
Chapter 23
Novel Approaches to Medical Information
Processing and Analysis

Evi Karali

Abstract The purpose of this article is to present scientific research results of Karali
et al (Proceedings of 8th International Conference on Bioinformatics and Bioengi-
neering (BIBE), 2008, [14]), Karali et al (Inf Technol Biomed, 15(13):381–6, 2011,
[15]), Karali et al (J Biosci Med (JBM), 1:6–9, 2013, [16]), Karali et al (Int J Com-
put Vis, 321–331, 1988 [24]) concerning medical imaging, especially in the fields
of image reconstruction in Emission Tomography and image segmentation. Image
reconstruction in Positron Emission Tomography (PET) uses the collected projec-
tion data of the object/patient under examination. Iterative image reconstruction
algorithms have been proposed as an alternative to conventional analytical methods.
Despite their computational complexity, they become more and more popular, mostly
because they can produce images with better contrast-to-noise (CNR) and signal-to-
noise (SNR) ratios at a given spatial resolution, compared to analytical techniques. In
Sect. 23.1 of this study we present a new iterative algorithm for medical image recon-
struction, under the name Image Space Weighted Least Squares (ISWLS) (Karali et
al, Proceedings of 8th International Conference on Bioinformatics and Bioengineer-
ing (BIBE), 2008, [14]). In (Karali et al, Proceedings of 8th International Conference
on Bioinformatics and Bioengineering (BIBE), 2008, [14]) we used phantom data
from a prototype small-animal PET system and the methods presented are applied
to 2D sinograms. Further, we assessed the performance of the new algorithm by
comparing it to the simultaneous versions of known algorithms (EM-ML, ISRA
and WLS). All algorithms were compared in terms of cross-correlation coefficient,
reconstruction time and CNRs. ISWLS have ISRA’s properties in noise manipulation
and WLS’s acceleration of reconstruction process. As it turned out, ISWLS presents
higher CNRs than EM-ML and ISRA for objects of different sizes. Indeed ISWLS
shows similar performance to WLS during the first iterations but it has better noise
manipulation. Section 23.5 of this study deals with another important field of med-
ical imaging, the image segmentation and in particular the subject of deformable
models. Deformable models are widely used segmentation methods with scientifi-

E. Karali (B)
Department of Automation Engineering, Piraeus University of Applied Science,
Athens, Greece
e-mail: ekarali76@hotmail.com

© Springer International Publishing AG 2017
S. Lambropoulou et al. (eds.), Algebraic Modeling of Topological
and Computational Structures and Applications, Springer Proceedings
in Mathematics & Statistics 219, https://doi.org/10.1007/978-3-319-68103-0_23

453



454 E. Karali

cally accepted results. In Karali et al (Int J Comput Vis, 321–331, 1988 [24]) various
methods of deformable models are compared, namely the classical snake (Kass et al,
Int J Comput Vis, 321–331, 1988, [25]), the gradient vector field snake (GVF snake)
(Xu, IEEE Proceedings on Computer Society Conference on Computer Vision and
Pattern Recognition, 1997, [36]) and the topology-adaptive snake (t-snake) (Mcin-
erney, Topologically Adaptable Deformable Models For medical Image Analysis,
1997, [29]), as well as the method of self-affine mapping system (Ida and Sambon-
sugi, IEEE Trans Imag Process, 9(11), 2000 [22]) as an alternative to snake models.
In Karali et al (Int J Comput Vis, 321–331, 1988 [24]) we modified the self-affine
mapping system algorithm as far as the optimization criterion is concerned. The
new version of self-affine mapping system is more suitable for weak edges detec-
tion. All methods were applied to glaucomatic retinal images with the purpose of
segmenting the optical disk. The methods were compared in terms of segmentation
accuracy and speed. Segmentation accuracy is derived from normalized mean square
error between real and algorithm extracted contours. Speed is measured by algorithm
segmentation time. The classical snake, T-snake and the self-affine mapping system
converge quickly on the optic disk boundary comparing to GVF-snake. Moreover
the self-affine mapping system presents the smallest normalized mean square error
(nmse). As a result, the method of self-affine mapping system presents adequate
segmentation time and segmentation accuracy, and significant independence from
initialization.

23.1 Part I

23.1.1 Introduction

Medical Imaging is a vital component of a large number of clinical applications.
Such applications occur at all stages of medical treatment, from diagnosis to the
areas of design, implementation and assessment of the effectiveness of treatment.
The development of tomography, the breakthrough of modern computer systems, the
evolution of specialized computer signal processing packages and the advancements
on medical data analysis, has brought a real revolution in radiology and diagnostic
radiology. The result of the medical technology development is the noninvasive obtain
of precise functional and/or anatomical information of the interior of the human body.

The modern techniques of computed tomography (x-ray, CT), positron emission
tomography (PET), single photon emission tomography (SPECT) use detector arrays
mounted or rotatable around the test object in order to collect multiple different
angular views (projections) of the object. The collected projection data are used by
mathematical algorithms to reconstruct images of the areas of interest in the subject
matter. These images are either anatomical or images of biochemical activity of
structures of interest.
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Positron Emission Tomography (PET) is a medical imaging technique, which
utilizes the unique features of β + nuclear decay of specific radionuclides for imaging
metabolic activity of the anatomy of the tested structures. Radionuclides are produced
in a cyclotron and are used for labeling molecules with particular biological interest.
The labeled molecules are introduced intravenously in the body under examination
and distributed by the bloodstream to tissues in a manner that is determined by their
biochemical properties. Specifically when the radioactive atom of a labeled molecule
decays a positron e + is emitted, which is annihilated, near the point of generation, by
an individual electron e- resulting in the emission of two gamma-ray energy 511 keV
each. The two emitted photons travel diametrically and can escape from the human
body [17].

A PET system consists of a set of detectors which surround the patient and the
aim is to detect and convert the high energy photons emitted to an electrical signal.
The electrical signal is then fed to signal processing electronic devices. In a typical
PET examination the annihilation events detected, are corrected for various factors
and reconstructed into tomographic images using special mathematical algorithms.
The result of the reconstruction is a whole tomographic image. The luminance value
of each pixel of the image is proportional to the amount of the radioactive molecule
in the region showing the pixel. Therefore PET images allow the in vivo quantitative
recording of the spatial distribution of the radioactive tracer in the body [5, 18, 19].

Methods of medical data reconstruction that have been developed so far are divided
into two major categories [5, 17, 18]:

• Analytical methods, which use the mathematics of the computed tomography,
which connect projection data with the spatial distribution of radioactivity within
the subject matter.

• Iterative methods, which model the data collection process by the PET scan and
attempt, relying on predefined criteria and a number of successful iterations, to
approach the real image of the spatial distribution of the radioactive tracer.

The analytical reconstruction methods are based on linear calculation of the
inverse Radon transform and offer direct mathematical solution for the image forma-
tion. The core of the analytical reconstruction methods is the Filtered Backprojec-
tion algorithm (FBP). Variations or extensions of FBP methods are the Fast Volume
Reconstruction Algorithm (FAVOR [7]) and the 3D Reprojection algorithm (3DRP)
[17].

The analytical methods are standard reconstruction techniques, which are applied
in clinical systems. The reason for their prevalence of the preceding decades lies
in their low computational cost. The big disadvantage of analytical techniques is
their inability to include correction models of all factors involved in the making
of PET data (such as the scope of the positron, the production of two gamma rays
at angles between them of less than 180◦, scattering phenomena, the attenuation,
random coincidences, the different performance and sensitivity of the detectors,
etc.) during the reconstruction process. Further analytical methods do not maintain
the non-negativity of the image values and can export images reconstructed with
star-like artifacts [17].
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The iterative methods are based on stochastic models for the entire data-making
process taking into account all of the physical and technical factors involved dur-
ing a PET examination. They fall into two major categories, the algebraic tech-
niques (algebraic techniques-ART [12]) and the statistical methods which in turn are
divided into maximum likelihood techniques (maximum-likelihood algorithms-ML)
and least squares methods (least squares-LS, weighted- least squares-WLS [2], iter-
ated space reconstruction algorithm (ISRA) [3]). The algebraic techniques are the
first iterative techniques used. Then the algorithm of maximum likelihood (ML) 1982
by Shepp and Vardi [18] has been applied. Since then, multitude of variants have
appeared (SAGE [8], RAMLA [4], OSEM [11], MAP-EM [10]), in order to improve
efficiency and reconstruction time and the further improvement of the quality of
medical image.

The progress in research and clinical application of iterative techniques is closely
associated with the development and optimization of electronic circuits and computer
systems. They require large computational reconstruction times, high computing and
memory storage. However they have great research interest due to the high image
quality they produce, compared to analytical methods. These are techniques that
allow modeling of the whole data acquisition process in the reconstruction, and
most, especially statistical methods, guarantee positive solutions.

The purpose of this part of the study is to present a new iterative image recon-
struction algorithm, under the short name ISWLS [14] (Image Space Weighted Least
Squares), produced by the maximization of an objective function. This algorithm was
introduced in [14] and studied in [14]. To maximize the objective function, the Kuhn–
Tucker condition must be satisfied. ISWLS is expected to have ISRA properties in
noise manipulation and WLS acceleration of the reconstruction process. To assess
the performance of the new iterative reconstruction method, we have used phantom
data produced from simulating a prototype small-animal PET system. We com-
pare ISWLS reconstruction data with those from EM-ML, ISRA, and WLS. We also
present the OS (ordered subsets) version of ISWLS (OS-ISWLS) and compare it with
the OSEM, OS-ISRA, and OS-WLS [15]. Moreover the MRP (median-root-prior)
[1] version of ISWLS is presented and compared with MRP-EMML, MRP-ISRA and
MRP-WLS [16]. The methods presented here are applied to 2D sinograms. We have
implemented simultaneous versions of the aforementioned algorithms. The simul-
taneous version of an algorithm is an algorithm where all image pixels are simulta-
neously updated in every iteration. These methods are of great interest, because of
their ability to be implemented in parallel computing architectures, which decreases
drastically the total reconstruction time.

23.2 Theory

In general, every iterative method relies on the hypothesis that the projection data
y are linearly connected to the image x of radiopharmaceutical spatial distribution,
according to the equation:
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y = AT x (23.1)

where A is a matrix that characterizes the PET system being used for data acquisition.
In bibliography this matrix is called system or probabilitymatrix and it projects image
data to sinogram domain (the term sinogram refers to the projection data matrix).
Every element αi j of the system matrix A represents the probability an annihilation
event emitted in image pixel i to be detected in LOR j . The significance of the
probability matrix lies on the valuable information, related to the data acquisition
process, that it can contain (e.g. number of detector rings, number of detector elements
in every ring, ring diameter, diameter of transaxial field of view, detector size, image
size, spatial and angular sampling).

The most commonly used least squares algorithms, that are based on simultaneous
iterative schemes, are ISRA (Image Space Reconstruction Algorithm) and WLS
(Weighted Least Squares) with updating step in the kth iteration:

ISRA: xki = xk−1
i

M∑

j=1
ai j y j

M∑

j=1
ai j

N∑

i ′=1
ai ′ j xk−1

i ′

(23.2)

WLS: xki = xk−1
i

M∑

j=1

ai j y2
j

(
N∑

i ′=1
ai ′ j x

k−1
i ′

)2 (23.3)

Expectation Maximization Maximum Likelihood (EM-ML) algorithm has an updat-
ing step in the kth iteration:

EM-ML: xki = xk−1
i

M∑

j=1

ai j y j
(

N∑

i ′=1
ai ′ j x

k−1
i ′

) (23.4)

23.2.1 ISWLS Algorithm

In the current work, we propose a new algorithm under the short name ISWLS.
Consider an image discretized into N pixels and the measured data y collected by
M detector tubes. We can propose the following ISWLS estimator of x in Eq. 23.1:

x̂ = arg max
x

φ(x) subject to xi ≥ 0, i = 1, 2, . . . , N (23.5)
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where

φ(x) =
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j=1
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(23.6)

Under the conditions in problem (23.5), x̂ is a solution if and only if the Kuhn-
Tucker condition is satisfied, namely:

xi
∂φ(x)

∂xi

∣
∣
∣
∣
x̂

= 0 (23.7)

where:

∂φ(x)

∂xi
=

M∑

j=1

⎡

⎣

(

y j −
N∑

i ′=1

ai ′ j xi

)2

ai j + 2ai j y j

(
N∑

i ′=1

ai ′ j xi

)

− 2ai j

(
N∑

i ′=1

ai ′ j xi

)2⎤

⎦

=
M∑

j=1

⎛

⎝ai j y
2
j − ai j

(
N∑

i ′=1

ai ′ j xi

)2⎞

⎠ (23.8)

According to (23.7) Eq. 23.8 is written as:

xi

M∑

j=1

⎛

⎝ai j y
2
j − ai j

(
N∑

i ′=1

ai ′ j xi

)2
⎞

⎠ = 0 (23.9)

So, we obtain the fixed point iterative formula for the i th pixel’s update as follows:

ISWLS: xki = xk−1
i

M∑

j=1
ai j y2

j

M∑

j=1
ai j

N∑

i ′=1

(
ai ′ j x

k−1
i ′

)2
(23.10)

Moreover, we can derive the ordered subsets version of ISWLS, (OS-ISWLS)
with updating scheme in kth iteration for subset Sn:

OS-ISWLS: xki = xk−1
i

∑

j∈Sn
ai j y2

j

∑

j∈Sn
ai j

(
N∑

i ′=1
ai ′ j x

k−1
i ′

)2 (23.11)
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The OS version of an iterative algorithm accelerates the reconstruction process
without image deterioration. An OS algorithm divides sinogram data into subsets
and applies the simple version of the reconstruction algorithm to every subset. The
approximation of the image xs that the simple version provides after processing the
s subset consists the initial solution for the next subset s + 1. Every OS iteration is
completed after the application of the simple algorithm to all subsets of sinogram
data.

In addition we can present the MRP (median-root-prior) [1] version of ISWLS.
MRP versions belong to regularization’s reconstruction algorithms. These methods
take into account a priori information for the radioactivity spatial distribution inside
the object under examination. For the reduction of the noise many regularization
methods have been proposed, which reduce drastically the noise with a small image
resolution reduction. The success of a regularization method depends on the mathe-
matical formula of the prior. Median root prior (MRP) belongs to the most popular
priors. It is derived from a Gaussian distribution with mean value the median value
of reconstructed image pixels in the vicinity of pixel i. The use of MRP results in
noise component reduction while at the same time it preserves the edges.

Suppose that:

f (xi ) ≈ e−b (xi−M)2

2M (23.12)

where M = med(xi, i), the median value of reconstructed image pixels in the vicinity
of pixel i . Then:

u(xi ) = ∂ ln( f (xi ))

∂xi
= −b

xi − med(xi , i)

med(xi , i)
(23.13)

The term b∈ [0,2] determines the degree of smoothing in reconstruction images. If
b = 0 no prior is applied. Big values of b cause over-smoothing, while small values
of b result in images with high resolution but with increased noise.

According to the one-step-late philosophy [9], where the prior is applied to the
previous radiopharmaceutical distribution estimation, we can extract an empirical
iterative formula for the ISWLS algorithm in combination with MRP prior. The new
iterative algorithm has updating scheme:

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1
ai j y2

j

M∑

j=1
ai j

(
N∑

i ′=1
ai ′ j xk−1

i ′

)2 (23.14)

The MRP-EM-ML updating scheme in kth iteration is:

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1

ai j y j
(

N∑

i ′=1
ai ′ j x

k−1
i ′

) (23.15)
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The MRP-ISRA updating scheme in kth iteration is:

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1
ai j y j

M∑

j=1
ai j

N∑

i ′=1
ai ′ j xk−1

i ′

(23.16)

The MRP-WLS updating scheme in kth iteration is

xki = xk−1
i

1 + b
xk−1
i

−med(xk−1
i ,i)

med(xk−1
i

,i)

M∑

j=1

ai j y2
j

(
N∑

i ′=1
ai ′ j xk−1

i ′

)2 (23.17)

23.3 Results

For the evaluation of the iterative reconstruction methods presented in THEORY,
projection data of a Derenzo-type phantom have been used. The Derenzo-type phan-
tom consists of sets of rods filled with F18, with diameters 4.8, 4, 3.2, 2.4, 1.6 and
1.2 mm, and the same separation between surfaces in the corresponding sets. The
rods were surrounded by plastic (polyethylene). Data were produced using Monte
Carlo simulation of a small-animal PET scanner.

Further, 18 × 106 coincidence events were collected. Projection data were binned
to a 2D sinogram, 55 ×170 pixels in size, which means that data from 55 TORs (Tube
of Response) per rotation angle were collected and 170 totally angular samples were
used. Since the two detector heads rotate from 0◦ to 180◦ the angular step size was
1.0647◦.

The system matrix was derived from an analytical method and calculated once
before reconstruction. Each element ai j was computed as the area of intersection
Ei j , of TOR j (Tube-of-Response) with image pixel i . The calculated system matrix
is a sparse matrix. It consists of zero-valued elements in majority that have no contri-
bution during iterative reconstruction process. So, only the non-zero elements were
stored, resulting in significant reduction in system matrix size and consequently in
required storage. The reconstructed 2D images were 128 ×128 pixels in size, thus
the system matrix consisted of 55 × 170 × 128 × 128 elements with 4.33% sparsity.

The initial image estimate for all algorithms was:

xoi =

M∑

j=1
y j

N
, i = 1, 2, . . . , N (23.18)

where y j is the value of the j th sinogram element and N represents the total number
of image pixels (N = 128 × 128 in this implementation).
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Fig. 23.1 Reconstructed
images with: (a) EM-ML, (b)
ISRA, (c) WLS, (d) ISWLS,
after 1, 10 and 50 iterations
respectively

1 iter 10 iter 50 iter 

(a)

(b)

(c)

(d)

Fig. 23.2 Cross-correlation
coefficient versus the number
of iterations for EM-ML,
ISRA, WLS, and ISWLS
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Fig. 23.3 CNRs versus iterations for: (a) 4.8 mm, (b) 3.2 mm and (c) 1.6 mm object diameter

23.3.1 Comparative Evaluation of Normal Versions

Figure 23.1 shows the reconstructed transaxial images with EMML, ISRA, WLS,
and ISWLS after 1, 10 and 50 iterations.
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Fig. 23.4 Reconstruction time/slice as a function of the number of iterations

Fig. 23.5 Cross-correlation
coefficient of OSEM,
OS-ISRA, OS-WLS and
OS-ISWLS versus the
number of iterations

In Fig. 23.2 cross-correlation coefficient c [13] of every iterative method is plotted,
versus the number of iterations. The cross-correlation coefficient c was calculated
according to the equation:

c =

N∑

i=1

N∑

j=1

(
I reconi j − Ī recon

) (
I reali j − Ī real

)

√
N∑

i=1

N∑

j=1

(
I reconi j − Ī recon

)2 N∑

i=1

N∑

j=1

(
I reali j − Ī real

)2

, (23.19)

where Ī recon and Ī real are the reconstructed image and the true phantom activity
image mean values, respectively. Cross-correlation coefficient is a similarity measure
between reconstructed and real radiodistribution image. Its values are in the range
[−1, 1]. Value c = 1 corresponds to fully correlated images.

Except for the cross-correlation coefficient that shows the average performance
of the reconstruction methods, local contrast-to-noise ratios (CNR) [6] for rods with
different diameters were calculated. CNRs for 4.8, 3.2, and 1.6 mm rods diameter
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1 iter 3 iter 5 iter 

(a)

(b)

(c)

(d)

Fig. 23.6 Reconstructed images with: (a) OSEM, (b) OS-ISRA, (c) OS-WLS and (d) OS-ISWLS,
after 1, 3 and 5 iterations using 15 subsets

were computed, using squared regions-of-interest (ROIs), 4.55, 3.85 and 1.15 mm
in size, respectively. The ROIs were placed inside the corresponding objects. The
number of selected ROIs was equal to the number of same sized objects. ROIs of the
same sizes were positioned in three different background areas, each.

CNRROI was defined as: CN RROI = RobjROI − RBackgROI

σBackgROI

(23.20)

where RobjROI is the mean value of reconstructed objects in the corresponding ROIs,
and RBackgROI is the mean value of the three background ROIs in each case.
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Fig. 23.7 CNRs versus iterations for (a) 4.8 mm, (b) 1.6 mm object diameter for the different OS
algorithms

Further, σBackgROI is the standard deviation of background values in the correspond-
ing ROIs. The graphs in Fig. 23.3 illustrate the variation of CNRROI with respect to
the number of iterations, for the three different objects diameters.

In Fig. 23.4 the reconstruction time for every iterative algorithm is presented
as a function of the number of iterations. Reconstruction time calculations were
performed on a Pentium M processor 1400 MHz (Intel Corp.) personal computer
(RAM 1280 MB) under Windows XP Professional.

23.3.2 Comparative Evaluation of OS Versions

For the evaluation of the ordered subsets, iterative reconstruction methods projection
data of the same Derenzo-type phantom has been used as in the comparative study
of the simple algorithms.

In Fig. 23.5 cross-correlation coefficient c of every ordered subsets iterative
method is plotted versus the number of iterations.
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1 iter 10 iter 50 iter 

(a)

(b)

(c)

(d)

Fig. 23.8 Reconstructed images with: (a) MRP-EMML, (b) MRP-ISRA, (c) MRP-WLS, and (d)
MRP-ISWLS, after 1, 10 and 50 iterations respectively

Fig. 23.9 Cross-correlation
coefficient versus the number
of iterations for
MRP-EMML, MRP-ISRA,
MRP-WLS, and
MRP-ISWLS
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Fig. 23.10 CNRs versus iterations for: (a) 4.8 mm, (b) 3.2 mm and (c) 1.6 mm object diameter

Figure 23.6 presents reconstructed images with OSEM, OS-ISRA, OS-WLS and
OS-ISWLS after 1, 3 and 5 iterations for 15 subsets.
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In Fig. 23.7 CNRs for two objects of different diameter are plotted versus the num-
ber of iterations. CNRs are derived with the same method as explained in Eq. 23.20.
Reconstruction time is the same for all ordered subsets algorithms under study. One
iteration lasts 29 s for all ordered subsets methods.

23.3.3 Comparative Evaluation of MRP Versions

Figure 23.8 shows the reconstructed transaxial images with MRP-EMML, MRP-
ISRA, MRP-WLS and MRP-ISWLS after 1, 10 and 50 iterations.

In Fig. 23.9 cross-correlation coefficient c of every iterative method is plotted
versus the number of iterations.

The graphs in Fig. 23.10 illustrate the variation of CNRROI with respect to the
number of iterations for the three different object diameter.

23.4 Discussion

According to results (Figs. 23.2, 23.3) EM-ML and ISRA presents similar behavior
at the first 50 iterations. EM-ML converges slowly during the first 50 iterations to the
best approximation of the true image. After the 50th iteration the algorithm enhances
more small-sized objects but in general image contrast decreases and noise compo-
nent starts to increase. ISRA on the contrary presents better noise manipulation. ISRA
reaches constant CNRs values for big and small-sized objects. WLS shows almost
identical noise manipulation as EM-ML algorithm. It reaches faster than EM-ML
and ISRA the same CNRs values. ISWLS combines WLS’s acceleration and ISRA’s
noise manipulation.

Reconstruction time of EM-ML and WLS is almost the same as a function of
the number of iterations (≈3.8 s/iteration). Although it is not obvious from Fig. 23.4,
ISRA and ISWLS are slower than EM-ML and WLS during the first 9 iterations.
Their reconstruction speed is gradually improved by increasing the number of itera-
tions. ISWLS and ISRA reconstruction time converges to the others’ reconstruction
time after 10 iterations. The reason for slow reconstruction process during the first

iterations lies in the time needed for backprojection computations (
M∑

i=1
ai j y j for ISRA

and
M∑

i=1
ai j y2

j for ISWLS) in the first iteration.

The OS versions reach faster than the simple versions the same cross-correlation
coefficient and CNRs values, as expected. For example they reach the value of 0.75 of
cross-correlation coefficient earlier (during the first 10 iterations) than the simple ver-
sions, which they present the same results after 50 iterations. In general OS-ISWLS
is comparable to OSEM and shows better performance than OS-WLS, according
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to CNRs graph, which indicates a better noise manipulation than OS-WLS. ISWLS
reaches to the best approximation of the true image during the first 3 iterations for big
and small-sized objects. OS-ISRA and OSEM needs few more iterations especially
for small-sized objects.

The choice of 15 subsets was made after a comparative study of ISWLS and OS-
ISWLS. We compared OS-ISWLS to ISWLS using 3, 9, 15, and 24 subsets. The
comparative criterion was CNR, calculated as described in Eq. 23.20. Small number
of subsets resulted in CNRs similar to ISWLS. Increasing the number of subsets
resulted in images with high CNRs during the first ten iterations. Using 15 or 24
subsets the reconstructed images reach the highest CNR values before ten iterations.
ISWLS achieves the same highest CNRs after 50 iterations. We chose 15 subsets
to 24 because this number of subsets presented smaller image degradation as the
number of iteration increased.

MRP-ISWLS presents higher cross-correlation values than MRP-EM-ML and
MRP-ISRA. It shows the same high values of cross-correlation coefficient as MRP-
WLS. As illustrated in Fig. 23.10 MRP-ISWLS presents high CNR ratios from the
first iterations, higher than MRP-EM-ML and MRP-ISRA. Although it shows similar
performance to MRP-WLS, its CNR ratios do not degrade after 50 iterations but tend
to be stabilized. So, MRP-ISWLS presents a better noise manipulation than MRP-
WLS.

Reconstruction time of MRP-EM-ML and MRP-WLS is almost the same (77.5 s/
iteration). MRP-ISRA and MRP-ISWLS are slower than MRP-EM-ML and MRP-
WLS during the first 9 iterations (79 s/iteration). Their reconstruction speed is gradu-
ally improved by the increasing of iterations number. MRP-ISWLS and MRP-ISRA
reconstruction time converges to the others’ reconstruction time after 10 iterations.
The reason for slow reconstruction process during the first iterations lies in the time
needed for backprojection computations in the first iteration.

In order to determine a satisfactory value of b, various values were applied to
MRP-ISWLS. These values were 0.001, 0.01, 0.1, 1, 1.5. The value b = 0.001
presented higher CNR values in comparison to ISWLS’s results.

In this study, data were corrected for scanner sensitivity prior to the reconstruction
process. Such a correction could be incorporated during the reconstruction process,
but that exceeds our research purpose.

23.5 Part II

23.5.1 Introduction

Extracting useful medical information, for the inside of the human body, from medical
images belongs to the field of medical image segmentation. In recent years the com-
putational medical image segmentation plays an increasingly important role in med-
ical imaging. The image segmentation is an important pretreatment step in medical
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imaging, especially in automatic detection of anatomical structures and pathological
conditions. It is the separation process of structures of interest, the implementation
of which resulted in the development of numerous algorithms. Because of the wide
variety of objects, shapes and variations in image quality, segmentation remains a
difficult process. A global segmentation method, which produces satisfactory results
for all imaging applications, does not exist. The medical images more often contain
high levels of noise, and defects due to incomplete data collection. This could cause
appreciable difficulties when applying classical segmentation methods, such as edge
detection and thresholding. As a result, these techniques either fail completely or
they need an image processing stage after segmentation to remove false limits of
the object of interest. Furthermore, subsequent analysis and interpretation of the
segmented structures is prevented by the dimensions of the pixel or the voxel.

Each segmentation algorithm aims to identify the pixels belonging to the object
of interest or to determine the pixels of the object contour. Detection methods of the
object region are based on the intensity values or the texture of the pixels. Contour
determination techniques use the derivative of the image, which has high values at
the boundaries of objects.

One of the most popular methods of segmentation is the use of deformable models
[20, 40]. According to these techniques, near the region of interest an elastic contour
model is placed which, through repetitive processes, is adapted to the actual contour.
The widely recognized ability of the deformable models comes from their ability
to segment, match and trace images of anatomical structures, utilizing restrictions
arising from imaging data combined with a priori information relative to the location,
size and shape of these structures. The deformable models are capable of resolving
the often considerable variation in biological structures over time and from person
to person. For this reason they are the focus of research in the segmentation and have
been used extensively in medical applications with promising results. Also, they sup-
port intuitive interaction mechanisms that allow experts to interpret the results. The
deformable models are especially suitable for segmentation of images characterized
by intense artifacts, noise, limited spatial resolution and hardly detectable borders
between the structures. However, deformable models may result in false contour if
the original outline is not placed close to real. They can also present problems in
areas of intense curvature of the contour.

The deformable models in the literature are referred to as snakes, active contours or
active surfaces, balloons, deformable contours or deformable surfaces. These models
are curves or surfaces defined on image domain that deform under the influence of
internal and external forces. Internal forces are related to the curve or the surface itself
and are designed to keep the model smooth during the deformation process. External
forces adjust the model to the real object boundary and their computation is based
on image information. In theory, because of the constrain for smooth contours and
their ability to incorporate a priori information of object shape, deformable models
can handle noise problems in images and contour discontinuities. So, they permit
the description of the contour as a continuous mathematical model and they are able
to achieve inter-pixel segmentation accuracy.
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In this work various methods of deformable models are presented, namely, the
classical snake [21, 25, 28], the gradient vector field snake (GVF snake) [36–39] and
the topology-adaptive snake (t-snake) [29–32, 34]. Also, the method of self-affine
mapping system [22, 23] is presented as an alternative to the snakes. The self-affine
mapping system was implemented using an adapting scheme for determining the
size of areas with similarity [22]. The minimum distance was used as optimization
criterion which, according to Sect. 23.7, is more suitable for weak edges detection. All
methods were applied to glaucomatic retinal images with the purpose of segmenting
the optical disk. Moreover, the aforementioned methods were compared in terms of
segmentation accuracy.

The optical disk is the optical nerve and the vessels’ entrance point in the retina.
In fundus gray images it appears as a luminous white area. It has an almost round
shape that is interrupted by the outgoing vessels. Sometimes the optical disk has an
elliptical shape because of the small but not negligible angle between the planes of
the image and the object. Optical disk size varies from patient to patient.

Optical disk segmentation is a very important preprocessing stage of many algo-
rithms, which have been designed for automatic detection of retinal anatomical struc-
tures and pathological conditions. For example, the detection methods of some ves-
sels and their junctions start from the optical disk area, where the big vessels lie.
These can serve as starting points for the detection of the other vessels [35]. Another
important feature in retinal images is macula. Macula’s position usually is estimated
according to the optical disk’s position under the condition that the distance between
the macula and the optical disk is constant [26, 27]. Moreover, optical disk camou-
flage contributes to better and easier lesions detection related to different retinopathies
[20]. Furthermore, the optical disk center can be used as a reference point for dis-
tance measurements in retinal images. In addition, the segmented optical disk can
be a reference area for the registration of retinal images acquired in different time or
with a different method. Retinal images registration can reveal changes in vessels’
size and disposition inside the optical disk, as well as changes in optical disk size
related to serious eye diseases, such as glaucoma and vessels neoplasia [33].

23.6 Theory

23.6.1 Classical Snake

The classical snakes are used widely in image processing, in computer vision and in
medical imaging applications for allocating object boundaries. The classical para-
metric elastic models (classical snakes), due to Kass, Witkin and Terzopoulos, change
shape and finally are adapted to the real object boundary according to the minimiza-
tion process of an energy function. The energy function reaches its global minimum
when the active contour is smooth and coincides with the real object boundary.
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23.6.2 Gradient Vector Flow Snake (GVF Snake)

The use of classical snake is unfortunately limited because it must be initialized close
to the true contour and because of its inefficient convergence in boundary concavities.
Xu and Prince proposed an improved snake model in order to overcome classical
snakes’ limitations. In particular, they introduced a new external force, the gradient
vector flow (GVF), that is computed as the diffusion of gradient vectors of a gray or
binary edge map of the image. According to Xu and Prince, the usual external forces
are conservative forces that make the active contour unable to successfully approxi-
mate boundary concavities. GVF is a non- conservative force. Mathematically, it is
based on the Helmholtz theorem, according to which a general static vector field can
be separated in a conservative and tubular field. GVF snake was designed to have
conservative and tubular characteristics in order to present the desirable properties
of adequate initialization range and convergence in boundary concavities.

23.6.3 Topologically Adaptable Snake (T-Snake)

T-snake comprises another variant of classical snake. It is based on a space partition-
ing technique to create a topologically adaptable snake. The difference between the
classical snake and T-snake is the use of an affine cell image decomposition, so as to
iteratively reparametrize the snake and to make topological transformations. Image
is partitioned into a net of discrete triangular cells. As the snake evolves under the
influence of internal and external forces, it is reparametrized with a new set of nodes
and elements. The reparametrization process consists of an efficient calculation of
the intersections of the snake with the image net. These intersection points might
be nodes of the updated T-snake. In 2D the T-snake is a 2D curve consisting of N
nodes connected in series. The T-snake is a discrete version of the classical snake
and retains many of its properties.

23.6.4 Self-Affine Mapping System

The self-affine mapping system is a technique similar to the snake model that adjusts
an initial curve to the real object contour, using a self-affine mapping system which
is used widely in fractal encoding. This particular method has an advantage over
conventional snakes, mostly because of its ability to detect distinct and blurred edges
with significant accuracy. It has replaced the process of energy minimization of
the classical snake with a contractive self-affine mapping system that is used in
the creation of fractal shapes. The parameters of the system are determined after a
blockwise self-similarity analysis of the gray image through a simplified algorithm
of fractal coding. The use of the self-affine mapping system is due to the fact that the
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points of the initial map, when they are positioned near image edges, after iterative
contractions of the map, they are finally attached to the edges. This attraction can be
exploited for contour extraction that has the shape of a curve of similar points rather
than a curve of smooth points which are detected by the snake model.

Suppose an image g(x) is defined in G ⊂ Rn . If there exist affine transformations
ai : Ai → Rn and βi : R1 → R1 so that

∀x ∈ Ai , g(x) = βi (g(ai (x))), i = 1, 2, . . . , I (23.21)

for some image regions Ai ⊂ G then the texture in Ai is similar to the texture in
ai (Ai ) and the image presents self-similarity in these two regions Ai and ai (Ai ). The
set {Ai , ai , βi |i = 1, 2, . . . , I }, where I is the total number of regions Ai , is called
self-affine model of the image. If Eq. 23.21 holds then it can be written that:

∀x ∈ ai (Ai ), g(x) = β−1
i (g(a−1

i (x))), i = 1, 2, . . . , I (23.22)

so there arises another self-affine model of the image the set {ai (Ai ), a
−1
i , β−1

i |i =
1, 2, . . . , I }. The transformations ai dilate maps Ai and βi are unit operators. If � is
the set of subsets of G then the self-affine map S : � → � is defined as:

S(X) =
{

I⋃

i=1

ai (Ai ∩ X)

}

∪ C (23.23)

where X is a subset of G and C a fixed set. When X is known its intersection with
Ai is mapped through the affine transformation ai and the union of all these mapped
regions with C results in the final map S(X).

For a 2D image n = 2, Ai are squared image regions, subsets of G, and transfor-
mations ai are defined as:

∀x ∈ Ai , ai (x) = ri (x − x̄i ) + (τi + x̄i ) (23.24)

and
ri > 1 (23.25)

where x̄i the central point of Ai . Moreover, the self-affine model assumes that:

βi (g(ai (x))) = pi g(ai (x)) + qi , pi ∈ [0, 1] (23.26)

In order for map S to be determined, the regions Ai are first defined. Then an adequate
algorithm searches for the best values of the parameters ri , pi , qi and τi = (si , ti )
of the map, so that Eq. 23.25 is satisfied for every Ai , so the self-affine models
{Ai , ai , βi } and

{
ai (Ai ), a

−1
i , β−1

i

}
are determined. The searching is performed

through a block-matching algorithm. The block-matching algorithm consists of the
following steps:
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STEP 1: Initialization of r , s and t . Also, the difference E = g(x) − βi (g(ai (x))) is
assigned a very large value.

STEP 2: For every x ∈ Ai the value of g(ai (x)) is computed. Because the sampling
points x may be between image pixels, the values g(ai (x)) are computed using
bilinear interpolation.

STEP 3: Initialization of p and q.
STEP 4: Computation of βi (g(ai (x))) for every x ∈ Ai .
STEP 5: Computation of the difference E . For this computation the Mean Square

Error (MSN) or the Absolute Mean Distance (AMD) are usually used. If the new
E is smaller than the initial value then the initial value is replaced by the new E
and the values of r , s, t , p and q are registered as ri , si , ti , pi and qi respectively.

STEP 6: If all p and q are checked then the algorithm moves to STEP 7, otherwise
it goes back to STEP 4.

STEP 7: If all r , s, and t are checked the algorithm is terminated, otherwise it goes
back to STEP 2.

As in the conventional snake model this method must be initialized by a rough
contour. The pixels inside the initial curve take value 1 and the rest belongs to the
background having value 0. This way a binary image is created, called alpha mask.
The purpose of the self-affine mapping system is the fitting of the alpha mask contour
to the real object boundary. In order for the initial curve b to be attached to the real
contour c three conditions must be satisfied:

1. the set c must equal the invariable set S
2. the transformations a−1

i must be systolic
3. the set b should be adequately close to c

Moreover, parameters s, t which are defined during the block-matching process
should be determined, so that every set ai (Ai ) contains the corresponding Ai , namely:
− r−1

2 e ≤ s and t ≤ r−1
2 e, where eis the size of regions Ai . Finally, the total number

of iterations ν should be: ν >
log e

2
log r .

23.7 Results

23.7.1 New Self-Affine Mapping System Optimization
Criterion

In the self-affine mapping system the size of the areas ai (Ai ) was chosen to be twice
the size of the areas Ai , namely r = 2 so as condition 2 to holds. The searching
area for the block-matching process was [− n

4 , n
4 ], where n the size of the area A.

When the value of n is small (e.g. n = 8) condition 3 is not satisfied, while when
it is large (e.g. n = 32) condition 3 is satisfied, but the final contour is a rough
approximation of the optic disk true boundary and condition 1 is now not satisfied
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Fig. 23.11 (a) Final contours with n = 8 (curve a (blue)) and n = 32 (curve β (white)), (b) Final
contour using the adapting scheme (curve β), curve a is the initial contour

and fine details of the object’s boundary are not detected. So, we chose an adapting
scheme where n was assigned an initial big value (n = 32), which is gradually
decreased to n = 4, namely emax = 32 and emin = 4. The number of iterations was
set to ν = log e

2
log r + 1. In Eq. 23.26 p was set to 1 and q to 0. As optimization criteria

of measuring the difference between g(x) and βi (g(ai (x))), two criteria were tested
and optically evaluated. The first was the classical AMD and the second was the
Minimum Distance (MD).

Figure 23.11 presents the final contours using n = 8 and n = 32 fused in the
same optical image (Fig. 23.11a) and the final contour using the adapting scheme
(Fig. 23.11b).

From Fig. 23.11b one can observe the strong attraction of mask boundary points
from the vessels in the area of the optic disk. Vessels are strong edges. The AMD
function is minimized towards these strong edges and the mask boundary points are
caged from the edges of the vessels. Figure 23.12 shows two examples of a self-affine
mapping system application, where AMD (left column) and MD (right column) were
used as optimization functions. MD application results in the detection of optic disk
boundary and not the detection of points that belong to strong edges like the vessels.
However, the detection of weak edges reduces the degrees of freedom in mapping
out the initial contour.

23.7.2 Comparison of Elastic Models

The different segmentation methods were applied to 26 retinal images 512 × 512 pix-
els in size, in order for the optic disk boundary to be extracted. For the implementation
of the classical snake the external force, derived from a Gaussian potential field with
σ = 3, was used accompanied with a pressure force with constant weights. In every
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Fig. 23.12 Final contours using AMD (left column) and MD (right column) for (a) big and (b)
small sized objects (optic disk)

position of the snake nodes, external force values were calculated using the bilinear
interpolation method. Constant weights were also used for the internal forces. Initial
contours were placed close to the real object boundary.

The GVF field 
v(x, y) = [u(x, y), υ(x, y)], was calculated according to the equa-
tions:

ui+1 = ui + μ4∇2ui − |∇ f | (ui − fx ) (23.27)

υi+1 = υi + μ4∇2υi − |∇ f | (υi − fy
)

(23.28)

were fx and fy the first derivatives of the edge map f of the image I . The edge map
was derived as f (x, y) = |∇ [Gσ (x, y)∗I (x, y)]|, with σ = 3. Initial values for u
and υ were uinit = fx and υini t = fy . Moreover, μ = 0.29 and 80 total iterations
were used for the calculation of the GVF field for all the 26 applications. Initial
contours were placed close to the real ones.

For the implementation of the T-snake the external force derived from a Gaussian
potential field with σ = 3 was used, accompanied with a pressure force with con-
stant weights. The initial seed point was chosen to be inside the object of interest.
According to this seed point the algorithm initializes a square snake.
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Fig. 23.13 Optic disk extraction with (a) manual by expert, (b) the classical snake (α = 2, β = 2,
γ = 1, w = 7, wp = 0.05, 125 total iterations), (c) the GVF snake (α = 2, β = 2, γ = 1, w =
7, wp = 0.05, μ = 0.29, 80 iterations for GVF calculation and 125 total iterations), (d) the T-
snake (α = 20, β = 20, w = 71, wp = 70, 45 total iterations), (d) the self-affine mapping system
(emin = 4, emax = 32, r = 2)

The self-affine mapping system was implemented according to Sect. 23.7.1.
Figure 23.13 presents comparatively optic disk extraction using the classical snake

model, the GVF model, the T-snake and the self- affine mapping system.
For the comparative evaluation of the different deformable models normalized

mean square error (nmse), between the real optic disk contour (Ireal) and the final
contour (Ide f ormabls) extracted by every deformable model method applied to 26
retinal images, was computed. The real contours were drawn by an expert. The nmse
was calculated according to the equation:

nmse =

N∑

i=1

N∑

j=1
(Ide f ormablei j − Ireal)2

N∑

i=1

N∑

j=1
I 2
real

(23.29)

Fig. 23.14 presents nmse for the four deformable model techniques and for the 26
retinal images.

Figure 23.15 shows the total segmentation time for the four deformable models
for the 26 retinal images.
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Fig. 23.14 Nmse curves for the four deformable model techniques applied to 26 retinal images

Fig. 23.15 Total
segmentation time (s) for the
four deformable models
applied to 26 retinal images

23.8 Discussion

From Fig. 23.13 the final contour of the classical model is smooth and approximates
the real one. GVF snake is an alternative of the classical snake designed to detect
complicated boundaries with high curvature and sharp edges. The optic disk boundary
does not have such characteristics, it is almost round. The range of the two methods
is almost the same. The classical snake and the GVF snake must be initialized close
to the real contour. According to Fig. 23.15 the GVF snake algorithm is also slower
than the classical snake method, mostly because of the extra time it needs to calculate
the external GVF force.

T-snake results in a satisfying optic disk contour (Fig. 23.13d). The biggest advan-
tage of the T-snake algorithm is its range. It is initialized in a point inside the optic
disk. Moreover, the total segmentation time of T-snake is small, smaller than any
other deformable method. So, T-snake presents a robust and efficient segmentation
technique.
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Fig. 23.16 Examples of contour initialization for (a) the classical snake and the GVF snake and
(b) the self-affine mapping system

The self-affine mapping system is superior in optic disk boundary extraction than
the other techniques, according to Figs. 23.13 and 23.14. Furthermore the algorithm
is independent from optic disk size and image intensity. Also, with the choice of
minimum distance as a matching criterion the caging of the model from the vessels
is avoided. Self-affine mapping system seems to present bigger independence from
initialization than the classical snake and the GVF snake (Fig. 23.16). The initial
contour is placed away from the real one (Fig. 23.16b). The total segmentation time
of the algorithm is also adequate, according to Fig. 23.15, since it is faster than
the classical snake and the GVF snake. The self-affine mapping system succeeds
also in small nmse values (Fig. 23.14). Another advantage of the self-affine mapping
system is that this method is self-terminated, a characteristic that the other deformable
methods do not present.

In general self-affine mapping system succeeds in approximating very well the
true optic disk boundary. The distance between the real and the initial contour depends
on the value of emax. If emax is increased the degrees of freedom in lining the initial
contour are increased.

23.9 Conclusions

Iterative image reconstruction algorithms have been proposed as an alternative to con-
ventional analytical methods. Despite their computational complexity, they become
more and more popular, mostly because they can produce images with better contrast-
to-noise (CNR) and signal-to-noise ratios at a given spatial resolution, compared to
FBP techniques. Iterative methods are able to incorporate a model of all the physical
phenomena during the acquisition process, including scanner characteristics. Based
on predetermined criteria and after a series of successful iterations, they attempt to
find the best approach to the true image of radioactivity spatial distribution.
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In this paper, different simultaneous iterative reconstruction schemes were applied
to data acquired from a simulation of a small-animal PET scanner. A new iterative
scheme was discussed named ISWLS. EM-ML, ISRA, WLS, and ISWLS and their
OS and MRP versions were implemented and evaluated in terms of task-dependent
measures for quantization and detection. ISWLS combines WLS’s reconstruction
acceleration with ISRA’s good noise manipulation. ISWLS could be preferable
for use in 3-D reconstruction applications, where the precalculation of the factor∑M

j=1ai j y j which is constant, will lessen the computational cost and demands for
high computational memory.

Another important field of medical imaging is image segmentation. It is used espe-
cially in automatic anatomical structure and pathological areas detection. Because
of the variety of object shapes and the variance in image quality, image segmenta-
tion remains a difficult task. Every segmentation algorithm aims at the detection of
the image pixels that belong to the object of interest. Deformable models are the
most popular image segmentation techniques. They are designed to approximate the
significant variance of biological structures with time and from person to person.

In this work various methods of deformable models were compared, which are
the classical snake, the gradient vector field snake (GVF snake) and the topology-
adaptive snake (t-snake). Also, the method of self-affine mapping system was pre-
sented as an alternative of the snake models. The self-affine mapping system was
implemented using an adapting scheme. Moreover, Minimum Distance was intro-
duced as an optimization criterion more suitable for optic disk boundary detection.
All methods were applied to glaucomatic retinal images with the purpose of segment-
ing the optical disk. The methods were compared in terms of segmentation accuracy.
The self-affine mapping system presents efficient segmentation time, segmentation
accuracy and significant independence from initialization.
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