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Abstract. Computer vision systems for automated breast cancer diag-
nosis using Fine Needle Aspiration Cytology (FNAC) images are under
development for a while now. Accurate segmentation of the nuclei
in microscopic images is crucial for functioning of these systems, as
most quantify and analyze nuclear features for diagnosis. This paper
presents a nucleus segmentation system (NSS) involving pre-processing,
pre-segmentation and refined segmentation stages. The NSS includes a
novel pixel transformation step to create a high contrast grayscale rep-
resentation of the input color image. The grayscale image gives NSS
the capability- to disregard elements that mimic nuclear morphological
and luminescence characteristics, and to minimize effects of non-specific
staining of cytoplasm by Hematoxylin. Experimental results illustrate
generalizability of the NSS to use multiple refined segmentation tech-
niques and particularly achieve accurate nucleus segmentation using
active contours without edges(F-score > 0.92). The paper also presents
the results of experiments conducted to study the impact of image pre-
processing steps on the NSS performance. The pre-processing steps are
observed to improve accuracy and consistency across tested refined seg-
mentation techniques.

Keywords: Breast FNAC · Nucleus segmentation · Active contour
models

1 Introduction

Automated nuclei detection and segmentation are well-studied problems in dig-
ital pathology and cytology. Where, many methods have been discussed in the
related works, and new methodologies continue to be investigated [8,13,19].
Though detection and segmentation of nuclei in cytology images are considered
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to be simpler than in histology [8], they still are the challenging problems due to
high variability in images of breast FNAC. The variability is present due to the
composition of the aspirated sample, underlying disease condition, quality and
variability of slide preparation, and the imperfection of data acquisition process.
The specific challenges are due to (i) other tissue elements, and nuclear cluster
topology mimicking visual and morphological characteristics of nuclei; (ii) closely
separated, touching or overlapping nuclei; (iii) loss of contrast between nuclei
and their background; (iv) slide preparation artifacts like over/under staining
of the samples, and non-specific staining of the cytoplasm by Hematoxylin (in
commonly used Hematoxylin and Eosin (H&E) staining technique).

This paper presents a multistage process for segmentation of isolated and
closely separated nuclei from high magnification breast fine needle aspiration
cytology (FNAC) images. The method proposes a new technique to create a
grayscale representation of chromatic and contrast staining properties of the
nuclear material that enables accurate segmentation of the nuclei. The grayscale
representation also enables the process to minimize effects of other tissue com-
ponents mimicking nuclear characteristics on the detection and segmentation of
nuclei. Additionally, the grayscale representation efficiently incorporates into seg-
mentation process the ability to handle the challenging situation of non-specific
staining of cytoplasm by Hematoxylin. The segmentation process thus includes
stages of (i) image pre-processing; (ii) pixel transformation to create a grayscale
nuclear differential image (NDI); (iii) pre-segmentation of nuclear regions by
automatic thresholding [14]; (iv) morphological filtering for suppression of the
regions inconsistent with morphological properties of the isolated nuclei [16];
and (v) refined segmentation of the remaining objects by active contours with-
out edges [1].

The remainder of this paper is organized as follows - Sect. 2 presents details
of the process for segmentation of nuclei. Section 3 presents details of the exper-
imental setup used to validate and benchmark performance of the segmenta-
tion system. Results of the experiments are discussed in Sect. 4 and concluding
remarks presented in Sect. 5.

2 Proposed Segmentation Process

A block diagrammatic representation of the proposed multi-stage segmentation
process is depicted in Fig. 1 and detailed description of the functional steps is
provided in the following sub-sections.

2.1 Image Pre-processing

Most of the images acquired in digital microscopy systems include defects present
due to the imperfections and limitations of the system elements such as light
source, optics, and camera electronics. Additionally, external factors like fungal
growth or dust accumulation on the optics also affect the quality of acquired
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Fig. 1. Block diagrammatic representation of the multi-stage isolated nuclei segmenta-
tion process. The image preprocessing block consists of vignetting correction and auto
white balance procedures. The refined segmentation of the pre-segmented nuclei can be
performed using various techniques like Snakes, Level sets, Fast marching technique,
Randoms walker, etc.

images. Thus, before segmentation of nuclei in an image, the image is conditioned
for non-uniform luminance correction [20] and fast auto white balance correction
for color constancy [2,3].

2.2 Creation of the Nuclear Differential Image

This section presents a simple method of NDI creation by combining the visual
characteristics of color saturation and stain quantity information. In the H&E
staining technique, Hematoxylin binds with nucleic acids and gives the nuclear
region its characteristic deep blue-purple color whereas Eosin stains proteins
non-specifically and gives magenta-red color to the cytoplasm [17]. Thus, the
differential image creation process is defined based on the knowledge that pres-
ence of Hematoxylin stain at a point in the smear and high color saturation in
its image imply the presence of nuclear material at the point. In many cell sam-
ples, using only the Hematoxylin stain separated images for segmentation can
not provide desired contrast between the nuclei and their background especially
in the case of non-specific staining of the cytoplasm. To handle this scenario we
define a nonlinear combination of the quantity of Hematoxylin stain, quantity
of Eosin stain, and color saturation information to assign gray level value to the
pixels in NDI as

fD(i, j) = min((fQH(i, j) − εfQE(i, j)), fs(i, j)) (1)

where fQH(i, j)1, fQE(i, j) and fs(i, j) represent the quantity of Hematoxylin
stain, quantity of Eosin stain, and color saturation at location (i, j) and ε is
a factor which is used to define the fraction of measured Eosin stain quantity
that should be subtracted from the measured Hematoxylin stain quantity to
compensate for the nonspecific staining of the cytoplasm by Hematoxylin. The
values of stain quantities fQH(·), fQE(·) and color saturation fs(·) are defined in
the range of [0, 255].

For a microscopic image f of the stained cytological sample, acquired under
known illumination (in this case a white balanced image), presence of the stains

1 In this paper symbols f and f are used to represent single channel and multi-channel
images.
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Fig. 2. Comparison of NDIs obtained using different values of ε with input and its
grayscale version are presented here. The first example illustrates advantage of com-
bining Hematoxylin, Eosin and color saturation information over using just the Hema-
toxylin and color saturation information when the non-specific staining of cytoplasm by
Hematoxylin is suspected. The second example illustrates the condition when just the
Hematoxylin and color saturation information are sufficient to obtain a high contrast
NDI. (Color figure online)

can be quantified by stain separation method described in [17], and presented in
equation form as

fQ(i, j) = D × fOD(i, j) (2)

where fQ(i, j) is a column vector representing quantity of the constituent stains,
D is the deconvolution matrix for stain separation, and fOD(i, j) is a column
matrix depicting optical densities of red, green and blue wavelengths at loca-
tion (i, j).

The NDI thus created represents nuclei as high-intensity regions with a dark
background, such that contrast across the nuclear boundary is larger than input
color image or its grayscale version. This method effectively extends the ability
of stain separation methods of handling the presence of tissue elements like red
blood cells and overlapping cellular components to handle non-specific staining
of the cytoplasm. In the system, the value of ε can be set heuristically for a tissue
sample based on the expectation of non-specific staining. Illustrative examples
comparing results for the differential image generation process are shown in
Fig. 2.

2.3 Noise Filtering

The process of NDI creation described here works only on pixel level informa-
tion thus commonly leads to the presence of noisy local variations. To avoid
local minima that can affect the segmentation process and to aid accurate seg-
mentation, the luminance similarity-aware weighted-local-difference median filter
(LAWLDMF) [5] is employed. The filtered NDI is then used for the segmentation
of nuclei.
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2.4 Pre-segmentation of Nuclei

In the NDI, nuclei show up as bright blobs with a darker background. In this sce-
nario, the nuclei can be easily segmented by use of thresholding techniques. For
this purpose, the segmentation system uses Otsu’s automatic threshold selection
technique [14].

2.5 Morphological Filtering of the Connected Components

A pre-segmented image contains multiple connected components representing
region masks for single, touching and overlapping nuclei present in the input
image. The pre-segmented image may also contain some objects that do not
belong to the real nuclear regions and can be removed by use of morphological
filtering. Here, only the pre-segmented objects that closely match the size and
shape (round/elliptical) of isolated nuclei are retained using a method, similar
to the one proposed by Pietka et al. [16]. The rules for filtering and selection of
the objects can be presented as

(i) Remove all connected components on the edge of an image
(ii) From the remaining connected components, retain all those who have the

size within the probable range of isolated nuclei or are larger in size but
closely match the shape of isolated nuclei (i.e. retain compact, less eccentric
rounded objects).

Here, the size of objects is measured in number of pixels, eccentricity is defined
as the ratio of the distance between foci of the ellipse and its major axis length,
and the compactness is defined as the area (size) upon squared object perimeter
in pixels.

2.6 Active Contour Models Based Refined Segmentation

It is observed that, though close to the actual nuclear regions, pre-segmentation
of nuclei is not accurate and requires further refinement. The segmentation sys-
tem described here uses the ‘active contour without edges’, or Chan-Vese level
sets technique [1] for refinement of pre-segmentation. Here, the output of mor-
phological filtering process provides initialization masks which are then evolved
by Chan-Vese model to obtain refined segmentation.

Active contour without edges: The level sets model introduced by [1] is an
energy minimization approach to segmentation, where, the model assumes that a
grayscale image f is formed by two regions of approximatively piecewise-constant
intensities having distinct values fin and fout. Thus, if C0 is the boundary of the
object of interest, then f ≈ fin inside C0 and f ≈ fout outside of C0. The level sets
approach then tries to optimize the fitting function E(c1, c2, C) defined below to
find C0

E(c1, c2, C) =
μ · Length(C) + ν · Area(inside(C))
+ λ1 · ∫

inside(C)
|f(i, j) − cz1|2 di dj

+ λ2 · ∫
outside(C)

|f(i, j) − c2|2 di dj

(3)
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where C is a variable curve that can be initialized arbitrarily or to an initial
estimate of the region boundary obtained by pre-segmentation; c1, and c2 are
the average intensities inside and outside of C respectively.

2.7 Post-segmentation Morphological Filtering of the Connected
Components

The connected components obtained after refined segmentation process are fil-
tered based on the morphological attributes as defined in Sect. 2.5. Figure 3 shows
the processed images at different stages of the complete segmentation process.

(a) (b) (c) (d) (e)

Fig. 3. The images on right depict different stages of the segmentation process (a) input
image, (b) preprocessed image, (c) NDI, (d) pre-segmented image after morphometric
filtering, and (e) nuclear regions mask obtained after entire segmentation process.

3 Experimental Setup

The focus of experimentation in this paper is on the evaluation of refined seg-
mentation strategies. The segmentation quality of various algorithms can be
evaluated by comparing their results with suitably defined ground truth using
objective measures, and by visual evaluation by experts. The objective measures
based benchmarking of Chan-Vase level sets model is performed against three
nucleus segmentation methods of Snakes [10], Fast marching method [18], and
Random walks [6] commonly used in digital pathology applications. This is fol-
lowed by visual verification by a cytopathologist. The experimentation strategy
also studies the impact of pre-processing and noise filtering techniques on seg-
mentation quality, results for which are provided along with the other results
presented in Sect. 4.

3.1 Image Dataset and Ground Truth Segmentation

For development and experimental validation of the image segmentation system,
an image dataset was prepared from the slide archives of our institute. The cell
samples used for imaging were obtained from routine FNAC performed on the
patients with breast masses by an expert cytologist. The slides were prepared
by wet fixation and H&E staining methods commonly used for primary diag-
nosis from FNAC [4]. The slides were imaged using Leica DM750 microscope
with 40× magnification objective having the numerical aperture of 0.65. The
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microscope comes fitted with Leica DFC295 camera via a 0.5× optocoupler and
housing a 1024 × 768 pixel resolution color image sensor. During image acqui-
sition, the camera was programmed to provide RGB coded pixel data without
any image pre-processing. Focus and field illumination settings were user defined,
with variations within the acceptable range, over which images retain their diag-
nostic value for a human expert. The performance of segmentation techniques is
tested using a set of 21 randomly selected benign/malignant breast FNAC sam-
ple images of size 1024 × 768 pixels. Since each image contains a large number
of nuclei and manual segmentation of all is impractical, 213 nuclear regions were
manually marked by an expert to create ground truth for objective evaluation.

3.2 Configuration of the Segmentation System

Preprocessing, NDI generation, noise, and morphological filtering:
When integrating the auto white balance and LAWLDMF for noise filtering,
the best settings presented in the relevant literature were applied, for NDI cre-
ation in this experiments ε is set to 0. The morphological filtering step discards
the connected components within 20 pixels from the nuclear boundary, retains
nuclei having area in the range of [40, 700] pixels and any shape or nuclei having
area >700 pixels and eccentricity less than 0.9.

Refined segmentation algorithms: Each of the compared refined segmen-
tation methods has multiple configuration parameters that can be tuned to get
the best performance for individual test images. However, this is undesirable
as it is impossible to tune a segmentation technique for each image in real life.
Thus, during this study, all methods use the same set of parameters for the
entire dataset (specific for each technique), and aggregate values for objective
measures are compared. For this study, our implementation of Snakes and Chan-
Vese level sets have been used, along with the publicly available segmentation
program for Random walks technique [7]. The fixed settings of each algorithm
were determined so as to produce visually and objectively most accurate seg-
mentation results on the dataset. In this regard during experimentation, the
behavior of compared methods was studied on following parameters to select
the best settings that achieve best F-score value (averaged over dataset)- (i)
number of iterations for Snakes and Chan-Vese level sets (4 to 104 iterations
at interval of 4, 26 experiments each) while setting other parameters constant
(μ = 0.9, ν = 0, λ1 = λ2 = 1), (ii) threshold value used for computation of gradi-
ent difference weight for Fast marching method (varied between range 4 to 24 at
the interval of 4, 6 experiments), and (iii) Weighting parameter used in Random
walks method (varied between 10 to 100 at interval of 10, 10 experiments).

3.3 Objective Measures for Performance Evaluation

If the marked ground truth is available for a connected component segmented by
a technique, the two regions are compared to measure the statistical measures of
precision [12,15], recall [12,15], F-Score and Jaccard similarity coefficient [9,11].
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4 Results and Discussion

Figures 4 and 5 show the F-Score and Jaccard coefficient (J) respectively
obtained over the parameter set described in Sect. 3.2. The tuning curves describe
the behavior of algorithms as input parameters change, and can be used to
determine the appropriate input parameters to be used. The F-Score and Jac-
card coefficient curves of the Chan-Vese level sets and Snakes, show an almost
monotonic increase in the segmentation accuracy over initial increments in the
number of iterative steps and saturate after that. The curves of Fast marching
and Random walks methods show very small change with variation of the objec-
tive parameters. The best performance for Chan-Vese level sets algorithm was
obtained at 76 iterations, for Snakes at 104 iterations, for Fast marching method
at gray level difference threshold of 12, and Random walks method for weight-
ing parameter function value of 90. The figures do not show an experiment-wise
comparison between various configurations of the compared methods.

Objective measure results for configurations leading to the best performance
for the compared methods is given in Table 1. It can be observed that Snakes
technique has the lowest performance both regarding over (precision) and under
(recall)-segmentation. Comparison of Chan-Vese level sets and Random walks
method reveals that later has the lower rate of over-segmentation than the for-
mer, but under-segmentation rates show inverted behavior. Overall, Chan-Vese
level sets method has more balanced performance and higher F-Score among all
the compared methods. The same behavior is exhibited on the Jaccard coefficient
as well.

Fig. 4. Plot for average F-score for dif-
ferent configurations of the compared
refined segmentation algorithms.

Fig. 5. Plot for average Jaccard coefficient
for different configurations of the com-
pared refined segmentation algorithms

Figure 6 shows segmentation results for the compared algorithms on multi-
ple nuclear regions from three sample images from the test dataset for which
ground truth is available. The settings used for each of the segmentation tech-
niques correspond to the configurations leading to the highest F-Score values.



388 H. Garud et al.

Table 1. Accuracy for the compared fine-segmentation techniques with respective
optimal configuration parameters

Segmentation
technique

Precision Recall F-Score Jaccard
coefficient

Average (Variance)

Snakes 0.9158
(0.0161)

0.8430
(0.0229)

0.8642
(0.0150)

0.7775
(0.0245)

Fast marching
method

0.9237
(0.0113)

0.8740
(0.0182)

0.8846
(0.0069)

0.8021
(0.0147)

Random
walks

0.9625
(0.0061)

0.8926
(0.0080)

0.9207
(0.0055)

0.8599
(0.0104)

Chan-Vese
level sets

0.9483
(0.0127)

0.9179
(0.0079)

0.9256
(0.0079)

0.8697
(0.0148)

The images also show the comparison of obtained segmentations with ground
truth. It can be observed that Snakes, and Fast marching segmentation tech-
niques, as observed through objective measures, have the tendency to both over
and under segment, greater than that of Chan-Vese level sets, and Random
walks methods. Random walks method though has the performance comparable
with that of Chan-Vese method, it commonly produces jagged nuclear boundary
and can potentially affect performance of the feature extraction techniques that
quantify the state of nuclear membrane. Chan-Vese level sets method, on the
other hand, includes the boundary length (Length) term in the energy mini-
mization function, that results in smoother region boundary, which is desirable
at least for small lengths.

Results for segmentation of the nuclei by level sets method in various breast
FNAC conditions are shown in Fig. 7 where boundaries of the segmented nuclei
are overlaid on the input images. The images highlight performance of the pro-
posed segmentation system in various types of cell samples including benign and
malignant conditions and difficult to segment cell clustering and cytoplasm con-
ditions. The results of the segmentation technique have been visually verified by
an expert cytopathologist.

4.1 Impact of Pre-processing and Noise Filtering Techniques

To study the impact of pre-processing and noise filtering techniques on segmen-
tation quality, these pre-processing steps are bypassed and segmentation accu-
racy noted for the algorithm configurations that lead to the best performance
with those steps enabled. The aggregate results over the dataset are presented
in Table 2. All the compared methods except Fast marching method show the
degradation in segmentation accuracy and increased variance in the objective
measures. Chan-Vese level sets method remains the best performing segmenta-
tion algorithm.
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sample 2

Illustrative
sample 2

Fig. 6. Visualizations of the outputs for compared methods, highlighting over and
under-segmentation with respect to ground truth. Visualizations for the inputs and
corresponding outputs are shown in shaded rectangular boxes with the column-wise
left to right arrangement of input, ground truth, and output visualizations for the
compared methods. The cropped out regions of three test images are shown in the
first column. Ground truth segmentation for the nuclear regions is depicted in the
second column, where inside boundary is shown as a green colored closed contour
overlaid on the input image shown on the top; the bottom image in the same column
shows corresponding binary nuclear region mask. Here, ( white ) pixels in the ground
truth image are the pixels that belong to a nuclear region, and black pixels are the
pixels that belong to the background region. The top image in a results column of a
compared method shows the over-segmented (red colored pixels) and under-segmented
(blue colored pixels) pixels in the segmentation mask overlaid on the input image. The
bottom image in the column shows the corresponding segmentation mask with the
color coding as described above. (Color figure online)
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(b)(a)

(d)(c)

Fig. 7. Results for segmentation of the nuclei by level sets method in various breast
FNAC conditions are shown in this figure. The inside boundaries of the segmented
nuclei are overlaid in green color on the input image. The images (a) and (b) present
the high magnification images of benign samples, with image (a) showing a sheet of
benign looking nuclei and the image (b) shows the segmentation performance in the
presence of debris present on the slide. The images (c) and (d) correspond to malignant
samples with scattered nuclei of variable size and shape with the image (d) showing
segmentation performance in a sample with abundant eosinophilic cytoplasm. (Color
figure online)

Table 2. Accuracy for the compared fine-segmentation techniques without pre-
processing of the images

Segmentation
technique

Precision Recall F-Score Jaccard
coefficient

Average (Variance)

Snakes 0.9212
(0.0137)

0.8321
(0.0217)

0.8588
(0.0121)

0.7667
(0.0218)

Fast marching
method

0.9281
(0.0082)

0.8750
(0.0188)

0.8884
(0.0062)

0.8075
(0.0134)

Random
Walks

0.9449
(0.0144)

0.8775
(0.0132)

0.9022
(0.0110)

0.8338
(0.0162)

Chan-Vese
level sets

0.9411
(0.0139)

0.9033
(0.0102)

0.9111
(0.0095)

0.8479
(0.0160)
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5 Conclusions

This paper presented a two-stage segmentation process (pre-segmentation fol-
lowed by refined segmentation) in the high magnification microscopy images of
H&E stained breast FNAC samples. The system integrates image pre-processing,
and segmentation techniques to achieve desired high segmentation accuracy for
application in CAD systems. Though the segmentation process can use various
segmentation techniques, Chan-Vese level sets method provides more balanced
performance among all the compared methods with Random walks method
process being the close second. Due to the inclusion of Length in the energy
minimization function, Chan-Vese level sets method provides smoother region
boundary than Random walks method and is more suitable for estimation of
nuclear morphometric features. The pre-processing steps used here contribute to
the improvement of accuracy and consistency across tested refined segmentation
techniques. Beyond complete integration of the pre-processing and segmenta-
tion techniques, novelty of the system lies in combining image color properties
and Hematoxylin and Eosin stain separated images to synthesize the NDI and
using it for accurate segmentation of the nuclei. The NDI simplifies the problem
of nucleus segmentation into a simpler problem of separation of bright high-
intensity regions with a dark background. The use of NDI also gives the system
ability to handle the presence of tissue elements like red blood cells, voluminous
Eosinophilic cytoplasm covering nuclei, and other common debris. The use of
NDI further augments capability of the system to handle non-specific staining
of the cytoplasm by Hematoxylin.
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