
Chapter 8
Some Hecke-Type Algebras Derived from
the Braid Group with Two Fixed Strands

Dimitrios Kodokostas and Sofia Lambropoulou

Abstract We construct some Hecke-type algebras, and most notably the quotient
algebra H2,n(q) of the group-algebraZ [q±1] B2,n of the mixed braid group B2,n with
two identity strands and n moving ones, over the quadratic relations of the classical
Hecke algebra for the braiding generators. The groups B2,n are known to be related to
the knot theory of certain families of 3-manifolds, and the algebras H2,n(q) are aimed
for the construction of invariants of oriented knots and links in these manifolds. To
this end, one needs a suitable basis of H2,n(q), and we have singled out a subset Λn

of this algebra for which we proved it is a spanning set, whereas ongoing research
aims at proving it to be a basis.
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Introduction

It is established that knots and links in arbitrary knot complements, in compact,
connected, oriented (c.c.o.) 3-manifolds and in handlebodies may be represented
by mixed links and mixed braids in S3 [4, 9, 13]. The braid structures related to
knots and links in the above spaces are the mixed braid groups Bm,n and appropriate
cosets of theirs [15]. An element in Bm,n is a classical braid in S3 on m + n strands
with the first m strands forming the identity braid. The mixed braid groups enable
the algebraic formulation of the geometric braid equivalences in the above spaces
[4, 9, 16].
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In this paper we focus on the mixed braid groups B2,n , which are related to knots
and links in certain families of 3-manifolds like, for example, the handlebody of
genus two, the complement of the 2-unlink in S3 and the connected sums of two
lens spaces, which are of interest also to some biological applications [3]. We define
the quotient algebras H2,n(q), H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1, . . . , vd2)
of B2,n over the quadratic relations of the classical Iwahori–Hecke algebra for the
braiding generators, and polynomial relations for the looping generators. We then
focus on H2,n(q) and present a subset Λn of it, indicating the reason it has to be
a spanning set for its additive structure. The set Λn potentially constitutes a linear
basis of H2,n(q), a fact whose proof is the object of ongoing research.

The sets Λn for n ∈ N are destined to provide an appropriate inductive basis
for the sequence of algebras H2,n(q), n ∈ N, in order to construct Homflypt-type
invariants for oriented links in 3-manifolds whose braid structure is encoded by the
groups B2,n . It is known that the mixed braid groups B1,n have been utilized for
constructing Homflypt-type invariants for oriented links in the solid torus [8, 12,
14] and the lens spaces L(p, 1) [6], following the original Jones construction of
the classical Homflypt polynomial for oriented links in S3 using the Iwahori–Hecke
algebra of type A and the Ocneanu trace [10]. For our purposes we first need to
construct appropriate algebras related to the mixed braid groups B2,n , and then to
chose an appropriate inductive bases on them, so that the construction of Oceanu-
type Markov traces on these algebras would be possible, which subsequently can be
used for the construction of link invariants.

The paper is organized as follows: in Sect. 8.1.1 we recall the definition and a
presentation of the mixed braid group B2,n and we define some important elements
of it which we call loopings. In Sect. 8.1.2 we define our quotient algebras H2,n(q),
H2,n(q, u1, v1) andH2,n(q, u1, . . . , ud1 , v1, . . . , vd2). In Sect. 8.2we provide a poten-
tial basis Λn for the algebra H2,n(q), and we give the necessary lemmata for proving
it to be spanning set of the algebra.

8.1 The Mixed Braid Groups B2,n and Related Hecke-Type
Algebras

8.1.1 The Mixed Braid Group B2,n On Two Mixed Strands
and Other Related Groups

For each n ∈ N, the elements of the mixed braid group B2,n on two fixed strands are
defined to be the braids with n + 2 strands where the first two of them are straight,
and the group operation is by definition the usual braid concatenation. A description
of B2,n in terms of generators and relations is the following [15]:
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Fig. 8.1 The generators of B2,n

Fig. 8.2 The looping
elements Ti , τi

B2,n =
〈

τ ,T ,

σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣

σkσ j = σ jσk (|k − j | > 1) , σkσk+1σk = σk+1σkσk+1 (1 ≤ k ≤ n − 1)
T σk = σk T (k ≥ 2), T σ1 T σ1 = σ1 T σ1 T
τ σk = σk τ (k ≥ 2), τ σ1 τ σ1 = σ1 τ σ1 τ ,

τ (σ1T σ1) = (σ1T σ1)τ

〉

where σi , τ , T are shown in Fig. 8.1; I, I I indicate the two fixed strands as they are
called, whereas 1, 2, . . . , n indicate the moving strands. The braids τ , T and their
inverses are called the looping generators, whereas σi and its inverse are called the
i-th braiding generators for i = 1, 2, . . . , n − 1, whereas i is called the index of the
i-th braiding generators.

Belowwe define the elements Ti , τi , i = 1, . . . , n of B2,n which will be of central
importance to us in what follows.

Definition 8.1 The looping elements or just loopings Ti , τi of B2,n are those braids
in which all strands are straight except for the i-th moving strand that loops once
around the first or the second fixed strand respectively, first going over and then (after
the looping) under the rest of the strands to its left (see Fig. 8.2). We use the name
looping for the inverses of these elements as well, and we say that each one of the
loopings T ±1

i , τ±1
i has index i . Formally:

T1 := T , τ1 := τ and Ti := σi−1 . . . σ1T σ1 . . . σi−1, τi := σi−1 . . . σ1τσ1 . . .σi−1 for i > 1.

As is shown in Fig. 8.3, the defining relation τσ1T σ1 = σ1T σ1τ of B2,n which
is now written as τ1σ1T1σ1 = σ1T1σ1τ1, holds in general for all i = 1, 2 . . . , n − 1
(just slide the τi looping to pass through the Ti looping):

τiσiTiσi = σiTiσiτi .
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Fig. 8.3 The relation
τiσiTiσi = σiTiσi τi in B2,n

Clearly, B2,n is generated by the set {Ti , τi ,σi |i = 1, . . . , n} as well. Also, clearly,
the group B2,n is a subgroup of the usual braid group B2+n in 2 + n strands [15]. In
turn, B2,n contains some important subgroups. One of them is the pure mixed braid
group on two fixed strands P2,n that consists of all pure braids in B2,n . For a further
study of the structure of the groups B2,n, P2,n and their generalizations Bm,n, Pm,n as
well as the underlying Coxeter-type groups see [2, 15].

Other important subgroups of B2,n are those generated by T ,σ1, . . . ,σn−1 and
by τ ,σ1, . . . ,σn−1, which are isomorphic to the mixed braid group on one fixed
strand B1,n defined in terms of generators and relations in an analogous manner
as B2,n and which, in fact, is the Artin braid group of type B. Indeed, the defining
relations T σ1T σ1 = σ1T σ1T and τσ1τσ1 = σ1τσ1τ of B2,n are of the same type
as the four-term defining relations of the Artin braid group of type B.

8.1.2 The Algebra H2,n(q) and Other Related Algebras

We define the algebra H2,n(q) for each n ∈ N as a quotient of an appropriate group-
algebra of B2,n over appropriate quadratic relations. Namely:

Definition 8.2 The mixed Hecke algebra on two fixed strands H2,n(q) is defined as
the unital associative algebra:

H2,n(q) := Z [q±1] B2,n

〈σi
2 − (q − 1)σi − q · 1, i = 1, 2, . . . , n − 1〉 ,

where q is a variable.
In general we use the same notation for the elements of B2,n when considered as

elements of H2,n(q), except for σi which we denote gi , i = 1, . . . , n. H2,n(q) has
equivalently a presentation with generators τ , T , g1, . . . , gn−1 and relations:
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(b1) gkgk+1gk = gk+1gkgk+1 for 1 ≤ k ≤ n − 1
(b2) gkg j = g jgk for |k − j | > 1
(T1) T gk = gk T for k ≥ 2
(T2) T g1 T g1 = g1 T g1 T
(τ1) τ gk = gk τ for k ≥ 2
(τ2) τ g1 τ g1 = g1 τ g1 τ
(m) τ (g1T g1) = (g1T g1)τ
(q) g2i = (q − 1) gi + q · 1 for i = 1, 2, . . . , n − 1

(8.1)

(here (b) stands for “braid”, (m) for “mixed” and (q) for “quadratic”). The elements
τ , T and their inverses will be called the looping generators of the algebra. The
elements g1, . . . , gn−1 and their inverses will be called the braiding generators of
the algebra, whereas i will be the index of gi , g

−1
i .

Since the classical Artin braid group Bn embeds naturally in B2,n , we have that
the classical Iwahori–Hecke Algebra Hn(q) is a subalgebra of H2,n(q) in a natural
way as well. Furthermore, note that the relations (T2) and (τ2) are of the same type as
the well-known four-term defining relation of the Artin braid group of type B which
is realized here by the mixed braid group B1,n with one fixed strand, hence it embeds
naturally in B2,n . So, the algebra H2,n(q) extends naturally the mixed Hecke algebra
H1,n(q) introduced in [14] as “generalized Hecke algebra” of type B. The algebra
H2,n(q) clearly contains two subalgebras isomorphic to H1,n(q).

We can define a lot of other interesting related algebras, a few of which as follows:

Definition 8.3 The algebra H2,n(q, u1, v1) is defined as:

H2,n(q, u1, v1) := Z [q±1, u±1
1 , v±1

1 ] B2,n

〈(q), T 2 = (u1 − 1)T + u1 · 1, τ 2 = (v1 − 1)τ + v1 · 1〉 ,

where distinct variables u1, v1 are associated to T , τ .

Note that the relations (T2) and (τ2) are of the same type as the defining relations of
the Hecke algebra of type B [7]. Furthermore, it is clear from the quadratic relations
for the looping generators in Definition 8.3 that the algebra H2,n(q, u1, v1) extends
the classical Hecke algebra of typeB. In fact H2,n(q, u1, v1) contains two subalgebras
isomorphic to the Hecke algebra of type B.

Definition 8.4 The cyclotomic algebra H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) is defined
as:

H2,n(q, u1, . . . , ud1 , v1, . . . , vd2 ) :=
Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
] B2,n

〈(q), (T − u1) . . . (T − ud1 ) = 0, (τ − v1) . . . (τ − vd1 ) = 0〉 ,

where q, u1, . . . , ud1 , v1, . . . , vd2 are variables and the last two relations are called
cyclotomic relations for T and τ respectively (see Fig. 8.4).
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Fig. 8.4 The mixed braids
involved in the cyclotomic
relation of the loop generator
τ

Analogously to the algebras defined above, by relations for (T2) and (τ2)
and the defining relation for T , τ in Definition 4 it follows that the algebra
H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) extends naturally the Ariki–Koike algebra of type
B [1], and in fact it contains two subalgebras isomorphic to the Ariki–Koike algebra.

The mixed Hecke algebra H1,n(q), the Iwahori–Hecke algebra of type B, and the
Ariki–Koike algebra of type B are all related to the knot theory of the solid torus and
the lens spaces [5, 6, 8, 12, 14]. Note that each one of the three types of algebras that
we define here surjects naturally onto its corresponging B-type algebra, for example
via the following mappings respectively:

• T �→ 1, τ �→ τ , gi �→ gi surjects H2,n(q) onto H1,n(q).
• T �→ 1, τ �→ τ , gi �→ gi and specializing u1 to 1, surjects H2,n(q, u1, v1) onto the
Hecke algebra of type B.

• T �→ 1, τ �→ τ , gi �→ gi and specializing ui to 1 for i = 1, . . . , d1, surjects
H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) onto the Ariki–Koike algebra of type B.

Finally, let us note that the algebras H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1,
. . . , vd2) can be viewed as quotient algebras of H2,n(q), if in Definitions8.2–8.4
we use Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
] as a common ring of coefficients for all

three algebras.

8.2 A Spanning Set and Potential Basis for the Algebra
H2,n(q).

We still call Ti , τi and their inverses as looping elements or loopingswhenwe cosider
them as elements of H2,n(q), and similarly we call i as their index. For Ti , τi as
elements of the algebra we have

Ti = gi−1 . . . g1T g1 . . . gi−1 and τi = gi−1 . . . g1τg1 . . . gi−1.

Our aim is to provide a “nice” form for any element w of H2,n(q) using these
looping elements and the gi ’s, so that a possible spanning set of the algebra reveals
itself. Since w is a Z[q±1]-linear combination of images in the algebra H2,n(q) of
braids in B2,n , one has to think about only the case of putting an image of a braid w

in a “nice” form.
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Now let us recall that the set {Ti , τi ,σi |i = 1, . . . , n} generates B2,n , thus an
arbitrary braid w of B2,n is written as a finite product of elements of this set and their
inverses; as a matter of fact, it can be written so in many ways. Previous work done
on specific subsets of B2,n , shows that considering their elements as belonging to
appropriate related algebras similar to H2,n(q), we can put them in canonical forms
useful for constructing Markov traces over these algebras. For example whenever w

is a product of only the gi ’s (considered as an element of the algebra) thenw actually
belongs to Hn(q) and as such it is subjected to the canonical form of the classical
Hecke algebra Hn(q) of type A, given by V.F.R. Jones [10]. Also, whenever w is a
product of only τi , gi ’s (thus containing no Ti ’s), it actually belongs to H1,n(q) (as
mentioned in the previous section, this is the generalized Hecke algebra of type B),
and therefore it is subjected to the canonical form given in [14]. Such aw is written as
a finiteZ[q±1]-linear combination of products of τi ’s and gi ’s with the τi ’s appearing
first, and moreover with the indices of the τi ’s in increasing order from left to right.

Theorem 8.1 below tells us how to bring any w of B2,n to a similar “nice” form
when considered as an element of the algebra H2,n(q). At the same time we get a
spanning set Λn for the additive structure of H2,n(q) as a Z[q±1]-module. What the
theorem actually says is that every element of the algebra H2,n(q) is written as a finite
Z[q±1]-linear combination of products of Ti , τi ’s and gi ’s with the Ti , τi ’s appearing
first, and moreover with the indices of the τi ’s in increasing order from left to right.
To achieve this for the image of a braid given in a product form we can try first to
push all gi ’s (i.e. the images of the σi ’s) at the end using braid isotopies (at the braid
level) together with the quadratic relations in the algebra H2,n(q) (see Lemma 8.1).
And then we can similarly try to push all loopings with big indices after those with
smaller ones (see Lemma 8.2). Working out specific examples one soon realizes that
pushing the gi ’s is always possible, and that pushing the loopings with big indices
after those with small ones can be almost always achieved, except that in the process
some new gi ’s might be created, and pushing them anew to the end might increase
the indices of the loopings from which it passes, leaving quite open the question of
whether the indices of the loopings can indeed be ordered. We deal with this issue
in Lemma 8.3.

Theorem 8.1 Any element in H2,n(q) can be written as a finite Z[q±1]-linear com-
bination of the form (suppressing the coefficient in Z[q±1] of each term):

∑
(Π1Π2 · · ·Πn)G

where G is a finite product of braiding generators, and Πi is a finite product of only
the loopings Ti , τi , T −1

i , τ−1
i for all i . Thus the following is a spanning set of the

algebra H2,n(q):
Λn := {Π1Π2 · · · ΠnG | G = an element in some basis of Hn(q) and Πi = finite
product of only the loopings Ti , τi , T −1

i , τ−1
i ,∀i }.

The definition of the looping elements and braiding generators can be repeated
for the other algebras which we defined in Sect. 8.1.2, and the proof of Theorem 8.1
can be repeated unaltered step by step to get:
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Theorem 8.2 Let A = H2,n(q, u1, v1), R = Z[q±1, u±1
1 , v±1

1 ] or A = H2,n(q, u1,
. . . , ud1 , v1, . . . , vd2), R = Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
]. Then any element

in A can be written as a finite R-linear combination of the form (suppressing the
coefficient in R of each term):

∑
(Π1Π2 · · ·Πn)G

where G is a finite product of braiding generators, and Πi is a finite product of only
the loopings Ti , τi , T −1

i , τ−1
i for all i . Thus the following is a spanning set of the

algebra R:
Λn := {Π1Π2 · · · ΠnG | G = an element in some basis of Hn(q) and Πi = finite
product of only the loopings Ti , τi , T −1

i , τ−1
i ,∀i }.

Below we list the necessary lemmata for the proof of Theorem 8.1 which is quite
technical since it has to deal carefully with the indices appearing in a given product
of loopings as well as with the possible recursion phenomena that might arise during
the process. We provide the actual proof in [11]. The lemmata equip us with specific
formulas for pushing braiding generators to the right of a product of loopings, and
also for pushing loopings with high indices to the right of loopings with lower indices
in a product of loopings. The lemmata also explain how we can deal with recursion
phenomena.

Lemma 8.1 Let us call A = q−1 − 1, B = q − 1. And let us denote the identity
element of H2,n(q) by 1. Then the following hold in H2,n(q):

(1) g−1
i = q−1gi + A · 1

(2) giT ±1
j = T ±1

j gi gi τ
±1
j = τ±1

j gi whenever j 
= i, i + 1
(3) giTi = q−1Ti+1gi + ATi+1 gi τi = q−1τi+1gi + Aτi+1

(4) giT −1
i = T −1

i+1 − AT −1
i+1 + AT −1

i gi τ
−1
i = τ−1

i+1 − Aτ−1
i+1 + Aτ−1

i
(5) giTi+1 = qTigi + BTi+1 gi τi+1 = qτigi + Bτi+1

(6) giT −1
i+1 = q−1T −1

i gi + AT −1
i gi τ

−1
i+1 = q−1τ−1

i gi + Aτ−1
i .

(7) (The passage property) Any product gε
k t

ζ
l (ε, ζ ∈ {1,−1}, tl a looping) can be

written as a finite linear combination of the form (suppressing the coefficient in
Z[q±1] of each term on the right-hand side):

gε
i t

ζ
l =

∑
tζl gε

i +
∑

tζi +
∑

tζi g
ε
i +

∑
tζi+1.

(where possibly some of the terms are missing).
(8) (The big passage property) Let Π be a finite product of k in number loopings

with indices in the interval [m, M], and let i ∈ [m, M − 1]. Then g±1
i Π canbewritten

as a finite linear combination of the form (suppressing the coefficient in Z[q±1] of
each term on the right-hand side):

g±1
i Π =

∑
Π1g

±1
i +

∑
Π2
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(where possibly some terms are missing) with each Π1,Π2 a product of k in number
loopings with indices in [m, M].

Part (2) of the lemma can be seen in the braid level via trivial braid isotopies,
and parts (2)–(6) can also be seen pictorially after at most two applications of the
quadratic relation to the braids of the left-hand side. These are summarized in part
(7). Since on both sides of parts (2)–(6) each term contains a single looping and in
part (7) the index of the looping either does not change at all or if it does, it decreases
by 1 but then never below the index i of the braiding generator, or else it increases
by 1 but then never by 1 above the index i of the braiding generator, we get part (8)
at once.

The following lemma describes how we can push a looping with high index to
the right of a looping with smaller index.

Lemma 8.2 For j < i and ε, ζ ∈ {1,−1} each one of the words T ε
i T

ζ
j , T ε

i τ
ζ
j , τ

ε
i T

ζ
j ,

τ ε
i τ

ζ
j can be written as a linear combination of the form (suppressing the coefficient

in Z[q±1] of each term on the right-hand side):

1. T ε
i T

ζ
j = T ζ

j T ε
i , τ ε

i τ
ζ
j = τ

ζ
j τ

ε
i , T ε

i τ
ζ
j = τ

ζ
j T ε

i

2. τ ε
i T ε

j = T ε
j τ

ε
i + T ε

j τ
ε
i G

ε + τ ε
jT ε

i G
ε, where G = g jg j+1 . . . gi−2g

−1
i−1g

−1
i−2 . . .

g−1
j+1g

−1
j .

3. τ ε
i T −ε

j = T −ε
j τ ε

i + T −ε
j τ ε

j G
ε + τ ε

i T −ε

i Gε, where G = g jg j+1 . . . gi−2gi−1gi−2

. . . g j+1g j .

The proof of this lemma is easy, as part (1) can be seen at the braid level via
braid isotopies, and the last two parts can also be seen at the braid level as a double
application of the quadratic relation at the obvious crossings so that the i-looping
can be moved above the j-looping.

The lemma that follows is the last one that we need for the proof of Theorem
8.1, and it says that a certain class of words actually satisfies the theorem. These
words have the odd property that whenever we apply all the previous formulas in
order to write them as sums of monomials in the way demanded by the theorem,
they are written so except from the fact that one of the monomials is the word itself.
Fortunately, the coefficients appearing in these equalities are well behaved and we
can solve for the given word so that it is indeed expressed in way described in the
theorem. This recursion phenomenon is possible only because one of the monomials
on the right-hand side in case (3) of Lemma 8.2 still starts with an i-looping instead
of a j-looping.

In the statement of the lemma it is convenient to write [i, j] in the bottom of
a product of looping or braiding generators to indicate that their indices lie in the
interval [i, j], and towrite< i, j > to indicate that these indices are also in increasing
order (from left to right).

Lemma 8.3 Let us denote elements in {T ±1
i , τ±1

i } indiscreetly by ti . Then each one
of the words τ ε

MT −ε
M t ζ

m with m < M and ε, ζ ∈ {−1, 1} can be written as a finite
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linear combination of the form (suppressing the coefficient in Z[q±1] of each term
on the right-hand side):

τ ε
MT −ε

M t ζ
m =

∑ (
tmtm1 tm2
<m,M>

)
G

[m,M−1]

where each G is a finite product of g±1
i ’s (notice the crucial fact that every term of

the last sum starts with an m-looping).

The proof of this lemma is not as immediate as the proofs in the previous lemmata.
We have to examine all possible cases separately, applying the quadratic relations
appropriately and using isotopies at the braid level. The reader is referred to [11]
for full details of the proof, as well as for the proof of Theorem 8.1 which is a
consequence of Lemmata 8.1–8.3.

Remark In [11], we also conjecture that the set Λn is a linear basis for the algebra
H2,n(q). This is not straightforward to prove, as the algebra H2,n(q) is infinite dimen-
sional. Nevertheless we can get some insight of how Λn behaves, by examining its
counterparts in the other algebras H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1, . . . ,
vd2), defined in this paper, and for which these counterparts also constitute spanning
sets (Theorem 8.2). Although these algebras are infinite dimensional too, the expo-
nents of the loopings in the elements of the above spanning sets are bounded, a fact
that makes these algebras easier to study.

8.3 Conclusion and Further Research

In this paper we have defined some Hecke-type algebras related to the mixed braid
group B2,n on two fixed strands, and we have focused on one of them, namely on the
mixed Hecke algebra H2,n(q) which is defined as the quotient of the group-algebra
Z[q±1]B2,n over the quadratic relations of the usual Hecke algebra. These algebras
are related to the knot theory of various 3-manifolds whose knot structure is encoded
by the mixed braid groups B2,n , such as handelebodies of genus two, and connected
sums of lens spaces. We have given here a subset Λn of H2,n(q) and provided the
necessary lemmata along with hints for their truth, for proving that Λn is a spanning
set for the additive structure of the algebra [11]. We conjecture that Λn is actually a
basis for H2,n(q) and this the subject of current research. Then, based on previous
work done on similar Hecke-type algebras, we expect that we can use Λn for the
construction of knot invariants in the above 3-manifolds.
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