
Chapter 5
On the Framization of the Hecke Algebra
of Type B

Marcelo Flores

Abstract We give a cross look to two framizations of the Hecke algebra of type B.
One of these is a particular case of the cyclotomic Yokonuma–Hecke algebra. The
other one was recently introduced by the author, J. Juyumaya and S. Lambropoulou.
The purpose of this paper is to show the main concepts and results of both framiza-
tions, giving emphasis to the second one, and to provide a preliminary comparison
of the invariants constructed from both framizations.

Introduction

The idea of framization of a knot algebra was introduced by J. Juyumaya and S.
Lambropoulou in [14], and it consists in adding certain new generators, called fram-
ing generators, to the original presentation of a knot algebra together with certain
relations among the original generators and these new generators. One does this
procedure, with the aim of constructing new invariants for framed links, and conse-
quently for classical links, see [11, 13]. It is important tomention that the framization
procedure doesn’t have a structured recipe, whence it is possible to find more than
one framization for the same algebra. However, since the motivation behind the pro-
cedure of framization is to obtain new polynomial invariants for (framed) knots and
links, focus is always given to those framizations that produce such new invariants.
Then, when we handle multiple possible framizations of the same knot algebra, we
will choose the one that is more natural from a topological viewpoint, cf. [7].

The Yokonuma–Hecke algebra is the first example of framization, since it is
considered as a framization of the Hecke algebra of type A. The last 10 years the
Yokonuma–Hecke algebra has earned importance in knot theory, since in [10] it was
proved that such an algebra supports a Markov trace, therefore, by using the Jones’s
recipe, invariants for: framed links [13], classical links [11] and singular links [12]
were constructed. It is worth to say, that recently it was proved that the invariants for
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classical links constructed in [11] are not topologically equivalent either to the Hom-
flypt polynomial or to the Kauffman polynomial, see [3].

On the other hand, Jones suggested that his recipe for the construction of the
Homflypt polynomial might be used for Hecke algebras of other types than A, cf.
[9, p. 336]. Then, S. Lambropoulou used the Jones’s recipe for the B–Hecke algebra
Hn(u, v); in fact in [15, 16] she constructed all the possible analogues of theHomflypt
polynomial for oriented knots and links inside the solid torus, see also [6].

In [2] taking as model the Yokonuma–Hecke algebra, M. Chlouveraki and L.
Poulain d’Andecy introduced the cyclotomic Yokonuma–Hecke algebra, denoted
by Y(d, m, n). These algebras generalize to the Ariki-Koike algebra, and the
Yokonuma–Hecke algebra. In particular, the cyclotomic Yokonuma–Hecke algebra
provides a framization of the Hecke algebra of type B, since the Ariki-Koike algebra
generalizes Hn(u, v). Moreover, in [2] it was also proved that Y(d, m, n) supports
a Markov trace, and therefore, using Jones’s recipe, an invariant for framed links in
the solid torus was constructed.

Recently in [5] we introduced a new framization of the Hecke algebra of type B,
denotedbyYB

d,n := YB
d,n(u, v),with the principal objective to explore their usefulness

in knot theory. More precisely, in this article we constructed two linear bases, a
faithful tensorial representation of Jimbo type for YB

d,n(u, v), and we proved that
YB

d,n supports a Markov trace. Finally we defined, by using Jones’s recipe, a new
invariant for framed and classical links in the solid torus.

The article is organized as follows. In Sect. 5.1 we introduce the notations and
background used in the paper. In Sect. 5.2 we review the main results about the
cyclotomic Yokonuma–Hecke algebra given in [2], aiming to provide a preliminary
comparison of the invariants constructed from both framizations. The following
sections keep the order given in [5], and have as objective to show the main results
obtained in that work, and also remark some differences between the framizations
YB

d,n and Y(d, 2, n).

5.1 Preliminaries

In this section we review known results, necessary for the sequel, and we also fix the
terminology and notations that will be used along the article:

• The lettersu, v, v1, . . . , vm denote indeterminates. ConsiderK := C(u, v),Rm :=
C[u±1, v±1

1 , . . . , v±1
m ], and Fm the field of fractions of Rm .

• The term algebra means unital associative algebra over K
• For a finite group G, K[G] denotes the group algebra of G
• The letters n and d denote two fixed positive integers
• We denote by ω a fixed primitive d–th root of unity
• We denote by Z/dZ the group of integers modulo d, {0, 1, . . . , d − 1}.
• As usual, we denote by � the length function associated to the Coxeter groups.
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5.1.1 Braids Groups of Type B

Set n ≥ 1. Let us denote by Wn the Coxeter group of typeBn . This is the finite Coxeter
group associated to the following Dynkin diagram

r1 s1 sn−2 sn−1
� � � � � � �

Define rk = sk−1 . . .s1r1s1 . . .sk−1 for 2 ≤ k ≤ n. It is known, see [6], that
every element w ∈ Wn can be written uniquely as w = w1 . . . wn with wk ∈ Nk , 1 ≤
k ≤ n, where

N1 = {1,r}, Nk = {1,rk,sk−1 . . .si ,sk−1 . . .siri ; 1 ≤ i ≤ k − 1} . (5.1)

Furthermore, this expression forw is reduced. Hence, we have �(w) = �(w1) + · · · +
�(wn).

The corresponding braid group of typeBn associated to Wn , is defined as the group
˜Wn generated by ρ1, σ1, . . . , σn−1 subject to the following relations

σiσ j = σ jσi for |i − j | > 1,
σiσ jσi = σ jσiσ j for |i − j | = 1,

ρ1σi = σiρ1 for i > 1,
ρ1σ1ρ1σ1 = σ1ρ1σ1ρ1.

(5.2)

Geometrically, braids of type Bn can be viewed as classical braids of type An

with n + 1 strands, such that the first strand is identically fixed. This is called ‘the
fixed strand’. The 2nd,…, (n + 1)st strands are renamed from 1 to n and they are
called ‘the moving strands’. The ‘loop’ generator ρ1 stands for the looping of the
first moving strand around the fixed strand in the right-handed sense, see [15, 16].
In Fig. 5.1 we illustrate a braid of type B4. Another way of visualizing B–type braids
geometrically is via symmetric braids, see [18].

Fig. 5.1 A braid of type B4
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Remark 5.1 The group Wn can be realized as a subgroup of the permutation group
of the set Xn := {−n, . . . ,−2,−1, 1, 2, . . . , n}. More precisely, the elements of
Wn are the permutations w such that w(−m) = −w(m), for all m ∈ Xn . Further the
elements of Wn can be parameterized by the elements of Xn

n := {(m1, . . . , mn) | mi ∈
Xn for all i} (see [8, Lemma 1.2.1]).More precisely, the elementw ∈ Wn corresponds
to the element (m1, . . . , mn) ∈ Xn

n such that mi = w(i).

For example, si is parameterized by (1, 2, . . . , i + 1, i, . . . , n) and r1 is parame-
terized by (−1, 2, . . . , n). More generally, if w ∈ Wn is parameterized by (m1, . . . ,

mn) ∈ Xn
n , then

wr1 is parameterized by (−m1, m2, . . . , mn)

wsi is parameterized by (m1, . . . , mi+1, mi , . . . , mn).
(5.3)

Finally we recall [8, Lemma 1.2.2], which is crucial to prove Proposition 5.1

Lemma 5.1 [8, Lemma 1.2.2] Let w ∈ Wn parameterized by (m1, . . . , mn) ∈ Xn
n .

Then �(wsi ) = �(w) + 1 if and only if mi < mi+1 and �(wr1) = �(w) + 1 if and
only if m1 > 0.

5.1.2 Framed Braid Groups of Type B

We start with the definition of a d–framed version of Wn .

Definition 5.1 The d–modular framed Coxeter group of type Bn , Wd,n , is defined
as the group generated by r1,s1, . . . ,sn−1 and t1, . . . , tn satisfying the Coxeter
relations of type B among r1 and the si ’s, together with the following relations:

ti t j = t j ti for all i, j,
td
i = 1 for all i,

t jr1 = r1t j for all j,
t jsi = si tsi ( j) where si is the transposition (i, i + 1).

(5.4)

The analogous group defined by the same presentation, where only relations td
j =

1 are omitted, shall be called framed Coxeter group of type Bn and will be denoted
as W∞,n .

Definition 5.2 The framed braid group of type Bn , denoted F B
n , is the group

presented by generators ρ1, σ1, . . . , σn−1, t1, . . . , tn subject to the relations (5.2),
together with the following relations:

ti t j = t j ti for all i, j,
t jρ1 = ρ1t j for all j,
t jσi = σi tsi ( j).

(5.5)
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The d–modular framed braid group, denotedF B
d,n , is defined as the group obtained

by adding the relations td
i = 1, for all i , to the above defining presentation of F B

n .

The mapping that acts as the identity on the generators r1 and the si ’s and maps
the t j ’s to 1 defines a morphism from Wd,n onto Wn . Also, we have the natural
epimorphism fromF B

d,n onto Wd,n defined as the identity on the t j ’s and mapping ρ1

to r1 and σi to si , for all i . Thus, we have the following sequence of epimorphisms.

F B
n −→ F B

d,n −→ Wd,n −→ Wn

where the first arrow is the natural projection of F B
n toF B

d,n .

5.2 The Cyclotomic Yokonuma–Hecke Algebras

In this section we will review the main results obtained in [2]. First we recall the
definition of cyclotomic Yokonuma–Hecke algebra

Definition 5.3 Let d, m and n positive integers. We denote by Y(d, m, n) to the
associative algebra over Rm generated by framing generators t1, . . . , tn , braiding
generators g1, . . . , gn−1 and the cyclotomic generator b1 subject to the following
relations

gi g j = g j gi for |i − j | > 1, (5.6)

gi g j gi = g j gi g j for |i − j | = 1, (5.7)

b1gi = gi b1 for all i �= 1, (5.8)

b1g1b1g1 = g1b1g1b1, (5.9)

ti t j = t j ti for all i, j, (5.10)

t j gi = gi tsi ( j) for all i, j, (5.11)

ti b1 = b1ti for all i, (5.12)

td
i = 1 for all i, (5.13)

g2
i = 1 + (u − u−1)ei gi for all 1 ≤ i ≤ n − 1, (5.14)

(b1 − v1) . . . (b1 − vm) = 0 (5.15)

where the ei ’s are the elements introduced in [10], that is

ei := 1

d

d−1
∑

s=0

t s
i t−s

i+1, 1 ≤ i ≤ n − 1 (5.16)

Four linear bases are given for this algebra in [2]. We recall only one of them,
which is used by Chlouveraki and Poulain D’Andecy to define a Markov trace in
Y(d, m, n).
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For k = 1, . . . , n, we set

W (k)
j,a,b := g−1

j . . . g−1
1 ba

1 tb
1 g1 . . . gk−1,

where j = 0, . . . , k − 1, and a ∈ Z/mZ, b ∈ Z/dZ. Then, we have the following
result

Bd,m,n := {W (n)
jn ,an ,bn

. . . W (2)
j2,a2,b2

W (1)
j1,a1,b1

| jk = 0, . . . , k − 1, ak ∈ Z/mZ, and bk ∈ Z/dZ }

is a basis for Y(d, m, n), see [2, Sect. 4].

Remark 5.2 To prove the above result, the authors proved first that Bd,m,n spans
the algebra Y(d, m, n), and then that its dimension is (dm)nn!. The last result is
obtained using tools of representation theory, specifically they constructed a set
{Vλ}λ∈P(d,m,n) of pairwise irreducible non-isomorphic representations of Fm ⊗Rm

Y(d, m, n) satisfying the following equation

∑

λ∈P(d,m,n)

(dim(Vλ))
2 = (dm)nn!,

hence they concluded that Bd,m,n is indeed a basis of Y(d,m,n). Then, in particular,
Fm ⊗Rm Y(d,m,n) is a semisimple algebra, for details see [2, Proposition 3.4] and
[2, Proposition 4.6]

Using the method of relative traces (see e.g. [2]) it is also proved that the algebra
Y(d, m, n) supports a Markov trace, which we denote by Trn . More precisely, this
trace is constructed from certain relative traces as follows.

Let z and xa,b with a ∈ {0, . . . , m − 1} and b ∈ {0, . . . , d − 1}, be parameters in
Rm such that x0,0 = 1. The relative traces trk : Y(d, m, k) → Y(d, m, k − 1) are
given, for any k ≥ 1, by.

trk(W (k)
j,a,bw) = zW (k−1)

j,a,b if 0 ≤ j ≤ k − 1 (5.17)

trk(W (k)
j,a,bw) = xa,bw if j = k − 1 (5.18)

where w ∈ Y(d, m, k − 1).
We define

Trn := tr1 ◦ · · · ◦ trn.

Then the family {Trn}n≥1 is a Markov trace, for details see [2, Sect. 5].
Finally, as it is usual, using the Jones’s recipe, new invariants for framed links in

the solid torus are constructed, which are denoted by Γm , for details see [2, Sect. 6.3].

Remark 5.3 As we see in [13], to be able define the invariant Γm , it is necessary that
the trace parameters satisfy a non-linear system of equations. In this case the system
is the following
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1

d

d−1
∑

s=0

x0,−s xa,b+s = xa,b E for all a ∈ {0, . . . , m − 1} and b ∈ {0, . . . , d − 1},

where E = Tri+1(ei ), and it is called the affine E–system, also any solution of this
system is referred to by saying that it satisfies the affine E–condition. This system is
solved in [2, Sect. 6.5] using only standard tools of linear algebra.

5.3 The Algebra YB
d,n

We begin this section giving the definition of the framization of the Hecke algebra
of type B introduced in [5], denoted by YB

d,n , which will be the main object of study
from now on.

Definition 5.4 Let n ≥ 2. The algebra YB
d,n := YB

d,n(u, v), is defined as the algebra
over K := C(u, v) generated by framing generators t1, . . . , tn , braiding generators
g1, . . . , gn−1 and the loop generator b1, subject to the following relations

gi g j = g j gi for |i − j | > 1, (5.19)

gi g j gi = g j gi g j for |i − j | = 1, (5.20)

b1gi = gi b1 for all i �= 1, (5.21)

b1g1b1g1 = g1b1g1b1, (5.22)

ti t j = t j ti for all i, j, (5.23)

t j gi = gi tsi ( j) for all i, j, (5.24)

ti b1 = b1ti for all i, (5.25)

td
i = 1 for all i, (5.26)

g2
i = 1 + (u − u−1)ei gi for all i, (5.27)

b2
1 = 1 + (v − v−1) f1b1., (5.28)

where the ei ’s are the elements defined in (5.16) and

f1 := 1

d

d−1
∑

s=0

t s
1 .

For n = 1, we define YB
d,1 as the algebra generated by 1, b1 and t1 satisfying the

relations (5.25), (5.26) and (5.28).

Notice that the elements f1 and ei ’s are idempotents. In Fig. 5.2 we illustrate the
generators of the algebra YB

d,n .
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Fig. 5.2 The generators of YB
d,n geometrically

Note. By taking d = 1, the algebra YB
1,n becomes Hn(u, v). Further, by mapping

gi 
→ hi and ti 
→ 1, we obtain an epimorphism from YB
d,n to Hn(u, v). Moreover, if

we map the ti ’s to a fixed non–trivial d–th root of the unity, we have an epimorphism
from YB

d,n to Hn(u, 1).

Remark 5.4 As we noted previously, the cyclotomic Yokonuma–Hecke algebra also
provides a framization of the Hecke algebra of type B. Specifically, if we put m = 2,
v1 = v and v2 = −v−1, then Y(d, 2, n) is a framization of Hn(u, v). But, also we can
note that the relation (5.15) doesn’t involve framing elements like the defining relation
(5.28) of YB

d,n . In fact Y(d, m, n) is essentially the Yokonuma–Hecke algebra of type
A with the cyclotomic generator and relation attached. This fact makes us think that
YB

d,n , at least algebraically, is amore natural framization for Hn(u, v) thanY(d, 2, n),
since the quadratic relation for the loop generator involves the idempotent element
f1, which plays the analogous role as ei in the quadratic relation of the braiding
generators. Then, in someway the braiding generators and the loop generator interact
with the framing generators from a more homogeneous way in YB

d,n .

5.4 A Tensorial Representation of YB
d,n

In this section we define a tensorial representation of YB
d,n , the definition of this rep-

resentation is based on the tensorial representation constructed by Green in [8] for
the Hecke algebra of type B and following the idea of an extension of the Jimbo rep-
resentation of the Hecke algebra of type A to the Yokonuma–Hecke algebra proposed
by Espinoza and Ryom–Hansen in [4].

Let V be a K–vector space with basis B = {vr
i ; i ∈ Xn, 0 ≤ r ≤ d − 1}. As

usual we denote by B⊗k the natural basis of V ⊗k associated to B.
We define the endomorphisms T, B : V → V by: (vr

i )T = ωr vr
i , and

(vr
i )B =

⎧

⎨

⎩

vr
−i for i > 0 and r = 0,

vr
−i + (v − v−1)vr

i for i < 0 and r = 0,
vr
−i for r �= 0.

On the other hand we define G : V ⊗ V → V ⊗ V by
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(vr
i ⊗ vs

j )G =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uvs
j ⊗ vr

i for i = j and r = s,
vs

j ⊗ vr
i for i < j and r = s,

vs
j ⊗ vr

i + (u − u−1)vr
i ⊗ vs

j for i > j and r = s,
vs

j ⊗ vr
i for r �= s.

For all 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, we extend these endomorphisms to the endo-
morphisms Ti , Gi and B1 of the n–th tensor power V ⊗n of V , as follows:

Tj := 1⊗( j−1)
V ⊗ T ⊗ 1⊗(n− j)

V and Gi := 1⊗(i−1)
V ⊗ G ⊗ 1⊗(n−i−1)

V and B1 := B ⊗ 1⊗(n−1)
V ,

where 1⊗k
V denotes the endomorphism identity of V ⊗k .

Theorem 5.1 (See [5, Theorem 1]) The mapping b1 
→ B1, gi 
→ Gi and ti 
→ Ti

defines a representation Φ of YB
d,n in End(V ⊗n).

We shall finish the section enunciating Proposition 5.1, which is an analogue of
[8, Lemma 3.1.4]. This proposition is used in the proof of Theorem 5.2 and describes,
through Φ, the action of Wn on the basis B⊗n .

The defining generators b1 and gi of the algebra YB
d,n satisfy the same braid

relations as the Coxeter generators r and si of the group Wn . Thus, the well–known
Matsumoto’s Lemma implies that if w1 . . . wm is a reduced expression of w ∈ Wn ,
with wi ∈ {r,s1, . . . ,sn−1}, then the following element gw is well–defined:

gw := gw1 · · · gwm , (5.29)

where gwi = b1, if wi = r and gwi = g j , if wi = s j .
The notation Φw stands for the image by Φ of gw ∈ YB

d,n .

Proposition 5.1 (See [5, Proposition3])Letw ∈ Wn parameterizedby (m1, . . . , mn)

∈ Xn
n . Then

(vr1
1 ⊗ · · · ⊗ vrn

n )Φw = v
r|m1 |
m1 ⊗ · · · ⊗ v

r|mn |
mn .

5.5 Linear Bases for YB
d,n

In this section we construct two linear bases for the algebra YB
d,n , which will be

denote by Cn and Dn . The first one is used for defining a Markov trace on YB
d,n (as

we will see in the next section), and the second one plays a technical role for proving
that Cn is a linearly independent set.

Set b1 := b1, bk := gk−1 . . . g1b1g1 . . . gk−1, and bk := gk−1 . . . g1b1g−1
1 . . . g−1

k−1
for all 2 ≤ k ≤ n. For all 1 ≤ k ≤ n, let us define inductively the sets Nd,k by

Nd,1 := {tm
1 , b1t

m
1 ; 0 ≤ m ≤ d − 1} and

Nd,k := {tm
k , bktm

k , gk−1x ; x ∈ Nd,k−1, 0 ≤ m ≤ d − 1} for all 2 ≤ k ≤ n.
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Fig. 5.3 Elements bi and bi
geometrically

. . . . . .
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Analogously, for all 1 ≤ k ≤ n we define inductively the sets Md,k exactly like
Nd,k’s but exchanging bk by bk in each case (Fig. 5.3)

Now notice that every element of Md,k has the form m+
k, j,m or m−

k, j,m with j ≤ k
and 0 ≤ m ≤ d − 1, where

m+
k,k,m := tm

k , m+
k, j,m := gk−1 · · · g j t

m
j for j < k,

and
m−

k,k,m := tm
k bk, m−

k, j,m := gk−1 · · · g j b j t
m
j for j < k.

Similar expressions exist for elements in Nd,k exchanging bk by bk as well, see
[5, Sect. 4.1].

Remark 5.5 Observe that the above elements are the natural analogues of the ele-
ments W (k)

j,a,b given in Sect. 5.2. Indeed, m+
k, j,m (respectively m−

k, j,m) correspond to

W (k)
j−1,0,m (respectively W (k)

j−1,1,m).

Further, we consider the set Dn = {n1n2 · · · nn |ni ∈ Nd,i }, which is a spanning set
of YB

d,n [5, Proposition 4], moreover using the representation given in the previous
section, we can prove that Dn is also a linearly independent set, then we have

Theorem 5.2 Dn is a linear basis for YB
d,n. Hence the dimension of YB

d,n is 2ndnn!.
Sketch of the Proof of Theorem 5.2

Firstly, taking into account the structure properties of Wn given in Sect. 5.1.1, it
is easy to see that we can write the basis Dn as follows

Dn = {gwtm1
1 · · · tmn

n ; w ∈ Wn, (m1, . . . , mn) ∈ (Z/dZ)n}.

for details see [5, Proposition 1].
Secondly, we shall use a certain basisD of V introduced by Espinoza and Ryom–

Hansen in [4]. More precisely, D consist of the following elements:

ur
k =

d−1
∑

i=0

ωir vi
k (5.30)
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where k is running Xn and 0 ≤ r ≤ d − 1.
Moreover, it is not difficult to prove that:

(i) (ur
k)T = ur+1

k .
(ii) For a w ∈ Wn parameterized by (i1, . . . , in), we have

(u0
1 ⊗ · · · ⊗ u0

n)Φw = u0
i1 ⊗ · · · ⊗ u0

in
.

Note that (ii) follows by Proposition 5.1 and (5.30).
Now, suppose that

∑

c∈Dn

λcc =
∑

w∈Wn; m∈(Z/dZ)n

λw,m gwtm1
1 . . . tmn

n = 0,

where m = (m1, . . . , mn). Then applying Φ and evaluating in the element u0
1 ⊗

· · · ⊗ u0
n , we have

∑

λw,m(u0
1 ⊗ · · · ⊗ u0

n)Φ(gwtm1
1 . . . tmn

n ) = 0
∑

λw,m(u0
1 ⊗ · · · ⊗ u0

n)ΦwT m1
1 · · · T mn

n = 0

and by (ii) we obtain

∑

λi,mu0
i1 ⊗ · · · ⊗ u0

in
T m1
1 · · · T mn

n = 0,

where i := (i1, . . . , in) runs in Xn
n and m := (m1, . . . , mn) runs in (Z/dZ)n . Finally,

by using i) the result follows. Further we have the following corollary.

Corollary 5.1 The representation Φ is faithful.

Finally, we consider Cn = {m1m2 · · ·mn |mi ∈ Md,i }, which also is a spanning
set for YB

d,n , this fact is proved using the computations listed in [5, Lemmas 5, 6 and
7], then as Dn and Cn have the same cardinality we deduce the following result.

Proposition 5.2 The set Cn is a basis for YB
d,n.

5.6 A Markov Trace on YB
d,n

In this section we show that the algebra YB
d,n supports a Markov trace. This fact was

proved by using the method of relative traces, cf. [1, 2]. In few words, the method
consists in constructing a certain family of linear maps trn : YB

d,n −→ YB
d,n−1, called

relative traces, which builds step by step the desired Markov properties. Finally, the
Markov trace on YB

d,n is defined by
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Trn := tr1 ◦ · · · ◦ trn.

Let z be an indeterminate and denote by L the field of rational functions K(z) =
C(u, v, z).We set x0 := 1 and from now onwe fix non–zero parameters x1, . . . , xd−1

and y0, . . . , yd−1 in L.

Definition 5.5 For n ≥ 1, we define the linear functions trn : YB
d,n −→ YB

d,n−1 as
follows. For n = 1, tr1(t

a1
1 ) = xa1 and tr1(b1ta1

1 ) = ya1 . For n ≥ 2, we define trn on
the basis Cn of YB

d,n by:

trn(wmn) =
⎧

⎨

⎩

xmw for mn = tm
n

ymw for mn = bntm
n

zwm±
n−1,k,m for mn = m±

n,k,m

(5.31)

where w := m1 · · ·mn−1 ∈ Cn−1. Note that (5.31) also holds for w ∈ YB
d,n−1.

Using the previous definition and the relations on YB
d,n , it is not difficult to prove that

trn has the following properties:

• trn(XY Z) = X trn(Y )Z , for all X, Z ∈ YB
d,n−1 and Y ∈ YB

d,n . (5.32)

• trn(Xtn) = trn(tn X), for all X ∈ YB
d,n . (5.33)

• trn−1(trn(Xgn−1)) = trn−1(trn(gn−1X)), for all X ∈ YB
d,n . (5.34)

for details see [5, Lemmas 9, 10 and 13] respectively.

We define Trn : YB
d,n → L inductively by:

Tr1 := tr1 and Trn := Trn−1 ◦ trn.

Thus, we obtain directly

• Trn(1) = 1
• Trn(x) = Trk(x), for x ∈ YB

d,k and n ≥ k.

Let us denote Tr the family {Trn}n≥1. The following theorem is one of the main
results of [5].

Theorem 5.3 Tr is a Markov trace on {YB
d,n}n≥1. That is, for every n ≥ 1, the linear

map Trn : YB
d,n −→ L satisfies the following rules:

(i) Trn(1) = 1,
(ii) Trn+1(Xgn) = zTrn(X),

(iii) Trn+1(Xbn+1tm
n+1) = ymTrn(X),

(iv) Trn+1(Xtm
n+1) = xmTrn(X),

(v) Trn(XY ) = Trn(Y X),

where X, Y ∈ YB
d,n.
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Proof Rules (ii)–(iv) are a direct consequences of (5.32). We prove rule (v) by
induction on n. For n = 1, the rule holds since YB

d,1 is commutative. Suppose now
that (v) is true for all k less than n. We prove it first for Y ∈ YB

d,n−1 and X ∈ YB
d,n .

We have

Trn(XY ) = Trn−1(trn(XY ))
(32)= Trn−1(trn(X)Y )

(induction)= Trn−1(Y trn(X))
(32)= Trn−1(trn(Y X)).

Hence, Trn(XY ) = Trn(Y X) for all X ∈ YB
d,n and Y ∈ YB

d,n−1. Now, we prove the
rule for Y ∈ {gn−1, tn}. By using (5.33) and (5.34), we get

Trn(XY ) = Trn−2(trn−1(trn(XY ))) = Trn−2(trn−1(trn(Y X))).

In summary, we have
Trn(XY ) = Trn(Y X)

for all X ∈ YB
d,n and Y ∈ YB

d,n−1 ∪ {gn−1, tn}. Clearly, having in mind the linearity
of Trn , this last equality implies that rule (v) holds.

Note 5.1 As we could see in the proof of Theorem 5.3, (5.32), (5.33) and (5.34) give
step by step the desiredMarkov properties for Tr. This fact is the principal advantage
of use of the relative traces technique.

Remark 5.6 Let Tr the Markov trace of Y(d, 2, n) recalled in Sect. 5.2. Then, con-
sidering Remark 5.5, and ignoring the fact that Tr has a different domain, we can
say that the Markov trace defined in this section “coincides” with Tr, by taking
x0,m = xm and x1,m = ym , for all m ∈ {0, . . . , d − 1}.

5.7 The E–condition and the F–condition

We want to construct a new invariant for applying Jones’s recipe to the pair (YB
d,n ,

Tr). For that, as it was seen in [13], we need that the following equation holds

Trn+1(wen) = Trn(w)Trn+1(en) for all w ∈ YB
d,n . (5.35)

Then we must establish sufficient conditions over the parameters x1, . . . , xd−1,
y0, . . . , yd−1 ∈ L, such that (5.35) be satisfied.

With this goal in mind, we define the elements E (k) and F (k) as follows

E (k) := 1

d

∑

m

xk+m xd−m for 0 ≤ k ≤ d − 1 (5.36)
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F (k) := 1

d

∑

m

xd−m yk+m for 0 ≤ k ≤ d − 1. (5.37)

where the summations over m’s are regarded modulo d. Note that E (0) = Trn(en).
By using the above definitions and the trace rules, we obtain the following results.

Lemma 5.2 Let w = w′t k
n , where w′ ∈ YB

d,n−1. Then

Trn+1(we(m)
n ) = E (k+m)

xk
Trn(w).

Hence, Trn+1(wen) = E (k)

xk
Trn(w).

Lemma 5.3 Let w = w′bntk
n , where w′ ∈ YB

d,n−1. Then

Trn+1(we(m)
n ) = F (k+m)

yk
Trn(w).

In particular, we have Trn+1(wen) = F (k)

yk
Trn(w).

Lemma 5.4 Let w = w′m±
n,k,α , with w′ ∈ YB

d,n−1. Then Trn+1(wen) = zTrn(xen−1),
where x = m±

n−1,k,αw′.

Considering the previous lemmas, the following definition becomes natural.

Definition 5.6 The E–system is the non–linear system formed by the following
d − 1 equations:

E (m) = xm E (0) (0 < m ≤ d − 1)

Any solution (x1, . . . , xn) of the E–system is referred to by saying that it satisfies
the E–condition.

The elements E (k) and the E–system were originally introduced in [13] in order to
define new invariants. Specifically, whenever the trace parameters of the Markov
trace on the Yokonuma–Hecke algebra satisfy the E–system we have an invariant
for framed and classical knots and links in the 3-sphere. Further, in [13, Appendix]
P. Gérardin showed that the solutions of the E–system are parameterized by the
non-empty subsets of Z/dZ. Now, we introduce the F–system

Definition 5.7 Assume now that (x1, . . . , xn) a solution of the E–system parame-
terized by the set S ⊆ Z/dZ. The F–system is the following homogeneous linear
system of d equations in y0, . . . , yd−1:

F(m) = ymE
(0) (0 ≤ m ≤ d − 1)
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where E(0) and F(m) are the elements that result from replacing xi by xi in (5.36) and
(5.37) respectively, that is:

E(0) := 1

d

∑

m

xmxd−m and F(m) := 1

d

∑

m

xd−m yk+m .

Also we have that E(0) = 1
|S| , see [13, Sect. 4.3]. Thus the F–system is formed by the

following equations:

∑

m

xd−m yk+m − d

|S| ym = 0 (0 ≤ m ≤ d − 1). (5.38)

For any solution (y0, . . . , yn) of the F–systemwe say that it satisfies the F–condition.

Remark 5.7 Note that the F–system is a particular case of the affine E–system
recalled in Remark 5.3. More precisely, when the trace parameters are specialized
to complex numbers (x1, . . . , xn) and (y0, . . . , yn) that satisfy the E–condition and
the F–condition respectively, then these also satisfy the affine E–system for m = 2.

Finally using Lemmas 5.2, 5.3 and 5.4 the following theorem is obtained easily.

Theorem 5.4 We assume that the trace parameters are specialized to complex num-
bers (x1, . . . , xn) and (y0, . . . , yn) that satisfy the E–condition and the F–condition
respectively. Then

Trn+1(wen) = Trn(w)Trn+1(en) for all w ∈ YB
d,n . (5.39)

5.7.1 Solving the F–system

The affine E–system is solved in [2] using only standard tools of linear algebra, then
by Remark 5.7, in particular, it provides a solution for the F–system. Now, we give
an alternative approach to solve the F–system, following the method of resolution
of the E–system done by P. Gérardin, that is, by using some tools from the complex
harmonic analysis on finite groups, see [13, Appendix]. We shall introduce first
some notations and definitions, necessary for solving the F–system by the method
of Gérardin.

We shall regard the group algebra 
 := L[Z/dZ], as the algebra formed by all
complex functions on Z/dZ, where the product is the convolution product, that is:

( f ∗ g)(x) =
∑

y∈Z/dZ

f (y)g(x − y) where f, g ∈ 
.

As usual, we denote by δa ∈ 
 the function with support {a}.
Also we denote by ea’s the characters of Z/dZ, that is:
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ea : b 
→ cos

(

2πab

d

)

+ i sin

(

2πab

d

)

.

The Fourier transform F on 
 is the automorphism defined by f 
→ ̂f , where

̂f (x) := ( f ∗ ex )(0) =
∑

y∈Z/dZ

f (y)ex (−y).

Recall that (F−1 f )(x) = d−1
̂f (−u), where ̂f (v) = ∑

u∈G f (u)ev(−u). For more
properties of Fourier transform over finite groups see [17].

To solve the E–system, Gérardin considered the elements x ∈ 
, defined by
x(k) = xk . Then, he interpreted the E–system as the functional equation x ∗ x =
(x ∗ x)(0)x with the initial condition x(0) = 1. Now, by applying the Fourier trans-
form on this functional equation we obtain x̂2 = (x ∗ x)(0)̂x . These last equations
imply that x̂ is constant on its support S, where it takes the values (x ∗ x)(0). Thus,
we have

x̂ = (x ∗ x)(0)
∑

s∈S

δs .

By applyingF−1 and the properties listed in the proposition above, Gérardin showed
that the solutions of the E–system are parameterized by the non–empty subsets of
Z/dZ. More precisely, for such a subset S, the solution xS is given as follows.

xS = 1

|S|
∑

s∈S

es .

Now, in order to solve the F–systemwith respect to xS , we define y ∈ 
 by y(k) =
yk . Then we have F (k) = d−1(x ∗ y)(k). So, to solve the F–system is equivalent to
solving the following functional equation:

x ∗ y = (x ∗ x)(0)y.

which, applying the Fourier transform, is equivalent to:

x̂ ŷ = (x ∗ x)(0)ŷ.

This equation implies that the support of ŷ is contained in the support of x̂ . Now, set
S the support of x̂ . Then we can write ŷ = ∑

s∈S λsδs . Finally applying F−1 to the
last equation, we get:

y = 1

d

∑

s∈S

λses .

Thus, we have proved the following proposition.
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Proposition 5.3 The solution of the F-system with respect to the solution xS of the
E–system is in the form:

yS =
∑

s∈S

αses,

where the αs ’s are complex numbers.

5.8 Knot and Link Invariants from YB
d,n

In this section we define invariants for knots and links in the solid torus, by using
the Jones’s recipe applied to the pairs (YB

d,n,Trn) where n ≥ 1. To do that, we fix
a subset S of Z/dZ from now, and we will consider the trace parameters xk’s and
yk’s as the solutions given in the previous section associated to set S. The invariants
constructed here will take values in L.

As in the classical case, the closure of a framed braidα of typeB (recall Sect. 5.1.2)
is defined by joining with simple (unknotted and unlinked) arcs its corresponding
endpoints and is denoted by α̂. The result of closure, α̂, is a framed link in the solid
torus, denoted ST . This can be understood by viewing the closure of the fixed strand
as the complementary solid torus. For an example of a framed link in the solid torus
see Fig. 5.4.

By the analogue of theMarkov theorem for ST (cf. for example [15, 16]), isotopy
classes of oriented links in ST are in bijection with equivalence classes of braids of
type B and this bijection carries through to the class of framed links of type B.

We set

λS := z − (u − u−1)ES

z
and 
S := 1

z
√

λS
, (5.40)

where ES = Tr(ei ) = 1/|S|. We are now in the position to define link invariants in
the solid torus.

Definition 5.8 For α inF B
n , the Markov trace Tr with the trace parameters special-

ized to solutions of the E–system and the F–system, and π the natural epimorphism
of F B

n onto YB
d,n we define

X B
S (̂α) := 
n−1

S (
√

λS)
e Tr(π(α)),

Fig. 5.4 A framed link in
the solid torus

7

4 ST

L
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where e is the exponent sum of the σi ’s that appear in α. Then X B
S is a Laurent

polynomial in u, v and z and it depends only on the isotopy class of the framed link
α̂, which represents an oriented framed link in ST .

Remark 5.8 The invariants X B
S , when restricted to framed links with all framings

equal to 0, give rise to invariants of oriented classical links in ST . By the results in
[3] and since classical knot theory embeds in the knot theory of the solid torus, these
invariants are distinguished from the Lambropoulou invariants [15]. More precisely,
they are not topologically equivalent to these invariants on links.

Remark 5.9 As we said in the Remark 5.7, when we focus in the algebra Y (d, 2, n),
the affine E–condition coincide with our conditions (E– and F– condition). Then, we
consider the polynomial Γm defined in [2, Sect. 6.3] for m = 2, which is given by

Γ2(̂α) := 
n−1
S (

√

λS)
e Tr(π(α)),

where π : F B
n → Y(d, 2, n) is the natural algebra epimorphism given by

ρ1 
→ b1, σi 
→ gi , i = 1, . . . , n − 1, and t j 
→ t j

At first sight the invariants look similar, but the structural differences between YB
d,n

and Y(d, 2, n) commented in Remark 5.4 make them differ. For example, for the
loop generator twice, we have the following

In YB
d,n In Y(d, 2, n)

Tr(π(b2
1)) = Tr(1 + (v − v−1)b1 f1) Tr(π(b2

1)) = Tr(1 + (v − v−1)b1)

= 1 + (v−v−1)

d

∑

s Tr(b1t s
1) = 1 + (v − v−1)y0

= 1 + (v−v−1)

d

∑

s ys

Therefore

X B
S (̂b2

1) = 1 + (v − v−1)

d

∑

s

ys and Γ2(
̂b2
1) = 1 + (v − v−1)y0.

Then clearly for the framed link ̂b2
1, the two invariants have different values,

nevertheless in order to do a proper comparison of these invariants is necessary a
deeper study.
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