space on predictive power

5.5 Effects of Lowrank Vector Space

In this experiment, we want to analyze the effect of the lowrank vector space to
the performance of two approaches. Similarly, in order to analyze this parameter,
we fix wvdim = 5000 and nhid = 800. It is clear in this experiment that our
approach outperforms the baseline significantly. For instance, when the size of
the lowrank vector space is 200, our accuracy is 0.81 while the baseline’s is
only 0.72. We also observe the same pattern with the F-measure metric. When
the lowrank vector space is 400, our approach achieves an F-measure of 0.83
while the baseline’s F-measure is only 0.78. We are able to achieve the highest
performance when the lowrank vector space is 400, which is the value we chose
for our model (Fig. 3).

Fig. 3. Effects of low rank layer on predictive power

5.6 Effects of Word Vector Space

In this experiment, we want to analyze the effects of the input vector size to
the two techniques. For the sake of simplicity, we set the article and text vector
size to the same value. Similarly, we fix other parameters to nhid = 800 and
lowrank = 400. Once again, our approach is able to outperform the baseline
across different values of the word vector space. For instance, when the word
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Fig. 4. Effects of word vector size on predictive power

vector space size is 5000, the baseline has only the precision value higher than
0.8. On the other hand, our approach has 3 metrics which have a higher value
than 0.8. We also observe this phenomenon when the word vector space is 10000.
Our approach consistently outperform the baseline across all metrics. These
experiments confirm our observation that our approach is able to have higher
performance due to the addition of the provenance information (Fig. 4).

6 Related Work

Rumor detection can be considered a binary classification task. Traditional works
on automatic rumor detection aim to construct some classifiers based on hand-
crafted features. Several works [3,6,12,15] leveraged linguistic features such as
word usage or presence of conjunctions or pronouns. For instance, the authors of
[6] found out that fake news usually contain swear words. Many works followed
a different direction in which they do not take into account the content of the
posts. For instance, some statistical features such as the number of retweets or
replies are considered [1,11,20]. Similarly, some user-level features are also used
such as the credibility or readability of the users [1,9,14]. A different approach is
to examine network level features to detect rumors. For instance, by constructing
a tree representing how the messages in an event are related, the authors of [19]
is able to classify whether the root is a rumor or not. However, the problem with
these hand-crafted features is that the feature engineering process is tedious
and time-consuming. In addition, the selected features are usually data-specific
and/or domain-specific, which hinders their generality.

Another problem with these approaches is that they do not consider the
temporal information of the posts. As the posts are usually temporally related,
ignoring this information has a negative effect on the accuracy of rumor detec-
tion. Recently, the authors of [10] has leveraged RNN to capture the temporal
information of the posts while used deep learning to construct the features auto-
matically. Although this work is the most similar to our work, there are some
differences. The approach in [10] does not take into account the provenance of
the events, which is an important information to detect rumors. As the tweets are
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short in nature and they may contain similar phrases, leveraging the provenance
information allows us to improve the accuracy significantly.

7 Conclusions

In this paper, we propose a provenance-based approach to detect rumor. Our
model is able to combine the provenance information with the textual content
to improve the classification accuracy significantly. In addition, our model is
robust as it is able to handle the missing of the provenance information. In order
to showcase our model, we also enriched a real-world dataset with provenance
information which allow us to test our approach in a real-world scenario. Future
research directions will go towards adding different types of information such as
network or user-level features. In addition, it is worth investigating whether the
provenance information is reliable or not.
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Abstract. Feature selection in terms of inductive supervised learning is
a process of selecting a subset of features relevant to the target concept
and removing irrelevant and redundant features. The majority of fea-
ture selection methods, which have been developed in the last decades,
can deal with only numerical or categorical features. An exception is the
Recursive Feature Elimination under the clinical kernel function which
is an embedded feature selection method. However, it suffers from low
classification performance. In this work, we propose several embedded
feature selection methods which are capable of dealing with hybrid bal-
anced, and hybrid imbalanced data sets. In the experimental evaluation
on five UCI Machine Learning Repository data sets, we demonstrate the
dominance and effectiveness of the proposed methods in terms of dimen-
sionality reduction and classification performance.

1 Introduction

Over the past few years, machine learning has been widely applied in various
big data applications, such as social media mining [5–7] and medical data analy-
sis [12,13]. Most of data used in these applications have different types of fea-
tures with high dimensionality, making the learning tasks more complex and
computationally demanding. To confront these problems, a reduced representa-
tion of a data set is obtained using data reduction strategies which can learn
faster with higher accuracy, compared to the initial data set. One of the data
reduction strategies is feature selection which is considered as an important
pre-processing step in data mining. Feature selection removes irrelevant and
redundant attributes in a data set leading to better classification performance
and reducing the learning running time of the classifier. Feature selection meth-
ods are widely used in both supervised and semi-supervised learning tasks. For
instance, Chang et al. [1,2] conducted feature selection in a semi-supervised
manner for multi-label learning tasks.

In the area of data science, there are two main types of attributes: numerical
and categorical. A numerical variable is measurable and takes on continuous val-
ues such as height. A categorical variable has a measurement scale consisting of
a small number of discrete categories or classes such as favourite type of music
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 138–150, 2017.
DOI: 10.1007/978-3-319-68155-9 11
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(classical, folk) or social class (upper, middle, lower). While many feature selec-
tion algorithms have been proposed in the last decades, the majority of them are
designed to work with only numerical or categorical data and are not capable of
dealing with both types of data. In real-world applications, however, data sets
usually come with a mixture of both types of data which are called hybrid, mixed
or heterogeneous data sets. Most medical data sets are examples of this type of
data set. To utilise an algorithm which is only applicable to homogenous data,
the data should be transformed to fully numerical or categorical variables. To
obtain a categorical data set, numerical variables are discretised. This conversion
makes the feature selection highly sensitive to the discretisation technique and
may also lead to the loss of information. Alternatively, encoding categorical vari-
ables can be used to represent these variables in numerical space. This method
may also be ineffective as it introduces an artificial order to the feature values.
Therefore developing feature selection methods which can work with mixed data
sets without changing the nature of features is required.

Feature selection methods are categorised in a number of different ways.
For instance, Yu and Liu [14] classified feature selection methods according to
their evaluation approach: individual evaluation (known as feature ranking) and
subset evaluation. Feature selection methods can also be categorised based on
their relationship with inductive learning methods into three separate categories:
filter, wrapper and embedded.

Filter approaches rely on the intrinsic properties of the data to evaluate and
select feature subsets without involving any inductive algorithms. These algo-
rithms are fast and suitable for large data sets. However, Lamirel et al. [4] showed
that many existing filter methods are not successful to deal with highly imbal-
anced, highly multidimensional and noisy data. A wrapper model requires one
predetermined mining algorithm to select those features which improve mining
performance. Although, these methods yield high fitting accuracy, they are often
criticised for their high computational complexity and consequently they are not
applicable for large data sets. Embedded methods, as the third type of feature
selection algorithms, embed the feature selection procedure into a learning algo-
rithm. While these methods depend directly on the nature of the classifier used,
they are computationally less demanding than wrapper methods. Little atten-
tion has been paid in the literature to develop embedded methods for hybrid
data set. Paul et al. [11] developed an embedded method based on Support
Vector Machine (SVM) in order to deal with hybrid data sets. They recruited
the clinical kernel and plugged this kernel into Recursive Feature Elimination
(RFE-SVM). However, it suffers from low classification performance.

In this paper, we introduce five embedded feature selection methods based
on SVM which are capable of working with hybrid data sets. These methods rely
on plugging two types of kernel functions into embedded algorithms. The ker-
nel functions are the clinical kernel, and the Gaussian kernel which is based on
hybrid distances for numerical and categorical features. These kernel functions
allow proposed methods to deal with hybrid data. In line with the literature
for experimental evaluation, five data sets from UCI Machine Learning Reposi-
tory [8] are employed. The results indicate better performance for the proposed
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methods in terms of dimensionality reduction, and classification performance on
hybrid data sets when compared to the previous state-of-the-art method.

The remainder of the paper is organised as follows. In Sect. 2, the previous
works on developing embedded methods based on SVM are elaborated. Then
the foundation of proposed methods is described in Sect. 3. In Sect. 4, the exper-
imental procedure for the validation of the proposed methods is provided, and
in Sect. 5 the results and findings are presented. Section 6 concludes the paper
and explains future works.

2 Related Works

Different embedded methods based on SVM, including kernel-penalised SVM
(KP-SVM) and Holdout strategy for Backward Feature Elimination algorithm
(HO-BFE), were proposed by Maldonado et al. [9,10]. KP-SVM attempts to find
the best suitable RBF-type kernel function in order to eliminate features which
have low relevance for the classifiers [9]. In the HO-BFE method, the unseen
samples in the training data set are assessed and used to construct the loss
function, instead of assembling the loss function with the same data set used for
training [10]. HO-BFE employs two types of loss functions to work with balanced
and imbalanced data sets. Imbalanced data refers to a data set which contains
many more samples from one class than from the rest of the classes. In this case,
learning algorithms often have high accuracy on a class with majority samples
and poor accuracy in a class with minority samples. Imbalanced data sets can
be found in many domains such as fraud detection and text categorization and
several studies have been undertaken to deal with them [16]. Both KP-SVM and
HO-BFE have been employed in numerical space only.

The RFE-SVM is another embedded method which has been employed for
feature ranking in hybrid data sets [11]. In RFE-SVM method, those features
which do not significantly decrease the margin are detected and removed as
less important features [3]. The margin of the separating hyperplane is inversely
proportional to the Euclidean norm of the weight vector, w:

W 2(α) =
n∑

i=1

n∑

j=1

αiαjyiyjk(xi,xj) (1)

where α is the dual variable of a SVM obtained from training; xi and xj are the
ith and jth samples; yi and yj are the labels of xi and xj respectively; n is the
number of samples; and k is a kernel function. A candidate feature f is detected
as a less important feature if the following evaluation function does not change
significantly after removing f from the training data set:

JSV M (f) = |W 2(α) − W 2
−f (α)|, W 2

−f (α) =
n∑

i=1

n∑

j=1

αiαjyiyjk(xi
(−f),xj

(−f))

(2)
where xi

(−f) is the ith sample after removing feature f .



An Embedded Feature Selection Framework for Hybrid Data 141

In order to deal with hybrid data sets, Paul et al. [11] employed the clini-
cal kernel as the kernel function in a non-linear SVM structure. This kernel is
represented as:

k(xi, xj) =
1
m

m∑

f=1

kf (xif , xjf ), kf (a, b) =

{
I(a = b) f is categorical
(maxf−minf )−|a−b|

maxf−minf
f is continuous

(3)
where m is the total number of features; a and b are two scalar values; I is the
indicator function; maxf and minf are the maximum and minimum values of
the feature f respectively; and xif is the value of xi for the feature f . Similar
to the Gaussian kernel, the clinical subkernels lie between 0 and 1.

We have named the RFE-SVM under this kernel RFE-SVMC and have com-
pared our proposed methods with this embedded method.

3 Materials and Methods

The components of the proposed methods are presented in this section. These
components contain HO-BFE for balanced data sets proposed by Maldonado
et al. [10], our proposed method for imbalanced data sets, and the kernel
functions.

3.1 HO-BFE for Balanced Data

‘Standard 0–1’ lose function is the base of HO-BFE for balanced data. To con-
struct this loss function, first, the data set (T ) is split into two groups of training
data (T R), and validation data (V), using the holdout method. Afterward, SVM
is trained using T R, and the loss function is computed using V. In each itera-
tion, those features which lead to the minimum loss function, are removed from
the data and ranked as less relevant. This loss function is calculated from the
following equation:

LOSS0−1((α, b), F \ {f}, T R,V)

=
∑

l∈V

∣∣∣∣∣y
v
l − sgn

(
∑

i∈T R
αiyiK(xi

(−f),xl
v(−f)) + b

)∣∣∣∣∣
(4)

where b is the bias obtained from training; F is the set of available features and
f ∈ F ; yv

l is a class label of sample l; xi
(−f) is the training sample i with feature

f removed; xl
v(−f) is the validation sample l with feature f removed; and sgn

is the signum function. Algorithm1 shows this feature selection method.
In Algorithm 1, I is a set of features to be eliminated as they are less impor-

tant. Although for data sets with a moderate number of features, a single element
of F can be removed in each iteration, this strategy is not efficient when data
sets are high dimensional. However, removing a large portion of features at once
may lead to discard relevant features [10].
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Algorithm 1. HO-BFE for balanced data sets
Input: The original set of features, F ; the training data set, T
Output: The ranked subset S
Initialisation: S = φ
Repeat:

(T R, V) ← Splitting T using holdout technique
Training SVM using T R and obtaining (α, b)
I ← arminI

∑
f∈I LOSS((α, b), F \ {f}, T R, V)

F ← F \ {I} and Append I to S
until: F = φ

3.2 Proposed Embedded Feature Selection Method for Imbalanced
Data (EFSI)

Our proposed method, EFSI, is based on balanced loss function [10]. The liter-
ature recommends the computation of this loss function based on positive and
negative instances in each set of T , T R, and V i.e. T + and T −, T R+ and T R−,
V+ and V− respectively. However, in order to achieve a more reliable outcome,
we introduce the following equation:

LOSSbl((α, b), F \ {f}, T R,V)

=

(∑
l∈V− |yv

l − sgn
(∑

i∈T R αiyiK(xi
(−f),xl

ν(−f)) + b
)
|
)

|V−|

+

(∑
l∈V+ |yv

l − sgn
(∑

i∈T R αiyiK(xi
(−f),xl

ν(−f)) + b
)
|
)

|V+| .

(5)

In order to deal with imbalanced data, undersampling the majority class or
oversampling the minority class are the two most common strategies which can
be used. Maldonado et al. [10] employed the SMOTE method before hold-out
splitting to oversample data sets. However, this strategy can result in overfit-
ting problems and misleading results because there will be iterations where the
training and validation sets contain the same samples. In order to solve this
problem and to ensure the existence of sufficient samples from both classes in
each iteration, Algorithm2 is proposed. This algorithm introduces the novelty
by splitting the data. First, T is divided into T + and T −. Then T + (also T −) is
split, based on the holdout method, into T R+ (also T R−), and V+ (also V−).
In this process T R is the union of T R+ and T R−, and V is the union of V+

and V−. In the next step, the minority class in T R will be oversampled using
the SMOTE method.

3.3 Kernel Functions

In this work, two types of kernel functions are utilised in order to deal with
hybrid data sets. The first is the ‘clinical’ kernel ((3)). This kernel is plugged
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Algorithm 2. EFSI for imbalanced data sets
Input: The original set of features, F ; the training data set, T
Output: The ranked subset S
Initialisation: S = φ
Repeat:

(T +, T −) ← Splitting T
(T R+, V+) ← Splitting T + using holdout technique
(T R−, V−) ← Splitting T − using holdout technique
T R ← T R− ∪ T R+, and V ← V− ∪ V+

T R ← SMOTE(T R)
Training SVM using T R and obtaining (α, b)
I ← arminI

∑
f∈I LOSS((α, b), F \ {f}, T R, V)

F ← F \ {I} and Append I to S
until: F = φ

into HO-BFE and EFSI in order to build the new methods which we name
HO-BFEC and EFSIC respectively.

The second kernel is the ‘Gaussian’ kernel function which Zeng et al. [15]
developed based on different distance metrics for various types of attributes.
They used this kernel function to build the fuzzy equivalence relation. We employ
two distance metrics (6) to construct the Gaussian kernel in order to deal with
hybrid data:

df (a, b) =

{
I(a �= b) if f is categorical
|a−b|
4σf

if f is continuous
(6)

k(xi, xj) = exp

(
D(xi, xj)2

2σ2

)
, D(xi, xj) =

√√√√
m∑

f=1

d2f (xif , xjf ) (7)

where σ is a free parameter and σf is the standard deviation under the attribute
f . We plugged this kernel into HO-BFE, EFSI, and RFE-SVM, and named them
HO-BFEG, EFSIG and RFE-SVMG respectively in the remainder of this work.

4 Evaluation Procedure

We compare the performance of our proposed methods with RFE-SVMC [11].
Comparison is undertaken in terms of dimensionality reduction, and classifica-
tion performance. In this section, the details of data sets, classifiers, and the
experimental protocol are explained.

4.1 Data Sets and Classifiers

To examine the performance of the proposed methods, in line with the literature,
five binary classification data sets from UCI Machine Learning Repository [8]
have been employed. Table 1 shows the main characteristics of these real data sets
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Table 1. Summary of data sets

Data set Discrete features Continuous features Class priors

Heart 7 6 164/139

Australian 8 6 307/383

Credit 9 6 307/383

Arrhythmia 51 191 44/245

Hepatitis 13 6 32/123

in terms of the number of features and class priors. The arrhythmia data set aims
to classify the presence and absence of cardiac arrhythmia in one of the 16 groups.
In this study, we only consider samples from two classes 01 (normal ECG),
and 02 (one type of arrhythmia), and removed features with all values equal to
zero. While the heart, the Australian and the credit data sets are balanced, the
arrhythmia and the hepatitis data sets are imbalanced. Due to a small number
of missing values in some data sets, mean imputation and mode imputation are
considered for numerical and categorical features respectively.

Evaluating the performance of the feature selection method through a clas-
sification algorithm is necessary. It is of note that the classification performance
depends on the classifier used. A common practice is to employ different learning
algorithms in the validation procedure in order to obtain results which are as
classifier-independent as possible. We use C4.5 and Näıve Bayes classifiers in the
validation procedure.

4.2 Experimental Protocol and Parameter Settings

In their studies, Maldonado et al. [10] performed the m different holdout split and
averaged the loss function before eliminating the features. They finally showed
that HO-BFE is robust with respect to the variation of m. For this reason,
we considered m = 1 in our experiments. However, in order to increase the
statistical significance of the results, the proposed methods and RFE-SVMC
were performed 5 times. After feature-ranking in each performance, the least
important feature was removed from the ranked subset, and the predictive per-
formance was measured by 10-fold cross validation classification. This process,
which ensures the results are not biased towards the data sequence, was under-
taken for all features. In this study, the geometric mean (G−mean) is measured
as the classification performance. G − mean is a suitable measurement for bal-
anced and imbalanced data sets, and is computed as the geometric mean of the

true positive and true negative rates: G − mean =
√

TN
N ∗ TP

P ; where TN (also
TP ) is the number of true negative (also true positive) samples, and N (also P )
is the number of negative (also positive) samples in a data set.

The next stage after feature ranking is selecting a small number of features. It
should be noted that selecting a specific number of features from ranked features
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can be undertaken in favour of a lesser number of features (greater interpretative
possibilities of the results) at the cost of some decrease in predictive performance,
or vice versa. In this study, to maintain the trade-off between the size of data
sets and predictive performance, we keep those features, the elimination of which
would otherwise decrease the predictive performance obtained from the original
data set by more than 2% for balanced data sets, and by more than 5% for
imbalanced data sets.

After feature subset selection by each method, the number of selected features
and predictive performances obtained from applying two classifiers to selected
subsets are compared. To perform a fair comparison between proposed and pre-
vious methods, the constant box constraint parameter (C) and kernel parameter
(σ) are selected for each data set. However, in order to choose the appropriate
values for C and σ, a variety of experiments were performed. For selecting the
best C, this parameter was altered within the range of {2−3, . . . , 25} for constant
value of σ. For each C, the highest and average G − mean were calculated, the
best C being selected. We obtained the same results as Maldonado et al. [10]
achieved in their studies, which showed that the HO-BFE methods are robust to
the changes of C. Due to this result, we considered C as 2−1 in our experiments.
To select the σ for each data set, the value of this variable was altered within
the range of {30, . . . , 35}. The same procedure was followed to find the best σ.

5 Results and Analysis

The predictive performances of all methods across all feature sets are compared
in this section. To do so, Figs. 1, 2, 3 and Tables 2, 3, 4, 5 have been provided.
In several tables, two criteria are considered: the best performance of all the
methods is shown in bold; and for methods with the same performance, a model
which leads to fewer features in the final subset is shown in bold text.

5.1 Results for Balanced Datasets

Figure 1 demonstrates that the three proposed methods show similar behaviour
for each balanced data set, whereas the behaviour associated with RFE-SVMC
is different. Table 2 shows the G − mean achieved by applying C4.5 and Näıve
Bayes to the selected subsets. For each performance, the number of selected
features is illustrated in parentheses.

This table shows that the three proposed methods identified the smaller
number of features. For the heart data set, and based on our criteria for feature
selection, the three proposed methods identified four out of thirteen features,
whereas this value rose at six using RFE-SVMC. In comparison, for the Aus-
tralian and the credit data sets, one single feature was identified by employing
the three proposed methods. By recruiting RFE-SVMC, this number increased
to four for the Australian data, and to three for the credit data.

In the heart data set, the G − mean obtained from applying both classifiers
to the selected subset from the RFE-SVMG is higher compared to G − mean
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Fig. 1. G−mean of Näıve Bayes after removing each feature in the balanced data sets.

Table 2. The G − mean (%) of C4.5 and Näıve Bayes on selected features

Data set Full set RFE-SVMC RFE-SVMG HO-BFEC HO-BFEG

C4.5

Heart 77.66 (13) 79.57 (6) 84.32 (4) 83.48 (4) 83.48 (4)

Australia 85.93 (14) 85.97 (4) 85.97 (1) 85.97 (1) 85.97 (1)

Credit 85.67 (15) 72.65 (3) 85.97 (1) 85.97 (1) 85.97 (1)

Average 83.08 (14) 79.40 (4.3) 85.42 (2) 85.14 (2) 85.14 (2)

Näıve Bayes

Heart 81.72 (13) 80.48 (6) 83.02 (4) 80.27 (4) 80.27 (4)

Australia 73.94 (14) 86.26 (4) 85.97 (1) 85.97 (1) 85.97 (1)

Credit 74.12 (15) 72.64 (3) 85.96 (1) 85.96 (1) 85.96 (1)

Average 76.59 (14) 79.80 (4.33) 84.32 (2) 84.07 (2) 84.07 (2)

obtained from the other methods, which shows that RFE-SVMG detected more
effective features. For other data sets, the performances of all proposed methods
are the same and almost higher than previous method. Generally speaking, the
highest average predictive performances were achieved when RFE-SVMG was
employed as the feature selection method.

5.2 Results for Imbalanced Data Sets

To compare the performance of two imbalanced data sets, the percentage of
variables eliminated at every iteration was varied for each method. Figures 2
and 3 illustrate the G−mean of Näıve Bayes after eliminating each percentage for
the arrhythmia and hepatitis data sets respectively. For these data sets, Tables 3
and 4 show the maximum, average, and standard deviation of G − mean along
all subsets after each iteration.

These tables show that the predictive performance decreases when more fea-
tures are eliminated at each iteration. However, for each method the results
are stable with respect to the variation of the percentage based on an ANOVA
test for both data sets (the p-value varies within [0.26, 0.76] along the different
percentages).
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Fig. 2. G − mean of Näıve Bayes after removing the percentage of features in each
iteration for the arrhythmia data set.

After feature ranking, and based on the stability of the results along the vari-
ations of the percentage, the smallest subset leading to a reasonable predictive
performance was chosen for each method (Table 5). Table 5 shows the predictive
performance of two classifiers applied to each selected subset. The number of fea-
tures and the percentage of eliminations for each performance are presented in
parentheses. For arrhythmia data set, the EFSIC represents the highest G−mean
for both classifiers with the smallest number of features. For hepatitis data set,
the number of selected features are almost similar for all methods. However,
once again EFSIC shows the better performance. For both data sets, EFSIG
stands in second place followed by RFE-SVMC and RFE-SVMG in third and
fourth places respectively. These results show the dominance and effectiveness of
EFSIC with respect to dimensionality reduction and classification performance
for imbalanced data sets.

Table 3. Maximum, average, and standard deviation of Näıve Bayes performance along
all ranked features. G − mean analysis for the percentage of features in each iteration
for the arrhythmia data set.

RFE-SVMC RFE-SVMG EFSIC EFSIG

Max Mean Std Max Mean Std Max Mean Std Max Mean Std

10% 0.77 0.67 0.11 0.78 0.55 0.22 0.81 0.76 0.04 0.80 0.71 0.10

20% 0.72 0.5 0.24 0.71 0.67 0.06 0.80 0.75 0.05 0.79 0.65 0.14

30% 0.72 0.65 0.05 0.73 0.58 0.10 0.78 0.77 0.012 0.77 0.77 0.005

40% 0.70 0.64 0.06 0.67 0.59 0.09 0.75 0.75 0.01 0.78 0.74 0.04
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Fig. 3. G − mean of Näıve Bayes after removing the percentage of features in each
iteration for the hepatitis data set.

Table 4. Maximum, average, and standard deviation of Näıve Bayes performance along
all ranked features. G − mean analysis for the percentage of features in each iteration
for the hepatitis data set.

RFE-SVMC RFE-SVMG EFSIC EFSIG

Max Mean Std Max Mean Std Max Mean Std Max Mean Std

One-by-one 0.82 0.70 0.08 0.84 0.61 0.21 0.79 0.73 0.05 0.80 0.74 0.07

10% 0.76 0.57 0.21 0.79 0.71 0.08 0.82 0.66 0.25 0.80 0.65 0.21

20% 0.80 0.70 0.12 0.76 0.67 0.06 0.84 0.77 0.07 0.79 0.73 0.05

30% 0.70 0.48 0.30 0.79 0.56 0.25 0.81 0.75 0.06 0.77 0.69 0.06

Table 5. The G − mean of both classifiers on selected features

Methods Arrhythmia Hepatitis

NB C4.5 NB C4.5

RFE-SVMC 0.77 (26, 10%) 0.78 (26, 10%) 0.79 (11) 0.57 (11)

RFE-SVMG 0.70 (2, 20%) 0.73 (2, 20%) 0.75 (5, 10%) 0.62 (5, 10%)

EFSIC 0.81 (2, 10%) 0.81 (2, 10%) 0.82 (7, 10%) 0.75 (7, 10%)

EFSIG 0.76 (23, 30%) 0.8 (23, 30%) 0.8 (5, 10%) 0.74 (5, 10%)

6 Conclusion

In this work, we address the problem of feature selection when dealing with
hybrid data sets by proposing five embedded methods. To build these meth-
ods, two types of kernel functions (namely clinical and Gaussian) were plugged
into the HO-BFE, RFE-SVM, and EFSI which is our proposed embedded
method for imbalanced data. These methods were compared with one previous
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state-of-the-art embedded method. In line with the literature, we utilised five
available hybrid balanced and imbalanced data sets from the UCI Machine
Learning Repository. The results indicated that the RFE-SVMG for balanced
data sets, and the EFSIC for imbalanced data sets, are effective in terms of data
reduction and classification performance.

As for future research, we plan to apply the proposed methods to larger data
sets in order to confirm the findings. Within our institution, a high dimensional
data set is currently being collected with respect to obesity. The expected data
will include almost 450,000 biomarkers per person. We believe that applying the
proposed methods to this data set can provide a more precise evidence regarding
their respective performances.
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Abstract. Analysis and processing of brain signal data (e.g. Electroen-
cephalogram (EEG) data) is a significant challenge in the medical data
mining community due to its massive size and dynamic nature. The
most crucial part of EEG data analysis is to discover hidden knowledge
from a large volume of data through pattern mining for efficient analy-
sis. This study focuses on discovering representative patterns from each
channel data to recover useful information reducing the size of data.
In this paper, a novel algorithm based on principal component analy-
sis (PCA) technique is developed to accurately and efficiently extract a
pattern from the vast amount of EEG signal data. This study considers
PCA to explore the sequential pattern of each EEG channel data as PCA
is a dominant tool for finding patterns in it. In order to represent the
distribution of the pattern, the most significant satanical features (e.g.
mean, standard deviation) are computed from the extracted pattern.
Then aggregating all of the features extracted from each of the patterns
in a subject, a feature vector set is created that is fed into random forest
(RF) and random tree (RT) classification model, individually for clas-
sifying different categories of the signals. The proposed methodology is
tested on two benchmark EEG datasets of BCI Competition III: dataset
V and dataset IVa. In order to further evaluate performance, the pro-
posed scheme is compared with some recently reported algorithms, where
the same datasets were used. The experimental results demonstrate that
the proposed methodology with RF achieves higher performance com-
pared to the RT and also the recently reported methods. The present
study suggests the merits and feasibility of applying proposed method
in the medical data mining for efficient analysis of any biomedical signal
data.

Keywords: Electroencephalogram · Big data · Data mining · Principal
component analysis · Feature extraction · Classification

1 Background

Efficient and effective analysis of brain signal data such as electroencephalogram
(EEG) signal data has attracted great importance in the medical field due to its
significant applications in health and medicine. Analysing EEG signals provides
c© Springer International Publishing AG 2017
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essential information for brain diseases diagnosis and treatment [9,12,28,34],
emotion/fatigue monitoring [17,23], brain computer interface [15,27,35,39] etc.
The EEG recordings produce huge volume time-series data, which refers to the
recording of the brain’s spontaneous electrical activity. The patterns of EEG
signals indicate the health states of the brain [28]. The data are aperiodic and
non-stationary with dynamic behaviours. Today, One of the major challenges in
the EEG data analysis is how to exploit these sheer volumes of data for effective
and accurate analysis. Data mining is an interesting option in this respect. Data
mining have a huge potential for analysing such large volumes of stored EEG
signal data in order to discover hidden information from big data for accurately
classifying data states, which can assist in automated decision-making [22].

Mostly, EEG data analysis process consists of two stages: feature extraction
and classification. At the first stage, features are extracted from raw EEG data
and then extracted features are fed into classifiers for decision-making. In the
past a few years, a variety of methods have been reported for analysis and clas-
sification of big EEG signal data [9,12,15,17,22,23,27–29,34,35,39]. The tradi-
tional methods face lots of problems to extract meaningful and discriminative
characteristics to represent individual EEG time series for classification when
the data size is very massive (e.g. long-term data). Most of the methods extract
spectrum information to characterize EEG time series, which is not suitable for
handling big volume data. In spite of the usefulness in the analysis of short-
term, most of them are insufficient to extract high-level structural information
from long-term EEG signal data that are non-periodic [36]. The traditional EEG
data analysis procedure does not consider a stage for pattern mining while it is
very essential for managing a big volume of data with complex nature such as
EEG data. Pattern mining is one of the most crucial part of EEG data analysis
to discover representative pattern from each channel data for recovering useful
information and also to reduce the size of data for efficient analysis. Patterns in
the classification process provide essential knowledge to discover patterns hidden
behind the data.

As per our knowledge, there is no efficient data mining based methodology
available for analysis of big EEG data that can preserve all the important and
significant characteristic properties of dynamic EEG signals reducing the size
of data. Moreover, the adoption rate and research development in this space
are still hindered by some fundamental problems inherent within the big data
paradigm. Thus, the analysis of EEG time series data for knowledge discovery is
far from straightforward and requires powerful technology that can extract useful
information from a large volume of data through pattern mining for efficient
analysis and classification.

The main motive of this study is to introduce a new data mining scheme with
pattern extraction manner that is able to handle a large volume of EEG data
reducing the dimensionality through minimizing the loss of original information
for efficient and accurate analysis. In the proposed plan (see Fig. 1), firstly, we
segment an EEG signal data into several groups to make it stationary considering
a particular time-period. Secondly, we extract a representative pattern for that
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signal employing principal component analysis (PCA) technique. The reason for
considering the PCA for pattern mining in EEG as PCA has the capability to
discover representative pattern without loss of information removing redundant
information because EEG contains a large amount of redundant information.

Thirdly, we compute some statistical features of that pattern and continue
this process for all of the channel signals of a subject. Fourthly, we aggregate all
of the features obtained from all of the channel signals of a subject as a feature
vector set and finally use the feature set to a classification model to identify
the various states of the signal. In this study, for classification, we employ two
models: random forest (RF) and random tree (RT). The motivation of applying
these methods to the classification of EEG signal data is that they are robust
and faster classifier to achieve a high classification accuracy in high-dimensional
data, which are non-stationary and very noisy.

The remainder of the paper is organized as follows: Sect. 2 presents a descrip-
tion of the proposed methodology. Section 3 provides a brief description of the
datasets used in this study. The experimental results along with comparative
analysis with existing state-of-art methods are discussed in Sect. 4. Concluding
remarks are stated in Sect. 5.

2 Proposed Methodology

This research presents a new scheme of data mining for analysis of big EEG
signal data. Figure 1 show a digram of the proposed plan that can be used for
handling massive amount of brain signal data (e.g. EEG data). In this figure, we
just provide an example how one channel EEG signal is processed for analysis in
the proposed plan. The same procedure is continued for all of the channel signal
data in a subject.The proposed methodology is divided into several parts such
as data segmentation; pattern mining; feature computation and classification.
The detail discussion of each part is provided in the following sections.

2.1 Data Segmentation

In this part, we segment an EEG signal data (came from a channel) into several
time-window considering a particular time-period. As EEG signals are aperiodic
and non-stationary time series data, it is important to having representative
values of a specific time-period from every time window. The most important
thing in the segmentation process is how to determine an appropriate size of time
window. In this study, we choose the size of time window (e.g. 256) following
some state-of-arts methods such as Stam et al. [30], Siuly et al. [14], Rankine
et al. [21], Ines et al. [10], Siuly et al. [13].

2.2 Pattern Mining

The most crucial part of EEG data analysis is to discover patterns concealed in
the data [28]. This section aims to extract a representative pattern that conveys



154 S. Siuly et al.

Fig. 1. Proposed plan for analysis of big brain signal data.

all meaningful knowledge from the shape of data. In this study, we apply PCA for
mining pattern from each channel EEG signal. The reason for considering PCA is
that the PCA is a powerful tool for summarizing high dimension data, which has
the capability of identifying hidden patterns in data. In addition, the obtained
pattern can compress high dimension data into a small dataset, reducing the
number of dimensions, without loosing the most important information in the
original data set. Another thing, as EEG signal data are highly correlated, and
correlation indicates that there is redundancy in the data, in this circumstance,
the PCA is a perfect choice to extract a representative pattern from the original
signal. The detail description of PCA method is available in Ref [7,26,40].

As shown in Fig. 1, the segmentation process for one channel EEG signal data
creates a matrix, Xm×n and we employ PCA method on that matrix to mine a
representative pattern for that signal. In this study, we consider first principal
component (FPC) as the representative pattern for each channel signal data as
the FPC captures the largest variability of the data, while the next components
(e.g. second, third, etc.) represent, respectively, less variation.

Fig. 2. An illustration of original signal vs PCA pattern in data set V, BCI Comp III.

As mentioned before, the proposed scheme is tested on two EEG data sets
of BCI Comp III: V and IVa. The description of these two datasets is provided
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Fig. 3. An illustration of original signal vs PCA pattern in dataset IVa, BCI Comp III.

in Sect. 3. Figures 2 and 3 present two examples using two data sets, V and
IVa, respectively, showing a difference between original signal and PCA pattern.
These two figures also show how much data are reduced in the pattern signal
with respect to the original signal. For example, in Fig. 2, 2489 samples are trans-
formed into 256 data points in the pattern signal and in Fig. 3, 81120 samples
in the original dataset are reduced to 256 in the pattern signal.

2.3 Feature Computation

Technically, a feature represents a distinguishing property, a recognizable mea-
surement, and a functional component obtained from a section of a pattern. In
order to characterize the distribution of a representative pattern, we calculates
nine statistical features such as mean, standard deviation, median, first quartile
(Q1), third quartile (Q3), inter-quartile range (IQR) (IQR = Q3-Q1), mode,
minimum, maximum from each pattern of a signal in this study. After calculat-
ing features from the patterns of all of the signals in a subject, we aggregate
all the features in a set, called feature vector set and this feature vector set is
fed into a classification model discussed in the following section. The reasons for
considering these nine statistical features are found in references [6,24].

2.4 Classification

Random Forest (RF): In this study, we choose Random Forest (RF) model
for classification where the obtained feature set is fed into as input. The decision
making is performed based on the classification outcomes. RF is a powerful app-
roach for classification, which consists of many individual classification trees [3].
Each tree is constructed using a tree classification by selecting a random subset
of input features and a different bootstrap sample from the training data. The
RF aggregates the results of all classification trees to classify new samples. Each
tree casts a unit vote at the input data, and then the forest selects the class with
the most votes for the input data. A majority vote among the trees provides the
final result [4].
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This study considers a RF classifier of N trees. Suppose, (x1, y1), (x2, y2), . . . ,
(xn, yn) is a training set and N tree is the number of trees to be built. The
classification by majority vote among the N tress is computed [2,4] like as below.

favg(X) := (p1(X), . . . , pk(X)) := 1
N

N∑

p1

fi(X) ; Here each b = 1 to N tree

fRF (X) := argmax {(X), . . . , pk(X)}. The reason for considering the RF model
in this work is that this classification method is very effective to handle big
dimensionality of data involved with complex characteristics such as non-
stationarity and noisy. Furthermore, this method does not overfit, faster and
little needs to fine-tune parameters. The detail discussion of RF is available in
References [2–4].

Random Tree (RT): The random tree is a special case of RF model. The RT
usually refers to randomly built trees. The RF model consists of many random
trees. As in the RF, a random subset of candidate features is used, but instead of
looking for the most discriminative thresholds, thresholds are drawn at random
for each candidate feature, and the best of these randomly-generated thresholds
is picked as the splitting rule. It is computational less expensive than a random
forest.

3 Experimental Data

In order to test the effectiveness of the proposed method, we used two publicly
available EEG datasets, V and IVa from BCI Competition III [1,5,20].

Dataset 1: Data set V is considered as dataset 1, which consists of mental
imagery tasks EEG data recorded in brain-computer interface (BCI) competition
III. This database contains EEG recordings from three normal subjects during
three kinds of mental imagery tasks, which are imagination of repetitive self-
paced left hand movements (class 1), imagination of repetitive self-paced right
hand movements (class 2), and generation of different words beginning with the
same random letter (class 3) [5,20]. The sampling rate of the raw EEG potential
signals is 512 Hz. EEG recordings of 12 frequency components are obtained from
each of the 8 channels, producing a 96-dimensional vector.

Dataset 2: In this study, dataset IVa [1,15,27] (of BCI competition III,) is
named as dataset 2. This dataset contains motor imagery, EEG data recorded
from five healthy subjects (labelled ‘aa’, ‘al’, ‘av’, ‘aw’, ‘ay’), who performed
right hand (denoted by ‘RH’) and right foot (denoted by ‘RF’) motor imagery.
EEG was recorded using 118 electrodes and 280 trials were available for each
subject, among which 168, 224, 84, 56 and 28 composed the training set for
subject ‘aa’, ‘al’, ‘av’, ‘aw’, ‘ay’, respectively, the remaining trials composing
the test set. In this study, we consider the training sets for all subjects as our
experimental data as the algorithm requires a class label of each sample point.
They provided a version of the data that was down-sampled at 100 Hz, which is
used in this research.
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4 Results and Discussions

This section presents the experimental results of the proposed method on two
EEG datasets: Set V (mental imagery data set) and Set IVa (motor imagery
data). The performance of the proposed scheme is evaluated on both mental
imagery and motor imagery data in Sect. 4.1 and 4.2, respectively. A comparison
between the proposed method and some existing methods is also provided for
each dataset. All mathematical calculations are carried out in MATLAB R signal
processing tool (version 7.11, R2010b). The classification executions for the RF
and RT classifiers are executed in WEKA machine learning toolkit [8]. It is
worth mentioning that the default parameter values for each classifier in WEKA
is used as there are no specific guidelines for selecting these parameters.

4.1 Classification Results for the Mental Imagery EEG Data

For the mental imagery tasks EEG data, 96 vectors of 9 dimensions for each
class of a subject are obtained using the proposed feature extraction method
from the original data. In this dataset, we consider nine experiments (Exp 1–9)
using different pairs of two-class EEG data. Each experiment uses 192 vectors
of 9 dimensions for two-class data with 96 vectors from each class. The 10-fold
cross-validation method is used to evaluate the performance of each classifier for
each experiment. In this paper, each experiment is considered as an Exp. Exp
1–3 are created for Subject 1, Exp 4–6 are composed for Subject 2, and Exp 7–9
are compiled for Subject 3, which are given below:

For dataset V :
Exp 1: class 1 vs class 2; Exp 2: class 1 vs class 3; Exp 3: class 2 vs class 3
Exp 4: class 1 vs class 2; Exp 5: class 1 vs class 3; Exp 6: class 2 vs class 3
Exp 7: class 1 vs class 2; Exp 8: class 1 vs class 3; Exp 9: class 2 vs class 3

Table 1 presents the classification results of each classifier, the RF and the
RT, for different pairs of two-class EEG signals from the mental imagery tasks
EEG data. In Table 1, the results of each classifier are shown in terms of sensi-
tivity, specificity, and accuracy. The average classification accuracy is calculated
using all accuracy values for all Exps in each subject. For most of the Exps, the
RF classifier achieves higher classification results in terms of sensitivity, speci-
ficity, and accuracy compared to the RT classifier. The RF classifier produces
an average classification accuracy of 91.84% for subject 1, 75.18% for subject 2,
and 82.81% for subject 3 while these values are 90.45%, 70.32%, and 76.04%,
respectively, for the RT classifier. The average sensitivities of the RF classifier
are 92.36%, 77.78%, and 80.21% for subject 1, subject 2, subject 3, respectively,
while these values are 90.63%, 71.18%, 75.70%, respectively, for the RT classifier.
The RF obtains 91.32%, 72.57%, and 85.41% classification specificity for subjects
1, 2, and 3, respectively, whilst those values are 90.28%, 69.45%, and 76.39%,
respectively, for the RT classifier. Considering the results shown in Table 1, it is
observed that the RF classifier is more capable of classifying the two-class EEG
signals than the RT.
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Table 1. Performance of the proposed scheme for data set V.

Subject Different
Experiments

Proposed algorithm with Random Forest Proposed algorithm with random tree

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

1 Exp 1 90.63 92.71 91.67 93.75 95.83 94.79

Exp 2 97.92 94.79 96.35 93.75 95.83 94.79

Exp 3 88.54 86.46 87.50 84.38 79.17 81.77

Average 92.36 91.32 91.84 90.63 90.28 90.45

2 Exp 4 68.75 65.63 67.17 57.29 65.63 61.49

Exp 5 87.5 81.25 84.38 83.33 80.21 81.77

Exp 6 77.08 70.83 73.96 72.92 62.50 67.71

Average 77.78 72.57 75.18 71.18 69.45 70.32

3 Exp 7 85.42 91.66 88.54 85.42 88.54 86.98

Exp 8 81.25 87.50 84.38 78.13 81.25 79.69

Exp 9 73.96 77.08 75.52 63.54 59.38 61.46

Average 80.21 85.41 82.81 75.70 76.39 76.04

Figure 4 presents the ROC areas for the RF and RT classifiers for proposed
feature set, separately for each of the nine Exps in the mental imagery tasks EEG
data. The area of the ROC curve is used as a measure for assessing the classifier
performance (e.g., a higher value of the area indicates better performance of the
classifier). As seen in Fig. 4, both classifiers obtain high ROC area for each Exp.
From these experimental results, it is clear that the proposed feature extraction
method is capable of extracting robust features from the mental imagery tasks
EEG data and the RF classifier has the ability to accurately classify mental
imagery tasks.

Fig. 4. ROC area for the RF and RT classifier in dataset V

Table 2 shows the performance comparison of the proposed method based
on RF classifier with some reported methods in terms of subject-specific clas-
sification accuracy and average classification accuracy for the mental imagery
tasks EEG data. From Table 2, it is observed that the proposed method obtains
the highest performance in terms of average classification accuracy among the
other methods. The average classification accuracy of the proposed method is
83.28% for the mental imagery tasks data while they are 68.35%, 61.69%, 56.66%,
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Table 2. A comparative report with existing methods for Dataset V.

Authors Methods Classification accuracy (%)

S1 S2 S3 Average

Proposed method PCA based random
forest model

91.84 75.18 82.81 83.28

Lin et al. [16] Neural networks based on
improved particle swarm
optimization(IPSO)

78.31 70.27 56.46 68.35

Siuly et al. [14] Clustering technique-based
LS-SVM (CT-LS-SVM)

68.19 64.77 52.12 64.69

Sun et al. [32] Random electrode selection
ensemble(RESE)

68.75 56.411 44.82 56.66

Sun et al. [33] Ensemble methods 70.59 48.85 40.92 53.45

Sun et al. [31] Adaptive common spatial
patterns (ACSP)

67.70 68.10 59.55 65.12

Note: S1 = Subject 1; S2 = Subject 2; S3 = Subject 3.

53.45% and 65.12% for methods reported in [14,16,31–33], respectively. These
results indicate the proposed method outperforms all six referenced methods and
improves the average classification accuracy by at least 14.93%.

4.2 Classification Results for the Motor Imagery EEG Data

In this section, we provide the classification results of each classifier for the
motor imagery EEG dataset. Using the proposed feature extraction technique,
we obtain 118 feature vectors of 9 dimensions for one class from each subject
from the motor imagery EEG dataset. As mentioned in Sect. 3 (data description
section), this data set contains the EEG recorded data of five healthy subjects
where each subject performed two tasks: the imagination of ‘Right Hand’ and
‘Right Foot’ movement. Each task is considered as a class of EEG data. In
this dataset, we consider five experiments for five subjects and every experiment
contains 236 feature vectors of 9 dimensions for two classes of a subject, with 118
vectors of the same dimension in each class. The 10-fold cross-validation method
is used to evaluate the performance of each classifier for each experiment.

Table 3 shows the classification results of each classifier, the RF and the RT
in terms of sensitivity, specificity and classification accuracy for each subject in
the motor imagery EEG dataset. As shown in Table 3, the RF classifier achieves
higher classification results for each subject compared to the RT classifier. The
average the RT classifier. Considering the results shown in Table 3, it is observed
that the RF classifier is more capable to classify the motor imagery tasks than
the RT.

Figure 5 shows the ROC areas for the RF and RT classifiers for proposed
feature set, separately for each of the five subjects in the motor imagery EEG
dataset. As seen in Fig. 5, both classifiers achieve high ROC area close to 1 for
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Table 3. Performance of the proposed scheme for data set IVa.

Subject Proposed algorithm with Random Forest Proposed algorithm with random tree

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

S1(aa) 98.30 99.15 98.73 98.30 98.30 98.31

S1(al) 91.53 89.83 90.68 86.44 87.29 86.86

S1(av) 98.31 100 99.15 98.31 100 99.15

S1(aw) 93.22 91.53 92.37 86.44 88.14 87.29

S1(ay) 99.15 99.15 99.15 99.15 99.15 99.15

Average 96.10 95.93 96.02 93.73 94.58 94.15

Note: S1 = Subject 1 (aa); S2 = Subject 2 (al); S3 = Subject 3 (av); S4 = Subject 4 (aw); S5 = Subject

5 (ay).

Fig. 5. ROC area for the RF and RT classifier in dataset IVa.

each subject. From these experimental results, the proposed method provides
same evidence like as dataset V that the RF classifier has better ability to
accurately classify motor imagery tasks compared to RT classifier.

Table 4 shows the comparison results between the proposed method based on
RF classifier and the seven existing algorithms in terms of subject-specific classi-
fication accuracy and overall classification accuracy for the motor imagery EEG
dataset. The overall performance of the proposed method is achieved 96.02%
which is the highest performance among the other methods. Subject specific rates
are 98.73% for subject 1, 90.68% for subject 2, 99.15% for subject 3, 92.37% for
subject 4, and 99.15% for subject 5 achieved by our proposed approach. The aver-
age classification accuracies of sparse spatial filter optimization [40], R-CSP [39],
composite CSP [38], SRCSP methods [37], CT-based LS-SVM [15], ISSPL [36],
and CC-Based LS-SVM [35] for the motor imagery data are 73.50%, 74.20%,
76.22%, 78.62%, 88.32%, 94.21%, and 95.72%, respectively. The results show
that our proposed method achieves by 0.3% to 22.52% improvements over all
the seven existing algorithms in terms of average accuracy for the motor imagery
EEG dataset.
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Table 4. A comparative report with existing methods for Dataset IVa.

Authors Method Classification accuracy (%)

S1 S2 S3 S4 S5 Average

Proposed method PCA based
random forest
model

98.73 90.68 99.15 92.37 99.15 96.02

Siuly and Li [25] CC-Based LS-SVM 97.88 99.17 98.75 93.43 89.36 95.72

Wu et al. [37] ISSPL 93.57 100 79.29 99.64 98.57 94.21

Siuly et al. [14] CT-based LS-SVM 92.63 84.99 90.77 86.5 86.73 88.32

Lotte and Guan [18] Spatially
regularized
common spatial
pattern (SRCSP)

72.32 96.43 60.2 77.68 86.51 78.62

Kang et al. [11] Composite
common spatial
pattern
(compositeCSP)
(method 1; n = 3)

67.66 97.22 65.48 78.18 72.57 76.22

Lu et al. [19] Regulized common
spatial pattern
with generic
learning (R-CSP)

69.6 83.9 64.3 70.5 82.5 74.20

Yong et al. [38] Sparse spatial filter
optimization

57.5 54.4 56.9 84.4 84.3 73.50

5 Conclusions

In this paper, we propose a new data mining scheme for Analysis huge volume of
EEG data. In the proposed plan, the PCA is applied to extract a representative
pattern from every channel EEG data for efficient analysis of the data. Then some
important statistical characteristics are computed from this pattern to represent
the distribution of the pattern. Combining all of the features extracted from
every pattern, we generate a feature set for a subject, and finally, the feature
set is used as input to the RF and RT classification model, separately to classy
the different states of the data. This proposed scheme is evaluated on two EEG
data sets BCI Competition III: V and IVa. Experimental results on two publicly
available datasets demonstrate that the proposed data mining scheme is very
effective for characterizing brain signals data such as EEG data. Furthermore, the
PCA is not only insensitive to extract hidden information removing redundant
information from the original huge volume data but also robust to noise. We
compared the performance of the proposed method with several state-of-the-
art approaches for both data sets in the literature. Experimental results show
that the PCA based random forest algorithm achieves higher performances (e.g.
classification accuracies) than those by the others.
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Abstract. Extracting keyphrases from documents for providing a quick
and insightful summarization is an interesting and important task, on
which lots of research efforts have been laid. Most of the existing meth-
ods could be categorized as co-occurrence based, statistic-based, or
semantics-based. The co-occurrence based methods do not take var-
ious word relations besides co-occurrence into full consideration. The
statistic-based methods introduce more unrelated noises inevitably due
to the inclusion of external text corpus, while the semantic-based meth-
ods heavily depend on the semantic meanings of words. In this paper,
we propose a novel graph-based approach to extract keyphrases by con-
sidering heterogeneous latent word relations (the co-occurrence and the
semantics). The underlying random walk model behind the proposed
approach is made possible and reasonable by exploiting nearest neighbor
documents. Extensive experiments over real data show that our method
outperforms the state-of-art methods.

1 Introduction

Keyphrases are the topical phrases in a document, and keyphrase extraction
is a process of automatic selection of important and topical phrases from the
body of a document [15]. Such keyphrase extraction provides users with the
knowledge of the topics of a document and can be effectively used to assist many
other tasks such as text clustering [3], text classification [21], and document
summarization [18].

In this paper, we focus on keyphrase extraction from a single document.
There are two steps for keyphrase extraction. The first step is to extract a list of
candidate phrases from the document. The second step is to select keyphrases
from the candidate phrases. In the literature, the keyphrase extraction process
could be fulfilled in a supervised manner or an unsupervised manner. The
supervised methods deal with the keyphrase extraction as a binary classifica-
tion task, and build up a classifier, for example, a Naive Bayes classifier, using
a training dataset where phrases are labeled as keyphrase and non-keyphrase
[6,7,16,19]. The supervised keyphrase extraction methods heavily rely on the
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features selected. The most frequent used features include statistical informa-
tion (e.g., tf-idf), position information (e.g., phrase positions in the document),
grammar information (e.g., part-of-speech tags) as well as the appearance in title
and/or abstract. However, a binary classifier is unable to rank keyphrases, which
is required in keyphrase extraction to select the most important keyphrases from
a document. For example, to address the ranking issue, Jiang et al. [7] proposes
a ranking method by applying ranking SVM over a training dataset where every
data item is a pair of one keyphrase and one non-keyphrase. The difficult of the
supervised methods is they need to use a large training dataset. In addition,
the keyphrases of a single document may be unique in the sense that they are
different from most keyphrases used in the training dataset. The unsupervised
graph-based methods [2,4,5,8,11,17] deal with the keyphrase extraction by rank-
ing nodes over a co-occurrence graph, constructed from the document. Here, a
co-occurrence graph, is a weighted undirected graph, where a node represents a
word, and an edge between two nodes indicates that the two words occur closely
in a given window in the document D. There are two issues given such a co-
occurrence graph. The first issue is how to obtain the initial node/edge weights
of the graph constructed. The second issue is how to rank the nodes, in order to
select important words in the sense that a keyphrase is important if its words are
important. The keyphrases are selected from the words that are ranked high and
appear next to each other based on the graph after ranking. Experiments show
that the unsupervised graph-based methods achieve comparable performance
with supervised methods which need training datasets. On the other hand, the
unsupervised graph-based methods heavily rely on the co-occurrence graph that
mainly reflects how words appear in the document.

Our main contributions are summarized as follows: (1) We are the first to
apply Word2Vec to discover semantic relationships among words and utilize
them during the keyphrase extraction process. (2) We explore multiple het-
erogeneous relationships between words in constructing document graphs for
keyphrase extraction in a unsupervised manner. (3) We carefully design a mean-
ingful random walk model on a united graph with heterogeneous relationships
and propose a biased ranking framework for calculating word importance score.

The rest of this paper is organized as follows. In Sect. 2, we discuss the
existing unsupervised graph-based methods for keyphrase extraction. In Sect. 3,
we introduce the preliminaries and give an overview of our solution framework.
We describe the process of the united graph construction in Sect. 4, followed by
the graph-based word ranking strategy in Sect. 5. We explain candidate phrase
generation and selection in Sect. 6, followed by the experimental evaluation in
Sect. 7. Finally we concludes this paper in Sect. 8.

2 Related Work

We discuss the existing unsupervised graph-based methods which are based on a
co-occurrence graph GC constructed for a document D, where a node represents
a word and an edge between two nodes indicates that the two corresponding
words appear together in a given window size w (≥2) in D.
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The earliest work is TextRank [11], which assigns initial node-weights and
edge-weights to GC as follows. The initial node weight is 1/n for every node in
GC , where n is the total number of nodes in GC , and the initial edge weights
are selected in the range from 0 to 10 following the uniform distribution. Based
on the weighted graph, TextRank selects the top-k nodes in GC using PageR-
ank , and extracts the keyphrases using the top-k selected nodes if they appear
together in the document D. The importance of words is mainly determined
by how they appear in D. SingleRank [17] takes the similar approach like Tex-
tRank to select keyphrases. Unlike TextRank that assigns an edge weight fol-
lowing uniform distribution, SingleRank uses the frequency of two words in the
window of w size as the edge weight between the two corresponding nodes. Dif-
ferent from both TextRank and SingleRank that use PageRank to rank nodes,
BetweenRank [5] utilizes the betweenness to rank nodes, where the between-
ness is considered to reflect global properties: connectedness and compactness.
In [18], in order to enhance the importance of words in D, it combines sen-
tence extraction and keyphrase extraction together by building two additional
graphs, namely, a sentence-sentence graph and a sentence-word graph, in addi-
tion to the co-occurrence (word-word) graph. The main idea is to enhance the
importance of words using sentences in the sense that (i) a word is important
if it appears in an important sentence and (ii) words in an importance sentence
will be important. It applies eigenvector centrality to rank sentences and words.
To investigate the effectivness of ranking for keyphrase extraction, [2] compares
several graph centrality methods including degree, closeness, betweenness, eigen-
vector and PageRank , and shows that all perform in a similar manner, based on
their performance studies conducted.

In addition to keyphrase extraction based on a single document, D, there
are several attempts to extract keyphrases from a single document based on
a collection of documents or an additional corpus. ExpandRank [17], selects a
collection of similar documents, D1,D2, · · · ,Dn, to build a virtual document D̃
from which a graph G̃ is constructed. The node weight is 1/n assuming G̃ has
n nodes. The edge weight is assigned as follows. (A) If the two corresponding
words appear in D, the edge weight is the frequency of the two words appear in a
window. (B) If the two corresponding words appear in Di (�= D), the edge weight
is the frequency of the two words appear in a window in Di multiplied by the
document similarity between D and Di. Then, ExpandRank ranks nodes in G̃
using PageRank . The node weights are enhanced for nodes representing words in
GC , which is a subgraph of G̃. Instead of using a collection of documents, TPR [8]
utilizes a corpus to obtain topics for every word in the document D using Latent
Dirichlet Allocation (LDA) [1]. Assume that there are t topics for the words
in D or for the nodes in the corresponding GC in total. TPR applies a topical
PageRank to rank node per topic. At most, a node will have i (≤t) topic weights
if the word represented by the node has i topics. The final weight of a node is
the sum of the topic weights of the node. [9] explored several popular similarity
measure, e.g., cosine similarity, Point-wise Mutual Information and normalized
Google similarity distance for clustering words using Wikipedia articles, in order
to identify exemplar terms. SemanticRank [14], utilizes relations from WordNet
and Wikipedia page linkages to build semantic graphs for keyphrase extraction.
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3 A New Graph-Based Approach

Majority of the existing graph-based methods focus on a single co-occurrence
graph for a given document D. Let the co-occurrence graph be a weighted undi-
rected graph, denoted as GC = (V,E). Here, V is a set of nodes representing
words, and E is a set of edges where an edge, (u, v), exists between two nodes
dst(u, v) ≤ w. dst(u, v) ≤ w means the words represented by u and v appear in a
window size of w (≥2) in D. In the following, we denote the node set of a given
graph G as V (G) and the edge set as E(G). Let n = |V (G)| and m = |V (E)|,
then n and m is the number of nodes and edges of G, respectively. It is worth
noting that, for a given D and w, all the graph-based methods construct a graph
GC , which have the same topological structure with different node/edge weights.
A question that arises is how much we can make use of the words appearance in
a document to extract keyphrases. In this paper, in addition to the co-occurrence
graph GC , we introduce a semantic graph which is an undirected graph denoted
as GS = (V,E). Here, V is a set of nodes representing words, and E is a set
of edges where an edge, (u, v), exists between two nodes, u and v, if the corre-
sponding words are closely relevant such that rel(u, v) ≥ θ. Let GC and GS be
the co-occurrence graph and the semantic graph for a given document D, then
we have V (GC) = V (GS), and E(GC) �= E(GS) in general. On one hand, GC

maintains the local co-occurrence relations among words, which are specific for
D. On the other hand, GS maintains the global semantic relations among words,
which are not specific to the document D.

In this paper, the co-occurrence graph and the semantic graph are united
to formulate a united GH , where V (GH) = V (GC) = V (GS) and E(GH) =
E(GC) ∪ E(GS). Then we carefully design a random walk model on the united
graph GH to evaluate the graph-based word importance scores. The word impor-
tance scores are further integrated with phrase features such as frequency and
position for improving quality. Phrases with top-K largest scores are selected as
the keyphrases. The overview framework of our solution are as follows. (1) We
extract a list of candidate phrases using syntactic rules. (2) We build both the co-
occurrence graph and the semantic graph for the input document and combine
them into a united graph. (3) We calculate the graph-based word importance
scores using the united graph and the phrase score by summing up the scores of
words contained and integrating with frequency and position features. (4) We
select the candidate phrases with top-K largest scores as the keyphrases of the
input document.

4 Constructing the United Graph

In our keyphrase extraction solution, the united graph is formulated based on the
co-occurrence graph and the semantic graph. Given a document D, let GC =
(V,EC) denote the co-occurrence graph of D and GS = (V,ES) denote the
semantic graph. It has been shown in the previous research such as TextRank
[11] that not all words have the equal importance in representing the topics or
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ideas of a document. As a result, only nouns and adjectives are selected as nodes
in graphs. In the following, we may use word and node to refer a node in a graph
interlacedly without distinguishing their difference.

We preprocess the document text using Stanford CoreNLP [10], which is
widely used in many related research works. Stanford CoreNLP includes many
natural language processing (NLP) tools, to name a few, lemmatizer, part-of-
speech (POS ) tagger, the named entity recognizer (NER), and the parser. For
each word in the document, we obtain its POS, lemma, and named entity label.
Each word is labeled with a particular type of entity labels, for example, PER-
SON (the name label), NUMBER (the numerical label) and DATE (the temporal
label). Words labelled as numerical and temporal, together with the stop words,
are removed during the graph building, and only lemmas of nouns and adjectives
are selected as nodes.

Building the Co-occurrence Graph

With the nodes of the co-occurrence graph, the second step is to add edges among
these nodes. Given a window size W , if two words u and v co-occur within a
window of W , then an edge eu,v is added between these two nodes. Each edge
eu,v ∈ EC is associated with an affinity weight wu,v, where wu,v = count(u, v),
the count of co-occurrence time between words u and v in the input document
D. Formally, the adjacency matrix AC of the co-occurrence graph GC is defined
as follows.

ACuv =
{

wu,v, if count(u, v) > 0;
0, otherwise.

(1)

Building the Semantic Graph

The co-occurrence relation only encodes the positional information of the input
document, and it is not sufficient for extracting keyphrases. In this paper, we
proposed to build a semantic graph GS using Word2Vec as well, by taking into
account the word semantic meanings. Word2Vec generates the vector represen-
tations of words through learning from their contexts, and words with similar
contexts share similar representations. We use the Google’s pre-trained model1

in this paper, which is based on a very large Google News Corpus and each word
consists 300 features.

One can notice that semantic graph has the same node set as the co-
occurrence graph. The edge set in the semantic similarity graph is constructed
in the following way. We apply cosine similarity on each pair of words based
on their vector representations. For vertex u and v, if their cosine similarity is
larger than a pre-defined threshold θ, then an edge eu,v is added, whose weight is
their cosine similarity. It is worth noting that other similarity metrics or weight
assignments work just as well. Formally, the adjacency matrix AS of the semantic
graph GS is defined as follows.

1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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ASuv =
{

cos(u, v), if cos(u, v) ≥ θ;
0, otherwise.

(2)

Uniting the Co-occurrence Graph and the Semantic Graph

With the co-occurrence graph GC and semantic graph GS for a given document
D, recall that we have V (GC) = V (GS), and E(GC) �= E(GS) in general, we
could unite these two graphs to formulate a graph G, where V (G) = V (GC) =
V (GS) and E(G) = E(GC)∪E(GS). For a certain node pair, there might be two
edges, one from the co-occurrence graph and the other from the semantic graph.
Our following solution is compatible with any number of relations, so the united
graph could contain more reasonable relations between words. For simplicity, we
only discuss two relations in this paper, co-occurrence and Word2Vec semantic.
The united graph G could be represented by a tensor A = (ai,j,k), where i =
1, ...,m, j = 1, ...,m and k = 1..l. l is number of possible relations, and in this
paper, l = 2. A is non-negative due to ai,j,k ≥ 0, and we have

ai,j,k =

{
ACi,j , k = 1;
ASi,j , k = 2.

(3)

5 Calculating Word Importance Scores

With the weighted united graph G, we study how to rank the words based on
the graph structure from a global point of view, that is, by considering all pos-
sible relations. There are some graph-based ranking methods used for evaluat-
ing object importance, such as PageRank and HITS, by prorogating the initial
important score inside the graph structure iteratively to obtain a stationary
probability distribution as the score.

Traditional graph-based ranking methods focus on only one relation, and in
this paper, we deal with the situation that there exists more than one relation.
We carefully design a random surfing model on G in the next section, and similar
to graph-based ranking methods on a single relation graph, we consider the
stationary landing probabilities of random surfers on each node as its importance
score.

5.1 A Random Walk Model on the United Graph

Let us consider a random walk model on the united graph G and focus on
the stationary probability that a random surfer will arrive at a particular node
using any possible relation. Suppose the random surfer is visiting node vi at
time t − 1, and will randomly visit a neighbor of vi at time t. In the tradition
random walk model on a single relation graph, the transitional probability of the
random surfer is p(Xt = vi|Xt−1 = vj). But on the united graph G with multi-
ple relations, transitional probability of the random surfer is p(Xt = vi|Xt−1 =
vj , Rt = rk), where rk is the k-th relation in G. In the following of this paper,
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we use p(vi|vj , rk) to indicate this probability when there is no ambiguity. Sim-
ilarly, p(vj , rk) indicates p(Xt−1 = vj , Rt = rk).

Then the stationary landing probability of a random surfer for each node on
the united graph G is

p(vi) =
m∑
j=1

l∑
k=1

p(vi|vj , rk) × p(vj , rk). (4)

Recall that l is the total number of possible relations. Equation 4 shows that if
we can estimate the transitional probability p(vi|vj , rk) and the joint probability
p(vj , rk), the problem of stationary landing probability on united graph G is
solved.

Estimating the Intra-relation Transitional Probability

We call the transitional probability p(vi|vj , rk) the intra-relation transitional
probability, which means the transitional probability of a random surfer moves
from vj to vi using a particular relation rk at time t. Like the transitional
probability in a single relation graph, the intra-relation transitional probability
can be defined using the following equation.

p(vi|vj , rk) =
ai,j,k∑m
i=1 ai,j,k

. (5)

If ai,j,r = 0 for all 1 ≤ i ≤ m, then this node is called dangling node [13], and
its p(vi|vj , rk) equals to 1/m.

Estimating the Joint Probability

The joint probability p(vj , rk) is in general not easy to evaluate, so we employ
the assumption of independence, that is, p(vj , rk) = p(vj) × p(rk). By applying
this assumption on Eq. 4, we can obtain follows.

p(vi) =
m∑
j=1

l∑
k=1

p(vi|vj , rk) × p(vj) × p(rk). (6)

Now the problem turns to be how to calculate p(rk). Without loss of generality,
p(rk) represents the summarization of the probabilities that a random surfer
moves from a node vj to one of its neighbor vi using the relation rk, that is,

p(rk) =
m∑
i=1

l∑
k=1

p(rk|vi, vj) × p(vi, vj) =
m∑
i=1

l∑
k=1

p(rk|vi, vj) × p(vi) × p(vj). (7)

We also employ the assumption of independence in Eq. 7 during calculating
p(vi, vj).
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p(rk|vi, vj) in Eq. 7 is called inter-relation transitional probability. Due to
the heterogeneous relations in united graph G, it is not appropriate to calculate
p(rk|vi, vj) in a similar way as intra-relation transitional probability p(vi|vj , rk)
in Eq. 5, since the physical meaning of

∑l
k=1 ai,j,k is not clear and ai,j,k may

has various distributions on different relations. We will explain in detail how to
estimate p(rk|vi, vj) in the remaining of this section.

Given an input document D, and a corpus D, let N(D) denote its nearest
neighbor documents under the bag-of-word model based on cosine similarity.
Each document is represented by a vector d, where each dimension in d is the
tf-idf value of the corresponding word in the bag-of-word model. Let sim(di, dj)
denote the similarity of document pair 〈Di,Dj〉, then N(D) = {Dk|sim(d, dk) >
τ}, where τ is a pre-defined threshold.

The inter-relation transitional probability p(rk|vi, vj) tells us which relation a
random surfer should favor during its random walks. Then we use the keyphrase
information in N(D) to help us estimate p(rk|vi, vj). The intuitive idea is to
favor the relation that could generate correct importance score of each word in
keyphrases. we build the co-occurrence graph and the semantic graph for each
document in N(D) as described in Sect. 4. Based on the keyphrase information of
the documents in N(D), let W denote the set of words contained by keyphrases,
and W denote the complementary part of W , the set of words not in keyphrses.
Then the random walk stationary probabilities of words in W should be larger
than ones of words in W , on both the co-occurrence graph and the semantic
graph.

We utilize a loss function to establish the inter-relation transitional proba-
bility. Let h denote a loss function, and in this paper, we adopt Wilcoxon-Mann-
Whitney (WMW) loss function with width b [20], which is

h(x) =
1

1 + e−x/b
. (8)

Let prw denote the random walk stationary probability of word w in a graph,
then the quality of the co-occurrence graph and the semantic graph could be
measured in terms of the summation of loss function values.

totalloss =
∑

s∈W,t∈W

h(prt − prs). (9)

h(·) assigns a non-negative penalty according to the value prt−prs. If prt−prs <
0, then h(prt − prs) = 0, otherwise, h(prt − prs) > 0.

Let totallossk denote the summation of loss function values on relation k,
then p(rk|vi, vj) is

p(rk|vi, vj) = 1 − totallossk∑l
o=1 totallosso

, (10)

where a random surfer favors the relations with smaller loss function values.
Similar to intra-relation transitional probability, if ai,j,k = 0 for all 1 ≤ k ≤ l,
then we set p(rk|vi, vj) equals to 1/l. Recall that in this paper, l equals to 2.
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5.2 The Biased Ranking Algorithm

With both the transitional probability p(vi|vj , rk) and the joint probability
p(vj , rk) calculated, we apply a similar way in the MultiRank [12] to evaluate the
importance score of words given the input document D. With Eqs. 5, 6 and 7,
we can estimate the stationary landing probability p(vi)of a random surfer on
the united graph G. Let Qi,j,k denote p(vi|vj , rk) and Ri,j,k denote p(rk|vi, vj),
then the tensor form of Eqs. 6 and 7 is as follows.

x = Qxy, y = Rx2 (11)

where x = (x1, ..., xm), y = (y1, ..., yl).
One insightful observation is that the word characteristics in a document play

an import role in extracting keyphrases besides relations. According to several
previous work, word frequency and the first occurrence position in the document
are two essential features which have a large impact on the importance of a word.
So we involving these two features in Eq. 11 to bias the ranking process. Let
f(w) and pos(w) denote the word frequency and the first occurrence position
respectively.

xb =
f(vi)

pos(vi)
/

m∑
i=1

f(vi)
pos(vi)

(12)

With Eq. 12, the biased form of Eq. 11 is

x = (1 − α)Qxy + αxb, y = Rx2 (13)

By repeatedly applying Eq. 13 until it converges, we could obtain the stationary
landing probabilities as the word important scores.

6 Generating Candidates and Selecting Keyphrases

In this section, we discuss how to generate the candidate phrases. Most of the
previous works use syntactic rules based on the part-of-speech of words. Oth-
ers use the adjacency relations of top ranking words. If several words are in a
continuous sequence in the input document, these words form a keyphrase. We
follow the approach in most previous research works which is to use the syn-
tactic pattern to detect candidate phrases. If a sequence of words satisfy the
pattern that zero or more adjectives are followed by one or more nouns, it is
considered as a candidate phrase. Formally, we represent the syntactic pattern
as “(JJ)∗ (NN |NNS|NNP )+”. All candidate phrases are merged according to
the following two rules, where P is the generated candidate phrase set.

(1) If the NERs of two candidate phrases are PERSON, and one is contained
in the other, we merge the shorter one to the longer one. For example, “George
Bush” and “Bush”, we merge them as “George Bush” and add the frequency of
“Bush” to “George Bush”.
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(2) If a candidate phrase is the acronym of another candidate phrase, then
we merge them as one. For example, “FEMA” and “Federal Emergency Man-
agement Agency”, we merge the former to the latter and add the frequency of
the former to the latter.

Based on the word important score obtained in Sect. 5, the final ranking
score of each candidate phrase Pi ∈ P is defined in Eq. 14 by summing up the
important scores of the contained words.

PhraseScore(Pi) =
∑
vj∈Pi

p(vj). (14)

We further embed the frequency and the first occurrence position of phrases,
denoted by f(Pi) and pos(Pi) respectively, into Eq. 14 to improve the quality of
phrase scores, as shown in Eq. 15.

Score(Pi) =
f(Pi)

pos(Pi)
× PhraseScore(Pi). (15)

After we obtain the final ranking scores Score(Pi) of all the candidate phrases
Pi ∈ P, we select the phrases with top-K largest scores as the keyphrases of the
input document.

7 Experiments

In this section, we demonstrate our experimental results on news data by compar-
ing with several other state-of-the-art methods. We denote our proposed methods
as HGRank for convenience. We use the DUC2001 dataset in the experimental
evaluation. DUC2001 2 is a popular news dataset in many research tasks, such as
keyphrase extraction and document summarization. There are 308 news articles
in DUC2001, which are categorised into 30 topics. The average length of the
news articles is about 700 words, and each article is manually assigned about
10 keyphrases. The manually labeled keyphrase dataset is provided by [17]. We
evaluate the performance under three metrics, which are precision (P), recall
(R) and F-measure (F), as Eq. 16 shows.

P =
countcorrect
countoutput

, R =
countcorrect
countmanual

, F =
2 × P × R

P + R
. (16)

7.1 Comparison with Other Methods

We compare HGRank with three unsupervised keyphrase extraction methods,
which are ExpandRank [17], SingleRank [17], TF-IDF, and one supervised
method KEA [19]. Note that all the unsupervised methods have the same can-
didate phrase set.

2 http://www-nlpir.nist.gov/projects/duc/past duc/duc2001/data.html.

http://www-nlpir.nist.gov/projects/duc/past_duc/duc2001/data.html
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TF-IDF : The method uses the tf-idf score as the ranking score of each
keyterm. And the ranking score of each candidate phrase is the sum of the
scores of words contained in it.

We also compare the two relations used in our work. One is the co-occurrence
relation, the other is the Word2Vec semantic relation. We adopt PageRank on
the co-occurrence graph and semantic graph respectively. The former is corre-
sponding to the method SingleRank. The latter we refer to as SimilarRank .

In order to see the influence of phrase frequency with the first occurrence
of phrase on keyphrase extraction, we use the same way to combine these two
features as in our proposed method HGRank to rank candidate phrases and
get the method PTF-POS . Meanwhile, we also compare with the method
HGNWRank which follows the same framework with HGRank except it does-
not adopt phrase features.

Figure 1(a)–(c) shows the precision, recall and F-measure curves of all the
above methods when the keyphrase number K ranges from 5 to 20 respectively.
We use the variables which achieve the best performances. For HGRank, we set
W = 20, θ = 0.4. For ExpandRank, we set W = 19. For SingleRank, we set
W = 18. For SimilarRank, we set θ = 0.4. For HGNWRank, we set W = 14,
θ = 0.3.

From Fig. 1(a)–(c), we can see our method HGRank performs the best, which
indicates integrating different word relations with phrase features improves the
performance of keyphrase extraction, followed by ExpandRank, which is the
state-of-art method on DUC2001 dataset. Note that we use the same steps as
the original work [17] of ExpandRank, the only differences are we use the form
of each term after lemmatization and we merge the candidate phrases according
to the two rules in Sect. 6. ExpandRank performs better than SingleRank, which
indicates that documents with similar topics are helpful for keyphrase extraction.
HGNWRank performs a little better than TF-IDF and SingleRank, which indi-
cates that the combination of co-occurrence relations and semantic relations is
helpful for keyphrase extraction. TF-IDF performs a little better than SingleR-
ank, which indicates IDF is also helpful since PageRank score is proportional to
degree (i.e., TF ) in the undirected graph. Note that PTF-POS performs worse
than SingleRank, which indicates from words perspective to measure the impor-
tance of phrases is meaningful. SimilarRank performs worse than SingleRank,
which indicates the information from the document itself is more important and
semantic relations are better to learn from the documents of the same domain.
KEA performs worse than PTF-POS, which indicates supervised method is hard
to transfer to different domains since the training documents used in KEA3 are
not in the same domain with the evaluation data.

7.2 Effect of Parameters

In order to investigate the influence of windowsize W on keyphrase extraction,
we conduct experiments with different values of W . Figure 2 shows the effect of
3 We use the original version of KEA provided in the public website created by its

author. http://www.nzdl.org/Kea/download.html.

http://www.nzdl.org/Kea/download.html
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Fig. 1. Comparison with other algorithms.

Fig. 2. Effect of windowsize W Fig. 3. Effect of cosine threshold θ

W when W ranges from 2 to 20. In Fig. 2(a) the cosine similarity threshold θ is
set to 0.4. In Fig. 2(b) the cosine similarity threshold θ is set to 0.3. From the
figures, we can see W has an obviously influence on the performances when it is
small, however, as it becomes larger, performances change little. We also conduct
experiments to learn the impact of cosine similarity threshold θ on keyphrase
extraction. Figure 3 shows the effect of θ when θ ranges from 0.1 to 0.6. In
Fig. 3(a) the windowsize W is set to 20 and in Fig. 3(b) W is set to 11. From
the figures, We can see θ has the same influence as W , performances increase
obviously when θ is small and keep almost constant when θ becomes larger.

8 Conclusions

In this paper, we construct a united graph based on the co-occurrence rela-
tion and semantic relation of the words in the input documents. We propose
a novel graph-based approach to extract keyphrases by considering these het-
erogeneous latent word relations. The underlying random walk model behind
our graph-based approach is made possible and reasonable by exploiting nearest
neighbor documents. The combination of global features and phrase features fur-
ther improve the performance. We demonstrate the effectiveness of our proposed
approach by extensive experiments.
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Abstract. Cytometry is a powerful tool in clinical diagnosis of health
disorders, in particular, immunodeficiency diseases and acute leukemia.
Recent technological advancements have enabled up to 100 measure-
ments to be taken simultaneously on each cell, thus generating high-
throughput and high-dimensional datasets. Current analysis, relying on
manual segmentation of cell populations (gating) on sequential low-
dimensional projections of the data, is subjective, time consuming and
error-prone. It is also known that these multidimensional cytometric data
typically exhibit non-normal features, including asymmetry, multimodal-
ity, and heavy tails. This present a great challenge to traditional cluster-
ing methods which are typically based on symmetric distributions.

In recent years, non-normal distributions have received increasing
interest in the statistics literature. In particular, finite mixtures of skew
distributions have emerged as a promising alternative to the traditional
normal mixture modelling. However, these models are not well suited to
high-dimensional settings.

This paper describes a flexible statistical approach designed for per-
forming, at the same time, unsupervised clustering, dimension reduc-
tion, and outlier removal for cytometric data. The approach is based on
finite mixtures of multivariate skew normal factor analyzers (SkewFA)
with threshold pruning. The model can be fitted by maximum likelihood
(ML) via an expectation-maximization (EM) algorithm. An application
to a large CyTOF data is presented to demonstrate the usefulness of
the SkewFA model and to illustrate its effectiveness relative to other
algorithms.

1 Introduction

Flow cytometry is routinely used in clinical and research immunology. It allows
the fluorescence expression of different markers on each cell to be measured. In
a flow cytometer, samples stained with fluorophore-conjugated antibodies (or
markers) are passed through a laser beam and the light that emerges from each
cell are captured and quantitated. A more recent technology is mass cytometry,
also known as cytometry by time-of-flight mass spectrometry (CyTOF), which
uses metal isotopes in place of fluorescent antibodies. This latter advancement
enables much more variables to be measured at the same time [7].
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 178–189, 2017.
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One of the major tasks in the analysis of cytometric data is the identifica-
tion of cell populations from these multidimensional data, currently performed
manually by visually separating regions (gates) of interests on a series of sequen-
tial bivariate projections of the data. This process is known as gating. Due to
the subjective and time-consuming nature of this approach, and the difficulty in
detecting higher-dimensional inter-marker relationships, many efforts have been
made to develop computational methods to automate the gating process; see [1]
for a recent account.

Cytometric data can be challenging to model. It is well known that they
are often heterogeneous (that is, contain more than one cell populations) and
that these cell clusters are typically asymmetrically distributed as well as hav-
ing heavier-tails than normal. Among the recent computational tools for flow
cytometric data, many were based on the mixture model-based approach due
to its powerfulness and flexibility. Mixture model is a well-established statistical
framework and have enjoyed numerous applications in many fields. The tradi-
tional approach is to adopt the normal distribution as component densities of
the mixture model, that is, the so-called normal mixture model. However, this
is inadequate for cytometric data as the normal distribution is symmetric and
hence is not suitable for modelling the asymmetrically distributed cell clusters.
To address this, some authors have recently considered adopting skew mixture
models, showing promising results [10,14,16,17,22,23,26]. For high-dimensional
cytometric data such as those acquired from mass cytometry, these methods
cannot be directly applied due to computational complexity. In view of this,
we consider a factor analytic approach as an alternative to these fully specified
mixture models.

In this paper, we consider the analysis of large and high-dimensional CyTOF
data sets for which recent computational tools that are based on skew mixture
models (such as [17,22]) find it challenging to analyse due to the large number
of markers and cells. Our method is based on a mixture of skew normal of factor
analyzers, thus allowing simultaneous gating and dimension reduction. Moreover,
to allow for the identification and removal of outlying observations, we adopt a
threshold-based pruning approach where a small number of observations that are
deemed as very unlikely to occur are automatically pruned or discarded during
estimation. Thus, this three-in-one approach can perform automated gating,
dimension reduction, and outlier removal at the same time.

The rest of this paper is organized as follows. In Sect. 2, we present the
main ideas of our approach, discussing each of the four parts of our model. In
Sect. 3, we describe the model fitting process which is via a closed-form ECM
algorithm. Finally, the usefulness of the proposed approach is demonstrated in
Sect. 4 on a large high-dimensional CyTOF data containing 24 major immune
cell populations.

2 The SkewFA Methodology

Our methodology adopt a three-in-one approach comprising of four parts:
(1) skew component distributions, (2) mixture modelling, (3) factor analysis,
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and (4) pruning of observations. They allow for the modelling of multiple clus-
ters that may exhibit non-normal features, perform implicit dimension reduction,
and outlier removal, respectively. This is achieved by fitting a modified version of
mixtures of skew normal factor analyzers, referred to as the SkewFA model. We
now walk through each of these building blocks used to construct our SkewFA
model.

2.1 Non-normal Clusters: Multivariate Skew Normal Distributions

A multivariate skew normal (MSN) distribution is a flexible generalization of
the multivariate normal distribution, suitable for capturing skewness in data.
The MSN distribution (1) is the basic part of SkewFA, which plays the role of
modelling a single cell population. To ease discussion, we start with the definition
of the MSN distribution to be adopted by SkewFA. Let Y be a p-dimensional
random vector that follows a p-dimensional skew normal distribution [6] with a
p × 1 location vector μ, a p × p scale matrix Σ, and a p × 1 skewness vector δ.
Then its probability density function (pdf) can be expressed as the product of
a multivariate normal density and a (univariate) normal distribution function,
given by

fp(y ;μ,Σ, δ, ν) = 2φp (y ;μ,Ω) Φ (y∗; 0, λ) , (1)

where Ω = Σ + δδT , y∗ = δT Ω−1(y − μ), and λ = 1 − δT Ω−1δ. Here,
we let φp(.;μ,Σ) be the p-dimensional normal distribution with mean vector
μ and covariance matrix Σ, and φ(.;μ,Σ) is the corresponding (cumulative)
distribution function. The notation Y ∼ MSNp(μ,Σ, δ) will be used. Note that
when δ = 0, (1) reduces to the symmetric normal density φp(y ;μ,Σ). The
vector δ specifies how skewness can be characterized, that is, its direction and
magnitude.

It is worth noting that there exists many different versions of the multivari-
ate skew normal density in the literature. This includes the well-known version
proposed by [6] and the versions considered by [5,8,9], which involves univari-
ate normal distribution function in their pdfs. Among other versions, there are
also the skew family of distributions proposed by [3,4,24], which allows for a
multivariate normal distribution function to be used in their densities. Here in
(1), we are adopting the version as considered by [22], which is equivalent to the
so-called classical form proposed by [6]; see [15] for the proof.

2.2 Multiple Clusters: Finite Mixtures of Skew Normal
Distributions

The next part of SkewFA is the joint modelling of multiple cell populations or
clusters. This can be conveniently formulated as a mixture of MSN distribution.
More formally, a g-component finite mixture model is a convex linear combina-
tion of g component densities. In our case, the density of a mixture of g MSN
distributions is given by
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f (y ;Ψ ) =
g∑

i=1

πifp (y ;μi,Σi, δi) , (2)

where fp (y ;μi,Σi, δi) denotes the ith MSN component of the mixture model
as defined by (1), with location parameter μi, scale matrix Σi, and skew-
ness parameter δi. The mixing proportions or weights satisfy πi ≥ 0 (i =
1, . . . , g) and

∑g
i=1 πi = 1. We shall refer to the model defined in (2) as the

FMMSN (finite mixture of MSN) model. In the above, we let Ψ denote the
vector containing all the unknown parameters of the FMMSN model; that is,

Ψ =
(
π1, . . . , πg−1,θ

T
1 , . . . ,θT

g

)T

where now θi consists of the unknown para-
meters of the ith component density function which includes μi, δi, and the
distinct elements of Σi. The FMMSN model has been shown to be effective in
modeling flow cytometric data [22]. It provides a natural representation of the
data where each cluster can have its own specific parametric model. In [22] and
subsequent works, the FMMSN model have only been applied to data where p is
relatively small. This may perhaps be due to the computational burden associ-
ated with fitting a high-dimensional FMMSN model. The next part of SkewFA
attempts to alleviate this problem.

2.3 Dimension Reduction: Mixture of Skew Normal Factor
Analyzers

The FMMSN model is a highly parametrized model and thus can quickly become
computationally infeasible as the number of markers p and/or the number of clus-
ters g increases. A popular and powerful alternative to a fully specified mixture
model is a factor analysis (FA) model [13,19]. It assumes that the observations
can be modelled by lower-dimensional latent representations. More formally, it
models the distribution of the data using

y j = μ + Buj + ej , (3)

where uj is a q-dimensional (q < p) random vector of latent variables known as
factors, B is a p×q matrix of factor loadings, and e are independently distributed
error variables. Traditionally, it is assumed that U follows a standard (multi-
variate) normal distribution, whereas e follows a centered normal distribution
with a diagonal covariance matrix.

The third part of SkewFA adopts the FA framework for the FMMSN model,
leading to a mixture of MSN factor analyzers. We proceed by letting each com-
ponent of (2) to have a factor analytic representation similar to (3). More specif-
ically, we have the component-specific factors and errors jointly following a MSN
distribution. In addition, for ease of correspondence with the FA model, we use a
parameterization of the MSN distribution such that the factors have mean being
the zero vector and covariance matrix being the identity matrix. This enables
the property of u in the FA model to be preserved. To achieve this, we let

u ∼ MSNq

(
−cΛ

1
2 , Λ, Λ

1
2 δ

)
, (4)
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where c = π
2 and Λ =

(
I q + (1 − c2)δδT

)−1

. It follows that the marginal dis-
tribution of y is a FMMSN distribution given by

f(y j ;Ψ ) =
g∑

i=1

πi MSNp

(
μi − cB iΛ

1
2
i δi, Σi, B iΛ

1
2
i

)
. (5)

We shall refer to the above model as the SkewFA model.

2.4 Outlier Removal: Skew Normal Factor Analyzers with Pruning

The final part of SkewFA is the incorporation of an (automated) outlier removal
technique. For this, we start with a commonly used technique known as the
trimmed likelihood approach by [21]. This technique is quite simple to imple-
ment, but has been shown to be quite powerful and flexible; see [11,12] for its
applications to mixtures of factor analyzers and skew mixture models, respec-
tively. However, in addition to pruning a certain proportion of observations, we
also discard observations in a component-wise manner based on a specified cut-
off. The key idea is to (temporarily) remove a small number of observations that
are deemed as least likely to occur, so that they (temporarily) do not contribute
to (an iteration of) the model fitting procedure. By least likely to occur, we
mean that the observation has the lowest (estimated) contribution to the likeli-
hood function. To proceed, we attach a pruning label pj to each observation y j ,
which is a binary variable indicating whether the associated observation is to be
pruned for the current iteration of the fitting procedure. The contribution of an
observation is defined in terms of its density (5). These contributions are then
ranked from smallest to largest, that is,

f(y (1);Ψ ) ≤ f(y (2);Ψ ) ≤ . . . ≤ f(y (n);Ψ ), (6)

where the subscript given in parenthesis denotes the ranked index. The pruning
threshold is calculated based on the total number of observations and the pruning
proportion ρ. Then observations with ranked index less than or equal to �nρ� is
pruned, that is,

pj =
{

1, if (j) ≥ �nρ�
0, otherwise. (7)

In addition, if the component-wise density value of on observation falls below
a very small cutoff value, it is temporarily discarded (for that component) by
setting the corresponding indicator variable to zero. Note that at each iteration
of the fitting procedure, different observations can be pruned, hence the term
temporary was used. At the end of the last iteration, if an observation is pruned,
it is labeled as an outlier. However, for clustering purposes, a cluster label can still
be provided for these pruned observations by applying the maximum a posteriori
rule to their estimated posterior probabilities of component membership.
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3 Parameter Estimation via EM Algorithm

To fit the SkewFA model described above, that is, to carry out parameter esti-
mation, we follow the most commonly adopted approach of maximum likelihood
estimation (MLE). It follows that the SkewFA admits a convenient hierarchical
characterization that facilitates the development of an EM algorithm for para-
meter estimation, namely,

Y j | u ij , xj , Zij = 1 ∼ Np

(
μi + B iΛ

1
2
i u ij ,D i

)
,

U ij | xj , Zij = 1 ∼ Nq ((xj − c)δi, I q) ,

xj | Zij = 1 ∼ HN
(
0, 1;R+

)
,

Zj ∼ Multig (1;π) , (8)

assuming y j is not pruned. In the above, HN(0, 1;R+) denotes the standard half-
normal distribution truncated to the positive region, Multi denotes the multino-
mial distribution, and π = (π1, . . . , πg). The variables Zj = (Zi1, . . . , Zig)
(j = 1, . . . , n) have been introduced to denote the latent labels for the jth
observation where Zij is one or zero depending on whether y j belongs to the ith
component of the mixture model. The complete-data in this case consists of the
observations y j , the indicator variables Zj , and the latent variables U ij and xj .

The EM algorithm is implemented by alternating repeatedly the P-, E-, and
M-steps until convergence. The P-step stands for the pruning step, which pre-
cedes the usual E-step of the EM algorithm. During this step, the pruning labels
are calculated as described in Sect. 2.4. Only observations with pj = 1 are passed
to the E- and M-step of the current iteration. Furthermore, if the density of the
ith component of the skewFA model for an observation y j falls below the speci-
fied cutoff, then zij is set to zero and hence does not contribute to the correspond-
ing component in the E- and M-steps. The E-step calculates the expectation of
the complete-data log likelihood given the observed data y using the current
estimate of the parameters, known as the Q-function, which is given by

Q(Ψ ;Ψ (k)) = EΨ (k) {log Lpc (Ψ ) | y} ,

where log Lpc (Ψ) denotes the pruned complete-data log likelihood function,
given by

log Lpc (Ψ ) =
n∑

j =1

pj

g∑

i=1

zij

[
log πi − 1

2 log |D i| + tr
(
D−1

i Rij

)

+ (xj − c)2δiδ
T
i − 2(xj − c)δT

i u ij

]
. (9)

Here, we let Rij = (y j − μi − B iΛ
1
2u ij)(y j − μi − B iΛ

1
2u ij)T for notational

convenience. It can be shown that on the (k +1)th iteration, the E-step requires
the calculation of the following conditional expectations.
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z
(k)
ij = E

[
Zij | y j

]
(10)

e
(k)
1ij = E[Wj | y j , Zij = 1] (11)

e
(k)
2ij = E[W 2

j | y j , Zij = 1] (12)

e
(k)
3ij = E[WjU ij | y j , Zij = 1] (13)

e
(k)
4ij = E[U ij | y j , Zij = 1] (14)

e
(k)
5ij = E[U ijU

T
ij | y j , Zij = 1] (15)

The M-step of the EM algorithm maximizes the Q-function with respect to
the parameters Ψ . It follows that on the (k+1)th iteration of the EM algorithm,
an updated estimate of the parameters of the SkewFA model is given by

π
(k+1)
i =

n
(k)
i

n
, (16)

μ
(k+1)
i =

∑n
j =1 z

(k)
ij (y j − B

(k)
i Λ

(k)
1
2

i e
(k)
4ij)

n
(k)
i

, (17)

B
(k+1)
i =

⎡

⎣
n∑

j =1

z
(k)
ij (y j − μ

(k)
i )e(k)

4ij

⎤

⎦

⎡

⎣
n∑

j =1

z
(k)
ij e

(k)
5ij

⎤

⎦ Λ
(k)−

1
2

i , (18)

D
(k+1)
i =

1

n
(k)
i

diag

⎛

⎝
n∑

j =1

z
(k)
ij

[(
y j − μ

(k+1)
i − B

(k+1)
i Λ

(k)−
1
2

i e
(k)
4ij

)

(
y j − μ

(k+1)
i − B

(k+1)
i Λ

(k)−
1
2

i e
(k)
4ij

)T

+ B
(k+1)
i Λ

(k)−
1
2

i (e(k)
5ij − e

(k)
4ije

(k)T

4ij )Λ(k)−
1
2

i B
(k)T

i

])
, (19)

δ
(k+1)
i =

∑n
j =1 z

(k)
ij (e(k)

3ij − c e
(k)
4ij)

∑n
j =1 z

(k)
ij (e(k)2ij − 2 c e

(k)
1ij + c2)

, (20)

Λ
(k+1)
i = I q + (1 − c2)δ(k)

i δ
(k)T

i . (21)

The factor loading matrices B i carry important information about the
dimension reduction part of the SkewFA model. They give an indication of the
importance of each markers in the composition of the latent space. Accordingly,
the factor scores can be interpreted as the lower-dimensional representation of
the data. This can be easily retrieved by calculating

g∑

i=1

π
(k)
i Λ

(k)
1
2

i e
(k)
4ij . (22)
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4 Analysis of High-Dimensional CyTOF Data

To demonstrate the usefulness of the SkewFA approach, we consider the tasks
of automated gating, dimension reduction, and outlier detection, of a 13-
dimensional CyTOF data analyzed in [18]. The data contain measurements on
167,044 cells derived from a sample donated by a healthy human individual.
There are 24 major immune cell populations identified by manual analysis on
this data, and their relative population size varies considerably (Fig. 1). Further
description of the data, including the details of each label in Fig. 1, can be found
in [18] and is not repeated here due to space limitation. This data is difficult to
analyse [27] due to the large span in the abundance of the populations, which
ranges from the smallest Platelet population of 5 cells to the largest population
of 13,964 mature CD4+ T-cells. Our main task is to identify and model all these
cell populations and provide a predicted class label for each cell. Our secondary
tasks includes dimension reduction and identifying outlier cells.

Fig. 1. Abundance of cell populations varies largely across the 24 clusters, ranging
from as few as 5 cells to close to 14,000 cells. Details of the population labels (shown
as #1 to #24 above) can be found in [18].

An initial inspection of the distribution of the cell populations reveals that
some are evidently not symmetric. For example, the CD11b− monocyte cell
population (labeled #1 in Fig. 1) is clearly not symmetrically distributed on the
CD45 and CD45RA markers (see the red population within the top left plot in
Fig. 2). To assess the performance of the SkewFA model, we take the manual
gating results as the ‘true’ solution and measure how close the solution given
by SkewFA is to this ‘true’ results. For this, we report the F -measure score
as is typically used in evaluating the performance of cytometric data analysis
algorithms. The F -measure is defined as the harmonic mean of precision and
recall. It ranges between 0 and 1, with 1 indicating a perfect match with the
true class labels and 0 is the worse match. In calculating the F -measure, we
choose among the possible permutations of the cluster labels the one that gives
the highest value.
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Fig. 2. Scatterplot of six of the major cell populations in the CyTOF sample.

On applying the SkewFA model to the CyTOF data using the EM algorithm
described in Sect. 3, we obtained an overall F -measure of 0.830 (see Table 1),
outperforming previous results reported on this data (see [27]). It was observed
in this previous study that all considered methods performed poorly on this
data, achieving very low F -measures. The very low abundance of some cell pop-
ulations appears to make this data particularly challenging to model. Briefly,
[27] reported a comparison of 13 unsupervised algorithms on this CyTOF data.
This includes some well-known and/or commonly used algorithms specialised for
cytometric data, such as flowMeans [2], immunoClust [25], and SWIFT [20]. The
reported best results was 0.52, obtained by flowMeans. A comparison of the per-
formance of the SkewFA approach relative to these methods is shown in Table 1,
where the F -measure for other methods were reproduced from [27]. It can be
observed that SkewFA provides a notable improvement in gating performance
across most cell populations as evident by a higher F-measure, especially for low
abundance populations. In particular, Table 1 reveals that SkewFA is the only
method that had correctly identified all cells in the least abundant population
(#22), achieving a perfect F -measure. The SWIFT algorithm is the only other
algorithm that was able to identify at least some cells in this population, but
with a F -measure of 0.01 it is far from the performance of SkewFA. The other
algorithms failed to discriminate any cells from this population.

Furthermore, none of the competing methods considered have reported facil-
ities to identify and eliminate outliers. For this data, SkewFA identified approx-
imately 10% of outliers. To pursuit this further, we inspected all of these pruned
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Table 1. The F -measure per cell population of various methods applied to the CyTOF
data. The final row shows the overall F -measure results of the methods.

ID SkewFA FlowMeans FlowSOM k-means FLOCK ImmunoClust SWIFT

1 0.98 0.61 0.39 0.64 0.00 0.00 0.43

2 0.82 0.95 0.86 0.64 0.81 0.95 0.30

3 0.71 0.19 0.30 0.13 0.00 0.37 0.29

4 0.96 0.03 0.42 0.44 0.43 0.00 0.43

5 0.82 0.49 0.46 0.57 0.80 0.81 0.14

6 0.74 0.39 0.28 0.30 0.39 0.04 0.14

7 0.51 0.16 0.02 0.11 0.00 0.00 0.14

8 0.49 0.19 0.05 0.19 0.14 0.00 0.17

9 0.99 0.62 0.65 0.86 0.96 0.94 0.28

10 0.77 0.51 0.57 0.05 0.00 0.00 0.32

11 0.86 0.86 0.97 0.63 0.94 0.80 0.20

12 0.99 0.97 0.96 0.74 0.08 0.00 0.24

13 0.96 0.88 0.55 0.69 0.00 0.00 0.15

14 0.98 0.42 0.36 0.22 0.00 0.10 0.45

15 0.62 0.04 0.04 0.02 0.04 0.00 0.17

16 0.43 0.32 0.23 0.36 0.15 0.10 0.16

17 0.99 0.94 0.92 0.78 0.68 0.00 0.28

18 0.97 0.96 0.96 0.90 0.72 0.71 0.17

19 0.92 0.82 0.93 0.90 0.93 0.70 0.32

20 1.00 0.35 0.61 0.00 0.78 0.00 0.77

21 1.00 0.64 0.62 0.63 0.59 0.55 0.61

22 1.00 0.00 0.00 0.00 0.00 0.00 0.01

23 0.90 0.45 0.00 0.00 0.00 0.00 0.72

24 0.97 0.66 0.72 0.62 0.64 0.00 0.49

All 0.83 0.52 0.50 0.44 0.38 0.31 0.18

observations (not shown). Surprisingly, it reveals that they all corresponds to
cells that are deemed as dead by expert analysts. This suggests that SkewFA
has the ability to discriminate between live and dead cells, which may have
contributed to its superior performance in this data.

Finally, concerning the computation time, we note that the SkewFA approach
is very competitive to other algorithms. In this experiment, the total computa-
tion time for SkewFA was only 30 s, placing it the fourth fastest among the 11
algorithms considered. The three faster algorithms were k-means, FlowSOM,
and FLOCK, requiring 2, 15, and 29 s, respectively. The remaining algorithms
have computation time ranging from 249 to 29,469 s. It is worth noting that
SkewFA is a single-threaded implementation in this experiment, whereas for the
other competing algorithms the parallel version is used if available.
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5 Conclusion

We introduced a new computational tool, SkewFA, for mining large and high-
dimensional CyTOF data. It allows for simultaneously clustering, dimension
reduction, and removal of outliers. Based on an enhanced version of finite mix-
tures of skew normal factor analyzers, the approach can effectively accommodate
clusters that are asymmetrically distributed. Moreover, by adopting a factor ana-
lytic characterization of the component densities, it enables SkewFA to perform
implicit dimension reduction within very reasonable time. An illustration on a
large CyTOF data shows that the SkewFA model compares favourably to other
state-of-the-art specialized algorithms, achieving a higher F -measure than those
reported in other analyses of these data. It is also the only approach among the
competing algorithms that allows for automatic identification and removal of
outlying observations.
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Abstract. Currently, most of widely used databases are label-wise. In
other words, people organize their data with corresponding labels, e.g.,
class information, keywords and description, for the convenience of index-
ing and retrieving. However, labels of the data from a novel application
usually are not available, and labeling by hand is very expensive. To
address this, we propose a novel approach based on transfer learning.
Specifically, we aim at tackling heterogeneous domain adaptation (HDA).
HDA is a crucial topic in transfer learning. Two inevitable issues, fea-
ture discrepancy and distribution divergence, get in the way of HDA.
However, due to the significant challenges of HDA, previous work com-
monly focus on handling one of them and neglect the other. Here we
propose to deploy locality-constrained transfer coding (LCTC) to simul-
taneously alleviate the feature discrepancy and mitigate the distribution
divergence. Our method is powered by two tactics: feature alignment
and distribution alignment. The former learns new transferable feature
representations by sharing-dictionary coding and the latter aligns the
distribution gaps on the new feature space. By formulating the prob-
lem into a unified objective and optimizing it via an iterative fashion,
the two tactics are reinforced by each other and the two domains are
drawn closer under the new representations. Extensive experiments on
image classification and text categorization verify the superiority of our
method against several state-of-the-art approaches.

Keywords: Domain adaptation · Transfer learning · Knowledge
discovery

1 Introduction

From the perspective of general users, a database is a set of well organized data.
For a piece of data in a database, it is usually organized with several keywords
associated with it for the convenience of indexing and retrieving. These keywords
c© Springer International Publishing AG 2017
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can be seen as labels of the corresponding data. In real-world applications, how-
ever, labels are not always accessible. What should one do in this situation?
Most people would say we can train a classifier to automatically label sam-
ples, and some may say why bother, we can label them by hand. Unfortunately,
both of them are not practical in specific circumstances, because either we have
insufficient training samples to train an accurate classifier for a new applica-
tion, or labeling by hand is too expensive to be afforded. The endless stream of
novel applications and pervasive scarcity of well-labeled data have stimulated a
remarkable wave of research on transfer learning [1]. Transfer learning handles
the problem where available labeled samples in the target domain are too scarce
to train an accurate model. It borrows knowledge from related domains, i.e.,
the source domain, to facilitate training. However, a majority of machine learn-
ing approaches might fail to transfer knowledge because they commonly assume
that training and test data are drawn from the same probability distribution.
Unfortunately, it is always hard to find a semantically matched source domain
which happens to share the same data distribution with the target domain.

Domain adaptation [2,3,5,6] is proposed with the mission of knowledge trans-
fer beyond the distribution gaps among different domains. Most of existing
work [2,7,8] focus on the homogeneous domain adaptation problem where the
two domains are sampled from different data distributions but the same feature
representation. In practice, however, the two domains are often drawn from not
only different probability distributions but also different feature representations.
For instance, the target domain is sampled from convolutional neural network
(CNN) features of images, whilst the source domain is drawn from bag-of-words
(BoW) features of texts. Accordingly, HDA [9–11] is proposed and has received
increasing attention.

To transfer knowledge among heterogeneous domains, HDA has to overcome
two inevitable obstacles: feature discrepancy and distribution divergence. How-
ever, due to the intrinsic challenges of HDA, existing work generally select only
one of them to tackle. They optimize either the feature discrepancy or the distrib-
ution divergence individually. For instance, previous work [8–10,12] focus on min-
imizing the distribution divergence. A fraction of existing approaches [11,13,14]
propose to learn new feature representations to mitigate the feature discrepancy.
Nevertheless, it is easy to know that the distribution gaps would be smaller if the
two domains are represented by more similar feature representations. Meanwhile,
minimizing the distribution gaps also leads to more optimal feature representa-
tions (feature representations which can alleviate the distribution divergence are
preferred). In a nutshell, the two objectives can reinforce each other and jointly
optimizing them would be more beneficial.

Motivated by above discussions, we propose a novel approach, named as
locality-constrained transfer coding (LCTC). It simultaneously alleviates the
feature discrepancy and mitigates the distribution divergence in a unified opti-
mization problem. Specifically, our objective is formulated by the following
motivations: (1) To alleviate the feature discrepancy, we learn new transfer-
able feature representations for the two domains with a shared codebook. By
sharing the codebook, the learned new features are interconnected and, thus,



Locality-Constrained Transfer Coding for HDA 195

the knowledge can be transfered to the target domain. (2) To mitigate the dis-
tribution divergence, we further minimize the marginal distribution gaps between
the two domains on the learned new feature space. (3) It is worth noting that
samples with the same semantic label tend to stay close (as shown in Fig. 1).
Therefore, we also exploit to preserve the manifold structure and local con-
sistency in our formulation. An iterative updating algorithm is presented to
optimize the objective. Experimental results on image classification and text
categorization verify the superiority of our method.

2 Related Work

Many approaches [7,19,20] have been proposed to handle domain adaptation
problems. A majority of them focus on homogeneous domain adaptation. For
instance, Pan et al. [8] propose to learn transferable components across domains
in a reproducing kernel Hilbert space (RKHS) by using maximum mean discrep-
ancy (MMD) [15]. Ding et al. [5] deploy low-rank coding in a deep structure
to learn a latent space shared by the two domains. However, those work con-
centrate on either minimizing the data distribution gaps or mining the shared
factors among the two domains. They did not give much attention to the feature
discrepancy.

Recently, some HDA methods [21,22] are proposed to handle the feature dis-
crepancy problem. Wang and Mahadevan [9] align the data manifold of the two
domains for adaptation. Li et al. [11] propose using augmented feature repre-
sentations to effectively utilize the data from both domains with a SVM similar
formulation. Thai et al. [10] re-weight the samples and select landmarks for
classification.

As stated before, the current issue is that there are two inevitable problems
of which need to be taken care, but previous work exploit to optimize either the
feature discrepancy or the distribution divergence separately. They catch one
of them and lose another. This paper proposes a novel approach which aims to
simultaneously alleviate the feature discrepancy and mitigate the distribution
divergence in a unified optimization problem.

3 Locality-Constrained Transfer Coding

3.1 Notations

In this paper, we use bold lowercase letters to represent vectors, bold uppercase
letters to represent matrices. A sample is denoted as a vector, e.g., x, and the i-
th sample in a set is represented by the symbol xi. For a matrix M, its Frobenius

norm is defined as ‖M‖F =
√∑

i δi(M)2, where δi(M) is the i-th singular value
of the matrix M. The trace of matrix M is denoted by tr(M). For clarity, the
frequently used notations and corresponding descriptions are shown in Table 1.
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Table 1. Frequently used notations and their descriptions.

Notation Description Notation Description

Xs ∈ R
ds∗ns , ys Source samples/labels X ∈ R

m∗n Xs and Xt

Xt ∈ R
dt∗nt , yt Target samples/labels B ∈ R

m∗k Codebook

M ∈ R
n∗n MMD matrix S ∈ R

k∗n Coding matrix

Λ Lagrange multipliers α, β Penalty parameters

3.2 Definitions

Definition 1. A domain D consists of two parts: feature space X and its prob-
ability distribution P (X), where X ∈ X .

We use subscripts s and t to indicate the source domain and the target
domain, respectively. This paper focuses on the following problem:

Problem 1. Given a well-labeled source domain Ds and a mostly unlabeled tar-
get domain Dt, where Ds �= Dt, Xs �= Xt and P (Xs) �= P (Xt). Simultaneously
align the feature discrepancy and distribution divergence between Ds and Dt.

3.3 Problem Formulation

As we stated in the introduction, our model supposes to learn new transferable
feature representations for Xs and Xt with a shared codebook B. It also mini-
mizes the distribution gaps between the two domains on the new feature space.
Thus, our objective can be formulated as follows:

min
B,S

C1(Xs,Xt,B,S)︸ ︷︷ ︸
feature alignment

+ αC2(Ss,St)︸ ︷︷ ︸
distribution alignment

+ βΩ(S)︸ ︷︷ ︸
constraint

(1)

where S (Ss and St for Xs and Xt respectively) is the new feature representation,
C1 is the feature alignment part, C2 is the distribution alignment part and Ω is
the constraint. Notice that C2 is deployed on S rather than X. It is a progressive
alignment based on the results of C1. α > 0 and β > 0 are two hyper-parameters.
In the remainder of this section, we will present each part in detail and show
how to optimize Eq. (1).

Feature Alignment. Suppose that we can learn a new feature representation
S by which the feature discrepancy between the two domains can be alleviated.
For the source domain data Xs, we can learn Ss through

min
bs,ss

ns∑
i=1

∥∥xs,i −
k∑

j=1

bs,js
j
s,i

∥∥2

2
+ β

ns∑
i=1

∥∥ss,i

∥∥
1
,

s.t. ‖bs,j‖2 ≤ c, ∀j,

(2)
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where c is a constant, we keep it as 1 in this paper. Equation (2) can be rewritten
as the following form in matrix,

min
Bs,Ss

‖Xs − BsSs‖2F + β
ns∑
i=1

‖ss,i‖1, s.t. ‖bs,j‖2 ≤ c, ∀j, (3)

where Bs is the codebook, also known as dictionary matrix, learned on Xs, and
Ss is the coding matrix. ss,i is a sparse representation for the corresponding data
point in Xs. In a similar fashion, we can learn a new feature representation for
the target domain data by optimizing:

min
Bt,St

‖Xt − BtSt‖2F + β
nt∑

i=1

‖st,i‖1, s.t. ‖bt,j‖2 ≤ c, ∀j. (4)

In order to transfer knowledge from the source domain to the target domain,
we advocate Xs and Xt sharing the same codebook B. Thus, their correspond-
ing new feature representations Ss and St would be interconnected and can be
directly compared. It means the new feature representations are transferable. To
this end, we have the following problem:

min
B,Ss,St

‖Xs − BSs‖2F + ‖Xt − BSt‖2F + β
n∑

i=1

‖si‖1,
s.t. ‖bj‖2 ≤ c, ∀j.

(5)

Note that Ss and St may have different dimensionalities in practice. In
this paper, to reduce the computational costs and filter out high-dimensional
noises, samples are aligned to the same dimensionality by PCA. One can also
align them in a RKHS, or by learning two projections, one for each domain.
Equation (5) can be rewritten as the following equivalent equation after some
algebraic manipulations,

min
B,S

‖X − BS‖2F + β
n∑

i=1

‖si‖1,
s.t. ‖bj‖2 ≤ c, ∀j,

(6)

where X and S are defined as,

X = [Xs Xt], S = [Ss St].

Distribution Alignment. Please notice that in HDA tasks, one needs to take
care of not only feature discrepancy but also distribution divergence. Recently,
MMD [15] has been introduced to estimate the distance between distributions
because of its non-parametric merit. The MMD between two datasets Xs and
Xt can be computed as:

∥∥∥∥ 1
ns

ns∑
i=1

φ(xs,i) − 1
nt

nt∑
j=1

φ(xt,j)
∥∥∥∥
2

, (7)
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Fig. 1. Visualization of the Amazon and Webcam dataset from Office dataset [4]. The
figure is generated by t-SNE [23] with DeCAF6 features [24]. Each color denotes one
class. (Color figure online)

where φ(·) is a feature mapping. Since we have learned the new feature represen-
tations Ss and St for Xs and Xt respectively, we further mitigate the distribution
divergence on the new feature space. The minimization of distribution divergence
between Ss and St can be formulated as follows:

min
Ss,St

∥∥∥∥ 1
ns

ns∑
i=1

Ss,i − 1
nt

nt∑
j=1

St,j

∥∥∥∥
2

2

= min
S

tr(SMS�), (8)

where M is the MMD matrix computed as:

Mij =

⎧
⎪⎨
⎪⎩

1
nsns

, if xi,xj ∈ Xs

1
ntnt

, if xi,xj ∈ Xt

−1
nsnt

, otherwise

. (9)

Local Consistency. Suppose that the label information of the target domain
is known, we visualize the target samples as shown in Fig. 1. An interesting
observation is that the data samples with the same label stay in a compact
cluster. More formally, a sample tends to have the same label with its k-nearest
neighbors. Traditionally, the local consistency is formulated as a graph Laplacian
regularization [25,26]. However, to formulate a compact and efficient objective,
we advocate a locality constraint instead of the graph regularization in this
paper. The locality constraint can be seamlessly incorporated into our sharing-
dictionary coding framework. And, fortunately, it gives rise to a serendipity that
the locality constraint must lead to sparsity [32]. Thus, we can remove the �1
norm from Eq. (6). The locality constraint is defined as follows:

‖di � si ‖2, with di = exp(dist(xi,B)
σ ) (10)

where � denotes the element-wise multiplication, di is the locality adaptor which
measures the distance between an instance xi and the codebook. dist(xi,bj) is
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the Euclidean distance between xi and bj . σ is used for adjusting the weight
decay speed [32]. We set σ = 1 in this paper.

At last, by taking all the considerations into account, we have the overall
objective shown as follows:

min
B,S

‖X − BS‖2F + αtr(SMS�) + β
n∑

i=1

‖di � si‖2,
s.t. ‖bj‖2 ≤ c, ∀j.

(11)

3.4 Problem Optimization

It is easy to know that Eq. (11) is not convex for B and S simultaneously. How-
ever, it is convex for each of them when the other is fixed. We, therefore, deploy
an alternative strategy to optimize it as shown in the following steps.

Step 1. Optimize coding matrix S. Optimizing Eq. (11) with respect to
S when B is fixed can be reformulated as optimizing the following problem:

min
S

‖X − BS‖2F + αtr(SMS�) + β
n∑

i=1

‖di � si‖2. (12)

To make the problem easier to be optimized, we introduce an auxiliary vari-
able Di = diag(di). As a result, Eq. (12) can be rewritten as,

min
S

‖X − BS‖2F + αtr(SMS�) + β
n∑

i=1

‖Di · si‖2. (13)

To solve S, by taking the derivative of Eq. (13) with respect to S, and setting
the derivative to zero, we have,

si =
(
B�B + αMiiI + βD�

i Di

)−1

B�xi. (14)

Step 2. Optimize codebook B. Optimizing Eq. (11) with respect to B
when S is fixed can be reformulated as optimizing the following problem:

min
B

‖X − BS‖2F +β
n∑

i=1

‖di � si‖2, s.t. ‖bj‖2 ≤ c, ∀j. (15)

The problem has been well investigated in previous work [32]. Limited by spaces,
we do not present the details here. For clarity, we sketch out the main steps of
our approach in Algorithm 1.

3.5 Complexity Analysis

Here we present the theoretical complexity of Algorithm 1 by big O notation. For
the initialization part, the KMeans operation costs O(n) and the construction of
MMD matrix costs O(n2). For the iteratively updating part, solving the coding
matrix S is some matrix multiplications, it generally costs O(m3), optimizing
the codebook B costs O(m + k2). In sum, the overall time costs of Algorithm 1
is O(n + n2 + T (m3 + m + k2)), where T is the number of iterations.
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Algorithm 1. HDA via locality-constrained transfer coding

Input: Sample sets Xs and Xt, parameters α, β, σ and c
Output: Label information of Xt

Initialize
1. Initialize di := 0, si := 0, σ=1 and c=1
2. Use KMeans clustering [32] to initialize B
3. Compute MMD matrix M by Eq. (9)
Repeat

4. Optimize the coding matrix S
5. Optimize the codebook B
6. Update the locality adaptor d

until Convergence or max iteration
7. Classify St with Ss used as reference

4 Experiments

4.1 Data Preparation

Office+Caltech-256 dataset [4] consists of 4 sub-dataset from Amazon (A),
Webcam (W), DSLR (D), and Caltech-256 (C). Samples in Amazon are
downloaded from amazon.com. Webcam consists of low-resolution images cap-
tured by a web camera. On the contrary, images in DSLR are high-resolution
ones captured by a digital SLR camera. In our experiments, we follow the same
settings with previous work [2]. Ten common classes shared by four dataset are
selected. There are 8 to 151 samples per category per domain, and 2,533 images
in total. Furthermore, 800-dimensional SURF features and 4,096-dimensional
DeCAF6 features [24] are extracted as our low-level input.

Multilingual Reuters Collection [33] is a cross-lingual text dataset. It
consists of 11,000 articles from 6 categories in 5 languages, i.e., English, French,
German, Italian, and Spanish. Here we follow the same settings in previous
work [10,11]. Specifically, all the articles are represented by BoW with TF-IDF.
Then, the BoW features are processed by PCA with dimensionality of 1,131,
1,230, 1,417, 1,041, and 807 for different language categories English, French,
German, Italian, and Spanish, respectively.

4.2 Experimental Protocols

To fully evaluate our model, we perform three experiments. For instance, image
classification across features, image classification across features and datasets
and heterogeneous text categorization. Office+Caltech-256 are used in the first
two experiments and Multilingual Reuters Collection are used in the last.

For fair comparison, we follow the same settings with previous work. Specif-
ically, for image classification tasks, the source domain consists of 20 samples
per category for training, and 3 labeled target samples per category are ran-
domly selected as reference for classification. For text categorization tasks,
we have Spanish as the target domain and the others as the source domain.

http://amazon.com
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Table 2. Accuracy (%) of HDA across features.

Method A→A C→C W→W Avg.

SVMt 44.2 ± 1.1 30.1 ± 0.9 58.3 ± 1.2 44.2 ± 1.1

DAMA 39.5 ± 0.7 19.5 ± 0.8 47.5 ± 1.6 35.5 ± 1.1

MMDT 40.7 ± 1.0 31.5 ± 1.1 60.3 ± 0.8 44.2 ± 1.0

SHFA 43.4 ± 0.9 29.8 ± 1.3 62.4 ± 0.9 45.2 ± 1.0

SHFR 44.5 ± 1.1 33.4 ± 1.0 54.3 ± 0.9 44.1 ± 1.0

LCTC 45.5 ± 1.4 34.5 ± 1.2 64.3 ± 1.1 48.1 ± 1.2

Table 3. Accuracy (%) of HDA across features and datasets. The source domain and
the target domain are represented by DeCAF6 features and SURF features respectively.

Method SVMt MMDT SHFA SHFR LCTC

A→C 30.1 ± 0.9 28.5 ± 1.4 29.6 ± 1.5 27.4 ± 1.7 34.7 ± 1.5

A→W 58.3 ± 1.2 58.1 ± 1.3 58.8 ± 1.3 52.5 ± 1.4 60.4 ± 1.4

C→A 44.2 ± 1.1 44.7 ± 1.0 45.9 ± 1.3 43.6 ± 1.3 50.1 ± 1.2

C→W 58.3 ± 1.2 57.8 ± 1.1 59.1 ± 1.2 52.7 ± 1.5 61.9 ± 2.0

W→A 44.2 ± 1.1 45.3 ± 1.5 46.6 ± 1.3 43.1 ± 1.6 52.3 ± 1.4

W→C 30.1 ± 0.9 29.9 ± 1.3 29.7 ± 1.6 27.1 ± 1.3 32.9 ± 1.6

Avg. 44.2 ± 1.1 44.1 ± 1.3 45.0 ± 1.4 41.1 ± 1.5 48.7 ± 1.5

We randomly select 100 articles per category for the source domain and 500
articles for the target domain. Then, we select 10 labeled target samples as ref-
erence. For simplicity and without loss of generality, we set the hyper-parameters
α = 1 and β = 1 in our experiments.

We compare our method with several state-of-the-art HDA approaches, e.g.,
domain adaptation using manifold alignment (DAMA) [9], maximum margin
domain transform (MMDT) [12], semi-supervised heterogeneous feature aug-
mentation (SHFA) [11], sparse heterogeneous feature representation (SHFR) [14]
and cross-domain landmark selection (CDLS) [10]. SVM trained on the labeled
reference samples (SVMt) is used as baseline. SVM is also used as the final clas-
sifier for the tested approaches. We report the accuracy rate [2,6] on the target
domain, i.e., the ratio between the number of correctly predicted samples and the
number of total samples in the target domain. Since the evaluated instances are
randomly selected, each of the reported results of our algorithm is the average
of 10 runs.

4.3 Experimental Results and Discussions

The image classification results of HDA across features on Office+Caltech-
256 are shown in Table 2. The two domains are sampled from different feature
representations but from the same dataset. DSLR is not tested for the limited
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Table 4. Accuracy (%) of HDA on text categorization.

Method English French German Italian

SVMt 67.1 ± 0.8

DAMA 67.8 ± 0.7 68.3 ± 0.8 67.7 ± 1.0 66.5 ± 1.1

MMDT 68.9 ± 0.6 69.1 ± 0.7 68.3 ± 0.6 67.5 ± 0.5

SHFA 68.2 ± 0.9 68.7 ± 0.4 68.9 ± 0.5 68.5 ± 0.7

SHFR 67.7 ± 0.4 68.5 ± 0.7 68.1 ± 0.8 67.2 ± 1.0

CDLS 71.1 ± 0.7 71.2 ± 0.9 70.9 ± 0.7 71.5 ± 0.6

LCTC 73.7 ± 0.5 74.0 ± 0.6 72.5 ± 0.4 71.3 ± 0.5

number of samples. It can be seen from Table 2 that HDA approaches generally
perform better than baseline SVM. However, DAMA not always can outperform
the baseline. A possible explanation is that DAMA only considers the manifold
matching and topology structure preservation between two domains. The further
knowledge transfer after domain alignment is ignored in DAMA. Our approach
considers not only the topology structure (by locality constraint) and the distri-
bution alignment (by minimizing MMD), but also the knowledge transfer by a
shared codebook. As a result, our approach performs better than state-of-the-art
methods.

Table 3 shows the results of HDA across features and datasets on
Office+Caltech-256. The source domain and the target domain are drawn not
only from different feature representations but also different datasets. We can
see that our model stays ahead of the evaluations. It further verifies the effective-
ness of our model. It is worth noting that DAMA and MMDT are approaches
that emphasize on distribution matching, whilst SHFA and SHFR mainly con-
sider learning new feature representations and new classifiers. Both strategies
are important and effective in some ways. However, the two obstacles of HDA
are inevitable when the domain difference is substantially large. Thus, jointly
optimizing both of them, as our approach does, can further improve the perfor-
mance.

From Tables 2 and 3, it is clear that our approach performs well on image clas-
sification tasks. Now, we further test it on text categorization tasks. Specifically,
we evaluate it on Multilingual Reuters Collection dataset. Following the previous
work [10,11], we use ‘Spanish’ as the target domain, ‘English’, ‘French’, ‘Ger-
man’ and ‘Italian’ as the source domain respectively. The experimental results
are reported in Table 4.

It can be seen from Table 4 that our algorithm also performs well on text cat-
egorization tasks. Limited by space, we only report the results of 10 labeled
samples as reference. It is worth noting that although HDA methods outper-
form the baseline, the performance superiority between HDA methods and SVM
would get smaller with the increasing number of labeled target samples. It means
transfer learning is especially suitable for tasks where the target domain has just
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a few or even no labeled data. Besides, CDLS proposes to minimize the distri-
bution gaps and re-weight samples for better adaptation. However, it does not
preserve the local structure of data samples. That is the reason that our method
outperforms CDLS.

5 Conclusion

This paper proposes a novel approach for HDA, which takes both alleviating
the feature discrepancy and mitigating the distribution divergence into consid-
eration. By sharing a dictionary, the source domain and the target domain are
coded in shared new feature representations. The probability distributions of the
two domains are further aligned on the new feature space. A locality constraint
is deployed to preserve the local structure and to reduce the computational costs.
Extensive experiments on image classification and text categorization tasks ver-
ify the superiority of our approach.
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Abstract. Deep neural networks have already achieved great success
in a number of fields, for example, computer vision, natural language
processing, speech recognition, and etc. However, such advances have
not been observed in information retrieval (IR) tasks yet, such as ad-hoc
retrieval. A potential explanation is that in a particular IR task, training
a document ranker usually needs large amounts of relevance labels which
describe the relationship between queries and documents. However, this
kind of relevance judgments are usually very expensive to obtain. In this
paper, we propose to train deep ranking models with weak relevance
labels generated by click model based on real users’ click behavior. We
investigate the effectiveness of different weak relevance labels trained
based on several major click models, such as DBN, RCM, PSCM, TCM,
and UBM. The experimental results indicate that the ranking models
trained with weak relevance labels are able to utilize large scale of behav-
ior data and they can get similar performance compared to the ranking
model trained based on relevance labels from external assessors, which
are supposed to be more accurate. This preliminary finding encourages
us to develop deep ranking models with weak supervised data.

Keywords: Ranking model · Click model · Deep learning

1 Introduction

Deep neural networks have already delivered great improvements in many
machine learning tasks, such as speech recognition, computer vision, natural
language processing, and etc. This line of research is often referred to as deep
learning, as these neural networks usually comprise multiple interconnected lay-
ers. A number of “deep models” have been proposed to address the challenges
in IR tasks, in particular ad-hoc search. For example, Huang et al. proposed
DSSM [1], which is a feed forward neural network to predict the click probabil-
ity given a query string and a document title.

c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 205–216, 2017.
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Learning such kind of deep models requires large amount of labeled data. In
IR tasks, relevance judgments, i.e. query-document pairs, often provide supervi-
sion for the training process of ranking models. However, large scale of labeled
data can be very expensive and time consuming to obtain. To circumvent the lack
of labeled samples, researchers proposed to use unsupervised learning methods
or weak relevance labels to train ranking models.

Unsupervised neural models aim to describe the implicit internal structure
of the textual contents. Several methods for distributed text representations (for
example, word2vec [2], GloVe [3], Paragraph2vec [4], and etc.) have been shown
to be effective in various tasks such as text classification, recommendation, as
well as Web search. The pre-trained distribution of text can be fed into document
ranking algorithms to capture the relationship between query string and target
documents.

Another line of research attempts to utilize weak labels for model training.
The weak labels can be generated based on heuristic methods or users’ behavior.
Yin et al. proposed to use a 10-slot windows where the first document is treated
as a positive sample while the remaining ones are treated as negative ones [6].
Dehghani et al. developed a neural network using the output of an unsupervised
ranking model, BM25, as the weak supervision signal [5]. During a user’s search
session, the click-through data can be collected by the search engine, which
is often treated as pseudo feedback from users. Huang et al. used the clicked
result as a positive document and randomly selected unclicked results as negative
documents. Compared to relevance judgments assessed by people, it is able to
obtain much more weak labels by utilizing large scale of behavior data, i.e. much
more queries and documents. This proves to be vital to the success of a lot of
deep models [5,7].

In this paper, we try to train deep ranking models based on the relevance
labels estimated by click model. Click model is widely used nowadays in commer-
cial search engine to model user clicks on a search engine result page (SERP).
Different click models are actually based on different user behavior assumptions.
One of the key functions of click model is to predict the click probability of a
result given the users’ behavior on the corresponding query [8]. This probability
is shown to be strongly related to the relevance score of the result. We first train
several click models with query logs of a commercial search engine to generate
weak relevance labels. Then we learn ranking models based on both weak rele-
vance labels and actual relevance judgments assessed people. We adopt several
major evaluation metrics to compare the ranking performance.

In summary, the main contributions of our study are as following:

– We investigate the effectiveness of weak relevance labels estimated by several
major click models in training deep ranking models.

– We compare the performance of the ranking model trained based on weak
relevance labels to that trained on relevance judgments made by assessors.

The remaining of this paper is organized as follows: we review related work in
Sect. 2 and describe the weak relevance label generation procedure in Sect. 3. The
training of deep ranking models is illustrated in Sect. 4 and the performances of
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different models are presented in Sect. 4.3. Finally, we conclude our research in
Sect. 5.

2 Related Work

2.1 Ranking with Deep Models

Deep neural networks have achieved dramatic improvements in multiple fields of
computer sciences. IR community has begun to apply neural methods to advance
state of the art retrieval technology. The central IR task can be typically formal-
ized as a matching problem [9]. Guo et al. suggested that most of recent neural
models in IR application can be generally partitioned into two categories [9]
according to the model architecture.

The first category is the representation-focused model, which tries to con-
struct a representation for the text in both queries and candidate documents
with deep neural networks. Then the similarity between a query and a candi-
date document can be measured between the two representations with a sim-
ilarity function. This line of research includes DSSM [1], C-DSSM [10] and
ARC-I [11]. These approaches are also referred to as “late combination meth-
ods” since the representations of queries and documents are learnt separately.
Guo et al. argued that the shortcoming of representation-focused model is that
the semantic matching is not necessarily appropriate for relevance matching in
IR tasks.

The second category is the interaction-focused model including Deep-
Match [12], ARC-II [11], DRMM [9], and MatchPyramid [13]. In these models,
the interactions between queries and candidate documents are fed into neural
networks. Thus, the neural networks get the opportunity to capture various
matching patterns between pieces of text. In a typical ad-hoc search scenario,
the query is usually very brief while the candidate documents can be much
longer. The information of matched terms and matched positions is very valu-
able to learn a good ranker. Therefore, recently more effort has been spent on
the interactions-focused models [14].

In this study, we conduct a preliminary study based on a deep ranking model,
Duet, which is proposed by Mitra et al. [15]. In this approach, the local and
distributional representations (early combination model and late combination
model) are learnt simultaneously to take advantage of both relevance matching
and semantic matching. More details about our experiment will be presented in
Sect. 4.

2.2 Click Model

Modern search engines exploit user’s interaction logs to improve search quality.
However, although the click-through-rate (CTR) of a result can be regarded as
an implicit relevance feedback from real users, it is systematically affected by
some biases. For example, Joachims et al. [17] showed that the CTR could be
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affected by the position bias and top results could attract more user clicks than
results in lower positions. Wang et al. [19] found that the presentation style of
search results could influence their CTRs.

To distill accurate relevance labels from the noisy and biased query logs, a
series of click models were proposed in previous studies. Most click models are
probabilistic models that follow the examination hypothesis [24]: a search result
will be clicked (Ci = 1) only if it is examined (Ei = 1) and it is relevant to the
query (Ri = 1):

Ci = 1 → Ei = 1 ∧ Ri = 1 (1)

Under this hypothesis, the click probability is given by:

P (Ci = 1) = P (Ei = 1)P (Ri = 1) (2)

Most click models assume that P (Ri) only depends on the query and result
(URL): P (Ri = 1) = rqu and incorporate the behavior biases in the estimation
of P (Ei). By inferring rqu from the query log, we can estimate the relevance
score between query q and result u.

Different click models make different assumptions of how users browse and
interact with SERPs, and therefore, have different estimation of P (Ei). For
example, the cascade model proposed by Craswell et al. [24] assumes the user
will examine the results sequentially until he or she finds and clicks a relevant
result:

P (E1 = 1) = 1 (3)

P (Ei+1 = 1|Ei = 1, Ci) = 1 − Ci (4)

While the cascade model assumes that the user will always be satisfied with
a single click, the Dynamic Bayesian Network model (DBN) model proposed by
Chapelle and Zhang [21] uses a separate variable (Si) to model whether the user
will be satisfied after a click.

P (Si = 1|Ci = 1) = squ (5)

P (Ei+1 = 1|Ei = 1, Si = 0) = λ (6)

P (Ei+1 = 1|Ei = 1, Si = 1) = 0 (7)

The assumption that the user scans the results on the SERP one-by-one
might be too strong. Therefore, Dupret and Piwowarski [22] proposed the User
Browsing Model (UBM), which allows the user to skip some of the results. The
examination probability of UBM depends on the position of last click (ri) and
the its distance to current result (di):

P (Ei = 1|C1...i−1) = γri,di
(8)

Recently, Wang et al. [19] further found that the user does not always browse
the SERP in the top-to-bottom order and there is revisiting behavior in user’s
interaction with SERPs. So they incorporated these non-sequential behaviors
into the Partially Sequential Click Model (PSCM), in which the examination
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probability is determined by the position of current result (i), the position of
previous clicks (m), and the position of next click (n):

P (Ei = 1|C1...N ) = γi,m,n (9)

The CTR of the result can also be influenced by the current search context.
Therefore, Zhang et al. [23] built a Task-Centric Click Model (TCM), which
incorporates the query bias (i.e. whether the query actually matches user’s infor-
mation need) and duplicate bias (i.e. whether the result is examined before), to
model the click probability at a session level.

In this study, we will use a series of click models, including DBN, UBM,
PSCM, and TCM, along with the RCM in which the examination probability
P (Ei = 1) is always set to 1, to generate weak relevance labels deep ranking mod-
els training. The detailed process of weak relevance label generation is described
in Sect. 3.

3 Weak Relevance Label Generation

Click-through behavior during Web search provides implicit feedback of users’
click preferences [16]. Joachims et al. looked into the reliability of implicit
feedback and found that the click-through information is “informative yet
biased” [17]. User clicks are biased toward many aspects: position bias: users
tend to prefer the documents higher in the ranking list [17]; novelty bias: previ-
ously unseen documents are more likely to be clicked [18]; attention bias states
that the impact of visually salient documents [19].

The central of a click model is to predict the clicked probability (Click-
through rate) of a search result. Although the click possibility is not defined as
the document relevance, it is closely related to document relevance. It is intuitive
that the more relevant a document is, the more likely that a user will click it.
Therefore, we can infer the document relevance based on the click probability
predicted by click models.

In this study, we adopt several popular click models including DBN, RCM,
PSCM, TCM, and UBM. We use an open-source implementation of these
models [20].

We trained these click models with a real-world dataset collected by a com-
mercial search engine in China. We removed all the queries that appeared less
than 10 times (i.e. less than 10 sessions) since it seem unlikely to train a reliable
click model with insufficient behavior data. For each query, at most 500 search
sessions are selected for click model training to keep a balance between model
precision and the amount of calculation. The statistics of our behavior dataset
is shown in Table 1.

The distributions of click probability for each click model is illustrated in
Fig. 1. The x-axis is the click probability ranged from 0 to 1 while the y-axis is
the number of corresponding documents in logarithmic scale. We can see that
the distributions of DBN, UBM and RCM are quite similar to each other, i.e. the
documents with relatively low click probability are much more that with high
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Table 1. The statistics of user behavior dataset

Num of queries 64,169

Num of documents 747,792

Date From Apr. 1st 2015 to Apr. 18 2015

Language Chinese

RCM

Fig. 1. Click probability distributions of different click models

click probability. The distributions of PSCM and TCM are close to uniform
distribution.

Though we have the predicted click probability for each URL, it is not obvious
how to map the click probability to document relevance. We adopt two different
strategies to organize document pairs. More detailed will be discussed in the
Sect. 4.

In this section, we discuss how to generate weak relevance labels with click
models and users’ click-through data. In previous study by Huang et al. [1], they
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proposed to use a clicked document as the positive (relevant) sample and ran-
domly select an unclicked document as the negative sample. The click-through
action can also be treated as a kind of “weak supervision”. Although their app-
roach may generate more document pairs for training as each search session can
be utilized to generate training pairs, we argue that their methods are more
likely to be affected by the noise and bias from individual user’s actions. For
example, if we have a document pair 〈D+,D−〉 sampled from a search session,
it is possible that D− is as relevant as D+, even more relevant than D−. The
reason that the user did not click D− might be that the D− is ranked at lower
positions and the user got satisfied by D+, i.e. “position bias” in Web search.
Our weak relevance label generation method is able to utilize the behavior of
a group of users to reduce the impact of position bias. Our method may need
more behavior data to train click model compared to directly sampling from
search sessions. We argue that it is possible to construct a dataset with mil-
lions of queries with public available query logs (Sogou or Yandex) [20] in lab
environment.

4 Deep Ranking Models with Weak Relevance Label

In this section, we describe how we train the deep ranking model with weak
relevance labels estimated by click model. The performances of ranking models
based on the output of several click models are compared. We also investigate
whether the ranking model based on weak labels can get similar performance
compared to that based on strong labels which are assessed by human.

4.1 Ranking Model

In this study, we choose to train our ranking model based on one of the most
recent approaches, Duet, which was proposed by Mitra et al. [15]. According
to Guo et al. taxonomy [9], most neural ranking models can be classified into
two categories: representation-focused methods which try to get a good repre-
sentation for query and document and interaction-focused methods which put
emphasis on capturing the textual matching pattern between query and docu-
ment.

Duet model actually combines these two lines of research. It composed of two
separate neural networks, a local one and a distributed one. The two networks
are jointly learnt as part of a single network.

The local model estimates the document relevance based on the exact
matches of query terms in the document. It uses a local term representation,
i.e. the one-hoc vectors which are widely used in traditional retrieval models.
The local model focuses on capturing the exact matches on term level and
terms are considered to be distinct entities. As suggested by Guo et al., the
exact matching between query and document is valuable to measure the doc-
ument relevance [9]. The distributed model first learns low-dimensional vector
representations for both query and document. Then it estimates the positional
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similarity between query and document. Instead of the higher-dimensional one-
hot representations, distributed model projects n-graph vectors of query and
document into an lower-dimensional embedding space. This would be helpful
to solve the vocabulary mismatch problem. The Duet model linearly combines
the local model and the distributed model, which are jointly trained on labeled
query-document pairs:

fduet (Q,D) = f l (Q,D) + fd (Q,D) (10)

where Q is the query and D is the document pair. f l and fd denotes the local
model and the distributed model respectively.

In our experiment, we use the implementation of Duet model which was
released by the authors1. The original Duet model was trained on an English
corpus. In our experiment, we did some necessary data pre-processing to make
the model appropriate for Chinese environment: First, all queries and documents
are segmented into words. The original Duet model used 2000 most frequent n-
grams for n-graph. We put 5000 most frequent Chinese n-grams into the vocab-
ulary. We adopt the other parameters in the original Duet mode, including the
dropout rate and the learning rate. The model were trained based on a single
GPU.

4.2 Dataset

The dataset for model training includes the following parts:

1. Weak Relevance Label: as mentioned in Sect. 3. We have estimated click prob-
ability for query-document pairs.

2. Strong Relevance Label: we have 200 queries which are released for NTCIR
WWW task [25]. For each query, there are some documents whose relevances
are judged by professional assessors in a five level scale (from irrelevant to high
relevant). The number of max/avg/min judged documents is 424/170/120
respectively.

We want to investigate the performance of ranking models trained with strong
relevance label. Therefore, we randomly split the Strong Relevance Label dataset
into two parts: Training Set contains 150 queries while the Test Set contains 50
queries.

In the remaining of this paper, we evaluate all the ranking models based on
the Test Set. We use AP, ERR, nDCG@10, P@10, Q-measure and RBP, which
is calculated with an open-source tool NTCIREVAL2. We also introduce a widely
used baseline method BM25.

1 https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb.
2 http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html.

https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb
http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html
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4.3 Comparison Between Models Based on Different Weak Labels

We first look into the performance of the rankers based on different click models.
Recall that the Duet model was trained based on document pairs, e.g. 〈D+,D−〉.
We design two methods to organize training samples.

The first method is called Absolute method (ABS): we can map the click
probability to relevance score by using a map function rel (p). In our approach,
we simply split the probability into 4 segments and each segments represents a
relevance level respectively, e.g. the relevance score is 1 if the click probability
is between 0.0 to 0.25. Then we adopt the method in Mitra et al.’s study [15] to
organize document pairs. For a document pair 〈D+,D−〉, the relevance scores
of two documents can be 3 vs. 1/0, or 2 vs. 0.

The second method is called Relative methods (REL): Assume we have two
documents, da and db, their relevance scores are sa and sb respectively. If sa −sb
is greater than a predefined threshold t. Then 〈da, db〉 can be viewed as a valid
training sample. In our experiments, we use t = 0.42 to make sure that the
number of training pairs are comparable to that with Absolute method.

Table 2. Comparison between ranking models based on different weak relevance labels
(The ranker with best performance in FIX is marked in bold while that in REL is
marked with underline.)

Model AP ERR nDCG@10 P@10 Q RBP #Pair

ABS DBN 0.6283 0.5180 0.5374 0.6540 0.6385 0.3925 11,251

RCM 0.5569 0.4924 0.4922 0.6080 0.5761 0.3446 18,554

PSCM 0.6251 0.5151 0.5364 0.6640 0.6344 0.3829 59,296

TCM 0.6264 0.5124 0.5412 0.6680 0.6359 0.3889 42,268

UBM 0.6240 0.5302 0.5542 0.6840 0.6333 0.3855 34,537

DBN 0.6271 0.5197 0.5387 0.6600 0.6379 0.3880 8,339

RCM 0.5662 0.5083 0.5107 0.6200 0.5863 0.3528 20,719

REL PSCM 0.6276 0.5251 0.5469 0.6720 0.6366 0.3866 70,682

TCM 0.6265 0.5012 0.5454 0.6760 0.6348 0.3872 43,088

UBM 0.6221 0.5097 0.5427 0.6660 0.6333 0.3871 32,919

Baseline BM25 0.5591 0.4657 0.4405 0.5560 0.5772 0.3386 747,792

The performance ranking models based on different weak relevance labels is
presented in Table 2. We can see that the methods based on the training samples
which are generated by ABS method is slightly better than that generated by
REL method. It is potentially due to ABS method is able to produce samples
with higher quality. For example, the REL sample may generate a document
pair whose click probability is 〈0.42, 0.0〉. This sample will not be accepted by
ABS method. We find that the click models which are most helpful are different
for ABS and REL. For ABS, DBN and UBM are more effective while for REL,
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PSCM, TCM and DBN are more beneficial for model training. The more complex
models (DNB, PSCM, TCM and UBM) are more likely to generate training
samples of high quality than naive model like RCM, since the more complex
models can better estimate the click probability of documents.

4.4 Comparison Between Strong/Weak Relevance Labels

We further investigate the performances of rankers based on strong and weak
relevance labels.

For strong relevance labels, we adopt a similar approach like ABS method
to differentiate positive documents and negative ones. The smaller the threshold
(t) is, the more training samples we will get. The evaluation results are shown
in Table 3.

Table 3. Comparison between models which are based on strong/weak relevance labels
(The ranker with best performance trained on weak labels is marked in bold while that
trained on strong labels is marked with underline.)

Model AP ERR nDCG@10 P@10 Q RBP #Pair

Strong label Duet(t= 1) 0.6416 0.5418 0.5578 0.6800 0.6466 0.3897 469,790

Duet(t= 2) 0.6293 0.5214 0.5403 0.6560 0.6395 0.3821 95,985

Duet(t= 3) 0.6203 0.5118 0.5084 0.6400 0.6263 0.3781 2,557

Weak label+ABS DBN 0.6283 0.5180 0.5374 0.6540 0.6385 0.3925 11,251

RCM 0.5569 0.4924 0.4922 0.6080 0.5761 0.3446 18,554

PSCM 0.6251 0.5151 0.5364 0.6640 0.6344 0.3829 59,296

TCM 0.6264 0.5124 0.5412 0.6680 0.6359 0.3889 42,268

UBM 0.6240 0.5302 0.5542 0.6840 0.6333 0.3855 34,537

We can see that the models which are based on strong labels are slightly
better than that are based on weak labels. This conclusion is consistent across
different evaluation metrics. The reason may be due to that in our experiments,
rankers with strong labels have the opportunity to utilize much more training
samples. If we look into the rankers with different threshold in strong label
group, we find that the Duet(t = 1) performs much better that the remaining
two models. The number of training document pair in Duet(t = 1) is also much
larger than that in the other two models. This observation suggest that it is
necessary to feed large amounts of training samples, even they contains more
noise, to train a good ranking sample. In this pilot study, the scale of data we
used is relatively small due to the limit of calculation resource. We would like to
leave exploration with much more data in our future work.

All the neural ranking models (except that for RCM) performs significantly
better than BM25 (p<0.01). This encourages us to continue applying neural
network in IR tasks.
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5 Conclusions and Future Work

In this study, we present a novel neural ranking model training method based on
weak relevance labels. We propose to generate weak relevance labels for docu-
ments by training click models with users’ click behavior. Experiments based on
a real-world user behavior dataset demonstrate that the ranking models trained
with weak labels can get similar performance compared to that with relevance
judgments. We also find that the more data (even more noisy) fed into the neural
model, the better performance the model can achieve.

Our work has a few limitations. First, deep learning for IR is developing
rapidly and a number of neural methods have been proposed recently. We should
validate the effectiveness training methods with various neural models. Second,
compared to previous attempts [5,9,10] based on millions of queries, the dataset
in our experiment is too small. We would like to explore if we will get better
performance with a larger dataset in our future work.
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Abstract. With the explosive growth of user-generated contents (e.g.,
texts, images and videos) on social networks, it is of great significance
to analyze and extract people’s interests from the massive social media
data, thus providing more accurate personalized recommendations and
services. In this paper, we propose a novel multimodal deep learning
algorithm for user profiling, dubbed multi-modal User Attribute Model
(mmUAM), which explores the intrinsic semantic correlations across dif-
ferent modalities. Our proposed model is based on Poisson Gamma Belief
Network (PGBN), which is a deep learning topic model for count data in
documents. By improving PGBN, we succeed in addressing the problem
of learning a shared representation between texts and images in order
to obtain textual and visual attributes for users. To evaluate the effec-
tiveness of our proposed method, we collect a real dataset from Sina
Weibo. Experimental results demonstrate that the proposed algorithm
achieves encouraging performance compared with several state-of-the-art
methods.

Keywords: User profiling · Deep learning · Multi-model · Social media

1 Introduction

With the rapid development of social networks, massive information (e.g., texts,
images and videos) generated by users is emerging on various social media plat-
forms. The activities people participating in and the contents people producing
play a significant role of analyzing people’s interests and preferences, which are of
great importance to provide personalized recommendation and on-line retrieval
for them. In particular, microblogging is now one of the most popular social
media services, where people are keen on posting daily activities, sharing opin-
ions and focusing on hot and interesting topics. For example, Sina Weibo1, a
commonly used social media platform in China, has attracted a great amount
of users to participate in. Released by Sina Weibo Data Center, the number of
1 http://www.weibo.com.
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monthly active users approaches to 222 million up to October 2015. Besides, the
social media applications involve multi-modal data, where the visual information
is vital to strengthen the description of short texts.

In order to explore user attributes, prior works construct topic modeling
from users’ previous behaviors and preferences. For example, Latent Dirichlet
Allocation (LDA) [7] is a widely used generative probabilistic model for text cor-
pora. By modifying LDA, there are other traditional topic models to tackle the
problem of short texts from social media data, such as author topic model [19]
and twitter-user model [24]. Besides, previous works also focus on dynamic topic
models to analyze the change of topics in data streams, such as Dynamic User
Attribute Model (DUAM) [12] which models the dynamics using time windows,
and dynamic User Clustering Topic model (UCT) [27] to capture the dynam-
ics of users’ interests by integrating the interests at previous time periods with
newly collected data in text streams. In addition, there are topic models proposed
to explore the correlations among different modalities. For instance, mm-LDA
[2] and corr-LDA [6] are presented to learn the correspondence between tex-
tual and visual information. Cross-Media-LDA (CMLDA) [5] is also proposed to
discover the intrinsic correlations among multiple media types for social event
summarization. Some similar methods proposed by Bian et al. are demonstrated
in [3,4].

Recently, there is a great interest in deep learning, which succeeds in many
applications. The Deep Belief Network (DBN) [11] and the Deep Boltzmann
Machine (DBM) [20] are deep networks both designed to model binary obser-
vations, whose hidden units are also typically restricted to be binary. However,
different from conventional deep networks, the Poisson Gamma Belief Network
(PGBN) [29] is proposed to construct a deep networks architecture with non-
negative real hidden units to automatically tune both the width of each layer
and the depth of the network. Despite PGBN learns the representation of count
observations, it is a unimodal network and not applicative to short texts of social
data. To deal with multi-modal social data, we propose a novel multi-modal User
Attribute Model (mmUAM). Different from traditional methods of constructing
user interest model that only take account of one layer of topic modelling, our
model is designed to capture the correlations among multiple modalities. To facil-
itate this study, we collect a real dataset from Sina Weibo, on which extensive
experiments show the superiority over state-of-the-art methods.

The main contributions of our work are summarized as follows.

1. We propose a novel multi-modal deep learning approach, named multi-modal
User Attribute Model (mmUAM), through which we manage to automatically
infer user attributes.

2. The proposed mmUAM captures the semantic correlations between texts and
images, which enables us to learn effective textual and visual representation
for more comprehensive user profiling.

3. We construct a Sina Weibo microblog dataset with multi-modality informa-
tion. The promising results on this dataset demonstrate the efficacy of our
proposed approach.
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2 Related Work

Text-based User Profiling. With the tremendous growth of social networks,
how to provide more accurate services for users is tough challenging. Previous
works have been studied to explore users interests through extracting users’ char-
acteristics and preferences from user-generated texts on social media platforms.
Generative topic models, such as LDA [7], provide an explicit representation
of a document. However, such topic models fail to tackle the sparsity problem
of short texts. Many variations of LDA have been proposed. For example, He
et al. [10] propose a modified topic model, named Bi-labeled LDA, which uti-
lizes users’ relationship information to learn interest tags. Rosen-Zvi et al. [19]
extend LDA to propose the author-topic model, which models the content of
documents, including the author information. While, Xu et al. [24] introduce a
modified author-topic model, twitter-user mode, which outperforms LDA and
author-topic model. Besides, some other studies also make attempts to exploit
external knowledge to enrich the s of short texts. Abel et al. [1] analyze Twit-
ter activities in semantic way by integrating Twitter posts with related news
articles. Instead of introducing external knowledge, Cheng et al., [8] model the
generation of word co-occurrence patterns for topic modeling in order to address
the sparsity problem of short texts. However, the above topic models are mostly
applied to text corpus.

Image-based User Profiling. Deep Convolutional Neural Networks (CNNs)
[13] have recently achieved a great success in large scale image feature learning.
Consequently, many researches focus on building user profiling by extracting
visual information. For instance, Geng et al. [9] propose a deep learning strat-
egy to learn visual features for user profiling on Pinterest2 in fashion domain. A
Socially Embedded Visual Representation learning (SEVIR) approach [15] has
been proposed to capture the semantics and user intentions based on learning
image representation, which tackles the sparsity and unreliability problems. Li
et al. [14] construct a Gaussian relational topic model by utilizing user-shared
images to infer users’ interests. Moreover, a pinboard recommendation system
for Twitter users is presented in [25], which combines two different social media
platforms in order to recommend users for more relevant and interesting top-
ics. Also, the way of exploiting user-tagged Web images for video indexing can
be learned in [26]. Despite the visual information exploiting user interests is
definitely significant, more works should take account of multiple modalities.

Multi-modal User Profiling. As more and more social media data is inte-
grated with texts, images and videos, most of the works have shifted their focus to
dealing with multi-modal data. In [6], the correspondence Latent Dirichlet Allo-
cation (corr-LDA) is a three hierarchical probabilistic mixture model to describe
the correlations between images and annotations. Similarly, multi-modal Latent
Dirichlet Allocation (mm-LDA) [2] is proposed to learn the joint distribution
of images and their associated texts, which is used for social relation mining.

2 http://www.pinterest.com.

http://www.pinterest.com
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In addition, Bian et al. [5] present a novel probabilistic modal, named Cross-
Media-LDA (CMLDA), which aims to explore intrinsic correlations between
texts and images for multimedia microblog summarization.

Besides, some deep networks are constructed to learn features among mul-
tiple modalities. Ngiam et al. [17] propose a cross-modality deep learning
methods based on Restricted Boltzmann Machines (RBMs). Subsequently,
Srivastava et al. [23] propose a multi-modal Deep Boltzmann Machine (DBM)
model for images and texts. They construct multi-modal DBM by building an
image-specific two-layer DBM that uses Gaussian RBM and a text-specific two-
layer DBM that utilizes Replicated Softmax model. Similarly, Pang et al. [18] use
multi-modal DBN to learn joint representation of the visual, auditory and tex-
tual features for user-generated web videos. In addition, the Deep Belief Network
(DBN) presented in [22] to create a joint representation for texts and images, is
different from DBM in that DBN is a directed model.

Nevertheless, the hidden units of DBM and DBN are typically restricted to be
binary. These multi-modal deep learning approaches are not successfully applied
to a real dataset for social service. We work on learning features of multiple
modalities input data from large-scale real dataset and construct multi-modal
deep networks to tackle the sparsity of short texts to explore more relevant
interests that meet users’ demand. To achieve better inference of our proposed
deep topic modal, we employ upward-downward Gibbs sampling.

3 The Proposed Model

3.1 Overview

We employ the conventional bag-of-word method to deal with the texts and
images to automatically infer user attributes. To construct our model, we uti-
lize Sina Weibo data with user-generated short texts and corresponding images.
Firstly, we extract both texts and images raw features as bag of words and bag of
visual words, respectively. Formally, each document is under two different topic
distributions. Note that Θ, which is a shared latent variable between visual and
textual modalities, is concatenated by textual hidden unit θw−j and visual hid-
den unit θv−j . Topics Φw are specific to textual modality and topics Φv are
unique to visual modality. Then, we build our proposed mmUAM in deep net-
works with five layers. The performance of multi-modal fusion in five different
layers is presented in Sect. 4.3. As we use probabilistic models, upward-downward
Gibbs sampling [29] is adopted to infer various parameters.

As we all know, microblogs always consist of short texts and relevant images,
in which each text is restricted to 140 characters. Thus, each document is a piece
of microblog and is composed of textual content, visual content, or the mixing
of textual and visual information. In particular, the observation of an image is
represented as a multivariate vector of visual words, which is denoted as vj in
jth document. Similarly, the observation of a text is defined as a vector wj in
jth document. The correlations between the K0 features of (v1, v2, ..., vJ ) can
be represented by the columns of Φv. In the same way, the correlations between
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Fig. 1. The graphical illustration of the proposed mmUAM. (a) the mmUAM hierar-
chical model; (b) a presentation of layer t = 1 in the mmUAM.

the K0 features of (w1, w2, ..., wJ ) are captured by the columns of Φw. Note
that Θj ∈ RKt

+ is the Kt hidden units of sample the jth document. We use the
Poisson likelihood to connect the observed textual content w

(1)
j ∈ ZK0 (visual

content v
(1)
j ∈ ZK0) to the product Φ(1)

w θ
(1)
w−j (Φ(1)

v θ
(1)
v−j) at layer one as follows

w
(1)
j ∼ Pois

(
Φ(1)

w θ
(1)
w−j

)
, v

(1)
j ∼ Pois

(
Φ(1)

v θ
(1)
v−j

)
.

3.2 Multi-modal User Attribute Model

Our proposed model is based on PGBN [29], a deep networks architecture
that is designed only for text analysis. Then, Zhou et al. [30] propose aug-
mentable gamma belief networks to learn multilayer deep representations for
high-dimensional sparse count vectors and nonnegative real vectors. Neverthe-
less, the augmentable gamma belief networks are not adapted to social data. As
a result, we propose a multi-modal user attribute model for multiple modalities
data on social media. For microblogging document, we make an assumption that
the generated topics are composed of two domains, including textual topics gen-
erated from microblog texts, and visual topics generated from posted images. In
order to capture correlations of these two modalities, we learn a shared repre-
sentation between textual and visual information. We use Θj to represent the
shared gamma distribution between textual and visual information in the jth
microblogging document. With T hidden layers, we give the example of our
proposed mmUAM fusing in the first hidden layer as follows
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The graphic representation of the mmUAM is depicted in Fig. 1. For t =
1, 2, ..., T − 1, the hidden units Θ

(t)
j ∈ RKt

+ of layer t are under gamma distribu-

tion, which factorize the shape parameters into the concatenation of Φ(t+1)
w θ

(t+1)
w−j

and Φ(t+1)
v θ

(t+1)
v−j . With c
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are prob-
ability parameters and gamma scale parameters respectively. For the top layer,
the gamma shape parameters of hidden units are vector r = (r1, ..., r

(T )
K )′. The

columns of φ
(t+1)
w and φ

(t+1)
v decide the correlations between the Kt latent fea-

tures of (Θ(t)
1 , ...,Θ

(t)
J ).

In order to simplify parameter inference, we impose the constraints on Φ(t)
w

and Φ(t)
v that every column of Φ(t)

w and Φ(t)
v has a unit L1 norm. Thus, for

t ∈ {1, ..., T − 1}, the hierarchical model is completed as follows

φ
(t)
w−k ∼ Dir(ηt, ..., ηt), φ

(t)
v−k ∼ Dir(ξt, ..., ξt),

c0 ∼ Gam(e0, 1/f0), γ0 ∼ Gam(a0, 1/b0), rk ∼ Gam(γ0/KT , 1/c0).

For t ∈ {3, ..., T + 1}, we have

p
(2)
j ∼ Beta(a0, b0), c

(t)
j ∼ Gam(e0, 1/f0). (2)

we divide T hidden layers into T related subproblems, thus every subproblem
has the similar way of solution.

Lemma 1 (augment-and-conquer the mmUAM). With p
(1)
j = 1 − e−1 and
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For t ∈ {1, ..., T}, we can define that the observed (if t = 1) or some latent (if
t ≥ 2) textual contents wt

j ∈ ZKt−1 are under the Poisson distribution with the
product Φt

wθt
w−j, and the observed (if t = 1) or some latent (if t ≥ 2) visual word

counts vt
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Proof. The definition (4), (5) are absolutely true for layer one. Assume that (4),
(5) are true for layer t ≥ 2, then each textual count w
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ij and visual count v
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are separately augmented into the summation of Kt latent textual and visual
counts. Thus, the summation of Kt two different latent counts is smaller than
or equal to w
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m
(t)(t+1)
kj denotes the counts in layer t that factor k ∈ {1, ...Kt} appears in doc-

ument j, and v
(t)(t+1)
kj represents the counts in layer t that factor k ∈ {1, ...Kt}

appears in document j. On account of
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we utilize the method in [31] to marginalize out Φt
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v. As a result,
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[
−θ

(t)
v−j ln(1 − p

(t)
j )

]
.

Then, by employing the above Poisson likelihood, we further marginalize out
θ
(t)
w−j and θ

(t)
v−j that follows the gamma distribution.

m
(t)(t+1)
j ∼ NB

[
Φ(t+1)

w θ
(t+1)
w−j , p

(t+1)
j )

]
, (6)

n
(t)(t+1)
j ∼ NB

[
Φ(t+1)

v θ
(t+1)
v−j , p

(t+1)
j )

]
. (7)

As demonstrated in [28], (6) and (9) can also be generated from their compound
Poisson distribution as

m
(t)(t+1)
kj =

w
(t+1)
kj∑

x=1

ux, ux ∼ Log(p
(t+1)
j ), w

(t+1)
kj ∼ Pois

[
φ

(t+1)
w−k:θ

(t+1)
w−j ln(1 − p

(t+1)
j )

]
,

n
(t)(t+1)
kj =

v
(t+1)
kj∑

y=1

uy, uy ∼ Log(p
(t+1)
j ), v

(t+1)
kj ∼ Pois

[
φ

(t+1)
v−k: θ

(t+1)
v−j ln(1 − p

(t+1)
j )

]
.

Hence, if (4), (5) are true for layer t, they are also true for layer t + 1.
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Inspired by the lemmas and theorems in [28,31], we propagate the latent
textual counts w

(t)
ij and visual counts v

(t)
ij of layer t upward to layer t + 1 as

{(
w

(t)
ij1, ..., w

(t)
ijKt

)
|w(t)

ij ,φ
(t)
w−i:,θ

(t)
w−j

}

∼ Mult

(
w

(t)
ij ,

φ
(t)
w−i1θ

(t)
w−1j

∑Kt
k+1 φ

(t)
w−ikθ

(t)
w−kj

, ...,
φ
(t)
w−iKt

θ
(t)
w−Ktj∑Kt

k+1 φ
(t)
w−ikθ

(t)
w−kj

)
,

(8)

(
w

(t+1)
kj |m(t)(t+1)

kj ,φ
(t+1)
w−k: ,θ

(t+1)
w−j

)
∼ CRT

(
m

(t)(t+1)
kj ,φ

(t+1)
w−k:θ

(t+1)
w−j

)
, (9)

{(
v
(t)
ij1, ..., v

(t)
ijKt

)
|v(t)

ij ,φ
(t)
v−i:,θ

(t)
v−j

}

∼ Mult

(
v
(t)
ij ,

φ
(t)
v−i1θ

(t)
v−1j

∑Kt
k+1 φ

(t)
v−ikθ

(t)
v−kj

, ...,
φ
(t)
v−iKt

θ
(t)
v−Ktj∑Kt

k+1 φ
(t)
v−ikθ

(t)
v−kj

)
,

(10)

(
v
(t+1)
kj |n(t)(t+1)

kj ,φ
(t+1)
v−k: ,θ

(t+1)
v−j

)
∼ CRT

(
n
(t)(t+1)
kj ,φ

(t+1)
v−k: θ

(t+1)
v−j

)
. (11)

3.3 Parameter Inference

In conventional topic models, variational inference and collapsed Gibbs sampling
are often used for parameter inference. To estimate the latent variables under
the multivariate observations, we utilize upward-downward Gibbs sampling [29]
with the width of the first layer being restricted to K1max. The sampling process
of mmUAM is as below.

Sample w
(t)
ijk and v

(t)
ijk. For all the layers, we can use (10) to sample w

(t)
ijk and

(12) to sample v
(t)
ijk. But for the first hidden layer, the observed counts w

(1)
ij is

considered as word tokens at the ith term in the jth document, where the size of
textual vocabulary is denoted as I = K0, and the observed counts v

(1)
ij is treated

as visual word tokens at the ith term (the size of visual vocabulary I ′ = K ′
0) in

the jth document. We define zw−js and zv−js as the topic index for ijs and ijs′

(s ∈
{

1, ..., w
(1)
·j

}
, s

′ ∈
{

1, ..., v
(1)
·j

}
).

P (zw−js = k|−) ∝
η(1) + (w(1)

ijs·k)−js

Iη(1) + (w(1)
··k )−js

(
(w(1)

·jk)−js + φ
(2)
w−k:θ

(2)
w−j

)
, (12)

P
(
zv−js′ = k|−

)
∝

ξ(1) + (v(1)
i
js

′ ·k)−js′

I ′ξ(1) + (v(1)
··k )−js′

(
(v(1)

·jk)−js′ + φ
(2)
v−k:θ

(2)
v−j

)
. (13)

where k ∈ {1, ...,K1max}. We let w
(1)
ijk =

∑
s δ (ijs = i, zw−js = k) and v

(1)
ijk =

∑
s′ δ

(
ijs′ = i, zv−js′ = k

)
. w

(1)
ijk and v

(1)
ijk represent the number of times when
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term i is assigned to the topic k in document j. Besides, we use w−js and v−js to
separately denote the count of w and v except when term i appears in document
j. Especially when T = 1, we use Poisson Factor Analysis (PFA) with gamma-
negative binomial process [28] to replace φ

(2)
w−k:θ

(2)
w−j and φ

(2)
v−k:θ

(2)
v−j with rk. For

simplification, if T = 1, we set K1max factors and let rk ∼ Gam(γ0/K1max, 1/c0).

Sample φ
(t)
w−k. We sample the textual topic φ

(t)
w−k as

(
φ

(t)
w−k|−

)
∼ Dir

(
η(t) + w

(t)
1·k, ..., η(t) + w

(t)
Kt−1·k

)
.

Sample φ
(t)
v−k. In the same way, we sample the visual topic φ

(t)
v−k as

(
φ

(t)
v−k|−

)
∼ Dir

(
ξ(t) + v

(t)
1·k, ..., ξ(t) + v

(t)
Kt−1·k

)
.

Sample w
(t+1)
ij and v

(t+1)
ij . We sample w

(t+1)
j , v

(t+1)
j separately using (9), (11).

Sample r. c0 and γ0 are sampled using (3), whose detailed introduction is
in [28].

(rv|−) ∼ Gam

⎛
⎝γ0/KT + w

(T+1)
i· + v

(T+1)
i· , c0 −

∑
j

ln
(
1 − p

(T+1)
j

)−1

⎞
⎠ .

Sample Θ
(t)
j . Using the latent counts propagated upward and the gamma-

Poisson conjugacy, we downward sample the hidden units Θj as

(
Θ

(t)
j |−

)
∼ Gam

([
Φ(t+1)

w θ
(t+1)
w−j

Φ(t+1)
v θ

(t+1)
v−j

]
+

[
m

(t)(t+1)
j

n
(t)(t+1)
j

]
, c

(t+1)
j − ln

(
1 − p

(t)
j

)−1
)

.

Sample p
(2)
j and c

(t)
j . We calculate p

(t)
j (t ≥ 3) and c

(2)
j using (6), and sample

p
(2)
j and c

(t)
j , where t ≥ 3 as

(
p
(2)
j |−

)
∼ Beta

(
a0 +

[
m

(1)(2)
·j

n
(1)(2)
·j

]
, b0 + Θ

(2)
·j

)
,

(
c
(t)
j |−

)
∼ Gam

(
e0 + Θ

(t)
·j ,

[
f0 + Θ

(t−1)
·j

]−1
)

.

4 Experiments

4.1 Dataset Construction

As we know, Sina Weibo is one of the most popular social media platforms
in China, where we collect a dataset and conduct our experiments on the real
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layer 1 layer 2 layer 3 layer 4 layer 5

user1
match, color, not bad, clothing

brand, designing, skirt, photograph

color , girl, brand, designing

clothes, skirt, cute, clothing

match, color, suit, designing

brand, girl, skirt, clothes

brand, beautiful, suit, girl

model, photograph, clothes, color

beautiful, girl, pretty, suit

entirety, brand, photograph, effect

user2
travel, photography, geography, shooting

scenery, photo, composition, vision

photography, shooting, scenery, city

travel, camera, Shanghai, scene

travel, shoot, frame, scene

beautiful, mountain, photography, view

photography, shoot, scenery, vision

travle, camera, beautiful, scene

shooting, scenery, beautiful, peaceful

sight, environment, plant, scenery

Fig. 2. The generated visual words and textual keywords for the mmUAM-1 of five
different layers.

data. We crawl 1349 users, the data including users’ basic information and their
posted microblogs from January 2015 to December 2016, in which each microblog
contains both texts and images. After filtering inactive users and separating each
user’s microblogs into two documents according to posting time, we have 193798
documents. In order to comprehensively evaluate the generated user attributes,
we utilize both the crawled tags and the posted microblogs to manually label
the users’ interests.

For preprocessing the textual dataset, we firstly utilize jieba participle3 to
segment the Chinese words, and then we eliminate the non-Chinese characters,
stop words, and the low-frequency words that appear less than five times. For
visual feature description, Scale-Invariant Feature Transform (SIFT) [16] is used
to extract discriminant local features of images, thus generating 128-dimensional
SIFT descriptors. To construct a codebook of visual words, we utilize k-means
with each descriptor being a cluster center quantized into a visual word. As a
result, each image is represented with the count of visual words in the codebook.

4.2 Evaluation Metrics and Compared Methods

The standard classification algorithm evaluation methods like precision, recall
and F1-measure would not be sufficient to understand the performance of multi-
label problems. Thus, we adopt the following evaluation measures proposed in
[21], where we set X = {x1, x2, ..., xk} as a set of output attributes and Y =
{y1, y2, ..., yk} as a set of ground-truth attributes.

Average Precision. We use average precision to calculate the mean value of
ranking H of ground-truth attributes in predicted attributes. |N | is the number
of documents.

ap (H) =
1
N

N∑
i=1

1
|Yi|

∑
y∈Yi

∣∣∣
{

y
′ ∈ Yi|rankf

(
xi, y

′
)

≤ rankf (xi, y)
}∣∣∣

rankf (x, y)
. (14)

One Error. The measure evaluates how many times the top-ranked predicted
attributes were not in the set of possible attributes Y . We express one-error of
a hypothesis f as one − err(f).
3 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba
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oe (f) =
1
N

N∑
i=1

{[argmaxy∈Y f (xi, y)] /∈ Yi} . (15)

Ranking Loss. This evaluation is to minimize the average fraction of crucial
pairs which are misordered.

rl =
1
N

N∑
i=1

1
|Yi| |Yi|

∣∣∣
{(

y, y
′) |f (xi, y) ≤ f

(
xi, y

′′)
,
(
y, y

′′) ∈ Yi × Yi

}∣∣∣ . (16)

Coverage. The coverage measures in a sequence queue, to go down the list of
predicted attributes in order to cover all the possible attributes assigned to a
document.

co (f) =
1
N

N∑
i=1

maxrankf (xi, y) − 1. (17)

To demonstrate the effectiveness of our proposed mmUAM, we compare our
algorithm with the following methods.

Poisson Gamma Belief Network (PGBN). The PGBN is applied on our
crawled Sina Weibo dataset for short texts.

Multi-modal User Attribute Model (mmUAM). We adapt the multi-modal
fusion in five layers, separately. The ways of five different fusion are denoted
as mmUAM-1, mmUAM-2, mmUAM-3, mmUAM-4, mmUAM-5. Specifically,
mmUAM-1 is expressed as the shared representation for texts and images learned
in the first layer, and other mmUAMs are denoted in the same way.

4.3 Experimental Results

In this paper, we employ the layer-wise training method for the mmUAMs, with
which we set a fixed budget on the width of layer one K1max = 400 and the
depth of the network T = 5 . Besides, we set hyper-parameters as e0 = f0 = 1,
a0 = b0 = 0.01, and η(t) = ξ(t) = 0.05 for all the layers.

As the mmUAM learns the shared representation of textual and visual infor-
mation, we do the qualitative analysis to show the effectiveness of our proposed
model. We randomly selected two users to analyze the topics generated by the
mmUAM-1 of five different layers. As an example, we choose 3 generated visual
words and the top 6 textual words of the specific topic showed in Fig. 2. We
can see that the visual representation and textual representation strengthen the
description of user attributes. Obviously, the mmUAM can effectively model the
semantic correlations of social data in multiple modalities.

We compare our mmUAM with PGBN and different ways of layer-fusion
to evaluate the quality of our generating user attributes. Figure 3 displays the
performance in term of average precision, one error, ranking loss, coverage.
On the crawled Sina Weibo dataset, our proposed mmUAM with five ways
of multi-modal fusion all performs better than the PGBN. The results also
confirm the fact that multi-modal topic modeling works better than unimodal
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Fig. 3. The performance is evaluated by average precision, one error, ranking loss,
coverage, respectively.

approaches. As for mmUAMs, there is slight difference among results on the four
evaluation metrics. Especially, mmUAM-1 achieves the best result of the aver-
age precision and the one error. For the evaluation of the ranking loss and the
coverage, mmUAM-5 achieves the lowest results that represent the best quality
of the classification. As a result, the first-layer-fusion and the last-layer-fusion
capture better correlations between texts and images than other layer-fusion.

5 Conclusion

In this paper, we proposed a novel multi-modal user attribute (mmUAM) model
which automatically generated user interests from multi-modal social media
data, by capturing correlations between textual and visual information. In partic-
ular, we improved the PGBN network to extract topics of interests better in line
with users’ characteristics. We conducted experiments on our crawled microblog
dataset, where the results demonstrated the superiority of our mmUAM as com-
pared to the state-of-the-art methods.
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for Fine-Grained Tamper Localization

in Spatial Data
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Abstract. Spatial data has been widely used in many areas. Mean-
while, the increasingly simplified data access and manipulation methods
in spatial data related applications make it important to verify data
truthfulness. In this paper, we propose a reversible fragile watermark-
ing scheme for the content authentication of spatial data. The proposed
scheme embeds (detects) four kinds of watermarks, i.e., group, object,
vertex-local and vertex-global watermarks, into (from) each object (ver-
tex) by altering the digits of the coordinates after the LSD (Least Sig-
nificant Digit). According to the detection results of those four kinds of
watermarks, the scheme can not only locate tampers, but also recognize
modification types on both object and vertex levels. In addition, the pro-
posed scheme is reversible, that is the original data can be restored from
the watermarked data. The feature of reversibility makes the scheme
suitable for applications which require high-precision data.

Keywords: Spatial data · Content authentication · Reversible · Fragile
watermarking

1 Introduction

Spatial data has been serving various applications, e.g. geographical information
systems (GIS), location based services (LBS) and navigation systems, for many
years. With the rapid development of Internet, the requirements for opening and
sharing of spatial data are increasing significantly. Due to the nature of data
sharing, spatial data in those applications is prone to be copied and tampered.
Thus, data protection techniques are needed to ensure that spatial data has not
been illegally copied or tampered.

Digital watermarking is the most popular data protection technique [2]. Ini-
tially, digital watermarking is intended for right protection of digital data. This
type of watermarking is also known as so-called robust watermarking which is
used to identify the ownership and illegal copy. Basically, digital watermarking is
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comprised of two elementary operations, embedding and detecting. Embedding
operation stands for slightly modifying the digital data (host data) to embed a
signal (watermark) in it. Detecting operation extracts a signal (detected water-
mark) from one data copy (suspicious data). Due to the special design of robust
watermarking technique, the detected watermark should be very close to the
original one. Then the detected watermark can be used for ownership identifica-
tion of the suspicious data [5]. In past decades, digital watermarking has already
been applied on right protection of multimedia data [9], relational data [15], spa-
tial data [14], trajectory data [24], etc. Recently, digital watermarking has been
also applied on content authentication [7], which is called fragile watermarking.
In fragile watermarking, a damaged detected watermark means the host data
has been tampered. To achieve that, the fragile watermark should be sensitive
to modifications.

As a mainstream of content authentication technique, a mass of fragile water-
marking schemes have been proposed for various applications, such as image [8],
audio [10], video [11] and relational data [12]. Naturally, fragile watermarking has
also been introduced in spatial data due to the increasing requirement of content
authentication of spatial data [13]. Unlike watermark employed in robust water-
marking, fragile watermark is typically generated from original host data rather
than specified by the user. Embedding fragile watermark does not affect the
regeneration of the fragile watermark itself. Since any data modification could
result in difference between the watermarks regenerated and detected from the
suspicious data respectively. Therefore, the suspicious data could be determined
as modified if those two watermarks could not match each other [3,4,20]. Accord-
ing to whether the original host data can be restored, fragile watermarking can
be divided into irreversible [3] and reversible [4,20] fragile watermarking.

Although the aforementioned fragile watermarking schemes can effectively
detect modifications on the data, they can not determine the type of modi-
fications, such as insertion or deletion. The fragile watermarking schemes for
relational database can achieve such goal. Scheme proposed in [12] first divides
tuples into groups according to the primary key. For each group, an attribute
fragile watermark is generated by a hash function that takes all values of that
attribute as the hash seed. The attribute fragile watermark is embedded into
the LSBs of all values of the corresponding attribute. Finally, for each tuple,
a tuple fragile watermark is generated in the similar way of attribute fragile
watermark while the hash seed is all attribute values of that tuple. Similarly, the
tuple fragile watermark is embedded into the second LSBs of all attribute values
of the corresponding tuple. With the detection results of attribute and tuple
fragile watermarks, the type of modification can be determined. In [24], a fragile
watermarking scheme is proposed for spatial data, which is able to determine
the type of modification. Basically, in that scheme, two kinds of watermarks are
embedded into every object. The objects in a vector map are first divided into
groups and assigned identifiers. A group fragile watermark is generated for each
group based on all identifiers of the objects in that group, and then embedded
in those objects. Also, an object fragile watermark is generated for each object
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based on all vertices of the object, and then embedded in that object. In the
detection process, the groups are first restored. Then, the group and object frag-
ile watermarks are detected from the objects. According to the detection result
combination of those two watermarks, the modification type can be determined.
However, in the scheme proposed in [24], only the tamper on object level can be
located, e.g. object insertion and object deletion. The tamper on vertex level,
such as vertex insertion, deletion and update, can not be located by that method.

In this paper, we propose a reversible fragile watermarking scheme for spa-
tial data, which achieves fine-grained tamper localization. That is, the proposed
watermark scheme can locate tampers on object level or vertex level and deter-
mine their modification types. Also, for the spatial data passed content authen-
tication, its original data can be restored from it. In summary, the major contri-
bution of this paper are: (1) developing a reversible fragile watermarking scheme
that achieves fine-grained tamper localization and reversibility simultaneously;
(2) the design of vertex level fragile watermark that ensures locating tampers on
vertex level and determining their modification type; (3) an easy but effective
choice of watermark embedding method that ensures the restoration of original
spatial data while reducing the computational cost.

The remainder of this paper is organized as follows. In Sect. 2, some prelimi-
naries are introduced. Then, the proposed reversible fragile watermarking scheme
is described in Sect. 3, as well as the analysis of fragility and reversibility. Finally,
experimental results and conclusions are given in Sects. 4 and 5 respectively.

2 Preliminaries

Before entering the detail of the proposed scheme, we first introduce some pre-
liminaries of spatial data and related modification types as well as the generate-
and-embed/detect watermarking framework.

2.1 Spatial Data and Modification Types

In general, a spatial dataset D is represented as a set of geographical objects. A
geographical object O is a sequence of vertices (points): {P1, P2, ..., Pn}(n > 0).
If n equals 1, i.e. the object contains only one vertex, O is just a point. If n > 1
and P1 = Pn, O is a polygon. Otherwise O is a line segment. In 2D space, a
vertex Pi is a pair of coordinates (xi, yi), where xi and yi are normally double-
precision floating-point numbers.

Due to the limitation of acquisition methods, each spatial data has its own
precision. That is, the digits after a specific digit of xi/yi are meaningless
(insignificant), and the specific digit is so-called Least Significant Digit (LSD). In
other words, the modifications on digits after LSD would not lower the usability
of the spatial data. Hence LSD or digit after it has been widely used to carry
watermark.

Commonly, modifications on spatial data can be categorized to two levels:
object level and vertex level. Modifications on object level include (geographi-
cal) object addition, deletion and update. Vertex addition, deletion and update
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belong to vertex level. It is easy to understand that object addition and deletion
means to add a newly created object to or remove an existing object from the
data. As for object update, the situation is a little bit complicated. Generally,
any change on any part of an object is considered as an update. Therefore, the
vertex level modifications also incur object update. The object update can be
further classified to vertex addition, deletion and update. Vertex addition inserts
a vertex in an object while vertex deletion removes a vertex from an object, and
vertex update means moving an existing vertex. In our proposed watermarking
scheme, we focus on locating modifications both on object level and vertex level.

2.2 Generate-and-Embed/Detect Watermarking Framework

Like the work in [24], the proposed watermarking scheme for spatial data is
based on the Generate-and-Embed/Detect Framework [7]. Therefore, we borrow
some preliminaries of such framework and related concepts from [24].

Basically, the generate-and-embed/detect watermarking framework [7] is the
foundation of almost all existing fragile watermarking schemes. In the embedding
phase of the generate-and-embed/detect watermarking framework, a watermark
is generated from the host data itself. The generated watermark is embedded into
the host data. Then the watermarked data could be published. In the detection
phase, two watermarks are extracted: (a) the first one is generated from the
suspicious data in the same way used in the embedding phase, which is so-called
the generated watermark; (b) the second one is detected from the suspicious data
with the detection algorithm, which is so-called the detected watermark. The
suspicious data is determined to be untampered if and only if the generated and
detected watermarks are exactly the same. The key point of such framework is
that the embedding of generated watermark should not disturb the re-generating
of the watermark.

As a fragile watermarking framework, an essential property should be ensured
that the embedded fragile watermark could never be forged. Almost all fragile
watermarking schemes are dependent on an one-way hash function to achieve
that. An one-way hash function, H(), gives a hash value V’ for an input value
V incorporated with a user-specified key K. It is computationally infeasible
to obtain an input value V” for a given hash value V’ which satisfies both
H(V ′′) = V ′ and V ′′ �= V . Since the embedding process is all controlled by
the hash value, the attacker cannot tamper the watermarked data while keeping
the same generated watermark. On the other hand, the fragility also relies on
the hash function. Any modification, even if one bit change, on the input value
certainly causes random change on the resulting hash value. For above properties,
the application of hash function guarantees the overall security and fragility of
a fragile watermarking framework scheme.

There are many potential hash functions including MD5 and SHA hash [21].
In this paper, we also employ the generate-and-embed/detect watermarking
framework and hash functions.
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3 The Proposed Scheme

Basically, the proposed watermarking scheme embeds various kinds of fragile
watermarks into the host spatial data: (a) group watermark, (b) object water-
mark and (c) vertex watermark. The embedding process can be divided into
following steps:

(1) Construct an identifier (ID) for each object based on AreaT employed in
[24], and then divide objects into a given number of groups according to
their IDs.

(2) Generate one group watermark for each group from its member objects, then
the group watermark is embedded into each of those objects.

(3) Generate one object watermark for each object from its all vertices, the
object watermark is then embedded into each of those vertices.

(4) Generate one vertex-global watermark for each vertex of each object based
on the number of vertices belong to the object, the vertex-global watermark
is then embedded into the x-coordinate of each of those vertices.

(5) Generate one vertex-local watermark for each vertex of each object from its
all coordinates, then embed the vertex-local watermark in its y-coordinate.

Like the embedding process, the first step of detection process is dividing
objects into groups and generating object IDs generation. After the grouping
operation, object and vertex watermarks are regenerated and detected from the
suspicious spatial data respectively. The tampers and respective modification
types can be determined according to the detection results of the watermarks.

The main components of the proposed watermarking scheme are detailed
respectively in Sects. 3.1 and 3.2. Section 3.3 describes locating tampers and
determining modification types according to the detection results. The fragility
and reversibility of the proposed watermarking scheme is analyzed in Sects. 3.4
and 3.5.

3.1 Watermark Generating and Embedding

In the proposed scheme, four arguments should be supplied by the data owner
before embedding and detection could be performed: g, K, λ and η. Here g is
the number of groups obtained after dividing objects and K is a secret key.
λ is an integral value indicates the position of LSD, that is λ stands for the
precision of the data. η is the argument for controlling the sensitivity against
vertex modifications, which is the length of vertex level watermarks.

Group Division. In order to divide objects into groups, each object is given
an identifier which is constructed from its characteristics. In the proposed water-
marking scheme, we adopt AreaT used in [24], which is an integral value calcu-
lated from the turning function [22] of the object. Although AreaT keeps same
across embedding and detection theoretically, we adopt IDi = hb(AreaTi

, γ)
as the identifier of Oi to avoid computational errors on different platforms,
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where hb(a, b) is a function which returns the most significant b bits from the
binary form of a. In the next step, each object Oi is assigned a group ID
Gj = H(IDi,K) mod g, where H is a hash function produces a hash code
with two input arguments. In one word, the objects are divided into g groups in
this step.

Group Watermark Embedding. The first watermark we are going to gener-
ate is group watermark. For each group Gj , a group watermark GWj is generated
from the identifiers of all its member objects, i.e. GWj = H((ID1||...||IDnj

),K),
where nj is the number of objects in Gj and ‘||’ is a string concatenation opera-
tor. || treats its both operands as strings and concatenates them to a single string
which is consisted of decimal digits. The group watermark of Gj is then embed-
ded into every object in Gj . For each vertex Pm of object Oi in Gj , the mth
digit of GWj is embedded into Pm’s coordinates by replacing the (λ+1)th digit
of each coordinate with it. However, the length of GWj might not be exactly the
same with the m (the number of vertices of an object). Thus, in group water-
mark embedding, if the length of GWj is larger than m, only the first m digits
of GWj are embedded. Or else GWj is repeatedly embedded into the object.

Object Watermark Embedding. For each object Oi, an object watermark
OWi is generated as OWi = H((x0||y0||...||xli ||yli),K). For each vertex Pj of
object Oi, the mth digit of OWi is embedded into Pj ’s mth vertex by replacing
the (λ+2)th digit of every coordinate of the vertex with it. If the length of OWi

does not equal the number of the vertices of Pj , like the group watermark, the
object watermark would be partly or repeatedly embedded into the object.

Vertex Watermark Embedding. For each vertex Ps, a vertex-local water-
mark V WLs is generated as V WLs = H((xs||ys),K). ys is embedded with
the vertex-local watermark by replacing its η digits after (λ + 2)th digit with
msd(V WLs, η), where msd(a, b) returns the first b digits of a. A vertex-global
watermark V WGs is also generated as V WGs = H(count(Ps),K), where
count(a) returns the number of vertices in object a. xs is embedded with the
vertex-global watermark by replacing its η digits after (λ + 2)th digit with
msd(V WGs, η).

In the proposed watermarking scheme, watermark embedding only affects
the digits after the LSD. Obviously, such watermarking scheme is not a robust
watermarking. However, it is sufficient for tamper localization and modification
type determination.

3.2 Watermark Detection

When a spatial data is suspected to be tampered (namely suspicious data),
watermark detection process could be utilized to extract generated and detected
watermarks respectively. By comparing those watermarks, the tampers could be
located and the modification types could be determined.
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During the detection process, groups are rebuilt on all objects of the suspi-
cious data with the same identification-and-division method used in the water-
mark embedding. For each object, the generated (group, object and vertex)
watermarks could be regenerated with the same method used in the embed-
ding process, while the corresponding detected watermarks could be detected by
assembling the digits after LSD. Thus, every generated watermark has respec-
tive detected watermark. The detection result for one kind of watermark (group,
object or vertex) is true if its generated and detected watermarks match each
other. Or else the detection result is false.

For each group Gi with mi objects, two detection vectors can be constructed
for recording the detection results of group and object watermarks respectively.

– V G
i = {vG

1 , vG
2 , ..., vG

mi
}, where vG

j (1 ≤ j ≤ mi) is the boolean value repre-
senting the detection result of group watermark for object Oj . vG

j is true if
the generated and detected group watermarks of Oj are exactly the same.
Otherwise it is false.

– V O
i = {vO

1 , vO
2 , ..., vO

mi
}, where vO

j (1 ≤ j ≤ mi) is the boolean value repre-
senting the detection result of object watermark for object Oj . vO

j is true if
the generated and detected object watermarks of Oj are exactly the same.
Otherwise it is false.

For an object Oi with ni vertices, two detection vectors can be constructed
for recording the detection results of vertex-global and vertex-local watermarks
respectively.

– V V G
i = {vV G

1 , vV G
2 , ..., vV G

ni
}, where vV G

j (1 ≤ j ≤ ni) is the boolean value
representing the detection result of vertex-global watermark for vertex Pj .
vV G

j is true if the generated and detected vertex-global watermarks of Pj are
exactly the same. Otherwise it is false.

– V V L
i = {vV L

1 , vV L
2 , ..., vV L

ni
}, where vV L

j (1 ≤ j ≤ ni) is the boolean value
representing the detection result of vertex-local watermark for vertex Pj .
vV L

j is true if the generated and detected vertex-local watermarks of Pj are
exactly the same. Otherwise it is false.

3.3 Tamper Locating and Modification Type Determination

Based on aforementioned detection vectors, we can discover the tampers possibly
occurred on the data and further determine their modification types.

Object Deletion. Suppose object Oi has been deleted from group Gj , since
the generating of group watermark requires IDs of all objects belong to the
same group, the generated group watermarks of objects in Gj are different from
those generated from the unwatermarked data. Although the generated group
watermark used in embedding phase can not be regenerated from the suspicious
data (because the data has been tampered), one copy of it has already been
embedded in each object of Gj , which are called detected group watermarks.
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Therefore, the generated and detected group watermarks of any object in Gj are
different from each other, i.e. ∀vG

k ∈ V G
j , vG

k = F (F means false and T means
true). For any untampered object of Gj , the generated and detected object
watermarks are the same since (generated or detected) object watermark only
depends on vertices of object itself, that is ∀vO

k ∈ V O
j , vO

k = T . Therefore, the
group Gdel has any deleted object is formulated as follows.

Gdel = {Gj |∀Oi ∈ Gj , v
G
i = F ∧ vO

i = T}
Apparently, the object deletion could not be located if a whole group has

been dropped. However, this situation rarely happens [12]. The experimental
results illustrated in Sect. 4 also support such conclusion.

Object Addition. Suppose object Oi has been added into group Gj , as
discussed above the detection result of group watermark for any object in
Gj is false, i.e. ∀vG

k ∈ V G
j , vG

k = F . The detection result of object water-
mark for any object other than Oi is true while the one of Oi is false, i.e.
∀vO

k ∈ V O
j (k �= i), vO

k = T ∧ vO
i = F . Therefore, the group Gadd with newly

added object satisfies all following conditions.

(1) ∃Oi ∈ Gadd, v
O
i = F ∧ (∀Ok ∈ Gadd − {Oi}, vO

k = T )
(2) ∀Ok ∈ Gadd, v

G
k = F

Furthermore, in any Gadd satisfies above conditions, object Oi satisfies vO
i =

F ∧ vG
i = F could be located as an added object.

Object Update. Suppose object Oi is a modified object in group Gj , according
to the definition of update in Sect. 2.1, the identifier of Oi is not changed while
being updated. Therefore, the detection result of group watermark for any object
in Gj is true since the set of IDs the object relies on keeps same, i.e. ∀vG

k ∈
V G

j , vG
k = T . However, for object watermark, only the detection result of object

watermark for Oi is false, i.e. ∀vO
k ∈ V O

j (k �= i), vO
k = T ∧ vO

i = F . Therefore,
the group Gupdate has updated object satisfies all following conditions.

(1) ∃Oi ∈ Gupdate, v
O
i = F ∧ (∀Ok ∈ Gupdate − {Oi}, vO

k = T )
(2) ∀Ok ∈ Gupdate, v

G
k = T

Furthermore, in any Gupdate satisfies above conditions, object Oi satisfies
vO

i = F ∧ vG
i = T could be located as an updated object.

Vertex Deletion. Once an object is determined to be updated, the tampers on
vertex level can be located and recognized according to the vertex-level water-
marks. Suppose vertex Pi is a deleted vertex in updated object Oj , the generated
vertex-local watermark is not affected by the deletion of Pi since its generation
only involves Pi’s coordinates. Therefore, the detection result of vertex-local
watermark for any vertex of Oj is true. The object Odel has vertex deleted is
formulated as follows.

Odel = {Oj |∀Pi ∈ Oj , v
V L
i = T}
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Vertex Addition and Update. For an object has one or more vertices whose
detection result of vertex-local watermark is false, we can not determine whether
the modification type is vertex addition or update. Since a new vertex has ran-
dom detected vertex-local watermark and coordinates of an updated vertex are
changed, vertex addition and update can both incur difference between generated
and detected vertex-local watermarks. Thus, we need assistance from vertex-
global watermark to distinguish vertex addition and update. Suppose vertex Pi

is added into object Oj , the amount of vertices is changed, so the detection result
of vertex-global watermark for any vertex (including Pi) of Oj is false since such
kind of watermark relies on the amount. On the other hand, suppose vertex Pi

is updated, the amount of vertices and all sequence numbers stay the same, thus
the detection result of vertex-global watermark for any vertex (including Pi) of
Oj is true. According to above analysis, vertex addition and update on Oj could
be distinguished as follows.

– The modification on Oj is vertex addition if

∀Pi ∈ Oj , v
V G
i = F ∧ ∃Ps ∈ Oj , v

V L
s = F

And the set of added vertices is

Padd = {Pi|Pi ∈ Oj ∧ vV G
i = F ∧ vV L

i = F}
– The modification on Oj is vertex update if

∀Pi ∈ Oj , v
V G
i = T ∧ ∃Ps ∈ Oj , v

V L
s = F

And the set of added vertices is

Pupdate = {Pi|Pi ∈ Oj ∧ vV G
i = T ∧ vV L

i = F}

3.4 Analysis of Fragility

In this section, we give analysis on the probability of successfully locating tam-
pers and recognizing the modification type. Like [24], we have some similar
assumptions for the discussion: (1) objects uniformly distribute in the g groups,
every group has m member objects and every object has l vertices; (2) every
group has the same probability for being modified as well as every object; (3)
after data modification, every decimal digit (i.e. 0 to 9) has the same probabil-
ity to appear on every digit of the generated and detected watermarks, i.e. the
corresponding generated and detected watermarks have the probability of 1

10l to
be exactly the same.

Object Deletion. As discussed in Sect. 3.2, locating of object detection only
relies on the detection result of group watermark. The probability of locating
one single object deletion is 1 − ( 1

10l )m−1. Suppose ω objects have been deleted
from ρ (1 ≤ ρ ≤ min(ω, g)) groups in the watermarked data, where group Gi has
ωi (1 ≤ i ≤ ρ, 1 ≤ ωi ≤ m,

∑ρ
i=1 ωi = ω) objects deleted. Then, the probability

of locating all these object deletion is p =
∏k

i=1(1 − ( 1
10l )m−ωi).
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Object Addition. Locating of object addition involves the detection results
both of group and object watermarks. The probability of locating one single
object addition is (1− 1

10l )(1− ( 1
10l )m). Suppose ω objects have been added into

ρ (1 ≤ ρ ≤ min(ω, g)) groups in the watermarked data, where group Gi has ωi

(1 ≤ i ≤ ρ, 1 ≤ ωi ≤ m,
∑ρ

i=1 ωi = ω) objects added. Then, the probability of
locating all these object addition is p =

∏ρ
i=1((1 − ( 1

10l )ωi)(1 − ( 1
10l )m)).

Object Update. In the situation of object update, the detection result of
group watermark for any object is always true. However, only the detection
result of object watermark for the updated object is false. Thus, the probability
of locating one single object update is 1 − 1

10l . Suppose there are ω objects have
been updated, the probability of locating all updated objects is p = (1 − 1

10l )ω.

Vertex Deletion. For one single vertex deletion, it can be located and char-
acterized if: for all the remaining vertices, their detection results of vertex-local
watermark are true (p1), while the results of the vertex-global watermark are
false (p2). Since the results of vertex-local and vertex-global watermarks are
naively true and false respectively, we have p1 = 1 and p2 = 1. The probability
of locating one single object deletion is p = p1 ∗ p2 = 1. For multiple vertex
deletion, the probability of locating all these deletion is p = 1 no matter how
many vertices have been deleted from the watermarked data.

Unlike the situation of object deletion, every object has at least one vertex
left after deletion. It is rational since an object with all vertices deleted means
the object itself has already been deleted, that situation could be located and
recognized on object level.

Vertex Addition. For one single vertex addition, an added vertex can be
located and characterized if: the detection results of its vertex-local and vertex-
global watermarks are both false. That is, the probability of locating one single
vertex addition is (1 − 1

10η )(1 − 1
10η ). For multiple vertex addition, suppose ω

vertices are added into the watermarked spatial data, and the addition causes ρ
(1 ≤ ρ ≤ min(ω, g)) added vertices, with ωi (1 ≤ i ≤ ρ,

∑ρ
i=1 ωi = ω) vertices

added into object Oi. Then, the probability of locating all these added vertices
is p =

∏ρ
i=1(1 − 1

10η )2ωi = (1 − 1
10η )2ω.

Apparently, the probability depends on the value of ρ. The larger ρ can
help reduce the possibility of missing some vertex addition, that conclusion also
follows the intuition.

Vertex Update. For one single vertex update, an updated vertex can be located
and characterized if: the detection results of its vertex-local and vertex-global
watermarks is false and true respectively. That is, the probability of locating
one single vertex update is (1 − 1

10η ). For multiple vertex update, suppose ω
vertices are updated in the watermarked spatial data, and the update causes ρ
(1 ≤ ρ ≤ min(ω, g)) updated vertices, with ωi (1 ≤ i ≤ ρ,

∑ρ
i=1 ωi = ω) vertices
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updated in object Oi. Then, the probability of locating all these updated vertices
is p =

∏ρ
i=1(1 − 1

10η )ωi = (1 − 1
10η )ω.

Like the situation of vertex addition, the probability of locating vertex update
relies on the value of ρ too.

3.5 Analysis of Reversibility

Reversibility is another feature of the proposed scheme. Unlike other existing
reversible schemes embed watermark in LSB/LSD or bits/digits before it, the
proposed scheme simply embeds several watermarks in the digits after the LSD.
Such approach has following two advantages:

– Easy to restore the original host data. In the proposed scheme, the original
host data can be restored from the watermarked spatial data by truncating
all coordinates after the LSD, while the existing reversible watermarking
schemes need to do relatively complicated calculation to revert the changes
brought by watermark embedding.

– Better fidelity of the watermarked data. Since the watermark embedding
process only changes the digits after LSD, the fidelity of the watermarked
data can be guaranteed. To some extent, the watermarked data produced by
our scheme is the original spatial data. This is very useful for the applications
with requirement for high precision.

4 Experimental Results

In order to evaluate the performance of the proposed watermarking scheme,
a series of experiments are performed on the county administrative boundary
map of China provided by the National Administration of Surveying, Mapping
and Geoinformation of China. This vector map has 3207 objects and 1128242
vertices, and its LSD is the 5th digit at the right of the decimal point. The
programs used in the experiments is written by C and executed on a computer
with a 1.8 GHz CPU and 4G RAM. From the analysis in Sect. 3.4, we find that
the fragility of the proposed watermarking scheme is determined by g and η. In
the experiments, we focus on demonstrating the influence of those arguments.

In the experiments, we fixed γ to 7 which allows the change on AreaT of an
updated object to be approximately 1% (which is a rational assumption [6,22]).
It is worth to be noted that in practice AreaT would never be influenced by the
watermarking embedding since the watermarks are all embedded on the digits
after the LSD.

4.1 Evaluation on Fragility

The first experiment aims to demonstrate the effectiveness of the proposed
scheme on locating and recognizing the tampers. We applied g = 150 and η = 5
on the watermark embedding to obtain the watermarked map. Next, we applied
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Table 1. Results of evaluation with various modification type and magnitude

���������
Magnitude

Modification Object Object
Object

Addition Deletion
Update

Vertex Vertex Vertex
Addition Deletion Update

25% 99.20 98.23
100

98.57 100 100

50% 98.31 99.17
100

98.78 100 100

75% 100 100
100

100 100 99.61

each type of modification with different magnitude (the ratio of objects or ver-
tices randomly modified) on different copies of the watermarked map and then
detected the modified maps to locate and recognize the modifications. With
every combination of modification type and magnitude, the evaluation was per-
formed for 50 times on different copies. The average success rate is illustrated
in Table 1, where the value in each cell represents the percents of successfully
located and recognized modifications. As shown in Table 1, the proposed scheme
is useful for locating and recognizing tampers on both object and vertex levels.

4.2 Evaluation on g

Since m is roughly determined by g, the probability of locating and recogniz-
ing tampers on object level actually relies on g. The second experiment aims
to evaluate the fragility with different value of g. In this experiment, η was
fixed to 5, and g was set to 256, 512 and 1024 respectively (correspondingly, m
was approximately 12, 6 and 3). In each pass of evaluation, modifications with
magnitude 10%, 20%, 30%, 40% and 50% were applied on different copies of
the watermarked map. According to the experimental results, all addition and
update on object level were successfully located and recognized. However, for
object deletion, the experimental results illustrated in Table 2 show that: (1)
all object deletion could be successfully located and recognized only if a small
portion of objects were deleted; (2) the ratio of deletion could be located and
recognized decreases with increasing deletion magnitude and g. This is because
high deletion ratio may cause some groups to be deleted entirely thus the dele-
tion occurred in them can not be located and recognized. However, for a small
g, the probability of removing whole group is very low.

On the vertex level, the experimental results also demonstrate that the locat-
ing and recognizing of vertex level modification is not affected by the value of g,
since the watermarks on vertex level only rely on the object itself rather than
the entire group.
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Table 2. Results of evaluation with various object deletion magnitude and g

�������
g

Magnitude
10% 20% 30% 40% 50%

256 100 100 100 100 100

512 100 100 98.63 96.24 87.45

1024 100 96.23 87.82 72.86 68.19

4.3 Evaluation on η

From the analysis in Sect. 3.4, the probability of locating and recognizing tampers
on vertex level highly relies on the value of η namely the length of vertex level
watermarks. The last experiment aims to show the relationship between the
probability and η. In this experiment, we used a fixed g = 256 and η varied from
1 to 5 in watermark embedding. Vertex modifications with magnitude 50% are
performed on different copies of the watermarked map before the detection. The
evaluation was executed 50 times for every combination of η and modification
type. From the experimental results illustrated in Table 3, the larger value η gets,
the higher success ratio we obtain. This is because that a small η gives higher
possibility for a modified vertex has the same digits after the LSD with its
unmodified version. Thus, the detection results of vertex-local and vertex-global
watermarks are more likely to be true.

Table 3. Results of evaluation with various η

��������
Modification

η
1 2 3 4 5

Vertex Addition 97.64 98.36 99.91 100 100

Vertex Deletion 96.33 99.37 100 100 100

Vertex Update 88.82 90.33 93.71 98.67 100

5 Conclusion

In this paper, we discussed the problem of authenticating spatial data both
on object level and vertex level. We proposed a reversible fragile watermark-
ing scheme that can not only locate tampers, but also recognize modification
types. Moreover, the proposed scheme is reversible so that the original (un-
watermarked) spatial data can be restored from the watermarked one. We also
theoretically analyzed fragility of the proposed scheme in a probabilistic way, and
verified it experimentally on real data. Both the analysis and evaluation show
that the proposed scheme is well suited for spatial data authentication. How-
ever, the proposed scheme currently can only locate single modification type, the
improved scheme which can handle combination of various modification types is
part of future work.
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Abstract. Visual Question Answering (VQA) has emerged as a promi-
nent multi-discipline research problem in artificial intelligence. A num-
ber of recent studies are focusing on proposing attention mechanisms
such as visual attention (“where to look”) or question attention (“what
words to listen to”), and they have been proved to be efficient for VQA.
However, they focus on modeling the prediction error, but ignore the
semantic correlation between image attention and question attention.
As a result, it will inevitably result in suboptimal attentions. In this
paper, we argue that in addition to modeling visual and question atten-
tions, it is equally important to model their semantic correlation to learn
them jointly as well as to facilitate their joint representation learning for
VQA. In this paper, we propose a novel end-to-end model to jointly learn
attentions with semantic cross-modal correlation for efficiently solving
the VQA problem. Specifically, we propose a multi-modal embedding
to map the visual and question attentions into a joint space to guaran-
tee their semantic consistency. Experimental results on the benchmark
datasets demonstrate that our model outperforms several state-of-the-art
techniques for VQA.

1 Introduction

Recently, VQA [1] task has become an increasing hot topic in the area of artifi-
cial intelligence (AI), which is involved in a new inter-discipline research field of
computer vision (CV) and natural language processing (NLP) [2,3]. Unlike the
previous tasks, visual captioning [7,15,29,33,35,36], machine translation [2,4] or
text-based question answering [6,32], VQA system is designed for answering a
natural language question from a related image. In order to answer the question
correctly, we need to learn to understand semantic information of question and
accurate visual object recognition as well. Meanwhile, it is rather challenging to
integrate the question and image content in a unified framework. So, this is a
more difficult and challenging task than the other CV tasks like image anno-
tation [25] and retrieval [24,26,30]. In [28], they develop a so-called correlation
component manifold space learning (CCMSL) to learn a common feature space
by capturing the correlations between the heterogeneous databases. In [21], they
propose a content similarity based fast reference frame selection algorithm for
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 248–260, 2017.
DOI: 10.1007/978-3-319-68155-9 19
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Q:what is the color of the bench ?
(a)

Q:what is the color of the dog ?
(b)

Fig. 1. The sample questions and images from COCO-QA. Usually, to answer the
object color, we first locate where the object is, such as “bench” and “dog” in a figure.
(Color figure online)

reducing the computational complexity of the multiple reference frames based
inter-frame prediction.

Most state-of-the-art VQA models contain three component, the question
encoding, image feature extraction and the answer generation [1,5,18]. A com-
monly method is to encode the question semantic information as a feature vector
by using a recurrent neural network (RNN) [8], such as long short-term memory
networks (LSTMs) [10]. And the deep convolutional neural networks (CNN) [37]
are used to extract the global image features. Finally, through integrating the
question feature and the image feature to generate the answer. The integrations
between the question feature and image feature are various, such as element-
wise dot or concatenation. However, this integration is not sufficient because
the relationships between the question and image are complicated, and through
simple operation may not make the best use of interaction between them. Most
of the current models answer a single word by treating the VQA as a multi-class
classification problem. Of course, we can also answer a complete sentence by a
RNN decoder model [19].

When answering a question from the image, people tend to locate the related
image region according to the question information before giving the final answer.
For example, in Fig. 1, to answer the question “what is the color of the bench?”
or “what is the color of the dog?”, we first need to locate the object, “bench”
or “dog”, in the image, that means we focus more attention on the region of
an image before draw a conclusion about the color of the “bench” or “dog”. In
addition, we hope that our location is as accurate as possible, in other words, the
encoded question semantic should be more close to the image region features.
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Q:what is the color of the bench ?

s1 s2 s3 s4 s5 s6 s7 s8
Max 

Pooling

C
N

N

Question 
Modal 
Info

Visual 
Modal
 Info

Softmax

Answers:
brown

Image 

Common 
Latent Space

Visual Region Features

WcS+Bc

Fig. 2. The framework of our proposed method for VQA. There are mainly four parts
in our method: (1) the image regions feature extraction layer; (2) the question encoding
layer; (3) the attention with semantic consistency layer; and (4) the answer prediction
layer.

Since attention mechanism has been proved effective in CV tasks [5,
16,17,33,34], in this paper, we adopt attention model with semantic con-
sistency for VQA. The whole framework of our proposed method is
shown in Fig. 2. Our method mainly including four components: (1) the
image feature extraction layer, which is a CNN to extract image regions
feature and one vector for a region of the image; (2) the question
semantic encoding layer, which is a 1D CNN to extract the question feature
after word embedding; (3) the attention with semantic consistency layer, which
locates the specific image region related the question by a semantic consistency
constraint; (4) the answer generation layer, which integrates the question and
image features for answer prediction.

In summary, our main contributions are as following:

– We propose a new framework for VQA by using attention model with semantic
consistency. With the semantic consistency constraint, the learned semantic of
a question is more close to the image region features. To our best knowledge,
we are the first to introduce semantic consistency for VQA.

– We evaluate our method on two benchmark datasets: COCO-QA and VQA
datasets. The results of our experiments show superiority of our model over
most of state-of-the-art methods.

– We conduct extensive experiment to show how much the semantic consistency
influences our results and analyze our experimental results in detail.

2 Proposed Model

The whole framework of our model is shown in Fig. 2. There mainly four compo-
nents are included in our model: the image feature extraction layer, the question
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semantic encoding layer, the attention with semantic consistency layer and the
answer generation layer. Next, we will describe these four components in detail.

2.1 Image Feature Representation

There are many CV tasks employing CNN [23,27] to encode image content,
including videos. In our work, we use the ResNet [9] to extract image features,
where the ResNet has shown the best performance in image classification, object
detection and image segmentation in 2015 ILSVRC competitions [12]. Differing
from the most of previous VQA model using the output of last fully-connected
layer as global image feature, we select features from res5c layer of ResNet, which
contains more image spatial information. Before inputting the image into CNN,
we resize the image to be 448 × 448. Therefore, then we obtain image feature
with dimension of 2048 × 14 × 14. The 14 × 14 is the number of image regions
and 2048 is the dimension for each region vector. We define image region vector
as ri, i ∈ {0, 1, . . . , 195}. Then we embed each region vector into a new vector
vi:

ri = CNNRes(I) (1)
vi = φ(WIri + bI) (2)

where φ is a nonlinear activation function, WI ∈ R
d×2048 and bI are parameter,

and d is designed for fitting the size of question vector.

2.2 Question Semantic Encoding

Most of current VQA models employ RNN to encode question semantic infor-
mation, which has shown excellent performance in NLP and visual captioning.
Abandoning the previous method, we employ 1D CNN to encode question seman-
tic information. As demonstrated in [18], the relationships between image and
question are complicated. Image feature extracted with high-level semantic infor-
mation from CNN may not combine well with the question encoded from RNN.
In other words, RNN cannot exploit this interactions effectively.

Given a question sentence Q = [x1, x2, . . . , xT ], where xt is the tth word in
question and represented as a one-hot vector which index the location in word
vocabulary, and the T is max length of question. Before employing 1D CNN,
we first embed each word xt into a vector space by using an embedding matrix
st = Wext. Then we get the question representation by concatenating all the
word vectors:

s1:T = s1||s2|| . . . ||sT (3)

where || denotes the concatenation operation. Next, we employ 1D convolution
operation on question which can be seen as a feature map. The tth unit output
using convolution filter window size c is obtained by:

qt
c = φ(Wcst:t+c−1 + bc) (4)
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where Wc is the convolution kernel and bc is bias term. The feature after convo-
lution is:

qc = q1c ||q2c || . . . ||qT+1−c
c (5)

Then we take max-pooling over all feature maps:

q̃c = max
t

(qc) = max
t

[q1c , q2c , . . . , qT+1−c
c ], c ∈ {1, 2, 3} (6)

After max-pooling, we concatenate three vectors into a long vector as our ques-
tion feature q:

q = [q̃1, q̃2, q̃3] (7)

We conduct triple convolution operation with each window size as 1, 2, 3. With
the convolution-pooling process, we can improve the interactions among differ-
ent words and learn more meaningful phrase. Finally, we obtain more semantic
question feature.

2.3 Attention with Semantic Consistency

Given the image regions feature and question feature, we design a attention with
semantic consistency model to predict answer. In Fig. 2, to answer “what is the
color of the bench?”, we should first locate the object region, meanwhile, we hope
that our found region is close with the question semantic information, which we
bridge the semantic gap between image region and question with semantic cross
correlation.

Based on the former two subsection, we have got the image region feature
matrix VI and the encoded question vector q. We first input them into a singe
layer perceptron and then employ a softmax function to compute the image
attention maps:

C = φ((WrVI + br) ⊕ (Wqq + bq)) (8)
PI = softmax(WP C + bP ) (9)

where VI ∈ R
d×L and q ∈ R

d, d is the dimension of vector and L is the number
of image regions. We set Wr,Wq ∈ R

k×d and WP ∈ R
k, k is attention dimen-

sion, then C ∈ R
k×L and PI ∈ R

L, where PI denotes the attention weights
distribution of image regions. The ⊕ indicates element-add between a matrix
and vector.

After we get the attention distribution, we compute weighted average v̄I of
image region feature vi. And then we combine v̄I with the question feature q
to predict the answer since we have fused question semantic information with
visual feature:

v̄I =
∑

i

Pivi (10)

h = v̄I + q (11)
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Following [13,34], we can also employ multiple attention mechanism. For
example, for mth attention layer:

Cm = φ((Wm
r VI + bm

r ) ⊕ (Wm
q hm−1 + bm

q )) (12)

Pm
I = softmax(Wm

P Cm + bm
P ) (13)

where h0 is initialized with q. Then we integrate the weighted average image
feature v̄m

I with previous question feature to generate a new question feature:

v̄m
I =

∑

i

Pm
i vi (14)

hm = v̄m
I + hm−1 (15)

Semantic Cross Correlation. In order to reduce the semantic difference
between two modalities X ∈ R

d1 and Y ∈ R
d2 (usually d1 �= d2), we can employ

a linear projection into them, respectively, so that the two modalities feature
can be mapped into a high-level semantic common space:

R1 : Rd1 → R
d R2 : Rd2 → R

d (16)

where R1 ∈ R
d×d1, R2 ∈ R

d×d2. To construct the semantic cross correlation
between two modalities, we hope that their features are similar as far as possible
in space R

d:
R1(X) ≈ R2(Y ) (17)

if the d1 = d, then the above equation can be rewrite as:

X ≈ R−1
1 R2(Y ) = R(Y ) (18)

where R = R−1
1 R2 is also a linear projection. Therefore, given semantic ques-

tion feature q and image region weighted average feature v̄I , we can bridge the
semantic gap between them with optimizing the following cross-correlation:

Loss1 = ‖ q − R(v̄I) ‖22 (19)

By minimize the above equation, the semantic consistency between question and
image can be guaranteed, which makes our work more meaningful.

2.4 Answer Generation

Following the previous work, we regard our VQA model as a multi-class classi-
fication problem. After the multiple attention layer, we use the last output v̄m

I

which is input into a common latent space with question feature, and then fuse
these two features to predict answer, next a softmax function is employed as:

f = R(v̄m
I ) + q (20)

pans = softmax(Wansf + bans) (21)
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where Wans ∈ R
D×d is parameter and bans ∈ R

D is a bias term, D is the number
of outputs which represents the number of answers. Because our model is to solve
multi-class classification problem, then we can define the loss as:

Loss2 = −
∑

ai∈Ω

1{y = ai} log p(y = ai|q, v̄I ; θ) (22)

where ai is a answer from answers vocabulary Ω. 1{·} is a indicator function,
when the {·} condition is true, the 1{·} = 1 else 0. y is our predicted answer
and θ denotes all parameters that need to be learned. Finally, we can formulate
our problem by optimizing the following objection function:

L(θ|D) = λLoss1 + Loss2 (23)

the λ is a hyper-parameter that balance the two loss terms and D is training
datasets.

3 Experiments

3.1 Datasets

We evaluate our model on two widely used datasets: COCO-QA [22] and
VQA [1]. The images of these datasets are both from Microsoft COCO
dataset [14].

COCO-QA. Toronto COCO-QA automatically generates question-answer
(QA) pairs by analyzing syntactic structure of the original image captioning
with Stanford Parser, then replacing the keywords from captioning. There are
78736 training QA pairs and 38948 testing pairs in this dataset. Four types of
questions are included: Object, Number, Color, andLocation. The answers in this
dataset are all single-word.

VQA. This is the largest dataset so far. All questions and answers are annotated
by human. There are 248349 training questions, 121512 validation questions and
244,302 testing questions in the dataset. For each image, three questions are
related, and for each question, ten answers are provided by annotators. The
questions in this dataset can be roughly divided into: Yes/No, Number and
Other.

3.2 Evaluation Metrics

Since we regarded our VQA model as a classification problem, one simple way
to evaluate VQA is accuracy, namely the predicted answer perfectly matches
the groundtruth. However, under some circumstances, it is difficult to determine
which answer is absolutely correct, for example “table” and “desk”, “bike” and
“bicycle”. To solve this problem, one way is to use Wu-Palmer similarity (WUPS)
score [31]. The WUPS score calculates the similarity between two words based
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on their longest common subsequence in a taxonomy tree, whose value ranges
from 0 to 1. WUPS0.9 and WUPS0.0 are common used as evaluation metrics.
There are slightly difference in evaluation for VQA dataset. [1] proposed a new
evaluation metric:

ACC(ans) = min{#humans that saidans#
3

, 1} (24)

which means the answer is true as least three annotators agreed on the answer
since there are ten answers for each question.

3.3 Experimental Settings

For image representation, we use the ResNet-152 to extract image feature. The
parameter of the CNN is fixed. For question embedding, we set the number of
three convolution filter as 512, respectively. The dimension of word embedding
and all other hidden layers are set 512. We employ hyperbolic tangent function
as our activation function. Following the [13,34], we set our attention layers with
two layers. For COCO-QA dataset, there are 430 unique words and the vocab-
ulary size is 10,158. For VQA, we use the top 1000 frequently used answers as
output, which covers 86.53% of training and validation questions. The vocab-
ulary size of this dataset is 14,771. All vocabulary words are extracted from
training questions, and we add a additional character “UNK” for the words in
testing questions that are not shown in training set. All questions are tokenized
by using Python Natural Language Toolkit (NLTK).

In our experiments, we use Theano framework to train the model. We train
our networks by stochastic gradient descent(SGD) with a learning momentum
0.9, weight-decay 0.0005 and initialized learning rate 0.05. All parameters are
initialized with gaussian distribution. We set the batch size as 100 for COCO-
QA and 128 for VQA since its a larger dataset. Parameters regularization and
dropout strategy with dropout ratio 0.5 are employed. Our model is still end-
to-end trainable though we do not finetune the ResNet.

3.4 Results and Analysis

Several recently proposed VQA methods are used as baseline for our model. For
COCO-QA dataset, we compare our method with 2-VIS-BLSTM [22], IMG-CNN
[18], ATT-VGG-SEG [5], SAN(2,CNN) [34], DPPnet [20], QRU [13], HYBRID
[11], CO-Attention [16]. For the larger dataset VQA, since some models are not
evaluated on official server, we only compare the published results: LSTM Q+I
[1], ATT-VGG-SEG [5], SAN(2,CNN) [34], DPPnet [20], QRU [13], HYBRID
[11], CO-Attention [16].

The experimental results on COCO-QA and VQA dataset are shown in
Tables 1 and 2, respectively. From Table 1, we can see our basic model(without
semantic consistency) has shown a pretty well accuracy since we employ the
best deep CNN ResNet to extract the image features. The last of column
of Table 1 demonstrate that attention with semantic consistency significantly
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Table 1. Experiments results on COCO-QA dataset, in percentage.

Methods Object Number Color Location Accuracy WUPS0.9 WUPS0.0

2-VIS+BLSTM [22] 58.17 44.79 49.53 47.34 55.09 65.34 88.64

IMG-CNN [18] - - - - 58.40 68.50 89.67

ATT-VGG-SEG [5] 62.46 45.70 46.81 53.67 58.10 68.44 89.85

SAN(2, CNN) [34] 64.50 48.60 57.90 54.00 61.60 71.60 90.90

DPPnet [20] - - - - 61.19 70.84 90.61

QRU [13] 65.06 46.90 60.50 56.99 62.50 72.58 91.62

HYBRID [11] - - - - 63.18 73.14 91.32

CO-Attention [16] 68.00 51.00 62.90 58.80 65.40 75.10 92.00

Ours 66.52 48.28 61.30 57.18 63.76 73.47 91.38

Ours+semantic 67.06 48.89 63.48 57.19 64.55 74.06 91.52

Table 2. Results on VQA dataset. All results test on the official server.

Methods test-dev test-std

Yes/No Number Other All All

LSTM Q+I [1] 80.50 36.77 43.08 57.75 58.16

ATT-VGG-SEG [5] - - - - 48.38

SAN(2, CNN) [34] 79.30 36.60 46.10 58.70 58.90

DPPnet [20] 80.71 37.24 41.69 57.22 57.36

QRU [13] 82.29 37.02 47.67 60.72 60.76

HYBRID [11] 80.47 37.50 46.72 59.57 60.06

CO-Attention [16] 79.70 38.70 51.70 61.80 62.10

Ours+semantic 81.40 35.74 49.20 60.96 61.16

Q: what is the batter 
swinging ?

A1: bat
A2: bat
GT: bat

Q: what is the color of 
the cat ?

A1: black
A2: black
GT: black

Q: what is the color of 
the barns ?

A1: brown
A2: red
GT: red

Q: what is the man holding 
a snowboard on top of a 
snow covered ?
A1: mountain
A2: mountain
GT: hill

Fig. 3. Example question-image pairs from COCO-QA dataset. “A1” indicates the
answer predicted by the basic model, “A2” indicates the answer given by our best
model(with semantic consistency), and “GT” represents the groundtruth answer.
(Color figure online)
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improve our model performance. We observe that our best model(with seman-
tic consistency) outperform the 2-VIS+BLSTM, IMG-CNN, ATT-VGG-SEG,
DPPnet, SAN(2,CNN), QRU and HYBRID by 17.17%, 10.53%, 11.1%, 5.59%,
4.79%, 3.28% and 2.17% in accuracy, respectively. Similar improvements trends
can be also observed for evaluation metric WUPS0.9 and WUPS0.0. And espe-
cially for question type color, our model achieve the best performance among
all VQA methods, which demonstrates our model learns semantic information
between question and image well when there is a single object in image. Our
semantic model also outperforms SAN by 3.97%, 0.06%, 9.35% and 5.91% in
the different question types of Object, Number, Color and Location, respectively.
Similarly with QRU, our best model improves by 3.07%, 4.24%, 4.93% and 0.04%
in accuracy among different question types. Although SAN and QRU are similar
with our works since we both employ multiple image attention step, they show
inferior performance, which further demonstrates the semantic consistency plays
an importance role in our model. An obviously defect for whole performance of
our model is to show a little gap with CO-Attention [16] from Table 1. However,
the model of co-attention is extremely complex since it employs multiple ques-
tion and image attention. It computes attention distribution about image and
question from three level, which has a large amount calculation.

After setting all hyper-parameters, we choose our best model (with seman-
tic consistency) to test on VQA dataset that includes test-dev and test-standard
partitions. Following [7], we divide the validation set into two halves. We employ
the training set and one half of validation to train, and the remaining one half
to valid in order to choose the best model. Then we evaluate our best model
on VQA official server, and all results are shown in Table 2. In Table 2, our
best model outperform most of VQA methods except CO-Attention. The overall
results show that our model outperforms the LSTM Q+I method which pro-
poses the VQA dataset by 5.16% and improves 1.12%, 14.21% in the question
type of Yes/No and Other, respectively. However, our model shows worst per-
formance on question type Number among all VQA methods. This maybe due
to that our model cannot construct the question semantic cross correlation with
image very well when there are multiple object in image. Our model outperforms
QRU and HYBRID by 0.65% and 1.83% in test-standard overall. Both of the
QRU and HYBRID model employ a pre-trained GRU network for skip-thought
sentence embedding model which is trained in an encoder-decoder unsupervised
manner on millions of corpus. Our model use a simple word embedding way
and do not need to fine-tune the large GRU network. HYBRID model need
analyze the datasets and count the number of different question types. QRU
model first employs edge boxes to detect the object region and then extracts the
object features by inputting it to CNN, which makes the model achieve the best
performance on question type Yes/No among all VQA methods. However, this
work makes the final results depend on the accuracy of object detection to some
extent. On the contrary, we input the image to CNN and use the question text
directly, and achieve a comparable results in the meantime.
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Some sample question-image pairs from COCO-QA dataset are shown in
Fig. 3. All questions and answers are represented as lower case. We can see the
second example in Fig. 3, when asking “what is the man holding a snowboard on
top of a snow covered?” and given answer “hill”, our basic and best model predict
the answer “mountain”. From the classification accuracy aspect, we predict the
wrong answers. As we know, the word meaning between “hill” and “mountain”
is similar. Therefore, it is significant for us to employ WUPS measurement. The
last example in Fig. 3, when determining the color of “barns”, our basic model
give the answer “brown” which is obviously the color of “cow”, and our best
model predicted the correct answer, which demonstrates that our model have a
capability to distinguish the foreground and background feature.

4 Conclusion

In this paper, we proposed a new attention with semantic consistency model
which is an end-to-end trainable neural network framework for VQA problem.
By constructing the semantic cross correlation between image and question,
we integrate the image and question features to predict answers. On the other
hand, we conduct several comparative experiments to determine how much the
semantic loss affect our model. Experimental results on two benchmark dataset
COCO-QA and VQA demonstrate that our model outperform most of state-of-
the-art VQA methods. In addition, we further analyze the strength and weakness
of our model in detail through showing some question-image pairs.
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Abstract. In this paper, we introduce a novel deep semantic indexing
method, a.k.a. captioning, for image database. Our method can auto-
matically generate a natural language caption describing an image as a
semantic reference to index the image. Specifically, we use a convolutional
localization network to generate a pool of region proposals from an image,
and then leverage the visual attention mechanism to sequentially gener-
ate the meaningful language words. Compared with previous methods,
our approach can efficiently generate compact captions, which can guar-
antee higher level of semantic indexing for image database. We evaluate
our approach on two widely-used benchmark datasets: Flickr30K, and
MS COCO. Experimental results across various evaluation metrics show
the superiority of our approach as compared with other visual attention
based approaches.

Keywords: Semantic indexing · Image database · Visual attention ·
Region proposals · Convolutional localization network

1 Introduction

With the proliferation of social networks, tremendous amount of image data
have been created on the Web for sharing, self-expressing and distribution. Take
Flickr as an example, a public picture sharing website, which received 1.8 million
photos per day in average, from February to March 2012 [22]. Assuming the size
of each photo is 1 megabytes (MB), it requires 1.8 terabytes (TB) storage every
single day. Indeed, those large volumes of image dataset are precious resources
for users to explore the human society, social events, public affairs, and so on
[34,38]. However, how to effectively and efficiently manage and process such
c© Springer International Publishing AG 2017
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enormous database is still a challenging task for many real-life applications. To
overcome this problem, we introduce a novel deep semantic indexing method for
image database. Our method can efficiently generate a natural language caption
to semantically index an image. By leveraging these compact captions to index
image database, we may require less storage space and achieve faster processing
speed. Moreover, because the captions contain high level of semantic meanings,
our method can achieve preferable effects of semantic indexing compared with
original visual data to enable more types of retrieval tasks.

Along with the progress of deep learning, recent work mainly focus on end-
to-end image caption generation (from Convolutional Neural Network (CNN)
encoding to Recurrent Neural Network (RNN) decoding) [6,17,21,31,33]. Specif-
ically, this paradigm firstly encodes the image content using a deep CNN archi-
tecture, and then feeds the visual representation into a RNN network to sequen-
tially generate the language words. All the parameters in such kind of models can
be trained in an end-to-end manner. Thanks to the visual representation abil-
ity of CNN and the language modelling power of RNN, the CNN-RNN image
captioners have shown promising results to some extent. However, encoding the
whole image into a static representation may limit the generalization ability,
because specific contents are inevitably ignored, thereby failing to comprehen-
sively understand images in details.

Rather than attending to an individual image as a whole, humans can dynam-
ically focus on different parts of an image as needed. This is an important mech-
anism in the human visual system which is usually called as visual attention [18].
As one of attention based approaches for image caption generation, Xu et al. [35]
successfully incorporate the attention mechanism to improve the sentence quality
of the aforementioned CNN-RNN paradigm. This approach dynamically selects
the useful regions for generating a word. However, as Fig. 1.(a) shows, this kind
of attention is based on fixed grid splits, which can hardly adapt to the content
variations, thereby failing to recognize the semantic regions and understand the
overall content in an image.

(a) Visual attention with pre-divided
and fixed grid splits

(b) Localization Network with
Region-based Visual Attention

Fig. 1. An example of the intention of our approach. Previous visual attention is based
on pre-divided and fixed grid splits which cannot adapt to the content variations. We
propose a Localization Network with Region-based Visual Attention (LocAtt) frame-
work which can generate a semantic region for predicting next word.
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Recently, Faster RCNN [26] achieves both high accuracy and efficiency for
object detection. The core component in Faster RCNN is the Region Proposal
Network (RPN), which can generate hundreds of semantic region proposals for
an image. Inspired by the RPN, in this work, we propose a novel Localiza-
tion Network with Region-based Visual Attention (LocAtt) framework to gen-
erate descriptive captions for semantic indexing in image database. As the first
attempt, LocAtt combines the object localization and visual attention mech-
anism together into a unified end-to-end architecture. As shown in Fig. 1.(b),
LocAtt generates a semantic region for the language module to focus on when
predicting the next word. We conduct extensive experiments on benchmark
datasets: Flickr30k [25], and MS COCO [19]. The results show that our app-
roach outperforms other visual attention based approaches.

The rest of the paper is organized as follows. Section 2 briefly reviews
related work and Sect. 3 details the proposed approach. Experimental results
are reported in Sect. 4, followed by the conclusion in Sect. 5.

2 Related Work

Image Database Indexing. With the large scale of data and rapid expand-
ing in image databases, automatic and efficient indexing techniques have become
increasingly important for many real-life applications. Generally speaking, exist-
ing methods for image database indexing can be divided into two classes:
(1) Text-base indexing [14,36] and (2) Content-based indexing [2,5,7,30,37].
Text-based methods index the images based on the metadata such as tags, key-
words or text annotated with the image. This type of methods often result of
ambiguity and inadequacy for image indexing, and also leads to irrelevant search
results. As the development of computer vision techniques, content-based index-
ing have been widely explored. Content-based methods usually map the original
image to a feature vector. However, visual feature can’t be directly understood
by users and there exists a large gap between visual feature space and human’s
cognition. In this paper, we introduce a novel deep semantic indexing method
for image database. Our method can automatically generate a natural language
caption describing an image as a reference to index the image, which can be
regarded as the combination of text-base indexing and content-based indexing.

Neural Image Captioning. Recently, with the success of sequence to sequence
learning using neural networks, such as [1,3,23,28], some methods based on
neural networks for image captioning have been proposed. Similar to machine
translation, those methods translate an image to a sentence. Kiros et al. [16]
first developed a multi-model log-bilinear model using features from the images,
setting the corner stone for caption generation with neural networks. After
that, Kiros et al. [17] furthered their work by simultaneously realizing rank-
ing and generation in a natural fashion. Mao et al. [21] took a next step by
employing a recurrent neural language model instead of the original feed-forward
one. Different from whose models which look the image at each time step,
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Fig. 2. The framework of our proposed LocAtt for image captioning. Our framework
takes an image as input and simultaneously outputs the caption words as well as their
corresponding semantic regions. Our framework is end-to-end in both training and
testing stages.

Vinyals et al. [31] only input the image to the Long Shot Term Memory (LSTM)
network at the beginning and then generate caption words sequentially.

Visual Attention. Inspired by the human ability of selectively concentrating on
some information while ignoring others, the attention mechanism has widely used
in many tasks, like machine translation [1,20], action classification [24,27], and
image/video caption generation [35,39]. Rather than encoding the whole image
into a static feature vector, attention based methods can dynamically focus on
different parts of an image as needed for defferent tasks. For example, Xu et al.
[35] proposed an attention framework that pre-divided the image into fixed grid
splits. Sharma et al. [27] used an LSTM network with a soft attention module
to focus on pre-divided local regions in each frame for action recognition. Those
methods achieve impressive performance, however this pre-division is simple but
can’t adapt to the object variations and can’t understand well what is happening
in an image.

Object Detection. Because object detection is a fundamental process for var-
ious vision tasks, there has been a long line of works for it [9,11,26,29,32].
Among them, RCNN [11] laid the foundation for the region proposal based
methods. However, how to effectively generate region proposals always plagued
researchers [13]. Selective Search [29] prevailed the fields of object detection for
a long time, combining superpixels in a greedy manner. EdgeBoxes [40] balanced
the proposal quality and speed, contributing to less time consumed for searching
compared with selective search. However, Faster RCNN [26] detector innova-
tively proposed a Region Proposal Network (RPN) which shared convolutional



Deep Semantic Indexing 265

features with the detection networks, and thus formed one integrated pipeline
for both region proposals generation and object detection.

3 Our Model

3.1 Overall Framework

The overall framework of our approach is depicted in Fig. 2. Our framework is
designed to be end-to-end, which can simultaneously generate language words
and their corresponding semantic regions. Generally, an image is first propagated
through a CNN network to generate a convolutional feature map, which serves
as the input of our localization layer. The localization layer generates several
semantic region proposals, which are highly related to the image caption. Then
the features of proposed regions are fed into the Region-based Visual Attention
component, which sequentially selects a Region of Interest (RoI) and puts it into
the language generating network (e.g., LSTM) to generate the next word.

3.2 Convolutional Localization Network

Our convolutional localization network consists of a convolutional network and
a region localization layer. The convolutional network is based on the VGG16
network due to the excellent representative power for visual data. Specifically,
we employ the first 13 convolutional layers with 3 × 3 kernel size and 4 inter-
spersed max-pooling layers with 2×2 kernel size. The output of our convolutional
network corresponds to the con5 3 layer in the original VGG-16 network. The
convolutional network encodes the input image of shape 3 × W × H to the con-
volution feature map of shape 512×�W

16 �×�H
16�. The derived feature maps form

the input to the region localization layer.
The localization layer is based on the Region Proposal Network (RPN), which

aims to generate some region proposals for further processing. After receiving
the feature map with shape 512×�W

16 �×�H
16� and certain internal processing, the

localization layer outputs B identified semantic region proposals. The returned
region proposals consist of 3 tensors, i.e., Region Coordinates, Region Scores and
Region Features. Region Coordinates is a matrix of shape B×4 giving bounding
box coordinates for each output region. Region Scores is a vector of length B
giving the confidence score for the output regions. A higher score represents
that this region proposal is more likely to be the corresponding region of interest
ground truth. Region Features is a matrix of shape B × C giving features for
the output regions. C is the feature dimension. In the following paragraphs, we
describe the internal processing of our localization layer in details.

Convolutional Anchors. Our localization layer generates semantic region pro-
posals by regressing offsets from a set of translation-invariant anchors, which is
similar to Faster RCNN. Specifically, at each point in the �W

16 � × �H
16� feature

map, we consider 12 anchors centred on it with 3 different aspect ratios and
4 different spatial scales. In order to predict the region coordinates and scores
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corresponding to each anchor, we use a 3×3 convolution with 256 filters followed
by a rectified linear non-linearity and a 1 × 1 convolution with 5 filters. After
those computing, we get a 5 dimensional vector for each region with one for
confidential score and others for offset regression.

Box Regression. Because the ground truth of region box is annotated using
the pixel coordinates, we first need to project the location of each anchor in the
�W
16 �×�H

16� feature map back to the original W ×H image field. Then we adopt
the same parameterized regression from anchors to the region proposals as Fast
RCNN [10] does. Given the center coordinate of anchor box (xa, ya), weight wa,
height ha, and the offset regression of our model (tx, ty, tw, th), we can compute
the center coordinate of output region (x, y) as well as its weight w and height
h as follows:

x = xa + txwa y = ya + tyha (1)
w = waexp(tw) h = haexp(th) (2)

Box Selecting. Similar to the Fast RCNN [10], in order to save more details,
we up-sample the original image to make the smaller side fixed to be 600 but we
also restrain the max side not to exceed 1000. During up-sampling, we keep the
image spatial ratio unchanged. For a typical image size 600 × 800, there exist
nearly 20,000 anchor boxes.

At training time, we randomly sample 256 boxes from an image with half are
the positive regions and half are the negatives. A region is positive if it has an
intersection over union (IoU) of at least 0.7 with some ground-truth region or
has the maximal IoU with each ground-truth region. A region is negative if it
has 0 < IoU < 0.3 with all ground-truth regions. At test time we apply the non
maximum suppression (NMS) based on the predicted region proposal confidence
scores to select the B = 200 most confident region proposals.

For each selected region proposal, we first project its bounding box to the
top layer of the convolutional network and clip the corresponding feature maps
on this layer. Then we apply the mean pooling for the clipped feature maps to
generate the output region features.

3.3 Region-Based Visual Attention

The Region-based Visual Attention module in our framework is recurrent, which
receives the hidden state ht−1 of the language generation model at previous time
step and the features R of region proposals outputted from the region localization
layer to determine which region should attend.

We use the Hard attention mechanism [35] to select the most appropriate one
from region proposals to attend at each time step. Specifically, for each region
proposal Ri, i = 1 · · · B, the mechanism generates a positive weight αi which
can be interpreted as the probability of which the region should be attended for
predicting the next word. The weight αi of each region proposal is computed by
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the function fatt of a multi-layer perceptron conditioned on the previous hidden
state ht−1.

eti = fatt (Ri, ht−1) (3)

αti =
exp (eti)

∑B
i=1 exp (eti)

(4)

Once the probabilities for all region proposals (which sum to one) are computed,
our model samples one of them to focus on according to the multinomial distri-
bution of their probabilities. So the region proposal with higher probability is
more likely to be selected.

The reason we use the Hard attention mechanism rather than the Soft atten-
tion is that the generated region proposals are semantic and contain the nec-
essary information we need to attend. So attending one of them which has the
highest probability to be related to the next word prediction is enough. In addi-
tion, paying attention on one region proposal will not incorporate other useless
information and thus is more benefit for word prediction.

3.4 Language Generation Model

We use a LSTM network [12] to produce the caption by generating one word at
each time step conditioned on the feature of selected region, the previous hidden
state and the previously generated words. Using Ts,t : R

s → R
t to denote a

simple affine transformation with parameters that are learned, we have following
equations: ⎛

⎜
⎜
⎝

it
ft
ot
gt

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

σ
σ
σ

tanh

⎞

⎟
⎟
⎠ TD+m+m,n

⎛

⎝
Eyt−1

ht−1

ẑt

⎞

⎠

ct = ft � ct−1 + it � gt

ht = ot � tanh (ct)

here, it, ft, ct, ot, ht are the input gate, forget gate, memory, output gate and
hidden state of LSTM, respectively. The vector ẑt ∈ R

C is the feature vector of
the selected region, and keeps varying across different time steps. E ∈ R

m×K is
the word embedding matrix. m and n denote the dimensions of word embedding
and LSTM memory respectively, σ and � present the logistic sigmoid activation
and element-wise multiplication respectively.

In order to initiate the memory and hidden state of LSTM, we extract the
4096-dimensional feature of whole image from fc7 layer in VGG16 network and
then pass this feature through two separate MLPs respectively to obtain the
initiations. We use the full image feature for initiations because we expect to
give the LSTM network a quick overview of the image content at first.
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3.5 Loss Function

At training time, our framework takes the annotated image captions and region
bounding boxes as ground truth. Our model’s loss comes from two modules:
region localization module and language generation module. In the region local-
ization module, we use the binary logistic loss for the confidences of sampled
positive and negative regions. For bounding box regression, we use the smooth
L1 loss for the parameterized coordinates of bounding box. In the language
generation module, we use the cross-entropy loss for the caption word at each
time-step. Our loss function can be formulated as follow:

L = − log(P (y|x)) + λ

(
∑

i

Lcls (pi, pi′) +
∑

i

pi
′Lreg (ri, ri′)

)

+ βθ2 (5)

where pi
′, ri′ is the ground truth for object/background and parametrized coor-

dinates of bounding box respectively. pi
′ is 1 if the anchor is positive and 0

otherwise.
∑

i Lcls (pi, pi′) is the binary logistic loss for the confidences of posi-
tive regions,

∑
i Lreg (ri, ri′) is the smooth L1 loss for bounding box regression.

y is the ground truth of caption sentence and − log(P (y|x)) is the cross-entropy
loss between the predicted sentence and ground truth. θ2 is the weigh decay
of model parameters. λ, β are the coefficients for the loss of region localization
module and weight decay respectively.

4 Experiments

4.1 Datasets and Settings

We evaluate our approach on the popular Flickr30K and MS COCO datasets.
The Flickr30K dataset has 31,783 images and the MS COCO dataset is more
challenging with 123,287 images. Each image in both datasets has 5 or more
captions which are manually annotated by different people. For each dataset,
we construct a fixed size vocabulary which contains 9998 top frequency words
appearing in the annotated captions along with another two words for UNKOWN
and END tokens. We follow the same splits1 which were commonly used in
previous works [15,35].

In all experiments, the dimension of memory and hidden state of our LSTM
caption generator is set to 1800. We set λ = 0.1 and β = 0.0001 in Eq. 5. At the
training stage, we firstly optimize the parameters of convolutional localization
network and LSTM caption generator module independently. Then we finetune
all the parameters of our model together.

4.2 Quantitative Evaluation

For quantitative evaluation, we leverage the popular automatic metrics of BLEU
1,2,3,4 and METEOR which have correlation with human judgement. The
1 https://github.com/karpathy/neuraltalk.

https://github.com/karpathy/neuraltalk
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Table 1. Results of different methods on the MS COCO dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

BRNN [15] 64.2 45.1 30.4 20.3 -

Google NIC [31]a 66.6 46.1 32.9 24.6 -

mutimodal-RNN [21] 67.0 49.0 35.0 25.0 -

LRCN [6] 62.8 44.2 30.4 21.0 -

MSR/CMU [4] - - - 19.0 20.4

Visual concepts [8]a - - - 25.7 23.6

Toronto-Soft attention [35] 70.7 49.2 34.4 24.3 23.9

Toronto-Hard attention [35] 71.8 50.4 35.7 25.0 23.0

Ours 68.8 51.6 38.3 29.0 24.3
aindicates a different test data split.

Table 2. Results of different methods on the Flickr30K dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

Google NIC [31]a 66.3 42.3 27.7 18.3 -

Log Bilinear [16] 60.3 38.0 25.4 17.1 16.9

Toronto-soft attention [35] 66.7 43.4 28.8 19.1 18.5

Toronto-Hard attention [35] 66.9 43.9 29.6 19.9 18.5

Ours 64.8 44.7 30.8 21.6 19.5
aindicates a different test data split.

BLEU metrics seek correlation at the corpus level, while the METEOR metric
produces good correlation at the sentence or segment level. We use the standard
Microsoft COCO Caption Evaluation toolkit2 to compute those metrics.

Tables 1 and 2 show the scores of different metrics for different methods
on the Flickr30K and MS COCO datasets respectively. From these results, we
can find that: (1) Visual attention is helpful to improve the quality of gener-
ated sentence compared with non-attention methods. (2) Our model which takes
semantic regions localization and visual attention can significantly improve the
performance with respect to others. Particularly, our model outperforms the
Toronto-Hard Attention model [35] using fixed region splits with 2.6 and 4.0
percentages of improvement for BLEU-3 and BLEU-4 metrics as well as 1.3% of
improvement for METEOR metric. It is necessary to note that the BLEU-1 score
of our model is poor than that of Toronto-Hard Attention model. However, the
scores of other metrics of our model are better, especially the BLEU-4 which can
better reflect the fluency and grammaticality for the generated sentence than the
BLEU-1, and the METEOR which has more correlation with human judgement
at the sentence or segment level than the BLEU metrics.

2 https://github.com/tylin/coco-caption.

https://github.com/tylin/coco-caption
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(a) A flock of birds flying
over a body of water.

(b) A dog sitting on a
bench in a park.

(c) A man riding a surf-
board on top to a wave in
the ocean.

(d) A woman riding a
horse in a field.

(e) A baseball player is
swinging at a ball.

(f) A motorcycle parked
on the side of a street.

Fig. 3. Some captioning examples generated by our LocAtt framework. The words in
the left top of pictures are generated by our model. The red bounding box in each
picture is the corresponding semantic region which our model localized. Better zoom
in to review. (Color figure online)

4.3 Visualization and Qualitative Analysis

In order to see the alignments between generated words and selected regions, as
well as understand what our model has learned, we visualize some captioning
examples in Fig. 3. From this Figure, we can see that our model achieves very
strong alignments which correspond to human intuition except for some articles
and prepositions such as a, the, of, which don’t have any specific image content
alignment themselves. What’s more, our model not only learns the alignments for
nouns that are corresponding to the objects in images, but also learns the align-
ments for some more semantic verbs. We can also notice that several mistakes
of word prediction exists in our examples. However, in the case of predicting a
wrong word, our model can still make suitable alignment and localize the right
region for this word, which makes those mistakes can be understood by us.

5 Conclusion

In this paper, we introduce a novel deep semantic indexing method for image
database. Our method combines semantic region localization and visual atten-
tion to automatically generate captions for image dataset indexing. Using those
compact captions, less storage space is needed and reaches fast processing speed,
as well as achieves preferable indexing performance compare with original visual
data. We conduct a variety of experiments on two popular benchmarks and
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the results demonstrate our approach outperforms other visual attention based
approaches and is also competitive with the sate-of-art approach.

Acknowledgement. This work was supported in part by the National Natural
Science Foundation of China under Project 61572108 and Project 61502081, the
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Abstract. Social network services have become a part of modern daily
life. Despite explosive growth of social media, people only pay attention
to a small fraction of them. Therefore, predicting the popularity of a
post in social network becomes an important service and can benefit a
series of important applications, such as advertisement delivery, load bal-
ancing and personalized recommendation etc. In this demonstration, we
develop a real-time popularity prediction system based on user feedback
e.g. count of likes. In the proposed system, we develop effective algo-
rithms which utilize the temporal growth of user feedbacks to predict
the popularity in real-time manner. Moreover, the system is easy to be
adapted for a variety of social network platforms. Using datasets col-
lected from Instagram, we show that the proposed system can perform
effective prediction on popularity at early stage of post.

Keywords: Real-time · Predicting popularity · Social network

1 Introduction

With the popularity of mobile devices and lower bandwidth cost, people are
more and more connected to each other through the Internet. People not only
browse but also share and produce web contents, which leads to flood of infor-
mation. At the same time, a small fraction of contents attract most of attention
from public and bring most of flow out. The identification of potential popu-
lar content can help grasp pulse of flow. As a result, the service providers can
make more profits out, advertisers can maximize their revenues through better
advertisement placement and users can focus on most relevant information. Pop-
ularity prediction problem is clearly defined in [3]. And the popularity is usually
characterized by number of user feedbacks e.g. count of likes. We also follow
this convention in our demonstration. In most of the social networks, especially
those focus on short contents e.g. Twitter and Instagram, a post will become
popular in a short time (usually less than 24 h) [4]. Therefore, how to predict
the popularity of a post just in a short time after it has been posted becomes
increasingly important.
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 275–279, 2017.
DOI: 10.1007/978-3-319-68155-9 21
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Challenges. Due to the diversity and high update frequency property of a post
in social network, it is difficult to effectively predict the popularity of a post and it
is even harder when considering the real-time requirement. The main challenges
are in two folds: Firstly, the popularity of a post is usually affected by many
factors and most of them are either difficult to measure or changing frequently.
Secondly, most posts loses attention from public days after publication, which
means meaningful prediction must be made within several hours or even shorter.

In this demonstration, we propose a real-time prediction system for social net-
work content. The system consists of two main components: back-end and front-
end. In the back-end, crawlers continuously crawl target pages from social net-
work platform and several regression model based algorithms are implemented
to support prediction task. In terms of front-end, we build user interface upon
Django1 to visualize recent posts that are expected to be popular and individ-
ual prediction on single post as user input. The proposed system is evaluated
by datasets which are crawled from Instagram2. Our main contributions are
summarized as follows:

– A popularity prediction system with novel and effective prediction algorithms
which can perform effective real-time prediction on popularity of social net-
work content at early stage.

– A web interface that can present recent posts that are expected to be popular
and individual prediction on a post in a user-friendly way.

2 System

Figure 1 demonstrates framework of our system which consists of two part: back-
end part and front-end part. Most of work falls in the back-end part.

Fig. 1. System framework

1 https://www.djangoproject.com/.
2 https://www.instagram.com.

https://www.djangoproject.com/
https://www.instagram.com
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2.1 Back-End

Crawler. Crawler is built upon Scrapy3 which is a popular crawler framework.
For a given social platform, homepage of selected bloggers are used as target
pages in advance. In order to predict popularity in real time, the crawler is
designed to crawl target pages continuously. The gap between two queries on
a certain blogger is no more than tens of minutes to gain sufficient data for
prediction. Moreover, we save original data on first visit to a post and ignore
data that doesn’t change later on. As a result, we collect a set of original data
of post and a set of update data of post.

Training and Prediction System. There are two important time in predic-
tion problem: indication time ti and reference time tr. Prediction algorithm is
running at ti to predict popularity at tr. In this demonstration, we take tr = 24h,
which means the system predict popularity 24 h after publication. The reference
time is chosen based on definition of effective shelf-life 90% : time passed between
its first visit and the time at which it has received a fraction 90% of the visits it
will ever receive [1].

In this demonstration, we characterize popularity through number of user
feedbacks, more specifically, count of likes. Regression-based model is built indi-
vidually for each blogger upon one’s past posts, using data point at ti and data
point at tr. As popularity of post has strong association with its author, predic-
tion can be well performed.

We propose three prediction algorithms, namely Normalized Linear Regres-
sion, Normalized Linear Regression in Log Scale and Regression on Coefficient.
We also implement two algorithms as competitors, namely Linear Regression and
Linear Regression in Log Scale are presented in [2]. Coefficient of each model
are trained beforehand in training system, so that prediction system can handle
queries in real-time. We introduce the idea of each algorithm as following:

– Linear Regression. Collect all history posts of a blogger and build linear
regression model on popularity at ti and popularity at tr

– Linear Regression in Log Scale. This method is almost the same as linear
regression, except that linear regression model is built in log scale.

– Normalized Linear Regression. Popularity at ti is normalized based on pub-
lication time of post and estimated number of blogger’s online followers.

– Normalized Linear Regression in Log Scale. Combination of linear regression
in log scale and normalized linear regression.

– Regression on Coefficient. Fit the growth curve of popularity with power
function kxr where x is hours from publication. Using k and log of popularity
at tr to build linear regression model.

3 https://scrapy.org/.

https://scrapy.org/
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2.2 Front-End

Two scenarios are constructed in front-end part of system to present popularity
prediction result in a friendly way. In the first scenario, top 10 posts that are
most likely to be popular are collected from posts known to public in the last
24 h. In the second scenario, individual prediction on a certain post is presented
in line chart.

3 Demonstration

3.1 Dataset

The proposed system are trained and evaluated using dataset which is collected
from Instagram. Instagram is world’s most popular photo/video sharing social
network platform, where users could upload photographs and short videos, follow
other users’ feeds and share their feeling. Target bloggers are selected from two
sources, 100 of them are from a top Instagram accounts list4, the rest are ran-
domly picked. In total, the dataset contains about 500 target bloggers, 100,000
posts and 100,000,000 updates. For a given post, gap between two updates is
about several minutes.

3.2 User Interface

Figure 2 shows the first scenario, where top 10 recent posts that are most likely
to be popular are presented. Details of the post are also shown in this scenario,
including post time, details of blogger, estimated popularity and content of the
post. Figure 3 shows the second scenario for individual post prediction. Users can
choose blogger and post, then the historical prediction results of the popularity
in 24 h is presented. In this line chart, x axis means time from publication.
Meanwhile, y axis means popularity prediction result at x divided by the real
popularity at 24 h after publication, in other words, relative error to ground-
truth. The closer y to 1, the better our prediction algorithm is.

Fig. 2. Top 10 recent post

Fig. 3. Historical prediction

4 http://zymanga.com/millionplus/.

http://zymanga.com/millionplus/
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Abstract. With the rapid development of mobile portable devices and
location positioning technologies, massive amount of geo-textual data are
being generated by a huge number of web users on various social plat-
forms, such as Facebook and Twitter. Meanwhile, spatial-textual objects
that represent Point-of-interests (POIs, e.g., shops, cinema, hotel or
restaurant) are increasing pervasively. Consequently, how to retrieve a
set of objects that best matches the user’s submitted spatial keyword
query (SKQ) has been intensively studied by the research communities
and commercial organisations. Existing works only focus on returning the
nearest matching objects, although we observe that many real-life appli-
cations are now using diversification to enhance the quality of the query
results. Thus, existing methods fail to solve the problem of diversified
SKQ efficiently. In this demonstration, we introduce DSKQ, a diversified
in-memory spatial-keyword query system, which considers both the tex-
tual relevance and the spatial diversity of the results processing on road
network. We present a prototype of DSKQ which provides users with
an application-based interface to explore the diversified spatial-keyword
query system.

Keywords: Diversification · Spatial-keyword query · Boolean range
query

1 Introduction

Extensive amount of spatial-textual objects that possess both text descriptions
and geo-locations are now available thanks to the proliferation of geo-positioning
technologies. As a consequence, there has been lot of commercial interest in
c© Springer International Publishing AG 2017
Z. Huang et al. (Eds.): ADC 2017, LNCS 10538, pp. 280–284, 2017.
DOI: 10.1007/978-3-319-68155-9 22
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spatial keyword query system since the last decade. The massive amount of
available spatial-textual data enables users to retrieve a set of objects that best
matches the user’s submitted spatial keyword query [2] (i.e., SKQ, which includes
a geographical location and a set of keywords), in terms of both spatial proximity
to query location and textual relevance to query keywords. For instance, a user
may want to find all nearby restaurants which serve both steak and pancake.

To make sense of retrieving spatial-textual objects and satisfy the increasing
location-aware demand of users, it is critical to develop efficient system to sup-
port spatial keyword search on road networks, since most of the spatial-textual
objects are located on predefined road networks and the computation cost of the
road network distance is much higher than that in the Euclidean space. More-
over, it has been widely accepted [1] that the usefulness of a retrieved object
depends not only on its relevance to the query (i.e., distance and keyword con-
straint) but also on other objects in the results. In many scenarios, users are
more interested in retrieving more diversified results and are less likely to expect
highly similar objects at the same time [5]. In [6], Zhang et. al. proposed a diver-
sified spatial keyword query system on road network, which retrieves a set of the
objects each of which contains all query keywords and is within certain distance
to the query location in terms of road network distance, with those objects being
spatially diversified, that is, the pair-wise distance (i.e., dissimilarity) between
two objects in the result should be reasonably large.

Example. Consider a businessman traveling in Sydney wants to select a 5-star
hotel in CBD area with indoor swimming pool, meanwhile exploring local features
around where he lives during his spare time. Since we don’t know any preference
of his lifestyle, a spatially diversified set of results will better meet his request by
providing more possibles options.

In this paper, we propose a novel system, named DSKQ, to demonstrate the
diversified spatial keyword search queries in [6].

The system consists of two main components, one of which is the front-end
graphic user interface (GUI) which is built for user to explore the query process in
an interactive manner, the other is the back-end indexing structure built upon
road network and spatial textual objects. The front-end GUI enables user to
input a query by specify a query location, set of keywords and range, the system
will visualise the diversified search result that satisfying the query constraints.
As for the back-end, we develop an efficient signature-based inverted indexing
technique as well as an efficient incremental network expansion algorithm for
spatial keyword search on road networks.

Contributions. Our main contributions are summarised as follows:

– A novel indexing structure and network expansion algorithm are developed
to efficiently precess diversified spatial keyword queries.

– An application based graphic user interface is designed to enable user to
better explore the query precess.
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2 DSKQ System

Figure 1 demonstrates our system architecture. There are two main components
of our system: the back-end and the front-end.

Fig. 1. System framework

Back-end. The back-end is where the road network and spatial textual objects
index lies as well as the query algorithm processes. We use a structure that
combines the R-tree and inverted file [6] to organise the road network and spatial
textual objects in memory. We utilised the popular connectivity-clustered access
method (CCAM) [4] to represent the road network which effectively organises
the adjacent lists of the road nodes and enable us to take advantage of the query
location and reduce the costs during the query processing. Nodes of the road
network are indexed in a network R-tree [3] using their geo-location (i.e. latitude
and longitude) as key. Road network edges are represented as adjacent lists of a
nodes, in which the end-node and weight (i.e. network distance) are stored. We
also build a R-tree to organise the minimal bounding rectangles (MBR) of the
edges, and, associate object to its corresponding edge by utilising the MBR of
the edge in a branch-and-bound fashion.

Front-end. The front-end of the system is an application interface implemented
under the Java Swing Framework which can be used to explore the DSKQ pro-
cedure. The interface display the road network with Google Map1 and user spec-
ified query location and query range. After a query is being issued, the system
will highlight the diversified result set (i.e., spatial textual objects each contains
all the query keyword and within the road network distance from query location
and, the pair-wise distance are maximised) in the map for user to explore.

3 Demonstration

Figure 2 shows the application GUI of our system. Figure 2(a) is the initial appli-
cation interface, where the road network and, user’s geo-location is displayed
1 http://maps.google.com.

http://maps.google.com
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(a) Initial Interface (b) Query Results

Fig. 2. System interface and query results

and user can issue a query to retrieve the nearby interested objects. For exam-
ple, a user issues a query with location Sydney (latitude: −33.874412, longitude:
151.211418), a set of keywords steak, wine and pancake and number of retrieving
results 4. The query range is set to 1 km as default, which can also be adjusted
according to user’s preference. After submitting this query to our system, all the
retrieved objects will be highlighted with their corresponding textual description
in Fig. 2(b). User can also zoom and drag the map to explore other interested
regions.

4 Conclusion

In this paper, we present DSKQ, a diversified spatial-keyword query system on
road network which retrieves a set of diversified spatial-textual objects that sat-
isfies the query constraints (i.e., spacial and keyword constraints). A signature-
based inverted indexing is built on road network and effective network expan-
sion algorithm as well as pruning techniques are developed to accelerate query
processing. Moreover, an application based graphic user interface is also devel-
oped to enable users to interactively explore the query process and examine the
returned results.
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