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Abstract. Hand shredded content-less pages reassembly is a challeng-
ing task. This has applications in forensics and fun games. The process is
even more tedious when the number of pages from which the fragments
are obtained is unknown. An iterative framework to solve the jigsaw
puzzles of multiple hand shredded content-less pages has been proposed
in this paper. This framework makes use of the shape-based informa-
tion alone to solve the puzzle. All pairs of fragments are matched using
the normalized shape-based features. Then, incorrect matches between
the fragments are pruned using three scores that measure the goodness
of the alignment. Finally, a graph-based technique is used to densely
arrange the fragments for the global reassembly of the page(s). Experi-
mental evaluation of our proposed framework on an annotated dataset
of shredded documents shows the efficiency in the reconstruction of mul-
tiple content-less pages from arbitrarily torn fragments and performance
metrics have been proposed to numerically evaluate the reassembly.

Keywords: Content-less page reassembly · Partial contour matching ·
Shape features · Agglomerative Clustering · Multiple page reassembly

1 Introduction

Environmental conditions, like fire and weathering, and human activities cause
damages to the paper documents. These may result in the shredding of the paper
documents. In fields like forensics, gaming, and archaeology, deciphering the
content in shredded paper documents is a task of great importance. The process
becomes even more complex when the shredded fragments have no content in it
and the number of documents from which the fragments are obtained is unknown.
Typically, features of fragments based on shape, color, texture or combinations of
these, are used in reassembly. We solve the problem of reassembly using the shape
(contour) information alone as the apictorial puzzles have no content in them. In
this paper, we propose an approach to automatically reassemble hand shredded
fragments from multiple content-less pages and we also propose performance
metrics to measure the quality of the reassembly.
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Fig. 1. Example page from dataset [11]. (a) Eight hand shredded paper fragments with
content. (b) Reassembled page with content (ground-truth). (c) Binary masks (content-
less) of the paper fragments, used as input for our problem. (d) Page reassembled using
the binary masks in (c), by our proposed method. (e) Result generated by the method
proposed in [6], when the features are extracted from the smoothed contours of the
fragments in (c).

In our work, we use the bdw082010 dataset [11], which has 48 double sided
sheets, shredded by hand into 8 fragments each. Since, these sheets have infor-
mation on both front and back sides, the dataset contains 96 pages. The frag-
ments in this dataset have almost arbitrary shapes. For reassembly, only the
binary segmentation mask of each of the fragments is used. Figure 1(a–b) shows
eight fragments (with contents) from a page and the original document itself.
Figure 1(c) shows the binary masks of the fragments. Our work reassembles the
eight fragments in Fig. 1(c) into Fig. 1(d). Figure 1(e) shows the failure of method
proposed in [6], one of the state of art methods to solve apictorial jigsaw puzzle.

The main contributions of our work are as follows:

1. We propose performance metrics to evaluate the reassembly numerically.
2. We propose an efficient framework to reassemble multiple content-less pages

using graph-based clustering algorithm.
3. Our approach is unsupervised, that is, it does not require any prior informa-

tion about the final reassembled shape and the number of pages to which the
input fragments belongs to.

The rest of the paper is organized as follows: Sect. 2 discusses the related work.
Section 3 gives a detailed overview of the framework proposed for reassembly of
hand shredded content-less pages. Section 4 describes the experimental results.
Section 5 concludes the work.

2 Related Works

The problem of reassembly of fragmented sheets is solved by considering shape-
related features in [4–8,10,16,19], color/texture-related features in [14,17] and
combination of shape-related & color-related features in [9,11,18]. In some works,
as in [16], the contours are divided into contour segments, delimited by the
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corners, which are matched. Generally, distance metrics are used to measure the
similarity of the features of the boundary points. In [11], Richter et al. proposed
a supervised approach using an SVM classifier, to find points in the boundary
with similar features. Most of the recent methods rely on texture features in the
fragments to align globally and locally.

Global reassembly algorithms use a greedy approach to iteratively merge
fragments. In [2], methods for global reassembly includes global relaxation to
reduce the error in the final reconstruction. In [18], a graph-based algorithm
that performs better groupwise matching and a variational graph optimization
to minimize the error in final reconstruction are proposed. In [19], the candidate
disambiguation problem has been formulated to define the compatibility between
the neighboring matches and the global consistency is defined as the global
criterion. In [9], Liu et al. proposed a spectral clustering based approach to
reassemble multiple photos simultaneously.

The algorithms developed in [4–6,8,10] solve apictorial jigsaw puzzles. In [5],
the “indents” and “outdents” are matched using ellipses fitted into them. In
[10], the curve fitting is done using polar coordinate systems centered around
the local extrema of the curvature. In [8], dynamic programming methods are
used to match the curvature and arc length invariants. Once the matches are
known, the robust relative transformations between the fragments are estimated
using variants of ICP [13] or variants of MLESAC [12]. Incorrect matches are
eliminated by locally verifying the transformation between fragments as in [12]
or by checking the global compatibility between matches as in [18].

Recent work in [6], efficiently solves apictorial jigsaw puzzles. Here, the con-
tours are decomposed into smaller arcs by bivertex decomposition and the arcs
are then matched to fit the fragments. Also, an efficient algorithm to minimize
the local error in alignment of fragments is proposed. However, as shown in
1(e), the method does not reassemble the hand shredded pages, as this method
does not consider the overlap between fragments and the global placement of
fragments during the reassembly. Our paper bridges the gap by reassembling
shredded content-less pages.

3 Reassembly Framework

The main aim of the paper is to reassemble multiple hand shredded content-less
pages using shape information alone. The iterative framework, shown in Fig. 2,
is used in the reassembly process. The stages are discussed below:

3.1 Feature Extraction

The contours of the input fragments are approximated using the Douglas-Peucker
algorithm [3], with parameter σ, to reduce the processing complexity. Given
N input fragments from the shredded pages, ̂U = {U1, U2, . . . , UN} and ̂V =
{V 1, V 2, . . . , V N} are the sets containing the actual contours and approximated
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Fig. 2. The proposed iterative framework with various processing stages, for hand
shredded content-less page reassembly.

contours, respectively. Each V i = {vi
1, vi

2, . . . , vini
} ⊆ U i describes the ith

fragment, where, ni is the number of points in the approximated ith contour.
The following shape-based features are extracted from the vertices of the

approximated contours:

– Log of Absolute value of Signed Curvature (κ) - assume, fragments’ boundaries
are Jordan curves of class C2.

– Log of Mean of Edge Lengths (μ), from current vertex to the two adjacent
vertices.

– Angle between two vectors (θ), one joining previous vertex & current vertex
and other joining current vertex & next vertex.

The skewness measures of the distributions of the above features are close
to 0, resulting in a equally weighted 3-dimensional feature vector at a ver-
tex, f = [κ, μ, θ]. Min-Max Normalization is used to normalize features. The
matrices containing the normalized feature vectors of the ith fragment are
FV i

c , FV i
a ∈ R

ni×3, obtained by traversing in clockwise and anti-clockwise direc-
tion, respectively.

3.2 Pairwise Matching of Fragments

In this phase, all the possible alignment between two fragments are found out
and the transformation corresponding to the alignments are estimated. Then,
three scores are computed to evaluate the goodness of each of the alignments
numerically. The process is repeated for all the pairs of fragments.

Similar Contour Segments Discovery. Using a modified version of Smith-
Waterman (SW) algorithm [15], similar contour segments between two randomly
chosen fragments, say i and j, are found out. A feature vector in FV i

c is consid-
ered to be similar to another feature vector in FV j

a , if the Euclidean distance
between the feature vectors is less than ζ. Based on this, the common sub-
sequences between FV i

c and FV j
a are found out. If M is the number of common

sub-sequences between FV i
c and FV j

a , then there M possible ways in which
fragments i and j can be aligned. For every m ∈ 1, . . . ,M , let spim ⊆ V i and
spjm ⊆ V j denote the sets containing contour points in fragment i that are simi-
lar to contour points in fragment j. Thus, the set SPi,j = {{spi1, sp

j
1}, {spi2, sp

j
2},

. . . , {spiM , spjM}} contains all the matched contour segments pairs. Matching
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using FV i
a and FV j

c also gives rise to the same set of matches, but the ordering
(traversal direction) of points in the contour segments are reversed.

Estimation of Transformation and Scores. For every matched contour
segments pair in SPi,j , a transformation is estimated. Unlike the prior works
[12,13], we find a pair of points α, α′ ∈ spim and the corresponding points β, β′ ∈
spjm, such that |Len(α, α′) − Len(β, β′)| ≤ δ, where Len(α, α′) is the arc length
between α and α′, and δ is a parameter. A translation vector, λ, is computed
from the offset between α and β, as λ = α − β. The rotation angle, φ, is the
angle between vectors

−−→
αα′ and

−→
ββ′. The Euclidean transformation, Ai,j

m ∈ SE(2),
applied to fragment j to align it with fragment i, is thus represented using its
parameters as Ai,j

m = (φ,λ) ∈ S1×R
2 and the set containing the transformations

between i and j is Ai,j = {Ai,j
1 , Ai,j

2 , . . . , Ai,j
M }. For each Ai,j

m ∈ Ai,j , we calculate
three scores, which are commonly used as topological features for 2-D shapes:

1. Connectivity between fragments is the ratio of the length of the common
sub-sequence between the fragments to the minimum of the two perimeters.

CNSi,j
m =

Len(spi
m)

min(Perimeter(V i), Perimeter(V j))
,

{
i, j ∈ 1, . . . , N, i �= j,

m = 1, . . . , M.
(1)

2. Relative Fitness value is the ratio of the sum of the areas of overlap and gap
between fragments to the mean of areas of the two fragments.

FTSi,j
m = 2

|OAi,j | + |GAi,j |
Area(V i) + Area(V j)

,

{

i, j ∈ 1, . . . , N, i �= j,

m = 1, . . . ,M.
,

where, OAi,j = Area(V i ∩ AV j),

GAi,j = Area(V i,j
m ) − Area(V i ∪ AV j),

V i,j
m = Boundary(V i ∪ AV j), where AV j = Ai,j

m 
 V j .

(2)

Operator ‘
’ denotes the transformation for all points in a fragment.
3. Compactness of the merged Fragment is the ratio of the square of the

perimeter of the merged fragment to the area of the merged fragment.

CMSi,j
m =

[Perimeter(V i,j
m )]2

Area(V i,j
m )

,

{

i, j ∈ 1, . . . , N, i �= j,

m = 1, . . . , M.
. (3)

The longer the common sub-sequence between the fragments, the better is
the alignment. Thus, the Connectivity score should have larger values. The lesser
the area of overlap and gap between the fragments, the better is the alignment.
Thus, the Fitness score should have smaller values. The denser the fragments
are arranged, the better is the alignment. Thus, the Compactness score should
also have smaller values.
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3.3 Elimination of Incorrect Matches and Graph Generation

This phase eliminates the incorrect matches between two fragments based on the
associated scores and finds the best possible alignment between two fragments.
This is a four step process. First, we eliminate the matches that have Connectivity
scores less than th

CON
and Fitness scores greater than th

FIT
, and the remaining

transformations form a set of ˜A
i,j ⊆ Ai,j , ∀i, j ∈ 1, . . . , N and i �= j, such that

the cardinality of the set is
∣

∣

∣

˜A
i,j

∣

∣

∣ = M ′ ≤ M .
Then, the Locking algorithm proposed in [6] is used to reduce the errors in the

transformations. The parameters values of K1, . . . ,K4, ε, ν, ρ and jmax used are
same as that given in [6]. Let, ˜LA

i,j
= Locking(˜A

i,j
),

∣

∣

∣

˜LA
i,j

∣

∣

∣ = M ′, be the set of
error-corrected transformations. Application of this algorithm leads to increase
in the Connectivity score and decrease in the Fitness score (recomputed).

Then, based on the Connectivity score, we again eliminate transformations
and form a set ˜BA

i,j
= {˜BA

i,j

1 , . . . , ˜BA
i,j

M ′′} ⊆ ˜LA
i,j

and
∣

∣

∣

˜BA
i,j

∣

∣

∣ = M ′′ ≤ M ′.

Finally, Single Best Transformation that align j with i, SBAi,j , is estimated
based on the Compactness (Cms) score of the transformations in ˜BA

i,j
as:

SBAi,j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

arg min
˜BA

i,j
k

k=1,2,...,M′′

Cms(˜BA
i,j

k ), if
∣

∣

∣

˜BA
i,j

∣

∣

∣ �= 0,

null, Otherwise

,
∀i, j ∈ 1, . . . , N,

i �= j.
(4)

From Eq. (4), the single best transformation to align i with j is:

SBAj,i =

{

(SBAi,j)−1, if SBAi,j �= null

null, Otherwise
,

∀i, j ∈ 1, . . . , N,

i �= j.
(5)

The above two transformations are appended to the set SBA, containing
all the Single Best Transformations, SBA = SBA ∪ {SBAi,j , SBAj,i}. If
SBAi,j �= null and SBAj,i �= null, we then add an edge, eij , between nodes
i and j in the undirected graph, G(V,E), formed with input fragments as its
nodes. Weight of the edge eij is:

w(eij) = Cms(SBAi,j), i, j ∈ 1, . . . , N, i �= j. (6)

Figure 3(a)–(e) shows an example of the process of elimination of incorrect
pairwise matches of fragments. The final match in Fig. 3(e) is the best of all
the matches identified by the Pairwise Fragment Matching phase in Fig. 3(b).
Locking reduces the error in the alignment. The above steps are applied to all
the possible pairings.

To increase the robustness during multiple pages reassembly, top 70 to 100
percent of the best matches are alone considered to be the input for the global
reassembly phase.
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Fig. 3. Elimination of incorrect matches between fragments 1 and 2, for the example
shown in Fig. 1(c). The fragment indices are given in rectangular boxes. (a) Pair of input
fragment contours 1 and 2. (b) All possible pairwise matches between the fragments.
(c) Pruned matches after elimination, based on transformation scores (Eqs. (1)–(3)).
(d) Matches retained after locking the fragments and again eliminating matches based
on transformation scores. (e) Best alignment between the pair.

3.4 Global Reassembly

In this phase, transformations are applied to approximately align the fragments.
Unlike other methods that start from a seed fragment and then greedily aligns
other fragments, the method proposed in this paper follows a Modified Agglom-
erative Clustering Algorithm to align the fragments together. Initially, consider
each fragment as a cluster. Then, detect clusters corresponding to the best align-
ment, based on the edge weights of the graph G. Here, lesser the edge weight
better is the alignment. Merge the pair of clusters, if the alignment of fragments
in the participating clusters do not lead to overlap of fragments in the reassem-
bled page. Choose the next best alignment and repeat the steps until there are
no more clusters that can be merged without overlapping.

When fragments are clustered together, it implies that fragments can be
assembled without any overlap, by applying the appropriate transformations.
The proposed method for global reassembly is similar to an algorithm proposed
in [11]. However, in the proposed method, the weight matrix need not be updated
after every iteration. This reduces the computational overhead significantly.

The steps of the proposed method for global reassembly are given in
Algorithm 1. We start by considering N singleton clusters as an initial set of
clusters C(0) = {c1 , . . . , cN }. Each cluster contains a fragment index, ci = {i},
i ∈ 1, . . . , N . The transformations to be applied to the fragments correspond-
ing to the elements of cluster c

k
is stored in the set τ

k
∈ SE(2). Initialize

τ
k

= {I},∀k = 1, . . . , N , where I = (0, 0, 0) ∈ S1 × R
2 represents the iden-

tity transformation. Define a set containing all the initial transformations of the
clusters as Γ (0) = {τ1 , . . . , τN }. The sets C(0) and Γ (0), along with set of frag-
ments ( ̂U), graph (G) and set of single best transformations (SBA), are input
to Algorithm 1.
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Algorithm 1. Algorithm for global reassembly: initial set of fragments are
given as input. Output contains clusters of fragments, that are aligned
together without overlap, and their transformations.

Input: Û = {U1, . . . , UN}: Set of fragments, G(V,E): Graph,
C(0): Initial set of clusters, Γ (0): Initial set of cluster transformations,
SBA: Set of Single Best Transformations

Output: C(size(E)): Final set of clusters,
Γ (size(E)): Final set of cluster transformations

1 Sort E in increasing order of weights
2 Set iter ← 1
3 while iter ≤ size(E) do
4 Assign a and b to the nodes connected by edge E(iter)
5 Find the clusters cA and cB to which a and b belong to, respectively
6 Set flag ← 0
7 if cA and cB are not same then

8 (ĉA , τ̂A) ← NewCluster(a, b, cA , cB , τA , τB , SBAa,b) /* See Algorithm 2 */

9 if fragments in ĉA do not overlap then

10 C(t) = {C(t−1) \ {cA , cB}} ∪ ĉA ; Γ (t) = {Γ (t−1) \ {τA , τB}} ∪ τ̂A
11 Set flag ← 1
12 end

13 end
14 if flag = 0 then

15 C(t) = C(t−1); Γ (t) = Γ (t−1)

16 end
17 Increment iter by 1

18 end

19 return
(
C(size(E)), Γ (size(E)))

)

Algorithm 2 shows the steps of the function used to combine clusters and
to compute the transformations for elements in the new cluster. Figure 4 shows
examples of new valid clusters formed at the end of Algorithm 1. Figure 4(h)
shows the page reassembled by the proposed method.

Fig. 4. (a)–(g) New clusters formed at the end of every iteration in the global reassem-
bly phase, for the example shown in Fig. 1(c). Here, iter indicates the iteration number
in Algorithm 1. (h) The final reassembly result with content.
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Algorithm 2. Function to combine clusters: two clusters (c
A
, c

B
) along

with their transformations (τ
A
, τ

B
) are the input. Output is a new cluster

(ĉ
A
) formed by combining the input clusters and transformations (τ̂

A
) to be

applied to the elements in the new cluster.
1 Function NewCluster(a, b, cA , cB , τA , τB , SBAa,b)

2 New cluster, ĉA = {cA ∪ {b} ∪ {cB \ {b}}}
3 Initialize τ̂A = ∅
4 for each l in cA do
5 τ̂A = τ̂A ∪ {tran(A, l)}

/* tran(A, l) ∈ τA represents the transformation applied to

fragment corresponding to element l in cluster cA */

6 end

7 Append transformation for element b as τ̂A = τ̂A ∪ {tran(A, a) ∗ SBAa,b}
/* Operator ′∗′ denotes multiplication of transformations */

8 temp = (tran(A, a) ∗ SBAa,b) ∗ Inverse(tran(B, b))
9 for each l in {cB \ {b}} do

10 τ̂A = τ̂A ∪ {temp ∗ tran(B, l)}
11 end

12 return
(
ĉA , τ̂A

)

4 Experiments and Results

Experiments are done to evaluate the reassembly accuracy numerically and to
evaluate the contributions of the method in reassembling multiple documents.

The empirical values of the parameters used in all the experiments are follows:

σ : 1.4–3.1, ζ : 0.06–0.10, ε = 0.0001, ν = 3,

K1 = 15, K2 = 4, K3 = 1, K4 = 0.5, δ = 5,

th
CON

: 0.10–0.15, th
FIT

: 0.009–0.03, ρ = 1/3, jmax = 50.

The performance of the proposed algorithm solely depends on the choice of the
above parameters. The reassembly approach discussed reassembles all the 96
distinct sheets available from the dataset [11] in at most 2 iterations.

Figure 5(a) shows that the bivertex decomposition method, proposed in [6]
to find the initial set of possible matches, returns a larger set of hypotheses
than our proposed method. Thus, the running time of the proposed method is
comparatively less. According to [1], the worst-case lower bound on the number
of iterations performed by ICP algorithm in order to converge is Ω(n/d)d+1,
where n is the size of the input data point set and d is the dimensionality of the
input data. In this work d = 2 and thus, if ICP algorithm is used to estimate
the transformation, given n pairs of matched points, the worst-case lower bound
on the number of iterations performed by ICP algorithm in order to converge
is Ω(n3). However, the running time complexity of the method proposed in this
paper, in Pairwise Matching of Fragments phase, to estimate the transformation
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Hoff et.al [6] Ours

Lo
g(

N
um

be
r o

f m
at

ch
es

)

3

4

5

6

7

Number of initial posssible matches discovered

(a)

Relative Compactness Matching Error

Er
ro

r V
al

ue
s

0.01

0.02

0.03

0.04

0.05

0.06

Performance plots of our reassembly method

(b)

Fig. 5. (a) Number of initial possible matches discovered. (b) Performance plots of our
reassembly method showing the distribution of the two error values. Box plots shows
the median value (red line) as well as the 25th and 75th percentiles. The ‘+’ symbols
indicate the outliers (Color figure online).

is O(n2). Hence, the proposed work is much faster than the prior works, in
estimating the transformation.

Performance Evaluation: To evaluate the performance of the reassembly
framework numerically, we use the following two error measures:

1. Relative Compactness Error: It is the ratio of the difference in the Com-
pactness scores of the final reassembled page and the minimum boundary
rectangle, which encompasses the final reassembled page, to the Compact-
ness score of the final reassembled page. Since in our case we know that the
fragments should be reassembled into a rectangle, we are comparing the com-
pactness score of the reassembly output of our method with the compactness
score of the minimum bounding rectangle, and using the relative difference
value as a performance metric.

2. Matching Error: This error measure, proposed in [18], is the ratio of the
average distance between matching segments of the fragments to the diagonal
of the minimum bounding rectangle encompassing the reassembled page.

Figure 5(b) shows the box plots of the two error values obtained by our
method for the 96 distinct pages. It can be seen from the plot that the maximum
value of the Matching Error obtained using our method is around 0.06, which is
at least 40 percent less than the error values of the reassembly approach proposed
in [18]. The least Matching Error value reported in [18] is 0.10.

Multiple Pages Reassembly: In a content-less fragment, generally, it is hard
to find which side (front or back) of the fragment is to be used in the reassembly
process. We evaluate our method by inputting both sides of the fragments simul-
taneously. Figure 6 shows the reconstruction of one such sheet. It is observed that
the method is capable of reconstructing both front and back sides of the sheet
simultaneously.
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Fig. 6. Simultaneous reassembly of front and back of sheet 2, from dataset [11].
(a) Input: 8 fragments, both front and back sides scans. (b) Reassembled pages.

Simultaneous reassembly of fragments from multiple pages is challenging.
When the number of sheets that has been shredded is unknown, the task becomes
even more difficult. Figure 7(b) shows the result of the proposed method, when
the 32 input fragments, shown in Fig. 7(a), are from four different pages. The
method took 2 iterations to give output shown in Fig. 7(b). Figure 8(b) shows
the result of one failure case of the proposed method, for the input in Fig. 8(a).
The failure is due to an error in the matching of fragments.

Fig. 7. Simultaneous reassembly of four pages, from dataset [11]. (a) 32 input frag-
ments. (b) Four correctly reassembled pages.

Fig. 8. Simultaneous reassembly of two pages, from dataset [11]. (a) 16 input fragments.
(b) Two reassembled pages, with one failure case.
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5 Conclusion

A novel iterative framework for shape features based automatic reassembly of
multiple hand shredded content-less pages has been proposed. Experiments are
done to show the effectiveness of the proposed approach. The reassembly has
been evaluated numerically using the performance metrics and experiments show
that our method has less error than the existing approaches.

In future work, the difficulties introduced due to material loss will be handled.
Exploration for extending the framework to reassemble 3-D broken objects would
be an appropriate scope of future work.

References

1. Arthur, D., Vassilvitskii, S.: Worst-case and Smoothed Analysis of the ICP algo-
rithm, with an application to the K-means method. In: 47th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 153–164 (2006)
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