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Abstract. Vision sensors are used to estimate the pose (position and orienta-
tion) of mating components in a vision assisted robotic peg-in-hole assembly
which is a crucial step in aligning the mating hole-component with the corre-
sponding moving peg-component. The accuracy of this estimation decides the
performance of peg-in-hole robotic assembly with an appropriate mapping
between the image and task environment using a fixed overhead camera or
camera on robot arm. The wheel and hub assembly in automobile has multiple
holes and pegs in their mating parts which lead to more complex pose estimation
procedure. The success rate of the assembly process (without jamming) is
affected by an inaccurate pose estimation which leads to lateral and/or axial
misalignment between the mating components during its insertion phase. On
this consideration, this work proposes a pose estimation algorithm for a multiple
peg-in-hole assembly with the use of genetic algorithm based two-stage camera
calibration procedure. The proposed algorithm has also been tested for its per-
formance in estimating the pose of the multiple pegs in wheel-hub of a car. The
result reveals that the proposed method estimates the pose of the pegs accurately
with minimum re-projection error.
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1 Introduction

Vision sensors are the predominantly used sensors in a robotic assembly system to
align, manipulate and assemble the mating component in the robot end-effector with
the other mating part of the assembly. The feedback of the vision sensor is used to
sense the dynamic mating component in working environment and to improve the
alignment of mating components. An assembly has two components: (a) protruded part
on the component often termed as peg and (b) hollow part on the mating component
named as hole. Often the assembly task is horizontal or vertical insertion of peg
component into the hole component to establish a permanent contact. The wheel and
wheel-hub assembly of an automobile has multiple pegs and multiple-holes. In these
assemblies, the wheel-hub is fixed with the automobile and the hole component (wheel)
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is inserted over the multiple pegs. The success rate of the assembly without jamming or
wedging is affected by the presence of lateral or angular misalignment of the com-
ponents. The precision and speed of alignment is influenced by the estimation of
position and orientation (pose) of the multiple-peg component [4].

The process of controlling the robotic manipulators using the feedback of the vision
sensors is named as Visual servoing. Main shortcomings of a visual servoing system
are poor accuracy as well as stability, due to even small pose estimation error [2], and
retaining the considered object always in the field of view [3]. Pose of the object cannot
be accurately estimated due to non-trackability of the object, roughly calibrated camera
and error in 3D model of the target [9].

An object tracking or recognition system depends on the efficiency of the feature
extraction system for faster and accurate position estimation in pixel coordinates. Scale
Invariant Feature Transform (SIFT) [6, 13] and Speed Up Robust Feature (SURF) [1]
are commonly adopted to extract the target features from the video frames. Based on
the geometrical features of the object, few researchers [10, 18] have used morpho-
logical image processing operations like boundary extraction and gradient operations
like edge detection, circle detection, ellipse detection algorithms for feature tracking.
The object of interest in this work is a wheel-hub which has four pegs (cylindrical rods)
and screws on its surface. These features make the feature tracking based on gradient
operations adaptable in this work.

Camera calibration is the process of determining the relationship between real
world (metric) information and the 2D image information [19]. The properties of the
camera used (intrinsic parameters) for acquisition and parameter set describing the
geometric relation between the Cartesian world space coordinate system and the image
coordinate system (extrinsic parameters) are determined using this calibration tech-
niques. The presence of the lens distortion in the camera displaces the coordinates
non-linearly. The distortion in the lenses is due to the errors in assembly of lens and the
geometric features of the lens [15]. Various distortions like radial, tangential and thin
prism distortion are possible in images [16]. Radial distortion is common in machine
vision cameras which causes pincushion and barrel effect on the images [15]. Direct
linear Transformation (DLT) of camera parameters lack the capability to incorporate
non-linear distortion in the camera model. Therefore, direct non-linear transformation
or two-stage camera calibration [5, 14, 17] is advantageous to include distortion and
estimate the camera parameters. The performance of the direct non-linear transfor-
mation requires precise initial guess which is crucial. This makes the two-stage camera
calibration technique suitable for the proposed work. Hence, a genetic algorithm based
two stage camera calibration is adopted in this work.

On the consideration of above said issues, this work is aimed at developing an
accurate pose estimation algorithm for determining the pose of the multiple pegs with
minimum re-projection errors. This paper is organized as follows: Sect. 2 presents the
vision assisted multiple peg-in-hole robot assembly environment, Sect. 3 explains the
proposed pose estimation algorithm, Sect. 4 depicts the experimentation of the pro-
posed calibration and pose estimation algorithm, Sect. 5 presents the results and dis-
cussion of the performance of the proposed work and Sect. 6 provides the conclusion
of this work.
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2 Vision Assisted Multiple Peg-in-Hole Robot Assembly
Environment

Vision sensors are used to perceive the changes in the assembly environment and to
control the manipulator in performing the assembly operation in accordance to the
changes. Figure 1, shows a vision assisted robotic assembly environment considered in
this work to perform a multiple peg-in-hole assembly. In the considered environment,
the multiple-peg component is mounted on a shaft which rotates about its center axis.
The camera (vision sensor) is mounted at a fixed position in the robotic assembly
environment such that the multiple-peg components lie in the field of view of the
camera at all instances. The camera and the peg-component are mounted such that the
optical axis of the camera and the z-axis of the component lies in the same plane.
Hence, the distance between the peg component and the camera remains same because
only rotation about the z-axis is allowed. Since the distance remains same, monocular
camera is sufficient and adopted in this work to estimate the coordinates of the peg
centers. The robotic manipulator has the mating multiple-hole component in its
end-effector. In order to assemble the mating components, the co-ordinate frames of the
hole and peg components have to be aligned and then the insertion task has to be
executed. Pose of the multiple-peg component €T} is required to align the manipulator
with axes of the mating components. Ty represents the transformation matrix of end
effector with respect to camera. The current pose of the end-effector with respect to the
robot base is given as:

BTy = RTCT T (1)

Where,

RTc is the pose of the camera with respect to robot base (known).
CTp denotes the pose of the multiple-peg part in the table with respect to the camera
in the current position.

Fig. 1. Vision assisted multiple peg-in-hole robotic assembly environment
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PTy represents the pose of the end-effector with respect to the hole part in the
current frame and is given by (2)

PTp = [CTp) 7' CT, (2)

In visual servoing, Tp is computed through pose estimation algorithm and com-
pared with the target €T} at every instant to minimize the error and to generate the #Tx
for robot manipulation. Precise camera calibration procedure is required to compute the
CTp accurately in the Cartesian space which enables the accurate alignment of mating
components.

3 Proposed Pose Estimation Algorithm

The proposed pose estimation algorithm is divided into two modules: position esti-
mation module and orientation estimation module. In the position estimation module,
the multiple-pegs are tracked and the pixel coordinates of the wheel-hub and the peg
centers are estimated using the feedback from the monocular camera. The pixel
coordinates are fed to genetic algorithm based camera calibration to estimate the
camera parameters and the position of centers in metric coordinates. Using the position
of the centers in metric, the orientation estimation module estimates the pose of the
wheel-hub with respect to the camera. Figure 2, shows the overview of the proposed
pose estimation algorithm.

Localization and segmentation of peg features | Position Estimation

; 1 ;
i | Circle Detection and position estimation of peg .

centers in pixel coordinates ;
; ¥ :
Position estimation of the wheel hub from peg
! centers in metric coordinates using camera i

: calibration :
T !
................................... - mimimimimimimimimimimimieimim iy Orientation
Orientation estimation of the wheel hub from the Estimation

metric coordinates of peg center and wheel hub
: center ;

Fig. 2. Overview of the proposed pose estimation algorithm

3.1 Position Estimation Module

The wheel-hub used in this work has four pegs. Determining the centers of each peg
gives the position of the wheel-hub in pixels at tracking stage followed by metric
position in calibration stage.
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Multiple-pegs Tracking. In this module, each peg on the wheel-hub is tracked using
the monocular camera frames. Since the top surface of the pegs and the component
base area of the wheel-hub are at different planes, there is a significant change in their
intensity values. This intensity difference aids segmenting the pegs from the back-
ground by estimating a global threshold value using the Otsu’s thresholding method.
The segmentation process replaces all pixels in the input image with intensity greater
than threshold value by 1 (white) and replaces all other pixels with O (black). Pegs are
having higher intensity than the component base of the wheel-hub and hence they are
shown as ‘white’ in Fig. 3. Further, the noise present in the binary image after the
segmentation process is removed by area based filtering. An 8-connectivity neigh-
borhood is used to create the connected components in the binary image. The area
properties of the connected components are calculated. The areas of interest are the
pegs and the wheel-hub center hole and the screw portion area. The area of the noise
components present in the image are comparatively lesser than the area of screw. Hence
the connected components with the area property less than that of the screw area are
removed on this filtering. In case of noise components with higher area, they are
removed in the circle detection stage as they are non-circular objects.

Tracked with centers in mm

Original

87.0284 147862
200 4 152.8326  34.82038
109.7019

400 R
8
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Fig. 3. Tracked peg and wheel-hub center

The circles in the segmented image are identified by a two stage Circular Hough
Transform (CHT) method [11]. In this CHT, a circle is drawn for each edge point with
a radius ‘r’. This method adopts an (3D) accumulator array computation technique in
which the first two dimensions represent the coordinates of the circle and the last
specify the radii. The values in the accumulator (array) are increased every time
whenever a circle is drawn with the desired radii over every edge point. The accu-
mulator, which keeps count of the circles passing through coordinates of each edge
point, and makes a vote to find the highest count. The coordinates of the center of the
circles in the images are the coordinates with the highest count. The details pertaining
on this method related to matlab function is cited in reference [11]. There are four pegs
in the wheel-hub and two screws present between the pegs labelled 1&4 and pegs 2&3.
Taking the first screw as reference, the first peg could be labeled as 1 and other pegs are
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labelled sequentially in anticlockwise direction. Figure 3, shows the pegs detected in a
frame using the multiple-peg tracking module.

Genetic Algorithm Based Camera Calibration. The estimated coordinates in pixel
values are to be converted to metric coordinates to calculate the pose of the multiple-peg
object in Cartesian space. The precise calculation of the 3D coordinates and pose of the
object depends on the accuracy of the calibration procedure. In this regard, a genetic
algorithm based two-stage camera calibration procedure is adapted in this work. In the
first stage, a linear solution is computed by considering distortion-free camera model
and in the second stage, genetic algorithm is used to compute the optimal camera
parameters including distortion by using the closed form solution as an initial guess [12].

A pin-hole model with lens distortion as shown in Fig. 4, is adopted in this work.
Considering (X,,, Y,,,Z,) as the 3D world coordinate system, and (X, Y., Z.) as camera
coordinate system, (X;, Y;) represents the image coordinate system. Further, O; and O,
represent the center of the image coordinate system and the optical center of the camera
coordinate system, respectively. O; and O, are collinear and aligned with the Z. axis of
the camera coordinate system. (x;,y;) be the image coordinates measured through any
point extraction algorithm. Let P be the test point (x,,, Y., 2,) as the world coordinate
and (x,,y,) be the estimated undistorted image coordinate (x.,y.,z.) point. Focal
length i.e. the distance between the image plane and the camera plane is denoted as f.

° X%
Pa(X4.Ya)
o X
Zw Ye
Pu(Xu.Yu)
Ow yw Y, P(Xc.Ye.Zc)

v
Z:

Xw
Fig. 4. Complete camera model with radial distortion

On considering the radial distortion, the image coordinate (x,,y,) of the distortion-
free model is subtracted with the distortion factor D, to estimate the distorted image
coordinate (xy4,ys). The distortion is modelled as a second order polynomial [15].

Xg+ Dy = xy
(3)

Ya +Dy = Yu

D, = x4(ky r2)
Dy = ya(kr?)

r= \/xf,-‘-yzl

k; is the distortion coefficient.
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The distorted image coordinates (x;,y;) are transformed to computer image
coordinates (xf, yf) by multiplying with the uncertainty scaling factor and by adding
the center of the frame. In the first stage, a linear approximation method as described by
Tsai [7, 15] is used to determine the camera parameters by considering a distortion-free
camera model which forms the bounds for the second nonlinear genetic algorithm
stage.

Genetic Algorithm is adopted to identify the optimal intrinsic and extrinsic
parameters of the camera incorporating the radial distortion in the camera model.
Linear approximation stage estimates the rotation matrix, translation vector in x and y
direction. Therefore, the proposed GA has focal length and translation about z-axis as
the genes in the chromosome which enables the proposed method to have faster
convergence to optimal results. P represents the initial population of the 1st genera-
tion, f and T, represent the genes (parameters) present in a chromosome, j represents
the chromosomes in the population of a generation, k represents the generations and n
& m are the number of chromosomes in the population and number of generations,
respectively. The initial population for the genetic algorithm is

()= fiinear; ¥V 1 <j<nandk = 1

(Tj)k: Zlinear;v 1 S]SI’landk =1

z

(qj)k: {(fj)w (sz>k}v I1<j<nandk =1
P = (a), (4)

where fiinearrs Tiinearr are the focal length and translation about z-axis estimated in first
stage. The bounds on the parameters f and T, are taken as +25% of the linearly
estimated values (stage 1 results).

(q{ bound)k:ﬁinear + (0'25*ﬁinear)

(Q£ bgund)k: zlinear + (0~25*Tzlinear)

(q'rjnax)k: {fmam szax} V1 <j< nand1 <k<m
(@hin) = Unins Tanin} ¥ 1 <j<nand 1 <k <m

(5)

As lens distortion is considered in this camera model, the distortion coefficient k;
for each chromosome is calculated as:

. Ca(f!
(k)= e Sy <i<nand1 <k<m (6)

Ca(erm),) @

2
C1 = ayyir
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Cy = Xy +1r8)y

€3 = 14Xy + 15y, + T,

Cy = d;yiandr =\/x+)]

The variation between the actual image coordinates and the calculated coordinates
using the estimated camera parameters is termed as re-projection error [8] which is the
common performance measure of any camera calibration technique.

E\ps Z \/ Xf — xz yf - yl) (7)

Hence the objective of this proposed genetic algorithm based calibration technique
is to determine the optimal values of f and T, for minimum re-projection error (E,,;;).

()= min(Ep) (8)

SUbjeCt to fmin Sf* Sfmax and szin S TZ* S szax

GA Operators. The convergence of a genetic algorithm depends on the selection of
the mutation and cross over operators employed in the algorithm. The genes are
encoded as real numbers to have understanding in the computation. The best chro-
mosomes among the population are selected for reproduction using the proportionate
reproduction method. Crossover operation creates new children in the population. The
off-springs of the crossover operation have better fitness than the parent chromosomes.
Even though if bad off-springs are created in the crossover phase, they will be elimi-
nated by the subsequent reproduction phase in the next generation and thus off springs
with better fitness than their parents are retained in the subsequent generation. A blend
over crossover operation is adopted in this work, since they prevent the algorithm from
getting trapped in the local optimal solution.

Two parents from the initial population (ql’ ) . and (qf“)k are selected and the

off-springs (01{ ) . and (02{ ) , are generated by
(01{),{: (min((qu)k, (q]’:+l)k)) B a((q{)k—(qf+l)k>
(021),= (max (@) ("), ) +o((ad),~ ("))

(@)1= ((02)=(017),) % rand + (o1)), )

where i =1,2,j=1,2,...nand k = 1,2,....m and the value of « is taken as 0.75.
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Mutation operation increases the diversity in the population which improves the
convergence to global optimal solution. A power mutation operator is adopted in this
work using the following expressions.

(qg)k—s<(q{)k— (q{min)k) ifu<r

. . . (1())
(q{)k_s((qz!max)k_(q{)k> ifu>r

(qu)k-o—l:

Where u = ((qij)k_(ql!min)k)/(q{max>k, ((qumin)k) and r is a uniformly distributed
random value between 0 and 1.
s :p*sffl7 0<s.<1

Where p is the index of distribution and s, is a uniform distributed random number
between O and 1.

3.2 Orientation Estimation

After obtaining the image coordinates of the centers of pegs from tracking stage and the
camera parameters from calibration stage, the metric coordinates of each pegs are
determined. The wheel-hub is allowed to rotate about z-axis and/or to translate along
x-axis only by constraining the translation along z-axis and rotation about X&Y axes.
The linear displacement along x-axis (position of the peg) is estimated using the metric
information of the peg centers. The orientation of the wheel-hub about z-axis is esti-
mated by calculating the angle between the linel connecting the pegl center and
wheel-hub center, and the horizontal line (line2) passing through wheel hub center as
shown in Fig. 5 and (11).

_ mp; — nip
tan 0 = {71 T m omz)] (11)

m,,m, are the slopes of the linel and line2 respectively.

Orientation of Peg 1 w.rt wheel hub Change in Orientation of Peg | w.r.t
center wheel hub center

Peg | Pegl

Wheel hub
center

Fig. 5. Orientation estimation from the pegl center and wheel-hub center
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4 Experimental Arrangement

This section explains the experiments performed with the wheel-hub to evaluate the
performance of the proposed pose estimation algorithm in terms of its accuracy. The
experimental environment has the target object wheel-hub placed at a distance of
0.27 m from a fixed camera. DNV 3001 CCD camera with f50 lens is used to capture
the wheel-hub images in this experiment at 10 fps. As discussed, the accuracy of the
pose estimation algorithm is influenced by the accuracy of the camera calibration
procedure and the feature tracking procedure. To ensure the performance of the pro-
posed camera calibration procedure and to estimate the camera parameters, the algo-
rithm is tested with the checker board images placed at the same location of the
wheel-hub. The chess board pattern of 6 x 8 corner points with an interval of 29 mm
is captured from five various orientations at an image resolution of 1600 x 1200 with
the DNV camera. The camera parameters estimated by the proposed work is listed in
Table 1. The image coordinates of the peg centers and the metric coordinates after the
camera calibration are listed in Table 2. The accuracy of the pose estimated could be
ensured only when the pose is fed to the manipulator to align the end-effector with
respect to the object. In order to ensure the performance of the proposed pose esti-
mation algorithm, the accuracy of tracking module is tested by comparing the metric
values of radii of pegs at each instant with their corresponding true values.

Table 1. Camera parameters estimated by proposed work

Stages Focal Translation | Rotation matrix [R] Distortion
length T, coefficient k;
f(mm) (pixelfz)
Linear 54.74 —945.2 0.999 0.004  0.034 0
(stagel) 663.51 —-0.011 0.979 0.203
308.52 —0.032 —-0.203 0.978
Genetic 47.95 —945.2 0.999 0.004  0.034 1.097 E-5
algorithm 663.51 —0.011 0979 0.203
(stage2) 267.38 —0.032 —-0.203 0.978

Table 2. Image and metric coordinates of pegs at frame 1

Peg no. | Image coordinates (Pixels) | Metric coordinates (mm)
1 (140.064, 127.673) (28.993, 26.428)

2 (470.513, 93.238) (97.396, 19.300)

3 (506.212, 421.383) (104.785, 87.226)

4 (175.285, 456.696) (36.284, 94.536)
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5 Results and Discussion

Each peg’s center in pixels is estimated using the multiple-peg tracking and the camera
parameters from the genetic algorithm based camera calibration technique. The metric
coordinates of the centers are obtained from the estimated camera parameters. The
results of our proposed calibration algorithm are compared with Zhang’s (2001) camera
calibration algorithm based matlab camera calibration toolbox. The obtained root mean
square re-projection error of toolbox is 0.37 pixels whereas that of the proposed
algorithm is 0.0310 pixels. The results also show that our proposed algorithm has
better accuracy in estimating the camera parameters than the matlab calibration toolbox
which in turn ensures minimum pose estimation error. It is evident from Fig. 6, that
57% of re-projected points has less than 0.03 pixel distance error which proves the
measurement accuracy of the proposed calibration technique. It is observed from
Fig. 7, that the proposed method is able to estimate a point and re-project a point within
an error range of 0.5 pixels. Table 3 represents the mean and standard deviation of the
error between the true value and the estimated metric value of the radius of pegl for
specific interval of frames. The tracking and calibration stages of the proposed pose
estimation technique are capable to estimate the pose within an error range of less than
1 mm.

Frequency plot of 2D Distance error 2D Measurement error distribution
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Fig. 6. Frequency plot of 2D measurement  Fig. 7. 2D measurement error distribution for
error for checkerboard calibration. checkerboard calibration.

Table 3. Mean and standard deviation of the errors between true and estimated radius of pegl

Frame range | True metric value of peg-1 (mm) | Mean error | Standard deviation

1-10 10.1 0.677 0.689
11-20 10.1 0.206 0.333
21-30 10.1 —0.171 0.259

31-45 10.1 —-0.431 0.463
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6 Conclusion

Vision sensors offer flexibility in perceiving the multiple hole component in a dynamic
environment. Pose of the mating components in an assembly are determined using the
feedback of vision sensor. The successful attainment of assembly action is influenced
by the accuracy of estimated pose of the hole component and alignment between each
peg and the corresponding hole in the wheel-hub. In this regard, a pose estimation
algorithm has been proposed to determine the position and orientation of the
multiple-pegs in the wheel-hub. Each peg in the wheel-hub is tracked for its center
using the circle detection algorithm. With the use of pixel coordinates of tracked
centers the position of the pegs with respect to the camera in metric values are
determined by a two-stage genetic algorithm based camera calibration technique. The
change in orientation is also obtained by calculating the angle of line connecting the
centers of peg and wheel-hub, with the horizontal axis. The proposed pose estimation
algorithm is experimented to validate its performance in terms of accuracy. Experi-
mental results show that the calibration technique used in the proposed pose estimation
algorithm has capability to re-project the peg with an accuracy of 0.0310 pixels.
Besides, the proposed algorithm is suitable for a vision assisted robot assembly system
with the positioning accuracy of 1 mm.
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