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1 Stability Regions of Nonlinear Dynamical Systems

Attractors of nonlinear dynamical systems are rarely globally stable. Actually, there
exists a subset of the state space, called stability region, composed of all the initial
conditions that have trajectories approaching the attractor as time tends to infin-
ity. Region of attraction, area of attraction and basin of attraction are other names
commonly employed in the literature for stability region.

In this chapter, we will study stability regions of the following class of nonlinear
dynamical systems:

ẋ = f (x), (1)

where f : Rn → R
n is aC1-function.Wewill assume that solutions of (1) are defined

for all t ∈ R and the solution of (1) passing through xo at time t = 0 is denoted by
ϕ(t, xo).

Definition 1 (Invarinat Set) An invariant set γ is an attracting set of system (1) if
there exists a neighborhood (open set) N of γ such that ϕ(t, x) → γ as t → ∞ for
all x ∈ N .

Definition 2 (Stability Region) The stability region A(γ ) of an attracting set γ of
system (1) is the set:

A(γ ) = {x ∈ R
n : ϕ(t, x) → γ as t → ∞}
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Fig. 1 Stability region of an
attracting set γ

Asymptotically stable equilibrium points and asymptotically stable limit cycles are
examples of attracting sets. Figure1 illustrates the concept of stability region. The
stability region A(γ ) is an open and invariant set. Its topological boundary will be
called stability boundary and will be denoted ∂A(γ ). The stability boundary is a
closed and invariant set [8].

Determining stability regions is relevant in many areas of sciences. For instance,
stability regions plays an important role in the assessment of transient stability in
electrical power systems [8] and in the problem of immunization in biological sys-
tems [13]. In the process of determining or estimating stability regions, the deter-
mination or estimation of the stability boundary is relevant. In the next subsections,
the existing theory of characterization of stability regions and stability boundaries is
reviewed. Invariant sets on the stability boundary play an important role in the theory
of stability boundary characterization. In Sect. 1.1, the characterization of hyperbolic
equilibrium points on the stability boundary is studied while Sect. 1.2 studies closed
orbits on the stability boundary.

1.1 Hyperbolic Equilibrium Points on the Stability Boundary

In this section, a characterization of the stability boundary of a fairly large class of
dynamical systems is developed. This class is composed of the dynamical systems
that admit hyperbolic equilibrium points as the only type of critical element (minimal
invariant set) on the stability boundary.

A key point to derive a characterization of the stability boundary is to under-
stand the relationship between the critical elements and the stability region and its
boundary. Theorem 1, proven in [6], establishes this relationship offering necessary
and sufficient conditions for a hyperbolic equilibrium point lying on the stability
boundary.
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Theorem 1 (Equilibrium Points on the Stability Boundary) [6] Let xs be a hyper-
bolic asymptotically stable equilibrium point of (1) and A(xs) be its stability region.
If assumptions:

(A1) All the equilibrium points on ∂A(xs) are hyperbolic,
(A2) The stable and unstable manifolds of equilibrium points on ∂A(xs) satisfy the
transversality condition,
(A3) Every trajectory on ∂A(xs) approaches one of the equilibrium points as
t → +∞,

are satisfied and x∗ (x∗ �= xs) is a hyperbolic equilibrium point of (1). Then the
following statements are equivalent:

(i) x∗ ∈ ∂A(xs)
(ii) Wu(x∗) ∩ A(xs) �= ∅
(iii) W s(x∗) ⊆ ∂A(xs).

Figure2 illustrates the conclusions of Theorem 1. Next theorem, proven in [6],
extends the characterization given in Theorem 1 by asserting the stability boundary
∂A(xs) is the union of the stable manifolds of the equilibrium points on ∂A(xs).

Theorem 2 (Stability Boundary Characterization) Let xs be a hyperbolic asymptot-
ically stable equilibrium point of (1) and A(xs) be its stability region. If assumptions
(A1) and (A3) are satisfied, then:

∂A(xs) ⊆
⋃

i

W s(xi ),

where xi , i = 1, 2, ... are the equilibrium points on ∂A(xs). If, additionally, (A2) is
satisfied, then:

∂A(xs) =
⋃

i

W s(xi ).

Fig. 2 The equilibrium x∗ is
on the stability boundary. Its
stable manifold Ws(x∗) lies
on the stability boundary and
the unstable manifold
Wu(x∗) has a non empty
intersection with the stability
region A(xs)
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Fig. 3 Phase portrait of
system (2). The stability
boundary of xs = (−1, 0) is
formed by the stable
manifold Ws(x1) of the
type-1 hyperbolic
equilibrium point x1 = (2, 3)

The following example illustrate the characterization of the stability boundary of
Theorem 2.

Example Consider the following system of differential equations:

ẋ = x2 − y − 1 (2)

ẏ = x − y + 1

where (x, y) ∈ R
2. System (2) possesses two equilibrium points, an asymptotically

stable equilibrium point, xs = (−1, 0), and a type-1 hyperbolic equilibrium point
x1 = (2, 3) on the stability boundary ∂A(xs). Since all equilibrium points are hyper-
bolic, then assumption (A1) is satisfied. In agreement with Theorem 1, the unstable
manifoldWu(x1) of the hyperbolic equilibriumpoint x1 = (2, 3) intersects the stabil-
ity region A(xs) and its stablemanifoldWs(x1) is contained on the stability boundary
∂A(xs). The stability boundary ∂A(xs) is the stable manifold Ws(x1) of the type-1
hyperbolic equilibrium point x1 = (2, 3), in agreement with the results of Theorem
2. See Fig. 3.

1.2 Closed Orbits on the Stability Boundary

In this section, the stability boundary characterization of Sect. 1.1 is extended to
accommodate periodic orbits on the boundary of stability regions.

Definition 3 (Critical Element) A critical element φ of the autonomous dynamic
system (1) is either a closed orbit or an equilibrium point.

The next theorem, proven in [6], establishes necessary and sufficient conditions
for a critical element point lying on the stability boundary.

Theorem 3 (Critical Element on the Stability Boundary) [6] Let xs be an asymptot-
ically stable equilibrium point of (1) and A(xs) be its corresponding stability region.
Let φ be a critical element. If assumptions:
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(B1) All the critical elements of (1) on ∂A(xs) are hyperbolic,
(B2) The stable and unstable manifolds of critical elements of (1) on ∂A(xs) satisfy

the transversality condition,
(B3) Trajectories on ∂A(xs) approach one of the critical elements of system (1) as

t → +∞,

are held, then the follwoing statements are equivalent:

(i) φ ⊂ ∂A(xs)
(ii) Wu(φ) ∩ A(xs) �= ∅
(iii) W s(φ) ⊂ ∂A(xs).

Theorem 3 is an extension of Theorem 1 and offers a local characterization of
the boundary of the stability region in the neighborhood of critical elements. The
following theorem, proven in [6], develops a global characterization of the stability
boundary. Under assumptions (B1)–(B3), it asserts the stability boundary is the union
of the stable manifolds of the hyperbolic critical elements on the boundary of the
stability region.

Theorem 4 (Stability Boundary Characterization) [6] Let xs be an asymptotically
stable equilibrium point of (1) and A(xs) its stability region. If assumptions (B1)
and (B3) are held, then:

∂A(xs) ⊂
⋃

i

W s(xi )
⋃

j

W s(φ j )

where xi , i = 1, 2, . . . are the equilibrium points and φ j , j = 1, 2, . . . are the
closed orbits in ∂A(xs). If, additionally, assumption (B2) is satisfied, then

∂A(xs) =
⋃

i

W s(xi )
⋃

j

W s(φ j ).

1.3 Energy Functions and Stability Boundary
Characterization

The characterizations of stability boundary given in Sects. 1.1 and 1.2 are given in
terms of stable manifolds of critical sets. These manifolds are difficult to compute,
specially in high dimensional systems. Despite that, level sets of energy functions
provide concrete estimates of stability regions and stability boundaries, moreover,
energy functions have important implications on the stability boundary characteri-
zation.

Consider the nonlinear dynamical system (1) and let E := {x ∈ R
n : f (x) = 0}

be the set of all equilibrium points of (1). The following definition of energy function
was firstly proposed in [7].
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Definition 4 (Energy Function) A C1-function V : Rn → R is an energy function
of system (1) if the following conditions are satisfied:

(i) V̇ (x) ≤ 0 for all x ∈ R
n .

(ii) if x0 /∈ E , then the set {t ∈ R+ : V̇ (ϕ(t, x)) = 0} has zero measure in R.
(iii) if V (ϕ(t, x0)) is bounded for t ∈ R+, then the trajectory ϕ(t, x0) is bounded

for t ∈ R+.

The existence of an energy function guarantees that every bounded trajectorymust
approach an equilibrium point as t → +∞. As a consequence, complex behavior
such as closed orbits and chaos cannot exist for systems that admit energy functions.
Moreover, the existence of an energy function ensures that every trajectory on the
stability boundary is bounded, although the stability boundary can be unbounded,
and converges to an equilibrium point on the stability boundary as t → +∞ [6]. In
other words, the existence of an energy function is a sufficient condition to guarantee
assumption (A3).

Next theorem, proven in [7], provides a complete characterization of the stability
boundary for systems that admit energy functions.

Theorem 5 (Stability BoundaryCharacterization) [7]Let xs be a hyperbolic asymp-
totically stable equilibriumpoint of (1) and A(xs) be its stability region. If assumption
(A1) is satisfied and system (1) admits an energy function, then:

∂A(xs) ⊆
⋃

i

W s(xi )

where xi , i = 1, 2, ... are the hyperbolic equilibrium points on the stability boundary
∂A(xs).

2 Persistence of Stability Regions to Parameter Variation

Complete characterizations of stability regions and stability boundaries were proven
in the literature [6, 8] and the main results of this theory were presented in Sect. 1.
These characterizations are given in terms of the union of the stable manifolds of
the critical elements on the stability boundary. However, systems are subjected to
uncertainties and parameter changes and a natural question that pops up is how these
characterizations are robust with respect to parameter variation. The answer to this
question is crucial to ensure that estimates of the stability region obtained by means
of these characterizations are robust to parameter changes.

In this chapter, we will study stability regions of the following class of nonlinear
dynamical systems:

ẋ = f (x, λ) = fλ(x), (3)
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where f : Rn × R → R
n is a C 1-function and λ is a real parameter. The trajectory

of system ẋ = fλ(x) passing through xo at time t = 0 will be denoted ϕλ(t, xo).
Suppose xsλo

is a hyperbolic asymptotically stable equilibrium point of (3) for
λ = λo and let Aλo(x

s
λo

) be its stability region. Hyperbolic equilibrium points persist
to parameter changes. Consequently, it does make sense to study the stability region
Aλ(xsλ) of the perturbed equilibrium xsλ. Suppose assumptions (A1)–(A3) hold for
λ = λo and xiλo

, i = 1, . . . ,m are the unstable equilibrium points on the stability
boundary. Then, according to Theorem 2, the stability boundary is given by:

∂Aλo(x
s
λo

) =
⋃

i

W s
λo

(xiλo
)

If assumptions (A1)–(A3) hold for all λ in a neighborhood of λ0 and the number
of equilibrium points on the boundary is finite, it can be proven, under reasonable
conditions, that the stability region and the stability boundary do not suffer drastic
changes. More precisely, if an unstable equilibrium point xuλo

belongs to the stability
boundary ∂Aλo(x

s
λo

) of the unperturbed system, then the perturbed unstable equilib-
rium point xuλ will persist on the stability boundary, i.e., xuλ ∈ ∂Aλ(xsλ) for every λ

sufficiently close to λo. Consequently,

∂Aλ(x
s
λ) ⊂

⋃

i

W s
λ(xiλ),

indicating that the stability boundary does not suffer drastic changes for λ sufficient
close to λo. However, with changes in the parameter λ, assumptions (A1) and (A2)
may be violated. In these cases, drastic changes in the stability regions and stability
boundaries may occur. In this chapter, we will study these changes when assumption
(A1) is violated due to the appearance of two types of nonhyperbolic equilibrium
points on the stability boundary: the saddle-node equilibrium point and the Hopf
equilibrium point. We first develop characterizations of the stability boundary in
the presence of these nonhyperbolic equilibrium points in Sect. 3 and then the sta-
bility region and stability boundary behavior due to changes in parameters in the
neighborhood of saddle-node and Hopf bifurcations are studied in Sect. 4.

3 Non-hyperbolic Equilibrium Points on the Stability
Boundary

Hyperbolicity of equilibrium points on the stability boundary is a fundamental prop-
erty for the characterizations of the stability boundary developed in Sect. 1. Although
the hyperbolicity of equilibrium points of a dynamical system is a generic property,
i.e., it is satisfied for almost all dynamical systems, the violation of hyperbolicity
condition of the equilibrium points on the stability boundary is very common when
the system is subject to variation of parameters. In the analysis of voltage stability
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in electric power systems, for instance, the occurrence of saddle-node bifurcations
on the stability boundary were reported, violating the hyperbolicity condition of the
equilibrium points on the stability boundary [12].

In this section, we discuss the stability boundary characterization in the presence
of two types of non-hyperbolic equilibrium points: the saddle-node and the Hopf
equilibrium points. Exploring these characterizations, we also discuss on how to
obtain estimates of the stability region for dynamical systems that admit energy
functions.

3.1 Saddle-Node Equilibrium Points on the Stability
Boundary

In Sect. 1.1, the properties of hyperbolic equilibriums on the stability boundary were
studied. In this section, we develop necessary and sufficient conditions for a saddle-
node, which is the simplest of the non-hyperbolic equilibrium points, belonging to
the boundary of the stability region. In addition, we also develop a characterization of
the stability boundary in the presence of saddle-node equilibrium points. The results
developed in this section are a generalization of the ones proven in [3, 4]. They are
also a generalization of the results presented in Sect. 1.1.

Definition 5 (Saddle-Node Equilibrium Point) [17] A non-hyperbolic equilibrium
point p ∈ R

n of (1) is a saddle-node equilibrium point if the following conditions
are satisfied:

(i) Dx f (p) has a unique simple null eigenvalue and none of the other eigenvalues
have real part equal to zero,

(ii) w(D2
x f (p)(v, v)) �= 0,

with v as the right eigenvector and w as the left eigenvector associated with the null
eigenvalue.

Saddle-node equilibrium points can be classified in types according to the number
of eigenvalues of Dx f (p) with positive real part.

Definition 6 (Saddle-Node Equilibrium Type) A saddle-node equilibrium point p
of (1) is called a type-k saddle-node equilibrium point if Dx f (p) has k eigenvalues
with positive real part and n − k − 1 with negative real part.

If p is a saddle-node equilibrium point of (1), then there exist invariant local
manifolds Ws

loc(p), W
cs
loc(p), W

c
loc(p), W

u
loc(p) and Wcu

loc(p) of class Cr , tangent
to the eigenspaces Es , Ec ⊕ Es , Ec, Eu and Ec ⊕ Eu at p, respectively [14, 18].
These manifolds are respectively called stable, stable center, center, unstable and
unstable center manifolds. The stable and unstable manifolds are unique, but the
stable center, center and unstable center manifolds may not be. Dynamic properties
of these manifolds can be found in [17, 18].
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3.1.1 Stability Boundary Characterization

In the presence of non-hyperbolic equilibrium points on the stability boundary,
assumption (A1) is violated and the stability boundary characterization given in
Theorem 2 is not valid. In this section, a characterization of the stability boundary
in the presence of hyperbolic and saddle-node equilibrium points is developed. This
characterization is developed in two steps. In the first step, a local characterization
of equilibrium points on the stability boundary is developed and then a global char-
acterization of the stability boundary in terms of manifolds of equilibrium points is
developed.

Let xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its
stability region. Consider the following assumptions:
(A1

′
)All the equilibriumpoints on ∂A(xs) are hyperbolic or saddle-node equilibrium

points.
(A2

′
) The following transversality conditions are satisfied:

(i) The stable and unstable manifolds of equilibrium points on ∂A(xs) satisfy the
transversality condition.

(ii) The unstable manifolds of equilibrium points and the stable component of
the stable center manifolds of the type-k saddle-node equilibrium points, with
1 ≤ k ≤ n − 2, on ∂A(xs) satisfy the transversality condition.

(iii) The unstable manifolds of equilibrium points and the stable component of the
center manifolds of the type-(n − 1) saddle-node equilibrium points on ∂A(xs)
satisfy the transversality condition.

(iv) The stable manifolds of equilibrium points and the unstable component of the
centermanifolds of the type-0 saddle-node equilibriumpoints on ∂A(xs) satisfy
the transversality condition.

(v) The stable component of the stable center manifolds of the type-k saddle-node
equilibrium points, with 1 ≤ k ≤ n − 2, and the unstable component of the
centermanifolds of the type-0 saddle-node equilibriumpoints on ∂A(xs) satisfy
the transversality condition.

(vi) The stable component of the center manifolds of the type-(n − 1) saddle-node
equilibrium points and the unstable component of the center manifolds of the
type-0 saddle-node equilibrium points on ∂A(xs) satisfy the transversality con-
dition.

Assumptions (A1
′
) and (A2

′
) are generic properties of dynamical systems [16].

Under assumptions (A1
′
), (A2

′
) − (iv), (v), (vi) and (A3), next theorem, proven in

[1], offers necessary and sufficient conditions to guarantee that a type-0 saddle-node
equilibrium point lies on the stability boundary of a nonlinear autonomous dynamical
system.
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Theorem 6 (Type-0 Saddle-Node Equilibrium Points on the Stability Boundary)
[1] Let xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its
stability region. Suppose that assumptions (A1

′
), (A2

′
)-(iv), (v), (vi) and (A3) are

satisfied. If p is a type-0 saddle-node equilibrium point, then the following statements
are equivalent:

(a) p ∈ ∂A(xs)
(b) Wc+

(p) ∩ A(xs) �= ∅
(c) Ws(p) ⊆ ∂A(xs)

Theorem 6 offers necessary and sufficient conditions to guarantee that a type-0
saddle-node equilibrium point p belongs to the stability boundary. More precisely,
it shows that the non empty intersection of the unstable component Wc+

(p) of the
center manifold with the stability region guarantees that the saddle-node equilibrium
point p lies on the stability boundary.

In this sense, we observe thatWc+
(p) plays in Theorem 6 the same role ofWu(p)

in Theorem 1. Consequently, one can check if an equilibrium point p lies on the
stability boundary by checking if the unstable manifold intersects the stability region
in the case of a hyperbolic equilibrium point and if the unstable component of the
center manifold intersects the stability region in the case of a type-0 saddle-node
equilibrium point. Figure4 illustrates the results of Theorem 6.

Next theorem, proven in [1], offers necessary and sufficient conditions to guaran-
tee that a hyperbolic or a type-r saddle-node equilibrium point, with r ≥ 1, lies on
the stability boundary of a nonlinear autonomous dynamical system.

Theorem 7 (Hyperbolic and Type-r Saddle-Node Equilibrium Points, with r ≥ 1
on the Stability Boundary) [1] Let xs be an asymptotically stable equilibrium point
of (1) and let A(xs) be its stability region. Suppose that assumptions (A1

′
), (A2

′
)

and (A3) are satisfied. Then:

Fig. 4 The type-0
saddle-node equilibrium
point p is on the stability
boundary. Its stable manifold
Ws(p) lies on the stability
boundary ∂A(xs) and the
unstable component of the
center manifold Wc+

(p) has
a non empty intersection
with the stability region
A(xs)
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(i) If p∗ is a hyperbolic equilibrium point or a type-r saddle-node equilibrium
point, with r ≥ 1, of (1) and (Wu(p∗)-{p∗}) ∩ A(xs) �= ∅, then the following
statements are equivalent:

(a) p∗ ∈ ∂A(xs)
(b) Wu(p∗) ∩ A(xs) �= ∅
(c)

⎧
⎨

⎩

Ws(p∗) ⊆ ∂A(xs) if p∗ is a hyperbolic equilibrium point
Wcs− (p∗) ⊆ ∂A(xs) if p∗ is a type- r saddle-node equilibrium point, r ≤ n − 2
Wc−

(p∗) ⊆ ∂A(xs) if p∗ is a type- (n-1) saddle-node equilibrium point.

(ii) If p is a type-r saddle-node equilibrium point, with r ≥ 1, of (1) and (Wu(p) −
{p}) ∩ A(xs) = ∅ then the following statements are equivalent:

(a) p ∈ ∂A(xs)
(b) Wc+

(p) ∩ A(xs) �= ∅ for some unstable component Wc+
(p) of the center

manifold.
(c) Ws(p) ⊆ ∂A(xs).

Admitting the existence of non hyperbolic saddle-node equilibrium points on the
stability boundary, generalizing the transversality condition and exploring assump-
tion (A3), Theorem 7 extends the results of Theorem 1. Observe that the same
equivalences proven in Theorem 1 are still valid for hyperbolic equilibrium points
even in the presence of saddle-node equilibrium points on the stability boundary.

Theorem 7 offers necessary and sufficient conditions for a type-r saddle-node
equilibrium point, with r ≥ 1, lying on the stability boundary ∂A(xs). For saddle-
node equilibrium points, two different situations can occur. Therefore, two cases are
separately treated in Theorem 7, the case (i), in which (Wu(p) − {p}) ∩ A(xs) �= ∅,
and the case (ii), in which (Wu(p) − {p}) ∩ A(xs) = ∅.

Next theorem, proven in [1], combines the results of Theorems 6 and 7 to offer
a complete characterization of the stability boundary of a nonlinear autonomous
dynamical system in the presence of saddle-node equilibrium points on the stability
boundary ∂A(xs).

Theorem 8 (Stability Boundary Characterization) [1] Let xs be an asymptotically
stable equilibrium point of (1) and A(xs) be its stability region. Suppose that assump-
tions (A1

′
), (A2

′
) and (A3) are satisfied. Then:

∂A(xs) =
⋃

i

W s(xi )
⋃

j

W s(p j )
⋃

l

W cs−
(zl)

⋃

t

W s(zt )
⋃

m

Wc−
(qm)

where xi are the hyperbolic equilibrium points on ∂A(xs), p j the type-0 saddle-
node equilibrium points on ∂A(xs), zl the type-k saddle-node equilibrium points on
∂A(xs), with 1 ≤ k ≤ n − 2, and (Wu(zl) − {zl}) ∩ A(xs) �= ∅, zt the type-d saddle-
node equilibrium points on ∂A(xs), with d ≥ 1 and (Wu(zt ) − {zt }) ∩ A(xs) = ∅
and qm the type-(n − 1) saddle-node equilibrium points on ∂A(xs), with (Wu(qm) −
{qm}) ∩ A(xs) �= ∅, i, j, l, t,m = 1, 2, . . ..
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Figure5 which was presented in [1], shows an example of a dynamical system
in R

3, where a type-1 saddle-node equilibrium point p lies on the stability bound-
ary ∂A(xs) of an asymptotically stable equilibrium point xs , but (Wu(p) − {p}) ∩
A(xs) = ∅. The stability boundary ∂A(xs) is formed, according to Theorem 8, as
the union of the stable manifold Ws(p) and the stable manifolds Ws(x1), Ws(x2)
of the unstable hyperbolic equilibrium points x1 and x2 that belong to the stability
boundary ∂A(xs).

Figure6 which was presented in [1], shows an example of a dynamic system in
R

3, where (Wu(p) − {p}) ∩ A(xs) �= ∅. The stability boundary ∂A(xs) is formed,
according to Theorem 8, as the union of the stable component Wcs−

(p) of the stable
center manifold and the stable manifold Ws(x1) of the unstable hyperbolic equilib-
rium point x1 that belongs to the stability boundary ∂A(xs).

Fig. 5 Example of a
dynamical system on R

3

where the unstable
component of the unstable
center manifold Wcu+

(p) of
the type-1 saddle-node
equilibrium point p lying on
the stability boundary
∂A(xs) intersects the closure
of the stability region A(xs)
and (Wu(p) − {p}) ∩
A(xs) = ∅. Reprinted from
[1]

Fig. 6 Example of a
dynamical system on R

3

where the unstable
component of the unstable
center manifold Wcu+

(p) of
the type-1 saddle-node
equilibrium point p lying on
the stability boundary
∂A(xs) intersects the closure
of the stability region A(xs)
and (Wu(p) − {p}) ∩
A(xs) �= ∅. Reprinted from
[1]
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3.1.2 Stability Region Estimation

In this section, we derive a scheme to obtain optimal estimates of stability regions via
level sets of a given energy function even in the presence of saddle-node equilibrium
points on the stability boundary.

The first theorem of this section was proven in [7]. It guarantees that every local
minimumof the energy function on the stability boundary is attained at an equilibrium
point.

Theorem 9 (Energy Functions and Equilibrium Points I) [7] Let xs be an asymp-
totically stable equilibrium point of the nonlinear dynamical system (1) and A(xs)
be its stability region. If system (1) admits an energy function, then, the point on the
stability boundary ∂A(xs) at which the energy function attains the minimum value
must be an equilibrium point.

The point of minimum energy on the stability boundary may not be unique.
However, since the property that all equilibrium points of system (1) have distinct
energy function values is generic, we can affirm that the point of minimum energy
on the stability boundary is generically unique. In other words, the uniqueness of the
point with minimum energy is almost always guaranteed.

Theorem 10, proven in [5], gives a characterization for the equilibrium points at
which the global minimum of energy is attained over the stability boundary.

Theorem 10 (Energy Functions and Equilibrium Points II) [5] Let xs be an asymp-
totically stable equilibrium point of the nonlinear dynamical system (1) and A(xs)
be its stability region. Suppose that system (1) admits an energy function. If x∗ is the
equilibrium point with the minimum value of the energy function over the stability
boundary ∂A(xs), then

(i) if x∗ is a hyperbolic equilibrium point, then x∗ is of the type-one;
(ii) if x∗ is a saddle-node equilibrium point, then x∗ is of the type-zero.

Theorem 11, proven in [5], gives a dynamical characterization of this equilib-
rium in terms of its invariant manifolds. Note that this theorem holds without the
transversality condition.

Theorem 11 (Dynamical Characterization) [5] Let xs be an asymptotically stable
equilibrium point of the nonlinear dynamical system (1) and A(xs) be its stability
region. Suppose that system (1) admits an energy function. If x∗ is the equilibrium
point with the minimum value of the energy function over the stability boundary
∂A(xs), then

(i) if x∗ is hyperbolic, then Wu(x∗) ∩ A(xs) �= ∅;
(ii) if x∗ is a type-zero saddle-node equilibrium point, then Wc+

(x∗) ∩ A(xs) �= ∅
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Next theorem provides a scheme to obtain the best estimate of the stability region,
via level sets of a particular given energy function, even in the presence of a saddle-
node equilibrium point on the stability boundary. Its proof can be found in [5].

Theorem 12 (Stability Region Estimation) [5] Let A(xs) be the stability region of
the asymptotically stable equilibrium point xs of (1). Suppose also that system (1)
admits an energy function V . If L = minx∈E∩∂A(xs ) V (x), then:

(i) the connected component D(L) of the level set {x ∈ R
n : V (x) < L} containing

the equilibrium xs is inside the stability region A(xs).
(ii) the connected component D(B) of the level set {x ∈ R

n : V (x) < B} containing
the equilibrium xs has a nonempty intersection with the complement of the
stability region Ac(xs) for any number B > L.

Theorem12 ensures that, calculating all type-one hyperbolic and type-zero saddle-
node equilibrium points on the stability boundary, we can obtain the best estimate
of the stability region, in the form of a level set of the energy function V , by picking
the level set with a level value that equals the value of the energy of the equilibrium
point on the stability boundary which has the lowest value of energy. The choice L
is optimal in the sense that any level set with an energy level greater than L is not
contained in A(xs).

Theorem 12 generalizes the results in [7] by allowing the existence of saddle-node
equilibrium points on the stability boundary. It suggests the following conceptual
algorithm, which is also a generalization of the one proposed in [7], to obtain the
optimal estimate of the stability region in the form of level sets of a given energy
function V :

Conceptual Algorithm for Stability Region Estimation

Step 1 Compute all the equilibrium points on ∂A(xs).
Step 2 Identify the equilibrium point xmin that possesses the lowest energy among

them. Let L = V (xmin).
Step 3 The connected component D(L) of the level set {x ∈ R

n : V (x) < L} con-
taining xs is the largest estimate of the stability region A(xs) in the form of
a level set of V .

Example This example, proposed in [5], illustrates the application of the concep-
tual algorithm for stability region estimation. Consider the nonlinear autonomous
dynamical system

ẋ = −y

ẏ = −x4 + x2 − y (4)

where (x, y) ∈ R
2. Function V (x, y, λ) = − x5

5 + x3

3 + y2

2 is an energy function for
system (4). System (4) possesses three equilibrium points; they are xs = (−1, 0), a
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Fig. 7 The phase portrait of
system (4). The type-zero
saddle-node equilibrium
point (0, 0) is on the stability
boundary ∂A(−1, 0). The
region in light gray is the
stability region of (−1, 0)
and the dark gray region is
the largest estimate obtained
via level set of the energy
function V (x, y, λ) =
− x5

5 + x3
3 + y2

2 . Reprinted
from [5]

x

y

hyperbolic asymptotically stable equilibrium point, p = (0, 0), a type-zero saddle-
node equilibrium point and x∗ = (1, 0), a type-one hyperbolic equilibrium point.
The stability boundary ∂A(−1, 0) is depicted in Fig. 7. It is formed of the stable
manifold of the type-zero saddle-node equilibrium point (0, 0). The minimum of the
energy function V on the stability boundary ∂A(−1, 0) is attained at the type-zero
saddle-node equilibrium point p, the unique equilibrium on ∂A(−1, 0). The energy
function value at p is L = V (0, 0) = 0. The connected component D(0) of the level
set {x ∈ R

2 : V (x, y) < 0} containing the asymptotically stable equilibrium point
xs = (−1, 0) is completely contained in A(−1, 0), see Fig. 7, and it is the largest
estimate that can be obtained in the form of a level set of V .

3.2 Hopf Equilibrium Points on the Stability Boundary

In this section, we study the properties of another type of non-hyperbolic equilibrium
point on the stability boundary, the so called Hopf equilibrium point. In particular, we
develop necessary and sufficient conditions for a Hopf equilibrium point belonging
to the stability boundary. Moreover, we develop a complete characterization of the
stability boundary in the presence of Hopf equilibrium points. The results of this
section generalize the characterization of stability boundary given in Sect. 1 and are
a compilation of the results presented in [9–11].

Consider the nonlinear dynamical system (1). We can always perform a change
of coordinates in system (1), shifting the equilibrium point to origin. Thus, without
loosing generality, system (1) can be rewritten as

ẋ = Ax + F(x), x ∈ R
n, (5)
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where F , F(x) = O(‖x‖2), is a smooth function that has Taylor expansion in x
starting with at least quadratic terms. We can also write function F(x), following the
notation of [15], as

F(x) = 1

2
B(x, x) + 1

6
C(x, x, x) + O(‖x‖4)

where B(x, y) andC(x, y, z) are symmetricmultilinear vector functions of x, y, z ∈
R

n such that

Bi (x, y) =
n∑

j, k=1

∂2Fi (ξ)

∂ξ j∂ξk

∣∣∣∣
ξ=0

x j yk, i = 1, . . . , n

and

Ci (x, y, z) =
n∑

j, k, l=1

∂3Fi (ξ)

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x j ykzl, i = 1, . . . , n.

Definition 7 (Hopf Equilibrium Point) A non-hyperbolic equilibrium point p ∈ R
n

of (1) is called a Hopf equilibrium point if the following conditions are satisfied:

(i) A = Dx f (p) has a simple pair of purely imaginary eigenvalues, ±iω, and no
other eigenvalue with null real part;

(ii) l1 �= 0 where l1 is the first Lyapunov coefficient, which can be computed by the
formula:

l1= 1

2ω
�

[
〈u,C(v, v, v)〉 − 2〈u, B(v, A−1B(v, v))〉 +〈u, B(v, (2iωI − A)−1B(v, v))〉

]

where v is the complex eigenvector associated with the imaginary eigenvalue iω,
u is the complex adjoint eigenvector of the transposed matrix A associated with its
eigenvalue −iω and satisfying the normalization condition:

〈u, v〉 = 1,

where 〈x, y〉 = ∑n
i=1 xi yi represents the inner product in C

n , and � is the real part
of a complex number.

Hopf equilibrium points can be classified according to the sign of the first Lya-
punov coefficient.

Definition 8 (Supercritical and Subcritical Hopf Equilibrium Point) A Hopf equi-
librium point p ∈ R

n of (1) is called a supercritical Hopf equilibrium point if the
first Lyapunov coefficient l1 < 0. A Hopf equilibrium point p ∈ R

n of (1) is called
a subcritical Hopf equilibrium point if the first Lyapunov coefficient l1 > 0.
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Lyapunov coefficients are related to the asymptotic behavior of the system on
the central manifold. Supercritical Hopf equilibrium points attract orbits on the cen-
tral manifold while subcritical Hopf equilibrium points repel them. Furthermore,
Hopf equilibrium points can be also classified in types according to the number of
eigenvalues of Dx f (p) with positive real part.

Definition 9 (Type-k Hopf Equilibrium Point) A Hopf equilibrium point p of (1)
is called a type-k Hopf equilibrium point if Dx f (p) has k (k ≤ n − 2) eigenvalues
with positive real part and n − k − 2 with negative real part.

Figure8 illustrates the invariant manifolds for a type-0 supercritical Hopf equi-
librium point inR3 and Fig. 9 illustrates these invariant manifolds for a type-1 super-
critical Hopf equilibrium point in R3.

Figure10 illustrates the invariant manifolds for a type-1 subcritical Hopf equi-
librium point in R

3 and Fig. 11 illustrates these invariant manifolds for a type-0
subcritical Hopf equilibrium point in R3.

Fig. 8 Manifolds Wc
loc(p)

and Ws
loc(p) for a type-0

supercritical Hopf
equilibrium point p of
system (1) in R

3. Wc
loc(p) is

not unique. Three choices of
Wc

loc(p) are displayed in this
figure. Reprinted from [9]

Fig. 9 Manifolds Wc
loc(p)

and Wu
loc(p) for a type-1

supercritical Hopf
equilibrium point p of
system (1) in R

3. In this
case, Wc

loc(p) is unique.
Reprinted from [9]
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Fig. 10 Manifolds Wc(p)
and Ws(p) for a type-1
subcritical Hopf equilibrium
point p of system (1) in R

3.
Wc(p) is not unique. Three
choices of Wc(p) are
displayed in this figure.
Reprinted from [10]

Fig. 11 Manifolds Wc(p)
and Wu(p) for a type-0
subcritical Hopf equilibrium
point p of system (1) in R

3.
In this case, Wc(p) is
unique. Reprinted from [10]

3.2.1 Stability Boundary Characterization

In this section, a complete characterization of the stability boundary in the presence of
aHopf equilibriumpoint on the stability boundary is developed. This characterization
is developed in two steps. First we study a local characterization of the stability
boundary by studying and characterizing the equilibrium points and closed orbits
that belong to the stability boundary, then a global characterization is developed.

Initially, a characterization of the stability boundary considering supercritical
Hopf equilibrium points is developed and then the result is extended to consider
subcritical Hopf equilibrium points.

The next theorem, proven in [9, 11], provides necessary and sufficient conditions
to guarantee that a supercritical Hopf equilibrium point or a hyperbolic critical ele-
ment lies on the boundary of the stability region. It extends the results of Theorems
1 and 3 to accommodate closed orbits and supercritical Hopf equilibrium points on
the stability boundary. These conditions are expressed in terms of the properties of
their stable, unstable and center-stable manifolds.
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Theorem 13 (Critical Elements on the Stability Boundary) [9, 11] Let A(xs) be
the stability region of an asymptotically stable equilibrium point xs of (1). Let p be
a type-k supercritical Hopf equilibrium point, with 1 ≤ k ≤ n − 2, and let φ be a
type-k ′ hyperbolic critical element, with k ′ ≤ n, of (1). If the assumptions:

(B1’) All the critical elements on ∂A(xs) are hyperbolic critical elements or super-
critical Hopf equilibrium points;

(B2’) The stable, center-stable and/or center and unstable manifolds of the critical
elements on ∂A(xs) satisfy the transversality condition;

(B3) Trajectories on ∂A(xs) approach one of the critical elements as t → ∞ are
held, then:

(i) If φ is a type-k ′ critical element, with 1 ≤ k ′ ≤ n, then

φ ⊂ ∂A(xs) ⇐⇒ Wu(φ) ∩ A(xs) �= ∅
φ ⊂ ∂A(xs) ⇐⇒ Ws(φ) ⊂ ∂A(xs)

(ii) If p is a type-k supercritical Hopf equilibrium point, with 1 ≤ k ≤ n − 3, then

p ∈ ∂A(xs) ⇐⇒ Wu(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Wcs(p) ⊂ ∂A(xs)

(iii) If p is a type-(n − 2) supercritical Hopf equilibrium point, then

p ∈ ∂A(xs) ⇐⇒ Wu(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Wc(p) ⊂ ∂A(xs)

The next theorem offers a complete characterization of the stability boundary
when a supercritical Hopf equilibrium points lies on ∂A(xs). It is a generalization of
Theorems 2 and 4 that allows the existence of closed orbits and supercritical Hopf
equilibrium points on the stability boundary.

Theorem 14 (Characterization of the Stability Boundary for Critical Elements) [9,
11] Let xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its
stability region. If assumptions (B1’) and (B3) are held, then:

∂A(xs) ⊂
⋃

i

W s(φi )
⋃

j

W cs(p j )
⋃

l

W c(ql)

where φi are the hyperbolic critical elements, p j the type-k supercritical Hopf equi-
librium points, with 1 ≤ k ≤ n − 3, and ql the type-(n − 2) supercritical Hopf equi-
librium points on ∂A(xs), i, j, l = 1, 2, . . .. If assumption (B2’) is additionally
satisfied, then

∂A(xs) =
⋃

i

W s(φi )
⋃

j

W cs(p j )
⋃

l

W c(ql).



134 L.F.C. Alberto et al.

Theorem 14 states that the stability boundary is composed of the stable manifolds
of the critical elements on the stability boundaryunionwith the center-stablemanifold
of the supercritical Hopf equilibrium points on the stability boundary.

Now, we will construct the same characterization of the stability boundary when
the non-hyperbolic equilibrium point on the stability boundary is a subcritical Hopf
equilibrium point.

The next theorem provide necessary and sufficient conditions to guarantee that
a subcritical Hopf equilibrium point or a hyperbolic critical element lies on the
boundary of the stability region. These conditions are expressed in terms of the
properties of its stable, center-unstable and center manifolds.

Theorem 15 (Critical Elements on the Stability Boundary) [11] Let A(xs) be the
stability region of an asymptotically stable equilibrium point xs of (1). Let p be a
type-k subcritical Hopf equilibrium point, with 1 ≤ k ≤ n − 3, and let φ be a type-k ′
hyperbolic critical element, with k ′ ≤ n, of (1). If the assumptions:

(B1”) All the critical elements on ∂A(xs) are hyperbolics critical elements or sub-
critical Hopf equilibrium points;

(B2”) The stable and unstable, center-unstable and/or center manifolds of the crit-
ical elements on ∂A(xs) satisfy the transversality condition;

(B3) Trajectories on ∂A(xs) approach one of the critical elements as t → ∞ are
held, then:

(i) If φ is a type-k ′ critical element, with 1 ≤ k ′ ≤ n, then
φ ∈ ∂A(xs) ⇐⇒ Wu(φ) ∩ A(xs) �= ∅
φ ∈ ∂A(xs) ⇐⇒ Ws(φ) ⊂ ∂A(xs)

(ii) If p is a type-0 subcritical Hopf equilibrium point, then
p ∈ ∂A(xs) ⇐⇒ Wc(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Ws(p) ⊂ ∂A(xs)

(iii) If p is a type-k subcritical Hopf equilibrium point, with 1 ≤ k ≤ n − 3, then
p ∈ ∂A(xs) ⇐⇒ Wcu(p) ∩ A(xs) �= ∅
p ∈ ∂A(xs) ⇐⇒ Ws(p) ⊂ ∂A(xs)

(iv) If p is a type-(n − 2) subcritical Hopf equilibrium point, then
p ∈ ∂A(xs) ⇐⇒ Wcu(p) ∩ A(xs) �= ∅

The next theorem provides a complete characterization of the boundary of the
stability region when there are subcritical Hopf equilibrium points in ∂A(xs). It is
a generalization of Theorems 2 and 4 that allows the presence of closed orbits and
subcritical Hopf equilibrium points on the stability boundary.

Theorem 16 (Characterization of the Stability Boundary for Critical Elements) Let
xs be an asymptotically stable equilibrium point of (1) and let A(xs) be its stability
region. If assumptions (B1”) and (B3) are held, then:

∂A(xs) ⊂
⋃

i

W s(φi )
⋃

j

W cs(p j )
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where φi are the hyperbolic critical elements and p j the subcritical Hopf equilibrium
points, with 1 ≤ k ≤ n − 2, on ∂A(xs), i = 1, 2, . . .. If, additionally, assumption
(B2’) is satisfied, then

∂A(xs) =
⋃

i

W s(φi )
⋃

j

W cs(p j ).

Next example illustrates the results and characterizations developed in this section.

Example Consider the autonomous nonlinear dynamical system proposed in [9]:

⎧
⎨

⎩

ẋ = −xz2 − y − x(x2 + y2);
ẏ = −yz2 + x − y(x2 + y2);
ż = −z(z − 3)(8 − z);

(6)

where (x, y, z) ∈ R
3.

System (6) has three equilibrium points, they are an asymptotically stable equilib-
rium point xs = (0, 0, 3), a type-1 hyperbolic equilibrium point x = (0, 0, 8) and
a type-1 supercritical Hopf equilibrium point p = (0, 0, 0). Consequently, assump-
tions (B1

′
) and (B2

′
) are satisfied.

Function V (x, y, z) = x2

2
+ y2

2
− z4

4
+ 11

3
z3 − −12z2 is an energy function for

system (6). For instance, V̇ = −(x2 + y2)z2 − (x2 + y2)2 − z2(z − 3)2(8 − z)2 ≤
0 and assumption (E1) holds. The derivative of V equals zero only at equilibrium
points, consequently assumption (E2) holds. And finally, if a solution ϕ(t, x0) is
unbounded for t ≥ 0, then V (ϕ(t, x0)) is also unbounded for t ≥ 0. As a conse-
quence, assumption (E3) is satisfied and V is an energy function for system (6).

The existence of an energy function implies that assumption (B3) is held. Con-
sequently the assumptions of Theorems 13 and 14 are satisfied and the complete
characterization of stability boundary developed in Theorem 14 also holds. The
unstable manifold of the type-1 supercritical Hopf equilibrium point p = (0, 0, 0)
intersects the stability region of xs = (0, 0, 3), consequently, according to Theo-
rem 13, p lies on the stability boundary ∂A(xs) and the center manifold is contained
in the boundary of the stability region of xs = (0, 0, 3), see Fig. 12. The unstable
manifold of the type-1 hyperbolic equilibrium point x = (0, 0, 8) also intersects
the stability region of xs = (0, 0, 3) and therefore x lies on the stability boundary
of xs and the stable manifold is contained in the boundary of the stability region of
xs = (0, 0, 3), according to the Theorem 13, see Fig. 12.

Figure12 illustrates the boundary of the stability region of the asymptotically
stable equilibrium point xs = (0, 0, 3). The boundary is formed, according to The-
orem 14, of the union of the stable manifold of the type-1 hyperbolic equilibrium
point x = (0, 0, 8), the highest shaded surface passing by x at Fig. 12, with the
center manifold of the type-1 supercritical Hopf equilibrium point p = (0, 0, 0),
the lowest shaded surface passing by p at Fig. 12.
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Fig. 12 The stability
boundary of the
asymptotically stable
equilibrium point
xs = (0, 0, 3) of system (6)
is composed of two surfaces,
the stable manifold of the
type-1 hyperbolic
equilibrium point
x = (0, 0, 8) and the center
manifold of the type-1
supercritical Hopf
equilibrium point
p = (0, 0, 8). Reprinted
from [9]

4 Stability Region Bifurcations

The characterization of stability boundaries derived in Sect. 1 were developed under
assumptions (A1) − (A3). Under parameter variation, bifurcations may occur on
the stability boundary and assumptions (A1) or (A2) may be violated at bifurca-
tion points. Studying the characterization of the stability boundary at these bifurca-
tion points is of fundamental importance to understanding how the stability region
behaves under parameter variation. In this section, we study bifurcations of the sta-
bility boundary that are induced by local bifurcations of critical elements on the
stability boundary and, in particular, by local bifurcation of equilibrium points. It
will be shown that drastic changes in the size of the stability region might occur.

4.1 Sadde-Node Bifurcation

Consider the nonlinear dynamical system (3) and let f : Rn × R → R
n be a vector

field of class Cr , with r ≥ 2.

Definition 10 (Saddle-Node Bifurcation Point) The point (pλ0 , λ0) ∈ R
n × R is

called a saddle-node bifurcation point of system (3) if pλ0 ∈ R
n is a non-hyperbolic

equilibrium point of (3) for the fixed parameter λ = λ0 and the following conditions
are satisfied:

(SN1) Dx fλ0(pλ0)has a unique simple eigenvalue equal to 0with v as an eigenvector
to the right and w to the left.
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(SN2) w(D2
x fλ0(pλ0)(v, v)) �= 0.

(SN3) w((∂ fλ/∂λ)(pλ0 , λ0)) �= 0.

In other words, (pλ0 , λ0) ∈ R
n × R is a saddle-node bifurcation point of system

(3) if pλ0 ∈ R
n is a saddle-node equilibrium point of (3) for a fixed parameter λ = λ0

and the transversality condition (SN2) is satisfied. A saddle-node bifurcation point
(pλ0 , λ0) will be of type k if the non-hyperbolic equilibrium point pλ0 is a type-k
saddle-node equilibrium point. The parameter λ0 will also be called a type-k saddle-
node bifurcation value.

Next theorem, proven in [17], studies the dynamical behavior of system (3) in the
neighborhood of a saddle-node bifurcation point.

Theorem 17 (Saddle-Node Bifurcation) [17] Let (pλ0 , λ0) be a saddle-node bifur-
cation point of (3). Then there exist a neighborhood N of pλ0 and δ > 0 such that,
depending on the signs of the expressions in (SN2) and (SN3), there is no equi-
librium point on N when λ ∈ (λ0 − δ, λ0)[λ ∈ (λ0, λ0 + δ)] and two equilibrium
points pkλ and pk+1

λ in N for each λ ∈ (λ0, λ0 + δ)[λ ∈ (λ0 − δ, λ0)]. The two equi-
librium points on N are hyperbolic, more specifically pkλ is of type-k and pk+1

λ is
of type-k + 1, k ∈ N. Moreover, the stable manifold of the type-k equilibrium point
and the unstable manifold of the type-k + 1 equilibrium point intersect along an
one-dimensional manifold.

4.2 Saddle-Node Bifurcation on the Stability Boundary

In this section, we develop results that describe the behavior of the stability region
and stability boundary in the neighborhood of a saddle-node bifurcation value. These
results generalize the results of [4], which explore the behavior of the stability region
and stability boundary in the neighborhood of only a type-zero saddle-node bifurca-
tion value.

Next theorem, proven in [2], describes the local behavior of the stability boundary
in the neighborhood of a type-k saddle-node equilibrium point.

Theorem 18 (Stability Boundary Behavior Near a Saddle-Node) [2] Let pλ0 be
a type-k saddle-node equilibrium point lying on the stability boundary ∂Aλ0(x

s
λ0

)

of the hyperbolic asymptotically stable equilibrium point xsλ0
of (3) for λ = λ0. If

assumptions (A1) − (A3) are satisfied in an open interval containing λ0, except
at the type-k saddle-node bifurcation value, with k ≥ 0, where assumptions (A1

′
),

(A2
′
) and (A3) are satisfied, and the number of equilibrium points on ∂Aλ0(x

s
λ0

) is
finite, then:

(i) If (pλ0 , λ0) is a type-zero saddle-node bifurcation point, with pλ0 lying on
the stability boundary ∂Aλ0(x

s
λ0

), then there is β > 0 such that, for all λ ∈
(λ0 − β, λ0), we have that

pλ0 /∈ ∂Aλ(x
s
λ) and pλ1 ∈ ∂Aλ(x

s
λ)
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where pλ0 and pλ1 are the hyperbolic equilibrium points originated from the
type-zero saddle-node bifurcation.

(ii) If (xλ0 , λ0) is a type-r saddle-node bifurcation point, with r ≥ 1, with xλ0 lying
on the stability boundary ∂Aλ0(x

s
λ0

), then there is β > 0 such that, for all λ ∈
(λ0 − β, λ0), we have that

yλr ∈ ∂Aλ(x
s
λ) and yλr+1 ∈ ∂Aλ(x

s
λ)

where pλr and pλr+1 are the unstable hyperbolic equilibrium points originated
from the type-r saddle-node bifurcation, with r ≥ 1.

Theorem18 shows that, in the occurrence of a type-r saddle-node bifurcation,with
r ≥ 1, on the stability boundary, necessarily the two hyperbolic equilibrium points
that coalesce and disappear at the bifurcation saddle-node belong to the stability
boundary. Otherwise, the generic assumption of transversality would be violated.

The following corollary offers a complete characterization of the stability bound-
ary in the neighborhood of a type-k saddle-node bifurcation value, with k ≥ 0.

Corollary 1 (Characterization of the Stability Boundary in the Neighborhood of
a Type-k Saddle-Node Bifurcation Value, with k ≥ 0) Let pλ0 be a type-k saddle-
node equilibrium point lying on the stability boundary ∂Aλ0(x

s
λ0

) of the hyperbolic
asymptotically stable equilibrium point xsλ0

of (3) for λ = λ0. If assumptions (A1) −
(A3) are satisfied in an open interval containing λ0, except at the type-k saddle-
node bifrucation value, with k ≥ 0, where assumptions (A1

′
), (A2

′
) and (A3) are

satisfied, and the number of equilibrium points on ∂Aλ0(pλ0) is finite, then:
(i) For λ = λ0 we have that

∂Aλ0(x
s
λ0

) =
⋃

i

W s
λ0

(wi
λ0

)
⋃

j

W s
λ0

(p j
λ0

)
⋃

l

W cs−
λ0

(zlλ0
)
⋃

m

Wc−
λ0

(qm
λ0

)

where wi
λ0
are the hyperbolic equilibrium points in ∂Aλ0(x

s
λ0

), p j
λ0
are the type-zero

saddle-node equilibrium points, zlλ0
the type-k saddle-node equilibrium points, with

1 ≤ k ≤ n − 2 and qm
λ0
the type-(n − 1) saddle-node equilibriumpoints in ∂Aλ0(x

s
λ0

),
i, j, l,m = 1, 2, ....
(i i) There is ε > 0 such that, for all λ ∈ (λ0 − ε, λ0),

∂Aλ(x
s
λ) =

⋃

i

W s
λ(wi

λ)
⋃

j

W s
λ(y j

λk )
⋃

j

W s
λ(y j

λk+1)

where wi
λ are the perturbed hyperbolic equilibrium points in ∂Aλ(xsλ), y

j
λk and y j

λk+1

are the unstable hyperbolic equilibrium points originated from the type-k saddle-
node bifurcation, with k ≥ 0, that also belong to ∂Aλ(xsλ), i, j,= 1, 2, ....
(i i i) There is ε > 0 such that, for all λ ∈ (λ0, λ0 + ε),
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∂Aλ(x
s
λ) =

⋃

i

W s
λ(wi

λ)

where wi
λ are the perturbed hyperbolic equilibrium points in ∂Aλ(xsλ), i = 1, 2, ....

Example Consider the following system of differential equations from [2]:

ẋ = 1 − λsen(x) − 2sen(x − y)
ẏ = 1 − 3sen(y) − 2sen(y − x)
ż = −z

(7)

where (x; y; z) ∈ R
3 and λ ∈ R.

System (7) possesses for λ0 = 2, 84, a hyperbolic asymptotically stable equi-
librium point xsλ0

= (0, 35; 0, 34; 0) and a type-1 saddle-node equilibrium point
xλ0 = (1, 42; 3, 39; 0). The type-1 saddle-node equilibrium point belongs to the
stability boundary ∂λ0(0, 35; 0, 34; 0). For λ = 2, 87, system (7) possesses a hyper-
bolic asymptotically stable equilibriumpoint xsλ = (0, 33; 32; 0), a type-1 hyperbolic
equilibrium point pλ1 = (1, 14; 3, 34; 0) and a type-2 hyperbolic equilibrium point
pλ2 = (1, 48; 3, 43; 0). The equilibrium points pλ1 and pλ2 are originated from the
type-1 saddle-node equilibrium point in a type-1 saddle-node bifurcation. Moreover,
pλ1 ∈ ∂Aλ(0, 33; 32; 0) and pλ2 ∈ ∂Aλ(0, 33; 32; 0), according to Theorem 18, see
Fig. 13.

Fig. 13 The surface in this
figure is the stability
boundary of the stability
region of the asymptotically
stable equilibrium point
xsλ = (0, 33; 32; 0) of system
(7) for λ = 2, 87. The
unstable equilibrium points
pλ1 = (1, 14; 3, 34; 0) and
pλ2 = (1, 48; 3, 43; 0),
originated from the type-1
saddle-node bifurcation,
belong to the stability
boundary ∂λ(0, 33; 32; 0).
Reprinted from [2]
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4.3 Hopf Bifurcation on the Stability Boundary

In this section, a characterization of the stability boundary in a small neighborhood
of the parameter μ0 of a Hopf bifurcation of type-k, with k ≥ 1, is developed. We
begin the section establishing some concepts of the Hopf bifurcation theory.

Consider the autonomous dynamic system dependent on a parameter

ẋ = f (x, μ), x ∈ R
n, μ ∈ R (8)

where f : Rn × R → R
n is a C 1-vector field .

Definition 11 (Hopf Bifurcation Point) A non-hyperbolic equilibrium point xμ0 ∈
R

n of (8), for a fixed parameter μ = μ0, is called a Hopf equilibrium point and
(xμ0 , μ0) a Hopf bifurcation point if the following conditions are satisfied:

(i) Dx f (xμ0) has a simple pair of purely imaginary eigenvalues,±iω, and no other
eigenvalue with null real part; and

(ii) l1 �= 0, where l1 is the first coefficient of Lyapunov, see [9].

Hopf bifurcation points can also be classified according to the sign of the first
Lyapunov coefficient. A Hopf bifurcation point (xμ0 , μ0) of (8) is called a super-
critical Hopf bifurcation point if the first Lyapunov coefficient l1 < 0 and is called a
subcritical Hopf bifurcation point if the first Lyapunov coefficient l1 > 0.

Hopf bifurcation points can also be classified in types according to the number of
eigenvalues of Dx f (xμ0)with positive real part. TheHopf bifurcation point xμ0 of (8)
is called a type-k Hopf bifurcation point if Dx f (xμ0) has k (k ≤ n − 2) eigenvalues
with positive real part and n − k − 2 with negative real part.

Let xsμ0
be an asymptotically stable equilibrium point of (8) and let Aμ0(x

s
μ0

) be its
stability region for the fixed parameterμ = μ0. Consider the following assumptions:
(B1’) All the critical elements on ∂Aμ0(x

s
μ0

) are hyperbolic critical elements or
supercritical Hopf equilibrium points.
(B2’) The stable, the center-stable and/or the center manifolds and the unstable
manifolds of the critical elements on ∂Aμ0(x

s
μ0

) satisfy the transversality condition.
In the following theorems, we will explore the behavior of the boundary of the

stability region of the asymptotically stable equilibrium in a small neighborhood
of the parameter μ0 of a type-k supercritical Hopf bifurcation, with k ≥ 1. We will
assume, for the value of the supercriticalHopf bifurcation parameterμ0, the existence
of only hyperbolic critical elements of system (8) at μ = μ0, with the exception
of the type-k supercritical Hopf nonhyperbolic equilibrium point, with k ≥ 1, xμ0 .
Furthermore, in a small neighborhood of the parameter μ0, we will assume the
existence of only critical elements that are the perturbed critical elements of the
original system (8) atμ = μ0. Initially, wewill establish the behavior of the boundary
of the stability region in the neighborhood of a type-k supercritical Hopf equilibrium
point with k ≥ 1 and, then we will present a global characterization of the boundary
in that neighborhood.
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Theorem 19 (Boundary of the Stability Region in the Neighborhood of a Type-k
Supercritical Hopf Bifurcation Point with k ≥ 1) [11] Let (μ0, xμ0) be a type-k
supercritical Hopf bifurcation point, with k ≥ 1, of (8) for μ = μ0. Suppose that
the type-k supercritical Hopf bifurcation point xμ0 belongs to the boundary of the
stability region ∂Aμ0(x

s
μ0

) of an asymptotically stable hyperbolic equilibrium point
xsμ0

of (8) for μ = μ0. Admit that assumptions (B1), (B2) and (B3) are satisfied
for all μ belonging to an open interval I containing μ = μ0, except in μ0 where
assumptions (B1’) and (B2’) are satisfied. Furthermore, assume that xμ0 is the only
nonhyperbolic equilibrium point in μ = μ0. Suppose also that for all μ ∈ I , all
the critical elements of the perturbed system ẋ = f (x, μ) are perturbed critical
elements originated from the system ẋ = f (x, μ0). Then there is a neighborhood U
of xμ0 and ε1 ≥ ε > 0 such that:

(i) There is a hyperbolic equilibrium point x H
μ of type-k, with 1 ≤ k ≤ n − 2, in U

for all μ ∈ (μ0 − ε1, μ0) and there are a hyperbolic closed orbit ΩH
μ of type-

k, with 1 ≤ k ≤ n − 2, and a hyperbolic equilibrium point x H
μ of type-k + 2,

with 1 ≤ k ≤ n − 2, in U for all μ ∈ (μ0, μ0 + ε1).
(ii) For μ ∈ (μ0, μ0 + ε) we have that ΩH

μ ∈ ∂Aμ(xsμ) and xH
μ ∈ ∂Aμ(xsμ).

(iii) For μ ∈ (μ0 − ε, μ0) we have that x H
μ ∈ ∂Aμ(xsμ).

Theorem 19 ensures, for μ ∈ (μ0 − ε, μ0), the hyperbolic equilibrium point xH
μ

of type-k, with 1 ≤ k ≤ n − 2, in the neighborhoodU , belongs to the stability bound-
ary of xsμ. At μ = μ0, the equilibrium point loses hyperbolicity, leading to the emer-
gence of a type-k supercritical Hopf equilibrium point, with k ≥ 1. The supercritical
Hopf equilibrium point is on the stability boundary of xsμ. For values of μ > μ0, the
hyperbolic equilibrium point xH

μ of type-k + 2, with 1 ≤ k ≤ n − 2 in U loses sta-
bility and a hyperbolic closed orbit ΩH

μ of type-(k + 1) arises, with 1 ≤ k ≤ n − 2,
on the stability boundary of xsμ. Theorem 19 states that both the stability region as
the stability boundary undergo changes when the parameter changes in the interval
(μ0 − ε, μ0 + ε). The next result establishes the characterization of the boundary
of the stability region in a small neighborhood of the type-k supercritical Hopf bifur-
cation parameter value, with k ≥ 1.

Theorem 20 (Characterization of the Stability Boundary in the Neighborhood of a
Type-k Supercritical Hopf Equilibrium Point with k ≥ 1) [11] Let (μ0, xμ0) be a
type-k supercritical Hopf bifurcation point, with k ≥ 1, of (8) for μ = μ0. Suppose
that the type-k supercritical Hopf bifurcation point xμ0 belongs to the boundary
of the stability region ∂Aμ0(x

s
μ0

) of an asymptotically stable hyperbolic equilibrium
point xsμ0

of (8) forμ = μ0. Admit that assumptions (B1), (B2) and (B3) are satisfied
for all μ in an open interval I containing μ = μ0, except at μ0, where assumptions
(B1’) and (B2’) are satisfied. Furthermore, assume that xμ0 is the only nonhyperbolic
equilibrium point inμ = μ0. Suppose also that for allμ ∈ I , all the critical elements
of the perturbed system ẋ = f (x, μ) are perturbed critical elements originated from
the system ẋ = f (x, μ0). If r iμ0

are the critical elements in ∂Aμ0(x
s
μ0

), i = 1, . . . , k,
then:
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(i) For μ = μ0 we have ∂Aμ0(x
s
μ0

) = ⋃
i W

s
μ0

(r iμ0
)
⋃

Wc
μ0

(xμ0).
(ii) There is ε > 0 such that, for all μ ∈ (μ0 − ε, μ0), ∂Aμ(xsμ) = ⋃

i W
s
μ(r iμ)⋃

Ws
μ(xH

μ ) where r iμ, i = 1, 2, . . . , k are the perturbed hyperbolic critical
elements in ∂Aμ(xsμ) and xH

μ is the type-k hyperbolic equilibrium point, with
1 ≤ k ≤ n − 2, originated from the type-k supercritical Hopf bifurcation, k ≥
1.

(iii) There is ε > 0 such that, for all μ ∈ (μ0, μ0 + ε), ∂Aμ(xsμ) = ⋃
i W

s
μ(r iμ)⋃

Ws
μ(xH

μ )
⋃

Ws
μ(ΩH

μ ) where r iμ, i = 1, 2, . . . , k are the perturbed hyper-
bolic critical elements in ∂Aμ(xsμ) and xH

μ and ΩH
μ are the type-(k + 2) hyper-

bolic equilibrium point, with 1 ≤ k ≤ n − 2, and the type-k periodic orbit,
with 1 ≤ k ≤ n − 2, respectively, originated from the type-k supercritical Hopf
bifurcation, k ≥ 1.

In the next two theorems, we will present the behavior of the stability boundary of
an asymptotically stable equilibrium point in a small neighborhood of the parameter
μ0 of a type-k subcritical Hopf bifurcation, with k ≥ 1.Wewill assume, for the value
of the subcritical Hopf bifurcation parameter μ0, the existence of only hyperbolic
critical elements of the system (8), with the exception of the type-k subcritical Hopf
non-hyperbolic equilibrium point, with k ≥ 1, xμ0 . Furthermore, in a small neighbor-
hood of the parameter μ0, we will assume the existence of only critical elements that
are the disturbed critical elements of the original system (8) in μ = μ0. Proceeding
in the same way we did in the occurrence of a supercritical Hopf bifurcation, we will
establish the behavior of the boundary of the stability region in the neighborhood of
a type-k subcritical Hopf equilibrium point with k ≥ 1 and, then we will present a
global characterization of the boundary in that neighborhood.

Theorem 21 (Stability Boundary in the Neighborhood of a Type-k Subcritical Hopf
Bifurcation Point with k ≥ 1) [11] Let (μ0, xμ0) be a type-k subcritical Hopf bifur-
cation point, with k ≥ 1, of (8) for μ = μ0. Suppose that the type-k subcritical Hopf
bifurcation point xμ0 belongs to the boundary of the stability region ∂Aμ0(x

s
μ0

) of
an asymptotically stable hyperbolic equilibrium point xsμ0

of (8) for μ = μ0. Admit
that assumptions (B1), (B2) and (B3) are satisfied for all μ belonging to an open
interval I containing μ = μ0, except in μ0 where assumptions (B1”) and (B2”)
are satisfied. Furthermore, assume that xμ0 is the only nonhyperbolic equilibrium
point in μ = μ0. Suppose also that for all μ ∈ I , all the critical elements of the
perturbed system ẋ = f (x, μ) are perturbed critical elements originated from the
system ẋ = f (x, μ0). Then there is a neighborhood of xμ0 and ε1 ≥ ε > 0 such
that:

(i) There is a hyperbolic closed orbit ΩH
μ of type-(k + 1), with 1 ≤ k ≤ n − 2,

and a hyperbolic equilibrium point x H
μ of type-k, with 1 ≤ k ≤ n − 2, in U for

all μ ∈ (μ0 − ε1, μ0) and a hyperbolic equilibrium point x H
μ of type-(k + 2),

with 1 ≤ k ≤ n − 2, in U for all μ ∈ (μ0, μ0 + ε1).
(ii) For μ ∈ (μ0 − ε, μ0) we have that

ΩH
μ ∈ ∂Aμ(xsμ) and xH

μ ∈ ∂Aμ(xsμ).
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(iii) For μ ∈ (μ0, μ0 + ε) we have that

x H
μ ∈ ∂Aμ(xsμ).

Theorem 21 ensures, for μ ∈ (μ0 − ε, μ0), the hyperbolic periodic orbit ΩH
μ of

type-(k + 1), with 1 ≤ k ≤ n − 2, and the hyperbolic equilibriumpoint xH
μ of type-k,

with 1 ≤ k ≤ n − 2, in the neighborhoodU , belongs to the stability boundary of xsμ.
As the parameterμ grows, the amplitude of the closed orbit decreases and approaches
the type-k hyperbolic equilibrium point, with 1 ≤ k ≤ n − 2 in U . At μ = μ0, the
periodic orbit coalesces with the hyperbolic equilibrium point in U , resulting in the
emergence of a type-k subcritical Hopf equilibrium point, with k ≥ 1. The subcritical
Hopf equilibrium point is on the stability boundary of xsμ. For values of μ > μ0, we
have a hyperbolic equilibrium point xH

μ inU , which belongs to the stability boundary.
Theorem 21 states that both the stability region as the stability boundary undergo
changes when the parameter changes in the interval (μ0 − ε, μ0 + ε).

The next result establishes the characterization of the stability boundary in a small
neighborhood of the parameter value of a type-k subcritical Hopf bifurcation, with
k ≥ 1.

Theorem 22 (Characterization of the Stability Boundary in the Neighborhood of
a Type-k Subcritical Hopf Equilibrium Point with k ≥ 1) [11] Let (μ0, xμ0) be a
type-k subcritical Hopf bifurcation point, with k ≥ 1, of (8) forμ = μ0. Suppose that
the type-k subcritical Hopf bifurcation point xμ0 belongs to the stability boundary
∂Aμ0(x

s
μ0

) of an asymptotically stable hyperbolic equilibrium point xsμ0
of (8) for

μ = μ0. Admit that assumptions (B1), (B2) and (B3) are satisfied for allμ belonging
to an open interval I containing μ = μ0, except in μ0 where assumptions (B1”)
and (B2”) are satisfied. Furthermore, assume that xμ0 is the only nonhyperbolic
equilibrium point inμ = μ0. Suppose also that for allμ ∈ I , all the critical elements
of the perturbed system ẋ = f (x, μ) are perturbed critical elements originated from
the system ẋ = f (x, μ0). If r iμ0

are the critical elements in ∂Aμ0(x
s
μ0

), i = 1, . . . , k,
then:

(i) For μ = μ0 we have

∂Aμ0(x
s
μ0

) =
⋃

i

W s
μ0

(r iμ0
)
⋃

Ws
μ0

(xμ0)

(ii) There is ε > 0 such that, for all μ ∈ (μ0 − ε, μ0),

∂Aμ(xsμ) =
⋃

i

W s
μ(r iμ)

⋃
Ws

μ(xH
μ )

⋃
Ws

μ(ΩH
μ )

where r iμ, i = 1, 2, . . . , k are the perturbed hyperbolic critical elements in
∂Aμ(xsμ) and xH

μ and ΩH
μ are the type-k hyperbolic equilibrium point, with

1 ≤ k ≤ n − 2, and a type-(k + 1) periodic orbit, with 1 ≤ k ≤ n − 2, respec-
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tively, originated from the type-k subcritical Hopf bifurcation, with k ≥ 1.

(iii) There is ε > 0 such that, for all μ ∈ (μ0, μ0 + ε),

∂Aμ(xsμ) =
⋃

i

W s
μ(r iμ)

⋃
Ws

μ(xH
μ )

where r iμ, i = 1, 2, . . . , k are the perturbed hyperbolic critical elements in
∂Aμ(xsμ) and xH

μ is the type-(k + 2) hyperbolic equilibrium point, with 1 ≤
k ≤ n − 2, originated from the type-k subcritical Hopf bifurcation, k ≥ 1.

Example Consider the nonlinear dynamical system from [9]:

⎧
⎨

⎩

ẋ = (−z + μ)x − y − x(x2 + y2);
ẏ = (−z + μ)y + x − y(x2 + y2);
ż = −0.1(z + 0.5(x2 + y2))(z − 3)(8 − z);

(9)

where (x, y, z) ∈ R
3 and μ ∈ R. For μ0 = 0, system (9) has three equilibrium

points, they are: a type-1 hyperbolic equilibrium point, x1 = (0, 0, 8), a type-1
supercritical Hopf equilibrium point, xH

μ0
= (0, 0, 0), and an asymptotically sta-

ble equilibrium point, xsμ = (0, 0, 3). The boundary of the stability region of
xsμ0

= (0, 0, 3) is formed by the union of the stablemanifold of the type-1 hyperbolic
equilibrium point x1 = (0, 0, 8)with the center manifold of the type-1 supercritical

Fig. 14 a The boundary of the stability region of xsμ = (0, 0, 3) is formed by the union of the

stable manifold Ws
μ(x1) with the stable manifold Ws

μ(xHμ ). b The boundary of the stability region
of xsμ0

= (0, 0, 3) is formed by the union of the stable manifoldWs
μ0

(x1) with the center manifold
Wc

μ0
(xμ0 ). c The boundary of the stability region of xsμ = (0, 0, 3) is formed by the union of the

stable manifold Ws
μ(x1) with the stable manifold Ws

μ(φH
μ ). Reprinted from [9]
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Hopf equilibrium point, xH
μ0

= (0, 0, 0), see Fig. 14b. For μ = −0.5, the system
has three equilibrium points, they are: two type-1 hyperbolic equilibrium points,
xH

μ = (0, 0, 0) and x1 = (0, 0, 8), and an asymptotically stable equilibrium point,
xsμ = (0, 0, 3). The equilibrium point xH

μ is originated from the type-1 supercritical
Hopf equilibrium point in a type-1 supercritical Hopf bifurcation. The hyperbolic
equilibrium points xH

μ = (0, 0, 0) and x1 = (0, 0, 8) belong to the boundary of the
stability region ∂Aμ(xsμ), according to Theorem 19, see Fig. 14a. For μ = 0.5, the
system has four critical elements, they are: a type-3 hyperbolic equilibrium point,
xH

μ = (0, 0, 0), a type-1 hyperbolic equilibrium point, x1 = (0, 0, 8), an asymptot-
ically stable equilibrium poin, xsμ = (0, 0, 3), and a type-1 hyperbolic periodic orbit
φH

μ . The critical elements xH
μ andφH

μ were originated from the type-zero supercritical
Hopf equilibrium point in a type-zero supercritical Hopf bifurcation. The hyperbolic
equilibrium points x1 and φH

μ belong to the boundary of the stability region ∂Aμ(xsμ),
according to Theorem 19, see Fig. 14c.

5 Concluding Remarks

In this chapter, the body of the existing theory regarding the study of changes in the
stability region due to parameter variation has been presented. These changes might
be very complex and we have studied in this chapter only the ones triggered by two
types of local bifurcation on the stability boundary: the saddle-node bifurcation and
the Hopf bifurcation. It has been shown that these bifurcations may induce drastic
changes in the “size” of the stability region, impacting on the stability of practical
systems. There aremany open issues to investigate to understand how stability region
of general nonlinear systems behave as a consequence of parameter variation. Other
types of local bifurcations on the stability boundary and global bifurcations are
examples of potential themes for future research.
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