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Abstract. Automatic segmentation of brain tumors from Magnetic Res-
onance images is a challenging task due to the wide variation in inten-
sity, size, location of tumors in images. Defining a precise boundary for
a tumor is essential for diagnosis and treatment of patients. Rough set
theory, an extension of classical set theory, deals with the vagueness of
data by determining the boundary region of a set. The aim of this work
is to explore the possibility and effectiveness of using a rough set model
to represent the tumor regions in MR images accurately, with Quadtree
partitioning and simple K-means as precursors to indicate and limit the
possible relevant regions. The advantage of using rough sets lie in its abil-
ity to represent the impreciseness of set boundaries, which is one of the
major challenges faced in tumor segmentation. Experiments are carried
out on the BRATS 2013 and 2015 databases and results are comparable
to those reported by recent works.
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1 Introduction

Glioma is a general term used to refer to brain tumors which arise from the glial
cells. Gliomas vary with respect to location, cell characteristics, severity and
responsiveness to treatment. The World Health Organization defines a grading
system for tumors, where Grade I is the least severe and having the best prog-
nosis, and grade IV is the most severe with worst prognosis of the disease. High-
grade gliomas are the ones which are most aggressive in their spread, affording
patients an average survival rate of only about two years after discovery and
treatment consisting of surgery followed by radiotherapy [1]. Low-grade gliomas
offer a much better chance of survival and a longer span of life expectancy. In
order to offer patients the best possible chance of recovery, diagnosis of gliomas
is thus a time-critical problem.

Brain tumor segmentation is carried out for a wide variety of lesion (area of
abnormality in tissue) images. A major challenge in automatic segmentation is
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the fact that lesions are identified by the difference in their intensity profile with
relation to the surrounding normal tissue. This often makes their identification a
relative rather than an absolute process, and there are major variations even in
case of manual segmentation by experts. Tumor boundaries become ambiguous if
the intensity variation is smooth, or if there are artifacts present in the imaging.
Artifacts in MRI imaging arise from patient motion (due to breathing, blood
flow, heart beat), equipment motion, etc [2]. Multiple modes or types of MR
Imaging are available, namely: T1, T2, T1-contrast, FLAIR (Fluid Attenuated
Inversion Recovery) etc., each of which provide different anatomical and func-
tional information, which are combined to draw meaningful conclusions about
the tumor. Both the tumor and Cerebrospinal fluid (CSF) appear dark in T1
and bright in T2. In terms of image capture, FLAIR is the same as T2, with
the added property of reduced CSF brightness. T1-contrast imaging is especially
useful in identifying and enhancing active soft tissue lesions by increasing the
visual contrast in the image [3].

Intensity normalization [4], registration, skull-stripping [5] are employed as
preprocessing steps in MRI. Image intensity and texture are two of the most
common features used for segmentation. Positional information is also used in
some. Certain algorithms use a combination of these features along with vari-
ous statistics obtained from them as added features. Early techniques use local
or global thresholding [6], region growing [7], morphological edge detection [8],
snack methods [9] etc.(Refer to [10] for detailed survey). Threshold-based meth-
ods compare ROI intensity with pre-determined intensity thresholds for seg-
mentation. Thresholds can be determined either from prior knowledge or from
various image statistics. Region-based methods use the similarity of pixels with
their neighbors to combine them and form similar regions. Out of these simi-
lar regions, some would be the unhealthy tissue, which can be determined from
previous knowledge about the appearance of such tissue. For region growing
methods, the initial seed for starting the algorithm is of utmost importance.

Algorithms are based on classification or clustering methods such as Fuzzy C-
Means (FCM) [11], Markov Random Fields or Conditional Random Fields, Sup-
port Vector Machines [12], Artificial Neural Networks [11], etc., have been devel-
oped. Neighborhood, shape or locality constraints can be added to make a more
context-aware decision. Support Vector Machine based algorithms have also been
widely used in brain tumor segmentation. Good training data, specially from
multiple modes of same case, allow the algorithms to learn the expected tumor
features and segment accordingly [12]. Atlas-based algorithms [13] use brain
atlases constructed by creating a collection of averaged images of a large number
of subjects. This allows for use of existing knowledge of normal brain structures
in order to segment out the abnormal portions. However, inter-personal variance
of the structures can lead to poor performance of these methods.

According to Hirano and Tsumoto [14], rough sets are a good base for tumor
segmentation techniques since usage of rough approximations can model the dif-
ferences between the expected and the observed shape and/or structure of the
region of interest. The outer and inner approximations in a rough set can be
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thought of as the approximations of a region of interest in an image in terms
of granules. By using rough sets, one can attempt to represent inconsistency
between the existing knowledge of the ROI and the region obtained from the
image itself. The authors propose that if there are N types of prior knowledge
available about the image. Each of these available knowledge can be used to
further refine the rough result obtained by the previous knowledge. Roy and
Maji [15] have proposed a post-processing technique for brain tumor segmenta-
tion using Rough-Fuzzy clustering and unsupervised feature selection. In their
approach, they have used Multiresolution wavelet analysis to extract scale-space
feature vectors. The assumption here is that different tissue classes have different
texture classes, and all pixels belonging to one class will have similar vectors.
Clustering is also carried out using Rough-Fuzzy C-Means method (abbreviated
to rRCM). It combines the concept of membership of fuzzy sets and the concept
of lower and upper approximations from the theory of rough sets.

The manuscript is organized as follows: Sect. 2 describe the fundamentals of
Rough Set theory. Section 3 explains proposed methodology in depth followed
by Results over various measures in Sect. 4. Section 5 concludes the manuscript.

2 Rough Set Preliminaries

Conventional sets specify an object can either clearly belonging or clearly not
belonging to a set X. Rough sets, first introduced by Pawlak in 1982 [16], is an
approximation of sets, which is required where lack of exact knowledge prevent
such absolute labeling of an object with respect to X. Rough sets look to define
what constitutes the boundary of the set. If the boundary is empty, then the
set is considered to be crisp. If boundary is not empty, it indicates that the set
could not be defined precisely, hence it is rough.

The lower approximation of a set X with respect to indiscernibility relation
R is defined as the set of all objects, which can be classified as X with certainty.
This is the union of all equivalence classes that form a proper subset of X. For
all elements x belonging to universe U, this is denoted by: RX =

⋃

x∈U

{R(x) :

R(x) ⊆ X}.
The upper approximation of the set X with respect to R is defined as the set

of all objects, which can possibly be classified as X. This formed by all those
equivalence classes that have non-empty intersection with X, and is expressed
as: R̄X =

⋃

x∈U

{R(x) : R(x) ∩ X �= φ}.

The boundary region of set X can be defined as the set of all objects that
cannot be precisely classified as either X or not-X. This is given by the set
difference of RX and RX, that is, all the elements in the upper approximation
that are not present in the lower approximation, i.e. BND(X) : RX − RX.

In order to use rough set approximation on images, each image has to be bro-
ken up into a collection of granules. The simplest method to do this is to consider
the image as the universe U consisting of pixels. U is then divided into a number



136 R. Saha et al.

Fig. 1. (a) Original image with grids (b) Showing identified granules

of non-overlapping (or overlapping) blocks, each having multiple pixels. Each
such block is considered a granule G. Shown in Fig. 1 is a simple interpretation
of segmentation of region of interest using rough sets. In this example, the rough
set rules (used to decide which region a granule lies in) are defined on the basis of
the number of pixels with intensity 0 in each granule. A granule with all pixels of
0 intensity is said to belong to the Lower Approximation. A granule with some,
but not all, black pixels, are part of the Boundary of the set. Any other granule
is not part of the set. The rules are mentioned in the Fig. 1 with color coding for
easy visualization.

3 Methodolgy

Identification of tumor region and various substructures require information from
the different modes to be combined. This section describes first the general archi-
tecture, followed by the specifics for identifying different tumor substructures.

Granulation: One way of achieving variable, non-overlapping partitioning of
the image space is to use quad-tree decomposition. The image is first divided
into four parts (hence the name “Quad” tree). The 256× 256 image is initially
divided into 16384 2× 2 blocks before quad-tree partitioning. These 2× 2 blocks
are taken as the smallest possible part to be reached via partitioning. Taking
2 × 2 blocks gives more neighborhood information than is possible from using
just one pixel. For partitioning, the correlation vector vi for each block bi is
calculated. Each vector has 8 values, vij , j = 1 to 8, vij is the correlation between
the block bi and its jth neighboring block bij . The final result of calculating the
correlation arrays is a 16384 × 8 matrix of correlation vectors.

The pairwise difference between the correlation vectors of blocks in a gran-
ule are calculated. If the discrepancy between the minimum and maximum of
these pairwise differences is large, then the granule is partitioned further. This
threshold is used to control the granularity that is required to achieve. A higher
threshold will allow more dissimilar components to belong to the same gran-
ule. In the present discussion, Euclidean distance is used to measure similar-
ity, with greater distance between two vectors implying less similarity between
them. Figure 2 shows the varying granularity achieved by varying the partition-
ing threshold. Thus after all partitioning is complete, a larger granule size means
a larger area of comparatively low variation (i.e. a homogeneous area).
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Fig. 2. Size and Number of granules vary as the partitioning threshold takes values (a)
1.75, (b) 1.25, (c) 0.75

Finer granules ensure that the area inside a granule is strictly homogeneous,
but it also means a large number of granules will have to be processed. Coarser
granules have less homogeneity and are less in number. The amount of gran-
ularity has to strike a balance between the accuracy (of homogeneity inside a
granule) and the amount of computation involved. Since quad-tree partitioning
is performed on a square matrix, all the resultant granules, while unequal, are
square matrices too.

After granulation, the next task involves identifying which granules belong
to the tumor region (our region of interest). Typically, the region of interest
is a small portion of the entire image. For expert judgment, the intensity of
the region is the primary indication as to whether or not it is the region of
interest, as discussed earlier. Designing a rough set rule based on intensity is
difficult since the brightness and contrast of all images are not constant. Hence,
it is problematic to assign a single threshold between tumor and non-tumor
intensities which works equally well across all cases. The rule has to be obtained
from the information afforded by a single case itself.

K Means Clustering : In order to do this, we use simple K-means clustering to
infer a crude estimate of the intensity values that are there in the tumor region.
We have three classes for clustering: tumor, possibly tumor and not tumor. Each
class is initialized with a granule that we are reasonably sure of representing said
class. In T2, T1-contrast and FLAIR modes of MRI, the regions of interest (and
certain other regions as well) are characterized by high intensity. Calculating
the image histogram, the tumor class is initialized by a granule, all of whose
pixels are above the 90th percentile in the histogram. The possibly tumor class
is initialized by a granule more than half but not all of whose pixels are above the
90th percentile. The granules that are found to belong to these two classes are a
smaller subset of all the available granules, and contain the regions of interest.

Rough Sets: From each of the classes obtained from K-Means, we get the mean
and standard deviation of intensity (meant and stdt for class 1(tumor), meanm

and stdm for class 2(maybe tumor)). Out of the 300 images provided as part of
the BRATS database, granules generated by 100 randomly selected images were
used to craft the rules which we use to distinguish between Upper and Lower
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Fig. 3. (a) T2, (b) FLAIR, (c) T2 and FLAIR combined

Approximation of rough sets. The Granules with all pixels above meant−f ∗stdt
are said to be in the Lower Approximation (i.e. surely of ROI). All the granules
of Lower Approximation, plus those granules whose mean intensity is above
meanm − f ∗ stdm is said to be in the Upper Approximation of the ROI. The
multiplying parameter f is adjusted according to the percentile of the image
intensities that the two means lie at. If there is a small difference between the
two, f is kept small, since a smaller range of intensities need to accounted for. If,
however, the distance between meant and meanm is large, a larger value of f is
chosen to better span the intermediate range.

For identifying the whole tumor region, the FLAIR and T2 mode is used.
In order to incorporate the information from both modes, a combined image is
produced, having 30% contribution from T2 and 70% from FLAIR. This helps to
maintain the hyper-intensity of the tumor region, and at the same time suppress
the intensity of other irrelevant areas.

Calculating rough sets, as described previously, we obtain the regions where
the tumor is located. However, due to various imaging differences (as discussed
earlier), there may still be spurious regions detected. If multiple components have
similar size and high intensity, then it is probable that they are multiple sites of
tumor growth. However, if such multiple sites are highly symmetrical about the
central axis, then it likely that it is normal brain structures, like the brain stem
or ventricles, since tumors are usually at random locations with uncontrolled
growth. Also, spurious bright bands are sometimes present at the edge of the
brain image. The following formula, devised experimentally, tries to incorporate
these factors as (Fig. 3):

w = sizec/sizel + 1/(intensityc − intensityl) − 0.02 ∗ pixelscenter − 0.02 ∗ pixelsedge

where

sizec = number of pixels in the component considered
sizel = number of pixels in the largest connected component
intensityc = mean intensities of the component considered
intensityl = mean intensities of the largest connected component
pixelscenter = pixels of the component very close to the center,
i.e. are possibly part of the brain-stem and not tumor regions
pixelsedge = pixels of the component on the edge of the brain image



Brain Tumor Segmentation from Multimodal MR Images Using Rough Sets 139

Fig. 4. (a) Results of rough set calculation: Lower Approximation (pink) and Boundary
(yellow) (b) tumor Region shown in green. For colours please refer to the pdf. (Color
figure online)

Hence it rewards similarity of size and intensity, while penalizing the areas
where stray brightness is usually noticed (i.e. at the center and at the edges).
Finally, the components with high score (>0.75, decided by experiments) are
retained. Results are shown in Fig. 4.

The enhancing tumor region is the area of active tumor growth with
fresh lesions. Since this region has good blood flow, hence usage of a contrasting
medium enhances the region in the T1-contrast mode. It lies within the area
acquired in the previous step.

For this ROI, the initialization of K-mean centroids and subsequent rough
set classification is done as discussed previously. Results are shown in Fig. 5. The
sites of dead tissue which previously had tumors, also known as necrotic tissue
regions, are usually located inside of adjacent to the enhancing tumor region
obtained previously. Other tissue occurring near the active tumor region are
termed as the non-enhancing core tissues. These three regions (non-enhancing,
enhancing and necrotic) are together termed as the gross tumor core. Process
of initialization and rough set calculation is done on the T2 image in a manner
similar to the above and the results are shown in Fig. 6.

Fig. 5. (a) T1-Contrast with tumor area marked (b) Enhancing tumor region: Lower
Approximation (pink) and Boundary (yellow) (c) Enhancing tumor region visualized
in red over whole tumor region. For colours please refer to the pdf. (Color figure online)
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Fig. 6. (a) T2 with tumor region marked, (b) Gross tumor region: lower approximation
(pink) and Boundary (yellow) (c) The necrotic and non-enhancing regions in ochre
visualized over previously obtained tissue substructures. For colours please refer to the
pdf. (Color figure online)

4 Results and Discussion

The algorithm is tested on the BRATS database [17,18] which provides a collec-
tion of High Grade Gliomas (HGG), and Low Grade Gliomas(LGG) as training
data, along with the ground truth segmentations. The database contains fully
anonymized images from the Cancer Imaging Archive. The performance mea-
sures used here are Dice Coefficient, Positive Predictive Value and Sensitivity.
The Dice Coefficient is a similarity measure between two sets A and B, and
is given by

DC =
2 | A ∩ B |
| A | + | B |

Positive Predictive Value is a popular measure used for diagnostic tests that
gives the probability of a positive prediction being correct (according to the
ground truth), with respect to all positive predictions made by a system. A
higher value can be said to correspond to a higher accuracy of the system. It is
given by

PPV =
no. of true positives

no. of true positives + no. of false positives

=
no. of true positives

no. of positive calls

Sensitivity is another measure widely used and is also referred to as the hit
rate. It gives the probability of a positive case being identified properly by a
system. It is the probability of a positive prediction, given that the case is true
as per the ground truth. It is given by

Sensitivity =
no. of true positives

no. of true positives + no. of false negatives

The Dice Coefficient, Positive Predictive Values (PPV) and Sensitivity
obtained from segmenting the images as compared to the ground truth pro-
vided are given in Table 1. As of 2015, the best results reported in the MICCAI-
BRATS are in the range of 73 (Hoogi)(for 100 cases) to 88.4 (Bakas)(all cases)
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Table 1. Results of evaluation on BRATS 2013 and 2015 training databases.
Performance measures are given as Mean ∓ StandardDeviation and Median ∓
MedianAbsoluteDeviation for each scoring method.

Regions Dice score PPV Sensitivity

Whole tumor Mean 81.62 ∓ 11.68 80.75 ∓ 4.16 86.97 ∓ 3.58

Median 84.42 ∓ 8.76 88.13 ∓ 15.2 93.43 ∓ 7.16

Gross core Mean 70.58 ∓ 12.1 82.66 ∓ 16.52 66.21 ∓ 19.57

Median 73.11 ∓ 9.1 92.6 ∓ 19.86 63.41 ∓ 19.23

Enhancing Mean 71.65 ∓ 17.18 82.1 ∓ 19.62 80.61 ∓ 15.92

Median 69.66 ∓ 16.10 92.18 ∓ 15.41 78.82 ∓ 16.46

mean Dice Coefficient value for the complete tumor region and between 60.6
(Vaidhya)(24 cases) to 82 (Agn)(30 cases) for the gross tumor core region. For
the enhancing core region, the average Dice scores lie between 50.9 (Vaidhya) and
75 (Pereira)(all cases) [19]. In the proceedings of the MICCAI Brats 2014 [20],
the average Dice Score for the 1st subtask (identifying the whole tumor region),
varies between 0.79 (Davy) to 0.87 (Kleesiek and Urban). For the gross tumor
core segmentation sub-task, reported average Dice Score has varied from 0.66
(Reza) to 0.79 (Kwon).

Direct comparison between results is difficult since various methods have been
tested on different number of cases (and different cases) from the databases, and
hence the details of these reported results are also not being included in this
work. The algorithm performs at par with the reported methods on the entire
dataset. Usage of a combination of K-Means and rough sets help to concentrate
the search for the ROI in a much smaller set of possible areas than the whole
image.

The following portion shows some of the atypical cases seen during experi-
mentation, which highlight the challenges faced by the algorithm. All the images
have four sub-images. The first sub-image shows the mode from which the seg-
mentation has been carried out, and the second shows the truth image for that
slice. Third shows the corresponding region as defined by the sub-task and final
sub-image shows the obtained region for that particular sub-task. Comparing the
last two sub-images will give the reader an idea of the differences (or similarities)
between the expected and obtained results.

In Fig. 7, the Dice Score obtained for the whole tumor region is 0.95. Figure 8
shows a case where the brain stem also gets included in the tumor region, since
they are very close together and forms one connected component which reduces
the Dice score to 0.59. In Fig. 9, there is a region of brightness (within the whole
tumor region previously determined) which does not correspond well to the given
ground truth, leading to a low Dice score of 0.59. Figure 10 shows a case where
the enhancing tumor region is close to the expected region as given in the ground
truth, with Dice score 0.89.



142 R. Saha et al.

Fig. 7. (a) Flair combined with T2 (b) Ground truth supplied (c) Area to be obtained
for whole tumor region (d) Area obtained by algorithm (Dice Score: 0.95)

Fig. 8. (a) Flair combined with T2 (b) Ground truth supplied (c) Area to be obtained
for whole tumor region (d) Area obtained by algorithm (Dice Score: 0.59)

Fig. 9. (a) Negative T1 combined with T2 (b) Ground truth supplied (c) Area to be
obtained for gross tumor region (d) Area obtained by algorithm (Dice Score: 0.59)

Fig. 10. (a) Flair combined with T2 (b) Ground truth supplied (c) Area to be obtained
for enhancing tumor region (d) Area obtained by algorithm (Dice Score: 0.89)
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5 Conclusion and Future Scope

In this paper, a Rough Set based approach is presented for Tumor segmentation.
The proposed method utilizes the uncertainty handling capabilities of Rough set
using approximation spaces. For identification of precise tumor boundaries, K-
Means is used as an initial seed algorithm. The novelty of the method lies in
the fusion of various modality to exact tumor information available in T2 and
Flair images. Although, the present method is its nascent stage with few open
parameter. However, result are quite encouraging and the method is competitive
enough with state-of-the-art method.
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