
Chapter 6
Link Diagrams in Seifert Manifolds
and Applications to Skein Modules

Boštjan Gabrovšek and Maciej Mroczkowski

Abstract In this survey paper we present results about link diagrams in Seifert
manifolds using arrow diagrams, starting with link diagrams in F × S1 and N×̂S1,
where F is an orientable and N an unorientable surface. Reidemeister moves for
such arrow diagrams make the study of link invariants possible. Transitions between
arrow diagrams and alternative diagrams are presented. We recall results about the
Kauffman bracket and HOMFLYPT skein modules of some Seifert manifolds using
arrow diagrams, namely lens spaces, a product of a disk with two holes times S1,
RP3#RP3, and prismmanifolds.We also present new bases of the Kauffman bracket
and HOMFLYPT skein modules of the solid torus and lens spaces.

6.1 Arrow Diagrams of Links in Products and Twisted
Products of S1 and a Surface

Let F be an orientable surface and N an unorientable surface. In this section we
recall the construction of arrow diagrams for links in F × S1, introduced in [13], and
N×̂S1, introducted in [11]. These diagrams are very similar to gleams introduced in
[16].
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6.1.1 Arrow Diagrams of Links in F × S1

Let L be a link in M = F × S1. We cut M along F0 = F × {1}, 1 ∈ S1, to get
M ′ = F × [0, 1]. By a general position argument we may assume that L intersects
F0 transversally in a finite number of points. InM ′ the link L becomes L ′ - a collection
of circles and arcs with endpoints coming in pairs (x, 0) and (x, 1), x ∈ F . Let π be
the vertical projection from M ′ onto F . Then π(L ′) is a collection of closed curves.
Again, by a general position argument, wemay assume that there are only transversal
double points in π(L ′) and the endpoints of arcs are projected onto points distinct
from these double points. An arrow diagram D of the link L is π(L ′)with some extra
information: for double points P , the usual information of over- and undercrossing
is encoded depending on the relative height of the two points π−1(P) in F × [0, 1];
for points Q that are projections of endpoints of arcs (x, 0) and (x, 1) in L ′, orient
L in such a way that the height drops by 1 in L ′ when the first coordinate crosses x ,
and put on Q an arrow indicating this orientation.

Thus, an arrow diagram D is a collection of immersed curves in F , with under-
and overcrossing information for double points and some arrows on these curves.
For an example see the diagram on Fig. 6.1.

We call an arrow diagram regular, if none of the following forbidden positions
appear on the diagram:

(i) cusps (Fig. 6.2a), (1)
(ii) self-tangency points (Fig. 6.2b),
(iii) triple points (Fig. 6.2c),
(iv) two arrows coincide (Fig. 6.2d),
(v) arrows and crossings coincide (Fig. 6.2e).

F × {0}

F × {1}

π−−−→

Fig. 6.1 A link in F × S1 and its diagram

(a) (b) (c) (d) (e)

Fig. 6.2 Forbidden positions of regular diagrams in F × S1
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With standard arguments of general positionwemay assume that every link admits
a regular diagram.

We complete this section by providing a list of generalized Reidemeister moves
associated with the arrow diagrams. As usual, Reidemeister moves coincide with the
change of diagram that occurs when an isotopy of the link is performed in such a way
that the configuration of arcs (and arrows) passes through a forbidden position in the
projection. We therefore assign each forbidden position an associated Reidemeister
move. By general position theory, the ambient isotopy bringing one link diagram to
another one passes through only a finite number of such forbidden positions, hence
a finite number of Reidemeister-type moves.

As in the classical case, Reidemeister movesΩ1,Ω2, andΩ3 (Fig. 6.3) arise from
the forbidden positions (i), (ii), and (iii), respectively. Positions (iv) and (v) generate
Reidemeister moves Ω4 (“arrow annihilation”) and Ω5 (“arrow push”), respectively.
Graphical interpretation of moves Ω4 and Ω5 are presented in Figs. 6.4 and 6.5,
respectively.

We conclude this section with the following Reidemeister-type theorem.

Theorem 6.1 A link L1 is ambient isotopic to a link L2 if and only if an arrow
diagram D1 of L1 can be obtained from an arrow diagram D2 of L2 by a finite series
of Reidemeister moves Ω1 to Ω5.

←→

(a) Ω1

←→

(b) Ω2

←→

(c) Ω3

←→ ←→

(d) Ω4

←→

(e) Ω5

Fig. 6.3 Classical Reidemeister moves Ω1 – Ω3 and two “arrow” moves Ω4 and Ω5

isot.←−−→ isot.←−−→

Ω4←−→ Ω4←−→

Fig. 6.4 Interpretation of the move Ω4
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Fig. 6.5 Interpretation of
the move Ω5

isot.←−−→

Ω5←−→

6.1.2 Arrow Diagrams of Links in N×̂S1

An unorientable surface N is obtained from a sphere with n holes Sn by glueing k of
the boundary S1’s with antipodal maps (which is equivalent to glueingMobius bands
to these holes). Denote the k boundary S1’s by C . Let M = N×̂S1 be obtained from
M ′ = Sn × S1 by glueing (x, y) ∈ C × S1 to (−x, r(y)), where r is a reflection of
S1 (one may take the complex conjugation). Let L be a link in M . In M ′, L becomes
L ′, a collection of circles and arcs with endpoints coming in antipodal pairs (x, y)
and (−x, r(y)) in C × S1.

For L ′ in Sn × S1 one constructs an arrow diagram as in the previous subsection,
the only difference being that there are now some arcs with endpoints coming in
antipodal pairs. For an example of a diagram see Fig. 6.6.

We call a diagram regular, if, in addition to the list (1), none of the following
forbidden positions appear on the diagram:

(vi) tangency points with the boundary (Fig. 6.7a),
(vii) crossing coincides with the boundary (Fig. 6.7b),
(viii) arrow coincides with the boundary (Fig. 6.7c).

Fig. 6.6 A diagram of a link
in N×̂S1
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(a)
(b)

(c)

Fig. 6.7 Additional forbidden positions of regular diagrams in N×̂S1

To these additional forbidden positions (vi), (vii), and (viii), we associate Reide-
meister moves Ω6, Ω7, and Ω8 (Fig. 6.8), respectively.

Theorem 6.2 A link L1 is ambient isotopic to a link L2 in N×̂S1 if and only if an
arrow diagram D1 of L1 can be obtained from an arrow diagram D2 of L2 by a
series of Reidemeister moves Ω1 to Ω8.

Example 6.1 The connected sumof twoprojective spacesRP3�RP3 is also a twisted
S1 over RP2. Thus, diagrams consists of closed curves and arcs in a disk with
endpoints of arcs coming in antipodal pairs on the boundary of the disk. An example
of Reidemeister moves between diagrams is presented in Fig. 6.9.

←→

(a) Ω6

←→

(b) Ω7

←→

(c) Ω8

Fig. 6.8 Additional Reidemeister moves

Ω5−−−→ Ω5−−−→ Ω8−−−→

Ω4−−−→

Fig. 6.9 Reidemeister moves on diagrams of a link in RP3�RP3
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6.2 Arrow Diagrams for Links in Seifert Manifolds

Definition 6.1 A standard fibered torus corresponding to a pair of coprime integers
(q, p), q > 0, or p

q , is the solid cylinder D2 × I , where we identify the ends of the

solid cylinder with a 2π p/q twist. Each S1 fiber comes from q vertical segments in
the cylinder, except for the core fiber which comes from the central vertical segment.
We call this core fiber exceptional if q > 1.

Definition 6.2 A Seifert manifold (also a Seifert fibered space) is a closed 3-
manifold which can be decomposed into a disjoint union of S1’s (called fibers),
such that each tubular neighbourhood of a fiber is a standard fibered torus.

Any orientable SeifertmanifoldM can be obtained from F × S1 or N×̂S1 through
a finite number of surgeries (qi , pi ) on vertical S1 fibers (see [14]).

To perform such a surgery one removes a vertical solid torus T1 with longitude
l1 and meridian m1 on ∂T1 corresponding to a vertical and horizontal S1’s in the
product F × S1 or Sn × S1 in the case of N×̂S1 (see the previous section). Then,
another solid torus T2 with fixed longitude l2 and meridian m2 is glued to ∂T1, so
thatm2 is glued to the curve qim1 + pi l1, see Fig. 6.10. After glueing the meridional
disk along this curve, the remaining ball of T1 is glued to finish the surgery.

The diagram of a link L in the Seifert manifold M is constructed as before,
assuming that L misses the exceptional fibers of the surgeries (which can be done
by general position). These exceptional fibers project to points in F or N , disjoint
from the curves of the diagram. These points appear in the diagrams, together with
the type of surgery (qi , pi ) next to them. See Fig. 6.11 as an example.

If qi = 1, the fiber is not exceptional and, as a shorthand, next to the point onto
which it is projected, we put (pi ) instead of (1, pi ). For instance, ifM is an S1-bundle
over F , then there is a unique (p) fiber in the diagrams, p ∈ Z. If p = 0 one gets
just S1 × F .

With the added surgery fibers we get an additional forbidden position:

(ix) the surgery point and strand coincide (Fig. 6.12a), (2)

Fig. 6.10 Glueing map of
the surgery

m2

−→

qim1 + pil1
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(q1, p1)

(q2, p2)

(q3, p3)

Fig. 6.11 A diagram of a link in a Seifert manifold with three surgeries

(a) Forbidden position

←→

(b) Ω(q,p)

Fig. 6.12 A forbidden position and the corresponding slide move Ω(q,p)

which gives rise to the Reidemeister moveΩ(qi ,pi ), corresponding to sliding an arc of
the link L through the meridional disk of T2. TheΩ(q,p) move is shown in Fig. 6.12, it
consists of going q times around the exceptional point and adding p arrows uniformly
on every 2πq/p angle.

Theorem 6.3 A link L1 is ambient isotopic to a link L2 in an orientable Seifert
manifold M if and only if an arrow diagram D1 of L1 can be obtained from an arrow
diagram D2 of L2 by a series of Reidemeister moves Ω1 to Ω8 and Ω(qi ,pi ).

Let D be an arrow diagram of a link L . We call a component of D an oval if it is
a component without crossing with possible arrows on it. We call an oval nested if it
lies in the interior of a disk bound by another oval.

If n arrows lie consecutively we simplify the diagram by placing only one arrow
with an integer n next to it. We interpret a negative integer above an arrow as |n|
reversed arrows, see Fig. 6.13. In lens spaces we can alternatively think of L(p, q)

as a manifold with Heegaard genus 1 decomposition of two solid tori. We isotope L
into the first solid torus and project it to annulus as before and an arrow diagram of
a link in L(p, q) can thus be viewed as a diagram on a disk. For L(p, 1), the move
Ω(1,p), which we will denote by Ω(p) (see [11]), is a winding around the boundary
of the disk with p arrows added, see Fig. 6.14.



124 B. Gabrovšek and M. Mroczkowski

} n

∼

n

∼

−n

Fig. 6.13 Oval notation

←→
p

Fig. 6.14 The Ω(p) move

a1

a1

(a) S2

b2

a2

b2

a2

b1

a1

b1

a1

(b) T 2#T 2

a3

a3

a2

a2

a1

a1

(c) K#RP 2

Fig. 6.15 Fundamental polygons, where K is the Klein bottle

6.2.1 Alternative Diagrams for Links in Seifert Manifolds

On some occasions it may be convenient to cut the base surface to its fundamental
polygon and get diagrams on a regular n-gon. Such diagrams can be expanded to all
Seifert manifolds, orientable and non-orientable, since any Seifert manifold can be
obtained from an S1-bundle over F or N through a finite number of surgeries (qi , pi )
on vertical S1 fibers. These diagrams were introduced in [12], also see [5].

We start by taking the fundamental polygon G of the surface, with the standard
identification of the edges ofG.We distinguish between three cases: either the surface
is S2, a genus g > 0 surface F , or a non-orientable surface N , (see Fig. 6.15).

Take G × [0, 1]. By glueing {x} × {0} to {x} × {1} for each x ∈ G, we get the
trivial circle bundle G × S1. Since G is a disk, we can orient all the fibers {x} × S1

coherently. If two oriented edges ai and a′
i are identified in G, in order to get F ,

we can identify the cylinders ai × S1 and a′
i × S1 in two essentially different ways:

ai × S1 can be glued to a′
i × S1 by identity or by a reflection on the S1 component.
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Fig. 6.16 Forbidden
positions of regular diagrams

(a) (b) (c) (d)

We assign to each edge sign ±1, which takes the value +1 if the identification was
made by identity and −1 if the identification was made by reflection.

After the above identifications the resulting space is an S1-bundle over F . Any
Seifert manifold can be obtained from this S1-bundle by performing a finite number
of (qi , pi )-surgeries on vertical fibers.

We remark that for an orientable Seifert fibered space M , the base space does not
need to be oriented, but the edge signs are determined.

Since the vertical projection maps, as before, an exceptional fiber to a point in the
base space, it is enough to specify the image of each exceptional fiber in G, which
is done by placing a point on G decorated by the surgery coefficient (qi , pi ) of the
fiber.

We call a diagram regular if, in addition to forbidden positions (1) and (2), none
of the following situations occur on the diagram:

(x) border tangency (Fig. 6.16a),
(xi) crossing lies on the border (Fig. 6.16b),
(xii) arrow lies on the border (Fig. 6.16c),
(xiii) arc goes through the basepoint (the preimage of the 0-cell of F) (Fig. 6.16d).

Positions (x), (xi), and (xii) generate the Reidemeister moves Ω9, Ω
O/N±
10 , and

Ω±
11, that act across edges in G (Fig. 6.17). The move Ω10 comes in four flavours:

the base surface is orientable (O) or non-orientable (N) and the sign of the edge is
positive or negative. Similarly, the sign of the move Ω±

11 corresponds to the sign of
the edge we are pushing the arrow through.

Position (xiii) generates the Reidemeister move Ω12 that tells us what happens
when we push an arc over the basepoint. The move comes in three flavours: if G is
a orientable genus g > 0 surface we have ΩO

12, if G is the 2-sphere we have Ω S
12,

and if G is a non-orientable surface we have ΩN
12. Figure6.18 shows the geometrical

interpretation of Ω12 in the case of a double torus.
Considering the arguments above, we can now formulate the following Reide-

meister theorem for links in Seifert manifolds.

Theorem 6.4 Two arrow diagrams for links in a Seifert manifold M represent the
same link up to ambient isotopy if and only if they are connected through a finite
series of Reidemeister moves Ω1 – Ω5, Ω9 – Ω12, and Ω(qi ,pi ).
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←→

(a) Ω9

←→

(b) ΩO+
10

←→

(c) ΩO−
10

←→

(d) ΩN+
10

←→

(e) ΩN−
10

←→

(f) Ω+
11

←→

(g) Ω−
11

←→

(h) ΩO
12

←→

(i) ΩS
12

←→

(j) ΩN
12

Fig. 6.17 Additional Reidemeister moves

a1 a2

b1 b2

←→
a1 a2

b1 b2

Fig. 6.18 Visualization of the move ΩO
12
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6.3 Diagram Conversions for Links in the Solid Torus

In this section we define two widely used diagrams of links in the solid torus and
links in lens spaces, namely the classical diagram (e.g. [7, 15]) and the mixed link
diagram (e.g. [2, 8, 9]). In addition we show how to pass between these diagrams.

6.3.1 Classical Diagrams

Let T = D2 × S1 be the solid torus and let L ⊂ T be a link in T . A classical link
diagram of L is the projection of L to the annulus in T that lies in the plane spanned
by the longitude l of T , see Fig. 6.19.

As in the previous section, we can think of L(p, q) as glueing of two solid tori. A
classical diagram of a link in L(p, q) can again be viewed as a diagram of a link in
a solid torus. Alternatively, one can think of L(p, q) as the result of a p/q rational
surgery performed on a unknot C in S3, where again we can project the knot to the
annulus S3 \ C .

6.3.2 Passing from Classical to Arrow Diagrams

Consider a classical diagram of a link in D × S1. Each such diagram can be obtained
by closing a (n, n)-tangle T with n strands parallel to {P} × S1 for any point P ∈ D.
The construction of the corresponding arrow diagram is presented in Fig. 6.20. By
rotating the tangle it can be made horizontal, so that in the arrow diagram it will
look also like T . In the arrow diagram, the strands become arcs starting at the upper
endpoints of the tangle, with arrows on them, then going under the tangle and joining
the lower endpoints of the tangle. Applying someΩ5 moves all arrows can be moved
to the upper endpoints of the tangle. Then one notices that the strands go from the
upper to the lower endpoints of T with a full negative twist.

−→

Fig. 6.19 A link in the solid torus (left) and its classical diagram (right)
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T −→
T

−→
T

−→
T

−→
T

−→
T

Fig. 6.20 Passing from classical diagrams to arrow diagrams

Summing up, if one has a classical diagram of a link in the solid torus, presented
as a closure of a tangle, an arrow diagram for this link is obtained from the same
tangle, by adding arrows going up at the upper endpoints of the tangle, making a
full negative twist of the strands and closing the tangle on the left. By a similar
construction, one can add a positive twist and close the tangle on the right.

6.3.3 Passing from Arrow to Classical Diagrams

An arrow diagram can be viewed as an almost flat diagram outside small neighbor-
hoods of the arrows (i.e. it lies in a thickened D × {1} in D × S1). The neighborhoods
of arrows correspond to vertical strands parallel to {P} × S1, P ∈ D. We choose an
arbitrary direction in R

2 of the arrow diagram (for instance the vertical one), and
rotate the diagram around the axis orthogonal to this direction. One may assume,
by general position, that the arrows do not point in the chosen direction. Then the
arrows become vertical strands: just before the arrow a vertical strand goes up above
other strands, and just after the arrow a vertical strand goes from below under other
strands. Closing these vertical strands in an annulus gives a classical diagram from
the original arrow diagram. An example is presented in Fig. 6.21.



6 Link Diagrams in Seifert Manifolds and Applications … 129

−→ −→

Fig. 6.21 Passing from arrow diagrams to classical diagrams

Fig. 6.22 A mixed link
diagram for the solid torus

Fig. 6.23 A mixed link
diagram for L(p, q)

(q, p)

6.3.4 Mixed Link Diagrams

Let N (U ) be a the thickened unknot U in S3. Since T = S3 \ N (U ) is a solid torus,
we can represent any link L in T with a diagram of L ∪U in the plane. We call L
the moving component and U the fixed component. We also keep track of the two
types of component, by coloring them with two different colors. Such a diagram is
called a mixed link diagram for T (Fig. 6.22).

Every closed oriented 3-manifold M can be constructed from a link A ⊂ S3 on
which we perform (integer or rational) Dehn surgeries on its components [10, 17].
Furthermore, each component of the link A can be assumed to be unknotted. In this
way, we can represent a link L in M by a diagram A ∪ L in the plane, but again, we
keep track of the fixed and moving parts by coloring them with two distinct colors;
in addition, we equip each component of A with the surgery coefficient.

For example, the lens space L p,q is the result of a (q, p) or p
q rational surgery on

the unknot in S3. Figure6.23 shows an example of a knot in L(p, q) (see [1, 8, 9]).
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−→ −→

Fig. 6.24 Passing from classical diagrams to mixed link diagrams

6.3.5 Passing from Classical Diagrams to Mixed Link
Diagrams for the Solid Torus

Passing from classical diagrams tomixed link diagrams and back is easy: the comple-
ment of the solid torus is the thickened N (U ), thusU represents the fixed component,
see Fig. 6.24.

6.3.6 Passing from Mixed Link Diagrams to Classical
Diagrams for the Solid Torus

To pass from mixed link diagrams to classical diagrams, we isotope the moving
components of mixed link in such away, that overcrossings with the fixed component
U lie on one side, say on the left and undercrossings lie on the other side. Strands
connecting undercrossings and overcrossings should also connect on one side, say
the top, see Fig. 6.25.
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−→ −→

−→ −→

Fig. 6.25 Passing from mixed link diagrams to classical diagrams

6.4 The Kauffman Bracket and HOMFLYPT Skein
Modules

Let M be an orientable3-manifold. Take a coefficient ring R and a unit A ∈ R (an
element with a multiplicative inverse). And let Lfr(M) be the set of isotopy classes
of framed links in M , including the class of the empty link [∅]. Let RLfr(M) be the
free R-module spanned by Lfr(M).

We would like to impose the Kauffman relation and the framing relation in
RLfr(M). We therefore take the submodule Sfr(M) of RLfr(M) generated by

− A − A−1 , (Kauffman relator)

L � − (−A2 − A−2)L. (framing relator)

The Kauffman bracket skein module S2,∞(M) is defined as RLfr(M) modulo
these two relations:

S2,∞(M) = RLfr(M)/S(M).

Example 6.2 For the 3-sphere, S2,∞(S3) is a free R-module with a basis consisting
of a single element, the equivalence class of the unknot (here, we exclude the empty
link). Expressing a link in this basis and, for the unknot, evaluating [O] = 1, we get
exactly the Kauffman bracket.

Theorem 6.5 ([15]) Let T be the solid torus, S2,∞(T ) is freely generated by an
infinite set of generators {xn}∞n=0, where x

n, n > 0, is a parallel copy of n longitudes
of T (see Fig.6.26) and x0 is the empty link.
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Fig. 6.26 Generator x4

∼

Theorem 6.6 ([7]) S2,∞(L(p, q)) is freely generated by the set of generators
{xn}�p/2	n=0 , where xn, n > 0, is a parallel copy of n longitudes of T ⊂ L(p, q) (see
Fig.6.26) and x0 is the empty link.

For the HOMFLYPT skein module we take oriented (unframed) links and impose
on them the HOMFLYPT skein relation.

Let the ring R have two units v, z ∈ R. Let Lor(M) be the set of isotopy classes
of oriented links in M , including the class of the empty link [∅] and let RLor(M) be
the free R-module spanned by Lor(M).

We take the submodule S(M) of RLor(M) generated by the expressions

v−1 − v − z . (HOMFLYPT relator)

We also add to S(M) the HOMFLYPT relation involving the empty knot:

v−1∅ − v∅ − z . (empty knot relator)

The HOMFLYPT skein module S3(M) of M is RLor(M) modulo the above
relations:

S3(M) = RL(M)/S(M).

Let tn , n ∈ Z be the knot in Fig. 6.27a, b, note that for n < 0, tn is t|n| with reversed
orientation.

Theorem 6.7 ([6, 15]) The HOMFLYPT skein module of the solid torus T is a free
R-module, generated by the infinite set

B = {tk1 · · · tks | ki ∈ Z \ {0}, k1 ≤ · · · ≤ ks} ∪ {∅}.

Fig. 6.27 HOMFLYPT
skein module generators

n

(a) tn

n

(b) t−n

4 4 −3

(c) t24 t−3
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6.4.1 Results for Kauffman Bracket and HOMFLYPT Skein
Modules Using Arrow Diagrams

The first result, using arrow diagrams, was to compute the Kauffman bracket skein
module of a product of S1 with a disk with two holes. There is an incompressible,
non-boundary parallel torus immersed (not embedded) in such a manifold. In sev-
eral examples of manifolds, such surfaces, when embedded, yield torsion, so it was
interesting to consider a case with an immersion instead of an embedding. There was
no torsion in this case:

Theorem 6.8 ([13]) Let M be the product of a disk with two holes and S1. Then
S2,∞(M) is freely generated by an infinite set of generators.

Now, consider links in themanifoldRP3�RP3 (see Example 6.1). Let t = −A−3x
(see Fig. 6.26). We can view t as an oval with one arrow, obtained from x by adding
a negative kink. The multiplication of two arrow diagrams of links in the solid torus
consists in putting them in two disjoint disks. Thus, for example, x3 = x2x = xxx
is the diagram were the three x’s are in three disjoint disks.

Let Qn , n ∈ N ∪ {0} be defined by:

Q0 = 1, Q1 = t and Qn = t Qn−1 − Qn−2

Let E be the knot with diagram in Fig. 6.28a: an arc with two antipodal endpoints
and no crossings. Let E ′ be the knot with diagram in Fig. 6.28b: an arc as in E with
an added arrow.

Theorem 6.9 ([11]) S2,∞(RP3�RP3) = R ⊕ R ⊕ R[t]/S, where R = Z[A, A−1]
and S is the submodule of R[t] generated by:

(An+1 + An−1)(Qn − 1) − 2(A + A−1)

n
2∑

k=1

An+2−4k , for n ≥ 2 even,

(An+1 + An−1)(Qn − t) − 2t

n−1
2∑

k=1

An+1−4k , for n ≥ 3 odd.

The generators of the two R’s are E and E ′.

Fig. 6.28 Generators
E and E ′

(a) E (b) E′
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By adding (q, p) fibers to RP3�RP3 one gets the prism manifolds. If q = 1, the
prism manifold is denoted by Mp (it has no exceptional fibers, just as L(p, 1)).

Theorem 6.10 ([12]) S2,∞(Mp) is a free R-module generated by ∅, x, x2,…,x1+� p
2 	,

E and (if p is even) E ′. Thus, it has 3 + � p
2 	 generators, if p is odd, and 4 + p

2
generators, if p is even.

Let us now turn to HOMFLYPT skein modules. Consider now links in the lens
space L p,1. Recall, from Sect. 6.2 that arrow diagrams of such links lie in the disk
and there is an additional slide move Ω(p) (Fig. 6.14).

Let

Bp = {tk1 · · · tks | ki ∈ Z \ {0}, − p

2
< k1 ≤ · · · ≤ ks ≤ p

2
} ∪ {∅}.

Using the move Ω(p), elements in B can be expressed with elements in Bp. In fact,
one gets more:

Theorem 6.11 ([4]) S3(L p,1) is free with basis Bp.

See also [3] for the braid approach to the HOMFLYPT skein module of L(p, 1).

6.5 Alternative Bases for the Kauffman Bracket Skein
Modules

We denote by Pn an oval with n counterclockwise arrows (|n| clockwise arrows if
n < 0) and by yn a nested system of n ovals with one counterclockwise arrow on
each if n > 0 or clockwise arrow if n < 0. By convention y0 is the empty link. See
Fig. 6.29.

We exhibit some alternative bases for the Kauffman bracket skein modules of the
solid torus and lens spaces. The results follow easily from the following lemmas.

Lemma 6.1 ([13]) In S2,∞(T ) one can revert x in the sense that

x = P1 = A6 P−1.

Lemma 6.2 ([13]) From an oval Pn, n > 0, we can push off an arrow using
Reidemeister moves and skein relations in the sense that

Pn = −A−2Pn−1x − A2Pn−2.

Similarly for Pn, n < 0, it holds

Pn = −A2Pn+1P−1 − A−2Pn+2.
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∼
4

(a) P4

∼
4

(b) P−4

∼

(c) y4

Fig. 6.29 Diagrams of P4, P−4, and y4

The following lemma illustrates the methods used when doing calculations in
S2,∞(T ).

Lemma 6.3 An oval can be pushed to an adjacent arc in S2,∞(T ) using skein rela-
tions in the sense that

n

=
∑n

i=−n ri i

for n > 0 and ri ∈ R, furthermore it holds that rn = −A2n+2 and r−n = −A2.

Proof First we make an Ω2 move through the arc and push an arrow through, then
we resolve the newly changed crossing by the Kauffman skein relation. For the first
term we resolve the remaining crossing and for the second term we push the arrow
through the remaining crossing and perform an Ω1:

n
Ω2===

n
Ω5===

n−1

== A

n−1

+A−1

n−1
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== A2

n−1

+

n−1

+A−1

n−1

Ω1=== A2

n−1

+
n−2

−A2 n

If n = 1, the first two lines of the equations above show that r1 = −A4 and
r−1 = −A2. For n > 1, we repeat this process with the oval with n − 1 arrows to the
left of the strand with one arrow up. Then, we iterate this process with ovals with
less and less arrows until there is only one arrow left. At each step an arrow will be
transferred from the oval to the strand upwards with coefficient A2. The coefficient
of rn is thus (A2)n−1(−A4) = −A2n+2. It follows from the equations above that in
the procedure we get n arrows pointing downwards only at the first step, so r−n is
−A2.

In addition to Turaev’s basis of S2,∞(T ) in [15] and Hoste/Przytycki’s basis of
S2,∞(L(p, q)) in [7], we show in the next propositions some alternative choices for
bases of these skein modules.

Proposition 6.1 The set {Pn}∞n=1 ∪ {∅} forms a free basis of S2,∞(T ).

Proof FromLemma 6.2 it follows that, for n > 0, Pn is a polynomial of degree nwith
leading invertible coefficient (−1)n+1A−2n+2. Thus, the Pn’s can be expressed with
the xn’s with an upper triangular matrix with invertible coefficients on the diagonal.
It follows that {Pn}∞n=1 ∪ {∅} is a basis of S2,∞(T ).

Proposition 6.2 The set {P−n}∞n=1 ∪ {∅} forms a free basis of S2,∞(T ).

Proof From Lemma 6.1, P−1 = A−6P1 = A−6x . From Lemma 6.2 it follows that,
for n < 0, Pn is a polynomial of degree |n| with leading invertible coefficient
(−1)n+1A−2n−8. The rest of the proof is the same as in the preceding proposition.

Proposition 6.3 The set {yn}∞n=0 forms a free basis of S2,∞(T ).

Proof We will show that yn is a polynomial of degree n in x with an invertible
leading coefficient. Then we will be done, just as in the proofs of the preceding two
propositions.

The proof is by induction on n. Obviously it holds for n = 1 because y1 = x . It
will be useful to have this more general induction hypothesis, for k, l ≥ 0, k + l ≤ n:

(Hk,l) : xk nested inside yl is a polynomial of degree k + l with an invertible
leading coefficient.
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For instance x nested inside yl is just yl+1. We perform an inner induction on l.
The hypothesis is true for l = 0 because xk nested in y0 is just xk . Suppose (Hk ′,l ′)

is true for all k ′ + l ′ < n and that it is also true for all xk
′
nested in yl ′ where l ′ < l,

k ′ + l ′ = n.
Now consider xk nested in yl , k + l = n. Use Lemma 6.3 to push the k x’s into

the most nested oval of yl . Pushing one such x , the only nonzero coefficients will
be r1 = −A4 and r−1 = −A2 corresponding to adding a counterclockwise or clock-
wise arrow respectively to this most nested oval of yl . As originally there is one
countercklockwise arrow on this oval, this oval will become Pm when the x’s are
pushed into it, with −k + 1 ≤ m ≤ k + 1. We know that Pm is a polynomial in x of
degree |m| with an invertible leading coefficient. By induction on n, the terms with
m < k + 1 will have degree less than n (some arrows are cancelled). The remaining
term, m = k + 1, corresponds to all x’s being pushed as counterclockwise arrows,
yielding (−A4)k times Pk+1 nested inside yl−1. Now Pk+1 is of degree k + 1 with
an invertible leading coefficient. The terms of Pk+1 of degree less than k + 1 nested
in yl−1 will have degree less than n by induction. Finally, the only term remaining
is an invertible coefficient times xk+1 nested in yl−1, which is of degree n times an
invertible coefficient by induction on l. Thus (Hk,l) is true.

Proposition 6.4 The set {y−n}∞n=0 forms a free basis of S2,∞(T ).

Proof The proof mirrors that of the previous proposition, using P−1 = A−6x instead
of x .

As, for n > 0, Pn , P−n , yn and y−n are all polynomials of degree n in x with an
invertible leading coefficient, the following proposition follows from Theorem 6.6.

Proposition 6.5 The sets {Pn}�p/2	n=1 ∪ {∅}, {P−n}�p/2	n=1 ∪ {∅}, {yn}�p/2	n=0 , and {y−n}�p/2	n=0
are all free bases of S2,∞(L(p, q)).

6.6 Alternative Bases for the HOMFLYPT Skein Modules

The following two lemmas are from [4]. Using them, we will exhibit new bases for
S3(L p,1). Recall that tn , n ∈ Z \ {0}, stands for an oval with |n| counter clockwise
arrows on it, which is oriented in a counterclockwise way if n > 0 and in a clockwise
way otherwise.

Denote by t̄n , n ∈ Z \ {0}, the oval obtained from tn by reversing all arrows and
the orientation (Fig. 6.30).

Fig. 6.30 Knots t̄n and t̄−n
for n > 0

n

(a) t̄n

n

(b) t̄−n
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Lemma 6.4 In S3(T ) we can revert clockwise arrows on an oval in the sense that
for n > 0

t̄n =
∑

i

Ai Ti and t̄−n =
∑

i

A′
i T

′
i

where Ai , A′
i ∈ R, Ti , T ′

i ∈ B.Moreprecisely, any Ti = tk1 · · · tks , where all ki > 0
andk1 + · · · + ks = n. Similarly, any T ′

i = tk1 · · · tks , where all ki < 0andk1 + · · · +
ks = −n.

The following lemma is a reformulation of Lemma6.2 in [4], emphasizing the
orientations and making the coefficients A0 and A′

0 explicit.

Lemma 6.5 Let D be a diagram of a link L with an oval containing n arrows, n ∈ Z,
and a strand adjacent to it, that may contain arrows outside the drawn region. We say
that the orientations of the oval and the strand agree if the oval has a counterclokwise
orientation and the strand right to it is oriented upwards or if both have opposite
orientations. Otherwise we say that their orientations disagree.

The oval can be pushed through the strand. There are four possible configurations
of orientations, but we will explicitly point out two, with n > 0 and the orientations
agreeing or disagreeing. The following formulas hold in S3(T ):

n

=
n∑

i=0

Ai
i

n-i

or
n

=
n∑

i=0

A′
i

i
n-i

,

where Ai , A′
i ∈ R. Furthermore, we can keep track of the coefficients A0 and A′

0
getting A0 = v2n and A′

0 = v−2n. For the remaining two configurations the transfer
of arrows is as in the first formula when the orientations agree and as in the second
formula when the orientations disagree.

In [2] a newbasis forS3(T ) is presented. Translating this basis into arrowdiagrams
gives a basisB′. Its elements have diagrams consisting of s ∈ N concentric ovals with
ki ∈ Z \ {0} arrows on each oval, denoted tk1,k2,...,ks , satisfying k1 ≥ k2 ≥ . . . ≥ ks ,
with k1 arrows on the most nested oval, k2 arrows on the next one and, so on, with
ks arrows on the oval containing all other ovals, see Fig. 6.31. With this notation

Fig. 6.31 An element from
B′ and B′′

3
1
2
5

(a) t5,2,−1,−3 ∈ B′

4
2
3
1

(b) t−1,−3,2,4 ∈ B′′
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B′ = {tk1,...,ks | ki ∈ Z \ {0}, s ∈ N, k1 ≥ k2 ≥ · · · ≥ ks}.

We will exhibit a similar basis of S3(T ), using an order relation similar to the one
used in [2]:

B′′ = {tk1,...,ks | ki ∈ Z \ {0}, s ∈ N, 0 > k1 ≥ . . . ≥ kl, 0 < kl+1 ≤ . . . ≤ ks}.

We introduce an order relation on configurations of ovals with arrows, i.e. on
diagrams with no crossings, and such that there are no ovals with zero arrows. This
relation is defined in a lexicographical way by considering in this order:

1. The number of all arrows counted as positive for all ovals independently of ori-
entations.

2. The number of ovals.
3. A lexicographical ordering of ovals with positive arrows: from ovals with the

smallest number of arrows to ovals with the largest number of arrows.
4. A lexicographical ordering of ovals with negative arrows in the same way as in

(3), but taking absolute values (i.e. the number of arrows) into account.

To illustrate 3, inB one has, t21 t
2
3 > t21 t2t4, because (1, 1, 3, 3) > (1, 1, 2, 4) (lexi-

cographically). To illustrate 4, t2−2t
2−4 > t2−2t−3t−5 because (| − 2|, | − 2|, | − 4|, | −

4|) > (| − 2|, | − 2|, | − 3|, | − 5|).
The order defined above becomes a total order when restricted toB or B′′. Indeed,

if two configurations of ovals have the same order, they will have the same series
of arrows on ovals, for example (−3,−3,−1, 1, 4, 4). Restricting to B or B′′ this
determines completely the diagram.

Lemma 6.5 can be refined to take into account this ordering, in the following
sense:

Lemma 6.6 Let D be a diagram with no crossings, with an oval ti containing no
other ovals, next to an oval t j (it can be nested in t j or not). Suppose that 0 < |i | ≤ | j |
if i and j have the same sign, or i < 0 < j otherwise. Then one can push ti through
t j getting v±2i times the diagram in which the whole ti is pushed plus terms of lower
order.

Proof If i < 0 < j , then it follows from Lemma 6.5 that all terms will have less
arrows than D, except for the term corresponding to the whole ti being pushed,
which comes with a factor v−2i . If 0 < i ≤ j , then, from the same lemma, it follows
that we will have a term as before, this time with coefficient v2i , plus terms for which
some a > 0 arrows will be transferred from ti to t j . In the lexicographical order the
change will be from (. . . , i, . . . , j, . . .) to (. . . , i − a, . . . , j + a, . . .) which is of
lower order. Similarly for j < i < 0 there will be a change from (. . . , j, . . . , i, . . .)
to (. . . , j − a, . . . , i + a, . . .) which is again of lower order.

Theorem 6.12 B′′ is a basis of the free skein module S3(T ).
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Proof Let T = tk1 · · · tks ∈ B, k1 ≤ k2 ≤ · · · ≤ ks , ki ∈ Z \ {0}. We construct first a
function F : B → RB′′. If kl < 0 and kl+1 > 0, F(T ) will be equal to
tkl ,kl−1,··· ,k1,kl+1,··· ,ks (which has the same order as T ) times an invertible coefficient
plus terms of lower order. F is defined by induction on the order. F is the identity if
the number of arrows is 0 (empty diagrams) or if the number of ovals is 1.

If ks > 0 push all other ovals into tks , using Lemma 6.6. We get v to some power
times tks around all other ovals plus terms of lower order. Reexpress these terms of
lower order in B by pushing ovals out of tks again. As we push through the oval with
a maximum of arrows, Lemma 6.6 guarantees that the order cannot increase. Thus
F of the terms that were reexpressed in B will be of lower order than the term with
all ovals pushed into tks and the induction can be applied.

If ks < 0 push all ovals into tk1 to get again v to some power times tk1 around all
other ovals plus terms of lower order which, again, are reexpressed with terms in B
of lower order.

Now repeat this process for ovals inside ks or k1, pushing ovals into the oval
with maximum positive arrows (or maximum negative if there are no ovals with
positive arrows). For terms with lower order reexpress them in B: if some arrows
were killed we will obviously get terms with lower order also in B; if some arrows
were transferred (by construction from ovals with less arrows to ovals with more
arrows) we will get terms with lower lexicographical order. It is clear that the order
cannot increase back to the order of T , when pushing the ovals which have lost some
arrows out to get elements in B.

Continue until all ovals are nested. We get at the end v to some power times
tkl ,kl−1,··· ,k1,kl+1,··· ,ks ∈ B′′ plus terms of lower order.

Now extend F linearly from RB to RB′′. The matrix of F with respect to the
ordered B and B′′ will be upper triangular with invertible elements (powers of v) on
the diagonal. This shows that B′′ is a basis of S3(T ).

Recall that the basisBp ofS3(L(p, 1)) consists of diagramswith non-nested ovals
and the number of arrows ki on each of them satisfying − p

2 < ki ≤ p
2 .

We want to exhibit a new basis of this skein module, B′′
p, using a proof similar to

that of Theorem 6.12. Let:

B′′
p = {tk1,..,ks | ki ∈ Z \ {0}, s ∈ N,

0 > k1 ≥ . . . ≥ kl > − p

2
, 0 < kl+1 ≤ . . . ≤ ks ≤ p

2
}.

Thus B′′
p is B′′ with arrows on ovals restricted to the interval (− p

2 ,
p
2 ]. The order

on B′′ used in the proof of the preceding theorem restricts to an order on B′′
p. We use

it in the proof of the next theorem.

Theorem 6.13 B′′
p is a basis of the free skein module S3(L(p, 1)).

Proof We construct a function F : Bp → RB′′
p in the same way as it was done in

the proof of Theorem 6.12, having a similar property, namely that F of an element
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T in Bp will be equal to the element of B′′
p consisting of the same ovals as in T but

nested, times an invertible coefficient plus terms of lower order. When reexpressing
an element in Bp it may happen that the number of arrows is reduced with Ω(p)

moves but this lowers the order.
Extending F linearly to RBp, its matrix is again upper triangular with invertible

elements on the diagonal, from which it follows that B′′
p is a basis of S3(L(p, 1)).
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