
Sotirios A. Tsaftaris
Ali Gooya
Alejandro F. Frangi
Jerry L. Prince (Eds.)

 123

LN
CS

 1
05

57

Second International Workshop, SASHIMI 2017
Held in Conjunction with MICCAI 2017
Québec City, QC, Canada, September 10, 2017, Proceedings

Simulation 
and Synthesis 
in Medical Imaging



Lecture Notes in Computer Science 10557

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7412

http://www.springer.com/series/7412


Sotirios A. Tsaftaris • Ali Gooya
Alejandro F. Frangi • Jerry L. Prince (Eds.)

Simulation
and Synthesis
in Medical Imaging
Second International Workshop, SASHIMI 2017
Held in Conjunction with MICCAI 2017
Québec City, QC, Canada, September 10, 2017
Proceedings

123



Editors
Sotirios A. Tsaftaris
University of Edinburgh
Edinburgh
UK

Ali Gooya
University of Sheffield
Sheffield
UK

Alejandro F. Frangi
University of Sheffield
Sheffield
UK

Jerry L. Prince
The Johns Hopkins University
Baltimore, MD
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68126-9 ISBN 978-3-319-68127-6 (eBook)
DOI 10.1007/978-3-319-68127-6

Library of Congress Control Number: 2017955231

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-8795-9294
http://orcid.org/0000-0001-5135-4800
http://orcid.org/0000-0002-2675-528X
http://orcid.org/0000-0002-6553-0876


Preface

The MICCAI community needs data with known ground truth to develop, evaluate,
and validate image analysis and reconstruction algorithms. Since synthetic data are
ideally suited for this purpose, over the years, a full range of models underpinning
image simulation and synthesis have been developed: (a) simplified mathematical
models to test segmentation and registration algorithms; (b) detailed mechanistic
models (top–down), which incorporate priors on the geometry and physics of image
acquisition and formation processes; and (c) complex spatio temporal computational
models of anatomical variability, organ physiology, or disease progression. Recently,
cross-fertilization between image computing and machine learning gave rise to
data-driven, phenomenological models (bottom–up) that stem from learning directly
data associations across modalities, resolutions, etc. With this, not only has the
application scope been expanded but the underlying model assumptions have also been
refined to increasing levels of realism.

The goal of the Simulation and Synthesis in Medical Imaging (SASHIMI) Work-
shop is to gather all those interested in these problems in the same room, for the
purpose of invigorating research and stimulating new ideas on how to best proceed and
bring these two worlds together. The objectives were to: (a) hear from invited speakers
in the areas of transfer learning and mechanistic models and cross-fertilize across fields;
(b) bring together experts of synthesis (via phenomenological machine learning) and
simulation (via explicit mechanistic models) to raise the state of the art; and (c) identify
challenges and opportunities for further research. We also wanted to identify how we
can best evaluate synthetic data and if we could collect benchmark data that can help
the development of future algorithms.

Following the success from last year, the second SASHIMI1 workshop was held in
conjunction with the 20th International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2017) as a satellite event in Quebec City,
Quebec, Canada, on September 10, 2017. Submissions were solicited via a call for
papers that was circulated by the MICCAI organizers, through known mailing lists
(e.g., ImageWorld, MIUA) but also by directly e-mailing several colleagues and
experts in the area. Each submission underwent a double-blind review by at least two
members of the Program Committee consisting of researchers who actively contribute
in the area. At the conclusion of the review process, 11 papers were accepted. Overall,
the contributions span the following broad categories in alignment with the initial call
for papers: cross modality (PET/MR, PET/CT, CT/MR, etc.) image synthesis, simu-
lation and synthesis from large-scale image databases, automated techniques for quality
assessment images, and several applications of image synthesis and simulation in
medical imaging such as image interpolation and segmentation, image reconstruction,
cell imaging, and blood flow. The accepted papers were divided into two general topics

1 http://www.cistib.org/sashimi/.

http://www.cistib.org/sashimi/


of “Synthesis and Its Applications in Computational Medical Imaging” and “Simula-
tion and Processing Approaches for Medical Imaging” and presented during two oral
and one poster sessions, overall covering eight and three papers, respectively.

Finally, we would like to thank everyone who contributed to this second workshop:
Helena Margarida Faria and Filipa Castro, members of the Organizing Committee, for
their assistance; the authors for their contributions; the members of the Program
Committee for their review work, promotion of the workshop, and general support; the
invited speaker (Dr. Hugo Larochelle, Google Brain) for sharing his expertise and
knowledge; and the MICCAI society for the general support.

August 2017 Sotirios A. Tsaftaris
Ali Gooya

Alejandro F. Frangi
Jerry L. Prince

VI Preface
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Adversarial Image Synthesis for Unpaired
Multi-modal Cardiac Data

Agisilaos Chartsias1(B), Thomas Joyce1, Rohan Dharmakumar2,
and Sotirios A. Tsaftaris1

1 School of Engineering, Institute for Digital Communications,
University of Edinburgh, West Mains Road, Edinburgh EH9 3FB, UK

agis.chartsias@ed.ac.uk
2 Cedars Sinai Medical Center, Los Angeles, CA, USA

Abstract. This paper demonstrates the potential for synthesis of med-
ical images in one modality (e.g. MR) from images in another (e.g. CT)
using a CycleGAN [24] architecture. The synthesis can be learned from
unpaired images, and applied directly to expand the quantity of available
training data for a given task. We demonstrate the application of this
approach in synthesising cardiac MR images from CT images, using a
dataset of MR and CT images coming from different patients. Since there
can be no direct evaluation of the synthetic images, as no ground truth
images exist, we demonstrate their utility by leveraging our synthetic
data to achieve improved results in segmentation. Specifically, we show
that training on both real and synthetic data increases accuracy by 15%
compared to real data. Additionally, our synthetic data is of sufficient
quality to be used alone to train a segmentation neural network, that
achieves 95% of the accuracy of the same model trained on real data.

Keywords: Synthesis · MR · CT · Cardiac · Deep learning · GAN

1 Introduction

Medical imaging research has benefited significantly from the application of mod-
ern deep learning techniques. Yet, often the very best deep learning results out-
with medical imaging are achieved when large labelled datasets are available.
This is difficult in the medical setting, as medical data is often very sparsely
labelled (generally requiring labelling by experts), expensive to obtain, and has
to respect patient anonymity constraints. All of these factors make large labelled
datasets rare in medical image analysis, and thus investigation into methods for
mitigating this restriction are valuable.

When attempting to develop a model for a new task, it is common for only
a limited quantity of labelled data in the modality of interest to exist. However,
the same anatomy may have been imaged in other individuals and in other
modalities, and then carefully labelled by experts. The fact that this labelled

A. Chartsias and T. Joyce—Contributed equally.

c© Springer International Publishing AG 2017
S.A. Tsaftaris et al. (Eds.): SASHIMI 2017, LNCS 10557, pp. 3–13, 2017.
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4 A. Chartsias et al.

data is not in the ‘correct’ modality means it is not immediately useful, but
the ability to make use of these auxiliary labelled datasets would be extremely
valuable, potentially enlarging the pool of labelled data many-fold.

In this paper we propose a pipeline for directly transforming auxiliary labelled
data into the modality of interest (the “target modality”). We demonstrate that
a small set of labelled data in the target modality can be used as a bootstrap,
allowing us to convert labelled data from other modalities into the desired modal-
ity and expand the dataset. Additionally, this synthetic data consists of new
examples not derived from existing examples, and potentially containing bene-
ficial new anatomical and topological information from the auxiliary data. We
show that this larger and more diverse dataset can then be used to train an
improved model for the task at hand. Here, we demonstrate this for myocardial
segmentation. However, as the data only needs to be of the same anatomy (not
necessarily from the same individuals for example), the method can potentially
expand the available training data for many tasks. Moreover, the method is
especially suitable for cardiac use, as it does not require co-registered data.

The pipeline for our approach is as follows: firstly, we perform a view align-
ment step, transforming the auxiliary data so that the scale, position and view-
ing angle is broadly the same as in the target modality (Sect. 3.1). Secondly, we
make use of a CycleGAN [24] architecture for unpaired image synthesis. This
uses adversarial training to overcome the need for aligned pairs of images in the
source and target modalities, and learns to transform data from one modality
to the other. Once trained, we use the learned transformation to convert all the
auxiliary data into synthetic data in the target modality (Sect. 3.2). A schematic
overview of our approach is given in Fig. 1.

To evaluate this approach we apply our method to cardiac synthesis, generat-
ing cardiac MR images from cardiac CT images (Sect. 4). Directly quantitatively
assessing the quality of synthetic data when no ground truth exists is very chal-
lenging. We demonstrate the synthetic data’s utility by showing it significantly
improves results in a segmentation task.

Specifically, this paper makes the following contributions: 1. Introduction
of a flexible pipeline for transforming labelled data in auxiliary modalities into
labelled data in the modality of interest. 2. A demonstration that augmenting
real data with this synthetic data significantly improves performance in a seg-
mentation task. 3. Comparison of our synthetic augmentation with standard aug-
mentation, showing the synthesis approach to be favourable. 4. Demonstration
of a recommended approach, which combines both synthesis and augmentation,
and results in the best performance overall.

2 Previous Work

There has been very little previous work on learning-based methods for cardiac
synthesis. Existing approaches have focused on combining electro-mechanical
models of the heart’s motion with template real images for generating image
simulations [1,14] and have been recently extended for simulation of pathologic
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Fig. 1. A high-level schematic of the synthesis pipeline for the cardiac data. The Cycle-
GAN also produces synthetic CT images but here we only use the synthetic MR.

from healthy cases [5] and for multimodal image simulation of both pathologic
and healthy images in MR modalities [23].

Our work is based on learning a transformation function between images
in order to transfer anatomical information from a source to a target modal-
ity. Similar methods have been proposed for cross-modal synthesis of brain
images [4,7,10,17,21]. However, these are made possible by the availability of
co-registered multimodal datasets, which allow a mapping from one modality
to another to be directly learned using supervised techniques. In the cardiac
domain, such registered multimodal datasets are harder to create. This is in
part due to several unique challenges that cardiac data presents. Many of these
difficulties result from the fact that the heart is an active moving muscle during
the data acquisition session, and thus imaging it is more difficult than imaging
the brain, or bones, which are essentially static relative to the body. In addition,
the fact that the heart is moving makes it very difficult to produce co-registered
images of the heart in different imaging modalities, and registration is often a
complex non-linear post-processing step [18].

Cardiac synthesis methods have been explored for super-resolution (i.e. spa-
tial up-sampling) in [12]. These methods can be learned by creating a low resolu-
tion version of a dataset, and then learning to synthesise the original resolution,
again admitting a supervised approach. Recently, cardiac super-resolution has
been enhanced by incorporating a shape prior in the learning process [13].

Furthermore, super-resolution has been coupled with cross-modal synthesis in
a dictionary learning approach, with the addition of unpaired data in the learning
process to improve the quality of results [8], proposing a weakly supervised
learning approach. Unpaired data has also been used for cross-modal synthesis
in an optimisation scheme [22], treating the problem as unsupervised learning.
However, [22] focuses only on brain images, and does not address cardiac.

Unsupervised learning, for example learning image transformations with no
ground-truth target images, has been revolutionalised by the introduction of
adversarial training of neural networks [6,15]. Adversarial learning was used for
image style transformation in [24], and this method is directly applicable to
cardiac data, where there is a lack of paired data.

Although synthesis offers a flexible approach that can be directly applied
to expand available data, it is still important to weigh synthesis up, critically,
against other approaches. Synthetic data has been used previously to improve
segmentation [9] and classification algorithms [20], and, as there is no direct
way to measure accuracy when ground truth images do not exist, the value of
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synthesis should be measured by considering how well it achieves these aims.
However, this means that synthesis should also be compared with alternative
methods for achieving these same goals.

In this paper we demonstrate the utility of synthesis for improving segmenta-
tion via enlarging the set of available training data. Besides synthesis, a dataset
can also be expanded using simple geometric augmentation, for example by
rotating and reflecting the images. Although simple transformation based aug-
mentation is commonly used to improve results on cardiac segmentation [19,23],
this approach produces derivative examples, and does not benefit from the exis-
tence of auxiliary data, which could potentially provide additional real anatom-
ical examples. In our experiments (Sect. 4) we directly compare this standard
data augmentation with our synthesis approach, and, as the approaches are not
mutually exclusive, also explore combining both approaches.

3 Method Details

We now give step-by-step details of our method, describing the view alignment,
the training of the CycleGAN and the generation of the synthetic data.

3.1 View Alignment

In the view alignment step we make the CT and MR image sets broadly similar
in terms of structure. Specifically, we aim to make the layout of the images (the
position and size of the anatomy for example) not informative as to the dataset
from which the image came. Preventing this is important in order to ensure
the adversarial training is effective, otherwise the discriminator may learn to
differentiate between real and synthetic data by attending to structural differ-
ences, rather than intensity statistics. However, the alignment only needs to be
approximate, and any simple registration approach should suffice. Here we make
use of the multiple labels on the data, using them to approximate the affine
transformation that, for a given MR and CT volume, when applied to the CT
volume, maximises alignment with the MR volume. After this crude alignment,
any points in the new CT volume that correspond to points outside of the orig-
inal CT volume are set to 0. Additionally, any points in the MR volume that
correspond to points outside of the original CT volume are also set to 0. This
again is performed to make the volumes structurally similar, to aid the adver-
sarial training.

3.2 Transform Learning with CycleGAN

Since the images are not paired, learning to transform from MR to CT is not
straightforward. However, a recent adversarial approach to this difficult task is
the CycleGAN [24]: an adversarialy trained deep network which simultaneously
learns transformations between two datasets containing the same information,
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Fig. 2. Unfolded CycleGAN [24] training for CT to MR synthesis: a CT image with
its segmentation mask is mapped to a synthetic MR and mask by a generator network
F : [CT,Mask] → [MR,Mask]. An MR discriminator then tries to discriminate real
from synthetic MR. The CT and Mask are also reconstructed form the synthetic MR by
a second generator network G : [MR,Mask] → [CT,Mask], which aims to reconstruct
the original CT exactly. The generator learns both by trying to fool the discriminator,
and by minimising the discrepancy between the real CT and its reconstruction.

but differently represented. It is powerful since it does not require paired training
data, but instead learns via the use of both a discriminator and a cycle loss.

Specifically, a transform F : A → B is learned from dataset A to dataset B to
produce synthetic B data yB from real A data xA, i.e. yB = F (xA). Transform F
aims to fool a discriminator DB , which is simultaneously learning to discriminate
between real and synthetic B data. Additionally, the synthetic B data is then
transformed back into its original modality by a second learned transform G :
B → A going in the other direction xA = G(yB). This allows for an additional
cost to be included in the training: data mapped from A to B, then back to A,
should be as close as possible to the original A. That is G(F (xA)) should be
equal to xA. This cycle loss gives the model its name.

In our case, the CycleGAN learns to transform a CT image into a synthetic
MR image that cannot be recognised as synthetic by a discriminator network. At
the same time, the synthetic MR image must be able to be accurately converted
back into a CT image, as similar as possible to the original CT image, via
another learned transformation. Thus, the synthetic MR image, whilst appearing
realistic, must also retain relevant information from the CT. This encourages the
synthetic MR to contain the same anatomy as is present in the input CT.

Adversarial training of deep neural networks is a challenging task, sensitive to
many variables, and increasing the accessibility of the approach is an active area
of research [2,3]. Initially, we applied the CycleGAN directly to the MR and CT
images. However, we found that although the resulting images were promising
in terms of realism, the myocardium in the synthetic image was often not in the
same place as in the input image. As a result, our synthetic MR data had no
accurate labels, as we could not assume the label was the same as in the input
image. To mitigate this issue we included both the mask of the myocardium
and the image as two channel inputs to the CycleGAN, such that it learned to
transform CT images and their corresponding myocardium segmentation mask
into realistic MR images and corresponding segmentation masks. This did not
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stop the anatomy shifting during the transformation, but meant that we still
had accurate (synthetic) labels for the synthetic images. A schematic of this
approach can be seen in Fig. 2.

3.3 Synthesis

We apply the mapping learned with the CycleGAN to the view-aligned CT data
and the CT masks, producing a synthetic MR image and mask for every CT
image in the dataset. The result is a synthetic labelled data set of MR cardiac
images, which can be used for any task of interest.

4 Experiments

In this section we examine the effect of synthetic results in the accuracy of
myocardium segmentation. We train a segmentation model, detailed in Sect. 4.1,
on various combinations of synthetic and real data, with and without augmen-
tation and report the dice coefficient on 3-fold cross validation.

4.1 Segmentation

To segment the images, we train a neural network with an architecture simi-
lar to the U-Net [16]. Specifically, the network consists of 3 downsample and 3
upsample blocks with skip connections between each block of equal size filters.
This architecture was chosen as similar fully convolutional networks have been
shown to achieve state of the art results in various segmentation tasks, including
cardiac, and U-Net is a standard benchmark approach. Here we have not specif-
ically optimised the architecture or hyperparameters for the segmentation task
being considered, since the aim is to evaluate the synthetic results. Our model
is implemented in Keras1 and trained using Adam [11] with batch-size 16 and
an early stopping criterion, based on the validation data, to avoid overfitting.

4.2 Data

We use 40 anonymised volumes, of which 20 are cardiac CT/CTA and 20 are
cardiac MRI, kindly made available by the authors of [25,26]. The CT/CTA data
were acquired at Shanghai Shuguang Hospital, China, using routine cardiac CT
angiography. The slices were acquired in the axial view. The inplane resolution is
about 0.78 × 0.78mm and the average slice thickness is 1.60mm. The MRI data
were acquired at St. Thomas hospital and Royal Brompton Hospital, London,
UK, using 3D balanced steady state free precession (b-SSFP) sequences, with
about 2mm acquisition resolution at each direction and reconstructed (resam-
pled) into about 1mm. The data contains static 3D images, acquired at different
time points relative to the systole and diastole. All the data has manual segmen-
tation of the seven whole heart substructures. However, in our segmentation
experiments we only use the labels for the myocardium of the left ventricle.
1 https://keras.io.

https://keras.io
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4.3 Data Preprocessing

We centered the anatomy (the bounding box of the labeled anatomical regions)
within the MR volumes, and trimmed each volume to 232×232, padding with 0s
where necessary, but maintaining the native resolution. Then, for each volume,
we clipped the top 1% of pixel values and re-scaled the values to [−1, 1]. Finally,
we removed slices that did not contain myocardium, resulting in 20 volumes with
an average of 41 slices per volume (816 slices in total). For the cardiac CT data
no centering or trimming was necessary, as the data is aligned with the MR data
in the view alignment step of Sect. 3.1. However, we again clipped the top 1% of
values, and scaled the values to [−1, 1].

4.4 Experiment Details

Below we detail the five experiments we used to evaluate the quality of the
synthesised cardiac MR data. We repeated all experiments on three different
splits of the data, each time training a CycleGAN on 15 MR and 15 CT volumes,
and then training the segmentation network described in Sect. 4.1. In every split,
the 5 MR volumes used for testing the segmentation network were excluded, as
were the 5 CT volumes which were aligned with them in the view alignment step.
Thus the final test volumes have not been used anywhere in the pipeline. Out
of the remaining 15 MR volumes, we used 10 for training and 5 for validation.
Real: Firstly, as a baseline we train the segmentation network on 10 real MR
volumes, using the other 5 MR volumes for validation, and obtain a mean dice
coefficient of 0.613 on the test set.
Synthetic: Secondly, to directly evaluate the quality of the synthetic data, we
train the segmentation network on 10 synthetic volumes, validating on 5 syn-
thetic volumes. We then test the final model on the 5 real MR volumes and
obtained a dice coefficient of 0.580.
Real and Synthetic: Next we combine the real and synthetic data and train our
segmentation network on a total of 25 volumes (10 real and 15 synthetic), again
using 5 real volumes for validation. This combined training gives a performance
gain of ∼15% compared to training on real data alone.
Augmented Real: Next we augment the real data using horizontal and vertical
flips generating a total training set of 25 volumes (10 real 15 flipped) to allow
direct comparison with synthetic augmentation.
Augmented Real and Synthetic: Finally, we combine the real and synthetic
training data, and also use horizontal and vertical flips to expand the data to
double the size. This results in 50 training volumes, and we again use 5 real
volumes for validation during training.

4.5 Results

All results are presented side-by-side in Table 1. In addition, in Fig. 3 we provide
examples of our synthetic results. The first observation is that using just the
synthetic data is almost as good as using the real data, in terms of resulting
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Fig. 3. Two examples of MR synthesis. From left to right it is shown, the real CT
image, the resulting synthetic MR image, the synthetic segmentation mask and finally
the real MR image of the volume to which the real CT volume was aligned in the view
alignment step. Note that the shape and position of the myocardium is similar but not
identical between the CT input and corresponding synthetic MR output. Also, observe
that in the upper row the synthetic data contains a dark artifact within the ventricle.

Table 1. Dice scores for U-Nets trained on various data combinations. In all cases the
model is evaluated on real MR images.

Training data Split 1 Split 2 Split 3 Average Relative to real

Just synthetic 0.553 0.516 0.672 0.580 0.946

Just real 0.584 0.613 0.642 0.613 1.000

Augmented real 0.632 0.685 0.711 0.676 1.103

Real and synthetic 0.657 0.699 0.757 0.704 1.148

Augmented real and synthetic 0.650 0.738 0.748 0.712 1.161

segmentation, only resulting in a 5% loss of accuracy and this difference is not
statistically significant at the 5% level. This is likely the result of small errors
present in the synthetic images. Next, it is informative to compare real data with
standard augmentations against the combined real and synthetic data. In both
cases the segmentation algorithm was trained on 25 volumes, including the same
10 real volumes, and both approaches improve the final segmentation accuracy
with synthetic and geometric augmentation leading to 14.8% and 10.3% improve-
ments respectively. Finally, when the real and synthetic data is combined, and
geometric augmentations are also applied, the greatest improvement is seen, with
a 16.1% increase in accuracy over the baseline.

The difference in performance between the real and synthetic data, and just
the real data is significant at the 5% level, as is the difference between the real and
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synthetic data and the augmented real data. Further, adding augmentation to the
real and synthetic data does not lead to a statistically significant improvement.

5 Discussion and Conclusion

We have demonstrated that it is possible to produce synthetic cardiac data from
unpaired images coming from different individuals. Moreover, we demonstrate
that these synthetic images are accurate enough to be of significant benefit for
further tasks, either used alone or to enlarge existing data sets. Specifically, we
have shown that it is possible to produce synthetic cardiac MR images from
cardiac CT images, and that these images can be used to improve the accuracy
of a segmentation algorithm by 16% when used in combination with standard
geometric augmentation techniques. We also demonstrated that the synthetic
data alone was sufficient to train a segmentation algorithm only 5% less accurate
than the same algorithm trained entirely on real data.

As can be seen in the results, the largest gains are made when the synthetic
data is included in the training set, suggesting that new anatomy, containing
additional examples of real structure and natural local variations, being intro-
duced from the auxiliary data is most beneficial for improving results.
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1 Image Sciences Institute, University Medical Center Utrecht,
Utrecht, The Netherlands

j.m.wolterink@umcutrecht.nl
2 Department of Radiotherapy, University Medical Center Utrecht,

Utrecht, The Netherlands

Abstract. MR-only radiotherapy treatment planning requires accurate
MR-to-CT synthesis. Current deep learning methods for MR-to-CT syn-
thesis depend on pairwise aligned MR and CT training images of the
same patient. However, misalignment between paired images could lead
to errors in synthesized CT images. To overcome this, we propose to
train a generative adversarial network (GAN) with unpaired MR and CT
images. A GAN consisting of two synthesis convolutional neural networks
(CNNs) and two discriminator CNNs was trained with cycle consistency
to transform 2D brain MR image slices into 2D brain CT image slices
and vice versa. Brain MR and CT images of 24 patients were analyzed.
A quantitative evaluation showed that the model was able to synthesize
CT images that closely approximate reference CT images, and was able
to outperform a GAN model trained with paired MR and CT images.

Keywords: Deep learning · Radiotherapy · Treatment planning · CT
synthesis · Generative adversarial networks

1 Introduction

Radiotherapy treatment planning requires a magnetic resonance (MR) volume
for segmentation of tumor volume and organs at risk, as well as a spatially corre-
sponding computed tomography (CT) volume for dose planning. Separate acqui-
sition of these volumes is time-consuming, costly and a burden to the patient.
Furthermore, voxel-wise spatial alignment between MR and CT images may be
compromised, requiring accurate registration of MR and CT volumes. Hence, to
circumvent separate CT acquisition, a range of methods have been proposed for
MR-only radiotherapy treatment planning in which a substitute or synthetic CT
image is derived from the available MR image [2].

Previously proposed methods have used convolutional neural networks
(CNNs) for CT synthesis in the brain [4] and pelvic area [8]. These CNNs are
trained by minimization of voxel-wise differences with respect to reference CT
volumes that are rigidly aligned with the input MR images. However, slight
voxel-wise misalignment of MR and CT images may lead to synthesis of blurred
c© Springer International Publishing AG 2017
S.A. Tsaftaris et al. (Eds.): SASHIMI 2017, LNCS 10557, pp. 14–23, 2017.
DOI: 10.1007/978-3-319-68127-6 2
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Fig. 1. Left When training with paired data, MR and CT slices that are simultane-
ously provided to the network correspond to the same patient at the same anatomical
location. Right When training with unpaired data, MR and CT slices that are simul-
taneously provided to the network belong to different patients at different locations in
the brain.

images. To address this, Nie et al. [9] proposed to combine the voxel-wise loss
with an image-wise adversarial loss in a generative adversarial network (GAN)
[3]. In this GAN, the synthesis CNN competes with a discriminator CNN that
aims to distinguish synthetic images from real CT images. The discriminator
CNN provides feedback to the synthesis CNN based on the overall quality of the
synthesized CT images.

Although the GAN method by Nie et al. [9] addresses the issue of image
misalignment by incorporating an image-wise loss, it still contains a voxel-wise
loss component requiring a training set of paired MR and CT volumes. In prac-
tice, such a training set may be hard to obtain. Furthermore, given the scarcity
of training data, it may be beneficial to utilize additional MR or CT training
volumes from patients who were scanned for different purposes and who have
not necessarily been imaged using both modalities. The use of unpaired MR
and CT training data would relax many of the requirements of current deep
learning-based CT synthesis systems (Fig. 1).

Recently, methods have been proposed to train image-to-image translation
CNNs with unpaired natural images, namely DualGAN [11] and CycleGAN [12].
Like the methods proposed in [4,8,9], these CNNs translate an image from one
domain to another domain. Unlike these methods, the loss function during train-
ing depends solely on the overall quality of the synthesized image as determined by
an adversarial discriminator network. To prevent the synthesis CNN from generat-
ing images that look real but bear little similarity to the input image, cycle consis-
tency is enforced.That is, an additionalCNN is trained to translate the synthesized
image back to the original domain and the difference between this reconstructed
image and the original image is added as a regularization term during training.

Here, we use a CycleGAN model to synthesize brain CT images from brain MR
images. We show that training with pairs of spatially aligned MR and CT images
of the same patients is not necessary for deep learning-based CT synthesis.
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2 Data

This study included brain MR and CT images of 24 patients that were scanned
for radiotherapy treatment planning of brain tumors. MR and CT images were
acquired on the same day in radiation treatment position using a thermoplastic
mask for immobilization. Patients with heavy dental artefacts on CT and/or
MR were excluded. T1 3D MR (repetition time 6.98 ms, echo time 3.14 ms, flip
angle 8◦) images were obtained with dual flex coils on a Philips Ingenia 1.5T MR
scanner (Philips Healthcare, Best, The Netherlands). CT images were acquired
helically on a Philips Brilliance Big Bore CT scanner (Philips Healthcare, Best,
The Netherlands) with 120 kVp and 450 mAs. To allow voxel-wise comparison of
synthetic and reference CT images, MR and CT images of the same patient were
aligned using rigid registration based on mutual information following a clinical
procedure. This registration did not correct for local misalignment (Fig. 2). CT
images had a resolution of 1.00×0.90×0.90 mm3 and were resampled to the same
voxel size as the MR, namely 1.00 × 0.87 × 0.87 mm3. Each volume had 183 ×
288×288 voxels. A head region mask excluding surrounding air was obtained in
the CT image and propagated to the MR image.

Fig. 2. Examples showing local misalignment between MR and CT images after rigid
registration using mutual information. Although the skull is generally well-aligned,
misalignments may occur in the throat, mouth, vertebrae, and nasal cavities.

3 Methods

The CycleGAN model proposed by Zhu et al. and used in this work contains a
forward and a backward cycle (Fig. 3) [12].

The forward cycle consists of three separate CNNs. First, network SynCT is
trained to translate an input MR image IMR into a CT image. Second, network
SynMR is trained to translate a synthesized CT image SynCT (IMR) back into an
MR image. Third, network DisCT is trained to discriminate between synthesized
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SynCT (IMR) and real CT images ICT . Each of these three neural networks has
a different goal. While DisCT aims to distinguish synthesized CT images from
real CT images, network SynCT tries to prevent this by synthesizing images
that cannot be distinguished from real CT images. These images should be
translated back to the MR domain by network SynMR so that the original
image is reconstructed from SynCT (IMR) as accurately as possible.

To improve training stability, the backward cycle is also trained, translating
CT images into MR images and back into CT images. For synthesis, this model
uses the same CNNs SynCT and SynMR. In addition, it contains a discriminator
network DisMR that aims to distinguish synthesized MR images from real MR
images.

The adversarial goals of the synthesis and discriminator networks are
reflected in their loss functions. The discriminator DisCT aims to predict the
label 1 for real CT images and the label 0 for synthesized CT images. Hence,
the discriminator DisCT tries to minimize

LCT = (1 − DisCT (ICT ))2 + DisCT (SynCT (IMR))2 (1)

for MR images IMR and CT images ICT . At the same time, synthesis net-
work SynCT tries to maximize this loss by synthesizing images that cannot be
distinguished from real CT images.

Similarly, the discriminator DisMR aims to predict the label 1 for real MR
images and the label 0 for synthesized MR images. Hence, the loss function for
MR synthesis that DisMR aims to minimize and SynMR aims to maximize is
defined as

LMR = (1 − DisMR(IMR))2 + DisMR(SynMR(ICT ))2 (2)

To enforce bidirectional cycle consistency during training, additional loss
terms are defined as the difference between original and reconstructed images,

LCycle = ||SynMR(SynCT (IMR)) − IMR||1 + ||SynCT (SynMR(ICT )) − ICT ||1.
(3)

During training, this term is weighted by a parameter λ and added to the
loss functions for SynCT and SynMR.

3.1 CNN Architectures

The PyTorch implementation provided by the authors of [12] was used in all
experiments1. This implementation performs voxel regression and image classifi-
cation in 2D images. Here, experiments were performed using 2D sagittal image
slices (Fig. 1). We provide a brief description of the synthesis and discriminator
CNNs. Further implementation details are provided in [12].

The network architectures of SynCT and SynMR are identical. They are 2D
fully convolutional networks with two strided convolution layers, nine residual
1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Fig. 3. The CycleGAN model consists of a forward cycle and a backward cycle. In
the forward cycle, a synthesis network SynCT is trained to translate an input MR
image IMR into a CT image, network SynMR is trained to translate the resulting CT
image back into an MR image that approximates the original MR image, and DisCT

discriminates between real and synthesized CT images. In the backward cycle, SynMR

synthesizes MR images from input CT images, SynCT reconstructs the input CT image
from the synthesized image, and DisMR discriminates between real and synthesized
MR images.
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blocks and two fractionally strided convolution layers, based on the architecture
proposed in [6] and used in [12]. Hence, the CNN takes input images of size
256 × 256 pixels and predicts output images of the same size.

Networks DisCT and DisMR also use the same architecture. This architec-
ture does not provide one prediction for the full 256 × 256 pixel image, but
instead uses a fully convolutional architecture to classify overlapping 70 × 70
image patches as real or fake [5]. This way, the CNN can better focus on high-
frequency information that may distinguish real from synthesized images.

3.2 Evaluation

Real and synthesized CT images were compared using the mean absolute error

MAE =
1
N

N∑

i=1

|ICT (i) − SynCT (IMR(i))|, (4)

where i iterates over aligned voxels in the real and synthesized CT images.
Note that this was based on the prior alignment of IMR and ICT . In addition,
agreement was evaluated using the peak-signal-to-noise-ratio (PSNR) as pro-
posed in [8,9] as

PSNR = 20 log10
4095
MSE

, (5)

where MSE is the mean-squared error, i.e. 1
N

∑N
i=1(ICT (i) − SynCT

(IMR(i))2. The MAE and PSNR were computed within a head region mask
determined in both the CT and MR that excludes any surrounding air.

4 Experiments and Results

The 24 data sets were separated into a training set containing MR and CT
volumes of 18 patients and a separate test set containing MR and corresponding
reference CT volumes of 6 patients.

Each MR or CT volume contained 183 sagittal 2D image slices. These were
resampled to 256 × 256 pixel images with 256 grayscale values uniformly distrib-
uted in [−600, 1400] HU for CT and [0, 3500] for MR. This put image values in
the same range as in [12], so that the default value of λ = 10 was used to weigh
cycle consistency loss. To augment the number of training samples, each image
was padded to 286×286 pixels and sub-images of 256×256 pixels were randomly
cropped during training. The model was trained using Adam [7] for 100 epochs
with a fixed learning rate of 0.0002, and 100 epochs in which the learning rate was
linearly reduced to zero. Model training took 52 h on a single NVIDIA Titan X
GPU. MR to CT synthesis with a trained model took around 10 s.

Figure 4 shows an example MR input image, the synthesized CT image
obtained by the model and the corresponding reference CT image. The model
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Fig. 4. From left to right Input MR image, synthesized CT image, reference real CT
image, and absolute error between real and synthesized CT image.

has learned to differentiate between different structures with similar intensity
values in MR but not in CT, such as bone, ventricular fluid and air. The dif-
ference image shows the absolute error between the synthesized and real CT
image. Differences are least pronounced in the soft brain tissue, and most in
bone structures, such as the eye socket, the vertebrae and the jaw. This may
be partly due to the reduced image quality in the neck area and misalignment
between the MR image and the reference CT image. Table 1 shows a quantitative
comparison between real CT and synthesized CT images in the test set. MAE
and PSNR values show high consistency among the different test images.

To compare unpaired training with conventional paired training, an addi-
tional synthesis CNN with the same architecture as SynCT was trained using
paired MR and CT image slices. For this, we used the implementation of [5]
which, like [9], combines voxel-wise loss with adversarial feedback from a dis-
criminator network. This discriminator network had the same architecture as
DisCT . A paired t-test on the results in Table 1 showed that agreement with
the reference CT images was significantly lower (p < 0.05) for images obtained
using this model than for images obtained using the unpaired model. Figure 5

Table 1. Mean absolute error (MAE) values in HU and peak-signal-to-noise ratio
(PSNR) between synthesized and real CT images when training with paired or unpaired
data.

MAE PSNR

Unpaired Paired Unpaired Paired

Patient 1 70.3 86.2 31.1 29.3

Patient 2 76.2 98.8 32.1 30.1

Patient 3 75.5 96.9 32.9 30.1

Patient 4 75.2 86.0 32.9 31.7

Patient 5 72.0 81.7 32.3 31.2

Patient 6 73.0 87.0 32.5 30.9

Average ± SD 73.7 ± 2.3 89.4 ± 6.8 32.3 ± 0.7 30.6 ± 0.9
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Fig. 5. From left to right Input MR image, synthesized CT image with paired training,
synthesized CT image with unpaired training, reference real CT image.

Fig. 6. From left to right Input MR image, synthesized CT image, reconstructed MR
image, and relative error between the input and reconstructed MR image.

shows a visual comparison of results obtained with unpaired and paired training
data. The image obtained with paired training data is more blurry and contains
a high-intensity artifact in the neck.

During training, cycle consistency is explicitly imposed in both directions.
Hence, an MR image that is translated to the CT domain should be successfully
translated back to the MR domain. Figure 6 shows an MR image, a synthesized
CT image and the reconstructed MR image. The difference map shows that
although there are errors with respect to the original image, these are very small
and homogeneously distributed. Relative differences are largest at the contour
of the head and in air, where intensity values are low. The reconstructed MR
image is remarkably similar to the original MR image.

5 Discussion and Conclusion

We have shown that a CNN can be trained to synthesize a CT image from
an MR image using unpaired and unaligned MR and CT training images. In
contrast to previous work, the model learns to synthesize realistically-looking
images guided only by the performance of an adversarial discriminator network
and the similarity of back-transformed output images to the original input image.

Quantitative evaluation using an independent test set of six images showed
that the average correspondence between synthetic CT and reference CT images
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was 73.7 ± 2.3 HU (MAE) and 32.3 ± 0.7 (PSNR). In comparison, Nie et al.
reported an MAE of 92.5 ± 13.9 HU and a PSNR of 27.6 ± 1.3 [9], and
Han et al. reported an MAE of 84.8 ± 17.3 HU [4]. However, these studies used
different data sets with different anatomical coverage, making a direct compari-
son infeasible. Furthermore, slight misalignments between reference MR and CT
images, and thus between synthesized CT and reference CT, may have a large
effect on quantitative evaluation. In future work, we will evaluate the accuracy
of synthesized CT images in radiotherapy treatment dose planning.

Yi et al. showed that a model using cycle consistency for unpaired data can
in some cases outperform a GAN-model on paired data [11]. Similarly, we found
that in our test data sets, the model trained using unpaired data outperformed
the model trained using paired data. Qualitative analysis showed that CT images
obtained by the model trained with unpaired data looked more realistic, con-
tained less artifacts and contained less blurring than those obtained by the model
trained with paired data. This was reflected in the quantitative analysis. This
could be due to misalignment between MR and CT images (Fig. 2), which is
ignored when training with unpaired data.

The results indicate that image synthesis CNNs can be trained using
unaligned data. This could have implications for MR-only radiotherapy treat-
ment planning, but also for clinical applications where patients typically receive
only one scan of a single anatomical region. In such scenarios, paired data is
scarce, but there are many single acquisitions of different modalities. Possi-
ble applications are synthesis between MR images acquired at different field
strengths [1], or between CT images acquired at different dose levels [10].

Although the CycleGAN implementation used in the current study was devel-
oped for natural images, synthesis was successfully performed in 2D medical
images. In future work, we will investigate whether 3D information as present
in MR and CT images can further improve performance. Nonetheless, the cur-
rent results already showed that the synthesis network was able to efficiently
translate structures with complex 3D appearance, such as vertebrae and bones.

The results in this study were obtained using a model that was trained with
MR and CT images of the same patients. These images were rigidly registered to
allow a voxel-wise comparison between synthesized CT and reference CT images.
We do not expect this registration step to influence training, as training images
were provided in a randomized unpaired way, making it unlikely that both an
MR image and its registered corresponding CT image were simultaneously shown
to the GAN. In addition, images were randomly cropped, which partially cancels
the effects of rigid registration. Nevertheless, using images of the same patients
in the MR set and the CT set may affect training. The synthesis networks could
receive stronger feedback from the discriminator, which would occasionally see
the corresponding reference image. In future work, we will extend the training
set to investigate if we can similarly train the model with MR and CT images
of disjoint patient sets.
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Abstract. With the increasing popularity of PET-MR scanners in
clinical applications, synthesis of CT images from MR has been an impor-
tant research topic. Accurate PET image reconstruction requires atten-
uation correction, which is based on the electron density of tissues and
can be obtained from CT images. While CT measures electron density
information for x-ray photons, MR images convey information about the
magnetic properties of tissues. Therefore, with the advent of PET-MR
systems, the attenuation coefficients need to be indirectly estimated from
MR images. In this paper, we propose a fully convolutional neural net-
work (CNN) based method to synthesize head CT from ultra-short echo-
time (UTE) dual-echo MR images. Unlike traditional T1-w images which
do not have any bone signal, UTE images show some signal for bone,
which makes it a good candidate for MR to CT synthesis. A notable
advantage of our approach is that accurate results were achieved with
a small training data set. Using an atlas of a single CT and dual-echo
UTE pair, we train a deep neural network model to learn the transform
of MR intensities to CT using patches. We compared our CNN based
model with a state-of-the-art registration based as well as a Bayesian
model based CT synthesis method, and showed that the proposed CNN
model outperforms both of them. We also compared the proposed model
when only T1-w images are available instead of UTE, and show that UTE
images produce better synthesis than using just T1-w images.

1 Introduction

Accurate PET (positron emission tomography) image reconstruction requires
correction for the attenuation of γ photons by tissue. The attenuation coeffi-
cients, called μ-maps, can be estimated from CT images, which are x-ray derived
estimates of electron densities in tissues. Therefore PET-CT scanners are well
suited for accurate PET reconstruction. In recent years, PET-MR scanners have
become more popular in clinical settings. This is because of the fact that unlike
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CT, MRI (magnetic resonance imaging) does not impart any radiation, and MR
images have superior soft tissue contrast. However, an MR image voxel contains
information about the magnetic properties of the tissues at that voxel, which
has no direct relation to its electron density. Therefore synthesizing CT from
MRI is an active area of research.

Several MR to CT synthesis methods for brain images have been proposed.
Most of them can be categorized into two classes – segmentation based and
atlas based. CT image intensities represent quantitative Hounsfeld Units (HU)
and their standardized values are usually known for air, water, bone, and other
brain tissues such as fat, muscle, grey matter (GM), white matter (WM), cerebro-
spinal fluid (CSF) etc. Segmentation based methods [2,13] first segment a T1-w
MR image of the whole head into multiple classes, such as bone, air, GM, and
WM. Then each of the segmented classes are replaced with the mean HU for
that tissue class, or the intensity at a voxel is obtained from the distribution of
HU for the tissue type of that voxel.

Most segmentation based approaches rely on accurate multi-class segmenta-
tion of T1-w images. However, traditional T1-w images do not produce any signal
for bone. As bone has the highest average HU compared to other soft tissues,
accurate segmentation of bone is crucial for accurate PET reconstruction. Atlas
based methods [6] can overcome this limitation via registration. An atlas usually
consists of an MR and a co-registered CT pair. For a new subject, multiple atlas
MR images can be deformably registered to the subject MR; then the deformed
atlas CT images are combined using voxel based label fusion [3] to generate a
synthetic subject CT. It has been shown that atlas based methods generally
outperform segmentation based methods [6], because they do not need accurate
segmentation of tissue classes, which can be difficult because it becomes indis-
tinguishable from background, tissues with short T1, and tissues whose signal
may be suppressed, such as CSF.

One disadvantage of registration based methods is that a large number of
atlases is needed for accurate synthesis. For example, 40 atlases were used in [3],
leading to significantly high computational cost with such a large number of reg-
istrations. To alleviate this problem, atlas based patch matching methods have
been proposed [17,19]. For a particular patch on a subject MR, relevant match-
ing patches are found from atlas MR images. The atlases only need to be rigidly
registered to the subject [19]. The matching atlas MR patches can either be
found from a neighborhood of that subject MR patch [19], or from any location
within the head [16,17]. Once the matching patches are found, their correspond-
ing CT patches are averaged with weights based on the patch similarity to form
a synthetic CT. The advantage of patch matching is that deformable registra-
tion is not needed, thereby decreasing the computational burden and increasing
robustness to differences in the anatomical shape. These type of methods also
require fewer atlases (e.g., 10 in [19] and 1 in [17]).

Recently, convolutional neural networks (CNN), or deep learning [12], has
been extensively used in many medical imaging applications, such as lesions and
tumor segmentation [9], brain segmentation, image synthesis, and skull stripping.
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Unlike traditional machine learning algorithms, CNN models do not need hand-
crafted features, and are therefore generalizable to a variety of problems. They
can accommodate whole images or much larger patches (e.g., 173 in [9]) compared
to smaller sized patches used in most patch based methods (e.g., 33 in [19]),
thereby introducing better neighborhood information. A CNN model based on
U-nets [15] has been recently proposed to synthesize CT from T1-w images [5].
In this paper, we propose a synthesis method based on fully convolutional neural
networks to generate CT images from dual-echo UTE images. We compare with
two leading CT synthesis methods, one registration based [3] and one patch based
[17], and show that our CNN model produces more accurate results compared
to both of them. We also show that better synthesis can be obtained using UTE
images rather than only T1-w images.

2 Data Description

MR images were acquired on 7 patients on a 3T Siemens Biograph mMR. The
MR acquisition includes T1-w dual-echo UTE and MPRAGE images. The spec-
ifications of UTE images are as follows, image size 192 × 192 × 192, resolution
1.56 mm3, repetition time TR = 11.94 s, echo time TE = 70µs and 2.46 ms,
flip angle 10◦. MPRAGE images were acquired with the following parameters,
resolution 1.0 mm3, TR = 2.53 s, TE = 3.03 ms, flip angle 7◦. CT images were
acquired on a Biograph 128 S PET/CT scanner with a tube voltage of 120 kVp,
with dimensions of 512 × 512 × 149, and resolution of 0.58 × 0.58 × 1.5 mm3.
MPRAGE and CT were rigidly registered [1] to the second UTE image. All MR
images were corrected for intensity inhomogeneities by N4 [20]. The necks were
then removed from the MPRAGE images using FSL’s robustfov [7]. Finally,
to create a mask of the whole head, background noise was removed from the
MPRAGE using Otsu’s threshold [14]. UTE and CT images were masked by the
headmask obtained from the corresponding MPRAGE. Note that the choice of
MPRAGE to create the headmask is arbitrary, CT could also be used as well.
The headmask was used for two purposes.

1. Training patches were obtained within the headmask, so that the center voxel
of a patch contains either skull or brain.

2. Error metrics between synthetic CT and the original CT were computed only
within the headmask.

3 Method

We propose a deep CNN model to synthesize CT from UTE images. Although
theoretically the model can be used with whole images, we used patches due to
memory limitations. Many CNN architectures have previously been proposed.
In this paper, we adopt Inception blocks [18], that have been successfully used in
many image classification and recognition problems in natural image processing
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Fig. 1. The figure shows the proposed CNN model incorporating the Google Inception
block [18], shown in inset. During training, patches from each of the dual-echo UTE
images are first independently processed through two Inception blocks. Then their
outputs are concatenated and again processed through another Inception block. Finally,
the mean squared errors between the CT patch and the output of the third Inception
block is minimized to train the parameters of the CNN. A convolution is written as
128@33, indicating there are 128 filters of size 3 × 3 × 3. The pooling layer is defined
as pool@3, indicating maximum value within a 3 × 3 × 3 region is used. Convolutions
and pooling are done with stride 1. All convolutions are followed by ReLU, although
for brevity, they are not shown here.

via GoogleNet. The rationale for using this architecture over U-net is discussed
in Sect. 5. The proposed CNN architecture is shown in Fig. 1.

Convolutions and pooling are two basic building layers of any CNN model.
Traditionally they are used in a linear manner, e.g. in text classification [11].
The primary innovation of the Inception module [18] was to use them in a
parallel fashion. In an Inception module, there are two types of convolutions,
one with traditional n3(n > 1) filter banks, and one with 13 filter banks. It is
noted that 13 filters are downsampling the number of channels. The 13 filters are
used to separate initial number of channels (128) into multiple smaller sets (96,
16, and 64). Then the spatial correlation is extracted via n3(n > 1) filters. The
downsampling of channels and parallelization of layers reduce the total number of
parameters to be estimated,which in turn introduces more non-linearity, thereby
improving classification accuracy [4,18]. Note that the proposed model is fully
convolutional, as we did not use a fully connected layer.

During training, 25 × 25 × 5 patches around each voxel within the head-
mask are extracted from the UTE images with stride 1. Then the patches from
each UTE image are first convolved with 128 filters of size 3 × 3 × 3. Such a
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filter is denoted by 128@33 in Fig. 1. The outputs of the filters are processed
through separate Inception blocks. The outputs of these Inception blocks are
then concatenated through their channel axis (which is same as the filter axis)
and processed through another Inception block and a 33 filter. The coefficients
of all the filters are computed by minimizing mean squared errors between the
CT patch and the output of the model via stochastic gradient descent. Note that
every convolution is followed by a ReLU (rectified linear unit), module, which is
not shown in the figure. The pooling is performed by replacing each voxel of a
feature map by the maximum of its 3 × 3 × 3 neighbors.

We used Adam [10] as the optimizer to estimate the filter weights. Adam has
been shown to produce much faster convergence than comparable optimizers.
While training, we used 75% of the total atlas patches as training set and 25%
as the validation set. To obtain convergence, 25 epochs were used. The filter
parameters were initialized by randomly choosing numbers from a zero-mean
Gaussian distribution with standard deviation of 0.001. A batch size of 64 was
empirically chosen and found to produce sufficient convergence without requir-
ing much GPU memory. The model was implemented in Caffe [8]. Anisotropic
25×25×5 patches were used because larger size isotropic patches requires more
GPU memory, while the patch size was empirically estimated. To compensate for
the fact that patches are anisotropic, the atlas was reoriented in three different
orientations – axial, coronal, and sagittal. Training was performed separately for
each oriented atlas to generate three models, one for each orientation. Then for
a new subject, the models were applied on the corresponding reoriented versions
of the subject, and then averaged to generate a mean synthetic CT. Training
on a TITAN X GPU with 12 GB memory takes about 6 h. Synthesizing a CT
image from a new subject takes about 30 s, where approximately 10 s is needed
to predict one orientation. Although the training is performed using 25 × 25 × 5
patches, the learnt models are able to predict a whole 2D slice of the image by
applying the convolutions on every slice. Each of the three learnt models were
used to predict every 2D slice of the image in each of the three orientations.
Then the 3 predicted images were averaged to obtain the final synthetic CT.

4 Results

We compared our CNN based method to two algorithms, GENESIS [17] and
intensity fusion [3]. GENESIS uses dual-echo UTE images and generates a syn-
thetic CT based on another pair of UTE images as atlases. While GENESIS
is a patch matching method which does not need any subject to atlas registra-
tion, the intensity fusion method (called “Fusion”) registers atlas T1-w images
to a subject T1-w image, and combines the registered atlas CT images based
on locally normalized correlation. In our implementation of Fusion, the second
echo of an UTE image pair was chosen as the subject image and was registered
to the second echo UTE images of the atlases. The second echo was chosen for
registration as its contrast closely matches the regular T1-w contrast used in [3].
Similar to [5] which proposed a CNN model only using T1-w images, we also
compared the proposed model with both channels as the MPRAGE.
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Fig. 2. Top two rows show UTE, MPRAGE, original, and synthetic CT images of a
healthy volunteer. Bottom two rows show the same for a patient with a large lesion.
Fusion [3] shows diffused bone in subject #1, while the CNN with MPRAGE shows
some artifacts near ventricles (yellow arrow). Both GENESIS and the synthetic CT
obtained with UTE can successfully reproduce the lesion (red arrow) for subject #2,
with CNN synthesis showing less noise. (Color figure online)

One patient was arbitrarily chosen to be the “atlas” for both GENESIS and
the proposed CNN model with both UTE and MPRAGE as inputs. The trained
CNN models are applied to the other 6 subjects. Since Fusion requires multiple
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Table 1. Quantitative comparison based on PSNR and linear correlation is shown
for the competing methods on 6 subjects. Bold indicates largest value among the four
synthetic CTs.

Metric Method Subject #

1 2 3 4 5 6

PSNR Fusion 20.66 14.34 17.87 20.11 20.45 19.90

GENESIS 18.89 16.28 17.20 17.96 21.52 21.17

CNN w/MPRAGE 22.35 16.46 16.00 22.06 21.91 21.32

CNN w/UTE 23.40 18.76 19.78 23.49 23.54 22.54

Correlation Fusion 0.7377 0.6325 0.8097 0.7482 0.6807 0.6506

GENESIS 0.5852 0.6800 0.7747 0.6277 0.6875 0.7132

CNN w/MPRAGE 0.7851 0.6995 0.6867 0.8007 0.7160 0.7137

CNN w/UTE 0.8384 0.8457 0.8820 0.8634 0.8174 0.8017

atlas registrations, the validation is computed in a leave-one-out manner only
for Fusion. GENESIS was also trained on the same atlas and evaluated on the
remaining 6.

Figure 2 shows examples of two subjects, one healthy volunteer and one with
a large lesion in the left frontal cortex. For the healthy volunteer, all of the
three methods perform similarly, while Fusion shows some diffused bone. It is
because the deformable registrations can be erroneous, especially in presence of
skull. CNN with MPRAGE shows some artifacts near ventricles (yellow arrow),
while CNN with UTE images provide the closest representation to the original
CT. For the subject with a brain lesion, Fusion can not successfully reproduce
the lesion, as none of the atlases have any lesion in that region. CNN with
MPRAGE shows artifacts where CSF is misrepresented as bone (blue arrow).
This can be explained by the fact that both CSF and MPRAGE have low signal
on MPRAGE. Synthetic CT from CNN with UTE shows the closest match to
the CT, followed by GENESIS, which is noisier.

To quantitatively compare the competing methods, we used PSNR and linear
correlation coefficient between the original CT and the synthetic CTs. PSNR is
defined as a measure of mean squared error between original CT A and a synthetic
CT B as, PSNR= 10 log10(

MAX2
A

||A−B||2 ), where MAXA denotes the maximum value
of the image A. Larger PSNR indicates better matching between A and B. Table 1
shows the PSNR and correlation for Fusion, GENESIS, the proposed CNN model
with only MPRAGE and with dual-echo UTE images. The proposed model with
UTE images produces the largest PSNR and correlation compared to both GEN-
ESIS and Fusion, as well as CNN with MPRAGE. A Wilcoxon signed rank test
showed a p-value of 0.0312 comparing CNN with UTE with the other three for
both PSNR and correlation, indicating significant improvement in CT synthesis.
Note that we used only 6 atlases for our implementation of Fusion, although the
original paper [3] recommended 40 atlases. Better performance would likely have
been achieved with additional atlases. Nevertheless, the proposed model outper-
forms it with only one atlas.



CT Synthesis from UTE via CNN 31

5 Discussion

We have proposed a deep convolutional neural network model to synthesize CT
from dual-echo UTE images. The advantage of a CNN model is that prediction of
a new image takes less than a minute. This efficiency is especially useful in clinical
scenarios when using PET-MR systems, where PET attenuation correction is
immediately needed after MR acquisition. Another advantage of the CNN model
is that no atlas registration is required. Although adding multiple atlases can
increase the training time linearly, the prediction time (∼30 s) is not affected
by the number of atlases. This is significant in comparison with patch based
[17,19] and registration based approaches [3] (∼1 h), where adding more atlases
increases the prediction time linearly.

The primary limitation of the proposed, or in general, any CNN model is that
it requires large amount of training data because the number of free parameters
to estimate is usually large. In our case, by using only 3 Inception modules, the
total number of free parameters are approximately 29, 000. We used all patches
inside the headmask which was about 500, 000 for the 1.56 mm3 UTE images. By
adding more Inception modules, as done in GoogleNet [18], the number of free
parameters grow exponentially, which needs more training data. An important
advantage of the proposed model over the U-net in [5] is that only a single
UTE image pair was used as atlas. Since we used patches instead of 2D slices
[5,15] for training, the number of training samples is not limited by the number
of slices in an atlas. One atlas with 256 slices was used to generate 500, 000
training samples, which was sufficient to produce better results than competing
methods. In clinical applications, it can be difficult to obtain UTE and high
resolution CT images for many subjects. Therefore using patches instead of
slices give exponentially more training samples.

The patch size (25 × 25 × 5) is an important parameter of the model which
was chosen empirically to make best practical use of the available GPU memory.
Although CNN models do not need hand-crafted features, it was observed that
using bigger patches usually increases accuracy. However, there lies a trade-off
between patch size and available memory. Future work includes optimization of
patch size and number of atlases, as well as exploring further CNN architectures.
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Abstract. Synthesizing magnetic resonance (MR) and computed
tomography (CT) images (from each other) has important implications
for clinical neuroimaging. The MR to CT direction is critical for MRI-
based radiotherapy planning and dose computation, whereas the CT
to MR direction can provide an economic alternative to real MRI for
image processing tasks. Additionally, synthesis in both directions can
enhance MR/CT multi-modal image registration. Existing approaches
have focused on synthesizing CT from MR. In this paper, we propose a
multi-atlas based hybrid method to synthesize T1-weighted MR images
from CT and CT images from T1-weighted MR images using a common
framework. The task is carried out by: (a) computing a label field based
on supervoxels for the subject image using joint label fusion; (b) correct-
ing this result using a random forest classifier (RF-C); (c) spatial smooth-
ing using a Markov random field; (d) synthesizing intensities using a set
of RF regressors, one trained for each label. The algorithm is evaluated
using a set of six registered CT and MR image pairs of the whole head.

Keywords: Synthesis · MR · CT · JLF · Segmentation · Random
forest · MRF

1 Introduction

Synthesizing computed tomography (CT) images from magnetic resonance (MR)
images has proven useful in positron emission tomography (PET)-MR image
reconstruction [4,16] and in radiation therapy planning [5]. To overcome the
lack of a strong MR signal in bone, one method [16] used specialized MR
pulse sequences and another method [4] used multi-atlas registration with paired
CT-MR atlas images. The synthesis of MR images from CT images is a new chal-
lenge that has not been reported until very recently [6,18]. Potential uses for this
process include (1) intraoperative imaging where visualization of soft tissue from
cone-beam CT could be enhanced by generation of a synthetic MR image and
c© Springer International Publishing AG 2017
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(2) in multi-modal registration where use of both modalities can improve the
accuracy of registration [7,9]. The difficulty in CT-to-MR synthesis is the lack
of a strong soft-tissue contrast in the source CT images. Given the duality that
appears between these tasks, we have discovered a core organizing principle for
bi-directional image synthesis and developed a new image synthesis approach.

To synthesize CT images from MR images, Burgos et al. [4] used multiple
CT/MR atlas pairs, wherein the atlas MR images are deformably registered to
the target MR image. The transformations are then applied to the atlas CT
images and fused to form a single CT intensity. Although this approach can also
be used to synthesize MR from CT, some degree of blurring can be expected
due to the inaccuracies in registration due to poor soft-tissue contrast in the
CT images. Machine-learning approaches that have been developed for image
synthesis (cf. [8,15]) can also be used for synthesizing MR from CT; but image
patches by themselves do not contain sufficient information to distinguish tissue
types without additional information about the location of the patches.

Image segmentation has long been used for image synthesis [14]. If the tis-
sue type and physical properties are known, then given the forward model of
the imaging modality, the corresponding tissue intensity can be estimated. How-
ever, in our framework, segmented regions are used to provide context wherein
synthesis can be carried out through a set of learned regressions that relate the
intensities of the input modality to those of the target modality. We demonstrate
synthesis in both directions, MR to CT and CT to MR, using our method.

2 Methods

Given a subject image of modality 1 (M1), denoted IM1, our goal is to synthesize
an image of modality 2 (M2), ÎM2. To achieve this goal, we have a multi-atlas set,
A = {(AM1

n , AM2
n )|n = 1, ..., N}, which contains N pairs of co-registered images

of M1 and M2. An example of an atlas pair, where M1 is CT and M2 is MR
(T1-weighted) is depicted in Fig. 1(a). The two intensities in atlas image pairs
are examples of possible synthetic values, when synthesizing in either direction.
It is well known that this relationship is not a bijection; given an intensity
in M1 there may be multiple corresponding intensities in M2. However, given a
particular tissue (e.g., white matter) the relationship is less ambiguous. We carry
out a segmentation on the atlas images that divides them into distinct regions
characterized by different paired intensities. Paired intensities from these regions
are then used to train separate regressors that predict one modality from the
other given the tissue class.

We start with the atlas image set A. Each pair of atlas images is processed
with the following steps with the eventual goal of learning regressions that pre-
dict the target modality given the input modality. The first step is a supervoxel
over-segmentation process using a 3D version of the simple linear iterative clus-
tering (SLIC) method [1] wherein the intensity feature space comprises the M1
and M2 intensity pairs. A result of SLIC on two atlas pairs is shown in Fig. 1(b).
Multichannel k-means and fuzzy k-means have been previously used for tissue
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Fig. 1. (a) Two CT/MR atlas pairs; (b) result of SLIC over-segmentation; (c) k-means
clustering of supervoxels yields a z-field image; (d) training of 2 × K RF regressors;
(e) RF-Cs trained to estimate z-fields from single modalities; and (f) computation of
pairwise potentials for a MRF.

classification in neuroimaging [13]. However, it is difficult to obtain spatially
contiguous regions using these simple methods. Super-voxel over-segmentation
provides us with spatially contiguous regions that have homogeneous intensities.

We combine these homogeneous intensity regions by clustering them on the
basis of their average supervoxel intensities taken jointly from both M1 and M2.
These are clustered using the k-means clustering algorithm, which yields super-
voxels that are labeled z = 1, . . . , K. The voxels forming each supervoxel inherit
the cluster label of the supervoxel and therefore yield an image of labels, which
we call the z-field. Two examples of z-fields are shown in Fig. 1(c), where each
label in the z-field is shown as a different color. A random selection of intensity
pairs are plotted in the center of Fig. 1(c) (CT/MR on the horizontal/vertical
axis), and colored by the z-field. These intensity pairs and their voxel-wise fea-
tures, along with their labels provide the training data for regressors that predict
the intensity of the target modality given the features of the input modality. Our
features consist of 3 × 3 × 3 image patches together with average image values
in patches forming a constellation around the given voxel (“context features”
similar to those in [2,10]). We need 2×K regressors, one each per modality and
cluster. For each label z, we extract features from M1 images and pair them with
corresponding M2 intensities. This acts as the training data set for a random
forest (RF) regressor. The training step is depicted in Fig. 1(d).

Given the subject image IM1 and the corresponding z-field that labels its
voxels, we can apply the corresponding regressor based on the z value at that
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voxel to predict the synthetic M2 intensity. Thus, we next describe how to esti-
mate the z-field for the subject image. The z-field of IM1 is estimated by fus-
ing two approaches. First, we predict an estimate of the z-field directly from
the same image features that were noted above using a random forest classi-
fier (RF-C). Shown in Fig. 1(e), are two random forests designed to synthesize
K labels from either M1 or M2, which are trained in analogous fashion to the RF
regressors described above. A second estimate of the z-field is generated using
a multi-atlas segmentation. In this case, we augment the atlases to include the
z-fields found using the supervoxel clustering approach (essentially augmenting
the image pairs in Fig. 1(a) with the label fields in Fig. 1(c)), deformably register
every atlas pair to IM1, apply the learned transformations to the corresponding
z-fields, and combine the labels using joint label fusion (JLF) [17]. The registra-
tion between IM1 and the atlas pair uses a two-channel approach in which the
first channel uses the cross-correlation metric between IM1 and AM1 and the
second channel uses the mutual information metric between IM1 and AM2.

We now have two estimates of the z-field for IM1, ẑRF-C and ẑJLF, each pro-
vides a probability for each label at each voxel, PRF-C(z) and PJLF(z). Our exper-
iments reveal that the RF-C yields inferior results in regions where intensities of
the labels are ambiguous, while the JLF yields inferior results in areas where the
registration is not accurate. We choose the label that maximizes the product of
their probabilities at each voxel with a MRF spatial regularization.

Using a conventional MRF framework, we define the estimated z-field,

ẑ = arg min
z(i)

∑

i

Eunary

(
z(i)

)
+

∑

i,j

Ebinary

(
z(i), z(j)

)
, (1)

where Eunary

(
z(i)

)
is the unary potential for voxel i and Ebinary

(
z(i), z(j)

)
is

the binary potential for adjacent (6-connected) voxels i and j. Since this energy
will be used in a Gibbs distribution, the unary potential is defined as follows

Eunary

(
z(i)

)
= − log PRF−C

(
z(i)

) − log PJLF

(
z(i)

)
(2)

which yields the desired product of probabilities as the driving objective function
for assigning labels to voxels.

Although the Potts model is often used in multi-label MRF models [11]—
this is the model in which different labels have unity cost and similar labels have
zero cost—we can exploit our atlas and its subsequent analysis to yield a cost
function that is highly tailored to our application. Consider the z-fields produced
by over-segmentation followed by k-means, as shown in Fig. 1(c), and consider
adjacent voxels i and j. From the full collection of these images, we can compute
the empirical joint probability mass function P (z(i), z(j)) for all adjacent voxels,
as illustrated in Fig. 1(f). Some labels will almost never appear adjacent to each
other and thus should be penalized heavily in the MRF we design. Accordingly,
we define the binary potential as

Ebinary (z(i), z(j)) = − logP
(
z(i), z(j)

)
+
1

2

(
logP (z(i), z(i))+logP (z(j), z(j))

)
. (3)
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Fig. 2. Evaluation of synthesis result. The six colors are for six subjects.

When the labels are the same the cost is zero and when they are different, the
cost increases according to their rarity of occurrence in the atlas. Given these
definitions of unary and binary potentials (which is a semimetric), the estimated
z-field is found by solving (1) using the α-β swap graph cut approach [3].

3 Experiments

MR images were obtained using Siemens Magnetom Espree 1.5 T scanner
(Siemens Medical Solutions, Malvern, PA) and CT images were obtained
using Philips Brilliance Big Bore scanner (Philips Medical Systems, Nether-
lands) under the routine clinical protocol from brain cancer patients treated by
stereotactic-body radiation therapy (SBRT) or radiosurgery (SRS). Geometric
distortions in MR images were then corrected using a 3D correction algorithm
available in the Siemens Syngo console workstation. All MR images were then
N4 corrected and normalized by aligning white matter peak identified by fuzzy
C-means.

We applied our method to six subjects each having true CT and MR images to
compare our results to. For algorithm comparison, we implemented [12] the inten-
sity fusion method of Burgos et al. [4] using structural similarity (SSIM) as the
local similarity measure instead of local normalized cross correlation (LNCC),
which we refer to as Burgos+. Existing work on CT/MR synthesis [4] has focused
on synthesizing CT from MR, so we can directly compare. Without a published
method for synthesizing MR from CT, we simply applied Burgos+ in the reverse
direction. To evaluate efficacy of synthesis, we computed SSIM and PSNR on
the synthetic images with respect to the true images. The result is shown in
Fig. 2. In addition to the comparison with Burgos+, we have shown how well
modifications of our own algorithm perform. The “JLF” result uses only the
z-field computed from JLF, the “RF-C” result uses only the z-field computed
from RF-C, the “JLF+RF-C” result uses the product of the two z-field proba-
bilities without MRF; and the “MRF” result is our proposed algorithm. We can
see our method gives better synthetic MR in every respect, while the synthetic
CT images are better than Burgos+ for SSIM and comparable for PSNR.

Figure 3 shows the estimated z-fields and final synthetic CT images for two
subjects. It shows that our synthetic CT images have higher contrast and no
blurry edges as compared to Burgos+, yet look somewhat artificial compared to
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Fig. 3. Synthetic CT images: For two subjects, one in each row, we show the
(a) input MR image, the (b) estimated z-field after MRF smoothing, the CT images
generated by (c) our method, (d) Burgos+, and the (e) ground truth.

Fig. 4. Synthetic MR images: For two subjects, one in each row, we show the
(a) input CT image, the (b) estimated z-field after MRF smoothing, the MR images
generated by (c) our method, (d) Burgos+, and the (d) ground truth.

the truth. Figure 4 shows the estimated z-fields and final synthetic MR images
for the same two subjects. It shows that our synthetic MR images also have high
contrast and no blurry edges as compared to Burgos+. We notice in Fig. 4(e), the
result from Burgos+ cannot synthesize the soft tissues correctly. This is because
the result depends on the accuracy of registration between atlas image pairs and
subject CT images, which is relatively low in areas of soft tissues. Our method
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Table 1. Evaluation of registration results:Mean (and Std. Dev.) of MSE between
reference MR and registered MR image; MI between target CT and registered MR
image; p-value of paired-sample t-test for the MSE and MI of the two methods.

MSE MI

2 Channel CC 2.746(±0.6492)× 104 1.2314(±0.0746)

Single Channel MI 3.375(±0.6635)× 104 1.2429(±0.1018)

p-value over Single Channel MI 8.7637e–16 0.1962

is more robust to registration inaccuracies because we use a MRF to predict
the z-field and the K random forests used in synthesis overlap in their intensity
coverage to some extent.

To evaluate whether our synthesis method improves multi-modal registration,
we carried out a multi-modal registration experiment between the CT image of
one subject and the MR image of another subject. The conventional approach
for multi-modal registration uses mutual information (MI) as a similarity met-
ric. With synthetic images, multi-modal registration can be carried out using a
two-channel mono-modal registration process [7,9]. In our case, for registration
between Subject 1 and Subject 2, the first channel uses the original CT image
of Subject 1 and the synthetic CT for Subject 2. The second channel uses the
synthetic MR image of Subject 1 and the original MR image of Subject 2. The
metric used in both channels is cross correlation (CC).

We used SyN deformable registration on 6 subjects yielding 30 pairs of reg-
istration experiments in all. The single MI registration and two-channel CC
registration share the same parameters, including the number of iterations. As
the true MR image is known, we compare the transformed MR image to the true
MR image for each individual registration experiment. The difference between
these two images is measured using both MSE and MI after either two-channel
CC or single-channel MI (results are in Table 1). While the two images are not
statistically different according to MI, the two-channel registration approach
(which uses our synthetic images) is statistically better than the single-channel
MI approach.

4 Conclusion

We have presented a bidirectional MR/CT synthesis method based on approxi-
mate tissue classification and image segmentation. The method synthesizes CT
images from MR images with performance comparable to Burgos et al. [4] and
is better than Burgos et al. [4] for synthesizing MR images from CT images.
Our method reduces intensity ambiguity by estimating a z-field that is derived
from both modalities and can be consistently created given just one modality as
input.
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Abstract. Diffusion tensor imaging (DTI) has notoriously long acquisi-
tion times, and the sensitivity of the tensor computation often make this
technique vulnerable to various interferences, for example, physiological
motions, limited scanning time and patients with different medical con-
ditions. In neuroimaging, studies usually involve different modalities. We
considered the problem of inferring key information in DTI from other
modalities. To address such a problem, several cross-modality image syn-
thesis approaches have been proposed recently, in which the content of an
image modality is reproduced based on those of another modality. How-
ever, these methods typically focus on two modalities of same complex-
ity. In this work we propose a region-enhanced joint dictionary learning
method that combines the region-specific information in a joint learning
manner. The proposed method encodes intrinsic differences among dif-
ferent modalities, while the jointly learned dictionaries preserve common
structures among them. Experimental results show that our approach
has desirable properties on cross-modality image synthesis in diffusion
tensor images.

Keywords: Dictionary learning · Cross-modality · Image synthesis ·
DTI

1 Introduction

Diffusion Tensor Imaging (DTI) offers a non-invasive in vivo imaging for mapping
the diffusion of water molecules in the brain. The diffusion process is affected
in different tissue microstructure, which makes evaluating the organizations and
coherence of White Matter (WM) fiber tracts feasible. DTI is very sensitive to
the motion of water molecules any physiological motions, e.g., subject motion,
breathing and mechanical vibration, during the scanning time causes misalign-
ment of the diffusion volumes. Particularly, the problem is further compounded
in imaging patients with different medical conditions [1]. For example, patients
with Parkinson’s disease are difficult to stay stationary for even short time. In
addition, long acquisition times of DTI scans is another limiting factor and also
c© Springer International Publishing AG 2017
S.A. Tsaftaris et al. (Eds.): SASHIMI 2017, LNCS 10557, pp. 41–48, 2017.
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suffers from the effects on the suppression of physiological motions. Finally, in
the most extreme case, acquiring a full battery of DTI also faces constraints asso-
ciated with the patient’s clinical state and severity of the disorder. DTI is not
always performed, resulting in losing fundamental information needed for many
later analyses, such as Electroencephalography (EEG) and Magnetic resonance
elastography (MRE).

Cross-modality image synthesis is a classic task that seeks to synthesize the
modality of a target image onto another input acquisition. The key challenges
are to predict the structure and content of target modality image from the source
image. It is of fundamental importance to many applications, including multi-
modal registration, segmentation and atlas construction. Some early approaches
rely on low-level statistics for image synthesis while using different ways to esti-
mate the target image. For instance, histogram matching-based methods directly
transfer one histogram into another by remapping the statistical profiles to
obtain the target images. However, these methods often fail to capture modality-
specific structures, especially with lacking the target modality images. Recently,
several data-driven learning methods have shown exciting new perspectives for
image synthesis. Jog et al. [2] introduced a nonlinear patch regression to syn-
thesize T2-w contrasts from T1-w scans using the bagged ensemble of regression
trees, which was later extended to synthesize the Fluid Attenuated Inversion
Recovery (FLAIR) image from the corresponding T1-w, T2-w and PD-w images
of the same subject obtaining better results in suppressing the artifacts on white
matter lesions [6]. Roy et al. [3] trained two dictionaries where the input image
is used to find the similar patches in a source modality dictionary and the corre-
sponding target modality counterpart will be extracted in the target dictionary
to generate the desirable modality data. A similar method had previously been
used for image super-resolution [5]. Ye et al. [4] proposed a modality propagation
method and proved that the proposed model can be derived from the general-
ization of label propagation strategy [7], and showed applications to arbitrary
modality synthesis. The work of Nguyen et al. [8] is particularly relevant to deep
learning, as they trained a location-sensitive deep network to integrate inten-
sity feature and spatial information, more accurately synthesizing the results to
the same problem posed by [4]. Huang et al. [9] improved the quality of cross-
modality synthesis by imposing a graph Laplacian constraint in a joint learning
framework. More recently, an simultaneous super-resolution and cross-modality
synthesis approach [10] was proposed that up-converts a low-resolution result to
a high-resolution one and synthesized the target modality synchronously.

In this paper, we propose a Region-Enhanced Joint Dictionary Learning
(RJDL) method to synthesize the missing DT images from their T1-w scans
by learning a region-enhanced joint dictionary based on the registered T1-w and
DT images from training set. We consider the problem that white matter looks
homogeneous in T1-weighted image, while it provides anisotropy information
and orientations of fiber tracts in DTI. Although predicting the unknown fiber
tracts in DTI from its T1-w acquisition is very ill-posed, we intend to overcome
this problem by presenting a region-enhanced setting in a joint learning manner
to improve the quality of our synthesis in WM region.
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This paper is organized as follows. We explain the RJDL method in Sect. 2.
Then we evaluate the proposed method on ADNI dataset and compare the syn-
thesized results using RJDL and general joint dictionary learning in Sect. 3.
Finally, Sect. 4 provides a conclusion and future work.

2 Method

2.1 Single Dictionary Learning

The basic idea of sparse coding is to construct a sparse representation of an input
image X as a linear combination of a few dictionary elements, which chosen from
an over-complete dictionary D ∈ R

n×K(n < K). Dictionary learning [11] aims
to solve this optimization problem

min
D,A

‖X − DA‖22 + λ ‖A‖0 , (1)

where A ∈ R
K×N is the sparse codes of X ∈ R

n×N with a few non-zero elements.
‖A‖0 denotes the number of non-zero elements in the sparse codes and ‖·‖2 is
the Euclidean norm, and λ is a parameter to control the relationship between
the reconstruction errors and sparsity penalty. Since the l0-norm minimization
problem is NP-hard (Nondeterministic Polynomial-time hard). An alternative
solution was then proposed to solve this problem by replacing l0-norm with its
convex relaxation l1-norm. The dictionary learning problem in Eq. (1) can be
reformulated as

min
D,A

‖X − DA‖22 + λ ‖A‖1 , (2)

Equation (2) is convex when D or A is fixed. When D is fixed, sparse code
A can be solved as the Lasso problem; when A is fixed, D can be solved as a
Quadratically Constrained Quadratic Programming (QCQP) problem. Updating
D and A until the algorithm is guaranteed to convergence.

2.2 Region-Enhanced Setting

A major problem of cross-modality image synthesis between MRI and DTI is
that white matter looks homogeneous in T1-w image, while uniform in corre-
sponding DT images of the same subject. To efficiently leverage training data
and consider that DT images provide more specific information in white mat-
ter than T1-w images, we propose a region-enhanced setting and integrate such
region-specific information with joint dictionary learning. K-means clustering is
applied to roughly cluster all samples to five major regions (white matter, gray
matter, cerebrospinal fluid, ventricles and the others) according to the anatom-
ical structures in brain of the DT images, and the corresponding T1-w patches
are classified following the clustering results of DT images. We then recognize
one of the cluster as the white matter region in visualization and preserve all
elements of this cluster while randomly selecting a certain amount of instances
from each of the remaining clusters.



44 D. Wang et al.

2.3 Patch Normalization

Since different modality images have different intensity ranges, we must nor-
malize all of them into a same range, i.e. [–1, 1]. The training data are firstly
normalized by:

δ = max {‖xi‖2}
x̂i =

xi

δ
.

(3)

where δ denotes the maximum norm value of all patches and {xi}Ni=1 is the i-th
element of X.

2.4 Joint Dictionary Learning

Given a set of normalized T1-w image patches X̂ = {x1,x2, · · · ,xN} and the
corresponding normalized DT images patches Ŷ = {y1,y2, · · · ,yN}. In par-
ticular, each 4D DT image Y consists of six 3D tensor images denoted as
Yxx,Yxy,Yxz,Yyy,Yyz,Yzz, and Ŷ = [Ŷxx; Ŷxy; Ŷxz; Ŷyy; Ŷyz; Ŷzz]. We can
train two separate dictionaries Dx and Dy using Eq. (2) for two sets of normal-
ized training data:

min
Dx,Ax

∥
∥
∥X̂ − DxAx

∥
∥
∥

2

2
+ λ ‖Ax‖1

min
Dy,Ay

∥
∥
∥Ŷ − DyAy

∥
∥
∥

2

2
+ λ ‖Ay‖1 .

(4)

where Dx and Ax are the learned dictionary and sparse codes of X̂, respectively.
Dy and Ay denote the learned dictionary and sparse codes of Ŷ, respectively.
Unlike the single dictionary learning, Yang et al. [5] suggested to use a joint
learning manner to train a pair of dictionaries Dx,Dy from {X,Y} to replace
two independent learning. Based on such joint learning strategy, we assume that
the co-registered patch pairs xi,yji (yji denotes the i-th patch from the j-th
tensor matrix) possess the same intrinsic structure in a common space. This
can be characterized by a jointly learned dictionary pair Dx,Dy regarding the
common sparse codes. This process can be written as this objective function:

min
Dx,Dy,A

∥
∥
∥X̂ − DxA

∥
∥
∥

2

2
+

∥
∥
∥Ŷ − DyA

∥
∥
∥

2

2
+ λ ‖A‖1 , (5)

where A represents the common sparse codes of X̂ and Ŷ.

2.5 Objective Function

To improve the cross-modality image representation and facilitate specific region
synthesis, we propose to learn a region-enhanced joint dictionary learning for cross-
modality synthesis of DT images. The region-enhanced setting encodes region-
specific features between images of different modalities in a particular region, while
the joint learning strategy encodes the common features among different modali-
ties to avoid multiple loss caused by several single dictionary learning.
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We denote the common sub-coefficients associated with the c-th cluster
of X̂c and Ŷc as Ac, their corresponding sub-dictionaries as Dx

c and Dy
c ,

where c = 1, ..., C. Mathematically we can express Ŷc using the joint learn-
ing manner as Ŷc ≈ Dy

cAc. Instead of learning sub-dictionaries from all ele-
ments for each cluster, we only keep all data for a specific cluster while ran-
domly extracting partial data for each of the reminding clusters. Ideally, more
training data can provide richer information and yield better result for the
stated specific region. We notice that the size of training data for such a spe-
cific region differs from other regions. To make sub-dictionaries to be incoher-
ent, we follow the works [12,13] and add the constraints Rx(Dx

c ,Dx
−c) and

Ry(Dy
c ,D

y
−c) to stabilize the learned sub-dictionary for each cluster, where

Dx
−c = [Dx

1 , ...,Dx
c−1,D

x
c+1, ...,D

x
C ], Dy

−c = [Dy
1, ...,D

y
c−1,D

y
c+1, ...,D

y
C ] are the

sub-matrices by removing Dx
−c from Dx and Dy

−c from Dy, respectively. The
computation of the associated dictionaries and codes by minimizing the following
objective function

min
Dx

c ,D
y
c ,Ac

C∑

c=1

(
∥
∥
∥X̂c − Dx

cAc

∥
∥
∥

2

F
+

∥
∥
∥Ŷc − Dy

cAc

∥
∥
∥

2

F

+ λ ‖Ac‖1 + γ
∥
∥
∥Dx

c
TDx

−c

∥
∥
∥

2

F
+ β

∥
∥
∥Dy

c
TDy

−c

∥
∥
∥

2

F
).

(6)

where Ac denotes the common sparse codes for the c-th cluster data of X̂c and
Ŷc, ‖·‖F represents the Frobenius norm, γ and β represent the weight of incoher-

ent terms for each modality respectively. Terms
∥
∥
∥Dx

c
TDx

−c

∥
∥
∥

2

F
and

∥
∥
∥Dy

c
TDy

−c

∥
∥
∥

2

F
are used to enforce sub-dictionaries of each modality to be incoherent.

2.6 Synthesis

Once the dictionaries Dx and Dy have learned from Eq. (6), we can calculate
the sparse codes of T1-w test image regarding the same modality dictionary Dx

using the conventional sparse representation in Eq. (2), denoted as

At = min
Dx,At

∥
∥Xt − DxAt

∥
∥
2

2
+ λ

∥
∥At

∥
∥
1
, (7)

where At represents the sparse codes of the test image Xt. We then utilize At as
the common sparse codes and synthesize the target DT image of Xt by a linear
combination of Xt and Dy, obtaining

Yt = DyAt. (8)

where Yt is the synthesized results with six tensor images, i.e., Yt
xx, Yt

xy, Y
t
xz,

Yt
yy, Y

t
yz, Y

t
zz included in a 4D matrix.
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3 Experiments

3.1 Experimental Setting

In our experiments, we perform the proposed method RJDL on ADNI dataset1

which allows us to observe healthy elders and Alzheimer’s disease and early mild
cognitive impairment. We randomly select 20 subjects of T1-w and Diffusion
Weighted (DW) images from the whole dataset and use leave-one-out cross vali-
dation to evaluate the performance of our method. There are two pre-processing
steps should be performed before the training stage, which is for guaranteeing
the uniform sizes and co-registration of training pairs. First, Tortoise2 is used
to correcting the Diffusion Weighted (DW) images and estimation of the six
DT images. Then, the registration of T1-w with DT images is implemented by
3D slicer3. We set the patch size as 55 pixels for both T1-w and DT images
in all of our experiments, with overlap of 1 pixel between neighboring patches.
Particularly, as mentioned in Sect. 2.3, the dictionaries for T1-w and DT images
are trained from all patches in WM region/cluster and randomly extracted 100
patches in each non-WM cluster. This setting not only speeds up our algorithm
at least four times, but also improves the quality of the synthesized images espe-
cially in white matter. Besides, we follows [5,9] and fix λ = 0.15 for sparsity
regularization and the dictionary size as 1024 to balance the computation time
and performance. The peak signal to noise ratio (PSNR) and structural similar-
ity (SSIM) index [14] are used to measure errors.

Table 1. Quantitative evaluation on JDL vs. RJDL using the averaged PSNR and
SSIM for total 20 subjects.

Avg. JDL RJDL

PSNR (dB) 30.98 33.89

SSIM 0.7963 0.8458

3.2 Results

We show a set of experimental results in Fig. 1 which compares the synthe-
sized results using region-enhanced joint dictionary learning (RJDL) and joint
dictionary learning (JDL). Compared to the general joint learning approach,
our model trained for region-enhanced content synthesis does a very good job
at synthesizing details of white matter region in DT images. Table 1 compares
the performance of RJDL and JDL in terms of PSNR and SSIM, in which the
average error measures (for all test images) are listed. It can be seen that our
method achieved the highest PSNR and SSIM values for all of the test images,
and generally outperformed JDL showed in the averaged synthesis results.
1 ADNI dataset: http://adni.loni.usc.edu/.
2 https://science.nichd.nih.gov/confluence/display/nihpd/TORTOISE.
3 https://www.slicer.org/.

http://adni.loni.usc.edu/
https://science.nichd.nih.gov/confluence/display/nihpd/TORTOISE
https://www.slicer.org/
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Ground Truth

Synthesized Results using RJDL

Synthesized Results using JDL

Fig. 1. The comparison of the synthesized results using JDL and RJDL regarding the
corresponding ground truth images. The first line show the synthesized results using
JDL, the second line gives the synthesized results using RJDL, and the third line
presents the ground truth images. For each column, images from left to right are: Yxx,
Yyy, Yzz, Yxy, Yxz, Yyz.

4 Conclusion

In this paper, we proposed a general and fast method to synthesize the unavail-
able DT images from the corresponding T1-w input. The proposed region-
enhanced joint dictionary learning (RJDL) method shows its superior perfor-
mance in accurate synthesis of DT image particularly in white matter region
which do not appear in T1-w image. Our experimental results demonstrate the
effectiveness of our RJDL, in which the quality of the synthesized results are
better than the general joint learning approach. In future work, we will vali-
date the proposed RJDL on the whole ADNI dataset and compare it with more
state-of-the-art methods.
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Abstract. In this work we present a novel system for PET estimation
using CT scans. We explore the use of fully convolutional networks (FCN)
and conditional generative adversarial networks (GAN) to export PET
data from CT data. Our dataset includes 25 pairs of PET and CT scans
where 17 were used for training and 8 for testing. The system was tested
for detection of malignant tumors in the liver region. Initial results look
promising showing high detection performance with a TPR of 92.3%
and FPR of 0.25 per case. Future work entails expansion of the current
system to the entire body using a much larger dataset. Such a system can
be used for tumor detection and drug treatment evaluation in a CT-only
environment instead of the expansive and radioactive PET-CT scan.

Keywords: Deep learning · CT · PET · Image to image

1 Introduction

The combination of positron emission tomography (PET) and computerized
tomography (CT) scanners have become a standard component of diagnosis
and staging in oncology [7,13]. An increased accumulation of Fluoro-D-glucose
(FDG), used in PET, relative to normal tissue is a useful marker for many can-
cers and can help in detection and localization of malignant tumors [7]. Addi-
tionally, PET/CT imaging is becoming an important evaluation tool for new
drug therapies [14]. Although PET imaging has many advantages, it has a few
disadvantages that make it a difficult treatment to receive. The radioactive com-
ponent can be of risk for pregnant or breast feeding patients. Moreover, PET is
a relatively new medical procedure that can be expensive. Hence, it is still not
offered in the majority of medical centers in the world. The difficulty in provid-
ing PET imaging as part of a treatment raises the need for an alternative, less
expensive, fast, and easy to use PET-like imaging. In this work we explore a vir-
tual PET module that uses information from the CT data to estimate PET-like
c© Springer International Publishing AG 2017
S.A. Tsaftaris et al. (Eds.): SASHIMI 2017, LNCS 10557, pp. 49–57, 2017.
DOI: 10.1007/978-3-319-68127-6 6
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images with an emphasis on malignant lesions. To achieve the virtual PET we
use advanced deep learning techniques with both fully convolutional networks
and conditional adversarial networks as described in the following subsections.

1.1 Fully Convolutional Networks

In recent years, deep learning has become a dominant research topic in numer-
ous fields. Specifically, Convolutional Neural Networks (CNN) have been used
for many challenges in computer vision. CNN obtained outstanding performance
on different tasks, such as visual object recognition, image classification, hand-
written character recognition and more. Deep CNNs introduced by LeCun et
al. [9], is a supervised learning model formed by multi-layer neural networks.
CNNs are fully data-driven and can retrieve hierarchical features automatically
by building high-level features from low-level ones, thus obviating the need to
manually customize hand-crafted features. Previous works have shown the ben-
efit of using a fully convolutional architecture for liver lesion detection and seg-
mentation applications [2,3]. Fully convolutional networks (FCN) can take input
of arbitrary size and produce correspondingly-sized output with efficient infer-
ence and learning. Unlike patch based methods, the loss function using this archi-
tecture is computed over the entire image. The network processes entire images
instead of patches, which removes the need to select representative patches,
eliminates redundant calculations where patches overlap, and therefore scales
up more efficiently with image resolution. Moreover, there is a fusion of different
scales by adding links that combine the final prediction layer with lower layers
with finer strides.

1.2 Conditional Adversarial Networks

More recent works show the use of Generative Adversarial Networks (GANs) for
image to image translation [6]. GANs are generative models that learn a mapping
from random noise vector z to output image y [4]. In contrast, conditional GANs
learn a mapping from observed image x and random noise vector z, to y. The
generator G is trained to produce outputs that cannot be distinguished from
“real” images by an adversarially trained discriminator, D, which is trained to
do the best possible to detect the generator’s “fakes”. Figure 1 shows a diagram
of this procedure.

In this study we explore FCN and conditional GAN for estimating PET-like
images from CT volumes. The advantages of each method are used to create a
realistic looking virtual PET images with specific attention to hepatic malignant
tumors. To the best of our knowledge, this is the first work that explores CT to
PET translation using deep learning.

2 Methods

Our framework includes three main modules: training module which includes
the data preparation; testing module which accepts CT images as input and
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Fig. 1. Training a conditional GAN to predict PET images from CT images. The
discriminator, D, learns to classify between real and synthesized pairs. The generator
learns to fool the discriminator.

predicts the virtual PET image as output; blending module which blends the
FCN and the conditional GANs output. The FCN and conditional GANs play
the same role for training and testing. We explore and use both of them for the
task of predicting PET-like images from CT images. Figure 2 shows a diagram of
our general framework. Each module will be described in depth in the following
subsections.

2.1 Training Data Preparation

The training input for the FCN or conditional GANs are two image types: source
image (CT image) and target image (PET image) which should have identical
size in our framework. Hence, the first step in preparing the data for training
was aligning the PET scans with the CT scans using the given offset, pixel-
spacing and slice-thickness of both scans. Secondly, we wanted to limit our PET
values to a constrained range of interest. The standardized uptake value (SUV)
is commonly used as a relative measure of FDG uptake [5] as in Eq. 1:

SUV =
r

a′/w
(1)

where r is the radioactivity concentration [kBq/ml] measured by the PET scan-
ner within a region of interest (ROI), a′ is the decay-corrected amount of injected
radiolabeled FDG [kBq], and w is the weight of the patient [g], which is used
as a surrogate for a distribution volume of tracer. The maximum SUV (termed
SUVmax) was used for quantitative evaluation [8].

Since the CT and PET scans include a large range of values, it makes it a
difficult task for the network to learn the translation between these modalities
and values range limitations were required. We used contrast adjustment, by
clipping extreme values and scaling, to adjust the PET images into the SUV
range of 0 to 20, this range includes most of the interesting SUV values to detect
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Fig. 2. The proposed virtual PET system.

tumor malignancies. Similarly, CT images were adjusted into –160 to 240 HU as
this is, usually, a standard windowing used by the radiologists.

2.2 Fully Convolutional Network Architecture

In the following we describe the FCN used for both training and testing as in
Fig. 2a and b. Our network architecture uses the VGG 16- layer net [12]. We
decapitate the net by discarding the final classifier layer, and convert all fully
connected layers to convolutions. We append a 1× 1 convolution with channel
dimension to predict the PET images. Upsampling is performed in-network for
end-to-end learning by backpropagation from the pixelwise L2 loss. The FCN-4s
net was used as our network, which learned to combine coarse, high layer infor-
mation with fine, low layer information as described in [11] with an additional
skip connection by linking the Pool2 layer in a similar way to the linking of the
Pool3 and Pool4 layers in Fig. 3.

2.3 Conditional GAN Architecture

Conditional GAN were used in a similar way described for the FCN in training
and testing as in Fig. 2a and b. We adapt the conditional GAN architecture
from the one presented in [6]. The generator in this architecture is “U-Net”
based [10]. For the discriminator a “PatchGan” classifier [6] was used which
only penalizes structure at the scale of image patches. Using a “PatchGan” the
discriminator tries to classify if each 70×70 patch in the image is real or fake. Let
Ck denote a Convolution-BatchNorm-ReLU layer with k filters and CDk denotes
a Convolution-BatchNorm-Dropout-ReLU layer with a dropout rate of 50%.
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Fig. 3. FCN-4s architecture. Each convolution layer is illustrated by a straight line with
the receptive field size and number of channels denoted above. The ReLU activation
function and drop-out are not shown for brevity.

All convolutions are 4 × 4 spatial filters. Convolutions in the “U-Net” encoder,
and in the discriminator (except of its last convolution layer), downsample by a
factor of 2, whereas in the “U-Net” decoder they upsample by a factor of 2.

For the conditional GAN we used the following architecture:

– The discriminator: C64 − C128 − C256 − C512 − C1.
– The “U-Net” encoder: C64 −C128 −C256 −C512 −C512 −C512 −C512 −C512.
– The “U-Net” decoder: CD512 − CD512 − CD512 − C512 − C512 − C256 −
C128 − C64

The “U-Net” includes skip connections between each layer i in the encoder and
layer n − i in the decoder, where n is the total number of layers. The skip
connections concatenate activations from layer i to layer n− i.

The “U-Net” generator is tasked to not only fool the discriminator but also
to be similar to the real PET image in an L2 sense, similar to the regression
conducted in the FCN. For additional implementation details please refer to [6].

2.4 Loss Weights

Our study concentrates on the malignant tumors in PET scans. Malignant
tumors are usually observed with high SUV values (>2.5) in PET scans. Hence,
we used the SUV value in each pixel as a weight for the pixel-wise loss function.
By this we allow the network to pay more attention to high SUV value even
though most pixels include low values.
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2.5 Image Blending

Since the conditional GAN learns to create realistic looking images its output
was much more similar to real PET than that of the FCN that provided blurred
images. However, the FCN based system had much better response to malignant
tumors compared to the conditional GAN. Hence we used the advantages of each
method to create a blended image that includes the realistic looking images of
the conditional GAN together with the more accurate response for malignant
tumors using the FCN as in Fig. 2c. First, we created a mask from the FCN
output which includes regions with high predicted SUV values (>2.5). This mask
marks the regions in which the FCN image will be used, where the rest of the
image will include the conditional GAN image. A pyramid based blending was
used [1]. Laplacian pyramids were built for each image and a Gaussian pyramid
was built for the mask. The Laplacian pyramids were combined using the mask’s
Gaussian pyramid as weights and collapsed to get the final blended image.

3 Results

3.1 Dataset

The data used in this work includes CT scans with their corresponding PET
scans from the Sheba Medical Center. The dataset contains 25 CT and PET
pairs which we constrained to the region of the liver for our study. Not all
PET/CT scans in our dataset included liver tumors. The training set included
17 PET/CT pairs and the testing was performed on 8 pairs.

3.2 Preliminary Results

The generated virtual PET image, per input CT scan, was visually evaluated by
a radiologist. The virtual PET result was then compared to the real PET images
by comparing tumor detection in the liver region. We define a detected tumor as
a tumor that has SUVmax value greater than 2.5. Two evaluation measurements
were computed, the true positive rate (TPR) and false positive rate (FPR) for
each case as follows:

– TPR- Number of correctly detected tumors divided by the total number of
tumors.

– FPR- Number of false positives per scan.

The testing set included 8 CT scans with a total of 26 liver tumors. The
corresponding PET scans were used as comparison with the predicted virtual
PET. Our FCN and GANs based system successfully detected 24 out of 26
tumors (TPR of 92.3%) with only 2 false positives for all 8 scans (average FPR
of 0.25).

Figure 4 shows sample results obtained using the FCN, and FCN blended with
the conditional GAN, compared to the real PET scan. False positive examples
are shown in Fig. 5. In these cases, the FCN mistranslated hypodense regions in
the liver to high SUV values.
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Fig. 4. Sample results of the predicted PET using FCN and conditional GAN compared
to the real PET.

Fig. 5. False positive examples are marked with a black circle.
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4 Conclusions

A novel system for PET estimation using only CT scans has been presented.
Using the FCN with weighted regression loss together with the realistic looking
images of the conditional GAN our virtual PET results look promising detecting
most of the malignant tumors which were noted in the real PET with a very small
amount of false positives. In comparison to the FCN the conditional GAN did
not detect the tumors but obtained images which were very similar to real PET.
A combination of both methods improved the FCN output blurred appearance.
Future work entails obtaining a larger dataset with vast experiments using the
entire CT and not just the liver region. The presented system can be used for
many applications in which PET examination is needed such as evaluation of
drug therapies and detection of malignant tumors.

Acknowledgment. This research was supported by the Israel Science Foundation
(grant No. 1918/16).

Part of this work was funded by the INTEL Collaborative Research Institute for
Computational Intelligence (ICRI-CI).

Avi Ben-Cohen’s scholarship was funded by the Buchmann Scholarships Fund.

References

1. Adelson, E.H., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid
methods in image processing. RCA Eng. 29(6), 33–41 (1984)

2. Ben-Cohen, A., Diamant, I., Klang, E., Amitai, M., Greenspan, H.: Fully con-
volutional network for liver segmentation and lesions detection. In: Carneiro, G.,
et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 77–85. Springer, Cham
(2016). doi:10.1007/978-3-319-46976-8 9

3. Christ, P.F., Ettlinger, F., Grün, F., Elshaera, M.E.A., Lipkova, J., Schlecht, S.,
Rempfler, M.: Automatic liver and tumor segmentation of CT and MRI Vol-
umes using cascaded fully convolutional neural networks. arXiv preprint (2017).
arXiv:1702.05970

4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information
Processing Systems, pp. 2672–2680 (2014)

5. Higashi, K., Clavo, A.C., Wahl, R.L.: Does FDG uptake measure the proliferative
activity of human cancer cells? In vitro comparison with DNA flow cytometry and
tritiated thymidine uptake. J. Nuclear Med. 34, 414 (1993)

6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. arXiv preprint (2016). arXiv:1611.07004

7. Kelloff, G.J., Hoffman, J.M., Johnson, B., Scher, H.I., Siegel, B.A., Cheng, E.Y.,
Shankar, L.: Progress and promise of FDG-PET imaging for cancer patient man-
agement and oncologic drug development. Clin. Cancer Res. 11(8), 2785–2808
(2005)

8. Kinehan, P.E., Fletcher, J.W.: PET/CT standardized uptake values (SUVs) in
clinical practice and assessing response to therapy. Semin. Ultrasound CT MRI
31(6), 496–505 (2010)

http://dx.doi.org/10.1007/978-3-319-46976-8_9
http://arxiv.org/abs/1702.05970
http://arxiv.org/abs/1611.07004


Virtual PET Images from CT Using Deep Learning 57

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.
1007/978-3-319-24574-4 28

11. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2016)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint (2014). arXiv:1409.1556

13. Weber, W.A., Grosu, A.L., Czernin, J.: Technology insight: advances in molecular
imaging and an appraisal of PET/CT scanning. Nature Clin. Pract. Oncol. 5(3),
160–170 (2008)

14. Weber, W.A.: Assessing tumor response to therapy. J. Nucl. Med. 50(Suppl 1),
1S–10S (2009)

http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1409.1556


Simulation and Processing Approaches
for Medical Imaging



Semi-supervised Assessment of Incomplete LV
Coverage in Cardiac MRI Using Generative

Adversarial Nets

Le Zhang(B), Ali Gooya, and Alejandro F. Frangi

Department of Electronic and Electrical Engineering, Centre for Computational
Imaging and Simulation Technologies in Biomedicine (CISTIB),

University of Sheffield, Sheffield, UK
le.zhang@sheffield.ac.uk

Abstract. Cardiac magnetic resonance (CMR) images play a growing
role in diagnostic imaging of cardiovascular diseases. Ensuring full cov-
erage of the Left Ventricle (LV) is a basic criteria of CMR image quality.
Complete LV coverage, from base to apex, precedes accurate cardiac vol-
ume and functional assessment. Incomplete coverage of the LV is iden-
tified through visual inspection, which is time-consuming and usually
done retrospectively in large imaging cohorts. In this paper, we pro-
pose a novel semi-supervised method to check the coverage of LV from
CMR images by using generative adversarial networks (GAN), we call
it Semi-Coupled-GANs (SCGANs). To identify missing basal and apical
slices in a CMR volume, a two-stage framework is proposed. First, the
SCGANs generate adversarial examples and extract high-level features
from the CMR images; then these image attributes are used to detect
missing basal and apical slices. We constructed extensive experiments to
validate the proposed method on UK Biobank with more than 6000 inde-
pendent volumetric MR scans, which achieved high accuracy and robust
results for missing slice detection, comparable with those of state of the
art deep learning methods. The proposed method, in principle, can be
adapted to other CMR image data for LV coverage assessment.

1 Introduction

Left Ventricular (LV) cardiac anatomy and function are widely used for diagno-
sis and monitoring disease progression in cardiology and to assess the patient’s
response to cardiac surgery and interventional procedures. Cardiac ultrasound
(US) and cardiac magnetic resonance (CMR) imaging are arguably the most
wide-spread techniques for clinical diagnostic imaging of the heart. For popula-
tion imaging studies, however, CMR remains the modality of choice and provides
one-stop-shop access to cardiac anatomy and function non-invasively. The quan-
tification of LV anatomy and function from large population imaging studies
or patient cohorts from large clinical trials requires automatic image quality
assessment and image analysis tools. A basic criteria for cardiac image quality
is LV coverage and detection of missing apical and basal CMR slices [7]. Due to
c© Springer International Publishing AG 2017
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rapid mechanical motion of the heart, breathing motion, and imperfect trigger-
ing, CMR can display incomplete LV coverage, which hampers quantitative LV
characterization and diagnostic accuracy [12]. For example, missing basal slices
has an important impact on LV volume calculation and several derived LV func-
tional measures like ejection fraction and cardiac output. Even if scout images
are acquired to center the LV in the field of view and minimize this problem,
incomplete coverage can result at any points throughout the cardiac cycle due to
patient breathing and cardiac motion. Automatic quality assessment is impor-
tant in large-scale population imaging studies, where data is acquired across
different imaging sites, from subjects with diverse constitutions, and with strict
time constraints on scanner availability [4].

Few guidelines exist, clinical or otherwise, that objectively establish what
constitutes a good medical image and a good CMR study [6]. To ensure consis-
tent quantification of CMR data, automatic assessment of complete LV coverage
is a first step. LV coverage is still assessed by visual inspection of CMR image
sequences, which is subjective, repetitive, error prone, and time consuming [2].
Automatic coverage assessment must intervene and correct data acquisition soon,
and/or discard promptly images with incomplete LV coverage whose analysis
would otherwise impair any aggregated statistics over the cohort.

In medical imaging it is hard to have access to quality-labelled image data-
bases due to the diversity of image characteristics, and their artifacts, of diverse
anatomical locations and image modalities. Therefore, it is essential to devise
techniques that do not require manual labelling of visual image quality. Image
synthesis models provide a unique opportunity for performing unsupervised
learning. These models build a rich prior over natural image statistics that can
be leveraged by classifiers to improve predictions on datasets for which few labels
exist [11]. Among them, generative adversarial networks (GAN) can synthesize
adversarial examples, which increase the loss by a machine learning model [13].
Meanwhile, GAN can perform unsupervised learning by simply ignoring the
component of the loss arising from class labels when a label is unavailable for a
training image [5].

In this paper, we mainly focus on the analysis of short axis (SA) cine MRI.
We aim to identify missing apical slices (MAS) and/or basal slices (MBS) in
cardiac MRI volumes. In previous research, Le [14] used convolutional neural
network (CNN) constructed on single-slice images and processed them sequen-
tially. But this solution needs large amount of labelled data and lacks the abil-
ity to classify examples with perturbations correctly. In this paper, we exploit
semi-coupled-GANs (SCGANs), a semi-supervised approach, for incomplete LV
coverage detection. To alleviate the lack of sufficient numbers of CMR datasets
with MBS or MAS, the proposed SCGANs use two generative models to syn-
thesize adversarial examples. By learning adversarial examples, it improves not
only robustness to adversarial examples, but also generalization performance for
original examples. This work is the first work we know of to use adversarial
examples to improve the robustness of an attribute learning model.
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2 Methodology

We present a novel technique of LV coverage assessment for CMRI by using
SCGANs. The motivation behind our proposed method is: In medical image
quality assessment problems, we are always faced with a lack of quality-labelled
data, especially images with artifacts. Several deep learning models cannot clas-
sify the examples with perturbation correctly. Our semi-supervised SCGANs is
proposed by using adversarial examples as the outlying observations for discrim-
inative model training. We generate adversarial samples by two generators sepa-
rately, which confuse the discriminator into mistaking them for genuine images.
After that, we obtain the robust attribute classifiers by learning both original
data and synthetic data. Our proposed SCGANs represents a strategy to better
handle the typical LV coverage assessment problem.

2.1 Generative Adversarial Learning

Recently, GAN [5] was proposed as a novel way for adversarial learning. It consists
of a generative model and a discriminative model, both are realized as multilayer
perceptrons [9]. The aim of the discriminator is to correctly classify the original
examples and adversarial examples. By learning the adversarial examples, the net-
work cannot only becomes robust to adversarial examples, but also generalization
improves for unmodified examples. GAN does not need the label information when
training the generator and then the discriminator can estimates the probability
that a sample came from the original data rather than the generator.

We assume a probability distribution M, which is a black box relative to us.
To realize how the black box works, we construct two ‘adversarial’ models: a gen-
erative model G that captures the data distribution, and a discriminative model
D that estimates the probability that a sample from the training data rather than
G. Both G and D could be a non-liner mapping function, such as a multi-layer per-
ceptron. Our objective is to learn feature representation to handle a wide range of
visual appearances in cardiac MRI and identify images with incomplete LV cov-
erage. We regard adversarial examples as outlying observations regarding other
samples in training data. The generative model constantly produce new adversar-
ial samples and the discriminative model classify the positive and negative sam-
ples by learning the new produced adversarial samples constantly. Given a par-
ticular describable visual attribute - say ‘MBS’. An outlier image is expected to
be mapped to negative values, which indicates the absence of basal slice. This can
happen for two reasons: (1) the image does not belong to the basal slice, (2) the
image belongs to the adversarial examples. We consider them all as the outliers.

2.2 Semi-coupled GANs

Here we introduce our model based on the above discussion. Our model is illus-
trated in Fig. 1 designed as a semi-coupled-GANs for attribute learning. It con-
sists of a pair of Generators− G1 and G2, which share a same discriminator.
Each generator synthesizes the adversarial samples Y1 and Y2 for positive and
negative data, respectively.
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Fig. 1. The proposed semi-coupled-GANs framework.

Generative Models: We firstly feed the two generators G1 and G2 noise data z,
G1 and G2 learn probability distribution from the original positive and negative
images respectively, and generate the corresponding adversarial samples. Then,
we give the adversarial data to discriminator D. Denote the distributions of
G1(z) and G2(z) by pG1 and pG2 . Both G1 and G2 are realized as multilayer
perceptions: {

G1(z) = G
(m1)
1 (G(m1−1)

1 (...G(2)
1 (G(1)

1 (z))))
G2(z) = G

(m2)
2 (G(m2−1)

2 (...G(2)
2 (G(1)

2 (z))))
(1)

where G
(i)
1 and G

(i)
2 are the ith layers of G1 and G2 and m1 and m2 are the

numbers of layers in G1 and G2. In our training process, m1 and m2 need not
to be the same. In traditional discriminative deep neural network, the feature
information is extracted from low-level features in first layers to the high-level
features in last layers. While, through multi-layer perceptron operations, our two
generator models decode the information with an opposite flow direction from
abstract concepts to more material details.

Discriminative Models: Every generated sample has a corresponding class
label and the discriminator gives both a probability distribution over dataset
and a probability distribution over the class labels. We put both the original
samples and the adversarial samples into D for the discriminator training, D
output multiple output values between 0 and 1. In this process, if the training
samples x is the positive/or real data, the discriminant D ensures the output
value is similar with the trained corresponding value, which represents the input
data is the positive/or real, while output values close to 0 indicates the input data
is the negative/or fake. The discriminant D equals a classifier with supervision
situation, which returns to 1 or 0. Let D be the discriminative model given by:

D(x) = D(n)(D(n−1)(...D(2)(D(1)(x)))) (2)
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where D(i) is the ith layer of D and n is the number of layers. The discriminator
maps each input image to a probability score which indicates the input is drawn
from the positive data or the negative data. In this process, the first layer of
the discriminative model extracts low-level features, while the last layer extracts
high-level features.

Learning: The Semi-Coupled-GANs framework corresponds to a constrained
minimax game given by

max
D

min
G1,G2

V (G1, G2, D) = Ex∼pxdata
[logD(x | y)] + Ez∼pz [log(1 −D(G1(z)))]

+ Ez∼pz [log(1 −D(G2(z)))]
(3)

There are two terms in (3), each term has an independent generator but share
a same discriminator. The two generative models synthesize a pair of adver-
sarial samples for confusing the discriminative models. The discriminator gives
both a probability distribution over image data and a probability distribution
over the class labels, D(x | y). Here, there are four kinds of samples for train-
ing the discriminator: the positive and negative samples from original images
and their corresponding adversarial samples computed by two generators. The
inputs discriminative model is data and corresponding labels. Similar to GAN,
our SCGANs can be trained by back propagation with the alternating gradient
update steps.

2.3 Quality Estimation

For a given cardiac volume, a dissimilarity score is computed for each repre-
sentative visual attribute - MAS and MBS. Any visual attributes with a score
below an optimal threshold is classified as an artifact. After computing the visual
attributes, we could verify the cardiac MRI quality based on the corresponding
attributes scores. Let xtarget = PMAS(Xtarget) and ytarget = PMBS(Xtarget) be
the outputs of the discriminator. If the quality of target cardiac volume Xtarget

is good, the values PMAS(Xtarget) and PMBS(Xtarget) from the target cardiac
volume should be similar with the trained corresponding positive attribute val-
ues. We combine the output values so the verification classifier Q can make sense
of the data. To address the problem, we use the concatenation of these tuples
for both MAS and MBS attribute classifier outputs form the input to the ver-
ification classifier Q [8]. Finally, putting both terms together yields the tuples
q(Starget):

q(Starget) = Q(<pMAS , pMBS>) (4)

Training Q requires pairs of positive examples and negative examples. For
the classification function, we use SVM with an RBF kernel for X, trained using
libsvm [3] with the default parameters of C = 1 and γ = 1/ndims, where ndims
is the dimensionality of <pMAS , pMBS>.
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3 Experiment and Related Analysis

Data specifications: In the UK Biobank (UKBB) dataset, we have 3400 sub-
jects, each with 50 time points covering the heart from the base to apex. We use
the endocardial contour as the main characteristic to identify the apical, middle
and basal slices. For example, we can find the Left Ventricular Outflow Tract
(LVOT) in the basal slice. In other slices, LVOT is nonexistant. As for the apical
slice, we define it as the LV cavity is still visible at end-systole. Besides the basal
slice and apical slice, we can consider the rest slices as the middle slices. To
obtain the negative samples, we choose the middle slice as the negative samples
for each attribute learning.

Experimental set-up: All experiments used TensorFlow [1] on GPUs. With
all 50 time points consideration for each subject, we can obtain 17,0000 and
regarded as the ground truth in our experiments. The architecture of the two
generators G1 and G2 are consisted of several ‘deconvolution’ layers that trans-
form the noise z and class c into an image [11]. We train the model archi-
tecture for generating images at 120 × 120 spatial resolutions. The discrimina-
tor D is a deep convolutional neural network with a Leaky ReLU nonlinearity
[10]. In our experiment, 10-fold cross-validation method is used to evaluate the
final performance of our attribute classifiers. To evaluate the classification algo-
rithms, we use Accuracy, Precision Rate and Recall Rate defined as: Accuracy =
(TP+TN)/(TP+FP+TN+FN), Precision Rate = TP/(TP + FP) and Recall
Rate = TP/(TP + FN). Where TP, TN, FP, and FN are the numbers of the true
positive, true negative, false positive and false negative samples, respectively.

Performance and Discussion: We evaluate the quality of our semi-supervised
representation learning algorithms by applying it as a feature extractor on super-
vised datasets. Table 1 shows the test performance on UK Biobank Dataset with
the state-of-art deep learning methods. With supervised deep learning meth-
ods, 2D CNN, it achieved accuracies with 77.5% and 74.9%. Our SCGANs
achieved performance with significant increase, 92.5% and 89.3% accuracies. This
is despite the state of the art models having no ability to discriminate the adver-
sarial samples, whereas our model requires to training the generative model to
produce the adversarial examples and can correctly classify both unmodified
and adversarial samples. It improves not only robustness to adversarial exam-
ples, but also generalization performance for original examples. Meanwhile, our
SCGANs also achieved a comparable result with the 3D CNN, which indicates
opportunity for future 3D image synthesis models.

Our attribute classifiers are trained using nine folds and then evaluated on the
remaining fold, cycling through all ten folds. Receiver Operating Characteristic
(ROC) curves are obtained by saving the classifier outputs for each test pair in
all ten folds and then sliding a threshold over all output values to obtain different
false positive/detection rates. In Fig. 2, we demonstrate the ROC curve to show
that our adversarial training (SCGANs) method can achieve ideal results. These
results reinforce that adversarial examples are powerful samples for attribute
leaning. In Fig. 2 we can see our proposed method can correctly classify a few
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Table 1. The accuracy, precision rate and recall rate between the state-of-art deep
learning approaches and our method.

Method Accuracy Precision rate Recall rate

MAS MBS MAS MBS MAS MBS

2D CNN 77.5± 0.7% 74.9± 0.6% 82.6± 0.7% 74.9± 0.8% 87.7± 0.8% 87.8± 0.9%

3D CNN 93.1± 0.6% 91.8± 0.7% 90.1± 0.6% 87.3± 0.7% 89.9± 0.7% 93.3± 0.8%

Proposed method 92.5± 0.5% 89.3± 0.4% 87.6± 0.4% 89.1± 0.3% 90.5± 0.5% 91.7± 0.4%

challenging samples (True Positive) and adversarial samples (False Negative).
Experimental results obtained confirm that adversarial training approach makes
the model more robust to adversarial examples and generalization performance
for original examples. Although the results show that the accuracy of the pro-
posed method is slightly lower but comparable to that of 3D CNN, our SCGAN
can reduce the computation cost, which is especially important in population
imaging.

Fig. 2. MAS and MBS detection performance (Top) and sample test slices and their
probability values (Bottom). ‘PA’ means the Probability value of being Apical slice;
‘PB’ means the Probability value of being Basal slice.

4 Conclusion

In this paper, we tackled the problem of defining missing apical and basal slices
in large imaging databases. We illustrated the concept by proposing a SCGANs
to CMR image studies from the UK Biobank pilot datasets. By training the
classifier with the adversarial examples, our model can achieve a significant
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improvement in attribute representation. A well-trained attribute classifiers are
performed on the candidates to corresponding categories. We also validated our
model by comparing with traditional deep learning methods and applying them
to UK Biobank data sets. The proposed model shows a high consistency with
human perception and becomes superior compared to the state-of-the-art meth-
ods, showing its high potential. Our proposed semi-couple-GANs can also be
easily applied and boost the results for other detection and segmentation tasks
in medical image analysis.
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Abstract. In this paper we introduce a high order object- and intensity-
based method for slice interpolation. Similar structures along the slices
are registered using a symmetric similarity measure to calculate dis-
placement fields between neighboring slices. For the intensity-based and
curvature-regularized registration no manual landmarks are needed but
the structures between two subsequent slices have to be similar. The
set of displacement fields is used to calculate a natural spline interpola-
tion for structural motion that avoids kinks. Along every correspondence
point trajectory, again high order intensity interpolating splines are cal-
culated for gray values. We test our method on an artificial scenario and
on real MR images. Leave-one-slice-out evaluations show that the pro-
posed method improves the slice estimation compared to piecewise linear
registration-based slice interpolation and cubic interpolation.

Keywords: Slice interpolation · Image registration · Splines

1 Introduction

Medical images often have anisotropic resolution. For example, in magnetic reso-
nance (MR) images the in-plane resolution is often higher than the through-plane
resolution. Reslicing and upsampling are standard preprocessing steps when deal-
ing with such data. This motivates the search for slice interpolating methods
to increase the resolution between the slices. Standard intensity interpolations
such as nearest neighbor, linear, or cubic interpolations are well established. By
using such intensity interpolations between two slices with different structure we
would calculate linear combinations of intensities of points that do not belong
together, see Fig. 2 row 3 in the red box. Therefore it is better to interpolate
the object structure and position, which involves registration techniques to find
correspondences. Morphing images is often done using manual landmarks, but
since putting landmarks manually would be tedious, an automatic registration is
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advantageous. Grevera et al. [4] present a first comparison of slice interpolation
methods that use correspondence points. In general, to guarantee meaningful
slice interpolations, the structures of two subsequent slices have to be similar
and the registration approach has to find an appropriate displacement field.
Registration-based slice interpolation is an important field of research. Penney
et al. [7] use a nonrigid registration algorithm with a spatial B-spline basis [8] but
linear interpolation along the displacement field. Frakes et al. [3] use a modified
version of control grid interpolation and a cubic interpolator for the displacement
fields. Leng et al. [6] use a multi-resolution registration method and linear inten-
sity interpolation along Catmull-Rom spline interpolated displacement fields.

Baghaie et al. [1] introduce a method with a symmetric similarity measure
and curvature regularization

argmin
v:Ω→R2

1
2

∫

Ω

[I1(x − v(x)/2) − I2(x + v(x)/2)]2 + λ
(
(Δvx(x))2 + (Δvy(x))2

)
dx,

(1)
where they look for a displacement field v by minimizing the intensity differences
between the simultaneously displaced images and the bending of the resulting
displacement field. The two images I1 and I2 share the common intrinsic image
domain Ω ⊂ R

2 and vx and vy are the displacement field components in x and
y direction. Using a symmetric similarity has the advantage that both the “ref-
erence” and “target” can be warped in a more symmetric way. After minimizing
energy (1), they can interpolate an image 1/2I1(x−v(x)/2)+1/2I2(x+v(x)/2) in the
middle of I1 and I2 through linear intensity interpolation at the automatically
registered and transformed correspondence points.

As an analytical property the zero level set of the curvature regularization
contains harmonic functions and among them affine transformations [2]. This
means that during minimization processes affine transformations are preferred
as long as possible, as can be nicely seen in an example in [2, Fig. 2]. Moreover,
the gradient descent steps with the curvature regularization can be iterated
efficiently with a stable, implicit finite difference scheme.

Stacking together these linear interpolations between many neighboring slices
results in a piecewise linear interpolation. At the stitching points, kinks may
appear, which could be smoothed out using a higher order interpolation; see
Fig. 1, left.

In this paper we derive a method that interpolates a whole stack of images
through both object and intensity interpolation. Given the point correspondences
between the slices, it calculates spline trajectories for all the correspondences
and along these trajectories spline interpolations for the gray values; see Fig. 1,
right. To find the correspondences between the slices we use the slice registration
proposed in [1], but the proposed method can easily be adapted to other distance
measures. Our contribution lies in solving the problem of combining higher order
interpolations of structure motion and intensity. We describe the approach and
the algorithm in Sect. 2, we test the proposed method on a test scenario and on
real 3D images in Sect. 3, and we conclude in Sect. 4.
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Fig. 1. Registration-based slice interpolation schemes: piecewise linear (left) vs. smooth
interpolation (right), with their projections on the x-y-planes (bottom). In both inter-
polations on the left and right, two exemplary correspondence curves are shown: cor-
respondences of points in a flat region and correspondences of a boundary pixel of
the circling ellipse. To get a full interpolation, for all pixels in the slices such corre-
spondence curves are established. The proposed method optimizes over the whole z
range for a smooth interpolation, similar as in the right scheme, avoiding kinks on the
correspondence curves at the given slice positions.

2 Method

Let (Ik)k=1,...,P be an ordered stack of P similar 2D images in R
M×N , i.e. the

slices of a volumetric image or the frames of a movie. Assume slices Ik lie parallel
to the x-y-plane and their positions zk ∈ R along the z-axis are given with
zk < zk+1. Our task is to interpolate a new slice at any distance between two
subsequent slices or to refine the slice distances hk = zk+1−zk by a factor R ∈ N.

Given an image distance measure D and a displacement field regularization
R, we minimize the summed up registration energies of all the neighboring image
pairs at specific registration evaluation points S along the z-axis:

argmin
v={vk:Ω→R2}P−1

k=1

P−1∑
k=1

∑
s∈S

D [Ik ◦ −→pk(s), Ik+1 ◦ ←−pk(1−s)] + λ R(vk). (2)

Similar to [1], we use sum of squared distances for D and curvature regularization
for R [2] but add the evaluation points S = {0, 1/2, 1}. To clarify the notation,
the intensity of the transformed images I ◦ p(z) at point x in the intrinsic image
domain Ω can be read out by I(p(z,x)), whereas the transformations −→pk(s,x)
and ←−pk(1−s,x) are defined as follows: For each point x we interpolate a trajectory
p(z,x) for z ∈ [z1, zP ] along the slices. With the displacement fields vk, which
give correspondences for subsequent slices, we construct a natural spline with the
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third order Hermite interpolation polynomials pk(z,x) = p(z,x)|[zk,zk+1] defined
on the intervals [zk, zk+1] [5, p. 48]. Because of the well known inverse effect of
transforming image domains, out of pk we define two special transformations −→pk

and ←−pk with different parameter origins such that they are both formulated for
the common intrinsic image domain Ω of all slices: −→pk transforms the image in
positive direction along the z-axis and ←−pk in negative direction. Furthermore we
reparametrize the transformations. For every k let z=zk+s hk with s∈ [0, 1] and

−→pk(s,x) = x − s vk(x) − s(s − 1)
[
s (ak+1(x)hk − vk(x))+

+ (s − 1) (ak(x)hk − vk(x))
]
,

←−pk(1 − s,x) = x + (1 − s) vk(x) − s(s − 1)
[
(1 − s) (ak+1(x)hk − vk(x))+

− s (ak(x)hk − vk(x))
]
.

For using piecewise polynomial Lagrange interpolation of degree three, four sup-
porting points, or more abstractly, four degrees of freedom have to be set on
each interval [zk, zk+1]. Between the obvious supporting points pk(zk,x) = x and
pk(zk+1,x) = x+vk(x) the remaining two are placed exactly at the same spots zk

and zk+1 [5]. At the positions where two supporting points are now on top of each
other, Hermite interpolation can be used to calculate the derivatives ak = p′(zk)
and ak+1 = p′(zk+1). They define the other two degrees of freedom. The slopes ak

can be calculated through a nicely conditioned tridiagonal linear equation system
of size P ×P by incorporating smoothness conditions of the trajectory interpola-
tion p. For the third order spline to be two times differentiable, the first and sec-
ond derivatives at the stitching positions of the neighboring interpolation polyno-
mials are set to be equivalent: p′

k(zk+1) = p′
k+1(zk+1), p′′

k(zk+1) = p′′
k+1(zk+1).

This way, along each correspondence point trajectory, the spline interpolator
minimizes the bending energy

∫ zP

z1
(p′′(z))2 dz among all two times differentiable

interpolators [5]. Adding the natural spline condition p′′(z1) = p′′(zP ) = 0
defines all the degrees of freedom for the splines. For every x ∈ Ω, the optimal
first derivatives a(x) = (ak(x))k=1,...,P = ((akx(x), aky(x)))k=1,...,P in x and y
direction now can be calculated through solving the 2 · M · N linear systems
Aa·x(x) = d·x(x) and Aa·y(x) = d·y(x) of size P × P , where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 . . . 0
1
h1

2
(

1
h1

+ 1
h2

)
1
h2

0 · · · 0

0
. . .

...
...

1
hP−2

2
(

1
hP−2

+ 1
hP−1

)
1

hP−1

0 . . . 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

d1(x) = 3
v1(x)

h1
,

dk(x) = 3

(
vk−1(x)

hk−1
+

vk(x)

hk

)
,

dP (x) = 3
vP−1(x)

hP−1
.

(3)
These systems can efficiently be solved by exploiting the structure of the invert-
ible tridiagonal matrix A. After a Cholesky decomposition A = LLT , the systems
Aa = d can be rewritten by Le = d and LT a = e. The lower triangular matrix
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Algorithm 1. Proposed Slice Interpolation Algorithm
Data: slices I ∈ R

M×N×P , slice distances h ∈ R
P−1, refinement factor R

Result: interpolated slices I interp ∈ R
M×N×((P−1)R+1)

Set up the spline matrix A ∈ R
P×P and calculate Cholesky decomp A = LLT .

Calculate D ∈ R
M×N, Dij = 1+ τ λ (−4+2 cos ((i−1)π/M)+2 cos ((j−1)π/N))2 [2].

Initialize v = (vx, vy) = 0 ∈ R
M×N×(P−1)×2.

while
∥
∥vnew − vold

∥
∥ �TOL do

% calculate displacement fields between slices

for k = 1, ..., P − 1 do
Fx = 0; Fy = 0; % � and �: pointwise mult. and div.

for s ∈ S do
ΔI = Ik+1 ◦ ←−pk(s) − Ik ◦ −→pk(1−s);
Fx = Fx + ΔI � ( s ∂xIk ◦ −→pk(s) + (1−s) ∂xIk+1 ◦ ←−pk(1−s) );
Fy = Fy + ΔI � ( s ∂yIk ◦ −→pk(s) + (1−s) ∂yIk+1 ◦ ←−pk(1−s) );

end

vkx
new = IDCT

(

DCT
(

vkx
old − τ Fx

)� D
)

; % vkx, vky ∈ R
M×N

vky
new = IDCT

(

DCT
(

vky
old − τ Fy

)� D
)

;

end
% calculate spline coefficients for object interpolations ←−pk, −→pk

Set up d ∈ R
m×n×p×2 as in (3) with vnew and solve A a = d with (4).

end
% calculate spline coefficients for intensity interpolation

Set up dI ∈ R
m×n×p as in (6) and solve the systems A aI = dI with (7).

% interpolate slices

I1
interp = I1; l = 1;

for k = 1, ..., P − 1 do
for r = 1, ..., R − 1 do

s = r/R;
% spline intensity interpolation of spline morphed slices

ΔI = Ik+1 ◦ ←−pk(1−s) − Ik ◦ −→pk(s);

Il
interp = Ik ◦ −→pk(s) + s ΔI +
+s (s− 1) [s (hk aIk+1 ◦ ←−pk(1−s) − ΔI) + (s − 1)(hk aIk ◦ −→pk(s) − ΔI)];

l = l + 1;

end

Il
interp = Ik+1; l = l + 1;

end

L is invertible and only has one secondary diagonal on the first off-diagonal,
and thus the spline coefficients a can be calculated by forward and backward
substitution as follows:

{
e1 = d1/L11

ek = (dk−Lk,k−1 dk−1)/Lkk, k =2,...,P ,

{
aP = eP/LPP

ak = (ek−Lk,k+1 ek+1)/Lkk, k =P−1,...,1.
(4)
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For minimizing (2), we use gradient descent: alternatingly we calculate a
new set of displacement fields through a descent step and calculate their spline
interpolation – compare with the while loop of the pseudocode (Algorithm1).

We could stop here and interpolate slices between the images Ik and Ik+1 at
any z = zk + s hk by linearly combining the intensities of the warped images:

I interp = (1 − s) Ik ◦ −→pk(s) + s Ik+1 ◦ ←−pk(1−s). (5)

This would, however, result in kinks of the intensities along the trajectories and
would result in a piecewise linear approximation.

We now construct a spline interpolation of the intensities along these trajec-
tories. The correspondence interpolation is correct only locally along the interpo-
lating axis, and registration errors between the corresponding points are summed
up over several slices. Thus intensity information of slices further away should
not have strong influence in the calculation of the interpolation. Because of the
bounded supports [zk, zk+1] of the piecewise interpolating polynomials pk and
the local dependencies between each other, encoded by the matrix A, we use the
same approach of spline interpolation as before to smooth out the kinks of the
intensities at the stitching positions. We compare the pure intensity differences
at the stitching positions zk and calculate the intensity spline coefficients aI

through solving the linear system AaI(x) = dI(x) with the following inhomo-
geneities:

dI1 = 3

(
I2 ◦ ←−p1(1) − I1

h1

)
, dIP = 3

(
IP − IP−1◦ −−−→pP−1(1)

hP−1

)
,

dIk = 3

(
Ik − Ik−1◦ −−−→pk−1(1)

hk−1
+

Ik+1◦ ←−pk(1) − Ik

hk

)
.

(6)

To make sure we can compare the images in (6) we added the registration eval-
uation points 0 and 1 to S, recalling that Baghaie et al. [1] only registered
them at s = 1/2. Preliminary experiments showed that forcing Ik ◦ −→pk(1/2) and
Ik+1◦←−pk(1/2) to be similar does not guarantee that Ik and Ik+1◦←−pk(1) or Ik◦−→pk(1)
and Ik+1 are similar. The registration point s = 1/2 is still needed to optimize
the third order polynomials. Other registration points can also be realized, in
fact, every reslicing point could be used as a registration point. While solving
AaI(x) = dI(x), we combine dIk(x) at different locations zk. In order to prop-
erly register them, we again utilize the tridiagonal structure of the matrix A:
The lower triangular matrix L of the Cholesky decomposition A = LLT only
has one secondary diagonal on the first off-diagonal. Therefore we can elegantly
solve Le = dI and LT aI = e with forward and backward substitution where for
each subtraction the involved variables are warped to the mutual z-position:

{
e1 = dI1/L11 (k =2,...,P )

ek = (dIk−Lk,k−1 (dIk−1◦−−→pk−1(1)))/Lkk,

{
aIP = eP/LPP (k =P−1,...,1)

aIk = (ek−Lk,k+1 (ek+1◦←−pk(1)))/Lkk.
(7)

Now we can interpolate slices between the images Ik and Ik+1 at any z =
zk + s hk, by replacing the linear combination (5) with (compare lower part
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of Algorithm 1)

ΔI = Ik+1 ◦ ←−pk(1−s) − Ik ◦ −→pk(s)

I interp = Ik ◦ −→pk(s) + sΔI + s (s − 1)
[
s (hk aIk+1 ◦ ←−pk(1−s) − ΔI)+

+ (s − 1)(hk aIk ◦ −→pk(s) − ΔI)
]
.

(8)

3 Experiments and Results

We implemented1 the proposed algorithm in MATLAB. In all our experiments
we linearly rescaled the images to values between 0 and 1, chose the parameters
λ = 10 and τ = 10 and stopped the optimization process when the mean square
distance of the update is less than 0.1% for 10 consecutive iterations. For the
in-slice image transformations ◦ we used bilinear interpolation during the reg-
istration phase and bicubic interpolation for (6)–(8). The optimization time of
the proposed method is comparable to the time of the linear registration-based
method. The complexity of one registration iteration is O(PMN log(MN)),
where DCT with O(MN log(MN)) is the main contributor. Solving for the
spline coefficients a with (4) is of order O(PMN).

The artificial scenario involves two tests: shape interpolation and intensity
interpolation along the correspondence point trajectories. Shape interpolation
involved non-linear, ellipsoidal movement of a 2D ellipse, see Fig. 2. We sampled
9 slices counterclockwise every eighth from 6 o’clock to 6 o’clock. Comparing
the results of the proposed algorithm in the 2nd and the 3rd row in Fig. 2, we
clearly see the benefit of the proposed against an intensity interpolation without
calculating displacement fields. The second advantage of the proposed method is
the non-linear movement estimation: In the 4th row we see the motion trajectory
of the center points of the interpolated ellipses. The algorithm in [1] estimates
the object motion piecewise linearly while the proposed approach calculates a
spline interpolated motion field, which results in a better approximation of the
true solution. In the 4th row on the right in Fig. 2 we clearly see the advantage
of the proposed method with a leave-one-slice-out test. The calculated center
point of the ellipse in the third slice is close to the analytic solution. To test the
intensity interpolation we colored the ellipses along the slices with a sinusoidal,
as shown in Fig. 2. The proposed method performs better than the proposed
structure interpolation with only linear intensity (5) (spline reg).

For a second scenario, we use 42 datasets of the human spinal cord along
the neck captured with a slicewise inversion recovery MR sequence (in-slice res-
olution 0.67 mm × 0.67 mm, slice distance 4 mm, slice thickness 8 mm) which
we cropped for a centered view to a size of 120 × 120 × 10 voxels; see Fig. 3.
With a leave-one-slice-out interpolation we quantitatively evaluated how well the
left out slices can be interpolated. In particular, we compared linear and cubic
interpolation without registration, a reimplementation of the linear registration-
based method of [1], the proposed interpolation with piecewise linear intensity

1 https://mathworks.com/matlabcentral/fileexchange/63907.

https://mathworks.com/matlabcentral/fileexchange/63907
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Fig. 2. 1st row: 9 slices from left to right of a counterclockwise circling ellipse. 2nd
row: proposed interpolation between the 3rd and 4th slice. Images are shown in larger
size than in row 1 for visualization without upsampling. 3rd row: linear intensity inter-
polation. 4th row: movement line of the center points of the interpolated ellipses of the
proposed method compared against the slice interpolation of [1]. 4th row, right: center
points, when leaving the third slice out. 5th row: gray values of the center points of
the proposed solution are nicely interpolated compared to the analytic solution.
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Fig. 3. Exemplary validation dataset. Slice interpolated with the method of Baghaie
et al. [1] (left) and the proposed method (right). Upsampled and histogram equalized
for better visualization. Transverse cut (upper left), sagittal cut (upper right), coronal
cut (below). In the sagittal and coronal cuts on the left kinks along the stitching posi-
tions are visible (yellow arrows). The proposed interpolation on the right is smooth.
(Color figure online)
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Fig. 4. Leave-one-slice-out interpolation of MR data. Left: MAD in percent of the
interpolated slices compared to the corresponding left out slices of all datasets; datasets
sorted for better visualization. Right: medians from left to right: 4.1, 3.9, 4.0, 3.9, 3.7.

changes (5) (spline reg), and the proposed method; see Fig. 4. As an evalua-
tion metric we chose the mean absolute difference (MAD), comparing all the
(P −2) interpolated slices of the (P −2) leave-one-slice-out interpolations to the
left out slices of one dataset. In most datasets the registration process provided
acceptable correspondences. In Fig. 4 we can see, that the proposed interpolation
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reaches a higher accuracy as long as the correspondences are accurate. The
proposed method interpolated the datasets with 0.5% less error in intensity
than [1]. Errors in the correspondences can increase the spline intensity inter-
polation error which also explains the slightly higher variance. Nevertheless,
the proposed method improves on the slice interpolation capability of the
pure intensity-based methods and of the registration-based linear interpolation
methods.

4 Discussion and Conclusion

In this paper we derived a new method for registration-based slice interpolation.
The structural motions along the interpolating axis are spline interpolated, and
along these motion trajectories the intensities are also spline interpolated. We
presented a way to solve the problem of combining motion and intensity inter-
polation. We used piecewise polynomial interpolators of degree three between
the slices and the additional free degrees of freedom to even out the kinks at the
stitching positions. The method produces two times differentiable structure- and
intensity interpolations. Provided by accurate point correspondences between the
slices, the smooth interpolation can be a better approximation than the ones from
linear registration-based interpolations and from intensity-based cubic interpola-
tions. To better guarantee point correspondences, we would like to point out that
the proposed approach can be used with other, more sophisticated image dis-
tances and regularizations. The proposed slice interpolation framework is flexible
and can be extended in several aspects. For example, the polynomial interpola-
tors can be transformed to include bending of the interpolating axis, in case the
slices are not parallel to each other.

References

1. Baghaie, A., Yu, Z.: An optimization method for slice interpolation of medical
images [cs], February 2014. arXiv:1402.0936

2. Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new
curvature based registration technique. Linear Algebra Appl. 380, 107–124 (2004)

3. Frakes, D.H., Dasi, L.P., Pekkan, K., Kitajima, H.D., Sundareswaran, K.,
Yoganathan, A.P., Smith, M.J.T.: A new method for registration-based medical
image interpolation. IEEE Trans. Med. Imaging 27(3), 370–377 (2008)

4. Grevera, G.J., Udupa, J.K.: An objective comparison of 3-D image interpolation
methods. IEEE Trans. Med. Imaging 17(4), 642–652 (1998)
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Abstract. We propose a framework using freely available tools for the
synthesis of physically realistic CT measurements for low dose recon-
struction development and validation, using a fully sampled Monte Carlo
method. This allows the generation of test data that has artefacts such
as photon starvation, beam-hardening and scatter, that are both phys-
ically realistic and not unfairly biased towards model-based iterative
reconstruction (MBIR) algorithms. Using the open source Monte Carlo
tool GATE and spectrum simulator SpekCalc, we describe how physical
elements such as source, specimen and detector may be modelled, and
demonstrate the construction of fan-beam and cone-beam CT systems.
We then show how this data may be consolidated and used with image
reconstruction tools. We give examples with a low dose polyenergetic
source, and quantitatively analyse reconstructions against the numer-
ical ground-truth for MBIR with simulated and ‘inverse crime’ data.
The proposed framework offers a flexible and easily reproducible tool to
aid MBIR development, and may reduce the gap between synthetic and
clinical results.

Keywords: Computed tomography · Simulation · Synthesis · Iterative
reconstruction · Low dose

1 Introduction

MBIR algorithms offer accurate CT imaging from a significantly lower dose than
traditional FBP [1]. In general, they infer the underlying image by coupling an
explicit statistical physical measurement model with spatial regularisation. By
enforcing sparsity through appropriate regularisers, model-based iterative recon-
struction (MBIR) may offer the ability to reconstruct even from an insufficient
number of measurements with reduced projections or limited angle acquisitions
[2,3], which bears strong resemblance to the field of compressed sensing (CS)
[4,5].
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A limitation in the development and validation of such reconstruction meth-
ods however, is that one often has no ground truth from real measurements, and
the scanners themselves will often have been carefully optimised for use with
FBP [6]. Although one can easily generate synthetic measurements using the
forward model used explicitly in the chosen MBIR from a numerical test image,
this will be committing the so-called ‘inverse crime’ [7,8], which will unfairly bias
the MBIR accuracy. Additionally, any deficits or artefacts from the model will
be suppressed. Ideally, one would like a tool for generating highly realistic CT
measurements from arbitrary specimen and systems, that would be repeatable
and open for other researchers to easily validate proposed methods.

Several proprietary tools have been detailed to offer accurate synthesis of CT
measurements such as [9,10], which use approximate physical modelling with
Monte Carlo and smoothing to allow sufficiently many measurements for FBP,
since the computational cost of fully sampled Monte Carlo would in this case
be extremely high. Alternatively, the open software package GATE [11] allows
simulation of X-ray measurement systems with full photon modelling, and allows
implementation on parallel computing architectures and GPUs.

In this article, we will detail a framework using GATE to allow fully sampled
Monte Carlo simulation of CT systems, for the specific use of MBIR development
and validation. Although a relatively low flux of photons can be reasonably
calculated with this complete modelling approach, due to its cost, this is ideal
for evaluating reconstruction from highly noisy and limited measurements, but
where the artefacts are physically realistic. We implement this using a large
parallel computational cluster.

To form the complete data framework for MBIR testing, we use SpekCalc
[12] to generate X-ray spectra, the Adult Reference Computational Phantom
(ARC-Phantom) [13] as specimen data, Oracle Grid Engine scripting language
for the computational implementation, the Michigan Image Reconstruction Tool-
box (MIR-Toolbox) [14] for algorithm development, with attenuation database
[15] for parameterisation and quantitative analysis.

We test the framework in Sect. 3 with examples of polyenergetic fan-beam
CT and polyenergetic cone-beam CT (CBCT), where we compare against MBIR
from ‘inverse crime’ data and FBP as a baseline.

2 Physically Modelling CT Systems

2.1 Discrete Measurement Model

CT scanners generate a set of discrete samples of X-ray intensity, which may be
accurately expressed as [8]

yi ∼ Poisson

{∫
ξi

bi(ξ) exp
(

−
∫

�i

μ(�, ξ) d�

)
dξ + si(μ, b)

}
for i = 1, ..., Nray,

(1)
where Nray is the number of measurements in discrete vector y ∈ R

Nray , ξi, �i

are the energy spectrum and integral path, b, s are vector fields of incident flux
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and scatter respectively, and μ is the spatially and spectrally varying linear
attenuation coefficient of the specimen. In reality, there should also be an addi-
tive thermal noise from the electronics [8,16], and though we are not actively
modelling this component of noise, it may be added to the data after synthesis.

Important features of (1) are that the measurements are spectrally blind,
there is a mapping from continuous physical space to discrete measurement
space, and the additive scatter component is non-linearly dependent on both
μ and b. Due to these facts, unambiguously inferring μ from y is an ill-posed
problem. In practice, one can instead invoke a simpler model such as [17]

yi ∼ Poisson

⎧⎨
⎩

Nξ∑
j=1

bi(ξj) exp (−[Φμ(ξj)]i) + si

⎫⎬
⎭ for i = 1, ..., Nray, (2)

where b, s ∈ R
Nray , ξ ∈ R

Nξ and μ ∈ R
Nvox are all discretised vectors, and

Nξ, Nvox are the number of energy bins and image voxels respectively. The matrix
Φ ∈ R

Nray×Nvox is the ‘system operator’ describing the line-of-sight path through
the specimen for each measurement.

To parameterise the polyenergetic attenuation in (2), a common approach is
to model the specimen as a composition of few material classes, such as water
and bone in [17]

μ(ξ) = [fw(ρ)mw(ξ) + (1 − fw(ρ))mb(ξ)] � ρ, (3)

where fw(·) is class indicator function of the water or air like materials,
mw(·),mb(·) are mass attenuation coefficients of water and bone, and ρ ∈ R

Nvox

is the energy independent mass density. Reconstruction directly into density can
then be done through

ρ̂ = argmin
ρ≥0

NLL(ρ;y) + Ψ(ρ), (4)

where NLL(·; ·) is the negative log-likelihood function of (2) with (3), and Ψ(·)
is some regularisation function such as the total variation (TV).

MBIR solves (4) using an explicit model such as (2). Since in reality the
measurements are better modelled with (1), it is valuable to use this to synthe-
sise data instead of (2), to characterise deficits in the approximation and avoid
committing the ‘inverse crime’.

2.2 Modelling the Source and Detector

Modelling the source and detector can be considered as a characterisation of
the incident flux given by b in (1). To characterise this, we note it may be
decomposed as

bi(ξ) = R(ξ)p(ξ)ni for i = 1, ..., Nray, (5)

where R(·) describes the energy dependent response of the detector, p(·) is the
probability density function for generation of a photon of given energy, and ni

is the number of photons generated for a given ray.
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To model the spectrum of a real diagnostic source, we assign an energy to
each generated photon according to an appropriate probability density func-
tion. For this, we focus on spectra from a Tungsten anode with various tube
potentials and including any beam filtering in the path to detector, for which
we use SpekCalc [12]. For example, Fig. 1a shows a 120 kVp source with 4 mm
Aluminium equivalent inherent filtration

Fig. 1. X-ray spectra for source and inherent filtration simulation and response function
for CsI scintillator

Next is the spatial distribution of source flux as characterised by the vector
n ∈ R

Nray from (5). This represents a spatial probability density function, from
which a given photon realisation is drawn. For this, we use distributions to
replicate the effect of a bow-tie filters [18], which concentrate a higher flux into
the centre of the specimen, reducing the radiation dose, the amount of scatter
and beam hardening. In practice, to use these distributions in Monte Carlo
simulation, we use a mirror image of the bow-tie distributions with a focal point
at place halfway to the detector; variable intensity sources are natively supported
in GATE. Although this approach gives a virtual point source, we note real
sources will have a finite focal size [8]. Another deviation of this model from
reality is that the variable thickness of the bow-tie will in practice induce a
variation in spectrum, while in our modelling we currently use only a constant
energy distribution for all rays.

Next, we will treat the modelling of an energy integrating detector, approx-
imated by the response function R(·) in (5), which is given ideally from the
Beer–Lambert law as

R(ξ) = κξ

(
1 − exp

(
−�dm

en
d (ξ)
ρd

))
, (6)

where men
d (·) is the mass absorption coefficient of the scintillating material, �

is its thickness and ρd is its mass density. The scalar parameter κ in (6) is the
constant converting an energy to a digital measurement, and will depend on the
resolution of the analogue–to–digital converter of the sensor. Examples of the
response functions for various thickness of Caesium–Iodine (CsI) with a density
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of 4.51 g/cm3 is shown in Fig. 1b and are quantified with arbitrary scaling of
κ = 1. An important feature of modelling the response in this way is that the
noise will be compound Poisson rather than exact Poisson in (2), which will be
more representative of a real detector [8].

Finally, another common feature of the X-ray detector we would like to model
is the scatter collimation grid [19], which consists of strips of lead parallel to the
source beam to block scattered X-ray photons not travelling along the line-of-
sight from the source. For the simulation of CBCT, we follow the specification
of ‘linear focused’ grids from Soyee Product inc. (Seoul, South Korea), which
are lead strips sandwiched between Aluminium. Our instance uses a grid ratio of
10:1, meaning the Aluminium spacers have dimensions of 2 × 0.2 mm; the lead
strips have a dimension 2 × 0.05 mm. Unlike the source components we model
as probability density functions, we physically build the scatter collimator by
repeating, moving and rotating an a single collimation unit. For the modelling
of fan-beam CT, we take the central slice of 2D grid we use for CBCT.

2.3 Specimen Material and Movement

The interaction of X-ray radiation with the specimen of interest is characterised
with the attenuation coefficient μ(ξ) in (1) for a polyenergetic source. In order to
model the interactions through Monte Carlo simulation, one requires the chem-
ical composition and density of these materials, which in turn will characterise
the attenuation. One such data set is the ACR-Phantom (ARCP) [13], of which
a slice of the chest is shown in Fig. 2a, along with the pelvis in Fig. 2b. As we
are concerned in this article with MBIR using the water–bone parameterisa-
tion in (3) [17], we will quantify the reconstructions in mass density. The mass-
attenuation coefficients can be calculated from the appropriate compositions in
the ACR-Phantom materials, and from the chemical attenuation database [15].

(a) Polyenegetic chest data (b) Polyenegetic pelvis data

Fig. 2. Numerical specimens: (a) is a segmented material class map for polyenergetic
simulation, with materials in arbitrary colours; (b) is the pelvis region (Color figure
online)

The acquisition of CT data involves the revolution of source and detector
around the specimen collecting projections. For simulation, we perform this
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process by instead rotating the specimen by discrete angles after a set num-
ber of photons. Examples of this along with an illustration of X-ray flight paths
for 100 photons is illustrated in Figs. 3a and b.

(a) 0◦ acquisition (b) 100◦ acquisition

Fig. 3. Illustration of simulation of CBCT system for two different projection angles,
for 100 photons (green) in each case (Color figure online)

It is from the position of the detector, and the movement of the specimen
that will characterise the X-ray paths �i in (1). Since GATE will track photon
interactions at a higher resolution that of the discrete ARC-Phantom, this will
be only approximated by the ‘system operator’ Φ in the MIR-Toolbox [14], which
will mitigate the ‘inverse crime’.

2.4 Parallel Implementation and Data Consolidation

Since the interaction of each simulated photon is independent, the modelling of
a complete CT acquisition may be run in a largely parallel manner. In our case,
we utilised the Eddie cluster in Edinburgh, which has 4000 CPU cores running
Oracle Grid Engine. We set up GATE to generate a file recording the photon
intensity at discrete points on the detector plane, and split the simulation script
into an appropriate number of indexed scripts, of number equal to a multiple of
the number of projection angles. This can then be simultaneously submitted as
an array job through Oracle Grid Engine scripting.

The output from the array job is therefore an indexed set of images corre-
sponding to total detected energy. This is combined by summing images from
the same projection angle in Matlab. By replicating the system geometry of
the GATE simulation with the MIR-Toolbox, these raw simulated measurements
can then be reconstructed with MBIR with (4).

3 Examples and Testing

To illustrate the usage of the described data synthesis framework, we tested
MBIR of fan-beam and CBCT geometries in low dose scenarios. In both cases,
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we evaluated the visual and quantitative accuracy of FBP and MBIR from Monte
Carlo simulation, and inverse crime data generated directly according to (1).

In both cases reconstruction through MBIR is performed by solving the equa-
tion in (4) using (3) and (2), where we realised the operator Φ) using the MIR-
Toolbox [14]. We used TV regularisation for R(·) using the UNLocBOX [20], with
parameters optimised for the root-mean-squared-error (RMSE) of mass density.
Since to use (3) a segmentation of the water and bone classes is required, we
provided each method with the hard bone structures.

3.1 Fan-Beam CT Example

In the first example, we tested a polyenergetic fan-beam CT system, using the
ARC-Phantom chest data as shown in Fig. 2a. The geometry we use: 64.5 cm and
120 cm from source to object centre and source to detector respectively; a flat
detector length of 85 cm with 512 equispaced elements; 90 equispaced projection
angles distributed about 360◦; a 120 kVp source with 4 mm Aluminium filtering
as shown in Fig. 1a; a 0.6 mm CsI scintillator as shown in Fig. 1b; and a total of
1.5×109 photons. The synthesis took ∼30 min with 90 parallel jobs on the Eddie
cluster.

(a) Oracle (b) FBP; RMSE=0.18

(c) MBIR inverse crime; RMSE=0.053 (d) MBIR Monte Carlo; RMSE=0.057

Fig. 4. Polyenergetic fan-beam CT reconstruction test with mass density grey-scale
window [0.8,1.2]

Reconstructions from the polyenergetic fan-beam CT data are shown in
Fig. 4. Key observations are significant streaking in the FBP as a result of pho-
ton starvation [18]. Between the Monte Carlo and inverse crime data, there is a
visual difference in the soft tissue intensity and bone structure, where the latter
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appears closer to the ground truth. The intensity error of the simulated data
can be explained by a deviation of materials such as soft bone and fat from the
water–bone assumption [21]. Additionally, the inverse crime reconstruction has a
7% relative decrease in RMSE over data from our simulation framework. This is
significant, as there are marked differences between using the very same method,
which highlights that generating data from the model itself is overly optimistic
in this case, and does not capture some of the shortcomings of the model using
(3) with (2).

3.2 CBCT Example

The other example we will illustrate is the reconstruction of CBCT synthetic
data. In this geometry, due to its wide field of view, there are large amounts of
scatter that is often of the same order of magnitude as the measurements y [22].
In this case, the specimen is a 3D section around the pelvis of the ARC-Phantom
[13]—a slice of this data is shown Fig. 2b.

For the acquisition, we set a geometry to match the ‘half-fan’ mode of Varian
TrueBeamTM system (Varian Medical Systems, Palo Alto CA, USA). For this, we
used an offset detector, linearly focused scatter collimation grid, a 125 kVp source
with 4 mm Aluminium and 0.89 mm Titanium filtration, and a CsI scintillator
of 0.6 mm as shown in Fig. 1b. We simulated a total of 2×1010 photons over
160 projections, which is considerably less than around 900 as is typical for this
scanner. Generating these measurements took ∼3 h on the Eddie cluster.

We used fast adaptive scatter kernel superposition (fASKS) [19] to estimate
the scatter. We also used this estimate to synthesise the data in the inverse

(a) Oracle (b) FDK; RMSE=0.34

(c) MBIR inverse crime; RMSE=0.067 (d) MBIR Monte Carlo; RMSE=0.080

Fig. 5. Polyenergetic CBCT reconstruction test with mass density grey-scale window
[0.6,1.4]; errors are calculated on full volume
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crime case according to (2). For FBP, we used the fASKS estimate to correct
the measurements.

Reconstructions in Fig. 5 show that the FBP again exhibits large amounts
of streaking from the low dose. Even more so than the fan-beam case however,
is the degree of difference between Monte Carlo and inverse crime data, which
can be seen visually as shading in Fig. 5d and a 19% decrease in relative error.
This highlights the importance of the dependency of real scatter as in (1), and
motivates the use of more accuracy scatter estimation, which is suppressed with
the inverse crime case.

4 Conclusions

We have introduced and tested a framework for synthesising CT measurements
for MBIR development using freely available software. From our testing, we have
shown it produces physically realistic reconstruction artefacts, such as intensity
discrepancies or scatter shading that are not captured with inverse crime data.
Future work will be in developing an easy to use interface for automating the
scripting, data processing and consolidating, and make this freely available to
enable easy replication. Additional physical effects such as finite focal size, detec-
tor lag [8], bow-tie shifting and variable spectra will also be investigated. We
believe this work offers a transparent and valuable tool that should close the
gap between numerical and real reconstruction results, and lower the barrier to
clinical implementation of state-of-the-art methods.
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Abstract. During the last two decades a large amount of new simu-
lation frameworks in the field of cell imaging has emerged. They were
expected to serve as performance assessment tools for newly developed
as well as for already existing cell segmentation or tracking algorithms.
These simulators have typically been designed as single purpose tools.
They generate the synthetic image data for one particular modality and
one particular cell type. In this study, we introduce a novel multipurpose
simulation framework, which produces the synthetic time-lapse image
sequences of living endothelial cells for two different modalities: fluores-
cence and phase contrast microscopy, both in widefield or confocal mode.
This may help in evaluating a wider range of desired image processing
algorithms across multiple modalities.

Keywords: Cellular Potts model · Volumetric image data · Multimodal
simulation · Cell imaging

1 Introduction

In the early 90s, the cell simulations represented rather a theoretical approach
which was understood to be an important one but not practically used. Nowa-
days, namely due to the computational power and the capacity of contempo-
rary computers, the development of new cell image analysis algorithms (e.g.
segmentation, deconvolution) goes hand in hand with newly emerging cell sim-
ulation frameworks. The available simulation frameworks can generate the syn-
thetic image data accompanied with absolute ground truth in large quantities.
The simulated data are typically static [2,4]. Some research groups study the
dynamic processes (tracking) and hence the availability of synthetic time-lapse
image sequences [12] is required as well. However, even though many simula-
tion frameworks emerged during the last years, they have been designed to be
single-purpose. They typically generate just one cell phenotype and produce the
images as if acquired with only one particular acquisition device. The design
corresponds to the needs (running projects, available biological material) and
equipment (available microscopes) of individual research groups that develop
these tools. Most research groups are focused on the manipulation with data
acquired using a fluorescence microscope [4,7,11]. The others handle bright field
images [3,5], TIRF images [8], or SMLM images [9].

c© Springer International Publishing AG 2017
S.A. Tsaftaris et al. (Eds.): SASHIMI 2017, LNCS 10557, pp. 89–98, 2017.
DOI: 10.1007/978-3-319-68127-6 10
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To overcome the limitations of above-mentioned simulation frameworks, we
designed a new simulation system that can generate the synthetic time-lapse
image sequences depicting the living cell populations for two modalities: fluores-
cence and phase contrast microscopy. Such generated data are suitable for the
evaluation of segmentation, tracking or registration task. The system is based
on the modified cellular Potts model, that generates and manipulates with all
the important data needed for further production of the synthetic image in both
modalities. In particular, each cell is defined as a puzzle of subcellular compo-
nents, each described with its refractive index [1] (needed for phase contrast
simulation). Simultaneously, all the components are defined together with their
internal structure [4], so that their virtual fluorescence staining is a straight-
forward process (needed for simulation of fluorescence microscopy). Finally, the
generated synthetic images are submitted to a virtual optical system and virtual
acquisition device to obtain the final image data. The description of fundamental
parts of the simulation system follows in the next sections.

2 Methodology

The proposed simulation process consists of three principal phases [11]: gener-
ation of phantom, simulation of optical system, and simulation of acquisition
electronic device. The first phase is fully controlled by the cellular Potts model
(CPM). To allow different output for different modalities, the phantom, that is
the output of this phase, is expected to be sufficiently complex. In this sense, we
extended the standard Merks’ CPM [6] into the 3rd dimension and made the cells
content heterogeneous. In particular, the cell is now composed of three different
components: nucleus, cytoplasm, and several mitochondria. In fact, Scianna and
Preziosi [10] have already proposed an extension of CPM into the 3rd dimen-
sion and also introduced the subcellular components (they called them compart-
ments). Nevertheless, their model did not guarantee the intra-cell compactness
or inter-cell connectivity. Moreover, this model, even though very complex, could
not distinguish the multiple occurrences of similar components in one cell. All
of them were marked with the same identifier.

The aim of our modification is to provide a simple and straightforward 3D
extension to a standard CPM and, in parallel, to overcome the imperfections of
Scianna’s CPM [10].

The basic as well as the modified version of our modified CPM is explained in
the following subsection. The description of simulation of selected optical system
and acquisition device is presented afterwards. The flowchart in Fig. 1 shows the
workflow of the whole generation process.

2.1 Cellular Potts Model

Let Ω ⊂ R
2 be a two-dimensional lattice with each grid site x ∈ Ω labeled with

σ(x) ∈ N0, called a spin. Note that the lattice with its sites and spins can be also
understood as a discrete 2D image with individual pixels and pixel values. Each
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Fig. 1. Workflow of the simulation process.

studied object, e.g., cell, or embedding medium, consists of finite number of grid
sites and possesses a unique spin. All sites belonging to a single object share the
same unique spin number so that spin can be understood as a label of a given
object in the lattice/image. By convention, the embedding medium, in which
the real cells are immersed and which is commonly interpreted as a background,
has spin number zero. One iteration of the CPM suggests to flip the spin of a
randomly selected grid site xs (source) to a spin σ(xt) of a randomly selected
neighbor xt (target), and evaluates how this flip would affect the Hamiltonian
H of the system:

ΔH = ΔHAdhesion + ΔHShape + ΔHChemotaxis. (1)

The term HAdhesion expresses the desire of individual grid site to either stay in
contact with each other or to stay alone:

HAdhesion =
∑

x∈Ω,x′∈Nx

(
1 − δσ(x),σ(x′)

)
Jτ(σ(x)),τ(σ(x′)) (2)

where δx,y is the Kronecker delta, Nx is a set of sites neighboring to x, and
τ(s) : N → {Medium, Cell} is a function associating each spin to a known type of
object. A zero spin is associated with Medium whereas all the positive values are
mapped to Cell. Finally, the J ’s are cell-cell and cell-medium binding penalties.

The term HShape imposes geometrical constrains. In the simplest case, only
the cell area (number of grid sites per cell) constraint is used:

HShape = λshape

number of cells∑

σ=1

(aσ − ACell)
2 (3)

where λshape is a weight defining the influence of this term, aσ is the current
area of a cell with spin σ and ACell is an mean area each cell is expected to
occupy in the lattice. The term ΔHAdhesion (ΔHShape) expresses the difference
between HAdhesion (HShape) calculated with the new suggested value of σ(xs)
and HAdhesion (HShape) with the original value.

Finally, the term ΔHChemotaxis expresses the cell ability to respond to the
chemical stimulus. Each cell detects the concentration of signals (the biological
material which is produced by each cell and which serves as an attractor to other
cells) in its vicinity and tries to occupy the position with the highest positive
gradient of concentration c(·, ·). The term is expressed as:
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ΔHChemotaxis = − (
1 − δσ(xs),0

)
λchemical [c(xt, t) − c(xs, t)] (4)

where λchemical is a parameter controlling the importance of cell chemotaxis and
c(x, t) is the current (time t) concentration of the signals at the site x. The term
c(xt, t) − c(xs, t) defines the difference in concentrations between the current xs

and the proposed xt sites. The concentration function c(·, ·) is defined by the
following equation (arguments were dropped):

∂c

∂t
= D∇2c + α(1 − δσ(x),0) − 1

τ
δσ(x),0 c (5)

where α is the secretion rate constant of the signals released from the cells, τ is
their half life in the medium, and D is the diffusion coefficient.

The probability of flipping the spin of the lattice site xs to the spin σ(xt) is
then given as:

P (σ(xt) ← σ(xs)) =
{

e−ΔH/T if ΔH > 0,
1 if ΔH ≤ 0.

(6)

In the following text, we present the changes that we introduced to the standard
CPM. In particular, these include the extension of standard CPM from 2D into
3D based on the fact, that Ω ⊂ R

3 is now a three-dimensional lattice, and the
introduction of multi-component representation of each cell.

2.2 Subcellular Components

The standard CPM is composed of grid sites, each possessing a spin. This spin
is understood as a label/index in the image. The set of grid sites with the same
non-zero spin form a cell with a unique label. The grid sites with zero spin
represent an embedding medium. In our model, each grid site x ∈ Ω is again
assigned a spin, which is newly defined as a triplet σ : x → (Label, ID,Cell). Let
us explain its individual elements in detail:

Label. This property defines the type of biological structure that the currently
inspected grid site belongs to. In this study, we introduce the following set
LABELS = {nucleus, cytoplasm, mitochondrion, medium, ECM}. Here, ECM
stands for extra-cellular-matrix. The first three labels correspond to subcellular
components. The last two labels define the non-cellular objects typically appear-
ing in the specimens.

ID. Inside each cell, there may appear more than one mitochondrion. In order
to distinguish between the individual occurrences of such objects and to avoid
merging we introduce a unique identifier ID ∈ N0.

Cell. By using only the elements Label and ID, we are not able to recognize
which grid site belongs to which cell. The component Cell ∈ N defines, which
cell owns the currently inspected grid site.

With such a modified spin, we can easily perform the following operations
over the grid:
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– detect the interface between the individual cells,
– locate only the nuclei,
– remove the background

In accordance with the change of σ function, we also modify the τ function.
Newly, the function τ is a projection of a spin σ(x) into its first component, i.e.:

τ(σ(x)) → τ((Label, ID,Cell)) → Label (7)

The adhesion term HAdhesion is defined in the same way as in the stan-
dard CPM. The difference for the multicomponent model manifests itself in
the number of adhesion J·,· terms [13]. Instead of Jcell,cell and Jcell,medium

adhesion penalties we defined Jcytoplasm,ECM = 3, Jcytoplasm,medium = 40,
Jcytoplasm,cytoplasm = 3, Jcytoplasm,nucleus = 0, Jcytoplasm,mitochondrion = 0.
Note that the J·,· function is symmetrical. The unwanted connections (com-
ponents should not touch each other) are set to a very high penalty, i.e.
Jnucleus,ECM = Jnucleus,medium = ∞.

2.3 Sphericity of Components

Additionally to the standard CPM, where the geometrical term HShape is respon-
sible for keeping the volume of all cells equal (see Eq. 3), we introduce the spheric-
ity, which pushes the cells and some selected subcellular components (e.g. nuclei)
to keep a roundish shape. The sphericity sL of a component L is defined as:

sL =

(
36πvolume2L

) 1
3

surfaceL
(8)

This newly defined property is very important, as without the additional restric-
tions the cells tend to arbitrarily prolongate and deflate. The volume and spheric-
ity constraints are applied to each subcellular component individually:

HShape = λvolume

∑

L

(
AL−aL

aL

)2

+ λsphericity

∑

L

(
SL	sL

sL

)2

(9)

where

x 	 y =
{

0, y > x
x − y, otherwise (10)

Here, the binary 	 operator realizes a subtraction with always positive result
and SL is an expected mean sphericity of components with label L. The operator
	 allows the components to be even more similar to sphere than required and still
is not penalized. Further, λvolume = 1×107 and λsphericity = 1×108 are weights
defining the importance of volume and sphericity constrains, respectively. The
zero value of λsphericity means no restriction. Vice versa, the high values push
the model to produce roundish shapes. We also normalize the deviations to avoid
excessive changes of λ parameters caused when increasing/decreasing the lattice
resolution. Note, that the normality requires very high value of λ parameters.
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2.4 Modified Chemotaxis

The chemotaxis causes the cells in the scene to move and touch. This behaviour
is controlled by the underlying field of concentration c(x, t) of signals. To push
the cells, that are initially freely distributed in the medium, to attach the ECM,
we changed the diffusion Eq. (5). We modified the Laplacian operator ∇2 to
control the direction of diffusion. The new operator ∇2

w is defined as follows:

∇2
wf(x, y, z) = −

(
6∑

i=1

wi

)
f(x, y, z)

+w1f(x, y, z − 1) + w2f(x, y, z + 1) + w3f(x, y − 1, z)
+w4f(x, y + 1, z) + w5f(x − 1, y, z) + w6f(x + 1, y, z)

(11)

where w = (w1, w2, . . . , w6) is a vector of weights that control the direction
of diffusion of signals occurring in the medium. In this study, we used w =
(0.8, 1.0, 1.0, 1.0, 1.0, 1.0). These settings cause the signals to be less diffused in
upward direction. Due to chemotaxis, the cells less tend to grow in this direction.
As a result they attach to the extracellular matrix which is located at the bottom
of the specimen. This simply simulates the gravity force.

2.5 Connectivity

In order to keep each cell to be compact (intra-cell compactness) and to avoid
splitting the two neighbouring cells that have already been connected (inter-
cell connectivity), we adopted the graph based approach that tackles with the
connectivity of 2D CPM [13]. In this sense, each cell is understood as a node in
the non-oriented graph. Splitting the connection between two cells corresponds
to an edge removal. Ripping the cell into multiple pieces corresponds to graph
node replication. Both these events are controlled every time the spin flip is
suggested. This way, we can prevent from any unwanted behavior of the cell
population.

2.6 Simulation of Optical Microscope and Detector

The final phase of the simulation process consists of imitating the virtual micro-
scope and virtual acquisition device.

Optical system. To simulate either the fluorescence or phase contrast microscope,
we employed two different frameworks: virtual fluorescence microscope [11] and
virtual phase contrast microscope [14]. To feed the frameworks, we utilized the
complex digital phantoms produced by our modified CPM (see Fig. 1).

When using the virtual fluorescence microscope, the selection of one particu-
lar subcellular component corresponds to staining of the component with a real
fluorescent dye. Moreover, staining different component with different dyes can
produce typical pseudocolor multichannel images (see Fig. 2(b)).

Before we utilized the virtual phase contrast microscope, we defined the
refractive indices for all the cellular as well as non-cellular structures occur-
ring on the microscopic slide (water = 1.335, ECM = 1.3406, nucleus = 1.39,
cytoplasm = 1.36, and mitochondrion = 1.4 [1]).



Multimodal Simulations in Live Cell Imaging 95

Image detection. First, the blurred image was affected by photon shot noise with
Poisson distribution to imitate the ambiguity of photon detection by the camera
sensor. Further, in order to get typical real-looking image, we employed one of
virtual cameras, that are uniquely described by the resolution of their sensor,
dark current signal and the Gaussian noise produced by amplifier.

3 Results and Discussion

The digital phantom generated using the proposed system (see Fig. 1) is a volu-
metric image, a 3D extension of standard representation of cellular Potts model.
Unlike the common understanding of sigma value, which is a scalar, we rede-
fine it as a triplet. Technically, this can be understood as a collection of three
individual images (of the same size). The first stores the component labels, the
second takes care of component identifiers, and the last one defines which cell
the given component belongs to. Medium and extracellular matrix are examples
of components that are not part of any cell.

The data stored in these three parallel fully 3D images are used to produce
the final real-like looking synthetic images for the given pre-selected modality. An
example of the third image, which records all the available cells in the specimen,
is depicted in Fig. 2(a). The two possible outputs for two different modalities
are shown in Fig. 2(b) and (c). The generated data are subsequently suitable for
benchmarking of standard segmentation, tracking or registration tasks.

The reader should also keep in mind that the proposed framework is derived
from the standard CPM, i.e., it straightforwardly adopts the ability to simulate
the dynamic processes occurring in living cell populations. In particular, the
parameters of the CPM framework control the willingness of cells to connect,
to stay rounded or elongated, to attach to ECM, to have the membrane either
smooth or jagged etc. As a result, the parameters influence the behaviour of the
simulated population but due to the randomness of CPM framework, the differ-
ent runs of the simulation with the same parameters produce different results.
The values of the parameters, that were used for the generation of dozens of
real-like looking cell populations (one sample image set is depicted in Fig. 2 and
available from project web-pages1), are explained in the previous sections.

Regarding the plausibility of our generated data, we rely on the fact, that
the introduced framework is a puzzle of several well-defined and already proved
frameworks. The basic building block is a CPM [6,13] defining the proper shape
and dynamics. Further, the texture of cell interior for fluorescence microscopy
together with image acquisition is adopted from [11]. Analogously, the phase
contrast-like looking images are produced by the model introduced in [14].

As we understand, that the model we proposed, cannot exactly meet the
requirement of all the developers of cell segmentation/tracking/registration algo-
rithms, we offer the source codes of our framework (see Footnote 1) for free such
that any user can modify it to fit her/his needs. The code is completely written

1 http://cbia.fi.muni.cz/projects/multicomponent-cpm.html.

http://cbia.fi.muni.cz/projects/multicomponent-cpm.html
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Fig. 2. An example of synthetic image data representing population of endothelial cells
produced by the proposed simulation framework. From top to bottom: (a) Labeled
digital phantom image with each cell bearing its unique label, (b) the output image
imitating the acquisition with fluorescence microscope, where nucleus is depicted in red
channel whereas the proteins, appearing in cytoplasm, are visualized in green channel,
(c) the output image mimicking the phase contrast microscope. (Color figure online)
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in C/C++ and works as a console application, i.e., without any limitation to
operating system (tested under Linux Gentoo and MS Windows 10). We also
accept the fact, that the CPM is commonly understood to be a rather slow sim-
ulation framework. For this purpose, we carefully optimized our codes to reduce
the overall computation time. As a result, we were able to perform 3000 time
steps over the scene consisting of 720 × 720 × 40 voxels and containing 360 cells
in 11 h2.

4 Conclusion

In this study, we showed that the appropriate modification of cellular Potts model
together with suitable virtual microscopes offer a powerful tool for simulation
of microscopic image data for various modalities. In particular, we tested the
suitability of this approach when generating the image data that resemble the
real image data as if acquired using fluorescence or phase contrast microscope.
The utilized approach is based on two main pillars:

Sufficiently complex model. As soon as the model is properly defined, we can
generate a digital phantom suitable for particular modality. If someone plans to
simulate the phase contrast microscope, for example, the refractive indices must
be known for all the visible cellular parts. Moreover, to allow for the optical
path length computation, which is an inevitable part of modeling of phase con-
trast microscope, the phantom must be defined fully in 3D. As for fluorescence
microscopy, one has to tackle with the internal structure of visible cell parts.
These are typically the chromatin (basic building block of nucleus) or some
parts of cytoplasm visualized due to stained proteins.

Acquisition system modeling. In this study, we simulated the behavior of
two types of microscopes. Due to sufficiently complex but still a simple model,
we were able to produce the appropriate output for each of them. The simulation
of fluorescence microscope is based on the on-line CytoPacq framework [11]. The
phase contrast microscope is simulated using the model introduced and precisely
described by Yin et al. [14].
In the future, the proper modeling of mitosis and apoptosis will be introduced
to CPM to simulate to whole cell cycle. To make the system even more mul-
tipurpose, we also plan to support the differential interference contrast (DIC)
microscopy and other modalities.
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Abstract. This paper deals with the personalized simulation of blood
flow within the liver parenchyma, by considering a complete pipeline of
medical image segmentation, organ volume reconstruction, and numer-
ical simulation of blood diffusion. To do so, we employ model-based
segmentation algorithms developed with ITK/VTK librairies, CATIA
software for volumetric reconstructions based on NURBS and Abaqus
solution for adapted simulation of Darcy’s law. After presenting experi-
mental results of each step, we explore scientific and technical bottlenecks
so that a valid digital hepatic blood flow phantom may be developed in
our future research, in direct relation with current open challenges in
this domain.

Keywords: Medical image analysis · Model-based segmentation ·
Liver · Blood flow simulation · 3D reconstruction · NURBS

1 Introduction

The liver has multiple key biological functions and is a very complex organ, from
both anatomical and physiological considerations [13], as suggested by Fig. 1: the
shape of the liver can vary considerably from one patient to another; its vascular
system is composed of two blood inflows (red and purple in Fig. 1 and one outflow
(blue in Fig. 1), contrary to other organs like kidney, brain composed of one
of each, moreover portal vein, hepatic artery and hepatic vein are respectively
then subdivided into complex tree-like networks; in the liver, each hepatic cell
(hepatocyte) has a connection to those networks (and bile duct, green in Fig. 1)
by sinusoids and possesses many functions: synthesize proteins, detoxify, secrete
bile, etc.

The very complex tree-like networks finish with capillaries, also called sinu-
soids (less than 10µm), which are invisible on images acquired from medical
c© Springer International Publishing AG 2017
S.A. Tsaftaris et al. (Eds.): SASHIMI 2017, LNCS 10557, pp. 99–108, 2017.
DOI: 10.1007/978-3-319-68127-6 11
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Fig. 1. Illustration of the complex vascular network of the liver with two input blood
flows and one output. Image from [13] (Color figure online)

imaging systems such as MRI (Magnetic Resonance Imaging) or CT (Computed
Tomography). Hence, simulating personalized blood transport and treatments
(such as tumor embolization [12]) in an accurate way is a challenging ques-
tion for the liver. Also, it would be a key to develop in-silico trials [21], to
help medical doctors in defining embolization (transarterial chemo-embolization,
radio-embolization, etc.) adapted to patients by using computer aided treatment
planning, and to reduce animal experimentation for drug design and testing. The
impact of such approach is high since liver cancer is the second leading cause
of cancer-related death worldwide with 746,000 deaths in 2012 according to the
World Health Organization (WHO) [22]. Therefore, numerous patients could
benefit from these in-silico trials, by undergoing the best personalized treat-
ments (as embolization) determined thanks to numerical testings.

In this paper, we present a complete pipeline devoted to simulate personal-
ized blood flow within liver parenchyma (i.e. liver volume except vessels, thus
comporting hepatic lobules). We also point out key scientific and technical prob-
lems of this process, and possible ways to solve them in future works. Another
objective of this work is to draw the possible relations between image-based
simulation and (model-based) medical image processing. The paper follows our
pipeline and is organized as follows. Section 2 deals with the segmentation of
liver volume and internal vessels, from CT and MRI volumes. Then, in Sect. 3,
we explain how to obtain a valid 3D model appropriate for the simulation, which
is exposed in Sect. 4. We finish by discussing this study and possible future works
in Sect. 5.
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2 Liver Segmentation in CT and MRI Modalities

Liver segmentation in MRI and CT is a challenging problem due to noise, low
contrast and similar intensities with adjacent organs and tissues. Automatic liver
segmentation is often performed in CT [3] but MRI provides more information for
diagnosis purposes [1]. We have developed an automatic model-based method for
both modalities. To do so, we first extract four statistical models with 68 livers
segmented by clinical experts obtained from Shape2015 [10], IRCAD [14] and
SLIVER07 [8] databases. The four models are constructed according to their
variabilities (small to large) from a standard shape liver (mean dimensions of
all volumes available in the datasets). Statistical model and all patient volumes
have the same dimensions (voxel size: 1 × 1 × 1 mm3).

We first localize the liver on the images with the mean dimensions of a
standard liver. This localization of the liver allows us to compute a threshold to
isolate pixels that belong to the liver. After the thresholding on each slice, we
apply a contour enhancement process. At this step we use the model the liver)
as a probability map to localize the liver and we then perform an active contour
segmentation method (fast marching) resulting in a binary mask. Finally, to
erase errors due to over-segmentation by a process considering the global shape
of the liver. Figure 2 illustrates results of the different steps.

Fig. 2. Results of different step on MR images: (a) patient slice Pj with j ∈ {1, p},
(b) largest surface of the liver (threshold computation), (c) thresholding and contour
enhancement, (d) liver model for localization and active contour method, (e) mask
obtained, (f) segmentation result

In the second step, we extract the liver vessels within the 3D segmenta-
tion obtained previously from CT and MRI volumes. The contrast of the blood
vessels in our images is quit good as a contrast agent injection is generally per-
formed during the medical exam. Thus, we first tried a simple thresholding to
segment the vascular network (see results in Fig. 3). Nonetheless, we also tried
to apply two different vessel filters: the Sato vesselness based on the analysis of
the Hessian matrix, which plays a role in a discriminating shape and orienta-
tion of tubular structures [16]; and the RORPO filter (Ranking the Orientation
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Responses of Path Operators) [11], based on the notion of path operators from
mathematical morphology. It allows a discrete, non linear and non local, 3D
curvilinear structure analysis.

The automatic liver segmentation has been tested with 20 CT from the IRCAD
database, 20 CT from the SLIVER07 challenge and 39 MR images from our radi-
ology department. The ground truth of the liver segmentation is available for the
SLIVER07 and IRCAD databases only, which permits us to calculate the mean
Dice of our method, which is equal to 90, 5%. The vessels extraction is tested on
CT of the IRCAD database and MR images. Manual expert segmentations of the
portal vein, the arterial vein and the venous system are available for the IRCAD
database. The mean Dice is equivalent for the three vessels extraction methods,
around 30%. The parameters are not yet optimized and more tests are needed,
specially on MRI, but results are promising: Sato-filter is stable according to the
different modalities but contains lot of noise, RORPO is promising for CT and
results obtained with simple thresholding highly depend on patient’s data. The
entire process allows a 3D visualization of the patient liver with its vascular net-
work, Fig. 3 illustrates results for two CT and one MRI volume.

Fig. 3. Visualization of the liver segmentation (in light blue) and its vascular network
(in dark blue). First two lines correspond to two CT and the third line corresponds
to one MRI. Then (a), (d), (g) represent results with Sato filter, (b), (e), (h) results
with the RORPO algorithm and (c), (f), (i) are calculated with a simple thresholding
process (Color figure online)

3 Liver Components Reconstruction

In this work, the analysis is performed using a finite element (FE) solver. FE
solver uses the geometric information provided by the 3D Computer-Aided
Design (CAD) models. These 3D models can be a solid model or a surface model
such as Non-Uniform Rational Basis Spline (NURBS, see e.g. [15]). Such models
are not directly obtained from the CT, and therefore the NURBS model needs
to be reconstructed in order to maintain the workflow required by the FE solver.
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3.1 Liver Reconstruction

From the liver obtained by segmenting medical images (Sect. 2), we obtain a
3D triangular mesh by using the marching cubes algorithm, meaning that 3D
points are spaced wrt. the segmented image resolution (i.e. the voxel size is
1 × 1 × 1 mm3). We also use a Laplacian smoothing operator to enhance the
3D mesh. To produce this mesh, we employ the Visualization Toolkit VTK, and
export the reconstructed liver in the STL format (Stereolithography), as shown
in Fig. 4a. We import the mesh into the CAD software CATIA R©, which can be
used to convert the 3D surface polygonal mesh into a NURBS surface model,
as shown in Fig. 4b. This closed surface is subsequently filled to obtain a solid
model needed to perform the FE analysis.

Fig. 4. Reconstruction of the liver model: (a) Original surface mesh. (b) Volumetric
CAD model. From an IRCAD sample [14]

3.2 Venous System Reconstruction

The model of the venous system is reconstructed from a surface polygonal trian-
gular mesh (see Fig. 5a), but the procedure used for the liver cannot be directly
applied. In fact, the preparation of a FE model for veins from a 3D CAD model
is a difficult task, because the geometry of the veins is more complex, which may
lead to distorted or non physical NURBS. The 3D surface model of the veins
contains a large number of faces, some of which may be narrow or feature short
edges that are smaller than the required FE size for 3D mesh generation. In
our case, for instance, we frequently observed intersections between the oppo-
site walls of a vein or NURBS with excessive curvature radii, which cannot be
meshed by the FE software. Therefore, the radii of the veins have been slightly
increased between 1–1.5 mm, in an adaptive way considering the mesh geometry
by means of CATIA. The reconstructed and modified CAD model of the veins
is shown in Fig. 5b. The hepatic artery is not included in this model, as it is
considerably smaller than the vena cava and the hepatic vein, the input model
used here did not include sufficient information.
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Fig. 5. Construction of the geometric vein model from an IRCAD example [14]: (a)
Original surface mesh. (b) Volumetric CAD model

3.3 Boolean Operations

The geometry of the hepatic parenchyma HP is reconstructed from the previ-
ously described 3D CAD models (solid). Two Boolean subtractions are subse-
quently applied to remove the veins’ volumes (portal veins PV and hepatic vein
HV ) from the liver’s volume (LV ), meaning that we calculate:

HP = (LV \ PV ) \ HV. (1)

An assembly model including all the reconstructed solids is prepared as shown
in Fig. 6.

Fig. 6. Geometric model of the liver with the modified venous system (IRCAD
sample [14])

4 Numerical Simulation of Blood Transport
Within Liver Parenchyma

A porous medium model of the liver is developed in this paper. A similar app-
roach at the microscopic scale is described in the literature [2,19]. The simula-
tions are focused on the hepatic parenchyma and a 3-dimensional volume model
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is implemented. Simulation of the flow of blood is possible using computational
fluid dynamics (see e.g. [18,20]) but this approach is not considered here. The
larger veins and arteries can be explicitly identified from the CT. They are sub-
sequently excluded from the analysis and it is assumed that they can be replaced
by appropriate boundary conditions. The smaller veins cannot be identified from
the CT, as there are smaller than the resolution of the images. It is assumed as a
simplifying hypothesis that all the unidentified veins and arteries behave as the
parenchyma, and they are modeled with the properties of the porous medium.

4.1 Constitutive Equations

Darcy’s law is used to model the flow of blood in the hepatic parenchyma; it is
expressed as:

q =
k

µ
∇P, (2)

where q denotes the flux of the fluid (expressed in volume of fluid per unit
of surface and per unit of time, i.e. in m/s), ∇P denotes the gradient of the
pressure of the fluid within the pores (liver lobules), k and µ are respectively the
permeability of the bulk material and the viscosity of the fluid. The influence
of gravity is neglected in Eq. 2, as we assumed that the difference of pressure
in the portal vein and in the hepatic vein causes the blood flow; and that the
volumetric forces have second order effects. The second constitutive equation is
the conservation of the mass:

∇ · q = 0, (3)

where ∇ · is the divergence operator. It should be noted that the flux is not the
actual velocity of the fluid, as it travels only in the pores and the solid material
reduces the available space.

Equations 2 and 3 do not include any partial derivative of the fluid flux and
pressure with respect to time as they describe the flow within the porous medium
in steady state condition. This approximation allows us to reduce the numerical
efforts associated with the analysis, and has been applied with success in the
literature (see e.g. [2,19]). Homogeneous isotropic material properties are used
for the hepatic parenchymal material, we have set k = 1.56 · 10−14 m2 and the
blood viscosity µ = 0.0024 Pa.s.

The method is implemented in the commercial FE solver Abaqus. Darcy’s
law is available in this software, which is used by civil engineers to solve soil
mechanics and hydraulics problems. 4-node tetrahedral elements are used, as
they are versatile elements suitable for complex geometries. The model includes
585,219 elements and 110,266 nodes in total.

4.2 Boundary Conditions

The first boundary condition consists of applying no blood flux at the wall of
the vein, nor at the surface of the liver, which is expressed as:

q · n = 0 (4)
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at any point of a surface where this flux boundary condition is prescribed, n
being the normal vector of the surface. This is the default boundary condition
applied by the solver for all the free surfaces, excepted if another boundary
condition is explicitly applied.

Specific boundary conditions are applied at the ends of the veins as they
apply in the geometry reconstructed from the medical image. These veins are
not included in the FE model, and their end surfaces are modeled as an inlet or
as an outlet. Two modeling strategies are applicable; they consist of applying:
(i) the fluid flux; (ii) the pressure of the fluid on the pores. The second strategy
is used here as relevant information on the pressure in the hepatic and portal
vein is available in the literature [19]. The pressure is 587 Pa at the ends of the
portal veins and 200 Pa at the ends of the hepatic vein.

4.3 Experimental Results

Figure 7 shows the results of the FE analysis, the fluid pressure and flux are deter-
mined. It is observed that both quantities exhibit higher values in the vicinity
of the veins end (as they are observed from the medical images).

Fig. 7. Results of the FE analysis (a) Fluid pressure in the parenchyma. (b) Blood flux

5 Discussion

In this paper, we have presented a complete pipeline dedicated to the simulation
of blood flow within liver parenchyma from personal medical image data. We
now propose to consider different technical and scientific issues, and possible
solutions to be developed as future works.

Simulation outcome validation. As presented in Fig. 7, numerical simula-
tion based on Darcy’s law enables the computation of blood flow within liver
parenchyma, by calculating flow pressure or velocity in each FE node of the
3D reconstructed object. To validate this process, we have to take into account
the blood flow coming from liver vessels, by incorporating fluid dynamics. In this
case, flow should be synchronized with cardiac rhythm, with the support of ECG
signal for instance. To validate our digital blood flow, we could study the cor-
relation with blood flow estimation from several image modalities (ultra-sound
imaging, MR angiography, etc.) [4].
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CT or other modalities only offer a coarse representation of liver vessels. A
solution could be to reconstruct finer vessels by heuristics based on geometrical
and anatomical features upon vascular shapes in this organ, as proposed by [17].
In Fig. 7, we can observe some parts of the liver with an abnormal flux and/or
pressure (see left-most and bottom-right parts in particular) wrt. the rest of
the organ. In reality, liver vascular network is organized so that every hepatic
lobules participate in the treatment of blood. As a consequence, the vessels we
have employed from IRCAD segmentation in this study do not have a sufficient
precision to accomplish this task.

Also, simulation should also be driven by a multi-scale approach, so that we
consider blood flow dynamics within hepatic lobules, like in [19]. This means that
we should be able to draw the relation between possibly cirrhotic liver recon-
structed from macroscopic images (CT, MRI) and microscopic data (histology).

Image processing quality and robustness. In our study, liver extraction
method achieve an accuracy (Dice measure) of approximately 30% wrt. manual
annotation provided by IRCAD dataset (see Fig. 3). And visual appreciation of
results from MRI data suggest that the quality of vascular reconstruction would
be even worst. From previous observations, we may suppose that simulation
based on such reconstructions will suffer from a lower outcome quality compared
to the one we have obtained with IRCAD segmentations in this paper. However,
we have to be aware that image-based quality measurement is not forced to be
correlated to simulation performance measurement. And if we consider in-silico
trial as the final goal of our work, digital blood flow assessment should be the
best way to judge the quality of previous segmentation tasks. This is also related
to the current concern about evaluating the reproducibility and robustness of
image processing tasks, by considering more applications [9].

Scalability, benchmarking and big data. In our pipeline, several operations
have been produced by supervised manipulations: liver and vascular reconstruc-
tion, as exposed in Figs. 4 and 6 in CATIA, input/output labeling of vessels in
Abaqus, etc. To be able to handle a large number of images (as our dataset of
39 MRI volumes, and even larger patient cohorts), automatic procedures should
be developed. In this case, a first solution is to design home-made algorithms or
use open-source solutions for volume reconstruction [6] and blood flow simula-
tion [7]. Producing such automatic processes will also help in validating image
processing tasks and the possible underlying models or atlases (as we propose in
this article for the liver) for large amounts of data.
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