
Chapter 2
A Survey on Temperley–Lieb-type Quotients
from the Yokonuma–Hecke Algebras

Dimos Goundaroulis

Abstract In this survey we collect all results regarding the construction of the
Framization of the Temperley–Lieb algebra of type A as a quotient algebra of the
Yokonuma–Hecke algebra of type A. More precisely, we present all three possible
quotient algebras the emerged during this construction and we discuss their dimen-
sion, linear bases, representation theory and the necessary and sufficient conditions
for the unique Markov trace of the Yokonuma–Hecke algebra to factor through to
each one of them. Further, we present the link invariants that are derived from each
quotient algebra and we point out which quotient algebra provides the most natural
definition for a framization of the Temperley–Lieb algebra. From the Framization of
the Temperley–Lieb algebra we obtain new one-variable invariants for oriented clas-
sical links that, when compared to the Jones polynomial, they are not topologically
equivalent since they distinguish more pairs of non isotopic oriented links. Finally,
we discuss the generalization of the newly obtained invariants to a new two-variable
invariant for oriented classical links that is stronger than the Jones polynomial.

2.1 Introduction

The Yokonuma–Hecke algebra was first introduced in the 60s by Yokonuma as a
generalization of the Iwahori–Hecke algebra in the context of Chevalley groups [30].
In recent years, Juyumaya simplified the natural description by giving a presentation
in terms of generators and relations [17–19]. A detailed overview of Juyumaya’s
approach can be found in [28, Preliminaries]. In this context, the Yokonuma–Hecke
algebra of type A can be considered as a quotient of the framed braid group algebra
over a two-sided ideal that is generated by a quadratic relation that involves certain
weighted idempotent elements.
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Throughout the past ten years the theory of Yokonuma–Hecke algebras received
a significant amount of attention, mainly due to the concept of framization of knot
algebras, a concept that was introduced by Juyumaya andLambropoulou [24]. A knot
algebra is an algebra that is involved in the construction of invariants of classical links
via braid group representations [16]. To be more precise, a knot algebra A is a triplet
(A, π, τ ), where π is an appropriate representation of the braid group in A and τ is a
Markov trace function defined onA. The Iwahori–Hecke algebra and the Temperley–
Lieb algebra are the most known examples of knot algebras. On the other hand, the
framization consists in an extension of a knot algebra via the addition of framing
generators which gives rise to a new algebra that is related to framed braids and
framed knots. The Yokonuma–Hecke algebra, Yd,n(u) is the basic example of this
concept and it can be regarded as a framization of the Iwahori–Hecke algebra, Hn(u)

[20, 24]. With this in mind, Juyumaya and Lambropoulou proposed framizations of
several knot algebras [23, 25] from which isotopy invariants for framed, classical
and singular links were derived [20–22].

The breakthrough in this theory came while comparing the invariants for classical
oriented knots and links from the Yokonuma–Hecke algebras to the HOMFLYPT
polynomial. In [5], the useof a different presentation forYd,n withparameterq instead
of u and a different quadratic relation led to the proof that the derived two-variable
invariantsΘd are not topologically equivalent to the HOMFLYPT polynomial on links
while they are topologically equivalent to the HOMFLYPT on knots. Furthermore,
in the same work it was shown that the invariants Θd distinguish more pairs of non-
isotopic oriented links than theHOMFLYPTpolynomial.Moreover, itwas shown that
the invariants canbegeneralized to a 3-variable invariantΘ for oriented classical links
that can be completely defined via the skein relation of the HOMFLYPT polynomial
on crossings involving different components of the link and a set of initial conditions
[5, 26]. The invariant Θ distinguishes the same pairs of HOMFLYPT-equivalent
links as Θd , it is not topologically equivalent to the HOMFLYPT or the Kauffman
polynomials and, thus, it is stronger than the HOMFLYPT polynomial on links.

One of the open problems in the concept of framization of knot algebras was
the determination of a framization of the Temperley–Lieb algebra. If one consid-
ers the classical Temperley–Lieb algebra as it was introduced by Jones [16] that is,
as a quotient of the Iwahori–Hecke algebra, it is immediately evident that desired
framization will emerge as an appropriate quotient of the Yokonuma Hecke algebra.
Contrary to the classical case such a candidate algebra is not unique. The study of
these quotient algebras has been the topic of the author’s Ph.D. thesis [11] which
led to a series of results regarding their topological [12–15] as well as their alge-
braic properties [7, 8]. There are three potential candidates that can qualify as the
framization of the Temperley–Lieb algebra: the Yokonuma-Temperley–Lieb algebra
YTLd,n(u), the Complex Reflection Temperley–Lieb algebra CTLd,n(u) and the so-
calledFramization of the Temperley–Lieb algebraFTLd,n(u). The algebraYTLd,n(u)

is too restricted and, as a consequence, the invariants for classical links from the alge-
bra YTLd,n(u) just recover the Jones polynomial [12]. On the other hand, the algebra
CTLd,n(u) is too large for our topological purposes and the derived link invariants
coincide either with those from Yd,n(u) or with those from FTLd,n(u) [13]. Unfor-
tunately, these two quotient algebras do not fit the topological purposes of deriving
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new invariants for (framed) knots and links and, thus, they do not qualify as potential
framizations of the Temperley–Lieb algebra. The third quotient algebra of Yd,n(u),
the Framization of the Temperley–Lieb algebra, FTLd,n(u), lies between YTLd,n(u)

and CTLd,n(u) and, as it will be made clear in Sect. 2.3, it turns out to be the right one
[13]. The invariants θd for classical links from the algebras FTLd,n adapted to a pre-
sentation with parameter q instead of u of Yd,n(q), are proven to be not topologically
equivalent to the Jones polynomial on links while they are topological equivalent to
the Jones polynomial on knots [13]. Finally, in analogy to the invariants Θd , the
invariants θd can be generalized to a new two-variable invariant of oriented classical
links θ that is stronger than the Jones polynomial [15].

The outline of the paper is as follows: In Sect. 2.2 we introduce the necessary
notations and we give a brief overview of all the required definitions and results such
as: the Temperley–Lieb algebra, the Yokonuma–Hecke algebra, the E-system and
the derived two-variable invariants for oriented framed and classical knots and links.
In Sect. 2.3 we discuss three quotients of the Yokonuma–Hecke algebra as possible
candidates for the framization of the Temperley–Lieb algebra. Moreover, we give all
algebraic (linear basis, dimension, representation theory) as well as all topological
(Markov trace, link invariants) results in the literature regarding each one of these
quotient algebras. In Sect. 2.4 we describe how the invariants Θd and θd compare to
the HOMFLYPT and Jones polynomials respectively. Finally, we discuss how the
invariants Θd generalize to a new three-variable invariant for oriented classical links
as well as the analogous generalization of the invariants θd to a new two-variable
invariant for oriented classical links and we also describe closed combinatorial for-
mulas for each one of the generalizations.

2.2 Preliminaries

In this section we will establish our notation and we will present the basic notions
that will be used in the following sections.

2.2.1 Notations

We start by fixing two positive integers, d and n. Every algebra considered in this
paper is an associative unital algebra over the fieldC(u), where u is an indeterminate.
The framed braid group on n strands is defined as the semi-direct product of Artin’s
braid group Bn with n copies of Z, namely:Fn = Z

n
� Bn , where the action of the

braid group Bn on Z
n is given by the permutation induced by a braid on the indices

σi t j = tsi ( j)σi . By considering framings modulo d, the modular framed braid group,
Fd,n = (Z/dZ)n

� Bn , is defined. Due to the above action a word w in Fn (resp.
Fd,n) has the splitting property, that is, it splits into the framing part and the braiding
part w = ta1

1 . . . tan
n σ where σ ∈ Bn and ai ∈ Z (resp. Z/dZ).
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Finally, a partition of n, λ = (λ1, . . . , λk), is a family of positive integers such
that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and |λ| = λ1 + · · · + λk = n. We identify every
partition with its Young diagram, that is a left-justified array of k rows such that
the j th row contains λ j nodes for all j = 1, . . . , k. A d-partition λ, or a Young
d-diagram, of size n is a d-tuple of partitions such that the total number of nodes in
the associated Young diagrams is equal to n. That is, we have λ = (λ(1), . . . , λ(d))

with λ(1), . . . , λ(d), usual partitions such that |λ(1)| + · · · + |λ(d)| = n.

2.2.2 The Temperley–Lieb algebra

For n ≥ 3, the Temperley–Lieb algebra, TLn(u), is theC(u)-algebra that is generated
by the elements h1, . . . , hn−1 which are subject to the following relations:

hi h j = h j hi for all |i − j | > 1

hi h j hi = h j hi h j for all |i − j | = 1

h2
i = u + (u − 1)hi

hi,i+1 = 0,

where hi, j := 1+hi +h j +hi h j +h j hi +hi h j hi . Notice that the first three relations
are the defining relations of the Iwahori–Hecke algebra, Hn(u), which is defined
as the quotient of the algebra C(u)Bn over the two-sided ideal that is generated by
the quadratic relations mentioned above. Thus, with this presentation, the algebra
TLn(u) can be considered as the quotient of Hn(u) over the two-sided ideal that is
generated by the elements hi,i+1 ∈ Hn(u). It is not difficult to see that the defining
ideal of TLn(u) is principal and that is generated by the element h1,2.

The algebra Hn(u) supports a unique Markov trace, the Ocneanu trace τ with
parameter ζ [16, Theorem 5.1]. By normalizing and rescaling τ according to the
braid equivalence, one obtains the Homlypt polynomial [16, Proposition 6.2], [10,
29]. Further, the trace τ factors through to the quotient algebra TLn(u). The necessary
and sufficient conditions for the factoring of τ provide a specialization for the trace
parameter ζ which, in turn, gives rise to the Jones polynomial [16]:

V (u)(̂α) =
(

−1 + u√
u

)n−1
(√

u
)ε(α)

τ (π(α)),

where: α ∈ ∪∞ Bn , π is the natural epimorphism of C(u)Bn on TLn(u) that sends
the braid generator σi to hi and ε(α) is the algebraic sum of the exponents of the σi ’s
in α.
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2.2.3 The Yokonuma–Hecke Algebra

The Yokonuma–Hecke algebra Yd,n(u) [30] is defined as the quotient of the group
algebra C(u)Fd,n over the two-sided ideal generated by the elements:

σ 2
i − 1 − (u − 1)ei − (u − 1)eiσi for all i,

where ei := 1
d

∑d−1
s=0 t s

i td−s
i+1 , for i = 1, . . . , n − 1. The elements ei in Yd,n(q) are

idempotents [18]. The generators of the ideal give rise to the following quadratic
relations in Yd,n(q):

g2
i = 1 + (u − 1)ei + (u − 1)ei gi , (2.1)

where gi corresponds to σi . Moreover, (2.1) implies that the elements gi are invertible
with g−1

i = gi − (u−1 − 1)ei + (u−1 − 1)ei gi , 1 ≤ i ≤ n − 1. The ti ’s are called the
framing generators, while the gi ’s are called the braiding generators of Yd,n(q). By
its construction, the Yokonuma–Hecke algebra is considered as the framization of
the Iwahori–Hecke algebra. Regarding its algebraic properties, the algebra Yd,n(u)

has the following standard linear basis [18]:

{ta1
1 . . . tan

n w | ai ∈ Z/dZ, w ∈ BHn },

where BHn is the standard basis of Hn(u). A simple counting argument implies
that the dimension of the algebra Yd,n(u) is equal to n! dn . Further, the irreducible
representations of Yd,n(u) over C(u), are parametrised by the d-partitions of n [4,
Theorem 1].

One of the most important results regarding the Yokonuma–Hecke algebra lies
in [18] where Juyumaya showed that Yd,n(u) supports the following unique linear
Markov trace function:

trd : ∪∞
n=1Yd,n(u) −→ C(u)[z, x1, . . . , xd−1],

where z, x1, . . . , xd−1 are indeterminates. The trace trd can be defined inductively
on n by the following rules [18, Theorem 12]:

trd(ab) = trd(ba)

trd(1) = 1
trd(agn) = z trd(a)

trd(ats
n+1) = xs trd(a) (s = 1, . . . , d − 1),

where a, b ∈ Yd,n(u). Using the rules of trd and setting x0 := 1, one deduces that
trd(ei ) takes the same value for all i , indeed: E := trd(ei ) = 1

d

∑d−1
s=0 xs xd−s .
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In order to define framed and classical link invariants via the trace trd , one should
re-scale trd according to the framed braid equivalence [27]. Unfortunately, the trace
trd is the only known trace that does not re-scale directly [24]. The E-system is the
following system of non-linear equations

d−1
∑

s=0

xm+s xd−s = xm

d−1
∑

s=0

xs xd−s (1 ≤ m ≤ d − 1),

thatwas introduced in order to find the necessary and sufficient conditions that needed
to be applied on the parameters xi of tr so that the re-scaling of trd would be possible
[24]. We say that the (d − 1)-tuple of complex numbers (x1, . . . , xd−1) satisfies the
E-condition if x1, . . . , xd−1 are solutions of the E-system. The full set of solutions
of the E-system is given by Paul Gérardin [24, Appendix] using tools of harmonic
analysis on finite groups. More precisely, he interpreted the solution (x1, . . . , xd) of
the E-system, as the complex function x : Z/dZ → C that sends k 	→ xk , k 
= 0 and
0 	→ 1. Let now χm be the character of the group Z/dZ and let im := ∑d−1

s=0 χm(s)t s ,
for m ∈ Z/dZ ∈ C[Z/dZ]. We then have that the solutions of the E-system are of
the following form:

xs = 1

|D|
∑

m∈D

im(s), 1 ≤ s ≤ d − 1,

where D is a non-empty subset of Z/dZ. Hence, the solutions of the E-system
are parametrized by the non-empty subsets of Z/dZ. Two obvious solutions of the
E-system are: the all-zero solution, that is xi = 0, for all i , and when the xi ’s
are specialized to the dth roots of unity. For the rest of the paper we fix X D =
{x1, . . . , xd−1} to be a solution of the E-system parametrized by the non-empty subset
D of Z/dZ. If we specialize the trace parameters xi of trd to the values xi we obtain
the specialized trace trd,D with parameter z [5, 6].

By normalizing and re-scaling the specialized trace trd,D , invariants for framed
links are obtained [24]:

Γd,D(w, u)(̂α) =
(

− (1 − wu)|D|√
w(1 − u)

)n−1
(√

w
)ε(α)

trd,D(γ (α)), (2.2)

where: w = z+(1−u)

uz|D| is the re-scaling factor, γ is the natural epimorphism of the
framed braid group algebraC(u)Fn on the algebraYd,n(u), andα ∈ ∪∞Fn . Further,
by restricting the invariantsΓd,D(w, u) to classical links, seen as framed linkswith all
framings zero, in [21] invariants of classical oriented links Δd,D(w, u) are obtained.
In [6] it was proved that for generic values of the parameters u, z the invariants
Δd,D(w, u) do not coincide with the HOMFLYPT polynomial except in the trivial
cases u = 1 and ED = 1.
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2.3 The Three Possible Candidates

In this section we will present all results in the literature regarding the three possible
quotient algebras that can be considered as candidates for the framization of the
Temperley–Lieb algebra. Inwhat follows,wewill give the definitions and dimensions
for each quotient algebra, describe their linear bases and representation theory and
discuss the necessary and sufficient conditions so that the trace trd passes to each
one of the quotient algebras. Finally, we will present the invariants for framed and
classical links that are derived from each algebra.

2.3.1 Motivation Behind the Construction

Following the construction of the classical Temperley–Lieb algebra we would like
to introduce an analogue of TLn(u) in the context of framed knot algebras. Namely,
to define a quotient of Yd,n(u) over a two-sided ideal that is constructed from an
appropriately chosen subgroup of the underlying group Cd,n := (Z/dZ)n

� Sn of
Yd,n(u). At this point two such subgroups emerge naturally. The first possibility is
to consider the subgroups 〈si , si+1〉 of Cd,n that are also related to the defining ideal
of TLn(u). The second possibility is to let the framing generators ti be involved in
the generating set of such a subgroup and consider the following subgroup of Cd,n:

Ci
d,n := 〈ti , ti+1, ti+2〉 � 〈si , si+1〉 for all i.

Therefore we can define at least two types of algebras which could be considered as
analogues of the Temperley–Lieb algebras in the context of knot algebras with fram-
ing. The algebra that corresponds to the first possibility is the Yokonuma-Temperley–
Lieb algebra, denoted by YTLd,n(u), while the second is the Complex Reflection
Temperley–Lieb algebra, CTLd,n(u).

As mentioned in (2.2), new two-variable invariants for oriented framed knots
and links are defined through the trace trd on the Yokonuma–Hecke algebra by
imposing the E-system on the parameters x1, . . . , xd−1 [24]. Hence, we expect that
the framization of the Temperley–Lieb algebra will allow us to define one-variable
specializations of the invariants derived from Yd,n(u). Unfortunately, both quotients
above are not satisfactory for this purpose. In the case of YTLd,n(u), very strong
conditions on the trace parameters must be applied in order for trd to pass through
to the quotient algebra. Namely, the trace parameters xi must be dth roots of unity,
giving rise to obvious, special solutions of the E-system, which imply topologically
loss of the framing information. However, the original Jones polynomial can be
recovered from this quotient algebra. In the case of CTLd,n(u), the quotient algebra
is large enough so that the necessary and sufficient conditions such that trd passes to
CTLd,n(u) are, contrary to the case of YTLd,n(u), too relaxed, especially on the trace
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parameters xi . So, in order to obtain knot invariants we would still need to impose
the E-system on the trace parameters x1, . . . , xd−1 as in the case of Yd,n(u).

The discussion above indicated that the desired framization of theTemperley–Lieb
algebra, for our topological purposes, could be an intermediate algebra between the
quotient algebras YTLd,n(u) and CTLd,n(u). One may achieve this, by using for the
defining ideal an intermediate subgroup that lies between 〈si , si+1〉 and Ci

d,n . More
precisely, we define this framization as a quotient of the Yokonuma–Hecke algebra
over an ideal that is constructed from the following subgroup of Cd,n:

Hi
d,n := 〈ti t−1

i+1, ti+1t−1
i+2〉 � 〈si , si+1〉 for all i.

Thus, one obtains the so-called Framization of the Temperley–Lieb algebra,
FTLd,n(u). The relation between the three quotient algebras is given by the following
commutative diagram of epimorphisms [13, Proposition 3]:

Yd,n(u) CTLd,n(u) FTLd,n(u) YTLd,n(u)

Hn(u) TLn(u)

The Yokonuma-Temperley–Lieb algebra and its derived invariants were intro-
duced and studied in [12], while its representation theory was studied in [7]. The
algebras FTLd,n(u), CTLd,n(u) and their corresponding invariants were introduced
in [13] and were further studied in [8, 14, 15].

2.3.2 The Yokonuma-Temperley–Lieb Algebra

For n ≥ 3, the Yokonuma-Temperley–Lieb algebra, denoted byYTLd,n(u), is defined
as the quotient of Yd,n(u) over the two-sided ideal that is generated by the elements:

gi,i+1 := 1 + gi + gi+1 + gi gi+1 + gi+1gi + gi gi+1gi . (2.3)

It is a straightforward computation to show that the defining ideal of YTLd,n(u)

is principal and is generated by the element g1,2 [12, Lemma 4]. Thus, the algebra
YTLd,n(u) can be considered as the C(u)-algebra that is generated by the elements
t1, . . . , tn, g1 . . . , gn−1 that are subject to the defining relations of Yd,n(u) and the
relation g1,2 = 0 [12, Corollary 1]. Note also that for d = 1 the algebra YTL1,n(u)

coincides with TLn(u).
Every word in the algebra YTLd,n(u) inherits the splitting property from Yd,n(u).

For each fixed element in the braiding part, a set of linear dependency relations among
the framing parts can be described which, in turn, lead to the extraction of a linear
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basis for YTLd,n(u) [7]. Using this technique, Chlouveraki and Pouchin proved in
[7] that, for n ≥ 3, the following set is a linear basis for YTLd,n(u):

Sd,n = {

tr1
1 . . . trn

n w | w ∈ BTL, (r1, . . . , rn) ∈ Ed,n(w)
}

,

whereBTL is the linear basis of the classical Temperley–Lieb algebra as computed by
Jones in [16] and Ed,n(w) is a subset of {0, . . . , d − 1}n that describes the exponents
of the ti ’s that correspond to the fixed braid word w ∈ YTLd,n(u). For an explicit
description of the set Ed,n(w), the reader is encouraged to consider [7, Propositions 9
and 11]. Subsequently, the dimension of the Yokonuma-Temperley–Lieb algebra can
be computed, which is equal to:

dim(YTLd,n(u)) = dcn + d(d − 1)

2

n−1
∑

k=1

(

n

k

)2

,

where cn is the nth Catalan number [7, Proposition 4].
By standard results in representation theory we have that the irreducible represen-

tations ofYTLd,n(u) are in bijectionwith those irreducible representations ofYd,n(u)

that respect the defining relation of YTLd,n(u), which is g1,2 = 0. Specifically, the
irreducible representations of YTLd,n(u) are those representations of Yd,n(u) who
have at most two columns in total in the Young diagram of the parametrizing d-
partition of n [7, Theorem 1]. In the following example, the first 3-partition of 5
parametrizes an irreducible representation of YTL3,5(u) while the second one does
not correspond to an irreducible representation of YTL3,5(u):

i.

(

, ,∅
)

i i.

(

, ,∅
)

.

As mentioned in the introduction, the motivation behind the definition of a
Temperley–Lieb type quotient from the Yokonuma–Hecke algebra was the construc-
tion of polynomial invariants for framed knots and links via the use of the trace trd

of Yd,n(u). Thus, one of the biggest challenges regarding the study of the algebra
YTLd,n(u) was the determination of the necessary and sufficient conditions for trd

to factor through to the quotient algebra. By employing the methods that P. Gérardin
used to describe the full set of solutions of the E-system [24, Appendix], the author
together with Juyumaya, Kontogeorgis and Lambropoulou proved that following:

Theorem 2.1 ([12, Theorem 6]) The trace trd passes to the quotient algebra
YTLd,n(u) if and only if the xi ’s are solutions of the E-system and one of the two
cases holds:

(i) the x�’s are dth roots of unity and z = − 1
u+1 or z = −1,

(ii) the x�’s are the solutions of the E-system that are parametrized by the set D =
{m1, m2 | 0 ≤ m1, m2 ≤ d − 1 and m1 
= m2} and they are expressed as:
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x� = 1

2

(

χm1(t
�) + χm2(t

�)
)

, 0 ≤ � ≤ d − 1,

where the χk’s denote the characters of the group Z/dZ. In this case we have
that z = − 1

2 .

Note that in both cases the xi ’s are solutions of the E-system, as required by [24],
in order to proceed with defining link invariants. We do not take into consideration
case (i) for z = −1 and case (i i), where z = − 1

2 , since crucial braiding information
is lost and therefore they are of no topological interest [12]. The only remaining
case of interest is case (i) of Theorem 2.1, where the x�’s are the dth roots of unity
and z = − 1

u+1 . This implies that E = 1 and w = u in (2.2). So, by [6, 16], the
invariantΔd,s(u, u) coincides with the Jones polynomial. For this reason, the algebra
YTLd,n(u) is discarded as a potential framization of the Temperley–Lieb algebra.

2.3.3 The Complex Reflection Temperley–Lieb Algebra

Wemove on nowwith presenting the second natural definition of a potential framiza-
tion of the Temperley–Lieb algebra. For n ≥ 3, we define the Complex Reflection
Temperley–Lieb algebra, denoted byCTLd,n(u), as the quotient of the algebraYd,n(u)

over the ideal that is generated by the elements

ci,i+1 :=
∑

α,β,γ∈Z/dZ

tα
i tβ

i+1tγ

i+2 gi,i+1. (2.4)

In analogy to the algebraYTLd,n(u), the defining ideal of CTLd,n(u) can be shown
to be principal and is generated by the single element c1,2. Further, for d = 1, the
algebra CTL1,n(u) coincides with the algebra TLn(u). The denomination Complex
Reflection Temperley–Lieb algebra has to do with the fact that the underlying group
of CTLd,n(u) is isomorphic to the complex reflection group G(d, 1, 3).

The Complex Reflection Temperley–Lieb algebra is isomorphic to a direct sum of
matrix algebras over tensor products of Temperley–Lieb and Iwahori–Hecke algebras
[8, Theorem 5.8]. This isomorphism, which we will denote by φn , will lead to the
determination of a linear basis for CTLd,n(u). More precisely, there exists an explicit
isomorphism:

φn :
⊕

μ∈Compd (n)

Matmμ

(

TLμ1(u) ⊗ Hμ2(u) ⊗ . . . ⊗ Hμd (u)
) −→ CTLd,n(u).

Then the following set is a linear basis for CTLd,n(u) [8, Proposition 5.9]:

{

φn
(

b1b2 . . . bd Mk,l
) | b1 ∈ BTLμ1 (u), bi ∈ BHμi (u) for all i = 2, ..., d, 1 ≤ k, l ≤ mμ,μ ∈ Compd (n)

}

,
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where BTLμ1(u)
is the linear basis of TLμ1(u), BHμi (u) is the linear basis of Hμi , Mk,l

is the elementary mμ × mμ matrix with 1 in position(k, l) and μ ∈ Compd(n) is a d-
composition of n, that is,μ = (μ1, μ2, . . . , μd) ∈ N

d such thatμ1+μ2+· · ·+μd =
n. Counting the elements of the above basis one can derive the dimension of the
algebra CTLd,n(u) [8, Theorem 5.5]. Indeed, if ck := 1

k+1

(2k
k

)

is the kth Catalan
number, we have that:

dimC(u)CTLd,n(u) =
∑

μ ∈Compd (n)

(

n!
μ1! μ2! . . . μd !

)2

cμ1 μ2! . . . μd !

Let now λ = (λ(1), . . . , λ(d)) a d-partition of n. The irreducible representations
of CTLd,n(u) are those irreducible representations of Yd,n(u) whose Young diagram
of λ(1) has at most two columns [8, Theorem 5.3]. For instance, in the example
given below, the first 2-Young diagram corresponds to an irreducible representation
of CTL2,9(u) while the second one does not:

i.

(

,

)

i i.

(

,

)

.

Next we present the necessary and sufficient conditions for the trace trd to factor
through to the quotient algebra CTLd,n(u). We have the following:

Theorem 2.2 ([13, Theorem 7]) The trace trd passes to the quotient algebra
CTLd,n(u) if and only if the parameter z and the xi ’s are related through the equation:

(u + 1)z2
∑

k∈Z/dZ

xk + (u + 2)z
∑

k∈Z/dZ

E (k) +
∑

k∈Z/dZ

tr(e(k)
1 e2) = 0. (2.5)

Notice now that the conditions of Theorem 2.2 do not include any solutions of
the E-system. Thus, in order to obtain any well defined invariant from the algebras
CTLd,n(u) one has to impose the E-condition on the trace parameters xi . Even by
doing so, CTLd,n(u) does not deliver any new invariants for framed or classical
oriented knots and links. We have the following:

Proposition 2.1 ([13, Proposition 10])Let X D be a solution of theE-system parame-
trized by the subset D of Z/dZ. The invariants derived from the algebra CTLd,n(u):

1. if 0 ∈ D, they coincide with the invariants derived from the algebra FTLd,n(u),
2. if 0 /∈ D, they coincide with the invariants derived from the algebra Yd,n(u).

The above constitute the reasons for which the Complex Reflection Temperley–
Lieb algebra is discarded as a potential candidate for the framization of the
Temperley–Lieb algebra.
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2.3.4 The Framization of the Temperley–Lieb algebra

For n ≥ 3, the Framization of the Temperley–Lieb algebra, denoted by FTLd,n(u),
is defined as the quotient Yd,n(u) over the two-sided ideal that is generated by the
elements

ri,i+1 :=
∑

α+β+γ=0

tα
i tβ

i+1tγ

i+2 gi,i+1. (2.6)

In analogy to the case of the other two quotient algebras, for d = 1 the algebra
FTL1,n(u) coincides with TLn(u). Additionally, the defining ideal of FTLd,n(u) is
principal and is generated by the element r1,2. Thus, in terms of generators and rela-
tions, FTLd,n(u) is the C(u)-algebra generated by the set {t1, . . . , tn, g1, . . . , gn−1}
whose elements are subject to the defining relations of Yd,n(u) and the relation
r1,2 = 0.

As in the case of CTLd,n(u), the determination of a linear basis for the Framiza-
tion of the Temperley–Lieb algebra will emerge from an isomorphism theorem for
FTLd,n(u). More precisely, the quotient algebra FTLd,n(u) is isomorphic to a direct
sum of matrix algebras over tensor products of Temperley–Lieb algebras [8, Theo-
rem 4.3]. There exists an explicit isomorphism of C(u)-algebras:

˜φn :
⊕

μ∈Compd (n)

Matmμ

(

TLμ1(u) ⊗ . . . ⊗ TLμd (u)
) −→ FTLd,n(u),

then the following set is a linear basis for the algebra FTLd,n(u):

{

˜φn(b1 . . . bd Mk,l ) | bi ∈ BTLμi (q) for all i = 1, . . . d, 1 ≤ k, l ≤ mμ, μ ∈ Compd (n)
}

.

By using a counting argument one can derive the dimension of the algebra FTLd,n(u),
which is equal to [8, Theorem 3.11]:

dimC(u)FTLd,n(u) =
∑

μ ∈Compd (n)

(

n!
μ1! μ2! . . . μd !

)2

cμ1 cμ2 . . . cμd . (2.7)

The irreducible representations of FTLd,n(u) are those irreducible representations of
Yd,n(u) whose Young diagram of λ(i) has at most two columns, for i = 1, 2, . . . , d.
As in the previous examples, the first of the following 3-Young diagrams describes
an irreducible representation of FTL3,7(u) while the second does not:

i.

(

, ,

)

i i.

(

, ,

)

.

Wemove on now to the necessary and sufficient conditions so that trd factors through
to FTLd,n(u).
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Theorem 2.3 ([13, Theorem 6]) The trace tr passes to FTLd,n(u) if and only if the
parameters of the trace tr satisfy:

xk = −z

⎛

⎝

∑

m∈Sup1
χm(tk) + (u + 1)

∑

m∈Sup2
χm(tk)

⎞

⎠ and z = − 1

|Sup1| + (u + 1)|Sup2| ,

where χm are the characters of the group Z/dZ, Sup1 � Sup2 (disjoint union) is the
support of the Fourier transform of x, and x is the complex function on Z/dZ, that
maps 0 to 1 and k to the trace parameter xk .

The intrinsic difference with the other two quotient algebras lies in the fact that
the necessary and sufficient conditions of Theorem 2.3 include all solutions of the
E-system. This observation is themain reason that led to the consideration of the quo-
tient algebra FTLd,n(u) as the most natural non-trivial analogue of the Temperley–
Lieb algebra in the context of framization of knot algebras. If one lets either Sup1
or Sup2 to be the empty set, then the trace parameters xk comprise a solution of the
E-system. In this context, if Sup1 is the empty set then z = − 1

(u+1)|Sup2| while if Sup2
is the empty set then z = −1/|Sup1| [13, Corollary 3]. Since for defining invariants
for oriented (framed) knots and links only the cardinal |D| of the parametrizing set
D of a solution is needed, the solutions mentioned above cover all the possibilities.
We do not take into consideration the case where Sup2 = ∅ and z = −1/|Sup1| since
important topological information is lost and thus basic pairs of knots are not distin-
guished [13, Remark 7]. For the remaining case, let X D be a solution of the E-system,
parametrized by the non-empty subset D = Sup2 of Z/dZ and let z = − 1

(u+1)|D| .
We obtain from Γd,D(w, u) the following new 1-variable framed link invariants:

Γd,D(u, u)(̂α) :=
(

− (1+u)|D|√
u

)n−1 (√
u
)ε(α)

trd,D (γ (α)) , (2.8)

for anyα ∈ ∪∞Fn . Further, in analogy to the invariants ofΓd,D(w, u), ifwe restrict to
framed links with all framings zero, we obtain fromΓd,D(u, u) new 1-variable invari-
ants of classical links Δd,D(u, u). Additionally, for d = 1 the invariant Γd,D(u, u)

coincides with the Jones polynomial.

2.4 Comparisons and Generalizations

In this section we will present the comparisons of the invariants Θd and θd to the
HOMFLYPT and the Jones polynomials respectively, and we will give generaliza-
tions for both of them.
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2.4.1 The Invariants Θd and Their Generalization

In a recent development [5] itwas proved that the classical link invariants derived from
the Yokonuma–Hecke algebra are not topologically equivalent to the HOMFLYPT
polynomial on links while they are topologically equivalent to the HOMFLYPT on
knots. This was achieved by considering a different presentation for the algebra Yd,n

with parameter q instead of u and a different quadratic relation. More precisely,
the algebra Yd,n(q) is defined as the C(q)-algebra that is generated by the elements
g′
1, . . . , g′

n−1, t1, . . . , tn , which satisfy all relations ofYd,n(u) except for the quadratic
relation that is replaced with the following:

(g′
i )

2 = 1 + (q − q−1)ei g
′
i . (2.9)

One can obtain this presentation from the one given in Sect. 2.2.3 by taking u = q2

and
gi = g′

i + (q − 1)ei g
′
i (or, equivalently, g′

i = gi + (q−1 − 1)ei gi ).

Thus, the following invariants of classical links were derived [5]:

Θd(q, λd)(̂α) =
(

1 − λd√
λd(q − q−1)ED

)n−1
√

λd
ε(α)

trd,D(δ(α)), (2.10)

where α ∈ ∪∞ Bn , ED = 1/d, ε(a) is as in (2.2), δ is the natural homomorphism
C(q)Bn → Yd,n(q) and λd = z′−(q−q−1)ED

z′ is the re-scaling factor for the trace trd,D .
The invariants Θd depend only on d ∈ N, that is, the cardinal of the subset D

that parametrizes the solution of the E-system [5, Proposition 4.6]. Furthermore, the
choice of the new presentation for Yd,n revealed that the invariants Θd satisfy the
HOMFLYPT skein relation on crossings between different components of a link L
[5, Proposition 6.8]. Using this, one can prove that the invariants Θd distinguish
more pairs of HOMFLYPT equivalent pair of non-isotopic oriented classical links
[5, Sect. 7.2] and thus that Θd are not topologically equivalent to the HOMFLYPT
polynomial on links [5, Theorem 7.3].

In [5] it has been shown skein-theoretically that the invariants for classical links
Θd generalize to a new 3-variable invariant Θ(q, λ, E) for classical oriented links
that can be defined uniquely by the following two rules:

1. On crossings between different components of an oriented classical link L the
skein relation of the HOMFLYPT polynomial holds:

1√
λD

Θ(L+) − √

λD Θ(L−) = (q − q−1)Θ(L0),

where L+, L− and L0 is a Conway triple.
2. For a disjoint union of K = �r

i=1Ki of r knots, with r > 1, it holds that:
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Θ(K ) = E1−r
r

∏

i=1

P(Ki ),

where P(Ki ) is the value of the HOMFLYPT polynomial on Ki .

Algebraically, the well-definedness of the invariant Θ can be proved by using the
algebra of braids and ties, En(q) [1]. The algebra En(q) supports a unique Markov
trace ρ that gives rise to a 3-variable invariant for tied linksΘ(q, λ, E)which, in turn,
restricts to an invariant of classical oriented links Θ(q, λ, E) [2, 3]. Alternatively,
one can use the fact that, for d ≥ n, En(q) is isomorphic to the subalgebra Y(br)

d,n (q)

of Yd,n(q) that is generated only by the gi ’s [9]. Note now that when computing
the specialized trace trd,D of a braid word in Bn , the framing generators appear
only when applying the quadratic or the inverse relation and only in the form of the
idempotents ei . In this case and by the E-condition, the last rule of the specialized
trace: trd,D(ats

n+1) = xs trd,D(a), for s = 1, . . . , d − 1, can be substituted by the
following two rules [5, Theorem 4.3]:

trd,D(aen) = ED trd,D(a) and trd,D(aengn) = z trd,D(a),

where D is the non-empty subset of Z/dZ that parametrizes a solution of the E-
system. Consequently, if ED is considered as an indeterminate, the specialized trace
trd,D onY(br)

d,n (q) iswell-defined since it coincideswith the traceρ onEn(q) and, there-

fore, the invariant Θ can be constructed directly through Y(br)
d,n (q) [5, Remark 4.18].

Conversely, one can recover the invariants Θd from Θ by specializing E = 1/d,
d ∈ N.

A self-contained diagrammatic proof for the well-definedness of the invariant Θ
has been given in [26]. The invariant Θ distinguishes more pairs of non isotopic
oriented links than the HOMFLYPT polynomial and thus it is stronger than the
HOMFLYPT.We note also that,Θ is not topologically equivalent to theHOMFLYPT
or the Kauffman polynomials.

Finally, it is worth noting that the invariant Θ can be described by the following
closed combinatorial formula, namely:

Theorem 2.4 ([5, Appendix]) Let L be an oriented link with n components, then:

Θ(q, λ, E)(L) =
m

∑

k=1

μk−1Ek

∑

π

λν(π) P(π L), (2.11)

where the second summation is over all partitions of π of the components of L into k
(unordered) subsets and P(π L) denotes the product of the HOMFLYPT polynomials
of the k sublinks of L defined by π . Furthermore, ν(π) is the sum of all linking
numbers of pairs of components of L that are distinct sets of π , Ek = (E−1 −
1)(E−1 − 2) . . . (E−1 − k + 1), with E1 = 1 and μ = λ−1/2−λ1/2

q−q−1
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2.4.2 The Invariants θd and Their Generalization

By adjusting the algebra FTLd,n to the presentation that has parameter q and involves
the quadratic relation (2.9), one can compare the derived invariants for classical
oriented links to the Jones polynomial. In this context, the generator of the defining
principal ideal of FTLd,n is transformed to the following element of Yd,n(q):

e1e2
(

1 + q(g′
1 + g′

2) + q2(g′
1g′

2 + g′
2g′

1) + q3g′
1g′

2g′
1

)

.

Note that the E-system and its solutions remain unaffected by this change of pre-
sentations. The values for the trace parameters z, however, are transformed to the
following:

z′ = −q−1ED

q2 + 1
or z′ = −q−1ED.

The parameters z and z′ are related through the equation: z = qz′. Again, the value
z′ = −q−1ED is discarded. For the remaining values for z′, we obtain from (2.10)
the following 1-variable specialization of Θd :

θd(q)(̂α) :=
(

−1 + q2

q ED

)n−1

q2ε(α)trd,D(δ(a)) = Θd(q, q4)(̂α),

whereα ∈ ∪∞ Bn , d and ED , ε(a) and δ are as in (2.10). The invariants θd were proven
to be topologically equivalent to the Jones polynomial on knots [13, Proposition 11],
however, they are topologically not equivalent to the Jones polynomial on links [13,
Theorem 9].

In [15] the author together with S. Lambropoulou has shown that the invariants
θd generalize to a new 2-variable invariant θ for classical links. This generalization
can be proved either algebraically or diagrammatically. Algebraically, this can be
shown in two different ways. The first way is to consider the partition Temperley–
Lieb algebra, PTLn(q), which is a quotient of En(q) and determine the necessary and
sufficient conditions such that the unique Markov trace ρ of En(q) factors through
to PTLn(q). These conditions give rise to a 2-variable invariant for classical links,
θ(q, E) [15, Definition 1], that for E = 1/d coincides with θd . Alternatively, one
can show that, for d ≥ n, the subalgebra FTL(br)

d,n (q) of FTLd,n that is generated
only by the braiding generators gi is isomorphic to PTLn(q) [14, Proposition 5].
Diagrammatically, one may consider the skein-theoretic definition of Θ(q, λ, E)

and specialize λ = q4. Thus, we obtain the following:

Theorem 2.5 ([15, Theorem 6]) Let q, E be indeterminates. There exists a unique
ambient isotopy invariant of classical oriented links

θ : L → C[q±1, E±1]
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defined by the following rules:

1. On crossings involving different components the following skein relation holds:

q−2 θ(L+) − q2 θ(L−) = (q − q−1) θ(L0),

where L+, L− and L0 constitute a Conway triple.
2. For a disjoint union K = �r

i=1Ki of r knots, with r > 1, it holds that:

θ(K ) = E1−r
r

∏

i=1

V (Ki ),

where V (Ki ) is the value of the Jones polynomial on Ki .

All the properties of the invariant Θ carry through to θ [15] and so the invariant
θ distinguishes the same pairs of non-isotopic oriented classical links as Θ . More
precisely, in [5] six pairs of HOMFLYPT-equivalent non-isotopic oriented classical
links were found to be distinguished by the invariants Θ(q, λ, E), which are all still
distinguished by θ . Indeed we have that:

θ(L11n358{0, 1}) − θ(L11n418{0, 0}) = (1 − E)(q − 1)5(q + 1)5(q2 + 1)(q2 + q + 1)(q2 − q + 1)

E q18

θ(L11a467{0, 1}) − θ(L11a527{0, 0}) = (1 − E)(q − 1)5(q + 1)5(q2 + 1)(q2 + q + 1)(q2 − q + 1)

E q18

θ(L11n325{1, 1}) − θ(L11n424{0, 0}) = (E − 1)(q − 1)5(q + 1)5(q2 + 1)(q2 + q + 1)(q2 − q + 1)

E q14

θ(L10n79{1, 1}) − θ(L10n95{1, 0}) = (E − 1)(q2 − 1)3(q8 + 2 q6 + 2 q4 − 1)

E q18

θ(L11a404{1, 1}) − θ(L11a428{0, 1}) = (1 − E)(q − 1)3(q + 1)3(q2 + 1)(q4 + 1)(q6 − q4 + 1)

E q4

θ(L10n76{1, 1}) − θ(L11n425{1, 0}) = (E − 1)(q − 1)3(q + 1)3(q2 + 1)(q4 + 1)

E q10 .

The invariant θ(q, E) is not topologically equivalent to the HOMFLYPT or the
Kauffman polynomials, it includes the family of invariants {θd}d∈N as well as the
Jones polynomial and hence it is stronger than the Jones polynomial [15, Theorem7].

Finally, the invariant θ can be described by a closed combinatorial formula, which
is a corollary of Theorem 2.4. Indeed we have:

Corollary 2.1 Let L be an oriented link with n components. Then:

θ(q, E)(L) =
m

∑

k=1

(−1)k−1(q + q−1)k−1Ek

∑

π

λν(π)V (π L),
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where π , ν(π), and Ek are as in Theorem 2.4, and V (π L) denotes the product of
the Jones polynomial of the k sublinks of L defined by π .

From Corollary 2.1 it is clear that the invariant θ depends on the orientations of
the components of the link L , thus making it impossible to relate θ to the Kauffman
bracket polynomial. However, as shown in [15, Theorem 7], θ can be expressed in
terms of the oriented extension of the bracket polynomial. In particular, the author
together with S. Lambropoulou defined in [15] the ambient isotopy link invariant
{{L}} of the link diagram L by the following two rules:

(1) For a disjoint union K r := �r
i=1Ki , of r knots with r ≥ 1, we have that:

{{

K r
}} := E1−r

r
∏

i=1

V (Ki ), (2.12)

(2) On crossings involving different components the skein relation of the Jones
polynomial holds, namely:

(2.13)
Comparing (2.12) and (2.13) to Theorem 2.5, we deduce that {{L}} coincides with
the invariant θ(q, E).

References

1. Aicardi, F., Juyumaya, J.: An algebra involving braids and ties. Preprint ICTP IC/2000/179,
Trieste (2000)

2. Aicardi, F., Juyumaya, J.: Markov trace on the algebra of braids and ties. Moscow Math. J. 16,
397–431 (2016)

3. Aicardi, F., Juyumaya, J.: Tied links. J. Knot Theory Ramific. 25(9), 1641001 (2016)
4. Chlouveraki, M., Poulain d’Andecy, L.: Representation theory of the Yokonuma–Hecke. Adv.

Math. 259, 134–172 (2014)
5. Chlouveraki, M., Juyumaya, J., Karvounis, K., Lambropoulou, S.: Identifying the invariants

for classical knots and links from the Yokonuma–Hecke algebras, submitted for publication
(2015). arXiv:1505.06666

6. Chlouveraki, M., Lambropoulou, S.: The Yokonuma–Hecke algebras and the Homflypt poly-
nomial. J. Knot Theory and Its Ramif. 22 (2013)

7. Chlouveraki, M., Pouchin, G.: Determination of the representations and a basis for the
Yokonuma-Temperley-Lieb algebra, Algebras Represent. Theory 18 (2015)

8. Chlouveraki, M., Pouchin, G.: Representation theory and an isomorphism theorem for the
Framisation of the Temperley-Lieb algebra. Math. Z. 285(3), 1357–1380 (2017)

9. Espinoza, J., Ryom-Hansen, S.: Cell structures for the Yokonuma–Hecke algebra and the
algebra of braids and ties, submitted for publication (2016). arXiv:1506.00715

10. Freyd, P., Yetter, D., Hoste, J., Lickorish, W., Millett, K., Ocneanu, A.: A new polynomial
invariant of knots and links. Bull. AMS 12, 239–246 (1985)

http://arxiv.org/abs/1505.06666
http://arxiv.org/abs/1506.00715


2 A Survey on Temperley–Lieb-type Quotients … 55

11. Goundaroulis, D.: Framization of the Temperley-Lieb algebra and related link invariants, Ph.D.
thesis, Department of Mathematics, National Technical University of Athens, 1 (2014)

12. Goundaroulis, D., Juyumaya, J., Kontogeorgis, A., Lambropoulou, S.: The Yokonuma-
Temperley-Lieb algebra. Banach Center Pub. 103, 73–95 (2014)

13. Goundaroulis, D., Juyumaya, J., Kontogeorgis, A., Lambropoulou, S.: Framization of the
Temperley-Lieb algebra. Math. Res. Letters 24(7), 299–345 (2017)

14. Goundaroulis, D., Lambropoulou, S.: Classical link invariants from the framizations of the
Iwahori-Hecke algebra and the Temperley-Lieb algebra of type A. J. Knot Theory Ramific.
26(9), 1743005 (2017)

15. Goundaroulis, D., Lambropoulou, S.: A new two-variable generalization of the Jones polyno-
mial. Submitted for publication (2016). arXiv:1608.01812 [math.GT]

16. Jones, V.: Hecke algebra representations of braid groups and link polynomials. Ann. Math.
126, 335–388 (1987)

17. Juyumaya, J.: Sur les nouveaux générateurs de l’algèbre de Hecke (g, u, 1). J. Algebra 204,
40–68 (1998)

18. Juyumaya, J.:Markov trace on theYokonuma–Hecke algebra. J. Knot Theory Ramif. 13, 25–39
(2004)

19. Juyumaya, J., Kannan, S.: Braid relations in the Yokonuma–Hecke algebra. J. Algebra 239,
272–297 (2001)

20. Juyumaya, J., Lambropoulou, S.: p-adic framed braids. Topol. Appl. 154, 1804–1826 (2007)
21. Juyumaya, J., Lambropoulou, S.: An adelic extension of the Jones polynomial. In: Banagl, M.,

Vogel, D. (eds.) The Mathematics of Knots. Contributions in the Mathematical and Computa-
tional Sciences, vol. 1, pp. 825–840. Springer (2009)

22. Juyumaya, J., Lambropoulou, S.: An invariant for singular knots. J. Knot Theory Ramif. 18,
825–840 (2009)

23. Juyumaya, J., Lambropoulou, S.: Modular framization of the BMW algebra (2013).
arXiv:1007.0092v1 [math.GT]

24. Juyumaya, J., Lambropoulou, S.: p-adic framed braids II. Adv. Math. 234, 149–191 (2013)
25. Juyumaya, J., Lambropoulou, S.: On the framization of knot algebras. In: Kauffman, L., Man-

turov, V. (eds.) New Ideas in Low-dimensional Topology. Series on Knots and everything.
World Scientific (2014)

26. Kauffman, L.H., Lambropoulou, S.: New invariants of links and their state sum models (sub-
mitted for publication) (2016). arXiv: 1703.03655

27. Ko, K., Smolinsky, L.: The framed braid group and 3-manifolds. Proc. AMS 115, 541–551
(1992)

28. Marin, I.: Artin groups and the Yokonuma–Hecke algebra. Int. Math. Res. Notices, rnx007
(2017). https://doi.org/10.1093/imrn/rnx007

29. Przytycki, J.H., Traczyk, P.: Invariants of links of Conway type. Kobe J. Math. 4, 115–139
(1987)

30. Yokonuma, T.: Sur la structure des anneux de Hecke d’un group de Chevalley fin. C.R. Acad.
Sc. Paris 264, 344–347 (1967)

http://arxiv.org/abs/1608.01812
http://arxiv.org/abs/1007.0092v1
http://arxiv.org/abs/1703.03655
https://doi.org/10.1093/imrn/rnx007

	2 A Survey on Temperley--Lieb-type Quotients from the Yokonuma--Hecke Algebras
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Notations
	2.2.2  The Temperley--Lieb algebra
	2.2.3 The Yokonuma--Hecke Algebra

	2.3 The Three Possible Candidates
	2.3.1 Motivation Behind the Construction
	2.3.2 The Yokonuma-Temperley--Lieb Algebra
	2.3.3 The Complex Reflection Temperley--Lieb Algebra
	2.3.4  The Framization of the Temperley--Lieb algebra

	2.4 Comparisons and Generalizations
	2.4.1 The Invariants Θd and Their Generalization
	2.4.2 The Invariants θd and Their Generalization

	References


