
Chapter 4
Invariants for Links from Classical
and Affine Yokonuma–Hecke Algebras

Loic Poulain d’Andecy

Abstract We present a construction of invariants for links using an isomorphism
theorem for affine Yokonuma–Hecke algebras. The isomorphism relates affine
Yokonuma–Hecke algebras with usual affine Hecke algebras.We use it to construct a
large class ofMarkov traces on affine Yokonuma–Hecke algebras, and in turn, to pro-
duce invariants for links in the solid torus. By restriction, this construction contains
the construction of invariants for classical links from classical Yokonuma–Hecke
algebras. In general, the obtained invariants form an infinite family of 3-variable
polynomials. As a consequence of the construction via the isomorphism, we reduce
the number of invariants to study, given the number of connected components of a
link. In particular, if the link is a classical link with N components, we show that N
invariants generate the whole family.

4.1 Introduction

1. The Yokonuma–Hecke algebras (of type GL), denoted Yd,n , have been used by
J. Juyumaya and S. Lambropoulou to construct invariants for various types of links,
in the same spirit as the construction of the HOMFLYPT polynomial from usual
Hecke algebras. We refer to [1] and references therein. In particular, the algebras
Yd,n provide invariants for classical links and the natural question was to decide if
these invariants were equivalent, or not, to the HOMFLYPT polynomial. This study
culminated in the recent discovery [1] that these invariants are actually topologically
stronger than the HOMFLYPT polynomial (i.e. they distinguish more links). We
refer also to [1, Appendix B] and [2] for a description of the invariants in terms of
HOMFLYPT polynomials and linking numbers of sublinks.
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In [3], another approach to study invariants coming from Yokonuma–Hecke alge-
bras was developed. The starting point was the fact that the algebra Yd,n is isomorphic
to a direct sum of matrix algebras with coefficients in tensor products of usual Hecke
algebras. This allowed an explicit construction of Markov traces on {Yd,n}n≥1 from
the known Markov trace on Hecke algebras (on Hecke algebras, there is a unique
Markov trace up to normalisation, and it gives the HOMFLYPT polynomial). In
addition to its usefulness for the construction of Markov traces, the approach via
the isomorphism also helps to study the resulting invariants. Indeed some proper-
ties of the invariants follow quite immediately from a precise understanding of the
isomorphism (see paragraph 4 below).

Independently of which approach is used, another ingredient was added in [3]: a
third parameter in the invariants.While thefirst twoparameters come from the algebra
Yd,n , this third parameter γ has its origin in the framed braid group, and corresponds
to a certain degree of freedom one has when going from the framed braid group to
the algebra Yd,n . More precisely, we can deform the standard surjective morphism
from the framed braid group algebra to its quotient Yd,n into a family of morphisms
(depending on γ ) respecting the braid relations and the Markov conditions. Another
way of interpreting the parameter γ is that it modifies the quadratic relation satisfied
by the generators of Yd,n . Its existence explains (or is reflected in) the fact that dif-
ferent presentations for Yd,n were used before. Juyumaya–Lambropoulou invariants
correspond to certain specialisations of this parameter γ , depending on the chosen
presentation. So the parameter γ unifies every possible choices and yields more gen-
eral invariants. It is indicated in [1, Remark 8.5] that changing the presentation seems
to give a non-equivalent topological invariant.

2. In this paper, we consider the affine Yokonuma–Hecke algebras (of type GL),
denoted ̂Yd,n . They were introduced in [4] in connections with the representation
theory and the Jucys–Murphy elements of the classical Yokonuma–Hecke algebras.
Our main goal here is to generalise for ̂Yd,n the whole approach to link invariants via
the isomorphism theorem. The invariants are in general for links in the solid torus.
The classical links are naturally contained in the solid torus links and, restricted to
them, the obtained invariants correspond to the invariants obtained in [3] from Yd,n

(naturally seen as a subalgebra of ̂Yd,n). Specialising the parameter γ , we identify the
Juyumaya–Lambropoulou invariants among them. For those invariants, we empha-
size that we recover some known results [1] by a different method and furthermore
obtain some new results already in this particular case.

We start with an isomorphism between the algebra ̂Yd,n and a direct sum of matrix
algebras with coefficients in tensor products of affine Hecke algebras. As done in
[5], the isomorphism can be proved repeating the same arguments as for Yd,n (see
[3] where the proof for Yd,n is presented, as a particular case of a more general result
by G. Lusztig [6, Sect. 34]). Here we sketch a short different proof for ̂Yd,n using
the known result for Yd,n . We also prove the analogous theorem for the cyclotomic
quotients of̂Yd,n (withAriki–Koike algebras replacing affineHecke algebras). Useful
for concrete use, the formulas for the generators are simple and given explicitly.

Concerning links, S. Lambropoulou constructed invariants, analogues of the
HOMFLYPT polynomial, for links in the solid torus from affine Hecke algebras



4 Invariants for Links from Classical and Affine Yokonuma–Hecke Algebras 79

[7]. Then, it was explained in [8] how to obtain invariants for those links from the
algebras ̂Yd,n , unifying the methods of J. Juyumaya and S. Lambropoulou for Yd,n

and the construction of S. Lambropoulou for affine Hecke algebras. Due to the recent
results of [1], it is expected that the invariants obtained from ̂Yd,n are stronger than
the ones obtained from affine Hecke algebras.

Here we follow the alternative approach which uses the isomorphism to construct
Markov traces on the family of algebras {̂Yd,n}n≥1. To sum up, the Markov traces
are constructed and can be calculated with the following steps: for an element of
̂Yd,n , apply first the isomorphic map to obtain an element of the direct sum of matrix
algebras; then, for each matrix, apply the usual trace which results in an element of
a tensor product of affine Hecke algebras; finally apply a tensor product of Markov
traces on affine Hecke algebras. Our result consists in obtaining the compatibility
conditions relating the Markov traces appearing in different matrix algebras so that
the preceding procedure eventually results in a genuine Markov trace on {̂Yd,n}n≥1.

With the definition used here, for a given d > 0, the set of Markov traces on
{̂Yd,n}n≥1 forms a vector space. From the isomorphism, a set of distinguishedMarkov
traces appears naturally, which spans the set of all Markov traces constructed here.
Thus, our study of Markov traces (and of invariants) is reduced to the study of these
“basic” Markov traces (and of the corresponding “basic” invariants). It turns out that
these basic Markov traces are indexed, for a given d > 0, by the non-empty subsets
S ⊂ {1, . . . , d} togetherwith a choice, denoted formally by τ , of |S| arbitraryMarkov
traces on affine Hecke algebras. We note that if we restrict to Yd,n , the parameter τ

disappears and the basic Markov traces on {Yd,n}n≥1 are indexed, for a given d > 0,
only by the non-empty subsets S ⊂ {1, . . . , d}. This recovers a result of [3].

3. Throughout the paper, we intended to give in details the connections between
the two approaches, so that one would be able to pass easily from one to the other.
This will allow in particular to specialise and translate all our results on the invariants
to Juyumaya–Lambropoulou invariants as well.

Roughly speaking, J. Juyumaya and S. Lambropoulou constructed invariants from
Yd,n in two steps [9]. The same approach was followed in [8] for ̂Yd,n . First a certain
trace map, analogous to the Ocneanu trace and satisfying a certain positive Markov
condition, was constructed. Then a rescaling procedure was implemented, in order
to produce genuine invariants. The rescaling procedure amounts to two things: a
renormalisation of the generators and a renormalisation, depending on n, of the
trace. In the approach presented here, the first step is included from the beginning
in a more general quadratic relation for the generators. The second step is already
included in the definition of a Markov trace, namely that it is a family, on n, of trace
maps satisfying the two Markov conditions. As a consequence, to obtain invariants
here, one directly applies the Markov trace and no rescaling procedure is needed.

For the comparison, our first task is to explain that Juyumaya–Lambropoulou
approach is equivalent to considering certain Markov traces (with the definition used
here) and to relate their variables with the parameters considered here. Then we need
to identify these Markov traces in terms of the ones constructed via the isomorphism
theorem.We obtain finally the explicit decomposition of theseMarkov traces in terms
of the basic Markov traces indexed by S ⊂ {1, . . . , d} and τ as above.
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In particular, for Yd,n , this results in an explicit formula for the Juyumaya–
Lambropoulou invariants, as studied in [1], in terms of the basic invariants con-
structed here. We note that, in this case, the parameter τ is not present, and that
Juyumaya–Lambropoulou invariants are also parametrised, for a given d > 0, by
non-empty subsets of {1, . . . , d}. Nevertheless, they do not coincide with the basic
invariants and the comparison formula is not trivial (see Formulas (4.27) in Sect. 1.5).
In general, for ̂Yd,n , we obtain the expression of the invariants constructed in [8] in
terms of the basic invariants constructed here.

Concerning the third parameter γ , we recall that it was not present in the previous
approach. Actually, one need to specialise it to a certain value in our invariants to
recover the Juyumaya–Lambropoulou invariants. The two different presentations of
Yd,n that were used, as in [1], correspond to two different values of γ that we give
explicitly. Similarly, for ̂Yd,n , the invariants constructed in [8] correspond to a certain
specialisation of γ .

4. We conclude this introduction by describing the main properties obtained for
the invariants. As explained before, they follow quite directly from a precise under-
standing of the isomorphism, and are expressed easily in terms of the basic invariants
defined here. The main results are:

• for d > 0 and a non-empty subset S ⊂ {1, . . . , d}, the corresponding invariants
coincide with invariants corresponding to d ′ = |S| and the full set {1, . . . , d ′}.
Therefore, we only have to consider the full sets {1, . . . , d} for different d > 0.

• further, given a number N of connected components of a link, the invariants cor-
responding to {1, . . . , d} are zero if d > N . So, given N , we only have to consider
d = 1, . . . , N .

Moreover, with the comparison results explained in paragraph 3, it is easy to deduce
the similar properties for invariants obtained via Juyumaya–Lambropoulou approach.
The first item remains true as it is. The second item results in an explicit formula
expressing, if d > N , the invariants corresponding to {1, . . . , d} in terms of the
invariants corresponding to {1, . . . , d ′}withd ′ ≤ N . Specialisingγ to the appropriate
values and restricting to classical links, we recover with the first item a result of [1].
The second item in this case was proved only for N ≤ 2 also in [1].

4.2 Affine Yokonuma–Hecke Algebras

Let d, n ∈ Z>0 and u and v be indeterminates. We work over the ringC[u±1, v]. The
properties of the affine Yokonuma–Hecke algebras recalled here can be found in [8].
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4.2.1 Definitions

We use Sn to denote the symmetric group on n elements, and si to denote the
transposition (i, i + 1). The affine Yokonuma–Hecke algebra ̂Yd,n is generated by
elements

g1, . . . , gn−1, X
±1
1 , t1, . . . , tn,

subject to the following defining relations (4.1)–(4.3):

gi g j = g j gi for i, j = 1, . . . , n − 1 such that |i − j | > 1,
gi gi+1gi = gi+1gi gi+1 for i = 1, . . . , n − 2,

X1 g1X1g1 = g1X1g1 X1

X1gi = gi X1 for i = 2, . . . , n − 1,

(4.1)

ti t j = t j ti for i, j = 1, . . . , n,
gi t j = tsi ( j)gi for i = 1, . . . , n − 1 and j = 1, . . . , n,
tdj = 1 for j = 1, . . . , n,

X1t j = t j X1 for j = 1, . . . , n,

(4.2)

g2i = u2 + v ei gi for i = 1, . . . , n − 1, (4.3)

where ei := 1

d

∑

1≤s≤d

t si t
−s
i+1. The elements ei are idempotents and we have:

g−1
i = u−2gi − u−2v ei for all i = 1, . . . , n − 1. (4.4)

Let w ∈ Sn and let w = si1si2 . . . sir be a reduced expression for w. Since the
generators gi of ̂Yd,n satisfy the same braid relations as the generators si of Sn ,
Matsumoto’s lemma implies that the following element does not depend on the
reduced expression of w:

gw := gi1gi2 . . . gir . (4.5)

Elements X2, . . . , Xn of ̂Yd,n are defined inductively by

Xi+1 := u−2gi Xi gi for i = 1, . . . , n − 1. (4.6)

The elements X1, . . . , Xn commute with each other. They also commute with the
generators t1, . . . , tn and they satisfy g j Xi = Xi g j if i �= j, j + 1.

For λ = (λ1, . . . , λn) ∈ Z
n , we set Xλ := Xλ1

1 . . . Xλn
n . The following set of ele-

ments forms a basis of ̂Yd,n:

{ ta11 . . . tann Xλgw | a1, . . . , an ∈ {1, . . . , d} , λ ∈ Z
n , w ∈ Sn } . (4.7)
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This fact has the following consequences:

• Recall that the Yokonuma–Hecke algebra Yd,n is presented by generators g1, . . . ,
gn−1, t1, . . . , tn and defining relations those in (4.1)–(4.3) which do not involve the
generator X1. We have that Yd,n is isomorphic to the subalgebra of ̂Yd,n generated
by g1, . . . , gn−1, t1, . . . , tn (hence the common names for the generators).

• In particular, the commutative subalgebra Td,n := 〈t1, . . . , tn〉 of ̂Yd,n generated
by t1, . . . , tn is isomorphic to the group algebra of (Z/dZ)n .

• Bydefinition, the affineHecke algebra (of typeGL) is ̂Hn := ̂Y1,n .We have, for any
d > 0, that the quotient of̂Yd,n by the relations t j = 1, j = 1, . . . , n, is isomorphic
to ̂Hn . We denote by · the corresponding surjective morphism from ̂Yd,n to ̂Hn ,

and the generators of ̂Hn are denoted g1, . . . , gn−1, X
±1
1 .

• The subalgebra of ̂Hn generated by g1, . . . , gn−1 is the usual Hecke algebra,
denoted Hn . We also have Hn = Y1,n .

4.2.2 Compositions of n

Let Compd(n) be the set of d-compositions of n, that is the set of d-tuples μ =
(μ1, . . . , μd) ∈ Z

d
≥0 such that

∑

1≤a≤d μa = n. We denote μ =|d n.
For μ =|d n, the Young subgroup Sμ is the subgroup Sμ1 × · · · × Sμd of Sn ,

where Sμ1 acts on the letters {1, . . . , μ1},Sμ2 acts on the letters {μ1 + 1, . . . , μ2},
and so on. The subgroup Sμ is generated by the transpositions si with i ∈ Iμ :=
{1, . . . , n − 1} \ {μ1, μ1 + μ2, . . . , μ1 + . . . + μd−1}.

We denote by ̂Hμ the algebra ̂Hμ1 ⊗ . . . ⊗ ̂Hμd (by convention ̂H0 := C[u±1, v]).
It is isomorphic to the subalgebra of ̂Hn generated by X

±1
1 , . . . , X

±1
n and gi , with

i ∈ Iμ, and is a free submodule with basis {Xλ
gw | λ ∈ Z

n , w ∈ Sμ}.
Similarly, we have a subalgebra Hμ ∼= Hμ1 ⊗ . . . ⊗ Hμd of the Hecke algebra

Hn . It is naturally a subalgebra of ̂Hμ (generated only by gi , with i ∈ Iμ).
For μ =|d n, let mμ be the index of the Young subgroup Sμ in Sn , that is,

mμ := n!
μ1!μ2! . . . μd ! . (4.8)

We define the socle μ of a d-composition μ by

μa =
{

1 if μa ≥ 1,
0 if μa = 0,

for a = 1, . . . , d. (4.9)

The composition μ belongs to Compd(N ) where N is the number of non-zero parts
in μ. We denote by Socd the set of all socles of d-compositions, or in other words,
Socd is the set of d-compositions whose parts belong to {0, 1}. We note that there is
a one-to-one correspondence between the set Socd and the set of non-empty subsets
of {1, . . . , d}, given by
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{1, . . . , d} ⊃ S ←→ μS ∈ Socd , where μS
a =

{

1 if a ∈ S,

0 if a /∈ S.
(4.10)

4.2.3 Characters of Td,n

Let {ξ1, . . . , ξd} be the set of roots of unity of order d. A complex character χ of
the group (Z/dZ)n is characterised by the choice of χ(t j ) ∈ {ξ1, . . . , ξd} for each
j = 1, . . . , n. We denote by Irr(Td,n) the set of complex characters of (Z/dZ)n ,
extended to the subalgebra Td,n = 〈t1, . . . , tn〉 of ̂Yd,n .

For each χ ∈ Irr
(

Td,n
)

, we denote by Eχ the primitive idempotent of Td,n asso-
ciated to χ . Then the set {Eχ | χ ∈ Irr(Td,n)} is a basis of Td,n . Therefore, from the
basis (4.7) of ̂Yd,n , we obtain the following other basis of ̂Yd,n:

{Eχ X
λgw | χ ∈ Irr(Td,n) , λ ∈ Z

n , w ∈ Sn} . (4.11)

Permutations πχ .

Let χ ∈ Irr(Td,n). For a ∈ {1, . . . , d}, we let μa be the number of elements j ∈
{1, . . . , n} such that χ(t j ) = ξa . Then the sequence (μ1, . . . , μd) is a d-composition
of n which we denote by Comp(χ).

For a given μ =|d n, we consider a particular character χ
μ
0 ∈ Irr(Td,n) such that

Comp(χμ
0 ) = μ. The character χ

μ
0 is defined by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

χ
μ
0 (t1) = . . . = χ

μ
0 (tμ1) = ξ1 ,

χ
μ
0 (tμ1+1) = . . . = χ

μ
0 (tμ1+μ2) = ξ2 ,

...
...

...
...

...
...

...

χ
μ
0 (tμ1+···+μd−1+1) = . . . = χ

μ
0 (tn) = ξd .

(4.12)

The symmetric group Sn acts on the set Irr(Td,n) by the formula w(χ)
(

ti
) =

χ(tw−1(i)). The stabilizer of χ
μ
0 under the action of Sn is the Young subgroup Sμ.

In each left coset inSn/S
μ, there is a unique representative of minimal length. So,

for any χ ∈ Irr(Td,n) such that Comp(χ) = μ, we define a permutation πχ ∈ Sn by
requiring that πχ is the element of minimal length such that:

πχ(χ
μ
0 ) = χ . (4.13)

4.3 Isomorphism Theorems

We present isomorphism theorems for the algebras ̂Yd,n and their cyclotomic quo-
tients. We sketch a short proof, which uses the corresponding result for Yd,n (see [3,
Sect. 3.1]). We are still working over C[u±1, v].
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4.3.1 Isomorphism Theorem for Affine Yokonuma–Hecke
Algebras

For μ =|d n, we consider the algebra Matmμ
( ̂Hμ) of matrices of size mμ with coef-

ficients in ̂Hμ. We recall that mμ, given by (4.8), is the number of characters
χ ∈ Irr(Td,n) such that Comp(χ) = μ. So we index the rows and columns of a
matrix in Matmμ

( ̂Hμ) by such characters. Moreover, for two characters χ, χ ′ such
that Comp(χ) = Comp(χ ′) = μ, we denote by 1χ,χ ′ the matrix in Matmμ

( ̂Hμ) with
1 in line χ and column χ ′, and 0 everywhere else.

Theorem 4.1 The affine Yokonuma–Hecke algebra ̂Yd,n is isomorphic to
⊕

μ=|d n Matmμ
( ̂Hμ), the isomorphism being given on the elements of the basis (4.11)

by

Ψd,n : Eχ X
λgw−1 �−→ u�(w−1)−�(π−1

χ w−1πw(χ)) 1χ,w(χ) X
π−1

χ (λ)
gπ−1

χ w−1πw(χ)
, (4.14)

where χ ∈ Irr(Td,n), λ ∈ Z
n and w ∈ Sn (� is the length function on Sn).

Proof (Sketch of a proof) We start with explicit formulas for the images of the
generators of ̂Yd,n given below in (4.15)–(4.17), and we check that the images of the
generators satisfy all the defining relations (4.1)–(4.3) of ̂Yd,n . For the relations not
involving the generator X1, this is already known from the isomorphism theorem for
Yd,n . We omit the remaining straightforward verifications.

Thus, Formulas (4.15)–(4.17) induce amorphism of algebras, and we check that it
coincides withΨd,n given by (4.14). Again, for the images of the elements of the basis
of the form Eχgw−1 , this is already known from the Yd,n situation. The multiplication
by Xλ is straightforward.

It remains to check that Ψd,n is bijective. The surjectivity follows from a direct
inspection of Formula (4.16) together with the already known fact that every
Matmμ

(Hμ) is in the image of Ψd,n . The injectivity can be checked directly. Indeed,
assume that a certain linear combination

∑

χ,λ,w cχ,λ,wEχ Xλgw−1 is in the kernel of
Ψd,n . Then for every χ, λ,w, we obtain that

∑

w′
u�(w′−1)−�(π−1

χ w′−1πw′(χ))cχ,λ,w′ gπ−1
χ w′−1πw′(χ)

= 0 ,

where the sum is over w′ ∈ Sn such that w′(χ) = w(χ). For w′,w′′ satisfying this
condition, we have π−1

χ w′−1πw′(χ) = π−1
χ w′′−1πw′′(χ) if and only if w′ = w′′, and

therefore every coefficients in the above sum are 0.

Formulas for the generators.

Here, we give the images under the isomorphism Ψd,n of the generators of ̂Yd,n .
We recall that

∑

Eχ = 1 in ̂Yd,n , the sum being over Irr(Td,n). Let χ ∈ Irr(Td,n)

and set μ = Comp(χ). Then, by definition of πχ , it is straightforward to see that
π−1

χ ( j) = μ1 + · · · + μa−1 + α, where χ(t j ) = ξa and α = 
{k ≤ j | χ(tk) = ξa}.



4 Invariants for Links from Classical and Affine Yokonuma–Hecke Algebras 85

• Let j ∈ {1, . . . , n}. We have:

t j =
∑

χ∈Irr(Td,n)

Eχ t j =
∑

χ∈Irr(Td,n)

Eχχ(t j ) �−→
∑

χ∈Irr(Td,n)

1χ,χ χ(t j ) . (4.15)

It follows that the image of ei , i = 1, . . . , n − 1, is a sum of diagonal matrices;
the coefficient in position χ is 1 if χ(ti ) = χ(ti+1), and 0 otherwise.

• Let j ∈ {1, . . . , n}. We have:

X j =
∑

χ∈Irr(Td,n)

Eχ X j �−→
∑

χ∈Irr(Td,n)

1χ,χ Xπ−1
χ ( j) . (4.16)

• Let i ∈ {1, . . . , n − 1}. We have:

gi =
∑

χ∈Irr(Td,n)

Eχgi and Eχgi �−→
{

u 1χ,si (χ) if si (χ) �= χ,

1χ,χ gπ−1
χ (i) if si (χ) = χ .

(4.17)

The first line follows from πsi (χ) = siπχ if si (χ) �= χ . The second line follows
from π−1

χ (i + 1) = π−1
χ (i) + 1 if si (χ) = χ .

4.3.2 Isomorphism Theorem for Cyclotomic
Yokonuma–Hecke Algebras

Let v = (v1, . . . , vm) ⊂ C[u±1, v]\{0} be an m-tuple of non-zero parameters for a
certain m ∈ Z>0 (equivalently, one could consider v1, . . . , vm as indeterminates and
work over the extended ring C[u±1, v, v±1

1 , . . . , v±1
m ]). The cyclotomic Yokonuma–

Hecke algebra Yd,n(v) is the quotient of the affine Yokonuma–Hecke algebra ̂Yd,n by
the relation

(X1 − v1) . . . (X1 − vm) = 0 . (4.18)

It is shown in [8] that the algebra Yd,n(v) is a free C[u±1, v]-module with basis

{ta11 . . . tann Xλgw | a1, . . . , an ∈ {1, . . . , d} , λ ∈ {0, . . . ,m − 1}n , w ∈ Sn} .

In particular, if m = 1, Yd,n(v) is isomorphic to the Yokonuma–Hecke algebra Yd,n .
Similarly, the cyclotomic Hecke algebra Hn(v) (or the Ariki–Koike algebra) is

the quotient of the affine Hecke algebra ̂Hn by the relation (X1 − v1) . . . (X1 −
vm) = 0. Equivalently, it is the quotient of the cyclotomic Yokonuma–Hecke algebra
Yd,n(v) by the relations t j = 1, j = 1, . . . , n. It is a freeC[u±1, v]-module with basis

{Xλ
gw | λ ∈ {0, . . . ,m − 1}n , w ∈ Sn}.
For μ =|d n, we set H(v)μ := Hμ1(v) ⊗ · · · ⊗ Hμd (v). By definition, H(v)μ is

the quotient of the algebra ̂Hμ by the relations



86 L. Poulain d’Andecy

(Xμ1+···+μa−1+1 − v1) . . . (Xμ1+···+μa−1+1 − vm) = 0 , a = 1, . . . , d . (4.19)

Corollary 4.1 The cyclotomic Yokonuma–Hecke algebra Yd,n(v) is isomorphic to
the direct sum

⊕

μ=|d n Matmμ

(

H(v)μ
)

.

Proof Let Iv be the (two-sided) ideal of ̂Yd,n generated by the left hand side of the
relation (4.18). For μ =|d n, let I

μ

v be the ideal of ̂Hμ generated by the left hand
sides of the relations (4.19). The corollary follows from Theorem 4.1 together with
the fact that Ψd,n(Iv) = ⊕

μ=|d n Matmμ

(

I
μ

v

)

. It remains to check this fact.
The inclusion “⊂” follows at once from Formula (4.16) for j = 1. For the other

inclusion, let μ =|d n. Let a ∈ {1, . . . , d} such that μa �= 0, so that there is a char-
acter χ with Comp(χ) = μ and χ(t1) = ξa . Again, Formula (4.16) for j = 1 gives
Ψd,n(Eχ X1) = 1χ,χ Xμ1+···+μa−1+1. Therefore, for every generators of I

μ

v , we have
in Ψd,n(Iv) a matrix in Matmμ

(

̂Hμ
)

with the generator as one diagonal element and
0 everywhere else. As Ψd,n(Iv) is an ideal, this shows that Matmμ

(

I
μ

v

)

is included in
Ψd,n(Iv).

4.4 Markov Traces on Affine Yokonuma–Hecke Algebras

From now on, we extend the ground ring C[u±1, v] to C[u±1, v±1], and we consider
our algebras over this extended ring.

4.4.1 Definition of Markov Traces on {̂Yd,n}n≥1 and { ̂Hn}n≥1

A Markov trace on the family of algebras {̂Yd,n}n≥1 is a family of linear functions
{ρd,n : ̂Yd,n → C[u±1, v±1]}n≥1 satisfying:

ρd,n(xy) = ρd,n(yx) , n ≥ 1 and x, y ∈ ̂Yd,n;
ρd,n+1(xgn) = ρd,n+1(xg−1

n ) = ρd,n(x) , n ≥ 1 and x ∈ ̂Yd,n .
(4.20)

A Markov trace on the family of algebras { ̂Hn}n≥1 is a family of linear functions
{τn : ̂Hn → C[u±1, v±1]}n≥1 satisfying:

τn(xy) = τn(yx) , n ≥ 1 and x, y ∈ ̂Hn;
τn+1(xgn) = τn+1(xg

−1
n ) = τn(x) , n ≥ 1 and x ∈ ̂Hn.

(4.21)

Recall the definition of Socd from Sect. 4.2. For each μ ∈ Socd and each a ∈
{1, . . . , d} such that μa �= 0, we choose a Markov trace {τμ,a

n }n≥1 on { ̂Hn}n≥1. By
convention, ̂H0 := C[u±1, v±1] andmaps of the form τ

μ,a
0 are identities on ̂H0. Below

in (4.22), each term in the sum over μ =|d n acts on Matmμ
( ̂Hμ). We skip the proof

of the following theorem. It can be done exactly as in [3, Lemma 5.4].



4 Invariants for Links from Classical and Affine Yokonuma–Hecke Algebras 87

Theorem 4.2 The following maps form a Markov trace on {̂Yd,n}n≥1:

(
∑

μ=|dn
(τμ,1

μ1
⊗ · · · ⊗ τμ,d

μd
) ◦ TrMatmμ

)

◦ Ψd,n , n ≥ 1 . (4.22)

Roughly speaking, to construct a Markov trace on ̂Yd,n , after having applied the
isomorphismΨd,n and the usual trace of amatrix,wemust choose and apply aMarkov
trace on each component of ̂Hμ = ̂Hμ1 ⊗ · · · ⊗ ̂Hμd for each μ. This choice of
Markov traces is restricted: ifμ′ has the same socle asμ (that is,μ′

a = 0 ⇔ μa = 0),
then the chosen Markov traces on each component of ̂Hμ′

must be the same as for
̂Hμ; otherwise, they can be chosen independently.

Basic Markov traces.

Recall the bijection (4.10) between Socd and non-empty subsets of {1 . . . , d}. Fol-
lowing the theorem, we define some distinguished Markov traces as follows:

• Choose a non-empty S ⊂ {1, . . . , d} and consider the associated μS ∈ Socd .

Choose a Markov trace {τ a
n }n≥1 on { ̂Hn}n≥1 for each a ∈ S, and set τ

μS, a
n = τ a

n ,
n ≥ 1, in (4.22).

• Then, in (4.22), set all other Markov traces {τμ,a
n }n≥1 with μ �= μS to be 0.

We denote formally the choice of Markov traces in the first item by τ and denote by
{ρS,τ

d,n }n≥1 the resulting Markov trace on {̂Yd,n}n≥1. We call it a basic Markov trace.
Every Markov trace constructed in the preceding theorem is a linear combination of
basic Markov traces {ρS,τ

d,n }n≥1, where S and τ vary.

Example 4.1 A map on ̂Yd,n can be seen, up to Ψd,n , as acting on the direct sum of
matrix algebras. This way, for a given S, the maps ρ

S,τ
d,n are non-zero only on the

summands Matmμ
( ̂Hμ) such that μ = μS , that is, such that μa �= 0 if and only if

a ∈ S. As examples:

• if S = {k} then ρ
S,τ
d,n is non-zero only on Matmμ

( ̂Hμ), for μ = (0, . . . , 0, n,

0, . . . , 0) with n in position k. In this case, ̂Hμ = ̂Hn;
• we will see that it is enough to consider the situation S = {1, . . . , d}. In this case,

ρ
S,τ
d,n is non-zero only on Matmμ

( ̂Hμ), for μ with all parts different from 0.

Remark 4.1 (i) By restriction to the subalgebra Yd,n of ̂Yd,n , a Markov trace on
{̂Yd,n}n≥1 reduces to a Markov trace on {Yd,n}n≥1 (and similarly for ̂Hn and Hn). On
{Hn}n≥1, there is a unique Markov trace up to a normalisation factor. Therefore, the
choice of the Markov traces τ

μ,a
n in the theorem above reduces, for Yd,n , to a choice

of an overall factor αμ for each μ ∈ Socd . This is the result proved in [3]. In other
words, for Yd,n , the basic Markov traces are parametrised by Socd , or equivalently,
by the non-empty subsets of {1, . . . , d}.

(ii) LetMark( ̂Hn) be the space of Markov traces on { ̂Hn}n≥1. The space spanned
by the basic Markov traces ρ

S,τ
d,n is isomorphic to
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⊕

1≤k≤d

(

d
k

)

Mark( ̂Hn)
⊗k .

If we restrict to a subspace of Mark( ̂Hn) of dimension D, we obtain a space of
Markov traces on {̂Yd,n}n≥1 of dimension (D + 1)d − 1. In particular, for Yd,n , the
dimension is 2d − 1.

4.5 Invariants for Links

Letγ be another indeterminate.Wework fromnowonover the ring R := C[u±1, v±1,

γ ±1] and we consider now all algebras over this extended ring R.
We sketch a construction of invariants with values in R for Z/dZ-framed solid

torus links. We call Z/dZ-framed link a usual link together with a number in Z/dZ
(the framing) on each connected component. We refer to [7, 8] for definitions and
fundamental results (as the analogues of Alexander and Markov theorems) concern-
ing solid torus links and their Z/dZ-framed versions. Note that any invariant for
Z/dZ-framed links is also an invariant of non-framed links, simply by considering
links with all framings equal to 0.

The set of classical links is naturally included in the set of solid torus links (in
other words, the braid group is naturally a subgroup of the affine braid group). The
construction here includes, by restriction to the subalgebras Yd,n , the construction
forZ/dZ-framed classical links explained in [3, Sect. 6]. As the construction and the
results equally apply to the classical and the solid torus situations, we will simply
use the word link to refer to both types of links.

4.5.1 Definition of the Invariants

As in [8], we denote by Baff
n the affine braid group on n strands, and byZ/dZ � Baff

n

the Z/dZ-framed affine braid group. The generators of Z/dZ � Baff
n are denoted

σ1, . . . , σn−1, σ0, t1, . . . , tn . The defining relations are (4.1)–(4.2) with gi replaced
by σi and X1 by σ0. The algebra ̂Yd,n is thus a quotient of the group algebra of
Z/dZ � Baff

n by the relation (4.3).
The subgroup of Z/dZ � Baff

n generated by σ1, . . . , σn−1, σ0 is Baff
n . The algebra

̂Hn is a quotient of the group algebra of Baff
n by the relation σ 2

i = u2 + vσi , i =
1, ..., n − 1. Finally, the subgroup σ1, . . . , σn−1 of Baff

n is the classical braid group.

Invariants Pτ
L (u, v) from ̂Hn .

Let {τn}n≥1 be aMarkov trace on { ̂Hn}n≥1. From theAlexander andMarkov theorems
for non-framed links (see [7]), we construct the invariant Pτ

L (u, v), for a link L , as
follows:
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L �−→ βL ∈ Baff
n �−→ πn(βL) �−→ τn

(

πn(βL)
) =: Pτ

L (u, v) ∈ C[u±1, v±1] ,

where βL is a braid closing to L and πn is the natural morphism from RBaff
n to ̂Hn ,

given on the generators by σi �→ gi , i = 1, ..., n − 1 and σ0 �→ X1.
From the fact that there is a unique Markov trace (up to normalisation) on the

usual Hecke algebras {Hn}≥1, all the invariants Pτ
L , restricted to the set of classical

links, reduce (up to normalisation) to the unique invariant coming from Hn , the
HOMFLYPT polynomial.

Invariants Pd,S,τ
L (u, v, γ ) from ̂Yd,n .

We consider the following map from R[Z/dZ � Baff
n] to ̂Yd,n given on the generators

by:
δd,n : t j �→ t j , σ0 �→ X1 , σi �→ (

γ + (1 − γ )ei
)

gi .

One proves as in [3, Sect. 6] that, first, δd,n extends to a morphism of algebras, and
moreover, that the following procedure defines invariants for Z/dZ-framed links.

Definition 4.1 Let {ρd,n}n≥1 be a Markov trace on {̂Yd,n}n≥1. For a Z/dZ-framed
link L , the invariant Pρd

L (u, v, γ ) is defined as follows

L �−→ βL ∈ Z/dZ � Baff
n �−→ δd,n(βL ) �−→ ρd,n

(

δd,n(βL )
) =: Pρd

L (u, v, γ ) ∈ R ,

where βL is a Z/dZ-framed braid closing to L .

From the preceding section, it is enough to consider the basic Markov traces
{ρS,τ

d,n }n≥1. We denote by Pd,S,τ
L the corresponding invariant and refer to it as a basic

invariant.
If we restrict a basic invariant to the set of classical Z/dZ-framed links, it does

not depend on τ , and coincides with the invariants constructed in [3].

Remark 4.2 In the definition of the maps δd,n , a rule σi �→ (α + βei )gi would be
enough to give a morphism of algebras. The condition α + β = 1 is necessary for
the construction of invariants. We note that, considering the map δd,n is equivalent
to changing the quadratic relations g2i = u2 + vei gi to g2i = u2γ 2 + u2(1 − γ 2)ei +
vei gi . The role of γ is therefore to interpolate between different presentations of ̂Yd,n .

4.5.2 Comparison with Other Approaches

For non-framed links from ̂Hn [7].

Define ˜Xi ∈ ̂Yd,n , i = 1, . . . , n, by the following formulas:

˜X1 := X1 and ˜Xi+1 := g−1
i

˜Xi gi , i = 1, . . . , n − 1 .

Similarly, we have the images ˜X1, . . . , ˜Xn of ˜X1, . . . , ˜Xn in ̂Hn .
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Let x := {xa}a∈Z ⊂ C[u±1, v±1] be a set of parameters with x0 := 1. From the
results in [7] (see Remark 4.3 below), we have a unique Markov trace on { ̂Hn}n≥1,
which satisfies in addition

τ x
n

(

˜X
a

n h
) = xaτ

x
n (h) , ∀n ≥ 1 , ∀a ∈ Z , ∀h ∈ ̂Hn−1 .

The corresponding invariant of non-framed links is denoted P x
L (u, v).

Remark 4.3 In [7], the quadratic relation of ̂Hn was g
2
i = q + (q − 1)gi and a cer-

tain tr, depending on another parameter z was constructed. Setting λ := z+1−q
qz , an

invariant XL(
√
q,

√
λ) was obtained, by rescaling the generators, gi �

√
λgi , and

then rescaling the trace. This is equivalent, in our approach, to setting

u = √

λq , v = √
λ(q − 1) and τ xn := (

√
λz)1−n tr = (

v−1(1 − u2)
)n−1tr , ∀n ≥ 1 .

In conclusion, we have XL(
√
q,

√
λ) = P x

L (u, v).

For Z/dZ-framed links from ̂Yd,n [1, 8, 9].

Recall that {ξ1, . . . , ξd} is the set of d-th roots of unity. Fix a non-empty subset D ⊂
{1, . . . , d} and, for each k ∈ D, a set x(k) := {x (k)

a }a∈Z of parameters in C[u±1, v±1]
with x (k)

0 = 1. Denote formally x the set x(k) with k ∈ D.
From the results of [8] (and [9] in the non-affine case), we have a unique Markov

trace, denoted {ρ̃D,x
d,n }n≥1, on {̂Yd,n}n≥1 which satisfies in addition, for all n ≥ 1,

ρ̃
D,x
d,n

(

˜Xa
n t

b
n h

) = xa,b ρ̃
D,x
d,n (h) , ∀a ∈ Z , ∀b ∈ {1, . . . , d} , ∀h ∈ ̂Yd,n−1 , (4.23)

where the parameters xa,b are given by

xa,b = 1

|D|
∑

k∈D
x (k)
a ξ b

k , for all a ∈ Zand b ∈ {1, . . . , d}. (4.24)

The corresponding invariant of Z/dZ-framed links, we denote ˜Pd,D,x
L (u, v, γ ). By

restriction to classical Z/dZ-framed links, the parameters x do not appear, and we
obtain invariants labelled by d and D, denoted ˜Pd,D

L (u, v, γ ) (see Remarks below).

Remark 4.4 (i) In [8], the quadratic relation of ̂Yd,n was g2i = 1 + (q − q−1)ei gi
and a certain trace tr, depending on another parameter z was constructed. An invari-
ant Φ

d,D,x
L (q, z) was obtained. With λD := |D|z−(q−q−1)

|D|z , this is equivalent, in our
approach, to setting

u = √

λD , v = √

λD(q − q−1) , γ = 1 and ρ̃
D,x
d,n := (|D|v−1(1 − u2)

)n−1tr , ∀n ≥ 1 .
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In conclusion, we have Φ
d,D,x
L (q, z) = ˜Pd,D,x

L (u, v, 1) . Note that the construction
in [8] corresponds to the particular case γ = 1 here.

(ii) The restriction of the above procedure to the subalgebra Yd,n (the non-affine
case) gives the comparison of invariants constructed here with the invariants studied
in [1]. The invariants only depend on d and D (not on x), and were denoted in [1]
by Φd,D(q, z).

(iii) Originally, in [9], invariants (in the non-affine case) were constructed using
Yd,n with a different quadratic equation, namely with g2i = 1 + (q2 − 1)ei + (q2 −
1)ei gi . A certain trace t̃r, depending on a parameter z̃ = qz was constructed and
invariants, denoted Γd,S in [1], were obtained.With the same λD as above, the rescal-
ing of the generators is now gi �

√
λDq−1gi . A short calculation and comparison

with the formula in Remark 4.2 shows that u and v are as in item (i), while now
γ = q−1. As a conclusion, we have, for any classical Z/dZ-framed link L ,

Φd,D(q, z)(L) = ˜Pd,D
L (u, v, 1) and Γd,D(q, z)(L) = ˜Pd,D

L (u, v, q−1) . (4.25)

4.5.3 Comparison in Terms of the Basic Invariants
Pd,S,τ
L (u, v, γ )

We fix as above D and x. It remains to identify the Markov trace {ρ̃D,x
d,n }n≥1 in terms

of the basic Markov traces {ρS,τ
d,n }n≥1 constructed after Theorem 4.2.

Proposition 4.1 For each non-empty S ⊆ D, let τ be obtained by taking, for each
k ∈ S, the Markov trace {τ x(k)}n≥1 in position k. Then we have

{ρ̃D,x
d,n }n≥1 = 1

|D|
∑

S⊆D

(

v−1(1 − u2)
)|S|−1 {ρS,τ

d,n }n≥1 . (4.26)

Proof (Sketch of proof) Denote {ρn}n≥1 theMarkov trace on {̂Yd,n}n≥1 defined by the
right hand side of (4.26). To prove the proposition, we need to check that Condition
(4.23) is satisfied.

For n = 1, it is a straightforward verification. For n > 1, one may check the
equivalent condition ρn(˜Xa

n t
b
n h) = |D|v−1(1 − u2)xa,b ρn−1(h). We note that it is

enough to take h = Eχ Xλgw−1 , where χ ∈ Irr(Td,n) is such that Comp(χ) = μ

where μ = μS for some S ⊂ D, and such that w(χ) = χ (otherwise the condition is
0 = 0). Then the condition can be checked by a straightforward calculation of both
sides. One may use: an explicit description of the embedding ̂Yd,n ⊂ ̂Yd,n+1 on the

matrix algebras side (see [3, Sect. 3.4]); and the fact thatΨd,n(˜X j ) = ∑

χ 1χ,χ
˜Xπ−1

χ ( j)

for j = 1, . . . , n (induction on j).
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We note that Formula (4.26) is a triangular change of basis, with inverse

{ρS,τ
d,n }n≥1 = (

v−1(1 − u2)
)1−|S| ∑

D⊆S

(−1)|S|−|D||D| {ρ̃D,x
d,n }n≥1 .

In particular, restricting to Yd,n , we can forget the parameters x on one hand, and
the choice τ on the other. The proposition expresses the Juyumaya–Lambropoulou
invariant associated to D ⊂ {1, . . . , d} in terms of our basic invariants associated to
S ⊂ {1, . . . , d}. The formulas are (with notations as in Remark 4.4 and coefficients
αS as in (4.26)):

Φd,D(q, z)(L) =
∑

S⊆D

αS Pd,S
L (u, v, 1) and Γd,D(q, z)(L) =

∑

S⊆D

αS Pd,S
L (u, v, q−1) .

(4.27)

4.6 Properties of Invariants

As consequences of the construction using the isomorphism theorem, we prove sev-
eral properties of the constructed invariants, focusing essentially on the non-framed
links. We emphasize that these properties are valid for all non-framed links (classical
and solid torus).

4.6.1 Comparison of Invariants with Different d
for Non-framed Links

Let d > 0 and S a non-empty subset of {1, . . . , d}. We denote d ′ := |S|. Let τ be
any choice of d ′ Markov traces on { ̂Hn}n≥1. The following result says that, for non-
framed links, it is enough to consider the situation S = {1, . . . , d} for each d > 0.

Proposition 4.2 For any non-framed link L, we have Pd,S,τ
L = Pd ′,{1,...,d ′},τ

L .

In particular, if |S| = 1, the proposition asserts that Pd,S,τ
L (u, v, γ ) = Pτ

L (u, v),
where Pτ

L (u, v) is the invariant of the non-framed link obtained from ̂Hn .

Proof Let {ξ (d)
1 , . . . , ξ

(d)
d } denote the d-th roots of unity.

Letμ =|d n be such thatμ = μS , that is, such thatμa �= 0 if and only if a ∈ S. To
μ, we associate the composition μ′ = (μi1 , . . . , μid′ ) =|d ′ n, where μi1 , . . . , μid′ are
the non-zero parts ofμ and i1 < · · · < id ′ .We have Sμ = Sμ′

and, in turn, ̂Hμ = ̂Hμ′

and mμ = mμ′ .
Let χ ∈ Irr(Td,n) with Comp(χ) = μ. For every j = 1, . . . , n, by hypothesis on

μ and χ , there exists a ∈ {1, . . . , d ′} such that χ(t j ) = ξ
(d)
ia

. Then we set χ ′(t j ) =
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ξ (d ′)
a . This defines a bijection between the characters χ ∈ Irr(Td,n)with Comp(χ) =

μ and the characters χ ′ ∈ Irr(Td ′,n) with Comp(χ ′) = μ′. This bijection allows to
identify the spaces Matmμ

( ̂Hμ) and Matmμ′ ( ̂Hμ′
). We have moreover πχ = πχ ′ .

Recall the formulas (4.16)–(4.17) giving the images of thegenerators g1, . . . , gn−1,

X1 under Ψd,n . It is then immediate to see that Ψd,n(x) and Ψd ′,n(x) coincide in the
summandMatmμ

( ̂Hμ) = Matmμ′ ( ̂Hμ′
), for any x in the subalgebra of ̂Yd,n generated

by g1, . . . , gn−1, X1.

Remark 4.5 Herewe restrict to a classical non-framed link L .Note that the restriction
of the invariants Φ and Γ on the set of non-framed links were called respectively
Θ and Δ in [1]. With the comparison formulas (4.27) of the preceding section, a
straightforward consequence of Proposition 4.2 is the corresponding result for the
Juyumaya–Lambropoulou invariants. Namely, we have

Θd,D(q, z)(L) = Θd ′,{1,...,d ′}(q, z)(L) and Δd,D(q, z)(L) = Δd ′,{1,...,d ′}(q, z)(L) ,

where d ′ = |D|. In this case, this was proved in [1, Proposition 4.6] by a different
approach. In particular if |D| = 1, we recover the HOMFLYPT polynomial.

4.6.2 Links with a Fixed Number of Connected Components

Let μ =|d n and λ =|k n for some d, k > 0. We will say that λ is a refinement
of μ if {1, . . . , k} can be partitioned into d disjoint subsets (possibly empty):
{1, . . . , k} = I1 � · · · � Id , such that μa = ∑

i∈Ia λi for all a = 1, . . . , d. As exam-
ples, every composition λ =| n is a refinement of the composition (n), while the
composition (1, . . . , 1) =| n is a refinement of every composition μ =| n.

For a permutationπ ∈ Sn , we denote cyc(π) the collection of lengths of the cycles
of π and we consider it as a composition of n (the order is not relevant here). Then,
it is immediate that a permutation π ∈ Sn is conjugate to an element of Sμ if and
only if cyc(π) is a refinement of μ.

For a Z/dZ-framed affine braid β ∈ Z/dZ � Baff
n , we define its underlying per-

mutation pβ as the image ofβ by the natural group homomorphism fromZ/dZ � Baff
n

to Sn (defined by t j �→ 1, σ0 �→ 1 and σi �→ si ). Note that βt j = tpβ ( j)β, for
j = 1, . . . , n.

Proposition 4.3 Let β ∈ Z/dZ � Baff
n. In Ψd,n

(

δd,n(β)
)

, the matrix corresponding
to μ =|d n has all its diagonal elements equal to 0 if cyc(π) is not a refinement of μ.

Proof Let x := δd,n(β) ∈ ̂Yd,n . As δd,n is a group homomorphism, we have xt j =
tpβ ( j)x . In Ψd,n(x), in the matrix corresponding to μ =|d n, the coefficient on the
diagonal in position χ is Ψd,n(Eχ xEχ ). And we have Eχ xEχ = Eχ Epβ (χ)x . This is
equal to 0 if pβ(χ) �= χ . Now pβ(χ) = χ if and only if π−1

χ pβπχ ∈ Sμ, and this is
impossible if cyc(pβ) is not a refinement of μ.
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Now we will combine this general result on the isomorphism Ψd,n with two ele-
mentary facts. First, if a composition μ has strictly more non-zero parts than another
composition λ, then λ can not be a refinement of μ. Second, the closure of a (Z/dZ-
framed, affine) braid β is a (Z/dZ-framed) link with N connected components if and
only if cyc(pβ) has exactly N non-zero parts. Thus we have obtained the following
result.

Corollary 4.2 Let L be aZ/dZ-framed link with N connected components. We have
Pd,S,τ
L = 0 if |S| > N.

Finally, combining this corollary with Proposition 4.2 for a non-framed link L ,
we conclude our study by determining which basic invariants it is enough to consider
given the number of connected components of L .

Corollary 4.3 Let L be a non-framed link with N connected components. Every
invariant for L obtained here from (affine) Yokonuma–Hecke algebras is a combina-
tion of the following basic invariants:

P1,{1},τ
L , P2,{1,2},τ

L , . . . , PN ,{1,...,N },τ
L . (4.28)

In particular, for a non-framed knot (N = 1), it is enough to consider the algebras
̂Hn = ̂Y1,n.

For a classical non-framed link, we can forget the parameters τ , and it is enough
to calculate N distinct invariants, the first one being the HOMFLYPT polynomial.

Remark 4.6 Here we restrict to a classical Z/dZ-framed link L with N connected
components. In this particular case,we give the translation ofCorollary 4.2 in terms of
Juyumaya–Lambropoulou invariants, following Formula 4.27 (wewrite the formulas
for the invariantsΦd,D; the same formulas hold for Γd,D). A straightforward analysis
leads to

Φd,D(q, z)(L) = N

|D|
∑

D′⊂D, |D′|=N

Φd,D′(q,
|D|
N

z)(L) , if |D| > N .

Note that the rescaling of the variable z comes from the fact that the expressions
relating (u, v) with (q, z) depend on |D|.

If moreover L is a classical non-framed link with N connected components, with
Remark 4.5, it is enough to consider D = {1, . . . , d}, and we obtain

Θd,{1,...,d}(q, z)(L) = N

d

(

d
N

)

ΘN ,{1,...,N }(q,
d

N
z)(L) , if d > N . (4.29)

This formula is the generalisation, for N > 1, of [1, Theorem 5.8]. As a consequence,
the analogueofCorollary 4.3 holds aswell for these invariants: it is enough to consider
Θ1,{1}, . . . , ΘN ,{1,...,N }. This generalises [1, Theorem 7.1] for N > 2, obtained by a
different method.
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